
Lecture Notes in Computer Science 7084
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Services Science

Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Robert J.T. Morris, IBM Research, USA

Michael P. Papazoglou, University of Tilburg, The Netherlands

Darrell Williamson, CSIRO, Sydney, Australia

Subline Editorial Board

Boualem Bentallah, Australia

Athman Bouguettaya, Australia

Murthy Devarakonda, USA

Carlo Ghezzi, Italy

Chi-Hung Chi, China

Hani Jamjoom, USA

Paul Klingt, The Netherlands

Ingolf Krueger, USA

Paul Maglio, USA

Christos Nikolaou, Greece

Klaus Pohl, Germany

Stefan Tai, Germany

Yuzuru Tanaka, Japan

Christopher Ward, USA

Gerti Kappel Zakaria Maamar
Hamid R. Motahari-Nezhad (Eds.)

Service-Oriented
Computing
9th International Conference, ICSOC 2011
Paphos, Cyprus, December 5-8, 2011
Proceedings

13

Volume Editors

Gerti Kappel
Vienna University of Technology
Institute of Software Technology
and Interactive Systems
Favoritenstraße 9-11/188
1040 Vienna, Austria
E-mail: gerti@big.tuwien.ac.at

Zakaria Maamar
Zayed University
College of Information Technology
P.O. Box 19282, Dubai, UAE
E-mail: zakaria.maamar@zu.ac.ae

Hamid R. Motahari-Nezhad
HP Labs - Services Research Lab
1501 Page Mill Road
Palo Alto, CA 94304, USA
E-mail: hamid-reza.motahari-nezhad@hp.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-25534-2 e-ISBN 978-3-642-25535-9
DOI 10.1007/978-3-642-25535-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011941148

CR Subject Classification (1998): D.2, C.2, H.4, H.3, H.5, J.1, F.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Welcome to the 9th International Conference on Service-Oriented Computing
(ICSOC 2011), held in Paphos, Cyprus, December 5–8, 2011. These proceedings
contain high-quality research papers, both long and short, that showcase the
latest developments in the ever-growing field of service-oriented computing.

Since the first meeting in 2003, ICSOC has become the premier forum for
academics and industry researchers and practitioners to report and share ground-
breaking works in service-oriented computing. ICSOC 2011 aimed at examining
the research opportunities being offered by the possible blend of service-oriented
computing with cloud computing. Service-oriented and cloud computing was thus
the main theme of ICSOC 2011. Questions like how does service-oriented com-
puting support the transition to cloud-based solutions, and how does it support
infrastructure as a service (IaaS), platform as a service (PaaS), and software as
a service (SaaS) were discussed during the conference.

This year’s call for research papers attracted a total of 184 full submissions
from 35 countries spanning all continents of the world. All submitted papers were
reviewed in detail by members of the Program Committee, which was composed
of experts in the field of service-oriented and cloud computing from 21 countries.
Based on their reviews, 30 submissions were accepted as full papers, giving an
acceptance rate of 16%. Additionally, 24 submissions were accepted as short
papers. The conference program was complemented by outstanding keynotes,
industry paper presentations, demonstrations, and a panel discussion as well as
a PhD Symposium and a collection of workshops.

We would like to express our gratitude to all the institutions and sponsors
that supported ICSOC 2011, namely, the Computer Science Department of the
University of Cyprus, Hewlett Packard, IBM Research, Salesforce, Springer, and
ServTech. These proceedings and this conference would not have been possible
without the expertise and dedication of the members of the Program Commit-
tee. We are also indebted to the General Chairs of ICSOC 2011 (Mohand-Said
Hacid, Winfried Lamersdorf, and George Papadopoulos), to the Chairs of the
different tracks (Anis Charfi, Sven Graupner, Yücel Karabulut, Sam Guinea,
Florian Rosenberg, Youakim Badr, Francisco Curbera, Michael Q. Sheng, Ce-
sare Pautasso, Sonia Ben Mokhtar, Leandro Krug Wives, Ivan Bedini, Yacine
Atif, Rainer Unland, Christos Mettouris, and Dieter Mayrhofer), to the exter-
nal reviewers, to the local organizers, and last but not least to the members of

VI Preface

the conference Steering Committee. All of them helped to make ICSOC 2011
a success. Finally, special thanks go to all the researchers and students who
contributed with their work and participated in the conference. We hope that
you find the papers in these proceedings as stimulating as we did.

September 2011 Gerti Kappel
Zakaria Maamar

Hamid R. Motahari-Nezhad

Organization

Honorary General Chair

Mohand-Said Hacid University of Lyon, France

General Chairs

Winfried Lamersdorf University of Hamburg, Germany
George Papadopoulos University of Cyprus, Cyprus

Program Chairs

Gerti Kappel Vienna University of Technology, Austria
Zakaria Maamar Zayed University, UAE
Hamid R. Motahari-Nezhad HP Labs, USA

Workshop Chairs

Mohamed Jmaiel University of Sfax, Tunisia
George Pallis University of Cyprus, Cyprus

Industry Chairs

Anis Charfi SAP, Germany
Sven Graupner HP Labs, USA
Yücel Karabulut SAP, USA

Demonstration Chairs

Sam Guinea Politecnico di Milano, Italy
Florian Rosenberg IBM Research, USA

Panel Chairs

Youakim Badr The Pennsylvania State University, USA
Francisco Curbera IBM T.J. Watson Research Center, USA

VIII Organization

PhD Symposium Chairs

Michael Q. Sheng Adelaide University, Australia
Cesare Pautasso University of Lugano, Switzerland
Sonia Ben Mokhtar University College London, UK

Publicity Chairs

Leandro Krug Wives UFRGS, Brazil
Ivan Bedini Alcatel-Lucent Bell Labs, Ireland
Yacine Atif UAE University, UAE
Rainer Unland University of Duisburg-Essen, Germany

Organizing Committee

Christos Mettouris University of Cyprus, Cyprus

Publication Chair

Dieter Mayrhofer Vienna University of Technology, Austria

Program Committee

Marco Aiello University of Groningen, The Netherlands
Rama Akkiraju IBM T.J. Watson Research Center, USA
Álvaro Arenas Instituto de Empresa Business School, Spain
Ebrahim Bagheri Athabasca University, Canada
Luciano Baresi Politecnico di Milano, Italy
Claudio Bartolini HP Labs, USA
Samik Basu Iowa State University, USA
Sujoy Basu HP Labs, USA
Boualem Benatallah University of New South Wales, Australia
Salima Benbernou Unversité Paris Descartes, France
Antonia Bertolino ISTI-CNR, Italy
Walter Binder University of Lugano, Switzerland
Athman Bouguettaya RMIT University, Australia
Christoph Bussler Xtime Inc., USA
Manuel Carro Universidad Politécnica de Madrid, Spain
Shiping Chen CSIRO ICT, Australia

Organization IX

Lawrence Chung University of Texas at Dallas, USA
Emmanuel Coquery Université Claude Bernard Lyon 1, France
Francisco Curbera IBM T.J. Watson Research Center, USA
Vincenzo D’Andrea University of Trento, Italy
Florian Daniel University of Trento, Italy
Flavio De Paoli Università di Milano-Bicocca, Italy
Frédéric Desprez INRIA, France
Khalil Drira LAAS-CNRS, France
Marlon Dumas University of Tartu, Estonia
Schahram Dustdar Vienna University of Technology, Austria
Gregor Engels University of Paderborn, Germany
Abdelkarim Erradi Qatar University, Qatar
Rik Eshuis Eindhoven University of Technology,

The Netherlands
Noura Faci Université Claude Bernard Lyon 1, France
Andreas Friesen SAP Research, Germany
Hiroaki Fukuda Keio University, Japan
Dragan Gašević Athabasca University, Canada
Carlo Ghezzi Politecnico di Milano, Italy
Paolo Giorgini University of Trento, Italy
Sven Graupner HP Labs, USA
Paul Grefen Eindhoven University of Technology,

The Netherlands
Hakim Hacid Alcatel-Lucent Bell Labs, France
Mohand-Said Hacid Université Claude Bernard Lyon 1, France
Peng Han Chongqing Academy of Science and

Technology, China
Jos van Hillegersberg University of Twente, The Netherlands
Valérie Issarny INRIA Paris-Rocquencourt, France
Hans-Arno Jacobsen University of Toronto, Canada
Rania Y. Khalaf IBM T.J. Watson Research Center, USA
Markus Kirchberg HP Labs/National. University of Singapore,

Singapore
Woralak Kongdenfha Naresuan University, Thailand
Gerald Kotonya Lancaster University, UK
Jeffrey T. Kreulen IBM Almaden Research Center, USA
Patricia Lago VU University Amsterdam, The Netherlands
Francesco Lelli ERISS Tilburg, The Netherlands
Frank Leymann University of Stuttgart, Germany
Jun Li HP Labs, USA
Fu-ren Lin National Tsing Hua University, China
Lin Liu National Tsing Hua University, China
Xumin Liu Rochester Institute of Technology, USA
Heiko Ludwig IBM Almaden Research Center, USA

X Organization

Paul P. Maglio IBM Almaden Research Center, USA
Zaki Malik Wayne State University, USA
Wathiq Mansoor American University in Dubai, UAE
Michael Maximilien IBM Almaden Research Center, USA
Massimo Mecella Sapienza Università di Roma, Italy
Luis Miguel Vaquero HP Labs, UK
Michaël Mrissa Université Claude Bernard Lyon 1, France
Nanjangud C. Narendra IBM Research India, India
Surya Nepal CSIRO, Australia
Olga Ormandjieva Concordia University, Canada
Guadalupe Ortiz University of Cádiz, Spain
Helen Paik University of New South Wales, Australia
Christian Pérez INRIA, France
Radha Krishna Pisipati INFOSYS Technologies Ltd., India
Julien Ponge INSA Lyon, France
Frank Puhlmann inubit AG, Germany
Mu Qiao The Pennsylvania State University, USA
Robin Qiu The Pennsylvania State University, USA
Manfred Reichert University of Ulm, Germany
Wolfgang Reisig Humboldt-Universität zu Berlin, Germany
Colette Rolland Université Paris 1 Panthéon Sorbonne, France
Florian Rosenberg IBM Research, USA
Gustavo Rossi Universidad Nacional de La Plata, Argentina
Antonio Ruiz-Cortés University of Seville, Spain
S. Masoud Sadjadi Florida International University, USA
Régis Saint-Paul Create-Net, Italy
Jakka Sairamesh 360Fresh Inc., USA
Ignacio Silva-Lepe IBM Research, USA
Munindar P. Singh North Carolina State University, USA
George Spanoudakis City University London, UK
Bryan Stephenson HP Labs, USA
Eleni Stroulia University of Alberta, Canada
Jianwen Su UC Santa Barbara, USA
Stefan Tai Karlsruhe Institute of Technology (KIT),

Germany
Wei Tan IBM T.J. Watson Research Center, USA
Zahir Tari RMIT University, Australia
Beatriz Toledo UNICAMP, Brazil
Farouk Toumani Blaise Pascal University, France
Peter Tröger University of Potsdam, Germany
Srikumar Venugopal University of New South Wales, Australia
Changzhou Wang Boeing, USA
Yan Wang Macquarie University, Australia
Bruno Wassermann University College London, UK

Organization XI

Ingo Weber University of New South Wales, Australia
Mathias Weske University of Potsdam, Germany
Karsten Wolf University of Rostock, Germany
Lai Xu Bournemouth University, UK
Ramin Yahyapour TU Dortmund, Germany
Zheng Yan Aalto University, Finland/Xidian University,

China
Jian Yang Macquarie University, Australia
Konstantinos Zachos City University London, UK
Hossein Zadeh RMIT, Australia
Alex Zhang HP Labs, USA
Weiliang Zhao Macquarie University, Australia
Andrea Zisman City University London, UK

External Reviewers

Rahul Akolkar
Mohsen Asadi
Marko Bošković
Pablo Fernández
Sinem Güven

Cristian Klein
Bardia Mohabbati
Jonathan Munson
José Antonio Parejo
Marcus Roy

Sergio Segura
Aleksander Slominski
Paul de Vrieze

Table of Contents

Research Papers – Long

Business Process Modeling

Computing Degree of Parallelism for BPMN Processes 1
Yutian Sun and Jianwen Su

State Propagation in Abstracted Business Processes 16
Sergey Smirnov, Armin Zamani Farahani, and Mathias Weske

Push-Enabling RESTful Business Processes . 32
Cesare Pautasso and Erik Wilde

Quality of Service 1

QoS Analysis for Web Service Compositions Based on Probabilistic
QoS . 47

Huiyuan Zheng, Jian Yang, Weiliang Zhao, and Athman Bouguettaya

Constraint-Based Runtime Prediction of SLA Violations in Service
Orchestrations . 62

Dragan Ivanović, Manuel Carro, and Manuel Hermenegildo

Optimizing Decisions in Web Services Orchestrations 77
Ajay Kattepur, Albert Benveniste, and Claude Jard

Formal Methods

Decidability Results for Choreography Realization 92
Niels Lohmann and Karsten Wolf

Conformance Testing for Asynchronously Communicating Services 108
Kathrin Kaschner

Programming Services with Correlation Sets . 125
Fabrizio Montesi and Marco Carbone

Verification of Deployed Artifact Systems via Data Abstraction 142
Francesco Belardinelli, Alessio Lomuscio, and Fabio Patrizi

XIV Table of Contents

XaaS Computing

Profiling-as-a-Service: Adaptive Scalable Resource Profiling for the
Cloud in the Cloud . 157

Nima Kaviani, Eric Wohlstadter, and Rodger Lea

VM Placement in non-Homogeneous IaaS-Clouds . 172
Konstantinos Tsakalozos, Mema Roussopoulos, and Alex Delis

Service Discovery

Place Semantics into Context: Service Community Discovery from the
WSDL Corpus . 188

Qi Yu

WTCluster: Utilizing Tags for Web Services Clustering 204
Liang Chen, Liukai Hu, Zibin Zheng, Jian Wu, Jianwei Yin,
Ying Li, and Shuiguang Deng

Similarity Function Recommender Service Using Incremental User
Knowledge Acquisition . 219

Seung Hwan Ryu, Boualem Benatallah, Hye-Young Paik,
Yang Sok Kim, and Paul Compton

Revealing Hidden Relations among Web Services Using Business
Process Knowledge . 235

Ahmed Awad and Mohammed AbuJarour

Service Science and Management

Towards a Service System Ontology for Service Science 250
Elisah Lemey and Geert Poels

Support for the Business Motivation Model in the WS-Policy4MASC
Language and MiniZnMASC Middleware . 265

Qinghua Lu, Vladimir Tosic, and Paul L. Bannerman

WS-Governance: A Policy Language for SOA Governance 280
José Antonio Parejo, Pablo Fernandez, and Antonio Ruiz-Cortés

QoS-Based Task Scheduling in Crowdsourcing Environments 297
Roman Khazankin, Harald Psaier, Daniel Schall, and
Schahram Dustdar

Service Security and Trust

Model Driven Security Analysis of IDaaS Protocols 312
Apurva Kumar

Table of Contents XV

Credibility-Based Trust Management for Services in Cloud
Environments . 328

Talal H. Noor and Quan Z. Sheng

Service Monitoring

Monere: Monitoring of Service Compositions for Failure Diagnosis 344
Bruno Wassermann and Wolfgang Emmerich

Multi-layered Monitoring and Adaptation . 359
Sam Guinea, Gabor Kecskemeti, Annapaola Marconi, and
Branimir Wetzstein

Service Composition

Efficient, Interactive Recommendation of Mashup Composition
Knowledge . 374

Soudip Roy Chowdhury, Florian Daniel, and Fabio Casati

A Semantic and Information Retrieval Based Approach to Service
Contract Selection . 389

Silvia Calegari, Marco Comerio, Andrea Maurino,
Emanuele Panzeri, and Gabriella Pasi

Modeling and Managing Variability in Process-Based Service
Compositions . 404

Tuan Nguyen, Alan Colman, and Jun Han

Quality of Service 2

QoS-Driven Proactive Adaptation of Service Composition 421
Rafael Aschoff and Andrea Zisman

A Quality Aggregation Model for Service-Oriented Software Product
Lines Based on Variability and Composition Patterns 436

Bardia Mohabbati, Dragan Gašević, Marek Hatala, Mohsen Asadi,
Ebrahim Bagheri, and Marko Bošković

Optimization of Complex QoS-Aware Service Compositions 452
Dieter Schuller, Artem Polyvyanyy, Luciano Garćıa-Bañuelos, and
Stefan Schulte

XVI Table of Contents

Research Papers – Short

Business Process Modeling

Goal-Driven Business Process Derivation . 467
Aditya K. Ghose, Nanjangud C. Narendra, Karthikeyan Ponnalagu,
Anurag Panda, and Atul Gohad

Defining and Analysing Resource Assignments in Business Processes
with RAL . 477

Cristina Cabanillas, Manuel Resinas, and Antonio Ruiz-Cortés

Stochastic Optimization for Adaptive Labor Staffing in Service
Systems . 487

L.A. Prashanth, H.L. Prasad, Nirmit Desai, Shalabh Bhatnagar, and
Gargi Dasgupta

Declarative Enhancement Framework for Business Processes 495
Heerko Groefsema, Pavel Bulanov, and Marco Aiello

XaaS Computing

RSCMap: Resiliency Planning in Storage Clouds . 505
Vimmi Jaiswal, Aritra Sen, and Akshat Verma

Dynamically Selecting Composition Algorithms for Economical
Composition as a Service . 513

Immanuel Trummer and Boi Faltings

A Service Model for Development and Test Clouds 523
Debdoot Mukherjee, Monika Gupta, Vibha Singhal Sinha, and
Nianjun Zhou

Quality of Service

Time Based QoS Modeling and Prediction for Web Services 532
Leilei Chen, Jian Yang, and Liang Zhang

CANPRO: A Conflict-Aware Protocol for Negotiation of Cloud
Resources and Services . 541

Marco A.S. Netto

Game-Theoretic Analysis of a Web Services Collaborative
Mechanism . 549

Babak Khosravifar, Jamal Bentahar, Kathleen Clacens,
Christophe Goffart, and Philippe Thiran

Table of Contents XVII

Importance Sampling of Probabilistic Contracts in Web Services 557
Ajay Kattepur

Particle Filtering Based Availability Prediction for Web Services 566
Lina Yao and Quan Z. Sheng

A Penalty-Based Approach for QoS Dissatisfaction Using Fuzzy
Rules . 574

Barbara Pernici, S. Hossein Siadat, Salima Benbernou, and
Mourad Ouziri

Service Runtime Infrastructures

Cellular Differentiation-Based Service Adaptation . 582
Ichiro Satoh

Graceful Interruption of Request-Response Service Interactions 590
Mila Dalla Preda, Maurizio Gabbrielli, Ivan Lanese,
Jacopo Mauro, and Gianluigi Zavattaro

Adaptation of Web Service Interactions Using Complex Event
Processing Patterns . 601

Yéhia Taher, Michael Parkin, Mike P. Papazoglou, and
Willem-Jan van den Heuvel

Service Migration and Adoption

Employing Dynamic Object Offloading as a Design Breakthrough for
SOA Adoption . 610

Quirino Zagarese, Gerardo Canfora, and Eugenio Zimeo

A Survey of SOA Migration in Industry . 618
Maryam Razavian and Patricia Lago

Service Composition

Forms-Based Service Composition . 627
Ingo Weber, Hye-Young Paik, and Boualem Benatallah

Contractually Compliant Service Compositions . 636
Enrique Mart́ınez, Gregorio Dı́az, and M. Emilia Cambronero

Profit Sharing in Service Composition . 645
Shigeo Matsubara

XVIII Table of Contents

Service Applications

A Predictive Business Agility Model for Service Oriented
Architectures . 653

Mamoun Hirzalla, Peter Bahrs, Jane Cleland-Huang,
Craig S. Miller, and Rob High

Personal-Hosting RESTful Web Services for Social Network Based
Recommendation . 661

Youliang Zhong, Weiliang Zhao, and Jian Yang

Work as a Service . 669
Daniel V. Oppenheim, Lav R. Varshney, and Yi-Min Chee

Author Index . 679

Computing Degree of Parallelism
for BPMN Processes�

Yutian Sun and Jianwen Su

Department of Computer Science,
University of California, Santa Barbara

{sun,su}@cs.ucsb.edu

Abstract. For sequential processes and workflows (i.e., pipelined tasks), each
enactment (process instance) only has one task being performed at each time
instant. When a process allows tasks to be performed in parallel, an enactment
may have a number of tasks being performed concurrently and this number may
change in time. We define the “degree of parallelism” of a process as the max-
imum number of tasks to be performed concurrently during an execution of the
process. This paper initiates a study on computing degree of parallelism for three
classes of BPMN processes, which are defined based on the use of BPMN gate-
ways. For each class, an algorithm for computing degree of parallelism is pre-
sented. In particular, the algorithms for “homogeneous” and acyclic “choice-less”
processes (respectively) have polynomial time complexity, while the algorithm
for “asynchronous” processes runs in exponential time.

1 Introduction

There has been an increasing interest in developing techniques for supporting busi-
ness processes in research communities (e.g., recent conferences/workshops including
BPM, COOPIS, ICSOC, ...). A business process is an assembly of tasks (performed
by human or systems) to accomplish a business goal such as handling a loan appli-
cation, approving a permit or treating a patient. The emergence of data management
tools in the early 1980’s brought the concept of workflow systems to assist execution of
business processes in an ad hoc manner. IT innovations in the last decade have been ex-
erting a growing pressure to increase automation in design, operation, and management
of business processes. Recent research in this area focused on modeling approaches
(e.g., [12,3,21,22,10,1]), verifying properties of business processes and workflow (e.g.,
[19,20,7]), etc. In this paper, we study the problem of computing the maximum number
of tasks that are to be performed in parallel, which can provide useful information to
execution planning for processes or workflow [14,24].

Performing business tasks requires resources [16,17] including data, software
systems, devices, and in particular human. Resource planning is essential in business
process (and workflow) execution management. For processes (workflow) with sequen-
tially arranged tasks (i.e., pipelined tasks), each process instance has at most one task to
be performed at one time; the amount of resources needed can be roughly determined

� Work supported in part by NSF grant IIS-0812578 and a grant from IBM.

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 1–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 Y. Sun and J. Su

by the process initiation rate, the number of tasks in the process, and the amount of
work needed for each task. In this paper we focus on calculating the number of tasks
that are performed simultaneously, this information provides a needed input to resource
estimation.

When a process allows tasks to be performed in parallel, an enactment (process in-
stance) may have a number of tasks to be performed concurrently and this number may
change in time. We introduce a new concept “degree of parallelism” as the maximum
number of tasks to be performed concurrently during a process execution, i.e., the peak
demand on tasks to be performed. This paper initiates a study on computing degree of
parallelism for business processes specified in BPMN [4].

Degree of parallelism is a worst case metric for business processes and can provide
useful guidance to process modeling and execution planning. For example, some pro-
cesses may have unbounded degrees, i.e., their peak use exceeds any fixed number. It is
quite likely that such processes are results of modeling mistakes. More importantly, the
peak time information on tasks could help in planning the needed resources (including
human) for the execution of defined business processes.

Technically, this paper defines a formal model for processes (or workflows). The
core building blocks in the model are adopted and/or generalized from BPMN con-
structs; in addition, our model also incorporates an expected duration for each task. The
semantics resembles the Petri nets based semantics presented in [8]. The modeling of
task durations makes the model closer to real world processes, e.g., healthcare treat-
ment protocols (processes). We formally define the notion of degree of parallelism on
this model, and present the following new technical results on three new subclasses of
processes based on different combinations of BPMN gateways:

1. For “homogeneous” processes (that use only one type of gateways) a polynomial
time algorithm is developed that computes the degree of parallelism.

2. For acyclic “choice-less” processes that does not allow choice gateways nor cycles,
we present a polynomial time algorithm for processes in this subclass (the time
complexity is linear in the sum of all task durations in the process).

3. We also consider asynchronous processes that use only two types of BPMN gate-
ways: exclusive-merge and parallel-split. By mapping such processes to “process
graphs”, we show an algorithm to compute the degree of parallelism. The com-
plexity of the algorithm is exponential time in general, but quadratic if the process
contains at most one cycle. The general case solution answers an open problem in
[13], and the quadratic result improves the cubic time result in [13].

This paper is organized as follows. The formal model and the key notion of degree
of parallelism for processes are presented in Section 2. Sections 3, 4, and 5 focus on
homogeneous, acyclic choice-less, and asynchronous processes, respectively. Related
work is discussed in Section 6, and conclusions are included in Section 7.

2 A Formal Model for Processes

In this section, we introduce a formal model for BPMN processes (or workflows), the
key notions include “process”, “(pre-)snapshot”, “derivation”, and “reduction”.

Computing Degree of Parallelism for BPMN Processes 3

Apartment
Purchase

Application

Apartment
Lease

Application

Payment

Issue
Certificate

Insurance

Public
Notification

Document
Archive

Lease
Agreement

e1 g1

t1 t2

t3

t4

t5

t6

t7

t8

g2

g3

g5
e2

g4

(2 Days) (1 Day)

(1 Day)

(1 Day)

(1 Day)

(3 Days)

(1 Day)

(3 Days)

Fig. 1. A BPMN process

The semantics resembles the Petri net semantics for BPMN are presented in [8]. We
also define the central notion of “degree of parallelism” used in this paper.

In BPMN [4], a process is modeled as a graph whose nodes and edges are of different
types. In this paper, we focus on one type of edges corresponding to “sequence flow” in
BPMN, and three types of nodes: “event”, “task”, and “gateway”.

We consider two classes of events in BPMN: start and end events. A start (event)
node initializes a process by sending out a “flow front” (or an active point of execution)
to the next node. When all flow fronts reach their end (event) nodes, the process ends.
A task (node) represents an atomic unit of work.

A gateway node in a process alters the current execution path (e.g., by choosing an al-
ternative path or proceeding on all paths). There are four kinds of frequently used gate-
ways in BPMN: (exclusive-)choice, (exclusive-)merge, (parallel-)split and (parallel-)
join. Choice and merge gateways allow a flow front in a process to follow one of sev-
eral alternatives (choice) or choose only one flow front from possibly several incoming
edges to continue (merge). Split and join gateways, on the other hand, forward a flow
front to every outgoing edge for parallel execution (split) or synchronize flow fronts
from all incoming edges and combine them into one (join).

Example 2.1. Fig. 1 shows an example BPMN process, which combines purchasing an
apartment and putting it out for lease (in China where leasing arrangements need an ap-
proval from the city office for real estate management). The process begins from a start
event (e1) and immediately forks into two paths by a split gateway g1. The upper and
lower paths represent the purchase and lease sub-processes respectively. The applicant
files the purchase (t1) and lease (t7) applications. The expected duration of each task is
shown below the task node in the figure, e.g., t1 would take 2 days while t7 only 1 day.
After paying a purchasing transaction fee (t2), the applicant obtains the certificate (t6).
Together with the leasing application, the applicant can finish a lease contract with the
tenant (t8). For the other branch, the applicant also needs to spend 3 days on getting an
insurance policy (t3). Once this is done, the housing office will make a public notifi-
cation (t4) for additional 3 days as required by law before archiving all the documents
(t5). Finally, all flow fronts will synchronize at the join gateway g5; the process will end
when reaching end event e2.

4 Y. Sun and J. Su

In our formal model, a “process” is a graph with edges corresponding to control-flow
transitions and nodes representing start/end events, tasks, or gateways. Similarly, a gate-
way node alters the execution path (choosing an alternative path or following parallel
paths). Our model includes two kinds of gateways that are more general than BPMN
gateways: exclusive (denoted as +�) and parallel (denoted as ×�). A +�-gateway essen-
tially combines a merge gateway and a choice gateway, and a ×�-gateway is a join gate-
way followed by a split gateway. Specifically, a +�-gateway node passes an incoming
flow front on an incoming edge immediately to one of the outgoing edges to continue
the flow front. A ×�-gateway node, on the other hand, waits until one flow front from
each incoming edge arrives, merges them into one flow front, and then split it again to
pass a flow front to each of its outgoing edges. Note that when the number of incom-
ing/outgoing edges is 1, +�- and ×�-gateways degenerate to BPMN gateways.

Our model associates a duration to each node to indicate the typical length for the
node to complete. Without loss of generality, the duration of each gateway or event node
is always 0 (it takes no time to complete). A task node takes some time (> 0) to perform
before finishing. In Fig. 1, durations are shown in parentheses below task nodes.

For the technical development, we use indeg and outdeg to denote the number of
incoming edges and outgoing edges of a node respectively. Let T be the set consisting of
the following types:◦ (start),• (end), � (task), +� (exclusive gateway), and ×� (parallel
gateway). Let N be the set of natural numbers.

Definition: A process (with durations) is a tuple P = (V, s, F, E, τ, δ), where

– V is a (finite) set of nodes,
– s ∈ V and F ⊆ (V−{s}) are the start node and a set of end nodes (resp.),
– τ : V → T is a mapping that assigns each node in V a type such that τ(s) = “◦”,
τ(v) = “•” for each v ∈ F, and τ(v) is not “◦” nor “•” for each v ∈ V − F − {s},

– δ : V → N is a mapping that assigns each node a duration such that for each v ∈ V ,
δ(v) > 0 iff τ(v) = “�” (v is a task node), and

– E ⊆ (V−F)×(V−{s}) is a set of transitions satisfying all conditions listed below:
1. For the start node s, outdeg(s) = 1 and indeg(s) = 0,
2. For each end node v ∈ F, indeg(v) = 1 and outdeg(v) = 0, and
3. For each task node v, indeg(v) = outdeg(v) = 1.

Given a process P = (V, s, F, E, τ, δ), a cycle (of size n ∈ N) is a sequence v1, v2, ..., vn

such that for each i ∈ [1..n], vi is a node in V , and (vi, v(i mod n)+1) ∈ E. A process is
acyclic if it contains no cycles.

The graph shown in Fig. 1 can also be viewed as a process in our model, where e1

and e2 are the start and end nodes (resp.), gi’s (1 � i � 5) are ×�-gateway nodes, and
ti’s (1 � i � 8) are task nodes with non-0 durations.

In general, a process can be nondeterministic and/or have tasks performing in par-
allel. For example, if a flow front goes into a +�-gateway, the gateway can choose non-
deterministically an outgoing edge to route the flow front. Also, a process can spawn
several flow fronts during the execution due to ×�-gateway nodes. The goal of this paper
is to compute the maximum number of tasks that may run in parallel.

In order to define the notions precisely for algorithm development, we need to pro-
vide a semantics for processes. We introduce a pair of notions “pre-snapshots” and
“snapshots” below that are used to formulate the semantics.

Computing Degree of Parallelism for BPMN Processes 5

In the remainder of this section, let P = (V, s, F, E, τ, δ) be some process. A flow front
is a triple (u, v, n), where (u, v) ∈ E is an edge (transition) in P and n is a (possibly neg-
ative) integer such that n � δ(u). Intuitively, a positive number n denotes the remaining
time needed to complete the node u or “time-to-live” for u. When n � 0, u is completed
and the flow front is ready to move forward through v in the process. Since the duraton
of a non-task node is always 0, a flow front (u, v, n) originating at a non-task node u can
proceed unless v is a ×�-gateway node.

A pre-snapshot of the process P is a multiset of flow fronts. Note that duplicates are
allowed in a pre-snapshot. The singleton multiset {(s, u, 0)} is an initial pre-snapshot
where s is the start node. Given a pre-snapshot S of P, a node v in P is ready (to
activate) in S if one of the following holds:

– v is an end/task/ +�-gateway node and a flow front (u, v, n) is in S for some n � 0, or
– v is a ×�-gateway node and for each incoming edge (u, v) into v, (u, v, n) is a flow

front in S for some n � 0.

Example 2.2. Consider the process shown in Fig. 1. The triples (e1, g1, 0), (t1, t2, 2)
are flow fronts of the process, (e1, g1, 1) is not a flow front since the duration of e1

is 0 < 1, nor is (t1, t3, 2) since (t1, t3) is not an edge in the process. The following
are pre-snapshots: {(e1, g1, 0)}, {(g1, t1,−2)}, {(t1, t2, 2), (t7, g3, 1)}, and also {(t1, t2, 2),
(t2, g2,−1), (t7, g3, 1)}. In the pre-snapshot {(t1, t2, 2), (t2, g2,−1), (t7, g3, 1)}, task t2 has
completed, tasks t1 and t7 are still running in parallel, and node g2 is ready.

If a node v is ready in a pre-snapshot S , we can proceed a (or more) flow front(s) to the
node v to derive a new pre-snapshot S ′ as follows.

– If v is an end node and (u, v, n) is in S where n � 0, then S ′ = S − {(u, v, n)}.
– If v is a task or +�-gateway node and (u, v, n) is in S where n � 0, then S ′ =

(S − {(u, v, n)}) ∪ {(v,w, δ(v))} where δ(v) is the duration of v and (v,w) is an edge
leaving v in P. (When v is +�-gateway, w is nondeterministically selected.)

– If v is a ×�-gateway node with all incoming edges from u1, ..., u� and for each i ∈
[1..�], (ui, v, ni) is in S where ni � 0, then S ′ = (S − {(ui, v, ni) | 1�i��}) ∪
{(v,wi, δ(v)) | (v,wi) is an outgoing edge of v in P }.

Example 2.3. Consider the process in Fig. 1. Since e1 is the start node, the initial
pre-snapshot is {(e1, g1, 0)}. Clearly, g1 is ready and we can derive the pre-snapshot
{(g1, t1, 0), (g1, t7, 0)} since g1 is a ×�-gateway. Now both t1 and t7 become ready. We
may derive the pre-snapshots {(t1, t2, 2), (g1, t7, 0)}, and then {(t1, t2, 2), (t7, g3, 1)}. At
this point, no nodes are ready.

We call a pre-snapshot of process P in which no nodes are ready a snapshot. In Example
2.3, {(t1, t2, 2), (t7, g3, 1)} is a snapshot. In general, a pre-snapshot can always derive
in a finite number of steps into a snapshot. We call the procedure of a pre-snapshot
eventually deriving a snapshot a reduction.

From a snapshot, derivations cannot be made since no nodes are ready. At this time
we can advance process operations by one time unit. Technically, let S be a snapshot
and S ′ a pre-snapshot. S task-derives S ′ if S ′ = {(u, v, n − 1) | (u, v, n) ∈ S }.

6 Y. Sun and J. Su

Note that if a flow front has a positive time-to-live the time is decremented by 1, if
the time-to-live is zero or negative, the resulting time may be negative. While this may
be a useful information for measuring performance, we do not use the negative amounts
in this paper. Also, as the task-derivation indicates, the scheduling algorithm for process
tasks is an eager one—it performs the task immediately when the task becomes ready.
It is interesting to examine alternative scheduling policies and explore their impact on,
e.g., the degree of parallelism. But this is beyond the scope of the present paper.

Example 2.4. Continuing with Example 2.3, the snapshot {(t1, t2, 2), (t7, g3, 1)} task-
derives the pre-snapshot {(t1, t2, 1), (t7, g3, 0)}. The latter indicates that t7 is completed
but g3 is not ready since it is a ×�-gateway and the other incoming edge does not have a
flow front. Therefore, {(t1, t2, 1), (t7, g3, 0)} is also a snapshot, which further task-derives
{(t1, t2, 0), (t7, g3,−1)}. Now task t2 becomes ready.

Definition: Let n ∈ N and P = (V, s, F, E, τ, δ) be a process. An enactment of length n
of P is a sequence p = S 1S 2...S n such that for each i ∈ [1..n], S i is a snapshot, S 1 is a
reduction from the initial pre-snapshot and for each i ∈ [2..n], S i is obtained from S i−1

by first applying task-derivation on S i−1 followed by a reduction. The enactment p is
complete if S n = ∅. The semantics of a process P is a set of all complete enactments.

Let S be a snapshot, the active cardinality of S , denoted as |S |active, is the cardinality of
the multiset {(u, v, n) | (u, v, n) ∈ S and n � 1}. The active cardinality of S indicates the
number of (currently) running tasks at the time of the snapshot.

Definition: The degree (of parallelism) of a process P, denoted as DP(P), is the maxi-
mum active cardinality of a snapshot in some enactment of P.

The degree of process P reflects how much parallelism the execution of P allows, i.e.,
the maximum number of (active) flow fronts that can appear during the execution of P.
Suppose the total amount of “work” in P is fixed. The greater DP(P) is, the more re-
sources operations of P will need. On the other hand, the availability of these resources
will mean the total time to complete an enactment is shorter. This, however, does not
mean the throughput of the business managing process P is automatically higher. To
achieve operational efficiency under resource limitation, it may be possible to plan tasks
in P in a way to lower the degree of parallelism while maintaining the throughput. The
study on the degree of parallelism is an initial step towards understanding the issue of
resource needs and constraints on tasks as specified in a process.

3 Homogeneous Processes

In this section, we focus on a subclass of processes, called “homogeneous processes”,
and present a polynomial time algorithm to compute the degree of parallelism.

A process is homogeneous if its gateway nodes only use one kind of gateway, ei-
ther +�-gateway or ×�-gateway, but not both. There are two flavors of homogeneous pro-
cesses. A parallel-(or ×�-)homogeneous process uses only ×�-gateway while a choice-(or
+�-)homogeneous process uses only +�-gateway.

Computing Degree of Parallelism for BPMN Processes 7

Lemma 3.1. The degree of parallelism for each +�-homogeneous process is always 1.

From the semantics, it is easy to see that derivation and task-derivation from a pre-
snapshot will not increase the cardinality, since at most one outgoing edge (transition)
can be invoked for each node. Since the initial pre-snapshot only contains one element,
the cardinality of each snapshot of each arbitrary +�-homogeneous process is always
one, which bounds the degree of parallelism. The proof can be done by an induction.

Obviously, Lemma 3.1 fails for ×�-homogeneous processes. In the remainder of this
section, we only focus on the calculation of the degree of parallelism of ×�-homogeneous
processes. The process in Fig. 1 is a ×�-homogeneous process.

Given a process P, a node v is reachable in P, if there exists an enactment S 1S 2...S k,
such that v is ready either in the snapshot S k, or in a pre-snapshot that can be derived
from S k−1 and reduced to S k.

Lemma 3.2. If every node in a ×�-homogeneous process P is reachable, P is acyclic.

Proof: (Sketch) Let P be a ×�-homogeneous process that contains a cycle C. Consider a
sequence of pre-snapshots S 1, ..., S m such that (1) S 1 is initial, and for each i ∈ [2..m],
S i is derived or task-derived from S i−1 in one step, (2) for some node v in C, v is ready
in S m, and (3) no other nodes in C that is ready in S j for j < m. Since each node in
P is reachable, it is possible to find a v and pre-snapshot sequence that satisfy (1)-(3).
Clearly, v must have at least two incoming edges (one from the path and the other on
the cycle) and thus a ×�-gateway node. By the definition of derivition/task-derivition,
some node on C must be ready in S j for some j < m, a contradiction.

Since a ×�-homogeneous process is acyclic according to Lemma 3.2, each node will be
added into a snapshot or pre-snapshot at most once. Thus, the degree of parallelism is
finite and less than the total number of task nodes in the process.

Theorem 3.3. Given a ×�-homogeneous process P = (V, s, F, E, τ, δ), the degree of par-
allelism of P can be computed in O(|V | log |V |) time.

To establish Theorem 3.3, we develop an algorithm that simulates the execution of a
process P = (V, s, F, E, τ, δ) in computing its degree of parallelism. The simulation uses
a priority queue to store all nodes that are currently running. When a node finishes,
it is popped from the queue. Thus, the degree of the ×�-homogeneous process is the
maximum number of tasks that appear in the queue at some point during the simulation.

We use [v, t] to denote an element in Q where t is the completion time for a node v.
Entries of form [v, t] in Q, are sorted according to the completion time t in the ascending
order. The algorithm (Alg. 1) uses an array RN(v) to record the number of remaining
incoming nodes that haven’t finished but are necessary for v to be performed.

Alg. 1 starts by placing [s, 0] in Q which is analogous to the initial pre-snapshot. The
array RN(v) is initialized to indeg(v) for each v. Every time an element [v, t] is popped
from Q indicates the completion of v at time t. (Since elements in Q are sorted by their
end times, the one at the front of Q always has the earliest end time.) Once a node
v finishes, the algorithm checks if there is an edge connecting from v to u, and if so
RN(u) is decremented by 1. If RN(u) becomes 0, u starts to execute and therefore will

8 Y. Sun and J. Su

Algorithm 1. Compute Degree of a Parallel-Homogeneous Process
Input: A process P = (V, s, F, E, τ, δ)
Output: degree of parallelism DP(P)
1: Initialize a priority queue Q to be empty;
2: Q.enque([s, 0]);
3: for each v ∈ V − {s} do
4: RN(v) := indeg(v);
5: end for
6: deg := 0;
7: told := 0;
8: while Q is not empty do
9: [v1, t1] := Q.deque();

10: for each v2 ∈ {v | (v1, v) ∈ E} do
11: RN(v2) := RN(v2) − 1;
12: if RN(v2) = 0 then
13: Q.enque([v2, t1 + δ(v2)]);
14: end if
15: end for
16: if told � t1 then
17: #T := |{[v, t] | [v, t] ∈ Q ∧ v is a task node }|;
18: deg :=max(deg, #T);
19: told := t1;
20: end if
21: end while
22: return DP(P) = deg;

Step Q Updated RN #T DP Step Q Updated RN #T DP

1 [e1, 0] 0 0 9 [t8, 5], [t3 , 6] RN(t8) = 0 2 2
2 [g1, 0] RN(g1) = 0 0 0 10 [t3, 6] RN(g5) = 2 1 2
3 [t7, 1], [t1 , 2] RN(t7) = RN(t1) = 0 2 2 11 [g4, 6] RN(g4) = 0 0 2
4 [t1, 2] RN(g3) = 1 1 2 12 [t5, 7], [t4 , 9] RN(t5) = RN(t4) = 0 2 2
5 [t2, 3] RN(t2) = 0 1 2 13 [t4, 9] RN(g5) = 1 1 2
6 [g2, 3] RN(g2) = 0 0 2 14 [g5, 9] RN(g5) = 0 0 2
7 [t6, 4], [t3 , 6] RN(t6) = RN(t3) = 0 2 2 15 [e2, 9] RN(e2) = 2 0 2
8 [g3, 4], [t3 , 6] RN(g3) = 0 1 2 16 ∅ 0 2

Fig. 2. Simulating the process in Example 2.1

be pushed into Q. During the simulation, let #T be the number of task nodes in Q. In
all, the degree DP(P) is the highest #T that appears during the entire simulation.

Fig. 2 illustrates the details of simulating the process in Example 2.1. It turns out that
the degree of parallelism is 2 even though the process has 3 parallel branches (Fig. 1).

The complexity of Alg. 1 depends on the time to maintain the priority queue. Since
the size of the queue can be at most |V |, the complexity of this algorithm is O(|V | log |V |).

4 Acyclic Choice-Less Processes

In this section, we introduce another subclass of BPMN processes, acyclic “choice-less
processes” and focus on the computation of degree of parallelism for such processes.
We present a polynomial time algorithm to compute the degree. Note that for acyclic
processes, the degree is always finite.

Computing Degree of Parallelism for BPMN Processes 9

Apartment
Purchase

Application

Loan
Application

Down
Payment

Issue
Certificate

Insurance

Asset
Evaluation

Loan
Agreement

Public
Notification

Document
Archive

e1 g1

t1 t2

t3 t4 t5

t7

t8
g2

g3

g6

e2

g5

g7
e3

t9

t10g4

(2 Days)

(3 Days)

(1 Day)

(2 Days) (1 Day)

(3 Days)

(1 Day)

(1 Day)

(3 Days)

Fig. 3. An acyclic choice-less process

Definition: A process P = (V, s, F, E, τ, δ) is choice-less if for each v ∈ V , outdeg(v) =
1 whenever τ(v) = “ +�”.

Intuitively, a choice-less process contains no exclusive-decision gateway nodes. But it
may contain exclusive-merge gateway (with one outgoing edge). These processes are
used frequently in scientific workflows [2], where the focus is on computations that
involve large amounts of datasets. Knowing the degree of parallelism of a scientific
workflow would potentially help scheduling computations (i.e. tasks), especially for a
cloud computation setting [11].

Example 4.1. Fig. 3 shows an example of acyclic choice-less process for purchasing an
apartment with loan. The process begins with two branches: to apply for the apartment
purchase (t1) and pay the down payment (t2), and to apply for the loan (t3). After assess-
ing the apartment (t4), the bank decides to pay the rest of the balance (t5) to complete
the purchase (g2). Once the loan is settled, the housing office will archive the documents
(t10) and make a public notification (t9). Also, the office will give the certificate to the
buyer (t8) for the new ownership. After the customer purchases the insurance (t7), the
housing office will again archive the documents (t10) and make a public notification (t9).
Note that t10 is invoked twice due to the presence of a +�-gateway (g5).

Theorem 4.2. Given an acyclic choice-less process P = (V, s, F, E, τ, δ), the degree of
parallelism of P can be computed in O(|E| log |V | + |E|L) time where L is the sum of
durations of all task nodes in P.

In the remainder of this section, we discuss key ideas for proving Theorem 4.2. More
details are provided in the online appendix [18].

The key idea to compute the degree of an acyclic choice-less process is to parti-
tion the process into smaller pieces, analyze the pieces, and then aggregate them to-
gether. We view each ×�-gateway node as a pair of BPMN split and join gateways, all
+�-gateway nodes are actually merge gateways due to the choice-less restriction. The

following are the 3 main steps:

1. Decompose the process into segments according to join and merge gateway nodes.
2. For each segment, a list is computed to capture the parallelism information.
3. Combine all such lists and compute the degree for the input process.

In the first step, a process is chopped into segments. Each segment is separated by join
and merge gateway nodes. To generate a segment, a depth-first search is used. We create

10 Y. Sun and J. Su

t1

t3

t2

t4 t5

e1 g1
g2

g5g4

(2 Days) (1 Day)

(3 Days) (2 Days) (1 Day)

t8

t7

g2 g3

g5

e2

(1 Day)

(3 Days)

t9

t10

g5

g7

g6

(1 Day)

(3 Days)

g7 e3

(a) (b) (c) (d)

Fig. 4. Four segments of the process in Fig. 3

0 3 6

2 1

 t2 g2 g4 g2

 g4 g5
0 1 3

2 1

 t7 g5

0 1 3

2 1

 t9 g7 t10 g7

(a) Starts from e1 (b) Starts from g2 (c) Starts from g5

Fig. 5. Event point list

a new segment by traversing from the start node. when a join or merge gateway node is
visited, it is marked as an exit node for the current segment, and starts a new segment.
The node also plays the role of the entry node of the new segment. Since a join or merge
gateway node has only one outgoing edge, each segment has only one entry node and
may have several exit nodes.

Example 4.3. Fig. 4 shows all four segments of the process in Fig. 3. Fig. 4(a) has the
entry node e1 and two exit nodes g2, g5. Fig. 4(b) starts from g2 and ends at e2, g5.
Fig. 4(c) enters at g5 and has one exit node g7. Fig. 4(d) starts from g7 and ends at e3.

In the second step, we compute the “parallelism” information of each segment, with
a data structure event point list. An event point list contains two basic pieces of in-
formation: (1) the cardinality of the corresponding segment’s enactment between two
timestamps, and (2) the time the segment will reach its exit nodes and through which
edge the segment will reach each exit node.

Example 4.4. Fig. 5 shows three event point lists generated according to the segments
in Example 4.3. Fig. 5(a) corresponds to Fig. 4(a). From time 0 to 3, the degree is 2,
then t2 completes and invokes g2. From time 3 to 6, only one flow front exists, and
at timestamp 6, g4 invokes g2 and g5. Fig. 5(b)(c) provide the similar event point lists
corresponding to Fig. 4(b)(c), resp. The event point list of Fig. 4(d) is an empty list.

Constructing event point lists is similar to the algorithm in Section 3. By mapping each
entry node to an start node and each exit node to an end node, each segment is in fact a
homogeneous process. Similar to Alg. 1, a priority queue can be used to simulate each
segment. And the event point list can be derived according to #T . When an exit node is
popped out from the queue, this node, together with its incoming edge, will be recorded
in the event point list.

In the remainder of this section, we may use term “event point list” and “segment”
interchangeably to refer to the same object according to the context.

Once all event point lists are constructed, the third step combines the lists. Since the
choice-less process is acyclic, a key observation is that all segments follow a topological
order, i.e., a segment can only be invoked by its preceding segments.

Computing Degree of Parallelism for BPMN Processes 11

0 3 6

2 1

 t2 g2 g4 g2

 g4 g5

7 9

2 1

 t7 g5

0 3 6

2 1

 g4 g5

7 9

4 2

 t7 g5

 t9 g7

 t10 g7

(a) Combine g2 to e1 (b) Combine g5 to e1

0 3 6

2 1

7 9

4 2

 t7 g5

 t9 g7

 t10 g7

10 12

2 1

 t9 g7 t10 g7

(c) Combine g5 to e1

Fig. 6. Combination of event point lists

With the sorted segment sequence, we remove the second segment and combine its
event point list into the first event point list. Note that this guarantees that the second
segment can only be invoked by one segment, i.e., the first. This procedure repeats until
only one event point list left in the end.

There are two types of event point lists to be combined. One starts from a join gate-
way (node) and the other from a merge gateway. The combination of these two types of
event point lists to the first event point list need be handled differently.

If the second event point list’s entry node is a join gateway, we first mark where
this segment is invoked in the first event point list according to each different incoming
edges from left to right. once all different incoming edges are marked, we combine the
second event point list to the first one at the last timestamp where an edge is marked.
Then we repeat the above steps until the second event point list cannot be combined any
more. The reason to mark incoming edges is to simulate the synchronization property
of join gateway. A join gateway can only continue once all its incoming edges are ready.

Example 4.5. The segment order for Example 4.4 is e1, g2, g5, g7. Now consider the
second event point list that starts from join gateway g2. Since g2 has two incoming
edges, (t2, g2) and (g4, g2), in the first event point list, we mark t2 → g2 and g4 → g2

and then combine the second event point list at time 6. Fig. 6(a) is the new event point
list starts from e1 and g2 (segment) should be removed from the segment sequence.

If the second event point list’s entry node is a merge gateway, the combination is sim-
pler. Since for each incoming edge of this kind of node, once a flow front arrives, the
node immediately routes it to its outgoing edge. Thus when scanning the first event
point list, once at some timestamp, the second segment is invoked, we can simply do
the combination.

Example 4.6. After merging g2 to e1 in Example 4.5, the segment sequence is e1, g5, g7.
Now the second event point list starts from the merge gateway g5. In the first event point
list (Fig. 6(a)), there are two places that call g5. Hence, two combinations are needed.
Fig. 6(b) and (c) show the first and second combination respectively.

Now the only event point list left is the one with entry node g7. Since g7 leads an
empty event point list, the final event point list is the same as the one in Fig. 6(c).

The algorithm details are provided in the online appendix [18].

12 Y. Sun and J. Su

X
Evaluation
Application

Apartment
Assessment

Data
Analysis

Comment
& Review

Data
Archivee1 t1

g2 g3

t2 t3

t4

t5

g4 g5 e2g6

e3

(2 Hours) (1 Hour) (1 Hour)

(1 Hour)

(1 Hour)

Fig. 7. Pre-sell permit approval process

5 Asynchronous Processes

In this section, we introduce the third subclass of BPMN processes, called “asyn-
chronous processes”, and present an algorithm to compute their degrees. Intuitively,
an asynchronous process only includes split and merge gateways, i.e., it cannot do syn-
chronization nor choices. It turns out that computing degree of parallelism for such
processes is rather intricate, the time complexity of the algorithm is exponential.

Definition: A process P = (V, s, F, E, τ, δ) is asynchronous if for each node v ∈ V ,
outdeg(v) = 1 whenever τ(v) = “ +�” and indeg(v) = 1 whenever τ(v) = “ ×�”.

From the definition, an asynchronous process includes only gateways nodes that are
split gateway or merge gateway.

Example 5.1. Fig. 7 shows a process for apartment evaluation. If a developer is build-
ing apartments and plans to sell them, she needs a “pre-sell” permit from the city hous-
ing office. The office checks if the apartments are in good quality. An apartment quality
evaluation process will start when an application (t1) is received. Then the office staff
will assess each apartment. If there is no more apartment to check, the process will end
at g6 and exit to e3. Otherwise, evaluation modes to the next apartment (t2). Once an
apartment is assessed, the data will be send to the housing office asynchronously for
analysis (t3). After that, comment will be drawn (t5) and data will be archived (t4).

Technically, the process in the above example is not asynchronous due to the decision
gateway (g6). In order to simplify the analysis, we hide it from the process, link an edge
directly from g2 to t2, and remove e3 as well.

In the technical development, we use simplified graphs for asynchronous processes.

Definition: A (process) graph is a tuple (V, E, s, F) where V is a set of nodes containing
the initial node s and a set F of final nodes, and E ⊆ (V−F)×V is a set of edges.

A path of size n of an process graph G = (V, E, s, F) is a sequence of nodes v1v2...vn,
where for each i ∈ [1..n], vi ∈ V , v1 = s, and for each i ∈ [1..(n − 1)], (vi, vi+1) ∈ E.
A path denotes one possible execution of the given process graph. However, in order to
take all the possible executions into consideration, we pursue all paths in parallel. Let
Dn(G) denote the number of distinct paths of G with length n. We define the degree of
G to be the max Dn(G) for all n ∈ N.

Lemma 5.2. Each asynchronous process P can be translated into a process graph G,
such that the degree of P is the same as the degree of G.

Computing Degree of Parallelism for BPMN Processes 13

e1 t11 t12 t2 t3 t4 t5

t2

t3

t4 t5

t2

t3 t2

t4 t5 t3 t2

.

t2

t3

t4 t5

t2

t3 t2

t4 t5 t3 t2

t12t11e1

(a) Process graph (b) Expanded paths from t2 (c) Expanded paths from e1

Fig. 8. Process graph and its expansion

Fig. 8(a) shows the process graph translated from the process in Fig. 7. We now can
focus on process graphs and compute degree of an asynchronous process by computing
degree of its corresponding graph.

A process graph G is said to be bounded if the degree of G is finite. The key results
of the section are now stated below.

Theorem 5.3. Let P be an asynchronous process whose process graph has n nodes and
m edges. Boundedness of degree of P can be decided in O(m+n) time; if the degree is
bounded, the degree can be computed in exponential time, and in O(mn) time if P is
acyclic or contains only one cycle.

Theorem 5.3 follows from the following two lemmas (Lemmas 5.4 and 5.5).

Lemma 5.4. (1) The degree of a process graph is bounded iff it does not contain two
distinct cycles such that one connects to the other. (2) Given a process graph G =
(V, E, s, F), its boundedness can be determined in O(|V | + |E|) time.

Lemma 5.4 is a slight variant of a result in [13] (the models are slightly different). Fur-
thermore, given a process graph with at most one cycle (always bounded), an algorithm
was presented in [13] to compute the degree in cubic time complexity. However, the
general case was left open.

In the remainder of this section, we discuss a new algorithm that makes two im-
provements over the result in [13]: (1) it computes the degree for the general case, thus
solves the open problem from [13], (2) when applying to acyclic and one-cycle graphs,
the time complexity is quadratic, which improves the cubic result in [13].

Lemma 5.5. Given a bounded process graph G = (V, E, s, F), the degree of G can be
computed in exponential time, and in O(|V ||E|) time if G contains at most one cycle.

To compute the degree of a bounded process graph, we use the following steps:

1. Eliminate all cycles of the given process graph. For each node in the new graph,
compute the numbers of reachable nodes in different depths and store these num-
bers in a list, called “child list”. The method to compute each child list is according
to a reversed topological order.

2. Add cycles back to the graph, with the result from step 1, compute the numbers
of reachable nodes in different depths for those nodes that are inside cycles. Store
these numbers in a list, called “cycle child list”.

14 Y. Sun and J. Su

3. Remove all the cycles once more and compute the cycle child list for the source
node. The degree of the corresponding process graph is the largest number of this
cycle child list.

The detailed algorithm is rather involved and sketched in the online appendix [18].

6 Related Work

Our work is an extension of the work in [13] that focused on non-determinism of a
simple graph model. Their model can be mapped to asynchronous processes with their
degree of non-determinism coincides with degree of parallelism. The results reported
in Section 5 extended their results and solve an open problem.

There were a stream of papers related to degree of non-determinism of finite state
machines. These addressed the problems of boundedness [23,15], computing the degree
[23,9,15], estimating the upper bound of the degree [23], and complexity bounded on
this problem [15,5]. Although the problems are different from ours, it remains to explore
whether these techniques can be used in solving our problem.

Our work is also related to workflow execution management. The work in [14] pro-
posed a set of resource patterns for task allocation. While a language for specifying
the resource allocation constraints was described in [16,17]. The study in [6] focused
on authorization constraints and determining if a workflow can finish under such con-
straints. Static scheduling issues were studied in [24], where the authors developed an
adaptive rescheduling strategy for grid workflow. Finally, while our problem seems rel-
evant to parallel computing, it was not studied in the literature to the best of the authors’
knowledge.

7 Conclusions

We focus on a subset of BPMN and examine the worst case number of parallel tasks and
develop a set of preliminary results. It is still not clear how one would extend the algo-
rithm to the full set of BPMN. This work also spawns many interesting questions related
to planning business process execution. For example, given the resource requirements
and cost functions, how can these algorithms be augmented to produce sufficient infor-
mation for execution planning. Such problems are key to many business processes, e.g.,
in healthcare delivery. Clearly, this paper merely peeks into a broader topic concerning
business operations planning and optimization.

References

1. Abiteboul, S., Segoufin, L., Vianu, V.: Modeling and verifying active xml artifacts. Data
Engineering Bulletin 32(3), 10–15 (2009)

2. Barker, A., van Hemert, J.: Scientific Workflow: A Survey and Research Directions. In:
Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS,
vol. 4967, pp. 746–753. Springer, Heidelberg (2008)

Computing Degree of Parallelism for BPMN Processes 15

3. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards Formal Analysis of Artifact-
Centric Business Process Models. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM
2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

4. Business Process Model and Notation (BPMN), version 2.0 (January 2011),
http://www.omg.org/spec/BPMN/2.0/PDF

5. Chan, T., Ibarra, O.H.: On the finite-valuedness problem for sequential machines. Theoretical
Computer Science 23(1), 95–101 (1983)

6. Crampton, J.: A reference monitor for workflow systems with constrained task execution. In:
Proc. 10th ACM Symp. on Access Control Models and Technologies, SACMAT (2005)

7. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric business
processes. In: Proc. Int. Conf. on Database Theory (ICDT), pp. 252–267 (2009)

8. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models
in bpmn. Inf. Softw. Technol. 50, 1281–1294 (2008)

9. Gurari, E.M., Ibarra, O.H.: A note on finite-valued and finitely ambiguous transducers. The-
ory of Computing Systems 16(1), 61–66 (1983)

10. Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath III, F., Hobson, S., Linehan, M.,
Maradugu, S., Nigam, A., Sukaviriya, P., Vaculı́n, R.: Introducing the guard-stage-milestone
approach to specifying business entity lifecycles. In: Proc. Workshop on Web Services and
Formal Methods (WS-FM). Springer, Heidelberg (2010)

11. Juve, G., Deelman, E.: Scientific workflows and clouds. Crossroads 16(3) (March 2010)
12. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM

Systems Journal 42(3), 428–445 (2003)
13. Potapova, A., Su, J.: On nondeterministic workflow executions. In: Proc. Workshop on Web

Services and Formal Methods, WSFM (2010)
14. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow Resource

Patterns: Identification, Representation and Tool Support. In: Pastor, Ó., Falcão e Cunha, J.
(eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer, Heidelberg (2005)

15. Sakarovitch, J., de Souza, R.: On the Decidability of Bounded Valuedness for Transduc-
ers. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 588–600.
Springer, Heidelberg (2008)

16. Senkul, P., Kifer, M., Toroslu, I.H.: A logical framework for scheduling workflows under
resource allocation constraints. In: Proc. 28th Int. Conf. on Very Large Data Bases (2002)

17. Senkul, P., Toroslu, I.H.: An architecture for workflow scheduling under resource allocation
constraints. Information Systems 30, 399–422 (2005)

18. Sun, Y., Su, J.: On-line Appendix to the Paper “Computing Degree of Parallelism for BPMN
Processes” (2011),
http://www.cs.ucsb.edu/˜su/papers/2011/AppendixICSOC2011.pdf

19. van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN
1997. LNCS, vol. 1248. Springer, Heidelberg (1997)

20. van der Aalst, W.M.P.: Workflow Verification: Finding Control-Flow Errors Using Petri-Net-
Based Techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process
Management. LNCS, vol. 1806, p. 161. Springer, Heidelberg (2000)

21. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service Flow
Language. In: Bravetti, M., Núñez, M., Tennenholtz, M. (eds.) WS-FM 2006. LNCS,
vol. 4184, pp. 1–23. Springer, Heidelberg (2006)

22. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: yet another workflow language. Infor-
mation Systems 30(4), 245–275 (2005)

23. Weber, A.: On the valuedness of finite transducers. Acta Inf. 27, 749–780 (1990)
24. Yu, Z., Shi, W.: An adaptive rescheduling strategy for grid workflow applications. In: Proc.

IPDPS (2007)

http://www.omg.org/spec/BPMN/2.0/PDF
http://www.cs.ucsb.edu/~su/papers/2011/AppendixICSOC2011.pdf

State Propagation

in Abstracted Business Processes

Sergey Smirnov, Armin Zamani Farahani, and Mathias Weske

Hasso Plattner Institute, Potsdam, Germany
{sergey.smirnov,mathias.weske}@hpi.uni-potsdam.de,
armin.zamanifarahani@student.hpi.uni-potsdam.de

Abstract. Business process models are abstractions of concrete oper-
ational procedures that occur in the daily business of organizations.
Typically one model is insufficient to describe one business process. For
instance, a detailed technical model may enable automated process execu-
tion, while a more abstract model supports decision making and process
monitoring by business users. Thereafter, multiple models capturing one
process at various levels of abstraction often coexist. While the relations
between such models are studied, little is known about the relations be-
tween process instances and abstract models.

In this paper we show how the state of an abstract activity can be
calculated from the states of related, detailed process activities as they
happen. The approach uses activity state propagation. With state unique-
ness and state transition correctness we introduce formal properties that
improve the understanding of state propagation. Algorithms to check
these properties are devised. Finally, we use behavioral profiles to iden-
tify and classify behavioral inconsistencies in abstract process models
that might occur, once activity state propagation is used.

1 Introduction

Recent years have seen an increasing interest in modeling business processes
to better understand and improve working procedures in organizations and to
provide a blue print for process implementation. With an increasing complexity
of the processes and their IT implementations, technical process models become
intricate. Business users can hardly grasp and analyze such exhaustive models.
For instance, monitoring the state of a process instance challenges a manager,
once a model enriched with technicalities is used. To support business users, less
detailed models are created. As an outcome, one process is typically formalized
by several models belonging to various levels of abstraction.

While methods for derivation of abstract process models from detailed ones
are well understood, e.g., see [4,5,10,11,14,17], little is known about the relations
between process instances and abstract process models. Meanwhile, this knowl-
edge is essential for such tasks as monitoring of process instances by means of
abstract models. Only a small share of the named approaches discusses the role
of process instances [4,14]. However, even these endeavors have gaps and limita-
tions motivating the current research. This paper assumes that each activity of

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 16–31, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

State Propagation in Abstracted Business Processes 17

an abstract process model is refined by a group of activities in a detailed model,
yet each activity of the detailed model belongs to some group. Motivated by
non-hierarchical activity refinement [4,12,21], we are liberal in terms of activity
group definition. For instance, activities of one group can be arbitrary spread
over the model. We study acyclic process models.

This paper clarifies the relations between process instances and abstract pro-
cess models. To achieve this we introduce an approach to derive the state of an
activity in the abstract model from the states of concrete process activities, as
they happen. The approach is based on activity instance state propagation that
determines the state of an abstract activity by the states of their detailed coun-
terparts. We identify two formal properties for state propagation approaches—
state uniqueness and state transition correctness. Further, we develop methods
for validation of these properties. The properties should be considered during the
design of any state propagation approach and can be validated by the developed
algorithms. Finally, we investigate behavioral inconsistencies that might result
from state propagation.

The paper is structured as follows. Section 2 motivates the work and iden-
tifies the main challenges. In Section 3 we elaborate on the state propagation,
its properties and property validation methods. Further, Section 4 explains be-
havioral inconsistencies observable during state propagation. We position the
contribution of this paper against the related work in Section 5 and conclude
with Section 6.

2 Motivating Example and Research Challenges

This section provides further insights into the problem addressed by the current
study. We start with a motivating example. Further, we informally outline our
approach and identify the main research challenges.

Various stakeholders use models with different level of details about a given
business process. In this setting several models are created for one process. Con-
sider the example in Fig. 1. Model m describes a business process, where a
forecast request is processed. Once an email with a forecast request is received,
a request to collect the required data is sent. The forecast request is registered
and the collected data is awaited. Then, there are two options: either to perform
a full data analysis, or its quick version. The process concludes with a forecast
report creation. Model m contains semantically related activities that are aggre-
gated together into more coarse-grained ones. The groups of related activities
are marked by areas with a dashed border, e.g., group g1 includes Receive email
and Record request. Model ma is a more abstract specification of the forecast
business process. Notice that further we reference the most detailed model as
initial. Each activity group in m corresponds to a high-level activity in ma, e.g.,
g1 corresponds to Receive forecast request. Meanwhile, m′

a is even more abstract:
its activities are refined by the activities of model ma and are further refined
by activities of m. While the forecast process can be enacted using model m,
abstract models ma and m′

a are suitable for monitoring the state of process

18 S. Smirnov, A.Z. Farahani, and M. Weske

g8

g7

g6

Receive
data

Perform
analysis

Perform
simulation Generate

forecast report

Perform quick
data analysis

Consolidate
results

Prepare data for
quick analysis

Prepare data for
full analysis

abstract model, ma

initial model, m

Receive
email

Record
request

Request data
gathering

Perform full
analysis

Perform quick
analysis

Handle
data

Receive
forecast request

Generate
forecast report

Perform data
analysis

Receive
forecast request

Generate
forecast report

g3

g4

abstract model, m'a

g5g1
 g2

Fig. 1. Models capturing business process “Forecast request handling” at different
levels of abstraction

instances. For example, a process participant might leverage model ma, while
the process owner may monitor states of instances by means of m′

a.

 termi-
nated

skipped

runningreadyinit

skip

enable begin terminate

Fig. 2. Activity instance life
cycle

We assume that the state of a process instance
is defined by the states of its activity instances.
The paper adheres to the activity instance life
cycle presented in Fig. 2. When an activity is
created, it is in the init state. We consider pro-
cess models to be acyclic. Hence, once a process
is instantiated, all of its activity instances are
created in state init. The enable state transition

brings the activity into state ready. If an instance is not required, skip transition
brings it to state skipped. The skipped state has to be spread among activities
that are not required. This can be realized by a well established approach of dead
path elimination [13]. From the ready state the activity instance may evolve to
running state by means of transition begin. When the instance completes its
work, terminate transition brings it to the terminated state. The use of one ac-
tivity instance life cycle implies that all activity instances behave according to
this life cycle disregard of the abstraction level of the model an activity belongs
to. Throughout this paper we frequently refer to activity instance states. As
activities at the model level do not have states, we interchangeably and unam-
biguously use terms activity state and activity instance state.

To monitor process instance state by means of an abstract model, one needs
a mechanism establishing the relation between the states of activities in the ab-
stract model and activities of the detailed model. We reference this mechanism
as activity instance state propagation. Consider a group of activities g in model
m and activity x of the abstract model, such that x is refined by activities of
g. State propagation maps the states of instances of activities in g to the state

State Propagation in Abstracted Business Processes 19

of x. One can design various state propagation mechanisms depending on the
use case at hand. However, we identify two formal criteria to be fulfilled by
any state propagation. The first criterion, activity instance state uniqueness, is
motivated by the observation that each activity instance at every point in time
is exactly in one state. Hence, this criterion requires state propagation to be a
surjective mapping: each constellation of instance states in group g must result
exactly one state for x. Second criterion, activity instance state transition cor-
rectness requires state propagation to assure that every activity instance behaves
according to the declared life cycle, neither adding, nor ignoring predefined state
transitions.

In the following section we design a state propagation approach that considers
the activity grouping along with the states of activity instances in the groups.
This state propagation is simple and can be efficiently implemented. However,
this approach does not consider control flow information. Hence, one may observe
behavioral inconsistencies taking place in the abstract model: while the model
control flow prescribes one order of activity execution, state propagation results
contradicting activity instance states. Section 4 elaborates on this phenomenon.

3 Activity Instance State Propagation

This section formalizes state propagation. We start by introducing the concepts
of a process model and process instance. Next, we design the state propaga-
tion method. Further, Section 3.3 proposes the algorithm validating activity
instance state uniqueness, while Section 3.4 elaborates on the algorithm for ac-
tivity instance state transition correctness validation. The role of the algorithms
is twofold. First, they validate the developed state propagation. Second, the
algorithms can be reused for validation of other state propagation methods.

3.1 Preliminaries

Definition 1 (Process Model). A tuple m = (A, G, F, s, e, t) is a process
model , where A is a finite nonempty set of activities, G is a finite set of gateways,
and N = A∪G is a set of nodes with A∩G = ∅. F ⊆ N×N is a flow relation, such
that (N, F) is an acyclic connected graph. The direct predecessors and successors
of a node n ∈ N are denoted, respectively, by •n = {n′ ∈ N |(n′, n) ∈ F} and
n• = {n′ ∈ N |(n, n′) ∈ F}. Then, ∀ a ∈ A : | • a| ≤ 1 ∧ |a • | ≤ 1, while s ∈ A
is the only start activity, such that •s = ∅ ∧ ∀a ∈ A\{s} : | • a| > 0 and e ∈ A
is the only end activity, such that e• = ∅ ∧ ∀a ∈ A\{e} : |a • | > 0. Finally,
t : G→ {and, xor} is a mapping that associates each gateway with a type.

The execution semantics of a process model is given by a translation to a Petri
net [1,8]. As the defined process model has exactly one start activity and end
activity the corresponding Petri net is a WF-net. We consider sound process
models, see [2], that can be mapped to free-choice WF-nets [1].

To describe the process instance level, we formalize the activity in-
stance life cycle shown in Fig. 2 as a tuple (S, T , tran, {init},S′).

20 S. Smirnov, A.Z. Farahani, and M. Weske

S = {init, ready, running, terminated, skipped} is a set of activity instance
states, where init is the initial state and S′ = {skipped, terminated} is a set of
final states. T = {enable, begin, skip, terminate} is a set of state transition labels.
The state transition mapping tran : S × T → S, is defined as tran(init, enable)
= ready, tran(ready, begin) = running, tran(running, terminate) = terminated,
tran(ready, skip) = skipped. A process instance is defined as follows.

Definition 2 (Process Instance). Let S be the set of activity instance states.
A tuple i = (m, I, inst, stat) is a process instance, where m = (A, G, F, s, e, t)
is a process model, I is a set of activity instances, inst : A → I is a bijective
mapping that associates an activity with an activity instance, and stat : I → S
is a mapping establishing the relation between an activity instance and its state.

As Definition 1 claims the process model to be acyclic, there is exactly one
activity instance per process model activity, i.e., |I| = |A|. Finally, we formalize
the activity grouping by means of function aggregate.

Definition 3 (Function Aggregate). Let m = (A, G, F, s, e, t) be a pro-
cess model and ma = (Aa, Ga, Fa, sa, ea, ta)—its abstract counterpart. Function
aggregate : Aa → (P(A)\∅) sets a correspondence between one activity in ma

and the set of activities in m.

Definition 4 introduces an auxiliary function stagg mapping a set of activities
to the set of activity instance states observed among the instances of these
activities.

Definition 4 (Function State Aggregate). Let m = (A, G, F, s, e, t) be a
process model and ma = (Aa, Ga, Fa, sa, ea, ta)—the abstract model of the
same process. Function stagg : Aa → (P(S)\∅) is defined as stagg(x) =⋃

∀a∈aggregate(x){stat(inst(a))}, where x ∈ Aa.

Fig. 1 illustrates function aggregate as follows aggregate(Receive forecast request)
= {Receive email, Record request}. In the subsequent examples we denote the
coarse-grained activities as x and y, where x, y ∈ Aa, while a and b are such
activities of the model m, i.e., a, b ∈ A that a ∈ aggregate(x), b ∈ aggregate(y).

3.2 State Propagation

State propagation implies that the state of an activity x in the abstract model
ma is defined by the states of activities aggregate(x) in model m. Consider the
example in Fig. 3, where the instances of Receive email and Record request define
the state of Receive forecast request instance. We develop one possible approach
establishing the relation between activity instance states. To formalize state
propagation we introduce five predicates, each corresponding to one activity
instance state and “responsible” for propagation of this state to an abstract
activity. An argument of a predicate is a nonempty set of states S ⊆ S. Set S
is populated by the states of activity instances observed in the activity group

State Propagation in Abstracted Business Processes 21

aggregate(x), i.e., S = stagg(x). If a predicate evaluates to true, it propagates
the respective state to the instance of x. For example, predicate pru corresponds
to the state running. Given an instance of Receive forecast request and instances
of Receive email and Record request, we evaluate predicate pru against the set
{init, terminated}. If pru evaluates to true, we claim the instance of Receive
forecast request to be running, see Fig. 3. The predicates are defined as follows.

– pin(S) := ∀s ∈ S : s = init
– pre(S) := (∃s′ ∈ S : s′ = ready ∧ ∀s ∈ S : s ∈ {init, ready, skipped}) ∨

(∃s′, s′′ ∈ S : s′ = init ∧ s′′ = skipped ∧ ∀s ∈ S : s ∈ {init, skipped})
– pru(S) := ∃s ∈ S : s = running ∨ (∃s′, s′′ ∈ S : s′ = terminated ∧ s′′ ∈
{init, ready})

– pte(S) := ∃s ∈ S : s = terminated ∧ ∀s′ ∈ S : s′ ∈ {skipped, terminated}
– psk(S) := ∀s ∈ S : s = skipped

abstract model, ma

initial model, m

Receive
email

Record
request

Request data
gathering

Receive
forecast request

g1

[terminated] [running] [init]

[running]

Fig. 3. State propagation
example

We name this set of predicates ps. The predicate de-
sign implies that activity instance state uniqueness
holds. The predicates pin and psk propagate, respec-
tively, states init and skipped, if only initialized or
skipped activities are observed. The predicate pre

propagates state ready containing two conditions.
The first part of its disjunction requires at least one
ready activity, while others can be skipped or initial-
ized. The second part of the disjunction propagates
state ready, if in S exists a skipped activity, i.e., this
activity was in state ready, and there exists an ini-
tialized activity, i.e., that activity will be in state
ready. Predicate pru propagates state running, if 1)

a running activity is observed or 2) in S exists a terminated activity, i.e., this ac-
tivity was in state running and there is an initialized or ready activity, i.e., that
activity can be in state running. The additional conditions of pre and pru assure
that activity instance state transition correctness holds. Finally, pte propagates
state terminated, once each activity of the group is either skipped or terminated.
The five predicates construct activity instance state propagation function defin-
ing the state of activity x instance.

Definition 5 (Activity Instance State Propagation Function). Activity
instance state propagation function stp : P(S) → S maps a set of activity in-
stance states to one activity instance state:

stp(S) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

init, if pin(S)
ready, if pre(S)
running, if pru(S)
terminated, if pte(S)
skipped, if psk(S).

Let m = (A, G, F, s, e, t) be a process model with its process instance i =
(m, I, inst, stat) and ma = (Aa, Ga, Fa, sa, ea, ta)—the abstract model with

22 S. Smirnov, A.Z. Farahani, and M. Weske

Algorithm 1. Verification of activity instance state uniqueness
1: checkStateUniqueness(Predicate[] ps, LifeCycle lifeCycle)
2: for all S ⊆ lifeCycle.S do
3: if S �= ∅ then
4: propagated = false;
5: for all p in ps do
6: if !propagated then
7: if p(S) then
8: propagated = true;
9: else
10: if p(S) then
11: return false
12: if !propagated then
13: return false
14: return true

process instance ia = (ma, Ia, insta, stata). Then, function stata : Ia → S is
defined as stata(insta(x)) = stp(stagg(x)).

3.3 Activity Instance State Uniqueness

State propagation mechanism maps the states of activity instances of
aggregate(x) to the state of inst(x). Definition 6 formalizes activity instance
state uniqueness property.

Definition 6 (Activity Instance State Uniqueness). Let
(S, T , tran, {init},S′) be an activity instance life cycle. Activity instance
state propagation defined by function stp based on predicates ps fulfills activity
instance state uniqueness iff ∀S ⊆ S exactly one predicate of ps evaluates to
true.

The set of states S is observed within aggregate(x). However, an activity group
is defined by the user and is not known in advance. Hence, it is not efficient
to reason about state uniqueness property explicitly enumerating all activity in-
stance states that occur within activity instance groups. Instead of dealing with
concrete activity instance groups, we introduce activity instance group equiv-
alence classes. For a process instance i = (m, I, inst, st) two activity instance
groups I1, I2 ⊆ I belong to one equivalence class, if in both groups the same
set of activity instance states is observed, i.e., ∀i1 ∈ I1∃i2 ∈ I2 : stat(i1) =
stat(i2) ∧ ∀i2 ∈ I2∃i1 ∈ I1 : stat(i2) = stat(i1). For instance, a pair of activity
instances with states (init, terminated) and an instance triple with states (init,
init, terminated) belong to one class with observed states S = {init, terminated}.
As this classification covers all possible state combinations, the algorithm checks
all cases. We can consider such classes of activity instance groups, since the
predicates make use of existential and universal quantifiers.

Algorithm 1 validates activity instance state uniqueness. The algorithm takes
a set of predicates and an activity instance life cycle as inputs; it returns true,
once the property holds. As the number of equivalence classes is exponential
to the number of states in the activity instance life cycle, the computational
complexity of Algorithm 1 is also exponential.

State Propagation in Abstracted Business Processes 23

Algorithm 2. Validation of activity instance state transition correctness
1: checkStateTransitionCorrectness(Predicate[] ps, LifeCycle lifeCycle)
2: for all p in ps do
3: for all S ⊆ S : p(S) = true do
4: for all s ∈ (S\lifeCycle.S′) do
5: for all t ∈ lifeCycle.T , where tran(s, t) is defined do
6: S′ = S ∪ {tran(s, t)}
7: if stp(S′) �= stp(S) and tran(stp(S), t) �= stp(S′) then
8: return false
9: S′ = S′\{s}
10: if stp(S′) �= stp(S) and tran(stp(S), t) �= stp(S′) then
11: return false
12: return true

3.4 Activity Instance State Transition Correctness

Activity instance state propagation must assure that instances of activities in
abstract models behave according to the predefined life cycle, see Definition 7.

Definition 7 (Activity Instance State Transition Correctness). Let
(S, T , tran, {init},S′) be an activity instance life cycle. Activity instance state
propagation defined by function stp fulfills activity instance state transition
correctness iff ∀S ⊆ S each state transition allowed by tran from ∀s ∈ S
through t ∈ T produces a set S′ = S ∪ {tran(s, t)} such that either stp(S) =
stp(S′) ∨ stp(S) = stp(S′\{s}) or tran(stp(S), t) = stp(S′) ∨ tran(stp(S), t) =
stp(S′\{s}).

Algorithm 2 validates activity instance state transition correctness. Its inputs
are a set of predicates and an activity instance life cycle. It returns true, if state
transitions are correct. The key idea of the algorithm is the observation that an
instance of an activity x in the abstract model changes its state, when one of the
activity instances that refines x changes its state. Hence, the validation considers
all possible state transitions. For each predicate p of ps the algorithm constructs
state sets S ⊆ S, where the predicate evaluates to true (lines 2–3). For instance,
predicate pin has one such set {init}. Then, the validation constructs state set
S′ reachable from S by one state transition of the activity instance life cycle
(lines 4–6 and line 9). In the example S = {init} evolves to {ready} or {init,
ready}. For each of those reachable state sets S′ function stp is evaluated. If
for each S′ the state stp(S′) equals stp(S) or can be reached from stp(S) using
the same state transition as required to reach S′ from S, the state propagation
rules are valid. Algorithm 2 realizes the checks in lines 7 and 10 and reports
correctness in line 12. The algorithm has the running time of O(2|S|).

4 Behavioral Inconsistencies

This section elaborates on the problem of behavioral inconsistencies. We start
with the motivation, then introduce auxiliary formal concepts and define the
notion of behavioral inconsistency. Finally, we classify behavioral inconsistencies.

24 S. Smirnov, A.Z. Farahani, and M. Weske

Receive
data

Prepare data for
quick analysis

Prepare data for
full analysis

abstract model, ma

initial model, m

Receive
email

Record
request

Request data
gathering

Handle
data

Receive
forecast request

g1
 g2

[terminated] [running] [init]
[init]

[init]

[init]

[running] [running]

Fig. 4. Behavioral inconsistency in a process instance for the business process in Fig. 1

4.1 Example

An abstract process model dictates activity execution order. Meanwhile, the
designed state propagation disregards the control flow, but influences the states
of activities in ma. In this setting one can observe behavioral inconsistencies.
Fig. 4 exemplifies a behavioral inconsistency. Activities Receive forecast request
and Handle data are refined with groups g1 and g2, respectively. According to the
state propagation mechanism, once Receive email terminates, Receive forecast
request runs until Record request terminates. While Request data gathering runs,
Handle data is in the state running. According to the state propagation we
observe activities Receive forecast request and Handle data in state running
at the same time. However, model ma prescribes sequential execution of the
activities: Handle data can be executed, once Receive forecast request terminates.
Hence, these states are inconsistent with the control flow of ma.

Behavioral inconsistencies have two reasons. The first reason is activity group-
ing. Consider the example in Fig. 4, where activities in groups g1 and g2 inter-
leave: Receive email precedes Request data gathering and Request data gathering
precedes Record request. The second reason is the loss of activity optionality or
causality in the abstract model. We say that an activity is optional, if there is
such a process trace, where this activity is not observed. Considering the exam-
ple in Fig. 4 Prepare data for full analysis is optional. Activity causality implies
that 1) an order of execution for two activities is given and 2) two activities
appear together in all process executions. One can observe causality relation for
Receive email and Receive data, but not for Receive email and Prepare data for
full analysis. The next section formalizes the notion of behavioral inconsistencies.

4.2 Formalization of Behavioral Inconsistencies

To formalize the discussion of behavioral inconsistencies we exploit the notion
of behavioral profiles [23]. While this discussion can be based on alternative
formalisms, we stick to behavioral profiles, as 1) they can be efficiently com-
puted and 2) there are techniques enabling navigation between process models
of different abstraction levels based on behavioral profiles [17]. To introduce be-
havioral profiles we inspect the set of all traces from s to e for a process model

State Propagation in Abstracted Business Processes 25

m = (A, G, F, s, e, t). The set of complete process traces Wm for m contains lists
of the form s · A∗ · e, where a list captures the activity execution order. To de-
note that an activity a is a part of a complete process trace we write a ∈ w
with w ∈ Wm. Within this set of traces the weak order relation for activities is
defined.

Definition 8 (Weak Order Relation). Let m = (A, G, F, s, e, t) be a process
model, andWm—its set of traces. The weak order relation m ⊆ (A×A) contains
all pairs (x, y), where there is a trace w = n1, . . . , nl inWm with j ∈ {1, . . . , l−1}
and j < k ≤ l for which holds nj = x and nk = y.

Two activities of a process model are in weak order, if there exists a trace in which
one activity occurs after the other. Depending on how weak order relates two
process model activities, we define relations forming the behavioral profile. While
behavioral profiles enable judgment on activity ordering, they do not capture
causality. Following on [24] we make use of auxiliary co-occurrence relation and
causal behavioral profile.

Definition 9 (Behavioral Profile and Causal Behavioral Profile). Let
m = (A, G, F, s, e, t) be a process model and Tm be its set of traces. A pair
(a, b) ∈ (A × A) is in one of the following relations: 1) strict order relation
�m, if a m b and b �m a; 2) exclusiveness relation +m, if a �m b and
b �m a; 3) interleaving order relation ||m, if a m b and b m a. The set of
all three relations is the behavioral profile of m. A pair (a, b) ∈ (A × A) is in
the co-occurrence relation �m iff for all traces σ = n1, . . . , nl in Wm it holds
ni = a, i ∈ {1, . . . , l} implies that ∃j ∈ {1, . . . , l} such that nj = b. Then
{�m, ||m, +m,�m} is the causal behavioral profile of m.

The behavioral profile relations along with the inverse strict order �−1=
{(x, y) ∈ (A× A) | (y, x) ∈ �}, partition the Cartesian product of activities in
one process model. The causality relation holds for a, b ∈ A if a �m b∧ a�m b.

The example in Fig. 4 witnesses that state propagation allows concurrent
activity execution. However, the behavioral profile relations are defined on the
trace level and do not capture concurrency. To formalize the observed behavior of
activities, we introduce relations defined on the process instance level. These re-
lations build on top of causal behavioral profile relations. However, they consider
not traces, but process instances.

We say (x, y) ∈�obs if there is a process instance where x is executed before y,
but no instance, where y is executed before x. Similarly, relation x �−1

obs y means
that there is a process instance where y is executed before x, but no instance,
where x is executed before y. Relation x +obs y holds if there is no instance
where x and y both take place. Relation ||obs corresponds to the existence of 1)
an instance where x is executed before y, 2) an instance where y is executed
before x and 3) an instance where x and y are executed concurrently. Finally,
x �obs y holds if for every instance, where x is executed, y is executed as well.
Then, the behavioral inconsistency can be defined as follows.

26 S. Smirnov, A.Z. Farahani, and M. Weske

Definition 10 (Behavioral Inconsistency). Let m = (A, G, F, s, e, t)
be a process model and i = (m, I, inst, stat)—its instance. ma =
(Aa, Ga, Fa, sa, ea, ta) is the abstract model obtained from m and having
the instance ia = (ma, Ia, insta, stata), where function stata is defined as
stata(insta(x)) = stp(stagg(x)). We say that there is a behavioral inconsistency,
if ∃(x, y) ∈ (Aa×Aa) for which the causal behavioral profile relations do not co-
incide with the observed behavioral relations: 1) (x, y) ∈�ma ∧(x, y) /∈�obs;
or 2) (x, y) ∈�−1

ma
∧(x, y) /∈�−1

obs; or 3) (x, y) ∈ +ma ∧ (x, y) /∈ +obs; or
4) (x, y) ∈ ||ma ∧ (x, y) /∈ ||obs; or 5) (x, y) ∈�ma ∧(x, y) /∈�obs.

4.3 Classification of Behavioral Inconsistencies

Table 1 classifies behavioral inconsistencies comparing the declared and observed
behavioral constraints for abstract process model activities x and y. A table
row corresponds to behavioral profile relations declared by an abstract model.
Columns capture the observed behavioral relations. A cell of Table 1 describes an
inconsistency between the observed and declared behavioral relations. The table
presents a complete analysis of inconsistencies, due to extensive exploration of
all possible relation combinations.

The “+” sign witnesses no inconsistency since the declared and observed
constraints coincide. We identify one class of activity groups causing no incon-
sistency. Consider a pair of activities x, y ∈ Aa. If ∀(a, b) ∈ aggregate(x) ×
aggregate(y) the same causal behavioral profile relation holds, no behavioral in-
consistency is observed. A prominent example of activity groups that fulfill the
defined requirement are groups resulting from the canonical decomposition of a
process model into single entry single exit fragments, see [19,20].

Every cell marked with “±” symbol corresponds to an inconsistency, where
no contradiction takes place: an observed relation restricts a declared behavioral
relation. Consider, for instance, the behavioral inconsistency, where x||may, while
x �−1

obs y and x�obs y. This inconsistency has no contradiction, as the observed
behavior only restricts the declared one. We identify five classes of behavioral
inconsistencies marked in Table 1 and illustrate them by the examples in Fig. 5.

A: Co-occurrence loss Behavioral inconsistencies of this type take place if
the model declares co-occurrence for an activity pair, while both activities are
observed not in every process instance. The cause of inconsistency is the loss of

Table 1. Classification of behavioral inconsistencies

x �obs y x �−1
obs y x +obs y x||obsy

x �obs y x ��obs y x �obs y x ��obs y

x �ma y
x �ma y + A B B C D
x ��ma y ± + B B C D

x �−1
ma

y
x �ma y B B + A C D
x ��ma y B B ± + C D

x +ma y E E E E + E
x||may ± ± ± ± C +

State Propagation in Abstracted Business Processes 27

abstract model

initial model

g1

a1

b1 c1

g2

y1x1

d1

z1

[running][terminated]

[skipped]

g3

[terminated] [running]

[skipped]

[skipped]

(a) Co-occurrence loss

abstract model

initial model

g4

a2 b2 c2

y2x2

d2

[init][terminated]

g5

[terminated][running]

[terminated] [running]

(b) Inverse order

abstract model

initial model

g7

b3

d3

c3

e3

[running] [init]

[skipped] [skipped]

g6

y3x3

[running][skipped]

(c) Activity loss

b4

abstract model

initial model

g8

a4

y4x4

c4

g9
[running][terminated] [init]

[running] [running]

(d) Order loss

abstract model

initial model

g11

a5

b5

d5

c5

e5g10

x5

y5

[terminated]

[running] [init]

[skipped]

[terminated]

[running]

[skipped]

(e) Exclusiveness loss

Fig. 5. Examples of behavioral inconsistencies: one example per class

information about the causal coupling of an activity pair. The example in
Fig. 5(a) illustrates this inconsistency type. Since activities of group g2 are
skipped, activity y1 is in state skipped as well. However, it cannot be skipped
according to the abstract model control flow.

B: Inverse order. We say that an inverse order inconsistency takes place if
the model prescribes x �ma y (x �−1

ma
y), whilst the user observes x �−1

obs y
(x �obs y). Fig. 5(b) gives an example of such an inconsistency baring its cause:
for each (a, b) ∈ aggregate(x) × aggregate(y) activities a and b have the order
opposite to the order of x and y.

C: Activity loss. Once the process model specifies two activities to appear
within one instance, whereas only one activity is observed within an instance,
activity loss inconsistency takes place. Fig. 5(c) exhibits one example of such an
inconsistency. While activity groups g6 and g7 are exclusive, the corresponding
abstract activities x3 and y3 are in strict order. Accordingly, either x3 or y3 is
observed within each instance.

D: Order loss. For a pair of activities in (inverse) strict order, the user observes
interleaving execution. A behavioral inconsistency of this type is exemplified

28 S. Smirnov, A.Z. Farahani, and M. Weske

in Fig. 5(d). Such inconsistencies have the following roots: 1) aggregate(x) ∩
aggregate(y) �= ∅ or 2) exist a1, a2 ∈ aggregate(x) and b1, b2 ∈ aggregate(y)
such that it holds a1 m b1 and b2 m a2. In Fig. 5(d) activity b2 belongs to
groups g1 and g2. As a consequence, once b2 runs both sequential activities x2

and y2 are running concurrently.

E: Exclusiveness loss. While the model prescribes exclusiveness relation for
x and y, both activities are observed within one instance. These inconsistencies
take place, once in the initial model there exist such a and b that a m b or
b m a. Fig. 5(e) exemplifies this inconsistency. According to the abstract model
x3 +ma y3. However, in the presented process instance both x3 and y3 take place.

5 Related Work

We identify two directions of the related work. The first one is the research on
business process model abstraction. The second one is the body of knowledge
discussing similarity of process models.

open

not_running

not_started

suspended

running

closed

completed

terminated

aborted

Fig. 6. Activity instance life cycle
as presented in [14]

Business process model abstraction has
been approached by several authors. The ma-
jority of the solutions consider various as-
pects of model transformation. For instance,
[5,10,11,15,17] focus on the structural aspects
of transformation. Among these papers [17]
enables the most flexible activity grouping.
Several papers study how the groups of se-
mantically related activities can be discovered [6,16]. A few works elaborate on
the relation between process instances and abstract process models, e.g. [4,14].
In [4] Bobrik, Reichert, and Bauer discuss state propagation and associated be-
havioral inconsistencies, but do not use the concept of activity instance life cycle.
[14] suggests state propagation approach that builds on the activity instance life
cycle shown in Fig. 6. In [14] Liu and Shen order three states according to how
“active” they are: not started < suspended < running. The state propagation
rules make use of this order, e.g., if a coarse-grained activity is refined by activi-
ties in one of the open states, the high-level activity is in the most “active” state.
Against this background, consider an example activity pair evolving as follows:
(not started, not started) to (not started, running) to (not started, completed).
According to the rules defined in [14] the high level activity evolves as not started
to running to not started, which contradicts the activity instance life cycle. As we
mentioned above, the majority of works on business process model abstraction
consider only the model level. Meanwhile, the papers that take into account pro-
cess instances have gaps and limitations. For instance, [4,14] motivated us not
only to introduce the state propagation approach, but also to identify formal
properties for such approaches and develop validation algorithms.

The works on similarity of process models can be refined into two substreams.
A series of papers approaches process model similarity analyzing model structure
and labeling information, see [7,21]. These works provide methods to discover

State Propagation in Abstracted Business Processes 29

matching model elements. Several research endeavors analyze behavioral similar-
ity of process models. In particular, [3] introduces several notions of inheritance
and operations on process models preserving the inheritance property. Recently,
Weidlich, Dijkman, and Weske investigated behavioral compatibility of models
capturing one business process [22]. [9] elaborates on process model similarity
considering both model element labeling and model behavior. Considering that
processes are inherently concurrent systems, various notions of behavioral equiv-
alence for concurrent systems can be leveraged to compare the behavior of initial
and abstract process models [18]. The enumerated papers help to compare the
behavior of initial and abstract process models. As such, the notions of behav-
ioral equivalence and behavioral compatibility might give additional insights into
the causes of behavioral inconsistencies, see Section 4, and classify them further.

6 Conclusion and Future Work

Although the relations between models capturing one business process on dif-
ferent levels of abstraction have been thoroughly studied earlier, the relations
between process instances and abstract process models have been barely explored.
The current paper bridged this gap. First, we developed activity instance state
propagation mechanism that allows to describe the process instance state by
means of an abstract process model. Second, we have identified two formal prop-
erties for state propagation and proposed methods for their validation. Finally,
we elaborated on behavioral inconsistencies that can be observed, once the as-
sumed abstraction and state propagation mechanisms are used.

We foresee several directions of the future work. The direct next step is the
extension of the considered model class. As we leverage dead path elimination
to spread activity instance state skipped over not executed activities, the state
propagation approach is limited to acyclic models. Substitution of dead path
elimination with an alternative approach would facilitate handling of cyclic mod-
els. Another direction is the further study of the behavioral inconsistencies and
methods for their resolution. With that respect, it is valuable to integrate control
flow information into state propagation mechanism. Finally, the applications of
the introduced technique call for deep investigation. One direct application of
our approach is business process monitoring [25], where abstract models help
users to follow the progress of running business processes.

References

1. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998)

2. van der Aalst, W.M.P.: Workflow Verification: Finding Control-Flow Errors Using
Petri-Net-Based Techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A.
(eds.) BPM. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg (2000)

3. van der Aalst, W.M.P., Basten, T.: Life-Cycle Inheritance: A Petri-Net-Based Ap-
proach. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 62–81.
Springer, Heidelberg (1997)

30 S. Smirnov, A.Z. Farahani, and M. Weske

4. Bobrik, R., Reichert, M., Bauer, T.: Parameterizable Views for Process Visual-
ization. Technical Report TR-CTIT-07-37, Centre for Telematics and Information
Technology, University of Twente, Enschede (April 2007)

5. Bobrik, R., Reichert, M., Bauer, T.: View-Based Process Visualization. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 88–95.
Springer, Heidelberg (2007)

6. Di Francescomarino, C., Marchetto, A., Tonella, P.: Cluster-based Modularization
of Processes Recovered from Web Applications. Journal of Software Maintenance
and Evolution: Research and Practice (2010)

7. Dijkman, R.M., Dumas, M., Garćıa-Bañuelos, L.: Graph Matching Algorithms for
Business Process Model Similarity Search. In: Dayal, U., Eder, J., Koehler, J.,
Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg
(2009)

8. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and Analysis of Business Pro-
cess Models in BPMN. Information and Software Technology 50(12), 1281–1294
(2008)

9. van Dongen, B., Dijkman, R., Mendling, J.: Measuring Similarity between Busi-
ness Process Models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 450–464. Springer, Heidelberg (2008)

10. Eshuis, R., Grefen, P.: Constructing Customized Process Views. Data & Knowledge
Engineering 64(2), 419–438 (2008)

11. Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining–Adaptive Process Simplifi-
cation Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)

12. Knoepfel, A., Groene, B., Tabeling, P.: Fundamental Modeling Concepts: Effective
Communication of IT Systems. John Wiley & Sons, Ltd. (2005)

13. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice
Hall PTR, Upper Saddle River (2000)

14. Liu, D.-R., Shen, M.: Business-to-business Workflow Interoperation based on
Process-Views. Decision Support Systems 38, 399–419 (2004)

15. Polyvyanyy, A., Smirnov, S., Weske, M.: The Triconnected Abstraction of Process
Models. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS,
vol. 5701, pp. 229–244. Springer, Heidelberg (2009)

16. Smirnov, S., Dijkman, R.M., Mendling, J., Weske, M.: Meronymy-Based Aggrega-
tion of Activities in Business Process Models. In: Parsons, J., Saeki, M., Shoval, P.,
Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 1–14. Springer, Heidelberg
(2010)

17. Smirnov, S., Weidlich, M., Mendling, J.: Business Process Model Abstraction Based
on Behavioral Profiles. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.)
ICSOC 2010. LNCS, vol. 6470, pp. 1–16. Springer, Heidelberg (2010)

18. van Glabbeek, R.J.: The Linear Time-Branching Time Spectrum (Extended Ab-
stract). In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp.
278–297. Springer, Heidelberg (1990)

19. Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. In:
Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp.
100–115. Springer, Heidelberg (2008)

20. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and More Focused Control-Flow
Analysis for Business Process Models Through SESE Decomposition. In: Krämer,
B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55.
Springer, Heidelberg (2007)

State Propagation in Abstracted Business Processes 31

21. Weidlich, M., Dijkman, R., Mendling, J.: The ICoP Framework: Identification of
Correspondences between Process Models. In: Pernici, B. (ed.) CAiSE 2010. LNCS,
vol. 6051, pp. 483–498. Springer, Heidelberg (2010)

22. Weidlich, M., Dijkman, R., Weske, M.: Deciding Behaviour Compatibility of Com-
plex Correspondences between Process Models. In: Hull, R., Mendling, J., Tai, S.
(eds.) BPM 2010. LNCS, vol. 6336, pp. 78–94. Springer, Heidelberg (2010)

23. Weidlich, M., Mendling, J., Weske, M.: Efficient Consistency Measurement based
on Behavioural Profiles of Process Models. In: IEEE TSE (2010) (to appear)

24. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Efficient Computation of
Causal Behavioural Profiles Using Structural Decomposition. In: Lilius, J., Penczek,
W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 63–83. Springer, Heidelberg
(2010)

25. zur Muehlen, M.: Workflow-based Process Controlling - Foundation, Design and
Application of Workflow-Driven Process Information Systems. PhD thesis, Univer-
sity of Münster (2002)

Push-Enabling RESTful Business Processes

Cesare Pautasso1 and Erik Wilde2

1 Faculty of Informatics, University of Lugano, Switzerland
2 School of Information, UC Berkeley, USA

Abstract. Representational State Transfer (REST) as an architectural
style for service design has seen substantial uptake in the past years.
However, some areas such as Business Process Modeling (BPM) and push
services so far have not been addressed in the context of REST principles.
In this work, we look at how both BPM and push can be combined so that
business processes can be modeled and observed in a RESTful way. Based
on this approach, clients can subscribe to be notified when certain states
in a business process are reached. Our goal is to design an architecture
that brings REST’s claims of loose coupling and good scalability to the
area of BPM, and still allow process-driven composition and interaction
between resources to be modeled.

1 Introduction

Whereas business processes provide a highly suitable abstraction [19] to model
the state of the resources published by RESTful Web Services [25], the problem
of dealing with the need of notifying clients that a process has completed remains
open. More generally speaking, resources backed by a business process can evolve
their state independently and as a consequence, a mechanism is required for
clients to keep track of state changes triggered by intermediate progress reports
or by the completion of the execution of the business process.

One of the main principles of the architectural style of Representational State
Transfer (REST [8]) is that it is a client/server architectural style, where clients
initiate interactions and then interact with resources which are made accessible
by servers. The main principles of REST prescribe that resources should be
identified in a unified way, that interactions with these resources should be done
through a uniform interface, and that interactions are stateless and make use of
self-describing messages. Since clients are always the ones initiating interactions
(by following links to resources they discovered in previous interactions), resource
state changes remain invisible to clients until they interact with the updated
resources. Increasingly, use cases emerge (e.g., [11,3,4]) where a reversal of this
interaction pattern is desirable, so that clients can be made aware of the changes
in resource state as they occur. Traditional Web-style interactions are often
described as pull (the clients pulling resource state from the server), and thus
the complementary functionality is often described as push, where resource state
changes are pushed to a client.

In this paper, we take a look at the problem of how to combine Business
Process Modeling (BPM) with REST. The goal is to design an architecture for

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 32–46, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Push-Enabling RESTful Business Processes 33

RESTful business process management featuring push notification of task and
process instance state changes. To do so, we propose to use the Atom feed
format as a standard representation of process instance execution logs so that
clients can subscribe to process instances and tasks published as resources and be
notified when these complete their execution. To ensure a timely propagation of
notifications, we discuss different alternative optimizations such as the emerging
PubSubHubbub (PuSH [9]) and WebSocket [14] protocols.

The rest of this paper is organized as follows. In Section 2 we describe how
processes can be published as resources. We use an example (Section 3) to mo-
tivate the need for supporting push notification of process state changes. In the
following Section 4, we discuss and compare several approaches to achieve push
notifications in the context of the REST architectural style. Section 5 describes
the architecture of a push-enabled process execution engine. Related Work is
presented in Section 6 before we conclude in Section 7.

2 RESTful Business Processes

For the purposes of this paper, we minimize the assumptions on the meta-model
used to capture an executable representation of a business process. Our approach
is compatible with most existing standards (e.g., BPEL [15], BPMN [18,23]) but
does not require full compliance with the actual notations. In this section we de-
scribe how the REST constraints of resource addressability, multiple negotiable
representations of resources and resource access through a uniform interface can
be mapped to the domain of business process management.

2.1 Publishing Processes as Resources

We assume that a process can be broken down as a set of discrete tasks, which
are linked by some kind of structured or unstructured set of dependencies (e.g.,
control and data flow) [6]. Both processes and tasks can be published as re-
sources, and thus should be addressable with a URI. At runtime, processes can
be instantiated for execution and typically multiple process instances of the same
process are executed at the same time. Each process instance is also a resource
and should be identified by its own URI. The state of the execution of a process
instance can be defined as the union of the state of the execution of its tasks,
which can also be seen as sub-resources of the process instance resource.

To identify the resources, we propose the following URI templates [10]:

/{process}
/{process}/{instance}
/{process}/{instance}/{task}

The structure of the URI templates helps to highlight the containment and
instance-of relationships between processes, their instances and the tasks be-
longing to them. In particular, we are interested in identifying task as resources
only in the context of specific process instances, since we are interested in inter-
acting with tasks at run time, during the execution of the corresponding process

34 C. Pautasso and E. Wilde

instance, and we are only interested in manipulating design-time process artifacts
(i.e., process template descriptions) as a whole.

Following the hypermedia constraint, a client may make use of these relation-
ships to discover the available processes, and retrieve links to the corresponding
instances. Each resource instance can be manipulated as a whole, or it can pro-
vide links back to clients so that they can interact with its tasks.

2.2 Process Representations

Fetching each resource returns a snapshot of its current state represented using
different media types. Different clients may be interested on a different projection
over the state of a process resource and thus may use standard content-type
negotiation techniques to retrieve a suitable view in the most convenient format.
Table 1 lists some examples of possible media types and gives a short description
of the information that should be part of the corresponding representation.

Table 1. Process resources can be represented using different media types

Content-Type Description

Resource: /{process}
text/plain Basic textual description of the process
text/html Web page with a form to start a new process instance and links to

the currently running instances
application/bpmn+xml BPMN XML serialization of the process
application/svg+xml Graphical rendering of the process in Scalable Vector Graphics
application/json Process meta-data (e.g., name, author, version, creation date) sent

using the JavaScript object notation
application/atom+xml An Atom feed listing all instances of a process as entries

Resource: /{process}/{instance}
text/html Web page with a summary of the state of the execution of the

instance with links to its process and to the set of active tasks
application/svg+xml Graphical rendering of the process instance (e.g., with colored task

boxes marking their current execution state)
application/json Process instance data: process name, responsible user, start/end

timestamp, input/output data parameter values
application/atom+xml An Atom feed listing all tasks of a process instance as entries

Resource: /{process}/{instance}/{task}
text/plain Basic textual description of the task goal, involved roles and re-

quired/produced data
text/html Web page with a form to interact with the task (if it is active)

or with a summary of the outcome of its execution (if the task is
complete)

application/json Task instance data: process name, task name, responsible user/role,
start/end timestamp, input/output data parameters

application/atom+xml An Atom feed listing all state transitions of a task as entries

Push-Enabling RESTful Business Processes 35

2.3 Uniform Interface

The manipulation of process resources happens through their uniform interface,
which consists of the GET, PUT, DELETE, and POST methods for resources accessed
using the HTTP protocol. Table 2 outlines the semantics of all methods applied
to each resource.

Clients interact with the processes deployed for execution. For example, PUT
/{process} deploys a process model and publishes it under a given identifier.
Conversely, DELETE /{process} will undeploy a process and render its identifier
void. This will also cause all instances of the process to be removed. Thus,
the method should only be allowed when there are no active instances of the
particular process left in the system.

The /{process} resource also acts as a “resource factory” [1] as it allows
clients to initiate the execution of new process instances by sending POST re-
quests to it. The request can be serviced in two ways: blocking or non-blocking.
In the first case, the client will wait until the execution of the entire process
has completed and will receive a response which contains the output (or the
reply) of the process. For long-running processes, it may be more convenient
to respond immediately with an identifier of the newly started process instance
(e.g., (/{process}/{instance})).

Whereas the first (blocking) approach can be seen as a convenient way for
letting clients perform an RPC-based invocation of processes, we argue that
only the second non-blocking solution correctly publishes the process instance
as a resource, by providing clients with a link to its URI (which may be shared
among multiple clients that are interested to interact with the process instance
and its tasks). The clients may then use such identifier to retrieve the result of
the process once it completes its execution, or the clients may be informed of
the outcome of the process execution with one of the notification mechanisms
that we will discuss in the following Sections.

A client can obtain a global view over a running process instance by GET-
ting its representation, which – depending on the chosen media type – it may
contain links to the individual tasks. A client may be interested in only listing
all active tasks of a process instance, as opposed to retrieving links to all tasks
and then having to poll each task to determine its state. Likewise, a client may
be interested in getting notified when the set of active tasks changes, as it may
be waiting for one particular task to become ready for execution.

Once a task URI has been retrieved, a client may perform a GET request
on it to read task-specific information (e.g., its state, its input/output param-
eter values) or a PUT request to change the state of a task and set the value
of its output parameters. Clients are not allowed either to POST or DELETE
individual task resources. Once all tasks have completed their execution, their
final state remains associated with the corresponding resources until a DELETE
/{process}/{instance} request is performed. Only then, all information asso-
ciated with all tasks of a process instance is removed.

36 C. Pautasso and E. Wilde

Table 2. Uniform interface semantics for process resources

Method Description

Resource: /{process}
GET Retrieve a representation of a process, with links to its instances
PUT Deploy a process (or update an already deployed process)

DELETE Undeploy a process
POST Instantiate a new process instance (blocking/non-blocking)

Resource: /{process}/{instance}
GET Retrieve a representation of the current state of a process instance, with links

to its tasks
PUT Not Allowed

DELETE Remove the instance (once all tasks have completed)
POST Not Allowed

Resource: /{process}/{instance}/{task}
GET Retrieve the current state of the task instance
PUT Modify the state of the task instance (e.g., mark it as completed)

DELETE Not Allowed
POST Not Allowed

3 Example

We use the classical loan approval process to illustrate how a business process
model can be REST-ified and to motivate the need for supporting push notifica-
tion of its state changes. The process is identified by the /loan URI, and two of
its tasks (called choose and approve, marked in black in Figure 1) are published
as resources. The other tasks are not visible from clients but carry out important
back-end activities, such as checking the validity of incoming loan applications,
contacting different banks for the latest rates as well as confirming the loan, if
an offer has been chosen by the customer and approved by management.

Fig. 1. Example: Publishing the Loan Approval Business Processes as a Resource

Push-Enabling RESTful Business Processes 37

Fig. 2. Example: Client interactions with the choose (left) and approve (right) task
resources

Figure 2 presents in more detail the interaction of two key clients of the
process: the customer applying for a loan (left) and the manager in charge of
tracking the progress of all loan applications (right).

The customer application client retrieves the form describing the information
required to start the process (e.g., the amount) with a GET /loan request. This
is followed by a POST /loan request which transfers the filled-out form and
uses the information to start running a new process instance, whose URI (x)
is returned to the client as a hyperlink. The process starts running its tasks,
which are validating the client request and gathering the necessary information
for making an offer to the client. This may be a time-consuming process, during
this time the client may check its progress at anytime by polling the state of
the newly started process instance with a GET /loan/x request. Eventually the
choice task becomes ready for execution and the client will be directed to it with
a link (event 1). The client then retrieves the state of the task, which amounts
to a set of possible options and a form used to express the client choice. The
form can be submitted with a POST /loan/x/choose request, which will also
complete the corresponding task.

The manager application client monitors all ongoing loan applications in the
system by periodically issuing GET /loan requests. These return a set of URIs
to the corresponding process instances (which could be serialized as a feed).
In our particular example, the manager follows the link to instance /loan/x
and watches it until it reaches the task for which his approval is required.

38 C. Pautasso and E. Wilde

To inspect the state of the application he first retrieves the task instance with
GET /loan/x/approve, then he submits his approval with the corresponding PUT
/loan/x/approve request, which will complete the execution of the approve task
and trigger the confirmation of the loan with the chosen bank in the backend.

There are three points during these interactions where the clients are waiting
for the process to reach a certain state. The customer wants to retrieve an offer
and make his choice (event 1 in Figure 2), the manager needs to see which appli-
cation was started (event 2) and which offers have been accepted by customers
and require his approval (event 3). In the following Section we will discuss which
are the options to avoid having the client application periodically poll the process
resources in order to detect that the corresponding event has occurred during
the execution of the process.

4 RESTful Push Interactions

In the context of the client/server style used by REST, push interactions reverse
the roles between clients and servers. Thus, clients need to be identifiable, reach-
able and accessible, so that servers can push state changes of their resources back
to them. In the context of the push micro-interaction, clients effectively become
servers, and the servers become clients (they initiate interactions once a resource
has changed state, and notify those listeners who are interested in these state
changes). This reversal in roles can be confusing, and thus we keep the original
client/server macro-roles as the ones signifying that the servers are the ones pro-
viding access to the resources and managing the identification space of resources,
whereas clients are the ones interested in receiving notifications about resource
state changes in order to build applications based on these resources.

One excellent example illustrating this micro vs. macro view is a prototype of
a push-oriented protocol that has been developed by Google under the name of
PubSubHubbub (PuSH) [9]. PuSH is based on Atom feeds and allows clients to
be notified of feed updates immediately. Traditionally, feeds are a RESTful pull-
oriented architecture, and clients need to repeatedly pull feeds to become aware
of updates. PuSH introduces an intermediate layer of reverse interactions where
clients subscribe to a feed by registering a callback at a so-called hub. The hub
then notifies all registered clients of feed updates by initiating HTTP interactions
with the callbacks once a feed has been updated. While the notification path
reverses the traditional interaction pattern (the client must have a HTTP server
running at the callback URI, and the hub then sends the update in an HTTP
request), the higher-level interaction still is client/server, because the identified
resource is the feed or the updated entry, and the underlying reversal of the
interaction is simply an optimization that allows clients to be notified faster
than they could be by implementing an interval-based polling scheme.

It is interesting to note that in this scenario, the overall REST architecture
is not changed in any way. On the macro level, the main resources are feeds
and feed entries and the overall goal is to make sure that clients are aware of
resource state changes. On the micro level, a new set of identifiers has been

Push-Enabling RESTful Business Processes 39

introduced which are the callback URIs that have to be managed by the hubs,
and on that micro level, the interaction pattern is reversed. But this is merely an
optimization to allow clients to be more efficiently notified, and essentially, this
shifts the burden of fast updates from clients (which would have to do frequent
polling otherwise) to hubs (which now have to manage potentially large sets
of callback identifiers). In both scenarios, it is possible to use intermediaries,
with the difference that in the pull scenario they are independent of the specific
scenario and simply work because REST and specifically HTTP are designed to
take advantage of intermediaries improving the effectiveness of HTTP traffic. In
the push scenario, PuSH allows hubs to be chained and thus can also provide
some support for scalability, but since interactions are reversed, network traffic
cannot be as effectively handled in intermediaries close to the managed resource.

So far, Web architecture itself has not been updated in a way that provides
general support for push-oriented communication patterns. In some scenarios,
HTTP has been stretched to support push communications, and those scenarios
are described in Section 4.1, along with the ongoing efforts of HTML5 to improve
browsers as a general-purpose application platform. Apart from Web architecture
itself, there also are numerous dedicated push frameworks available on a variety
of platforms, and those are described briefly in Section 4.2. The main purpose
of these sections is to describe the status quo, and to make the point that for a
perfectly RESTful way of push-enabling business processes, there currently is no
good alternative provided by Web architecture itself, and thus in the short term
it is necessary to adopt some intermediary solution, whereas the long term goal
should be to enhance Web architecture in a way that push-oriented interactions
are supported as well.

4.1 Using HTTP

On the current Web, the only widely supported protocol is HTTP, and the roles
of servers and clients are fixed, servers are managing resources, and clients are
initiating interactions by sending HTTP requests. This pattern serves most ap-
plications well, because it is very good for implementing scalable pull. However,
for applications requiring more immediate notifications of server-side events,
some workarounds have become popular that are often summarized under the
label of HTTP long polling [17]. The idea of this approach is that the client
sends a request, but that the request remains pending for a long time, and that
the server only sends a response when an event has occurred. This pattern thus
emulates push by initiating a pull interaction, and then using the response to
push the notification back.

There are several disadvantages of this approach. Some are caused by the fact
that long-lived HTTP interactions are not very robust (depending on the under-
lying network infrastructure) because they are using long-lived TCP connections,
and those are sometimes terminated by network components for management or
security reasons. Another disadvantage is that this requires the server to man-
age a large number of open connections, thus breaking the REST statelessness
constraint. For a server to be able to support many open connections, it often

40 C. Pautasso and E. Wilde

takes considerable low-level tweaking of the system to make sure that the server
will not run out of system resources. The problems with long polling become
particularly pronounced when the events occur infrequently (such as in the busi-
ness process management domain) and thus the connections are kept open for
an extended period of time without any actual communication over them. It is
clear that long polling is not an elegant or well-designed solution to the goal of
implementing push, but under certain circumstances it works well enough and
is actually used in many Web applications.

As the most recent major development in the area of Web technologies,
HTML5 [12] does add some aspects that are somehow related to push services.
Server-Sent Events [13] add an API that allows a client to expose server-sent
events as events in the popular DOM API model. However, the specification
only defines the API that should be exposed via DOM, and makes no assump-
tions about how the events have been transported to the client. Thus, while
this specification provides an interesting API to expose push notifications on
the client, it does not help with the actual delivery of them across the network.
The second push-related HTML5 technology are Web Sockets [14], which de-
fines a TCP-like bidirectional connection between a client and a server. While
this mechanism can be used for push notifications, it is not limited to them or
optimized for them, and mostly can be seen as an attempt to replace HTTP long
polling. When used for push, Web sockets have the same limitations as HTTP
long polling, meaning that they are resource-intensive on the server side, and as
ineffective for infrequent notifications. Furthermore, they may not work reliably
in resource-constrained environments, in particular in mobile client settings.

4.2 Dedicated Push Frameworks

The absence of well-designed methods for Web applications to implement push
patterns has not gone unnoticed. One popular example of an attempt to solve
the problem is PubSubHubbub (PuSH), a protocol that allows the interaction
patterns of feeds to be reversed. Instead of polling for updates, clients subscribe
to a hub, and feed updates are pushed to them. This is done by the hubs sending
HTTP requests to the registered callback URI of the client, which means that
the client must be able to run an HTTP server, and that the underlying network
allows this reverse connection initiation to happen. PuSH standardizes the data
delivery, but does not provide a model for managing subscriptions. Approaches
such as Feed Subscription Management (FSM) [27] could be used to address this
limitation.

There also are specific push-oriented protocols such as the Extensible Messag-
ing and Presence Protocol (XMPP) [26], which has been developed mostly in an
attempt to have a standardized protocol for Instant Messaging (IM). While IM
protocols do cover the use case of delivering notifications to clients in a general
and scalable way, they often have the disadvantage of adding a lot of additional
functionality specific for the IM use case that is not required for simple push
notifications [24]. Furthermore, establishing a new protocol as part of Web ar-
chitecture that is exclusively used for implementing push notifications seems to

Push-Enabling RESTful Business Processes 41

be a decision that might not be as reasonable as reusing the request/response
capabilities of the universally supported HTTP and repurposing them.

While we do not have the space to explore platform-specific push protocols
and services such as Apple Push Notifications (APN) or Android’s Cloud to
Device Messaging (C2DM), it is interesting to note that all relevant mobile plat-
forms have developed their own flavor of push notifications, and that these have
sometimes very different properties. C2DM for example is a very simple ser-
vice with a best effort implementation and no delivery confirmation notification.
BlackBerry’s push service, on the other hand, has different Quality-of-Service
classes, and in the highest class, delivery notifications are supported. This is of
course considerably more expensive in terms of implementing such a service, but
on the other hand may be a requirement that some applications have and either
can get as part of a platform service, or they have to layer it on top of a more
simple service by adding a more sophisticated “transport layer” themselves.

In summary, even if some attempts (e.g., the Juggernaut Ruby on Rails plugin
is a notable example) have been made to provide some degree of transparency,
the current landscape of push support for Web applications is incomplete and
fragmented. Developers either have to use the suboptimal method of HTTP
long polling, or, when communicating with mobile clients, need to work with
possibly a variety of platform-specific notification services that require a lot of
integration work if multiple platforms need to be supported. We thus believe that
the Web should provide a method for push notifications, so that Web-oriented
applications have a single and reliable way of implementing push interaction
patterns across the widest possible selection of resources and consuming clients.

5 Architecture

Our solution for push-enabling RESTful business process management systems
is based on representing process resources as feeds and then using one of the
previously discussed mechanisms to notify clients of changes to the process feed.

5.1 Representing Process Resources as Feeds

We propose to use the Atom standard media type as a suitable XML-based
representation of process instances, since – for the purposes of monitoring and
tracking their state – they can be seen as a collection of tasks.

As shown in Figure 3, the standard feed meta-data (such as the title, author,
id, and updated timestamp) can be easily mapped to the meta-data used to de-
scribe process instances. For example, the updated timestamp can be computed
based on the time associated with the latest event (i.e., state change) of a pro-
cess instance. Links can be provided back to the process instance itself (with the
self relation) and also to the process from which the instance was instantiated
(with the template relation). Each feed entry represents a (public) task of the
process instance. Again, the updated timestamp marks the time of the most
recent change of the state of the task (which for tasks that are still waiting to

42 C. Pautasso and E. Wilde

become active it is equivalent to the instantiation time of the process). Links to
the individual task resources can be added so that a more detailed view of the
task can be obtained in addition to what is found in the summary text, which
could be used to store a textual description of the current state of the task.

A similar mapping can be provided for the whole collection of process instances
for a given template, which can be also represented as a feed. We also suggest
to use the feed format to represent the history of a task execution, so that it is
possible to use a standard representation to log and monitor all state changes of
a task instance.

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">

<title>Loan Approval Process</title>
<subtitle>Instance x</subtitle>
<link href="http://rest.jopera.org/loan/x" rel="self" />
<link href="http://rest.jopera.org/loan" rel="template" />
<link href="http://pubsubhubbub.appspot.com/" rel="hub" />
<id>http://rest.jopera.org/loan/x</id>
<updated>2011-06-10T11:11:30Z</updated>
<author><name>Cesare Pautasso</name><email>cp@jopera.org</email></author>
<entry>

<title>Choose Task (Ready)</title>
<link href="http://rest.jopera.org/loan/x/choose" />
<id>http://rest.jopera.org/loan/x/choose</id>
<updated>2011-06-10T11:12:20Z</updated>
<summary>State: ready</summary>

</entry>
<entry>

<title>Approve Task (Waiting)</title>
<link href="http://rest.jopera.org/loan/x/approve" />
<id>http://rest.jopera.org/loan/x/approve</id>
<updated>2011-06-10T11:11:30Z</updated>
<summary>State: waiting</summary>

</entry>
</feed>

Fig. 3. Atom Feed corresponding to a Process Instance of the Running Example

5.2 Push-Enabled RESTful Process Execution Engine

As part of the JOpera [21] project, we have built a RESTful business process
execution engine. In this section we focus on how the architecture of the system
has been extended to support push notifications.

The layered architecture shown in Figure 4 augments the process engine kernel
(which executed the process template code and manages the state of the cor-
responding process instances) with a REST layer, whose purpose is to publish
processes as resources. To do so, it uses a Web server (such as Jetty) that sup-
ports both the HTTP and WebSockets protocols to handle synchronous client
requests and asynchronous notifications.

For the first kind of synchronous requests (such as retrieving the current
state of a process instance), the REST layer maps the RESTful Web Service
API specified in Section 2 to the internal API of the process engine. To do
so, the request and response payloads are processed by a set of media type

Push-Enabling RESTful Business Processes 43

Fig. 4. Architecture of a Push-Enabled Process Execution Engine

parsers and renderers which share the responsability of turning the internal
representations of the engine into the standard, externally visible formats (e.g.,
JSON, Atom, HTML) used to interact with the clients. These requests can be
exchanged directly between a client and the server or go through an intermediary
cache.

Concerning asynchronous notifications, we have experimented with some of
the different mechanisms described in Section 4. Internally, the JOpera engine
provides a call-back mechanism, which supports the dynamic installation of
listeners which can intercept any state change of process and task instances.
Thus, the REST layer can efficiently observe the behavior of the processes and
propagate such state changes to interested clients using WebSockets and PuSH.
Clients supporting the WebSocket protocol can open a connection using the
ws:/process/instance URI, so that they can receive a message from the cor-
responding resource whenever its state changes. For simplicity, the message on
the WebSocket is only used to indicate that an event has occurred and iden-
tify the affected resource. A client receiving it is expected to issue a basic GET
HTTP request on the corresponding resource URIs to refresh its view on the
current state of the resource. This way, all the existing mechanisms for caching,
content-type negotiation and access control can be reused.

For clients supporting callbacks with PubSubHubbub, the feeds returned by
the engine also contain a link relation ’hub’ pointing them to where they can
subscribe to receive notifications. Whenever a state change of a process instance
occurs, the REST layer is notified by the engine and will ping the hub to inform
it that the corresponding feed has changed. The hub will thus proceed to refresh
the feed and efficiently call back all its subscribers.

Clients that neither support callbacks or WebSocket connections can still rely
on HTTP long polling techniques. In our implementation we use a specific query
parameter to specify whether a GET /process/instance?notify=[stream|
next] request should be immediately answered with a snapshot of the current
state (if the notify query parameter is missing), or the connection should block
until some event occurs (notify query parameter is present). In this case we
support two kinds of replies. With notify=next the response payload contains

44 C. Pautasso and E. Wilde

a snapshot of the updated resource state and the HTTP connection is terminated
once the transfer is complete. With notify=stream the HTTP connection re-
mains open so that multiple events can be notified. This second variant works
well in conjunction with browsers that support the execution of JSONP call-
backs, which are written to the open HTTP response to indicate and identify
the event.

6 Related Work

Generally speaking, extending REST with push capabilities can considered sim-
ilar to the Asynchronous REST (A+REST) style proposed in ARRESTED [16].
However, while in that work the authors propose broadcast notifications, it is
more realistic to assume that notifications are not being broadcast, but instead
are sent using a publish/subscribe pattern or using multicast mechanisms [7].
From the REST perspective, the main point is that push has to built around
the identification constraint, meaning that RESTful push needs to built around
the idea that it is possible to get push notifications about updated resources.
PuSH’s approach of using feeds may be a very good starting point, because by
using feeds it becomes possible not to simply subscribe to a resource, but to sub-
scribe to a collection, and any changes to that collection will result in changes
to the collection URI resource (the feed), as also discussed in [20] in the context
of semantically annotated resources. Complementary to PuSH, a survey which
includes a performance evaluation of different AJAX push and pull techniques
can be found in [2].

The concept of using a business process modeling language to control the state
of resources was first proposed in [19]. The idea of a RESTful Web service API
to access the state of workflow instances has been also described in [28], where
an ad-hoc solution based on client callback URIs was proposed to deal with
the problem of push notifications. The feature of hypermedia-based discovery
of the active tasks of a workflow was also featured in the Bite [5] project. In
our architecture we introduce a more general design based on hierarchically
nested feeds. As opposed to our previous work on the BPEL for REST [22]
and BPMN for REST [23] extensions, in this paper we propose an orthogonal
approach to publish processes as resources which does not require to add any
language features beyond the ability to control which tasks should be published
as resources.

7 Conclusions

In this paper we have shown how to use different push techniques to solve an
important problem that occurs when publishing business processes as resources.
We have presented the design of a RESTful Web Service API for a business
process execution engine and motivated with an example the pressing need for
clients to be notified when the process execution reaches a certain task. By pub-
lishing individual process instances as resources and by giving them a unique

Push-Enabling RESTful Business Processes 45

identifier it becomes possible to support interactions that make use the uniform
interface. By projecting part of the state of a process instance over a standard
feed representation, it becomes possible for clients to subscribe to it and use
optimizations such as the PubSubHubbub protocol to scale the corresponding
delivery of notification callbacks. Without a feed or a similar construct, it be-
comes considerably harder to build push architectures, because of a lack of a
collection construct (identified by a URI) and the individual items in that col-
lection (also identified by URI). Pushing updates from the collection URI allows
servers to notify clients of new resources (by adding hyperlinks to the push noti-
fications), which allows REST’s statelessness, global addressability and uniform
interface constraints to be satisfied even in this scenario of a reverse interactions.

In future work we plan to further extend the system architecture with XMPP
support and perform a scalability and performance evaluation to study the im-
pact of the new REST layer on the performance of the business process engine
and to compare the different alternative push mechanisms included in the archi-
tecture proposed in this paper. It will also be interesting to explore the design
tradeoffs in the context of mobile clients, due to the emerging need to efficiently
interact with a running business process from a mobile client.

References

1. Allamaraju, S.: RESTful Web Services Cookbook. O’Reilly & Associates, Se-
bastopol (2010)

2. Bozdag, E., Mesbah, A., Van Deursen, A.: A comparison of push and pull tech-
niques for ajax. In: Proc. of the 9th IEEE International Symposium on Web Site
Evolution (WSE 2007), pp. 15–22 (2007)

3. Brush, A.J.B., Bargeron, D., Grudin, J., Gupta, A.: Notification for Shared An-
notation of Digital Documents. In: SIGCHI Conference on Human Factors and
Computing Systems (CHI 2002), April 2002, pp. 89–96. ACM Press, Minneapolis
(2002)

4. Christensen, J.H.: Using RESTful web-services and cloud computing to create next
generation mobile applications. In: Proc. of the 24th ACM SIGPLAN Conference
Companion on Object Oriented Programming Systems Languages and Applica-
tions, OOPSLA 2009, Orlando, Florida, USA, pp. 627–634 (2009)

5. Curbera, F., Duftler, M., Khalaf, R., Lovell, D.: Bite: Workflow Composition for
the Web. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS,
vol. 4749, pp. 94–106. Springer, Heidelberg (2007)

6. Eshuis, R., Grefen, P.W.P.J., Till, S.: Structured Service Composition. In: Dustdar,
S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 97–112.
Springer, Heidelberg (2006)

7. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The Many Faces of
Publish/Subscribe. ACM Computing Surveys 35(2), 114–131 (2003)

8. Fielding, R.T., Taylor, R.N.: Principled Design of the Modern Web Architecture.
ACM Transactions on Internet Technology 2(2), 115–150 (2002)

9. Fitzpatrick, B., Slatkin, B., Atkins, M.: PubSubHubbub,
http://code.google.com/p/pubsubhubbub/

10. Gregorio, J.: URI Template. Internet Draft Draft-Gregorio-Uritemplate-04 (March
2010)

http://code.google.com/p/pubsubhubbub/

46 C. Pautasso and E. Wilde

11. Guinard, D., Trifa, V., Wilde, E.: A Resource Oriented Architecture for the Web of
Things. In: Second International Conference on the Internet of Things (IoT 2010),
Tokyo, Japan (November 2010)

12. Hickson, I.: HTML5 — A Vocabulary and Associated APIs for HTML and
XHTML. World Wide Web Consortium, Working Draft WD-html5-20110525 (May
2011)

13. Hickson, I.: Server-Sent Events. World Wide Web Consortium, Working Draft WD-
eventsource-20110310 (March 2011)

14. Hickson, I.: The WebSocket API. World Wide Web Consortium, Working Draft
WD-websockets-20110419 (April 2011)

15. Jordan, D., Evdemon, J.: Web Services Business Process Execution Language Ver-
sion 2.0. OASIS Standard (April 2007)

16. Khare, R., Taylor, R.N.: Extending the Representational State Transfer (REST)
Architectural Style for Decentralized Systems. In: 26th International Conference
on Software Engineering, May 2004, ACM Press, Edinburgh (2004)

17. Loreto, S., Saint-Andre, P., Salsano, S., Wilkins, G.: Known Issues and Best Prac-
tices for the Use of Long Polling and Streaming in Bidirectional HTTP. Internet
RFC 6202 (April 2011)

18. OMG: BPMN: Business Process Modeling Notation 2.0. Object Management
Group (2010)

19. Overdick, H.: Towards Resource-Oriented BPEL. In: Proc. of the 2nd ECOWS
Workshop on Emerging Web Services Technology, WEWST 2007 (November 2007)

20. Passant, A., Mendes, P.N.: sparqlPuSH: Proactive notification of data updates in
RDF stores using PubSubHubbub. In: 6th Workshop on Scripting and Development
for the Semantic Web, Crete, Greece (May 2010)

21. Pautasso, C.: JOpera: Process support for more than Web services,
http://www.jopera.org

22. Pautasso, C.: RESTful Web Service Composition with BPEL for REST. Data &
Knowledge Engineering 68(9), 851–866 (2009)

23. Pautasso, C.: BPMN for REST. In: Proc. of the 3rd International Workshop on the
Business Process Management Notation, Luzern, Switzerland (November 2011)

24. Pohja, M.: Server Push for Web Applications via Instant Messaging. Journal of
Web Engineering 9(3), 227–242 (2010)

25. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly & Associates, Sebastopol
(2007)

26. Saint-Andre, P.: Extensible Messaging and Presence Protocol (XMPP): Core. In-
ternet RFC 6120 (March 2011)

27. Wilde, E., Liu, Y.: Feed Subscription Management. Tech. Rep. 2011-042, School
of Information, UC Berkeley, Berkeley, California (May 2011)

28. zur Muehlen, M., Nickerson, J.V., Swenson, K.D.: Developing Web Services Chore-
ography Standards — The Case of REST vs. SOAP. Decision Support Sys-
tems 40(1), 9–29 (2005)

http://www.jopera.org

QoS Analysis for Web Service Compositions

Based on Probabilistic QoS

Huiyuan Zheng1, Jian Yang1, Weiliang Zhao1, and Athman Bouguettaya2

1 Department of Computing, Macquarie University, Australia
{huiyuan.zheng,jian.yang,weiliang.zhao}@mq.edu.au

2 School of Computer Science and Information Technology, RMIT University,
Australia

athman.bouguettaya@rmit.edu.au

Abstract. Quality of Service (QoS) analysis and prediction for Web
service compositions is an important and challenging issue in distributed
computing. In existing work, QoS for service compositions is either cal-
culated based on constant QoS values or simulated based on probabilistic
QoS distributions of component services. Simulation method is time con-
suming and can not be used in real-time applications for dynamic Web
service compositions. In this paper, we propose a calculation method
to estimate the QoS of a service composition, in which the probability
distributions of the QoS of component services can be in any shape.
Experimental results show that the proposed QoS calculation approach
significantly improves the efficiency in probabilistic QoS estimation.

1 Introduction

Web services technology creates the opportunity for building composite services
by combining existing elementary or complex services (i.e. the component ser-
vices) from different enterprises and in turn offering them as high-level services
or processes (i.e. the composite services) [13]. QoS analysis becomes increasingly
challenging and important when complex and mission critical applications are
built upon services with different QoS. Thus solid model and method support
for QoS predication in service composition becomes crucial in further analysis of
complexity and reliability in developing service oriented distributed applications.

The QoS of a Web service is specified in service level agreement (SLA) between
the service provider and service consumers. Most QoS in SLA are expressed as
constant values [14]. Recently, probabilistic QoS has gained attentions because of
the dynamic and unpredictable nature of Internet and its benefits have been rec-
ognized as being accurate and flexible [8,5,11]. With QoS modeled as probability
distributions, service clients can have a better understanding of the performance
of a service, and they can thereby have a relatively precise perception of the
QoS of a composite service. A service provider also benefits from probabilistic
QoS in SLA, because setting QoS as constant values in SLA does not reflect
the dynamic characteristics of certain QoS metrics and may lead to pessimistic
contracts [11].

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 47–61, 2011.
� Springer-Verlag Berlin Heidelberg 2011

48 H. Zheng et al.

When the QoS of its component services are modeled as probability distribu-
tions, exiting work adopts simulation approach to compute the QoS distribution
for a composite service [11]. Simulation method is time consuming. It works fine
if used in design time when the architecture and component Web services of a
service composition are determined. However, the service environment can be
dynamic. Service-based processes should dynamically change to adapt to this
environment. Composition engines, such as e-flow [4] and SELF-SERV [2], are
designed for the purpose of run time composition. In these composition engines,
QoS of the composite service needs to be estimated in real-time. Simulation
method for QoS estimation will become a bottle-neck in real-time scenarios.

In order to overcome the problems mentioned above, we propose a method to
estimate QoS for composite services. The basic idea is: (1) a QoS metric (e.g.
execution time) of a component service is modeled as a probability distribution;
(2) A composite service is modeled as a service graph and is composed of four
basic patterns as Sequential, Parallel, Conditional, and Loop. QoS aggregation
operations are defined and formulae are developed to compute QoS probability
distributions for these patterns; (3) QoS calculation for a composite service be-
comes a matter of iteratively applying the QoS aggregation operations for these
composite patterns. In comparison with the existing work, the contributions of
this paper can be summarized as follows:

– In the proposed method, QoS for a composite service is calculated, not sim-
ulated. Experiments show that the proposed method is not only accurate
but also much more efficient than simulation approach.

– The proposed method provides a more general and systematic approach
compared with existing methods. As a result, the problems dealt with in
the existing methods for QoS aggregation become the special cases in the
proposed method. In this work, we do not have any assumptions on the
forms of the QoS distributions, i.e., they can be any shaped probability
distributions.

In the rest of the paper we will use the term component QoS and composite QoS
to refer to QoS of component service and QoS of composite service respectively.
We will also use QoS and QoS metric interchangeably.

The remainder of the paper is organized as follows: Section 2 discusses the
work related to QoS estimation. In Section 3, the method of modeling and pro-
cessing the structure for a composite service is introduced. In Section 4, QoS
calculation method for Web service compositions is provided. Experiments are
carried out in Section 5. Section 6 concludes the paper.

2 Related Work

We will first review QoS modeling method for Web services. Then, QoS monitor-
ing methods for Web services will be summarized. Through these QoS monitoring
methods, history QoS, i.e. QoS sample data, of a Web service can be obtained.
The QoS sample data is a source of generating probability distributions for Web

QoS Analysis for Web Service Compositions Based on Probabilistic QoS 49

services. Finally, current QoS estimation methods for service compositions will
be discussed.

QoS Models: Existing research in service QoS representation can be catego-
rized as: single values representation, multiple values representation, and stan-
dard statistical distributions. In most work, each QoS metric is represented as
a constant value [7,14]. As the QoS of a Web service changes with time and
environment settings, single value-modeled QoS does not reflect this variation.
Standard statistical distributions are adopted to model QoS to solve the prob-
lem [3,11]. [3] mentions that a QoS metric can be specified as a distribution
function, such as Exponential, Normal, Weibull, and Uniform. [11] argues that
the contracts between Web service provider and client can be expressed as QoS
probability distributions. T location-scale distribution is adopted to fit the orig-
inal monitored QoS data of Web services. However, the reality is that an actual
QoS probability distribution can come in any shape, which may not be able to
fit into any well known statistical distributions. A more precise and general QoS
modeling method has been proposed in our previous work [16], which is basically
a free shaped probability distribution.

QoS Monitoring: The QoS of a Web service can be obtained through QoS mon-
itoring. There are three strategies for QoS monitoring depending on where the
measurement takes place: (1) Client-side monitoring: the measurement of QoS is
run on the client side [9,12]. QoS metric that depends on user experience, such
as response time, can be measured on the client side. (2) Server-side monitoring:
the measurement of QoS is run on the server side [1]. This technique requires
access to the actual Web service implementation, which is not always possible in
practice. (3)Third party based monitoring: the measurement of QoS is run on a
third party [18]. Third parties will periodically probes the service from different
geographic locations under various network conditions and generate the QoS.

Composite QoS Aggregation: For single values represented QoS, aggregation
method [3,7] is proposed to calculate the composite QoS. A composition can
be regarded as being composed of different composition patterns. Formulae to
calculate QoS for these patterns are given. But these formulae can only be ap-
plied to single values. For multiple values represented QoS [6], the calculation
method is pretty much the same as it is for single values, except that the prob-
ability of each QoS value of the composite service are taken into account. For
standard distribution represented QoS [3,11], simulation approaches are applied
to estimate the composite QoS. A simulation needs to be run for thousands of
times before a QoS sample for the composite service can be obtained. Simulation
method is time consuming. An efficient method is necessary for estimating the
QoS probability distributions of composite services, which is the focus of this
paper.

Our previous work [15,16,17] provide solutions to problems in QoS analysis of
Web service compositions. [17] proposes a modeling method for Web service com-
positions and composition patterns, as well as a QoS analysis method for Web
service compositions whose component QoS are modeled as constant values. [15]
designs an algorithm to explore the process of a Web service composition with

50 H. Zheng et al.

complex structures, such as unstructured loop patterns and nested composition
patterns. Examples and experiments in [16] show that the inaccurate modeling
of the QoS for component Web services can generate misleading QoS analysis
results for Web service compositions. Discussion has been given on how to model
the QoS probability distribution of a Web service accurately so that the QoS
of a Web service composition can be estimated precisely. This paper gives a
detailed solution to analyzing the QoS for Web service compositions whose com-
ponent QoS are modeled as probability distributions. Experiments have been
done to show the efficiency of our method over the existing ones. The techniques
in [15,16,17] and this paper compose a systematical approach to analyzing the
QoS for Web service compositions, which can be seen further in Section 3.

3 Preliminaries

A composite service can be built up based on four basic composition patterns:
Sequential Pattern, Parallel Pattern, Conditional Pattern, and Loop Pattern.
By recursively replacing patterns with single nodes having the same QoS as
the composition patterns, a composite service will finally be represented by one
node and the QoS of this node is the QoS of the composite service. Based on the
QoS estimation method described above, it can be seen that three techniques
are needed to compute the QoS for a Web service composition: (1) A modeling
method for composite services and composition patterns; (2) A QoS calculation
method for the four basic composition patterns; (3) An algorithm to explore the
model of a composite service, identify composition patterns, calculate the QoS
for the patterns, replace the patterns with the nodes with equivalent QoS, and
finally get the QoS for the composite service.

The solutions for (1) and (3) have been given in our previous work [17] and [15]
respectively. We will briefly summarize the solutions for (1) and (3) in this sec-
tion, then we will focus on (2), i.e., the QoS calculation method for composition
patterns, in the next section.

3.1 Modeling Composite Services and Composition Patterns

A composite service is modeled as a Service Graph (see Figure 2 for an example of
a Service Graph), in which each vertex represents a component service and each
arc denotes a transition from one component service to another under a certain
probability. Composition patterns (see Table 1 and Figure 1 for descriptions of
the patterns) can be defined based on the definition of the Service Graph. The
formal notations of a Service Graph and composition patterns are given in [17].

3.2 Model Processing Algorithm for Composite QoS Computation

In this paper, we will adopt the algorithm designed in our previous work [15]
to calculate the QoS for a composite service. The input of the algorithm is the

QoS Analysis for Web Service Compositions Based on Probabilistic QoS 51

(a) Sequential
Pattern

− −

− −

(b) Parallel Pattern

1p

np

(c) Conditional
Pattern

2p

np
11p

11mp

nnmp1np

1ip

ii mp

1p

ip

1ip
−

1np
−

21p
22mp

(d) Loop Pattern

Fig. 1. Basic Composition Patterns

Table 1. Descriptions for Composition Patterns

Pattern Description

Sequential In a Sequential Pattern (see Figure 1(a)), a Web service is invoked
immediately after the completion of a preceding Web service.

Parallel
Synchronized
merge:

In a Parallel Pattern with synchronized merge (see Figure
1(b) in which ’||syn−join’ represents synchronized merge),
Web services are executed concurrently. The subsequent
Web service will be invoked when all the Web services in
the parallel pattern have finished running.

Single merge: In a Parallel Pattern with single merge (see Figure 1(b) in
which ’||sng−join’ represents single merge), Web services
are executed concurrently. The subsequent Web service
will be invoked when one of the Web services in the par-
allel pattern has finished running.

Conditional In a Conditional Pattern (see Figure 1(c)), the Web services are run
exclusively.

Loop In a Loop Pattern (see Figure 1(d)), the Web services are run repeat-
edly. A Loop Pattern has more than one entry or exit point.

Service Graph of a composite service, as well as the QoS of the component
services. The output of the algorithm is the QoS for the composite service.

Different from [15] in which the QoS are single values, the QoS in this paper
are probability distributions. Therefore, the QoS calculation methods for com-
position patterns in the algorithm should be changed accordingly, which will be
discussed in detail in the following section.

4 Probabilistic QoS Aggregation

QoS aggregation formulae are developed in this section to calculate the QoS for
composition patterns.

52 H. Zheng et al.

4.1 Approach Overview and Underlying Assumptions

A QoS metric of each service (either a component service or a composite service)
is seen as a random variable and the following assumptions have been made:

(1) The QoS1 of different component services are mutually independent, i.e.
the QoS of any two component services are independent. If the QoS of two
services are independent, the QoS of one service does not affect the QoS of the
other service.

(2) QoS control is out of the scope of this paper. We only consider the case
that the developer of a composite service makes use of the component services
but has no control of the QoS of the component services. The QoS probability
distributions of a component service are statistically estimated and have already
taken into account different QoS influencing factors such as workload.

(3) The transition probabilities from one service to another in a composite
service can either be provided according to the experience of the service developer
at design time or be statistically estimated based on the execution history of the
service. Detailed method of obtaining the transition probabilities in a composite
service can be found in [3].

(4) QoS are represented as histograms with the same start point and width of
intervals. There is more accurate method of getting the QoS probability distri-
bution based on a QoS sample, which is out of the scope of this paper and can
be found in [16].

4.2 QoS Probability Distribution Calculation for Composition
Patterns

Classification of QoS Metrics. The QoS metrics are classified into five cate-
gories according to their characteristics in different composition patterns, which
are: additive, multiplicative, concave (i.e. minimum), convex (i.e. maximum),
and weighted additive. For example, the QoS metric execution time reflects an
additive behavior in a Sequential Pattern and convex behavior in a Parallel Pat-
tern with synchronized merge. In this paper, the discussion of QoS analysis is
based on these categories instead of individual QoS metrics, which makes the
QoS analysis approach more general and fits more QoS metrics.

Examples of additive, multiplicative, concave, and convex QoS metrics are
cost, reliability, execution time of a Parallel Pattern with single merge, and
execution time of a Parallel Pattern with synchronized merge respectively.

It is worth mentioning that multiplicative QoS metrics such as availability,
reliability, and accessibility, are represented as a statistical percentage value
(e.g. 90%) rather than a distribution. Therefore, only four types of QoS met-
rics: additive, concave, convex, and weighted additive will be discussed for the
computation of composite QoS distribution in the rest of the paper.

QoS Calculation Operations. If the component QoS is represented by single
value, to calculate the composite QoS, operations are sum, minimum, maxi-
mum, and weighted sum for additive, concave, convex, and weighted additive
1 Unless indicated otherwise, QoS is referred as the same QoS metric.

QoS Analysis for Web Service Compositions Based on Probabilistic QoS 53

QoS metrics respectively. However, the computation of the QoS distribution for
a composition pattern based on probability-distribution represented component
QoS is far more complex than based on single-value represented component QoS.
We thus define four operations on probability distributions, which are: QoSSum,
QoSMin, QoSMax, and QoSWeightedSum, to distinguish the arithmetic opera-
tions on single values.

– QoSSum(denoted as �): operates on the component QoS distributions taking
into consideration of the addition of their QoS values;

– QoSMin(denoted as �): operates on the component QoS distributions taking
into consideration of the minimum of their QoS values;

– QoSMax(denoted as �): operates on the component QoS distributions taking
into consideration of the maximum of their QoS values;

– QoSWeightedSum(denoted as �): operates on the component QoS distribu-
tions taking into consideration of the addition of their QoS values with path
probabilities as weights. It is mainly used in Conditional and Loop Patterns.

These operations and their relationships with composition patterns and QoS
metrics are summarized in Table 2.

Table 2. Operations for QoS Aggregation

Pattern Operation QoS Metric

Sequential
QoSSum Additive
QoSMin Concave

Parallel
QoSSum Additive
QoSMin(single-merge) Concave
QoSMax(synchronized-merge) Convex

Conditional QoSWeightedSum any

Loop
QoSSum&QoSWeightedSum Additive
QoSMin&QoSWeightedSum Concave

Formulae are developed for these operations. We introduce the following nam-
ing conventions:

– q is a variable representing a QoS metric;
– f(q) denotes the density function of the probability distribution (PDF);
– F (q) denotes the cumulative distribution function (CDF); F (q) and f(q)

have the following cumulative relationship: F (q) =
� q

−∞ f(x)dx for continu-
ous distributions or F (q) =

∑
qi<=q

f(qi) for discrete distributions.

It should be noted that although the discussion is based on distributions, the
developed formulae are also applied to single values. This is because single values
can also be represented as distributions with the help of Dirac delta function2.
For example, if the cost of a Web service is M , then f(q) = δ(q −M). If the

2 δ(x) is the Dirac delta function. δ(x) = +∞ when x = 0 and δ(x) = 0 when x �= 0.

54 H. Zheng et al.

cost of a Web service is N1 with a probability of p1 and N2 with a probability
of p2 (p1 + p2 = 1), then the distribution of this Web service can be expressed
as f(q) = p1δ(q −N1) + p2δ(q −N2).

QoSSum. Computing the PDF of the QoSSum of two component QoS distri-
butions is a problem of deducing the PDF of the sum of independent variables,
which is the convolution of each of their density functions [10],

f(q) = f1(q) � f2(q) = (f1∗f2)(q) =
∫ q

η=0

f1(η)f2(q − η)dη (1)

where f(q) is the PDF of the QoS of a composition pattern, f1(q) and f2(q) are
the PDFs of the component services.

Let us take a simple example of the execution time of a Sequential Pattern with
two component services. The PDFs of the execution time of the two component
services are f1(t) and f2(t) respectively. The probability for the execution time
of the first service being τ (τ ∈ (0, t)) and the second service being t − τ (t ∈
(0, +∞)) is f1(τ)f2(t− τ). Therefore, the probability for the Sequential Pattern
being finished at time t is the integral of f1(τ)f2(t− τ) over (0, t) where τ is the
variable, i.e. f(t) =

� t

τ=0
f1(τ)f2(t− τ)dτ . The result is the same as what we get

from Formula (1).

QoSMin. The probability distribution of the QoSMin of n component QoS
distributions is the distribution of the minimum of n independent variables which
can be calculated as:

F (q) = F1(q) � . . . � Fi(q) � . . . � Fn(q) = 1−
n∏

i=1

[1− Fi(q)] (2)

where F (q) is the CDF of the QoS of a composition pattern; n is the number
of component services within this pattern; and Fi(q) is the CDF of the QoS of
component service i.

Then the PDF can be obtained by differentiating both sides of Equation (2)
with respect to q:

f(q) = f1(q) � . . . � fi(q) � . . . � fn(q) =
n∑

i=1

fi(q)
∏

j=1,...,n&j �=i

[1− Fj(q)] (3)

where f(q) is the PDF of a composition pattern; n is the number of component
services; fi(q) is the PDF of component service i; and Fj(q) is the CDF of
component service j.

Let us take a QoS metric, response time as an example. Assume that X and Y
are two Web services in a Parallel Pattern with single merge. The probabilities
for them to be finished within time t are FX(t) and FY (t) respectively. The
probability for neither of them being able to finish within time t is (1−FX(t))(1−
FY (t)), therefore, the probability for either of them being able to finish within
time t is 1−(1−FX(t))(1−FY (t)). The fact that at least one of the Web services

QoS Analysis for Web Service Compositions Based on Probabilistic QoS 55

can be finished within t means that t is the shorter execution time of the two
Web services.

QoSMax. The distribution of the QoSMax of n component QoS distributions
is the distribution of the maximum of n independent variables which can be
calculated as:

F (q) = F1(q) � . . . � Fi(q) � . . . � Fn(q) =
n∏

i=1

Fi(q) (4)

where F (q) is the CDF of the QoS of a composition pattern; n is the number
of component services within this pattern; and Fi(q) is the CDF of the QoS of
component service i.

The PDF can be obtained by differentiating both sides of Equation (4) with
respect to q:

f(q) = f1(q) � . . . � fi(q) � . . . � fn(q) =
n∑

i=1

fi(q)
∏

j=1,...,n&j �=i

Fj(q) (5)

where f(q) is the PDF of a composition pattern; n is the number of component
services within this pattern; fi(q) is the PDF of component service i; and Fj(q)
is the CDF of component service j.

Let us take execution time as an example. Assume that X and Y are two con-
currently running Web services in a Parallel Pattern with synchronized merge.
The probability for X and Y to be finished within time t is FX(t) and FY (t)
respectively. Therefore, the probability for both of them to be finished within
time t is FX(t)FY (t). The fact that both Web services can be finished within t
means that t is the longer execution time of the two Web services.

QoSWeightedSum. The QoS distribution for the QoSWeightedSum of com-
ponent QoS distributions can be calculated as

f(q) = f1(q) � . . . � fi(q) � . . . � fn(q) =
n∑

i=1

pifi(q) (6)

where f(q) is the PDF of a composition pattern; n is the number of component
services within this pattern; fi(q) is the PDF of component service i; and pi is
the execution probability for component service i.

Here we can take execution time as an example. Assume X and Y are two
Web services within a Conditional Pattern with the execution probabilities being
p1 and p2 respectively. The probabilities for X and Y to be finished at time t
are fX(t) and fY (t) respectively. Therefore, the probability for the path of X to
be finished at time t is p1fX(t) and for the path of Y to be finished at time t is
p2fY (t). Therefore, the probability for the Conditional Pattern to be finished at
time t is f(t) = p1fX(t) + p2fY (t).

QoS Probability Distribution Calculation for Composition Patterns.
So far, we have discussed the operations and formulae involved in computing

56 H. Zheng et al.

composite QoS distributions. Next, we will explain how component QoS dis-
tributions are aggregated for different composition patterns. Here, QoS metrics
cost and time (execution time or response time) will be discussed as examples.

For a composition pattern with two component services, assume the proba-
bility distribution of the composite QoS is c(q) for cost, t(q) for time, and the
probability distributions of component QoS are c1(q) and c2(q) for cost, t1(q)
and t2(q) for time. According to Table 2, there are:

– in a Sequential Pattern:
c(q) = c1(q) � c2(q); t(q) = t1(q) � t2(q).

– in a Parallel Pattern with synchronized merge:
c(q) = c1(q) � c2(q); t(q) = t1(q) � t2(q).

– in a Parallel Pattern with single merge:
c(q) = c1(q) � c2(q); t(q) = t1(q) � t2(q).

– in a Conditional Pattern:
c(q) = c1(q) � c2(q); t(q) = t1(q) � t2(q).

– in a Loop Pattern:
The QoS computation for Loop Patterns is more complicated than other
patterns. Next, we will discuss it in detail.

In [17], we have given detailed discussion on the structure analysis method to
compute the QoS for an arbitrary Loop Pattern whose component QoS are fixed
constant values. To sum up the method in [17], statistically, a Loop Pattern
can be seen as a Conditional Pattern with a Sequential Pattern in each path.
With the formula for calculating the execution probability of each path of the
Conditional Pattern given in [17] (see Formula 7) and the formulae of computing
the QoS of a Sequential Pattern and Conditional Pattern given in this paper,
the distribution of the QoS of a Loop Pattern can be computed.

ppathli
= (

n∏
k=1

pk)l(
i−1∏
k=0

pk)(1 − pi) (7)

where pk is the transition probability from vertex vk to vk+1 and pk = 1 when
k = 0, l is the number of times that the Loop is executed, n is the number of
vertices in the Loop, and i is the index of the vertex where the Loop is jumped
out of.

To compute the QoS distribution for a Loop Pattern, we can set a threshold
value, TH , for ppath

li
. When ppath

li
< TH , the probability for the loop still

being run is quite small. Therefore, the execution path with a probability smaller
than TH can be ignored. It means that l = L times of looping is enough if L

satisfies (
n∏

k=1

pk)L(
i−1∏
k=0

pk)(1− pi) < TH .

The transition probability for each outgoing arc of a Loop Pattern (i.e. pij in
Figure 1(d) where i = 1, . . . , n and j = 1, . . . , mi) has to be changed accordingly.
Detailed formula on calculating the probabilities of the outgoing arcs can be
found in our previous work [17]. Then, the Loop Pattern can be replaced by one
vertex.

QoS Analysis for Web Service Compositions Based on Probabilistic QoS 57

5 Experiment

In this section, experiments have been done to compare the performance of
the proposed QoS calculation method (referred to as calculation method) with
simulation method. In a simulation method, the execution of a composite service
is simulated by exploring the Service Graph of the composite service. One single
value for per QoS metric of the composite service is obtained for each run of a
simulation by aggregating the QoS of each vertex that has been visited during
the exploration of the Service Graph. After running the simulation for a number
of times, a QoS sample (containing all the simulated QoS) for the composite
service can be obtained. This QoS sample can be used to generate the QoS
probability distribution for a composite service.

5.1 Validation

First, we shall test the accuracy of the calculation method and the simulation
method mentioned earlier.

A composite service and its component services (see Figure 2) are deployed.
Experiments have been done to monitor the QoS of the deployed composite
service. The monitored QoS are referred to as experimental result. By compar-
ing the composite QoS obtained by the simulation method and the calculation
method (referred to as simulation result and calculation result respectively) with
experimental result, the accuracy of the simulation method and the calculation
method can be verified. We only consider the QoS metric execution time in the
experiments.

Fig. 2. An Example of A Service Graph

The seven component Web services in Figure 2 are developed and deployed
on Apache Tomcat 5.5 server. Their execution time distributions follow the dis-
tributions in Figure 33. The BPEL process executing the composite service in
Figure 2 is developed and deployed on an Active BPEL engine. The detailed
information on service deployment is as follows:

(1) The simulation of the QoS probability distribution for a component Web
service: An array containing 10000 values whose distribution conforms to the
probability distribution of the Web service is generated and stored in a file. For
each execution, the Web service will randomly read one value from the file and
suspend for the indicated amount of time before it sends out a response.
3 These distributions are generated manually.

58 H. Zheng et al.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

7

8

x 10
-4 ws1

response time

de
ns

ity

(a) WS1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

7

8

x 10
-4 ws2

response time

de
ns

ity

(b) WS2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

7

8

x 10
-4 ws3

response time

de
ns

ity

(c) WS3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14

16

x 10
-4 ws4

response time

de
ns

ity

(d) WS4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14

16

x 10
-4 ws5

response time

de
ns

ity

(e) WS5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

7

x 10
-4 ws6

response time

de
ns

ity

(f) WS6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

x 10
-4 ws7

response time

de
ns

ity

(g) WS7

Fig. 3. Probability Distributions of execution time

(2) The simulation of the transition probabilities within a composite service:
A random number generator conforming to a uniform distribution is used. At
component service 1 Place Order, a random number is generated and compared
with 0.8. If it is smaller than 0.8, the output of service 1 is ”Credit Card”; oth-
erwise, the output is ”Cash”. At service 3 Check Credit, if the generated number
is smaller than 0.7, the output is ”Approved”; otherwise, it is ”Disapproved”.

(3) Experimental result: The developed composite service is invoked for 10, 000
times. For each invocation, an execution time is recorded. A histogram, shown
in Figure 4, is generated based on the recorded data sample.

(4) Simulation result: Simulation result is in the form of a sample. To dis-
tinguish the simulation result from the histogram of experimental result, the
simulated QoS are shown as dot-dashed curves in Figure 4(a), i.e. we plot the
probability densities at different execution time in Figure 4(a) instead of his-
togram bars.

(5) Calculation result: The calculation result is shown as dashed curves in
Figure 4(b) by plotting the probability densities at different execution time.

It can be seen from Figure 4 that both the simulation result and the calculation
result fit the experimental result very well. The accuracy of both methods has
been verified.

5.2 Efficiency

Next, the efficiency of using calculation method and simulation method will be
compared.

We perform tests on Mac OS X 10.6.6 with 1.86 GHz Intel Core 2 Duo pro-
cessor and 2 GB memory. Both the proposed QoS calculation and simulation
methods are implemented using C/C++ language. We test the time spent on
QoS estimation by calculation and simulation methods for Sequential Patterns,
Parallel Patterns, Conditional Patterns, and Loop Patterns respectively. The re-
sults are plotted by Matlab and shown in Figures 5, 6, 7, and 8 respectively. The

QoS Analysis for Web Service Compositions Based on Probabilistic QoS 59

0 1 2 3 4 5 6 7

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−4

execution time

de
ns

ity

Histogram of Experimental Result
Plot of Simulation Result

(a) Experimental and Simulation Results

0 1 2 3 4 5 6 7

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−4

execution time

de
ns

ity

Histogram of Experimental Result
Plot of Calculation Result

(b) Experimental and Calculation Results

Fig. 4. Results of Validation

x-axis represents the number of component services in a composite service and
the y-axis represents the time (in μs) spent on estimating the QoS distribution
for a composite service. As the time spent on calculation method is significantly
shorter than simulation method, we present the computation time of different
methods in logarithmic scale. In each of Figures 5, 6, 7, and 8, there are four
dashed lines and two solid lines. The four dashed lines represent the time spent
on simulation method when the simulation is run for 5000, 10000, 15000, and
20000 times respectively. The two solid lines represent the time spent on cal-
culation method when the probability distribution of each component QoS has
512 and 1024 bins respectively. One thing is to be noted: the time spent by
simulation method changes irregularly for any Loop Patterns. This is because
in the experiment, the transition probabilities in the Loop Pattern, the number
of component services that can jump out of the Loop Pattern, the component
services that jump out of the Loop Pattern, and the jumping out probabilities
all change randomly when the number of component services changes.

Based on the performance comparison between calculation and simulation
methods, it can be seen that the proposed QoS calculation method is far more

10 110 210 310 410 510 610 710 810 910 1010
10

3

10
4

10
5

10
6

10
7

number of component services

lo
g

tim
e(

μ
s)

times of simulation=5000
times of simulation=10000
times of simulation=15000
times of simulation=20000
distribution size in calculation=1024
distribution size in calculation=512

Fig. 5. Performance Comparison - Sequential Pattern

60 H. Zheng et al.

10 110 210 310 410 510 610 710 810 910 1010
10

3

10
4

10
5

10
6

number of component services

lo
g

tim
e(

μ
s)

times of simulation=5000
times of simulation=10000
times of simulation=15000
times of simulation=20000
distribution size in calculation=1024
distribution size in calculation=512

Fig. 6. Performance Comparison - Parallel Pattern

10 110 210 310 410 510 610 710 810 910 1010
10

2

10
3

10
4

10
5

number of component services

lo
g

tim
e(

μ
s)

times of simulation=5000
times of simulation=10000
times of simulation=15000
times of simulation=20000
distribution size in calculation=1024
distribution size in calculation=512

Fig. 7. Performance Comparison - Conditional Pattern

10 110 210 310 410 510 610 710 810 910 1010
10

3

10
4

10
5

10
6

10
7

10
8

number of component services

lo
g

tim
e(

μ
s)

times of simulation=5000
times of simulation=10000
times of simulation=15000
times of simulation=20000
distribution size in calculation=1024
distribution size in calculation=512

Fig. 8. Performance Comparison - Loop Pattern

efficient and outperforms simulation method in terms of computing QoS for all
the basic composition patterns.

6 Conclusion

In this paper, we propose a systematic approach to calculate the QoS probability
distribution for composite services. Experimental results show that the proposed
QoS calculation method is far more efficient than existing method and can be
used in real-time scenarios.

QoS Analysis for Web Service Compositions Based on Probabilistic QoS 61

The proposed method is based on the assumption that the QoS of component
services are independent of each other, which is not always the case in real-
ity. Research will be done to relax this assumption to make the proposed QoS
aggregation method more robust to fit into any environment.

References

1. Artaiam, N., Senivongse, T.: Enhancing service-side qos monitoring for web ser-
vices. In: ACIS, pp. 765–770 (2008)

2. Benatallah, B., Sheng, Q.Z., Ngu, A.H.H., Dumas, M.: Declarative composition and
peer-to-peer provisioning of dynamic web services. In: ICDE, pp. 297–308 (2002)

3. Cardoso, J., Miller, J., Sheth, A., Arnold, J.: Quality of service for workflows and
web service processes. Journal of Web Semantics 1, 281–308 (2004)

4. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.-C.: Adaptive and
Dynamic Service Composition in eFLOW. In: Wangler, B., Bergman, L.D. (eds.)
CAiSE 2000. LNCS, vol. 1789, pp. 13–31. Springer, Heidelberg (2000)

5. Comuzzi, M., Pernici, B.: A framework for qos-based web service contracting.
TWEB 3(3), 10:1–10:52 (2009)

6. Hwang, S.Y., Wang, H., Tang, J., Srivastava, J.: A probabilistic approach to mod-
eling and estimating the qos of web-services-based workflows. Inf. Sci. 177(23),
5484–5503 (2007)

7. Jaeger, M., Rojec-Goldmann, G., Muhl, G.: Qos aggregation for web service com-
position using workflow patterns. In: EDOC, pp. 149–159 (2004)

8. Klein, A., Ishikawa, F., Honiden, S.: Efficient QoS-Aware Service Composition
with a Probabilistic Service Selection Policy. In: Maglio, P.P., Weske, M., Yang,
J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 182–196. Springer,
Heidelberg (2010)

9. Mani, A., Nagarajan, A.: Understanding Quality of Service for Web Services. IBM
Software labs, India

10. Papoulis, A.: Probability, random variables, and stochastic processes. McGraw-Hill,
New York (1965)

11. Rosario, S., Benveniste, A., Haar, S., Jard, C.: Probabilistic qos and soft contracts
for transaction-based web services orchestrations. IEEE Transactions on Services
Computing 1(4), 187–200 (2008)

12. Rosenberg, F., Platzer, C., Dustdar, S.: Bootstrapping performance and depend-
ability attributes of web services. In: ICWS, pp. 205–212 (2006)

13. Yang, J., Papazoglou, M.P.: Service components for managing the life-cycle of
service compositions. Inf. Syst. 29(2), 97–125 (2004)

14. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: Qos-
aware middleware for web services composition. IEEE Transactions on Software
Engineering 30(5), 311–327 (2004)

15. Zheng, H., Yang, J., Zhao, W.: Qos analysis and service selection for composite
services. In: SCC, pp. 122–129 (2010)

16. Zheng, H., Yang, J., Zhao, W.: Qos probability distribution estimation for web
services and service compositions. In: SOCA, pp. 1–8 (2010)

17. Zheng, H., Zhao, W., Yang, J., Bouguettaya, A.: Qos analysis for web service
composition. In: SCC, pp. 235–242 (2009)

18. Zheng, Z., Zhang, Y., Lyu, M.R.: Distributed qos evaluation for real-world web
services. In: ICWS, pp. 83–90 (2010)

Constraint-Based Runtime Prediction of SLA Violations
in Service Orchestrations�

Dragan Ivanović1, Manuel Carro1,2, and Manuel Hermenegildo1,2

1 School of Computer Science, T. University of Madrid (UPM), Spain
idragan@clip.dia.fi.upm.es, {mcarro,herme}@fi.upm.es

2 IMDEA Software Institute, Spain

Abstract. Service compositions put together loosely-coupled component ser-
vices to perform more complex, higher level, or cross-organizational tasks in a
platform-independent manner. Quality-of-Service (QoS) properties, such as ex-
ecution time, availability, or cost, are critical for their usability, and permissi-
ble boundaries for their values are defined in Service Level Agreements (SLAs).
We propose a method whereby constraints that model SLA conformance and
violation are derived at any given point of the execution of a service composi-
tion. These constraints are generated using the structure of the composition and
properties of the component services, which can be either known or empirically
measured. Violation of these constraints means that the corresponding scenario
is unfeasible, while satisfaction gives values for the constrained variables (start
/ end times for activities, or number of loop iterations) which make the scenario
possible. These results can be used to perform optimized service matching or
trigger preventive adaptation or healing.

Keywords: Service Orchestrations, Quality of Service, Service Level
Agreements, Monitoring, Prediction, Constraints.

1 Introduction

Service-Oriented Computing is a paradigm that has been increasingly gaining ground
as the basis for development of highly flexible, dynamic, and distributed service-based
applications (SBAs). Key to the development of SBAs are service compositions, that al-
low the application designer to put together several loosely-coupled specialized compo-
nent services, often provided and controlled by third parties, to perform more complex,
higher-level, and/or cross-organizational tasks [7]. Trends in service-oriented applica-
tion design indicate increased reliance on third-party services available on Internet [19].

In that context, quality of service (QoS) properties of individual services and their
compositions are critical for overall usability. For externally offered services, service-
level agreements (SLAs) define boundaries of permissible values for QoS attributes,
such as execution time, availability, or cost. Potential and actual SLA violations can be

� The research leading to these results has received funding from the European Community’s
Seventh Framework Programme under the Network of Excellence S-Cube (Grant Agree-
ment n◦ 215483). The authors were also partially supported by Spanish MEC project 2008-
05624/TIN DOVES and CM project P2009/TIC/1465 (PROMETIDOS).

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 62–76, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Constraint-Based Runtime Prediction of SLA Violations 63

avoided or mitigated using some form of adaptation (e.g., rebinding or changing the
service selection preferences), or triggering structural changes both in the design and
the running instance [7,10]. For structurally constrained compositions of non-cyclic
shape, flexible provisioning techniques have also been proposed [18].

Therefore, the task of analyzing and predicting QoS metrics for service composi-
tions, both at design time and at the level of an executing instance, is of great theoreti-
cal and practical importance. Among the recently proposed approaches we can cite the
application of statistical reasoning based on historical data (e.g., data mining) to predict
likely SLA violations and their probable causes [15,23], or to apply techniques related
to model checking and online testing [10,8].

In this paper, we take a different approach based on generating a constraint model
for QoS metrics of an executing composition based on its structure, the semantics of
its building blocks, and its current state of execution at a given moment. Previous
works [4,3,13] also used the composition structure as the basis to derive properties
thereof. In terms of results, instead of trying to find the most likely SLA conformance
or violation scenario, we identify the possible cases of SLA conformance and violation
at a given point of execution and infer conditions under which these may occur.

We consider service orchestrations, which are compositions with a centralized
control flow. They may involve a wide range of workflow patterns [22] — including
parallel flows, different splits/joins, loops, branches, etc. — and are usually expressed
using some dedicated notation, such as BPMN [16], BPEL [14], Yawl [20] or DecSer-
Flow [21], or other adequate formalism. In this paper, we use abstract (but executable)
notation for orchestrations from which we formulate a constraint satisfaction problem
(CSP) [6,1] that models the situation of SLA conformance or violation.

The rest of the paper proceeds as follows: Section 2 presents a motivating example.
Section 3 then describes how the CSP can be automatically formulated on the basis
of an orchestration continuation, to take into account the known assumptions about
third-party components, as well as to include internal structural parameters of branches
and loops. In Section 4 we present an experimental evaluation, Section 5 gives some
implementation notes, and finally Section 6 presents conclusions.

2 Motivation

Consider a scenario where a provider of multimedia content (text, audio and video)
needs to periodically update and reconfigure program streams offered to individual
clients (users), based on their historical usage patterns. That may require choosing be-
tween different mixtures of available streams (such as news, sport, entertainment, etc.)
presented to a user, genres within them, and type of multimedia materials. The choice
may depend on the frequency of use (casual vs. frequent users), user interests, and band-
width adequate to serve different types of content (e.g. low quality vs. HD video). In
such a scenario, the provider would run the reconfiguration process from time to time
when serving user requests, although typically not for each access. Reconfiguration de-
pends on other (usually back-end) administrative and analytic services, and should not
cause noticeable glitches in content delivery. The SLA for the content delivery service
does provide some window for running the reconfiguration process on top of it, but it

64 D. Ivanović, M. Carro, and M. Hermenegildo

�

a0

+
a1

Retrieve account
record

a2

Retrieve usage
patterns

a3
+

User ID

©
a4

Generate new
content profile

a6

Reuse current
content profile

a5
stable

¬stable
Fitting?

a7
©

yes

no
Write configuration

a8

Account record

Usage patterns

Content profile

Content profile

Fig. 1. An example orchestration to reconfigure content provided to a user

is normally very restricted. Therefore, the running time of the reconfiguration process
and its availability are of the utmost importance.

Fig. 1 depicts an example orchestration implementing the reconfiguration process,
using BPMN notation [16]. It starts with the reception of user ID (activity a0), which
spawns in parallel (a1) the retrieval of the users’ account record (a2) and the user’s
usage patterns (a3). If the usage pattern is stable (a4), the user’s current content profile
is reused (a5). Otherwise, a new content profile is generated (a6) based on the account
record and the current usage patterns. For efficiency, first minor variations in content
profile parameters are attempted; if these are not likely to fit the usage pattern (a7),
more radical changes are attempted, and so on. Finally, the content profile (either the
current one or a new one) is written to the configuration database (a8).

In this example, the configuration process may affect responsiveness of the main
multimedia content delivery service, and therefore we want to continuously monitor
and predict reconfiguration running time, having in mind the overall SLA. At any point
in the execution of the reconfiguration orchestration, including its start, and within that
particular context, there are a number of interesting objectives to aim at:
Predicting Certain SLA Violations: If we are able to predict that the orchestration
cannot possibly meet the SLA constraints, then we can either abort it (effectively post-
poning the reconfiguration), or adapt it by switching to a simpler and/or more robust ver-
sion. Conversely, if we are reasonably sure that the execution will be SLA-conformant,
we can plan to use the potential slack in a productive way.
Predicting Possible SLA Violations: If we can predict that SLA violations may occur,
but not necessarily so, and we can identify potential points of failure, then we can pre-
pare, ahead of time, adequate adaptation and healing mechanisms, and/or try to decrease
the risk of violation by using fail-safe component services.
Inferring the Necessary Preconditions: If we not only predict, but understand why an
SLA violation may or must happen, we can use that information to identify bottlenecks,
to develop criteria for selection of components, and to drive either runtime or design-
time adaptation.

In this paper we present a unified constraint-based approach and analysis framework
that makes it possible to perform runtime prediction of SLA violation / conformance for
service orchestrations, based on monitoring information and a constraint model of an

Constraint-Based Runtime Prediction of SLA Violations 65

abstract semantics of the orchestration structure. Predictions are based on and expressed
in a form that describes the circumstances under which SLA violations and conformant
executions of an orchestration may take place, which can be used to reason about the
orchestration and its components.

3 Constraint-Based QoS Prediction

3.1 The General Prediction Framework

An SLA typically defines, among other things, which QoS attributes are relevant in
the context of the provider-client contract, and what values of these QoS attributes are
acceptable. For QoS attributes expressed as numbers on a measurement scale, QoS
constraints given by an SLA are often expressed as ranges of permissible values for
each attribute. More complex relationships between SLA attributes — such as trade-
offs between cost and speed — can be devised, but in our analysis we will assume that
the QoS constraints are given as lower and upper bounds on appropriate QoS metrics.

Furthermore, we will focus on an important subset of QoS metrics that are monotonic
and cumulative in the sense that they express an amount of a physical or logical resource
consumed by each activity in an orchestration, so that the amounts from subsequent
activities add together into an aggregate metrics. Running time is an obvious example
of a cumulative metrics, because consumed time is never recovered. In this paper we
will assume, for simplicity, that metrics are accumulated by through addition (which is
a fairly common case). Note that some metrics whose natural aggregation function is
not addition can be easily mapped into additive metrics. For instance, the aggregation
function for the availability (the probability of successful access) p of n subsequent
operations can be calculated as

∏n
i=1 pi , where 0 < pi ≤ 1 is the availability of the

i -th component. Using the transformation λ = − log p, we can transform the original
multiplicative metric of p into the additive λ=∑

i λi .
An important feature of a cumulative QoS metrics is that, at any point in execution of

an orchestration, its value can be calculated as a cumulative function (such as addition)
of two components: the previously accumulated metrics and an estimate of the pending
metrics for the remainder of the execution of the orchestration, until it finishes. For
some metrics, their accumulated value needs to be be measured taking into account
the history of the actual execution up to the current execution point (e.g. elapsed time
from the start of execution), while for other metrics the current value at any execution
point does not depend on the previous history. For example, in the case of availability
the current metrics always represents “availability so far”. Since it is being measured
at some execution point which has obviously been reached, the probability p of being
available up to the point of measure is 1 (and then λ= 0).

Let us present intuitively how accumulated metric values and a prediction for the
rest of execution can be applied to predict SLA violations. We will use Fig. 2, taken
from [12]. Points A -D on the x-axis stand for the start, finish and two intermediate
points in time during the execution of an orchestration. Let us assume that at the initial
point A we have a prediction (solid line) for the QoS metrics for the rest of the execu-
tion. According to this prediction, the QoS at the finish falls under the limit Max given
by some SLA. However, at point B we notice that some deviations have occurred up to

66 D. Ivanović, M. Carro, and M. Hermenegildo

History

Quality

Max

A B C D

Initial prediction

Actual profile

Prediction after
observation B

Prediction after
observation C

Fig. 2. Actual and predicted QoS throughout history

that moment (the dashed line). Therefore, we adjust our prediction, which now seems
to indicate borderline SLA compliance. At point C , further measured deviations lead to
another adjustment of the QoS prediction, this time indicating a likely violation of the
SLA.

An important aspect of such prediction scheme is the existence of a time horizon be-
tween the detection of the possibility of an SLA violation and its actual occurrence. In
our example, it is the period between B and the point of failure which lies somewhere
between C and D. This “window” makes it possible to warn about (potential) future
SLA violations ahead of time. A prediction technique also needs to identify conditions
that increase or decrease likelihood of an SLA violation, in order to filter false positives
from true positives and thus increase the reliability of prediction. These conditions can
be related to internal parameters of the orchestrations, such as the truth value of branch-
ing conditions or the number iterations in a loop. For our constraint-based approach,
this will be illustrated in Section 3.5.

3.2 QoS Prediction Architecture

The architecture of the constraint-based QoS prediction framework is shown in Fig. 3.
A process engine executes service orchestrations and interacts with external services by
exchanging messages. In the process, it publishes lifecycle events such as signaling the
start or end of a process, invocation of a component service, and reception of a reply.
Also, from time to time, the process engine publishes the current point of execution
of a running orchestration in the form of a continuation (explained in the following
subsection). That is typically not done at each step, but at specific milestones such
as service invocations, loop iterations and branches. Deciding how to determine the
optimal granularity for publishing points is a matter for future work.

The events published by the process engine are sent via an event bus. The const-
raint-based QoS predictor can be connected to that bus and listen to lifecycle events
(or a subset of events of interest). When a continuation is published, it is pushed by
the event bus to the predictor. The predictor performs the analysis, and publishes QoS
predictions back to the event bus, together with QoS metric bounds inferred by the

Constraint-Based Runtime Prediction of SLA Violations 67

Process
Engine

External
Services

send/receive

E
ve

n
tB

u
s

proc start/stop

invoke/reply

proc continuation

other events

QoS
Predictor

lifecycle events

process continuation

predictions

QoS metrics

Adaptation
Mechanism

predictions

QoS metrics

adaptation
actions

event publishing

Fig. 3. Architecture of the QoS Analysis Framework

analysis. That information can be accessed by an adaptation mechanism, which can use
the published predictions and the QoS metrics to prepare adequate adaptation actions on
the orchestration definition, an executing instance, or both. Such adaptation actions may
include, among other things, selection of components to minimize the risk of failure,
changes in the structure of the process, or intervention on the orchestration data.

3.3 Representing Orchestrations and Their Continuations

In order to estimate how much the remainder of the execution can contribute to a given
QoS metrics, we need to have some knowledge about where in the execution we are
placed — or, more precisely, what remains to be executed: it is the orchestration activi-
ties yet to be executed which need to be taken into account to predict the remainder of
the metric value. In our case we represent this still-not-executed part of the orchestra-
tion explicitly, in the form of a continuation. A continuation [17] is an abstract object
(such as a set of data structures or a function) that represents the control state of a com-
putation — i.e., the precise execution point of a program (including the associated data)
and whatever remains to be executed.

In our case we are interested in continuations of running instances of orchestrations.
A continuation is always implicit in the state of a process engine, even when the chosen
programming language does not make it accessible as such: it is determined, for exam-
ple, by the activity being executed, the representation of the orchestration and the data
in the orchestraton. In our approach, we rely on keeping available at all moments an ex-
plicit representation of the continuation, inspect its structure (which in general becomes
progressively simpler as execution proceeds) and use it to generate constraints which
model the conditions under which the execution can meet / not meet the QoS stated in
the SLA.

68 D. Ivanović, M. Carro, and M. Hermenegildo

continuation ::= a .

a, a1, a2 ::= {elementary operation } (elementary operation)

| a1 , a2 (sequence)

| ({cond } → a1 ; a2) (if-then-else)

| a1 ∧a2 (and-join)

| a1 ∨a2 (or-join)

| while({cond }, a) (while loop)

| foreach(x, list, a) (list comprehension)

| invoke(partner, out, in) (invoke a service)

| reply(out) (send a reply)

| relax (do nothing)

| stop (finish)

Fig. 4. Abstract syntax for orchestrations

The (simplified) abstract syntax we will use is shown in Fig. 4. It is based on the
concrete syntax used by a prototype orchestration engine which we developed as exper-
imentation base for this paper and that uses Prolog as the language to express branch
and loop conditions and elementary operations. A simple activity represents a basic
unit of work, such as a calculation or assignment. Similarly, cond encodes a logical
condition that is used for if-then-else branching or while loop iteration. List compre-
hension is simplified using foreach. Communication with the environment is done
using invoke and reply. Besides sequences, both parallel OR and AND splits/joins
are supported. Most BPMN constructs can be translated straightforwardly. A translation
of the example process from Fig. 1 (with some low-level details omitted) is shown on
the left of Fig. 5.

The continuation at every point of the execution of Fig. 5 is not explicit in the or-
chestration representation, but is rather kept by the interpreter which executes it (which
we do not have space to describe in detail in this paper). This continuation represents
what is left to execute after every computation step, and is updated every time a step is
taken. For instance, after taking the else branch in the orchestration from Fig. 5 (left),
the continuation is a sequence of activities in lines 6-9, 11 and 12.

1 (invoke(account_svc, UserID, AccRec) 500 ≤ T1 ≤ 800 (assumption: account_svc)
2 ∧ invoke(usage_svc, UserID, UsagePatt) 200 ≤ T2 ≤ 500 (assumption: usage_svc)
3), T3 = max(T1,T2) (∧-join)
4 (stable(UsagePatt)} Cond ∈ {0, 1}, 0 ≤ T4 ≤ 10 (condition)
5 → invoke(reuse_svc, AccRec, Profile) 100 ≤ T5 ≤ 400 (assumption: reuse_svc)
6 ; invoke(gen_svc, (AccRec, UsagePatt), Profile), 200 ≤ T6 ≤ 600 (assumption: gen_svc)
7 while({unfit(Profile)}, k ∈ N, 0 ≤ T7 ≤ 10 (while condition)
8 invoke(gen_svc, (AccRec, UsagePatt), Profile)) 200 ≤ T8 ≤ 600 (assumption: gen_svc)
9) T9 = k × (T7 +T8)+T7 (while duration)
10), (Cond = 1∧T10 = T4 +T5)∨ (Cond = 0∧T10 = T4 +T6 +T9) (if)
11 invoke(conf_svc, (UserID, Profile), _), 100 ≤ T11 ≤ 300 (assumption: conf_svc)
12 stop. T = T3 +T10 +T11 (total running time)

Fig. 5. Orchestration for Fig. 1 (left) and its associated running time constraints (right)

Constraint-Based Runtime Prediction of SLA Violations 69

3.4 Deriving QoS Constraints from Continuations

A constraint is a relation that restricts values of variables that, in our case, represent
values of QoS metrics associated with the constructs in the orchestration and their basic
components. The particular relations which are generated depend both on the QoS met-
ric that is to be captured and on the structure of the continuation. In our approach, after
deriving the constraints from the structure of the given continuation, constraint solving
techniques (see Section 3.6) are used to infer admissible ranges for variables that lead
to either SLA satisfaction or violation.

We require that these constraints lead to a conservative prediction of QoS fulfillment:
under the assumption that our knowledge about the QoS characteristics of the basic or-
chestration components (i.e., atomic activities or external services) is correct,1 we want
that any prediction we make about the conformance of an execution w.r.t. the stated SLA
is also correct. In this direction, we make no assumptions on the (in)dependence of be-
havior of individual components. I.e., if the behavior of two external services seems to
be strongly linked (because of e.g. past history), we do not take this apparent correla-
tion into account for the sake of prediction safety. Such information, if available, could
be added to try to make predictions more precise: for example, given that some service
took less time than expected to answer, we might assume that the same is going to hap-
pen to some other service which is apparently historically related. While this seems to
help in making predictions more accurate, it also makes them potentially unsafe.

We illustrate constraint derivation with two metrics: running time and availability.
For a continuation consisting of a (complex) activity a representing the remainder of
the execution, the total running time of the orchestration is a sum of the elapsed time
since the start Ta and the pending time T (a). The total availability is equal to the pend-
ing availability λ(a), as explained before. We derive T (a) and λ(a) structurally, and
then constrain them against the SLA limit: Tmax for the maximal allowed execution
time by and λmax for the negative logarithm of the minimal allowed availability (see
Section 3.1). The resulting constraints:

For SLA conformance: Ta +T (a) ≤ Tmax and λ(a) ≤λmax.
For SLA violation: Ta +T (a)> Tmax and λ(a) >λmax.

are solved to obtain the (approximate, but safe) ranges for T (a) and λ(a), and thus for
the total QoS, for the two cases of conformance and violation, respectively.

We generate the above constraints by formulating a constraint for each simple activ-
ity contained inside a (usually relating the value of the QoS metric for the activity with
its expected bounds) and combining these constraints (using disjunctions and conjunc-
tions according to the structure of a) into a larger constraint which provides bounds
for T (a). The right hand side of Fig. 5 shows the set of constraints corresponding to
the process on the left. We will now detail how constraints for simple and complex
activities are generated.

1 Note that in reality this knowledge is always inexact and subject to dynamic changes. How-
ever, we are putting ourselves in the situation that this knowledge is exact, and we want to
ensure that, at least in this optimistic situation, the constraints we generate meet safeness
requirements.

70 D. Ivanović, M. Carro, and M. Hermenegildo

Simple activities. For a simple activity a — a simple operation,relax or stop— and
simple operations (in curly braces), the assumption is that they include only elementary
constructs and do not entail complex computations. A lower bound for this is always
T (a) ≥ 0, and an upper bound depends on the execution environment (computer clock,
CPU, etc.). It is usually on the order of microseconds, and should be experimentally
determined for each architecture. In the example we have put some reasonable limits,
which do not necessarily reflect a real situation. As for the availability, since no external
components are involved, in this case we have λ(a) = 0.

Sequences. Since we are considering cumulative metrics,2 the metric values are accu-
mulated for the case of sequences: for sequence a ≡ a1, a2 we have T (a) = T (a1)+T (a2)
and λ(a)= λ(a1)+λ(a2).

Service invocations. For an activity a that is an invoke to an external service, for both
the running time T (a) and the availability λ(a) the analyzer needs to rely on empirically
or analytically derived estimates, which include the local message handling and network
delivery. In our approach, we deal with the ranges of possible values, rather than with
probable or expected values. That means that in absence of any information, we simply
have T (a) ≥ 0 and λ(a) ≥ 0, but the upper bounds on T (a) and λ(a), if known, must
be safe, or else the prediction will be too optimistic and fail to detect some cases of
possible SLA violations.

Parallel flows. In the case of a parallel flow a ≡ a1 ∧ a2, T (a) must lay somewhere
between max(T (a1),T (a2)), when a1 and a2 run fully in parallel, and T (a1)+T (a2),
which is the worst, sequential case of execution. Therefore, it is safe to take

max (T (a1),T (a2))≤ T (a)≤ T (a1)+T (a2)

as a conservative approximation.
This approximation can however be too cautions and may lead to overly pessimistic

estimates. If we have additional information about the semantics of the orchestration
language and the implementation of the execution engine, we can refine the estimate for
T (a). For instance, if the execution of local activities is single threaded, while external
services invocations are ensured to run in parallel, we can use the following scheme.
Consider the case where a1 and a2 are sequences ending with an invoke activity, i.e.,
a1 ≡ a11, a12, . . . , a1k , a∗

1 and we call a′
1 ≡ a11, a12, . . . , a1k (respectively for a2). We

will assume that a′
1 and a′

2 are sequences of activities to be executed locally by a single
thread, even if they appear in different branches of the flow, while a∗

1 and a∗
2 can be

executed remotely in parallel. In this case, the total estimated time for the flow is

max
(
T (a′

1)+T (a∗
1),T (a′

2)+T (a∗
2)

)≤ T (a)≤ T (a′
1)+T (a′

2)+max
(
T (a∗

1),T (a∗
2)

)

If, say, a∗
1 is not an externalinvoke, but a∗

2 is, then T (a∗
1) is part of T (a′

1). If neither a∗
1

nor a∗
2 are external invokes, then simply T (a∗

1) = T (a∗
2) = 0. This structural analysis

can of course be easily extended to more than two parallel flows. The running time
of an OR-parallel flow can be conservatively approximated using the case of AND-
parallelism.

2 Or those that can be converted into a cumulative (e.g. additive) equivalents.

Constraint-Based Runtime Prediction of SLA Violations 71

From the point of view of availability, parallel flows do not affect the total risk of
failure, since the total availability depends on availability of all used components, re-
gardless of their order of execution. Therefore, for a ≡ a1 ∧ a2 or a ≡ a1 ∨ a2, we have
λ(a) =λ(a1)+λ(a2).

Conditionals. For a conditional a ≡ ({cond } → a1 ; a2), where a1 is the then part and
a2 is the else part, the metric depends on how the condition is evaluated. We introduce a
Boolean variable bcond to represent the result of the condition evaluation, so that we can
state the following disjunctive constraint: either (1) bcond = 1 and T (a) = T ({cond })+
T (a1), λ(a) = λ(a1), or (2) bcond = 0 and T (a) = T ({cond })+T (a2), λ(a) = λ(a2). The
value of bcond is generally unknown, but can be constrained to either 0 or 1 as the result
of constraint solving. This makes it explicit that either the then or the else part can be
taken, but not both.

Loops. In case of a loop a — while or foreach with body a1 — we introduce
an integer variable ka ≥ 0 that stands for the number of loop iterations. Then, we have
T (a) = ka × (T ({cond })+T (a1))+T ({cond }) and λ(a) = ka ×λ(a1). The actual value
of ka is generally unknown, but its inclusion into the constraints allows us to reason
about the maximal or minimal number of loop iterations that lead to SLA compliance
or violation.

3.5 Using Computational Cost Functions

To improve the precision of the predictions, the constraint-based predictor is able to
use computational cost functions for service orchestrations [13], which, in this case,
express lower and upper bounds of the number of loop iterations as a function of the
input data to the orchestration. These computation cost functions may be automatically
inferred at the start of an orchestration, statically determined at design time, or manually
asserted for known cases. The inference of the computation cost functions depends
on the semantics of the workflow constructs and the (sub-)language of conditions and
elementary operations in which the orchestration is expressed.

If computation cost functions are available, the default constraint for the number of
iterations of loop a (0 ≤ ka) can be strengthened to � ≤ ka ≤ u ∧0 ≤ ka , where � and
u are, respectively, lower and upper bounds on the number of iterations, which depend
on the actual values of the input data. In the absence of one (or both) of the bounds, the
corresponding constraint is simply not generated (as in Fig. 5, right).

3.6 Solving the Constraints

The constraints derived from the orchestration continuation relate the QoS metrics for
the entire continuation with those of individual activities, component services, Boolean
results of evaluating the conditions, the number of loop iterations, and the limits from
the SLA. As such, they represent a constraint satisfaction problem [6] that can be solved
for values of the constrained variables, which, in our case, include QoS metrics, Boolean
conditions and loop iteration counters. Depending on the type of problem and the partic-
ular constraint solver used, solving the CSP may involve several iterations of constraint
propagation and problem splitting [6,1], which are used to reduce the equations in the

72 D. Ivanović, M. Carro, and M. Hermenegildo

original CSP to a series of simpler ones, before attempting to assign to the constrained
variables values that satisfy the constraints.

In our case, we use the interval constraints (ic) solver from the ECLiPS e Constraint
Logic Programming (CLP) system [2,5]. The underlying Prolog subsystem of ECLiPS e

is used for constructing the constraints from a continuation, handling information on
QoS metrics of component services, and reporting the results. The solver handles con-
strained variables over bound and unbound integer (discrete) and real number (dense)
domains. The values of the constrained variables are represented as (possibly unbound)
real or integer intervals. Integer variables with bounded domains are handled in a man-
ner similar to finite domain solvers [6]. The solver directly supports disjunctive con-
straints (which we use for conditionals) and reified (Boolean valued) constraints.

The solver produces results given as bounds on values of the constrained variables,
obtained from propagation of arithmetic constraints, or fails if the constraints cannot be
satisfied. In our case, as mentioned before, we always solve two CSPs, one modeling
SLA conformance and another one modeling SLA violation.

The constraint solver is complete, i.e., it does not discard feasible solutions. There-
fore, upon constraint satisfaction, the answer intervals for the variables include all
admissible values, and values outside these intervals cannot possibly satisfy the con-
straints. On the other hand, it may be that some combinations of values inside the
answer intervals do not satisfy the constraints. Let us see an example: the constraint
0 ≤ T (a1)+T (a2) ≤ 100 has as answer T (a1) ∈ [0..100]∧T (a2) ∈ [0..100]. This contains
all feasible solutions (for example, T (a1) = 0∧T (a2) = 100) but also combinations of
values which do not satisfy the constraints (for example, T (a1) = 50∧T (a2) = 51). Of
course, if the latter values are fed into the constraint solver together with the initial
constraint, the constraint solver will determine that the system is unsolvable.

4 Experimental Evaluations

Table 1 shows the results of running our QoS prediction framework applied to the or-
chestration in Fig. 5 (corresponding to the workflow in Fig. 1) and using execution time
as QoS metric. The assumptions on ranges for the invocations of external services are
shown at the bottom. These ranges would be updated by the QoS predictor based on the
observation of invoke/reply events published by the process engine. Note that we are
only concerned with the range of possible running times for each component, not the
probability distributions within these ranges, and therefore we only need only to adjust
the boundaries of the corresponding ranges.

The top part of Table 1 shows the results for the case of an unbound number of
while loop iterations, which is the default if no additional information is provided. A
series of successive assumed running time limits (500, 750, 1 500 and 3 000 ms) was
considered, and both the SLA compliance (success) and violation results are shown.
The meaning of the rest of the rows are as follows:

duration shows the predicted running time ranges for the orchestration in ms.
cond(if) is a Boolean value showing the possible evaluations of the condition in the

conditional (1 for the “then” branch and 0 for the “else” branch).
iter(while) shows the range of possible iteration counts in the while loop (corre-

sponding to the repetition after testing the condition in the “else” branch).

Constraint-Based Runtime Prediction of SLA Violations 73

Table 1. Sample QoS prediction results

Case 1: Unconstrained iterations
Successive running time SLA ranges

0 ms .. 500 ms 500 ms .. 750 ms 750 ms .. 1 500 ms 1 500 ms .. 3 000 ms
Variable Metrics success violation success violation success violation success violation
duration ms — 600 .. +∞ 600 .. 750 750 .. +∞ 750 .. 1 500 1 500 .. +∞ 1 500 .. 3 000 3 000 .. +∞
cond(if) bool — 0 .. 1 1 0 .. 1 0 .. 1 0 0 0
iter(while) nat — 0 .. +∞ — 0 .. +∞ 0 .. +∞ 0 .. +∞ 0 .. 11 3 .. +∞
E.C.D.T. ms — 0 500 450 500 1 200 700 2 700
% E.C.D.T. — 0% 66% 60% 33% 80% 23% 90%
Lead ms — 500 250 300 1 000 300 2 300 300

Case 2: Between 1 and 10 iterations
Successive running time SLA ranges

0 ms .. 500 ms 500 ms .. 750 ms 750 ms .. 1 500 ms 1 500 ms .. 3 000 ms
Variable Metrics success violation success violation success violation success violation
duration ms — 600 .. 7 820 600 .. 750 750 .. 7 820 750 .. 1 500 1 500 .. 7 820 1 500 .. 3 000 3 000 .. 7 820
cond(if) bool — 0 .. 1 1 0 .. 1 0 .. 1 0 0 0
iter(while) nat — 1 .. 10 — 1 .. 10 1 .. 10 1 .. 10 1 .. 10 3 .. 10

E.C.D.T. ms — 0 500 250 500 1 000 900 2 500
% E.C.D.T. — 0% 66% 33% 33% 66% 30% 83%
Lead ms — 500 250 500 1 000 500 2 100 500

Component running time assumptions
local op. account_svc usage_svc reuse_svc gen_svc conf_svc

Running time (ms) 0 ms .. 10 ms 500 ms .. 800 ms 200 ms .. 500 ms 100 ms .. 400 ms 200 ms .. 600 ms 100 ms .. 300 ms

E.C.D.T. earliest certain detection times: the earliest time at which a certain violation
or success can be detected.

% E.C.D.T. percentage of the total (maximum) execution time which elapsed up to the
E.C.D.T.

lead time between E.C.D.T. and the closest moment in which the orchestration can
finish (i.e., the shortest time span to react in the worst case).

The results show that the lowest limit of 500 ms could not be met under the initial
assumptions regarding execution times for atomic activities and external services. The
750 ms limit can be met, if the conditional evaluates to 1, meaning that the while
loop is avoided. The 1 500 ms limit can be met in both cases of the conditional, but
can be violated only for the case of taking the “else” branch. Finally, for the range
of running times between 1 500 ms and 3 000 ms, the prediction shows that, under the
given assumptions, the only possible situation for both compliance and violation is
taking the “else” branch, with the number of iterations in the range 0 .. 11 and 3 ..
+∞, respectively. Note that for the latter limit, between 0 and 2 iterations guarantees
compliance, and more than 11 iterations guarantees violation of the limit. An adaptation
mechanism can, use these predictions to prepare and trigger adaptation actions that may
prevent, minimize, or compensate for possible SLA violations ahead of time.

The earliest time at which a success or violation can be predicted depend on the
particular execution. Let us look at an example: in Table 1, Case 1, columns “750 ms
.. 1500 ms”, successes have been detected at 500 ms and SLA violations at 1200 ms.
The reason that successes have been detected before violations is that these correspond
to different executions: in the case of violation, the “else” branch (with the loop) has

74 D. Ivanović, M. Carro, and M. Hermenegildo

been taken, it is detected that there will be a violation after some iterations. On the
other hand, if the “then” branch is taken, certainty of success is immediately detected,
as there are no loops to be taken. With this interpretation in mind, the constraint-based
predictor is able to detect SLA violation with certainty up to between 300 and 500 ms
in advance, while SLA conformance can be detected as early as after 500 or 700 ms of
running time. In relative terms, SLA conformance has been detected in the experiments
when only between a 23% and a 66% of the maximum execution time has elapsed, and
SLA violations have been detected in some cases when only a 60% of the execution has
elapsed.

The middle part of Table 1 shows a hypothetical case where, based on input data
and computational cost functions, the predictor is able to infer that the actual number
of loop iterations, in case the “else” branch is taken, must fall between 1 and 10. The
results follow the same pattern as in the first case, but this time the predictor is able
to infer that the duration of the orchestration under the assumptions must fall between
600 and 7 820 ms. This inferred running time range for the orchestration can be used
by other parts of the runtime system (including predictors themselves) to update their
QoS metrics assumptions on the deployed components. Note that the guarantee of at
least one loop iteration increases the lead for the earliest certain detection of violations
to 500 ms.

The average net time for performing one running time limit compliance/ violation
prediction depicted in Table 1 (not counting the time for sending and receiving data
over the network), based on the average from 10 000 executions, was 0.574 ms on a
small end-user non-dedicated machine.3

5 Implementation Notes

We have tested the approach using a prototype implementation of the architecture from
Fig. 3, which includes the process engine, the QoS predictors, and the event bus, or-
ganized as a distributed and scalable system of components that communicate using
reliable messaging. The tests included deployments on Linux and Mac OS X 32 and 64
bit platforms.

In our running prototype, the QoS predictors are implemented in ECLiPS e Constraint
Logic Programming system, while the process engine (that executes orchestrations) is
implemented in Ciao Prolog [9]. Both Prolog dialects support a variety of constraint
logic programming techniques, but have, at the moment, slightly different orientation
and strong points. ECLiPS e provides very robust, industrial-scale constraint solvers
which can easily handle very complex problems involving thousands of constraints and
variables, while Ciao is a flexible multi-paradigm programming environment with so-
phisticated support for concurrency. Fortunately the fact that they are both Prolog-based
systems greatly facilitates interfacing and putting together the required architecture.

In our prototype, the language in Fig. 4 is used to define service orchestrations and
to maintain instance control state throughout execution, so that there is no additional

3 The tests were run on a 32-bit 2GHz Intel Core Duo notebook with 2GB of RAM, running
Mac OS X 10.6.7 and ECLiPS e version 6.0_167.

Constraint-Based Runtime Prediction of SLA Violations 75

overhead in communicating continuations to QoS predictors, other than message trans-
fer times. Also, any adaptation that changes the orchestration structure for a running
instance can be simply implemented by replacing one continuation with another.

The messaging subsystem is implemented using ZeroMQ [11], which provides fast
and reliable multi-part binary message exchange primitives on top of TCP networking
and IPC subsystems, including request-reply, push-pull and publish-subscribe patterns.
We have developed Prolog (Ciao and ECLiPS e) bindings to ZeroMQ with data (term)
serialization that provide transparent higher-level data exchange primitives.

6 Conclusions

We have devised and implemented a method which makes it possible to predict possible
situations of SLA conformance and violation, and to obtain information on the internal
parameters of the orchestration (branch conditions, loop iterations) that may occur in
these situations. The method is based on modeling QoS metrics of a service orches-
tration using constraints, based on assumptions on the behavior of the orchestration
components. That analysis can, in principle, be applied at each step in an orchestra-
tion based on the current continuation. This allows periodic or continuous updating of
the predicted bounds for QoS metrics for the orchestration and therefore a continu-
ous assessing of conformance to SLA, which can be useful for proactive adaptation and
self-healing. This approach can be combined with automatically inferred computational
cost functions for service orchestrations, which can express the bounds of internal pa-
rameters (such as loop iterations) as functions of input data given to the orchestration
instance, to provide a higher level of prediction precision. We have implemented the
method in a prototype and reported some efficiency results.

Our future work will concentrate on making the implementation of all elements of the
QoS prediction architecture laid out in this paper more complete and robust, including
the process engine, beyond the prototype stage. We also plan to add support for differ-
ent execution engines, targeting specifically those that have well-defined interfaces for
event-listening plugins or can be adapted accordingly (e.g. because the implementation
is open-source).

References

1. Apt, K.R.: Principles of Constraint Programming. Cambridge University Press (2003)
2. Apt, K.R., Wallace, M.G.: Constraint Logic Programming Using ECLIPSE. Cambridge Uni-

versity Press (2007)
3. Cardoso, J.: About the Data-Flow Complexity of Web Processes. In: 6th International Work-

shop on Business Process Modeling, Development, and Support: Business Processes and
Support Systems: Design for Flexibility, pp. 67–74 (2005)

4. Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of service for workflows
and web service processes. Web Semantics: Science, Services and Agents on the World Wide
Web 1(3), 281–308 (2004)

5. Cisco Systems. ECLIPSE User Manual (2006)
6. Dechter, R.: Constraint Processing. Morgan Kauffman Publishers (2003)

76 D. Ivanović, M. Carro, and M. Hermenegildo

7. Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl, K.: A journey to highly dy-
namic, self-adaptive service-based applications. Automated Software Engineering 15, 313–
341 (2008), doi:10.1007/s10515-008-0032-x

8. Dranidis, D., Metzger, A., Kourtesis, D.: Enabling Proactive Adaptation through Just-in-
Time Testing of Conversational Services. In: Di Nitto, E., Yahyapour, R. (eds.) ServiceWave
2010. LNCS, vol. 6481, pp. 63–75. Springer, Heidelberg (2010)

9. Hermenegildo, M.V., Bueno, F., Carro, M., López, P., Mera, E., Morales, J.F., Puebla, G.: An
Overview of Ciao and its Design Philosophy. Theory and Practice of Logic Programming
(2012), http://arxiv.org/abs/1102.5497

10. Hielscher, J., Kazhamiakin, R., Metzger, A., Pistore, M.: A framework for Proactive Self-
Adaptation of Service-Based Applications Based on Online Testing. In: Mähönen, P., Pohl,
K., Priol, T. (eds.) ServiceWave 2008. LNCS, vol. 5377, pp. 122–133. Springer, Heidelberg
(2008)

11. iMatix Corporation. 0MQ - The Reference Manual, version 2.1 (June 2011)
12. Ivanović, D., Carro, M., Hermenegildo, M.: An Initial Proposal for Data-Aware Resource

Analysis of Orchestrations with Applications to Predictive Monitoring. In: Dan, A., Gittler,
F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 414–424. Springer,
Heidelberg (2010)

13. Ivanović, D., Carro, M., Hermenegildo, M.: Towards Data-Aware QoS-Driven Adaptation
for Service Orchestrations. In: Proceedings of the 2010 IEEE International Conference on
Web Services (ICWS 2010), Miami, FL, USA, July 5-10. IEEE (2010)

14. Jordan, D., et al.: Web Services Business Process Execution Language Version 2.0. Technical
report, IBM, Microsoft, et al (2007)

15. Leitner, P., Wetzstein, B., Rosenberg, F., Michlmayr, A., Dustdar, S., Leymann, F.: Run-
time Prediction of Service Level Agreement Violations for Composite Services. In: Dan, A.,
Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 176–186.
Springer, Heidelberg (2010)

16. Object Management Group. Business Process Modeling Notation (BPMN), Version 1.2 (Jan-
uary 2009)

17. Reynolds, J.C.: The discoveries of continuations. LISP and Symbolic Computation Journal 6,
233–247 (1993)

18. Stein, S., Payne, T.R., Jennings, N.R.: Robust execution of service workflows using redun-
dancy and advance reservations. IEEE T. Services Computing 4(2), 125–139 (2011)

19. Tselentis, G., Dominigue, J., Galis, A., Gavras, A., Hausheer, D.: Towards the Future Inter-
net: A European Research Perspective. IOS Press, Amsterdam (2009)

20. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Language. In-
formation Systems 30(4), 245–275 (2005)

21. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service Flow
Language. In: The Role of Business Processes in Service Oriented Architectures. Dagstuhl
Seminar Proceedings, vol. 06291 (2006)

22. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow Pat-
terns. Distributed and Parallel Databases 14(1), 5–51 (2003)

23. Wetzstein, B., Leitner, P., Rosenberg, F., Brandic, I., Dustdar, S., Leymann, F.: Monitoring
and analyzing influential factors of business process performance. In: EDOC, pp. 141–150.
IEEE Computer Society (2009)

http://arxiv.org/abs/1102.5497

Optimizing Decisions in Web Services

Orchestrations

Ajay Kattepur1, Albert Benveniste1, and Claude Jard2

1 IRISA/INRIA, Campus Universitaire de Beaulieu, Rennes, France
2 ENS Cachan, IRISA, Université Européenne de Bretagne, Bruz, France

Abstract. Web services orchestrations conventionally employ exhaus-
tive comparison of runtime quality of service (QoS) metrics for decision
making. The ability to incorporate more complex mathematical pack-
ages are needed, especially in case of workflows for resource allocation
and queuing systems. By modeling such optimization routines as ser-
vice calls within orchestration specifications, techniques such as linear
programming can be conveniently invoked by non-specialist workflow
designers. Leveraging on previously developed QoS theory, we propose
the use of a high-level flexible query procedure for embedding optimiza-
tions in languages such as Orc. The Optima site provides an extension
to the sorting and pruning operations currently employed in Orc. Fur-
ther, the lack of an objective technique for consolidating QoS metrics is
a problem in identifying suitable cost functions. We employ the analyti-
cal hierarchy process (AHP) to generate a total ordering of QoS metrics
across various domains. With constructs for ensuring consistency over
subjective judgements, the AHP provides a suitable technique for pro-
ducing objective cost functions. Using the Dell Supply Chain example,
we demonstrate the feasibility of decision making through optimization
routines, specially when the control flow is QoS dependent.

Keywords: Web Services, QoS, Optimization, Orc, AHP.

1 Introduction

A composite web service is an application whose implementation calls other self-
contained atomic services. A composite web service orchestration specifies the
interaction, management and coordination between these atomic services. Such
a composite service can take decisions to invoke or pass parameters to atomic
services depending on returned data and quality of service (QoS) metrics. Tra-
ditional orchestrations make use of simple comparisons of returned values from
atomic services for decision making purposes. While such comparisons are plau-
sible in small orchestrations, involved operations such as multi-criteria decisions
from a directory of hundreds of distributed services would require optimizations
strategies. With QoS metrics modeled as random variables [1], the use of prob-
abilistic contracts for service level agreements (SLAs) [2] becomes mandatory.
Optimizing these random variables for decision making is a natural extension of
the probabilistic nature of both composition as well as contracts.

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 77–91, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

78 A. Kattepur, A. Benveniste, and C. Jard

As switching between technologies while developing workflows is detrimental,
integration of optimization techniques as part of the specifications of a service
orchestration or choreography is required. We show that optimization of QoS
metrics can be formulated within concurrent programming languages like Orc
[11]. Employing specialized sites that perform optimization routines, alternatives
to conventional sorting and searching techniques may be incorporated within
workflow specifications.

As the designers of such workflows are assumed to be non-specialists in op-
timization modeling, we propose techniques for formulating complex queries
through simple user judgements / constraints. This will relieve the dependency
on domain-specific and involved concepts such as queuing and process manage-
ment theory in order to generate realistic cost functions. Weighing parameters
effectively is done by employing the analytic hierarchy process (AHP) [4]. It
provides a simple approach for retaining consistency of subjective evaluations of
QoS metrics across different domains.

To prevent deadlock in an orchestration where there are intricate links be-
tween parameters, it is essential that optimal settings are employed. This is
demonstrated in the QoS dependent choreography of the Dell supply chain ex-
ample [9]. By modeling this choreography as a linear programming problem, we
demonstrate the efficacy of our technique to ensure contractual obligations with
shared resources. Due to the tractable nature of AHP, cost functions can be
generated to set suitable resupply batch sizes for varying demand rates. This
exemplifies clearly a situation where the control flow is dependent on optimal
setting of parameters.

The paper is organized as follows: Section 2 presents background material
required for understanding the rest of the paper. This includes optimization
models, Orc language for orchestrations, the analytic hierarchy process and QoS
aspects of web services. The methodology proposed in this paper is outlined in
Section 3 with emphasis on formulating optimizations in web services. Section
4 elucidates the Dell logistics example as an optimization of QoS metrics. Ex-
tending this notion to general orchestration problems, in Section 5, we formulate
a general site that provides such optimization routines in the Orc context. Re-
sults for optimization runs of both examples are presented in Section 6. This is
followed by related work and conclusions in Sections 7 and 8, respectively.

2 Fundamentals

2.1 Optimization Models

Optimization problems may be formulated as [6]:

min f0(a, x)
s.t. fi(a, x) ≤ 0, i = 1, . . . , m

(1)

where f0 is the objective function, fi are the set of constraint functions dependent
on the input vector x = (x1, x2, . . . , xN)T and model parameters

Optimizing Decisions in Web Services Orchestrations 79

a = (a1, a2, . . . , aM)T . This can be solved in a variety of linear, non-linear,
stochastic and exhaustive search techniques. Approximate bounds to reduce
stochastic uncertainty can also be used. This can lead to three categories of
minimization problems.

– Minimization of primary expected costs subject to secondary cost constraints.

min F0(a, x)
s.t. Fi(a, x) ≤ Fmax

i , i = 1, . . . , m
(2)

where F0(a, x) is the primary goal, Fi(a, x) are secondary constraints with
worst-case bounds represented by Fmax

i .
– Minimization of the cost function with positive weights k0, k1, . . . , km.

min
m∑

i=0

kiFi(a, x) (3)

– Minimization of the maximum weighted expected costs.

min max
0≤i≤m

kiFi(a, x) (4)

Such formulations of cost functions with constraints can be applied to a variety
of decisions within the web services framework.

2.2 QoS in Web Services

Available literature on industry standards in QoS [3] provide a family of QoS
metrics that are needed to specify SLAs. These can be subsumed into the fol-
lowing four general QoS observations 1:

1. δ ∈ R+ is the service latency. When represented as a distribution, this can
subsume other metrics such as availability and reliability of the service.

2. $ ∈ R+ is the per invocation service cost.
3. ζ ∈ Dζ is the output data quality. This can represent other metrics such as

data security level and non-repudiation of private data over a scale of values.
4. λ ∈ R+ is the inter-query interval, equivalent to considering the query rate

for a service. Performance of the service will depend on negotiations with
the amount of queries that can be made in a given time interval.

Along with QoS, the web service performs its task and returns some functional
data ρ ∈ Dρ as the output. The tuple of (Data value, QoS value) is used for the
decision process within orchestrations. The implementation of Orc allows such
typing to be specified for input and output parameters, which can be extended
to QoS typing for orchestrations.

1 Aspects such as scalability, interoperability and robustness are not dealt with as
they are specific to the supplier side operation (not necessarily part of SLAs).

80 A. Kattepur, A. Benveniste, and C. Jard

For comparing metrics with differing scales and units of measurement, a nor-
malization or scaling technique is needed. As developed in [5] [16], the normaliza-
tion of QoS values qi in a domain DQ can be performed using a scaling function,
prior to optimization. The scaling function S(qi) in eq. (5) ensures that the
range of QoS values falls within [0, 1] for equivalent comparison. Essentially, this
prevents larger scale values in domains (eg. latency) nullifying optimal selection
in smaller valued domains (eg. boolean valued availability).

S(qi) =
qi − qmin

qmax − qmin
(5)

where qmin and qmax are the minima and maxima of the (available) distribu-
tions of these QoS domains. A generic range of values for metrics such as data
quality or service invocation costs may be reduced to a comparable scales via this
method. An example of scaling measured values is shown in Table 1. The mea-
sured values are scaled to the range [0, 1] with the scaling invariant to changes
in measurement units of, for instance, the response time δ.

Table 1. Scaling QoS metrics across domains to the range [0,1]

Metric Measurement qi Scaled Value S(qi)

δ(hours) (0.017, 0.001, 0.0095, 0.01) (1, 0, 0.53125, 0.5625)
δ(seconds) (61.2, 3.6, 34.2, 36) (1, 0, 0.53125, 0.5625)
$(Euros) (9.5, 3.4, 6.8, 12) (0.7093, 0, 0.3953, 1)
ζ([1, 10]) (6, 1, 3, 8) (0.7143, 0, 0.2857, 1)

2.3 Analytic Hierarchy Process

Multiple dimensions in web services’ QoS are only partially ordered, with com-
parisons between domains not possible. In order to use optimization routines,
a total ordering of these domains is mandatory. To reconcile this, the analytic
hierarchy process (AHP) can be used. Introduced by [4], AHP can be used to
objectify subjective evaluations of multi-criteria decisions, which essentially de-
velops tradeoffs between domains. In order to briefly explain the AHP, we make
use of an example.

Consider the pairwise assignment of relative ranks for QoS metrics as defined
by a user. It is a matrix that defines the relative change between dependent QoS
metrics δ, $, ζ, λ and ρ. For simplicity, all parameters are classified as the same
hierarchical level with values assigned using the relative comparison shown in
Fig. 1. This in turn will produce a matrix W = (wij) as shown in eq. 6 with the
subjective pairwise comparison of criterion.

W =

⎛
⎜⎜⎜⎜⎝

δ $ ζ λ ρ

δ 1 1 5 3 5
$ 1 1 5 3 5
ζ 1/5 1/5 1 1 2
λ 1/3 1/3 1 1 3
ρ 1/5 1/5 1/2 1/3 1

⎞
⎟⎟⎟⎟⎠ (6)

Optimizing Decisions in Web Services Orchestrations 81

Fig. 1. Comparison Scale for AHP [4]

The principal eigenvector of the positive reciprocal matrix W provides the
relative rankings of the parameters. As the principal diagonal of the matrix
W consists of real values, the principal eigenvector (and corresponding highest
eigenvalue) are also real valued.

Theorem 1. Perron Frobenius Theorem: For a given positive matrix W,
the only positive vector υ and only positive constant c that satisfy Wυ = cυ, is
a vector υ that is a positive multiple of the principle eigenvector of W and the
only such c is the principal eigenvalue of W.

This eigenvector may be normalized to provide the priority vector for the QoS
metrics. This will generate a weighted cost function for minimization, which is
superior to cost function weights obtained by least squares [8]. For the example
above, the linear cost function after generating the normalized weight vector is
shown in eq. (7) with scaling of values done previously according to eq. (5).

Z = 0.3625δ + 0.3625$ + 0.0935ζ + 0.1237λ + 0.0579ρ (7)

A unique feature of the AHP is its ability to estimate consistency in the subjec-
tive evaluation of criteria.

Definition 1. A n × n positive reciprocal matrix W = (wij) is a Consis-
tent Matrix, if the highest eigenvalue cmax equals n. This is equivalent to
wij = υi/υj, where the eigenvector υ corresponds to eigenvalue cmax. Since
small changes in wij imply changes in cmax, the deviation from n is a deviation
from consistency given by (cmax − n)/(n − 1) which is called the consistency
index (CI).

This technique evaluates the perturbation in the highest eigenvalue due to changes
in subjective evaluation of metrics in W. The values of the consistency index are
used to generate a consistency ratio (CR), that is used to determine the consis-
tency of the comparison. The consistency ratio must be ≤ 0.1, indicating devia-
tions from subjective evaluations are less than an order of magnitude [4]. For the
example above, the highest eigenvalue has the value 5.122, producing a CI = 0.0280
and a CR = 0.0252, which is within the specified limits. Techniques outlined in [8]
provide steps and tools to improve consistency in the weight matrix.

82 A. Kattepur, A. Benveniste, and C. Jard

3 Methodology

The following steps are used to solve optimization problems in web services:

1. Scaling Inputs: Obtain the pair of QoS domains and vector of values
(DQ,q) required for evaluation of the orchestration. For each domain DQ,
scale the values q to the range [0, 1] as specified in eq. (5).

2. Consistent Judgements: Extract the comparative judgement matrix W =
(wij) from the user. From this, obtain the maximum eigenvalue cmax and
the corresponding normalized eigenvector υ. If this judgement matrix is not
consistent, examine the judgment for an entry wij for which wijυj/υi is the
largest, and see if this entry can reasonably be made smaller. Such a change
of wij also produces a new comparison matrix with a smaller eigenvalue,
resulting in a possibly consistent matrix [8]. This process may be performed
either manually or automatically through iterative perturbations of W until
consistency is achieved. Once a consistent matrix is obtained, the objective
function Z to be minimized with linear weights υ and (DQ,q) values may be
generated.

3. Constraints: The scaled optimization constraintsC in the form (DQ,�, KQ),
where DQ is a QoS domain, � is a specified partial order and KQ is the
threshold value (constant or distribution quantiles), may also be set by the
user.

4. Optimization: With a selected constraint satisfying solver with inputs
(Z,C), optimization is performed. If constraints

∑N
i=1 xi = 1, xi ∈ {0, 1}

for model variables x exists in C, it implies an integer programming prob-
lem (eg. selecting a single site). In the absence of such a constraint, the solver
employs a conventional linear programming approach (eg. finding an optimal
setting from a continuous distribution).

The only inputs required from the user are the judgement matrix and constraints
over QoS domains. This methodology is intended to enhance previous theory [7]
with optimization routines to compare returned QoS token values.

4 Formulating Optimization Problems

In this section, we investigate the Dell supply chain, a choreography of Dell Plant
and Supply orchestrations with a shared Revolver resource. This exemplifies
the optimization of setting inventory levels to ensure efficient control flow and
preventing contractual deviations.

In the Dell supply chain [9], QoS metrics are functional in nature, with slight
changes in optimal settings sending the supply chain to a dead state. The Dell
application is a system that processes orders from customers interacting with the
Dell webstore. According to [9], this consists of the following prominent entities:

– Dell Plant - Receives the orders from the Dell webstore and is responsible for
the assembly of the components. For this they interact with the Revolvers
to procure the required items.

Optimizing Decisions in Web Services Orchestrations 83

– Revolvers - Warehouses belonging to Dell which are stocked by the suppliers.
Though Dell owns the revolvers, the inventory is owned and managed by the
Suppliers to meet the demands of the Dell Plant.

– Suppliers - They produce the components that are sent to the revolvers at
Dell. Periodic polling of the Revolvers ensures estimates of inventory levels
and their decrements.

The interaction between the Dell Plant, Revolvers and the Suppliers may be
summarized in Fig. 2. The requests made by the plant for certain items will
be favorably replied to if the revolvers have enough stock. This stocking of the
revolvers is done independently by the suppliers. The suppliers periodically poll
(withdraw inventory levels) from the revolvers to estimate the stock level. In such
a case, a contract can be made on the levels of stock that must be maintained
in the revolver. The customer side agreement limits the throughput rate. The
supplier side agreement ensures constant refueling of inventory levels, which in
turn ensures that the delay time for the customer is minimized. Thus, it repre-
sents a choreography comprising two plant-side and supplier-side orchestrations
interacting via the revolver as a shared resource.

The critical aspect in the Dell choreography is efficient management of revolver
levels. As discussed in [9], for the efficient working of the supply chain, the
interaction between the Dell Plant and the Supply-side workflows should be
taken into account. This will involve optimizing critical QoS metrics listed in
Table 2. They are also presented informally in Fig. 2.

Table 2. QoS Metrics for the Dell Supply Chain

t Unit of time with t ∈ 1, 2, ...T hours
λt Number of queries per unit time that the

plant requests the revolver
δcust Waiting time for the plant

μt Stock level for an item in the revolver at time t
μc Critical stock levels of the item in the revolver
μmax Maximum stock level allowed in the revolver

ρ Inventory polling period of the supplier
β Size of the refueling batch from the supplier
δsup Delay period for refueling the revolver
υμc , ...υβ Normalized eigenvector from the consistent AHP matrix

For the plant-side behavior, the demand λt reduces the current revolver level
(μt = μt−1 − λt). Constant polling at a rate ρ ensures the re-fueling of revolver
inventory within a supply delay δsup. When the value of the revolver token
drops below a critical level μc, the supplier begins the process of refueling the
inventory. The refueling batch size β is governed by the maximal capacity of
the revolver μmax. Optimal setting of these parameters minimizes the customer
waiting time δcust. If the supplier does not refuel on time, the choreography sets

84 A. Kattepur, A. Benveniste, and C. Jard

Fig. 2. QoS interactions in the Dell supply chain

into deadlock with the plant waiting for (possible) restocking. A deadlock occurs
when a choreography reaches a state that (1) is not final and (2) can not be left
without violating the message ordering of the choreography.

Considering estimated distributions of customer demand and refueling delays,
effective settings for supplies may be set. Using AHP weights, the optimization
procedure is given as a linear programming problem (without any integer con-
straints). More classical logistics cost functions [10] can also be applied to similar
problems.

minimize Z = υμcμc + υμmaxμmax + υββ (8)

Subject to the following user-specified constraints:

0 ≤ μc ≤ μmax (9)

0 ≤ β ≤ μmax (10)

μmax − μc + (λt × δsup) = β (11)

0 ≤ μmax ≤ K × λt (12)

Constraints in eqs. (9) and (10) limit the revolver critical level μc and the supplier
batch size β to be less than the maximal revolver capacity μmax. The constraint
in eq. (11) essentially controls the revolver batch size, dependent on the critical
/ maximum level in the revolver and the plant query rate λt. Estimates of λt are
provided to the supplier during the polling period through measured decrements
in the revolver levels. The supplied batch β also incorporates the decrement in
inventory since the critical level was detected, and the delay in restocking δsup.
Finally, the constraint in eq. (12) prevents overstocking of items in the revolver
by limiting the capacity to be proportional to the demand. Optimal setting of
these parameters is tested by the constant demand for products λt which must be
delived while minimizing the customer delay δcust. Essentially, these constraints
ensure the revolver level does not fall to zero, which would mean rejection or
long delays in orders (deadlock in the choreography).

5 Optimization Routines in Orc

While the previous sections demonstrate the utility of optimization techniques
when applied to decisions in workflows, it is imperative to provide a convenient

Optimizing Decisions in Web Services Orchestrations 85

technique to embed such mathematical packages within orchestrations. Extend-
ing Orc [11] with a suitable interface will enable smooth integration of optimiza-
tion libraries for the utility of workflow designers. In this section, we provide a
high-level specification of optimizing QoS metrics within Orc.

Orc [11] serves as a simple yet powerful concurrent programming language to
describe web services orchestrations. The fundamental declaration used in the
Orc language is a site. The type of a site is itself treated like a service - it is
passed the types of its arguments, and responds with a return type for those
arguments. An Orc expression represents an execution and may call external
services to publish some number of values (possibly zero).

Orc has the following combinators that are used on various examples as seen
in [11]. The Parallel combinator X |Y , where X and Y are Orc expressions, runs
by executing X and Y concurrently; returns from X and Y are interleaved.
Whenever X or Y communicates with a service or publishes a value, X |Y does
so as well. The execution of the Sequential combinator X >t> Y starts by
executing X . Sequential operators may also be written compactly as X � Y .
Values published by copies of Y are published by the whole expression, but
the values published by X are not published by the whole expression; they are
consumed by the variable binding. If there is no response from either of the
sites, the expression does not terminate. The Pruning combinator, written X
<t< Y , allows us to block a computation waiting for a result, or terminate
a computation. The execution of X <t< Y starts by executing X and Y in
parallel. Whenever X publishes a value, that value is published by the entire
execution. When Y publishes its first value, that value is bound to t in X , with
the execution of Y immediately terminated. The Otherwise combinator, written
X ; Y has the following execution. First, X is executed. If X completes, and has
not published any values, then Y executes. If X did publish one or more values,
then Y is ignored. The publications of X ; Y are those of X if X publishes, or
those of Y otherwise.

Consider the following two Orc expressions - one of which chooses the fastest
responding service; another produces the lowest costing service value:

def minLatencySite() = s <s< (Site_1 |...| Site_N)

def minCostSite() = (Site_1,...,Site_N) >(c_1,...c_N)> minimum([c_1,...c_N])

Combining these expressions in Orc can currently be done with priorities, that
is, choosing a site with lower cost over one with lower latency, or vice versa. This
can be detrimental in typical situations involving more than one QoS metric.
Finding an optimal service that provides a “middle path” solution from various
domains can be beneficial. Such an expression in Orc with weights w:

def optimalSite() = (Site_1,...Site_N) >((d_1,c_1),...,(d_N,c_N))>

minimum([w*d_1 + (1-w)*c_1 ,..., w*d_N + (1-w)*c_N])

A drawback of the above formulation is that exhaustive comparison of metrics
are still used. In order to overcome this, the selection of services can be formu-
lated as an optimization problem. Such a formulation is useful in a variety of

86 A. Kattepur, A. Benveniste, and C. Jard

orchestrations where the control flow is dependent on optimal resolution of com-
petition between services. A point to note here is that the fastest service cannot
be given priority as the orchestration waits for responses from all services (until
timeout).

In [7], the “best” operator provides a general function for comparison of a
variety of metrics. We propose an extension of this to satisfy more complex
queries, when “enumerate and evaluate” is both ineffective and slow. Moreover,
there are no standard sets of QoS parameters that are declared in general for
all orchestrations - which draws the need for a framework for totally ordered
metrics.

5.1 QOrc: Upgrading Orc for QoS Management

A proposal is making use of a QoS enhanced orchestration declaration called
QOrc. Every invoked service responds with not only the desired output data but
also with a set of QoS values. So, selection of a service can entail complex queries
dependent on a variety of parameters for optimization. Consider a site Optima

that may be invoked during an orchestration run. This site has input tuple (QoS,

AHPWeight, Constraint, Routine) where QoS is the set of QoS domains with a list
of corresponding values, AHPWeight is a set of (normalized) weights dependent on
AHP criterion, Constraint are the (normalized) constraint functions and Routine

is the optimization protocol to be employed. The user can specify the routine
to be either binary integer or linear programming depending on the problem. A
typical implementation in Orc is:

type Latency = Number

type Cost = Number

val l = Buffer()

val c = Buffer()

val QoS = ((Latency,l), (Cost,c))

val AHPWeight = (0.3,0.7)

val Constraint = ((Latency,(<),0.5), (Cost,(<),0.8))

val Routine = ’’binary integer’’

For example, the following orchestration describes optimal selection from three
generic services, while using the Optima site.

(Site1(), Site2(), Site3()) >((l1,c1), (l2,c2), (l3,c3))>

Optima(((Latency,[l1,l2,l3]), (Cost,[c1,c2,c3])), (0.3,0.7),

((Latency,(<),0.5), (Cost,(<),0.8)), ’’binary integer’’)

A library of optimization routines available as services allow complex decision
making in orchestrations, even to non-specialized users of such tools. As de-
scribed in the COIN-OR (COmputational INfrastructure for Operations Re-
search) project [12] [13], a host of solvers and APIs are provided for integrating
optimization. A variety of input formats such as AMPL (A Modeling Language

Optimizing Decisions in Web Services Orchestrations 87

for Mathematical Programming), MPS (Mathematical Programming System)
and GAMS (General Algebraic Modeling System) may be used to specify the
problems.

5.2 Interfacing QOrc to Optimization Services

We use the example of the LP file format used for the open-source lpsolve2 solver
to demonstrate the compatibility of an input from Orc. The input syntax of the
LP format uses an Objective Function with associated Constraints and variable
Declarations. With the inputs provided from the Orc Optima site, the optimiza-
tion problem can be conveniently formulated to the binary integer problem.
Formulation of linear or more complex quadratic problems can follow this pro-
cedure to conceal intricacies of mathematical packages from non-specialist users.
The transformation of these inputs, through an interface, into a LP optimization
routine is represented below:

– Generate variables x1, x2 ... xN, where N equals the number of participat-
ing services. These are the variables that will be the valued as 1 or 0 during
optimization and represent the selection / rejection of a particular SiteN().

– The AHPWeight values (w1, w2), and corresponding QoS values [l1,...,lN],

[c1,...,cN] are combined with the variables to generate a linearly weighted
cost function (w1 l1 + w2 c1)x1 +...+ (w1 lN + w2 cN)xN.

– The Constraint values provide the specified domains, partial orders and cor-
responding thresholds (K1, K2), which are transformed into (l1 x1 +...+ lN

xN <= K1; c1 x1 +... + cN xN <= K2).
– As the Routine ”binary integer” is set, values x1, x2,..., xN are further

constrained to be binary valued. A further constraint automatically specified
is the x1 + x2 +...+ xN = 1, restricting only a single site is selected by the
optimization procedure.

The results of such a transformation produces a LP format of the problem, that
can be solved by the lpsolve optimization solver. Due to the elegant nature of
Orc, this is equivalent to calling another (possibly external) Site with input
Optima format and output LP format.

/* Objective function */

min: (0.3 l1 + 0.7 c1) x1 + (0.3 l2 + 0.7 c2) x2 + (0.3 l3 + 0.7 c3) x3;

/* Variable bounds */

l1 x1 + l2 x2 + l3 x3 <= 0.5;

c1 x1 + c2 x2 + c3 x3 <= 0.8;

x1 + x2 + x3 = 1;

bin x1, x2, x3;

In the current stage of implementation calculation of normalized AHP weight
vector is be performed using MATLAB. The optimization of QoS values gen-
erated from distribution fitting of actual web services’ readings is also done

2 http://lpsolve.sourceforge.net/5.5/

88 A. Kattepur, A. Benveniste, and C. Jard

through MATLAB routines. This can be enhanced in future with direct calls
to optimization packages (local or external) from within Orc as described. This
would prevent switching between technologies while developing workflows in Orc
and associated management of QoS dependent decisions.

6 Optimal Decision Results

The results of the optimization procedure are described in this section. Rather
than concentrating on optimization aspects (primal-dual feasibility, relative er-
ror, number of iterations, etc.), we focus on the implications of using optimization
as a tool in orchestrations.

The AHP weight matrix shown in Table 3 is used for the optimization of the
problem described in Section 4 using the linprog function in MATLAB. These
are the judgement criteria that can be fixed by the user / service orchestrator
as the inputs to the optimization solver. The polling period ρ is set to a con-
stant of 1 hour to limit model parameters. By setting the customer demand and

Table 3. Parameters for Dell supply chain optimization

wμc wμmax wβ Normalized Vector υ

wμc 1 1/3 1/5 0.1047
wμmax 3 1 1/3 0.2583

wβ 5 3 1 0.6370

cmax = 3.0385, CI = 0.0193, CR = 0.0370

supplier delay distributions, the optimization produces the distributions of the
refuel batch size, critical and maximum stock levels as shown in Fig. 3. These
settings, when applied to the Dell system provides the system performance as
shown in Fig. 4. The cumulative distribution of the revolver inventory remains
stochastically above the critical distribution for 10000 runs, being refueled peri-
odically by the supplier. As a consequence, the revolver stock level μt does not
drop to zero throughout the simulation period. This demonstrates that the op-
timization formulation through AHP is robust to changes in inputs of demand
and delay distributions. Though scaling as in eq. (5) has been employed, the
normalized values are omitted from figures (to demonstrate realistic outputs).

As further seen in one particular setting of the Dell example in Fig. 5, the
linear programming method converges within a few iterations to the optimal
value. This is true for well formulated linear programming problems with optimal
outputs produced (relative errors of the order of ≤ 10−6) for most input settings.

Parameters for optimal evaluations such as relative error, maximum number
of iterations and so on can be set conveniently with most generic optimization
solvers. Such a precise setting of parameters are needed for orchestrations like
the Dell supply chain, to prevent unwarranted delay in production and supply
of parts (choreography deadlock). This example highlights the crucial use of
optimization and associated packages for managing QoS in complex workflows.

Optimizing Decisions in Web Services Orchestrations 89

5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

Customer Demand λ
t
 (items / hour)

F
re

qu
en

cy

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

Batch Size β (items)

F
re

qu
en

cy
0 10 20 30 40 50 60 70 80

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Supply Refuel Delay δ
sup

 (hours)

F
re

qu
en

cy

0 50 100 150 200 250 300
0

200

400

600

800

1000

1200

1400

Number of items

F
re

qe
nc

y

Critical Revolver Level μ
c

Maximum Revolver Level μ
max

Fig. 3. Optimal setting of parameters in the Dell Supply Chain

0 50 100 150 200 250 300 350 400
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of Items Procured

C
um

ul
at

iv
e

F
re

qu
en

cy

Revolver Level μ
t

Maximum Revolver Level μ
max

Critical Revolver Level μ
c

Fig. 4. Distributions of the inventory levels in the Dell system

Fig. 5. Optimization output for a single setting of the Dell example in MATLAB

7 Related Work

Analysis of QoS in web services orchestrations has received considerable atten-
tion. In [1], Hwang et al. use QoS parameters as random variables for composi-
tion. Rosario et al. [2] provide a framework for probabilistic contracts modeling
QoS parameters as random variables. Instead of using fixed hard bound values
for parameters such as response time, the authors proposed a soft contract mon-
itoring approach to model the QoS bounds. This is further developed with a

90 A. Kattepur, A. Benveniste, and C. Jard

theory for QoS modeling within the Orc framework in [7]. We extend the “best”
operator from this theory to accommodate alternatives to exhaustive search.

Though there are many techniques available for optimizing functions [6] rou-
tines needed to incorporate them into orchestrations is still a developing area.
In the paper by Alrifai and Risse [14] the use of mixed integer programming
is proposed to find the optimal decomposition of global QoS constraints into
local constraints. Optimal QoS compositions make use of genetic programming
in Canfora et al. [15] and linear programming in Zeng et al. [16]. The use of
a reputation guided selection and feedback dependent policy for web services
is outlined in [5]. In [17], the optimization of dynamic service compositions are
modeled as a multidimension-multichoice knapsack problem (MMKP). MMKP
of medium sizes can be solved by most commercial integer-linear programming
solvers, as employed in this paper. A framework for specifying optimizations
within Orc workflows would aid in deploying real-world applications. This can
then be combined with a host of optimization solvers [12] [13] applied to most
QoS dependent decisions in service orchestrations.

In this paper, we extend the concepts of optimizing cost function defined via
AHP to complex queries in workflows. Extending such a framework to orches-
trations can provide more complex queries to be incorporated with flexibility
in comparing domains. The Dell optimization example from [9] provide realistic
case studies within the web service framework where optimal QoS values affect
functioning of the orchestration.

Analytical hierarchy process developed by Saaty [4] has been shown to be
applied to diverse fields including manufacturing, logistics, finance and manage-
ment. Work by Ho [18] reviews the combination of AHP to mathematical models
including linear programming, integer linear programming, mixed integer linear
programming, and goal programming. An application of AHP for automated
negotiation of SLAs are studied in [19]. In [20], another multi-criteria decision
making approach (PROMETHEE) is used to extend the decision making for
exhaustive comparison of web services’ QoS.

8 Conclusion

With increasing need for decision making capabilities in services orchestrations,
the use of mathematical packages like optimization should be employed for lever-
aging QoS dependent choices. Embedding optimization routines as part of or-
chestration specifying languages like Orc provides the capability to use these
tools for runtime decision making in a variety of workflows. A simple extension
of user defined criterion and constraints is proposed to specify such optimization
problems for non-specialist workflow designers. By applying the AHP, we show
that a consistent minimizing cost function can be developed for total ordering
QoS metrics. Demonstrating this methodology for the Dell supply chain example,
it is shown to be effective in solving realistic problems in resource allocation and
logistics. Such techniques are required to estimate optimal decisions on runtime,
dependent on variations in associated QoS parameters.

Optimizing Decisions in Web Services Orchestrations 91

References

1. Hwang, S.Y., Wang, H., Tang, J., Srivastava, J.: A probabilistic approach to model-
ing and estimating the QoS of web-services-based workflows. Elsevier Information
Sciences 177, 5484–5503 (2007)

2. Rosario, S., Benveniste, A., Haar, S., Jard, C.: Probabilistic QoS and Soft Con-
tracts for Transaction-Based Web Services Orchestrations. IEEE Trans. on Services
Computing 1(4), 187–200 (2008)

3. W3c, QoS for Web Services: Requirements and Possible Approaches. W3C Working
Group Note (November 2003)

4. Saaty, T.L.: How to make a decision: The analytic hierarchy process. European J.
of Operational Research 48(1), 9–26 (1990)

5. Limam, N., Boutaba, R.: Assessing Software Service Quality and Trustworthiness
at Selection Time. IEEE Trans. on Software Engineering 36(4), 559–574 (2010)

6. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Series in
Operational Research (2006)

7. Rosario, S., Benveniste, A., Jard, C.: A Theory of QoS for Web Service Orchestra-
tions. HAL INRIA Research Report (2009)

8. Saaty, T.L.: Decision-making with the AHP: Why is the principal eigenvector nec-
essary. Elsevier European J. of Operational Research 145, 85–91 (2003)

9. Kapunscinski, R., Zhang, R.Q., Carbonneau, P., Moore, R., Reeves, B.: Inventory
Decisions in Dell’s Supply Chain. Interfaces 34(3), 191–205 (2004)

10. Rardin, R.L.: Optimization in Operations Research. Prentice Hall (1998)
11. Misra, J., Cook, W.R.: Computation Orchestration: A Basis for Wide-area Com-

puting. J. of Software and Systems Modeling 6(1), 83–110 (2007)
12. Fourer, R., Ma, J., Martin, K.: Optimization Services: A Framework for Distributed

Optimization. COIN-OR (2008)
13. Fourer, R., Goux, J.: Optimization as an Internet Resource. Interfaces 31(2), 130–

150 (2001)
14. Alrifai, M., Risse, T.: Combining Global Optimization with Local Selection for

Efficient QoS-aware Service Composition. In: Intl. World Wide Web Conf., Spain
(2009)

15. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for QoS-
aware service composition based on genetic algorithms. In: Conf. on Genetic and
Evolutionary Computation, USA, pp. 1069–1075 (2005)

16. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.:
QoS-aware middleware for Web services composition. IEEE Trans. on Software
Engineering 30(5), 311–327 (2004)

17. Yu, T., Zhang, Y., Lin, K.: Efficient Algorithms for Web Services Selection with
End-to-End QoS Constraints. ACM Trans. on the Web 1(1) (2007)

18. Ho, W.: Integrated analytic hierarchy process and its applications A literature
review. European J. of Operational Research 186(1), 211–228 (2008)

19. Cappiello, C., Comuzzi, M., Plebani, P.: On Automated Generation of Web Service
Level Agreements. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007
and WES 2007. LNCS, vol. 4495, pp. 264–278. Springer, Heidelberg (2007)

20. Seo, Y.-J., Jeong, H.-Y., Song, Y.-J.: Best Web Service Selection Based on the
Decision Making Between QoS Criteria of Service. In: Yang, L.T., Zhou, X.-s.,
Zhao, W., Wu, Z., Zhu, Y., Lin, M. (eds.) ICESS 2005. LNCS, vol. 3820, pp. 408–
419. Springer, Heidelberg (2005)

Decidability Results for Choreography Realization

Niels Lohmann and Karsten Wolf

Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
����������	
��� �
������������������������

Abstract. A service choreography defines a set of permitted sequences of mes-
sage events as a specification for the interaction of services. Realizability is a
fundamental sanity check for choreographies comparable to the notion of sound-
ness for workflows.

We study several notions of realizability: partial, distributed, and complete
realizability. They establish increasingly strict conditions on realizing services.
We investigate decidability issues under the synchronous and asynchronous com-
munication models. For partial realizability, we show undecidability whereas the
other two problems are decidable with reasonable complexity.

1 Introduction

A choreography describes the interaction of services. In the literature on services, this
term has been used for representing the behavior of a system composed of services
(“interconnected models”) or for the restriction of that behavior to the communication
events (“interaction model”). In this paper, we follow the second interpretation. To be
more precise, a choreography is typically understood as a specification of interaction
that can be used as a contract between organizations. This specification is later com-
pared to those interactions that implement the specification. If the implementation pro-
duces those interactions which are specified in the choreography, this implementation
realizes the choreography. Consequently, the question of realizability is a fundamental
sanity property for choreographies.

The realizability problem has several dimensions. The first dimension is concerned
with the notation in which the choreography is given. Several languages have been
proposed for choreography description, including WS-CDL [8], Let’s Dance [20], UML
collaboration diagrams [3], and BPMN 2.0 [14]. They all have in common that they
permit the specification of a regular set of sequences of message events. For covering
all these languages, we abstract from the syntactic sugar of these languages and assume
a choreography to be given in the shape of a finite automaton.

The second dimension for the realizability problem is the communication model
assumed. In this paper, we consider synchronous as well as asynchronous communi-
cation. In the asynchronous case, we do not assume that messages arrive in the same
order in which they have been sent. In the spectrum of reasonable communication mod-
els (cf. [10] for a survey), we thus consider the models with the tightest, respectively
loosest coupling between sender and receiver of a message. We do not consider FIFO
based models.

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 92–107, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

Decidability Results for Choreography Realization 93

P1 P2
x

y
(a) collaboration

!x

P1

?y ?x

P2

!y

(b) partial realization of C1 (conversation !x!y?x?y is not realized)

?x

P2

!x

P1

!y

P2

?y

P1
(c) distributed realization of C2 (two tuples of peers)

x

y
P2

x

y
P1

(d) complete realization of C3

Fig. 1. Collaboration (a) and peer implementations for the partially realizable choreography C1 �

�!x!y?x?y� !x?x!y?y� (b), the distributedly realizable choreography C2 � �!x?x� !y?y� (c), and the
completely realizable choreography C3 � �x� y� (d)

In the third dimension of the realizability problem, we need to determine what it
exactly means for an implementation to conform to a choreography. Following earlier
considerations [12], we study three concepts: partial, distributed, and complete realiza-
tion. In a partial realization, the implementation produces some, but not necessarily
all sequences of message events specified in the choreography, cf. Fig. 1(b). Here, the
choreography is seen as a space of opportunities which need not be exhausted by the
implementation. Distributed choreography follows the same intention, but assures that
the choreography does not contain junk sequences which cannot be contained in any
realization. Hence, a choreography is distributedly realizable if there is a (possibly infi-
nite) family of implementations such that each specified sequence of the choreography
is realized in at least one of them, cf. Fig. 1(c). Complete realizability, in turn, requires
that all sequences specified in the choreography can be produced in a single implemen-
tation, cf. Fig. 1(d). The three concepts form a hierarchy; that is, complete realizability
implies distributed, and distributed implies partial realizability.

Contribution. We show that, for both considered communication models, partial realiz-
ability is undecidable whereas distributed and complete realizability are decidable. Our
undecidability results depend on a reduction of the famous undecidable Post correspon-
dence problem (PCP). The decision procedures for distributed and complete realizability
depend on standard language theoretic constructions such as projection, checking lan-
guage equivalence, and minimization of automata. Thus, despite exponential worst case
complexity, we may assume mature algorithms with reasonable run times.

Organization. After giving the formal definitions of our concepts (Sect. 2), we study
first partial (Sect. 3), then distributed (Sect. 4), and finally complete realizability (Sect. 5).
In each of the sections, we first present our results for synchronous communication in
full detail. Then, for space reasons, we just briefly discuss how these arguments need to
be modified in the asynchronous case. In Sect. 6 we discuss related work before Sect.7
concludes the paper and lists open problems.

94 N. Lohmann and K. Wolf

2 Basic Definitions

2.1 Interconnected Models and Interaction Models

Throughout this paper, fix a finite set of message channels M that is partitioned into
asynchronous message channels MA and synchronous message channels MS . From M,
derive a set of message events E :� !E � ?E � MS , consisting of asynchronous send
events !E :� �!x � x � MA�, asynchronous receive events ?E :� �?x � x � MA�, and
synchronization events. Furthermore, we distinguish a non-communicating event � � E.
For an event x � E, define channel(x) � a if x � a, x � ?a, or x � !a.

Definition 1 (Peer, collaboration). A peer P � [I�O] consists of a set of input message
channels I � M and a set of output message channels O � M, I�O � �. A collaboration
is a set �[I1�O1]� � � � � [In�On]� of peers such that Ii � I j � � and Oi �O j � � for all i � j,
and

�n
i�1 Ii �

�n
i�1 Oi.

A peer and a collaboration (cf. Fig. 1(a)) can be seen as a syntactic signature of a
service and a composition, respectively. The behavior itself (i.e., the order in which
messages are exchanged and when a peer terminates) is modeled by peer automata. A
peer automaton is a state machine whose transitions are labeled by message events or �.

Definition 2 (Peer automaton). A peer automaton A � [Q� Æ� q0� F�] is a tuple such
that Q is a set of states, Æ � Q
 (EI �EO ����)
Q is a transition relation, q0 � Q is an
initial state, F � Q is a set of final states, and 	 � �[I1�O1]� � � � � [In�On]� is a nonempty
set of peers. Thereby, EI :� �?x � x � MA �

�n
i�1 Ii� � (MS �

�n
i�1 Ii) are the input events

of A and EO :� �!x � x � MA �
�n

i�1 Oi� � (MS �
�n

i�1 Oi) are output events of A.
A implements the peers 	, and for [q� x� q�] � Æ, we also write q

x
�� q�. A is called a

single-peer automaton, if �	� � 1. A is called a multi-peer automaton, if �	� � 1 and 	
is a collaboration. A is called �-free if q

x
�� q� implies x � � for all q� q� � Q. A is called

deterministic if A is �-free and q
x
�� q� and q

x
�� q�� imply q�

� q��. A is called finite if
the number of states reachable from q0 is finite. An accepting run of A is a sequence of
events x1 xm such that q0

x1
��

xm
��� q f with q f � F.

The interplay of peers is modeled by their composition. In case of asynchronous commu-
nication, pending messages are represented by a multiset. Denote the set of all multisets
over MA with Bags(MA), the empty multiset with [], and the multiset containing only
one instance of x � MA with [x]. Addition of multisets is defined pointwise.

Definition 3 (Composition of single-peer automata). Let A1� � � � � An be finite single-
peer automata (Ai � [Qi� Æi� q0i � Fi� �Pi�] for i � 1� � � � � n) such that their peers form
a collaboration. Define the composition A1 � � An as the multi-peer automaton
[Q� Æ� q0� F� �P1� � � � � Pn�] with Q :� Q1

 Qn
 Bags(MA), q0 :� [q01 � � � � � q0n � []],
F :� F1

 Fn
 �[]�, and, for all i � j and B � Bags(MA) the transition relation Æ

contains exactly the following elements:

– [q1� � � � � qi� � � � � qn� B]
�

�� [q1� � � � � q�
i � � � � � qn� B], if and only if

[qi� �� q�
i] � Æi (internal move by Ai),

Decidability Results for Choreography Realization 95

– [q1� � � � � qi� � � � � qn� B]
!x
�� [q1� � � � � q�

i � � � � � qn� B � [x]], if and only if
x � MA and [qi� !x� q�

i] � Æi (asynchronous send by Ai),

– [q1� � � � � qi� � � � � qn� B � [x]]
?x
�� [q1� � � � � q�

i � � � � � qn� B], if and only if
x � MA and [qi� ?x� q�

i] � Æi (asynchronous receive by Ai), and

– [q1� � � � � qi� � � � � q j� � � � � qn� B]
x
�� [q1� � � � � q�

i � � � � � q
�
j� � � � � qn� B], if and only if

x � MS , [qi� x� q�
i] � Æi, and [q j� x� q�

j] � Æ j (synchronization between Ai and A j).

The composition of two finite service automata may have an infinite number of states,
because we consider arbitrary multisets of asynchronous messages. In the remainder,
we only consider finite compositions.

2.2 Languages and Traces

The results in the next sections heavily rely on concepts of regular languages and traces.

Definition 4 (Automaton versus language). Let A � [Q� Æ� q0� F�] be a finite peer
automaton. For an accepting run �, define the event sequence of � as ��E (i.e., � without
�-steps). The language of A, denoted�(A), is the set of the event sequences of all accept-
ing runs of A. The other way round, if 	 is a set of peers and L is a regular language
over the alphabet

�
[I�O]�� I � O then �(L) is the minimal (regarding size of Q) finite,

deterministic, and �-free peer-automaton that implements 	 and has �(�(L)) � L.

Formal languages theory asserts that, for every nonempty regular language L, an au-
tomaton �(L) exists and is unique up to isomorphism. Throughout this paper, we only
consider regular languages and choreographies. This accords to many industrial and
academic choreography specification languages.

Definition 5 (Choreography). Let 	 � �[I1�O1]� � � � � [In�On]� be a collaboration. A
conversation of 	 is a word over the events of 	. A choreography for 	 is a nonempty
regular set of conversations of 	.

The individual realizability notions di�er in the amount of conversations which must
be realized by the peers. They all have in common that no new conversation must be
introduced. Hence, the projected peers need to be coordinated at design time such that
they do not produce unspecified conversations. The example choreographies in Fig. 1
show that this coordination can already be impossible even if two peers share message
channels. To characterize possible and impossible coordination, we first introduce dis-
tant message events. We call two message events distant if there exists no peer which
can observe both, for instance !x and !y in Fig. 1(b):

Definition 6 (Distant message events). Let 	 be a collaboration. Two message events
a� b � E are distant if and only if there exist no peer [I�O] � 	 such that
�channel(a)� channel(b)� � (I � O).

Several results in this article shall depend on the observation that no composition of peer
automata is able to enforce any order on concurrently activated distant events. That is,
if distant events subsequently occur in one order, they can also occur in the reverse

96 N. Lohmann and K. Wolf

order. An exception are related asynchronous send and receive events. They are distant
according to our definition but the send event always precedes the corresponding receive
event as long as no other message of this kind is pending. The following definition
formalizes this observation. Whether there are pending asynchronous message, can be
determined by a simple counting on the prefix of the sequence.

Definition 7 (Message counting, trace). For x � MA and an event sequence w, define
x̂(w) by the following induction scheme:

Base: For the empty sequence �, let x̂(�) � 0.
Step: Let x̂(wa) � x̂(w) � 1, if a � !x, x̂(wa) � x̂(w) � 1, if a � ?x, x̂(wa) � x̂(w), for

all other events a.

Let 	 be a collaboration. For a word w over the alphabet E, define the trace of w, �w��,
by the following induction scheme:

Base: Let w � �w��.
Step: For all distant events a� b such that there is no x � M with a � !x and b � ?x,

w1abw2 � �w�� implies w1baw2 � �w�� and, if x̂(w1) � 0, w1!x?xw2 � �w�� implies
w1?x!xw2 � �w��.

If 	 is clear from the context,we simply write �w� instead of �w��.

This concept is very similar to local traces [11]. If Ma � �, it coincides with
Mazurkiewicz traces [13] which have been intensely investigated [5]. By our definition
of composition, the message count functions x̂ will always return 0 for event sequences
of terminating runs and values greater than or equal to 0 for prefixes of terminating
runs.

Proposition 1 (Notation for languages). Let L1 and L2 be regular languages. Then
(1) the concatenation of L1 and L2, L1L2, (2) the complement of L1, L1, (3) the union of
L1 and L2, L1 � L2, (4) the di�erence of L1 and L2, L1 � L2, (5) iteration�Kleene star, L�

1,
(6) nonempty iteration, L�1 � L1L�

1, (7) projection to the letters appearing in the events
of 	, L1��, and (8) the shu�e product of L1 and L2, L1 �� L2, are regular.

3 Partial Realizability

Definition 8 (Partial realizability). Let C be a choreography for a collaboration
�P1� � � � � Pn�. The finite single-peer automata A1� � � � � An partially realize C if, for all i,
Ai implements �Pi� and � � �(A1 � � An) � C.

Example. The choreographyC1 in Fig. 1 is only partially realizable (e.g., by the peer au-
tomata depicted in Fig. 1(b)), because the conversation !x!y?x?y cannot be implemented
by peers without also producing the unspecified conversations !y!x?x?y or !y!x?y?x.
Only the conversation !x?x!y?y is realized.

Decidability Results for Choreography Realization 97

3.1 The Synchronous Case

In this subsection, we assume MA � �. We shall show that partial decidability is unde-
cidable for n � 4 and trivial for n � 3. We start with some simple observations about
partial realizability in presence of distant events.

Proposition 2. Let A1� � � � � An be finite single-peer automata whose collection of peers
forms a collaboration. Then for all sequences w over E, w � �(A1 � � An) implies
�w� � �(A1 � � An).

Proof. Follows directly from the definition of composition and distant events. ��

That is, realization cannot be finer than the level of granularity of traces. The other
way round, we can realize a single conversation w provided that the choreography con-
tains its whole trace �w�. This can be done by letting each peer automaton execute, in
sequence, those letters of w which occur in its set of peers. Formally:

Proposition 3. Let w be a sequence over E. Then �
��n

i�1 �(�w���i)
�
� �w�.

Proof. Follows directly from the definition of composition and distant events. ��

Joining these two observations, we obtain a characterization of partial realizability that
we shall use throughout the remainder of this section.

Lemma 1. A choreography C for a collaboration 	 is partially realizable if and only
if it contains a conversation w with �w� � C.

Proof. Implication: Assume C is partially realizable. Then exists at least one conversa-
tion w that is realized by peers and Proposition 2 states that �w� � C.
Replication: Assume there exists a conversation w with �w� � C. Then Proposition 3
states that the single-peer automata �(�w���1)� � � � ��(�w���n) realize �w� and, as � �

�w� � C, also partially C. ��

We are now ready to consider the case of at most three peers.

Theorem 1. Let C be a choreography for a collaboration with at most three peers.
Then C is partially realizable if and only if C � �.

Proof. Take an arbitrary conversation w in C and apply the construction of Prop. 3.
Observe further that there cannot be distant events, because each event is shared by two
peers. This means that the realized language is �w� which is clearly a nonempty subset
of C. ��

For the case of four or more peers, we show undecidability.

Theorem 2. Partial realizability is undecidable for choreographies that involve at least
four peers.

Undecidability is shown by reduction of the famous Post correspondence problem using
a proof pattern that is inspired by a proof in [15].

98 N. Lohmann and K. Wolf

Definition 9 (Post correspondence problem (PCP)). A Post system over alphabet X is
a finite set P � �[u1� v1]� � � � � [uk� vk]� of ordered pairs of words ui� vi � X�. A candidate
is a nonempty finite sequence i1 in of indices i j � �1� � � � � k�. Candidate i1 in is a
solution of Post system P if ui1 uin � vi1 vin . The Post correspondence problem is
to decide for a given Post system P whether it has a solution.

In other words, the question is whether we can arrange the pairs (in arbitrary copies)
such that the concatenation of the left elements yields the same sequence as the concate-
nation of the right elements. Undecidability of PCP is a classical result in the theory of
computable functions.

In the sequel, we show that decidability of partial realizability would imply decidabil-
ity of PCP. Consequently, we start with a Post system P and construct a choreography
C for a collaboration such that P has a solution if and only if C is partially realizable;
that is, C includes �w� for at least one conversation w � C.

Message channels. Let X be the alphabet used in P and assume that X� :� �x� � x � X�
is another, disjoint alphabet of same size. For a sequence x1 xm in X let (x1 xm)� �
x�1 x�m. Let k be the number of pairs in P and assume further, without loss of generality,
that none of X and X� contain elements from �1� � � � � k�. Set MS � X � X� � �1� � � � � k�
and MA � �.

Collaboration. We translate P into a collaboration with four peers P1 � [I1�O1]� � � � �
P4 � [I4�O4]. We set I1 � O2 � X��1� � � � � k�, I3 � O4 � X�, and O1 � I2 � O3 � I4 � �.
This means that two messages are distant if and only if one of them is in X � �1� � � � � k�
and the other is in X�.

Encoding of candidates. Consider the following encoding of an arbitrary candidate
i1 in of P: w(i1 in) � i1ui1 v�i1 inuin v�in . That is, we have a sequence of blocks
where each block consists of a pair number, the left side of the pair, and the primed
version of the right side of the pair. If i1 in is a solution, the projection of w(i1 in)
to X yields the same sequence as its projection to X� (up to the “priming” of the letters
in X�). Letters in X do not commute, so the projection to X is the same for all members
of the trace �w(i1 � � � in)�. The same is true for the projection to X�. On the other hand,
letters of X� commute arbitrarily with letters in X and in �1� � � � � k�. This leads us to the
core observation for our construction.

Proposition 4. The sequence i1 in is a solution of the Post system P if and only if the
trace �w(i1 in)� contains a word of the language defined by the regular expression
(x1x�1 � � xnx�n � 1 � � k)�.

In other words, the letters of X and X� can be adjusted such that they can be compared
letter by letter (and the pair numbers occur somewhere in between).

Example. As an example, consider the Post system P � �[a� baa]� [ab� aa]� [bba� bb]�
with k � 3 pairs over the alphabet X � �a� b�. Define X�

� �a�� b�� and the peers P1 �

[�a� b� 1� 2� 3�� �], P2 � [�� �a� b� 1� 2� 3�], P3 � [�a�� b��� �], and P4 � [�� �a�� b��]. Con-
sider the candidate 3 2 3 1 and define the word w(3 2 3 1) � 3bbab�b� 2aba�a� 3bbab�b�

1ab�a�a�. The letters in this word can be reordered, and in the trace �w(3 2 3 1)� we can
find the word 3bb�bb�aa�2aa�bb�3bb�bb�aa�1aa�. By Prop. 4, we can conclude that the
candidate 3 2 3 1 is a solution, and indeed bba ab bba a � bb aa bb baa.

Decidability Results for Choreography Realization 99

Choreography. We want the choreography C to contain all sequences w on X � X� �

�1� � � � � k� except

(1) at least one sequence of the trace �w� if the word w cannot be reshu�ed to the
encoding of some candidate of P and

(2) at least one sequence of the trace �w� if the word projections of w to X and X� lead
to di�erent sequences.

At the same time we need to assure that,

(3) for any solution i1 in of P, the trace of its encoding, �w(i1 � � � in)�, is indeed fully
contained in C.

The recognition of the faulty sequence w is facilitated by the fact that the respective trace
�w� contains all possible reshu�ings of w. These reshu�ings contain normal forms for
which the characterization of fault sequences is straightforward.

It is easy to see that a choreography that satisfies (1), (2), and (3) is indeed partially
realizable if and only if P has a solution. Hence, it remains to show that there are regular
languages L1 and L2 such that

– L1 contains at least one sequence of �w� if w cannot be reshu�ed to the encoding of
some candidate of P (1), but no sequence of �w(i1 in)�, for any solution i1 in
of P (3) and

– L2 contains at least one sequence of �w� if the projections of w to X and X� lead to
di�erent sequences (2), but no sequence of �w(i1 in)�, for any solution i1 in of
P (3).

We present L1 and L2 as expressions using the operations mentioned in Def. 1 which
proves regularity. Concerning L1, there can be two reasons for the incapability to reshuf-
fle a conversation to the encoding of any candidate. First, the projection of a word to
X � �1� � � � � k� may not correspond to a sequence of pair numbers and corresponding
left elements of pairs. As this projection is invariant under reshu�ing (no pair of letters
in X � �1� � � � � k� is distant to each other), removal of such words cannot compromise
condition (3). This is reflected in

L1 � L11 � L12 with L11 � (1u1 � � kuk)� ��X���

Second, the projection to X� may not deliver the (unique) sequence that fits to the pro-
jection to X � �1� � � � � k�. This, in turn, may be caused by (a) excess letters from X� after
having served all pairs or (b) the incapability to complement some iui with the unique
fitting v�i . We model L12 such that we detect the problem immediately subsequent to the
largest prefix that can be shu�ed into the correct encoding. Consequently, let

L12 � (1u1v�1 � � kukv�k)� (La � Lb)�

The two languages in the tail of this expression correspond to the mentioned problems.
Thus,

La � X�� and Lb �
k
�

j�1

�
ju j
�
(X�� � v�jX

��) �� (X � �1� � � � � k�)�
��
�

100 N. Lohmann and K. Wolf

For language L2, we only need to detect a single mismatch or excess letters in either
subalphabet. Let X � �x1� � � � � xm�. Then we set

L2 �
�
x1x�1 � � xmx�m � 1 � � k)� (X� � X�� � �

i� j
xi x

�
j(X � X� � �1� � � � � k�)�

�
�

For both languages L1 and L2, the construction transparently shows that they satisfy the
specified conditions. Hence, we may come to our final conclusion that

C :� (X � X� � �1� � � � � k�)� � (L1 � L2)

contains a word w with �w� � L if and only if the Post system P has a solution. This
concludes the proof of Theorem 2.

Example (cont.). For the example Post system, the following words are examples for
the defined languages:

– 1aba� 2ab�a� � L11 — this word uses pairs [ab� a]� [a� ba] � P.
– 3bbab�b�a� � L12 — the letter a� after pair [bba� bb] is too much.
– 2aba�b� � L12 — this word uses a pair [ab� ab] � P.
– 3bb�bb�aa�1ab�a�a� � L2 — no solution, because one a is not matched.

3.2 The Asynchronous Case

Assume now MS � �. We show that the arguments used in the synchronous case extend
to asynchronous communication. First, Propositions 2 and 3 hold in the asynchronous
case as well. For the latter proposition, observe in particular that events !x and ?x com-
mute only if a message x is pending before the execution of the considered event !x.
This is reflected both in the definition of composition and the definition of traces.

For the PCP reduction of a PCP instance P with k pairs, a topology with three peers
P1, P2, and P3. is suÆcient. Having distinct events for sending and receiving, we can
use MA � X � �1� � � � � k�. While the sending events take the role of X in the previous
subsection, the corresponding receiving events replace the primed letters above. Then
O1 � !X � �!1� � � � � !k�, I2 � ?X, I3 � �?1� � � � � ?k�, and I1 � O2 � O3 � �. We use the
same choreography as above, except for the fact that we assume P3 to receive messages
arbitrarily; that is, we shu�e the choreography used above with (�?1� � � � � ?k�)�. Send
and corresponding receive events are distant except for the case that no message of
shape x is pending. However, we can exploit that already a “monotonous” version of
PCP is undecidable:

Given a Post system �[u1� v1]� � � � � [uk� vk]�, is there a candidate i1 in such that
ui1 uin � vi1 vin and, for all j � n, vi1 vi j � ui1 uij .

Thereby,� denotes the prefix operator: the left pairs are always a prefix of the right pairs.
Undecidability can be observed from the standard reduction of the halting problem
for Turing machines to PCP. In this proof, the di�erence between the u-sequence and
the v-sequence is used for coding configurations of the Turing machine. That is, the
u-sequence is always ahead of the v-sequence which can only catch up after having
passed a terminating configuration of the machine.

Decidability Results for Choreography Realization 101

In the monotonous setting, the coding of a PCP solution satisfies the condition that
every receive event is preceded by suÆciently many send events. The reshu�ing to a
form where send and corresponding receive events are immediate neighbors is also not
blocked by inactivated receive events, Thus, the argument used in the synchronous case
extends to the asynchronous case.

Corollary 1. Partial realizability under the asynchronous communication model is un-
decidable if at least three peers are involved.

4 Distributed Realizability

Definition 10 (Distributed realizability). Let C be a choreography for a collaboration
�P1� � � � � Pn�. The set of tuples of finite single-peer automata �[A1 j� � � � � An j] � j � IN��

is distributedly realize C if, for i � 1� � � � � n and all j, (i) Ai j implements �Pi�, (ii) � �

�(A1 j � � An j) � C, and (iii)
�

j �(A1 j � � An j) � C.

Example. The choreography C2 in Fig. 1 is distributedly realizable: There exist two
tuples of peers (cf. Fig. 1(c)) such that every conversation of the choreography is im-
plemented. As the distant events !x and !y cannot be coordinated, C2 is not completely
realizable.

4.1 The Synchronous Case

Again assume MA � �. Distributed realizability can be rephrased using traces.

Theorem 3. A choreography C for a collaboration 	 is distributedly realizable if and
only if C �

�
w�C�w�.

Proof. If C �
�

w�C�w�, Prop. 3 proves distributed realizability. The other way round,
if there is some w � C with �w� � C, Prop. 2 shows that w cannot be covered by any
realization. ��

It remains to find an e�ective way to check whether C �
�

w�C�w�. This problem has,
however, already been solved in trace theory [5]:

Proposition 5. Let C be a choreography for a collaboration 	 and A � �(C) the
minimal deterministic automaton that accepts the language of C. C �

�
w�C�w� if and

only if, for all states q1� q2 of A and all distant events x and y, q1
xy
�� q2 implies q1

yx
�� q2.

��

Although we imported the result, we present the sketch of the proof for reasons of self-
containedness. Minimal deterministic automata are linked to the Nerode relation�L. For
a language L, let w1 �L w2 if, for all w, it holds that w1w � L if and only if w2w � L. The
main observation on the Nerode relation is that, in any automaton accepting L, q0

w1
��� q

and q0
w2
��� q implies w1 �L w2. For the minimal deterministic automaton accepting L,

the reverse holds as well: If w1 �L w2, q0
w1
��� q1 and q0

w2
��� q2 then q1 � q2. Applying

this observation to our problem, we see that, for all sequences w and distant events a
and b, we have wab �C wba thus proving the above result.

102 N. Lohmann and K. Wolf

4.2 The Asynchronous Case

As Propositions 2 and 3 extend to the asynchronous case (i. e., MS � �), so does Thm. 3.

Corollary 2. A choreography C for a collaboration 	 that uses only asynchronous
communication is distributedly realizable if and only if C �

�
w�C�w�.

The actual decision procedure requires some additional considerations, though. We start
with reminding that no messages are pending after termination. That is, for all terminat-
ing runs w and all messages x, x̂(w) � 0. This observation can be used for extending the
ˆ -notation to states of any automaton A that accepts C.

Lemma 2. Let C be a distributedly realizable choreography. Let A be an automaton
that accepts C. Assume that A does not have trap states; that is, states from which no
final state of A is reachable. For all sequences w1 and w2, if q0

w1
��� q and q0

w2
��� q then,

for all x � MA, x̂(w1) � x̂(w2).

Proof. Assume the contrary. As a final state is reachable from q, say by executing w,
both w1w and w2w are accepted in A. One of these sequences has an unbalanced number
of send and receive events for some x, violating the termination condition for composi-
tions and thus contradicting distributed realizability of C. ��

This observation yields a simple necessary condition for distributed realizability:

Corollary 3. Let C be a choreography and A an automaton that has no trap states and
accepts C. Then C is realizable only if the following system of equations has a unique
and nonnegative solution. In the system, for each state q of A and x � MA, q̂(x) is a
distinct variable and we impose the following equations.

– q̂(x) � 0, for all x � MA and all q � �q0� � F;

– q̂(x) � 1 � q̂�(x), if q
!x
�� q�;

– q̂(x) � 1 � q̂�(x), if q
?x
�� q�;

– q̂(x) � q̂�(x), if q
y
�� q�, y � !x, and y � ?x.

In the following considerations, we assume that C passed this sanity check and thus em-
ploy the solution q̂(x) of the presented system of equations. Reflecting the restrictions
for commutation of !x and ?x, we propose the following modification of Prop. 5.

Lemma 3. Let C be a choreography for a collaboration	 using asynchronous commu-
nication satisfying the condition established in Cor. 3 and let A � �(C) the minimal
deterministic automaton that accepts the language of C. C �

�
w�C�w� if and only if,

for all states q1� q2 of A and all distant events a and b:

– If there is no message x with a � !x and b � ?x then q1
ab
��� q2 implies q1

ba
��� q2

– If, for some message x, a � !x and b � ?x, and q̂1(x) � 0 then q1
ab
��� q2 implies

q1
ba
��� q2

Proof. Again, the proof relies on the relation between the Nerode equivalence and the
minimal deterministic automaton accepting C. Indeed, in all situations where the condi-
tions for a and b are satisfied, we have wab �C wba thus justifying the stated diamond
property in the automaton. In particular, condition q̂1(x) � 0 asserts that !x and ?x
commute. ��

Decidability Results for Choreography Realization 103

4.3 Complexity

Complexity depends on the assumptions to be imposed on the original representation
of C. From most relevant choreography description languages we are aware of, it is
easy to derive a finite automaton model for the choreography. Thus, we assume such an
automaton for C to be given. On the other hand, we do not assume this automaton to be
deterministic, let alone minimal. Thus, the costs for checking distributed realizability
comprise the e�orts for:

– transforming the given automaton into a minimal deterministic one. This involves
the well known power set construction for transforming a nondeterministic automa-
ton into a deterministic one which may cause exponential blow-up in the number
of states;

– checking the diamond property of Prop. 5 or Lemma 3 which can be done in linear
time with respect to the number of states of the automaton.

In the asynchronous case, we additionally need to solve the linear system of equations
of Cor. 3 which requires, for tis particular system of equations, only linear time as well.

As the most costly step, transformation into a deterministic automaton, is well stud-
ied in the area of compiler construction, we believe that existing standard solutions will
be suÆciently eÆcient for practice.

5 Complete Realizability

Definition 11 (Complete realizability). Let C be a choreography for a collaboration
�P1� � � � � Pn�. The finite single-peer automata A1� � � � � An completely realize C if, for all
i, Ai implements �Pi� and �(A1 � � An) � C.

Example. The choreography C3 in Fig. 1 is completely realizable: Every specified con-
versation is implemented by the peers in Fig. 1(d).

5.1 The Synchronous Case

Assume MA � �.

Theorem 4. A choreography C for a collaboration �P1� � � � � Pn� is completely realiz-
able if and only if it is completely realized by �(C�P1)� � � � ��(C�Pn),

Proof. If the automata �(C�Pi) (1 � i � n) completely realize C, nothing remains to
be shown. So assume C is completely realizable, say, by finite single-peer automata
B1� � � � � Bn. We show that C is also realized by the �(C�Pi) (i � 1� � � � � n).

We show first C � �
��n

i�1 �(C�Pi)
�
. Let w � C. Every automaton �(C�Pi) has w�Pi

as one of its accepting runs. Consequently, w can be realized using a suitable scheduling
of the events in

�n
i�1 �(C�Pi).

Next, we show C � �
��n

i�1 �(C�Pi)
�
. Let w � �

��n
i�1 �(C�Pi)

�
. When realizing w,

automaton �(C�Pi) executes w�Pi (i � 1� � � � � n). By construction of these automata, this
is only possible if there are conversations wi � C (i � 1� � � � � n) such that wi�Pi � w�Pi .

104 N. Lohmann and K. Wolf

As the composition of the Bi realizes at least the conversations in C, they realize all
the words wi (i � 1� � � � � n). In a run that produces wi, automaton Bi executes the event
sequence wi�Pi � w�Pi . Consider now a run where each of the Bi executes the event
sequence w�Pi in the order given by w. Globally, this run produces w. As the composition
of the Bi realizes at most the conversations specified in C, we finally conclude w � C.

��

In contrast to the simplistic automata used in the previous sections, the composition of
automata �(C�Pi) may contain deadlocks; that is, runs which cannot be extended in a
nonfinal state. We show, however, that this is the case only if all complete realizations
contain deadlocks.

Theorem 5. A choreography C for the collaboration �P1� � � � � Pn� is completely and
deadlock freely realizable if and only if it is completely and deadlock freely realized by
�(C�P1)� � � � ��(C�Pn),

Proof. In addition to the arguments in Thm. 4, it remains to be shown that every partial
run in �

��n
i�1 �(C�Pi)

�
can be extended to a terminating run if that is possible in any

complete realization B1 � � Bn of C. Let w1 be a partial run in �
��n

i�1 �(C�Pi)
�

that
does not end in a final state, thus w1 � C. Using the same argument as for Thm. 4, we
can show that w1 is also the event sequence produced by some run in B1� �Bn which
cannot be a terminating run, because w1 � C. Thus, B1 � � Bn is able to extend the
run to a terminating run by executing an additional event sequence w2 (i.e., w1w2 � C).
As �

��n
i�1 �(C�Pi)

�
completely realizes C, w1w2 is also executable here. Since all the

�(C�Pi) are deterministic by definition, there is only one state that can be reached after
having executed w1. Hence, the unique state reached by the partial run w1 enables the
continuation w2 and thus cannot be a deadlock. ��

5.2 The Asynchronous Case

Under the asynchronous communication model (i. e., MS � �), it is clear that, as for
distributed realizability, the number of send and receive events must be balanced in ter-
minating runs. Hence, we may import Cor. 3 from the previous section as a necessary
condition for complete realizability. Assuming a choreography that meets this condi-
tion, the partial synchronization between send and corresponding receive events is fully
reflected in the choreography. This means that, repeating the arguments for Thm. 4, a
receive event is always activated in the composition of automata if that is locally the
case. Other than this, there are no significant di�erences in the argument, and we may
state:

Corollary 4. A choreography C for a collaboration �P1� � � � � Pn� using asynchronous
communication is completely realizable if and only if the conditions established in
Cor. 3 is satisfied and it is completely realized by �(C�P1)� � � � ��(C�Pn),

The same is true for the case of deadlock free realizability:

Corollary 5. A choreography C for the collaboration �P1� � � � � Pn� using asynchronous
communication is completely and deadlock freely realizable if and only if he condition
established in Cor. 3 is satisfied and it is completely and deadlock freely realized by
�(C�P1)� � � � ��(C�Pn),

Decidability Results for Choreography Realization 105

5.3 Complexity

Checking the condition of Cor. 3 can be done in linear time on any automaton repre-
senting C. The projection of C to an individual peer Pi amounts to replacing all events
distant to Pi by � and requires linear time for each Pi. The size of the composition
is at most the product of the sizes of the components. Checking language equivalence
is PSPACE-complete [7]. We have to leave open whether language equivalence can be
done more eÆciently in the case where C is checked against the composition of its
projections.

For the deadlock free case, the resulting components must be determinized and mini-
mized, with potential exponential blow-up, and the resulting composition must be checked
for deadlock freedom which requires linear time in the size of the composition.

6 Related Work

Realizability received much attention in recent literature, see [17] for a survey.

Complete realizability. Alur et al. [1] present necessary and suÆcient criteria to dead-
lock freely realize a choreography specified by a set of message sequence charts (MSCs).
Both synchronous and asynchronous communication is supported. Their proposed algo-
rithms are very eÆcient, but are limited to acyclic choreography specifications, because
the used MSC model does not support arbitrary iteration. Salaün and Bultan [16] investi-
gate complete realizability of choreographies specified by collaboration diagrams. The
authors express the realizability problem in terms of LOTOS and present a case study
conducted with a LOTOS verification tool. Their approach tackles both synchronous and
asynchronous communication (using bounded FIFO queues). Collaboration diagrams,
however, provide only limited support for repetitive behavior (only single events can be
iterated) and choices (events can be skipped, but complex decisions cannot be modeled).
Hence, the reduction of the PCP is not applicable. These restrictions also apply to the
results of Bultan and Fu [3] in which suÆcient conditions for complete realizability of
collaboration diagrams are elaborated. A tool to check the suÆcient criteria of [3,6] is
presented by Bultan et al. [2]. Using this tool, the authors showed that many collabora-
tion diagrams in literature are not completely realizable. In fact, most of these models
are, however, distributedly realizable. Realizability of conversation protocols by asyn-
chronously communicating Büchi automata is examined by Fu et al. [6]. The authors
define a necessary condition for complete realizability. One of the prerequisites, syn-
chronous compatibility, heavily restricts asynchronous communication. Kazhamiakin
and Pistore [9] study a variety of communication models and their impact on realizabil-
ity. They provide an algorithm that finds the “simplest” communication model under
which a given choreography can be completely realized.

Other realizability notions. Decker and Weske [4] study realizability of interaction
Petri nets. To the best of our knowledge, it is the only approach in which (complete
and partial) realizability is not defined in terms of languages. Instead, the authors re-
quire the peer implementations and the choreography to be branching bisimilar. This
results in a stronger realizability notion which needs further investigations with respect
to decidability issues.

106 N. Lohmann and K. Wolf

We defined distributed realizability in an earlier paper [12], and to the best of our
knowledge, this notion was not yet subject of other work. In the same paper, we showed
that complete, distributed, and partial realizability can be approached using an algo-
rithm to check for distributed controllability [18]. However, undecidability has been
shown for this problem recently [19]. This result as such did, however, not directly
imply undecidability of partial realizability.

7 Conclusion and Open Problems

We showed that partial realizability is undecidable if at least four (synchronous com-
munication), respectively three (asynchronous communication) peers are involved. The
result relies on the capability of expressing arbitrarily large chunks of distant, nonin-
terfering events. This observation could lead, in future work, to decidable subproblems.
Furthermore, the case of only two asynchronously communicating peers is left open.
Also the case of mixed communication models requires further investigation.

Distributed realizability is decidable. Realizability only depends on the question
whether the choreography is closed under the commutation of distant events. An appar-
ent follow-up question would be whether it is possible to cover all specified sequences
with finitely many implementations.

For complete realizability, we found the choreography projections to the respective
peers to be a canonical realization. If that projection does not realize, no one else does.
If the projections are transformed into deterministic automata, this result extends to the
problem of deadlock free complete realizability.

The decision procedures suggested by our arguments depend on automata minimiza-
tion, checking language equivalence, and other, trivially implementable checks. Hence,
we assume that the decision procedures can be turned into tools with acceptable behav-
ior on relevant instances.

Acknowledgment. We would like to thank Dietrich Kuske for a very helpful briefing
in trace theory.

References

1. Alur, R., Etessami, K., Yannakakis, M.: Inference of message sequence charts. IEEE Trans.
Software Eng. 29(7), 623–633 (2003)

2. Bultan, T., Ferguson, C., Fu, X.: A tool for choreography analysis using collaboration dia-
grams. In: ICWS 2009, pp. 856–863. IEEE (2009)

3. Bultan, T., Fu, X.: Specification of realizable service conversations using collaboration dia-
grams. SOCA 2(1), 27–39 (2008)

4. Decker, G., Weske, M.: Local enforceability in interaction petri nets. In: Alonso, G., Dadam,
P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 305–319. Springer, Heidelberg
(2007)

5. Diekert, V.: The Book of Traces. World Scientific Publishing Co., Inc., River Edge (1995)
6. Fu, X., Bultan, T., Su, J.: Conversation protocols: a formalism for specification and verifica-

tion of reactive electronic services. Theor. Comput. Sci. 328(1-2), 19–37 (2004)

Decidability Results for Choreography Realization 107

7. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three problems
of equivalence. Inf. Comput. 86(1), 43–68 (1990)

8. Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.: Web Services Choreography De-
scription Language Version 1.0. W3C Candidate Recommendation (November 2005),
����������������������������

9. Kazhamiakin, R., Pistore, M.: Analysis of realizability conditions for Web service choreogra-
phies. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS,
vol. 4229, pp. 61–76. Springer, Heidelberg (2006)

10. Kazhamiakin, R., Pistore, M., Santuari, L.: Analysis of communication models in Web ser-
vice compositions. In: WWW 2006, pp. 267–276. ACM (2006)

11. Kleijn, H.C.M., Morin, R., Rozoy, B.: Event structures for local traces. Electr. Notes Theor.
Comput. Sci. 16(2) (1998)

12. Lohmann, N., Wolf, K.: Realizability is controllability. In: Laneve, C., Su, J. (eds.) WS-FM
2009. LNCS, vol. 6194, pp. 110–127. Springer, Heidelberg (2010)

13. Mazurkiewicz, A.W.: Trace Theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN
1986. LNCS, vol. 255, pp. 279–324. Springer, Heidelberg (1987)

14. OMG: Business Process Model and Notation (BPMN). FTF Beta 1 for Version 2.0, Object
Management Group (2009), ����������	������������� !�"��

15. Sakarovitch, J.: The “last” decision problem for rational trace languages. In: Simon, I. (ed.)
LATIN 1992. LNCS, vol. 583, pp. 460–473. Springer, Heidelberg (1992)

16. Salaün, G., Bultan, T.: Realizability of choreographies using process algebra encodings. In:
Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 167–182. Springer, Hei-
delberg (2009)

17. Su, J., Bultan, T., Fu, X., Zhao, X.: Towards a theory of web service choreographies. In: Du-
mas, M., Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 1–16. Springer, Heidelberg
(2008)

18. Wolf, K.: Does my service have partners? In: Jensen, K., van der Aalst, W.M.P. (eds.) ToP-
NoC II. LNCS, vol. 5460, pp. 152–171. Springer, Heidelberg (2009)

19. Wolf, K.: Decidability issues for decentralized controllability of open nets. In: AWPN 2010.
pp. 124–129. CEUR Workshop Proceedings Vol. 643, CEUR-WS.org (2010)

20. Zaha, J.M., Barros, A.P., Dumas, M., ter Hofstede, A.H.M.: Let’s Dance: A Language for
Service Behavior Modeling. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275,
pp. 145–162. Springer, Heidelberg (2006)

http://www.w3.org/TR/ws-cdl-10
http://www.omg.org/spec/BPMN/2.0

Conformance Testing for Asynchronously
Communicating Services

Kathrin Kaschner

Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
kathrin.kaschner@uni-rostock.de

Abstract. We suggest a black box testing approach to examine conformance
for stateful services. Here, we consider asynchronous communication in which
messages can overtake each other during their transmission. For testing, we gen-
erate partner services that exchange messages with the implementation under
test (IUT). From the observations made during testing, we are then able to in-
fer whether the IUT conforms to its specification. We study how partner services
need to be designed to serve conformance testing in an asynchronous setting and
present an algorithm which generates a complete test suite.

1 Introduction

Modern software systems are more and more composed of a set of loosely-coupled ser-
vices. Thereby, each service implements an encapsulated, self-contained functionality
and communicates via message exchange with its partner services. For a proper interac-
tion, the behavior of the involved services plays a central role; e.g., a whole composition
of services may deadlock if a single service fails to send an expected message. To avoid
failures, the behavior of a service should be tested thoroughly before it is deployed.

To face this issue, we propose a black box testing approach. That means, we examine
the behavior of the implementation under test (IUT) from the partner’s perspective with-
out accessing the inner structure of the IUT. But usually, a service is not bound to a fixed
set of partner services. Instead, partners may change frequently and can even be created
after deployment of the IUT. Since they are unknown at testing time, real partners or
their abstract behavioral description (public view) cannot be used for testing. Instead,
we synthesize partner services and use them as test cases. Their intended purpose is to
imitate the behavior of real partners with which the IUT will be potentially confronted
in practise. Moreover, they observe the IUT’s reactions during a test run such that we
are able to conclude whether the interactions are conform to the IUT’s specification.

Throughout the paper, we consider services with stateful interaction; i.e., the com-
munication follows a more or less complex protocol in which several messages are ex-
changed between the services. In addition, we assume an asynchronous message passing,
in which messages can overtake each other. This is motivated by the fact that services
usually communicate over the internet, which does not preserve the message order during
transmission. In contrast to synchronous communication, the sending of an asynchronous
message cannot be blocked by the partner, but is executed independently from the receiv-
ing. Further, a message may be sent in advance if it is ensured that the partner (if it follows
the protocol) will eventually receive it; i.e., between sending and receiving a message,

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 108–124, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Conformance Testing for Asynchronously Communicating Services 109

other messages can be exchanged. All these non-trivial aspects need to be taken into
account when test partners are synthesized for substituting real partner services.

To automate the test case generation procedure, a formal model of the specification
is required. The test partners are then derived from the model. With our tests we focus
on the specified behavior only (conformance testing) and do not examine whether the
implementation is robust against undesired messages (robustness testing). To offer ex-
haustiveness, we design the test partners such that each possible behavior defined by
the formal specification can be triggered during testing and thereby the asynchronous
characteristics are taken into consideration (e.g., test partners may send messages in
advance for imitating real partners adequately). Moreover, we present a selection algo-
rithm to limit the number of test cases. The resulting test suite is complete in the sense
that (1) each detected failure indicates an error in the implementation (soundness) and
(2) each failure that can be discovered by any partner derivable from the formal spec-
ification can also be detected by a partner of the test suite (exhaustiveness). That way,
the behavior of any potential real partner is considered best possible by the created test
suite, and we can be confident that the IUT will interact correctly in practice – if it
passes the test suite successfully.

This paper is organized as follows: In Sect. 2, we define when an observation made
during testing is considered as correct. In Sect. 3, we study how the test partners for
conformance testing need to be designed. Based on these considerations, Sect. 4 shows
how a complete test suite can be generated. Section 5 summarizes related work and
Sect. 6 concludes the paper.

2 Correct Behavior

While the specification can be assumed to be given in a formal description, the imple-
mentation is a physical, real object which is not amenable to formal reasoning. However,
to deal with implementations in a formal way, we assume for our theory that for any im-
plementation there is a formal model. But we only require its existence, not the model
itself. This is common usage when the implementation is seen as a black box and formal
testing is conducted [1]. Then, during conformance testing we infer from the observa-
tions made during testing, the (unknown) formal model of the IUT and decide with the
help of the testing theory whether the implementation complies to its specification.

Formalizing Behavior. To formally reason about service behavior, we use service au-
tomata [2,3]. They are related to input output transitions systems (IOTS) [1] and I/O au-
tomata [4], but perform communication asynchronously via unidirectional message chan-
nels. When modeling behavior by service automata, we abstract from data. The set of the
abstract messages is denoted by� and is assumed to be finite. The interface of a service is
formed by a set of pins Π ⊆�×{i,o}. Pin π = [m, i] is an inbound pin and π = [m,o]
is an outbound pin. The dual pin of π = [m, z] is defined as π = [m, z′] with z′ �= z.
From a set of pins Π we derive a set of communicating events �Π such that !m ∈ �Π

iff there is a pin π = [m,o] ∈ Π (sending a message m) and ?m ∈ �Π iff there is a
pin π = [m, i] ∈ Π (receiving a message m). Internal events (i.e., non-communicating
events) are pooled in a set �τ . The behavior itself is expressed by a finite state machine
whose transitions are labeled with communicating events and internal events.

110 K. Kaschner

Definition 1 (service automaton [2,3]) A service automaton A = [Q, q0, Ω, Π,�τ , δ]
consists of a finite set of states Q, an initial state q0 ∈ Q, a set of final states Ω ⊆ Q, a
finite set of pins Π ⊆ �× {i,o} (with π ∈ Π implies π /∈ Π), a finite set of internal
events �τ (�τ ∩ �Π = ∅) and a transition relation δ ⊆ Q× (�Π ∪ �τ)×Q.

We write q
e→ q′ for [q, e, q′] ∈ δ . For a state q, we express with q

e→ that there is a
state q′ with q

e→ q′. If q has no successors, we write q �→. A state q′ is reachable from
a state q iff there are events e1, . . . , en ∈ �Π ∪ �τ and states q1, . . . , qn ∈ Q with
q

e1→ q1
e2→ . . .

en−1→ qn−1
en→ qn = q′ or q = q′. A state is reachable iff it is reachable

from the initial state. A non-final state q (q /∈ Ω) is a deadlock state iff q �→ holds.
Since specifications with deadlocks are seen as ill-designed, we consider deadlock-free
specifications in our theory only.

As an example, service automaton A in Fig. 1(a) is initially waiting for message a or
message c. In case c is received, message z is sent back. In case message a is received, A
decides non-deterministically (modeled by a branch of two internal τ steps) whether it
sends message y and is then waiting for message b, or it sends message x after receiving
message b. The set of pins of B, C and D are dual to the set of pins of A. Some pins of
C and D are not used by the internal process of C and D.

Formalizing Communication. To formalize the interplay of two services we use the
concept of composition. In the model, communication is realized by connecting dual pins
with a unidirectional channel. That way, a message of shape m is sent via an outbound
pin [m,o] through the corresponding channel. There, m is pending until the service on
the other channel’s side receives it via its inbound pin [m, i]. Throughout the paper, we
consider those services as composable, whose pin sets are dual to each other. Note, that
the criterion is merely syntactically and independent of the actual behavior. In particular,
it does not guarantee that a sent message is indeed received on the other channel’s side.

Two composable service automata are also called partners. In Fig. 1, service au-
tomata B, C and D are partners of A.

p0

p1

?a

p2

τ

p9

?c

p5

τ

p6

!y

p3

?b

p4

!x

p7

?b

A

c

a
b

x

z
y

p8

!z

(a)

r0

r1

!b

r5

!c

r6

?z!a

r3

?x

r4

?y
r2

B

c

a
b

x

z
y

(b)

t0

t1

!b

!a

t3

?x

t4

?y
t2

C

c

a

x

z
y

b

(c)

v0

v1

!c

?x

v3

?z
v2

D

c

a

x

z
y

b

(d)

p0

p1

τ

p2

τ

p4

?b

p3

?a

p7

!x !y

S

c

a
b

x

z
y

p5

?d

p6

?d

p8
?c

d

!z

(e)

Fig. 1. Five service automata. In the graphical representation initial states are denoted by an in-
coming arc from nowhere and final states are circled twice. The interface with its inbound and
outbound pins is depicted on the dashed box.

Conformance Testing for Asynchronously Communicating Services 111

Formally, composition of services (see Def. 2) is a product automaton construction,
adjusted to the characteristics of asynchronous message passing between the involved
services. A state comprises the states of the involved services and the messages pending
in the channels, represented by a multiset B. A state [qA, qB,B] with [qA, qB,B] �→ is
declared as a final state iff qA ∈ ΩA, qB ∈ ΩB and B = []. Whereas the first two
conditions are obvious, the requirement for empty channels at termination is motivated
by the fact that messages may contain important information such as payment details.
Hence, the sender of such a message wants to ensure that it is actually received rather
than ignored. In Def. 2, Bags(�) denotes the set of all multisets over set�, [] denotes
the empty multiset, and + is the elementwise addition of multisets.

Definition 2 (composition of service automata [2,3]). The composition of two part-
ners A and B (EΠ

A , EΠ
B , Eτ

A and Eτ
B are pairwise disjoint) is the service automaton

A ⊕ B = [Q, q0, Ω, Π,�τ , δ] consisting of Q := QA × QB × Bags(�), q0 :=
[q0A, q0B, []], Ω := ΩA × ΩB × {[]}, Π := ∅, Eτ := EΠ

A ∪ EΠ
A ∪ Eτ

B ∪ Eτ
B , and δ

containing exactly the following elements:
for all m ∈�, τ ∈ Eτ

A ∪ Eτ
B and B ∈ Bags(�),

− [qA, qB,B] !m−−→ [q′A, qB,B + [m]], iff qA
!m−−→A q′A (send event in A),

− [qA, qB,B] !m−−→ [qA, q′B,B + [m]], iff qB
!m−−→B q′B (send event in B),

− [qA, qB,B + [m]] ?m−−→ [q′A, qB,B], iff qA
?m−−→A q′A (receive event in A),

− [qA, qB,B + [m]] ?m−−→ [qA, q′B,B], iff qB
?m−−→B q′B (receive event in B),

− [qA, qB,B] τ−→ [q′A, qB,B], iff qA
τ−→A q′A (internal step in A),

− [qA, qB,B] τ−→ [qA, q′B,B], iff qB
τ−→B q′B (internal step in B).

Figure 2 shows the composition of service automata A and B of Fig. 1. It is free of dead-
locks. In contrast, the composition of A and D deadlocks in state [p9, v1, [z]] because
A never sends message x after receiving message c.

A composition is k-bounded iff in all reachable states the number of identical mes-
sages in B does not exceed a value k. This property is motivated by the middleware, that
realizes the message exchange between services. Since it has only finite storage avail-
able, we limit the capacity of messages in each channel to k, in our theory. The value
of k is either known by the middleware’s characteristics or chosen carefully. Then, a k-
bounded composition does not overflow the channels. As an example, the composition
of Fig. 2 is 1-bounded.

[p0, r0, []] [p0, r5, [c]]!c [p8, r5, []]?c [p9, r5, [z]]!z [p9, r6, []]?z

[p0, r1, [b]]
!b

!a
[p0, r2, [a, b]]

[p1, r2, [b]]
?a

[p2, r2, [b]]
τ

[p3, r2, [b]]

τ

[p6, r2, [b, y]]!y [p6, r4, [b]]
?b

?y

[p7, r4, []][p7, r2, [y]]
?b

?y

[p3, r2, []]
?b [p4, r2, [x]]!x [p4, r3, []]?x

Fig. 2. Composition of A and B of Fig. 1 (only the reachable states are depicted)

112 K. Kaschner

Formalizing Observations. As mentioned earlier, we aim at generating partner ser-
vices for the IUT. During the testing procedure, each generated partner service and IUT
are executed in isolation within a test environment. Thereby, we assume that the tester
can always observe the IUT’s execution status; i.e., still in execution or terminated. A
failure is detected as soon as a partner observes an unforeseen reaction of the IUT; i.e.,
the absence of specified message, sending wrong message or a wrong execution status.
Due to the asynchronous setting it is not observable whether the IUT actually receives a
message or not. In the following, we define when observations are classified as correct
or incorrect. To this end, we give a formal definition of a (test) run.

Definition 3 (run). For a service automaton A, a finite or infinite sequence σ =
q0e1q1e2q2 . . . of states and events is called run iff q0 is the initial state of A and
qi−1

ei−→ qi for all i ∈ {1, 2, ...}. A run is maximal iff it is infinite or it ends in a
state qn with qn �→. The set of all possible runs in A is denoted by ΣA.

The notion of a run can be applied to both, a single service automaton and a composi-
tion. For example, σ1 = p0 ?a p1 τ p5 !y p6 ?b p7 and σ2 = p0 ?a p1 are runs of service
automaton A in Fig. 1(a), and ϕ1 = [p0, r0, []] !c [p0, r5, [c]] ?c [p8, r5, []] !z[p9, p5, [z]]
?z [p9, r6, []] and ϕ2 = [p0, r0, []] !b [p0, r1, [b]] !a [p0, r2, [a, b]] are runs in the composi-
tion A⊕B of Fig. 2. Thereby, σ1 and ϕ1 are maximal runs.

For a finite run σ = [q0A , q0B , []] . . . [q′A, q′B,B] in a composition A ⊕ B, we define
msg(σ) as the function that returns the messages pending in the channels after σ; i.e.,
msg(σ) = B. The pending messages after ϕ2 are msg(ϕ2) = [a, b].

During the interaction between an implementation and a test partner, a run is ex-
ecuted in their composition. But, the part proceeded in the implementation is hidden
since we cannot access the implementation’s structure in black box testing. Conse-
quently, only the part executed in the test partner can be observed and used for the
judgment of correctness. Therefore, we establish the notion of a projected run. Assume
σ is a run in a composition A ⊕ B. Then, σ projected on A, denoted by σ↓A, reflects
the events and states of A during σ. It can easily be seen that σ↓A is a run in A. As an
example, consider composition A ⊕ B in Fig. 2 and run ϕ1, mentioned above. Then
ϕ1↓A

= p0 ?c p8 !z p9 and ϕ1↓B
= r0 !c r5 ?z r6.

With the help of an observed projected run in a test partner, we are able to make
assumptions about the implementation’s behavior. Thereby, we exploit that (1) each
message received by the test partner has been sent by the implementation and (2) the
implementation can only receive messages of the test partner. Whether a sent message
is indeed received by the implementation cannot be observed in black box testing.

When judging correctness, not only the observed (projected) runs are considered but
also the implementation’s execution status. Thereby, we distinguish three values: fi,
for terminating in a final state; ex, still in execution (i.e., waiting for a message, be-
ing before sending or in deadlock) and inf, for infinite runs. The latter is only for
theoretical considerations because infinite runs cannot be identified in practise. We con-
sciously do not define separate statuses for ”receiving message(s)” and ”running inter-
nal step(s)”, since these statuses are transient and will eventually lead to the status ex
or fi. We assume that it is waited long enough, when querying the implementation’s
execution status.

Conformance Testing for Asynchronously Communicating Services 113

The function γ (see Def. 4) returns the statuses that can be reached after a run σ
without sending a message. Thereby, the messages pending in the channels after σ can
be used to proceed σ. Thus, the status after a run may vary depending on the messages
that are already sent by the environment.

Definition 4 (status). Let A be a service automaton, let σ ∈ ΣA and let B be a multiset
of messages. In case σ is a finite run, let it end in state q. The status after σ is defined
by the function γB

A : ΣA → 2{fi,ex,inf} as follows:

− fi ∈ γB
A(σ), iff σ is finite and there is a final state q′ reachable from q via internal

steps and receiving steps ?a with a ∈ B,
− ex ∈ γB

A(σ), iff σ is finite and there is a state q′ reachable from q via internal steps
or receiving steps ?a with a ∈ B such that q′

!x−→ or q′
?b−→ (b /∈ B),

− inf ∈ γB
A(σ), iff σ is infinite.

For example, γB
B(ϕ1↓B

) = {fi} and γB
B(ϕ2↓B

) = {ex} regardless of the content of B.
Now, we are ready to define observations about an implementation I .

Definition 5 (recognizable behavior, observation). For an implementation I and
a test partner P , the behavior of I recognizable by P is defined by the set
OI

P := {[σ, t] | there is a run ϕ ∈ ΣI⊕P with ϕ↓P = σ and t = γ
msg(ϕ)
I (ϕ↓I)}. The

elements ofOI
P are observations about I recognizable by P .

As an example, we consider A of Fig. 1(a) as an implementation and B of Fig. 1(c)
as a test partner. Two possible observations about A recognizable by B are obs1 =
[r0 !b r1 !a r2 ?x r3,fi] and obs2 = [r0 !b r1 !a r2 ?y r4,fi].

An implementation may own decisions that cannot be influenced by the test part-
ner. This means, a test partner is not able to enforce a certain decision. Consequently,
during testing not all observations recognizable by a test partner indeed occur. In the ex-
ample above, B may induce only obs1 when sending message b - even though the test is
repeated. For this purpose, we distinguish two classes of correctness: For weak correct-
ness it is sufficient that any observation made of the implementation can be explained
by the specification. For strong correctness we additionally claim that every possible
observation (regarding a given specification) has indeed occurred during testing.

Definition 6 (correctness of recognizable behavior). Let I be an implementation and
S a specification. The behavior of I recognizable by a partner P

− is weak correct regarding S iff OI
P ⊆ OS

P , and
− is strong correct regarding S iff OI

P = OS
P .

The behavior of I recognizable by a (possibly infinite) set � of partners

− is weak correct regarding S iff for every P ∈ � holds:OI
P ⊆ OS

P , and
− is strong correct regarding S iff for every P ∈ � holds:OI

P = OS
P .

Definition 6 gives a correctness criterion depending on a given set of partners. In the
next section, we define a set of partners that is suitable for conformance testing for a
given specification S.

114 K. Kaschner

3 Conformance Partner

As mentioned above, a deadlock-free composition is fundamental to guarantee a proper
interaction between services. It makes no sense to bind services if their composition
may deadlock. Consequently, we can assume that in practise the IUT will only be con-
fronted with partners with which a deadlock-free interaction is ensured a priori. In an-
other context, we already proposed deadlock-freely interacting partners as test cases [5].
These partners communicate deadlock-freely per construction with the IUT (supposed
it is implemented correctly). However, if a deadlock occurs during testing, a failure is
detected. Deadlock-freely interacting partners can be generated automatically from the
formal specification.

But in general, this approach is not applicable for conformance testing without fur-
ther ado. Due to the abstraction, the formal specification may own non-communicated
decisions. Since deadlock-freedom after non-communicated decisions cannot be guar-
anteed, deadlock-freely interacting partners never cover such decisions and the behavior
after them. Consequently, the implementation would be tested insufficiently.

This issue is illustrated by specification S in Fig. 1(e): There is a non-communicated
decision in state p0. Thus, a partner does not know whether S is expecting message a or
b. Whatever the partner assumes, its communication with S can deadlock. Even though
both messages are sent, deadlock-freedom is not guaranteed. For example, partner P1

(P2) in Fig. 3 guesses message a (b) is expected. Consequently, the communication
can deadlock in state [p2, v1, a] ([p1, t1, b]). In contrast, P0 in Fig. 3 sends both, a and
b. Here, the composition with S deadlocks in state [p7, r5, a] and [p7, r7, b] since for
deadlock-freedom empty channels are required at termination.

As it can easily be seen, each possible partner can deadlock with S. Thus, no test
cases could be generated for S using the existing approach [5]. In general, if non-
communicated decisions belong to the model, parts of the implementation are not tested
using deadlock-freely interacting partners.

Nevertheless, such specifications make sense. Non-communicated decisions are usu-
ally caused by a too coarse abstraction when creating the formal model from an

r0

r2

!b
r1

!a

r5

?x ?y

P0

r3

!d
r4

r6

!c

c

a

x

z
y

b

d

!d ?z
r7

(a)

v0

v1

!a

?x

v3

!d
v2

P1

c

a

x

z
y

b

d

(b)

t0

t1

!b

?y

t4

!c

t2

P2

c

a

x

z
y

b

d

t3
!d

?z

(c)

g0

g3

!b

g1

!a

?x ?y

P3

g4 g5

g2

!c

c

a

x

z
y

b

d

!d

g6
!d

?z
g7

(d)

h0

h3

!b

h1

!a

?x ?y

P4

h6

h5

h2

c

a

x

z
y

b

d

!c

h7

!d
?z

h4

!d

(e)

Fig. 3. Partners of the specification S in Fig. 1(e). P0 and P3 are conformance partners of S.

Conformance Testing for Asynchronously Communicating Services 115

(informal) specification. Abstraction is essential to obtain a manageable model. The
model in turn is required for automated test case generation. Indeed, non-communicated
decisions can be eliminated by refinement. But finding the right level of abstraction is
a non-trivial task: If the refinement is too high, the size of the model increases dramat-
ically and makes testing inefficient. Moreover, non-communicated decisions are not as
obvious as in the example above. Usually, an extensive analysis is required.

To obviate the problem of refinement, we introduce a new class of partners - the
conformance partners. With them, non-communicated decisions in the formal specifi-
cation can be handled and need not be eliminated before test case generation. Thus,
thorough testing is possible even though there are non-communicated decisions in the
formal specification. In contrast to a deadlock freely interacting partner, a conformance
partner is allowed to risk pending messages in the channels at termination time if they
are necessary to guarantee the continuation after a non-communicated decision and this
non-communicated decision is reached for sure at the point of sending. That means,
when a non-communicated decision is inevitable, a conformance partner sends the mes-
sages required for all alternatives until it is clear (by receiving a message) how the
decision was made. For example, P0 in Fig. 3(a) is a conformance partner for S in
Fig. 1(e). It sends both, a message a and b. Thus, continuation in q0 is guaranteed, re-
gardless of how S decides. After P0 has received x or y it knows how the decision was
made and behaves appropriately. Since not both alternatives can be executed, either a or
b will stay in the channels at termination. That is now permitted thanks to the relaxation
of the termination criterion. P3 is a conformance partner for S, too. It sends message
d in advance. That is possible, because d is received independently of the decision and
stays in the channel until S reaches state p5 or p6 where d is consumed. It is essential to
include such partners to test the sending of messages in advance adequately. Similar to
P3, partner P4 sends message c before it knows which alternative is chosen by S. But in
contrast to message d, the receiving of message c is only possible if the right-hand side
is chosen. Otherwise, c stays in the channel. That can be avoided, if c is sent after the
result of the decision is communicated by message x or y. That is why, c must not stay
in the channels at termination. In contrast to a and b, it is not necessary to risk that c is
pending in the channels for securing continuation after a non-communicated decision.
Thus, we do not classify P4 as a conformance partner.

These considerations are formalized in the following two definitions. By the notion
of weak receivable messages we determine whether messages of a channel are allowed
to be pending at termination time. In contrast, a channel m is empty after a test run σ if
all messages that have been transmitted via m during σ are strong receivable. Finally,
Def. 8 constitutes the conformance partner.

Definition 7 (weak receivable, strong receivable). Let A and B be partners. Let σ
be a maximal run in B and π = [m, o] an outbound pin of B. The messages sent during
σ via channel m are weak receivable by A iff for each m-event in σ there is a run σ∗

with:

− σ∗ is a prefix of σ containing (at least) the m-event currently considered, and
− there is a run ϕ∗ in A ⊕ B with ϕ∗

↓B = σ∗ ending in state [qA, qB,B] with
B(m) = 0.

116 K. Kaschner

The messages sent during σ via channel m are strong receivable by A iff after all ϕ with
ϕ↓B = σ a state [qA, qB,B] in A⊕B is reachable such that B(m) = 0.

As an example: for the run h0 !c h1!a h2 !b h3 ?xh4 !d h6 of P4 the messages in channel
a and d are strong receivable by S, the messages in channel b are weak receivable and
the messages in channel c are neither strong receivable nor weak receivable. For the
infinite run h0 !c h1!a h2 !b h3 ?y h5 !d h7 ?zh5 !d h7 ... of P4 the messages in channel b,
c and d are strong receivable by S and the messages in channel a are weak receivable.

Definition 8 (conformance partner). Let A and B be partners (A is free of deadlocks).
B is a conformance partner of A iff

1. for all maximal runs σ in B and all m with [m,o] ∈ ΠB holds: The messages sent
during σ via channel m are strong or weak receivable by A,

2. for all maximal runs ψ in A and all n with [n,o] ∈ ΠA holds: The messages sent
during ψ via channel n are strong receivable by B,

3. for every state [qA, qB,B] in A ⊕ B with [qA, qB,B] �→ holds: qA ∈ ΩA and
qB ∈ ΩB .

The set of all conformance partner of A is denoted by Conf(A).

Note, if B is a conformance partner for A then A is not necessarily a conformance
partner for B. This asymmetry can be easily derived from the definition by comparing
the requirement (1) and (2).

A run σ in a service automaton A is covered by a partner B iff there is a run ϕ in
A⊕B such that ϕ↓A = σ. We then also say, σ is covered by ϕ↓B . Finally, we constitute
in Thm. 1 that a specification is fully covered by conformance partners.

Theorem 1. Every run σ in a service automaton A is covered by (at least) one confor-
mance partner of A.

Proof: Assuming σ ∈ ΣA is the shortest path not covered by any conformance partner;
i.e., σ = σ∗eq′ with σ∗ is still covered. Consequently, there is a partner P ∈ Conf (A)
such that there is a run ϕ ∈ A ⊕ P with ϕ↓P ∈ ΣP and ϕ↓A = σ∗. If e is an internal
event or a sending event then σ is also covered by ϕ↓P . If e is a receiving event and
e ∈ msg(ϕ) then σ is also covered by ϕ↓P . Finally, if e is a receiving event and possibly
e /∈ msg(ϕ) then we can extend P to a partner P ′ such that P ′ sends a message e after
σ∗ is covered. This does not violate Def. 8 since e is obviously receivable by A. Let
ψ be the run in P ′ that covers σ. As it can be easily seen there is a continuation for
ψ such that P ′ does not violate the requirements of Def. 8. Thus, σ is covered by the
conformance partner P ′. q.e.d.

By requirement (1) in Def. 8 we ensure that the sending of messages in advance is ad-
equately considered by the conformance partners - even if non-communicated decisions
are covered. Requirement (2) guarantees that no messages from the specification are
pending in the channels at termination time. Thus, specified messages are not ignored
by a conformance partner. That is essential for the evaluation of a test run. Requirement
(3) ensures, that a finite interaction with a conformance partner always terminates in a
final state - if the implementation acts correctly. Based on these considerations together
with Thm. 1 we can define conformance as follows:

Conformance Testing for Asynchronously Communicating Services 117

Definition 9 (conformance). Let S be a specification and I be an implementation. I is
weak (strong) conform to S iff for every P ∈ Conf (S) holds:OI

P ⊆ OS
P (OI

P = OS
P).

As already mentioned, each channel is able to buffer only a limited number of k mes-
sages. For this reason, we restrict ourself to specifications whose composition with
each existing conformance partner is k-bounded. Other specifications are not reason-
able since the channels can overflow and then the following behavior is not defined.

4 Test Case Generation

As stated in Def. 9, we propose conformance partners as test cases. In this section, we
describe how conformance partners are derived systematically from a formal specifica-
tion S. Therefore, we create a representation - we call it test guidelines - that character-
izes the set of all conformance partners of S. Its construction follows the ideas of the
operating guidelines [2] that characterize deadlock-freely interacting partners.

Using all conformance partners as test cases would be too time consuming. Thus,
we show in the second part of this section, how a limited number of partners can be
extracted from the test guidelines. The resulting test suite is exhaustive in the sense that
it is still able to detect each failure that could be discovered by any conformance partner.

Synthesizing Conformance Partners. To generate the test guidelines for a specifica-
tion S, we first construct a partner that overapproximates the behavior of the confor-
mance partners. Intuitively, a service B has more behavior than another service A if
it is able to imitate A’s behavior such that the environment cannot observe differences
between the two services. We formalize this property by the notion of weak simulation.

Definition 10 (weak simulation). Let A and B be service automata. A relation � ⊆
QA ×QB is a weak simulation relation iff

− [q0A , q0B] ∈ �,
− for all qA, q′A ∈ QA, qB ∈ QB , and m ∈ �Π

A holds: if [qA, qB] ∈ � and qA
m−→ q′A,

then there exists a state q′B ∈ QB with qB
m−→ q′B and [q′A, q′B] ∈ �,

− for all qA, q′A ∈ QA, qB ∈ QB and e ∈ �τ
A holds: if [qA, qB] ∈ � and qA

e−→ q′A,
then [q′A, qB] ∈ �,

− for all qA, q′A ∈ QA, qB ∈ QB and e ∈ �τ
B holds: if [qA, qB] ∈ � and qB

e−→ q′B ,
then [qA, q′B] ∈ �,

− [qA, qB] ∈ � implies that qA ∈ ΩA iff qB ∈ ΩB .

B weakly simulates A iff there exists a weak simulation relation � ⊆ QA ×QB .

As an example, the service automaton depicted in Fig. 4(a) weakly simulates (or has
more behavior than) P0, P1, P2 and P3 of Fig 3. The weak simulation relation with P1

is � = {[v0, q0], [v1, q2], [v2, q9], [v3, q19]}.
To synthesize a partner that has more behavior than any conformance partner, we

consider specification S and the message channels as a black box. That means, their
state is only estimated by considering the communication with the partner. Usually,
there are several possibilities. They are calculated by the closure.

118 K. Kaschner

Definition 11 (situation, closure [2,3]). Let S = [Q, q0, Ω, Π,�τ , δ] be a specifica-
tion and X ⊆ (Q × Bags(�)). The elements of X are called situations. The set
closureS(X) is the smallest set satisfying:

1. X ⊆ closureS(X).
2. If [q,B] ∈ closureS(X) and q

e−→ q′ with e ∈ �τ , then [q′,B] ∈ closureS(X).
3. If [q,B] ∈ closureS(X) and q

!m−−→ q′ with !m ∈ �Π ,
then [q′,B + [m]] ∈ closureS(X).

4. If [q,B + [m]] ∈ closureS(X) and q
?m−−→ q′ with ?m ∈ �Π ,

then [q′,B] ∈ closureS(X).

For a set X of situations, closureS(X) comprises all situations that can be reached
by S without the help of the partner; i.e., by doing internal steps, sending messages or
receiving messages already pending in the channels. For example, for S in Fig. 1(e) and
X = {[p0, [a]]} we obtain closureS(X) = {[p0, [a]], [p1, [a]], [p2, [a]], [p3, []], [p5, x]}.

In the following, we define the partner TS 0(S) that has more behavior than any
conformance partner of S. Each state q of TS 0(S) consists of those situations that are
possible after the events leading to q have occurred.

Definition 12 (conformance partner overapproximation). Let S =
[QS , q0S , ΩS , ΠS ,�τ

S , δS] be a specification. We define the service automaton
TS 0(S) = [Q, q0, Ω, Π,�τ , δ] with Π = ΠS , Eτ = ∅, and Q, q0 and δ inductively as
follows:

base: q0 := closureS({[q0S , []] | q0S ∈ QS}) and q0 ∈ Q.
step: For all q ∈ Q and m ∈�:

1. There is a transition q
!m−−→ q′ and q′ ∈ Q iff

!m ∈ �Π and q′ := closureS({[qS ,B + [m]] | [qS ,B] ∈ q}) and [q∗,B] ∈ q′

implies B(m) ≤ k.
2. There is a transition q

?m−−→ q′ and q′ ∈ Q iff
?m ∈ �Π and q′ := closureS({[qS ,B] | [qS ,B + [m]] ∈ q}).

3. q ∈ Ω iff
there is [qS ,B] ∈ q with qS ∈ ΩS and m ∈ B implies there is [m, i] ∈ ΠS .

A state q in TS 0(S) has (1) a leaving edge labeled with a sending event !m iff the
given message-bound k is not exceeded by the sending of message m and (2) a leaving
edge for any receiving event ?m (possibly the closure of the successor state q′ is empty).
Further, state q is defined as a final state (3) iff it contains a situation where S is in a final
state and the input channels of TS 0(S) are empty. That means, if TS 0(S) reaches q, S
could be terminated and no more messages can be received by TS 0(S).

TS 0(S) overapproximates the behavior of any conformance partner.This can be di-
rectly proofed by comparing the conditions of Def. 12 and Def. 8 (conformance partner).
To fulfill condition (1) in Def. 12, TS 0(S) sends in every state all possible messages
m ∈ � (as long as the message-bound is not exceeded). In contrast, a conformance
partner is more restricted: Its sent messages must be strong or weak receivable by S
(see (1) in Def. 8). Caused by condition (2) in Def. 12, TS 0(S) is input complete; i.e.,
every state has a leaving edge for any receive event. Thus, a conformance partner cannot

Conformance Testing for Asynchronously Communicating Services 119

take more receive events into account. Finally, the last conditions of Def. 12 and Def. 8
coincide each other. Consequently, TS 0(S) weakly simulates any each conformance
partner of S.

To actually construct the test guidelines, we now create a conformance partner from
TS 0(S). Currently, TS 0(S) only violates condition (1) of Def. 8 whereas condition (2)
and (3) are already fulfilled (see the argumentation above). The behavior of TS 0(S) is
complete in the sense that due to the message bound no more edges can be added. Thus,
edges must be removed to obtain a conformance partner of S. Since only condition
(1) of Def. 8 is violated, TS 0(S) simply owns some send events that are forbidden
for conformance partners. They can be identified by the following labeling function.
Thereby, a strongly connected component (SCC) is a maximal set of mutually reachable
states, and a terminal strongly connected component (TSCC) is an SCC with no leaving
eges.

Definition 13 (labeling function). For TS i(S) (i = {0, 1, . . .}) of a service automa-
ton S we define a labeling function l that assigns to each SCC C in TS i(S) a set
M⊆ Bags(�) (l(C) =M) such thatM is maximal according to the following two
conditions:

1. for each state q ∈ C and each [p,B] ∈ q:M≤ B, and
2. for all messages m:M(m) ≤ max{l(C′)(m) | C′ is successor of C}.

We use the labeling function to analyze which messages sent by TS i(S) are neither
weak nor strong receivable by S. Then, the corresponding edges have to be eliminated
to fulfill condition (1) of Def. 8. Thereby, condition (2) and (3) remain fulfilled since
only edges labeled with send events are removed. In particular, input completeness is
preserved. The procedure is formalized in Def. 14.

Definition 14 (conformance partner synthesis). Given TS i(S) (i ≥ 0), the service
automaton TS i+1(S) is obtained by removing an arc labeled with !m and leading to
an SCC C with l(C)(m) > 0. Thereby, the removal of an arc includes the removal of
all states that become unreachable from the initial state q0.

Let TS (S) be TS j(S) for the smallest j with TS j(S) = TS j+1(S).

Fig. 4(a) shows TS (S) of the specification S in Fig. 1(e). From the argumentation above
follows directly that TS (S) is a conformance partner of S and it is the one with the most
behavior; i.e., TS (S) weakly simulates any other conformance partner of S. But, not
every weakly simulated service automaton is a conformance partner. For example, P1

and P2 are simulated by TS (S) in Fig. 4(a). But they are not conformance partners of
S as they violate condition (3) of Def. 8. For example, in the composition S ⊕P1, state
[p2, v1, [a]] has no successors, but neither p2 nor v1 is a final state.

To determine whether a weakly simulated automaton P is really a conformance part-
ner, we annotate TS (S) with Boolean formulae. They express which states and transi-
tions of TS (S) must be present in the simulation relation and which parts are allowed to
be absent. By the resulting annotated service automaton the set of all conformance part-
ners of S is characterized. We call it the test guidelines of specification S (TG(S) for
short) as it represents all eligible test cases. Due to page limit, we omit the details of

120 K. Kaschner

q0

q1

!d

q2

!a

TS(S)

q3

!b

q6

!b
!a

?xq5

!d

?x

q10 q11

!d
?y

q12

q15

!d ?x

q16

!d
?y

q18

!c
q17

!c

!d
?z

?z

!d
?y

q7 q8
!d

q13

!c

?z

q4
?y

q14

!c
?z

!d

!a

!a
!b

!b ?x
c

a

x

z
y

b

d

q∗

?y?x

∗

∗ ∗

∗

∗
∗

∗∗
∗

∗

∗

∗

∗

∗

∗

∗

∗

?z

q11

q∗

q∗

q∗

q∗q4

q∗

q∗

q∗

q11

q19

q9!d

q∗
∗

q∗

∗

?z

(a)

φ(q0) = !a∨!b∨!d
φ(q1) = !a∨!b
φ(q2) = !b∨!d
φ(q3) = !a∨!d
φ(q4) = !a
φ(q5) = !b
φ(q6) = ?x∧?y∨!d
φ(q7) = !c∨!d
φ(q8) = !c
φ(q9) = !d

φ(q10) = !d
φ(q11) = ?x∧?y
φ(q12) = !d∨!c
φ(q13) = !d
φ(q14) = ?z
φ(q15) = true
φ(q16) = !c
φ(q17) = !d
φ(q18) = ?z
φ(q19) = true
φ(q∗) = true

(b)

Fig. 4. Test guidelines TG(S) of specification S in Fig. 1(e) consisting of (a) conformance part-
ner TS(S) and (b) Boolean formulae. In the graphical representation, dotted states are place-
holders for states with the same number. TS(S) is input complete. For not depicted receiving
events there is implicitly an edge to state q∗, indicated by an edge labeled with ”∗“. The closure
of some states is as follows: q0 = {[p0, []], [p1, []], [p2, []]}, q1 = {[p0, [a]], [p1, [a]], [p2, [a]],
[p3, []], [p5, x]} and q∗ = ∅.

the construction of the Boolean formulae. It follows exactly the ideas of generating op-
erating guidelines [2]. There, Boolean formulae are used to characterize the set of the
deadlock-freely interacting partners for a given service.

Finally, a service automaton P is a conformance partner for S iff it is weakly sim-
ulated by TG(S) and in every state pair [qP , qTG(S)] of the weak simulation relation
state qP evaluates the boolean formula of qTG(S) to true. The latter means, φ(qTG(S))
is satisfied in the assignment βqP where βqP (e) = true iff there exists q′P ∈ QP with
[qP , e, q′P] ∈ δP .

As an illustrating example, Fig. 4(b) shows the Boolean formulae for TS (S) of the
specification S in Fig. 1(e). The formula φ(q0) = !a∨!b∨!c of the initial state q0 deter-
mines that a conformance partner must have a leaving edge labeled with !a, !b or !c (or
combinations thereof) at the beginning. Due to the structure of TS (S) a conformance
partner is also allowed to have additionally a leaving edge labeled with ?x, ?y or ?z (or
combinations thereof).

As already mentioned, [v0, q0] and [v1, q2] are elements of the weak simulation re-
lation between P1 and TS (S). State v0 has a leaving edge labeled with !a. Thus, v0

evaluates the formula !a∨!b∨!c of q0 to true. In contrast, v1 does not fulfill the formula
!b∨!d of state q2 as it has neither a leaving edge labeled with !b nor a leaving edge
labeled with !d. Thus, P1 is not characterized by TG(S). This coincides with the state-
ment above where P1 was identified as non-conformance partner of S using Def. 8.

Note, the literals in the Boolean formulae of the test guidelines are not always con-
nected by disjunctions. Conjunctions are also possible. For example, the Boolean for-
mula φ(q11) =?x∧?y of TS (S) in Fig. 4(a) indicates that a conformance partner must
provide both, a leaving edge labeled with ?x and a leaving edge labeled with ?y if the

Conformance Testing for Asynchronously Communicating Services 121

weak simulation relation ”touches” state q11. A conjunction in a Boolean formula is
caused by a decision of the specification that cannot be influenced by the partner. Thus,
a conformance partner is required to deal with the messages of all possible alternatives
to avoid deadlocks in the interaction. In the example, a partner cannot influence whether
S in Fig. 1(e) sends x or y.

We are aware that the complexity of the generation of TG(S) is more or less mod-
erate. But due to the strong links, it is comparable with the construction of operating
guidelines. With the tool Wendy1 [6] it was shown that operating guidelines can be
calculated in a reasonable time.

Test Case Selection. The test guidelines TG(S) of a specification S characterize all
conformance partners of S. Thus, TG(S) can already be seen as a complete test suite
for S. However, there are some redundant partners which can be left out without reduc-
ing the quality of the test suite.

The behavior of the IUT is evaluated based on the observations made during testing.
Consequently, to imitate each conformance partner, we only need to ensure that each
observation that is possible by any conformance partner is also possible by one partner
of the test suite. This is already fulfilled when selecting the conformance partner TS (S)
exclusively as it weakly simulates any conformance partner of S. But TS (S) contains
many branches. Thus, it needs to be executed repeatedly for thorough testing. To enforce
the different paths, manual adjustments are required before every execution. This is
not desirable in automated testing. Instead, we split TS (S) into several small partners
T1, ..., Tn such that

(1) each Ti is a conformance partner,
(2) each run of TS (S) is also considered by (at least) one Ti,
(3) each Ti contains a run that is not considered by any Tj (i �= j), and
(4) each Ti contains as less branches as possible.

Condition (1) and (2) guarantee that the resulting test suite contains only sound test
cases (i.e., conformance partners) and is exhaustive regarding Def. 9. By Condition (3),
we exclude redundancies among the test cases in the sense that each test partner could
make an observation that cannot be made by any other test partner in the test suite.
Definition (4) ensures that test partners do not need to be adjusted before execution.
Note, to preserve the conformance partner properties not all branches can be eliminated
by splitting. However, the remaining branches do not require adjustments. Basically,
they are caused by decisions of the implementation that cannot be influenced by the
test partner. Thus, a certain alternative cannot be enforced during testing and manually
adjustments can be omitted.

The generation of the test suite can be realized by one depth-first search through
the test guidelines. Basically, the splitting of the branches is triggered by the Boolean
formulae. Due to page limit, we sketch the procedure by the running example only. Con-
sider the test guidelines in Fig. 4(a). The formula “!a∨!b∨!d” of the initial state demands
that any conformance partner has to start with an !a, !b or !d event - or combinations
thereof. Thereby, the partners containing more than one action can choose which mes-
sage to send on (test) runtime. In such a case, we can move this runtime decision to the

1 http://service-technology.org/wendy

http://service-technology.org/wendy

122 K. Kaschner

g0

g3

!b

g1

!a

?x ?y

P5

g4 g5

g2

!c

c

a

x

z
y

b

d

!d
q̂ fail

pass

�

q̂ fail
�

q̂ fail

q̂ fail
?z

q̂ fail
?x

?y

q̂fail

?y

?z

g6
!d

?z
q̂fail

�

g7 q̂�

pass

?x

?y

fail

Fig. 5. A test partner synthesized from the test guidelines in Fig. 4. For better readability state q̂
is depicted multiply. An edge labeled with ”�“ is a placeholder for all receiving events of P5.

design time of the test partners and only consider those partners consisting of one of the
respective events. Consequently, we can split and have three kinds of test cases: either
starting with !a or !b or !d. By following the !d edge, we reach a state related to the
formula “!a∨!b”. Thus, we can refine the last kind of test partners to those which either
start with !d followed by !a or start with !d followed by !b. With the remaining states we
proceed in the same manner. Note, we do not split conjunctions. Otherwise, the confor-
mance partner property is not preserved. As an example, see again conformance partner
P3 in Fig. 3(d).

State q∗ in TS (S) is a special state as its closure is the empty set (cf. Fig.4(a)).
That is, a conformance partner P may contain a state q̂ that is related to q∗ in the
weak simulation relation, but the specification cannot cover transitions in P leading to
q̂. If, however, such a state is reached during testing, the implementation has sent an
unspecified message. To observe the implementation best possible, we add such a state
q̂ to the test partners and equip each ”regular” state with all possible transitions leading
to q̂. As soon as q̂ is reached during testing, a failure is detected and we can stop the
test run. Thus, we classify q̂ as a final state. During testing, in each state, a test partner
tries to execute a transition to q̂ first. If no unspecified message could be received it
continues with a ”regular” transition. As an example, Fig. 5 depicts a test partner. It
is the conformance partner P3 of Fig. 3(d) enriched with state q̂ and the respective
transitions to discover unspecified messages.

To distinguish the intended behavior from unspecified messages easily, we introduce
the labels pass and fail into the test partner. State q̂ is labeled with fail. The other
final states qΩ indicate that the specification could reach a final state if a test partner is
in qΩ . Consequently, we label each qΩ with pass. These are the only states where the
implementation is allowed to terminate.

For testing conformance we execute the selected partners one after another together
with the implementation. A failure is detected if during a test run the implementation
behaves unforeseen in any point of time; i.e., a test partner reaches a state labeled with
fail, the implementation terminates but the test partner is not in a pass state, or the

Conformance Testing for Asynchronously Communicating Services 123

interaction deadlocks (i.e., the test partner gets stuck in a state not labeled with pass).
For weak conformance it is sufficient to execute each test partner once. In contrast, to
establish strong conformance, the test partners are executed repeatedly until every ex-
pected observation is recognized. The implementation passes the test suite successfully,
if every test run completes with pass. On success, we can be confident that it will
interact correctly in practice as well.

5 Related Work

There exists a variety of approaches for testing services. A detailed overview is given
by Bozkurt et al. [7] and Baresi and Nitto [8]. Test case generation for synchronous
communicating components was studied in detail by Tretmans (e.g., [9,1]). But due
to the different characteristics of message passing, these approaches are not applicable
for our asynchronous setting. Others consider asynchronous communication, but with
limitations: The approaches of Dranidis et al. [10] and Keum et al. [11] are restricted to
services with a communication exclusively consisting of request-response pairs; that is,
the sending of a message is directly followed by receiving a message. In our approach,
we are more liberal; that is, messages can be sent and received in an arbitrary order.
Other approaches (e.g., [12,13,9]) assume asynchronous message passing through an
input and an output queue. Here, the sending and receiving is independent, but the
messages cannot overtake each other during their transmission. Consequently, these
approaches are also not applicable for our setting. To our knowledge, there exists no
related work that considers the overtaking of messages adequately when generating test
cases for asynchronous communicating components.

6 Conclusion

In this paper, we presented a black-box testing approach for stateful asynchronously
communicating services. We formalized correct (asynchronous) communication and
introduced conformance partners as test cases. Further, we studied how a limited num-
ber of conformance partners can be selected such that the resulting test suite is still
complete. That way, we avoid testing with all possible conformance partners without
reducing the quality of the test suite.

The introduced theory is independently from a specific language since we use au-
tomata as underlying formalism. Thus, the presented test case generation approach is
not restricted to services, but also applicable for asynchronous communicating compo-
nents in other domains; e.g., components of reactive systems or participants in telecom-
munication systems.

References

1. Tretmans, G.J.: Conformance testing with labelled transition systems: Implementation rela-
tions and test generation. Computer networks and ISDN systems 29, 49–79 (1996)

2. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services. In: Kleijn,
J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–341. Springer, Heidelberg
(2007)

124 K. Kaschner

3. Lohmann, N.: Correctness of services and their composition. PhD thesis, Universität Ros-
tock / Technische Universiteit Eindhoven, Rostock, Germany / Eindhoven, The Netherlands
(2010)

4. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Quarterly 2 (1989)
5. Kaschner, K., Lohmann, N.: Automatic test case generation for interacting services. In:

Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC 2008. LNCS, vol. 5472, pp. 66–78. Springer,
Heidelberg (2009)

6. Lohmann, N., Weinberg, D.: Wendy: A tool to synthesize partners for services. In: Lilius, J.,
Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 297–307. Springer, Heidelberg
(2010)

7. Bozkurt, M., Harman, M., Hassoun, Y.: Testing web services: A survey. Technical report
(2010)

8. Baresi, L., Nitto, E.D. (eds.): Test and Analysis of Web Services. Springer, Heidelberg (2007)
9. Tretmans, G.J.: A Formal Approach to Conformance Testing. PhD thesis, University of

Twente, Enschede (1992)
10. Dranidis, D., Kourtesis, D., Ramollari, E.: Formal verification of web service behavioural

conformance through testing (2007)
11. Keum, C., Kang, S., Ko, I.-Y., Baik, J., Choi, Y.-I.: Generating Test Cases for Web Services

Using Extended Finite State Machine. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) Test-
Com 2006. LNCS, vol. 3964, pp. 103–117. Springer, Heidelberg (2006)

12. Weiglhofer, M., Wotawa, F.: Asynchronous input-output conformance testing. In:
COMPSAC (1), pp. 154–159 (2009)

13. Simao, A., Petrenko, A.: From test purposes to asynchronous test cases. In: ICSTW 2010.
IEEE Computer Society (2010)

Programming Services with Correlation Sets

Fabrizio Montesi and Marco Carbone

IT University of Copenhagen, Denmark
{fmontesi,carbonem}@itu.dk

Abstract. Correlation sets define a powerful mechanism for routing in-
coming communications to the correct running session within a server,
by inspecting the content of the received messages. We present a lan-
guage for programming services based on correlation sets taking into ac-
count key aspects of service-oriented systems, such as distribution, loose
coupling, open-endedness and integration. Distinguishing features of our
approach are the notion of correlation aliases and an asynchronous com-
munication model. Our language is equipped with formal syntax, seman-
tics, and a typing system for ensuring desirable properties of programs
with respect to correlation sets. We provide an implementation as an
extension of the JOLIE language and apply it to a nontrivial real-world
example of a fully-functional distributed user authentication system.

1 Introduction

Correlation sets, introduced by WS-BPEL [17] (BPEL for short), are used to
program routing policies for delivering incoming messages to the correct run-
ning session within a server. A message is relayed to an internal session when-
ever a part of its data content matches a part of the session state. These parts
are defined by the correlation sets. Correlation sets are widely used in Service-
Oriented Computing (SOC) and in web technologies, from complex multiparty
interactions to simple client-server protocols between a web browser and a web
server. Their role resembles that of unique keys in relational databases: they
uniquely identify a session from a portion of their data. Considered in isolation
there is little difference between the two concepts. The interesting aspect lies in
the interplay with key aspects of SOC, such as distribution and loose coupling.
The aim of this paper is to investigate this interplay, in order to gain insight on
correlation sets as a programming methodology.

We develop a language for programming correlation-based services. Features
of our approach are the direct manipulation of correlation data in programs and
the notions of correlation aliasing. The former allows the programmer to write
custom policies for instantiating correlation sets from within sessions, whereas
the latter defines where correlation data is retrieved inside message content.

We start by analysing some prominent characteristics of SOC. The analysis
is used as a foundation for reasoning on the basic constructs of our language
and its semantics, whose structure takes inspiration from the π-calculus [14] and
SOCK [7]. We establish a typing discipline that prevents the occurrence of some

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 125–141, 2011.
� Springer-Verlag Berlin Heidelberg 2011

126 F. Montesi and M. Carbone

run-time errors, for example ensuring that a service does not break the property
that each session is uniquely identifiable through a correlation set. Our results
show how to discipline message routing programming based solely on data for
obtaining a determinism similar to that of π-calculus-like channels. We demon-
strate applicability by providing an implementation of our language – in the
form of an extension of the service-oriented language JOLIE [16] – and a nontriv-
ial real-world example showing a fully-functional distributed user authentication
system, inspired by the OpenID Authentication specifications [18].

1.1 Key Concepts in Service-Oriented Computing

Distribution. Service-oriented architectures such as Web Services are in most
cases distributed over a wide area network, e.g., the Internet. Distribution often
features two main aspects: locality and communication asynchrony. The former
means that processes run locally at different sites and use the network for com-
municating with each other. The latter means that messages are received at later
points in time wrt when they were sent.

Sessions. Services may engage in multiple, concurrent interactions that may
be complex and long-running, each one maintaining a separate execution state.
Services support these interactions with sessions : stateful instances of workflows.
Interactions between sessions are, in practice, dealt with correlation sets, which
establish the session a message must be delivered to.

Loose Coupling. Services maintain minimal dependencies among each other,
abstracting from internal implementation details. Particular emphasis is put on
the types of the functionalities exposed by a service, each one defined by an
operation and the structure of the data to be exchanged through it. The latter
is usually defined as a tree using, e.g., the XML language.

Integration. SOC promotes reuse since new services are often implemented by
composing already existing ones. Therefore, it is important to offer flexible mech-
anisms for adapting to the interfaces (e.g. APIs) of preexisting, legacy services
and to recent technologies.

Open-Endedness. Service-oriented systems can be open-ended: participants
may join or leave the system at run-time. For this reason, it is important to
design languages and tools that allow safe execution of systems regardless of the
environment they are executed in.

2 Language Overview

In this section, we outline with an example the main ideas of our language against
the key concepts of SOC. Formal syntax and semantics will be given in � 3.

Our example is a common distributed scenario with a chat service supporting
the management of chat rooms. Chat rooms are identified by name, as in IRC

Programming Services with Correlation Sets 127

servers [1]. The service allows users to: create new chat rooms, publish a message
in a chat room, retrieve published messages from existing chat rooms, and close
chat rooms. When a client requests the creation of a chat room, the service checks
that no other room with the same name exists. It then sends an administration
token back to the invoker. Any client can publish messages in an open chat room
or retrieve the history of published messages. The initial creator can close the
chat room at any point by using the administration token.

Data Structures. Each chat room has a data structure representing its local
state where its name, description, published messages, and administration token
are stored. In our language, we represent data as trees where nodes are values
of basic data types such as strings and integers. For instance, the state of a chat
room is represented by the tree:

5"hi;hey;" "fun"

descr csets

content

t'

name adminToken

"..."

(1)

The root has three children pointed to by labels descr, content and csets. Subn-
ode csets has two other children, name and adminToken. Data trees are accessed
in programs by means of paths. Paths are sequences of edge names separated
by dots, and can be used for traversing a tree starting from its root. Paths can
be used in assignments and expressions. For example, the tree above could be
initialised in our language with the following assignments:

descr = "..."; content = "hi;hey;";

csets.name = "fun"; csets.adminToken = 5

For brevity, we refer to a path as a variable, and the node it points to as its
value. So in this case variable content would have value "hi;hey;".

Communication Behaviour. In our language, data is exchanged between ser-
vices by means of message passing. As in Web Services, messages are labelled
by operations. Given operations create, publish, read and close, we could
program the chat service behaviour as:

create(name)(csets.adminToken) { csets.adminToken = new };

run = 1; while(run) {

[publish(msg)] { content = content + msg.content + ";" }

[read(req)(content) { 0 }] { 0 }

[close(req)] { run = 0 }

}

The first instruction is an input on operation create. The content of the received
message (a data tree) will be stored as a subtree of name which is a path in the
local state. We call this input instruction a session start since its execution will
start a new chat. Moreover, it is also a Request-Response (as in WSDL [20]): the
client will wait for the server to reply with the content of csets.adminToken that
is sent back once the local code in curly brackets { csets.adminToken = new } is

128 F. Montesi and M. Carbone

executed. new is a primitive that returns a locally-fresh token. After invocation,
the service enters a loop containing a choice of three inputs with operations
publish (for publishing in the chat room), read (for reading already published
messages), and close (for closing the chat room). The inputs with operations
publish and close are standard inputs called One-Way while the one with op-
eration read is a Request-Response.

Dually to the server, we can give a sample code for a client:

roomName = "MyRoom"; create@Chat (roomName)(adminToken);

msg1.roomName = roomName ; msg1.content = "hi";

msg2.roomName = roomName ; msg2.content = "hey";

{ publish@Chat (msg1) | publish@Chat (msg2) };

read@Chat (roomName)(chatContent); close@Chat (adminToken)

This client sample performs a Solicit-Response output (dual of Request-Response)
on operation create. The message is sent at location Chat, the location of the chat
server. Locations (cf. URIs) define where services are deployed, modeling locality.
The instruction is completed when the response from the server is received and as-
signed to adminToken. Thereafter, the client sends messages to the chat with two
Notification outputs (dual to One-Way) executed in parallel by means of the | op-
erator. Finally, the client reads the content of the chat room through operation
read and closes it by means of operation close.

In our language, messages are delivered asynchronously to sessions. After a
message is sent, it is guaranteed that the receiving service has buffered it, but not
that a session has consumed it. This can lead to bad behaviour. For this reason,
the semantics of our language in � 3 preserves ordering of buffered messages.

Correlation Sets and Aliasing. The chat service may have many running
sessions executing in parallel, each one representing a chat room. How can it
identify the session an incoming message is for, when it receives one from the
network? Correlation sets address this issue. In our language, a correlation set is a
set of paths, called correlation variables, that define which nodes of a session state
identify the session. A correlation set is defined by means of the keyword cset.
Our chat service has two correlation sets: cset {name} and cset {adminToken}.
For example, if the chat server receives a message carrying the tree:

"fun"

namecontent
"bye"

the first correlation set will then associate the message to the session running
with the state shown in (1), since both message and session share the same
value for correlation variable name, and route the message to it. We call this
association correlation, and we say that the message correlates with the session.
The value for correlation variable name is stored in the subtree csets in the
session state. More generally, in our language every correlation value must be
put in that subtree. This makes modifications to data that influences correlation
explicit. We exploit this aspect in the definition of our type system, in � 4.

Correlation sets are specified by the receiver: the client does not need to
be aware of the correlation sets of the invoked service but needs only to send

Programming Services with Correlation Sets 129

messages with the expected data structures, enabling loose coupling. Correlation
sets are also prone to integrate with existing technologies. For example, a web
server session can be identified by the correlation set c = {sid}, the session id
usually stored in a browser cookie.

Above, we associated a message to a session by matching the value of the
same path name in the message tree and the session state. Such a mechanism
is limiting, because the fact that the two paths must be the same means that
there is tight coupling between the service implementation and its interface. This
could be even completely unfeasible. Consider, for instance, the case in which
a programmer must write a service that interacts with a legacy application.
The interface of the service will have to be in accordance to what the legacy
application expects. Let us assume now that the legacy application will send
two different kinds of message to our new chat service, on different operations.
The first contains the room name under path roomName and the other in the
root of the message data tree; this is the behaviour of the client that we showed
before. How can we relate both values to the same correlation variable? We
address this issue with a notion of aliasing: a correlation variable may be defined
together with a list of aliases that tell where to retrieve, in a message, the value
to be compared with that of the session, depending on the type of the incoming
message (aliasing can be looked at as a type itself). Hence, the correlation set
definitions for the chat service become:
cset { name:Create Publish.roomName Read } cset { adminToken:Close }

where, for brevity, we assume the input message type of each operation has the
same name with an uppercase initial. Data types will be presented in detail in � 5.
Correlation aliasing is a key feature for meeting the requirements of integration.

3 Data Structures, Syntax and Semantics

In this section, we formalise data, syntax and give the semantics of our language.
Data Trees and Correlation. Let t range over a set of data trees T , with
edges denoted by x,y,z,. . . and nodes denoted by v. v is a value, which can be a
string, an integer, a location or the undefined value v⊥. Values is the set of all
values. In programs, data trees are accessed by paths. A path p is a sequence of
tree edges x1.xn denoting an endofunction on data trees defined as:

p(t) =

⎧⎨⎩
t if p = ε
p′(t′) if p = x.p′ and x is an edge from the root of t to t’s subtree t′

t⊥ if p = x.p′ and there is no edge x from t to a subtree t′

where ε denotes the empty sequence and t⊥ a tree with a single node with value
v⊥. We denote the set of possible paths with Paths. Furthermore, we require
paths written in programs to be nonempty. We extract the value of the root of
a tree by using the function † : T → Values.

A correlation set c is a set of paths corresponding to those values that identify
a running session of a service: c ⊆ Paths. A service may define more than one
correlation set: we denote with C a set of correlation sets, C ⊆ P(Paths).

130 F. Montesi and M. Carbone

We model correlation aliasing by means of an aliasing function, αC , that
establishes where to retrieve correlation values in a message received for an
operation. Let O be the set of possible operations, ranged over by o. An aliasing
αC is a function that given an operation o returns a correlation set c ∈ C and a
function from paths contained in c to paths in the incoming message:

αC : O ⇀ C × (Paths ⇀ Paths)

The aliasing function αC bases aliases on operations, and not on message types
like in � 2. This is a matter of convenience: in our language implementation,
aliases are defined on message types and are converted exactly to an aliasing
function as described in this section.

We now present our definition of correlation in terms of the relation �αC :

Definition 1 (Correlation �). A data tree t′ received for operation o correlates
with a data tree t with respect to an aliasing αC , written t′, o �αC t, whenever

∃c, f. c �= ∅ ∧ αC(o) = (c, f) ∧ ∀p ∈ c. f(p)(t′)† = csets.p(t)† �= v⊥

Syntax. The syntax of programs is structured in three layers. The behavioural
layer models actions performed by a service session, the service layer handles
the definition of correlation sets, state and session instantiation and the network
layer deals with deployment and communication. This layering is reflected in
the language implementation, presented in � 5.

Behavioural layer. Behavioural terms are given as processes, ranged over by
P, Q, . . . and defined by the grammar below where r denotes a channel name,
l, l′, . . . locations and e, e′, . . . unspecified first-order expressions that include lo-
cations and an operator new for generating locally-fresh values:

P, Q, . . . ::=
∑

i

[ηi]{Pi} (choice)

| η (input)
| η (output)
| if(e) {P} else {Q} (cond)
| while(e) {P} (loop)
| p = e (assign)
| P ; Q (seq)
| P | Q (par)
| 0 (inact)

η ::= o(p) (one-way)
| o(p)(p’) {P} (request-response)

η ::= o@p(p’) (notification)
| o@p(p’)(p’’) (solicit-response)

e ::= new (new)
| l (location)
| . . . (first-order expr)

Input-guarded branching is available through (choice). Communications can be
unidirectional (one-way) or bidirectional (request-response). o(p) reads an in-
coming message for operation o and places the received tree in the local state
tree under path p. Dually, o@p(p’) sends a message for operation o to the lo-
cation stored in the state node p points to, carrying the data in the local state
pointed by p’. Alternatively, (request-response) and (solicit-response) allow for
Request-Response communications. All other constructs are standard.

Programming Services with Correlation Sets 131

Service layer. Services, denoted by S, consist of a service behaviour definition
(replicated process) and an aliasing αC , defining correlation sets and aliasings:

S ::=
∑

i

[ηi]{Pi}
αC 0 (service) | 0
αC P · t⊥ · ε (starter)

Normally, services become active only after they are invoked. For this reason, a
system needs at least one service to spontaneously start invoking other services.
We call such a service a starter. A starter specifies a single session, which will
start its execution without the need to be triggered.
Network layer. Services are deployed on locations and composed in parallel to
form networks:

N, M ::= [S]l | νr N | N | N | 0 (network)

We assume that, for any network, it is never the case that two services are
deployed with the same location.

Semantics. We extend the language syntax with run-time terms (as in [8]):

S ::= P
αC I (running service)

I ::= P · t · m̃ | I | I (running sessions)

P ::= . . . | Wait(r, p) | Exec(r,p, P) (running processes)

Services are extended to support multiple locally running sessions (denoted by
I). Each session consists of the currently executing run-time process, a state t
and a FIFO queue m̃ [8], with ε representing the empty queue. m is a message
of the form (r, o, t) where r is a channel, o an operation and t the content. The
terms Wait(r, p) and Exec(r, p, P) model Request-Response communications.

We equip our model with a structural congruence defined as the least con-
gruence relation on P , I and N such that (| ,0) is a commutative monoid, it
supports alpha-conversion, 0; P ≡ P , P ≡ P ′ and I ≡ I ′ imply [P �αC I]l ≡
[P ′ �αC I ′]l, νr νr ′N ≡ νr ′νrN and such that (νr N) | N ′ ≡ νr (N | N ′) if r /∈
cn(N ′), where cn is a function that returns the set of channel names in a term.

We give the semantics in terms of a labeled transition system (lts). The labels,
ranged over by μ, are standard and their domain is omitted. The behavioural
layer defines the semantics of service sessions. A selection of the rules is reported
below (all rules can be found in the online appendix [2]).

(P-Choice) j ∈ J ηj
μ−→ Qj ⇒ ∑

i∈J [ηi]{Pi} μ−→ Qj ; Pj

(P-Solicit) o@p(p’)(p’’)
νr o@p(p’)−−−−−−−→ Wait(r, p’’) (P-Notify) o@p(p’)

νr o@p(p’)−−−−−−−→ 0

(P-Req) o(p)(p’) {P} r:o(p)−−−−→ Exec(r,p’, P) (P-OneWay) o(p)
r:o(p)−−−−→ 0

(P-EndExec) Exec(r, p,0)
r p−−→ 0 (P-Wait) Wait(r, p)

r p−−→ 0

(P-Exec) P
μ−→ P ′ ⇒ Exec(r,p, P)

μ−→ Exec(r, p, P ′) (P-Asgn) p = e
p = e−−−→ 0

132 F. Montesi and M. Carbone

Rules P-OneWay and P-Notify allow, respectively, for the receiving and sending
of asynchronous one-way messages. Rules P-Req and P-Solicit do similarly for
Request-Response patterns, handling also the subsequent response computation
and sending. The computation of the response is handled by rule P-Exec; when
the response computation terminates, the caller and the callee communicate
again by means of the private channel that they established in their interaction.
The modeling of Request-Response replies through private channels supports
classic client-server communications, where the client could be unable to expose
inputs of its own due to external restrictions, e.g. firewalls.

The service layer interfaces a session behaviour with the hosting service. Be-
low, we give a selection of the rules (complete table in the appendix [2]):

(S-Get) P
r:o(p)−−−−→ P ′ ⇒ P · t · (r, o, t′) ::m̃

τ−→ P ′ · t ←p t′ · m̃
(S-Send) P

νr o@p(p’)−−−−−−−→ P ′ ⇒ P · t · m̃ νr o@p(t)†(p’(t))−−−−−−−−−−−→ P ′ · t · m̃
(S-SR) P

r p−−→ P ′ ⇒ P · t · m̃ r p(t)−−−−→ P ′ · t · m̃
(S-RR) P

r p−−→ P ′ ⇒ P · t · m̃ r t′−−→ P ′ · t ←p t′ · m̃
(S-Asgn) P

p = e−−−→ P ′ ⇒ P · t · m̃ τ−→ P ′ · t �p e(t) · m̃
(S-Corr) t′, o 	αC t ⇒ P
αC I | P ′ · t · m̃ νr o(t′)−−−−−→ P
αC I | P ′ · t · m̃ :: (r, o, t′)

(S-Start)
t,o �αC

I P
r:o(p)−−−→P ′ t′=init(t,o,αC)

P�αC
I

νr o(t)−−−−→P�αC
I | P ′·t⊥←pt←csetst′·ε

init(t, o, αC) =

⎧⎨⎩
t⊥ �p1 f(p1)(t) . . . �pn f(pn)(t) if αC(o) = ({p1, . . . , pn}, f)
t⊥ if o /∈ Dom(αC)
undefined otherwise

In all rules but S-Corr and S-Start we have omitted the whole service structure
(it is irrelevant for those rules). Rule S-Start implements the spawning of a new
local session by receiving a message that does not correlate with any running
session (thus giving precedence to existing sessions), initialising its csets sub-
tree if there is an aliasing definition for operation o. Note that the initialisation
function init(t, o, αC) is partial and undefined if the message does not contain all
the correlation data specified in αC for o; in this case, rule S-Start can not be
applied. The relation t′, o �αC I is defined whenever there is no state t in I such
that t′, o �αC t. Moreover, t←p t′ is a function that returns a new tree obtained
from t by replacing the subtree pointed by p with t′; the function automatically
creates the missing nodes for traversing t with p, initializing them with v⊥. Func-
tion t �p e(t′) does the same but replaces only p(t)’s root with the value that
results from the evaluation of e on t′, e(t′). Rule S-Get allows a running process
to fetch the first element from the message queue of its session. Rule S-Send
propagates the label for a sending, which will be used by the network layer for
performing the actual message transmission; the rule substitutes the paths p
and p’ in the original label with, respectively, the location pointed by p and
the data tree pointed by p’ stored in the session state. Rules S-Send-Resp and
S-Recv-Resp close a Request-Response communication by exchanging the final

Programming Services with Correlation Sets 133

reply. Rule S-Asgn models variable assignment. Rule S-Corr allows a running
session to receive a correlating message and store it in its local queue (we omit
the condition for handling the special case of an empty queue m̃ = ε).

The outer layer of our semantics, the network layer, deals with inter-service
interactions. The rules are standard and can be found in the appendix [2].

4 Properties and Types

In this section we discuss some desirable properties of services that can be cap-
tured with our language. Some of them are based on conditions that need to be
guaranteed through the use of a typing system.

Properties. Our properties focus on integrity of sessions and communications.

Property 1 (Message delivery atomicity). Let N ≡ νr̃ ([S1]l1 | M) such that

S1
νr′ o@l2(tM)−−−−−−−−−→ S′

1 and N
τ−→ ν r̃ νr′ ([S′

1]l1 | M ′). Then, M ≡ [S2]l2 | M ′′,
M ′ ≡ [S′

2]l2 | M ′′ and either (i) S2 ≡ P �αC I | P ′ ·t·m̃ ∧ S′
2 ≡ P �αC I | P ′ ·t·m̃ ::

(r, o, tM) or (ii) S2 ≡ P �αC I ∧ S′
2 ≡ P �αC I | P ′ · t←p tM · ε for some t, p.

Property 1 states that if a service successfully executes a message sending then
there is another service in the network that either (i) put the message in the
queue of a correlating session or (ii) started a new session with a state containing
the message data. This is guaranteed by our semantics since a message sending
is completed only by synchronising with the receiver by means of rule S-Start
or rule S-Corr.

Property 2 (No session ambiguity). For each t′, o and service P �αC I, there is
at most one running session P ′ · t · m̃ in I such that t′, o �αC t.
Our second property states that a service can never have more than one run-
ning session that correlates with the same message. Such a situation would lead
to non-deterministic assignment of incoming messages, which goes against the
principle that a session is uniquely identifiable under correlation.

Property 3 (Possible inputs). Let S ≡ P �αC I | P ′ · t · m̃. If P ′ r:o(p)−−−−→ P ′′ then

m̃ = m̃′ :: (r, o, t′) ::m̃′′ ∨ S
νr o(t′)−−−−−→ P �αC I | P ′ · t · m̃ :: (r, o, t′).

Property 3 says that if a session needs to perform an input, then a message for
that input is in a queue and/or the enclosing service is able to receive a message
for the session by correlation. I.e., whenever a session tries to perform an input
its state has the related correlation set fully instantiated.

Properties 2 and 3 depend on the states of the sessions running in a service.
Bad programming can lead to executions for which the properties do not hold.
For example, for αC = [join �→ ({x}, [x �→ ε])], if the service with behaviour
start(a);csets.x = 5;join(b) gets invoked twice on start, it will spawn two
sessions which will both execute csets.x = 5. After that, by αC , both sessions
can correlate with a message for operation join with value 5 as root node. This

134 F. Montesi and M. Carbone

situation breaks property 2 and leads to the non-deterministic routing. Also, if
αC = [join �→ ({x, y}, [x �→ ε, y �→ y])], we break property 3: the two sessions
would be stuck forever waiting for a message for join, because rule S-Corr could
never be applied due to the lack of a value for y in the sessions.
Typing System. We present a type system that focuses on the manipulation
of correlation data. Our typing performs an initialisation analysis for correla-
tion variables. Although this is a well-established technique, our setting requires
particular attention to the concurrent execution of multiple sessions, and the
interplay between session behaviour and the aliasing function.

Typing judgments have the form Γ � P : ΔN |ΔP , where ΔN ⊆ Paths and
ΔP ⊆ Paths × {◦, •}. ΔN says which correlation paths need to be initialised
before P executes and ΔP contains the correlation paths initialised (provided)
by P . In ΔP each correlation path is flagged telling if it carries a fresh value (◦)
or not (•). The main typing rules follow (all rules and an extended discussion
can be found in the appendix [2]).

(T-CSets-New)
Γ � csets.p=new : ∅|{p◦} (T-CSets-Expr) e not undefined

Γ � csets.p=e : ∅|{p•}

(T-Seq)
Γ �P : ΔN1 |ΔP1 Γ � Q : ΔN2 |ΔP2 Δ′=(ΔN2\ΔP1)∪ΔN1

Γ � P ;Q : Δ′|ΔP1
ΔP2

(T-OneWay) Γ (o)=c �=∅ p�=csets.p′
Γ � o(p) : c|∅ (T-OneWay-Start) (Γ � o(p) : c|∅ ∨ c=∅) ∧ p�=csets.p′

Γ �s o(p) : c|∅

(T-Service)

∀j∈J.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Γj �s ηj : cj |ΔPj

∧ Γj � Pj : Δ′
Nj

|Δ′
Pj

∧ Δ′
Nj

⊆cj
ΔPj
∧

∀o∈Dom(Γj).αC(o)=(Γj(o),f) ∧ Dom(f)=Γj(o) ∧ ΔPj

Δ′

Pj
�C ∧

∀i∈J. i�=j ⇒ Γi �s ηi : ci|ΔPi
∧ Γi � Pi : Δ′

Ni
|Δ′

Pi
∧ (ΔPi

∪ΔPj
)∩cj=∅

∅�∑
i∈J [ηi]{Pi}�αC

I : ∅|∅

The first two rules check the freshness of a correlation variable initialisation. In
T-CSets-Exprwe require e to be defined, i.e. that its evaluation will not yield v⊥.
This is a simple (but omitted) definite assignments analysis. Rule T-Seq checks
that a same correlation variable is not defined multiple times – ΔP1 �ΔP2 – and
propagates the set of variables that need initialisation before executing P ; Q.
The disjoint union operator � behaves as the union operator ∪, but is defined
only if the two sets are disjoint. The operator ignores the freshness flag; as such,
it is never the case that a same path p can be in ΔP �Δ′

P more than once (either
with the same flag or with two different flags). We assume the same behaviour for
the other sets operators (union, intersection and subtraction). Rule T-OneWay
uses the environment Γ to register a requirement for the aliasing function of
the enclosing service, i.e. that a nonempty correlation set c is associated to
operation o. It sets ΔN = c for the input statement, meaning that the latter
requires all the nodes pointed by the paths in c to be initialised in the state
before being executed. These requirement are relaxed if the operation is used
as a guard for starting a new session, in rule T-OneWay-Start, for allowing
starting operations to have an empty associated correlation set. Rule T-Service
checks that a service is well-typed. First, it checks that every branch is well-
typed and that the aliasing function αC complies to the requirements stored in
the environment Γj of each branch. Then, it checks that for each correlation
set c ∈ C that will be completely defined at least one path in c will point to

Programming Services with Correlation Sets 135

a fresh value in the session state, ensuring that sessions will be distinguishable
by correlation. This check is performed through ΔP � C; relation � is formally
defined below. Finally, the rule forbids different initialisation methods of a same
correlation set, i.e. when two different session branches use the same correlation
set they must agree if that correlation set is initialised through local assignments
or through the message that started the session.

Relation � captures that, for the sake of being uniquely identifiable by cor-
relation, a session needs at least one correlation variable to be fresh for every
correlation set that is completely initialised.

Definition 2 (Correlation set freshness relation �)

ΔP � C iff ∀c ∈ C . (�p ∈ c . p /∈ ΔP) ⇒ (∃p ∈ c . p◦ ∈ ΔP)

We introduce now a notion of error in the semantics adding two rules. Both use
a wrong label that carries the location of the originating service. The first rule
requires that a service has two running sessions that correlate with the same
message tM for the same operation o, the negation of property 2. The second
rule, instead, is active when a running session wishes to input on an operation
for which there is no message in the queue and the correlation mechanism can
route no new message to such a session, the negation of property 3.

(S-Wrong-Corr)

P �αC
I | P ′·t′·m̃′ νr o(tM)−−−−−−−→P �αC

I | P ′·t′·m̃′::(r,o,tM)

P �αC
I | P ′′·t′′ ·m̃′′ νr ′o(tM)−−−−−−−→ P�αC

I | P ′′·t′′·m̃′′::(r′,o,tM)

[P�αC
I | P ′·t′·m̃′ | P ′′·t′′·m̃′′]l

wrong l−−−−→ [P �αC
I | P ′·t′·m̃′ | P ′′·t′′·m̃′′]l

(S-Wrong-Input)
P ′ r:o(p)−−−−→ P ′′ m̃ �=m̃′::(r,o,t′)::m̃′′ P�αC

I | P ′·t·m̃ νr o(t′′)
� P�αC

I | P ′·t·m̃::(r,o,t′′)

[P�αC
I | P ′·t·m̃]l

wrong l−−−−→ [P�αC
I | P ′·t·m̃]l

We can finally show the main results of our type system:

Theorem 1 (Subject Reduction)
Γ � N : ΔN |ΔP ∧ N

μ−→ N ′ ⇒ Γ � N ′ : Δ′
N |Δ′

P .

Theorem 2 (Safety). Let l be a location in N .

1. Γ � N : ΔN |ΔP ⇒ N
wrong l

� N ′

2. Γ � N : ΔN |ΔP ⇒ N |N ′ wrong l
� N ′′

Note that Theorem 2.2 ensures local safety, i.e. that a well-typed network will
respect our properties regardless of its context.

5 Language Implementation in JOLIE

We have implemented the techniques described in the previous sections by ex-
tending the JOLIE programming language. Our solution is now the official mech-
anism for programming correlation with JOLIE.
The JOLIE Language. We give a brief description of JOLIE [16,11], an open
source [5] fully-fledged service-oriented programming language.

136 F. Montesi and M. Carbone

JOLIE programs are composed by a behavioural part and a deployment part.
The syntax of the behavioural part is a superset of the syntax of our behavioural
layer. When it comes to correlation, the only relevant difference is that output
primitives refer to output ports (described below) rather than using paths for
pointing to locations. The deployment part defines communication ports and
interfaces. Output ports are used for invoking external services, whereas input
ports are used to expose locations on which the service can receive messages. A
port specifies a location and the data protocol to use (e.g. SOAP [19]). Some
JOLIE protocol implementations allow for configuring protocol-specific headers.
For example, we can connect cookie values in HTTP to paths in message data
trees. As a consequence, programmers can store correlation values as cookies
in web browsers that invoke a JOLIE service, thus seamlessly integrating our
approach with common web technologies. Interfaces describe the (types of the)
operations used in the behavioural part. Each element in an interface couples an
operation to its message types, which are structured as trees. For example, the
following defines an interface with a Request-Response operation sum that takes
a tree with two subnodes – x and y – and returns an integer:
type SumRequest :void { .x:int .y:int }

interface SumInterface { RequestResponse :sum(SumRequest)(int)}

Correlation Set Definitions. We have implemented the syntax exposed in � 2
for defining correlation sets based on message types. A cset block corresponds
to the definition of a correlation set c in our model and its related aliases in αC :

cset { list of V } V ::= p : list of pT

where p is a path and pT a path that starts with a message type reference. In
our implementation, these definitions are converted to an aliasing function αC

for the interpreter; this is a convenient shortcut: if two operations share a same
message type, then the aliasing function generated for the interpreter will have
an entry for both operations with the same aliasing specified for that type by the
programmer. Furthermore, we implemented a check for verifying that an alias
is compatible with the related message type – i.e. if the message type contains
the node of interest pointed by pT . Thus we can ensure that a correlation set
definition is compatible with the interface provided by the service.

Primitive new has been implemented using the Java standard library for gen-
erating secure Universally Unique Identifiers (UUID).

Implementation. The JOLIE interpreter is developed in the Java language and
is structured in four modules. The Parsing module reads a program, produces
its related AST (Abstract Syntax Tree), analyzes it and generates an OOIT.
An OOIT (Object-Oriented Interpretation Tree) executes a session behaviour.
The Runtime Environment handles the creation of sessions and their execution
states. The Communication Core handles communications.

We updated the Parsing module for handling the syntax for defining corre-
lation sets, applying our type system and converting cset definitions into an
aliasing function αC for the Runtime Environment. The Java class used by the
Runtime Environment for controlling the execution of a session has been aug-
mented with a message queue. When a node from the OOIT asks for a message
input, the Runtime Environment checks the message queue of its session as spec-

Programming Services with Correlation Sets 137

ified by rule S-Get. Message queues are filled with incoming messages received
by the Communication Core, looking for correlation as defined in rule S-Corr.
If no correlating session is found, the Runtime Environment is asked to start a
new session with the message, cf. S-Start. If the session can not be started, a
fault CorrelationError is sent to the invoker and the message is discarded1.

Request-Response interactions are supported by means of communication
channel objects. The OOIT nodes implementing rules P-Request and P-Solicit
(and their continuation) are given access to the channel of interest and can use it
for sending or receiving responses as specified by rules P-End-Exec and P-Wait,
abstracting from the underlying details.

6 Example: A Decentralised Authentication Protocol

We present now an example inspired by the OpenID Authentication specifica-
tions [18]. OpenID is a largely adopted Single Sign-On solution based upon a
decentralised authentication protocol that allows a service, called relying party,
to authenticate a user, the client, by relying on another external service that
is responsible for handling identities, the identity provider. When the client re-
quests access to the relying party, the latter opens an authentication session in
the identity provider. The client can then send its authentication credentials to
the session in the identity provider, which will inform the relying party on the
result of the authentication attempt.

We implemented the protocol in the updated version of JOLIE. The example
can be downloaded at [3], where we support web browser clients by means of the
JOLIE integration with HTTP.

The code below is a sketch of the relying party service:

cset { clientToken : ... }

cset { secureToken : AuthMessage .secureToken }

interface RelyingPartyInterface {

OneWay: authSucceeded (AuthMessage), authFailed (AuthMessage)

RequestResponse : login(LoginRequest)(Redirection) }

main {

login(loginRequest)(redirection) {

clientToken = new; secureToken = new;

openRequest . relyingPartyIdentifier = MY_IDENTIFIER ;

openRequest .clientToken = csets.clientToken ;

openRequest .secureToken = csets.secureToken ;

openAuth@IdentityProvider(openRequest);

/* ... build redirection message for client ... */

}; [authSucceeded (message)] { /* ... */ }

[authFailed (message)] { /* ... */ }

}

1 For space reasons, we do not report fault semantics in this paper. The implementa-
tion is in line with the fault handling semantics of JOLIE, reported in [15,6].

138 F. Montesi and M. Carbone

First, the service receives a request on the Request-Response operation login
from the client for initiating the protocol. The body of login generates two fresh
tokens: clientToken, referred by the first correlation set2, and secureToken,
referred by the second one. We will use clientToken for receiving messages from
the client and secureToken for receiving messages from the identity provider.
The client is not informed about secureToken, preventing it to maliciously act as
the identity provider. The body of login performs a call to the identity provider,
opening an authentication session and communicating secureToken. We can
now safely reply to the client that invoked operation login: property 1, from
� 4, guarantees that the session in identity provider has been opened at this point
and that the client will therefore find it ready. The reply will redirect the client
to the identity provider. The relying party will then wait for a notification about
the result of the authentication attempt, hence the input choice on the operations
authSucceeded and authFailed, which correlate through secureToken.

We now show the identity provider behavioural code sketch omitting the in-
terface definitions: we assume input types to have their operation name with an
initial uppercase letter.

cset { relyingPartyIdentifier:

OpenAuthentication .relyingPartyIdentifier

Authenticate .relyingPartyIdentifier ,

token: OpenAuthentication .token Authenticate .token }

main {

openAuth (openRequest); authenticate (authRequest);

/* ... verify authentication ... */

message.secureToken = openRequest .secureToken ;

if (verified) { authSucceeded@RelyingParty(message) }

else { authFailed@RelyingParty(message) }

}

The service can start a session with an input on openAuth (to be called by the
relying party). The operation receives the values for initialising the correlation
set, which is composed by two variables: relyingPartyIdentifier and token.
We need both variables because there may be multiple active sessions for han-
dling requests from different relying parties: two relying parties may generate a
same value for token. We solve this issue by adding the identifier, e.g. a URL,
of the relying party to the correlation set. After the session has been opened,
we wait for the user credentials on operation authenticate. The credentials are
verified and the result sent to the relying party.

7 Related Work and Conclusions

Related Work. Previous versions of JOLIE (including SOCK [7]) feature corre-
lation sets where correlation data is manipulated within sessions. However, they

2 Aliasings for clientToken are left unspecified in the relying party implementation
sketch, since it will only be used after establishing whether the user can log in.

Programming Services with Correlation Sets 139

support no correlation aliasing and no static analysis for identifying bad correla-
tion programming. Even though SOCK features the Request-Response pattern,
its semantics does not meet our requirement of integration since the reply is not
routed through a private channel. Instead, it is correlated again to the session of
the invoker, thus making it similar to an interaction performed by means of two
One-Way operations. Moreover, they do not feature multiple correlation sets. All
correlation variables are, instead, put in one single correlation set, which does
not act as unique session identifier: sessions may be ambiguous under correlation
and the related message routing non-deterministic.

Our approach takes inspiration from BPEL [17], which supports multiple cor-
relation sets for identifying sessions. In BPEL, correlation programming is mixed
with that of behaviours. Correlation sets are scoped in specific code blocks, and
different input activities can use different correlation sets for receiving even if
they use the same operation. This makes BPEL programming more error-prone
than in our approach, where correlation sets are based on the service interface
(its operations) and defined independently from the behaviour. Our language
expressiveness is still high, due to correlation data manipulation inside sessions.
BPEL does not support correlation programming with a typing discipline, but
relies on run-time faults for signaling undesired situations that the programmer
specifies manually. Finally, BPEL does not come with formal specifications, leav-
ing much of the burden in handling the complexity of a distributed system to
the programmer and the interpreter implementations.

Blite [13] is a model for service orchestration, whose programs can be compiled
to BPEL processes [4]. The model is formal, but the final compilation to BPEL
makes the approach suffer from the unpredictable behaviour of the execution
engine, due to the lack of formality of BPEL specifications. Similarly, the calculus
for web services COWS [12] allows to correlate sessions based on channel usage.
COWS features several tools for static analyses and an interpreter, however it
lacks a fully-fledged language implementation.

[10] provides an implementation of channel-based sessions relying on session
types [9,8]. In this setting, message routing does not rely on data transmission.

Conclusions. We have presented a language for programming services with
correlation sets, investigating the interplay between some key aspects of SOC and
correlation-based programming. Our approach features a direct manipulation
of correlation data in programs and a notion of correlation aliasing. We have
shown how both aspects can be disciplined by means of a type system. The
applicability of our work has been demonstrated by exposing implementations
of real-world scenarios where correlation sets can be successfully employed. Our
solution has replaced the previous correlation mechanism in the JOLIE language.
The features guaranteed by properties 2 and 3 are similar to those provided by
private channels in the π-calculus. In our approach different sessions use different
instances of correlation sets, much like in the π-calculus replications of a same
process use different private channels.

140 F. Montesi and M. Carbone

Our semantics for message queues can lead to deadlocks, because a session
must consume messages in the same order in which they are received. There
are various potential solutions to this problem. For instance, each session could
manage a separate queue for each correlation set, or for each operation. An-
other issue in our model is that it does not handle session garbage collection,
i.e. terminated sessions are not removed from their executing service. Handling
this aspect is nontrivial, because a terminated session may have some messages
left in its queue which must be dealt with. We leave the investigation of these
issues to future work, as they are not relevant for the results presented in this
paper.

More complex forms of analysis may be developed for correlation. An interest-
ing aspect would be to analyze the behaviour of service networks by introducing
behavioural types for participants such as session types [8]. Another topic to be
explored is that of security. Programs may be checked to establish that correla-
tion values are not compromised.

References

1. Internet Relay Chat Protocol, http://tools.ietf.org/html/rfc1459

2. On-line appendix, http://www.itu.dk/people/fabr/icsoc2011

3. OpenID implementation,
http://www.jolie-lang.org/files/icsoc2011/openid.zip

4. Cesari, L., Lapadula, A., Pugliese, R., Tiezzi, F.: A Tool for Rapid Development
of WS-BPEL applications. In: SAC, pp. 2438–2442 (2010)

5. Free Software Foundation (FSF). GNU Lesser General Public License,
http://www.gnu.org/licenses/lgpl.html

6. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: Dynamic Error Handling in Ser-
vice Oriented Applications. Fundamenta Informaticae 95(1), 73–102 (2009)

7. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: A Calculus
for Service Oriented Computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.
LNCS, vol. 4294, pp. 327–338. Springer, Heidelberg (2006)

8. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proc. of POPL 2008, vol. 43(1), pp. 273–284. ACM Press (2008)

9. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Disci-
pline for Structured Communication-Based Programming. In: Hankin, C. (ed.)
ESOP 1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

10. Hu, R., Yoshida, N., Honda, K.: Session-based Distributed Programming in Java.
In: Ryan, M. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 516–541. Springer, Heidel-
berg (2008)

11. JOLIE. JOLIE: Java Orchestration Language Interpreter Engine,
http://www.jolie-lang.org/

12. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web ser-
vices. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer,
Heidelberg (2007)

13. Lapadula, A., Pugliese, R., Tiezzi, F.: A Formal Account of WS-BPEL. In: Wang,
A.H., Tennenholtz, M. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 199–
215. Springer, Heidelberg (2008)

http://tools.ietf.org/html/rfc1459
http://www.itu.dk/people/fabr/icsoc2011
http://www.jolie-lang.org/files/icsoc2011/openid.zip
http://www.gnu.org/licenses/lgpl.html
http://www.jolie-lang.org/

Programming Services with Correlation Sets 141

14. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I and II. Infor-
mation and Computation 100(1), 1–40, 41–77 (1992)

15. Montesi, F., Guidi, C., Lanese, I., Zavattaro, G.: Dynamic Fault Handling Mech-
anisms for Service-Oriented Applications. In: Proceedings of ECOWS 2008, pp.
225–234 (2008)

16. Montesi, F., Guidi, C., Zavattaro, G.: Composing Services with JOLIE. In: Pro-
ceedings of ECOWS 2007, pp. 13–22 (2007)

17. OASIS. Web Services Business Process Execution Language Version 2.0,
http://docs.oasis-open.org/wsbpel/

18. OpenID. OpenID Specifications,
http://openid.net/developers/specs/

19. World Wide Web Consortium (W3C). SOAP Specifications,
http://www.w3.org/TR/soap/

20. World Wide Web Consortium (W3C). Web Services Description Language,
http://www.w3.org/TR/wsdl

http://docs.oasis-open.org/wsbpel/
http://openid.net/developers/specs/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl

Verification of Deployed Artifact Systems
via Data Abstraction

Francesco Belardinelli, Alessio Lomuscio, and Fabio Patrizi

Department of Computing,
Imperial College London, UK

Abstract. Artifact systems are a novel paradigm for specifying and implement-
ing business processes described in terms of interacting modules called artifacts.
Artifacts consist of data and lifecycle models, accounting for the relational struc-
ture of the artifact state and its possible evolutions over time. We consider the
problem of verifying artifact systems against specifications expressed in quan-
tified temporal logic. This problem is in general undecidable. However, when
artifact systems are deployed, their states can contain only a bounded number of
elements. We exploit this fact to develop an abstraction technique that enables us
to verify deployed artifact systems by model checking their bounded abstraction.

1 Introduction

Artifact systems (AS) are a recent paradigm in business process modelling and develop-
ment [9]. Artifacts are a response to criticisms [4] in the workflow and services literature
regarding the fact that services are typically represented and reasoned about by mostly
neglecting the data involved in the system. In artifact systems the underlying databases
on which services operate are treated with similar emphasis to the processes operating
on them. While this responds to the need of more accurate and natural modelling, it
results in significant difficulties from a theoretical point of view.

A considerable problem arises when trying to verify formally services specified using
artifacts. While verification through model checking and its applications (including or-
chestration and choreography) are relatively well-understood in the plain process-based
modelling, the presence of data makes these problems much harder. Put succinctly, in-
finite domains in the underlying databases lead to infinite state-spaces for the model
checking problem. Infinite domains also call for specification languages that support
quantification, e.g., first-order temporal logic. This setting is known to generate an un-
decidable model checking problem [12], thereby reducing, at least theoretically, the
possibility of verifying ASs in their most general setting.

The starting point for the work presented in this paper is that any AS, when de-
ployed, can operationally have only size-bounded (though infinitely many) underlying
database states, due to the finiteness of the machine running the system. It follows that
any verification problem for ASs deployed on concrete machines can be abstracted by
considering bounded abstractions of the theoretically infinite domains. This bound can
either be obtained from the size of the memory of the machine running the system,
or can be iteratively refined to generate finer abstractions of the concrete system. In the

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 142–156, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Verification of Deployed Artifact Systems via Data Abstraction 143

paper we show that under these assumptions the verification problem for ASs is
decidable and its complexity, while high, is not vastly dissimilar from that of other
applications.

The rest of the paper is organised as follows. In Section 2 we introduce database
schemas and a formalisation of AS suitable for verification. Section 3 illustrates the
formalisation through a use-case thereby validating the formal machinery. In Section 4
we introduce the verification problem in its general form and point to its undecidability.
Section 5 introduces the notion of deployed artifacts and bounded AS, and presents
abstraction results leading to the decidability of the verification problem. We conclude
by applying the results to the scenario discussed and pointing to further work.

Related Work

Although different approaches to infinite-state model checking have been proposed
[15,7,6], we are not aware of results addressing properties that involve the relational
structure of the data in each state.

Our approach is largely inspired by [11] and [10], where decidability is achieved by
adding syntactic restrictions on both the system description and the specification to ver-
ify. These impose a form of guarded quantification on variables and limit the access to
the values stored as the system evolves. Our work differs from these in that we do not
allow quantifiers to occur out of the scope of modal operators in the property to verify;
we do not impose any restriction on the system specification; we verify an infinite frag-
ment of the original system; and we consider a branching-time specification language.
We do not perceive exploring a fragment of the original system as a limitation, as the ex-
plored fragment is in fact the deployed system. Moreover, our technique enables a form
of (incomplete) verification based on generating successively more refined abstractions
of the original system.

Our abstraction technique is based on replacing the actual values of the concrete
system with a finite set of symbolic values. This approach was previously adopted in [3]
in the context of service composition.

Our work is also related to [1], which addresses the orthogonal problem of checking
whether an AS introduces only a finite number of new values. The conditions put for-
ward in this work guarantee the underlying model to be finite-state, which is a tighter
restriction than in our case. While we focus on properties specified in a first-order exten-
sion of CTL, [1] considers a quantified version of the μ-calculus. Although not formally
addressed here, we expect our technique to be able to deal with μ-calculus properties,
too, thus making our framework a generalisation of [1].

2 Artifacts and Artifact Systems

Broadly speaking, artifacts are abstract models of the atomic entities that, by mutu-
ally interacting, give rise to a business process [9]. They are structures consisting of
two parts: a data model and a lifecycle model. The former captures a fragment of the
structure of the information relevant to the process. The latter is a specification of the
possible ways such information evolves in response to external or internal events, and

144 F. Belardinelli, A. Lomuscio, and F. Patrizi

how new events for other artifacts are generated. For our purposes, artifacts can be
simply thought of as possibly nested records (i.e., they may contain sets of records as
attribute values), equipped with actions that enable changes on their attributes. A char-
acterizing feature of artifacts is the presence of an id and some status attributes. The
id field identifies a particular artifact instance, the status fields encode the advancement
of the artifact with respect to its lifecycle. Adopting an approach similar to [1], in this
paper we formalise artifact systems by means of a database and a set of actions, which
account for the artifact data models and the artifact lifecycles, respectively.

Definition 1 (Database schema). A (relational) database schema is a setD = {P1/a1,
. . . , Pn/an} of relation (or predicate) symbols Pi, each associated with its arity ai ∈ N.

Definition 2 (Database interpretation). Given a database schema D, a
D-interpretation (orD-instance) over an interpretation domain U is a mapping D asso-
ciating each relation symbol Pi with a finite ai-ary relation over U , i.e., D(Pi) ⊆ Uai .

The set of allD-interpretations over a given domain U is denoted by ID(U). The active
domain of D, adom(D), is the set of all U -elements occurring in some tuple of some
predicate interpretation D(Pi). By definition the active domain adom(D) is finite.

Definition 3 (First-order formulas over D, U , and V). Given a database schema
D = {P1/a1, . . . , Pn/an}, and two sets U and V of constant and variable symbols,
respectively, the language LD,U,V of first-order formulas ϕ over D, U and V is induc-
tively defined as follows:

ϕ ::= t = t′ | Pi(t) | (ϕ) | ¬ϕ | ∀xϕ | ϕ→ ϕ,

where t is an ai-tuple of terms, and t, t′ are terms, i.e., elements in U ∪ V .

In the rest of the paper we assume V fixed, thus omitting the corresponding subscript.
When no ambiguity arise, we also omit U . We use the standard abbreviations ∃, �, ⊥,
∧, ∨, and �=. Free and bound variables are defined as standard. For a formula ϕ we
denote the set of its variables as vars(ϕ), the set of its free variables as free(ϕ), and
the set of constants occurring in ϕ as const(ϕ). We write ϕ(x) with x = 〈x1, . . . , x�〉
to list explicitly in arbitrary order all the free variables in ϕ. By slight abuse of notation,
we treat x as a set, thus we write x = free(ϕ). A sentence is a formula with no
free variables. Given a FO-formula ϕ(x), and a list of terms t s.t. |x| = |t| =
,
ϕ(t) represents the formula obtained from ϕ by replacing every occurrence of the i-th
element in x with the i-th element of t, for i = 1, . . . ,
. Obviously, if t contains only
constants, ϕ(t) is a sentence. A U -assignment is a total function σ : V �→ U . For
technical convenience, we implicitly assume that every U -assignment σ is extended to
the whole U and is the identity on it, i.e., ∀u ∈ U, σ(u) = u. Given an assignment
σ, we denote by σx

u the U -assignment s.t. σx
u(x) .= u and σx

u(x′) .= σ(x′), for every
x′ ∈ V s.t. x′ �= x.

Definition 4 (Active-Domain Semantics of FO-formulas). Given a database schema
D, an interpretation domain U , a D-interpretation D over U , a U -assignment σ, and
a FO-formula ϕ ∈ LD,U over D and U (with V being fixed), we inductively define
whether D satisfies ϕ under σ, written (D, σ) |= ϕ, as follows:

Verification of Deployed Artifact Systems via Data Abstraction 145

(D, σ) |= t = t′ iff σ(t) = σ(t′);
(D, σ) |= Pi(t1, . . . , t�) iff 〈σ(t1), . . . , σ(t�)〉 ∈ D(Pi);
(D, σ) |= (ϕ) iff (D, σ) |= ϕ;
(D, σ) |= ¬ϕ iff (D, σ) �|= ϕ;
(D, σ) |= ϕ→ ψ iff (D, σ) �|= ϕ or (D, σ) |= ψ;
(D, σ) |= ∀xϕ iff for every u ∈ adom(D), (D, σx

u) |= ϕ.

A formula ϕ is true in D, written D |= ϕ, iff (D, σ) |= ϕ for all U - assignments σ.

It can easily be seen that the satisfaction of a formula does not depend on the values that
σ assigns to non-free variables. Observe that we are adopting an active-domain seman-
tics, i.e., all quantified variables range over the active domain of D. Also, notice that
constants are uninterpreted, i.e., two constants are equal iff they are the same constant.
We can now formally introduce the notion of artifact system.

Definition 5 (Artifact System). An artifact system is a tuple S = 〈D, U, D0, Φ〉,
where:

– D = {P1/a1, . . . , Pn/an} is a database schema;
– U is a (possibly infinite) interpretation domain;
– D0 is an initial database instance;
– Φ is a finite set of parametric artifact actions of the form α(x) = 〈π(y), ψ(z)〉,

where:
• x = y ∪ z;
• α(x) is the action signature and x the set of its (formal) parameters;
• π(y) is the action precondition, i.e., a FO-formula over D and U ;
• ψ(z) is the action postcondition, i.e., a FO-formula over D ∪ D′ and U , with
D′ .= {P ′

1/a1, . . . , P
′
n/an};

For an action α(x) we let const(α(x)) = const(π(x)) ∪ const(ψ(x)). Moreover, if
|x| =
, an execution of α(x) with actual parameters u ∈ U �, is the ground action
α(u) = 〈π(v), ψ(w)〉, where v (resp., w) is obtained by replacing each y (z) compo-
nent yi (zi) with the value occurring in u at the same position as yi (zi) in x (observe
that such replacements make both π(v) and ψ(w) sentences).

The semantics of an artifact system is given in terms of its possible executions, cap-
tured by a Kripke structure, whose states are instances of the database schema and
whose transitions correspond to the execution of some action.

Definition 6 (Model of an artifact system). Given an artifact system S = 〈D, U,
D0, Φ〉, the model of S is the Kripke structure K = 〈Σ, D0, τ〉, where:

– Σ ⊆ ID(U) is the set of states;
– D0 ∈ Σ is the initial state;
– τ ⊆ Σ ×Σ is the transition relation such that τ(D, D′) iff for some action α(x) ∈

Φ, there exists an execution α(u) = 〈π(v), ψ(w)〉 such that:
• adom(D′) ⊆ adom(D) ∪ {u1, . . . , u�} ∪ const(ψ);
• D |= π(v); in this case we say that the action is enabled;
• D⊕D′ |= ψ(w), where D⊕D′ is the (D ∪D′)-interpretation over U s.t. for

every i ∈ {1, . . . , n}, D ⊕D′(Pi) = D(Pi), and D ⊕D′(P ′
i) = D′(Pi).

146 F. Belardinelli, A. Lomuscio, and F. Patrizi

As usual, preconditions represent the requirements that a state needs to fulfil in order for
an action to be enabled, and postconditions define the possible successors of the state
where the action is executed. The former are simplyLD,U FO-sentences to be evaluated
against the current state, while the latter are FO-sentences using unprimed and primed
relational symbols from D, that refer to relations in the current and the successor state.
Intuitively, given two states (i.e.,D-interpretations) D and D′, the operator⊕ constructs
a new “joint” interpretation, namely D ⊕D′, interpreting unprimed relational symbols
in D, and primed in D′. Notice that the active domain of D ⊕ D′ may include values
from adom(D), const(ψ), and u only. Thus D′ may contain additional values with
respect to D′, i.e., those from const(ϕ) and u, and is necessarily finite. For this reason,
given D and α(u) the whole set of D-successors is computable.

Since the actual parameters come from an infinite domain, the set of K-states Σ is
in general infinite. This may happen even in presence of a fixed bound on the active
domain of each state, which, although bounded, may correspond to any of the infinitely
many finite subsets of U not exceeding the bound.

3 The Order-to-Cash Business Process

In this section we formalise a business process inspired by an IBM customer exam-
ple [13] as an AS. Specifically, the Order-to-Cash scenario describes the process a
product undergoes from order to delivery. It involves a manufacturer, some customers,
and some suppliers. The process starts when a customer prepares and submits a cus-
tomer purchase order (CPO), i.e., a list of products the customer needs.

Upon receiving a CPO, the manufacturer first prepares a work order (WO), i.e., a
list of the components needed to assemble the requested products. Then she selects a
possible supplier for each component, prepares one material purchase order (MPO) per
selected supplier, and submits each MPO to the corresponding supplier.

A supplier can either accept or reject a received MPO. In the former case he delivers
the requested components to the manufacturer. In the latter case he notifies the manufac-
turer of his rejection. If an MPO is rejected, the manufacturer can delete it and prepare
and submit new MPOs for the rejected components. When all the components required
by a product have been delivered to the manufacturer, she assembles the product and,
provided the order has been paid for, delivers it to the customer. Any order (directly on
indirectly) related to a CPO can be deleted only after the CPO is deleted.

It is natural to identify 3 classes of artifacts in this process, each corresponding to
some of the orders manipulated by the participants (CPO, WO and MPO). An intuitive
representation of the artifact lifecycles, capturing only the dependence of actions from
the artifact statuses, is shown in Fig. 1. We stress that this is an incomplete represen-
tation of the business process, as the interaction between actions and the artifact data
content is not represented.

Next, we provide a formal model of the process as an artifact system, where the arti-
fact data models are represented as a relational database schema, and the corresponding
lifecycles are formally characterised by an appropriate set of actions.

As to the data model, we reserve a distinguished relation for each artifact class, as
well as some auxiliary relations necessary to model the line items present in MPOs

Verification of Deployed Artifact Systems via Data Abstraction 147

prepared pending paid shipped
createCPO submitCPO pay shipCPO deleteCPO

(a) Customer Purchase Order lifecyle

preparation complete
createWO

addLineItemWO

doneWO deleteWO

(b) Work Order Lifecyle

empty preparation submitted

accepted shipped

rejected

createMPO

addLineItemMPO

addLineItemMPO

sendMPO

accept

reject

shipMPO

deleteMPO

deleteMPO

(c) Material Purchase Order lifecyle

Fig. 1. Lifecycles of the artifacts involved in the order-to-cash scenario

and WOs. In addition, we introduce static relations to store customer, supplier, prod-
uct, and material information. The resulting database schema D is shown in Table 1.
R(n1, . . . , nk) defines the relation symbol R of arity k (R/k), where ni is the name
of the i-th component, or attribute, of its tuples. The relations Customers, Suppliers,
Products, and Materials, as well as CPO, WO, and MPO, are self-explanatory.
Observe the presence of the attribute status in the relations corresponding to artifacts.
As to WO LI and MPO LI , they contain the line items occurring in WOs and MPOs,
respectively. For instance, the fact that two line items containing materials with codes 5
and 6, and quantities 20 and 15, respectively, occur in the WO with id = 10, is captured
by the presence of tuples 〈10, 5, 20〉 and 〈10, 6, 15〉 in WO LI .

Table 1. Database schema D of the artifact system for the cash-to-order scenario

Customers(id, name),
Suppliers(id, name),

Products(code, descr),
Materials(code, descr),

CPO(id, customer id, product code, status),
WO(id, cpo id, status),

WO LI(wo id, mat code, qty),
MPO(id, wo id, supplier, status),
MPO LI(mpo id, mat code, qty).

As interpretation domain, we consider the infinite set U of alphanumeric strings. In
the initial database instance D0 the only non-empty relations are Customers,
Suppliers, Products, and Materials, which contain background information, such
as the possible customers, or a catalogue of available products.

System actions capture legal operations on the underlying database and, thus, on arti-
facts. In Table 2 we report some of their specifications. Variables (from V) and constants
(from U) are distinguished by fonts v and c, respectively. We adopt the convention that
an action affects only those relations whose name occurs in ψ.

148 F. Belardinelli, A. Lomuscio, and F. Patrizi

Table 2. Specification of the actions affecting the artifact WO in the order-to-cash scenario

– createWO(id, cpo) = 〈π(id, cpo), ψ(id, cpo)〉, where:
• π(id, cpo) ≡ ∃code, cid, st CPO(cpo, code, cid, st)∧

∀id′, c, s (WO(id′, c, s) → id �= id′)
• ψ(id, cpo) ≡ WO′(id, cpo, preparation)∧

∀id′, c, s (id �= id′ → (WO(id′, c, s) ↔ WO′(id′, c, s)))
– addLineItemWO(wo,mat, qty) = 〈π(wo, mat), ψ(wo, mat, qty)〉, where:

• π(wo, mat) ≡ ∃cpo WO(wo, cpo, preparation) ∧ ∃desc Materials(mat, desc)∧
¬∃q WO LI(wo, mat, q)

• ψ(wo, mat, qty) ≡ WO LI ′(wo, mat, qty)∧
∀w, m, q

(
(WO LI(w, m, q) → WO LI ′(w, m, q))∧

(WO LI ′(w, m, q) → (WO LI(w, m, q)∨(w = wo∧m = mat∧q = qty)))
)

– doneWO(wo) = 〈π(wo), ψ(wo)〉, where:
• π(wo) ≡ ∃cpo WO(wo, cpo, preparation)
• ψ(wo) ≡ ∀w, c, s

(
(w �= wo → (WO(w, c, s) ↔ WO′(w, c, s))) ∧

(WO(wo, c, s) → (WO′(wo, c, complete)∧(s �= complete → ¬WO′(wo, c, s))))
)

Consider the action createWO, whose purpose is the creation of a WO-artifact in-
stance. Its precondition requires that cpo is the identifier of some existing CPO, and that
id in the new WO is unique with respect to those present when the action is executed.
Its postcondition states that, upon execution, the WO relation contains exactly one ad-
ditional tuple, with identifier attribute set to id, and attribute status set to preparation.

The action addLineItem adds a line item, i.e., a component, to an existing WO. It
takes in input the identifier of the WO-artifact (wo), that of the material to add (mat),
and the needed quantity (qty). The precondition requires that such parameters corre-
spond to some existing WO-artifact and material, and that the WO-artifact is in state
preparation. Moreover, it is required that the material being added is not already present
in the WO. The postcondition states that the new line item is added to WO LI .

As an example of action triggering an artifact’s status transition, consider doneWO.
It is executable only if the WO-artifact is in status preparation and its effect is to set the
status attribute to complete.

Notice that although actions are typically conceived to manipulate artifacts of a spe-
cific class, e.g., createWO manipulates WO-artifacts, their preconditions and postcon-
ditions may depend on artifact instances of different classes, e.g. createWO’s precon-
dition depends on CPO-artifacts. We stress that action executability depends not only
on the status attribute of an artifact, but on the data content of the whole database, i.e.,
of all other artifacts. Similarly, action executions do not only affect status attributes.

As actions are executed, the database content, hence the state of each artifact,
changes. Obviously, after executing an action, other actions become executable, their
executions change the database state, thus make other actions executable, and so on.

4 Verification of Artifact Systems

We focus on the problem of verifying an artifact system against a temporal specification
of interest. Since the states of an artifact are characterised by their data content, the
atomic components of the specifications need to capture relational properties pertaining

Verification of Deployed Artifact Systems via Data Abstraction 149

to the states. This, together with the fact that the domain of data may be infinite, makes
the problem substantially more challenging than standard model checking [8].

We first introduce syntax and semantics of our specification language.

Definition 7 (Sentence-atomic FO-CTL formulas (over a system S)). Given an arti-
fact system S = 〈D, U, D0, Φ〉, the language LS of sentence-atomic FO-CTL formulas
over S is inductively defined as follows:

ϕ ::= φ | (ϕ) | ¬ϕ | ϕ→ ϕ | AXϕ | AϕUϕ | EϕUϕ,

where φ is an FO-sentence from LD,U .

The notions of free and bound variables extend in the obvious way to LS , as well as
functions vars, free, and const. Observe that formulas in LS are in fact sentences,
as all of their atomic components are FO-sentences. We use the standard abbrevia-
tions EXϕ ≡ ¬AX¬ϕ, AFϕ ≡ A�Uϕ, AGϕ ≡ ¬E�U¬ϕ, EFϕ ≡ E�Uϕ, and
EGϕ ≡ ¬A�U¬ϕ.

In order to define the semantics of LS , we first define runs on a Kripke structure.

Definition 8 (K-runs). Given a Kripke structure K = 〈Σ, D0, τ〉 of an artifact system
S, a K-run r from a K-state D ∈ Σ is an infinite sequence of K-states
r = D0 → D1 → · · · such that D0 = D and τ(Di, Di+1), for i ≥ 0. For every run r
and i ≥ 0, we define r(i) .= Di.

The semantics of LS formulas is provided in terms of the model K of S.

Definition 9 (Semantics of LS). Consider a system S and its model K. Given a for-
mula ϕ ∈ LS and a K-state D ∈ Σ, the satisfaction relation |= is inductively defined
as follows:

(K, D) |= ϕ iff D |= ϕ, if ϕ is an FO-sentence;
(K, D) |= (ϕ) iff (K, D) |= ϕ;
(K, D) |= ¬ϕ iff (K, D) �|= ϕ;
(K, D) |= ϕ→ ψ iff (K, D) �|= ϕ or (K, D) |= ψ;
(K, D) |= AXϕ iff for all K-runs r s.t. r(0) = D, (K, r(1)) |= ϕ;
(K, D) |= AϕUψ iff for all K-runs r s.t. r(0) = D, ∃k ≥ 0 s.t. (K, r(k)) |= ψ

and ∀j s.t. 0 ≤ j < k, (K, r(j)) |= ϕ;
(K, D) |= EϕUψ iff for some K-run r, r(0) = D, ∃k ≥ 0 s.t. (K, r(k)) |= ψ,

and ∀j s.t. 0 ≤ j < k, (K, r(j)) |= ϕ.

A formula ϕ is true in K, written K |= ϕ, if (K, D0) |= ϕ. We say that S satisfies ϕ,
written S |= ϕ, if K |= ϕ.

In the following we describe some properties of the artifact system introduced in Sec-
tion 3 to model the order-to-cash business process. The first one requires that a product
can be shipped to a customer only if all the required materials are already shipped to
the manufacturer:

ϕship = AG ∀c
(
shippedCPO(c)→ ∀m (related(c, m)→ shippedMPO(m))

)
,

150 F. Belardinelli, A. Lomuscio, and F. Patrizi

where: shippedCPO(x) ≡ ∃c, p CPO(x, c, p, shipped) and shippedMPO(x) ≡
∃w, sp MPO(x, w, sp, shipped), respectively, capture the fact that the CPO and the
MPO with id = x are in status shipped; and related(x, y) ≡ ∃c, p, s CPO(x, c, p, s)∧
∃w, s WO(w, x, s) ∧ ∃sp, st MPO(y, w, sp, st) holds iff the MPO with id = y is re-
lated, via some WO, to the CPO with id = x.

The next property captures the existence of a run containing a state whose active
domain exceeds a given size-threshold t:

ϕt+ = EF ∃x1, . . . , xt+1

∧
i�=j

xi �= xj .

We can also express the fact that from some state there exists a way to achieve some
goal (although this may not necessarily happen). For instance, the next formula states
that there exists always a way to empty all non-static relations:

ϕempty = AG EF (emptyCPO ∧ emptyWO ∧ emptyMPO),

where: emptyCPO ≡ ¬∃i, c, p, s CPO(i, c, p, s), emptyWO ≡ ¬∃i, c, s WO(i, c, s)
∧ ¬∃w, m, q WO LI(w, m, q), and emptyMPO is similar to emptyWO.

Specifications such as those above are useful to describe properties of ASs. Typically,
we are interested in checking automatically whether they are satisfied on particular
systems. If we consider the AS described previously in the order-to-cash scenario, it is
not difficult to see that ϕship, ϕt+, and ϕempty are satisfied.

Observe that while we may, and in fact can, ascertain the truth of those specifications
on this specific example, we cannot be able to do so automatically on any possible
system, as the general model checking problem is undecidable. It is therefore natural to
investigate decidable subclasses of this problem.

4.1 The General Problem

We are interested in exploring the model checking problem for artifact systems. For-
mally, this amounts to checking whether an artifact system S satisfies a specification
ϕ ∈ LS , i.e., S |= ϕ. It can be shown that the problem is decidable for U finite, and
undecidable otherwise.

To see the former, observe that if U contains only finitely many distinct elements,
its model contains a finite set of states, whose (relational) data content can be captured
by a finite set of propositions (namely, one proposition per fact). By quantifier elimi-
nation ϕ can be transformed into an equivalent propositional (CTL) temporal formula,
whose propositions are ground atoms from LS . This corresponds to reducing the whole
problem to standard model checking, which is known to be decidable [8].

For the latter, we have the following result.

Theorem 1. The model checking problem for artifact systems is undecidable.

Proof (Sketch). The theorem can be proven by showing that every Turing machine T
whose tape contains an initial input I can be simulated by an artifact system ST,I ,
and that the problem of checking whether T terminates on that particular input can be
reduced to checking whether ST,I |= ϕ, where ϕ encodes the termination condition.
The detailed construction is similar to that of Th. 4.10 in [11].

Verification of Deployed Artifact Systems via Data Abstraction 151

The theorem essentially states the general impossibility of checking the correctness
of an artifact system’s design, when the interpretation domain is infinite. As this as-
sumption is typically fulfilled in practice, this is a considerably negative result. In the
following, rather than focusing on the design, we explore conditions on the concrete
implementation of a system that yield decidability and enable the reduction of the veri-
fication task to standard model checking of finite-state systems.

5 Verification of Deployed Artifact Systems

Artifact systems serve as a theoretical model for systems to be implemented and de-
ployed on actual machines [9,14]. It is therefore of interest, and of particular relevance
in practice, to investigate the model checking problem for such concrete implementa-
tions. Observe that any running system can use only the finite, bounded memory pro-
vided by the machine it is deployed on (e.g., corresponding to all virtual and physical
memory of the server). We show in the following that in this concrete setting the model
checking problem against FO-CTL specifications is decidable. Precisely, we show that
given a size-bound on the number of values a machine can store at each state, it is de-
cidable whether the artifact system executed on a machine with that bound satisfies the
specification. This result can be used to perform a particular form of data abstraction
on artifact-systems that guarantees, in limited cases, the preservation of specifications
between abstract and concrete systems.

We start this analysis by defining formally the model of an artifact system deployed
on a concrete machine.

Definition 10 (b-bounded model of a system S). Consider a system S = 〈D, U,
D0, Φ〉, its model K = 〈Σ, D0, τ〉, and a bound b ∈ N such that b ≥ |adom(D0)|.
The b-bounded model of S is the Kripke structure Kb = 〈Σb, D0, τb〉, such that:

– Σb
.= {D ∈ Σ such that |adom(D)| ≤ b};

– τb
.= {〈D, D′〉 ∈ τ such that D, D′ ∈ Σb}.

Roughly speaking,Kb is a sub-model of S, obtained from K by considering only those
K-runs whose states do not exceed the size-bound b. Intuitively, bounded models cap-
ture the possible executions of S on a machine able to accommodate at most b elements.
Notice that because the artifact system may still reach infinitely many states, verifying
Kb against a specification ϕ via an exhaustive visit of its state space is not a viable
approach. Nonetheless, we next show that a finite-state, abstract model K̂b,ϕ capturing
all the features of Kb relevant to ϕ can be constructed. Specifically, we demonstrate
that verifying K̂b,ϕ against ϕ is equivalent to verifying Kb against ϕ. This will show
that the verification of deployed ASs is actually decidable. In practice, K̂b,ϕ is defined
indirectly, as the b-bounded model of an abstract system Ŝb,ϕ obtained from S, b, and
ϕ, as follows.

Definition 11 ((b, ϕ)-bounded abstract system). Given a system S = 〈D, U, D0, Φ〉,
a sentence-atomic FO-CTL sentence ϕ ∈ LS , and a bound b ≥ |adom(D0)|, the (b, ϕ)-
bounded abstract system of S is the system Ŝb,ϕ = 〈D, Û , D0, Φ〉, where Û = CS,ϕ∪Ĉ ,
and:

152 F. Belardinelli, A. Lomuscio, and F. Patrizi

– CS,ϕ = const(ϕ) ∪
⋃

φ∈Φ const(φ) ∪ adom(D0);

– Ĉ is any set of symbols s.t.:

• Ĉ ∩ CS,ϕ = ∅,
• |Ĉ| = b + v, with v = maxφ∈Φ{|vars(φ)|

}
.

As it turns out, Ŝb,ϕ is an artifact system analogous to S, except for the interpretation
domain. Specifically, Û contains all the constants mentioned in S or in ϕ, plus b + v
additional symbols. Intuitively, these symbols are used to simulate the database content
at each state, as well as the new values that actions may introduce upon execution. In
particular, at least b distinct symbols are required for the former and v for the latter.
Observe that by preserving (the identity of) all mentioned constants, the FO-formulas
occurring in S and ϕ need no syntactic transformation to preserve their semantics.

As anticipated above, since Û is finite, checking K̂b,ϕ |= ϕ is decidable. Below, we
show that Ŝb,ϕ contains enough information to check the bounded model of the original
artifact system S against the specification ϕ.

Theorem 2. Consider a system S with U infinite, a bound b ≥ |adom(D0)|, and a
sentence-atomic FO-CTL formula ϕ ∈ LS . If Ŝb,ϕ is the (b, ϕ)-bounded abstract system
of S then Kb |= ϕ⇔ K̂b,ϕ |= ϕ, where Kb is the b-bounded model of S and K̂b,ϕ is the
b-bounded model of Ŝb,ϕ.

The theorem shows that instead of checking Kb |= ϕ (where Kb is infinite), we can
check K̂b,ϕ |= ϕ. Since K̂b,ϕ is finite, this essentially corresponds to a standard model
checking problem, thus any technique for this is also effective for the verification of the
b-bounded model of S.

Next, we sketch the main steps of the proof of Theorem 2. We essentially show that
K̂b,ϕ is a sound abstraction of the bounded model of S, that is, it retains enough infor-
mation to carry out the verification task. Our approach is inspired by the decidability
proof of verification of input-bounded ASM+s presented in [11]. Interestingly, differ-
ently from that, the assumption of size-boundedness allows us to conclude that Kb and
K̂b,ϕ are bi-similar, thus enabling verification of branching-time properties. Firstly, we
define when two D-instances are isomorphic.

Definition 12 (C-isomorphic D-instances). Two D-instances D and D̂, respectively
over U and Û , are said C-isomorphic, for C ⊆ U, Û , written D ∼C D, iff there exists
a bijection i : adom(D) ∪ C �→ adom(D̂) ∪C that is the identity on C, and such that
for every j = 1, . . . , n, and for every u ∈ adom(D)ai , D |= Pj(u)⇔ D̂ |= Pj(i(u)),
where i(u) .= 〈i(u1), . . . , i(uaj)〉.

The relation ∼C can be shown to be an equivalence relation.
The following rephrases a well-known result.

Proposition 1. Given two D-instances D and D̂, respectively over U and Û , an FO-
sentence ϕ from LD,U , and a set C ⊆ U, Û such that const(ϕ) ⊆ C, if D ∼C D̂,
then

D |= ϕ⇔ D̂ |= ϕ.

Verification of Deployed Artifact Systems via Data Abstraction 153

This is the main ingredient that allows us to prove Theorem 2. It states that if two
D-instances are C-isomorphic, they are indistinguishable by any sentence over D con-
taining only constants from C. We can now define when two Kripke structures are
bi-similar.

Definition 13 (C-bisimilar Kripke structures). Given two Kripke structures K =
〈Σ, D0, τ〉 and K̂ = 〈Σ̂, D̂0, τ̂ 〉, with Σ ⊆ ID(U) and Σ̂ ⊆ ID(Û), and a finite
set of constants C ⊆ U, Û , K and K̂ are said C-bisimilar, written K ≈C K̂, iff there
exists a relation R ⊆ Σ × Σ̂, called C(-preserving) bisimulation, s.t. 〈D0, D̂0〉 ∈ R,
and if 〈D, D̂〉 ∈ R then:

– D ∼C D̂;
– for all D′ s.t. τ(D, D′) there exists D̂′ s.t. τ̂(D̂, D̂′) and 〈D′, D̂′〉 ∈ R;
– for all D̂′ s.t. τ̂(D̂, D̂′) there exists D′ s.t. τ(D, D′) and 〈D′, D̂′〉 ∈ R.

When 〈D, D̂〉 ∈ R, we say that D and D̂ are C-bisimilar (with respect to K and K̂),
written D ≈C D̂.

Since by definition D ≈C D̂ implies D ∼C D̂, by Proposition 1, for every FO-sentence
ϕ over D and U such that const(ϕ) ⊆ C, D |= ϕ ⇔ D̂ |= ϕ. Observe that the atoms
of a FO-CTL sentence are FO-sentences and can thus be evaluated at each state of a
Kripke structure. Therefore, we have the following result.

Lemma 1. GivenK, K̂, and C as above, for every sentence-atomic FO-CTL formula ϕ
over D and U such that const(ϕ) ⊆ C, if D ∈ Σ and D̂ ∈ Σ̂ are such that D ≈C D̂,
then

(K, D) |= ϕ⇔ (K̂, D̂) |= ϕ.

Proof (Sketch). By induction on the structure of ϕ.

In other words sentence-atomic FO-CTL formulas containing only constants from C
do not distinguish among C-bisimilar Kripke structures. As a consequence, an infinite-
state Kripke structure can be verified against a sentence-atomic FO-CTL formula by
verifying any other C-bisimilar structure, including a finite one, against the same spec-
ification.

The final step of the proof consists in showing that the b-bounded model of S, Kb,
which is infinite-state in general, is CS,ϕ-bisimilar to K̂b,ϕ, which is, instead, finite by
construction (see Def. 11).

Lemma 2. Consider a system S = 〈D, U, D0, Φ〉 and a sentence-atomic FO-CTL for-
mula ϕ ∈ LS . Fix a bound b ≥ |adom(D0)|, let Kb be the b-bounded model of S,
Ŝb,ϕ = 〈D, Û , D0, Φ〉 the (b, ϕ)-bounded abstract system of S, and K̂b,ϕ its b-bounded
model. Then, for CS,ϕ as in Def. 11, Kb ≈CS,ϕ K̂b,ϕ.

Proof (Sketch). The proof consists in constructing a particular CS,ϕ-bisimulation be-
tween Kb and K̂b,ϕ. The result then follows.

Lemmas 1 and 2 allow us to prove Theorem 2; so we achieve decidability of the problem
in presence of a known bound.

154 F. Belardinelli, A. Lomuscio, and F. Patrizi

Obviously, not all specifications satisfied by K̂b,ϕ are preserved in the original (un-
bounded execution of) S. For instance, consider the specification ϕt−

.= ¬ϕt+, with
ϕt+ as in Section 3, which expresses the fact that all states of every run contain at most
t distinct elements. This is clearly satisfied by K̂t,ϕt− , but not by S. On the other hand,
preservation is guaranteed for existential specifications. Precisely, let LE

S ⊆ LS be the
sublanguage of sentence-atomic FO-ECTL formulas ϕ, inductively defined as:

ϕ ::= φ | (ϕ) | ϕ ∨ ϕ | ϕ ∧ ϕ | EXϕ | EϕUϕ,

where φ is a FO-sentence. Then, we have the following result:

Theorem 3. Given a system S, a bound b ≥ |adom(D0)|, and a sentence-atomic FO-
ECTL formula ϕ ∈ LE

S , if K̂b,ϕ |= ϕ then S |= ϕ.

Thus, a sound (though incomplete) technique to check whether S |= ϕ for ϕ ∈ LE
S

consists in iteratively increasing b and checking whether K̂b,ϕ |= ϕ. If at some point the
check is successful, then S |= ϕ. For instance, to check whether the AS S of Section 3
contains a run with some state exceeding a size-threshold T , one can iteratively check
whether K̂b,ϕT+ |= ϕT+ by increasing b at each iteration, starting with b = T + 1. In
this particular case, it is easy to see that for any T the check is successful for b = T +1,
as the system is unbounded. A similar approach can be adopted to find counterexamples
of universal specifications (i.e., negations of existential ones) such as ϕship. There are
obvious correspondences with the technique of Bounded Model Checking [5]. Here,
however, the bound is on the size of the states, rather than the length of runs.

If S is size-bounded itself (and the bound is known), all specifications are preserved
from the abstract to the concrete model and viceversa. If this is not the case, however,
nothing can be said with respect to specifications that are neither universal nor existen-
tial. For instance, by checking that K̂b,ϕempty |= ϕempty we cannot conclude anything
in general about S |= ϕempty . That is, our technique fails in proving that S |= ϕempty

(although we know that this holds). However, by changing the bound b, we can check
whether the property holds on any deployed instance of S.

We now analyse the time-complexity of our technique, by considering the cost of
reducing the problem of checking whether Kb |= ϕ to standard CTL model checking.
Given S, b, and ϕ, this essentially requires: building K̂b,ϕ (from Ŝb,ϕ); transforming ϕ
into a propositional CTL formula ϕp, by recursively replacing each formula of the form
∀xϕ(x) with

∧
û∈Û ϕ(û); and then applying an algorithm for CTL model checking, to

check whether K̂b,ϕ |= ϕp. This gives the following result.

Theorem 4. Given an artifact system S = 〈D, U, D0, Φ〉, a sentence-atomic FO-CTL
formula ϕ ∈ LS , and a bound b ≥ |adom(D0)|, checking whether Kb |= ϕ can be

done in time O(22|Û |a |ϕ||Û ||ϕ|
), where a =

∑
i=1,...,n ai, with ai the arity of Pi ∈ D,

and Û defined as in Def. 11.

Proof (sketch). K̂b,ϕ |= ϕp can be checked in time O((s + t) · |ϕp|), where s and t are,
respectively, the number of states and transitions of K̂b,ϕ [8]. We have s ≤ |ID(Û)| ≤
2|Û|a , t ≤ s2, and s + t ≤ 2s2 ≤ 22|Û|a+1. For ϕp, each quantifier elimination makes

the current expansion grow by a factor |Û |, thus |ϕp| ≤ |ϕ| · |Û |
|ϕ|

.

Verification of Deployed Artifact Systems via Data Abstraction 155

Theorem 4 gives a doubly exponential bound, which comes from the arity of the re-
lations in D. Observe that the bound is singly exponential in |Û |, which is typically
greater than a. Moreover, if one needs to check the correctness of S against ϕ for dif-
ferent bounds b, then a can be considered constant, and the cost of increasing b becomes
only single exponential. While certainly a high complexity, we observe that comparable
bounds are obtained in [1] and [11]. In particular, the latter led to the implementation of
a system performing surprisingly well in cases of practical interest. This may suggest
that worst-case instances are not frequent in practice, and that a similar behavior might
be observed also in implementations of our technique.

6 Conclusions and Future Work

In this paper we have considered the problem of checking a deployed artifact system
against a temporal specification expressed in a FO extension of CTL. A notable feature
of deployed systems is the existence of an upper bound on the number of elements
they can store at each state at execution time. This allows us to reduce the problem to
standard model checking by executing the system using only a finite number of abstract
symbols instead of an infinite number of concrete ones.

Roughly speaking, our technique can be seen as an inspection of a fragment, contain-
ing only bounded states, of the original, concrete system. While this does not allow us to
draw conclusions in the general case, it may provide some answers in particular cases.
In this respect, we have shown that FO-ECTL properties satisfied by the abstract sys-
tem are also satisfied by the concrete system, and that if the concrete system is bounded
itself, our technique is complete.

We are interested in pursuing this work further. Firstly, we have shown that the
bounded model of the abstract system is bisimilar to the bounded model of the con-
crete system. This suggests that all the obtained results, here presented in the context of
FO-CTL, also hold for a FO extension of the μ-calculus analogous to [1]. If confirmed,
this would imply that our work can be generalised to this setting.

Secondly, an interesting extension concerns the possibility of quantifying over vari-
ables across the scopes of modal operators, thus enabling us to capture temporal re-
lationships among elements at different states. This introduces a major difficulty as it
apparently requires to record elements from potentially infinitely many states. We are
interested in pursuing abstraction techniques to avoid this problem.

Finally, the framework considered here may be extended to a Multi-Agent frame-
work similarly to [2], thus accounting for the agents that execute the actions and their
knowledge about the system.

Acknowledgements. The research leading to these results has received funding from
the EC FP7 under grant agreements n. 257593, and from the EPRSC grant EP/I00520X.

References

1. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., De Masellis, R., Felli, P.: Founda-
tions of Relational Artifacts Verification. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.)
BPM 2011. LNCS, vol. 6896, pp. 379–395. Springer, Heidelberg (2011)

156 F. Belardinelli, A. Lomuscio, and F. Patrizi

2. Belardinelli, F., Lomuscio, A., Patrizi, F.: A Computationally-Grounded Semantics for
Artifact-Centric Systems and Abstraction Results. In: Proc. of IJCAI (to appear, 2011)

3. Berardi, D., Calvanese, D., De Giacomo, G., Hull, R., Mecella, M.: Automatic Composition
of Transition-based Semantic Web Services with Messaging. In: Proc. of VLDB (2005)

4. Bhattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J.: Towards Formal Analysis of
Artifact-Centric Business Process Models. In: Alonso, G., Dadam, P., Rosemann, M. (eds.)
BPM 2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

5. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded Model Checking.
Advances in Computers 58, 118–149 (2003)

6. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract Regular Model Checking. In: Alur, R.,
Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer, Heidelberg (2004)

7. Caucal, D.: On Infinite Transition Graphs having a Decidable Monadic Theory. Theoretical
Computer Science 290(1), 79–115 (2003)

8. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (2000)
9. Cohn, D., Hull, R.: Business Artifacts: A Data-Centric Approach to Modeling Business Op-

erations and Processes. IEEE Data Eng. Bull. 32(3), 3–9 (2009)
10. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic Verification of Data-centric Business

Processes. In: Proc. of ICDT (2009)
11. Deutsch, A., Sui, L., Vianu, V.: Specification and Verification of Data-Driven Web Applica-

tions. J. Comput. Syst. Sci. 73(3), 442–474 (2007)
12. Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal Logics:

Theory and Applications. Studies in Logic, vol. 148. Elsevier (2003)
13. Hull, R., Damaggio, E., De Masellis, R., Fournier, F., Gupta, M., Heath III, F.T., Hobson,

S., Linehan, M.H., Maradugu, S., Nigam, A., Sukaviriya, P., Vaculı́n, R.: Business Artifacts
with Guard-Stage-Milestone Lifecycles: Managing Artifact Interactions with Conditions and
Events. In: Proc. of DEBS (to appear, 2011)

14. Hull, R., Narendra, N.C., Nigam, A.: Facilitating Workflow Interoperation Using Artifact-
Centric Hubs. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS,
vol. 5900, pp. 1–18. Springer, Heidelberg (2009)

15. Walukiewicz, I.: Model Checking CTL Properties of Pushdown Systems. In: Kapoor, S.,
Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 127–138. Springer, Heidelberg (2000)

Profiling-as-a-Service: Adaptive Scalable Resource
Profiling for the Cloud in the Cloud

Nima Kaviani1, Eric Wohlstadter1, and Rodger Lea2

1 Department of Computer Science
2 Department of Electrical and Computer Engineering,

University of British Columbia
201-2366 Main Mall, Vancouver, B.C. V6T 1Z4 Canada

{nkaviani,wohlstad}@cs.ubc.ca, rodgerl@ece.ubc.ca

Abstract. Runtime profiling of Web-based applications and services is an ef-
fective method to aid in the provisioning of required resources, for monitoring
service-level objectives, and for detecting implementation defects. Unfortunately,
it is difficult to obtain accurate profile data on live client workloads due to the high
overhead of instrumentation. This paper describes a cloud-based profiling service
for managing the tradeoffs between: (i) profiling accuracy, (ii) performance over-
head, and (iii) costs incurred for cloud computing platform usage. We validate
our cloud-based profiling service by applying it to an open-source e-commerce
Web application.

Keywords: Cloud Computing, Resource Monitoring, Application Profiling.

1 Introduction

Dynamic runtime instrumentation of applications is an effective method for understand-
ing application behavior, but imposes significant overhead to the overall execution of
the application [2,7,8,10]. One approach to mitigating this overhead is offline profiling
which allows the profiling process to be executed in a controlled environment, using
collected traces from a previously running application. However, relying on offline col-
lected traces often leads to inaccurate or incomplete datasets which may not represent
the full spectrum of application execution states [9].

With the emergence of cloud computing and its direct mapping of resource usage
to financial costs, the need to understand the low-level behavior of services and appli-
cations has become more critical, yet the challenges in profiling stay the same. How-
ever, cloud computing offers unique features which we believe can mitigate some of
the above concerns. In particular, elastic and adaptive resource usage can be utilized to
provide realtime analysis of system behavior with minimal performance degradation.
This is achieved essentially by selectively and adaptively instrumenting only a specific
subset of virtual machine (VM) instances of a deployed application.

This approach, which we refer to as Profiling-as-a-Service (PraaS), offers adaptive
instrumentation strategies that can collect realistic profiling information about running
applications in the cloud while respecting desired quality of service requirements (QoS)
(e.g., response time, throughput, and cost of deployment). Such QoS strategies need

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 157–171, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

158 N. Kaviani, E. Wohlstadter, and R. Lea

to adhere to both business and performance requirements specified for an application
undergoing instrumentation and monitoring. Essentially, a profiling service should help
to manage tradeoffs between three factors:

– Accuracy: Accurate profiling information is important for software developers who
need to make decisions using this data, under tight business schedules. Unfor-
tunately, accuracy could come at the expense of performance or financial costs.
Collecting detailed profiling information results in application performance degra-
dation. Performance degradations often are tried to be overcome by supplying more
resources (CPU, memory, etc.) which in turn imply higher execution costs for the
application under instrumentation.

– Performance: Cloud-based services and applications must ensure high performance
to meet expected service-level agreements and good user experience. In the cloud,
performance can be obtained through elastic scaling of virtual machine (VM) in-
stances. Unfortunately, a naive approach to scaling could be wasteful and require
unnecessary financial cost.

– Cost: Public cloud providers offer flexible infrastructure for system scaling and
reconfiguration but obviously “there is no free lunch”. A profiling service will need
to consider the financial costs of ensuring good accuracy and performance.

PraaS allows system architects to define policies describing their desired level of ac-
curacy for collecting profiling information, expected QoS, and cost constraints. These
policies are then uploaded to a PraaS cloud service, together with the original code for
the target application, where the application is instrumented and deployed for resource
usage monitoring. During application execution, PraaS will accommodate the applica-
tion with just enough resources from the cloud to satisfy the specified constraints. We
present our implementation of PraaS and evaluate it for a stateless, horizontally scal-
able, open-source Web application called RUBiS. However, we believe our approach
is generalizable to other types of applications deployable to the cloud. The paper is
organized as follows: in Section 2 we define the concept of Profiling-as-a-Service. In
Section 3 the technical details of our framework are described. Section 4 shows some
evaluation of our implementation of the service, Section 5 goes over the related work,
and finally we conclude in Section 6.

2 Profiling as a Service (PraaS)

Profiling in the cloud is important for closely metering resource usage of software and
inferring the corresponding financial implications. Applying traditional models of of-
fline profiling for monitoring and provisioning of resources is not effective for applica-
tions migrated to the cloud. This is mainly due to architectural differences before and
after deployment to the cloud and the heterogeneity of various cloud infrastructures.

To illustrate the benefits of integrating the profiling process with the cloud,
consider a typical 3-tier throughput-intensive auctioning Web application. We use the

Profiling-as-a-Service 159

example of RUBiS [1,6], an open-source benchmark which simulates the activities of
an e-commerce auction site. The original architecture of the system consists of a Web
tier serving as the entry point for the application, a business logic tier containing the
business logic of the application (e.g., searching, commenting, bidding, buying, authen-
tication, and browsing of items as shown in Figure 1a-bottom), and finally a database
tier to persist the transactions.

Figure 1b shows a potential architecture of the application after deployment to the
cloud. As can be seen in the picture, several VM instances of the business logic tier
and the Web server tier are instantiated and are placed behind load balancers. Clearly,
profiling and monitoring of resources for the original application (Figure 1a) would
not be helpful in understanding the behavior of the migrated application (Figure 1b).
Consequently, resource usage footprints of the application in the cloud can be more
effectively analyzed if profiling happens in the cloud.

When re-architectured for the cloud, all the instances in the Web server tier and
the business logic tier are placed behind load balancers and hence their addition, re-
moval, or modification stays transparent to the end-user clients of the application. These
changes may only come to the attention of the end-user clients as response time delays
or throughput alterations. Subsequently, as long as throughput shortfalls or response
time delays are not significantly noticeable to the end-user clients, adaptive profiling
strategies can be effectively blended into the overall behavior of the application.

2.1 Adaptive Resource Profiling in the Cloud

Adaptive profiling has been utilized in the past by many researchers [2,7,8,9]. Those
efforts usually rely on duplicating the code blocks in an application, keeping an origi-
nal version of the code along with an instrumented version. Upon occurrence of some
triggering event, the instrumented and non-instrumented code are swapped [7], taking
advantage of certain low-level code hot-swapping features available for some program-
ming languages. In other efforts, instrumented and non-instrumented code are executed
on different processors on one single machine [15]. In contrast, our high-level service
performs adaptation at the granularity of operating system VM instances in the cloud.
As such, our approach is compatible with a wider range of heterogeneous instrumenta-
tion strategies and programming platforms.

. (a) (b)

Fig. 1. A 3-tier Web application (a) before deployment to the cloud; and (b) after deployment to
the cloud with potential architectural changes after cloud deployment

160 N. Kaviani, E. Wohlstadter, and R. Lea

Fig. 2. Request flow through three operating system (OS) VM instances deployed from different
VM images by the profiling service. The figure shows an illustrative example (i.e. the number of
VM instances and application modules varies by application). This figure shows VM images with:
(a) no instrumentation; (b) partial instrumentation; (c) full instrumentation. SP and EP define the
start point and the end point for request flow in an application instance. A, B, and C represent
different modules (e.g. classes) of the application. The shaded modules are the instrumented
duplicates of the original ones for the application.

Figure 2 demonstrates the flow of a client request through an application using
our profiling service. In the figure, several cloud-based VM instances of the example
application are shown, processing client requests behind a load balancer. Each VM
instance (a, b, or c) represents a previously imaged operating system with our custom-
instrumented version of the application, deployed on a hypervisor in the cloud. For
illustration we show a scenario with three different versions: (a) an instance with no
instrumentation, (b) an instance with some instrumentation, and (c) an instance with
full instrumentation. Our profiling service manages a repository of such VM image ver-
sions with their differing levels of profiling instrumentation. Each VM in the repository
hosts a copy of the application instrumented statically right after the upload time of the
original application. As described next, by utilizing declarative policies specified by de-
velopers and by monitoring certain QoS parameters, the service makes adjustments to
the number of these different VM image types deployed for the application. This allows
to tradeoff between performance and business requirements by adjusting the ratio of
instrumented VM images to the non-instrumented ones.

2.2 Constraint-Guided Profiling Adaptation

Two major QoS requirements for Web applications deployed in the cloud are perfor-
mance, particularly how it is perceived by the end-user clients (i.e., throughput and re-
sponse time), and cost of deployment. Any effort to integrate profiling into the lifecycle
of a deployed application to the cloud should actively respect these QoS requirements.
However, supplying resources to boost the performance of an application deployed to
the cloud will result in extra charges billed in monthly cycles to the clients of the cloud.

Given an upper limit for the target cost of deployment in one billing cycle in the
cloud, Ct, a target performance requirement (e.g., specific throughput or response time)

Profiling-as-a-Service 161

for the application, Pt, and the expected performance Pinst after deploying a fully-
instrumented application on a VM instance in the cloud, our adaptive swapping strategy
will eventually ensure that the following inequalities hold:

m× (P − Pinst) ≥ Pt (1)

Cinst < Ct (2)

where m is the total number of VM instances leased from the cloud; P is the perfor-
mance measure for the target application on a single VM in the absence of the instru-
mented code; and Cinst is the overall cost of running the application (in any of the
non-instrumented, partially-instrumented, and fully-instrumented modes) in the cloud
during a single billing cycle.

Our current strategy for implementing the above measures is based on a simple
heuristic which increases the number of VM instances by a rate of �α × V Minst ×
(Pinst/P)� where V Minst is the number of instrumented virtual machines (V Minst +
V Mnoinst = m), and α is a constant. In case the cost of instrumented deployment
with increased number of VMs (Cinst) exceeds the previously set threshold Ct, we re-
vert the instrumented instances back and incrementally replace the VMs running the
instrumented code (V Minst) with VMs running non-instrumented code (V Mnoinst)
until Inequality (2) holds again. Consequently, the current algorithm always prioritizes
cost constraints to the expected performance measures. In other words, the algorithm
can be thought of as a simple state machine. As long as the overall performance does
not violate Inequality (1), the machine stays in an acceptable state. Once Inequality (1)
is violated, the algorithm tries to bring the machine back to an acceptable state by
adding more VMs or replacing instrumented VMs (V Minst) with non-instrumented
ones (V Mnoinst). The state machine stabilizes under one of the following conditions:
i) adding extra VMs brings the performance requirements back to normal without ex-
ceeding cost constraints of Inequality (2); ii) reverting some of the V Minst machines
to V Mnoinst machines brings the performance requirements back to normal while In-
equality (2) holds; or iii) All running machines are V Mnoinst machines and while In-
equality (1) is not satisfied, addition of another V Mnoinst will violate Inequality (2).

In our current implementation, we translate application performance to the average
application response time for requests. Hence, in Inequality (1), P = RT where RT
indicates the average response time when the application is in no-instrumentation mode;
and Pinst = RTinst, where RTinst indicates the average response time degradation
when the application is under full instrumentation.

For the cost of deployment, currently we consider Cinst equal to the total cost of
application deployment (i.e.,

∑m Cost(V M)) during one billing cycle as defined by
each public cloud provider (we provide details for Microsoft’s Azure cloud in our eval-
uation). At this stage, we ignore other costs, e.g. the inbound and outbound communi-
cation costs and the costs of storing data in the cloud.

3 Technical Details

Now we turn to the specific details of our PraaS system starting with our policy specifi-
cation support (Section 3.1), system architecture (3.2) and some implementation details
for our specific prototype (Section 3.3).

162 N. Kaviani, E. Wohlstadter, and R. Lea

3.1 Profiling Service Policy Specifications

To effectively expose profiling as a service to system architects, we wanted to provide
a declarative policy model for controlling service parameters. Our current implementa-
tion allows for two sets of policy requirements to be specified: Profiling Requirements
& QoS Requirements.

Profiling Requirements. System architects can define the level of granularity and the
type of profiling that they want to be applied to the application during the execution of
the application. The profiling requirements and specifications can be modified arbitrar-
ily and even during the execution of the applications. For the level of granularity, they
can choose instrumentation strategies to apply to the full application or a specific set of
modules, classes, and methods in an application. They can also decide on the type of
instrumentation, e.g., CPU usage or Data Exchange (described further in Section 3.3)
and the scope of profiling. The scope of profiling can be defined as either internal or
external.

Internal profiling only measures information internal to the elements of a module
(e.g., its components, classes, and methods) while external profiling collects informa-
tion from inter-module interactions in the application. Figure 3a shows a sample policy
for RUBiS.

<profiling-spec>
<!-- instrumentation constraints -->
<instrumentation-map>
<unit name="rubis.auth">

<type>module</type>
<profile>

<mode>CPU</mode>
<mode>Data</mode>

</profile>
<scope>internal</scope>

</unit>

<unit name="rubis.buy.BuyItem">
<type>class</type>
<profile>

<mode>CPU</mode>
</profile>
<scope>internal</scope>

</unit>

<unit name="rubis.bid">
<type>module</type>
<profile>

<mode>Data</mode>
</profile>
<scope>external</scope>

</unit>
</instrumentation-map>

<!-- quality of service requirements
-->

<qos-requirements>
<cost>
<vm-cost>2000</vm-cost>

</cost>
<performance>
<resp-time>500ms</resp-time>

</performance>
</qos-requirements>

</profiling-spec>

. (a) (b)

Fig. 3. A sample instrumentation map defining (a) the modes of profiling for different modules in
RUBiS and (b) QoS constraints

Profiling-as-a-Service 163

QoS Requirements. We also enable system architects to define their QoS constraints
for instrumentation and profiling. QoS requirements are taken into consideration when
ensuring Inequalities (1) and (2). As mentioned earlier, we consider a defined response
time (RTt) in milliseconds for the performance constraint of deployed Web applications
and the upper limit dollar amount for leasing VMs from the cloud as the cost of de-
ployment (Ct). Our framework supports extending these constraints with performance
measures such as throughput or database transactions, and cost measures including
inbound/outbound communication costs, and data storage costs. Figure 3b shows a
sample QoS specification used in our RUBiS case-study.

The policy requirements of the developer are formulated into an Instrumentation
Map document stored and loaded to a service master node as we describe next.

3.2 System Architecture

The architecture for our PraaS concept extends the architecture of a Web application
deployed to the cloud, similar to the one in Figure 1b by adding a master node to each
tier in the application that sits behind a load balancer. The master node encapsulates the
core of the service and is loosely coupled to individual applications, communicating
through an interface that specifies the exchange of profiling data and control messages.
As the low-level instrumentation of code must be platform specific, this part of the
service is isolated into a customized profiler agent colocated with each VM instance.

The profiler agent is in charge of collecting information about an application instance
and reporting the collected results back to the service master node. The master node ag-
gregates the results from all the agents and checks the validity of Inequalities (1) and (2)
during the execution of the application.

As shown in Figure 4, the master node consists of the following five components:
a Profiler Specification Engine, a Policy Controller, an Instrumentation Map, a Recon-
figuration Engine, and a Result Aggregator. The profiler specification module allows
the system architect to define the required profiling specification (as in Figure 3). Once
the specification is loaded to the master node it is used by the master node to initiate
the policy controller engine based on the qos-requirements part of the profiling
specification, and to provide an instrumentation map. The instrumentation map is then
communicated to each Profiler Agent to orchestrate the profiling behavior among all
instances of the application.

The Profiler Agent, deployed together on each application node, has two compo-
nents: i) a platform (e.g. Java, C#, etc..) specific component which takes care of instru-
mentation of application code, and ii) a service integration module. The SIM mediates
communication of profiling data to the service master node. Through communication
with the master node, SIM receives the instrumentation map specified by the system
architect from the master node. The SIM then coordinates the loading of a VM image
with the appropriate instrumentation.

During the profiling process, the performance on each application node gets reported
to the SIM and the SIM periodically updates the master node about the status of the
running application on its V Minst. The master node aggregates the results from all
application nodes and decides about potential reconfigurations for each node in the de-
ployment. Upon a need for change in profiling, the SIM manages stopping and starting

164 N. Kaviani, E. Wohlstadter, and R. Lea

Fig. 4. Integration of Master Node and Application Node into the framework. M1 to M7 represent
the classes/modules for the application and SIM is the service integration module.

new VM instances with the required instrumentation. Once the application is back to
meeting all constraints, the SIM informs the master node and the master node coordi-
nates the profiling process among all the running instances of the application again.

The master node can change the mode of profiling to one of the three already ex-
plained modes of no instrumentation, partial instrumentation, and full instrumentation.
The adaptive switching of the profiling mode at this point is done by stopping the ap-
plication on a target VM instance, replacing it with an application image in a different
profiling mode, and starting the new instance. The process of mode switching is done
for one instance at a time in order to minimize performance degradation caused by re-
moving one instance of the running application. In addition to mode switching during
profiling, the master node regulates the type of profiling to be performed for differ-
ent instances of the application and also enables updates to the profiling process to
be performed by system architects while the application is deployed in a production
environment.

Our implementation for PraaS works independently of the type of instrumentation
mechanism used by the profiler agents for deployed applications. Instrumentation strate-
gies ranging from memory-leak [8] and performance bottleneck [4] detection to security
related taint tracing [13] and resource usage monitoring [11,12] could be integrated into
our framework. However, for our current implementation, we have particularly focused
on monitoring resource utilization by different components of the application.

3.3 Prototype Profiling Support

While the service exposed by the master node is agnostic to specific platforms being
profiled, a customized profiling agent is required for each programming platform (e.g.
Java, C#, etc..) to be supported. Our current implementation supports Java profiling and
we provide a profiler agent on top of The Java Interactive Profiler (JiP). JiP is a code
profiling tool that supports performance timing, fine-grained CPU usage profiling to
the level of classes and packages and requires no native code to enable profiling. JiP
uses the ASM [5] library to provide manipulation, transformation, and analysis of Java
classes at the level of byte code. We used the combination of JiP and ASM to collect
information on CPU usage and data exchange between code blocks.

Profiling-as-a-Service 165

CPU Usage Profiling. CPU usage profiling is achieved simply by adding performance
timers to the beginning and end of each function in the application. This is done by
rewriting the Java bytecode for the function to include a System.nanoTime() timer.

Data Exchange Profiling. In order to make decisions on how to optimally partition
software components across VM hosts in a cloud infrastructure, software developers
can use profiling to determine the costs of information exchange between distributed
components. Our instrumentation measures data exchange between software compo-
nents by monitoring the size of remote function call arguments and return values. For
local intra-VM method calls, such arguments and return values are typically passed by
reference. So, in the case where developers are considering partitioning a local function
into a remote function call, our framework will provide details on the size of the equiv-
alent serialized data for each referenced argument or return value. This instrumentation
strategy gives application developers a chance to measure data exchange in a monolithic
application before deciding on the actual distribution.

4 Evaluation

We evaluated our current implementation against a case-study of the RUBiS bench-
mark.

As discussed earlier, RUBiS implements the basic functionality of an auctioning
Web site following a 3-tier Web architecture with eleven components: a front-end Web
server tier, nine business logic components (User, UserTransactions, Region,
Item, Category, Comment, Region, Bid, and Buy), and a back-end database
tier. Several implementations of RUBiS exist, but for our evaluation we used its Java
Servlet implementation that makes use of the Hibernate middleware to provide data
persistence. We deployed RUBiS together with our profiler agent modules on small
instances of Microsoft’s Windows Azure cloud platform. Each small Azure instance is
equipped with a 1.6GHz CPU and 1.75GB of memory.

On each small Azure instance, we deployed the Web server along with all busi-
ness logic components of RUBiS. For the database server, we used a 5GB SQLAzure
database instance running SQLServer 2008 R2. When deploying the application on
more than one instance, the Azure platform automatically places the instances behind a
load balancer and distributes the load across all existing instances.

To provide a realistic client workload we used the RUBiS client simulator that comes
bundled with the RUBiS benchmark [1]. The simulator was designed to operate in either
a browsing mode or in a buy mode. In the browsing mode only browsing requests for
items, users, comments, bids, etc. are launched. In the buy mode in addition to the
browsing requests, requests to authenticate, bid on an item, or purchase of an item
are also made. In our experiments, we used the clients in the browsing mode unless
otherwise mentioned. Clients were launched from two machines, each equipped with a
dual core 2.1GHz CPU and 4GB of memory.

166 N. Kaviani, E. Wohlstadter, and R. Lea

4.1 Measuring Profiling Overhead

We modified the RUBiS client so that each client would generate requests at a pace
of one every 125 milliseconds. To set a base line, in Table 1, we show the throughput
and response time when only one single client launches requests to a single instance of
RUBiS deployed on Windows Azure. We collected the data for both the profiling and
the non-profiling modes. For the profiling mode, the entire set of components on the
Azure instance were profiled to collect CPU usage information (cf. Section 3.3) and in
the non-profiling mode, no profiling data was collected.

Table 1. Baseline throughput and response time when one client launches requests to a single
instance of RUBiS deployed on one small Azure instance

Throughput (req/sec) Response Time (millisec)
Profiling Mode 2 432
Non-profiling Mode 6 74

From Table 1, we see the overhead of instrumentation in an isolated case. To mitigate
this overhead we need to amortize it over our system. So next, in order to measure the
effects of delegating profiling to a subset of all instances running an application, we
made two deployments of RUBiS, one on 4 and another on 6 small Azure instances. We
measured the change in response time and throughput when the number of instances
running the profiling process goes from no instance (i.e., a profiling ratio of 0) to all
instances (i.e., a profiling ratio of 1). A moderate load was generated on all instances
in both deployments by launching 100 clients to perform 1000 transactions during a
period of 5 minutes.

As Figure 5 shows, although throughput does decrease and response-time does in-
crease as we increase the VM profiling ratio, our approach does mitigate the perfor-
mance overhead of profiling. In particular, by keeping the ratio of instances that are
profiled to less than 0.5 we are able to maintain throughput and response-time close
to the non profile case, i.e. 200 requests per second. Only after we increase the ratio
of profiled to non-profiled past 0.5 does performance significantly decline. In essence,
this indicates that the Azure load balancer does a good job of intelligently redirecting
requests to less busy nodes of the deployment.

Fig. 5. Throughput and Response Time when 4 and 6 clients with different modes of profiling are
placed under moderate load of client requests

Profiling-as-a-Service 167

4.2 Measuring Profiling Accuracy

To measure the accuracy of the PraaS system, profiling data collected at different pro-
filing ratios were compared against the perfect profiling data (i.e., where all nodes were
doing profiling), and we computed the corresponding accuracy metrics. We used the
Overlap Percentage metric suggested by Arnold and Ryder [2] to measure the accuracy
of collected profiling information. As described in [2], the overlap of two profiles repre-
sents the percentage of profiled information weighted by execution frequency that exists
in both profiles. Obviously, the overlap percentage metric is a function of the diversity
of requests for which profiling data is collected. In order to assess how the diversity of
requests affects the overlap percentage, we collected the overlap percentage data in two
modes: i) Single Request Mode, where RUBiS clients only launched BrowseCategories
requests, and ii) Multi-Request Mode, where RUBiS clients launched all sorts of brows-
ing requests, from browsing item categories, to browsing and searching items, browsing
user information and their bid and buy histories. Table 2 shows the result of measuring
overlap percentage for each of these deployments.

Table 2. The Overlap Percentage measure for accuracy of profiling information subject to the
diversity of requests. Table 2 provides the overlap percentage measures for all profiling ratios of
Section 4.2 for which we have throughput and response time collected.

Single Request Multi-Request
Profiling Num Num Unique Overlap Num Num Unique Overlap

Ratio Samples Methods % Samples Methods %

2 of 4 (0.5) 6.07 × 107 6338 99.65 2.74 × 107 7094 97.62

2 of 6 (0.33) 3.00 × 107 6325 99.03 3.07 × 107 6992 91.53
3 of 6 (0.5) 5.78 × 107 6329 99.10 4.35 × 107 7014 92.21
4 of 6 (0.66) 9.19 × 107 6339 99.34 5.32 × 107 7092 93.13

As expected, increasing the number of instances increases the number of samples
taken during profiling. However, as we discussed earlier, increased diversity in types
of requests results in a lower overlap percentage between partial profiling and full
profiling. Since RUBiS is only a small representative of potential enterprise Web de-
ployments, we expect deployments of larger applications to result in lower overlap per-
centages when doing partial profiling. Nonetheless, an increase in the number of nodes
clearly brings the collected profiling results closer to a full profiling deployment.

4.3 Stress Testing of the Deployment and Financial Implications

In order to stress test the application, we ran three deployments of RUBiS using 4, 6,
and 8 small instances on Windows Azure. Each deployment was tested with batches
of 1600 and 3200 clients launching 1000 requests to it during a period of 5 minutes.
Figure 6 shows the throughput and response time when 1600 and 3200 clients send
requests to the deployed RUBiS application. We summarize the implications of these
results next.

168 N. Kaviani, E. Wohlstadter, and R. Lea

(a)

(b)

Fig. 6. Response time and throughput for (a) 1600 clients, and (b) 3200 clients; sending requests
to RUBiS deployed on 4, 6, and 8 small Azure instances

In order to assess financial implications, in Table 3 we calculate the hourly and
monthly costs of deployment for each of the three deployments above.

Table 3. Deployment costs for RUBiS on various number of small Azure instances

Deployment Costs (USD)
Num Instances Hourly Monthly Yearly

4 $0.48 $345.6 $4147.2
6 $0.72 $518.4 $6220.8
8 $0.96 $691.2 $8294.4

4.4 Evaluation Summary

To summarize these findings we see that our approach of “Profiling-as-a-Service” does
indeed provide a way to more accurately profile an application while respecting perfor-
mance and cost constraints. In particular, it should be noted that the throughput could
be kept above 300 req/sec with 8 nodes of 0.5-profiling-ratio and marginal throughput
loss (i.e. within 1% of a baseline with no profiled instances), or 6 nodes of at most 0.66-
profiling-ratio (i.e. within 20% of a baseline). With a 0.75-profiling-ratio for 8 nodes,
we achieved a lower throughput compared to the 0.66-profiling-ratio with 6 nodes,
however the response time measured with 8 nodes was significantly smaller than the
response time measured with 6 nodes. Conversely, from a financial perspective run-
ning the deployment on 6 nodes costs almost $173/month less compared to running 8
nodes. Again this demonstrates the flexibility our approach offers, allowing developers

Profiling-as-a-Service 169

to trade-off throughput against response time, and then factor in cost. During our experi-
ments with 3200 clients sending requests to our RUBiS deployment, our CPU resources
reached their limits and hence, even though we expected to see a higher throughput, the
throughput stayed the same as for our experiment with 1600 RUBiS clients. It is worth
mentioning that in our current implementation, transitions from 4 nodes to 6 nodes to 8
nodes were done manually. It is part of our future work to make this transition dynamic
and based on the requirements of the target application.

5 Related Work

Profiling of service-oriented applications forms the basis of much existing work in both
on-line monitoring of SLAs [3] and also the autonomic management of services. While
the scope of previous work is too large to cover here in depth, we can say that compared
to previous work, this paper focuses on the low-level support of profiling in the cloud
environment. Previous work, on the other hand, has focused on more specific strategies
for utilizing runtime profiles i.e. how to analyze and react to such profiles. Thus previous
work did not cover the cloud-based adaptive instrumentation provided by our profiling
service. This research simply supports an efficient profiling mechanism at the systems
level. We did not address any specific policies for utilizing profile data, as we sought to
provide profiling as a generic reusable service.

One of the first approaches to directly address the performance problem of on-line
profiling was presented by Arnold and Ryder [2]. They use a compiler-based approach
which duplicates the code for each method into instrumented and non-instrumented ver-
sions. Additionally, the compiler inserts certain “switches” in the code to allow execu-
tion to be dynamically re-directed along either instrumented or non-instrumented paths.
In similar efforts Dmitriev [7] and BEA Systems’ JRockit [14] use modified compilers
which enable dynamic code hot-swapping to reduce profiling overhead. The approach
in this paper also uses code duplication to manage profile overhead. However, our re-
search work is different in that duplication occurs at the level of entire VM-instances.
This allows a more general technique, independent of the details for specific compilers.
We take advantage of the transparency afforded by cloud platforms to shield end-users
from the details of swapping VM-instances dynamically. In this sense, our work is sim-
ilar to the work done by Wallace and Hazlewood for SuperPin [15]. In SuperPin the
authors slice the non-overlapping pieces of code into separate execution threads and
run them in parallel and on multiple processor cores, gaining significant performance
improvements through the added parallelism. The main difference as mentioned earlier
is that we benefit from parallelism at the level of Operating System VM instances by
spreading the instrumented code for the application across multiple machines in the
cloud rather than using different cores on a single machine. Benefiting from the elas-
ticity of cloud and by increasing the number of machines used for profiling, we can
overcome the limitations to the degree of parallelism caused by the limited number of
cores when running the instrumented software on one single machine.

Adaptive bursty tracing (ABT) [8,9] is a particular technique built for the collection
of traces in profiled applications. Since trace logs can grow to enormous sizes, most
profiling approaches use sampling to limit log sizes. The problem with sampling is that

170 N. Kaviani, E. Wohlstadter, and R. Lea

it may capture very limited information about infrequently executed code. However,
as authors claim, often the worst bugs and performance bottlenecks hide themselves
in such code. ABT ensures that detailed traces are generated for infrequently running
code, by providing a sampling rate inversely proportional to code execution frequency.
In the future we will explore applying ABT to our the context of our distributed service.

AjaxScope [10] implements a JavaScript instrumentation proxy to provide moni-
toring and profiling of code that executes in an end-user’s Web browser. This allows
on-line profiling in a distributed context, where code is deployed on a server, yet later
executed on the client. Traces of client behavior are periodically uploaded to the server
infrastructure for analysis. Similar to our research, AjaxScope targets a distributed com-
puting context. However, where AjaxScope focuses on client behavior, this research is
focused on the server-side. This distinction changes the kind of techniques which are
applicable for providing transparency. In AjaxScope, transparency is provided to clients
through an instrumentation proxy whereas our research leverages the flexibility of OS
VMs used in a cloud computing context.

6 Conclusion

This paper described the design and implementation for a cloud-based profiling service.
This service was motivated by the need to manage tradeoffs between three important
factors in the deployment of cloud services and applications: performance, cost, and
accuracy of monitored profile data. We showed the validity of the approach in the
context of an existing Web application deployed to the cloud. The results showed that
while the reduction of profiled instances through adaptation did reduce the accuracy of
profiling, it also improved performance and reduced cost. More importantly, accuracy
degraded at a much slower rate than performance and cost improved.

Acknowledgements. We would like to thank Microsoft Windows Azure team, and par-
ticularly Ori Amiga, for providing us with access to resources on Windows Azure.

References

1. Amza, C., Chanda, A., Cox, A., Elnikety, S., Gil, R., Rajamani, K., Zwaenepoel, W., Cecchet,
E., Marguerite, J.: Specification and implementation of dynamic Web site benchmarks. In:
IEEE International Workshop on Workload Characterization, pp. 3–13 (November 2002)

2. Arnold, M., Ryder, B.G.: A framework for reducing the cost of instrumented code. In: Pro-
ceedings of the ACM SIGPLAN 2001 Conference on Programming Language Design and
Implementation, PLDI 2001, pp. 168–179. ACM, New York (2001)

3. Baresi, L., Guinea, S., Pasquale, L.: Integrated and Composable Supervision of BPEL Pro-
cesses. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,
pp. 614–619. Springer, Heidelberg (2008)

4. Brear, D., Weise, T., Wiffen, T., Yeung, K., Bennett, S., Kelly, P.: Search strategies for java
bottleneck location by dynamic instrumentation. IEE Proceedings - Software 150(4), 235–
241 (2003)

5. Bruneton, E., Lenglet, R., Coupaye, T.: ASM: A code manipulation tool to implement adapt-
able systems. In: Adaptable and Extensible Component Systems, Grenoble, France (Novem-
ber 2002)

Profiling-as-a-Service 171

6. Cecchet, E., Chanda, A., Elnikety, S., Marguerite, J., Zwaenepoel, W.: Performance Com-
parison of Middleware Architectures for Generating Dynamic Web Content. In: Endler, M.,
Schmidt, D.C. (eds.) Middleware 2003. LNCS, vol. 2672, pp. 242–261. Springer, Heidelberg
(2003)

7. Dmitriev, M.: Profiling Java applications using code hotswapping and dynamic call graph
revelation. ACM Sigsoft Softwre Engineering Notes 29(1), 139–150 (2004)

8. Hauswirth, M., Chilimbi, T.M.: Low-overhead memory leak detection using adaptive statis-
tical profiling. In: Proceedings of the 11th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS-XI, pp. 156–164. ACM, New
York (2004)

9. Hirzel, M., Chilimbi, T.: Bursty tracing: A framework for low-overhead temporal profiling.
In: The 4th ACM Workshop on Feedback-Directed and Dynamic Optimization (FDDO4),
pp. 117–126 (2001)

10. Kiciman, E., Livshits, B.: AjaxScope: a platform for remotely monitoring the client-side be-
havior of web 2.0 applications. In: Proceedings of Twenty-First ACM SIGOPS Symposium
on Operating Systems Principles, SOSP 2007, pp. 17–30. ACM, New York (2007)

11. Luk, C.K., Cohn, R.S., Muth, R., Patil, H., Klauser, A., Lowney, P.G., Wallace, S., Reddi,
V.J., Hazelwood, K.M.: Pin: building customized program analysis tools with dynamic in-
strumentation. In: Proceedings of Programming Language Design and Implementation Con-
ference, pp. 190–200. ACM (2005)

12. Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin, R.B., Karavanic,
K.L., Kunchithapadam, K., Newhall, T.: The Paradyn Parallel Performance Measurement
Tool. IEEE Computer 28(11), 37–46 (1995)

13. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis, and sig-
nature generation of exploits on commodity software. In: Network and Distributed System
Security Symposium, NDSS (2005)

14. Systems, I.B.: Jrockit (August 2008), http://www.bea.com/jrockit/
15. Wallace, S., Hazelwood, K.: Superpin: Parallelizing dynamic instrumentation for real-time

performance. In: Proceedings of the International Symposium on Code Generation and Op-
timization, CGO 2007, pp. 209–220. IEEE Computer Society Press, Washington, DC, USA
(2007)

http://www.bea.com/jrockit/

VM Placement in non-Homogeneous IaaS-Clouds

Konstantinos Tsakalozos, Mema Roussopoulos, and Alex Delis

University of Athens, Athens, 15748, Greece,
{k.tsakalozos,mema,ad}@di.uoa.gr

Abstract. Infrastructure-as-a-Service (IaaS) cloud providers often com-
bine different hardware components in an attempt to form a single infras-
tructure. This single infrastructure hides any underlying heterogeneity
and complexity of the physical layer. Given a non-homogeneous hard-
ware infrastructure, assigning VMs to physical machines (PMs) becomes
a particularly challenging task. VM placement decisions have to take into
account the operational conditions of the cloud (e.g., current PM load)
and load balancing prospects through VM migrations. In this work, we
propose a service realizing a two-phase VM-to-PM placement scheme. In
the first phase, we identify a promising group of PMs, termed cohort,
among the many choices that might be available; such a cohort hosts the
virtual infrastructure of the user request. In the second phase, we deter-
mine the final VM-to-PM mapping considering all low-level constraints
arising from the particular user requests and special characteristics of
the selected cohort. Our evaluation shows that in large non-homogeneous
physical infrastructures, we significantly reduce the VM placement plan
production time and improve plan quality.

1 Introduction

Infrastructure-as-a-Service (IaaS) cloud providers often face the following chal-
lenge: they must offer uniform access (resource provision) over a non-uniform
hardware infrastructure. Non-homogeneous infrastructures may be the product
of hardware upgrades, where old resources are left operational alongside new
ones, or federated environments, where several parties are willing to share hard-
ware resources with diverse characteristics.

Resource management of non-homogeneous hardware resources has been ex-
tensively studied [7]. Typically, a resource management system receives, queues,
and finally matches user job requirements with the characteristics of the offered
hardware. For instance, scheduling jobs in the Grid requires choosing an appro-
priate Grid site that complies with the user requirements. The advent of the
clouds has introduced very strict abstractions over the physical resources. IaaS
clouds restrict users from specifying the exact physical resources to be consumed
when instantiating virtual machines (VMs). Cloud consumers remain agnostic
of the underlying physical infrastructure. Only high-level resource requirements
such as CPU and RAM are stated in user requests. In return, the cloud offers
new options for load balancing. Live VM migration allows for relocation of jobs
to offloaded hardware inside the cloud in a manner transparent to the user. Thus,

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 172–187, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

VM Placement in non-Homogeneous IaaS-Clouds 173

the VM-to-physical machines placement policies must be revisited in the context
of the cloud to take into account both the new enhancements and the additional
constraints that cloud abstractions offer.

In this paper, we focus on the problem of instantiating entire virtual infras-
tructures in large non-homogeneous IaaS clouds. We introduce a service imple-
menting a two-phase mechanism. In the first phase, we synthesize infrastructures
out of existing promising physical machines (PMs). These dynamically-formed
physical infrastructures, termed cohorts, host the user-requested VMs. In the sec-
ond phase, we determine the final VM-to-PM mapping considering all low-level
constraints arising from the particular user requests and special characteristics
of the most promising selected cohorts. Compared to other constraint-based VM
scheduling systems [8,9,20], the novelty of our approach mainly lies in the first
phase. During this phase, besides resource availability, we also take into account
properties such as migration capabilities, network bandwidth connectivity, and
user-provided deployment hints. This helps prune out many possible cohorts
within the cloud, and thus reduces the time required to produce a deployment
plan in the second phase. We express both the selection of hosting nodes and
the production of VM-to-PM mappings as constraint satisfaction problems and
we use cloud-resources to solve these problems. Our evaluation shows that this
approach 1) scales effectively for hundreds of PMs, 2) reduces plan production
time by up to a factor of 9, and 3) improves plan quality by up to a factor of 4,
when compared to a single-phase VM placement approach.

2 Overview of Our Approach

We assign user-requested VMs to cloud-provided PMs through a service im-
plementing a two-phase optimization process. During the first phase we select
a subset of PMs with properties that best serve the VM placement. We term
these dynamically formed subsets of PMs cohorts. Cohorts may entail PMs from
a single rack and/or machines spread across the network. In the second phase,
we solve a constraint satisfaction problem that yields a near optimal VM-to-PM
mapping. Constraints emanate from user-provided deployment hints and internal
cloud specifications such as hardware resource characteristics and administration
preferences. The goal in selecting a subset of all available PMs, during the first
optimization phase, is to reduce the number of constraints and the search space
during the second phase.

To serve a user request for a virtual infrastructure, a single cohort has to be
selected to host all VMs involved. The main idea in cohort selection is that we
need to assist future load balancing requests in the context of an IaaS cloud.
Since load balancing is better performed among PMs supporting live migration,
we favor cohort formation among such nodes. In case, the user-requested resource
requirements exceed the VM hosting capacity of all PM pools supporting live
migration, we must merge neighboring pools to form larger ones. We synthesize
cohorts based on a 4-level hierarchy, depicted as a triangle in Figure 1. These
four levels are defined as follows:

174 K. Tsakalozos, M. Roussopoulos, and A. Delis

Small Note

Small Note

Non−homogeneous Physical Infrastructure

Deployer

Planner
Deployment

Dynamic
Cohort

Synthesizer

Elastic
Solver

User

Level3

Level 2

Level 1

Level 0

constraints

exchange of information

flow of results

administration data

Description
Physical Infra.

Description
Virtual Infra.

Fig. 1. High level view of our approach

– At level 0, all groups of PMs that support live migration make up corre-
sponding cohorts. Load balancing through VM migration for these cohorts
is transparent. In addition, each PM that does not feature live migration
makes up a cohort on its own.

– At level 1, we may form cohorts from diverse groups of level 0. Cohorts of
level 1 may involve PMs supporting both live migration as well as migration
through suspend/resume.

– Level 2 features cohorts among which migration is infeasible due to hard-
ware incompatibilities, insufficient network bandwidth, etc.

– Level 3 is a single cohort consisting of the entire non-homogeneous physical
infrastructure and so it signifies the maximum amount of resources available.

When serving a user request, we try to satisfy all virtual infrastructure require-
ments through a single cohort. The search for such a cohort starts from level 0
and may reach up to level 3. The higher the level of the selected cohort is, the
more computational resources are needed to solve the VM assignment problem
in the second phase. As more PMs are available in cohorts generated at higher
levels, the search space of the VM-to-PM mapping increases. Cohort selection is
formulated as a constraint satisfaction problem discussed in detail in Section 4.

In the second phase, where the final VM-to-PM assignment is produced, all
fine-grained constraints of the selected cohort are taken into account in a con-
straint satisfaction problem. These fine-grained constraints refer to a) all specifics
regarding the hosting capacity including features and resource availability in
PMs, b) user-provided deployment hints and c) cloud administrative goals.

Figure 1 presents a high-level view of our approach. The user submits a request
for a virtual infrastructure to the Dynamic Cohort Synthesizer. The user request
includes both VM specifications and deployment hints. The PMs of the selected
cohort along with the user request are forwarded to the Deployment Planner that
produces the final VM-to-PM mapping. We term this mapping deployment plan.
For all user requests encountered all respective deployment plans are delivered
to the Deployer, that in turn interacts with the cloud’s facilities and coordinates
each VM instantiation.

VM Placement in non-Homogeneous IaaS-Clouds 175

Both the Dynamic Cohort Synthesizer and the Deployment Planner have to
solve constraint satisfaction problems. They do so using resources of the cloud
itself. The Elastic Solver, of Figure 1, is a service providing access to a set of
VMs in the cloud that form a distributed constraint satisfaction solver.

3 User Provided Hints and Constraints

Shown in Figure 1, the deployment of a virtual infrastructure starts with the user
submitting a request for VMs to our service. The user request is an infrastructure
description (XML document [19]) with the following sections:

1. Description of all VMs and resource requirements.
2. One or more possible infrastructure deployments, each one accompanied with

its own set of deployment hints. The deployment hints are translated into
user-provided constraints that drive the cloud’s VM-to-PM assignment. Ta-
ble 1 shows some commonly used hints.

3. The conditions under which a transition from one infrastructure deployment
to another is required. A transition may enable and/or disable deployment
hints associated with the respective infrastructure deployments. In turn, this
may call for VM migrations.

Apart from the constraints derived from hints in the infrastructure description,
our approach also leverages constraints describing the internal physical cloud
infrastructure. Such constraints refer to both the availability of resources and
high-level resource management goals that the cloud administration may require
(e.g., PowerSave hint of Table 1).

Within the Dynamic Cohort Synthesizer, hints are realized as cohort evalu-
ation cost functions. The same hints are realized by the Deployment Planner
as specific deployment plan evaluation functions driving the VM-to-PM assign-
ment. In other words, deployment hints are interpreted in different ways de-
pending on the phase of our approach. Some hints are even ignored during the
cohort selection phase. ParVMs is a typical example of how the same hint is
treated in different ways. During cohort selection, we penalize cohorts that pro-
vide fewer PMs than the number of VMs referenced in the ParVMs deployment
hint, whereas during the final VM-to-PM assignment we penalize plans that
place the VMs referenced in the same ParVMs hint on the same PM. To reduce
the number of constraints considered, the Dynamic Cohort Synthesizer ignores
certain hints such as the MinTraf.

Table 1. Commonly used deployment hints

FavorVM Try to reserve a single PM for a specific VM.

MinTraf Minimize traffic by co-deploying a set of VMs on the same PM.

ParVMs Spread VMs across separate PMs.

PowerSave Reduce the number of PMs used for VM deployment.

EmptyNode Offload a specific PM.

176 K. Tsakalozos, M. Roussopoulos, and A. Delis

After a deployment plan is applied –through respective VM placement opera-
tions – the deployment hints used in the production of the VM-to-PM mapping
are not discarded. Some deployment hints have “side-effects” on future deploy-
ment plans. A deployment hint is marked to have “side-effects” if it has to
be considered during the deployment of virtual infrastructures of future user
requests. Deployment hints with “side effects” are known to the cloud adminis-
tration and are marked as such upon their implementation. A typical example
of such a hint is the FavorVM, which calls for a VM to be placed on an of-
floaded PM. This PM should be kept offloaded as long as the VM referenced in
the deployment hint is online. Consequently, the deployment of future virtual
infrastructures should also respect any FavorVM hints already in place.

4 Synthesis of Dynamic Infrastructures

Selecting a single subset of all PMs (cohort) requires iterating over the levels
discussed in Section 2. The Dynamic Cohort Synthesizer ranks the cohorts of
the same level based on metrics provided by the cloud administration. These
metrics may reflect the cohort’s load, its reliability (e.g. redundant hardware),
or even higher level properties such as its prospect of load exchange with other
cohorts.

Algorithm 1 gradually explores all cohort levels in search of a promising
“neighborhood”. The input of the algorithm consists of a) the user request,
b) the number of candidate cohorts (k) which should be used as the starting
seed for the dynamic formation of the next level cohorts, c) the load threshold
(i.e., average CPU utilization) over which a cohort is considered to be overloaded
and d) a resource availability factor (overcommit) indicating how many times
the resources of a cohort should surpass the resources requested. Both input
parameters overcommit and k allow cloud administrators to tune the quality
of the produced deployment plans. The overcommit parameter ensures that the
Deployment Planner will have enough space to search for a VM-to-PM map-
ping during the second optimization phase of our approach. The k parameter
allows cloud administrators to reduce the amount of lower level cohorts used as
a starting point in cohort synthesis. Since each cohort synthesis attempt results
in a simulated annealing execution, high k values reduce the danger of getting
trapped into a local optimum. This is because each execution of the simulated
annealing starts with a different cohort as seed.

Starting from level 0, we first rank cohorts given that we need to satisfy the
provided user request (CohortRanking function call of line 2). We also filter out
cohorts that do not satisfy the overload threshold and the resource availability
factor (CohortFiltering call of line 3). If all cohorts are filtered out, then we
must search higher level cohorts using the while loop of lines 4 to 12. In line 6,
we use the CohortRanking function to grade all cohorts of the level indicated
by variable level. The top-k highest scoring cohorts of the current level are used
as a starting point in exploring the next level up. Merging lower level cohorts is
performed in the MergeCohorts call of line 8. Below, we outline the functionality
of the following routines: CohortRanking, CohortFiltering and MergeCohorts.

VM Placement in non-Homogeneous IaaS-Clouds 177

Algorithm 1. Dynamic Cohort Synthesizer
Input: request: user request for a virtual infrastructure

k : The top-k cohorts will be returned

load threshold: Threshold over which the cohort is considered overloaded

overcommit: How many times the cohort’s resources must surpass the requested resources

Output: Set of cohorts we will consider for deployment

1: level := 0 ; ranked cohorts := ∅

2: ranked cohorts := CohortRanking(level,request);
3: ranked cohorts := CohortFiltering(ranked cohorts, load threshold, overcommit,

request);
4: while ranked cohorts = ∅ and level < 4 do
5: ranked cohorts := ∅

6: graded cohorts := CohortRanking(level,request);
7: for i := 0 ; i < k ; i++ do
8: good cohort := MergeCohorts(level, graded cohorts[i], request,

load threshold, overcommit)
9: ranked cohorts := ranked cohorts ∪ {good cohort}

10: end for
11: level := level + 1
12: end while

13: return ranked cohorts

Cohort Ranking: Each cohort maintains the following key properties: a) the
number of PMs it contains, b) resource availability indicators including CPU
average load, total/unused RAM, hard disk capacity, redundancy and high avail-
ability features. For simplicity, we elaborate the first two indicators in the dis-
cussion that follows, c) average bandwidth of network connections among PMs
within the cohort and d) a set of cohort-specific characteristics (e.g., CPU
architecture).

Static characteristics of cohorts at level 0 are provided by the cloud adminis-
trator (with the “Physical Infrastructure Description” of Figure 1). In this regard,
we expect the administrator to specify the properties of all PMs as well as the
cohorts supporting live migration. Recall that each live migration group of PMs
is a level 0 cohort and each PM that does not support live migration forms a
cohort by itself. Using the PM properties we compute a score for every available
cohort at level 0 as follows: initially we evaluate the resource availability within
the cohort:

ResEval0(Cohort) =
∑
i∈R

wi ∗ (Providedi(Cohort) − Requiredi) (1)

where R is the set of resources including average CPU, RAM, and network band-
width utilization rates. Providedi and Requiredi represent the provision and
requirement of resource i respectively. The weights wi are set by the administra-
tor to reflect the importance of each resource and to normalize the intermediate
results. These administrator-defined weights allow our approach to be tuned
to match specific requirements and administrative preferences. Next, we eval-
uate requirements resulting from both user provided hints and administrator’s
imperatives:

ConstrEval(Cohort) =
∑

j∈Constr.

wj ∗ Constraintj(Cohort) (2)

178 K. Tsakalozos, M. Roussopoulos, and A. Delis

where Constraintj are cost functions expressing user hints and administration
preferences as we describe in Section 3. Again, wj indicates constraint impor-
tance. Each constraint function takes as input a cohort and returns the degree of
the human-provided preference/hint satisfaction (Constraint : Cohort �→ [0, 1]).
We designate the sum of ResEval and ConstrEval to be the cohort’s overall
score:

Score(Cohort) = ResEval(Cohort) + ConstrEval(Cohort) (3)

The ResEval(Cohort) at levels above 0 are computed recursively as follows:

ResEvaln(Cohort) =

∑
s∈S ResEvaln−1(s)

|S| (4)

where n represents the level and S is the set of all lower level cohorts within the
Cohort.
Cohort Filtering: Algorithm 1 filters out cohorts that are not worthy to be
considered in the final VM placement. This action takes place in line 3 and within
the function MergeCohorts of line 8. Filtering uses the overcommit, load threshold
limits as well as information regarding the specific resources requested by the
user. We exclude cohorts that do not comply with the rules of Table 2. Rule 1,
avoids stressing overloaded cohorts. Rule 2 ensures that the candidate cohorts
have sufficient resources so that in the second phase (final VM-to-PM mapping)
there will be enough options to choose from and produce a high-scoring plan.
Finally, Rule 3 functions in levels 0 and 1 and filters out migration-incompatible
combinations of cohorts.
Cohort Merging: Through the merging of cohorts of a certain level we synthe-
size more comprehensive cohorts at the next level up. This operation is required
when the hosting capacity of each and every cohort at the current level does
not suffice to address all user resource demands. The cohort to be formed must
have both the VM hosting capacity and the characteristics to match the user
request. Thus, the goal of the merging process is to produce a number of high-
scoring cohorts and then choose the “best”. The formula used to compute the
cohort ranking is also used here to designate this best selection. We have formu-
lated the above selection as an optimization problem whose constraints are the
user needs and administration preferences. As the number of these constraints
and their combinations while merging cohorts may increase exponentially to the
size of the physical infrastructure, we resort to finding a near-optimal solution.

Table 2. Cohort Filtering Rules

Rule 1: A cohort’s resource availability is below a certain
“threshold” (set as input in Alg. 1)

Rule 2: A cohort’s resource availability is less than “overcommit”
times the requested quantity

Rule 3: Mismatch with user-provided specifications, such as
levels 0 & 1 differences in CPU architecture

VM Placement in non-Homogeneous IaaS-Clouds 179

Algorithm 2. Simulated-Annealing
Input: same iterations: Maximum number of iterations yielding no improvement

T : Temperature

GetNeighborOf(): Space exploration function

Score(): Score function

seed: Starting seed of space exploration

Output: A near-optimal solution

1: same := 0
2: best solution := current solution := GetInitialSolution(seed)
3: while same <same iterations do
4: new solution := GetNeighborOf (current solution)
5: D = Score(new solution) - Score(current solution)

6: if (T > 10−5 AND eD/T > Random()) OR (T < 10−5 AND D > 0) then
7: current solution := new solution
8: end if
9: if Score(new solution) > Score(best solution) then

10: best solution := new solution ; same := 0
11: end if
12: same++ ; T := 0.99 * T
13: end while

14: return best solution

To this end, we employ a stochastic and easily parallelizable approach –depicted
in Algorithm 2– that is based on simulated annealing [11].

The primary objective of Algorithm 2 is to create from a lower-level seed
cohort, a new formation at the current level. The solution has to be a single
cohort that complies with the rules of Table 2. Towards achieving this objective,
GetNeighborOf forms new potential “coalitions of resources” through naviga-
tion among cohorts of the current level. The function generates new cohorts by
merging neighboring lower-level cohorts connected through at least one network
route. More specifically, the lower level cohorts are randomly selected with only
one requirement: each potential merging operation will result in a single cohort
with its nodes adequately networked (i.e., preferably nodes that have direct phys-
ical links). Every cohort produced by GetNeighborOf is assigned a score within
Algorithm 2 with the help of Eqn. 3. This computation is carried out efficiently
as the resource evaluation is a single average sum and the constraint evaluation
uses a reduced, in terms of size, set of constraints.

Algorithm 2 input parameters, T and same iterations are used to designate
the termination condition of the simulated-annealing procedure. As the algo-
rithm visits more solutions, its temperature (T) drops. In high temperature
states, we are allowed to choose a new solution even if it is worse than the one
we currently have at hand. In this respect, Algorithm 2 avoids getting trapped
in local optima. The maximum number of allowed consecutive iterations that
yield no improvement is defined by the same iterations parameter. As soon as
the value of same iterations is reached, we assume that a local near-optimum
solution is found. As we show in Algorithm 1, MergeCohorts is called k times.
Every time, we use as input a different cohort from the top-k cohorts of the
previous level to serve as seed in Algorithm 2.

180 K. Tsakalozos, M. Roussopoulos, and A. Delis

5 Deployment Plan Production

All properties of the selected cohort (i.e., PMs, resource availability, network con-
nections and cohort-specific characteristics) along with the user-provided con-
straints (deployment hints) are used as input to the Deployment Planner that
ultimately produces the actual mapping of VMs-to-PMs in a way similar to the
one discussed in [19]. The Deployment Planner also takes into account previ-
ously encountered deployment hints referring to virtual infrastructures already
deployed and operational on (some) nodes of the selected cohort. However, since
these infrastructures are already deployed, the set of deployment hints can be
trimmed down only to those hints marked to have “side effects” as we discuss
in Section 3. We employ Algorithm 2 to produce the mapping of VMs to PMs.
Again, we need to designate two aspects: a) how to select a neighbor solution
commencing with a seed-mapping and b) how to ascertain the value of the pro-
duced candidate solution.

In general, the plans neighboring a specific deployment plan p are designated
by the following formula:

Np = {P ∈ AllP lans | Prob(P (v) �= p(v)) = d,∀v ∈ V }, (5)

where V is the set of VMs under deployment and d is the value of the probability
that a VM v is to be deployed on a PM other than the one currently set in plan
p. High values of d result in producing almost random deployment plans that
render Algorithm 2 ineffective. On the other hand, significantly reducing d may
trap the search process for a neighbor(s) into local optima. A detailed discussion
on this plan generation procedure can be found in [19].

The input scoring function is implemented as the weighted sum of the cost
evaluation functions corresponding to the constraints relevant to the user request
at hand. For a given deployment plan m the Score is:

Score(m) =
∑

Consti∈Cs

wiConsti(m) (6)

where Cs is the set of constraints and wi the respective user/administrator
imposed weights indicating the importance of each constraint.

6 Elastic Solver Service

Simulated annealing is inherently parallelizable and can effectively harvest the
distributed nature of the same cloud infrastructure we administer. Every time
the simulated annealing is invoked, it can use different seeds (e.g. Algorithm 1
line 8). In this manner even if one execution gets trapped into a local optimum,
a plausible solution can be ultimately found by another execution.

The Elastic Solver is a service providing virtual infrastructures used to
solve the constraint satisfaction problems described in the previous sections.

VM Placement in non-Homogeneous IaaS-Clouds 181

Elastic
Solver

Deployment

Planner

VM #1
Worker Worker

VM #n
Worker
VM #2C

lo
ud

Elastic Expansion

Cohort Picker

Fig. 2. High level view of the Elastic Solver

As Figure 2 depicts, the solver follows a master-workers architecture and inter-
acts with both the Dynamic Cohort Synthesizer and the Deployment Planner.
As the virtual infrastructures employed by the Elastic Solver are hosted in the
cloud, this service also acts as a special cloud client. Worker VMs requested by
the solver are configured so that as soon as they come online they register with
the master component of the Elastic Solver and declare their availability. These
workers remain idle until a request for solving a cohort-merging or a VM place-
ment problem arrives. In [18], we show how we are able to dynamically adjust
the exact number of worker nodes so that our “profit” in using this service is
maximized. We employ an iterative process that periodically adds or removes
worker nodes in an attempt to assess the VM’s performance and to properly
adjust the number of worker nodes. Larger elastic solver infrastructures result
in better deployment solutions and reduced deployment time but at the cost of
higher maintenance overhead as they reserve more resources.

7 Evaluation

Our evaluation examines the performance of deployment plan production for
a wide range of different infrastructures. A comparison of our constraint-based
approach against other VM placement algorithms can be found in [19]. We have
simulated two network topologies, shown in Figure 3, denoted as LAN and star.
In both topologies, there are groups of PMs supporting live migration. The two
topologies differ in the way these groups are connected amongst themselves. A
LAN can be created by lining up switches, each one leading to a single live
migration group (bottom left of Figure 3). In the star topology (right half of
Figure 3), a central switch connects N other switches and each switch leads to
N live migration groups. N is the fan-out of the star topology. In our evaluation,
the network’s fan-out also indicates the number of PMs inside any live migration
group in both the star and LAN topologies.

With the exception of the network connections inside a live migration group,
all other network links are assigned their bandwidth randomly out of three dis-
tinct values: 100, 1, 000 and 10, 000 Kbps. We expect connection within a live
migration group to be dedicated and of high bandwidth, thus, we assign them the
maximum bandwidth of 10, 000 Kbps. Apart from the connectivity bandwidth,

182 K. Tsakalozos, M. Roussopoulos, and A. Delis

���
���
���
���

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���
���

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���
���

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���
���

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���
���

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

Live Migration Group

Star Topology with fan−out 4LAN Topology

Fig. 3. Simulated network topologies

VM1 VM4

VM2

VM3

VM5 VM7

VM10 VM13

VM14VM9

VM8

VM11

VM12
VM6

ParVMs FavorVM

Fig. 4. LIGO inspired virtual infrastr

infrastructure non-homogeneity is also introduced through the characteristics
of the PMs. Each live migration group is made of identical PMs belonging to
one of three classes. Each of the three equally-sized classes has PMs of specific
capacity in hosting VMs. Here, this capacity depends on the amount of available
RAM. Therefore, classes feature PMs of 16, 8 and 4 GB of RAM respectively. In
addition, we assume 20% of all live migration groups to be incompatible with the
user request (e.g. due to different CPU architecture). In our simulation, whenever
we set an average load percentage, we randomly deviate from it up to 10%. The
load is realized as a reduction of the available resources of the infrastructure.
Each PM features a single CPU from which VMs reserve a fraction. The CPU
reserve fraction is explicitly stated in the user’s virtual infrastructure request.

Workload Description: We have run experiments with all the workflows de-
scribed in [3]. Here, we present the results of a virtual infrastructure request
resembling the Laser Interferometer Gravitational Wave Observatory (LIGO)
Inspiral Analysis Workflow. Figure 4 presents the VMs involved along with the
deployment hints provided by the user. The requested virtual infrastructure is
made of 14 VMs. Each VM reserves 1 GB of RAM and 10% of the CPU available
on the hosting node. Table 3 summarizes all user hints and their weights used
in this experiment. Apart from the user hints, we also employ administrative
deployment hints (Table 4) so as to promote the deployment of VMs in neigh-
boring PMs. The input parameters of Algorithm 1 are as follows: load threshold
is 10%, overcommit is set to 6, we perform 200 same iterations and we set k
to 100.

Table 3. User deployment hints

Hint Involved VMs Weight

ParVMs VMs {1,2,3},{4,5,6},
(x4) {8,9,10},{11,12,13} 40.0

FavorVM VM 7 & VM 14
(x2) 40.0

Table 4. Administrative hints

Hint Description Weight

Reduce Reduce the number of
Groups live migration groups 40.0

Reduce Reduce the network hops
Dist between migration groups 40.0

VM Placement in non-Homogeneous IaaS-Clouds 183

 0

 20

 40

 60

 80

 100

 120

 140

120 300 500 700 900

T
im

e
(S

ec
on

ds
)

Physical machines (PMs)

Orig. 2
Orig. 4

Reduce 2
Reduce 4

(a) Planning time in a LAN

 10

 20

 30

 40

 50

 60

 70

120 300 500 700 900

S
co

re

Physical machines (PMs)

(b) Plan score in a LAN

 0

 200

 400

 600

 800

 1000

 1200

120 300 500 700 900

H

op
s

Physical machines (PMs)

(c) Hops in a star

 0

 20

 40

 60

 80

 100

 120

 140

120 300 500 700 900

T
im

e
(S

ec
on

ds
)

Physical machines (PMs)

Orig. 2
Orig. 4

Reduce 2
Reduce 4

(d) Planning time in a star

 10

 20

 30

 40

 50

 60

 70

120 300 500 700 900

S
co

re

Physical machines (PMs)

(e) Plan score in a star

 0
 100
 200
 300
 400
 500
 600
 700
 800

120 300 500 700 900

B
an

dw
id

th
 (

K
bp

s)

Physical machines (PMs)

(f) Bandwidth in a star

Fig. 5. Evaluating our approach when increasing the infrastructure’s size

Scaling the Infrastructure: Figures 5(a) and 5(d) show the time required for
producing a deployment plan as we increase the number of PMs from 30 to 1000.
In configurations denoted as “Orig.” we use only the Deployment Planner for
plan production whereas in configurations denoted as “Reduce” we also employ
the Dynamic Cohort Synthesizer to reduce the search space. For each of the
two topologies, we offer two variations corresponding to different fan-out values.
“Orig. 2” and “Reduce 2” correspond to configurations where the fan-out is 2
whereas for “Orig. 4” and “Reduce 4” the fan-out is 4.

To have a full understanding of the improvement, we must also examine the
score of the produced plans, as computed through Equation 1. Figures 5(b)
and 5(e) show the plan score for the LAN and star topology respectively. The
Deployment Planner alone fails to produce high-scoring deployment plans as the
size of the infrastructure increases. The reason for this is that the selection of
PMs tends to disperse the virtual infrastructure across the physical infrastruc-
ture. The extra proximity cost functions that promote plans utilizing neighboring
PMs are not enough to concentrate the user’s VMs. The option of increasing the
weight of the proximity functions proves to be ineffective in large infrastructures.
High weight values for proximity administrative hints render the user provided
hints insignificant playing a minor role in plan production. Instead, when we re-
duce the hosting infrastructure, Deployment Planner manages to produce high-
scoring plans. The cohort selection renders the proximity cost most effective.

Network EfficiencyWhen Scaling the Infrastructure: In non-homogeneous
infrastructures, low-bandwidth network connections used by several VMs may
quickly become a performance bottleneck. To this end, we try to concentrate
VMs of the same virtual infrastructure in the same neighborhood of PMs. We
use two metrics to measure network efficiency a) the “packet hop count” and

184 K. Tsakalozos, M. Roussopoulos, and A. Delis

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80

T
im

e
(S

ec
on

ds
)

Load percentage

Orig. 2
Orig. 4

Reduce 2
Reduce 4

Fig. 6. Plan time under increasing load

 20
 25
 30
 35
 40
 45
 50
 55
 60
 65

 0 10 20 30 40 50 60 70 80

S
co

re

Load percentage

Fig. 7. Plan score under increasing load

b) the “average minimum path bandwidth”. For each pair of VMs there is a
path of minimum length over the physical network that connects the two PMs
where VMs are deployed. We are interested in two properties of this min-path,
a) its length and b) the connection with the minimum bandwidth along this
min-path. The length of the min-path is the number of network switches (hops)
a packet must pass starting from the source VM until it reaches the target VM.
The “packet hop count” metric is the summation of all min-path lengths of all
possible VM pairs. We use “packet hop count” to estimate the network latency
within the virtual infrastructure. The connection with the minimum bandwidth
in a min-path also determines the maximum bandwidth of the communication
among the source and target VMs -as the min-path is often the only path. The
“average minimum path bandwidth” also takes into account all min-paths of all
possible VM pairs and produces an average of the minimum bandwidth. We use
the “average minimum path bandwidth” as an indicator of the virtual network
bandwidth within the virtual infrastructure.

Figures 5(c) and 5(f) show the average number of hops and the bandwidth in
plans produced in a star topology when we use the Dynamic Cohort Synthesizer
(Reduce 2 & 4) and when we do not (Orig. 2 & 4). The respective LAN results
are similar. When selecting a cohort in our approach, the search space shrinks
radically and remains unchanged regardless of the set of PMs available in the
infrastructure. The confinement of VMs to a small sub-infrastructure with ded-
icated network connections such as those within live migration groups increases
the average minimum bandwidth.

Infrastructure Load: Increasing the load of the cloud reduces the capacity of
the physical infrastructure to host VMs. We fix the number of PMs to 100 and
gradually increase their load from 0% to 80%. Figures 6 and 7 show that high load
has little impact on the performance of the Deployment Planner operating alone,
without the help of Dynamic Cohort Synthesizer. This is because the number
of constraints in the respective constraint satisfaction problem remain the same
regardless of load. Any constraints depicting the load on a particular PM must
be taken into consideration by the Deployment Planner regardless of whether
the PM’s load is low or high. In contrast, in our two-phase approach there is a
performance degradation as the load increases. Yet, the worst performance we
get in an unrealistic scenario, with 80% load, is still higher than the respective
“Orig.” configuration.

VM Placement in non-Homogeneous IaaS-Clouds 185

8 Related Work

The assignment of VMs-to-PMs can be reduced to the job assignment problem
should VMs correspond to jobs and PMs to processing elements. The job assign-
ment problem has been extensively studied [15,24], yet it is regularly revisited as
application areas emerge. The placement policy in [16] exploits the tendency of
VMs to have certain properties in common. In [23] a two level control manage-
ment system is used for the placement of VMs to PMs using combinatorial and
and multi-objective optimization to address potentially conflicting placement
constraints. [5] reformulates the problem as a multi-unit combinatorial auction.
In [17], placement constraints are treated as separate dimensions in a multi-
dimensional Knapsack problem. User and administrative preferences expressed
through constraints are also employed in [8,9,20,19]. Often, as the number of
constraints increases more resources are needed to solve the constraint satisfac-
tion problem. Here, we address the issue of VM placement scalability through
the introduction of dynamically-formed cohorts.

Network connectivity is of critical importance for data centers [2] and has in-
fluenced our experimental group formation. [14] outlines an approach that builds
networks of VM test-beds over physical infrastructures via simulated annealing.
Algorithms that improve the embedding of virtual networks to physical layouts
are considered in [6]. In [13], the VM placement is mainly addressed from the
network traffic perspective.

The use of heuristics is a common approach among systems performing load
balancing in data centers. vManage [12] describes a low overhead solution for
managing load in an infrastructure hosting VMs. The VM placement policies
primarily consider properties of both platform (e.g., power management) and
the virtualization layer (e.g., SLA violations). Likely instability issues are also
addressed. Sandpiper [22] detects and monitors performance bottlenecks in a
cluster hosting VMs. Two approaches are evaluated in the decision making
mechanism that produces the VM migration actions: the first, termed black-box,
remains fully OS-and-applications agnostic while the second, termed gray-box,
exploits statistics originating from both the OS and the application-layer. Com-
pared to both Sandpiper and vManage, our approach addresses performance
bottlenecks by exploiting provided preferences and not by monitoring the op-
eration of VMs. Modeling the VM load is deemed important in the black-box
approach used in IaaS clouds. [10,4,21] classify VM workloads and develop met-
rics to model the encountered workloads in an effort to reduce VM migration
costs.

In our approach, we do not try to predict the performance requirements of
VMs but we trust user-provided hints to avoid performance bottlenecks. Through
PM grouping, we reduce the search space of the constraint satisfaction problem
in the second phase (VM to PM mapping). In this way, we address both po-
tential scalability issues [8,9,20,19], and balance load. Compared to [14,6,13],
our approach is more general as it makes use of constraints expressing high-level
properties. Finally, compared with other site-based approaches [1], our approach
synthesizes physical infrastructures (cohorts) on-the-fly.

186 K. Tsakalozos, M. Roussopoulos, and A. Delis

9 Conclusions

In this paper, we examine the problem of VM placement in non-homogeneous
IaaS cloud environments. We propose a service realizing a two-phase approach
that manages diversified resources. Compared to a heavyweight monolithic ap-
proach, our scheme can scale to several hundreds of physical nodes. In fact, the
quality of the deployment plans we produce remains largely unaffected by the
size of the physical infrastructure. A key concern has been the confinement of
the solicited virtual infrastructure into a dynamically-adjusted set of physical
nodes whose size and properties match the user requests. As a result, overall
plan quality is improved since latency amongst deployed VMs is reduced and
the average bandwidth increases dramatically. Our future work includes explor-
ing the use of other constraint satisfaction algorithms and refining the cost and
revenue functions of the Elastic Solver service.

Acknowledgments. We thank the reviewers for their comments. This work
has been partially supported by the EU D4Science I&II FP7-projects.

References

1. Opennebula. (November 2010), http://www.opennebula.org
2. Al-Fares, M., Loukissas, A., Vahdat, A.: A Scalable, Commodity Data Center Net-

work Architecture. In: Proc. of the ACM SIGCOMM Conference, pp. 63–74. ACM,
Seattle (2008)

3. Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M.H., Vahi, K.: Char-
acterization of Scientific Workflows. In: 3rd Workshop on Workflows in Support of
Large-Scale Science, Austin, TX, November 2008, pp. 1–10 (2008)

4. Bobroff, N., Kochut, A., Beaty, K.: Dynamic Placement of Virtual Machines for
Managing SLA Violations. In: Proc of the 10th IFIP/IEEE International Sympo-
sium on Integrated Network Management, Munich, Germany (May 2007)

5. Breitgand, D., Epstein, A.: SLA-aware Placement of Multi-Virtual Machine Elas-
tic Services in Compute Clouds. In: IFIP/IEEE International Symposium on Inte-
grated Network Management, Dublin, Ireland (May 2011)

6. Chowdhury, N., Rahman, M., Boutaba, R.: Virtual Network Embedding with Co-
ordinated Node and Link Mapping. In: Proc. of IEEE INFOCOM, Rio de Janeiro,
Brazil (April 2009)

7. Cierniak, M., Zaki, M.J., Li, W.: Compile-Time Scheduling Algorithms for a Het-
erogeneous Network of Workstations. The Computer Journal 40(6), 356–372 (1997)

8. Hermenier, F., Lorca, X., Menaud, J., Muller, G., Lawall, J.: Entropy: a Consoli-
dation Manager for Clusters. In: Proc. of the 2009 ACM SIGPLAN/SIGOPS Int’l
Conf. on Virtual Execution Environments, Washington, DC (March 2009)

9. Hyser, C., McKee, B., Gardner, R., Watson, B.J.: Autonomic Virtual Machine
Placement in the Data Center. HP Laboratories HPL-2007 189 (2008)

10. Khanna, G., Beaty, K., Kar, G., Kochut, A.: Application Performance Management
in Virtualized Server Environments. In: Proc of the 10th IEEE/IFIP Network
Operations and Management Symposium, Vancouver, Canada (April 2006)

11. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing.
Science 220, 671–680 (1983)

http://www.opennebula.org

VM Placement in non-Homogeneous IaaS-Clouds 187

12. Kumar, S., Talwar, V., Kumar, V., Ranganathan, P., Schwan, K.: vManage:
Loosely Coupled Platform and Virtualization Management in Data Centers. In:
Proceedings of the 6th International Conference on Autonomic Computing, June
2009, pp. 127–136. ACM, Barcelona (2009)

13. Meng, X., Pappas, V., Zhang, L.: Improving the Scalability of Data Center Net-
works with Traffic-aware Virtual Machine Placement. In: Proceedings of IEEE
INFOCOM, San Diego, CA, USA (March 2010)

14. Ricci, R., Alfeld, C., Lepreau, J.: A Solver for the Network Testbed Mapping
Problem. SIGCOMM Computer Communications Review 33(2), 65–81 (2003)

15. Rotithor, H.: Taxonomy of dynamic task scheduling schemes in distributed com-
puting systems. In: IEEE Proceedings Computers and Digital Techniques (January
1994)

16. Sindelar, M., Sitaraman, R.K., Shenoy, P.: Sharing-Aware Algorithms for Virtual
Machine Colocation. In: Proceedings of the 23rd ACM Symposium on Parallelism
in Algorithms and Architectures, San Jose, California, USA (June 2011)

17. Singh, A., Korupolu, M., Mohapatra, D.: Server-Storage Virtualization: Integration
and Load Balancing in Data Centers. In: Proc. of the 2008 ACM/IEEE Conference
on Supercomputing SC 2008, pp. 53:1–53:12 (2008)

18. Tsakalozos, K., Kllapi, H., Sitaridi, E., Roussopoulos, M., Paparas, D., Delis, A.:
Flexible Use of Cloud Resources through Profit Maximization and Price Discrim-
ination. In: Proc. of the 27th IEEE Int. Conf. on Data Engineering (ICDE 2011),
Hannover, Germany (April 2011)

19. Tsakalozos, K., Roussopoulos, M., Floros, V., Delis, A.: Nefeli: Hint-based Execu-
tion of Workloads in Clouds. In: Proc. of the 30th IEEE Int. Conf. on Distributed
Computing Sytems (ICDCS 2010), Genoa, Italy (June 2010)

20. Wang, X., Lan, D., Wang, G., Fang, X., Ye, M., Chen, Y., Wang, Q.: Appliance-
Based Autonomic Provisioning Framework for Virtualized Outsourcing Data Cen-
ter. In: Proc. of the 4th Int. Conf. on Autonomic Computing, Washington, DC, p.
29 (2007)

21. Weng, C., Li, M., Wang, Z., Lu, X.: Automatic Performance Tuning for the Vir-
tualized Cluster System. In: Proc. of the 29th IEEE International Conference on
Distributed Computing Systems, Montreal, Canada (June 2009)

22. Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Black-box and Gray-box
Strategies for Virtual Machine Migration. In: Proc of the 4th USENIX Symposium
on Networked Systems Design and Implementation, Cambridge, MA (2007)

23. Xu, J., Fortes, J.A.B.: Multi-Objective Virtual Machine Placement in Virtualized
Data Center Environments. In: Proceedings of the 2010 IEEE/ACM Int’l Con-
ference on Green Computing and Communications & Int’l Conference on Cyber,
Physical and Social Computing, Hangshou, PR of China (December 2010)

24. Yeo, C.S., Buyya, R.: A taxonomy of market-based resource management systems
for utility-driven cluster computing. Softw. Pract. Exper. 36(13) (November 2006)

Place Semantics into Context: Service
Community Discovery from the WSDL Corpus

Qi Yu

College of Computing and Information Science
Rochester Institute of Technology

qi.yu@rit.edu

Abstract. We propose a novel framework to automatically discover ser-
vice communities that group together related services in a diverse and
large scale service space. Community discovery is a key enabler to ad-
dress a set of fundamental issues in service computing, which include
service discovery, service composition, and quality-based service selec-
tion. The standard Web service description language, WSDL, primarily
describes a service from the syntactic perspective and rarely provides
rich service descriptions. This hinders the direct application of tradi-
tional document clustering approaches. In order to attack this central
challenge, the proposed framework applies Non-negative Matrix Factor-
ization (NMF) to the WSDL corpus for service community discovery.
NMF has demonstrated its effectiveness in clustering high-dimensional
sparse data while offering intuitive interpretability of the clustering re-
sult. NMF-based community discovery is further augmented via semantic
extensions of the WSDL descriptions. The extended semantics are first
computed based on the information sources outside the WSDL corpus.
They are then seamlessly integrated with NMF, which makes the seman-
tic extensions fit in the context of the original services. The experiments
on real world Web services are presented to show the effectiveness of the
proposed framework.

1 Introduction
Web services are increasingly being adopted to access data and applications
across the Web [19]. This has been largely the result of the huge investment in
Web application development and the many standardization efforts to describe,
advertise, discover, and invoke Web services [3]. The emergence of cloud infras-
tructure also offers a powerful yet economical platform that greatly facilitates
the development and deployment of a large number of Web services. Based on
the most recent statistics, there are 28,593 Web services being provided by 7,728
distinct providers over the world and these numbers keep increasing in a fast
rate 1. Despite the abundance of various supporting technologies to facilitate
the access to these Web services, there currently lacks a meaningful organization
of the large and diverse Web service space. Most current Web services exist on
the Web in a disorganized manner, which poses significant challenges for users
to fully leverage the wealthy computing resources offered by these services.
1 http://webservices.seekda.com/

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 188–203, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Service Community Discovery from the WSDL Corpus 189

Discovery of service communities that group together related services is a key
enabler to address a set of fundamental issues in service computing that include
service discovery, service composition, and quality based service selection:

– Service discovery: Searching a service with a desired functionality can be
performed solely within the service communities that offer relevant function-
alities. This not only increases the searching accuracy but also significantly
reduces the searching time because services from irrelevant communities are
directly filtered out.

– Service composition: Grouping together relevant services into commu-
nities facilitates the discovery of potentially composable services. Service
composition can be (semi-)automated in such a controlled environment to
generate value-added composite services.

– Service selection: As competing Web services that offer “similar” function-
alities will be categorized into the same service communities, service users are
provided with a one stop shop to get the service with required functionality
and the best desired quality.

Existing efforts in constructing service communities can be categorized into ei-
ther top-down or bottom-up approaches. A top-down approach usually starts
with a set of predefined template services and bootstraps the communities by
grouping together the related template services. It then relies on the services to
register to the corresponding service communities based on the similarity with
the template services. A top-down strategy may only be applicable to a limited
number of Web services (e.g., within an organization), where a centralized con-
trol on the services can be enforced. Unfortunately, when a large scale of Web
services from an open environment (e.g., the Web) are considered, the top-down
strategy presents key challenges. One the one hand, as Web services are expected
to be autonomous (i.e., provided by independent service providers) and a priori
unknown, it is infeasible to predefine the template services that match the func-
tionalities of these services. On the other hand, it is also unreasonable to rely on
the independent service providers to register their services with the predefined
service communities.

Bottom-up approaches directly infer service communities from the Web ser-
vice descriptions. Most existing Web services are described using the standard
Web service description language, WSDL. However, WSDL primarily describes
a service from the syntactic perspective and rarely provides rich service descrip-
tions [7]. This hinders the direct application of traditional document clustering
approaches. Some recent efforts have been devoted to break the limitations of
WSDL for improving the accuracy of service search and community discovery.
These approaches can be divided into two categories, both of which, however,
suffer some major issues.

– The first category aims to fully exploit the information carried by the
WSDL service descriptions [7,8,13,12]. For example, a key premise behind
the Woogle Web service search engine is that terms that co-occur frequently
tend to share the same concept [7]. Nevertheless, WSDL descriptions usually

190 Q. Yu

come with very limited number of terms. Hence, semantically similar terms
(e.g., car and vehicle) will have a slim chance to co-occur in a WSDL corpus
and thus be deemed as irrelevant.

– The second category, on the other hand, explores external information
sources, such as WordNet, Wikipedia, and search engines, to extend WSDL
with rich semantics [11,2]. However, the external semantic extensions may
not fit into the context of the original services. For example, “apple” means
different things for a computer hardware service and an online grocery store
service. In this regard, the semantic extensions are useful only when they can
be leveraged in the context of the original service.

We propose a novel framework to discover service communities that group to-
gether related services from diverse and large scale Web services. We adopt
the bottom-up strategy so that the communities can be automatically dis-
covered from the WSDL corpus. In order to attack the central challenges as
highlighted above, the proposed framework exploits Non-negative Matrix Fac-
torization (NMF) as a powerful tool for service community discovery. NMF-based
community discovery is further augmented via semantic extensions of the WSDL
descriptions. The key contributions of the proposed framework are summa-
rized as follows.

Community Discovery via NMF. Service community discovery is to group to-
gether Web services with similar functionalities. As the functionalities of Web
services are captured by the operations they offer, we construct an m×n matrix
X , where the i-th row represents service si, the j-th column represents operation
oj , and the entry X(i, j) represents the association between si and oj. We exploit
an augmented version of NMF, called Non-negative Matrix Tri-Factorization
(NMTF), which factorizes matrix X into three low-rank non-negative matrices:
a service cluster indicator matrix, an operation cluster indicator matrix, and
a service-operation association matrix. NMTF in essence simultaneously clus-
ters both services and operations. In this way, NMTF not only leverages the
WSDL service descriptions but also exploits the “duality” relationship between
services and operations [5,20]. Duality signifies that service clustering is de-
termined by the functionalities of services (i.e., the operations they offer) while
operation clustering is determined by the co-occurrence of operations in function-
ally similar services. Simultaneously clustering services and operations enables
the two clustering processes to guide each other so that the overall clustering
accuracy can be improved. Furthermore, the non-negative constraint of NMTF
yields a natural parts-based representation of the data as it only allows addictive
combinations [10]. Thus, the clustering result from NMTF is more intuitive to
interpret.

Semantic Extension Integration. NMTF goes beyond the existing service and
community discovery approaches by fully exploiting the information carried by
the WSDL corpus, which includes not only the service descriptions but also the
duality relationship between services and operations. Unfortunately, due to the

Service Community Discovery from the WSDL Corpus 191

limited descriptive capacity of WSDL, terms that share similar semantics may
be regarded as irrelevant if they do not co-occur in a WSDL file. This will lead to
poor community discovery performance. To attack this challenge, we compute
the semantic extensions of the WSDL corpus by leveraging external informa-
tion sources. We then integrate the semantic extensions into the NMTF process,
where the original service descriptions are used to discover the service communi-
ties. The amalgamation of the semantic extensions and NMTF has the effect of
fitting the extended semantics obtained from external sources into the context
of the original services. This enables the proposed the framework to effectively
leverage the semantic extensions to benefit service community discovery.

Outline: The remainder of the paper is organized as follows. We propose a
framework for service community discovery in Section 2. The cornerstone of
the proposed framework is the usage of Non-negative Matrix Tri-Factorization
(NMTF) to simultaneously cluster services and operations. We present a strat-
egy for computing the semantic extensions of the WSDL corpus in Section 3. We
then elaborate on how to integrate the extended semantics into the community
discovery framework. We evaluate the effectiveness of the proposed service com-
munity discovery framework via real-world Web services in Section 4. We give
an overview of related work in Section 5 and conclude in Section 6.

2 Framework for Service Community Discovery

Service community discovery aims to group together Web services that provide
similar functionalities. Since the functionality of a Web service is reflected by
its operations, it is desirable to evaluate the similarity between services based
on the operations they offer. We consider two types of objects in a Web service
space: services S = {s1, ..., sm} and operations O = {o1, ...,on}. The association
(or similarity) between a service s and an operation o is denoted by a scalar
value x(s,o). Thus, we can use a m-by-n two dimensional matrix X to denote
the association between each pair of service and operation if we map the row
indices into S and the column indices into O. Each entry X(i, j) ∈ X denotes
the association between service si and operation oj . We refer to the matrix X
as the service-operation contingency matrix. Once matrix X is constructed, the
similarity between services si and sj can be computed as the dot-product of the
ith and jth row vectors of X:

sim(si, sj) = X(i, :) ·X(j, :) (1)

To complete the construction of matrix X, we also need to compute the
association between each pair of service and operation. This can be achieved by
representing both services and operations as N -dimensional term vectors, where
N is the number of distinct terms in the WSDL corpus. More specifically, if
the kth term appears in the description of service si (or the signature of operation

192 Q. Yu

Table 1. Notations

Notation Description
S ,O sets of services and operations
si, oj the ith service and jth operation
Wsi the WSDL description of service si

E(Wsi) the semantic extension of Wsi

ŝp, ôq the pth service community and qth operation community
X,S,R, O matrices
XT the transpose of matrix X

X(i, j) the element at the ith row and jth column of matrix X

X(i, :) the ith row of matrix X

X(:, j) the jth column of matrix X

oj), the corresponding entry in the term vector will be set as the frequency of
this term 2. Otherwise, the corresponding entry is set to 0. Hence, the association
between service si and operation oj can be computed as the dot-product of their
term vectors. Table 1 lists the notations that are used throughout this paper.

2.1 Community Discovery via NMTF

In this section, we propose to use a Non-negative Matrix Tri-Factorization
(NMTF) process to discovery service communities based on the service-operation
contingency matrix X constructed above. In particular, NMTF factorizes X into
three low-rank matrices, i.e.,

X ≈ SROT (2)

where S ∈ Rm×k is the cluster indicator matrix for clustering services (i.e.,
rows of X), O ∈ Rn×l is the cluster indicator matrix for clustering operations
(i.e., columns of X), R ∈ Rk×l is the cluster association matrix that captures
the association between service clusters and operation clusters. NMTF in essence
simultaneously clusters S into k disjoint service communities andO into l disjoint
operation communities. In this way, it effectively exploits the duality between
services and operations to improve the overall community discovery accuracy.

To further demonstrate how NMTF works, we use a collection of real-world
WSDL files obtained from [9]. This dataset consists of over 450 services from
7 different domains. For a clear illustration, we select 5 services, where three
of them are from the eduction domain and two are from the medical domain.
Each service offers one operation and thus there are altogether five operations.
Through some preprocessing of the WSDL files (refer to Section 5 for details),
we identify 33 distinct terms. Hence, all the services and operations can be repre-
sented as 33-dimensional vectors. Then, we construct a 5×5 contingency matrix
X where each row represents a service and each column represents an opera-
tion. Applying NMFT on X, we obtain the following result in Equation (3). It is

2 Other values, such as the TFIDF score [1], can also be used.

Service Community Discovery from the WSDL Corpus 193

easy to tell that the first three rows of X, which represent three education ser-
vices, are grouped into the first service community ŝ1 (because S(i, 1) > S(i, 2),
where i ∈ {1, 2, 3}). The last two rows, representing two medical services are
grouped into the second service community ŝ2 (because S(i, 1) < S(i, 2), where
i ∈ {4, 5}). Similarly, columns 1, 2, and 3, which represent three operations from
the education domain are grouped into the first operation community ô1 and the
fourth and fifth operations are grouped into the second operation community ô2.

⎛⎜⎜⎜⎜⎜⎝
81 3 22 0 0

3 68 30 0 4

22 30 71 0 4

0 0 0 42 22

0 6 6 54 257

⎞⎟⎟⎟⎟⎟⎠
X

≈

⎛⎜⎜⎜⎜⎜⎝
0.3069 0.0000

0.2878 0.0042

0.3834 0.0017

0.0000 0.0824

0.0000 0.7045

⎞⎟⎟⎟⎟⎟⎠
S

(
307.7633 8.4288

10.9841 612.4139

)
R

⎛⎜⎜⎜⎜⎜⎝
0.3418 0.0000

0.3206 0.0064

0.4274 0.0029

0.0000 0.1347

0.0000 0.5936

⎞⎟⎟⎟⎟⎟⎠

T

O

(3)

2.2 Result Interpretation

Under NMTF, a row vector X(i, :) ∈ X, which corresponds to the ith service in
the service space, can be represented as follows:

X(i, :) =
k∑

p=1

S(i, p)V(p, :) (4)

where V = ROT . Each entry V(p, j) captures the association of operation oj

with service community ŝp. V(p, :), a row vector of V, captures the association of
service community ŝp with all operations. In this regard, V(p, :) can be regarded
as the centroid vector of service community ŝp. Recall that NMTF enforces
a non-negative constraints on matrices S,R,O. In addition, S is the cluster
indicator matrix with S(i, p) ∈ S representing the cluster membership of si in
service community ŝp Therefore, a service X(i, :) is essentially formulated as
the additive combination of all the service community centroids weighted by the
memberships of si in these communities.

2.3 Objective Function

NMTF aims to find three low-rank non-negative matrices to approximate the
original service-operation contingency matrix X. A good approximation requires
that values in SROT be close to the original values in X. Considering the non-
negative constraints, it is equivalent to solve the following optimization problem:

min
S≥0,R≥0,O≥0

||X− SROT ||2F (5)

where || · ||F denotes Frobenius norm.

194 Q. Yu

3 Semantic Extension Integration

The NMTF process proposed in Section 2 aims to fully leverage the WSDL de-
scriptions to discover service communities. Due to the autonomous nature of
Web services, it is common that different WSDL files use distinct terms to de-
scribe similar functionalities (e.g., AirlineReservation and BookFlight). Existing
document clustering techniques rely on the co-occurrence of terms to identify
semantically similar terms [7]. Unfortunately, most WSDL descriptions are gen-
erated from program source code written in certain programming languages.
This implies that WSDL files rarely provide rich service descriptions. Due to the
limited terms used in the WSDL descriptions, the semantically similar terms
may have a low chance to co-occur in the WSDL corpus.

To attack this challenge, we propose to explore external information sources to
extend WSDL descriptions with rich semantics. We then exploit these extended
semantics to improve the accuracy of service community discovery. Some recent
efforts have been devoted to leverage semantic extensions of the WSDL files to
improve service discovery [11,2]. In these approaches, the semantic extensions are
directly used to match users’ queries or compute the semantic distances between
terms. However, as motivated in Section 1, using external sources may lead to
semantic extensions that are irrelevant to the original services. Using irrelevant
semantics to match users’ queries or compute the similarity between terms will
negatively affect the service discovery accuracy.

We propose to integrate the semantic extensions of the WSDL corpus into
the NMTF process, in which the original services are clustered to discover the
service communities. The amalgamation of the semantic extensions and NMTF
places the extended semantics into the context of the original services to improve
community discovery accuracy.

3.1 Computing the Semantic Extensions of the WSDL Corpus

A number of external information sources, such as WordNet and Wikipedia,
may be used to compute the semantic extensions of the WSDL corpus. However,
as most WSDL descriptions originate from program source code, a lot of terms
may not be proper English words. For example, the concatenation of a number of
words is typically used to describe the names of operations (e.g., GeocodeByZip).
Abbreviations are also commonly used in the parameters of the operations (e.g.,
temp for temperature). This significantly limits the effectiveness of traditional
lexical references, such as WordNet, which do not include WSDL terms that are
not proper English words.

One useful and powerful information source that we plan to leverage is the
large volume of documents on the Web. This also allows us to exploit web search
engines to effectively process the irregular and misspelled terms, which are quite
common in WSDL files. We follow a procedure, which is similar to the one
proposed in [16] to compute the semantic extensions of the WSDL corpus:

Service Community Discovery from the WSDL Corpus 195

1. Preprocess each WSDL file (Wsi) in the corpus to identify the functional
terms (refer to Section 4 for the details of WSDL file preprocessing). A
functional term describes the functionality provided by a service.

2. Submit each functional term t ∈ Wsi to a search engine and retrieve the
top-k documents, d1, ..., dk.

3. Rank the terms in documents, d1, ..., dk based on their TFIDF scores and
select the top-r terms.

4. The semantic extension of Wsi is a vector E(Wsi), which consists of the
TFIDF scores of the selected top-r terms.

3.2 Semantic Extension Integration

We propose a graph based approach to achieve semantic extension integration.
The first step is to construct a semantic similarity graph, G = (V, E), which
captures the semantic similarity between different services. Each vertex vi rep-
resents the semantic extension of a service si. Two vertices are connected if the
similarity W(i, j) between services si and sj is larger than a certain threshold.
The edge is weighted by W(i, j), which is obtained via the dot-product between
E(Wsi) and E(Wsj). Based on the semantic similarity graph, the underlying
rationale of semantic extension integration can be specified as follows.

Rationale: If two services si and sj share similar semantic descriptions (i.e., they
have a large edge weight W(i, j) in the similarity graph), they are expected to
provide similar functionalities. Hence, their corresponding cluster memberships
(e.g., S(i, p) and S(j, p)) are expected to be similar. �

Therefore, W(i, j)(S(i, p) − S(j, p))2 is expected to be small for all i, j. This is
equivalent to say that

Rp =
1
2

m∑
i,j=1

W(i, j)(S(i, p)− S(j, p))2

is small. If all k service communities are considered and through some algebra,
we have

R =
k∑

p=1

Rp = Tr(ST LS) (6)

L = D−W (7)

D(i, i) =
∑

j

W(i, j) (8)

where L is the graph Laplacian of the semantic similarity graph and D is the
degree matrix.

To integrate the semantic extensions with the NMTF process, we incorporate
R as a regularizer into the original objective function specified in Equation (5).

196 Q. Yu

Table 2. Domains of Web Services

Domain #Service Abbreviation
Communication 42 Comm
Education 139 Educ
Economy 83 Econ
Food 23 Food
Medical 45 Medi
Travel 90 Trav
Weapon 30 Weap

Thus, service community discovery with semantic extensions can be formulated
as the following optimization problem:

min
S≥0,R≥0,O≥0

||X− SROT ||2F + λTr(ST LS) (9)

where λ is the regularization parameter. The above optimization problem can
be solved by using an iterative approach that exploits the auxiliary functions
and the optimization theory [10].

4 Empirical Study

We conduct a set of experiments to assess the effectiveness of the proposed service
community discovery framework. The experiments are performed based upon a
real-world WSDL corpus obtained from [9]. The WSDL corpus consists of over
450 services from 7 different application domains. Table 2 lists the number of
services from each domain.

We preprocess the WSDL corpus before applying the proposed service commu-
nity discovery algorithm. The purpose of WSDL preprocessing aims to identify
the functional terms, which describe the functionalities of the services. We fol-
low a procedure which is similar to the one adopted in [20]. More specifically,
preprocessing consists of four steps: extraction, tokenization, stopword removal,
and stemming: (1) Extraction extracts the key components of a WSDL file in-
cluding types, messages, operations, port types, binding, and port using path
expressions. (2) Tokenization is to decompose the concatenated terms into sim-
ple terms (e.g., from AirlineReservation to Airline and Reservation). (3) Stopword
removal removes the non-functional terms, which include not only the regular
stopwords but also the WSDL specific stopwords, such as url, host, http, ftp,
soap, binding, type, get, set, request, response, etc. (4) Stemming reduces differ-
ent forms of a term into a common root form. After the functional terms are
identified through preprocessing, we follow the procedure described in Section 2
to construct the service-operation contingency matrix X.

Service Community Discovery from the WSDL Corpus 197

4.1 Evaluation Metrics

The performance is assessed by comparing the community membership assigned
by the proposed community discovery framework and the service domains pro-
vided by the WSDL corpus. We adopt two metrics to measure the community
discovery performance: ACcuracy (i.e., AC) and Mutual Information (i.e., MI).
Both AC and MI are widely used metrics to assess the performance of clustering
algorithms [17,4].

AC metric: For a given service si, assume that its assigned community mem-
bership is zi and its domain label is yi based on the WSDL corpus. The AC
metric is defined as follows:

AC =
∑m

i=1 δ(zi, map(yi))
m

(10)

where m is the total number of Web services in the WSDL corpus. δ(x, y) is
the delta function that equals to one if x = y and equals to zero if otherwise.
map(yi) is the permutation mapping function that maps each assigned commu-
nity membership to the equivalent domain label from the WSDL corpus. The
Kuhn-Munkres algorithm is used to find the best mapping [14].

MI metric: Let D be the set of application domains obtained from the WSDL
corpus and C be the service communities obtained from the proposed community
discovery framework. The mutual information metric MI(D, C) is defined as
follows:

MI(D, C) =
∑

d̂i∈D,ĉj∈C

p(d̂i, ĉj) log2

p(d̂i, ĉj)

p(d̂i)p(ĉj)
(11)

where p(d̂i) and p(ĉj) are the probabilities that a randomly selected service from
the corpus belongs to domain d̂i and community ĉj , respectively. p(d̂i, ĉj) is the
joint probability that the randomly selected service belongs to both domain d̂i

and community ĉj .

4.2 Experiment Design and Parameter Setting

We also implement two well-know clustering algorithms to compare with the
proposed service community discovery framework. These algorithms are Sin-
gular Value Decomposition (SVD) based Co-clustering algorithm and k-means
algorithm. The SVD based co-clustering algorithm leverages the duality between
services and operations and has been demonstrated to be effective in clustering
WSDL service descriptions [20]. We apply this algorithm to the service-operation
contingency matrix to generate service communities. The k-means algorithm is
applied to the semantic extensions of the WSDL corpus. The semantic exten-
sion of a WSDL file Wsi is represented as a vector E(Wsi), which consists of

198 Q. Yu

Table 3. AC and MI Performance Comparison

Algorithm notation AC (%) MI (%)
NMTF + Semantics 55.0 47.1
NMTF 52.5 46.2
SVD Co-clustering 45.5 36.0
Semantic k-means 45.0 28.4

the TFIDF scores of the top-r terms returned by a web search engine. Refer to
Section 3 for details about how to compute the semantic extension of a WSDL
file. In addition, we also solely apply NMTF to the service-operation contingency
matrix to generate service communities.

We plan to achieve the following objectives through the comparisons with the
approaches described above:

– The comparison with the SVD based co-clustering algorithm and NMTF
aims to justify the effectiveness of integrating external semantic information
into the service community discovery process.

– The comparison with k-means clustering on the semantic extensions of the
WSDL corpus aims to demonstrate that placing the extended semantics into
the context of the original service can better leverage the semantics to benefit
service community discovery.

We use the notation NMTF+Semantics to denote the proposed algorithm that
integrates NMTF with the semantic extensions of the WSDL corpus. The nota-
tions for other algorithms are also listed in Table 3. The regularization factor λ
is set to 10. We perform k-means clustering to initialize matrices S and O. R is
initialized as STXO [6]. We run each algorithm 200 times and the average AC
and MI are reported.

4.3 Performance Comparison

Table 3 compares the AC and MI performance of four different algorithms.
NMTF+Semantics generates the best results on both AC and MI over all the
algorithms. Thus, the results clearly demonstrate the effectiveness of the pro-
posed service discovery framework. It is also worth to note that semantic k-means
reports the lowest performance on both AC and MI. This also justifies that us-
ing semantic extensions without considering the context of the original services
does not necessarily benefit community discovery.

To further illustrate the performance difference, Figure 2 shows the confusion
matrices with the best AC performances from the four different algorithms. As
can be seen, NMTF+semantics achieves a best AC of 64.4%. Figure 2 (a) shows
the corresponding confusion matrix. The best AC achieved by NMTF, SVD
Co-clustering and semantic k-means are 62.8%, 47.6%, and 52.9%, respectively.
Figure 2 (b), (c), and (d) show the corresponding confusion matrices from these
three algorithms, respectively. Among the four algorithms, NMTF+Semantics

Service Community Discovery from the WSDL Corpus 199

C1 C2 C3 C4 C5 C6 C7

Comm 41 0 1 0 0 0 0
Econ 1 79 1 0 0 2 0
Educ 0 5 120 2 1 11 0
Food 1 0 19 0 0 3 0
Medi 0 0 16 6 8 10 5
Trav 0 0 47 0 0 43 0
Weap 0 0 30 0 0 0 0

(a)

C1 C2 C3 C4 C5 C6 C7

Comm 41 0 0 0 0 1 0
Econ 1 78 1 0 0 4 0
Educ 0 6 83 0 37 12 1
Food 1 10 0 0 0 12 0
Medi 0 0 5 10 16 9 5
Trav 0 0 24 0 0 66 0
Weap 0 0 29 0 0 1 0

(b)

C1 C2 C3 C4 C5 C6 C7

Comm 0 31 1 0 0 10 0
Econ 0 59 2 0 0 22 0
Educ 0 2 83 0 6 12 36
Food 0 0 9 0 0 13 1
Medi 0 1 13 0 4 19 8
Trav 13 3 20 5 3 41 5
Weap 0 0 2 0 0 0 28

(c)

C1 C2 C3 C4 C5 C6 C7

Comm 30 0 12 0 0 0 0
Econ 0 57 24 0 0 2 2
Educ 0 1 119 0 17 0 2
Food 1 0 22 0 0 0 0
Medi 0 0 26 6 13 0 6
Trav 0 0 60 9 0 20 1
Weap 0 0 30 0 0 0 0

(d)

Fig. 1. Confusion Matrices with the best AC performances. (a) NMTF+Semantics:
AC = 64.4%; (b) NMTF: AC = 62.8%; (c) SVD Co-clustering: AC = 47.6%; (c)
Semantic k-means: AC = 52.9%. Comm, Econ, Educ, Food, Medi, Trav, and Weap
are the seven domains obtained from the WSDL corpus. C1 to C7 are the service
communities discovered from the WSDL corpus.

200 Q. Yu

correctly clusters the most number of services from three domains: Comm, Econ,
and Educ. NMTF correctly clusters the most number of services from two do-
mains: Medi and Trav. SVD Co-clustering correctly clusters the most number of
services from the Weap domain.

One interesting observation from the confusion matrices is that none of the
Food services has been correctly clustered by any of these algorithms. Most Food
services are clustered as either Educ or Trav services. This may be because that
the descriptions of the Food services share many common terms with Educ or
Trav services. Another possible reason is due to the inappropriate definitions of
the domains in the given WSDL corpus. For example, food and travel are two
highly related domains and it may be hard to set a clear boundary to differentiate
services that belong to these domains. In this regard, the community discovery
result can provide guidance to improve the service domain definitions.

5 Related Work
We give an overview of existing works that are most relevant to the proposed
approach in this section.

5.1 Service Community Discovery

A WSDL clustering technique is proposed in [8] to bootstrap the discovery of
Web services. Five key features are extracted from WSDL descriptions to group
Web services into functionality-based clusters. These features include content,
types, messages, ports, and name of the Web service. Each feature is assigned
an equal weight when computing the similarity between two services. Then, the
Quality Threshold (QT) clustering algorithm is applied to cluster Web services.
QT is a partitional clustering algorithm, like k-means, but does not require speci-
fying the number of clusters. A similar service clustering algorithm is proposed by
using four types of features to determine the similarity between services, includ-
ing content, context, service host, and service name [12]. A weighting mechanism
is used to combine these features to compute the relatedness measure between
services. A service-operation co-clustering strategy is proposed in [20] to dis-
covery homogeneous service communities from a heterogenous service space. A
SVD based algorithm is adopted to achieve the co-clustering of services and
operations. Experimental result on a set of real-world Web services shows that
co-clustering generates communities with better quality than just applying one-
side clustering (e.g., k-means or QT) on services. The proposed service commu-
nity discovery framework adopts a NMTF process that also clusters services and
operations simultaneously. NMTF is seamlessly integrated with the semantic
extensions of the WSDL corpus to further improve the performance of service
community discovery.

5.2 Service Search and Discovery

Woogle, a Web service search engine, is developed in [7] that helps service users
discover their desired service operations and operations that may be composed

Service Community Discovery from the WSDL Corpus 201

with other operations. Woogle exploits a clustering algorithm and association
rule mining to group parameters of service operations into concept groups. The
concept groups will then be used to facilitate the matching between users’ queries
and the service operations. Woogle aims to combine multiple sources of evidence,
including description of services, description of operations, and input/output of
operations, to measure similarity. A similar approach is developed in [13] for
service discovery. A service aggregation graph is also proposed to facilitate ser-
vice composition. A service discovery approach is proposed in [15] based on
Probabilistic Latent Semantic Analysis (PLSA). This approach treats service
descriptions as regular documents without considering the limited information
available in these descriptions. A common issue with the above approaches is that
they solely rely on the information carried by the WSDL service descriptions.
The limited descriptive capacity of the WSDL files may limit the effectiveness
of these approaches. Some recent efforts have investigated to exploit semantic
extensions of the WSDL files to improve service discovery [11,2]. The semantic
extensions are directly used to match users’ queries or compute the semantic
distance between terms. However, using external resources may lead to seman-
tic extensions that are irrelevant to the original services, which may negatively
affect the service discovery accuracy. This has also been justified through our
experiment results.

5.3 Service Selection

Service selection aims to find a proper service provider with the best user de-
sired quality of service (e.g., latency, fee, and reputation) [18,21,22]. The selection
is conducted within a set of services that compete to offer similar functionali-
ties. Most existing service selection approaches assume that services with similar
functionalities have already been discovered. In this regard, the proposed service
community discovery framework can be used to preprocess the Web service space
before service selection can be performed.

6 Conclusion and Future Directions

We present a novel framework that amalgamates Non-negative Matrix Tri-
Factorization (NMTF) and the semantic extensions of the WSDL corpus for
service community discovery. NMTF in essence clusters services and operations
simultaneously. In this way, it not only exploits the service descriptions but also
leverages the duality relationship between services and operations to improve the
performance of service community discovery. The amalgamation of NMTF and
the semantic extensions of the WSDL descriptions places the extended seman-
tics into the context of the service, which enable to more effectively leverage the
semantics to benefit community discovery. We evaluate the proposed framework
on a real-world WSDL corpus and the effectiveness has been clearly justified via
the comparison with three other algorithms.

One interesting direction that we plan to explore is to include prior knowl-
edge or background information to further improve the performance of service

202 Q. Yu

community discovery. A useful type of prior knowledge is the pairwise constraint
that specifies whether two services should belong to the same community or not.
Such kind of prior knowledge is usually easier to get than relying on the domain
experts to actually label a number of services. In this regard, it is worthwhile
to investigate how to use this specific type of supervisory information to benefit
service community discovery.

References

1. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-
Wesley Longman Publishing Co., Inc, Boston (1999)

2. Bose, A., Nayak, R., Bruza, P.: Improving web service discovery by using semantic
models. In: Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.)
WISE 2008. LNCS, vol. 5175, pp. 366–380. Springer, Heidelberg (2008)

3. Bouguettaya, A., Yu, Q., Liu, X., Malik, Z.: Service-centric framework for a
digital government application. In: IEEE Transactions on Services Computing,
vol. 99(PrePrints) (2010)

4. Cai, D., He, X., Han, J.: Document clustering using locality preserving indexing.
IEEE Trans. Knowl. Data Eng. 17(12), 1624–1637 (2005)

5. Dhillon, I.S.: Co-clustering documents and words using bipartite spectral graph
partitioning. In: KDD ’01: Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 269–274. ACM, New York
(2001)

6. Ding, C.H.Q., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix t-
factorizations for clustering. In: KDD, pp. 126–135 (2006)

7. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for web
services. In: VLDB 2004: Proceedings of the Thirtieth International Conference on
Very Large Data Bases, pp. 372–383, VLDB Endowment (2004)

8. Elgazzar, K., Hassan, A.E., Martin, P.: Clustering wsdl documents to bootstrap
the discovery of web services. In: ICWS, pp. 147–154 (2010)

9. Klusch, M., Fries, B., Sycara, K.: Automated semantic web service discovery
with owls-mx. In: Proceedings of the Fifth International Joint Conference on Au-
tonomous Agents and Multiagent Systems AAMAS 2006, pp. 915–922. ACM Press,
New York (2006)

10. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-
torization. Nature 401, 788–791 (1999)

11. Liu, F., Shi, Y., Yu, J., Wang, T., Wu, J.: Measuring similarity of web services
based on wsdl. In: ICWS, pp. 155–162 (2010)

12. Liu, W., Wong, W.: Discovering homogenous service communities through web
service clustering. In: Kowalczyk, R., Huhns, M.N., Klusch, M., Maamar, Z., Vo,
Q.B. (eds.) SOCASE 2008. LNCS, vol. 5006, pp. 69–82. Springer, Heidelberg (2008)

13. Liu, X., Huang, G., Mei, H.: Discovering homogeneous web service community
in the user-centric web environment. IEEE T. Services Computing 2(2), 167–181
(2009)

14. Lovasz, L.: Matching Theory (North-Holland Mathematics Studies). Elsevier Sci-
ence Ltd. (1986)

15. Ma, J., Zhang, Y., He, J.: Efficiently finding web services using a clustering semantic
approach. In: CSSSIA 2008: Proceedings of the 2008 International Workshop on
Context Enabled Source and Service Selection, Integration and Adaptation, pp.
1–8. ACM, New York (2008)

Service Community Discovery from the WSDL Corpus 203

16. Sahami, M., Heilman, T.D.: A web-based kernel function for measuring the simi-
larity of short text snippets. In: Proceedings of the 15th International Conference
on World Wide Web, WWW 2006, pp. 377–386. ACM, New York (2006)

17. Xu, W., Liu, X., Gong, Y.: Document clustering based on non-negative matrix
factorization. In: Proceedings of the 26th Annual International ACM SIGIR Con-
ference on Research and Development in Informaion Retrieval, SIGIR 2003, pp.
267–273. ACM, New York (2003)

18. Yu, Q., Bouguettaya, A.: Framework for web service query algebra and optimiza-
tion. TWEB 2(1) (2008)

19. Yu, Q., Liu, X., Bouguettaya, A., Medjahed, B.: Deploying and managing web
services: issues, solutions, and directions. VLDB Journal 17(3), 537–572 (2008)

20. Yu, Q., Rege, M.: On service community learning: A co-clustering approach. In:
ICWS, pp. 283–290 (2010)

21. Yu, T., Zhang, Y., Lin, K.-J.: Efficient algorithms for web services selection with
end-to-end qos constraints. ACM Trans. Web 1(1), 6 (2007)

22. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: Qos-
aware middleware for web services composition. IEEE Trans. Softw. Eng. 30(5),
311–327 (2004)

WTCluster: Utilizing Tags for Web Services

Clustering

Liang Chen1, Liukai Hu1, Zibin Zheng2, Jian Wu1, Jianwei Yin1,
Ying Li1, and Shuiguang Deng1

1 Zhejiang University, China
2 The Chinese University of Hong Kong, China

{cliang,huliukai,wujian2000,zjuyjw,cnliying,dengsg}@zju.edu.cn,
zbzheng@cse.cuhk.edu.hk

Abstract. Clustering web services would greatly boost the ability of
web service search engine to retrieve relevant ones. An important restric-
tion of traditional studies on web service clustering is that researchers
focused on utilizing web services’ WSDL (Web Service Description Lan-
guage) documents only. The singleness of data source limits the accuracy
of clustering. Recently, web service search engines such as Seekda! 1 al-
low users to manually annotate web services using so called tags, which
describe the function of the web service or provide additional contextual
and semantical information. In this paper, we propose a novel approach
called WTCluster, in which both WSDL documents and tags are utilized
for web service clustering. Furthermore, we present and evaluate two tag
recommendation strategies to improve the performance of WTCluster.
The comprehensive experiments based on a dataset consists of 15,968
real web services demonstrate the effectiveness of WTCluster and tag
recommendation strategies.

1 Introduction

A service-oriented computing (SOC) paradigm and its realization through stan-
dardized web service technologies provide a promising solution for the seam-
less integration of single-function applications to create new large-grained and
value-added services. SOC attracts industry’s attention and is applied in many
domains, e.g., workflow management, finances, e-Business, and e-Science. With
a growing number of web services, the problem of discovering user required web
services is becoming more and more important.

Web service discovery can be achieved by two main approaches: UDDI (Uni-
versal Description Discovery and Integration) and web service search engines.
Recently, the availability of web services in UDDI decreases rapidly as many web
service providers decided to publish their web services through their own website
instead of using public registries. Al-Masri et al. show that more than 53% of the
UDDI business registry registered services are invalid, while 92% of web services

1 http://webservices.seekda.com/

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 204–218, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://webservices.seekda.com/

WTCluster: Utilizing Tags for Web Services Clustering 205

cached by web service search engines are valid and active [2]. Compared with
UDDI, using search engine to search and discover web services becomes more
common and effective.

Searching for web services using web service search engines is typically lim-
ited to keyword matching on names, locations, businesses, and buildings defined
in the web service description file [14]. If the query term does not contain at
least one exact word such as the service name, the service is not returned. It
is difficult for users to be aware of the concise and correct keywords to retrieve
the satisfied services. The keyword-based search mode suffers from low recall,
where results containing synonyms or concepts at a higher (or lower) level of
abstraction describing the same service are not returned. For example, a service
named ”Mobile Messaging Service” may not be returned from the query term
”SMS” submitted by the user, even these two keywords are obviously the same
at the conceptual level.

To handle the drawbacks of traditional web service search engines, some ap-
proaches are proposed. Lim et al. propose to make use of ontology to return
an expand set of results including subclass, superclass and sibling classes of the
concept entered by the user [16]. Elgazzar and Liu et al. proposed to handle
the drawbacks of traditional search engine by clustering web services based on
WSDL documents [6][12]. In their opinion, if web services with similar func-
tionality are placed into the same cluster, more relevant web services could be
included in the search result. In this paper, we propose to improve the perfor-
mance of web service clustering for the purpose of more accurate web service
discovery.

(a) (b)

Fig. 1. Example of web services’ tags

In recent years, tagging, the act of adding keywords (tags) to objects, has
become a popular mean to annotate various web resources, e.g., web page book-
marks, online documents, and multimedia objects. Tags provide meaningful
descriptions of objects, and allow users to organize and index their contents.
Tagging data was proved to be very useful in many domains such as multimedia,
information retrieval, data mining, and so on. Recently, a real-world web services
search engine Seekda! allows users to manually annotate web services using tags.
Figure 1 shows two examples of web services’ tags in Seekda!. MeteorologyWS 2

2 http://www.premis.cz/PremisWS/MeteorologyWS.asmx?WSDL

http://www.premis.cz/PremisWS/MeteorologyWS.asmx?WSDL

206 L. Chen et al.

in Fig. 1(a) is a web service which provides the function of weather forecasting.
It has two tags, weather and waether. However, there is no word weather in its
service name or WSDL document. Therefore, if a user uses weather as his query
term, this service will not be retrieved without utilizing the tag information.
Besides, the tag waether is also useful as some users may make a mistake in the
typing process and use waether as his query term. Figure 1(b) shows another web
service providing car rental information, which is very important for tourists. If
we utilize the tag tourism in the search engine, this service will be included in
the search result about tourism. From these two examples, we can find that the
tagging data can help to retrieve more relevant web services.

In this paper, we don’t simply use tags to match query terms, but use these
tags to improve the performance of web service clustering for the purpose of more
accurate web service discovery. In traditional web service clustering, features
(e.g., service name, operation, port) are extracted from the WSDL document
to form a vector, and the similarity between two web services is computed by
comparing their corresponding vectors. As the words matching is still needed in
the process of similarity computation, the web service MeteorologyWS in Fig.
1(a) can hardly be placed into the same cluster with other weather report services
which have the word weather in their names or WSDL documents. As a service
provider, he may have different naming convention and prefers to use Meteorology
instead of weather. However, as a service user, he is likely to annotate the same
tag to the services with similar function. Therefore, if we use the tags as part of
the vectors to compute the similarities between web services, the performance of
web service clustering could be improved. In our proposed WTCluster approach,
we utilize both WSDL documents and tags, and cluster web services according to
a composite similarity generated by integrating tag-level similarity and feature-
level similarity between web services. Specifically, we extract 5 features from
WSDL document, i.e., Content, Type, Message, Port, Service Name. To the best
of our knowledge, this paper is the first paper to utilize the tagging data to
cluster web services.

To evaluate the performance of WTCluster, we crawl 15,968 real web ser-
vices from Seekda!. Through our observation, we find that the performance of
WTCluster is limited by the web services which have few tags. To handle this
problem, we propose two strategies to recommend some relevant tags to the
services with few tags. The experiment results in Section 5 show that our tag
recommendation strategies improve the performance of WTCluster.

In particular, the contribution of this paper can be summarized as follows:

1. We propose a novel web service clustering approach WTCluster, in which
both WSDL documents and tags are utilized.

2. We propose two tag recommendation strategies to improve the performance
of WTCluster.

3. We crawl 15,968 real web services to evaluate the performance of WTCluster
and two tag recommendation strategies.

The rest of this paper is organized as follows: Section 2 highlights the re-
lated work of web service discovery and clustering. The detailed calculation of

WTCluster: Utilizing Tags for Web Services Clustering 207

WTCluster is introduced in Section 3, while two tag recommendation strategies
are presented in Section 4. Section 5 shows the experimental results. Finally,
Section 6 concludes this paper.

2 Related Work

With the development of service computing and cloud computing, web service
discovery is becoming a hot research topic. A lot of work have been done to
handle this problem. The approaches for discovering semantic web services and
non-semantic web services are different. The semantic-based approaches adopt
the formalized description languages such as OWL-S and WSMO for services
and develop the reasoning-based similarity algorithms to retrieve the satisfied
web services [1][3][10]. High level match-making approaches are usually adopted
in the discovery of semantic web services. As non-semantic web services are
more popular and supported by the industry circle, we focus on the discovery of
non-semantic web services in this paper.

Some non-semantic approaches are proposed to handle the problem of web
service discovery in recent years. Xin Dong et al. propose to compute the simi-
larity between web services employing the structures of web services (including
name, text, operation descriptions, input/output description, etc) [5]. They also
propose a search engine called Woogle which supports similarity search for web
services. Nayak attempts to handle the service discovery problem by suggest-
ing the current user with other related search terms based on what other users
had used in similar queries by using clustering techniques [14]. Nayak proposes
to cluster web services based on search sessions instead of individual queries.
Songlin Hu et al. make use of the content-based publish/subcribe model to han-
dle service discovery problem [7]. Fangfang et al. try to reflect the underlying
semantics of web services by utilizing the terms within WSDL fully [11]. In
Fangfang’s work, some external knowledge are firstly employed to compute the
semantic distance of terms from two compared services, and then the similarity
between two services is measured upon these distances.

Recently, web service clustering is presented as a novel solution to the prob-
lem of service discovery. Liu et al. propose to extract 4 features, i.e., content,
context, host name, and service name, from the WSDL document to cluster web
services [12]. They take the process of clustering as the preprocessor to discovery,
hoping to help in building a search engine to crawl and cluster non-semantic web
services. Khalid et al. also propose to extract features from WSDL documents
to cluster web services [6]. Different from Liu’s work, Khalid extracts content,
types, messages, ports, and service name from WSDL documents.

Although these techniques are relevant, the performances of these approaches
are limited by the singleness of source information as they utilize the information
in WSDL documents only. In this paper, we propose to utilize both tagging data
and WSDL documents to improve the performance of web service clustering.
Moreover, we propose two tag recommendation strategies to handle another
performance limitation caused by the web services with few tags.

208 L. Chen et al.

3 WTCluster

In this section, we first describe our proposed framework for web service discovery
in Section 3.1, and then introduce feature extraction, similarity computation and
integration of WTCluster in Section 3.2 and Section 3.3, respectively.

3.1 Framework for Web Service Discovery

Figure 2 shows our proposed framework for web service discovery. This frame-
work consists of two parts: 1) Data Preprocess; 2) Service Discovery. In the first
part, WSDL documents and tags of web services are crawled from the Internet
and used for clustering. Similar to Khalid’s work[6], we extract five important
features from WSDL documents, i.e., Content, Type, Message, Port, and Service
Name. After obtaining these five features and tags of web services, we employ our
proposed WTCluster approach to cluster web services. Since the data preprocess
and clustering process is done offline, the efficiency is not a big concern, whereas
the accuracy is more important. In the process of service discovery, the user first
sends a query term to the web service search engine, and then the search engine
returns an expanded search result by retrieving the clustered results.

Internet

Crawl

WSDL

Tag

Extraction Feature

Content

Port

Type

Name

Message

Tag

 WTClus
Clustered Results

Web Services Search
Engine

Data Preprocess Services Discovery

Response
Query

Fig. 2. Framework for web service discovery

3.2 Feature Extraction and Similarity Computation

As discussed above, we extract five features (i.e., Content, Type, Message, Port,
and Service Name) from web service’s WSDL document, and use these five
features and tags to cluster web services. In this section, we describe the detailed
process of feature extraction, feature-level similarity computation, and tag-level
similarity computation.

WTCluster: Utilizing Tags for Web Services Clustering 209

Content. WSDL document, which describes the function of web service, is
actually a XML style document. Therefore, we can use some IR approaches to
extract a vector of meaningful content words which can be used as a feature for
similarity computation. Our approach for building the content vector consists of
four steps:

1. Building original vector. In this step, we split the WSDL content accord-
ing to the white space to produce the original content vector.

2. Suffix Stripping. Words with a common stem will usually have the same
meaning, for example, connect, connected, connecting, connection, and con-
nections all have the same stem connect [12]. For the purpose of convenient
statistics, we strip the suffix of all these words that have the same stem by
using a Porter stemmer [15]. Therefore, after the step of suffix stripping,
a new content vector is produced, in which words such as connected and
connecting are replaced with the stem connect.

3. Pruning. In this step, we propose to remove two kinds of words from the
content vector. The first kind of word to be removed is XML tag. For exam-
ple, the words s:element, s:complexType, and wsdl:operation are XML tags
which are not meaningful for the comparison of content vector. As the XML
tags used in a WSDL document are predefined, it is easy to remove them
from the content vector. Content words are typically nouns, verbs or adjec-
tives, and are often contrasted with function words which have little or no
contribution to the meanings of texts. Therefore, the second kind of word to
be removed is function word. Church et al. stated that the function words
can be distinguished from contents words using a Poisson distribution to
model word occurrence in documents [9]. Typically, a way to decide whether
a word w in the content vector is a function word is computing the degree
of overestimation of the observed document frequency of the word w, de-
noted by nw using Poisson distribution. The overestimation factor can be
calculated as follows.

Λw =
n̂w

nw
, (1)

where n̂w is the estimated document frequency of the word w. Specifically,
the word with higher value of Λw has higher possibility to be a content word.
In this paper, we set a threshold ΛT for Λw ,and take the words which have
Λw higher than threshold as content words. The value of threshold ΛT is as
follows.

ΛT =

{
avg[Λ] if(avg[Λ] > 1);
1 otherwise

(2)

where avg[Λ] is the average value of the observed document frequency of all
words considered. After the process of pruning, we can obtain a new content
vector, in which both XML tags and function words are removed.

4. Refining. Words with very high occurrence frequency are likely to be too
general to discriminate between web services. After the step of pruning, we
implement a step of refining, in which words with too general meanings are

210 L. Chen et al.

removed. Clustering based approaches were adopted to handle this problem
in some related work [12][6]. In this paper, we choose a simple approach by
computing the frequencies of words in all WSDL documents and setting a
threshold to decide whether a word has to be removed.

After the above 4 steps, we can obtain the final content vector. In this paper,
we use NGD (Normalized Google Distance) [4] to compute the content-level
similarity between two web services. Given web services s1, s2, and their content
vector contents1 , contents2 , the detailed equation for content-level similarity
computation is as follows.

Simcontent(s1, s2) =

∑
wi∈contents1

∑
wj∈contents2

sim(wi, wj)

|contents1 ||contents2|
, (3)

where |contents1 | means the cardinality of contents1 , the equation for computing
the similarity between two words is as follows.

sim(wi, wj) = 1−NGD(w1, w2) (4)

In (4), we compute the similarity between two words using NGD based on the
word co-existence in web pages. Due to space limitation, we don’t introduce
the detailed computation of NGD. As the number of words left in the content
vector is limited after above 4 steps, the time cost for content-level similarity
computation can be accepted.

Type. In a WSDL document, each input and output parameter contains a
name attribute and a type attribute. Sometimes, parameters may be organized
in a hierarchy by using complex types. Due to different naming conventions, the
name of parameter is not always a useful feature, whereas the type attribute
which can partially reflect the service function is a good candidate feature.

As Fig. 3 shows, the type of element ProcessForm (we name it type1) is a com-
plextype which has 5 parameters: FormData (string), FormID (int), GroupID
(int), szPageName (string), and nAWSAccountPageID (int). If another service
s2 has a complextype type2 which also contains 2 string type parameters and
3 int type parameters, we say type1 and type2 are matched. Specifically, in the
process of type matching, the order of parameters in the complextype is not con-
sidered. We therefore extract the defined types, count the number of different
types in the complextype, and compute the type-level similarity between two
services using following equation.

Simtype(s1, s2) =
2×Match(Types1, T ypes2)
|Types1|+ |Types2|

, (5)

where Types1 means the set of defined types in s′1s WSDL document, Match
(Types1 , T ypes2) means the number of matched types between these two ser-
vices, and |Types1 | means the cardinality of Types1.

WTCluster: Utilizing Tags for Web Services Clustering 211

Type

Message

Port

Service Name

Type

Message

Port

Service Name

Fig. 3. Types, Message, Port, Service Name in WSDL document

Message. Message is used to deliver parameters between different operations.
One message contains one or more parameters, and one parameter is associated
with one type as we discussed above. Message definition is typically considered
as an abstract definition of the message content, as the name and type of the
parameter contained in the message are presented in the message definition.
Fig. 3 shows two simple message definitions. In the first definition, the message
named as RequestPagePasswordHttpPostIn contains one parameter FormData
which is a string type. In the second definition, the message RequestPagePass-
wordPostOut contains one parameter Body whose type is a complextype named
as tns:boolean. Similar to (5), we match the messages’ structures to compute the
message-level similarity between web services.

Port. The portType element combines multiple message elements to form a
complete one-way or round-trip operation. Figure 3 shows an example of port-
Type SendCustomFormHttpGet which contains some operations (due to space
limitation, we only list one operation in this portType). As the portType con-
sists of some messages, we can get the match result of portType according to the
match result of messages. Similar to the computation of type-level and message-
level similarity, we also use (5) to compute the port-level similarity.

Service Name. As the service name (sname) can partially reflect the ser-
vice function, it is an important feature in WSDL document. Before computing
the sname-level similarity, we first implement a word segmentation process to
service name. For example, the service name SendCustomForm in Fig. 3 can
be separated into three words Send, Custom, and Form. A simple version of
word segmentation is splitting the service name according to the capital letters.

212 L. Chen et al.

However, the performance of this simple version is not satisfied due to different
naming conventions. In this paper, we first use this simple version to split the
service name, and then manually adjust the final result. After the process of
word segmentation, s′1s name SNames1 can be presented as a set of words. And
then we can use (3) and (4) to compute the sname-level similarity between web
services.

Tag. The tagging data of web services describes the function of web services
or provide additional contextual and semantical information. In this paper, we
propose to improve the performance of traditional WSDL-based web service
clustering by utilizing the tagging data. Given a web service si contains three
tags t1, t2, t3, we name the tag set of si as Ti = {t1, t2, t3}. According to the
Jaccard coefficient [8] method, we can calculate the tag-level similarity between
two web services si and sj as follows:

Simtag(si, sj) =
|Ti ∩ Tj |
|Ti ∪ Tj |

, (6)

where |Ti ∩ Tj | means the number of tags that are both annotated to si and sj ,
and |Ti ∪ Tj| means the number of unique tags in set Ti and Tj, i.e., |Ti ∪ Tj| =
|Ti|+ |Tj| − |Ti ∩ Tj |.

3.3 Similarity Integration

In WTCluster, we use K-Means [13] clustering approach to cluster web services.
K-Means is a widely adopted clustering algorithm which is simple and fast. The
drawback of this algorithm is that the number of clusters has to be predefined
manually before clustering. According to the six similarities calculated above, the
composite similarity CSim(si, sj) between web services si and sj is as follows:

CSim(si, sj) = (1 − λ)Simwsdl(si, sj) + λSimtag(si, sj), (7)

where λ is the weight of the tag-level similarity, and the Simwsdl(si, sj) is the
WSDL-level similarity which consists of five feature-level similarities between
two services. The range of the value of λ is [0,1]. When λ ∈ (0, 1), CSim(si, sj)
is equal to 1 if the WSDL documents and tags of these two services are identical,
and CSim(si, sj) is equal to 0 if both the WSDL documents and the tags of these
two services are completely different. Specifically, WTCluster is equal to WSDL-
based web service clustering approach when λ = 0, while WTCluster clusters
web services only according to the tag-level similarity when λ = 1. We measure
the WSDL-level similarity between web services si and sj as follows:

Simwsdl(si, sj) = w1Simcontent(si, sj) + w2Simtype(si, sj) + w3Simmessage(si, sj)

+ w4Simport(si, sj) + w5Simsname(si, sj),

(8)
where w1, w2, w3, w4, and w5 are the user-defined weights of Content, Type,
Message, Port, and Service Name, respectively. In particular, w1 + w2 + w3 +
w4 + w5 = 1.

WTCluster: Utilizing Tags for Web Services Clustering 213

4 Tag Recommendation

After examining the tagging data crawled from the Internet, we find the dis-
tribution of tags is not uniform. Some web services have more than 10 tags,
while some ones have only 1 or 2 tags. As we compute the tag-level similarity
by matching the common tags between two services, the web services with few
tags lowers down the value of tag-level similarity. In this section, we propose to
handle this problem by recommending a set of relevant tags to the web services
with few tags.

Tourism Car Rental

User Defined Tags

Tag

Co-occurrence

Candidate Tags

Car Rental:

Tourism:

car, automobile,
company, business

hotel, company, flight,
booking

Tag

Rank

Recommended Tags

business,
company,
booking,
car

Fig. 4. Overview of Tag Recommendation Process

Figure 4 show the overview of tag recommendation process. From this fig-
ure, we can find that the process of tag recommendation can be divided into
two steps. Specifically, we collect all annotated tags before the process of tag
recommendation. In the first step, we first compute the co-occurrence between
the user defined tags and any other tags, and then select the top-k co-occurrent
tags of each user defined tag as the candidate tags. In Fig. 4, the number of k is
set as 4, and the top-4 co-occurrent tags of Tourism are hotel, company, flight,
and booking. There are some approaches to compute the co-occurrence, and we
propose to use Jaccard coefficient method[8] in this paper. The detailed equation
is as follows.

Co(ti, tj) =
|ti
⋂

tj |
|ti
⋃

tj |
, (9)

where |ti
⋂

tj | means the number of web services that have both ti and tj , and
|ti
⋃

tj | means the number of web services that have ti or tj . After the first step,
for each user defined tag u ∈ U (U is the set of user defined tags), we can get a
list of candidate tags Cu.

In the second step, we rank the candidate tags and select the top-k tags as the
recommended tags. In this paper, we propose two strategies to rank candidate
tags.

Vote. In the Vote strategy, we use the idea of voting to compute a score for
each candidate tag c ∈ C (C is the set of all candidate tags). Given a candidate

214 L. Chen et al.

tag c, we first use (10) to compute the value of vote(u, c) between tag c and each
user defined tag u ∈ U .

vote(u, c) =

{
1 if c ∈ Cu

0 otherwise
(10)

After obtaining the voting result from each user defined tag, we count the voting
results to get the final score by using (11).

score(c) =
∑
u∈U

vote(u, c) (11)

After obtaining all final scores, we rank the candidate tags to get the top-k
recommended tags.

Sum. In the Sum strategy, we compute the score of the candidate tag c by
summing the value of co-occurrence between c and each user defined tag u. The
detailed equation is as follows.

score(c) =
∑
u∈U

Co(u, c), (12)

where the value of Co(u, c) can be computed by using (9).

5 Experiment

In this section, we first compare the performances of different web service clus-
tering approaches and then study the performances of two tag recommendation
strategies .

5.1 Experiment Setup

To evaluate the performance of web service clustering approaches and tag rec-
ommendation strategies, we crawl 15,968 real web services form the web service
search engine Seekda!. For each web service, we get the data of service name,
WSDL document, tags, availability, and the name of service provider.

All experiments are implemented with JDK 1.6.0-21, Eclipse 3.6.0. They are
conducted on a Dell Inspire R13 machine with an 2.27 GHZ Intel Core I5 CPU
and 2GB RAM, running Windows7 OS.

5.2 Performance of Web Service Clustering

As the manual creation of ground truth costs a lot of work, we randomly select
200 web services from the dataset we crawled to evaluate the performance of web
service clustering. We perform a manual classification of these 200 web services

WTCluster: Utilizing Tags for Web Services Clustering 215

to serve as the ground truth for the clustering approaches. Specifically, we distin-
guish the following categories: ”HR”, ”On Sale”, ”Tourism”, and ”University”.
There are 31 web services in ”HR” category, 26 web services in ”On Sale” cate-
gory, 32 web services in ”Tourist” category, and 27 web services in ”University”
category. Due to the space limitation, we don’t shows the detailed information
of these web services. To evaluate the performance of web service clustering, we
introduce two metrics (Precision and Recall) which are widely adopted in the
Information Retrieval domain.

Precisionci =
succ(ci)

succ(ci) + mispl(ci)
, Recallci =

succ(ci)
succ(ci) + missed(ci)

, (13)

where succ(ci) is the number of services successfully placed into cluster ci,
mispl(ci) is the number of services that are incorrectly placed into cluster ci,
and missed(ci) is the number of services that should be placed into ci but are
placed into another cluster.

In this section, we compare the performances of three web service clustering
approaches:

1. WCluster. In this approach, web services are clustered only according to
the WSDL-level similarity between web services (calculated in (8)). This
approach was adopted in some related work [6][12].

2. WTCluster1. In this approach, we utilize both the WSDL documents and
the tagging data, and cluster the web services according to the composite
similarity calculated in (7).

3. WTCluster2. In this approach, we first implement the tag recommenda-
tion process and then cluster web services using WTCluster1 approach. In
addition, we use the Vote strategy in this experiment.

Figure 5 shows the performance comparison of above 3 web service clus-
tering approaches. For simplicity, we set w1 = w2 = w3 = w4 = w5 = 0.2
and λ = 0.5. From Fig. 5, we can observe that our proposed WTCluster ap-
proaches (WTCluster1, WTCluster2) outperform the traditional WCluster ap-
proach both in the comparison of precision and recall. As we discussed above,

0
10
20
30
40
50
60
70
80
90

100

Pr
ec

is
io

n(
%

)

WClus

WTClus

WT*Clus

0
10
20
30
40
50
60
70
80
90

100

Re
ca

ll(
%

)

Fig. 5. Performance comparison of three web service clustering approaches

216 L. Chen et al.

the tags of web services contains a lot of information, such as service function,
location, and other semantical information. Utilizing these information improves
the performance of web service clustering. Moreover, it can be observed that the
approach WTCluster2 which contains the process of tag recommendation out-
performs the WTCluster1 approach. It demonstrates that adding relevant tags
to web services which have few tags can improve the performance of WTCluster
approach.

5.3 Evaluation of Tag Recommendation Strategies

Before evaluating the performance of tag recommendation, we select 1,800 web
services which contain 1254 unique tags as the dataset for evaluation. The ground
truth is manually created through a blind review pooling method, where for
each of the 1800 web services, the top 10 recommendations from each of the two
strategies were taken to construct the pool. The volunteers were then asked to
evaluate the descriptiveness of each of the recommended tags in context of the
web services. We provide the WSDL documents and web service descriptions to
volunteers to help them. The volunteers were asked to judge the descriptiveness
on a three-point scale: very good, good, not good. The distinction between very
good and good is defined to make the assesment task conceptually easier for the
user. Finally, we get 212 very good judgements (16.9%), 298 good judgements
(23.7%), and 744 not good judgements (59.4%).

To evaluate the performance of tag recommendation, we adopt two metrics
which capture the performance at different aspects:

– Success at rank K (S@K). The success at rank K is defined as the per-
centage of good or very good tags take in the top K recommended tags,
averaged over all judged web services.

– Precision at rank K (P@K). Precision at rank K is defined as the propor-
tion of retrieved tags that is relevant, averaged over all judged web services.

Table 1 shows the S@K comparison of our proposed two recommendation strate-
gies, where the Given Tag means the number of tags that the target web service
has. Take the Sum strategy as example, when Given Tag varies from 1 to 2,
the average value of S@K is over 0.7, which means that more than 70% rec-
ommended tags have good or very good descriptiveness. From Table 1, it can
be observed that when Given Tag vary from 1 to 2, the performance of Sum
strategy is better than the performance of Vote strategy in terms of S@K, while
the performance of Vote strategy is better when Given Tag is larger than 5.

Table 2 shows the comparison of two tag recommendation strategies in terms
of P@K. From Table 2, it can be observed that the value of P@K decreases when
Given Tag increases. This is because the number of relevant tags to one certain
web service is limited. When Given Tag increases, the number of left relevant
tags decreases, which leads to the decrease of P@K. In addition, P@K achieves
its largest value when K=1, and decreases when the value of K increases. It can
be found that the Vote strategy basically outperforms the Sum strategy in terms
of P@K.

WTCluster: Utilizing Tags for Web Services Clustering 217

Table 1. S@K comparison of two tag recommendation strategies

Given Tag Method K=1 K=2 K=3 K=4 K=5

1-2
Sum 0.8132 0.7081 0.6738 0.7087 0.7181
Vote 0.6392 0.5949 0.6737 0.7005 0.6972

3-5
Sum 0.7534 0.7143 0.7380 0.6852 0.6720
Vote 0.7867 0.6646 0.7042 0.7022 0.7103

>5
Sum 0.7632 0.7211 0.6944 0.6975 0.6647
Vote 0.8136 0.7769 0.7749 0.7262 0.6973

Table 2. P@K comparison of two tag recommendation strategies

Given Tag Method K=1 K=2 K=3 K=4 K=5

1-2
Sum 0.6933 0.5083 0.4277 0.3788 0.3562
Vote 0.7879 0.5495 0.4503 0.3947 0.3689

3-5
Sum 0.6512 0.4857 0.4171 0.3654 0.3345
Vote 0.7415 0.5414 0.4496 0.3925 0.3494

>5
Sum 0.5894 0.4656 0.4365 0.3451 0.3508
Vote 0.7148 0.5478 0.4105 0.4026 0.3658

6 Conclusion

In this paper, we propose to utilize the tagging data to improve the perfor-
mance of web service clustering for the purpose of more accurate web service
discovery. In our proposed WTCluster approach, we first extract five features
from the WSDL document and compute the WSDL-level similarity between web
services. Then, we use K-means algorithm to cluster web services according to
the composite similarity which is integrated by WSDL-level similarity and tag-
level similarity. To evaluate the performance of web service clustering, we crawl
15,968 real web services from the web service search engine Seekda!. The exper-
imental results show that WTCluster outperforms the traditional WSDL-based
approach.

Moreover, we propose two tag recommendation strategies to attack the per-
formance limitation of WTCluster caused by the web services with few tags. The
experiments based on real web services demonstrates that the tag recommenda-
tion process improves the performance of WTCluster.

Acknowledgements. This research is was partially supported by the Na-
tional Technology Support Program under grant of 2011BAH15B05, the Na-
tional Natural Science Foundation of China under grant of 61173176, Science
and Technology Program of Zhejiang Province under grant of 2008C03007, Na-
tional High-Tech Research and Development Plan of China under Grant No.
2009AA110302, National Key Science and Technology Research Program of
China (2009ZX01043-003-003).

218 L. Chen et al.

References

1. Agarwal, S., Studer, R.: Automatic matchmaking of web services. In: International
Conference on Web Services, pp. 45–54 (2006)

2. Al-Masri, E., Mahmoud, Q.H.: Investigating web services on the world wide web.
In: International World Wide Web Conference, pp. 795–804 (2008)

3. Benatallah, B., Hacid, M., Leger, A., Rey, C., Toumani, F.: On automating web
services discovery. The VLDB Journal 14(1), 84–96 (2005)

4. Cilibrasi, R.L., Vitnyi, P.M.B.: The google similarity distance. IEEE Transactions
on Knowledge and Data Engineering 19(3), 370–383 (2007)

5. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for
web services. In: International Conference on Very Large Data Bases, pp. 372–383
(2004)

6. Elgazzar, K., Hassan, A.E., Martin, P.: Clustering wsdl documents to bootstrap
the discovery of web services. In: International Conference on Web Services, pp.
147–154 (2009)

7. Hu, S., Muthusamy, V., Li, G., Jacobsen, H.A.: Distributed automatic service com-
position in large-scale systems. In: Proc. of Distributed Event-Based Systems Con-
ference, pp. 233–244 (2008)

8. Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice Hall, New Jersey
(1988)

9. Church, K., Gale, W.: Inverse document frequency (idf): a measure of deviations
from poisson. In: Proceedings of the ACL 3rd workshop on Very Large Corpora,
pp. 121–130 (1995)

10. Klusch, M., Fries, B., Sycara, K.: Automated semantic web service discovery with
owls-mx. In: International Conference on Autonomous Agents and Multiagent Sys-
tems, pp. 915–922 (2006)

11. Liu, F., Shi, Y., Yu, J., Wang, T., Wu, J.: Measuring similarity of web services
based on wsdl. In: International Conference on Web Services, pp. 155–162 (2010)

12. Liu, W., Wong, W.: Web service clustering using text mining techniques. Interna-
tional Journal of Agent-Oriented Software Engineering 3(1), 6–26 (2009)

13. MacQueen, J.B.: Some methods for classification and analysis of multivariate ob-
servations. In: Proc. of the Fifth Symposium on Math, Statistics, and Probability,
pp. 281–297 (1967)

14. Nayak, R.: Data mining in web service discovery and monitoring. International
Journal of Web Services Research 5(1), 62–80 (2008)

15. Porter, M.F.: An algorithm for suffix stripping. Program. 14(3), 130–137 (1980)
16. Lim, S.-Y., Song, M.-H., Lee, S.-J.: The Construction of Domain Ontology and

its Application to Document Retrieval. In: Yakhno, T. (ed.) ADVIS 2004. LNCS,
vol. 3261, pp. 117–127. Springer, Heidelberg (2004)

17. Zhang, Y., Zheng, Z., Lyu, M.R.: Wsexpress: A qos-aware search engine for web
services. In: International Conference on Web Services, pp. 91–98 (2010)

Similarity Function Recommender Service Using

Incremental User Knowledge Acquisition

Seung Hwan Ryu, Boualem Benatallah, Hye-Young Paik,
Yang Sok Kim, and Paul Compton

School of Computer Science & Engineering,
University of New South Wales, Sydney, NSW, 2051, Australia
{seungr,boualem,hpaik,yskim,compton}@cse.unsw.edu.au

Abstract. Similar entity search is the task of identifying entities that
most closely resemble a given entity (e.g., a person, a document, or an
image). Although many techniques for estimating similarity have been
proposed in the past, little work has been done on the question of which
of the presented techniques are most suitable for a given similarity anal-
ysis task. Knowing the right similarity function is important as the
task is highly domain- and data-dependent. In this paper, we propose
a recommender service that suggests which similarity functions (e.g.,
edit distance or jaccard similarity) should be used for measuring the
similarity between two entities. We introduce the notion of “similarity
function recommendation rule” that captures user knowledge about sim-
ilarity functions and their usage contexts. We also present an incremen-
tal knowledge acquisition technique for building and maintaining a set
of similarity function recommendation rules.

Keywords: Similarity Function, Recommendation, Entity Search, RDR.

1 Introduction

The community portals, such as DBLife, Wikipedia, are widely available for
diverse domains, from scientific data management to end-user communities on
the Web. In a community portal, data from multiple sources are integrated
so that its members can search and query relevant community data. Commu-
nity data typically contains different classes of entity instances, such as persons,
documents, messages, and images, as well as relationships between them, such
as authorBy(person, document), supervisedBy(person, person), and earlyVer-
sionOf(document, document). Each entity instance 1 is described by a set of
attributes (e.g., person has name, title and address).

In this paper, we focus on similar entity search on such community data that
is exposed as data services [7,8]. Unlike keyword based search, in similar entity
search, entities are compared based on the similarity of entity attributes 2 [5,3,15]

1 In this paper we use “entity instance” and “entity” interchangeably.
2 We specify as attributes for short.

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 219–234, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

220 S.H. Ryu et al.

as well as entity relationships 3 [14,1], and a ranked list of entities is returned
based on the degree of similarity.

A main challenge arises from the fact that entities may belong to different
classes with potentially very different characteristics, and contain attributes of
different data types. In such a situation, it is impractical to expect a single
generic similarity function can work well for all attributes [3]. For example, in
Figure 1(a), to measure the similarity between q and m from a discussion forum,
we compare the attribute values individually: Title with Title, Content with
Content, and Size with Size. When using one of the basic similarity functions
(e.g., edit distance) [16,15] for all attributes and combining the scores, we obtain
the final similarity score (0.55). However, the accuracy can be increased to 0.89
(Figure 1(b)) by choosing different similarity functions suited to each attribute.
It is also possible to consider relationships with other entities if they exist, such
as repliedBy(message, person). The need for SES (Similar Entity Search) tasks
is present in many application domains, such as product search, people search,
document search, and data integration in business intelligence [3,20,15].

Brainstorm Reply as soon as possible please 180

Title Content Size

m

Brainstorming Please reply as soon as possible 200q

f1: 0.77 f1: 0.56 f1: 0.33

Brainstorm Reply as soon as possible please 180m

f1: 0.77 f2: 1.0 f3: 0.9

(b) Using different appropriate functions
 (0.77+1.0+0.9)/3= 0.89

f1: Edit distance, f2: Jaccard similarity, f3: Relative distance

Brainstorming Please reply as soon as possible 200q

(a) Using the same function
 (0.77+0.56+0.33)/3= 0.55

Fig. 1. Computing similarity between two messages q and m

Existing approaches for similarity analysis can be roughly divided into two
groups. The first group computes attribute similarities using methods such as
jaccard similarity, edit distance, or cosine similarity [16,9,5,21]. The second group
exploits the relationships among entities [14,1] or machine learning-based tech-
niques [4,5,24,23,10] for estimating the similarity of entire entities. For example,
supervised machine learning techniques [5,10,24] train a model using training
data pre-labeled as “matching” or “not matching” and then apply the trained
model to identify entities that refer to the same real-world entity. Some of the
machine learning-based techniques use positive and negative examples to learn
the best combination of basic similarity functions [4,24,23].

While existing techniques have made significant progress, they do not provide
a satisfactory answer to the question of which of the presented techniques should
3 We specify as relationships for short.

Similarity Function Recommender Service 221

be used for a given SES task. Even a technique that shows good performance
for some data sets can perform poorly on new and different ones [5,15]. In real-
world application domains, as in community portals, we observe that, community
users, especially advanced users like programmers, administrators, and domain
experts, often have valuable knowledge useful for identifying similar entities - the
knowledge about which combination of similarity functions is most appropriate
in which usage contexts. For instance, edit distance function [21] works well
for comparing short strings (e.g., person names or document titles). We believe
that this information is beneficial in terms of reuse and knowledge sharing as
community users would choose similar functions in similar contexts.

Unfortunately, this information is not effectively exploited in existing ap-
proaches when measuring similarity. In this paper, we provide a recommender
service that suggests most appropriate similarity functions for a given SES task
by utilizing the knowledge collected from community users. It should be noted
that our approach is complementary to the machine-learning based techniques in
the sense that it allows adaptive knowledge “learning” over time as the applica-
tion contexts change. Examples of such context changes are: application domain
changes, dataset changes, continuous or periodic updates of datasets, and so on.
In this paper we only consider the similarity of entities that belong to a same
class/category. In particular, we make the following contributions:

– We introduce the notion of similarity function recommendation rules (hence-
forth recommendation rules). The recommendation rules represent the infor-
mation about which similarity functions are considered most appropriate in
which usage contexts (Section 3).

– We propose incremental knowledge acquisition techniques to build and up-
date a set of recommendation rules. The continuous updates of recommenda-
tion rules enable the proposed recommender service to make more fine-tune
recommendation (Selection 4).

– We present an implementation of the recommender service and provide the
experimental results that show the feasibility and effectiveness of our pro-
posed approach (Section 5).

2 Preliminaries

In what follows, we first explain the data model for representing entities and
their relationships. We then describe how to measure the similarity of entities
and present the overall architecture of the proposed recommender service.

2.1 Community Data Graph

We use a graph-based model, named “Community Data Graph”, to represent
entities and their relationships. We model the community data as a set of en-
tities E = {E1, E2, ..., En} and a set of relationships R = {R1, R2, ..., Rn},
where each Ei/Ri is an entity or a relationship category. Each entity cate-
gory Ei (e.g., Person) has a set of entity instances (e.g., John and Alice).

222 S.H. Ryu et al.

Each relationship Ri (e.g., authorBy) has a set of relationship instances (e.g.,
authorByJohn firstDraft.doc

4). Each entity/relationship instance consists of a set
of attributes A = {A1, A2, ..., Am} and is denoted as ei or ri.

- title
- from
- to

- name
- role
- interest
- office

- id
- name
- role
- interest
- emailAddr

Entity

Person

Student Academic Staff

Document Email

100
John
UG
Programming
john@unsw

200
Alice
PhD
AI
alice@unsw

Project

Message

James
Associate Professor
Knowledge acquisition
K17 401

firstDraft.doc
Our project is
Alice
1500KB

- name
- content
- author
- size

About draft
john@unsw
alice@unsw

authorBy

attached

- title
- author
- date - id

- name
- supervisor
- description

10
Timeline Visualizer
James
This project ...

Brainstorm
Alice
20th/Mar/2011

sentBy

Entity category

Entity instance

authorBy

supervisedBy

Fig. 2. Example excerpt of community data graph

Figure 2 shows a snapshot of a community data graph for an education com-
munity (called courseWiki)5. In courseWiki, the community users, such as su-
pervisors, tutors, students, administrators, and even outside collaborators, could
collaboratively work with each other and share their knowledge and experiences
during the course. The courseWiki community data comes with a heterogeneous
set of entities: project specifications (in Microsoft Word documents), wiki pages,
emails exchanged, project reports (in PDF documents), and images/diagrams.
In the graph, the nodes denote entity categories/instances and the edges denote
relationships between them. For example, John and Alice are student instances
of Student category. They can be also associated with a set of attributes, such
as id 100 and email address john@unsw. The category Student denotes the col-
lection of all students managed in the courseWiki community.

Definition 1. (Community Data graph)
A community data graph is a direct labeled graph G= < V, Lv, Le, E >, where
V is a set of nodes, Lv is a set of node labels, Le is a set of edge labels and E
⊆ V 2 × Le is a set of labeled edges. Each node represents an entity category or
instance and each edge represents a relationship between two entities. Here, a
node ∈ V consists of a set of attributes {A1, A2, ..., An}.

2.2 Measuring Entity Similarity

We now describe how to estimate the similarity between two entities:
Attribute-based Similarity: To measure the similarity between a query
entity q and a same category of entity ei, we compute the similarity between
4 This can be specified as authorBy for short when there is no ambiguity.
5 This is constructed from a project-based course “e-Enterprise Projects” in our school.

Similarity Function Recommender Service 223

individual attributes and then produce the weighted similarity between the
entities. In certain cases, a weight may be associated with each attribute,
depending on its importance. Formally, we define the combined score basic sim
as follows:

- basic sim(q, ei) =
∑N

k=1 αkfk(q.Ak, ei.Ak)

where fk is the basic function being applied to a pair of attributes, αk is its
weight, and N is the number of basic functions.

Relationship-based Similarity: Apart from the attribute-based similarity, we
exploit semantic relationships (called co-occurrence) between entities [14,1]. For
example, two persons are likely to be similar (related), if they have co-occurring
authorBy relationships. Like atomic attributes, relationships may have weights
according to their importance (e.g., frequency of relationships). We adopt the
weighted Jaccard distance to compute the co-occurrence coefficient between
two entities. The weighted Jaccard distance is defined as:

- co sim(q, ei) =
∑

r∈A∩B wr∑
r∈A∪B wr

where A and B are the sets of relationships which the query entity q and the
entity ei have respectively, and wr is a weight assigned to the relationship.
Composition-based Similarity: If entities have internal structures, such as
XML schemas or process models, the entity similarity can be measured based
on a complex process. Such a process is a directed graph that specifies the
execution flow of several components [22]. The components could be a similarity
estimator, a score combiner which computes a combined similarity value
from results of other estimators, or a filter that identifies the most similar at-
tribute pairs. We can integrate these measurement methods in our recommender
service, if there is a need for finding correspondences between complex structures.

2.3 Overall Architecture

This subsection gives an overview of the recommender service architecture and
describe components that support the concepts presented in our approach. The
proposed architecture consists of the following three layers (see Figure 3).
Data service layer: To provide uniform and high-level data access to the data
repository, we expose CoreDB [2] as a service by leveraging the data service
technology [7,8]. CoreDB stores entities and their relationships extracted from
community data sources, based on the entity-relationship model. For instance,
Person entity table has attributes name, role, and interest, and stores all
person entity instances. The data service layer also provides a set of CoreDB
access open APIs [2], including basic CRUD operations, keyword search, rule
creation, similarity functions recommendation, and so on.

Recommender service layer: This layer is composed of three main
components: function recommender, similarity computation and rule manager
components. The function recommender component takes as input q and

224 S.H. Ryu et al.

Function
Recommender

SOAP

Recomender
Service APIs

CRUDSimilarity
Computation

CoreDB

Wrapper

Wikis
DB

Wrapper
Wrapper

IMAP

Security

Keyword
search

Tracing

…

SOAP

Graph
Browser

Rule
Editor

…

ER
Editor

Keyword
Search

User Interface
Layer

Recommender
Service Layer

Data Service
Layer

SOAP

Open APIs

Rule
Manager

… …

Fig. 3. Overall architecture

recommends as output a combination of similarity functions. This component
accesses the recommendation rules managed in CoreDB via the open APIs.
The similarity computation component asks users for a threshold (between
0.0 and 1.0) and computes the similarity scores using the recommended
similarity functions. This component relies on multiple similarity functions
that are represented as entities in CoreDB. The component returns and ranks
the entities similar to q based on their final scores. The rule manager allows
users to create and maintain recommendation rules. If a user is not satisfied
with the returned result by the similarity computation component, she can
create another recommendation rule using this rule manager. Then, she can
immediately re-apply the newly added rule to get a different result.
User interface layer: At this layer, the community data accessible from
data services is represented and visualized as a graph based on the mindmap
metaphor [6] (the details will be described in Section 5.2). This layer is also
responsible for providing various functionalities to enable users to intuitively
browse and query the community data using the graph browser as well as to
incrementally build recommendation rules using the rule editor.

3 Exploiting Community User Knowledge

In this section, we describe the notion of recommendation rules and their
management. The rules represent user knowledge about similarity functions
and their usage contexts. Then, we show how the recommender service makes
recommendations on which functions to select, using the recommendation rules.

3.1 Recommendation Rule Representation Model

Community users, especially advanced users, often have their knowledge about
the characteristics of individual similarity functions, such as usage purposes or
function-specific parameters. For example, edit distance function [21] is ex-
pensive or less accurate for measuring the similarity between long strings (e.g.,
document or message contents). It is likely to be suitable for comparing short
strings (e.g., document titles), capturing typographical errors or abbreviations.

Similarity Function Recommender Service 225

Table 1. Examples of recommendation rules

RuleID Usage Context Function Combination CS∗∗

1 C∗= “Message” ∧ exist(title) ∧ exist(author) {(title, EditDistance), (author, Jaro)} 1

2 C= “Person” ∧ exist(interest) ∧ exist(role) {(interest, Jaccard), (role, EditDistance)} 1

3 C= “Person” ∧ hasRelationship(sentEmail) {(sentEmail, co-occurrence)} 2

4 C= “Product” ∧ exist(name) ∧ price ≤ 1500 {(name, Jaccard), (price, RelativeDistance)} 1

* C stands for Category, ** Confidence Score (see Section 3.3)

As another example, relative distance [3] is good for comparing numerical
values, like weight and price, and Hamming distance [15] is used mainly for
numerical fixed values, like postcode and SSN.

Thus, the effective leverage of this kind of knowledge is important to
improve the accuracy of SES. In addition, community users may know which
attributes/relationships play an important role in identifying similar entities.
As an example, if a task is to find similar persons for a given person, attribute
interest might be more useful than attributes id. To capture such user knowl-
edge, we propose recommendation rules that consist of two components: usage
context and function combination.

Usage context. Briefly stated, a usage context refers to the constraints that q
should satisfy before the recommender service suggests similarity functions. It
consists of a conjunction of predicates, each of which is specified by a unary or
binary comparison involving entity’s categories, attributes or its relationships,
and constants. For example, in Table 1, the usage context of RuleID 1 states
that q should belong to a Message category and have two attributes title and
author. Table 2 shows some of operations that are used for specifying such
usage contexts.

Function combination. For each usage context, the recommendation rule is
associated with a list of pairs (attribute/relationship, similarity function) that
indicates which functions are most appropriate to which attributes/relationships.
For instance, in Table 1, the function combination of RuleID 1 suggests that
the edit distance function, good for short string comparison, should be used
to compare title and the Jaro function, good for name similarity detection,
should be used for author.

Table 2. Usage Context Operations

- exist(ak) checks whether q has an attribute ak.
- valueOf(ak) returns the value of an an attribute ak.
- hasRelationship(rk) checks whether q has a relationship rk

- length(ak) returns the length of ak attribute value.
- contain(ak, V) checks whether attribute ak contains the value V.
- belongTo(ak, C) checks whether the value of ak belongs to a semantic concept C.

Definition 2. (Recommendation Rule)
Let Ce be a set of entity categories supported in the recommender service. Rec-
ommendation rule is of the form: q ∈ Ei, P (q.A1, ..., q.An) →

∑N
k=1 fk(q.Ak)

226 S.H. Ryu et al.

where P is a conjunction of predicates on the entity category and attributes A1,
..., Ak of q. Each predicate is either of the form q.category = Ci ∈ Ce or unaryop
(q.attribute/relationship) or q.attribute op value where op ∈ {=, <, >,≤,≥, �=
, contain, belongTo}, unaryop ∈ {exist, valueOf, hasRelationship, length}.

3.2 Matching Recommendation Rules

When a user selects a certain entity as q, the recommender service identifies
the potential combinations of functions being applicable to q. For this, the
service provides an operation called recommendFunctions(), which takes as
input q and produces as output a set of function recommendations that can be
potentially applied to perform the corresponding SES task. The recommender
service matches q against the usage contexts of a set of recommendation rules.
The matching process relies on subsumption (containment) or equivalence
between q and entity contexts. For example, given a query entity q: (category:
Student, name: John, interest: programming, role: undergraduate student),
the usage context of RuleID 2 is matched as the Student category is a sub-type
of Person category (in Figure 2). The function combination of the matched
recommendation rule is returned to the user. If no combination is found to be
appropriate to q, the user might create a new recommendation rule with the
help of rule editor.

3.3 Ranking Recommendation Rules

In our recommender service, each recommendation rule can be associated with
a positive value, called Confidence Score (CS). The score indicates the level
of credence in a corresponding recommendation rule. In fact, a CS reflects the
user satisfaction level for the function combination in a recommendation rule.
To obtain this score, we introduce a user feedback loop at the end of each SES
task. After the user has applied the recommended function combination and
examined the returned results by them, she can express the level of satisfaction
with the recommendation rule (hence the function combination) by giving a
score. The CS value for a recommendation rule is accumulated overtime, each
positive feedback rating adding 1. The CS values are then used to show users
a ranked list of the recommendation rules when there are more than one rule
matching q. If no CS value is specified, we assume cs = 1. Also, completing the
feedback loops is optional to users.

Definition 3. (Ranked recommendation rule)
A ranked recommendation rule gives a confidence score cs ≥ 1 to a recommen-
dation rule definition: q ∈ Ei, P (q.A1, ..., q.An) cs−→

∑N
k=1 fk(q.Ak).

4 Incremental Knowledge Acquisition

In this section, we present how to incrementally obtain the recommendation
rules from community users.

Similarity Function Recommender Service 227

4.1 Knowledge Acquisition Method: Ripple Down Rule

To incrementally build and update recommendation rules, we adopt the knowl-
edge acquisition method called Ripple Down Rule (RDR) [12] for several rea-
sons: (i) RDR provides a simple and easy approach to knowledge acquisition and
maintenance [18]; (ii) RDR works incrementally, in that users can start with an
empty rule base and gradually add rules while processing new example cases.

In RDR, a rule has two components a condition and a conclusion: if [condition]
then [conclusion]. Hence, the condition part of an RDR rule is mapped to the
usage context in our recommendation rule, and the conclusion part to the func-
tion combination (with a confidence score). RDR organizes our recommendation
rules as a tree structure. For example, Figure 4 shows an example rule tree, in
which the rules are named rule 0, rule 1, rule 2, etc., according to their creation
order. Rule 0 is the default root rule that is always fired for every query entity q.
The rules underneath rule 0 are more specialized rules created by modifying rule
conditions. The rule inference in RDR starts from the root node and traverses
the tree, until there are no more children to evaluate. The conditions of nodes
are examined as a depth-first traversal, which means the traversal result is the
conclusion node whose condition is lastly satisfied.

4.2 Acquiring Knowledge through Different Rule Types

In what follows, we describe the incremental knowledge acquisition process
using different rule types.

Rule3

String type Jaccard
Numeric type Relative distance
Sequence type Simth-Watermann
Structure type Graph edit distance
Phonetic code Soundex
Date type Date function
Time type Time function

Rule1
Rule2

IF
 C = Document
Then
 Name Jaccard

Rule0

IF exist(Body)
Then
 Name Edit distance
 Body TFIDF
 CS= 3

IF C = Person AND
 hasRelationship(authorBy)
Then
 authorBy co-occurrence

IF valueOf(interest)
 belongTo BPM concept
Then
 Interest Jaccard + Abbreviation
 Role Edit distance

Rule9

Rule7

Rule4

IF C = Message AND exist(Title)
 AND exist(Author)
Then
 Title Jaccard
 Author Jaro

IF

Then
 Interest Jaccard
 Role Edit distance
 CS= 5

Rule5 Rule8

IF exist(Content)
Then
 Title Edit distance
 Content Cosine
 CS= 3

IF exist(Description)
Then
 Description Jaccard

Rule6

Rule10

IF exist(Size)
Then
 Title Edit distance
 Content Cosine
 Size Relative distance
 CS= 7

IF C = Person AND exist(Role)
 AND exist(Interest)
Then
 Interest Jaccard
 Role Jaccard
 CS= 2

Fig. 4. Example RDR Tree: we omit duplicate conditions between parent and children
rules for simplicity. If a confidence score (cs) is not available in the rule conclusion,
cs= 1 is assumed. σ denotes the condition is the same as the parent one.

228 S.H. Ryu et al.

Attribute Type-Based Rule (Default Rule). The default rule contains no
condition (i.e., it is always satisfied) and its conclusion consists of a list of pairs
(attribute type, name of the suitable function). This rule only checks the types
of attributes, meaning for example, all string-type attributes will be assigned
the same string function (i.e., jaccard similarity function).

Example 1. In Figure 4, Rule 0 specifies that Jaccard function is applied to
string type attributes, RelativeDistance to numeric, SimithWatermann to
attributes having sequence (e.g., biological sequence), and so on.

Key Attribute-based Rule. We note that there are some situations where
choosing a few key attributes in an entity for comparison, rather than looking
at all available attributes, may produce better results. For example, for Person
entities, the attribute such as id may not be significant in determining similarity,
but interest or role may provide a better clue. Using this rule, the user can
identify any key attributes in an entity that she wants to compare. There are
two possibilities in defining this rule:

Choosing key attributes only: the user identifies the attributes that play an im-
portant role for assessing the similarity without degrading the search accuracy.
In this case, each attribute is paired with the default similarity function based
on its type.

Example 2. Rule 1: q ∈ Ei, category= “Person” ∧ exist(interest) ∧ exist(role)
→ fJaccard(interest) ∧ fJaccard(role).

Choosing key attributes and functions: In this case, the user can choose key
attributes as well as their similarity functions. Note that this may happen
incrementally if the user determines later that a different function may produce
better results. For example, in Rule 5, after looking at the results from Rule
1, she may realise that edit distance is better suited for role attribute,
because the character-based function (edit distance) works better than the
token-based function (jaccard) in detecting the similarity between strings
including abbreviations, e.g., Assoc. Professor vs. Associate Professor.

Relationship-based Rule. Entity relationships can also contribute to
analysing similarity. Out of all relationships linked with q, this rule allows the
user to examine co-occurring ones only. Further, the user can specify the co-
occurring relationships that are perceived more important. For example, the
following example finds persons who have co-occurring relationship authorBy.

Example 3. Rule 3: q ∈ Ei, category= “Person” ∧ hasRelationship(authorBy)
→ fco−occurrence(authorBy)

Lexical Relation-based Rule. This rule type takes into consideration the
values of attributes where certain keywords/phrases or semantic information may
play a role in determining similarity. For instance, consider two strings “BPM”

Similarity Function Recommender Service 229

and “Business Process Modelling and Management” of interest attribute in
person entities. When normal string comparison function may fail to see the
similarity, it is certainly desirable to be able to match the two as ‘similar’.

To handle the semantic relationships between attribute values, this rule
allows the users to specify lexical relations between words (e.g., synonym,
hyponym) or abbreviation. We use synonym and abbreviation tables, including
domain-specific terms. An example of the abbreviation table entry is: (BPM:
Business Processes, Business Process Management, Business Process Modelling
and Management)), which takes the format of (concept name: list of terms).
For instance, Rule 9 states that if q has interest attribute and its value
belongs to concept name “BPM”, then, for interest, apply fJaccard function in
comparing syntactical differences and use abbreviation function in comparing
semantic differences.

Example 4. Rule 9: q ∈ Ei, category= “Person” ∧ exist(interest) ∧ exist(role)
∧ interest belongTo BPM → (fJaccard(interest) ∨ fAbbreviation(interest)) ∧
fEditDistance(role).

5 Implementation, Usage, and Evaluation

This section describes our prototype implementation, usage scenario and exper-
iment results.

5.1 Implementation

The prototype has been implemented using Java, J2EE technologies, and some
generic services from existing Web services environments to implement specific
functionalities of the services proposed in our approach. We extract coureWiki
community data from multiple data sources and store the data into CoreDB.
For this, we have implemented a number of wrappers in which each wrapper has
a particular purpose and pulls the data from its original location to populate
the community data graph. For instance, a special wrapper would analyse email
exchange logs and build relationships such as sentEmail, repliedBy. We expose
CoreDB as data services [7,8] that allow uniform data access via open APIs [2].
We have developed the recommender service supporting our proposed approach,
which consists of three components: the function recommender, similarity com-
putation, and rule manager components (Section 2.3). Table 3 shows a set of
operations that such components can invoke to perform their specific function-
alities. We also present a graphical user interface (Section 5.2) that allows users
to interact with the recommender and data services.

5.2 Usage Scenario of the Recommender Service

We propose the following scenario as an illustration. Figure 5 presents a
screenshot of the graph browser. Initially, in the visualization area, an entity

230 S.H. Ryu et al.

Table 3. The list of operations invoked by recommender service components

Function recommender/rule manager operations
- recommendFunctions(q) returns a list of similarity functions according to q ’ context.
- createRule(c, d) creates a rule with a condition c and a conclusion d.
- refineRule(r, c, d) refines a rule r with a condition c and a conclusion d.
- rankRule(r) increases the confidence score of a rule r by 1.

Similarity computation operations
- computeSim(ak,fi) computes similarity scores by applying function fi to attribute ak.
- aggregateSim(q, ei) aggregates similarity values between individual attributes of q
and ei and computes a final score.

node (e.g., root entity) serving as a center node is displayed. The center node
is directly connected with other nodes denoting entity categories or instances.
A user can choose one of entity instances as q. The top left panel is used for
navigating the graph according to the entity categories and the bottom left
panel displays the details of the selected query entity (if any). After selecting q,
she asks the recommender service for similarity functions. The service returns
function combinations according to the recommendation rules that q satisfies.
One recommendation rule example is:

– IF C= Person and exist(interest) and exist(role)
THEN interest → Jaccard, role → Edit distance

Next, the user chooses one of function combinations, the similarity computation
component calculates the similarity scores between q and the other entities, using
the recommended functions, and then returns a list of similar entities. The right
top panel shows the list of returned entities and the right bottom panel shows
the details of a returned entity selected by the user. Here, the user can examine
why the selected entity is similar to q.

Fig. 5. Usage scenario of recommender service: the service returns entities similar to q
using recommended functions

Similarity Function Recommender Service 231

5.3 Evaluation

We now present the evaluation results that show how the recommender service
can be effectively utilized in the courseWiki domain.

Dataset: We uses the dataset from our project-based course for the courseWiki
community. The dataset is a collection of different categories of entities: 210
persons, 684 messages, 942 documents, 580 issues and 22874 events. For the
evaluation, we applied our system on three categories of entities (i.e., Person,
Message, and Document).

Evaluation Metrics and Methodology: We measured the overall performance with
accuracy. Accuracy is the number of correctly identified similar pairs divided
by the total number of identified similar pairs. Whether returned entities are
similar to q is dependent on users’ subjective decision. Therefore, we decided to
manually pre-classify the entities into different groups (i.e., within a group, the
entities are considered similar). All entities in one group is pre-labelled with the
same groupID. For example, for Person entities, we grouped them according to
their project/assignment work groups. Document entities were grouped based on
their revision history.

Starting with a default rule, we began the knowledge acquisition process by
looking at the different categories of entities in chronological order (instance
creation date). For example, for 210 people entity instances, the acquisition
process is defined as follows, note that this process is repeated for every entity
instance: (i) an entity instance is selected as q, (ii) rules are applied, (iii) we
examine the result6, if the result is satisfactory (i.e., the groupID of q is the
same as that of the returned entity), the rule is untouched, if not, the existing
rule is refined (e.g., changing the function). The above steps are repeated until
all entity instances are considered as q.
Results: Figure 6 shows that overall, across all categories, the accuracy of our
system improves overtime as the number of entity instances being processed is
increased. This is because there are more (refined) rules created. Some other
observations we made about different categories are: (i) for Person entities, the
relationships played an important role in improving the accuracy. As shown in
Figure 6, with only about 60 number of entity instances considered, the system
already performed at accuracy 0.93 (in this case, the number of created rules
is 4). (ii) for Document entities, knowing the right function to use for a certain
attribute was a particularly important factor. For example, comparing title
attribute worked better with character-based string match function.

Discussion: It should be noted that the number of rules created depends on how
well the users know about the characteristics of the dataset and available func-
tions. In addition, the RDR approach for knowledge acquisition enables domain
experts or users to build rules rapidly since there is no need for understanding
the knowledge base as a whole or its overall structure [13].

6 In fact, we consider the entity returned with the highest similarity score.

232 S.H. Ryu et al.

Person Message Document

Fig. 6. Results of Evaluations

6 Related Work

Our recommender service is related to the efforts in basic similarity functions
and record linkage.

Basic Similarity Functions. In this group of work, individual attributes
are considered for similarity analysis. Many different basic functions for
capturing similarity have been proposed in the last four decades [16,9,5,21].
For example, they are used for comparing strings (e.g., edit distance and its
variations, jaccard similarity, and tf-idf based cosine functions), for numeric
values (e.g., Hamming distance and relative distance), for phonetic encoding
(e.g., Soundex and NYSIIS), for images (e.g., Earth Mover Distance), for
assessing structural similarity (e.g., graph edit distance and similarity flooding),
and so on. In contrast to those techniques, our work focuses on determining
which similarity functions are most appropriate for a given similarity search task.

Record Linkage. The record linkage problem has been investigated in research
communities under multiple names, such as duplicate record detection, record
matching, and instance identification. The approaches can be broadly divided
into three categories: supervised methods, unsupervised methods, rule-based
methods. The supervised methods [5,24,11] train a model using training data
pre-labeled as “match” or “no match” and later apply the model to identify
records that refer to the same real-world object. The unsupervised methods [25]
employ the Expectation Maximum (EM) algorithm to measure the importance
of different elements in feature vectors. The rule-based approaches [19,17]
enable domain experts to specify matching rules that define whether two
records are the same or not. However, our work differs in that (i) we do
not rely on the existence of training data. (ii) our recommender service
helps users incrementally define recommendation rules and enables them to
choose similarity functions suitable for the domain-specific similarity search task.

Similarity Function Recommender Service 233

7 Conclusion and Future Work

In this paper, we presented a recommender service that suggests most appro-
priate similarity functions, which can be used when comparing two entities.
Particularly, we introduced similarity function recommendation rules and their
types. We also proposed an incremental knowledge acquisition process to build
and manage the rules. In future work, we plan to investigate how to extend our
approach to support large scale of SES tasks, such as identifying similar enti-
ties from millions of entities, using some high performance computing techniques.

References

1. Ananthakrishna, R., Chaudhuri, S., Ganti, V.: Eliminating fuzzy duplicates in data
warehouses. In: VLDB, pp. 586–597 (2002)

2. Báez, M., Benatallah, B., Casati, F., Chhieng, V.M., Mussi, A., Satyaputra, Q.K.:
Liquid Course Artifacts Software Platform. In: Maglio, P.P., Weske, M., Yang,
J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 719–721. Springer,
Heidelberg (2010)

3. Bilenko, M., Basu, S., Sahami, M.: Adaptive product normalization: Using online
learning for record linkage in comparison shopping. In: ICDM, pp. 58–65 (2005)

4. Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string
similarity measures. In: KDD, pp. 39–48. ACM (2003)

5. Bilenko, M., Mooney, R.J., Cohen, W.W., Ravikumar, P.D., Fienberg, S.E.: Adap-
tive name matching in information integration. IEEE Intelligent Systems 18(5),
16–23 (2003)

6. Buzan, T., Buzan, B.: The mind map book. BBC Active (2006)
7. Carey, M.: Data delivery in a service-oriented world: the bea aqualogic data services

platform. In: SIGMOD 2006, pp. 695–705 (2006)
8. Castro, P., Nori, A.: Astoria: A programming model for data on the web. In: ICDE,

pp. 1556–1559 (2008)
9. Christen, P.: A comparison of personal name matching: Techniques and practical

issues. In: ICDM Workshops, pp. 290–294 (2006)
10. Cochinwala, M., Kurien, V., Lalk, G., Shasha, D.: Efficient data reconciliation. Inf.

Sci. 137, 1–15 (2001)
11. Cohen, W.W., Richman, J.: Learning to match and cluster large high-dimensional

data sets for data integration. In: KDD, pp. 475–480 (2002)
12. Compton, P., Jansen, R.: A philosophical basis for knowledge acquisition. Knowl.

Acquis. 2(3), 241–257 (1990)
13. Compton, P., Peters, L., Lavers, T., Kim, Y.S.: Experience with long-term knowl-

edge acquisition. In: K-CAP, pp. 49–56 (2011)
14. Dong, X., Halevy, A.Y., Madhavan, J.: Reference reconciliation in complex infor-

mation spaces. In: SIGMOD Conference, pp. 85–96 (2005)
15. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A

survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)
16. Hall, P.A.V., Dowling, G.R.: Approximate string matching. ACM Comput.

Surv. 12, 381–402 (1980)
17. Hernández, M.A., Stolfo, S.J.: Real-world data is dirty: Data cleansing and the

merge/purge problem. Data Min. Knowl. Discov. 2, 9–37 (1998)

234 S.H. Ryu et al.

18. Ho, V.H., Compton, P., Benatallah, B., Vayssière, J., Menzel, L., Vogler, H.: An
incremental knowledge acquisition method for improving duplicate invoices detec-
tion. In: ICDE, pp. 1415–1418 (2009)

19. Lee, M.L., Ling, T.W., Low, W.L.: Intelliclean: a knowledge-based intelligent data
cleaner. In: KDD, pp. 290–294 (2000)

20. Li, Q., Wu, Y.-F.B.: People search: Searching people sharing similar interests from
the web. J. Am. Soc. Inf. Sci. Technol. 59(1), 111–125 (2008)

21. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453
(1970)

22. Peukert, E., Eberius, J., Rahm, E.: Amc - a framework for modelling and comparing
matching systems as matching processes. In: ICDE, pp. 1304–1307 (2011)

23. Sarawagi, S., Bhamidipaty, A.: Interactive deduplication using active learning. In:
KDD, pp. 269–278 (2002)

24. Tejada, S., Knoblock, C.A., Minton, S.: Learning domain-independent string trans-
formation weights for high accuracy object identification. In: KDD, pp. 350–359
(2002)

25. Winkler, W.E.: Using the em algorithm for weight computation in the fellegi-sunter
model of record linkage. In: Survey Research Methods Section, American Statistical
Association, pp. 667–671 (2000)

Revealing Hidden Relations among Web Services
Using Business Process Knowledge

Ahmed Awad and Mohammed AbuJarour

Hasso-Plattner-Institut, University of Potsdam, Germany
{firstname.lastname}@hpi.uni-potsdam.de

Abstract. The wide spread of Service-oriented Computing and Cloud Comput-
ing has been increasing the number of web services on the Web. This increasing
number of web services complicates the task of service discovery, in particu-
lar because of lack of rich service descriptions. Relations among web services
are usually used to enhance service discovery. Formal service descriptions, logs
of service invocations, or service compositions are typically used to find such
relations. However, using such sources of knowledge enables finding simple re-
lations only. In a previous work, we proposed to use business processes (BPs)
to refine relations among web services used in the configurations of these BPs.
That approach was limited to web services directly consumed by a single busi-
ness process. In this paper, we generalize that approach and aim at predicting rich
relations among web services that were not directly used together in any process
configuration yet. To achieve this goal, we take all individual business processes
(from a business process repository) and their configurations over web services
(from a service registry) in the form of so-called extended behavioral profiles.
These disparate profiles are then merged so that a single global profile is derived.
Based on the aggregated knowledge in this global profile, we reveal part of the
unknown relations among web services that have not been used together yet. We
validate our approach through a set of experiments on a collection of business
processes from SAP reference model.

Keywords: service discovery, behavioral profiles, business process configurations.

1 Introduction: Relations among Web Services

The increasing number of web services is one of the main factors that make service
discovery a major challenge in Service-oriented Computing [3,4,11]. Finding relations
among web services has been used to handle this challenge. The traditional techniques
that have been proposed to achieve this task are input-output matching of web services
using their technical service descriptions [8], semantic approaches [13], using compo-
sitions of web services [5], and using consumer-consumer similarity [15] (Sec. 2). The
main goal of these approaches is finding any type of relations between web services,
i.e., their outcome is whether two web services are related or not. No further refinement
of these found relations is suggested. Additionally, these approaches are not able to find
indirect relations among web services, because they use knowledge about web services
that are used together only. Relations between web services that are not used together
remain missing.

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 235–249, 2011.
© Springer-Verlag Berlin Heidelberg 2011

236 A. Awad and M. AbuJarour

Missing relations between web services do not necessarily indicate their indepen-
dence. Several reasons can lead to such hidden relations, such as lack of knowledge
about web services and their functionalities, multiple web services with equivalent
functionalities, and non-functional requirements (e.g., price, quality). We consider such
missing relations as hidden ones and aim at revealing (part of) them. One approach of
revealing such hidden relations is using knowledge concealed in the configurations of
business processes that use these web services. Each configuration is considered as an
identifier for its tasks and its web services. Multiple tasks that have different labels are
similar if they are bound with the same web service. Similarly, web services that have
different names are considered similar if they are bound with tasks that share the same
label.

In our previous work [2], we introduced an approach to discover advanced relations
among web services in the form of linkage patterns using business process knowledge
represented as behavioral profiles [19]. Linkage patterns are generated among web
services that are used in the same business process. As different consumers use web
services in multiple business processes with different relations among them, multiple
configurations over the same set of web services appear. These configurations are lo-
cal to each individual process. In this paper, we develop an approach to derive a global
behavioral profile over the entire set of web services in a service registry and reveal hid-
den relations among web services – that have never been used together by investigating
indirect relationships among them – within this global profile.
The main contributions of this paper are:

– An approach to merge behavioral profiles of business processes into a global be-
havioral profile.

– An approach to reveal hidden relations among web services that have not been used
together, yet.

To validate our approach, we use a set of business processes from the SAP reference
model [7]. These models represent possibilities to configure SAP R/3 ERP systems.
Thus, it is analogous to business process configurations over a service landscape.

The rest of the paper is organized as follows: We summarize related work in Sec. 2.
After that, we give preliminary concepts and definitions in Sec. 3. Then, we introduce
our definition of extended behavioral profiles in Sec. 4. In Sec. 5, we show our approach
to derive a global behavioral profile and resolve its unknown relations. We present a set
of experiments to evaluate our approach in Sec. 6. In Sec. 7, we summarize this paper
and show our future work.

2 Related Work

Finding relations among web services has been considered by several researchers in
the community. Approaches that tackle this problem can be grouped roughly in four
groups:

Revealing Hidden Relations among Web Services Using Business Process Knowledge 237

– Input/output matching approaches: These approaches match inputs and outputs
of operations of web services to find relations among them [8]. They assume the
existence of complete, rich, and correct service descriptions, e.g., WSDL. However,
such assumption is not always realistic [10]. Additionally, experiments have shown
that WSDL descriptions only are not sufficient [17]. Additionally, these approaches
may lead to unrealistic/unusable relations, and misses relations between web ser-
vices with manual tasks in between. The main goal of these approaches is to inves-
tigate composability among web services [14,16].

– Semantic approaches: These approaches apply Artificial Intelligence planning
techniques to find valid compositions of web services [12,13]. They are based on
the assumption that web services are described formally using ontologies, such as
OWL-S, WSMO, etc. In practice, semantic web services are not common [6]. Our
approach does not necessarily require the existence of such formal descriptions.
However, their existence could enable it to find additional relations.

– Service compositions-based approaches: These approaches are based on the idea
that web services used in a service composition are related [5,20], i.e., they give
only binary decisions. However, these approaches are not able to specify the type
of relations between web services based on their usage in service compositions.
These approaches depend on the co-occurrence of web services in service compo-
sitions to decide that there is a relation among them. On the other hand, Eshuis
et al. [9] discover related web services based on structural matches of BPEL pro-
cesses. To find related composite services with respect to a query, the behavioral
relations among component services are compared to those in the query and ranked
according to some heuristics. Compared to our approach, Eshuis et al.’s approach
is unable to reveal hidden relations among web services that were never used in the
same process model.

– Consumer-consumer similarity approaches: These approaches use the idea that
similar service consumers usually use the same web services [15]. However, they
assume the ability to track web services used by service consumers. This setting
is not the typical one in practice. Moreover, it has been shown that similar service
consumers do not necessarily use the same web services.

3 Preliminaries

A business process model consists of a set of tasks and theie execution ordering. Such
execution ordering specifies generally which tasks are executed in sequence, concur-
rent or alternative to each other. Tasks can be manual or service tasks. The former are
performed by humans, whereas the latter are executed by web services. Process models
have special types of tasks that determine the start and end points of a process instance,
respectively. Moreover, explicit control routing nodes are used to describe the above
mentioned execution ordering. Thus, we represent a process model as a graph whose
nodes are typed. The definition of a process model is given in Definition 1.

238 A. Awad and M. AbuJarour

Definition 1 (Process Model). A process model P is a connected, directed graph (N, E)
where N = T ∪ G ∪ {nin, nout} is a finite set of nodes, with Tasks T , Gateways G, and
exactly one start and end event nin and nout, and E ⊆ (N \ {nout}) × (N \ {nin}) is a set of
edges connecting the nodes.

A behavioral profile represents an abstract description of a business process, where it
identifies a behavioral relationship between any pair of nodes within that process [19].
This relationship can be: (1) strict order �, (2) concurrent ‖, (3) exclusive # or (4)
inverse order�. The formal definition of behavioral profiles is given in Definition 2.

Definition 2 (Behavioral Profile). Let N be the set of nodes within a business process
model. The behavioral profile of a business process model is a function bhpbp : N×N →
{�,�, ‖, #} that assigns a behavioral property, strict order, inverse order, parallel, or
exclusive, between each pair of nodes within the business process model.

If two tasks a, b appear in strict order within a business process x, bhpx(a, b) =�, then
task a executes before task b. Similarly, if two tasks are concurrent then they can be
executed in any order. Exclusiveness means that at most one of the two tasks can execute
within a process instance. To derive useful behavioral properties between tasks of a BP,
we remove cyclic edges from such BPs because their existence makes all connected
tasks concurrent.

Transforming business process models into executable processes is done through a
configuration step. In this step, business engineers assign web services to service tasks
in the considered model. This assignment represents a service discovery and selection
task. The formal definition of BP configuration is given in Definition 3.

Definition 3 (BP Configuration). A service registry usually contains a collection of
web services1. The configuration of a business process model – containing tasks T – is
a function con f : T → WS i that assigns a web service (WS i) for each service task in
that business process model.

Based on these behavioral profiles, we derive linkage patterns among web services [2].
Therefore, deriving a consistent global behavioral profile is a key to avoid inconsisten-
cies among linkage patterns and to predict useful relations among web services that
have not been used together yet, i.e., do not appear in the same BP.

4 The Extended Behavioral Profile

Revealing hidden relations among web services requires a global behavioral profile,
where all services in the considered registry are involved. A global profile is the result
of merging all individual behavioral profiles of available business processes. Merging
two relations from two profiles results in unknown relations between web services that
do not appear together in one business process. Moreover, this merging step might re-
sult in contradicting relations, e.g., merging a#xb and a�y b. Therefore, the four basic

1 For simplicity, we assume that each web service contains a single operation.

Revealing Hidden Relations among Web Services Using Business Process Knowledge 239

behavioral relations of the original behavioral profile in Definition 2 are not sufficient.
We extend the four basic relations to capture such situations when merging individ-
ual profiles by introducing two additional relations: unknown (?) and contradicts (※).
These two relations do not appear on the level of individual raw profiles. They appear
only when profiles are merged as we show in Sec. 5. Additionally, we record the dis-
tance between tasks bound to web services in the process configuration. This distance is
used in the derived linkage patterns among web services to rank services during service
discovery. We obtain this distance by counting the edges on the shortest path between
the nodes representing the tasks in the process graph.

In this section, we present the formal notion of extended behavioral profiles (Sec. 4.1).
In Sec. 4.2, we introduce a business process with its extended behavioral profile that is
used as a running example in the rest of this paper.

4.1 Formal Model

The original definition of behavioral profiles is concerned with behavioral relations
among tasks within a business process. However, in our approach, we are interested in
discovering relations among web services used to configure such business processes.

Definition 4 (Extended Behavioral Profile). LetW be the set of web services within
a service registry. The extended behavioral profile of web services inW is a function
xbhp :W×W→ P({�,�, ‖, #, ?, ※ } ×N) that assigns a set of pairs of a behavioral
property (strict order, inverse order, parallel, exclusive, unknown or contradicts) and a
distance between each pair of web services within the service registry.2

Comparing Definition 4 of the extended behavioral profile with Definition 2, we notice
that the behavioral relations are leveraged from the level of tasks within individual
process models (configurations) to the level of web services within the service registry.
Moreover, the extended profile records the distance between web services consumed
within an individual profile. This distance is greater than zero if the behavioral relation
is either� or� and zero otherwise. Finally, multiple behavioral properties can exist
between two web services in the global behavioral profile (Sec. 5.1).

An individual behavioral profile (Definition 2) of a process can be turned into an ex-
tended profile by adding all web services in the service registry to the services consumed
by that process where their behavioral relations are set to unknown. For simplicity, we
ignore these unknown relations for input behavioral profiles.

Definition 5 (Projections over an Extended Behavioral Profile). Let W be the set
of web services within a serivce registry and let x be an extended behavioral profile.
The function relx : W ×W → {�,�, ‖, #, ?, ※ } projects the behavioral relation
between two web services a and b in the registry with respect to profile x. Similarly
distx :W×W → N projects the distance between the two services with profile x. For
simplicity, we express relx(a, b) = {∗} as a ∗x b in the rest of the paper.

2 For simplicity, we assume that each web service has only one operation.

240 A. Awad and M. AbuJarour

4.2 Running Example

In Fig. 1, we introduce two anonymized business processes from the SAP reference
model that are used as a running example through this paper. We use the labels A – I
as identifiers for both tasks and web services. The common anonymized labels between
both business processes indicate using the same service in their configuration. BP1 has
6 tasks where only task D is not a common task with BP2. On the other hand, BP2 has
8 tasks among which 3 tasks are not common with BP1, namely G, H, and I.

B A

D

C

E

F

(a) Business Process BP1

C

G

B

H

F

A

E

I

(b) Business Process BP2

Fig. 1. Two anonymized Business Processes from SAP reference model

The extended behavioral profile of BP1 is shown in Table 1 and that of BP2 can be
generated similarly, we omit it due to space limitations. It is worth mentioning that both
BPs are configured such that each task is bound with a web service to execute it. Ac-
cording to Table 1, xbhpBP1(E, F) = {(#, 0)} and xbhpBP1(A,D) = {(�, 2)}. Relations
that are not shown in this profile are implicitly unknown, e.g., xbhpBP1(A,G) = {(?, 0)}.

Table 1. The extended behavioral profile of BP1 shown in Fig. 1(a)

A B C D E F
A (‖, 0) (�, 1) (�, 2) (�, 2) (�, 4) (�, 4)
B (�, 1) (‖, 0) (�, 3) (�, 3) (�, 5) (�, 5)
C (�, 2) (�, 3) (‖, 0) (‖, 0) (�, 2) (�, 2)
D (�, 2) (�, 3) (‖, 0) (‖, 0) (‖, 0) (‖, 0)
E (�, 4) (�, 5) (�, 2) (‖, 0) (‖, 0) (# , 0)
F (�, 4) (�, 5) (�, 2) (‖, 0) (# , 0) (‖, 0)

5 Deriving a Global Behavioral Profile

Knowledge about relations among web services is usually scattered in disparate pro-
files of business processes that are configured to use these web services. Collecting this
knowledge into one single profile is essential to reveal hidden relations among these
web services. We call the result of this step a global behavioral profile. We describe our
approach to derive this global profile from individual profiles in Sec. 5.1. The global
profile might include unknown or contradicting relations among some pairs of web

Revealing Hidden Relations among Web Services Using Business Process Knowledge 241

services. We inspect the gained knowledge in the global profile to predict possible res-
olutions for its unknown relations. We describe our approach to resolve unknown re-
lations in the global profile in Sec. 5.2. Both steps, i.e., deriving a global profile and
predicting unknown relations are of iterative nature. That is, at the point that a new
process configuration is available, this new profile is merged with the global profile, to
obtain a new global profile, and the prediction of unknown relations is rerun.

5.1 Merging Individual Behavioral Profiles

Given a set of behavioral profiles, we aim at deriving a global profile that contains
pairwise relations between all used web services. We achieve this deriving by merg-
ing all individual profiles iteratively in a pairwise manner. The result of each merging
iteration is an intermediate profile that is merged with another profile. This step is re-
peated until all individual profiles are incorporated. Merging individual profiles might
result in unknown or contradicting relations among web services. Unknown relations
appear between web services that are not used together in the same business process.
Whereas contradicting relations appear due to conflicting relations in source profiles.
For instance, the relations (a#xb) (i.e., a and b are exclusive in profile x) and (a�y b)
(i.e., a precedes b in profile y) includes at least one incorrect relation. Exclusiveness
usually means that web services do similar or complementary jobs [2]. Currently, we
propagate such conflicts to the resulting intermediate profile by adding two relations
(a※zb) and (b※za) that represent a contradiction to the resulting intermediate profile z.

We merge two relations between web services a and b that appear in both input
profiles x and y into the global profile t according the set of rules that is summarized in
Table 2. These rules can be grouped as follows:

1. Merging (a ∗x b) and (a ∗y b) gives (a ∗t b), where ∗ is the same type of relation.
2. Merging (a�x b) and (a�y b) gives (a ‖t b) or (a※tb).
3. Merging (a ∗x b) and (a •y b) gives (a ‖t b) or (a※tb), where ∗ ∈ {�,�} and • =‖.
4. Merging (a ∗x b) and (a#yb) gives (a#tb) if ∗ = #, and a※tb otherwise.
5. Merging (a?xb) and (a ∗y b) gives (a ∗t b), where ∗ is a basic relation.
6. Merging (a※xb) and (a ∗y b) gives a※tb.

Some merging rules are non-deterministic, i.e., produce multiple alternatives (See Ta-
ble 2). For instance, merging (a �x b) and (a �y b) gives two options: (a ‖t b)
and (a※t b). Parallelism means that there is no dependency between a and b and they
can be used in any order. On the other hand, a dependency between a and b means
that either profile x or y is incorrect, where it includes a data anomaly, e.g., missing
data [18]. In this case, we conclude that there is a contradiction (a※tb). To resolve such
non-determinism, a human intervention is needed, which is out of scope of this paper.

The second component in the extended behavioral profile (besides the relation’s type)
is distance between services. This distance between two services in an intermediate
profile is calculated as the shortest distance in the corresponding profiles unless one of
both distances is zero, i.e., # or ‖.

242 A. Awad and M. AbuJarour

Table 2. Merging relationships from two profiles x and y into an intermediate profile t

Profile a�x b a�x b a ‖x b a#xb a?xb a※x b

a�y b a�t b a ‖t b or a ‖t b or a※t b a�t b a※t b
a※t b a※t b

a�y b a ‖t b or a�t b a ‖t b or a ※t b a�t b a※t b
a※t b a※t b

a ‖y b a ‖t b or a ‖t b or a ‖t b a※t b a ‖t b a※t b
a※t b a※t b

a#yb a※t b a※t b a※t b a#tb a#tb a※t b

a?yb a�t b a�t b a ‖t b a#tb a?tb a※t b

a※y b a※t b a※t b a※t b a※t b a※t b a※t b

Example. Consider that the two processes from Fig. 1 are the only individual profiles in
our knowledge base. By applying our merging rules shown in Table 2, we get the global
profile shown in Table 3. This global profile has 9 web services that represent the union
of all services in its source profiles, i.e., BP1 and BP2. For instance, merging relations
(�, 1) and (�, 2) between web services A and B from BP1 and BP2, receptively, gives
the relation (�, 1) in the global profile. The distance of the relation in the global profile
is the minimum distance from input relations. Some merging rules produce multiple
alternatives. For instance, A and C has the relation (�, 2) and (�, 4) in BP1 and BP2,
respectively. Merging both relations gives two alternatives in the global profile between
A and C: (‖, 0) and (※, 0). The remaining relations can be derived in the same way.
Merging extended behavioral profiles of BPs that do not have the same exact set of web
services results in unknown relations between web services that do not appear in the
same BP. For instance, relations between D from one side and G, H, and I on the other
side in the global profile. In the sequel, we aim at using the knowledge gained from
merging both profiles to reveal such unknown relations.

Table 3. Merging profiles of BP1 and BP2 (Fig. 1(a) &1(b)) in one global profile

A B C D E F G H I
A (‖, 0) (�, 1) (‖, 0)

(※, 0)
(�, 2) (�, 2) (�, 2) (�, 2) (�, 2) (�, 8)

B (�, 1) (‖, 0) (‖, 0)
(※, 0)

(�, 3) (�, 4) (�, 4) (# , 0) (�, 4) (�, 10)

C (‖, 0)
(※, 0)

(‖, 0)
(※, 0)

(‖, 0) (‖, 0) (�, 2) (�, 2) (�, 2) (�, 8) (�, 14)

D (�, 2) (�, 3) (‖, 0) (‖, 0) (‖, 0) (‖, 0) (?, 0) (?, 0) (?, 0)
E (�, 2) (�, 4) (�, 2) (‖, 0) (‖, 0) (# , 0) (�, 4) (# , 0) (�, 2)
F (�, 2) (�, 4) (�, 2) (‖, 0) (# , 0) (‖, 0) (�, 4) (# , 0) (�, 2)
G (�, 2) (# , 0) (�, 2) (?, 0) (�, 4) (�, 4) (‖, 0) (�, 4) (�, 10)
H (�, 2) (�, 4) (�, 8) (?, 0) (# , 0) (# , 0) (�, 4) (‖, 0) (�, 2)
I (�, 8) (�, 10) (�, 14) (?, 0) (�, 2) (�, 2) (�, 10) (�, 2) (‖, 0)

Revealing Hidden Relations among Web Services Using Business Process Knowledge 243

5.2 Predicting Potential Resolutions for Unknown Relations (a?b)

Merging two profiles that do not have the same set of web services results in a global
profile with unknown relations among web services that do not appear in both source
profiles. In this section, we describe our approach to reveal such unknown relations by
predicting potential resolutions for them.

We predict potential resolutions for the unknown relation between web services a
and b in the global profile g with the help of a common service between them, e.g.,
c. Our goal is to resolve the relation (a?gb) into (a �g b), (a �g b), (a ‖g b), or
(a#gb) by investigating the relations between a and c on one hand and between b and
c on the other hand. We select a common service c such that we can derive useful
information from its relations with the considered services. For instance, selecting c
such that (a※gc) is not of value. Therefore, the common service c has to be in one of
the basic four relations with both a and b. Furthermore, the predicted relation has to be
consistent with existing relations in the global profile. Finding a useful resolution for
unknown relations depends on the used knowledge, therefore it is not always possible
to predict such a resolution. In such cases, the unknown relation between a and b (a?gb)
in the global profile g remains and a human expert is informed about the situation to
find a resolution manually.

We predict potential resolutions for each unknown relation between web services a
and b in the global profile g – i.e., (a?gb) – using a common service, c, according to
the set of rules that is summarized in Table 4. These rules can be grouped together as
follows:

1. Order-order: resolving (a ∗g c) and (b ∗g c) gives (a�g b), (a�g b), (a ‖g b), and
(a#gb), where ∗ =� or ∗ =�. Each of these predicted relations still preserves the
existing relations (a� c) and (b� c) or (a� c) and (b� c).

2. Transitivity: resolving (a�g c) and (b�g c) gives (a�g b). Any other relation,
e.g., (a � b), does not preserve the existing relation between a,b on the one hand
and c on the other hand. For instance, (a � b) means that b executes before a,
that contradicts (a � c). Similarly, we cannot deduce that (a#b) as it contradicts
(b� c), since that implies either (c� b) or (c#b), which is not the case.

3. Branch-order: resolving (a ∗g c) and (b •g c) gives (b ∗g a) and (a •g b), where
∗ ∈ {�,�} and • ∈ {‖, #}.

4. Similar Branch-Branch: resolving (a ∗g c) and (b ∗g c) gives (a ∗g b), (a�g b), and
(a�g b), where ∗ = ‖ or ∗ = #.

5. Different Branch-Branch: resolving (a ∗g c) and (b •g c) gives (a ∗g b) and a •g b,
where ∗ ∈ {‖, #} and • ∈ {‖, #}, and • � ∗.

Distances of the predicted� and� relations in the global profile are calculated ac-
cording to the functions shown in Table 5. Distances are used to rank relevant web
services during service discovery [2]. Additionally, we use them to prune possible res-
olutions. For some cases, the new distance is the absolute value of the difference of two
distance. As an example, consider the case where we have (a � c) and (b � c). Ac-
cording to Table 4, all four basic relations are valid resolutions. For the predicted (a ‖ b)
and (a#b) we set distance to zero. However, for the two remaining cases, i.e. (a � b)
and (a � b), the distance is the absolute value of the difference in input distances.

244 A. Awad and M. AbuJarour

Table 4. Resolving the unknown relation a?gb via a common service c

Relation a� c a� c a ‖ c a#c

b� c a� b
a� b
a ‖ b
a#b

a� b a ‖ b
a� b

a#b
a� b

b� c a� b a� b
a� b
a ‖ b
a#b

a ‖ b
a� b

a#b
a� b

b ‖ c a ‖ b
a� b

a ‖ b
a� b

a ‖ b
a� b
a� b

a ‖ b
a#b

b#c a#b
a� b

a#b
a� b

a ‖ b
a#b

a#b
a� b
a� b

When we have no information to calculate the distance, we set it to infinity, e.g., the
case of (a ‖ c) and (b ‖ c). For the cases where there is no order in the predicted relation
between a and b, we express this using N/A in the table.

We calculate the distance of the predicted� and� relations in the global profile
according to these rules:

1. Order-order: The distance is defined as |di f f ()| between distances of input relations.
2. Transitivity: The distance is defined as sum() of distances of input relations.
3. Branch-order: The distance is defined as distance between web services b and c.
4. Similar Branch-Branch: The distance is defined as∞, i.e., an artificial value.
5. Different Branch-Branch: The distance is not applicable, i.e., N/A.

Table 5. Distances of the predicted a?b via a common service c

Relation a� c a� c a ‖ c a#c

b� c |di f f ()| sum() dist(b, c) dist(b, c)

b� c sum() |di f f ()| dist(b, c) dist(b, c)

b ‖ c dist(a, c) dist(a, c) ∞ N/A

b#c dist(a, c) dist(a, c) N/A ∞

According to our rules of resolution shown in Table 4, possible resolutions to an un-
known relation a?b can include both a � b and a � b. We use the distance informa-
tion to prune one or both of these resolutions according to the following rules. Consider
two relations (a ∗x b) and (b •y c) with distances dx and dy, respectively, where ∗ and •
are either� or�, and Δd is defined as dx − dy, we identify three cases:

Revealing Hidden Relations among Web Services Using Business Process Knowledge 245

– Δd = 0: The unknown relation (a?b) cannot be predicted to (a� b) or (a� b).
– Δd > 0: The unknown relation (a?b) can be predicted to (a � b), but not to

(a� b).
– Δd < 0: The unknown relation (a?b) can be predicted to (a � b), but not to

(a� b).

Table 4 shows possible resolutions of a?b using one common service c. However, a
and b might have a set of common services, which includes services that have useful
behavioral relations (�,�,‖, or #) with both a and b. We use each element in this set to
predict the unknown relation between a, b according to the rules in Table 4. After that,
we intersect all possible resolutions deduced from each element in that set. The result
of this intersection is then used as a resolution to that unknown relation between a and
b. If this intersection gives an empty set (e.g., due to contradictions), we are unable to
predict resolutions for a?b. These steps are shown in Algorithm 1.

Algorithm 1. Predicting unknown relations in the global profile

Input: g the global profile
Output: g′ the global profile with some unknown relations revealed
1: pred ← ∅
2: for all a?b ∈ g do
3: CT ← getCommonT asks(a, b)
4: for all c ∈ CT do
5: ac ← relg(a, c)
6: bc ← relg(b, c)
7: tmp← predictRelaton(ac, bc) {According to Tables 4 and 5}
8: if pred = ∅ then
9: pred ← tmp

10: else
11: pred ← intersect(pred, temp)
12: if pred = ∅ then
13: break
14: end if
15: end if
16: end for
17: g← merge(g, pred) {According to Table 2}
18: end for
19: g′ ← g
20: return g′

Example. In Table 3, we show the global profile that we get by merging the extended
global profiles of BP1 (Fig. 1(a)) and BP2 (Fig. 1(b)). That global profile has three
unknown relations between service D on the one hand and services G, H, and I on the
other hand, because these services are not used in the same BP. However, BP1 and BP2

have other common web services, e.g., A, B and C. We use such common services to
predict resolutions for (part of) these three unknown relations.

246 A. Awad and M. AbuJarour

To predict (D?G), we select the set of common tasks among them. In this example, this
set is {A, B, C, E, F}. Because (D � A) and (G � A), we deduce that (D � G)
according to the transitivity rule. Similarly, we deduce all potential relations between
D and G using their common services as shown in Table 6. The intersection of these
alternatives is φ, i.e., there is no common relation among potential relations. Therefore,
the relation between D and G in the global profile remains unknown.

We follow the same steps to predict the relation (D?H). The set of common tasks is
the same. Intersecting all potential relations between D and H gives the new relation
(D ‖ H). Again, the same set of common tasks is used to reveal the (D?I). In this case,
the intersection of all potential relations between these tasks gives two alternatives:
(D ‖ I) and (D � I). The distance in the new strict order relation is the minimum
distance between I and the common tasks. In this case, the distance is 2.

6 Experiments and Evaluation

In this section, we show a set of experiments that we did to evaluate our approach of
predicting potential relations among web services using business process knowledge.
We use a set of business processes from the SAP reference model [7], because these
models represent possibilities to configure SAP R/3 ERP systems. Thus, it is analogous
to business process configurations over a service landscape. We use 18 BPs with re-
lated missions from the SAP reference model. In particular, they are concerned with
purchase order/requisition processing. These processes include 146 tasks in total. On
average, each BP has about 8 tasks. Among the 146 tasks, 81 tasks are distinct, i.e.,
bound (configured) with distinct web services. We did this configurations manually and
verified the results manually, as well. We analyzed the labels of the tasks and decided
which labels (tasks) that can be bound to the same web service. Additionally, we had to
manually restructure the models to have a single start and a single end nodes so that the
behavioral profile calculation algorithm can be applied to them. Moreover, we excluded
loops to obtain useful behavioral relations among tasks. A loop yields relations among
all nodes within that loop concurrent.

The baseline approach is predicting relations among tasks of BPs without using their
configurations information, i.e., only identical labels of tasks in different BPs are con-
sidered similar. Following this approach, we are able to predict resolutions for (54.8%)
of all unknown relations in the generated global behavioral profile. The ratio of resolved
relations using labels of tasks only depends considerably on the degree of similarity
and cohesion among labels. Using the configurations of these BPs where semantically

Table 6. Possible relations between services D & G via common services {A, B, C, E, F}

Common Task A B C E F
Relation with D D� A D� B D ‖ C D ‖ E D ‖ F
Relation with G G� A G # B G� C G� E G� F

Deduced Relation D� G D� G
D # G

D� G
D ‖ G

D� G
D ‖ G

D� G
D ‖ G

Revealing Hidden Relations among Web Services Using Business Process Knowledge 247

Table 7. Revealing hidden relations in the global profile of BP1 and BP2

A B C D E F G H I
A (‖, 0) (�, 1) (‖, 0)

(※, 0)
(�, 2) (�, 2) (�, 2) (�, 2) (�, 2) (�, 8)

B (�, 1) (‖, 0) (‖, 0)
(※, 0)

(�, 3) (�, 4) (�, 4) (# , 0) (�, 4) (�, 10)

C (‖, 0)
(※, 0)

(‖, 0)
(※, 0)

(‖, 0) (‖, 0) (�, 2) (�, 2) (�, 2) (�, 8) (�, 14)

D (�, 2) (�, 3) (‖, 0) (‖, 0) (‖, 0) (‖, 0) (?, 0) (‖, 0) (‖, 0)
(�, 2)

E (�, 2) (�, 4) (�, 2) (‖, 0) (‖, 0) (# , 0) (�, 4) (# , 0) (�, 2)
F (�, 2) (�, 4) (�, 2) (‖, 0) (# , 0) (‖, 0) (�, 4) (# , 0) (�, 2)
G (�, 2) (# , 0) (�, 2) (?, 0) (�, 4) (�, 4) (‖, 0) (�, 4) (�, 10)
H (�, 2) (�, 4) (�, 8) (‖, 0) (# , 0) (# , 0) (�, 4) (‖, 0) (�, 2)
I (�, 8) (�, 10) (�, 14) (‖, 0)

(�, 2)
(�, 2) (�, 2) (�, 10) (�, 2) (‖, 0)

similar tasks are bound to a single web services, we are able to predict resolutions for
around (72%) of all unknown relations among tasks used in our experiments.

We are able to reveal different types of relations among web services. In Table 8, we
show the ratio of each type of relations with respect to the total number of relations in
source raw profiles, their derived global profile, and after revealing part of the hidden
relations in that global profile. Note that percentages in this table are local to each
column. The total number of relations is not the same in global profile and revealed
global as an unknown relation can be predicted in multiple resolutions.The majority of
relations in the revealed global profile are parallel (34%). Additional knowledge about
such tasks and their bound web services can be used to resolve such relations in more
concrete ones. This further resolution is part of our future work. Conflicting relations
appear due to inaccurate configurations of BPs or due to lack of sufficient knowledge
about tasks and web services. Unknown relations are still in the global profile even after
applying our resolutions approach. Either the used knowledge is not sufficient to reveal
such relations or there are no such useful relations. For instance, a music web service
and a web service for Gene analysis.

7 Discussion

In this paper we introduced an approach to reveal hidden relations among web services
by exploiting process configurations over these services. The relations we address are
of four basic types; strict order, inverse order, exclusive, and concurrent. To reveal such
relations, we extended the notion of behavioral profiles by adding two additional re-
lations, namely, contradicts and unknown, and distance between activity nodes, within
a process, that are bound to the web services under investigation. In practice, several
process configurations exist with an organization. Therefore, we had to merge these in-
dividual profiles into a single global profile. After that, unknown relations within the

248 A. Awad and M. AbuJarour

Table 8. Types of relations and their ratios in raw profiles, derived global profile, and resolved
profile

Type Raw Processes Global Profile Revealed Global Profile
Strict Order� 33.25% 3.87% 14.48%
Inverse Order� 33.25% 3.87% 14.48%
Parallel ‖ 9.7% 1.60% 34.03%
Exclusive # 23.8% 3.42% 17.97%
Conflict ※ 0% 0.15% 0.12%
Unknown ? 0% 87.10% 18.91%

global profiles were input to our prediction approach in order to reveal possible behav-
ioral relations that might exist among them. To reveal these relations, we use common
services between the two services with an unknown relation. We applied our approach
to a subset of the SAP reference models and our experiments show that we could reveal
about 72% of the unknown relations in the global profile.

Our prediction algorithm is sensitive to the input global profile. If the global profile
is derived from widely different processes that have the least in common, the prediction
algorithm cannot reveal much. However, one nice result we found about our algorithm
is the tendency to find clusters of related web services.

We limited our experiments to process models without loops, because of the sensi-
tivity of the behavioral-relation computation algorithm. For instance, if two tasks A and
B are in sequence and that sequence is nested in a loop, the behavioral-relation compu-
tation algorithm would indicate that A ‖ B instead of A � B. Knowing that A � B is
more decisive and yields more useful results by the prediction algorithm. One possibil-
ity to overcome the loop-sensitiveness limitation is to employ other behavioral-relation
computation algorithms, e.g., those of the α-algorithm for process mining [1]. The
results of our prediction algorithm is independent from the behavioral-relation compu-
tation algorithm as all of these algorithms provide the four basic relationships.

There are several directions for future work. First, we plan to tackle the problem of
revealing conflicting relations identified during the merge of individual profiles. Second,
we intended to extend the discovery beyond binary relations. That is, discover relations
among fragments of web services. Also, we aim at applying further experiments on
other collections of process configurations. Also, we intend to use more information
from the process configurations artifacts in order to enhance our prediction algorithm.
In particular, we aim at exploiting data dependencies among web services to help refine
our predictions. Data dependencies can also be exploited to reveal conflicts that arise
while deriving the global behavioral profile.

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer, Heidelberg (2011)

2. AbuJarour, M., Awad, A.: Discovering Linkage Patterns among Web Services using Busi-
ness Process Knowledge. In: Proceeding of the 8th International Conference on Services
Computing. IEEE Computer Society (2011)

Revealing Hidden Relations among Web Services Using Business Process Knowledge 249

3. AbuJarour, M., Naumann, F.: Dynamic Tags For Dynamic Data Web Services. In: Workshop
on Enhanced Web Service Technologies. ACM, Ayia Napa (2010)

4. Al-Masri, E., Mahmoud, Q.H.: Investigating Web Services on the World Wide Web. In: Pro-
ceeding of the 17th International Conference on World Wide Web, WWW 2008, pp. 795–
804. ACM, New York (2008)

5. Basu, S., Casati, F., Daniel, F.: Toward Web Service Dependency Discovery for SOA Man-
agement. In: Proceedings of the 2008 IEEE International Conference on Services Computing,
vol. 2, pp. 422–429. IEEE Computer Society (2008)

6. Bose, A.: Effective Web Service Discovery using a Combination of a Semantic Model and a
Data Mining Technique. Master’s thesis, Queensland University of Technology, Queensland,
Australia (2008)

7. Curran, T.A., Keller, G., Ladd, A.: SAP R/3 Business Blueprint: Understanding the Business
Process Reference Model, 1st edn. Prentice Hall (1997)

8. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity Search for Web Ser-
vices. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases,
VLDB 2004, vol. 30, pp. 372–383. VLDB Endowment (2004)

9. Eshuis, R., Grefen, P.: Structural Matching of BPEL Processes. In: Proceedings of the Fifth
European Conference on Web Services, pp. 171–180. IEEE Computer Society (2007)

10. Fensel, D., Keller, U., Lausen, H., Polleres, A., Toma, I.: WWW or What is Wrong with Web
Service Discovery? In: Proceedings of the W3C Workshop on Frameworks for Semantics in
Web Services (2005)

11. Hagemann, S., Letz, C., Vossen, G.: Web Service Discovery - Reality Check 2.0. In:
NWESP 2007: Proceedings of the Third International Conference on Next Generation Web
Services Practices, pp. 113–118. IEEE Computer Society, Washington, DC, USA (2007)

12. Lecue, F., Leger, A.: Semantic Web Service Composition Based on a Closed World As-
sumption. In: Proceedings of the European Conference on Web Services, pp. 233–242. IEEE
Computer Society (2006)

13. Lin, L., Arpinar, I.B.: Discovery of Semantic Relations Between Web Services. In: Proceed-
ings of the IEEE International Conference on Web Services, pp. 357–364. IEEE Computer
Society, Washington, DC, USA (2006)

14. Omer, A.M., Schill, A.: Web Service Composition Using Input/Output Dependency Matrix.
In: Proceedings of the 3Rd Workshop on Agent-Oriented Software Engineering Challenges
for Ubiquitous and Pervasive Computing, AUPC 2009, pp. 21–26. ACM (2009)

15. Rong, W., Liu, K., Liang, L.: Personalized Web Service Ranking via User Group Combin-
ing Association Rule. In: Proceedings of the 2009 IEEE International Conference on Web
Services, ICWS 2009, pp. 445–452. IEEE Computer Society (2009)

16. Segev, A.: Circular Context-Based Semantic Matching to Identify Web Service Composition.
In: Proceedings of the 2008 International Workshop on Context Enabled Source and Service
Selection, Integration and Adaptation, CSSSIA 2008, pp. 7:1–7:5. ACM (2008)

17. Sharma, S., Batra, S.: Applying Association Rules For Web Services Categorization. Inter-
national Journal of Computer and Electrical Engineering 2(3), 465–468 (2010)

18. Sun, S.X., Zhao, J.L., Nunamaker, J.F., Sheng, O.R.L.: Formulating the Data-Flow Perspec-
tive for Business Process Management. Info. Sys. Research 17(4), 374–391 (2006)

19. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Efficient Computation of Causal
Behavioural Profiles Using Structural Decomposition. In: Lilius, J., Penczek, W. (eds.)
PETRI NETS 2010. LNCS, vol. 6128, pp. 63–83. Springer, Heidelberg (2010)

20. Winkler, M., Springer, T., Trigos, E.D., Schill, A.: Analysing Dependencies in Service Com-
positions. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS,
vol. 6275, pp. 123–133. Springer, Heidelberg (2010)

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 250–264, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Towards a Service System Ontology for Service Science

Elisah Lemey and Geert Poels

Center for Service Intelligence,
Faculty of Economics and Business Administration,

Ghent University,
Tweekerkenstraat 2, 9000 Gent, Belgium

{Elisah.Lemey,Geert.Poels}@UGent.be

Abstract. Service Science is a new interdisciplinary approach to the study, de-
sign, implementation, and innovation of service systems. However due to the
variety in service research, there is no consensus yet about the theoretical foun-
dation of this domain. In this paper we clarify the service systems worldview
proposed by Service Science researchers Spohrer and Kwan by investigating its
foundational concepts from the perspective of established service theories and
frameworks. By mapping the proposed service system concepts on the selected
service theories and frameworks, we investigate their theoretical foundations,
examine their proposed definitions and possible conflicting interpretations, dis-
cover their likely relationships and general structure, and identify a number of
issues that need further discussion and elaboration. This analysis is visualised in
a multi-view conceptual model (in the form of a UML class diagram) which we
regard as a first step towards an explicitly and formally defined service system
ontology.

Keywords: Service Science, SSME, service system, conceptual analysis,
conceptual modelling, ontology, service-dominant ontology, systems theory.

1 Introduction

Service Science is a new interdisciplinary field that studies the structure and beha-
viour of service systems. A lot of suggestions have been made about which theories
can serve as a basis for Service Science research or which frameworks can be used to
conceptualize the object of study of Service Science, but few consensus exists among
different authors [1-3]. This lack of agreement may become an obstacle for the further
development of the Service Science research field.

Recently, Spohrer and Kwan [4] proposed the service systems worldview as a can-
didate shared conceptualization for Service Science researchers. Although the con-
cepts of this worldview are not new, their theoretical foundation was not clarified by
Spohrer and Kwan.

To foster the discussion of the appropriateness of the proposed service system con-
ceptualisation this paper investigates the proposed concepts from the perspective of
established service theories and frameworks from traditional service research areas as
service marketing, service management, service operations and service computing.
Based on this investigation, we also identify relationships between the concepts

 Towards a Service System Ontology for Service Science 251

proposed for this worldview and visualise the identified structures in a conceptual
model (in the form of a UML class diagram).

The basis for the model are the ten foundational concepts of the service systems
worldview. The definitions of these concepts are compared with alternative defini-
tions originating in six other service frameworks and theories. We aim to identify
which additional concepts from these theories and frameworks can be incorporated in
the model to further refine and extend the service systems worldview. By mapping the
foundational concepts to the concepts used in traditional service research areas we
identify commonalities and differences in interpretation which may help to find a
common understanding of the service systems worldview. Also, if we want to create
one scientific basis for Service Science research it is crucial that established service
frameworks and theories connect to this scientific basis.

Our contribution to the emerging research area of Service Science is twofold. First
of all, a UML class diagram for the ten foundational concepts is presented. This dia-
gram is aimed at facilitating the presentation and discussion of the foundational con-
cepts as it also uncovers and shows their relationships. The diagram provides the basis
for elaborating a service systems ontology and a meta-model for modelling of service
systems. Second, the investigation of the theoretical foundation (if any) and the search
for additional concepts which can be marked as foundational, can be seen as a theoret-
ical evaluation of the completeness and relevancy of the set of foundational concepts
proposed by Spohrer and Kwan [4]. It provides elements for the further discussion,
enhancement, and ultimately (and hopefully) consensual agreement of a service sys-
tems conceptualisation for Service Science.

Section 2 presents the service systems worldview as proposed by Spohrer and
Kwan [4]. Section 3 gives an overview and motivates our choice of the service theo-
ries and frameworks used in the research. Section 4 presents the mapping of the foun-
dational concepts of the service systems worldview to the concepts of the chosen
service theories and frameworks. It also explains the development of the conceptual
model based on the mapping results and discovery of concept relationships. Section 5
then discusses the main findings of our theoretical investigation of the service systems
worldview. Section 6 presents conclusions and future work.

2 Foundational Concepts of the Service Systems Worldview

Spohrer and Kwan [4] use ten foundational concepts to explain the diversity and
complexity of service systems: entity, resource, access right, ecology, interaction,
value proposition based interaction, governance mechanism based interaction, out-
come, measure, and stakeholder. To introduce these concepts in this paper we devel-
oped a UML class diagram (Figure 1). The use of a visual conceptual model will also
facilitate the analysis of the foundational concepts (see section 4).

A service system entity is a dynamic configuration of resources. There are four
types of resources: physical with rights (people), physical without rights (technology,
natural resources), non-physical with rights (organisations), and non-physical without
rights (shared information). In each service system entity there is at least one focal
resource that holds access rights to the other resources in the configuration. Different
types of access rights are owned outright, leased-contracted, shared access, and privi-
leged access [5].

252 E. Lemey and G. Poe

Fig. 1. UM

The environment in wh
ecology. It is the sum of al
system entities. It is charac
service system entities [6].
guished: formal entities tha
by contracts and informal e
social or political context.
panies, universities, organis
service system entities [7].

Service system entities p
that service system entities
is to create value [5]. The
creation [8]. Co-creation m
means that, service system
getting value out of it them
interact through value prop
tion. A value proposition i
entities about how interactio
Contrary to this type of inte
individual entities, the seco
raction, occurs in the conte
lated by a governing body
second type of interaction [

Interactions between ser
service system entities inte
mine whether value for that
proposes the Interact-Servic
possible outcomes for inter
systems worldview is not a
comes that deviate from mu

The service systems wo
their effect on the state
measured. Therefore, four

els

ML class diagram of service systems worldview

hich service system entities operate is the service syst
ll macro-scale interactions of the population of all serv
cterized by both the diversity and the amount of types
 Two main types of service system entities can be dis

at exist within a legal and economic context and are form
entities that are based on promises and can be situated i
Service system entities can thus be people, families, co
sations, cities or anything else that can interact with ot

participate in interactions. It is through these interacti
improve their state. Thus, the purpose of these interacti

e service systems worldview advocates mutual value
means that both entities are needed to create value. Mut

entities will only create value for another entity if they
mselves. There are two types of interactions. When enti
positions, this is called a value proposition based inter
is a type of shared understanding between service syst
ons between them can lead to mutual value co-creation
eraction which is focused on voluntary reciprocal action
ond type of interaction, governance mechanism based in
ext of collective interest, i.e., when the interaction is re
y. Auctions and court cases are typical examples of
4].

rvice system entities lead to outcomes. When two or m
eract, the outcome will be judged by each entity to de
t entity was created or not. The service systems worldv
ce-Propose-Agree-Realize (ISPAR) model that models
ractions [8]. The ISPAR model indicates that the serv
a happy path theory but also takes into account other o
utual value co-creation.
rldview further reckons that the interaction outcomes
of the participating service system entities have to
types of measures are defined: quality, productivity, le

tem
vice
s of
stin-
med
in a
om-
ther

ions
ions
co-
tual
are

ities
rac-
tem
[5].
n of
nte-
egu-
this

more
eter-
iew
ten

vice
out-

and
be

egal

 Towards a Service System Ontology for Service Science 253

compliance, and sustainable innovation. These four measures serve as key perfor-
mance indicators (KPI’s) for a service system entity [5].

Next, all service system entities can view themselves and can be viewed from mul-
tiple stakeholder perspectives. The four main types of stakeholder perspectives are
customer, provider, authority, and competitor. These types refer to roles that service
system entities play in service system networks that are determined by the patterns of
interactions between the participating service system entities.

We added service as an additional concept to the model. It seems only logical that a
model of service systems includes the notion of service even if service is not one of the
ten foundational concepts of the service systems worldview. According to the ISPAR
model in the service systems worldview, mutual value co-creation that is the preferred
outcome of interactions between service system entities is what is called service. For a
service the resources of at least two service system entities are needed [8].

3 Overview of Service Theories and Frameworks

The large variety in service literature provides us with a rich network of conceptual
pieces for the constructs described above. However, this variety at the same time
brings along a complexity dimension because there is a lack of agreement between the
different service theories. Note that in the remainder of this section (and the paper) we
will use the term ‘theory’ to refer also to proposals that are more appropriately called
‘framework’ as they offer interrelated concepts to define and organise the service
domain without purporting to have explanatory or predictive power.

Our choice of theories was mainly guided by previous Service Science research. In
a joint white paper of IBM and Cambridge University’s Institute for Manufacturing
the worldview of Service Dominant Logic (SDL) is indicated as a possible theoretical
basis for Service Science [1]. Furthermore, other proponents of Service Science pro-
pose the Unified Service Theory (UST), the work system method and the service
quality gaps model as interesting theories to draw from for the elaboration of
the Service Science discipline [9-11]. As recent Service Science research indicates the
need to introduce a system focus in the study of service systems, we also included the
system theoretic view of service systems of Mora et al. [12-13]. Finally, we included
a service ontology based on the DOLCE upper-level ontology [14]. Although this
ontological theory may not be as well-known in service research as the other theories,
we believe that the insights of this ontological analysis are valuable. As it shows how
a service ontology can be defined as a specialisation of a philosophical ontology de-
scribing the world in general, it can serve as an example for our own (future) research.
We will give a description of each theory as an introduction to the reader.

First, SDL advocates that service is the fundamental unit of exchange. A service is
defined as “the application of specialized competences through deeds, processes and
performances for the benefit of another entity or the entity itself”. This implies that
SDL does not focus on the products that are produced but on the value creating
processes that accompany the consumption of the product and that deliver the actual
value to the customer [15-17].

Second, UST focuses on the service process and states that every provider process
in which an individual customer input can be identified is a service. Customers thus

254 E. Lemey and G. Poels

act as suppliers in the service process. They can offer themselves, their property or
information as input. The unique contribution of this theory is in defining the concept
of customer input [18].

Third, work system method and related concepts form the basis of a business-
oriented system analysis and design tool. The work system framework uses nine basic
elements to provide a system view of the organisation. The service value chain
framework elaborates the work system framework with service-oriented insights. It
presents a two-sided view of the service process as the service is coproduced by cus-
tomer and provider. The work system life cycle model evaluates the change of work
systems over time [2, 19].

Fourth, the service quality gaps model is designed to measure the quality of servic-
es. The starting point of the model is the assumption that there exists a gap between
the quality perception of a company’s management team and that of the customers.
The model identifies four gaps on the side of the provider which combine into a fifth
gap on the side of the customer: a gap between the expected service quality and the
perceived service quality [20].

Fifth, the system theoretic approach of Mora et al. shows a systems view in which
service systems are part of larger supra-systems and are composed themselves of
service sub-systems [13]. There are two types of service sub-systems defined. The
service facilitator represents the original service provider and the service appraiser
represents the initial user’s system. The supra-system further contains all environmen-
tal elements such as competitors, customers, regulators, suppliers or partners. An
important feature of the model is that the supra-system is influenced by the value
outcomes of its service (sub-)systems.

Sixth, the service ontology based on the DOLCE upper-level ontology of Ferrario
and Guarino provides a general ontological foundation for service systems [14]. A
service is conceived as a complex event with five main parts: service commitment,
service presentation, service acquisition, service process and service value exchange.
A key concept in this service ontology is the commitment of an agent to guarantee the
execution of a service at a certain place and time.

4 Analysis

For the analysis of the foundational concepts in the light of the above described theo-
ries, we start from Figure 1. The concepts of this model will be mapped subsequently
on each service theory identified in the previous section. We have developed UML
class diagrams for representing the concepts (and their relationships) underlying each
theory to facilitate the mapping process. These diagrams can be interpreted as differ-
ent views that overlay the conceptual model represented by the UML class diagram in
Figure 1, where each view defines, refines and/or extends the foundational concepts
from the perspective of the concerned theory. Although the foundational concepts can
be compared to any of these theories in arbitrary order, we present our analysis results
in an incremental manner focusing on the most remarkable interpretations and addi-
tions brought about by the different theories.

 T

Fig. 2. UM

First of all, the service s
which is proposed as its ph
concepts can be grounded
ecology, governance mecha
ver, SDL is a happy path th
to value co-creation. As val
be equated with service in
ciary of the service, i.e., the
state that a service implies
SDL this doesn’t imply mu
but only for the customer a
Therefore exchange is show
ure 2 whereas it was embed
the concept resource is als
rant resources. Operand res
resources on which an oper
resources such as competen
sources and other operant
source is active in the servic

Second, UST takes a serv
on the concepts related to t

Fig. 3. UM

Towards a Service System Ontology for Service Science

ML class diagram of Service Dominant Logic

systems worldview embraces the ideas of SDL (Figure
hilosophical foundation [1]. However, not all foundatio

in SDL as this theory has no definition of the conce
anism based interaction, measure, and access right. Mor
heory and therefore the concept outcome is narrowed do
lue co-creation is the only possible service outcome, it
Figure 2. SDL also indicates that there is only one ben
e customer [17]. Both SDL and service systems worldv
 the participation of at least two entities but according
utual value creation. As explained, the value is co-crea
and thus economic exchange is needed for mutuality [1
wn as a separate concept in the UML class diagram in F
dded in the service concept in Figure 1.The specification
o different. SDL differentiates between operand and o

sources such as commodities, buildings or tools are pass
ration or activity is performed to produce an effect. Oper
nces or knowledge are employed to act upon operand
resources [15]. SDL implies that at least one operant
ce.
vice operations perspective in which there is a strong fo
the service process (Figure 3). A service is perceived a

ML class diagram of the Unified Service Theory

255

e 2)
onal
epts
reo-
own
can

nefi-
view
g to
ated
15].
Fig-
n of
ope-
sive
rant
 re-
re-

ocus
as a

256 E. Lemey and G. Poe

process that consists of (a
Furthermore, the theory in
customer-self inputs, tangi
According to UST a service
least one resource that is a
implies an extra constraint
er. The provider has to h
production input. This cus
co-production. Co-producti
entities (i.e., co-creation) b
duction process by contribu

Fig. 4. UM

Third, Alter’s work syst
of this theory is in the serv
executed in a service proce
emanate from a value propo
on awareness. The provider
tence of the service. The c
filled. Next, provider and c
the service. The ISPAR mo
two types of interaction (i.
process is initiated, but doe
tion that occur when the re
service value chain model
The customer makes a serv
and the customer participat
follow up the handling of th

Fourth, the service qualit
vice quality. The contributio
quality that serve as measu
siveness (Figure 5). It shoul
service quality gaps model.
the viewpoint of the custom
tems worldview where the q
ties in the role of customer
systems worldview is that qu
by interactions between c
worldview it is a KPI of the

els

at least one) interactions between customer and provid
ntroduces the concept customer resources which incl
ible belongings and customer-provided information [1
e is a production process in which the customer provide
an essential input for the production of the service. T
on the relationship between customer resource and prov
ave access to the customer resource(s) that are used

stomer involvement also manifests itself in the notion
ion implies not only participation of two service syst

but also the active involvement of the customer in the p
uting at least one customer resource.

ML class diagram of the work system method

tem method also implies a process focus. The added va
vice value chain. It shows the different steps that should
ess [2]. Alter shows the different kinds of interactions t
osition (Figure 4). First, customer-provider contact is ba
r should create awareness among customers about the ex
customer should become aware of a need that has to
ustomer will engage in a negotiation about commitmen

odel of the service systems worldview also recognizes th
.e., proposal and agreement) which show how the serv

es not further distinguish between different types of inter
est of the service process is executed (i.e., realisation). T

further defines these interactions or ‘service encounte
vice request which is handled and fulfilled by the provi
tes in this fulfilment. Finally, both customer and provi
he service.
y gaps model was designed as an instrument to measure
on of the model is in the definition of five determinants

ures: reliability, assurance, tangibles, empathy, and resp
d be noted that the customer is the central stakeholder in
Therefore only the expected and the perceived quality fr

mer are taken into account. This is similar to the service s
quality measure should be evaluated by service system e
r [5]. A difference with quality as a measure in the serv
uality is considered in relationship to services (as manifes
customer and provider) whereas in the service syste
service system entity in the role of provider.

der.
lude
18].
es at
This
vid-
d as
n of
tem
pro-

alue
d be
that

ased
xis-

o be
nt to
hese
vice
rac-
The
ers’.
ider
ider

ser-
s of

pon-
n the
rom
sys-
enti-
vice
sted
ems

 T

Fig. 5. UM

Fifth, the systems theor
which corresponds with th
corresponds with the servic
pra-system consists of all
providers or partners. An o
also influenced by the outc
tor subsystems. This outcom
the appraiser and facilitato
for service failure. The visi
service systems worldview
ecology as the supra-system
sub-systems take place, sho
This recognition also indic
performed, it brings along c
for the surrounding system.

Fig. 6. UML class dia

Sixth, the service ontolog
of interaction (Figure 7). T
which they consider as th
different meaning than com
than just offering a value

Towards a Service System Ontology for Service Science

ML class diagram of service quality gaps model

retic model of Mora et. al. [13] defines a supra-syst
he ecology foundational concept and a sub-system wh
ce system entity foundational concept (Figure 6). The
stakeholders such as competitors, customers, authorit

original insight from this model is that the supra-system
come of the interactions between the appraiser and facil
me is defined as a change in the service properties in b

or subsystems. The systems theoretic model also accou
ion of Mora et. al. on service is very similar to that of

w. Especially the explicit recognition of the service syst
m in which interactions between appraiser and facilita
ows the significant resemblance between the two mod
cates an outward focus of the model. When a service
changes not only for the participants of that service but a

agram of the systems theoretic model of Mora et al. [13]

gy of Ferrario and Guarino [14] also elaborates the conc
The authors strongly focus on the concept of commitm
he core of a service. However, commitment here ha

mmitment defined by Alter. Here commitment implies m
proposition. A value proposition is usually the result

257

tem
hich

su-
ties,
m is
lita-
both
unts
the

tem
ator

dels.
e is
also

cept
ment
as a

more
t of

258 E. Lemey and G. Poe

Fig. 7. UML class diag

negotiations between prov
decided he wants a certain
Guarino means the willingn
without needing the involv
even before the occurrence
less, commitment is not su
indicates willingness on th
cluded. Provider entities sh
know when the service sho
concept of trustee is added.
ment is not always the prod
ty into the service ontology
entities participating. Lastly
on the service. It defines th
and is, in contrast to the se
vice, the provider has a du
can also be transferred. The
the normative position of th

5 Discussion

A core set of three foundat
the analysis: service system
played by the entity in the
explicitly mentioned the co
essential for the service ac
entities. This implies that th
than an object is a feature
systems worldview that is
Ferrario and Guarino prov
distinguishes between serv
the service activity to the

els

gram of the service ontology of Ferrario and Guarino [14]

vider and customer. Therefore the customer has alre
n service. Service commitment according to Ferrario
ness to perform a service on the side of the service provi
ement of the customer. This implies that service can e
 of interactions between provider and customer. Nevert

ufficient to initiate the actual service execution as it o
he side of the provider. Hence, a triggering event is
hould be notified of the occurrence of this event in orde
ould be executed. To the specification of the provider,
. The authors indicate that the entity that makes a comm

ducer of the service. This distinction brings a sense of re
y as real life services are often realized with more than t
y, the service ontology provides us with a legal perspect
he right to a service which can be considered as an obj
ervice, transferable. When a customer has a right to a
uty to perform this service. This duty to perform a serv
e essence of the service process is not the service itself
he participants in the service process.

tional concepts is supported by all service theories used
m entity, interaction, and stakeholder perspective (or r
e interaction). Although not all analysed service theo

oncept of stakeholder, all theories support the view that i
tivity to have interactions between provider and custom
he ontological classification of service as an activity rat
that unites the service theories considered and the serv
 proposed for Service Science. The service ontology

vides us with a specification of the provider concept
vice trustee and producer, where the former may deleg

latter. This is an interesting perspective which does

ady
and
ider

exist
the-
only

in-
er to

the
mit-
eali-
two
tive

bject
ser-
vice
but

d in
role
ries
it is
mer
ther
vice
y of
and
gate
not

 Towards a Service System Ontology for Service Science 259

contradict the service systems worldview as Spohrer and Kwan do not claim to have
enumerated all possible stakeholder perspectives. The recognition of this distinction
may however account for phenomena such as service outsourcing or subcontracting
with an associated legal perspective. This may prove useful for the study of service
systems.

The other foundational concepts are supported by only some of the service theo-
ries. Given that each service theory considers a particular scope within the service
domain, this is not a problem per se as long as theories do not explicitly reject the
existence of the concepts falling outside their scope. For instance, SDL only recog-
nizes value proposition based interactions, but does not refute governance mechanism
based interactions. The interactions described in the service value chain framework of
the work system method are also value proposition based and implicitly this type of
interaction is assumed by the service quality gaps model, so there seems to be suffi-
cient support for this type of interaction. The service commitment in the service
ontology of Ferrario and Guarino can be a value proposition based interaction or a
governance mechanism based interaction, e.g., a newly founded state university
commits to the government of the state to provide education to its citizens once it
becomes operational.

Another foundational concept for which support can be found in several of the dis-
cussed theories is resource. The service systems worldview defines service system
entities as configurations of resources. Service entails interactions between a provider
and customer entity, implying that resources of both entities are involved (e.g., con-
sumed, used, applied, employed,..). For the provider resources in the service this im-
plies that at least one focal resource of the provider entity is involved as this focal
resource has access rights to other provider resources that might be needed. The ser-
vice systems worldview distinction of resources 'with rights' versus 'without rights' is
largely similar to the distinction 'operant' versus 'operand' in SDL so the involvement
of a focal, hence operant resource of the provider in the service thus conforms to
SDL. What is less clear in the service systems worldview is the involvement of cus-
tomer resources. Here, both SDL and UST can shed some light, though in different
and possibly contradicting ways. UST requires the involvement of at least one cus-
tomer resource, which can be physical or non-physical, operand (without rights) or
operant (with rights), as an input to the production of the service. SDL does also re-
quire the involvement of at least one customer resource, though not necessarily as an
input to the service production. This difference, which can also be captured by the
distinction between co-production (UST) and co-creation of value (SDL), is important
and leads to a different view of service.

UST recognizes the existence of other processes than service processes, e.g., pro-
duction processes aimed at mass production of commodities, whereas SDL rejects any
other economic activity than service activity. Even the buying of mass produced
commodities without providing any individual input to the production process is con-
sidered as service exchange because the value that the customer gets results from
using these commodities (i.e., integrating it with other customer resources in SDL
speak). This difference has important consequences for the service systems
worldview. As SDL is proposed as the philosophical foundation of Service Science
[1], the service systems worldview tends towards the co-creation view. If SDL is
followed then the logical consequence is that all economic activity must be service.

260 E. Lemey and G. Poels

In this case a further specification of the nature of the involvement of customer re-
sources and the implications for value is desired. If, however, value co-creation is
interpreted as co-production as in UST then not all economic activity would qualify as
service activity. If this would be agreed upon, the concept of value co-creation needs
to be redefined. Even in that case, the nature of the involvement of customer re-
sources needs to be specified further.

The foundational concept of access right seems to be a derivative concept (hence we
can question its qualification as foundational), but is certainly useful for further describ-
ing what is meant by an entity as a configuration of resources. If value co-creation
would be redefined using UST (so more as co-production), then the access right concept
can be further founded on this theory, specifically with respect to the provider entity
having access to customer resources that are input to the service process.

The concept of ecology can be founded on the notion of supra-system as in the sys-
tem theoretic model of Mora et al. This concept is not explicitly present in the other
theories discussed, although the service ontology of Ferrario and Guarino recognizes
the existence of a broader societal and legal context in which service takes place
(hence the presence of service commitment as a governance mechanism based inte-
raction). Interesting in the system theoretic model is the link between interaction out-
comes and the supra-system showing that the favourable or unfavourable outcomes of
service interactions affect and are affected by the ecology in which the participating
service system entities reside. The explicit recognition of such a relationship may be
useful for the study of service systems.

The favourable outcome according to the service systems worldview is mutual val-
ue co-creation, which is also the view of SDL. However, in SDL mutual value
co-creation is the only outcome explicitly recognized. The system theoretic model
recognizes that there might be other, unfavourable outcomes. The service quality gaps
model does also given that a gap can exist between the expected and perceived out-
come, which should be quality according to this model.

This brings us to the last foundational concept to discuss, measure. The measure
concept and its specialisation into four kinds of performance indicators for a service
system entity is not directly supported by the service theories used in the analysis. The
service quality gaps model focuses on quality measures where quality is one of these
four dimensions. However, it considers quality in relation to individual or sets of
service interactions and not to the performance of the service system entity as a
whole. Of course, quality assessments of service interactions do provide an indication
of the quality of the service provider itself. For the other three dimensions (produc-
tivity, compliance, innovation) a theoretical foundation must be found elsewhere.

An interesting difference and possible point of discussion for the service systems
worldview is what is not explicitly defined in any of the different model views and
that is the concept of service system itself. One point of view is that the service sys-
tem is described by the entirety of the concepts and their relationships. But even then,
important differences between the service theories pop up. Table 1 tries to answer the
question 'what is the service system?' for the discussed theories and the proposed
service systems worldview by looking at different dichotomies that were derived from
the analysis in the previous section. The table shows that the theories roughly fall
apart in two categories: those with an outward focus implying that services are posi-
tioned within and have effect on a broader context, which is considered as the service

 Towards a Service System Ontology for Service Science 261

system, and those with an inward focus implying that services take place between and
have an effect on their participants, which are considered as the service systems. The
inward focus category is made up of SDL, which is clearly its prime representant, and
further also the work system and service quality gaps model. The UST leans towards
the inward focus, but takes a somewhat special position as it strongly emphasizes the
service process happening within the service system that is in the provider role [21].
To the outward focus category belong the system theoretic model and to a lesser ex-
tent the service ontology. Although conceptual research in Service Science that pre-
ceded the proposal of the service systems worldview can clearly be characterized by
an inward focus because of its embracing of SDL as philosophical foundation, our
analysis shows that the set of foundational concepts as proposed by Spohrer and
Kwan clearly tends towards an outward focus as it fits well with the system theoretic
model of Mora et al. This result is an interesting point of discussion as it might imply
that the service system conceptualisation put forward is focusing now on its systems
foundation after having developed its SDL-based service foundation.

Finally, we already remarked that service itself is not defined as a foundational
concept in the service systems worldview; we added it ourselves as an eleventh, po-
tentially foundational concept to the model represented by the class diagram in Figure
1. It is remarkable that few service theories discussed provide an explicit definition of
service; SDL and the service ontology by Ferrario and Guarino being notable excep-
tions. Nevertheless, the notion of service as viewed upon by a certain theory can
mostly be derived from the definitions and relationships of the concepts that are ex-
plicitly defined. Based on our analysis we can distil three main perspectives: process-
oriented, outcome-oriented and commitment-oriented which are presented in figure 8.

Four of the analyzed theories have a process orientation. First, the service value
chain framework of the work system method distinguishes and sequences five differ-
ent provider-customer types of interaction (see Figure 4). Also the service ontology of
Ferrario and Guarino distinguishes between different phases that can be related to a
service as a process view. Next, UST is clearly a process-oriented theory but focuses
on customer inputs rather than on interactions between customer and provider. Final-
ly, the ISPAR model related to the service systems worldview recognizes three types
of service interaction i.e., proposal, agreement, and realisation.

Table 1. What is a service system?

262 E. Lemey and G. Poels

Fig. 8. Three perspectives on service

The service systems worldview, SDL, the service quality gaps model and the sys-
tem theoretic model of Mora et al. are outcome-oriented. For SDL this outcome is
mutual value co-creation where the mutuality is established through economic ex-
change (i.e., service-for-service) and the co-creation is realized through resource inte-
gration by the customer. For the service quality gaps model the outcome is the quality
of the service as perceived by the customer. For the system theoretic model the de-
sired outcome is the improvement of the state of the appraiser and facilitator sub-
systems (i.e., the consumer and provider entities), which affects the state of the ser-
vice system and its supra-system (i.e., the ecology). The service systems worldview of
Spohrer and Kwan shares the desired outcome of service as mutual value co-creation
with SDL, though mutuality may here reside within the service (as in the system theo-
retic model of Mora et al.) rather than in the economic exchange of services. With the
system theoretic model it shares the goal of service interactions as expressed by im-
provements in the state of the participating service system entities. Also the observa-
tion that the desired outcomes are not always achieved is shared with the systems
theoretic model.

The commitment-oriented perspective refers to the service ontology of Ferrario and
Guarino, which distinguishes between the service process (as discussed above under
process-oriented) and the service itself. The service ontology takes a unique position
by defining service as a commitment between a provider and a customer or a gover-
nance body that acts in the interests of (future) customers. The service as commitment
view allows service to exist even without interactions taking place between the pro-
vider and the customer. The commitment is an interaction, but does not necessarily
involve the customer and this position was not found in the other service theories
discussed, neither is it part of the service systems worldview.

 Towards a Service System Ontology for Service Science 263

6 Conclusion and Future Work

In this paper we investigated whether the service systems worldview of Spohrer and
Kwan can be founded on established service theories and frameworks. Our research
points out that more or less all of the foundational concepts and their proposed specia-
lisations are covered by one, many or in some cases even all reviewed service theories
or frameworks. We identified a couple of issues that need further discussion and ela-
boration, e.g., because of conflicting views when mapping foundational concepts to
the concepts of different service theories. Overall, however, our analysis shows that
there is evidence of theoretical support for the proposed service systems worldview.

An interesting finding is that, although SDL was initially proposed as the philo-
sophical foundation for the service systems worldview, our analysis indicates that the
service system conceptualisation put forward by Spohrer and Kwan is developing
beyond SDL. The resemblance with the system theoretic approach of Mora et al.
shows a shift towards systems thinking which should be further explored in the future.

Future research may develop in two directions. First, the UML class diagrams de-
veloped in this paper can be used as a basis for the further formalisation of the service
systems worldview into a service systems ontology. The availability of a consensually
agreed ontology could take Service Science a big step forwards as the integrative
nature of the research intended by this interdisciplinary field requires a common
ground to succeed. Second, our analysis shows that the process orientation of the
service systems worldview needs further development. More precisely, more elabo-
rate service process models than ISPAR could be developed to account for the more
detailed service interaction typologies proposed by some of the frameworks discussed
in the paper.

References

1. IfM, IBM: Succeeding through service innovation: a service perspective for education, re-
search, business and government. University of Cambridge Institute for Manufacturing,
Cambridge (2008)

2. Alter, S.: Service system fundamentals: Work system, value chain, and life cycle. IBM
Systems Journal 47, 71–85 (2010)

3. Vargo, S.L., Maglio, P.P., Akaka, M.A.: On value and value co-creation: A service sys-
tems and service logic perspective. European Management Journal 26, 45–152 (2008)

4. Spohrer, J., Kwan, S.K.: Service Science, Management, Engineering, and Design
(SSMED): An Emerging Discipline-Outline & References. International Journal of Infor-
mation Systems in the Service Sector (IJISSS) 1, 1–31 (2009)

5. Spohrer, J., Maglio, P.P.: Service Science: Towards a Smarter Planet. In: Salvendy, G.,
Karwowski, W. (eds.) Introduction to Service Engineering. John Wiley & Sons (2010)

6. Spohrer, J., Anderson, L., Pass, N., Ager, T.: Service science and service-dominant logic.
In: Otago Forum 2: Academis papers, pp. 4–18 (2008)

7. Spohrer, J., Golinelli, G.M., Piciocchi, P., Bassano, C.: An Integrated SS-VSA Analysis of
Changing Job Roles. Service Science 2(1/2), 1–20 (2010)

8. Maglio, P.P., Vargo, S.L., Caswell, N., Spohrer, J.: The service system is the basic abstrac-
tion of service science. Information Systems and E-Business Management 7, 395–406
(2009)

264 E. Lemey and G. Poels

9. Chesbrough, H., Spohrer, J.: A research manifesto for services science. Communications
of the ACM 49, 35–40 (2006)

10. Maglio, P.P., Srinivasan, S., Kreulen, J.T., Spohrer, J.: Service systems, service scientists,
SSME, and innovation. Communications of the ACM 49, 81–85 (2006)

11. Spohrer, J., Maglio, P.P., Bailey, J., Gruhl, D.: Steps toward a science of service systems.
Computer 40, 71–77 (2007)

12. Barile, S., Spohrer, J., Polese, F.: System Thinking for Service Research Advances. Ser-
vice Science 2 (2010)

13. Mora, M., Rory, S.R.M., Gelman, O.C., Toward, O.: an Integrated Conceptualization of
the service and Service system Concepts: A systems approach. International Journal of In-
formation Systems in the Service Sector (IJISSS) 1, 36–57 (2009)

14. Ferrario, R., Guarino, N.: Towards an ontological foundation for services science. Future
Internet–FIS 2008, 152–169 (2009)

15. Vargo, S., Lusch, R.: Evolving to a new dominant logic for marketing. Journal of Market-
ing 68, 1–17 (2004)

16. Vargo, S., Lusch, R.: From goods to service (s): Divergences and convergences of logics.
Industrial Marketing Management 37, 254–259 (2008)

17. Lusch, R., Vargo, S., Wessels, G.: Toward a conceptual foundation for service science:
Contributions from service-dominant logic. IBM Systems Journal 47, 5–14 (2010)

18. Sampson, S., Froehle, C.: Foundations and implications of a proposed unified services
theory. Production and Operations Management 15, 329 (2006)

19. Alter, S.: The work system method: connecting people, processes, and IT for business re-
sults. Work System Press (2006)

20. Parasuraman, A., Zeithaml, V., Berry, L.: A conceptual model of service quality and its
implications for future research. The Journal of Marketing 49, 41–50 (1985)

21. Wild, P.J.: A systemic framework for supporting cross-disciplinary efforts in services re-
search. CIRP Journal of Manufacturing Science and Technology (2010)

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 265–279, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Support for the Business Motivation Model
in the WS-Policy4MASC Language

and MiniZnMASC Middleware

Qinghua Lu1,2, Vladimir Tosic1,2, and Paul L. Bannerman1,2

1 NICTA, Australian Technology Park, Sydney, NSW, Australia
2 University of New South Wales, Sydney, NSW, Australia

{Qinghua.Lu,Vladimir.Tosic,Paul.Bannerman}@nicta.com.au

Abstract. The WS-Policy4MASC language and MiniZnMASC middleware for
policy-driven management of service-oriented systems enable making IT
system management decisions that maximize diverse business value metrics
(e.g., profit, customer satisfaction). However, their past support for alignment
with high-level business considerations was weak. Therefore, we introduce a
new extension of WS-Policy4MASC that specifies the key concepts from the
Business Motivation Model (BMM) industrial standard for modeling business
intent. These concepts include hierarchies of ends (e.g., goals) and means (e.g.,
strategies). We also present and illustrate new decision making algorithms that
leverage information in the extended WS-Policy4MASC to align run-time IT
system management decisions with business considerations.

Keywords: Business-driven IT management, business motivation model,
dynamic adaptation, policy-driven management, self-management, service-
oriented computing, Web service management.

1 Introduction

Information technology (IT) systems are rarely ends in themselves. They usually
execute in support of actions to fulfill operational and strategic objectives of an
organization. Therefore, organizational performance includes a measure of the
effectiveness of IT systems in meeting business drivers and expectations. This paper
illustrates how the high-level business constructs in the Object Management Group’s
(OMG) Business Motivation Model (BMM) can guide the execution of service-
oriented systems, through extensions to the WS-Policy4MASC language and
MiniZnMASC middleware for policy-driven self-management. While the
implementation of the presented system is for management of service-oriented
systems and business processes, the underlying conceptual solutions can also be
generalized to policy-driven self-management of other IT systems.

Due to the high complexity of management tasks and the cost of experienced
human system administrators, it is more efficient and cost-effective for IT systems to
be self-managing, directed by high-level policies at run-time. Self-management has
been a research goal for several decades, but was made prominent by the vision of

266 Q. Lu, V. Tosic, and P.L. Bannerman

autonomic computing [1]. Additionally, while business users are typically interested
in maximizing business value, prior IT system management solutions have mostly
focused on optimizing technical quality of service (QoS) metrics and not directly on
maximizing business value. The goal of business-driven IT management research
(BDIM) is to determine mappings between technical and business metrics and
leverage these mappings to make run-time IT system management decisions that
maximize business value metrics [2]. Autonomic BDIM is the intersection area
between autonomic computing and BDIM, where processing of business value
metrics is added to the decision making components of autonomic computing. There
are many open research challenges in this intersection area [2].

Service-oriented computing has become the dominant way of building distributed
computing systems. While business-driven management of service-oriented systems
is mentioned in prior research [3-5], there are still many open issues. One of the
limitations of the past BDIM research is that most works have focused on maximizing
profit. However, human business managers can have diverse business objectives.
Maximizing short-term profit may not always be the only or best approach to achieve
long-term or high-level business goals [4-5]. Business motivation (such as goals,
strategies) is a major differentiator of companies in a market, so it is an ideal
mechanism to incorporate in self-managing BDIM solutions to direct decision making
in controlling and adapting IT systems in response to run-time changes.

BMM is an OMG standard for specification of high-level business motivation and
intent as input into design, development and execution of IT systems [6]. Our WS-
Policy4MASC language [4] for specification of policies for management of IT
(particularly service-oriented) systems provides unique support for implementing
autonomic BDIM solutions. Our algorithms using WS-Policy4MASC information,
implemented in the MiniZnMASC middleware [7], make decisions for dynamic
adaptation of service-oriented systems that maximize diverse financial and non-
financial business value metrics. However, the alignment with high-level business
value metrics was weak in our previous work. Therefore, we now present extensions
to WS-Policy4MASC incorporating key BMM constructs and new run-time self-
management algorithms to leverage these additional metrics.

In the next section, we present background information on WS-Policy4MASC,
MiniZnMASC and BMM, and overview other major related work. The main section
of the paper details our WS-Policy4MASC extensions with the key BMM constructs
and our new BDIM algorithms that use these metrics. In the final section, we
summarize conclusions and future work.

2 Background and Related Work

2.1 WS-Policy4MASC and MiniZnMASC

WS-Policy4MASC [4], our extension of the WS-Policy industry standard, is a policy
language that can describe various adaptations and all information necessary for
decision making. WSPolicy4MASC defines five types of WS-Policy policy
assertions: 1) goal policy assertions (GPAs) prescribe conditions to be met; 2) action
policy assertions (APAs) list adaptation actions; 3) utility policy assertions (UPAs)

 Support for the Business Motivation Model in the WS-Policy4MASC Language 267

contain business metrics for particular situations; 4) probability policy assertions
(PPAs) specify probabilities of occurrence, and; 5) meta-policy assertions (MPAs)
describe which values are important for adaptation decisions.

The specification of diverse business value metrics in UPAs and MPA
specification of strategies for choosing among alternative adaptation actions are the
main original contributions of WS-Policy4MASC and differentiators from the other
WS-Policy extensions. Each adaptation approach is modeled as an APA. WS-
Policy4MASC enables specification of both financial and non-financial business
value metrics (BVMs) in UPAs. A number of UPAs can correspond to consequences
of executing a particular APA or meeting a particular GPA. WS-Policy4MASC
enables dealing with uncertainty through PPAs, e.g. by assigning probabilities that
different estimates of the same BVM will be correct. It enables specification of
business strategies in MPAs, as a means of deciding which among alternative
adaptation approaches to take in policy conflict situations when several APAs could
be applied, but only one can be chosen. In addition to policy assertions, WS-
Policy4MASC also specifies details necessary for run-time management in auxiliary
constructs: ontological meaning, monitored QoS metrics, monitored context
properties, states, state transitions, events, schedules, applicability scopes, and various
types of expression.

Our MiniZnMASC middleware [7] is a comprehensive framework for autonomic
management of service-oriented systems and business processes. It implements novel
decision-making algorithms that, at runtime, concurrently provide adaptation
decisions, depending on different business strategies and operational circumstances,
in a way that achieves maximum overall business value while satisfying all given
constraints. These decision-making algorithms use information specified in WS-
Policy4MASC policy assertions. They are triggered by monitored events, such as not
meeting a GPA. When adaptation decisions are needed at the same time for a number
of business process instances, MiniZnMASC uses the constraint programming
language MiniZinc [8] to make such decisions. Although our past MiniZnMASC
publications focus on autonomic BDIM support, this middleware can be used also for
traditional decision-making that maximizes technical metrics. This is because WS-
Policy4MASC can describe all information necessary for adaptation decision-making.
Our evaluation using several prototype implementations showed that the proposed
MiniZnMASC architecture and decision-making algorithms are feasible and easy to
modify. Furthermore, our performance and scalability tests showed that
MiniZnMASC does not introduce unforeseen performance or scalability problems.

2.2 Business Motivation Model (BMM)

BMM [6] comprises a set of abstractions that define elements of business plans
integrated with high-level processes to accommodate business change. It provides the
business motivational intelligence to frame operational system services within a
context of ongoing business change. As depicted in Figure 1, BMM integrates four
primary motivational elements in the model: end, means, influencers and assessment.
End defines the organization’s aspirations – what it wants to be or become. Means
specify the actions the organization will undertake to achieve the desired ends.
Influencers are internal or external causes of change that may influence the

268 Q. Lu, V. Tosic, and P.L. Bannerman

organization’s business motivation. An assessment is a judgment about the impact of
an influencer on the organization’s current end and/or means. Assessments may
employ existing analysis techniques such as SWOT (strength, weakness, opportunity,
threat) and consider potential impacts of influencers in terms of risks and potential
rewards. Assessment decisions may result in changes to the current end and/or means.

Fig. 1. Main concepts and interrelationships in BMM (based on [6])

The end and means comprise component elements. An end comprises a vision and
desired result; a desired result comprises a goal and objective. Vision is “an overall
image” of the aspiration (that is, it may not be fully or explicitly defined). Goals and
objectives are more specific. A Goal is a qualitatively defined desired result, while an
Objective is a quantitatively defined discrete step towards achieving a goal.
Objectives provide metrics for measuring progress towards the stated goal. Means
comprise mission, course of action and directive. Mission describes the broad ongoing
operational activity of the organization. Course of Action define the actions the
organization will undertake in terms of Strategies (broadly scoped actions) and
Tactics (narrowly scoped actions). The BMM hierarchy of means also includes
Directives and the overall model includes Influencers and Assessment. Directives
specify the business policies and rules that frame courses of action. Business Policies
define what can and cannot be done within means in a general sense, but are not
directly actionable. By contrast, Business Rules provide specific actionable guidance
to implement or fulfill business policies but are defined externally to BMM.
Similarly, organization unit and business process have roles in BMM but are defined
externally, in other OMG standards. Influencers are anything that can impact
employment of means or achievement of ends; while an Assessment is a judgment
about the impact of an influence.

The major value of BMM is in providing business plan-based structured
‘intelligence’ to guide the implementation and execution of software-based business
services. It provides an abstraction of why businesses pursue particular ends through
particular means and includes a basic assessment mechanism to consider emergent
change impacts over time. However, BMM also has limitations, derived from
simplifying assumptions that limit its application in practice. First, it assumes a
predominantly stable operating environment. This may not be possible in
organizations in highly dynamic and volatile environments. Second, it assumes that
strategies and tactics are and can be made explicit. This is usually not possible in the
incremental/emergent approach to strategy. Third, while the standard acknowledges
that BMM may be applied at different organizational levels, it does not explicitly
accommodate multi-unit modeling. Finally, several elements in the model, such as

 Support for the Business Motivation Model in the WS-Policy4MASC Language 269

vision, do not lend themselves to explicit definition or necessarily translate into
tangible entities. The presence of intangibles can be a significant barrier in the
implementation of autonomously managed systems. Notwithstanding these
limitations, BMM does provide a standard definition of high-level business value
constructs that can be mapped as drivers for IT systems management.

2.3 Other Related Work

The need to frame and integrate service-oriented systems with business level drivers,
such as goals and strategies, is increasingly recognized in the literature. A common
rationale for this is alignment of the organization’s IT-enabled operations with its
strategic motivations and directions. However, design-time integration is studied
much more often than execution time integration.

A potential alternative implementation model is the balanced scorecard (BSC).
Conceptually, the balanced scorecard has been influential in motivating alignment of
operations with organizational strategies. Proposed as a mechanism to map strategy to
implementation, a balanced scorecard can represent the cause and effect linkages
through which specific improvement objectives can be realized [9]. Strategic maps
reflect how business strategies can be achieved through supporting financial,
customer, internal business process, and learning and growth implementation
perspectives. While the balanced scorecard has been explicitly applied to IT (the IT
balanced scorecard) to support alignment through IT governance [10], it has not yet
been fully implemented at the systems level. A key difficulty in implementing the
balanced scorecard in self-managed service-oriented systems is its high dependency
on intangibles [11]. Consequently, its application has been primarily a manual
process. Nevertheless, the balanced scorecard concepts inspire and influence
researchers to align service-level operations to business strategies.

In particular, [12] proposes an approach for IT service management by business
objectives called IT Management by Business Objectives (MBO). Their information
model contains objectives, key performance indicators (KPIs), and perspectives,
inspired by BSC. Decision support is provided through deployment of a reasoning
engine, Aline, which computes the alignment of alternative courses of action to
objectives, providing a measure of utility and basis for ranking the decision options
and returning a recommendation. However, this novel approach is limited by the
vagaries of assessing intangibles inherent in the perspectives, as in BSC. While there
is other BDIM-related work, MBO is the one most closely related to our research.

Others have focused on design-time alignment of organizational goals, objectives,
strategies or business requirements with process models. These include, for example,
the Tropos development methodology based on i* organizational modeling for
requirements and design [13]; a framework for representing organizational strategies
and goals in terms of business requirements using Tropos and Formal Tropos and
implemented by activities in business processes through Web services using an early
version of WSBPPEL [14]; co-evolution of operational business process models using
the Business Process Modeling Notation (BPMN) and organizational models using
the i* modeling notation [15]; relating BPMN-based business process models to high
level stakeholder goals modeled using KAOS [16]; an approach to process design and
configuration management using requirements goal models to capture alternative

270 Q. Lu, V. Tosic, and P.L. Bannerman

process configurations [17]; and a map-driven process modeling approach based on
intentions and strategies abstracted from organizational tasks [18].

Furthermore, many languages and supporting tools have been developed by
academia and industry for specification of policies, SLAs, and related IT system
management constructs for service-oriented systems. They are often accompanied by
corresponding run-time management middleware. While significant, these approaches
tend to focus on monitoring of technical QoS metrics, providing limited business
value metric-based control capabilities. The WS-Policy extensions WS-QoSPolicy
[19] and WS-CoL [20], and the corresponding middleware, are closest to our research
but they do not address self-managing BDIM.

3 Extension of WS-Policy4AMSC and MiniZnMASC with Key
BMM Constructs

When changes (e.g., in system performance) occur during runtime, the affected Web
service compositions should be adapted. If there is more than one available adaptation
option, a decision is needed to resolve the ‘conflict’ to determine which adaptation option
should be executed. It is often appropriate to maximize business value in such adaptation
decision-making. To improve the support for business value considerations in adaptation
of Web service compositions, we extended WS-Policy4MASC and MiniZnMASC with
key constructs from the BMM industrial standard for modeling business intent. These
constructs are from the End and Means hierarchies (but Directives are not included). In
the BMM Means hierarchy (see Figure 1.b), a Mission is implemented through Strategies
that, in turn, are implemented via Tactics. In a BMM End hierarchy (see Figure 1.c), a
Vision is composed of Goals that are measured through Objectives. There are analogies
between the BMM End hierarchy and the BMM Means hierarchy: Vision is the final end
of the BMM hierarchy and is at the same abstraction level as Mission, Goal is at the same
level as Strategy, and Objective is at the same level as Tactic.

A Vision can be achieved via a bottom-up approach by starting from Tactics.
Contribution of particular lower-level constructs to the achievement of higher-level
constructs (e.g., contribution of a Tactic to the achievement of a Strategy) and
contribution of particular means to the achievement of ends (e.g., contribution of a
Strategy to the achievement of a Goal) can be shown as directed arcs between nodes
representing BMM constructs. These arcs can be in AND/OR relationships. The OR
relationship means that any of the lower-level constructs can achieve the higher-level
construct. The AND relationship means that all lower-level constructs must be achieved
for achievement of the higher-level construct. To denote the strength of a particular
contribution, we specify a Utility Contribution Weight (UCW) for each arc. A UCW is a
relative value (between 0 and 1) that denotes how much of the business value produced at
the higher-level BMM construct is due to the achievement of the lower-level BMM
construct. In principle, the sum of all UCWs of arcs incoming into the same node should
be 1. To denote probabilities in OR relationships, we specify Occurrence Probabilities
(OPs). The sum of all OPs in an OR relationship should be 1. If an arc is not in any OR
relationship, its OP is 1. If values for some of the UCWs or OPs are not given, default
values are calculated based on the assumption that arcs with missing information have
mutually equal contributions and probabilities. For example, if there are 2 arcs in an OR
relationship and OPs are not given, the default values are OP=0.5 for both these arcs.

 Support for the Business Motivation Model in the WS-Policy4MASC Language 271

To illustrate how adaptation decisions are made using the BMM End and Means
hierarchies, we provide an example of a business scenario. A loan broker company
provides a loan brokering Web service composition shown in Figure 2. The BMM
constructs and their values for the example are listed in Table 1. This company classifies
its consumers into three classes according to the customers’ previous loans record and
credit history with the company: gold, silver, and bronze. The company provides
different classes of consumer with different technical QoS guarantees, prices per year,
and penalties if the guarantees are not met.

Fig. 2. A loan brokering Web service composition

Table 1. BMM constructs in the loan broker company

BMM
Construct

Construct Value

Vision To be a world-class company, helping people and organizations to grow

Mission To be the provider of first choice across loan brokering services

Goal1 To increase product sales
Goal2 To improve customer satisfaction
Objective1 To have $300,000,000 turnover in this year of operation
Objective2 To build a reputation for quality, error-free services and products
Strategy1 Ensure that the service composition has a relatively high availability
Strategy2 Ensure that the completion time of the service composition is short

Tactic1
Use a replacement external credit service when the credit check service
becomes unavailable

Tactic2 Skip the credit check service
Tactic3 Use an internal credit check service

The credit check service is a third-party service provided by an external credit check
agency. During runtime, this service suddenly becomes unavailable for some reason. The
adaptation system finds a replacement, service S, for the credit check service. It takes
some time to set up the replacement service. Therefore, in addition to having an
alternative tactic “use the replacement external service”, the adaptation system also
provides two other alternative tactics: “skip the credit check service” and “use an internal
credit check service”.

In this context, different tactics have different value contributions towards the business
vision. To determine which Tactic to execute, business value contributions towards the
business Vision have to be calculated according to policies. Figure 3 illustrates an
example of BMM End and Means hierarchies of the loan-broking company. In this
example, we identify three alternative tactics in the BMM hierarchies. The selected
Tactics have to satisfy various constraints including cost limit constraints (in this
example: $100 total cost) and other constraints.

272 Q. Lu, V. Tosic, and P.L. Bannerman

Fig. 3. BMM hierarchy in the loan broker company

Table 2. Business value for bronze consumers of each node in the BMM hierarchy

BMM hierarchy node Business value

Vision $10,000
Mission $1,000
Goal1 $4,000
Goal2 $5,000
Strategy1 $200
Strategy2 $100
Objective1 $400
Objective2 $500
Tactic1 $10
Tactic2 $30
Tactic3 $20

 Support for the Business Motivation Model in the WS-Policy4MASC Language 273

In Figure 3, we illustrate how to use the BMM End and Means hierarchies to select
one Tactic for each class of consumer, among several options. We assume that the
same Tactic has different business values to different classes of consumers. To
simplify the discussion, we only discuss how to determine which Tactic to select for
bronze consumers. Table 2 shows the business value of each node for bronze
consumers in the BMM End and Means hierarchies.

Starting from Tactic1, we have two options: Strategy1 and Objective2. Let us meet
Strategy1 first (there is no difference in starting from Strategy1 or Objective2). We
have two options to go after Strategy1: Mission and Goal2. Let’s select Mission to
meet first. After meeting Mission, we achieve Vision, which is the end point. After
meeting Vision, we calculate the total business value of meeting each hierarchy node
in the return path. The calculation for the loan broking example is shown in Figure 4.
As it is the same way for other paths, we do not discuss repetitively here. V represents
the business value of directly achieving a BMM hierarchy node. V’ represents the
total business value contribution a BMM hierarchy node makes and it includes the
business value of directly achieving this hierarchy node and the sum of contributions
this node makes to achieving each of the related higher-level BMM hierarchy nodes.
As shown in Figure 4, Tactic3 brings the maximum high-level business value.
Therefore, the algorithm selects Tactic3 as the adaptation action for bronze consumers.

Fig. 4. The process of calculating high-level business value in the loan-broker example

We extended our WS-Policy4MASC language and MiniZnMASC middleware
with the key BMM concepts in four steps:

1) conceptually extended WS-Policy4MASC with all key BMM constructs;
2) coded the new extensions into the WS-Policy4MASC language schema and

tested this on examples;

1) V’(Vision)=V(Vision)=$10,000
2) V’(Mission)=V(Mission)+ UCW1*OP*V’(Vision)=$1,000+0.4*1*$10,000 = $5,000
3) V’(Goal1)=V(Goal1)+UCW2*OP*V’(Vision)=$4,000+0.4*1*$10,000=$8,000
4) V’(Goal2)=V(Goal2)+UCW3*OP*V’(Vision)=$5,000+0.2*1*$10,000=$7,000
5) V’(Strategy1)=V(Strategy1)+UCW4*OP*V’(Mission)+UCW6*OP*V’(Goal2)=$200

+0.4*1*$5,000+0.3*1*$7,000=$4,300
6) V’(Strategy2)=V(Strategy2)+UCW5*OP*V’(Mission)+UCW8*OP*V’(Goal1)=$100

+0.6*1*$5,000+0.3*1*$8,000=$5,500
7) V’(Objective1)=V(Objective1)+UCW9*OP*V’(Goal1)=$400+0.7*1*$8,000=$6,000
8) V’(Objective2)=V(Objective2)+UCW7*OP*V’(Goal2)=$500+0.7*1*$7,000=$5,400
9) V’(Tactic1)=V(Tactic1)+UCW10*OP*V’(Strategy1)+UCW13*OP*V’(Objective2)

=$10+1*1*$4,300+1*1*$5,400=$9,710
10) V’(Tactic2)=V(Tactic2)+UCW11*OP1*V’(Strategy2)+UCW12*OP3*V’(Objective1)

=$30+1*0.4*$5,500+1*0.3*$6,000=$4,310
11) V’(Tactic3)=V(Tactic3)+UCW11*OP2*V’(Strategy2)+UCW12*OP4*V’(Objective1)

=$20+1*0.6*$5,500+1*0.7*$6,000=$7,520

274 Q. Lu, V. Tosic, and P.L. Bannerman

3) conceptually extended and improved the MiniZnMASC BDIM algorithms to use
BMM-related features supported by WS-Policy4MASC, and;

4) implemented and tested the BDIM algorithm in Java.

Note that our solution is for IT system management of one operational business
process; not the whole organization. The solution has to be modified and extended to
be applied to the IT system management across the whole organization.

The starting point for our integration of BMM and WS-Policy4MASC was an
examination of mappings between the BMM concepts and the WS-Policy4MASC
concepts. Due to the space limitations, we focus in this paper only on the main aspects
crucial for our algorithms that use BMM constructs in MiniZnMASC. The full
mappings table and its discussion are available in [21].

Fig. 5. An example of the BMMHierarchy definition

The corresponding concept for BMM Means in WS-Policy4MASC is the action policy
assertion, while the corresponding concept for BMM End in WS-Policy4MASC is the

<!-- Definition of the BMMHierarchy -->
<masc-bh:BMMHierarchy MASCID="BMMHierarchy1">
 <masc-bh:ToBeAchieved>

 <masc-bh:ActionPolicyAssertionRef To="Strategy1" />
 </masc-bh:ToBeAchieved>
 <masc-bh:ANDInHierarchy MASCID="ANDInHierarchy1">

 <masc-bh:ORInHierarchy MASCID="ORInHierarchy1">
 <masc-bh:UCWRef To="UCW7" />
 <masc-bh:AchievedBy>
 <masc-bh:OPRef To="OP3" />
 <masc-bh:ActionPolicyAssertionRef To="Tactic1" />
 </masc-bh:AchievedBy>
 </masc-bh:ORInHierarchy>
 <masc-bh:ORInHierarchy MASCID="ORInHierarchy2">
 <masc-bh:UCWRef To="UCW8" />
 <masc-bh:AchievedBy>
 <masc-bh:OPRef To="OP1" />
 <masc-bh:ActionPolicyAssertionRef To="Tactic2" />
 </masc-bh:AchievedBy>
 <masc-bh:AchievedBy>
 <masc-bh:OPRef To="OP2" />
 <masc-bh:ActionPolicyAssertionRef To="Tactic3" />
 </masc-bh:AchievedBy>
 </masc-bh:ORInHierarchy>

 </masc-bh:ANDInHierarchy>

</masc-bh:BMMHierarchy>

 Support for the Business Motivation Model in the WS-Policy4MASC Language 275

goal policy assertions. In order to specify relationships between hierarchies of BMM ends
and means, we added the new “BMMHierarchy” construct to WS-Policy4MASC. The
sub-elements under “BMMHierarchy” are “ToBeAchieved” and “ANDInHierarchy”.
“ToBeAchieved” is what the arc arrow between two nodes in the BMM hierarchy points
to. The elements under “ToBeAchieved” can be “GoalPolicyAssertionRef” or
“ActionPolicyAssertionRef”. “ANDInHierarchy” has the sub-element “ORInHierarchy”.
There should be at least one “ORInHierarchy” bounded to an “ANDInHiearchy”.
“ORInHierarchy” has two sub-elements: “UCWRef” and “AchievedBy”. “UCWRef”
refers to utility contribution weights for the “AchievedBy”. The sub-elements under
“AchievedBy” are “ActionPolicyAssertionRef” or “GoalPolicyAssertionRef”, and
“OPRef”. “ActionPolicyAssertionRef” or “GoalPolicyAssertionRef” refers to what the
arrow between two nodes in the BMM hierarchy points from. “OPRef” refers to the
occurrence probability of “AchievedBy”. Figure 5 shows an example of the
BMMHierarchy definition.

The extended algorithm for selection of the best options among conflicting action
policy assertions is outlined in Figures 6 and 7. Here, the “best” means “highest
overall business value, while meeting all constraints” and depends on which
combinations of the business value metric categories are used in the calculations as
well as on the contribution of particular conflicting action policy assertions to long-
term business goals and strategies. This algorithm enables choosing an adaptation
option that might not be the best in the short-term, but is the best one when longer-
term high-level business considerations are taken into account.

Fig. 6. The conflict resolution algorithm

276 Q. Lu, V. Tosic, and P.L. Bannerman

Fig. 7. Calculation of value contribution towards the business vision

The algorithm first loops through all conflicting action policy assertions (APAs) to
check whether each of them satisfies all given constraints and, if yes, to calculate the
sum of all business value metrics (BVMs) for these APAs. The APAs that satisfy all
constraints are added to the list, along their summary BVMs. If none of the
conflicting APAs satisfies the constraints, the resulting list will be empty and an

 Support for the Business Motivation Model in the WS-Policy4MASC Language 277

exception is thrown (e.g., human administrators are notified to resolve the issue). The
APAs in the list are ordered based on the decreasing value of their summary BVMs.
The first APA in the list will have the highest summary BVM while satisfying all
constraints. This APA is returned as the adaptation action (which could contain
several sub-actions) to be executed.

Notice in Figure 6 that the algorithm checks whether the long-term business
contribution is considered in the adaptation decision-making. If yes, the algorithm
calculates the contribution towards the BMM business vision, multiplies the result
with the participation weights, and then adds this weighted sum to the currently
examined action policy assertion as its long-term business value. As shown in Figure
7, if contribution towards long-term business vision is considered in decision-making,
then when the summary business value metric is calculated for each adaptation
option, the extended decision making algorithm adds weighted contribution towards
the overall BMM business vision. The algorithm for calculation of the contribution to
the overall business vision traverses the AND/OR hierarchy of BMM ends and means,
calculates the summary business value for each hierarchy node, and applies utility
contribution weights and occurrence probabilities.

4 Evaluation

We evaluated MiniZnMASC and the developed algorithms for long-term business-
driven decision-making on four aspects: feasibility, functional correctness,
performance overhead, and scalability. We evaluated feasibility through
implementation of several proof-of-concept prototypes. We found no problems with
feasibility. We implemented the motivating example from Section 3 and evaluated the
functional correctness of MiniZnMASC by comparing the results calculated by
MiniZnMASC and by hand. We also developed several other examples for this
evaluation. The results showed that MiniZnMASC had been built correctly.

For the performance and scalability tests, we used a Hewlett-Packard laptop model
HP EliteBook6930p with Intel Core 2 Duo CPU T900 2.53GHz processor and 4.00
GB of RAM memory, running 32-bit Windows Vista operating system. We measured
the performance with increasing number of conflicting action policy assertions (BMM
Tactics) to be examined. We started with 3 action policy assertions, then increased to

Table 3. Performance measurement results with increasing number of conflicting action policy
assertions (BMM Tactics)

Test case
Execution time of
decision making

Execution time of the whole
conflict resolution algorithm

3 conflicting action
policy assertions

Average: 141 ms
Range: 125-157 ms

Average: 47 ms
Range: 46-63 ms

10 conflicting action
policy assertions

Average: 218 ms
Range: 203-343 ms

Average: 78 ms
Range: 78-78 ms

100 conflicting action
policy assertions

Average: 1186 ms
Range: 1029-1389 ms

Average: 437 ms
Range: 434-453 ms

278 Q. Lu, V. Tosic, and P.L. Bannerman

10, and then to 100. Using the Java “System.currentTimeMillis()” call, we measured
the execution time of autonomic business-driven decision making and the execution
time of the whole conflict resolution algorithm in MiniZnMASC. We repeated 100s
of tests at different times of day and averaged their results.

Table 3 shows the measured results of the range (min, max) and average of the
execution time. The overall execution time of decision making in MiniZnMASC rises
because the execution time of the summation of business values for each conflicting
action policy assertion increases with increasing number of conflict action policy
assertions. The last test case (100 conflicting action policy assertions) is much more
complicated than realistic scenarios in practice, so 1.186 sec is not an issue. It is
important to note that in realistic scenarios of MiniZnMASC the number of
conflicting action policy assertions will be low (typically 2, maybe a few more) while
the overall number of action policy assertions can be huge. We also checked that the
number of additional non-conflicting action policy assertions in the MiniZnMASC
Policy Repository had no significant effect on performance, even when there were
hundreds of action policy assertions.

5 Conclusions and Future Work

The main contribution of our research is in aligning organization-level business intentions
with run-time execution of service-oriented systems by extending existing language (WS-
Policy4MASC) and middleware (MiniZnMASC) for autonomic business-driven IT
management with key concepts from the industrial standard for modeling business intent
(BMM). These key concepts include hierarchies of ends (e.g., goals) and means (e.g.,
strategies). We also developed new decision-making algorithms for our MiniZnMASC
middleware. The new algorithms leverage information in the extended WS-Policy4MASC
to align run-time IT system management decisions with business concerns.

Our ongoing work is on extending WS-Policy4MASC and MiniZnMASC with the
remaining BMM concepts (e.g., business policies, business rules, directives,
influencers, and assessment). We already have conceptual solutions and WS-
Policy4MASC extensions, but we still have to complete the new MiniZnMASC
prototype and experiment with it.

Acknowledgments. NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program. We
thank Nahid Ebrahimi Nejad, Shyam Sunder Iyer, and Cheng Li for their
contributions to implementation of the extended WS-Policy4MASC and
MiniZnMASC prototypes.

References

1. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer 36, 41–50
(2003)

2. Bartolini, C., Sahai, A., Sauve, J.P.: Proceedings of the Second IEEE/IFIP Workshop on
Business-Driven IT Management (2007)

 Support for the Business Motivation Model in the WS-Policy4MASC Language 279

3. Casati, F., Shan, E., Dayal, U., Shan, M.C.: Business-oriented management of Web
services. Communications of the ACM 46, 55–60 (2003)

4. Tosic, V.: Autonomic business-driven dynamic adaptation of service-oriented systems and
the WS-Policy4MASC support for such adaptation. Intl. J. of Systems and Service-
Oriented Eng (IJSSOE) 1, 79–95 (2010)

5. Tosic, V.: On Modeling and Maximizing Business Value for Autonomic Service-Oriented
Systems. In: Ardagna, D., Mecella, M., Yang, J. (eds.) Business Process Management
Workshops. LNBIP, vol. 17, pp. 422–433. Springer, Heidelberg (2009)

6. OMG-BMM: Business Motivation Model Version 1.0,
http://www.omg.org/spec/BMM/1.0/PDF

7. Lu, Q., Tosic, V.: Support for Concurrent Adaptation of Multiple Web Service
Compositions to Maximize Business Metrics. In: IM 2011. IEEE, Dublin (2011)

8. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Minizinc:
Towards a Starndard CP Modelling Language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

9. Kaplan, R.S., Norton, D.P.: Having trouble with your strategy? Then map it. Focusing
Your Organization on Strategy—with the Balanced Scorecard. 49 (2000)

10. Van Grembergen, W.: The balanced scorecard and IT governance (2000)
11. Kaplan, R.S., Norton, D.P.: Measuring the strategic readiness of intangible assets. Harvard

Business Review 82, 52–63 (2004)
12. Bartolini, C., Sallé, M., Trastour, D.: IT service management driven by business objectives

An application to incident management, pp. 45–55. IEEE (2006)
13. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems

engineering: the Tropos project. Information Systems 27, 365–389 (2002)
14. Kazhamiakin, R., Pistore, M., Roveri, M.: A framework for integrating business processes

and business requirements (2004)
15. Koliadis, G., Vranesevic, A., Bhuiyan, M., Krishna, A., Ghose, A.: A combined approach

for supporting the business process model lifecycle. Citeseer (2006)
16. Koliadis, G., Ghose, A.: Relating Business Process Models to Goal-Oriented Requirements

Models in KAOS. In: Hoffmann, A., Kang, B.-h., Richards, D., Tsumoto, S. (eds.) PKAW
2006. LNCS (LNAI), vol. 4303, pp. 25–39. Springer, Heidelberg (2006)

17. Lapouchnian, A., Yu, Y., Mylopoulos, J.: Requirements-Driven Design and Configuration
Management of Business Processes. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM
2007. LNCS, vol. 4714, pp. 246–261. Springer, Heidelberg (2007)

18. Nurcan, S., Etien, A., Kaabi, R., Zoukar, I., Rolland, C.: A strategy driven business process
modelling approach. Business Process Management Journal 11, 628–649 (2005)

19. Rosenberg, F., Enzi, C., Michlmayr, A., Platzer, C., Dustdar, S.: Integrating quality of
service aspects in top-down business process development using WS-CDL and WS-BPEL,
p. 15. IEEE Computer Society (2007)

20. Baresi, L., Guinea, S., Plebani, P.: Policies and Aspects for the Supervision of BPEL
Processes. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007. LNCS, vol. 4495,
pp. 340–354. Springer, Heidelberg (2007)

21. Iyer, S.S.: Analysis of Methods for Improving IT Support for Business. University of New
South Wales (2009)

WS-Governance: A Policy Language for SOA
Governance�

José Antonio Parejo, Pablo Fernandez, and Antonio Ruiz-Cortés

Universidad de Sevilla, Spain

Abstract. The widespread use of Service Oriented Architectures (SOA) is begin-
ning to create problems derived from the governance of said structures. To date
there is not a single effective solution to solve all existing challenges to govern
this type of infrastructure. This paper describes the problems encountered when
designing a SOA governance solution in a real e-Government scenario. More
specifically, we focus on problems related to specification and automated analysis
of government policies. We propose a novel SOA governance specification model
as a solution to these problems. We have named this model WS-Governance. In
order to ease its adoption by SOA practitioners it: i) shares WS-Policy guidelines
and is compatible with it, ii) has XML serialization as well as a plain-text one
and iii) has a semantics based on a mapping to Constraint Satisfaction Problems
that provides a precise description as well as facilitating the automation of some
editing and WS-Governance related activities such as consistency checking.

1 Introduction

SOA adoption brings an increase on the number of elements of the IT architecture,
where proper management and control become capital issues. In this context, SOA Gov-
ernance is defined as the management process aimed at delivering the SOA promise of
reuse, business goals support and responsiveness [1,2]. According to [3] SOA Gover-
nance Lifecycle can be divided into six stages, from more abstract business levels to
more concrete operational levels: Create a SOA strategy, Align Organization, Manage
Service Portfolio, Control Service Lifecycle, Policy Definition and Enforcement and
Service Level Management. In this paper we focus on the policy definition as the key
stage that requires a deeper analysis in order to support an agile governance.

Effective governance requires policy management, including : (i) the definition of
policies that encode governance rules and (ii) the establishment of appropriate confor-
mance testing and enforcement mechanisms. Moreover, we have identified the need to
incorporate the structure of the organization as essential information to take into ac-
count when the governance policies are designed. In our case study, the structure, size
and departmental autonomy of the organization implies that multiple administrators
could specify policies in a distributed and independent way, boosting the possibility of
specifying inconsistent policies. In this context, the capability of automatic consistency

 This work has been partially supported by the European Commission (FEDER) project
SETI (TIN2009-07366), and project ISABEL P07-TIC-2533 funded by the Andalusian local
Government.

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 280–296, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

WS-Governance: A Policy Language for SOA Governance 281

checking of policies is highly valuable, and governance tools should support it. How-
ever, the current governance tools market is vendor-driven and turbulent, where tools
are based on proprietary technology and their features are guided by the specific aspects
where their vendors have expertise [4,5].

The contribution of this paper is twofold: (i) First, a language for governance poli-
cies definition is presented. This language defines governance documents; which make
policies unambiguous by providing a rich context for governance policies and their
meta-data. This is done whilst maintaining their definition independently of the SOA el-
ements to govern; their internal organization and the underlying infrastructure. (ii) Sec-
ondly, a formal definition of governance document is proposed, describing the elements
to govern, their properties and the policies that govern them. This formal definition
allows the automation of policies’ consistency checking.To the best of our knowledge,
this proposal provides a novel approach, paving the way for building more powerful and
automated governance tools. This proposal has been developed and tested by creating
two applications: a consistency analyzer and an on-line editor.

The rest of the paper is structured as follows: In sec. 2, the case study that moti-
vates the research presented on this paper is described. Sec. 3 depicts the limitations
of WS-Policy for governance policy specification and motivates the need of a gover-
nance document. Sec. 4 presents WS-Governance, our XML-based language proposal
for governance policies specification, and its plain text equivalent WS-Gov4People.
Sec. 5 presents a mapping of governance documents to Constraint Satisfaction Prob-
lems (CSPs) that allow the automated checking of consistency. Finally, in sections 6
and 7 related work is described and conclusions are drawn.

2 A Motivating Use Case

The motivation of our approach is derived from a case-study based on a real scenario
we addressed on a research project, involving a regional-wide governmental organiza-
tion. This organization has a complex structure divided into 16 governmental depart-
ments and thousands of end users using a shared IT infrastructure. This infrastructure
is distributed in the different departments both logically and physically and is usually
managed autonomously in each location. In recent years there has been a shift toward
SOA in the organization, and currently there is an important number of core services
replicated in the infrastructure with different QoS capabilities.

From an architectural point of view, the infrastructure is designed as a federated bus
of services; in this context, each department represents a node with two main elements:
an Enterprise Service Bus and a Management System that provide different horizontal
functionalities (such as monitoring, transactions or security). All the different nodes are
integrated conforming the global infrastructure. The different services are deployed in
the bus and the consumer applications ask the bus for the appropriate provider.

Due to the structure of the organization, each department has developed a high auton-
omy in its IT infrastructure management. Consequently, the integration of applications
and services amongst different departments has raised an important issue: the need to

282 J.A. Parejo, P. Fernandez, and A. Ruiz-Cortés

specify a consistent normative framework on the whole organization for meeting busi-
ness needs without breaching autonomy. Such a framework can be created by specifying
a set of Governance Policies. A Governance Policy represents a capability, requirement
or behavior that allows the SOA to achieve its goals, and whose meeting is quantifiable
and monitorable through time [6,1,7,8]. Governance policies are as heterogeneous as
the said governed elements, addressing the distributed, flexible, and heterogeneous na-
ture of current SOAs. Moreover, governance policies originate from disparate sources,
from legal regulations and their derived compliance issues to strictly technical details.

There is a real and urgent need of a language to define governance policies unam-
biguously with precise semantics; as a first step toward governance policy definition,
enforcement and automatic consistency checking.

Figure 1 shows three excerpts of different real governance documents found in our
case study -conveniently modified in order to preserve privacy and meet confidentiality
clauses-. Currently, these fragments correspond to human-oriented policies that should
be enforced by administrators by means of configurations of the IT-infrastructure. Each
document is enacted by a different organization: the first document by the main au-
thority so it should be enforced by all sub-organizations (departments); the second
document represents an integration agreement amongst two departments (1 and 2) and
finally, the last document is an internal governance document of department 1.

Fig. 1. Governance Documents

WS-Governance: A Policy Language for SOA Governance 283

3 Using WS-Policy for SOA Governance

In working for a public administration, we were concerned with developing mainstream
policies that would avoid ad-hoc solutions. For this reason, we decided to use the W3C
recommendation WS-Policy for defining policies [9]. As can be seen in Fig. 3 where
the UML metamodel of WS-Policy is shown1, the building blocks of policies are asser-
tions (PolicyAssertion) that are composed using and, or and xor–like compositors (All,
ExactlyOne, and the top level compositor PoliciAlternative). Policy nesting is supported
by meaning a logical AND operation of the assertions of the global policy and those
of the nested one.

Fig. 2. UML metamodel of WS-Policy

Assertions represent domain-specific capabilities, constraints or requirements, where
their grammar is left open by WS-Policy, thus allowing the use of XML-based Domain
Specific Languages (DSLs) for that purpose (see the “VariationPoint” stereotype of
PolicyExpression in Fig. 3). WS-Policy has been mainly focused on the definition of
policies related to specific service capabilities such as security, reliability, etc. In fact,
there are a number of DSLs for those purposes. Unfortunately, describing assertions for
SOA governance policies is more complex and as far as we know there is currently no
DSL to describe this kind of policies.

Two mechanisms are available in WS-Policy to associate policies with the subjects to
which they apply, i.e. for defining their scope. The first one associates one or more policy
definitions as a part of the subject definition. For example, if we want to apply a policy to a
web service described in WSDL, the policy specified in WS-Policy has to be inserted into
the WSDL code. We call this mechanism endogenous attachment, since the definition of
the policy is internal to the element one. Left column in table 1 shows an example of
this kind of attachment. In this case, two polices on the web service “StockQuote” are
defined: one to ensure a reliable message and another to specify security mechanisms

1 The UML class diagram in 3 represents our interpretation of the metamodel described by the
XML schema specified in [9] and [10].

284 J.A. Parejo, P. Fernandez, and A. Ruiz-Cortés

on web service binding. Notice that with endogenous attachment: i) attaching a set of
policies to a set of subjects at the same time is not possible and ii) changing a policy
requires modifying the definition of the subject, i.e. it is an intrusive mechanism.

The second mechanism associates one or more policy definitions to one or more
subjects. The WS-PolicyAttachment recommendation [10] proposes the use of Policy-
Attachemt and AppliesTo (shaded classes in Fig. 2). In this case, the WS-Policy is not
encoded in the same file that the specification of the element, thus we call this mecha-
nism exogenous attachment. Right column in table 1 shows an example of this kind of
attachment. In this case, secure binding mechanisms are asserted on the “StockQuote”
and “MortgageRisk” services using its endpoint reference address. As shown in Fig. 2,
WS-PolicyAttachment also leaves open the language to specify the scope, but provides
a basic language to specify it based on URIs.

Note that with exogenous attachment: i) it is possible to attach a policy to a set
of elements at the same time and ii) changing the policy attachment does not require
modifying the definition of an element, i.e. it is non–intrusive mechanism.

Table 1. Endogeous vs Exogeous Attachment

WS-Policy 1 WS-Policy 2
<wsdl:definitions name=’StockQuote’ Element <wsp:PolicyAttachment>

xmlns:wsp=’...’ ...> attached <wsp:AppliesTo> \
<wsp:Policy wsu:Id=’RmPolicy’ > \ <wsa:EndpointReference> | Policy

<rmp:RMAssertion> | <wsa:Address>.../MortageRisk.wsdl</...> | Scope
<wsp:Policy/> | <wsa:Address>.../StockQuote.wsld</...> | Scope

</rmp:RMAssertion> | </wsa:EndpointReference> | def.
</wsp:Policy> | </wsp:AppliesTo> /
<wsp:Policy wsu:Id=’X509Policy’ | Policy <wsp:Policy wsu:Id=’X509Policy’ \

<sp:AsymmetricBinding> | assertions <sp:AsymmetricBinding> |
... | ... | Policy

</sp:AsymmetricBinding> | </sp:AsymmetricBinding> |assertions
</wsp:Policy> / </wsp:Policy> /
... </wsp:PolicyAttachment>

</wsdl:definitions>

WS-Policy defines a mechanism to test the compatibility of two policies, called pol-
icy intersection. According to the WS-Policy specification [9] “policy intersection is
optional but a useful tool when two or more parties express policies and want to limit
the policy alternatives to those that are mutually compatible”. The intersection consists
of two parts: a domain-independent policy intersection and domain-specific process-
ing. The former takes into account the assertion type equality, i.e. the XML element
type equality and its nested elements, but not its parameters. The latter is not defined
in WS-Policy, thus assertions authors have to define specific mechanisms for incorpo-
rating the intended semantics of the assertions, and the specification does not provide
any mechanism to integrate or define it. For instance, the first policy specified in the
left column and the policy in the right column of table 1 are incompatible, since their
element types <rmp:RMAssertion> and <sp:AsymmetricBinding> are different. The
notion of policy intersection is thus basically syntactical and structural, and it is not
valid for complex domain-specific processing or semantic reasoning about policies, as
shown in [11] and [12].

WS-Governance: A Policy Language for SOA Governance 285

When using WS-Policy to specify the policies the previously described documents
we encountered the following limitations:

Lack of Context and meta-data (LCD): Governance policies need a rich context to
ensure their validity, specifying who enacts the policies and providing additional meta-
data, in order to ensure authorization for policy enactment and the integrity of the poli-
cies as enacted, thus avoiding tampering. This is the role of seals and signatures of the
real documents shown in figure 1. In using WS-Policy, there is not a single point where
we can insert the required information that assures the validity of the policy, such as
official seals, a declaration of validity by the enacting authority or a preamble. We call
this problem Lack of Context Data (LCD).

Scope Definition Limitations (SDL): Defining a policy P1 as simple as ”All services
provide an Availability greater than 99%” may become a nightmare since WS-Policy
has not been designed keeping in mind that the scope of a policy could be defined by
intension; i.e. we need specify the properties of services belonging the scope, not enu-
merate them. If an exogenous attachment with the proposal described in the WS-Policy
specification is used, then all the services references will be inserted in the AppliesTo
section of the policy. Thus, if there was a change in the policy scope, like All services
except S23, S45, . . .) this would entail a re-working of all services as well as modifying
the content of the scope section. This is not an adequate solution when dealing with a
SOA comprising of hundreds of applications and services. Summarizing, governance
policies’ scope should be defined by intension through scope predicates in most cases.

The expression of these scope predicates require a rich predicate DSL and the speci-
fication of the elements and data sources needed to feed the predicate, in order to effec-
tively evaluate policy scope. This problem is particularly acute for governance policies,
since governance relevant information is stored in disparate sources, such as UDDI reg-
istries, LDAP directories, ad hoc databases, etc. For instance, in our sample GDs (fig.
1) there are properties such as “critical services” and “local/external apps & services”
whose values must be obtained from different information sources.

However, WS-Policy extension mechanisms allow the definition of DSL for specify-
ing policy scope (see fig. 3), thus we propose such a DSL as part of our proposal.

Inadequate consistency checking: In our use case, the most valuable property was
consistency checking. The only analysis operation WS-Policy envisioned for this was
the intersection of policies. The open and flexible nature of WS-Policy makes it dif-
ficult to provide homogeneous semantics to policies, since each domain specific DSL
would have its own semantics. This problem motivates the merely structural-syntactical
nature policy intersection operation as defined in WS-Policy, avoiding its usage in di-
verse scenarios [11,12]. For example, two identical-meaning policies may prove in-
consistent by using the intersection operation (see [11]). We name this drawback as
Syntax/Structure Driven Semantics (SDS). This limitation can be addressed by defin-
ing a domain specific intersection processor, and consequently, our proposal for provid-
ing semantic consistency checking can be integrated in such a way. However, authors
consider that defining an entirely new operation called consistency and provide an ex-
plicit semantic for the DSLs defined is a better approach. Otherwise, the intersection
operation, could process some assertions based on their structure, while others will be

286 J.A. Parejo, P. Fernandez, and A. Ruiz-Cortés

treated semantically, leading to to incoherent results (as shown in [11]). Thus, we leave
intersection as an essentially sintactically/structural operation and define a new opera-
tion named consistency that supports semantic reasoning based on CSPs.

4 From WS-Policy to WS-Governance

WS-Governance Documents (GDs) address limitations described previosly by incorpo-
rating an extensible context to the contained policies (addresing LCD), and defining a
global document structure that contains a set of policies under an umbrella governance
scope (where the data sources that feed predicates for defining policies scope can be in-
cluded, addressing SDL). They also describe relevant governance properties of services,
applications and organizational structures, and provide mechanisms for incorporating
disparate governance-relevant information sources. Moreover, LCD and SDS motivate
the creation of two general purpose XML-based DSLs for specifying governance pol-
icy assertions and SOA modelling, that are described in detail below. Based on those
DSLs and the authors‘ experience providing formal semantics for SLAs specified in
WS-Agreement by using CSPs [13,14,15], a CSP based semantics for WS-Governance
documents using those DSLs is proposed in Sec. 5 addressing SDS. Based on those se-
mantics a consistency property for policies and governance documents is defined. The
structure of a GD in WS-Governance comprises of:

• Governance Document Context: It currently defines the governing organization
but its grammar is left open in order to support the expressions of authorizations
to enact policies on this GD, and the data needed to ensure GD authenticity and
integrity.

• Governance Scope: It provides information about the SOA where policies are es-
tablished. Different information sources could be used in this section, from UDDI
registries to ad hoc databases, since any SOA element could be a governance pol-
icy subject; such as projects, developers, organizations, messages, XML-schemas
or applications servers.

• Governance Properties: It defines all properties that are relevant for governance
policies. Following the philosophy of WS-Policy, its grammar is left open, allow-
ing the use of XML-based DSLs for specifying those properties.

• Governance Policies: It defines the policies that conform the governance. Those
polices are fully WS-Policy compliant, where the exogenous policy attachment
mechanism is mandatory. Assertion and scope definition grammar is left open,
allowing the use of XML-based DSLs.

It is noticeable, that neither the definition of the new concept of Governance Docu-
ment, nor the use of the DSLs for Governance Policies, break WS-Policy compatibility.
Although authors consider that the document-oriented treatment of policies is more nat-
ural in governance contexts (as shown in the example of fig. 1) and better supports the
life-cycle of policy creation [16], from authoring by humans to deployment into servers;
any governance document can be transformed into a unique policy fully compliant with
WS-Policy2. Moreover, the DSLs described below ares used in WS-Policy extension

2 In http://labs.isa.us.es/gda/WS-Policy-transformation.xslt is avail-
able an XSLT tranformation that allows to perform this conversion automatically.

http://labs.isa.us.es/gda/WS-Policy-transformation.xslt

WS-Governance: A Policy Language for SOA Governance 287

mechanisms and variation points as described in fig. 3 for providing suitable languages
for governance policy definition. The UML class diagram shown in Fig. 3 represents
our proposal of metamodel for WS-Governance documents.

Fig. 3. UML Metamodel of WS-Governance

Some elements of WS-Governance are intentionally left open for extension in order
to allow a high degree of flexibility. This flexibility is based on the use of XML-based
DSLs in some variability points, allowing the creation of a whole family of governance
languages. In Fig. 3 variability points are decorated with a VariabilityPoint UML stereo-
type. A brief description of these variability points is provided as follows:

• Context DSL: The GD metadata in the context element can be extended with any
information needed by means of the nesting of new XML elements and attributes.

• SOA Specification: The architecture and elements to govern must be described in
order to define unambiguous policies.

• Governance Property Specification: A description of the properties of the gov-
erned elements of the SOA is needed in order to define expressive policies. Those
properties must be expressed using a XML-Based DSL.

• Policy Expression Specification: Policy scope and assertions can be expressed
using any predicate-oriented DSL.

In order to define effective governance documents, those DSLs must be set. In our
proposal we provide two DSLs that allow the creation of service-focused governance
policies, i.e. policies that specify assertions defined on service properties and their di-
rectly related elements such as consumers, providers, and governance relevant infor-
mation such as organizational structure. Those DSLs are Service oriented Architecture
Description Language (SADL), addressing the SOA Specificaton variation point, and
Governance Assertion Language (GAL), addressing the Governance Property Specifi-
cation and Policy Expression Specification variation points. The UML Class Diagrams
in Figs. 4 and 5 depicts the metamodel of SADL and GAL respectively.

288 J.A. Parejo, P. Fernandez, and A. Ruiz-Cortés

4.1 SOA Modeling with SADL

SADL has been designed to model the SOA state and structure, making our proposal in-
dependent of the specific governance information sources available on each SOA, such
as UDDI Registries, LDAP directories, ad hoc databases, etc. SADL describes both the
SOA structure as elements, and its state as the corresponding governance properties val-
ues for those elements. In this paper we focus on service-related governance policies,
so SADL mainly contains elements related with services; however SADL is extensible,
supporting the use of any XML-based construct as sub-elements of its basic structural
elements. Specifically, structural elements in SADL are described as follows:

Fig. 4. UML Metamodel of SADL

• Service Oriented Architectures are networks of participants providing and con-
suming services to fulfill a purpose. In SADL these participants are specified as
organizations and applications.

• Organizations are participants with governance relevant identity and properties,
tracing an organizational boundary on their owned applications and services. Or-
ganizations are arranged hierarchically, where an organization can contain various
sub-organizations (e.g. departments) and have a unique parent.

• Applications represent business processes, related capabilities and software
packages. They allow the arrangement of software artifacts and capabilities in-
dependently of the organizational hierarchy in a governance-meaningful way. Ap-
plications are owned by a unique organization. Applications have a set of provided
and consumed services.

• Services represent capabilities that participants provide and consume.

WS-Governance: A Policy Language for SOA Governance 289

Regarding SOA state description, SADL allows the specification of property values for
all the aforementioned elements based on GAL.

Finally, SADL provides a generic element for the specification of the concrete gov-
ernance data sources as references; such as UDDI registries, that should be queried to
obtain the governance-relevant SOA structure and state in order to check properties and
test policies adherence. By creating adapters that query those data sources and create
a SADL compliant SOA model, our proposal becomes independent of those specific
data-sources, thus semantics of GDs are based on explicit SADL models.

4.2 Specifying Governance Properties, and Policy Assertions with GAL

Governance Assertion Language. GAL is a generic and expressive language designed to
declare governance properties and assertions. A governance property is any characteris-
tic attribute of the elements of the SOA wich is relevant for the specification of a policy
(either in their scope definition or in their assertions) whose value can be specified or
retrieved from a governance data source. Property definitions in GAL have a name and
an identifier as attributes, comprising of: (i) type definition, where basic XML-Schema
[17] types are supported, (ii) an optional domain definition that restricts the space of
valid values of the property; where it could be described as a GAL assertion (by inten-
sion) or as a set of values (by extension); and (iii) an optional SADL governance subject
declaration, that defines the type of SOA element that can present the property (service,
organization, policy, all, etc.). Through GAL constraints we provide a suitable language
to specify policy assertions on governance properties. Assertions can be composed us-
ing WS-Policy composition operators: All, ExactlyOne and PolicyAlternative.

Fig. 5. UML Metamodel of GAL

290 J.A. Parejo, P. Fernandez, and A. Ruiz-Cortés

In order to allow consistency checking, in this paper we use a subset of WS-
Governance a bit less expressive, called WS-Governance*. A WS-Governance* doc-
ument must use SADL to describe the SOA to govern and GAL to define governance
properties, policy scopes and policy assertions. A WS-Governance* document (ρ) com-
prises of:

• Governance Scope defines the set of organizations O, applications A and services
S to govern, and their relationships, namely: consumption of services by applica-
tions and organizations, provision of services by applications and organizations,
ownership of applications by organizations and hierarchy of organizations. Only
those elements and relationship functions are used to define policies.

• Governance Vocabulary must define the set of all properties V used in the guaran-
tee terms.

• For each governance policy both scope (s) and assertion (a) must be defined as
GAL assertions on the properties defined in the governance vocabulary section,
and only to those applied to the sets and relationship functions defined in Gover-
nance Scope.

• Policy assertions can be composed using the compositors defined in WS-Policy.

XML-Schemas that model WS-Governance* documents conforming the previously
described syntax are available at http://www.isa.us.es/gda/schemas. Al-
though readable for humans, XML is not as understandable as plain text. In [18] the
structure of a WS-Governance* document is described in a plain text language, named
WS-Gov4People, that is equivalent to the WS-Governance*. The mapping of XML el-
ements onto its corresponding WS-Gov4People sentences is also shown in table 2 of
[18]. A WS-Gov4People document describing the policies specified in figure 1 and a
simple SOA structure is shown in the first column of table 4 of [18].

5 Automatic Consistency Checking through CSPs

As shown in [19], the definition of the semantics of a language can be accomplished
through the definition of a mapping between the language itself and another language
with well-defined semantics such as Abstract State Machines, Petri Nets, rewriting logic
or CSPs. These semantic mappings between semantic domains are very useful not only
to provide precise semantics to DSLs, but also to be able to simulate, analyze or reason
about them. In this section we define the mappings that tranform GDs* onto Constraint
Satisfaction Problems (CSPs) that provide their precise semantics, allowing the usage
of CSP solvers to reason about policies and complete GDs*. A CSP ψ = (V, D, C) is
defined as a set of variables V , a set of domains D (one for each variable), and a set
of constraints C specifying which combinations of variables and values are acceptable.
A solution σ to a CSP ψ consists of an assignment in which each variable gets a value
from its corresponding domain, as long as it satisfies each constraint. The solution space
of a CSP ψ, denoted as sol(ψ), is composed of all its possible solutions, if the CSP has
at least one solution it is satisfiable; i.e. sat(ψ) ⇔ sol(ψ) �= �.

Mapping a GD* into CSPs. The mapping (μGD : ρ → ψ) of a WS-Governance* GD
(ρ) to a CSP (ψ) is performed in two steps as follows:

http://www.isa.us.es/gda/schemas

WS-Governance: A Policy Language for SOA Governance 291

First, for each policy pi = (s, a) in the GD*, pi is mapped for the concrete gov-
ernance scope (SOA model in terms of services, applications, organizations and its
relationships) into a constraint pC

i that contains only variables and literals composed
using logical and algebraic operators. This constraint is constructed so that it tells ex-
actly when the policy holds in the given governance scope. This transformation is per-
formed by the explicit enumeration of the sets and relationships (ownership, provision,
consumption, and organizational hierarchy) on the governance scope for each quanti-
fier, combining the resulting constraints using logical AND (∧) operators for universal
quantifiers and logical OR (∨) operators for existential quantifiers.

Next, the set of constraints pC = {pC
i }n

i=1 and original GD* ρ are mapped into a
CSP ψ = {V, D, C} by creating:

• a variable vx
si|oi|ai

in V for each property x and corresponding element in the SOA
(service, organization and application).

• variables vsupOrg
oi

,vprov
si

,vcons
si

and vown
ai

in V for the relation functions supOrg
(hierarchical relationship among organizations), provider and consumer (rela-
tionship among services and applications) and owner. Additionally, their domain
of organizations, applications, and services are created.

• constraints {vsupOrg
oi

= oj}, {vprov
si

= ak}, {vcons
si

= ak}, and {vown
ai

= ol}
in C for each variable created in the previous step specifying the values of the
relationshipssupOrg, provider,consumer and owner. Those constraints and
variables express the SADL SOA structural model of the governance scope.

• a constraint {vx
si|oi|ai

= {Value Expr?}} in C for each property valuation speci-
fied in the state section of the governance scope in ρ.

Finally, for each constraint in pC property invocation functions X(si|oj |aj) are ex-
changed by their corresponding variables vx

si|oi|ai
, and the resulting constraint is added

to C. The mapping of different elements of a GD* is shown in Table 2.
Readers interested in an example of the use of GD*, can find the expression of the

policies contained in the governance documents found in the case study (Figure 1) in
table 4 of [18]. In the right side of that table the CSP transformation of the GD* is also
presented.

5.1 Checking for Consistency

Checking a GD ρ written in WS-Governance* for consistency lets us know whether it
has internal contradictions or not. The root of the inconsistencies can be: (i) that a pol-
icy in ρ is intrinsically inconsistent; (ii) that the set of policies in ρ are inconsistent; or
(iii) even when the set of policies in ρ, P ρ = {ρ1, . . . , ρn}, are initially consistent, then
ρ can be inconsistent due to the additional information added by the SADL SOA state
and structure specified. For instance, the GD* shown in the first column of table 4 of
[18] is inconsistent. The cause of the inconsistency is that policies ρ2=’Critical services
availability should be “’24x7’ ’ and ρ3=’Service s1 availability is “window” if it is con-
sumed by external applications’ are inconsistent, since s1 is both consumed by applica-
tion a2 ’Zeus’ of department 2 and critical. This information, service consumption and
criticality of services is specified by the SOA Structure and State section of the GDs*,

292 J.A. Parejo, P. Fernandez, and A. Ruiz-Cortés

Table 2. Mapping of WS-Governance* elements onto CSPs

WS-Governance* Element CSP Mapping
Governance Document - Name (Id) GD Name, Id and Governor Org.

Governor: Org. Name?(Org. Id?) are not mapped to CSP

SOA Governance Model: For each organization oi a variable vsuporg
oi

is created

STRUCTURE: denoting the parent org. of oi and a domain

{Organization: Org. Name? (Org. Id?) dsuporg
i = {o1, . . . øn} is added to D

SubOrganizations: Org. Id1?,. . . ,Org. IdN? a constraint {Cprov
oi

= oj} is created encoding the orgs. hierarchy

Applications: For each application aj a variable vown
aj

is created

Provides: denoting the owner org. of aj , a domain

{Service: Serv. Name? (Serv. Id?)}* down
j = {o1, . . . øn} is added to D

Consumes: and a constraint {Cown
ai

= oj} is created encoding the app. ownership

{Service: Serv. Name? (Serv. Id?)}* For each service sk a variable vprov
sk

is created

}* , a domain dprov
k = {a1, . . . , am} is added to D

}+ and a constraint {vprov
sk

= al} is created encoding the provisioning

STATE:

{Property val. Expr?}* Add Constraint: vx
si|oi|ai

[Proverty val. Expr.?]

Vocabulary: Add variables & domains:

Property: X for Services for each property x we create a variable

for {Servs|Orgs|Apps} vx
si|oi|ai

for each element in

Type: boolean its corresponding set S|O|A
Domain: Domain Expr.? Add Constraint: vx

si|oi|ai
[Domain Expr.?]

Policies: Add contraint:

Policy P1

{forall y
∧S|O|A

vsi|oi|ai
(Scope expr)[y/vy

si|oi|ai
]

in (Servs|Orgs|Apps)}+ ⇒ (Assertion expr)[y/vy
si|oi|ai

]

{exists y
∨S|O|A

vsi|oi|ai
((Scope expr)[y/vy

si|oi|ai
]

in (Servs|Orgs|Apps)}+ ⇒ (Assertion expr)[y/vy
si|oi|ai

]

Scope: Scope expr? , For each constraint c ∈ C do:

Assertion: Assertion expr — (c)[vy
si|oi|ai

/vx
si|oi|ai

]

where E[x/y] means: ’ the expression E, but with occurrences of x replaced by y’

thus the corresponding constraint Availability(s1) =′ 24x7′ ∧ Availability(s1) =′

window′ is obviously unsatisfiable due to the SOA state and structure, not because of
an incosistency of policies per se, and consequently ρ2 and ρ3 are inconsistent in ρ.

Internal Consistency: A GD* ρ is said to be consistent iff its corresponding equivalent
CSP is satisfiable; i.e. consistent(ρ) ⇔ sat(ψρ).

Consistency: A non empty set of GDs in WS-Governance* P = {ρ1, . . . , ρn} is said
to be consistent iff its corresponding equivalent CSPs are simultaneously satisfiable;
i.e. consistent(P) ⇔ sat(

∧n
i=1 ψρ

i).
As an example, our approach found an additional inconsistence: the mapping of

the GD* that models our case study (table 4 of [18]), the corresponding CSP ψ con-
tains among others the following constraints: {vcrit

s1 = true ⇒ vprovO
s1

= vconsO
s1

},

{vcrit
s2 = true}, {vconsO

s1
= o2}, and {vprovO

s1 = o1}. This set of constraints in unsatis-
fiable, since vprov

s1
= o2 and vprov

s2
= o1 are unsatisfiable, and consequently the GD* is

inconsistent.

WS-Governance: A Policy Language for SOA Governance 293

5.2 WS-Governance Tooling: GDA and GDE

Governance Document Analyzer (GDA) is an automatic analyzer for GDs. It performs
consistency analysis in three levels: i) individual policy consistency, ii) consistency of
the set of policies in the document, and iii) consistency of the whole GD. This analysis
starts with the transformation of GD statements to a CSP, that is solved with a CSP
solver [20]. The tool is available as a web service so it can be easily integrated into other
tools and interoperate. Furthermore, a command line client is provided for direct use. A
set of sample GDs has been created, in order to ensure that the analyzer works properly.
Both the analyzer and the samples are available at http://www.isa.us.es/gda.

(a) GDE User Interface (b) GDA Depl. Opt.

Fig. 6. GDE User Interface and GDA Deployment Options

Governance Document Editor (GDE) is a web application to edit government doc-
uments in an assisted way. The editor window is divided in three areas as in Figure 1
(a). On the top section, there are different options to open, save and analyze GDs. On
the left side of the main area, every section in the GD is organized in a tree view. Every
node on the tree is attributed on the right-hand side. The main tree has separate sections
for each subsection in the GD. WS-Governance elements are automatically generated
from the tree, so edition focuses on the relevant government contents avoiding errors.
It has been integrated with GDA, showing the consistency analysis reports graphically.
The editor is available on-line at http://labs.isa.us.es/apps/gde/.

6 Related Work

Concerning policy definition, Ponder is the pioneer and probably most widely used
language. Ponder [21] is a declarative, object oriented language for the specification

http://www.isa.us.es/gda
http://labs.isa.us.es/apps/gde/

294 J.A. Parejo, P. Fernandez, and A. Ruiz-Cortés

of management polices in distributed object systems. Additionally, Ponder provides
structuring techniques for policy administration in large scenarios and systems. WS-
Governance incorporates similar concepts by the explicit declaration of governor and
document context, and uses SADL and GAL assertions to model scope. The usage of
WS-Policy as the base policy expression construct, and explicit declaration of gover-
nance relevant information sources, makes WS-Governance better suited for SOA gov-
ernance policies declaration. However, an interesting capability supported by Ponder
that we plan to add to WS-Governance in the future is the declaration of policy types
as templates. Rei and KAoS [22], both based on semantic web concepts are proposals
oriented to the definition of policies for expressing web services capabilities policies.
However, is WS-Policy the proposal that has more successful in industrial scenarios,
thus we have chosen it for extension in order to define SOA governance policies.

Our proposal provides a richer consistency notion allowing the detection of semanti-
cal inconsistences in policies with complex interaction as shown in this paper. General
policy conflict analysis is not a novel problem, but its application in the context of SOA
governance policies in this paper is original. Several approaches have been proposed
for policy expression and conflict analysis in the context of network management [23],
and security [24], but they are based on Binary Decision Diagrams (BDD), forcing the
reasoning with less expressive policies than our CSP based proposal.

7 Conclusions and Future Work

The results obtained during the development of this work provide three important con-
clusions: i) there exists the need of a language for governance policies specification
that integrates governance data sources; enables effective governance through a formal
semantics, and supports automated consistency checking; ii) this need is not fulfilled
by WS-Policy, that has limitations in this context; and iii) WS-Governance allows the
specification of expressive Governance Documents independently of the underlying in-
frastructure. It is based on the WS-Policy framework, and overcomes its previously
identified limitations to achieve an effective governance. The GD semantics and consis-
tency operation paves the way for the creation of a new generation of governance tools.
In this scenario governance policies are created in a distributed, independent yet col-
laborative way, maintaining global consistency. This collaborative process helps gov-
ernance boards on the creation of the essential normative framework needed for the
achievement of the SOA promise.

In this context we identify the following ideas as promising future work to be ad-
dressed: i) enacting organizations need extensions of the GD Context to effectively en-
sure authentication and authorization, in order to avoid tampering when defining policy
(currently this extension is supported by the language through the variability extension
point but those mechanisms are not specified); (ii) extend WS-Governance to support
the definition of policy templates improving reuse and usability; iii) carry out a per-
formance analysis of our implementation in order to study the influences of the SOA
model, governance properties and number and complexity of governance policies; and
iv) exploit the formal definition of policies as CSPs and the capabilities of solvers for
providing inconsistency explaining and support policy enforcement.

WS-Governance: A Policy Language for SOA Governance 295

References

1. Marks, E.A.: Service-Oriented Architecture Governance for the Services Driven Enterprise.
John Wiley & Sons (2008)

2. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: State
of the art and research challenges. IEEE Computer 40(11), 38–45 (2007)

3. Schepers, T.G.J., Iacob, M.E., Van Eck, P.A.T.: A lifecycle approach to soa governance. In:
SAC 2008: ACM Symposium on Applied Computing, pp. 1055–1061 (2008)

4. Kenney, L.F., Plummer, D.C.: Magic quadrant for integrated soa governance technology
sets. Technical report, Gartner (2009),
http://mediaproducts.gartner.com/reprints/oracle/article65/
article65.html

5. Kontogiannis, K., Lewis, G.A., Smith, D.B.: A research agenda for service-oriented archi-
tecture. In: SDSOA 2008: 2nd Int. Workshop on Sys. Devel. in SOA Env., pp. 1–6 (2008)

6. Bernhardt, J., Seese, D.: A Conceptual Framework for the Governance of Service-Oriented
Architectures. In: Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC 2008. LNCS, vol. 5472, pp.
327–338. Springer, Heidelberg (2009)

7. Derler, P., Weinreich, R.: Models and Tools for SOA Governance. In: Draheim, D., Weber,
G. (eds.) TEAA 2006. LNCS, vol. 4473, pp. 112–126. Springer, Heidelberg (2007)

8. Parejo, J.A., Fernández, P., Ruiz-Cortés, A.: Towards automated sla-based governance policy
enforcement. In: Int. Joint Conference on Service Oriented Computing (ICSOC) (2009)

9. Vedamuthu, A.S., Orchard, D., Hirsch, F., Hondo, M., Yendluri, P., Boubez, T., Ümit
Yalçinalp: Web services policy 1.5 framework. W3C Recommendation (2007)

10. Vedamuthu, A.S., Orchard, D., Hirsch, F., Hondo, M., Yendluri, P., Boubez, T., Ümit
Yalçinalp: Web services policy 1.5 - attachment. W3C Recommendation (2007)

11. Hollunder, B.: Domain-specific processing of policies or: Ws-policy intersection revisited.
In: ICWS, pp. 246–253 (2009)

12. Anderson, A.H.: Domain-independent, composable web services policy assertions. In:
POLICY, pp. 149–152 (2006)

13. Ruiz-Cortés, A., Martı́n-Dı́az, O., Durán, A., Toro, M.: Improving the automatic procure-
ment of web services using constraint programming. International Journal of Cooperative
Information Systems 14(4), 439–467 (2005)

14. Müller, C., Ruiz-Cortés, A., Resinas, M.: An Initial Approach to Explaining SLA Inconsis-
tencies. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,
pp. 394–406. Springer, Heidelberg (2008)

15. Müller, C., Resinas, M., Ruiz-Cortés, A.: Explaining the Non-compliance between Templates
and Agreement Offers in WS-Agreement. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-
ServiceWave 2009. LNCS, vol. 5900, pp. 237–252. Springer, Heidelberg (2009)

16. Zhang, Y., Liu, X., Wang, W.: Policy lifecycle model for systems management. IT Profes-
sional 7, 50–54 (2005)

17. Peterson, D., Gao, S.S., Malhotra, A., Sperberg-McQuee, C.M., Thompson, H.S.: W3c xml
schema definition language (xsd) 1.1 part 2: Datatypes. W3C Working Draft (2009)

18. Parejo, J.A., Fernandez, P., Ruiz-Cortés, A.: Ws-governance: A language for soa governance
policies definition. Technical report, Applied Software Engineering Research Group (Grupo
ISA), University of Seville (2010), http://www.isa.us.es/publications

19. Vallecillo, A.: A journey through the secret life of models, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2008)

20. Laburthe, F., Jussien, N., Rochart, G., Cambazard, H., Prud’homme, C., Malapert, A.,
Menana, J.: Choco, java library for constraint satisfaction problems (csp), Open Source
http://www.emn.fr/z-info/choco-solver/

http://mediaproducts.gartner.com/reprints/oracle/article65/article65.html
http://mediaproducts.gartner.com/reprints/oracle/article65/article65.html
http://www.isa.us.es/publications
http://www.emn.fr/z-info/choco-solver/

296 J.A. Parejo, P. Fernandez, and A. Ruiz-Cortés

21. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification Language.
In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS, vol. 1995, pp. 18–38.
Springer, Heidelberg (2001)

22. Uszok, A., Bradshaw, J., Johnson, M., Jeffers, R., Tate, A., Dalton, J., Aitken, S.: Kaos policy
management for semantic web services. IEEE Intelligent Systems 19(4), 32–41 (2004)

23. Samak, T., Al-Shaer, E., Li, H.: Qos policy modeling and conflict analysis. In: POLICY, pp.
19–26 (2008)

24. Hamed, H.H., Al-Shaer, E.S., Marrero, W.: Modeling and verification of ipsec and vpn secu-
rity policies. In: ICNP, pp. 259–278 (2005)

QoS-Based Task Scheduling in Crowdsourcing

Environments�

Roman Khazankin, Harald Psaier, Daniel Schall, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology,
Argentinierstrasse 8/184-1, A-1040 Vienna, Austria

{lastname}@infosys.tuwien.ac.at
http://www.infosys.tuwien.ac.at

Abstract. Crowdsourcing has emerged as an important paradigm in
human-problem solving techniques on the Web. One application of
crowdsourcing is to outsource certain tasks to the crowd that are dif-
ficult to implement as solutions based on software services only. Another
benefit of crowdsourcing is the on-demand allocation of a flexible work-
force. Businesses may outsource certain tasks to the crowd based on
workload variations. The paper addresses the monitoring of crowd mem-
bers’ characteristics and the effective use of monitored data to improve
the quality of work. Here we propose the extensions of standards such
as Web Service Level Agreement (WSLA) to settle quality guarantees
between crowd consumers and the crowdsourcing platform. Based on
negotiated agreements, we provide a skill-based crowd scheduling algo-
rithm. We evaluate our approach through simulations.

Keywords: crowdsourcing, skill monitoring, scheduling, QoS
agreements.

1 Introduction

Recently, business processes need to be adapted or extended more frequently to
the changing market. Companies often lack the new capabilities or knowledge re-
quired. To tackle those changes, either new personal needs to be hired, or rather,
the new process steps are outsourced. The work in this paper is based around a
recent and attractive type of outsourcing called crowdsourcing [11]. The term
crowdsourcing describes a new web-based business model that harnesses the cre-
ative solutions of a distributed network of individuals [4], [21]. This network of
humans is typically an open Internet-based platform that follows the open world
assumption and tries to attract members with different knowledge and interests.
Large IT companies such as Amazon, LiveOps, or Yahoo! ([3], [17], [22]) have
recognized the opportunities behind such mass collaboration systems [8] for both

 This work was supported by the European Union FP7 projects COIN (No. 216256)
and SCube (No. 215483) and the Vienna Science and Technology Fund (WWTF),
project ICT08-032.

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 297–311, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

298 R. Khazankin et al.

improving their own services and as a business case. The most prominent plat-
form they currently offer is the Amazon Mechanical Turk (AMT) [3]. Requesters
are invited to issue human-intelligence tasks (HITs) requiring a certain qualifica-
tion to the AMT. The registered customers post mostly tasks with minor effort
that, however, require human capabilities (e.g., transcription, classification, or
categorization tasks [12]).

In this paper we extend this simple model and focus on crowdsourcing plat-
forms that deal with task groups consisting of manifold similar jobs provided
by consumers. Most current public crowdsourcing platforms with market-like
operation chain announce received tasks at their portal as a first step. Next,
the worker chooses among the assorted mass of task those s/he likes to process.
The selection is motivated by her/his personal preferences. Thus, the following
assignment is initiated by the worker, and as a consequence, it hardly allows the
system to have an influence upon assignments and to leverage the skill hetero-
geneity of involved workers.

As each worker is individual, it is natural that the skills of the workers are
manifold. The tasks submitted to the platform are also diverse in their require-
ments. Hence, efficient crowdsourcing must consider the suitability of a worker
for a task. One can assume that the more the worker is suitable for a task,
the better the expected outcome quality is. Therefore, given the suitability in-
formation and a control mechanism for a worker assignment, it is possible to
improve the overall result’s quality by assigning tasks to best suitable workers
for the current situation. Moreover, from a BPM perspective, this mechanism
also provides control over task completion times which can be used to main-
tain objectives, such as deadline fulfillment. To sum up, the task assignment
control would enable a crowdsourcing platform provider to develop QoS policies
for offered crowdsourcing services, so these services can be integrated into QoS-
sensitive business processes. The assignment control demands for a scheduling
problem to be solved. The problem is to maximize overall quality while sat-
isfying agreed objectives. Such a scheduling problem is hindered by a number
of crowd-specific features, such as lack of full control of the workers and their
membership, and their limited predictable availability.

In this paper we tackle these issues by proposing crowdsourcing platform
enhancements. Hence, our key contributions are:

– A crowdsourcing platform model which allows for agreement-aware task
processing.

– Algorithms for task scheduling and workers’ skill profile updates.
– Proof-of-concept implementation and evaluation of the approach in a simu-

lated environment.

The paper is organized as follows. In Sect. 2 we list work related to crowdsourcing
and scheduling. Section 3 outlines our platform model that provides agreement-
based task assignments to a crowd and also gives insights in the application of
current crowdsourcing platforms. Section 4 details the proposed crowdsourcing
model. A prototype of the platform is evaluated in Sect. 5. Section 6 concludes
the work.

QoS-Based Task Scheduling in Crowdsourcing Environments 299

2 Related Work

In this work we position crowdsourcing in a service-oriented business setting by
providing automation. In crowdsourcing environments, people offer their skills
and capabilities in a service-oriented manner. Major industry players have been
working towards standardized protocols and languages for interfacing with peo-
ple in SOA. Specifications such as WS-HumanTask [10] and BPEL4People [2]
have been defined to address the lack of human interactions in service-oriented
businesses [16]. These standards, however, have been designed to model inter-
actions in closed enterprise environments where people have predefined, mostly
static, roles and responsibilities. Here we address the service-oriented integration
of human capabilities situated in a much more dynamic environment where the
availability of people is under constant flux and change [6]. The recent trend
towards collective intelligence and crowdsourcing can be observed by looking at
the success of various Web-based platforms that have attracted a huge number
of users. Well known representatives of crowdsourcing platforms are the afore-
mentioned form Yahoo!, LiveOps, and Amazon. The difference between these
platforms lies in how the labor of the crowd is used.

Crowdsourcing. AMT, for example, offers access to a large number of crowd
workers. With their notion of HITs that can be created using a Web service-
based interface they are closely related to our aim of mediating the capabilities
of crowds to service-oriented business environments. Despite the fact that AMT
offers HITs on various topics [12], the major challenges are to find on request
skilled workers that are able to provide high quality results for a particular topic
(e.g., see [1]), to avoid spamming, and to recognize low-performers. To the best
of our knowledge, these problems are still not faced by AMT. In this work we
focus on those issues.

Another shortcoming of most existing real platforms is the lack of different
and comprehensive skill information. Most platforms have a simple measure to
prevent workers (in AMT, a threshold of task success rate can be defined) from
claiming tasks. In [19], the automated calculation of expertise profiles and skills
based on interactions in collaborative networks was discussed.

In [13], a quality management approach for crowdsourcing environments is
presented. Unlike our profile management, this work doesn’t support multiple
skills, but concentrates on a single correctness dimension. On the other hand,
if there is a specific need for such a quality management technique, the profile
management can thus be replaced with it by correllating the correctness and
suitability, as this module is decoupled from the rest of the platform as mentioned
in Sec. 3.

Scheduling is a well-known subject in computer science. The novel contribution
in this work is to consider multidimensional assignment and allocation of tasks.
A thorough analysis and investigation in the area of multidimensional optimal
auctions and the design of optimal scoring rules has been done by [7]. In [18]
iterative multi-attribute procurement auctions are introduced while focusing on

300 R. Khazankin et al.

mechanism design issues and on solving the multi-attribute allocation problem.
Focusing on task-based adaptation, [20] near-optimal resource allocations and
reallocations of human tasks were presented. Staff scheduling related to closed
systems was discussed in [5,9]. However, unlike in closed enterprise systems,
crucial scheduling information, i.e., the current user load or precise working
hours are usually not directly provided by the crowd. Instead, the scheduling
relevant information must be gathered by monitoring. The work in [15] details
the challenges for collaborative workforce in crowdsourcing where activities are
coordinated, workforce contributions are not wasted, and results are guaranteed.

3 Crowdsourcing Platform Model

In this section a model of a crowdsourcing platform (see Fig. 1) which supports
agreement-based task assignment is outlined. To begin with, there is a negotia-
tion that states the objectives between the consumer and the platform regarding
the coming task assignments. The life-cycle of a task begins at the consumer.
S/He submits a collection of tasks to the crowd. We assume that the tasks have
distinct skill requirements, thus, need to be assigned accordingly. After process-
ing, the result is returned to the consumer which is invited to provide a quality
feedback on the result.

The crowd
Consumer(s)

Task, skill requirements

Tasks

Result

Feedback

The crowdsourcing platform

Worker profiles
updated according to

received feedback

SLAs

Assigmnent
based on SLAs

and profiles

SLA

Fig. 1. Platform model

Once a consumer submits a task, s/he provides skill requirements along with
the task. In the assignment phase the platform estimates the matching between
tasks and workers. The more a worker’s skills match the requirements the more
this worker is suitable for the task. Also, in service-oriented environments a Ser-
vice Level Agreement (SLA) usually is negotiated which has influence on the
assignment strategy. An SLA includes temporal and quality requirements, and
preferences. The challenge for the platform is to negotiate the Service Level Ob-
jectives (SLOs) of an SLA related to possible assignments. These SLOs must
base on the observed and predicted behavior of the crowd and the current situ-
ation. In particular, already distributed tasks and the resulting task load must
be considered.

Therefore, active tasks are assigned not only according to suitability of work-
ers, but also, in line with the SLOs of the agreement. The agreement aims to

QoS-Based Task Scheduling in Crowdsourcing Environments 301

avoid or minimize the losses and to maximize the overall result’s quality. In other
words, the objective is to maximize the quality while enforcing the SLA. Also,
the availability of workers is taken into consideration by requesting short-term
information regarding their ability to perform tasks.

The suitability is calculated as a match between required skills for the task
and the skills of a worker. The skills of crowd workers are maintained in their
profiles by the platform management. Initially, skill information is provided by
the workers themselves.

However, this information must not be considered complete and reliable. Some
workers might not know about their real skill-levels or overestimate their capabil-
ities. Hence, the platform management must be allowed to monitor the activities
in the crowd and update the created profiles according to the observations. The
resulting real quality is reported by the consumer’s feedback. The difference be-
tween expected quality and required skills for the tasks hint the real skills of
the workers. Also, if an assignment is refused by a worker, despite his claim for
availability, various penalty sanctions can be imposed to this worker.

The rules for calculating the suitability are independent of the scheduling
logic. Thus, the suitability is represented by a single real value in [0, 1] (0 -
not suitable at all, 1 - perfectly suitable) which summarizes the expectations
regarding the quality of the result. This enables the technique, which is used to
calculate the suitability, to be completely decoupled from scheduling.

3.1 Integration of Service Level Agreements (SLAs)

Assignment control enables the platform to estimate the crowd occupancy and
to give certain guarantees to consumers. Such guarantees can be given in form
of SLAs, and allow to integrate crowdsourcing activities in service-oriented envi-
ronments. As SLAs are crucial for business process management, such a model
can substantially sustain the use of crowdsourced services in business processes.

Next, we discuss an outline of a WSLA1 document that could be exchanged
and agreed between consumer and crowd platform.

After the contract parties’ details, SchedulingPlatform and Consumer listed
in lines 4 to 11, Listing 1.1 states the contract items from line 12 to 20. These are
a collection of ServiceObjectType items including scheduling, operation descrip-
tion, and configuration, and also, the SLAParameters. Here, as an example the
parameter (TaskSkills) uses a crowd particular metric CompareSkills to com-
pare skill profiles of the workers to the skill required in the document. Important
to note, we extend the WSLA definition with our own namespace (task schedul-
ing platform tsp) defining xpath methods for expressions and type definitions
to comply with all requirements of the platform.

Listing 1.2 shows the agreement’s terms as Obligations of the contract includ-
ing some SLOs. An SLO consists of an obliged party, a validity period, and an
Expressions that can be combined with a logic expression (e.g., Or). The Value
tag in the predicates of WSLA is restricted to double. Hence, another extension

1 http://www.research.ibm.com/wsla/

302 R. Khazankin et al.

1 <wsla:SLA

2 xmlns:wsla="http://www.ibm.com/wsla" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

3 xmlns:tsp="http://www.infosys.tuwien.ac.at/tsp/" name="SLA4711">

4 <wsla:Parties>

5 <wsla:ServiceProvider name="SchedulingPlatform">

6 <!−− details −−>

7 </wsla:ServiceProvider>

8 <wsla:ServiceConsumer name="Consumer">

9 <!−− details −−>

10 </wsla:ServiceConsumer>

11 </wsla:Parties>

12 <wsla:ServiceDefinition name="CrowdService">

13 <wsla:Operation xsi:type="wsla:WSDLSOAPOperationDescriptionType" name="ScheduleTask">

14 <!−− schedule period −−>

15 <wsla:SLAParameter name="TaskSkills" type="tsp:SkillList" unit="double">

16 <wsla:Metric>CompareSkills</wsla:Metric>

17 </wsla:SLAParameter>

18 <!−− SLAParameter metrics for NrOfTasks, TaskQuality, Fee. Details: name, wsdl−location, binding −−>

19 </wsla:Operation>

20 </wsla:ServiceDefinition>

21 <!−− wsla Obligations −−>

22 </wsla:SLA>

Listing 1.1. Involved parties and body

with xpath methods allows us to provide more complex expressions for the values
(e.g., see Line 8). Generally, in an SLO an evaluation event defines the trigger for
the evaluation of the metric function. The content of the expressions connects
the pool of SLAParameters of the items to a predicate (e.g, GreaterEqual) and
threshold value (Value). In the example we define three objectives. The first,
sloSkills defines that the match between the task skill requirement skills
required and the selected potential worker’s skills must be greater or equal.
The second, sloQuality is a composed objective by an Or expression. The
agreement states, that either a defined number of tasks (100) is delivered at the
end of an agreed interval (e.g., wsdl:Months) or the focus of processing is on
the task’s quality, and hence, a result quality of at least 80% is expected. The
final objective sloFee obliges the consumer to confirm the quality of the result
and pay the related fee. In the example, similar to Line 8, the xpath method
getInput parses a document TaskDesc and returns the task’s fee. As the fee de-
pends also on the result, the result report TaskRes contains the reported quality.
Multiplied they give the final fee due.

3.2 Discussion

Generally, in our model, workers are more restricted than in market-oriented
crowdsourcing platforms. Still, such an approach provides adequate flexibility
for workers by allowing them to choose the time periods in which they are willing
to work. Thus, assuming a strong competition among workers, the model will be
feasible. Constantly increasing interest in crowdsourcing platforms [8] indicates
that such competition is quite realistic. Also, SLA-enabled services are higher
valued, therefore, the monetary compensation, and, thus, the competition can
be higher. The feedback provision from the consumer is of his/her own interest,

QoS-Based Task Scheduling in Crowdsourcing Environments 303

1 <wsla:Obligations>

2 <wsla:ServiceLevelObjective name="sloSkills" serviceObject="ScheduleTask">

3 <wsla:Obliged>SchedulingPlatform</wsla:Obliged>

4 <!−− Validity −−>

5 <wsla:Expression> <!−− skill requirements −−>

6 <wsla:Predicate xsi:type="wsla:GreaterEqual">

7 <wsla:SLAParameter>TaskSkills</wsla:SLAParameter>

8 <tsp:Value>tsp:getInput("TaskDesc")//TaskDefinition/skills required</tsp:Value>

9 </wsla:Predicate>

10 </wsla:Expression>

11 <wsla:EvaluationEvent>TaskAssignment</wsla:EvaluationEvent>

12 </wsla:ServiceLevelObjective>

13 <wsla:ServiceLevelObjective name="sloQuality" serviceObject="ScheduleTask">

14 <wsla:Obliged>SchedulingPlatform</wsla:Obliged>

15 <!−− Validity −−>

16 <wsla:Or>

17 <wsla:Expression>

18 <wsla:Predicate xsi:type="wsla:Equal">

19 <wsla:SLAParameter>NrOfTasks</wsla:SLAParameter>

20 <wsla:Value>100.0</wsla:Value>

21 </wsla:Predicate>

22 </wsla:Expression>

23 <wsla:Expression>

24 <wsla:Predicate xsi:type="wsla:GreaterEqual">

25 <wsla:SLAParameter>TaskQuality</wsla:SLAParameter>

26 <wsla:Value>0.8</wsla:Value> <!−− expected qty 80%−−>

27 </wsla:Predicate>

28 </wsla:Expression>

29 </wsla:Or>

30 <wsla:EvaluationEvent>TaskResult</wsla:EvaluationEvent>

31 </wsla:ServiceLevelObjective>

32 <wsla:ServiceLevelObjective name="sloFee" serviceObject="ScheduleTask">

33 <wsla:Expression>

34 <wsla:Obliged>Customer</wsla:Obliged>

35 <wsla:Predicate xsi:type="wsla:Equal">

36 <wsla:SLAParameter>Fee</wsla:SLAParameter>

37 <tsp:Value>

38 <![CDATA[tsp:getInput(”TaskDesc”)//Fee ∗ tsp:getInput(”TaskRes”)//Quality]]>

39 </tsp:Value>

40 </wsla:Predicate>

41 </wsla:Expression>

42 <wsla:EvaluationEvent>TaskResult</wsla:EvaluationEvent>

43 </wsla:ServiceLevelObjective>

44 <!−− agreed qualified actions on slo violations −−>

45 </wsla:Obligations>

Listing 1.2. Obligations and SLOs

as it positively affects the result quality. It can be provided not for all results
but selectively.

In this paper we don’t discuss the cost of the work and payments in detail.
Although it is an important factor, in our vision, it can be seamlessy integrated
into the platform. One design solution could be that the workers specify the
minimal cost for their work and the consumers would pay as much as they
want as in a traditional crowdsourcing platform. Thus, the more the customer is
willing to pay, the more workers would be considered for assignment, and, as it is
sensibly to assume, more suitable workers could be found. However, such a design
will not change the basics and the algorithms of our platform substantially. Thus,
for the sake of simplicity, we assume that all the jobs cost correspondingly to
their specified duration.

304 R. Khazankin et al.

4 Quality and Skill-Aware Crowdsourcing

This section explains in detail the quality and skill-aware crowdsourcing platform
architecture, which is a proof-of-concept implementation of the model described
in Sect. 3.

Skill profile
updating
module

Skill updating

Job assignment
The crowd

Availability
reporting

Job data

Feedback

Scheduling and
assignment

module

Consumer

Tasks (consisting of manifold jobs),
skill requirements, deadlines

Results
Worker profile
Skills
Availability

Worker profile
Skills
Availability

Worker profile
Skills
Availability

Profile manager

Job deadlines and
skill requirements

Worker skills
and availability

Active jobs

Job result
Jobs

1

2

3

4

Fig. 2. Platform architecture

The platform behavior can be summarized by the following steps (in the line
with the ones in Fig. 2):

1. A consumer submits a task that consists of manifold similar jobs. The con-
sumer also specifies required skills and the deadline for the task, so all the
jobs should be processed until this deadline. The task is added to active task
pool.

2. The scheduling module periodically assigns active jobs to workers according
to deadlines and suitability of workers.

3. When a job is done, the result is sent to the consumer.
4. The consumer can provide a feedback about the result quality. It is reported

to the skill profile updating module, which matches it with the expected
quality and corrects the worker skill profile if necessary.

Of course, the platform is intended for usage by multiple consumers, this fact is
not depicted for simplicity. A deterministic time model is used in the platform,
so the time is discreet and is represented by sequential equally long time periods.
A time period can represent any time duration like a minute, an hour, or a day.

4.1 Skills and Suitability

The system distinguishes a fixed set of skills. Each worker has a skill profile,
where each skill is described by a real number s ∈ [0, 1] which defines it quanti-
tatively (0 - lack of skill, 1 - perfect).

QoS-Based Task Scheduling in Crowdsourcing Environments 305

Each submitted task has the required skills specified. Each required skill is
also represented as a real number r ∈ [0, 1]. If r = 0 then the quality does not
depend on this skill. If r > 0 then the best outcome quality is expected in case if
the corresponding worker’s skill s is s >= r. If s < r then the expected quality
is affected in the inverse proportion to r − s. The quality is again represented
as a real number q ∈ [0, 1]. The suitability of a worker for a task is equal to the
expected outcome quality. The exact matching formula is shown below.

Let WSi - worker skills, RSi - required skills of a task, i = 1, N, N− number
of skills. Then the suitability of the worker to the task is calculated as

S = 1 −
∑
i∈M

Max((RSi − WSi)/RSi, 0)
|M | M : k ∈ M ⇔ k ∈ N, RSk > 0

Thus, the more worker’s skills are proportionally closer to the required skills of
a task, the more the worker is suitable to the task. If the worker’s skill is equal
or greater than the corresponding required skill, then this skill suits perfectly.

4.2 Worker and Consumer Communication

As the user interface is not the focus of our work, the communication with
consumers and workers is performed by means of web services. The full imple-
mentation of the platform can employ, e.g., a web interface developed on top of
these web services.

4.3 Scheduling

Scheduling is performed based on deadlines and skill requirements also derived
from an SLA. The objective of the scheduling module is to maximize the overall
quality, while fulfilling deadlines. The assumption is that missing a deadline can
not be justified by any quality gain, thus, meeting a deadline is the first-priority
objective, and the quality maximization is the second-priority objective.

Algorithm 1 describes a scheduling algorithm which is used in our platform.
The idea behind the algorithm is that the best quality is achieved when a task is
assigned to most suitable workers. The quality is higher when a task is performed
by a smaller number of best workers, but this number should not be too small, so
the task can be finished until the deadline. This number is calculated in toTake
for each active task. The tasks with earlier deadlines are assigned in the first
place. In an attempt to improve the algorithm’s efficiency, we tried a number of
heuristic extensions, such as:

– Based on reported short-time worker availability, assign less jobs at a given
time to wait for more suitable workers to become available (while avoiding
possible crowd “overloads”)

– Assign more jobs at a given time if the suitability of additional workers is
almost as good as the suitability of best workers.

– Having toTake numbers calculated, optimize the worker-task assignments
for each time period using an optimization framework.

306 R. Khazankin et al.

Algorithm 1. Greedy scheduling algorithm.
Require: currentT ime current time
Require: tasks active tasks
1: for task ∈ tasks in the order of ascending task.deadline do
2: stepsToDeadline = (task.deadline − currentT ime+1) / task.duration - 1
3: if stepsToDeadline > 0 then

4: if (task.deadline − currentT ime + 1) % task.duration) > 0 then
5: toTake = 0
6: else
7: toTake = Trunc(task.numberOfJobsToDo/stepsToDeadline)
8: end if
9: else
10: toTake = task.numberOfJobsToDo
11: end if
12: while toTake > 0 AND some workers are still available do
13: Assign a job of task to most suitable available worker for task
14: toTake = toTake − 1
15: end while
16: end for

However, as shown in Sect. 5, such extensions do not give a substantial improve-
ment. We believe that the reason of such a weak improvement is the size of
the crowd: if a worker cannot be assigned to a due task, in most of the cases
a good enough replacement for the worker can be found. Thus, we conclude
that a greedy algorithm is generally sufficient for scheduling in a crowdsourc-
ing environment. The refinement of the algorithm can be done according to the
particular crowd characteristics that can be estimated only when the system is
used by real users in the commercial operation.

4.4 Profile Management

The crowd workers’ profile management is of major importance in our assump-
tions. As mentioned before, the success of the scheduling algorithm partially
depends on the accuracy of the profile monitoring. At the beginning of her/his
membership at the crowdsourcing platform a user registers with a profile rep-
resenting the skills. Usually this information is not very accurate because users
tend to over-/underestimate their skills. Hence at runtime, a monitoring module
must run on-line and manage the profiles by updating the provided information.
It is necessary to avoid conflicts with the promised quality agreements (c.f.,
Sect. 3). This is a major challenge. The task processing results and the expected
quality outcome must be used as a reference for the real skills of a worker. The
quality expectations on the tasks result are often detailed in the task descrip-
tion. At the AMT, for example, the result feedback contains usually only a task
accept or reject. At our platform, with an agreement requiring the customer to
give a feedback on the quality, the feedback contains crucial information for the
Algorithm 2 that can be used to update the skills of the reported worker profiles.

As the scheduler requires skill knowledge the profile update is twofold. If the
worker only provided a low quality the update depends on the difference (Lines

QoS-Based Task Scheduling in Crowdsourcing Environments 307

Algorithm 2. Profile monitoring.
Require: QF quality feedback of the provider, QE quality expected by the provider
Require: worker processing worker and taskSkills required task skills
1: workerSkills ← worker.getSkills()
2: if QE > ϑq /* high quality result */ then
3: /* compare with latest history entry, update and continue on better QF */

4: entry ← setHistory(QF, taskSkills)
5: for skill s ∈ workerSkills do
6: reqSkill ← getTaskSkills(s)
7: diff ← |s − reqSkill| × αw

8: if s > reqSkill then
9: workerSkills.set(s + diff)
10: else
11: workerSkills.set(s− diff)
12: end if
13: end for
14: return
15: end if
16: /* low quality result */
17: wprofile ← setOfProfiles.get(worker) /* set of registered profiles */
18: diff ← QF/QE /* difference between the qualities */
19: for skill s ∈ workerSkills do
20: /* skill == 1 perfect knowledge */
21: if skill × diff <= 1 then
22: workerSkills.set(s× diff)
23: end if
24: end for

17-24). If the quality is above a certain threshold ϑq and is better than a previous
then we consider the required skills close to the workers own (Line 3-14). Hence,
the difference between the required and the worker’s own skills (weighed by the
factor αw) influence the worker’s skill update.

5 Experiments

To evaluate our platform, we set up a simulated environment that comprises a
crowd which perform tasks and consumers who submit tasks and provide the
feedback. We assigned a real skill set for each simulated worker to calculate
the real quality outcome (which consumers report) using the suitability formula
(see Sect. 4.1). The platform management had no access to the real skills, but
was only able to estimate workers’ skills based on the feedback provided by
consumers. We evaluated the average job quality in different setups, varying the
workload of the crowd, the availability of workers, the scheduling algorithms,
and the skill awareness.

Simulation of a real crowdsourcing environment is challenging due to the lack
of comprehensive statistical data in this area. Although we don’t rely on any
real data in our simulations, we tried our best to prognosticate the meaningful
simulation parameters based on our knowledge and experience.

308 R. Khazankin et al.

5.1 Experiment Setup

In our experiments we use a set of 10 skills for describing worker skills and task
skill requirements.

Customers. The customers submit tasks to the platform and provide the feed-
back on completed jobs. Tasks are submitted randomly while ensuring the aver-
age crowd workload and avoiding overloads.

Each task comprises skill requirements, number of jobs, and deadline. During
each time period of the simulation, if the Task Limit has not been reached yet,
a new task is submitted to the system with Task Concentration probability. The
job duration is calculated as Min(1+ abs(φ/2 ∗σ), σ+1), where φ is a normally
distributed random value with mean 0 and standard deviation 1. The deadline
is assigned randomly according to Steps To Deadline parameter. The number of
jobs is calculated so that the crowd workload is near equally distributed among
the tasks, and the average workload remains close to Intended Schedule Density.
The parameters and their values are described in Table 1.

Table 1. Task generation parameters

Name Description Value(s)
Tasks Limit The total number of submitted tasks 200
Job Duration Sigma (σ) Describes the deviation and the maximum for job

durations
20

Steps To Deadline Average maximum number of jobs of a task that
a single worker can finish until the deadline.

50

Task Concentration The probability of new task submission for each
time period.

0.35

Intended Schedule Density Target assignment ratio for each time period. 0.2 - 0.7
(step 0.1)

Skill requirements are generated so that each skill with approximately equal
probability either equals 0 which means that this skill is not required for the
task, or is in (0, 1] range. The random values for the (0, 1] range are normally
distributed (mean = 0.4, variance = 0.3).

The feedback that a consumer provides for a job is generated using the real
skills of the worker which were assigned for this job. In contrast to the estimated
skills, these real skills are unknown to the platform and are only used to simulate
the real outcome quality (by calculating the suitability with these skills). This
quality is thus reported as the feedback.

Crowd workers. The workers are assigned for jobs and return the result of
job processing. Each worker has the claimed skills that s/he initially reports to
the platform, and the real skills. The real skills are generated randomly with
normal distribution with 0 mean and variance of 0.3. Then, the reported skills
are initiated as real skills with injected error (normally distributed with mean
value equal to the real skill and variance of 0.2). The crowd size in experiments
was 1000 workers. This size is big enough to enclose the diversity of workers,
but still allows for fast simulation. We tried to use 10000 instead, but the results
did not change substantially. Workers can be unavailable at certain periods.

QoS-Based Task Scheduling in Crowdsourcing Environments 309

In our experiments we use a Workers Unavailability parameter which indicates
the mean ratio of unavailable workers for each period of time (values used: 0.2−
0.6, step 0.1). The busy periods are generated randomly, but have a continuous
form which reproduces human behavior. The amount of time that takes a worker
to finish the job is the Job Duration with injected variations. In our experiments
we used a value of 30%, which means that a job can be executed for 0.7− 1.3 of
job duration. This reflects the random nature of the real world.

5.2 Experiment Types and Results

The aim of the experiments is to show the advantages of the platform’s archi-
tecture. The first experiment type demonstrates the convenience of skill-based
scheduling to the ordinary (random) task assignment. The second experiment
type gives evidence of the skill update mechanism efficiency.

All the plots show the average job outcome quality for the resulting assignment
density which is calculated as total number of periods for all workers while they
were either unavailable or busy, divided by the difference between the first task
submission time and the latest deadline. Apart from where explicitly specified,
performed experiments contained no task deadline violations.

Various schedulers. To demonstrate the advantage of skill-based assignment,
a scheduler which mimics a market-like platform was compared with the greedy
scheduler and the heuristically-enhanced greedy scheduler (See Sect. 4). In
market-like scheduling, the assignment followed the logic that randomly cho-
sen workers were picking the most suitable for them active tasks. The results
are shown in Fig. 3(a). In tests with high schedule density (about 0.8 or more),
market-like assignment performed better than in tests with low density, because
workers had more tasks to choose from. However, about 15% of task deadlines
were violated in these tests, because workers aimed to fulfill their own prefer-
ences rather than the goals of the system. For the rest of the tests, the average
quality was 1.5 times better for skill-based scheduling in the large. This clearly
shows the benefit of skill-based scheduling. The heuristics did not improve the
greedy algorithm substantially, and for some tests even impaired it.

0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

Schedule Density

Q
u

a
lit

y

market-like
greedy
heuristic

(a) Various schedulers.

0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1.0

Schedule Density

Q
u

a
lit

y

no feedback
regular
real skill aware

(b) Skill update efficiency.

Fig. 3. Experimental results

310 R. Khazankin et al.

Skill update efficiency. To demonstrate the efficiency of skill update mecha-
nism, we compared the regular simulation which implements the logic described
in Sect. 4 (“regular” series) to upper and lower bounds. The series named “no
feedback” represents the lower bound and only the initial information on the
profiles is used for scheduling. An upper bound to the algorithm is shown by the
series of “real skill-aware”. In this case the exact skills of a worker are known
to the system. The improvement of the skill update mechanism over the lower
bound is evident and keeps performing better at any scheduling density. In the
experiments of Fig. 3(b) the improvement over no feedback remains between
10-15%. As Sect. 4.4 explains, the reason why it is never reaching real skill
awareness is twofold. First, the scheduling strategy need some input right from
start when only few feedback is available. Second, the feedback is a single value
that describes the performance depending on ten different skills. Also, a skill
value greater than required calculates the quality with the lowest value required.
Even if there was enough data an accurate calculation would not be feasible in
all cases. Thus, we decided to stick to a simpler quicker update algorithm that
provides almost constant quality improvement and, after all, supports quality
negotiation with a considerable and steady lower bound to make agreements.

The performance of scheduling and skill updating in a high workload test
(10000 workers and 1000 tasks) was good enough for a period size of one minute.
Thus, the performance is not a concern, since the real period size is likely to be
bigger (e.g., 10 - 60 minutes).

6 Conclusion and Future Work

In this paper we proposed a skill-aware crowdsourcing platform model which
allows to provide crowdsourcing services with SLAs and to control the task per-
formance quality. In contrast to existing crowdsourcing platforms such as AMT,
which follow a task market-oriented approach, our platform model is based on
services computing concepts. Such a model is typically applied in enterprise
workflow systems using, for example, the WS-HumanTask specification to de-
sign human interactions in service-oriented systems. However, WS-HumanTask
and related specifications lack the notion of human SLAs and task quality. In our
approach, negotiated SLAs and monitoring help to assign task requests to suit-
able workers. Thus, our platform ensures quality guarantees by selecting skilled
workers. We introduced the proof-of-concept implementation with particular al-
gorithms for task scheduling and worker profile management. The applicability
of the platform design was proved in a simulated environment. The experimental
results shows the clear advantage of skill-based scheduling in crowdsourcing, as
the average quality is 50% better in the large comparing to the case when the
workers choose tasks by themselves. The skill monitoring and updating mecha-
nism improves the overall quality by 10-15%.

In our future work we will focus on workload and workforce availability predic-
tions, SLA negotiation, and pricing in such scheduled crowdsourcing platforms.
Also, we plan to extend the boundaries of our previous work [14] to consider

QoS-Based Task Scheduling in Crowdsourcing Environments 311

the scenarios where the SLAs between the crowdsoucing platform and a busi-
ness process engine can be negotiated beforehand in an autonomic and adaptive
fashion.

References

1. Agichtein, E., Castillo, C., Donato, D., Gionis, A., Mishne, G.: Finding high-quality
content in social media. In: WSDM 2008, pp. 183–194. ACM (2008)

2. Agrawal, A., et al.: WS-BPEL Extension for People (BPEL4People) (2007)
3. Amazon Mechnical Turk (May 2011), http://www.mturk.com
4. Brabham, D.: Crowdsourcing as a model for problem solving: An introduction and

cases. Convergence 14(1), 75 (2008)
5. Caprara, A., Monaci, M., Toth, P.: Models and algorithms for a staff scheduling

problem. Math. Program. 98(1-3), 445–476 (2003)
6. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics.

Reviews of Modern Physics 81(2), 591–646 (2009)
7. Che, Y.: Design competition through multidimensional auctions. The RAND Jour-

nal of Economics 24(4), 668–680 (1993)
8. Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the world-

wide web. Commun. ACM 54, 86–96 (2011)
9. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering:

A review of applications, methods and models. European Journal of Operational
Research 153(1), 3–27 (2004), timetabling and Rostering

10. Ford, M., et al.: Web Services Human Task (WS-HumanTask), Version 1.0. (2007)
11. Howe, J.: The rise of crowdsourcing (June 2006), http://www.wired.com/
12. Ipeirotis, P.G.: Analyzing the Amazon Mechanical Turk Marketplace. SSRN eLi-

brary 17(2), 16–21 (2010)
13. Kern, R., Thies, H., Satzger, G.: Statistical Quality Control for Human-Based

Electronic Services. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.)
ICSOC 2010. LNCS, vol. 6470, pp. 243–257. Springer, Heidelberg (2010)

14. Khazankin, R., Schall, D., Dustdar, S.: Adaptive request prioritization in dynamic
service-oriented systems. In: Proceedings of the 8th International Conference on
Services Computing (to appear, 2011)

15. La Vecchia, G., Cisternino, A.: Collaborative Workforce, Business Process Crowd-
sourcing as an Alternative of BPO. In: Daniel, F., Facca, F.M. (eds.) ICWE 2010.
LNCS, vol. 6385, pp. 425–430. Springer, Heidelberg (2010)

16. Leymann, F.: Workflow-Based Coordination and Cooperation in a Service World.
In: Meersman, R., Tari, Z., et al. (eds.) OTM 2006. LNCS, vol. 4275, pp. 2–16.
Springer, Heidelberg (2006)

17. LiveOps (May 2011), https://www.livework.com/
18. Parkes, D., Kalagnanam, J.: Models for iterative multiattribute procurement auc-

tions. Management Science 51(3), 435–451 (2005)
19. Schall, D., Dustdar, S.: Dynamic Context-Sensitive Pagerank for Expertise Mining.

In: Bolc, L., Makowski, M., Wierzbicki, A. (eds.) SocInfo 2010. LNCS, vol. 6430,
pp. 160–175. Springer, Heidelberg (2010)

20. Sousa, J., Poladian, V., Garlan, D., Schmerl, B., Shaw, M.: Task-based adaptation
for ubiquitous computing. IEEE Transactions on Systems, Man, and Cybernet-
ics 36(3), 328–340 (2006)

21. Vukovic, M.: Crowdsourcing for Enterprises. In: Proceedings of the 2009 Congress
on Services, pp. 686–692. IEEE (2009)

22. Yahoo! Answers (May 2011), http://answers.yahoo.com/

http://www.mturk.com
http://www.wired.com/
https://www.livework.com/
http://answers.yahoo.com/

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 312–327, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Model Driven Security Analysis of IDaaS Protocols

Apurva Kumar

IBM Research – India, 4-Block C, Institutional Area, Vasant Kunj, New Delhi, India 110070
kapurva@in.ibm.com

Abstract. Offloading user management functions like authentication and autho-
rization to identity providers is a key enabler for cloud computing based servic-
es. Protocols used to provide identity as a service (IDaaS) are the foundation of
security for many business transactions on the web and need to be thoroughly
analyzed. While analysis of cryptographic protocols has been an active research
area over the past three decades, the techniques have not been adapted to ana-
lyze security for complex web interactions. In this paper, we identify gaps in the
area and propose means to address them. We extend an important belief logic
(the so-called BAN logic) used for analyzing security in authentication proto-
cols to support new concepts that are specific to browser based IDaaS protocols.
We also address the problem of automating belief based security analysis
through a UML based model driven approach which can be easily integrated
with existing software engineering tools. We demonstrate benefits of the
extended logic and model driven approach by analyzing two of the most
commonly used IDaaS protocols.

Keywords: Security Protocol Analysis, Identity Management, Model Driven
Security, Identity as a Service.

1 Introduction

Service providers on the Web are rapidly moving towards a model of focusing on
their core business and relying on partners for functions that are needed to support the
business. A major enabler for this trend is the existence of protocols that provide user
management services over the cloud. We refer to these as IDaaS protocols. While
initially limited to providing authentication (single sign-on), user management servic-
es are now being used for identity federation, authorization, sharing of user attributes
and content. Transactions on the web involving multiple providers often depend on
IDaaS protocols for their security needs and thus it becomes important that these pro-
tocols be thoroughly examined for the security guarantees they provide.

Important protocols in this space are Security Assertion Markup Language
(SAML) [2], OpenID [3] and more recently OAuth [4], but use of proprietary
solutions to address specific business to business collaboration requirements is not
uncommon. Currently, there is no common set of tools and techniques that can be
used to analyze security in these protocols and it requires a lot of skill to perform the
analysis. It is often when a protocol starts getting commonly used that it receives
enough attention for a thorough analysis, usually once an incident has been reported.

 Model Driven Security Analysis of IDaaS Protocols 313

We advocate need for analysis tools for standards based and custom identity services
that can be incorporated in the toolkit of a common solution designer so that the im-
plications of using a security mechanism in a solution are clearly understood.

Analysis of cryptographic protocols has been an active area of research in the past
three decades. We identify challenges in extending these approaches for web based
IDaaS protocols. A major challenge is the need to support users without identifying
keys (public or shared) which is a common situation in web transactions. Another
challenge is the need to support transport layer security (e.g. SSL/TLS), which forms
part of most web transactions as a primary construct (much like public and shared key
encryption in existing techniques). Finally, unlike typical cryptographic protocols,
user interactions play an important role in these protocols. Users perform actions like
submitting a request, signing in, accepting terms, clicking a link etc. When identities
are not global, establishing that a user has previously performed an action is often
more important than knowing its identity. Need for representing user actions in secu-
rity protocols was motivated in [17].

An important set of approaches for security protocol analysis are based on the Bur-
rows, Abadi, Needham (BAN) [1] logic which is used to express and reason about
beliefs for secure communication. It defines a logic based on statements about keys,
messages, principals and has inference rules which can be used to generate beliefs at
participants based on messages exchanged. We extend the belief logic in fundamental
ways to support concepts like users communicating over secure channel, authenticat-
ing using passwords and performing actions.

We also propose a Unified Modeling Language (UML) based, model driven ap-
proach for automating analysis of protocols that are analyzed using belief logics. The
approach allows us to analyze security in a wide range of protocols and transactions
using domain specific models as input. We show how representation of protocol
concepts and properties in the model can be used to simplify modeling and analysis.
Using UML as the basis for automating security protocol analysis ensures that our
approach can be easily integrated with the software development process. We demon-
strate the use of extended belief logic and model driven analysis by analyzing two of
the most well-known IDaaS protocols: SAML browser single sign-on protocol and the
OAuth [4] protocol.

The rest of the paper is organized as follows: Section 2 covers comparison with re-
lated work. Section 3 provides an overview of BAN logic. Section 4 describes the
extended logic proposed in this paper along with an analysis of SAML using the log-
ic. Section 5 describes the model driven analysis approach. In Section 6 we describe
analysis of the OAuth protocol. In Section 7, we discuss important conclusions from
our work.

2 Related Work

Approaches for security protocol analysis can be broadly classified under two
categories. Inference construction approaches attempt to use inference in specialized
logics to establish required beliefs at the protocol participants. The logic of authenti-
cation described in [1] was one of the first successful attempts at representing and
reasoning about security properties of protocols. In [6], minor improvements to the
logic’s syntax and inference rules are suggested to remove some ambiguity. Authors

314 A. Kumar

of [7] introduced the concept of ‘recognizability’. Logic in [5] introduces the concept
of possession along with belief and uses it to support constructs like ‘not originated
here’. In [8] authors attempt to consolidate good features from earlier belief logic
approaches. These logics have the advantage of being usually decidable and efficient-
ly computable. There have been efforts to automate verification for these logics. In
[9], a transformation of BAN logic and inference rules to first order formula is per-
formed and theorem prover SETHEO is used for finding proofs. In [10], the authors
attempt to embed BAN logic in EVES theorem prover.

Attack construction approaches on the other hand do not try to establish beliefs at
the participants but use model-checking techniques to construct attacks. The states
and transitions used for modeling the protocol include modeling the structure of the
message passing over the channel and a model of the intruder. The intruder is usually
based on a Dolev-Yao model [11], and is allowed to perform any sequence of opera-
tions such as data interception, concatenation, deconcatenation, encryption, decryp-
tion etc. These complexities result in such approaches suffering from state-space
explosion problem. Few works that are representative of this class of approaches are
mentioned below. The first such approach was introduced in [11] but the class of
protocols studied in this work was very limited. In [12] the author has modeled an
extension of Dolev-Yao model in a specialized PROLOG based model-checker. Other
approaches in this area include the use of FDR model checker for CSP [13] and use of
SAT based model-checking techniques to solve a simplified version of the protocol
insecurity problem [14]. We note that protocol modeling is generally quite complex in
these approaches and even the analysis stage often depends upon user inputs at vari-
ous stages of the state exploration process.

In our work we prefer to use the inference construction based approach for several
reasons. Firstly, attack construction approaches do not actually determine what the
protocol achieves but only whether a particular bad state (e.g. a secret being discov-
ered by intruder) is reachable. While this may at times be sufficient for authentication
problems, it is hard to specify goals of generic web transactions in this manner. Se-
condly, the higher abstraction level of inference based approaches allows us to focus
on the protocol flow rather than insecurities at the message level. For web transac-
tions, message level security is increasingly being addressed through transport level
security. Finally, browser-based protocols are harder to analyze in attack construction
based approaches that explicitly model the intruder, since it requires extending the
intruder model to incorporate browser-based attacks.

Another relevant work is the analysis of SAML in [15] but the author’s do not pro-
pose a generic framework for analysis of similar protocols.

3 Overview of Logic of Authentication

BAN is a logic of belief of honest principals participating in a security protocol. Since
our approach is an extension of the belief logic described in [1], we provide a brief
overview of BAN logic in this section.

BAN statements. A formula in BAN logic is constructed using operators from Table
1. P and Q range over principals. The two statements about keys represent atomic
statements. In all other statements X represents a BAN formula constructed using one
or more BAN operators.

 Model Driven Security Analysis of IDaaS Protocols 315

Table 1. Operators used in BAN logic. X represents a statement in BAN logic.

Notation Meaning Notation Meaning
|P X≡ P believes X KP Q←→ Shared key K

P X P sees X K Q Q has public key K

|~P X P said X { }
K

X X encrypted by K

|P X P controls X X X is fresh

The expression X means that the message X is fresh and has not been used before
the current run of the protocol. This is especially true for a nonce, a sequence number
or timestamp generated with this specific purpose. Nonces are used in protocols to
defeat replay attacks from previous executions of the protocol.

Inference Rules. There is a set of inference rules for deriving new beliefs from old
ones. E.g. the message-origin inference rule below states that if P knows that K is a
secret key between itself and Q and it sees a message X encrypted by K, then P is
entitled to believe that Q said X. A similar inference rule about public keys is also
provided where K-1 represents the private key corresponding to public key K.

1| , { }{ }

| |~ | |~

| , KK K

K P Q P XP Q P P X

P Q X P Q X

−≡

≡ ≡

≡ ←→

 (R1)

A nonce-verification rule (R2) states that, in addition if the message is known to be
fresh, then P believes that Q must still believe X. Further, the jurisdiction rule (R3)
states that, if in addition, P also believes that Q is an authority on the subject of X (i.e.
Q controls X), then P is entitled to believe X himself.

| |~ , |

| |

P Q X P X

P Q X

≡ ≡

≡ ≡ (R2)

| | , | |

|

P Q X P Q X

P X

≡ ≡ ≡

≡ (R3)

Idealization. Each message exchanged in the protocol is idealized into a BAN formu-
la representing meaning of the message including any facts that the sending of the
message implies. Consider for example, the second message in the Needham
Schroeder protocol [1] in which a server S sends a response to an initiator A contain-
ing a session key Kab, along with a message for another principal B encrypted using
B’s key containing the same session key and A’s identity. In typical Alice-Bob nota-
tion used in literature this can be expressed as:

:{ , , ,{ , } }
asbsa ab ab K KS A N B K K A→

where Na is a nonce value. Kas and Kbs represent keys shared between A and S, B and S
respectively. The message is idealized as follows:

:{ , (), }() { }, K KabKa ab
Kb

b
a s asKA B A BS A N A B→ ←← ⎯→ ←⎯→⎯→

316 A. Kumar

The idealization makes explicit that the server says that Kab is a shared key for com-
munication between A and B and also that it is fresh (due to the presence of
the nonce).

Analysis. Protocol analysis in inference construction approaches involves two main
tasks: (i) identification of an initial set of beliefs i.e. assumptions at each principal. (ii)
message-by-message manual reasoning based on combining formula (idealized mes-
sages) that a principle sees and what it knows using inference rules of the logic.

4 Extending Belief Logic

Our goal is to extend BAN for analysis of generic browser based web transactions.
This requires us to extend the logic of authentication in the following ways.

Supporting Principals without Identifying Keys. Existing techniques for security
protocol analysis require principals to possess identifying keys. However, it is com-
mon for users to authenticate to websites using passwords over secure connections. A
secure channel in this paper refers to a transport layer security mechanism e.g. SSL,
TLS that provides server authentication, confidentiality and integrity in message ex-
changes. We introduce a new sort (type) in the many sorted BAN logic called user
which represents the client side of a secure connection.

Support for Passing Domain Specific Information. There is often need for ex-
changing protocol specific information. The information could represent a role of a
participant, a set of authorizations required from another site etc. We allow this by
providing protocol specific parameters to be defined.

Support for User Actions and Secrets. While principals make statements signed
using identifying keys, users interact with principals (usually servers) over secure
channels. We define the concept of an action and allow it to be associated with a user.
We allow secrets to be associated with actions in order to identify a user that per-
formed an action (possibly at a different place or time). Actions are defined as Aname
(t1,t2..tn) where ti represents a sort (type) in the logic or a parameter name. A specific
action is SignIn (Principal) which represents user signing in as a principal.

The new concepts are represented using the notation described in Table 2.

Table 2. Additional operators used in our extended belief logic. Aname ranges over action
names, while Pname ranges over parameter names. Secure channel associated with a user is
identified by a suffix. New operators are allowed in formula X in inference rules R1-R3.

Notation Meaning Notation Meaning

P Uc
Δ←→

C is a secure channel be-
tween Uc and P.

X Aname
Secret X is associated with
action Aname.

CX
Formula X exchanged over
secure channel C. CU X

Uc possesses secret X.

1((..))
C

nAname t t

U
 UC performs action Aname Pname val= Parameter Pname has

value ‘val’.

 Model Driven Security Analysis of IDaaS Protocols 317

4.1 Reasoning about Users, Actions and Secrets

The following new inference rules have been defined to reason about users, their ac-
tions and associated secrets.

Table 3. Inference rules added to the logic. The description assumes that P is connected to Uc
over a secure channel C.

Inference Rule (R4, R5, R6) Description

| ()

| (), C

C

C Aname

P U Anam

P P U P

e

Δ

≡

≡ ←→

If P sees an action on the channel C
it believes Uc performed the action.

), | (),

| (

(

)

|
C

C

CAname U

name

P P P SP S

P U A

Δ≡ ≡

≡

←→ If P sees a secret associated with an
action on channel C, it believes Uc
performed the action.

(),

| ()

| (), |
C C CQSignIn P AnamP eP U

P Q Aname

P U
Δ≡

≡

≡←→ If P believes that Uc has already
signed in as Q, then any further
actions on C are associated with Q.

4.2 Example: Analysis of SAML Web Single Sign-On

We assume that all communication between client and servers is protected by a secure
channel. We introduce new parameters identifying roles of identity provider, Prov and
identity consumer, Cons and service, Service. We introduce the action Request (Ser-
vice) and use the action SignIn (Principal) defined in Section 4. We include only
those messages in the idealized version with target as SP (assertion consumer, C) or
IdP (assertion provider, P) since we are interested in beliefs only at these participants:

1

1

1 1

2 2

2 2

3

3

Message 1 : ()
Message 3 : { , }

Message 5 : ()
Message 7 : { , , (),

, }

,
,

C

P

C C

C CK

C C

C

CK

cp

cp

cp

U C Request S
U P N prov P cons C

U P N SignIn Q

U C N T T SignIn Q

prov P cons C

−

−

→
→ = =
→
→

= =

Fig. 1. The SAML single sign-on flow: user requesting service S at service provider (SP) site is
redirected to Identity Provider (IdP) with SAML request. After authenticating the user, IdP
redirects user back to SP site with a signed SAML token having the asserted identity (Q).

318 A. Kumar

The SAML request contains a request identifier and a timestamp which we combine
as a single nonce value Ncp in Message 3. Message 7 is the SAML response with to-
ken T, association of the token with the sign-in action performed by the user. We now
perform a BAN style analysis of the protocol. We start with the assumptions:

1 2

3

() ()
| |

| (| ()

| |
|

) | (|)
| (|

| |

)

P

C C

C

C

cp cp

K K

N N

C P P C

C

C C U P

P SignIn X P C prov
C P cons

P U

C C U
C P

≡ ≡
≡

≡ ≡
≡

≡

≡
≡

≡

←→ ←→
←→

The first three assumptions are about secure channels. The next say that both C and P
believe the nonce Ncp to be fresh. The next two statements are about C and P having
knowledge of the others public key. The last assumption is about C trusting P on the
subject of the SignIn action. The analysis is described in Table 4. The inference in the
last row says that C now believes that Uc3 has signed in as Q at P.

Table 4. SAML analysis for idealized messages. Receiver of message indicated in parentheses

Msg. Reasoning Rules Inference

1 (C)
 Combining message with as-

sumption about channel C1.
R4

1
(|)()

C
RequestC U S≡

3 (P) Combining message with as-
sumption about Kc and Ncp.

R1, R2
| | (,)P C prov P cons C≡ ≡ = =

3 (P)
 Using assumption about C

having control over prov.
R3 | ()P prov P≡ =

5 (P) Combining message with as-
sumption about channel C2.

R4 2
(|)()

C
SiginInP U Q≡

7 (C) Combining message with as-
sumption about Kp and Ncp

R1, R2
(),

| (
|

), | ()
P T

pro
Sigin

v P P
In Q

P cons C
≡

= ≡ =≡

7 (C) Using assumption about P’s
control over SignIn(X).

R3 (|)()SiginInC T Q≡

7 (C) Using the fact that T is ob-
served on secure channel C3.

R5
3

(|)()
C

SiginInC U Q≡

5 Model Driven Security Protocol Analysis

5.1 Automated Analysis of Belief Logics

Analysis of security protocols using a belief logic like BAN is often simple enough to
be carried out manually and message-by-message in a way similar to the SAML ex-
ample. Despite this there have been efforts to automate verification for these logics [9,
10]. We consider automation to be even more important for our logic which is not
restricted to authentication problem and is a bit more complex than BAN. Existing

 Model Driven Security Analysis of IDaaS Protocols 319

approaches like [9] perform mapping of BAN formula and inference rules to first-
order logic. The approach essentially transforms all the assumptions, messages and
inference rules into a single first order formula and feeds it to the theorem prover
SETHEO for proving implication of a required theorem. There are two problems with
such approaches. Firstly, combining formulae representing all the messages as de-
scribed above is unsafe because it results in loss of relative timing and it becomes
possible to use an inference rule to resolve a message based on information that be-
came available only later in the protocol run. Secondly, existing theorem provers are
not user-friendly enough to be incorporated in the software development process. For
these reasons, we propose a model driven approach for automated analysis of proto-
cols modeled using belief logics like BAN and its extensions.

5.2 Overview

Reasoning performed in belief logics like BAN is not very complex. Given a mes-
sage, the applicable inference rules and the sequence in which they apply is often
deterministic (e.g. R1 results in expressions that can be used with R2 which in turn
leads to expressions usable in R3). We thus follow a forward chaining approach to
discover all possible beliefs. We store beliefs at a principal using a model
representing sorts (types) in the logic and relationships between them. The algorithm
we use for combining messages with existing beliefs is aware of this model and
makes queries only to retrieve relevant facts e.g. if it sees a message encrypted with
K, it queries to find owners of K.

 The entities and relationships in the model are not fixed and can be specific to a
domain. This makes our approach model driven as the same analysis program works
with different protocol specific models without any change. The analysis program is
only impacted when new inference rules are added. Entities in the model correspond
to all entities that appear in a protocol description while relationships correspond to
beliefs established through a protocol execution. We call this the domain model of the
protocol. An instance of this model is used at each participant to represent its current
set of beliefs. This is termed as the belief graph of the participant.

The analysis program is given an idealized representation of the protocol to be ex-
amined, a domain model of the protocol and a set of assumptions. The program uses
unification algorithms that we discuss in Section 5.5, which process an idealized for-
mula by combining it with known facts available from the belief graph of the message
recipient on the basis of inference rules of the logic, to generate beliefs. The beliefs
are added to the belief graph of the participant. Once all the protocol messages have
been processed by the program, the belief graph at each protocol participant
represents its final set of beliefs.

5.3 Benefits of Model Driven Analysis

Ease of Use. The model driven analysis approach is based on UML which makes it
easy to integrate with existing CASE tools. Viewing belief graphs generated by the

320 A. Kumar

analysis program provides tremendous insight into the design of the protocol and
often provides hints on resolving security issues.

Simplifying Idealization. A protocol parameter can be mapped to a high level proto-
col specific concept in the model. This reduces complexity in each idealized expres-
sion where the concept is referred.

Representing Protocol Properties. Some properties of the protocol are important for
proving goals even though they are never communicated to the participants through
protocol messages. Use of idealization to represent such properties is both arbitrary
and error prone. We solve this problem by representing such properties in the model
itself by specifying constraints, thus removing the need for them to be artificially
communicated through idealized messages.

5.4 Modeling of Extended Belief Logic

Message handling algorithms that perform reasoning have to interact with the belief graph
to query existing beliefs and to add new ones. This requires statements representing belief
in the logic to be mapped to the model. Table 5 shows how atomic sentences of the logic
are modeled in the graphical representation. Each important sort (type) of the logic is
mapped to a UML class (stereotyped entity) and statements are mapped to associations.
The important classes are Principal, SharedKey, AsymKey, Token, User, Request, Ac-
tion. Token is used to represent both secrets and nonces, AsymKey to represent pub-
lic/private keys, while Request is used to represent protocol sessions. Action is an abstract
class and is the super class for specific actions like SignIn.

Table 5. Mapping of statements of the logic to graphical UML syntax. Multiplicity at
association ends is used to limit ownership of entities like keys. Trust types in parentheses.

Statement Graphical Representation Statement Graphical Representation

KP Q←→
(SkeyTrust)

K Q

(PkeyTrust)

X
(NonceTrust)

U X�
(HolderTrust)

,U Action

X Action
 (Action-
Trust)

U SignIn

X SignIn

 (SigninTrust)

P Uc
Δ←→

(SecChannel
Trust)

 Model Driven Security Analysis of IDaaS Protocols 321

Note that statements that include operators ,{ } ,
K C

appear only in premises of

the inference rules of the logic are not required to be modeled as we are only interest-
ed in beliefs established at the participants. Jurisdiction statements are not mapped to
the model. Instead each statement in Table 5 is associated with a trust type. An N x N
table (where N is the number of participants) is used to represent trust between partic-
ipants. An element of the table, TRUST [P,Q] is a set of trust types with each type t
such that | |P Q t≡ . The table is provided as one of the assumptions to the analysis
program.

5.5 Unification Algorithms

Reasoning involves unifying (combining) the message and one or more existing be-
liefs with the inference rules of the logic to obtain new beliefs. We now describe the
message handling algorithms which process an idealized message, perform reasoning
to obtain beliefs and store the beliefs in a participant’s belief graph.

Handling Encrypted Formula. The algorithm HANDLEENCRFORMULA takes an
encrypted statement of the logic, and the name of the principal that receives the
formula as its input. Any encrypted sub-formulae are removed (routine
EXTRACTENCRFORMULA) and processed using a recursive call. The rest of the algo-
rithm corresponds to applying the nonce-verification and message-origin rules. Any
tokens which represent fresh values or secrets as per the belief graph are extracted
(GETTOKEN). If no nonces are found, then the message is not fresh and no beliefs can
be established. Otherwise, the origin of the assertion is identified using the encryption
key for the message. In the event the encryption key is not known, the message is
rejected. If the key is the public key owned by the principal itself, then any secrets in
the message are used to identify the origin. Once the source subject is identified,
ADDBELIEF is called for each sub-formula.

Handling Secure Channel Messages. The algorithm HANDLESECUREMSG
takes a statement, a secure channel identifier for the channel on which it is received
and the principal where it is received as the input. It is determined whether the
channel is known to the principal (routine GETCHANNEL). If the principal is act-
ing as a client, then the other end of the channel is the subject principal and an at-
tempt is made to add each sub-formula using ADDBELIEF. If the principal is act-
ing as a server, the other end represents a user and the formula could either be an
action or a secret. If it is an action, the ADDACTION routine is called. In case of
secret any associated actions are inferred to be performed by the user and added to
the participant’s belief graph. The ADDBELIEF routine adds beliefs (including
beliefs about other participants beliefs e.g. | |A B≡ ≡) to a participant belief graph

applying jurisdiction rule in the process.

322 A. Kumar

procedure HANDLEENCRFORMULA(stmt, principal)
 local variables: m, formulae,
 subject ← null, candidates ←{}, nonces←{}, secrets←{}
 while (m ← EXTRACTENCRFORMULA(stmt)) do
 HANDLEENCRFORMULA(m, principal)
 GETTOKENS(stmt, principal, nonces, secrets)
 if (nonces = {}) then return
 key ← KEY[stmt], formulae ← FORM[stmt], type← KEYTYPE [stmt]
 candidates ← GETPRINCIPALS(key)
 if (candidates = { }) return
 if (candidates = {principal} and SIZE[secrets]=1) then
 candidates ← GETPRINCIPALS(secrets)
 if (candidates = {principal, Q}) then subject ← Q
 else if (candidates = {Q}, type = Private) then subject ← Q
 if (subject = null) then return
 ADDBELIEF(formulae, subject, principal) return

procedure HANDLESECUREMSG (stmt, cid, principal)
 local variables: m, formulae, subject, channel ←null, action←null
 while (m ← EXTRACTENCRFORMULA(stmt)) do
 HANDLEENCRFORMULA(m, principal)
 channel ← GETCHANNEL(cid, principal), subject ← CLIENT[channel]
 if (channel = null) then return
 formulae ← FORM[stmt]
 if (subject= principal) then
 ADDBELIEF(formulae, SERVER[channel], principal) return

 for each (m ∈ formulae) do
 if (ACTION?(m)) then aname = ACTIONNAME[m]
 if (aname = SignIn) then
 ADDSIGNINACTION(subject, AUTHNAME[m], principal)
 else ADDACTION(subject, m, principal)
 else if (SECRET?(m)) then action = GETACTION(m)
 if (action = null) then ADDSECRET(subject, m, principal)
 else ADDACTION(subject, m, principal)
 return

procedure ADDBELIEF(formulae, subject, principal)
 for each (f ∈ formulae) do
 ADDSTATEMENT(f, subject, principal)
 if (TRUSTTYPE[f] ∈ TRUST[principal, subject])
 ADDSTATEMENT(f, principal, principal)
 return

 Model Driven Security Analysis of IDaaS Protocols 323

6 OAuth Protocol Analysis

The OAuth protocol [4] provides a web based workflow that allows a user to tempo-
rarily delegate privileges of his account at a provider to a third party without sharing
his login credentials. Privileges could mean access to pictures, contacts, blogs etc.
OAuth is the primary protocol used by Google, Facebook and Twitter to allow third
party access to their users’ content. In this paper, we use OAuth to refer to the original
version (1.0) of the protocol.

We show the concrete and idealized protocols next to each other in Fig. 2. Message
2 represents registration of delegation request by C at P. The message signed by C,

1

2
1

2

2

1 1

2

3

1 : : ()
2 : { , , } : { , ,

}
3 : :
4 : ,
5 : :

c C c

c C

b C p

b p

b p

C C

c

c

C

C

Kc

K

Message U C Access Service S U C Request S

Message C P R N url C P N Privileges R

Callback url
Message P C N P C OAuthTkn N
Message C U N url
Message U P N U P N

−

−

→ →
→ → =

=
→ → =
→
→ →

4

3

3 3

3 3

4

6 :
7 : , : ()
8 :
9 : : (,)
10 : ,
11 : :

b c

b C p

C

C C

C C

C

Message P U Login request
Message U P Q password U P SiginIn Q
Message P U Request for delegation
Message U P Delegate R to C U P Delegate R C
Message P U N url
Message U C N U C N
Mes

→
→ →
→
→ →
→
→ →

5

12 : ,
13 :
14

,):
:

(
b

C

sage C P N Access Content
Message P C Content P C x
Message C U Provide Servi

Delegat
S

e
ce

R C
→
→ →
→

Fig. 2. OAuth protocol flow. Steps 1-4: User requests service S from C which requires access
privileges R to the user account at P. C registers delegation request with P and gets returned a
OAuth token. C redirects user to P with the token. Steps 5-10: User is requested to sign in and
delegate access and then redirected back to C with the token. Steps 11-14: C uses the token to
get user content from P and provides service S to the user. C1-C5 represents secure channels.

324 A. Kumar

contains list of privileges to be delegated, a callback URL (urlc) and a nonce Nc, iden-
tifying the request. In response P returns the request token, Nb.

An execution of the protocol can be uniquely identified as OAuth(C, urlc, S, R, Nc,
Nb, Q). We name the protocol parameters as Consumer, Callback, Service, Privileges,
Nonce_c, OAuthTkn, AuthPrincipal. We only use parameters when there is no statement
in the logic which can succinctly represent a message. In the idealized protocol we use
only the following three parameters: Callback, Privileges and OAuthTkn. The user per-
forms three actions in the protocol: request for service in message 1, signing in as Q in
message 7 and delegating privileges to C in message 9. We define the following action
types, Request(Service), SignIn(Principal) and Delegate (Privileges, Principal). In-
stances of these action types are Request(S), SignIn(Q) and Delegate(R, C).

Since we are interested only in beliefs established at principals C and P, we ignore
messages with destination as user during idealization. The idealization of message 13
is interesting. P’s returning requested user content to C implies that some user x has
performed the delegation.

Fig. 3. Domain model for OAuth. Idealization is greatly simplified using parameters and ac-
tions that map to the domain model.

The domain model of the protocol is shown as a UML class diagram in Fig. 3. Ent-
ities Principal, User, Action, Token, AsymKey are from the mapping described in
Section 5.4. Service, Privileges and OAuthTkn (sub-class of Token) are protocol
specific entities. Classes representing the three specific user actions are defined and
associated with other entities like Service, Privilege, Principal. The target rela-
tionship is used to identify the User which is provided the service in Message 14. The
constraints on the model are described in Table 6. Property 1 in Table 6 is a property
of the OAuthTkn. We can see how mapping parameter OAuthTkn to class OAuthTkn
simplifies idealization by replacing two statements: Nb, Nb Request(S). Property
2 is an example of how protocol properties which are useful for proving goals but do
not appear in an idealized message can be represented in the model.

 Model Driven Security Analysis of IDaaS Protocols 325

Table 6. Constraints representing properties and goals of the protocol. Object constraint
Language (OCL) expressions are used to specify constraints.

Type OCL Expression Meaning
Definition def delegator : User = self.actions->

select(OclAsType(DelegationAction)).
performedBy

Identify user who performed
delegation as delegator.

Property 1 context OAuthTkn
self.isFresh = true and self.action-> se-
lect(OclAsType(RequestAction))

An OAuth Token is fresh as
well a secret associated with
Request action.

Property 2

context Request delegator =self.freshvals->
select(OCLAsType(OAuthTkn)).holder

User who delegates privileges
also holds OAuth token.

Goal context Request self.target = delegator Service is given to delegator.

Fig. 4 shows the belief graph at C after the automated analysis program has
processed all idealized message using HANDLESECUREMSG. We can see that the goal
constraint in Table 6 is not satisfied since user UC4 (which is the target) is not asso-
ciated with the delegation action. Inspecting Fig. 4, it is not hard to find an assump-
tion, which if true, can satisfy the goal. User x, associated with delegation action, is
also holder of OAuth token as are users UC1 and UC4. If one assumes that UC1 which
originally received the token does not share the token then all user instances shown in
Fig. 4 can be merged and we can immediately see that the target and delegator links
point to the same user instance. However, this is clearly an unreasonable assumption
to make for an unauthenticated user.

A security issue [16] was reported with the original version of OAuth which was
fixed in the next release of the protocol. The attack works as follows: The attacker can
perform steps 1-4 (see Fig. 2) of the protocol with the Consumer, send a link with the
request token to the victim (who has an account with the provider) which then per-
forms steps 5-10 and then rejoin the protocol from step 11 onwards. This quite clearly
exploits the invalid assumption identified above.

Fig. 4. Belief graph generated by the analysis program for Consumer C. Objects names are
derived from idealized expressions. Broken lines represent assumptions. For other links the
message number that resulted in the belief is identified in parentheses.

326 A. Kumar

7 Conclusion

Protocols that provide user management services to third parties are central to the
cloud computing model and analyzing their security properties is extremely impor-
tant. We identified some unique aspects of these protocols that do not allow analysis
methods for cryptographic protocols to be applied. We find that existing inference
construction based approaches are the closest to satisfying the need. We extend an
important belief logic that has been used successfully for analyzing numerous crypto-
graphic protocols for analysis of web based identity services. We provide algorithms
to automate analysis for belief based analysis approaches. We demonstrate the ex-
tended logic and model driven approach through analysis of two of the most well
known browser based IDaaS protocols. UML has particularly wide acceptance in the
software industry and supported by all major CASE tools. Use of UML for automat-
ing security analysis allows third party developers to appreciate implications of using
standard or custom identity services in their solutions.

References

1. Burrows, M., Abadi, M., Needham, R.: A Logic of Authentication. ACM Transactions on
Computer Systems (TOCS) 8(1), 18–36 (1990)

2. OASIS SAML Specifications. SAML v2.0, Core, http://saml.xml.org/saml-
specifications

3. OpenID 2.0 Specifications,
http://openid.net/specs/openid-authentication-2_0.html

4. The OAuth 1.0 Protocol. IETF RFC: 5849,
http://www.rfc-editor.org/rfc/rfc5849.txt

5. Gong, L., Needham, R., Yahalom, R.: Reasoning about Belief in Cryptographic Protocols.
In: Proceedings 1990 IEEE Symposium on Research in Security and Privacy (1990)

6. Abadi, M., Tuttle, M.R.: A semantics for a logic of authentication. In: Proceedings of the
ACM Symposium of Principles of Distributed Computing (1991)

7. Kessler, V., Wedel, G.: AUTLOG: An advanced logic of authentication. In: Proceedings
of Computer Security Foundation Workshop VII, pp. 90–99 (1994)

8. Syverson, P., van Oorschot, P.: On unifying some cryptographic protocol logics. In: Pro-
ceedings of the Symposium on Security and Privacy, Oakland, CA, pp. 14–28 (1994)

9. Schumann, J.: Automatic Verification of Cryptographic Protocols with SETHEO. In:
McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 831–836. Springer, Heidelberg
(1997)

10. Craigen, D., Saaltink, M.: Using EVES to analyze authentication protocols. Technical Re-
port TR-96-5508-05, ORA Canada (1996)

11. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inform.
Theory IT-29, 198–208 (1983)

12. Meadows, C.: Applying formal methods to the analysis of a key management protocol.
Journal of Computer Security 1, 5–53 (1992)

13. Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR.
In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–166. Springer,
Heidelberg (1996)

 Model Driven Security Analysis of IDaaS Protocols 327

14. Armando, A., et al.: An Optimized Intruder Model for SAT-based Model-Checking of Se-
curity Protocols. Elec. Notes in Theoret. Comp. Sci. 125(1) (March 2005)

15. Groß, T.: Security analysis of the SAML single sign-on browser/artifact profile. In: Pro-
ceedings of 19th ACSAC 2003, pp 298–307. IEEE Computer Society Press (2003)

16. Hammer-Lahav, E.: Explaining the OAuth Session Fixation Attack,
http://hueniverse.com/2009/04/explaining-the-oauth-session-
fixation-attack/

17. Kumar, A.: Integrated Security Context Management of Web Components and Services in
Federated Identity Environments. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.)
ICSOC 2008. LNCS, vol. 5364, pp. 565–571. Springer, Heidelberg (2008)

Credibility-Based Trust Management

for Services in Cloud Environments

Talal H. Noor and Quan Z. Sheng

School of Computer Science,
The University of Adelaide, Adelaide SA 5005, Australia

{talal,qsheng}@cs.adelaide.edu.au

Abstract. Trust management is one of the most challenging issues in
the emerging cloud computing. Although many approaches have been
proposed recently for trust management in cloud environments, not much
attention has been given to determining the credibility of trust feedbacks.
Moreover, the dynamic nature of cloud environments makes guarantee-
ing the availability of trust management services a difficult problem due
to the unpredictable number of cloud consumers. In this paper, we pro-
pose a framework to improve ways on trust management in cloud envi-
ronments. In particular, we introduce a credibility model that not only
distinguishes between credible trust feedbacks, but also has the ability
to detect the malicious trust feedbacks from attackers. We also present
a replication determination model that dynamically decides the opti-
mal replica number of the trust management service so that the trust
management service can be always maintained at a desired availability
level. The approaches have been validated by the prototype system and
experimental results.

Keywords: Trust Management, Cloud Computing, Credibility Model,
Service Availability.

1 Introduction

In recent years, cloud computing has been receiving much attention as a new
computing paradigm for providing flexible and on-demand infrastructures, plat-
forms and software as services [2,6]. Both the public and the private sectors can
benefit from the adoption of cloud services. For instance, it only took 24 hours,
at the cost of merely $240, for the New York Times to archive its 11 million
articles (1851-1980) using Amazon Web Services1.

Given the fact of the accelerated adoption of cloud computing in the industry,
there is a significant challenge in managing trust among cloud providers, service
providers, and service requesters. Indeed, trust is one of the top obstacles for the
adoption and the growth of cloud computing [2,6,14]. Recently, a considerable
amount of research works have recognized the significance of trust management
1 http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-

fun/

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 328–343, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Credibility-Based Trust Management for Services in Cloud Environments 329

and proposed several solutions to assess and manage trust based on trust feed-
backs collected from participants [14,7,26,9]. However, one particular problem
has been mostly neglected: to what extent can these trust feedbacks be credi-
ble. On the one hand, it is not unusual that a trust management system will
experience malicious behaviors from its users. On the other hand, the quality of
the trust feedbacks differs from one person to another, depending on how expe-
rienced she is. This paper focuses on improving ways on the trust management
in cloud environments. In particular, we distinguish the following key issues of
the trust management in cloud environments:

– Trust Robustness. Determining the credibility of trust feedbacks is a sig-
nificant challenge due to the overlapping interactions between service re-
questers, service providers, and cloud providers. This is true because cloud
service interactions are dynamic. It is more likely that a cloud consumer
has many interactions with the same cloud service, leading to multiple trust
feedbacks to the cloud service. In addition, it is difficult to know how expe-
rienced a cloud consumer is and from whom malicious trust feedbacks are
expected. Indeed, the trust management protection still requires extensive
probabilistic computations [29,16] and trust participants’ collaboration by
manually rating trust feedbacks [19].

– Availability of the Trust Management Service. In a cloud environ-
ment, guaranteeing the availability of the trust management service is a dif-
ficult problem due to the unpredictable number of cloud consumers and the
highly dynamic nature of the cloud environment. Consequently, approaches
that requires understanding of the trust participants’ interests and capabil-
ities through similarity measurements [25] are inappropriate in the cloud
environment. Trust management systems should be adaptive and highly
scalable.

– Trust Feedback Assessment and Storage. The trust assessment of a
service in existing techniques is usually centralized, whereas the trust feed-
backs come from distributed trust participants. Trust models that follow a
centralized architecture are more prone to several problems including scal-
ability, availability, and security (e.g., Denial of Service (DoS) attack) [13].
Given the open and distributed nature of cloud environments, we believe
that centralized solutions are not suitable for trust feedback assessment and
storage.

In this paper, we overview the design and the implementation of the trust man-
agement framework. This framework helps distinguish between credible trust
feedbacks and malicious trust feedbacks through a credibility model. It also
guarantees high availability of the trust management service. In a nutshell, the
salient features of the framework are:

– A Credibility Model. We develop a credibility model that not only dis-
tinguishes between trust feedbacks from experienced cloud consumers and
amateur cloud consumers, but also has the ability to detect the malicious

330 T.H. Noor and Q.Z. Sheng

trust feedbacks from attackers (i.e., who intend to manipulate the trust re-
sults by giving multiple trust feedbacks to a certain cloud service in a short
period of time).

– A Replication Determination Model. High availability is an important
requirement to the trust management service. We propose to spread replicas
of the trust management service and develop a replication determination
model that dynamically determines the optimal number of trust management
service replicas, which share the trust management workload, thereby always
maintaining the trust management service at a desired availability level.

– Distributed Trust Feedback Assessment and Storage. To avoid the
drawbacks of centralized architectures, our trust management service allows
trust feedback assessment and storage to be managed in a distributed way.
Each trust management service replica is responsible for trust feedbacks
given to a set of cloud services.

The remainder of the paper is organized as follows. Section 2 overviews the re-
lated work. Section 3 briefly presents the design of the trust management frame-
work. Section 4 details the trust management service, including the distributed
trust feedback collection and assessment, as well as the replication determination
model for high availability of the trust management service. Section 5 describes
the details of our credibility model. Finally, Section 6 reports the implementation
and several experimental evaluations and Section 7 provides some concluding
remarks.

2 Related Work

Several research works recognized the significance of trust management [15,28,13].
In particular, trust management is considered as one of the critical issues in cloud
computing and is becoming a very active research area in recent years [17,21,14,5].

Several trust management approaches were proposed as policy-based trust
management. For instance, Hwang et al. [14] proposed a security aware cloud
architecture that uses VPN or SSL for communication security, focusing on
both the cloud provider’s and the cloud consumer’s perspectives. In the cloud
provider’s perspective, the proposed architecture uses the trust negotiation ap-
proach and the data coloring (integration) using fuzzy logic techniques. In the
cloud consumer’s perspective, the proposed architecture uses the Distributed-
Hash-Table (DHT)-based trust-overlay networks among several data centers to
deploy a reputation-based trust management technique. Brandic et al. [5] pro-
posed a novel approach for compliance management in cloud environments to
establish trust between different parties. The centralized architecture focuses on
the cloud consumer’s perspective that uses compliant management to help cloud
consumers to have proper choices when selecting cloud services. Unlike previous
works that use centralized architecture, we present a credibility model support-
ing distributed trust feedback assessment and storage. This credibility model
also distinguishes between trustworthy and malicious trust feedbacks.

Credibility-Based Trust Management for Services in Cloud Environments 331

Other trust management approaches were proposed as reputation-based trust
management. For example, Conner et al. [9] proposed a trust management frame-
work for the service-oriented architecture (SOA) that focuses on the service
provider’s perspective to protect resources from unauthorized access. This frame-
work has a decentralized architecture that offers multiple trust evaluation met-
rics, allowing service providers to have customized evaluation of their clients
(i.e., service requesters). Malik and Bouguettaya [20] proposed reputation as-
sessment techniques based on the existing quality of service (QoS) parameters.
The proposed framework supports different assessment metrics such as majority
rating, past rating history, personal experience for credibility evaluation, etc.
Unlike previous works that require extensive computations or trust participants’
collaboration by rating the trust feedbacks, we present a credibility model that
include several metrics namely the Majority Consensus and the Feedback Density
which facilitates the determination of credible trust feedbacks. We were inspired
by Xiong and Liu who differentiate between the credibility of a peer and the
credibility of a feedback through distinguishing several parameters to measure
the credibility of the trust participants feedbacks [30]. However, their approach
is not applicable in cloud environments because peers supply and consume ser-
vices and they are evaluated on that base. In other words trust results are used
to distinguish between credible and malicious feedbacks.

3 The Trust Management Framework

We propose a trust management framework based on the service-oriented archi-
tecture (SOA). In particular, our framework uses Web services to span several
distributed trust management service nodes. Trust participants (i.e., the cloud
consumers) can give their trust feedbacks or inquire about a certain cloud ser-
vice’s trust results using Simple Object Access Protocol (SOAP) or REST [24]
messages. We design our framework in this way because of the dynamic nature of
cloud environments (e.g., new cloud consumers can join while others might leave
around the clock). This requires the trust management service to be adaptive
and highly scalable in order to collect the trust feedbacks and update the trust
results constantly. Figure 1 depicts the main components of the trust manage-
ment framework, which consists of two different layers, namely the Service Layer
and the Service Requester Layer.

The Service Layer. This layer represents the big umbrella which includes cloud
services (i.e., IaaS (Infrastructure as a Service), PaaS (Platform as a Service),
and SaaS (Software as a Service)), e-services (e.g., booking a flight) and the
trust management service where a service requester can give trust feedbacks to
a particular service. Interactions within this layer are considered as Cloud Service
Interaction and Trust Interaction.

The Service Requester Layer. This layer consists of different service requesters
who consume services in the service layer. For example, a user can book a flight

332 T.H. Noor and Q.Z. Sheng

�

Fig. 1. Architecture of the Trust Management Framework

through an e-service provided by a certain airline company. A new startup that
has limited funding can consume cloud services (e.g., hosting their services in
Amazon S3). Service requesters can give trust feedbacks of a particular cloud
service by invoking the trust management service (see Section 4).

Our framework also contains a Registry Service (see Figure 1) that has the
following responsibilities:

– Service Advertisement. Both cloud providers and service providers are able
to advertise their services through the Service Registry.

– Service Discovery. Service providers, cloud providers, and service requesters
are able to access the Service Registry to discover services.

Credibility-Based Trust Management for Services in Cloud Environments 333

3.1 Assumptions and Attack Models

We assume that communications are secure. Attacks that occur in the com-
munication security level such as Man-in-the-Middle (MITM) attack [3] are be-
yond the scope of this work. We also assume that cloud consumers have unique
identities. Attacks that use the notion of multiple identities (i.e., the Sybil at-
tack [12]) or Whitewashing attack that occur when the malicious cloud con-
sumers (i.e., attackers) desperately seek new identities to clean their negative
history records [18] are also beyond the scope of this work. In this paper, we
only consider two types of malicious behaviors including Self-promoting attack
and Slandering attack.

Self-promoting Attack. This attack arises when the malicious cloud consumers
attempt to increase their trust results [10] or their allies in order to achieve their
common interests. In the proposed framework this type of attack can happen in
two cases. The first case (Individual Collusion) occurs when a certain malicious
cloud consumer gives numerous fake or misleading trust feedbacks to increase the
trust results of a certain cloud service. The second case (Collaborative Collusion)
occurs when several malicious cloud consumers collaborate to give numerous fake
or misleading trust feedbacks.

Slandering Attack. This attack is considered as the opposite of the Self-promoting
attack that happens when the malicious cloud consumers try to decrease the trust
results of certain cloud service [4]; this aggressive behavior is taken because of
jealousy from competitors. In the proposed framework this type of attack can
also happen either through Individual Collusion or Collaborative Collusion.

Service requesters can give trust feedbacks for a certain cloud service or send
a query to the trust management service regarding a certain cloud service. In
the following sections, we will focus on introducing our design of the trust man-
agement service.

4 Trust Management Service

4.1 Trust Feedback Collection and Assessment

In our framework, the trust behavior of a cloud service is represented by a
collection of invocation history records denoted as H. Each cloud consumer c
holds her point of view regarding the trustworthiness of a specific cloud service
s in the invocation history record which is managed by a trust management
service. Each invocation history record is represented in a tuple that consists
of the cloud consumer primary identity C, the cloud service identity S, a set of
trust feedbacks F and the aggregated trust feedbacks weighted by the credibility
Fc (i.e., H = (C, S, F , Fc). Each feedback in F is represented in numerical form
with the range of [0, 1], where 0, +1, and 0.5 means negative feedback, positive
feedback, and neutral respectively.

334 T.H. Noor and Q.Z. Sheng

Whenever a cloud consumer inquires the trust management service regarding
the trustworthiness of a certain cloud service s, the trust result, denoted as
T r(s), is calculated as the following:

T r(s) =
∑|V(s)|

l=1 Fc(l, s)
|V(s)| (1)

where V(s) is all of the feedbacks given to the cloud service s and |V(s)| represents
the length of the V(s) (i.e., the total number of feedbacks given to the cloud
service s). Fc(l, s) are the trust feedbacks from the lth cloud consumer weighted
by the credibility.

The trust management service distinguishes between credible trust feedbacks
and malicious trust feedbacks through assigning the credibility aggregated
weights Cr(l, s) to the trust feedbacks F(l, s) as shown in Equation 2, where
the result Fc(l, s) is held in the invocation history record h and updated in the
assigned trust management service. The details on how to calculate Cr(l, s) is
described in Section 5.

Fc(l, s) = F(l, s) ∗ Cr(l, s) (2)

4.2 Availability of the Trust Management Service

Guaranteeing the availability of the trust management service is a significant
challenge due to unpredictable number of invocation requests the service has to
handle at a time, as well as the dynamic nature of the cloud environments. An
emerging trend for solving the high-availability issue is centered on replication.
In our approach, we propose to spread trust management service replicas over
various clouds and dynamically direct requests to appropriate clouds (e.g., with
lower workload), so that its desired availability level can be always maintained.

However, there is clearly a trade-off between high availability and replication
cost. On the one hand, more clouds hosting trust management service means
better availability. On the other hand, more replicas residing at various clouds
means higher overhead (e.g., cost and resource consumption such as bandwidth
and storage space). Thus, it is essential to develop a mechanism that helps to
determine the optimal number of the trust management service replicas in order
to meet the trust management service’s availability requirement.

We propose a replication determination model to allow the trust management
service to know how many replicas are required to achieve a certain level of
availability. Given the trust management service stms failure probability denoted
p that ranges from 0 to 1, the total number of stms replicas denoted r, and the
availability threshold denoted ea that also ranges from 0 to 1. The desired goal
of the replication is to ensure that at least one replica of the trust management
service is available, represented in the following formula:

ea(stms) < 1 − pr(stms) (3)

Credibility-Based Trust Management for Services in Cloud Environments 335

where pr(stms) represents the probability that all trust management service repli-
cas are failed, and 1− pr(stms) represents the opposite (i.e., the probability of at
least one trust management replica is available). As a result, the optimal number
of trust management service replicas can be calculated as follows:

r(stms) > logp(1 − ea(stms)) (4)

For example, if the availability threshold ea(stms) = 0.9999 and the failure prob-
ability of the trust management service p = 0.2 (low), r(stms) > 5.723, meaning
that at least 6 trust management service replicas are needed. Similarly, if ea(stms)
= 0.9999 and the failure probability of the trust management service p = 0.8
(high), r(stms) > 41.28 which means at least 42 replicas are required.

Whenever a cloud consumer needs to send the invocation history record or
query the trust result of a certain cloud service, h(c, s) can be sent to a particular
trust management service decided by using a consistent hash function (e.g., sha-
256) as follows:

Tmsid(s) =

⎛⎝|hash(s)|∑
i=1

bytei (hash(s))

⎞⎠mod r(stms) (5)

where the first part of the equation represents the sum of each byte of the hashed
cloud service identity hash(s). The second part of the equation represents the
optimal number of the trust management service replicas r(stms). This insures
that the chosen trust management service replica is within the optimal number
range.

5 The Credibility Model

Since the trust behavior of a cloud service in our framework is represented by
a collection of invocation history records that contain cloud consumers trust
feedbacks, there is a considerable possibility of the trust management service
receiving inaccurate or even malicious trust feedbacks from amateur cloud con-
sumers (e.g., who lack experience) or vicious cloud consumers (e.g., who submit
lots of negative feedbacks in a short period in order to disadvantage a particular
cloud service). To overcome these issues, we propose a credibility model, which
considers several factors including the Majority Consensus and the Feedback
Density.

5.1 Majority Consensus

It is well-known that the majority of people usually agree with experts’ judg-
ments about what is good [8]. Similarly, we believe that the majority of cloud
consumers agree with Expert Cloud Consumers’ judgments. In other words, any
cloud consumer whose trust feedback is close to the majority trust feedbacks is
considered as an Expert Cloud Consumer, Amateur Cloud Consumers otherwise.

336 T.H. Noor and Q.Z. Sheng

In order to measure how close the cloud consumer’s trust feedbacks to the ma-
jority trust feedbacks (i.e., the Majority Consensus, J (c)), we use the slandered
deviation (i.e., the root-mean-square) which is calculated as follows:

J (c) = 1 −

√√√√√∑
h∈Vc(c)

(∑|Vc(c,k)|
k=1

(
F(c,k)

|Vc(c,k)| −
(∑ |Vc(l,k)|

l �=c,l=1 F(l,k)

|V(k)|−|Vc(c,k)|

)))2

|Vc(c)| (6)

where the first part of the numerator represents the mean of the cloud consumer
c’s trust feedbacks F(c, k) for the kth cloud service. The second part of the
numerator represents the mean of the majority trust feedbacks given by other
cloud consumers denoted F(l, k) (i.e., the lth cloud consumer trust feedbacks,
except the cloud consumer c’s trust feedbacks) to the kth cloud service. This
procedure is done for all cloud services to which cloud consumer c gives trust
feedbacks (i.e., Vc(c)).

5.2 Feedback Density

Some malicious cloud consumers may give numerous fake or misleading trust
feedbacks to increase or decrease the trust result for a certain cloud service
in order to achieve their personal interests (i.e., Self-promoting and Slandering
attacks). Several online reputation-based systems such as auction systems (e.g.,
eBay [11], and Amazon [1]), have tried to help their consumers to overcome
such attacks based on revealing the aggregated trust feedbacks as well as the
number of trust feedbacks. The number of trust feedbacks gives the evaluator
a hint in determining how credible the trust feedback is, which is supported by
the research findings in [30,27].

However, the number of trust feedbacks is not enough in determining how
credible the aggregated trust feedbacks are. For instance, suppose there are two
different cloud services a and b as shown in Figure 2. The aggregated trust
feedbacks of the both cloud services are high (i.e., a has 90% positive feedbacks
from 100 feedbacks, b has 93% positive feedbacks from 100 feedbacks). Intuitively,
cloud consumers should proceed with the cloud service that has the highest
aggregated trust feedbacks (e.g., cloud service b in our case). However, Self-
promoting attack might has been performed on cloud service b, which clearly
should not be selected by cloud consumers.

In order to overcome this problem, we introduce the concept of Feedback Den-
sity, which facilitates the determination of credible trust feedbacks. Specifically,
we consider the total number of cloud consumers who gave trust feedbacks to
a particular cloud service as the Feedback Mass, the total number of trust feed-
backs given to the cloud service as the Feedback Volume. The feedback volume
is influenced by the Feedback Volume Collusion factor which is controlled by
a specified volume collusion threshold. This factor regulates the multiple trust
feedbacks extent that could collude the overall trust feedback volume. For in-
stance, if the volume collusion threshold is set to 5 feedbacks, any cloud consumer

Credibility-Based Trust Management for Services in Cloud Environments 337

�

��

�

��

�

�

�

�

�� �� �� ���
�

��

�� �� �� ���
�

��

�� �� �� ���
�

��

�� �� 	�
��
�

�

��� ��� �� ����
�

�

�

�

�

(a) Cloud Service a

�

�� �� �

�

�

�� �� �� ��
�

��

�� �� ��� ���
�

��

�� �� ��� ���
�

��

�� �� 	�� 	��
�

�

�� �
�
� ����
�

�

(b) Cloud Service b

Fig. 2. Trust Feedback Density Determination

c who gives more than 5 feedbacks is considered to be suspicious of involving in
a feedback volume collusion. The feedback density of a certain cloud service s,
D(s), is calculated as follows:

D(s) =
M(s)

|V(s)| ∗
((∑

h∈V(s)

(∑ |V(l,s)|
l=1 (∑ |Vc(l,s)|>ev(s) |Vc(l,s)|)

)
|V(s)|

)
+ 1

) (7)

where M(s) denotes the total number of cloud consumers who gave trust feed-
backs to the cloud service s (i.e., the Feedback Mass). |V(s)| represents the total
number of trust feedbacks given to the cloud service s (i.e., the Feedback Volume).
The second part of the denominator represents the Feedback Volume Collusion
factor. This factor is calculated as the ratio of the number of trust feedbacks
given by the cloud consumers who give feedbacks more than the specified vol-
ume collusion threshold (i.e., ev(s)) over the total number of feedbacks received
by the cloud service (i.e., |V(s)|). The idea behind adding 1 to this ratio is to
reduce the value of the multiple trust feedbacks which are given diversely from
the same cloud consumer.

Figure 2 depicts the same example mentioned before where the first row in the
table on the right side of Figure 2(a) shows that 5 particular cloud consumers
gave 2 feedbacks to the cloud service a in which the total number of those trust
feedbacks is 10. The last row shows the total number of cloud consumers (i.e.,
M(a) = 20) and the total number of trust feedbacks given to the cloud service
a (i.e., |V(a)| = 100). Both cloud services a and b have the same total number of

338 T.H. Noor and Q.Z. Sheng

trust feedbacks (i.e., |V(a)| = 100 and |V(b)| = 100) and very close aggregated
feedbacks (e.g., a has 90% positive feedbacks and b has 93% positive feedbacks).

However, the Feedback Mass of the cloud service a is higher than the Feed-
back Mass of the cloud service b (i.e., M(a) = 20 and M(b) = 5). If the volume
collusion threshold ev is set to 3 feedbacks per cloud consumer, 15 cloud con-
sumers gave more than 3 feedbacks to the cloud service a where the total amount
of trust feedbacks’ lengths |Vc(c, a)| = 70 feedbacks; while 3 cloud consumers
gave more than 3 feedbacks to the cloud service b where the total amount of
trust feedbacks’ lengths |Vc(c, b)| = 80 feedbacks. According to Equation 7, the
Feedback Density of the cloud service a is higher than the cloud service b (i.e.,
D(a) = 0.118 and D(b) = 0.028). In other words, the higher the Feedback Den-
sity, the more credible the aggregated feedbacks are. The lower the Feedback
Density, the higher possibility of collusion in the aggregated feedbacks.

Based on the specified trust feedbacks credibility factors (i.e., majority consen-
sus and feedback density), the trust management service distinguishes between
trust feedbacks from experienced cloud consumers and the ones from amateur
or even vicious cloud consumers through assigning the credibility aggregated
weights Cr(c, s) to each of the cloud consumers trust feedbacks as shown in
Equation 2. The credibility aggregated weights Cr(c, s) is calculated as follows:

Cr(c, s) =
μ ∗ J (c) + ρ ∗ D(s)

λ
(8)

where μ and J (c) denote the Majority Consensus factor’s normalized weight (i.e.,
parameter) and the factor’s value respectively. The second part of the equation
represents the Feedback Density factor where ρ denotes the factor’s normalized
weight and D(s) denotes the factor’s value. λ represents the number of factors
used to calculate Cr(c, s). For example, if we only consider majority consensus,
λ = 1; if we consider both the majority consensus and the feedback density,
λ = 2.

6 Implementation and Experimental Evaluation

In this section, we report the implementation and preliminary experimental re-
sults in validating the proposed approach. Our implementation and experiments
were developed based on the NetLogo platform [23], which was used to simulate
the cloud environments. We particularly focused on validating and studying the
performance of the proposed credibility model (see Section 5).

Since it is hard to find some publicly available real-life trust data sets, in our
experiments, we used Epinions2 rating data set which was collected by Massa
and Avesani [22]. The reason that we chose Epinions data set is due to its similar
data structure (i.e., consumers’ opinions and reviews on specific products and
services) with our cloud consumer trust feedbacks. In particular, we considered
user id in Epinions as the cloud consumer primary identity C, item id as the
cloud service identity S, and we normalized the rating value as the cloud
2 http://www.trustlet.org/wiki/Downloaded Epinions dataset

Credibility-Based Trust Management for Services in Cloud Environments 339

�

Fig. 3. Netlogo-based Prototype System’s GUI

consumers trust feedbacks F to scale of 0 to 1. The data set has 49,290 users,
139,738 items, and 664,824 trust feedbacks. Figure 3 depicts the Graphical User
Interface (GUI) for a cloud service. We imported the Epinions data set to create
the cloud environment that we are intending to analyze.

We evaluate the trust robustness of our credibility model using both analyti-
cal analysis and empirical analysis. The analytical analysis focuses on measuring
the trust result robustness (i.e., with respect to Malicious Behavior Rate of ma-
licious cloud consumers) when using the credibility model and without using
the credibility model. The analytical model calculates the trust results without
weighting the trust results (i.e., we turn the Cr(c, s) to 1 for all trust feedbacks).
The empirical analysis focuses on measuring the trust result robustness for each
factor in our credibility model including the Majority Consensus and the Feed-
back Density. The parameters setup for each corresponding experiment factor
are depicted in Table 1.

Table 1. Experiment Factors and Parameters Setup

Experiment Design μ ρ λ Cr(c, s)

With Credibility factors 1 1 2

Without Credibility factors 1

Majority Consensus factor 1 0 1

Feedback Density factor 0 1 1

Figure 4 depicts the analytical analysis of the trust results for a particular
cloud service. From the figure, it can be seen that the higher the malicious
behavior rate the lower the trust results are when considering to calculate the
trust with all credibility factors. On the other hand, the trust results shows nearly
no response to the malicious behavior rate when considering to calculate the
trust without credibility factors. This demonstrates that our credibility model
is robust and more sensitive in detecting malicious behaviors.

340 T.H. Noor and Q.Z. Sheng

�

�

�

���

���

���

���

���

���

��	

��

� ��� ��� ��� ��
 �

�
�
�
�
�
��
�
�
�
	�
�

���������	
������	����

����������������

��������������

Fig. 4. Trust Robustness: With Credibility Vs. Without Credibility

Figure 5 shows the empirical analysis of the trust results for the same cloud
service. It is clear that the trust results obtained by only considering the major-
ity consensus factor are more accurate than the trust results obtained by only
considering the feedback density factor when the malicious behavior rate is low
(e.g., when the malicious behavior rate = 0.1, T r(s) = 0.59 if we consider the
majority consensus factor only while T r(s) = 0.73 if we consider the feedback
density factor only). This is true because there is still not many vicious cloud
consumers (e.g., who submit lots of positive feedbacks in a short period in order
to advantage a particular cloud service) during the trust aggregation. However,
the trust results obtained by only considering the feedback density factor sig-
nificantly response more when the malicious behavior rate become higher (e.g.,
when the malicious behavior rate = 0.9, T r(s) = 0.61 for the majority consensus
factor, T r(s) = 0.13 for the feedback density factor). As a result, we can con-
sider the majority consensus factor as a trust accuracy factor while the feedback
density factor as a trust robustness factor (i.e., the feedback density factor is
responsible for the robustness and the sensitiveness of our credibility model).

7 Conclusions and Future Work

Given the fact of the accelerated adoption of cloud computing in the recent years,
there is a significant challenge in managing trust among cloud providers, service
providers, and service requesters. In this paper, we present a trust management
framework to manage trust in cloud environments. We introduce a credibility
model that assesses cloud services’ trustworthiness by distinguishing between
credible trust feedbacks and amateur or malicious trust feedbacks. Also, the
credibility model has the ability to detect the malicious trust feedbacks from
attackers (i.e., who intend to manipulate the trust results by giving multiple trust
feedbacks to a certain cloud service in a short period of time). We particularly
introduce two trust parameters including the Majority Consensus factor and
the Feedback Density factor in calculating the trust value of a cloud service.

Credibility-Based Trust Management for Services in Cloud Environments 341

�

�

���

���

���

���

���

���

��	

��

� ��� ��� ��� ��
 �

�
�
�
�
�
��
�
�
�
	�
�

���������	
������	����

�����������������

����������������

Fig. 5. Trust Robustness: Credibility Factors

In addition, our trust management service allows trust feedback assessment and
storage to be managed in a distributed way.

In the future, we plan to deal with more challenging problems such as the
Sybil attack and the Whitewashing attack. Performance optimization of the trust
management service is another focus of our future research work.

References

1. Amazon: Amazon.com: Online shopping for electronics, apparel, computers, books,
dvds & more (2011),http://www.amazon.com/ (accessed March 01, 2011)

2. Armbrust, M., et al.: A View of Cloud Computing. Communiaction of the
ACM 53(4), 50–58 (2010)

3. Aziz, B., Hamilton, G.: Detecting Man-in-the-Middle Attacks by Precise Timing.
In: Proc. of the 3rd Int. Conf. on Emerging Security Information, Systems and
Technologies (SECURWARE 2009). Athens, Glyfada, Greece (June 2009)

4. Ba, S., Pavlou, P.: Evidence of the Effect of Trust Building Technology in Elec-
tronic Markets: Price Premiums and Buyer Behavior. MIS Quarterly 26(3), 243–
268 (2002)

5. Brandic, I., Dustdar, S., Anstett, T., Schumm, D., Leymann, F., Konrad, R.: Com-
pliant Cloud Computing (C3): Architecture and Language Support for User-Driven
Compliance Management in Clouds. In: Proc. of IEEE 3rd Int. Conf. on Cloud
Computing (CLOUD 2010), Miami, Florida, USA (July 2010)

6. Buyya, R., Yeo, C., Venugopal, S.: Market-oriented Cloud Computing: Vision,
Hype, and Reality for Delivering it Services as Computing Utilities. In: Proc.
of IEEE 10th Int. Conf. on High Performance Computing and Communications
(HPCC 2008), Dalian, China (September 2008)

7. Chen, K., Hwang, K., Chen, G.: Heuristic Discovery of Role-Based Trust Chains
in Peer-to-Peer Networks. IEEE Transactions on Parallel and Distributed Sys-
tems 20(1), 83–96 (2008)

8. Child, I.: The Psychological Meaning of Aesthetic Judgments. Visual Arts Research
9(2(18)), 51–59 (1983)

http://www.amazon.com/

342 T.H. Noor and Q.Z. Sheng

9. Conner, W., Iyengar, A., Mikalsen, T., Rouvellou, I., Nahrstedt, K.: A Trust Man-
agement Framework for Service-Oriented Environments. In: Proc. of the 18th Int.
Conf. on World Wide Web (WWW 2009), Madrid, Spain (April 2009)

10. Douceur, J.R.: The Sybil Attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

11. eBay: ebay - new & used electronics, cars, apparel, collectibles, sporting goods &
more at low prices (2011), http://www.ebay.com/ (accessed March 01, 2011)

12. Friedman, E., Resnick, P., Sami, R.: Manipulation-Resistant Reputation Systems.
In: Algorithmic Game Theory, pp. 677–697. Cambridge University Press, New York
(2007)

13. Hoffman, K., Zage, D., Nita-Rotaru, C.: A Survey of Attack and Defense Tech-
niques for Reputation Systems. ACM Computing Surveys (CSUR) 42(1), 1–31
(2009)

14. Hwang, K., Li, D.: Trusted Cloud Computing with Secure Resources and Data
Coloring. IEEE Internet Computing 14(5), 14–22 (2010)

15. Jøsang, A., Ismail, R., Boyd, C.: A Survey of Trust and Reputation Systems for
Online Service Provision. Decision Support Systems 43(2), 618–644 (2007)

16. Jøsang, A., Quattrociocchi, W.: Advanced Features in Bayesian Reputation Sys-
tems. In: Fischer-Hübner, S., Lambrinoudakis, C., Pernul, G. (eds.) TrustBus 2009.
LNCS, vol. 5695, pp. 105–114. Springer, Heidelberg (2009)

17. Krautheim, F.J., Phatak, D.S., Sherman, A.T.: Introducing the Trusted Virtual
Environment Module: A New Mechanism for Rooting Trust in Cloud Computing.
In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101,
pp. 211–227. Springer, Heidelberg (2010)

18. Lai, K., Feldman, M., Stoica, I., Chuang, J.: Incentives for Cooperation in Peer-
to-Peer Networks. In: Proc. of the 1st Workshop on Economics of Peer-to-Peer
Systems, Berkeley, CA, USA (June 2003)

19. Malik, Z., Bouguettaya, A.: Rater Credibility Assessment in Web Services Interac-
tions. World Wide Web 12(1), 3–25 (2009)

20. Malik, Z., Bouguettaya, A.: RATEWeb: Reputation Assessment for Trust Estab-
lishment Among Web services. The VLDB Journal 18(4), 885–911 (2009)

21. Manuel, P., Thamarai Selvi, S., Barr, M.E.: Trust Management System for Grid
and Cloud Resources. In: Proc. of the 1st Int. Conf. on Advanced Computing
(ICAC 2009), Chennai, India (December 2009)

22. Massa, P., Avesani, P.: Trust Metrics in Recommender Systems. In: Computing
with Social Trust. Human-Computer Interaction Series, pp. 259–285. Springer,
London (2009)

23. NetLogo: Netlogo home page (2011), http://ccl.northwestern.edu/netlogo/

(accessed March 1, 2011)

24. Sheth, A.P., Gomadam, K., Lathem, J.: SA-REST: Semantically Interoperable and
Easier-to-Use Services and Mashups. IEEE Internet Computing 11(6), 84–87 (2007)

25. Skopik, F., Schall, D., Dustdar, S.: Start Trusting Strangers? Bootstrapping and
Prediction of Trust. In: Vossen, G., Long, D.D.E., Yu, J.X. (eds.) WISE 2009.
LNCS, vol. 5802, pp. 275–289. Springer, Heidelberg (2009)

26. Skopik, F., Schall, D., Dustdar, S.: Trustworthy Interaction Balancing in Mixed
Service-Oriented Systems. In: Proc. of ACM 25th Symp. on Applied Computing
(SAC 2010), Sierre, Switzerland (March 2010)

27. Srivatsa, M., Liu, L.: Securing Decentralized Reputation Management Using Trust-
Guard. Journal of Parallel and Distributed Computing 66(9), 1217–1232 (2006)

http://www.ebay.com/
http://ccl.northwestern.edu/netlogo/

Credibility-Based Trust Management for Services in Cloud Environments 343

28. Wang, Y., Vassileva, J.: Toward Trust and Reputation Based Web Service Selection:
A Survey. International Transactions on Systems Science and Applications 3(2),
118–132 (2007)

29. Weng, J., Miao, C.Y., Goh, A.: Protecting Online Rating Systems from Unfair
Ratings. In: Katsikas, S.K., López, J., Pernul, G. (eds.) TrustBus 2005. LNCS,
vol. 3592, pp. 50–59. Springer, Heidelberg (2005)

30. Xiong, L., Liu, L.: Peertrust: Supporting Reputation-based Trust for Peer-to-Peer
Electronic Communities. IEEE Transactions on Knowledge and Data Engineer-
ing 16(7), 843–857 (2004)

Monere: Monitoring of Service Compositions

for Failure Diagnosis

Bruno Wassermann� and Wolfgang Emmerich

University College London,
Gower Street, London, WC1E 6BT, UK

{b.wassermann,w.emmerich}@cs.ucl.ac.uk

Abstract. Service-oriented computing has enabled developers to build
large, cross-domain service compositions in a more routine manner. These
systems inhabit complex, multi-tier operating environments that pose
many challenges to their reliable operation. Unanticipated failures at
runtime can be time-consuming to diagnose and may propagate across
administrative boundaries. It has been argued that measuring readily
available data about system operation can significantly increase the fail-
ure management capabilities of such systems. We have built an online
monitoring system for cross-domain Web service compositions called
Monere, which we use in a controlled experiment involving human oper-
ators in order to determine the effects of such an approach on diagnosis
times for system-level failures. This paper gives an overview of how Mon-
ere is able to instrument relevant components across all layers of a service
composition and to exploit the structure of BPEL workflows to obtain
structural cross-domain dependency graphs. Our experiments reveal a
reduction in diagnosis time of more than 20%. However, further analysis
reveals this benefit to be dependent on certain conditions, which leads
to insights about promising directions for effective support of failure di-
agnosis in large Web service compositions.

1 Introduction

Service-oriented technologies have simplified the development of larger, more
complex software systems that now routinely span administrative and organ-
isational boundaries. These large-scale distributed systems inhabit a complex
operating environment that presents numerous threats to their dependability.
They are often asynchronous and rely on best-effort networks with variable per-
formance in order to integrate and share resources across domain boundaries.
Communication across the Internet and heavy loads increase the potential for
failures. Some of the components that are critical to the correct operation of
an application may be in different administrative domains. These systems often
rely on various layers of middleware components. Developers have been enabled
to build such applications as compositions of services in a more routine manner

 This work is partially supported by the EC’s 7th Framework Programme under grant

agreement n 215605 (RESERVOIR) and a BT EPSRC Case studentship.

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 344–358, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Monere: Monitoring of Service Compositions for Failure Diagnosis 345

through standards and middleware that attempt to hide much of the underlying
complexity.

This transparency, which is so useful to developing large service compositions,
becomes an obstacle to rapid diagnosis of failures at runtime. Given the complex-
ity of the operating environment and the high demands placed upon it, there may
be many unforeseen failures at runtime. Data about failures are spread across the
various layers of the system and often across administrative domains. It has been
argued [23,27,18,28,9,12] that the availability of large-scale distributed software
systems could benefit from improved monitoring capabilities. The definition of
availability, Availability = Mean-time-to-failure / (Mean-time-to-failure + Mean-
time-to-repair), further supports this intuition. Mean-time-to-repair (MTTR) it-
self is defined as MTTR = MTTdetect + MTTdiagnose + MTTrepair . Approaches to
monitoring that improve understanding of system behaviour and thereby enable
operators to reduce the time to detect and diagnose failure causes, should result
in a significant increase in system availability. However, in practice the benefits of
monitoring for the diagnosis of operational failures have only been demonstrated
by argument or limited anecdotal evidence.

The contributions of this paper are two-fold. First, it provides a brief ar-
chitectural and functional overview of the Monere monitoring framework for
cross-domain Web service compositions. The idea behind Monere is to support
operators with the early identification of system-level failures by measuring read-
ily available attributes of system operation from all relevant components and
integrating this data. Monere monitors application-level components, such as
BPEL processes and Web services, middleware components including applica-
tion servers, database servers, BPEL runtimes and Grid computing middleware
as well as aspects of the operating system, such as the file system, network in-
terfaces and running processes. We describe how Monere exploits the structure
of BPEL workflows and knowledge about other components to create structural
cross-domain dependency graphs. Second, this paper presents the results of a
controlled experiment, in which we compare the failure diagnosis times achieved
by 22 human operators when using Monere to that achieved using a standard
UNIX toolset. The results illustrate under what circumstances such an approach
is beneficial and point to further work in this area.

We briefly characterise the systems and types of failures we consider based
on an example. Then, we provide an overview of the architecture of Monere and
its key features, paying particular attention to its mechanism for dependency
discovery. This is followed by a performance analysis of Monere, a detailed de-
scription of the controlled experiment and a discussion of its results.

2 The Polymorph Search Workflow

Global service compositions exhibit a number of interesting characteristics. They
are asynchronous distributed systems communicating over the Internet. As net-
work quality tends to vary and standard communication protocols are used, long
delays can become indistinguishable from failed endpoints and lost messages.

346 B. Wassermann and W. Emmerich

A service composition relies on correct service from several layers of often in-
terdependent middleware components. At the service-level, these applications
also form complex dependencies across organisational boundaries, where any
service may in turn be a high-level application that is composed of more basic
functionality.

The Polymorph Search Workflow [14] is our case study. It is a large Web ser-
vice composition expressed in the Business Process Execution Language (BPEL)
[16] and shares many of the above characteristics. It is used by Theoretical
Chemists for the computational prediction of organic crystal structures, which
is a compute- and data-intensive application. Its middleware consists of several
layers. A BPEL runtime is responsible for managing the execution of a set of
BPEL processes comprising an application. It is intimately dependent on the
services of a SOAP [10] runtime that manages the interactions between Web
services. It is also the place where many of the decentralised middleware ser-
vices, such as transactional mechanisms, are implemented. The SOAP runtime
relies on an application server, which is executed by a JVM, and all components
use the services of an operating system.

Internet

Polymorph
BPEL Process

visualizer
BPEL Process

invokeMolpak
BPEL Process

invokeDmarel
BPEL Process

jobManager
BPEL Process Web

service

sse.cs.ucl.ac.uk

Domain-
Specific

Web service

grid.bt.co.uk

Grid
Scheduler

Web service

condor.ucl.ac.uk

Grid Compute Nodes

Web
ssss

Web
service

WWeebb
ssseeerrrvvviiiiccceee

WWWWWWWWeeeeeeeeebbbbbbb

sssssseeeeeeeerrrrrrrvvvvvvviicciicccccccccceeeeeeeeeeeee
Web

service

Fig. 1. The Polymorph Search Workflow and its deployment on our testbed

The deployment of the overall workflow on our testbed is shown in Figure 1.
The workflow itself is hierarchically composed from several BPEL processes. The
processes along with some utility Web services and their backend implementa-
tions are deployed across two hosts in the UCL domain. Some Grid computing
middleware is used in addition to the standard Web services stack. Access to a set
of compute nodes is provided through a Web service and underlying Condor [20]
job scheduler instance on a third host. GridSAM [19] manages the interaction
between the BPEL processes and Condor. Finally, the workflow also interacts
with a Web service deployed in another administrative domain.

The failures we want to enable operators to diagnose more efficiently are
operational failures that occur at runtime. System-level failures originate be-
neath the application-level in the middleware components, operating system

Monere: Monitoring of Service Compositions for Failure Diagnosis 347

and the network. Failure is brought about by sustained high demands on some
or all parts of the system, which over time leads to overload and eventually to
resource exhaustion. They often depend on the operating environment of the
service composition. Examples are the exhaustion of shared resources such as
memory, threads or file descriptors by some components, network connectivity
issues that prevent timely progress and slowdown of services or components due
to being overloaded. Other common causes stem from the cross-domain nature
of these applications, where resources and services fail, become unavailable or
where varying network conditions make them appear so. Failure effects are al-
most never isolated or tolerated within a single component or even layer and
cascade across layers and even across administrative domain boundaries. These
failures often result in abnormal termination or bring the application to a virtual
standstill.

3 Monere

Monere implements a number of key features. It automatically discovers all
dependencies a BPEL process forms on other application components across
domains and lower-level system components within a domain. It continuously
collects metrics to aid in understanding of system behaviour and provides his-
torical records of these measurements. The collected lower-level measurements
can then be correlated with specific application activity. Finally, Monere inte-
grates all these measurements from the various services, components and hosts
in a single user interface.

3.1 Metrics

A great deal of data about system operation can be obtained without the need for
substantial changes to the monitored systems. Monere tracks the availability of
all discovered components and maintains statistics about their past availability.
It listens for error and warning messages from all components that provide log
files in the OS, middleware and application. Monere also captures information
about the activities performed by the monitored application, such as actions
performed by a BPEL process. This affords correlation of application activity
with measurements taken at the system level via timestamps.

Performance indicators can be useful in diagnosing the cause of lower than
expected performance, reveal network issues or show that a remote service has
become overloaded. Examples include request latencies experienced by clients,
execution times and throughput of invoked Web services, packet drop rates at
the network interface and latencies between hosts. Object-relational mapping
tools provide information and various statistics about transactions.

Resource usage metrics facilitate identification of components that have ex-
ceeded certain limits, but also deficiencies in the configuration of components,
where a demanding workload may result in resource exhaustion. Monere mea-
sures OS resources, such as file descriptors, threads, memory and CPU utilisation

348 B. Wassermann and W. Emmerich

by load type. It measures the available swap space and the rate at which the
OS makes use of the swap. Internal resource usage of Java-based components is
obtained using JMX [22] and, as a last resort, Monere integrates metrics that
can be obtained from command-line tools.

Measurement collection is driven by collection intervals defined for each met-
ric and current intervals range from five to 60 seconds. Monitoring agents collect
measurements through a variety of techniques. For example, Monere subscribes
to the BPEL runtime to receive notifications of state changes of monitored pro-
cesses. Request interception is another common pattern, in which a probe is
placed between a client and a server. A third approach is polling, where a vari-
ety of means are used to periodically obtain measurements. For example, Monere
queries relevant MBeans in JMX servers. The availability of some components
can be checked by issuing HTTP HEAD requests or by querying the OS process
table.

3.2 Overview

Monere is based on the open-source RHQ enterprise management system [3] and
its JBoss extension Jopr [24]. RHQ provides a set of core services for systems
management, such as an abstract inventory model and the discovery of hardware
and software resources running on hosts based on a simple containment hierarchy.
Monere modifies and extends RHQ in such a way as to make it suitable for
monitoring cross-domain Web service compositions.

The three main components of Monere are shown in Figure 2. Each domain
hosts a central Monere server, which communicates with the deployed agents
in its domain. The server obtains resource discovery results and measurements
from its agents, persists this in a database and then makes this data available
to end users via a user interface. The agents, which are deployed on the hosts
they monitor, register with their Monere server and then periodically examine
their environment to discover resources and obtain measurements. A Monere

louie.cs.ucl.ac.uk

Inventory

Monere
Information

Service
Monere
Server

dewey.cs.ucl.ac.uk

Application
Components
Middleware

Components
Operating

System

Monere
Agent

Application
Components
Middleware

Components
Operating

System

Monere
Agent

cs.ucl.ac.uk grid.bt.co.uk

Application
Components
Middleware

Components
Operating

System

Monere
Agent

cpu029.grid.bt.co.uk

Monere
Information

Service
Monere
Server

Inventory

cpu028.grid.bt.co.ukhuey.cs.ucl.ac.uk

Fig. 2. The key components of Monere in a typical deployment

Monere: Monitoring of Service Compositions for Failure Diagnosis 349

agent is essentially a runtime system for a set of plugins and manages communi-
cation with the Monere server. Plugins represent particular resource types and
encapsulate the functionality for their discovery and the measurement of corre-
sponding metrics. Plugins consist of a descriptive part expressed in XML and
a Java implementation for the process of discovery and measurement collection.
Examples of resources represented by plugins include a Tomcat server, an Axis
SOAP runtime, the Web services deployed within it and the various components
of a Linux OS.

The Monere Information Service (MIS) addresses the requirement of provid-
ing visibility of dependencies on resources in remote administrative domains and
sharing information about their state. Service providers can make certain met-
rics about their published services available to clients. These metrics currently
include the throughput and execution times of Web services. An agent that has
discovered a dependency from one of its local resources onto a Web service in an-
other administrative domain, can subscribe to an RSS feed at the corresponding
MIS. The MIS restricts visibility to the level of published Web services and pro-
vides no further insight about the underlying infrastructure. It thus safeguards
the sensitivity of implementation details, while providing data that can help to
determine problems with remote services.

The Monere user interface has been built using Adobe Flex [1]. The UI is
composed of a number of panels, each of which provides a particular view onto
the available monitoring data. The Resource Tree view (Figure 3) provides an
hierarchical view of all discovered components and the Dependency view displays
the dependents and dependencies of a selected component along with basic infor-
mation, such as its current availability. There are panels to display the activities
performed by BPEL processes and report on any severe log messages from any
part of the monitored system. The UI provides more detailed information on re-
quest. The Selected Resource Metrics view displays the metrics of any resource
dragged onto it. The values are updated in real-time and data is aggregated.
Charts of historical records help to identify trends and anomalies.

Fig. 3. Panels of the Monere UI showing dependencies of a selected resource across
hosts and administrative domains

350 B. Wassermann and W. Emmerich

3.3 Dependency Discovery

Our dependency graph represents all relevant dependencies from the viewpoint of
an application. This includes dependencies among application-level components,
such as BPEL processes and Web services, across host and domain boundaries
and dependencies on and among the lower-level components down to the op-
erating system. Conceptually, Monere’s dependency discovery process can be
described in three phases. The first phase is concerned with the discovery of
local components by each agent. An agent iterates over its deployed plugins and
invokes their discovery interface implementations. Each plugin knows how to dis-
cover a corresponding component on the local host and returns a representation
of it along with relevant attributes. We use a number of different mechanisms for
discovery. Hyperic’s SIGAR API [2], implements native libraries for a number of
operating systems and can discover OS components, such as running processes,
file systems and network interfaces. Another mechanism is to query JMX servers
for specific MBeans that represent components of interest or parse deployment
descriptors in the case of application servers. Some components offer adminis-
trative interfaces, which allow for programmatic queries on their properties and
deployed components.

For each type of component, the RHQ plugin XML definition specifies what
other types of components it is hosted by. For example, a BPEL process ’runs-in’
a BPEL runtime. This information enables an agent to establish simple contain-
ment relationships between components. Another type of knowledge about de-
pendencies is encapsulated within the implementation of some of the discovery
code where, upon discovery of a component, an agent is instructed to parse spe-
cific configuration files to find dependencies on other middleware components.
If two components are on the same host, the agent immediately establishes the
dependency. Otherwise, the agent will insert a placeholder component into its in-
ventory. This placeholder contains sufficient information about the remote com-
ponent for the monitoring server to resolve it to the actual component discovered
by another agent.

In the second phase, agents carry out a static analysis of the discovered appli-
cation components on their hosts. BPEL processes explicitly identify the partner
Web service interfaces with which they interact. Furthermore, WSDL documents
import other WSDL service interfaces that they depend on. An agent begins by
parsing the discovered BPEL processes to obtain information about the Web
service interfaces used as partner services. The corresponding WSDL binding
definitions are then parsed to link this abstract information about interfaces to
the URL of the corresponding Web service instance. The process continues by
parsing the documents of the identified interfaces and resolves further depen-
dencies recursively. When an agent discovers a dependency on a Web service on
another host or in a different administrative domain, it can insert a placeholder
as the agent on the remote host is responsible for the corresponding part of the
dependency graph.

In the final phase of the process, the agents submit their local inventories to
the monitoring server. Upon submission by an agent, the server processes the

Monere: Monitoring of Service Compositions for Failure Diagnosis 351

simple containment hierarchy and high-level dependencies among application-
level components. It replaces any placeholder components with dependencies on
the corresponding components from other hosts already committed to its inven-
tory. This approach captures structural dependencies as opposed to functional
ones obtained dynamically. In practice, the discovered dependencies represent
functional ones well. However, a number of relationships are omitted, such as
links to the backend implementations of Web services or the file system.

4 Performance Analysis

In order to determine the impact on application performance, we have
executed 30 runs on the Polymorph service composition with and without mon-
itoring enabled on real input data sets. We find a relative slowdown of about
8%, or a mean runtime of 199.23 seconds compared to 181.63 seconds. The slow-
down is not high given the number of different components and metrics, but it
is not negligible either. Our measurements of the per-host overhead imposed
by monitoring agents over a 60 minute period are summarised in table 1. The
agents monitor about 340 metrics each and, given the current set of collection
intervals, each take about 500 to 600 measurements per minute. The number of
components and metrics in this case is relatively large as is the variety of the
measurement techniques used. As can be seen in table 1 the requirements on the
CPU1 and memory are low.

Table 1. Performance overhead of two monitoring agents

Ag Components Metrics CPU Heap Usage

1 66 341 3.2% 11.3MB range:5.7

2 90 349 4.2% 18.1MB range:6.9

Analysing local communication overhead, we can assume that there will
always be new measurements to report on within the 30-second report inter-
val, given that many of the metrics are continuous. Approximately, the size of
measurement report (MR) data within an administrative domain is given by

a ×
n∏

i=0

30
ci

× |metricsi| × k, (1)

where a is the number of agents in an administrative domain, ci is a particular
collection interval, metricsi is the number of metrics at this collection interval
and k is some constant for the size of a measurement. The smallest collection
interval Monere supports is one second, which imposes an upper bound on the
fraction of 30. As the collection intervals increase, we see that the cumulative
size of exchanged MRs is given by the product of the number of agents and
the number of metrics, with the latter one likely to be the dominant factor.
1 A single core Pentium 4 3.2 GHz.

352 B. Wassermann and W. Emmerich

Measurements performed with tcpdump over a period of 30 minutes reveal a bit
rate within an administrative domain of 3.06Kbits/s and 0.48Kbits/s for the
exchange between administrative domains.

5 Experiment

The controlled experiment examines the performance of 22 human operators
tasked with the diagnosis of a number of typical system-level failures in order to
quantify the effects of Monere on diagnosis times.

5.1 Experiment Setup

We have replicated the Polymorph workflow and its infrastructure on a testbed
with two separate domains, as shown in Figures 1 and 2. Each participant was
asked to diagnose six failures injected into the system. The failures were injected
in random order and participants were given 10 minutes per failure. The stated
goal was to determine the root component(s) of the failure and identify what
about its behaviour is likely to have caused the observed problem. Participants
were randomly assigned to use either the Monere prototype or a standard set of
tools. Both groups were given a brief written overview of the Polymorph service
composition and the toolset to be used. The control group’s tools consisted
of root shells onto the hosts in the local domain, JConsoles connected to the
local Tomcat JVMs, pointers to log files and a brief explanation of Condor shell
commands. Control group participants furthermore had access to a session of
the ActiveBPEL monitoring console [4], which provides an overview of the state
of executing BPEL processes. Monere participants had only access to Monere’s
web-based UI.

Each group consisted of 11 participants. The participants were volunteers from
among the post-docs and faculty of several CS departments and also included a
small number of professional software engineers. The level of experience of each
participant was determined through a questionnaire. The levels of experience
between the groups are well-balanced, but we omit a closer analysis of this
aspect for space reasons.

The failures were selected among a larger set of failures as they were observed
with the Polymorph composition running in production. Injection was through a
script-driven framework we have developed to reliably reproduce the conditions
that lead to the six failures. These failures are:

1. unavailability of a remote service without known cause
2. slowdown of a remote service caused by overload
3. application server failure caused by thread exhaustion
4. application server failure caused by heap exhaustion
5. unavailability of the grid scheduler due to disk space exhaustion
6. failure to schedule compute jobs in a timely manner due to overload

Monere: Monitoring of Service Compositions for Failure Diagnosis 353

5.2 Results

Success Rate. We examine the proportion of successfully diagnosed failure
causes and find that Monere participants achieve a success rate of 95% on aver-
age, while the Control group only diagnosed 72% of the presented failures cor-
rectly. For the Control group, the two most frequently misdiagnosed failures are
the ones affecting the Web service hosted in the remote administrative domain.
As such, this is not a surprising result. However, it does serve to demonstrate
the usefulness of cross-domain dependency graphs, which enable operators to
more quickly identify when an issue lies outside the local infrastructure. The
most frequently misdiagnosed failure for the Monere group was failure 5. This
highlights a weakness of structural dependency graphs, where some of the exist-
ing functional dependencies (i.e. between Condor and the file system) may not
be represented explicitly.

Diagnosis Time. Next, we examine whether there is a statistically significant
difference in the observed diagnosis times. We refer to the mean times to diagnose
the six failures as MTTdiag.

6000 60 120 180 240 300 360 420 480 540

12

0
1
2
3
4
5
6
7
8
9

10
11

Time to Diagnose (seconds)

Fr
eq

ue
nc

y

Monere Control

Fig. 4. Histogram of the diagnosis times for the Monere and the Control group

Table 2. Summary of testing for a significant reduction in mean diagnosis times

MTTdiag StdDev n t0 t0.05,109

Monere 241.55s 132.34 63
-2.80 1.659

Control 311.96s 129.71 48

Figure 4 is a histogram of the diagnosis times of each group and table 2 sum-
marizes our observations. The histogram suggests that operators using Monere
achieve shorter diagnosis times, but there is also a cluster of observations that
reveals a higher number of almost seven-minute diagnosis times. The MTTdiag

for the Monere group is 241.55 seconds. The participants in the Control group
diagnosed the same failures with a MTTdiag of 311.96 seconds. We perform a
one-sided t-test at the 95% confidence level in order to determine whether the di-
agnosis times achieved by Monere are indeed shorter with statistical significance.

354 B. Wassermann and W. Emmerich

For this, we need to confirm t0 ≤ t0.05,109. The degrees of freedom are obtained
from the number of observations (63 + 48 − 2 = 109). As the resulting values
show, −2.80 < 1.659. This allows us to reject the null hypothesis in favour of the
alternative hypothesis, which states that participants using Monere do indeed
achieve shorter diagnosis times. We find an average reduction in MTTdiag with
Monere of 22.5%.

Failures. We were are able to identify some failures with noticeably shorter and
longer median diagnosis times than the rest. For the Control group, the failure
with the highest median diagnosis time is failure 1 (remote service unavailable)
and the lowest times are achieved for failure 5 (Condor unavailable). As table 3
illustrates, these failures are exactly reversed for the Monere group.

Table 3. Failures with longest/shortest median diagnosis times

Control Monere

Longest Failure 1 (419s) Failure 5 (430s)

Shortest Failure 5 (264s) Failure 1 (76s)

The relatively long diagnosis times for failure 1 are due to lack of tool support
that provides adequate visibility of critical components in separate administra-
tive domains. This forces Control group participants to examine many compo-
nents in the local infrastructure before focussing their attention on the remote
dependencies. Control group participants identified failure 5 relatively quickly
as upon issuing one of the available Condor commands, they would immediately
learn that the Condor process was down, which prompted them to inspect its log
file and based on that examine the available disk space. Monere participants had
much more difficulty identifying this problem as the available dependency graph
did only reveal a dependency between Condor and the OS. This left participants
with a larger problem space to explore. Conversely, for failure 1 the dependency
graph enabled participants to quickly identify that they were dealing with an
issue outside their local domain.

5.3 A Short Cost-Benefit Analysis

So when is the investment in online monitoring actually justified? To answer
this question, a service provider would need to determine two things. First, one
needs to have an accurate idea of the downtime cost per unit of time for a par-
ticular service offering. For cross-domain systems, this information should be
available at the time of writing an SLA in the form of financial penalties asso-
ciated with the violation of promised service level agreements [25]. Second, it is
necessary to estimate the typical proportion of diagnosis time on overall down-
time for a service implementation and its system-level failures. This information
could be obtained either through an organisational baseline or, once available,
from detailed measurement-based failure studies on large service compositions.

Monere: Monitoring of Service Compositions for Failure Diagnosis 355

In general, we can conclude that an approach such as Monere will only be worth
it when applied to systems whose overall failure repair times are clearly domi-
nated by their diagnosis times and where the financial penalties or reputational
loss for performing below agreed service levels are substantial.

5.4 Validity

Ideally, we would have liked to install Monere on an application in production
and compare the performance of system operators to an organisational baseline.
As this is not feasible outside an industrial setting, we rely on a single service
composition and limit the number of failures to six. This limits the generaliz-
ability of our results to some extent. However, the Polymorph composition is a
real-world application of moderate size and complexity and has been executed
under realistic workloads. It encompasses most of the challenging characteristics
we are interested in. Furthermore, the selected failures are not trivial to diagnose.
The internal validity is strong as each participant uses only one of the tool sets
and is presented with each failure only once and in random order. The measures
used (i.e. success rate, diagnosis time) are objective ones. The number of data
points on diagnosis times are sufficient, even though they could be improved on.
The failure injection method we employ does not merely simulate the symptoms
of a failure, but reproduces the actual conditions in the system that lead to it.

6 Related Work

6.1 Dependency Discovery

Indirect approaches to dependency discovery trace some aspect of system oper-
ation and perform statistical analysis in order to determine likely dependencies.
In [15] readily available performance data, such as request counts and times, are
measured in order to to determine containment of activity periods of transac-
tions between pairs of nodes. The frequency of such containments between the
same pairs of nodes gives an indication of the strength of their relationship. The
rate of false dependencies increases with the rate of concurrency in the system.
The addition of a statistical model to estimate false positives, [17] improves the
accuracy of dynamic dependency graphs. Their approach needs to intercept mes-
sages that pass network devices. In Pinpoint [13] middleware services within a
J2EE server are instrumented to trace the traversal of requests and learn likely
call paths.

The main advantages of indirect approaches are that they discover functional
dependencies and rely primarily on instrumentation at the middleware and net-
work layer. Monere discovers structural dependencies. The resulting dependency
graph may contain relationships that become active only rarely. Nevertheless,
these structural dependencies seem to correspond well to functional ones and
do not require a large number of observations under varying workloads. Even
though some manual effort is required for the expression of model information,

356 B. Wassermann and W. Emmerich

this knowledge is expressed modularly (i.e. per component type) and can be
reused among many deployments. Finally, Monere does not rely on any instru-
mentation beyond what is already made available by the OS and discovered
components.

6.2 Monitoring

Monere differs from much work on SOC monitoring ([6], [21]) in that it does not
primarily focus on the composition- and service-level and associated higher-level
events. Instead, it regards these as one of several types of components and events
to be integrated from all relevant layers of a middlware-based distributed system.
Magpie [7] obtains control paths and resource usage for the threads involved in
servicing requests by instrumenting the Windows NT kernel. It records events at
points where control flow transfers among components and uses request schemas
to associate events with observed requests. vPath [26] is another approach, which
does not require propagation of request identifiers. It instruments virtual ma-
chine monitors to capture thread activity and TCP system calls. Assuming syn-
chronous request-reply invocations and a dispatch-worker thread model, it can
link recorded activity and requests.

These approaches are quite elegant in that they exploit observable events that
occur in response to end-user requests to infer resulting system activity. Monere
provides an evidence-based determination of the impact of online monitoring
at all layers of a service composition on diagnosis times and shows under what
circumstances this is actually justified.

Several approaches focus on tracing events at the kernel-level. Chopstix [8]
instruments the operating system kernel to collect measurements about process
scheduling, I/O activity, system calls and socket communication. Two other
approaches that avoid instrumentation above the level of the operating systems
are DTrace [11] and SysProf [5]. DTrace enables instrumentation of user-level
and kernel-level events through user-specified probes. SysProf instruments the
kernel to record resource consumption by capturing context switches and system
calls.

Observing events at the kernel-level provides visibility of everything that hap-
pens in a system, requires only a small number of measurement techniques and
affords instrumentation of legacy applications. A downside is that operators are
left to figure out how kernel-level events relate to particular application-level
activities. Monere demands considerable development effort given the variety
of required measurement techniques. Its advantages are that it produces more
familiar metrics, makes it easier to understand how parts of the system react
to particular application activity and should be easier for a broader range of
developers to extend.

7 Conclusions

We have presented the results and insights from an empirical evaluation of the
effect of monitoring readily available data about system operation on mean

Monere: Monitoring of Service Compositions for Failure Diagnosis 357

diagnosis times for system-level failures in large distributed systems. We have
developed a prototype of such an approach called Monere and given an overview
of its architecture and measurement techniques. We have also shown how it is
possible to obtain dependency graphs through modular models and by exploiting
the structure inherent to BPEL workflows. A brief analysis reveals that such an
approach will outweigh its performance cost in cases where diagnosis time is the
dominant factor of overall system downtime and where the financial penalties
associated with the violation of SLAs are substantial. Our results also provide
some insights about the utility of dependency graphs and how missing or in-
accurate relationships can be so misleading during diagnosis as to reduce an
operator’s performance to below that of someone not having access to such a
graph.

One key lesson from our investigation is that the collection of a wide array
of measurements about system operation is not in itself sufficient to drastically
reduce diagnosis times in most scenarios. Measuring aspects of system operation
is important in order to keep applications operational. However, availability of
rich repositories of data, rather than being the solution are a prerequisite for
providing higher-value added functionality. In our view, a promising direction
to improve the handling of unanticipated system-level failures in large Web ser-
vice compositions is to investigate automated mechanisms that can determine
anomalies and other areas of interest within a large volume of data and thereby
effectively reduce the problem space on behalf of system operators.

References

1. Adobe Flex, http://bit.ly/2DbkE9
2. Hyperic SIGAR API, http://bit.ly/96BIG3
3. RHQ, http://bit.ly/apijCR
4. ActiveBPEL (2010), http://bit.ly/be87LF
5. Agarwala, S., Schwan, K.: Sysprof: Online distributed behavior diagnosis through

fine-grain system monitoring. In: ICDCS (July 2006)
6. Baresi, L., Guinea, S.: Self-supervising bpel processes. IEEE TSE 37, 247–263

(2011)
7. Barham, P., Donnelly, A., Isaacs, R., Mortier, R.: Using magpie for request extrac-

tion and workload modelling. In: OSDI. USENIX, Berkeley (2004)
8. Bhatia, S., Kumar, A., Fiuczynski, M.E., Peterson, L.: Lightweight, high-resolution

monitoring for troubleshooting production systems. In: OSDI. USENIX, Berkeley
(2008)

9. Birman, K., van Renesse, R., Vogels, W.: Adding high availability and autonomic
behavior to web services. In: ICSE. IEEE CS, Washington, DC, USA (2004)

10. Box, D., et al.: Simple Object Access Protocol (SOAP 1.1) (May 2000)
11. Cantrill, B.M., Shapiro, M.W., Leventhal, A.H.: Dynamic instrumentation of pro-

duction systems. In: ATC. USENIX, Berkeley (2004)
12. Chandra, A., Prinja, R., Jain, S., Zhang, Z.: Co-designing the failure analysis and

monitoring of large-scale systems. SIGMETRICS Perform. Eval. Rev. 36 (August
2008)

13. Chen, M.Y., Kiciman, E., Fratkin, E., Fox, A., Brewer, E.: Pinpoint: problem
determination in large, dynamic internet services. In: DSN. IEEE (2002)

http://bit.ly/2DbkE9
http://bit.ly/96BIG3
http://bit.ly/apijCR
http://bit.ly/be87LF

358 B. Wassermann and W. Emmerich

14. Emmerich, W., Butchart, B., Chen, L., Wassermann, B., Price, S.L.: Grid Service
Orchestration using the Business Process Execution Language (BPEL). JOGC 3(3-
4), 283–304 (2005)

15. Gupta, M., Neogi, A., Agarwal, M.K., Kar, G.: Discovering Dynamic Dependencies
in Enterprise Environments for Problem Determination. In: Brunner, M., Keller,
A. (eds.) DSOM 2003. LNCS, vol. 2867, pp. 125–166. Springer, Heidelberg (2003)

16. Jordan, D., et al.: Web Services Business Process Execution Language 2.0
WS-BPEL (August 2006)

17. Kashima, H., Tsumura, T., Ide, T., Nogayama, T., Hirade, R., Etoh, H., Fukuda,
T.: Network-based problem detection for distributed systems. In: ICDE. IEEE CS,
Washington, DC, USA (2005)

18. Katchabaw, M., Howard, S., Lutfiyya, H., Marshall, A., Bauer, M.: Making dis-
tributed applications manageable through instrumentation. In: Proc., 2nd Intl.
Workshop on SEPDS 1997 (May 1997)

19. Lee, W., McGough, S., Newhouse, S., Darlington, J.: A standard based approach to
job submission through web services. In: Cox, S. (ed.) Proc. of the UK e-Science All
Hands Meeting, Nottingham, pp. 901–905. UK EPSRC (2004) ISBN 1-904425-21-6

20. Litzkow, M., Livny, M., Mutka, M.: Condor - A Hunter of Idle Workstations. In:
ICDCS (June 1988)

21. Moser, O., Rosenberg, F., Dustdar, S.: Event Driven Monitoring for Service Com-
position Infrastructures. In: Chen, L., Triantafillou, P., Suel, T. (eds.) WISE 2010.
LNCS, vol. 6488, pp. 38–51. Springer, Heidelberg (2010)

22. Perry, J.S.: Java Management Extensions, 1st edn. O’Reilly & Associates, Inc.,
Sebastopol (2002)

23. Plattner, B.: Real-time execution monitoring. IEEE TSE 10(6), 756–764 (1984)
24. Red Hat, Inc.: Jopr. http://www.jboss.org/jopr
25. Skene, J., Raimondi, F., Emmerich, W.: Service-level agreements for electronic

services. IEEE TSE 36(2), 288–304 (2010)
26. Tak, B.C., Tang, C., Zhang, C., Govindan, S., Urgaonkar, B., Chang, R.N.: vpath:

precise discovery of request processing paths from black-box observations of thread
and network activities. In: ATC. USENIX, Berkeley (2009)

27. Vogels, W.: World wide failures. In: Proc. of the 7th Workshop on ACM SIGOPS
European Workshop: Systems Support for Worldwide Applications. ACM, New
York (1996)

28. Vogels, W., Re, C.: Ws-membership - failure management in a web-services world.
In: WWW (2003)

http://www.jboss.org/jopr

Multi-layered Monitoring and Adaptation�

Sam Guinea1, Gabor Kecskemeti2, Annapaola Marconi3,
and Branimir Wetzstein4

1 Politecnico di Milano
Deep-SE Group - Dipartimento di Elettronica e Informazione

Piazza L. da Vinci, 32 - 20133 Milano, Italy
guinea@elet.polimi.it

2 MTA-SZTAKI
Laboratory of Parallel and Distributed Systems

Kende u. 13-17, 1111 Budapest, Hungary
kecskemeti@sztaki.hu

3 Fondazione Bruno Kessler
via Sommarive 18, 38123 Trento, Italy

marconi@fbk.eu
4 University of Stuttgart

Institute of Architecture of Application Systems
Universitaetsstr. 38, 70569 Stuttgart, Germany

wetzstein@iaas.uni-stuttgart.de

Abstract. Service-based applications have become more and more
multi-layered in nature, as we tend to build software as a service on
top of infrastructure as a service. Most existing SOA monitoring and
adaptation techniques address layer-specific issues. These techniques, if
used in isolation, cannot deal with real-world domains, where changes in
one layer often affect other layers, and information from multiple layers
is essential in truly understanding problems and in developing compre-
hensive solutions.

In this paper we propose a framework that integrates layer specific
monitoring and adaptation techniques, and enables multi-layered control
loops in service-based systems. The proposed approach is evaluated on
a medical imaging procedure for Computed Tomography (CT) Scans,
an e-Health scenario characterized by strong dependencies between the
software layer and infrastructural resources.

1 Introduction

Service-based systems are built under an open-world assumption. Their func-
tionality and quality of service depend on the services they interact with, yet
these services can evolve in many ways, for better or for worse. To be sure these
evolutions do not lead to systems that behave inadequately or fail, service-based

 The research leading to these results has received funding from the European Com-

munity‘s Seventh Framework Programme FP7/2007-2013 under grant agreement
215483 (Network of Excellence S-Cube) and grant agreement 216556 (SLA@SOI).

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 359–373, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

360 S. Guinea et al.

systems must be able to re-arrange themselves to cope with change. A typical
way of dealing with these issues is to introduce some variant of the well-known
monitor-analyze-plan-execute (MAPE) loop into the system [6], effectively mak-
ing the system self-adaptive.

The service abstraction has become so pervasive that we are now building
systems that are multi-layered in nature. Cloud-computing allows us to build
software as a service on top of a dynamic infrastructure that is also provided
as a service (IaaS). This complicates the development of self-adaptive systems
because the layers are intrinsically dependent one of the other. Most existing
SOA monitoring and adaptation techniques address one specific functional layer
at a time. This makes them inadequate in real-world domains, where changes in
one layer will often affect others. If we do not consider the system as a whole
we can run into different kinds of misjudgments. For example, if we witness an
unexpected behavior at the software layer we may be inclined to adapt at that
same layer, even though a more cost-effective solution might be found either at
the infrastructure layer, or by combining adaptations at both layers. Even worse,
a purely software adaptation might turn out to be useless due to infrastructural
constraints we fail to consider. Similar considerations are made in case of the
unexpected behavior at the infrastructure layer, or at both.

In this paper we propose a framework that integrates software and infras-
tructure specific monitoring and adaptation techniques, enabling multi-layered
control loops in service-based systems. All the steps in the control loop acknowl-
edge the multi-faceted nature of the system, ensuring that we always reason
holistically, and adapt the system in a coordinated fashion. In our prototype
we have focused on the monitoring and adaptation of BPEL processes that are
deployed onto a dynamic infrastructure.

Building upon our past experiences we have integrated process and infrastruc-
ture level monitoring [2,8] with a correlation technique that makes use of complex
event processing [1]. The correlated data, combined with machine-learning tech-
niques, allow us to pinpoint where the problems lie in the multi-layered system,
and where it would be more convenient to adapt [7,12]. We then build a com-
plex adaptation strategy that may involve the software and/or the infrastructure
layer [13], and enact it through appropriate effectors.

The proposed approach is evaluated on a medical imaging procedure for Com-
puted Tomography (CT) Scans, an e-Health scenario characterized by strong
dependencies between the software layer and infrastructural resources.

The rest of this paper is organized as follows. Section 2 gives a high-level
overview of the integrated monitoring and adaptation framework used to enable
the multi-layered control loops. Section 3 details the software and infrastructure
monitoring tools and how they are correlated using complex event processing.
Section 4 explains how decision trees are used to identify which parts in the
system are responsible for the anomalous behaviors and what adaptations are
needed. Section 5 explains how we coordinate single-layer adaptation capabili-
ties to define a multi-layered adaptation strategy, while Section 6 presents the
tools used to actually enact the adaptations. Section 7 evaluates the integrated

Multi-layered Monitoring and Adaptation 361

approach on a medical imaging procedure. Section 8 presents related work, and
Section 9 concludes the paper.

2 The Integrated Monitoring and Adaptation Framework

We propose an integrated framework that allows for the installation of multi-
layered control loops in service-based systems. We will start with a conceptual
overview, and then provide more details on the single techniques we have inte-
grated in our prototype.

Dynamo/
Astro

Laysi

EcoWare

Laysi

DyBPEL

CLAM

Adaptation
Needs

Analyzer

monitoring
events

probes

probes

adapts

adapts

Monitoring & Correlation Analysis of
Adaptation

Needs

Adaptation
Enactment

Identification of
Multi-layer Adaptation

Strategies

In
fr

as
tr

uc
tu

re

S
of

tw
ar

e

software and
infrastructure

KPIs

adaptation action
request

adaptation
needs

Fig. 1. The Monitoring and Adaptation Framework

Figure 1 gives a high-level view of our integrated monitoring and adaptation
framework, as used in a multi-layered software and infrastructure system. To
establish self-adaptation, the framework applies a slight variation of the well-
known MAPE control loop. Dashed vertical lines separate the four main steps
in the loop, while oval shapes represent the concrete techniques that we have
integrated – detailed later in Sections 3–6.

In the Monitoring and Correlation step, sensors deployed throughout the sys-
tem capture run-time data about its software and infrastructural elements. The
collected data are then aggregated and manipulated to produce higher-level cor-
related data under the form of general and domain-specific metrics. The main

362 S. Guinea et al.

Data Source

Interrupt
Sampler

Polling
Sampler

Aggregate

Reliability

Avg Response
Time

Rate

Domain Specific
Aggregate

System
Polling Sampler

reads

1..*

Context
Polling Sampler

name
namespace

Context
Property

samples 1..*

System Interrupt
Sampler

Context
Interrupt
Sampler

1..* samples

Dynamo
Sampler

Laysi

Invocation
Monitor

Information
Collector

Dynamo/Laysi
Correlator

Fig. 2. The Monitoring and Correlation Model

goal is to reveal correlations between what is being observed at the software and
at the infrastructure layer to enable global system reasoning.

In the Analysis of Adaptation Needs step, the framework uses the correlated
data to identify anomalous situations, and to pinpoint and formalize where it
needs to adapt. It may be sufficient to adapt at the software or at the infras-
tructure layer, or we may have to adapt at both.

In the Identification of Multi-layer Adaptation Strategies step, the framework
is aware of the adaptation capabilities that exist within the system. It uses this
knowledge to define a multi-layer adaptation strategy as a set of software and/or
infrastructure adaptation actions to enact. A strategy determines both the order
of these actions and the data they need to exchange to accomplish their goals.

In the Adaptation Enactment step, different adaptation engines, both at the
software and the infrastructure layer, enact their corresponding parts of the
multi-layer strategy. Each engine typically contains a number of specific modules
targeting different atomic adaptation capabilities.

3 Monitoring and Correlation

Monitoring consists in collecting data from a running application so that they
can be analyzed to discover runtime anomalies; event correlation is used to ag-
gregate runtime data coming from different sources to produce information at a
higher level of abstraction. In our integrated framework we can obtain low-level
data/events from the process or from the context of execution using Dynamo [2],
or from the infrastructure using Laysi [8]. We can then manipulate the data to

Multi-layered Monitoring and Adaptation 363

obtain higher-level information using the event correlation capabilities provided
by EcoWare [1]. Figure 2 gives an overview of the kind of data sources available
through Dynamo, Laysi, and EcoWare.

Dynamo provides means for gathering events regarding either (i) a process’
internal state, or (ii) context data1. Interrupt Samplers interrupt a process
at a specific point in its execution to gather the information, while Polling
Samplers do not block the process but gather their data through polling.

The Invocation Monitor is responsible for producing low-level infrastruc-
ture events through the observation of the various IaaS systems managed by
Laysi. These events signal a service invocation’s failure or success, where fail-
ures are due to infrastructure errors. The infrastructure, however, can also be
queried through the Information Collector to better understand how services
are assigned to hosts. The differences between the utilized infrastructures and
the represented information are hidden by the information collector component
of the MetaBroker service in Laysi.

Siena

Esper Processor

SienaInputAdapter

Dynamo

Esper Processor

SienaInputAdapter

ActiveBPEL
+

AOP Sensors

SienaOutputAdapter

SienaOutputAdapter

SienaOutputAdapter

Laysi Managed
Infrastructure

SienaOutputAdapter

E
coW

are

Fig. 3. The Dynamo and EcoWare Architecture

The events collected through Dynamo and Laysi can be further aggregated
or manipulated by EcoWare. We can use a predefined aggregate metric such
as Reliability, Average Response Time, or Rate, or we can use a domain-
specific aggregate whose semantics is expressed using the Esper event processing
language. Aggregates process events coming from one or more data sources and
produce new ones that can be even further manipulated in a pipe-and-filter style.

For our integrated approach we developed a domain-specific aggregate called
the Dynamo/Laysi Correlator to correlate events produced at the software and
the infrastructure layers. This component exploits a correlation data set that is
artificially introduced by Dynamo in every service call it makes to the Laysi
infrastructure. The correlation data contains the name of the process making
1 We intend as context any data source, external to the system, that offers a service

interface.

364 S. Guinea et al.

the call to Laysi, the invocation descriptor in the form of a unique JSDL (Job
Submission Description Language) document, and a unique ID for the process
instance that is actually making the request. These data are also placed within
the events that are generated by the Invocation Monitor, allowing EcoWare to
easily understand which software- and infrastructure-level events are related.
Figure 3 gives an overview of the technical integration of Dynamo, Laysi, and
EcoWare, which is achieved using a Siena publish and subscribe event bus. Input
and output adapters are used to align Dynamo, Laysi, and the event processors
with a normalized message format.

4 Analysis of Adaptation Needs

Monitoring and correlation produce simple and complex metrics that need to be
evaluated. A Key Performance Indicator consists of one of these metrics (e.g.,
overall process duration) and a target value function which maps values of that
metric to two or more categories on a nominal scale (e.g., “process duration < 3
days is good, otherwise bad” defines two KPI categories). These KPI categories
allow us to interpret whether, and how, KPI metric values conform to business
goals. If monitoring shows that many process instances have bad KPI perfor-
mance, we need to (i) analyze the influential factors that lead to these bad KPI
values, and (ii) find adaptation actions that can improve those factors and thus
the KPI. Figure 4 shows an overview of the KPI-based Adaptation Needs An-
alyzer Framework [7,12] and its relation to the overall approach. It consists of
two main components: an Influential Factor Analysis component and an
Adaptation Needs Analysis component.

Monitoring/
Correlation
Framework

Metric
values

Influential
Factor

Analysis

Adaptation
Needs

Analaysis

KPI
Model

Adaptation
Actions Model

Adaptation
actions

CLAM
Decision Tree

Adaptation Needs
Analyzer

Fig. 4. Adaptation Needs Analysis Framework

The Influential Factor Analysis receives the metric values for a set of process
instances within a certain time period. In this context, interesting metrics are
measured both on the process level and the service infrastructure level. At the
process level, metrics include the durations of external service calls, the duration
of the overall business process, the process paths taken, the number of iterations

Multi-layered Monitoring and Adaptation 365

in loops, and the process’ data values. Service infrastructure metrics describe the
service invocation properties which include the status of the service invocation
(successful, failed), and properties such as the infrastructure node on which the
service execution has been performed.

It uses machine learning techniques (decision trees) to find out the relations
between a set of metrics (potential influential factors) and the KPI category
based on historical process instances [12]. The algorithm is fed with a data
set, whereby each data item in this set represents one process instance and the
values of all the metrics that were measured for that instance and the KPI
category that has been evaluated. The algorithm creates a decision tree in which
nodes represent metrics (e.g., the duration of a particular activity), outgoing
edges represent conditions on the values of the metric, and leaves represent KPI
categories. By following the paths from the root of the tree to its leaves, we can
see for which combinations of metrics and values particular KPI categories have
been reached (e.g., if duration of activity A was above 3 hours and activity B
was executed on node 2 the KPI value was bad).

Based on this analysis the next step is to use the Adaptation Needs Analysis
component to identify the adaptation needs, i.e., what is to be adapted in order
to improve the KPI [7]. The inputs to this step are the decision tree and an
adaptation actions model which has to be manually created by the user. The
model contains different adaptation actions, whereby each specifies an adapta-
tion mechanism (e.g., service substitution, process structure change) and how
it affects one or more of the metrics used in the Influential Factor Analysis.
For example, an adaptation action could be to substitute service A in the pro-
cess with service B, and its effect could be “service response time < 2 h”. The
Adaptation Needs Analysis extracts the paths which lead to bad KPI categories
from the tree and combines them with available adaptation actions which can
improve the corresponding metrics on the path. As a result, we obtain different
sets of potential adaptation actions. However, each of these sets does not yet
take cross-layer dependencies between adaptation actions into account. This is
performed in the next step by the CLAM framework.

5 Identification of Multi-layer Adaptation Strategies

The main aim of the Cross Layer Adaptation Manager (CLAM) [13] is to man-
age the impact of adaptation actions across the system’s multiple layers. This is
achieved in two ways: on the one hand CLAM identifies the application compo-
nents that are affected by the adaptation actions, and on the other hand, it
identifies an adaptation strategy that properly coordinates the layer-specific
adaptation capabilities. CLAM relies on a model of the multi-layer application
that contains the current configuration of the application’s components (e.g.
business processes with KPIs, available services with stated QoS and general
information, available infrastructure resources) and their dependencies (e.g. busi-
ness activity A is performed by service S). When the CLAM identifies the com-
ponents that are affected by the adaptation actions, it uses a set of checkers,

366 S. Guinea et al.

each associated with a specific application concern (e.g. service composition,
service performances, infrastructure resources), to analyze whether the updated
application model is compatible with the concern’s requirements. The goal is
to produce a strategy that is modeled as an Adaptation Tree. The tree’s root
represents the model’s initial configuration; its other nodes contain the config-
urations of the model, as updated by the adaptation actions, and the checkers
that need to be invoked at each step; its edges represent the outcome of the
invoked checkers.

Adaptation
Needs

Analyzer

Adaptation
Actions

SBA Model
Updater

Cross-Layer
Rule Engine

Adaptation
Strategy
Selector

Laysi

DyBPEL

SBA
Model

Adapted
SBA Model

Adaptation
Actions

Adaptation
Tree

Adaptation
Strategy

Adaptation
Action

Adaptation
Action

Request/
Result

Request/
Result

Process
Re-writing

Laysi

Checker
Service

Composition

Checker
Infrastructure
Resources

Pluggable Adaptation
Capabilities

Cross Layer Adaptation Manager (CLAM)

Fig. 5. CLAM: Cross-layer Adaptation Manager

Figure 5 presents an overview of CLAM’s architecture. Whenever a new set
of adaptation actions is received from the Adaptation Needs Analyzer, the SBA
Model Updater module updates the current application model by applying the
received adaptation actions. CLAM requires that all the adaptation actions be
applicable with respect to the current model. However, this is guaranteed in the
proposed multi-layer framework by the Adaptation Needs Analyzer.

The adapted model is then used by the Cross-layer Rule Engine to detect
the components in the layers affected by the adaptation and to identify, through
the set of predefined rules, the associated adaptation checkers. If some constraints
are violated, the checker is responsible for searching for a local solution to the
problem. This analysis may result in a new adaptation action to be triggered.
This is determined through the interaction with a set of pluggable application-
specific adaptation capabilities.

The Cross-layer Rule Engine uses each checker’s outcome to progressively
update the strategy tree. If the checker triggers a new adaptation action, the
Cross-layer Rule Engine obtains a new adapted model from the Model Updater,
and adds it as a new node to the strategy tree, together with the new checkers
to be invoked. If the checker reports that the adaptation is not compatible and
that no solution can be found, the node is marked as a red leaf; the path in the

Multi-layered Monitoring and Adaptation 367

tree that leads from the root to that specific node represents an unsuccessful
strategy. On the contrary, if all checks complete successfully, the node is a green
leaf that can be considered a stable configuration of the application, and the
corresponding path in the tree represents an adaptation strategy that can be
enacted.

If multiple adaptation strategies are identified, the Adaptation Strategy
Selector is responsible of choosing the best strategy by evaluating and ranking
the different strategies according to a set of predefined metrics. The selected
strategy is then enacted passing the adaptation actions to the adaptation enact-
ment tools.

Due to our scenario’s requirements we have currently integrated two specific
adaptation capabilities into our framework: the Process Re-Writing planner,
responsible of optimizing service compositions by properly parallelizing sequen-
tial activities, and Laysi, whose aim is to guarantee a correct and optimized
usage of infrastructure resources.

The Process Re-writing Planner is an adaptation mechanism that, given a
BPEL process and a set of optimization requirements, automatically computes
a new version of the process that maximizes the parallel execution of activities.
This is done taking into account a set of data and control flow requirements that
characterize the process’ correct behavior (e.g. activity A cannot be executed in
parallel with B, activity A must follow activity B, etc.), as well as any interaction
protocols the partner services may require (e.g. if service S expects activity A to
be executed before activity B, than this protocol requirement will be satisfied).

Laysi offers self-management capabilities for service infrastructures and allows
new infrastructure level requirements to be evaluated before the actual service
invocations take place. Hence, upon receiving the possible parallel execution op-
tions from Process Re-writing Planner, the CLAM architecture presents these
options as requirements (including the required parallelism and time constraints)
to Laysi for all the not-yet executed service calls. In response, Laysi determines
the feasibility of the proposed requirements taking into account that a rearrange-
ment of the service infrastructure may be needed. If the system decides to enact
the adaptation and the infrastructure needs to be rearranged, Laysi will ensure
the next invocation can meet its agreed constraints according to the adaptation
enactment tasks specified in the following section.

6 Adaptation Enactment

In our integrated approach we enact software adaptations through DyBPEL, and
infrastructure adaptations through Laysi. CLAM issues specific actions of the
chosen adaptation strategy to each tool in a coordinated fashion.

In the proposed integration, DyBPEL is responsible of enacting the process
restructuring adaptations identified by the Process Re-writing Planner.

DyBPEL extends an open-source BPEL execution engine (ActiveBPEL) with
the capability to modify a process’ structure at run time. The change can be
applied to a single process instance or to an entire class of processes. DyBPEL

368 S. Guinea et al.

consists of two main components: a Process Runtime Modifier, and a Static
BPEL Modifier. The runtime modifier makes use of AOP techniques to intercept
a running process and modify it in one of three ways: by intervening on its
BPEL activities, on its set of partnerlinks, or on its internal state. The runtime
modifier takes three parameters. The first is an XPath expression that uniquely
identifies the point in the process execution in which the restructuring has to
be activated. The second is an XPath expression that uniquely identifies the
point in the process in which restructuring needs to be achieved (it can be
different than the point in which the restructuring is activated). The third is a
list of restructuring actions. Supported actions consist of the addition, removal,
or modification of BPEL activities, partnerlinks, and data values. When dealing
with BPEL activities we must provide the BPEL snippet that needs to be added
to the process, or used to modify one of the process’ existing activities. When
dealing with partnerlinks we must provide the new partnerlink that needs to be
added to the process, or used to modify an existing one. When dealing with the
process’ state we must uniquely identify a BPEL variable within the process to
be added or modified, and the XML snippet that will consist of its new value.

When the process restructuring needs to be more extensive, we can use the
static BPEL modifier. It supports the same kinds of modifications to the process’
activities, partnerlinks, and internal variables, except that the modifications are
performed on the process’ XML definition. This operation is completely trans-
parent to users. First of all, already running instances are not modified and
changes are only applied to new instances. Second, using the same endpoint, all
new process requests are forwarded to the newly deployed version of the process.

Regarding infrastructure adaptation, Laysi always performs service requests
on a best-effort basis. Each service invocation is handled individually and the
various calls are assumed to be independent. Consequently, the performance of
the service requests might not be aligned with the higher layers of the service-
based system. To provide better alignment with the service composition layer we
can specify special constraints about service placement (e.g. service instance A
should be hosted within the same provider as service instance B) and availabil-
ity within the infrastructure (e.g. a service instance should be available before
the invocation request is placed in the call queue of Laysi). These constraints
are derived directly from the business process and the future interactions be-
tween the available service instances hosted by the infrastructure. Laysi con-
structs the service infrastructure on five layers: meta negotiators, meta brokers,
service brokers, automatic service deployers, and the physical infrastructures
(grid resources or cloud based virtual machines). These infrastructure layers au-
tonomously adapt themselves to the placed constraints (e.g. placement, availabil-
ity, CPU, memory, pricing). The autonomous behavior of the infrastructure may
involve (i) new service instance deployment in high demand situations, (ii) ser-
vice broker replacement in case of broken or low performing physical infrastruc-
tures, and/or (iii) negotiation bootstrapping if a new negotiation technique is
required.

Multi-layered Monitoring and Adaptation 369

7 The CT Scan Scenario

The application domain considered in this paper concerns the medical imaging
procedure for Computed Tomography (CT) Scans. A CT Scan is an X-ray based
medical test that, exploiting sophisticated image processing algorithms, produces
cross-sectional images of the inside of the body. These images can be further
processed to obtain three dimensional views.

CSDA

FTR

3D

PACS

CSDA

ATR

STR

FTR 3D PACSATRSTR

CSDA

FTR 3D PACS

ATR

STR

CSDA

FTR

3D
(PACS3D)

PACS
(PACS3D)

ATR

STR

(a) (b) (c) (d)

N1

N2

N3

N4

N1

N2 N3 N4

N1

N2

N3 N4

N1

N2

N3

Fig. 6. Evolution of the CT scan scenario

Figure 6(a) describes the typical CT Scan process. White ovals represent soft-
ware services, while gray rectangles tell us the infrastructure nodes hosting them.
During the Cross Sectional Data Acquisition phase (service CSDA) the CT scan-
ner acquires X-ray data for individual body cross sections depending on which
parts of the body need to be scanned. These data are then used by complex im-
age processing services (offered by various hosts in the infrastructure) to obtain
a set of cross-sectional images from different perspectives as well as 3D volu-
metric information. The services are the Frontal Tomographic Reconstruction
service (FTR), the Sagittal Tomographic Reconstruction service (STR), the Axial
Tomographic Reconstruction service (ATR), and the 3D volumetric information
service (3D). Finally, the data is stored to a picture archiving and communication
system using the PACS service.

These activities require enormous processing power. To keep costs down, the
hospital only maintains the resources needed for emergency CT scans. During
burst periods, such as during the public opening hours of the CT laboratory,
it relies on an infrastructure dynamically extensible with virtual machines from
IaaS cloud infrastructures managed by Laysi.

In the following we show how our approach can be used to automatically
adapt this multi-layered system. The CT Scan process is initially designed by
a domain expert on the basis of the common medical procedure. The obtained
process is a simple sequence of actions that does not embed any optimization with

370 S. Guinea et al.

respect to its performance (Figure 6 (a)). The domain expert also specifies his
goals for the quality of the medical procedure using a set of KPIs. For instance,
an important goal is to ensure that the processing time of a CT scan does
not rise above 60 minutes. An advanced user, such as a hospital IT technician,
defines a set of adaptation actions that can be used to improve the process’
performance: (i) the parallelization of process activities; (ii) the substitution of
some services (for example, the use of a more costly PACS3D service capable of
substituting both services PACS and 3D); (iii) the deployment of a service onto
a new infrastructural node with specific characteristics.

At run time we collect monitoring events both at the software and the infras-
tructure level and correlate them using EcoWare. After a certain period of time,
we notice that the CT process’ performance is degrading: in the last 400 scans
about 25% have not achieved their desired overall CT scan processing time. In
order to identify the reasons for this behavior, the Influential Factor Analysis is
fed the following process and infrastructure level metrics: (i) the duration of each
process activity; (ii) the duration of the whole process with respect to the the
type of the CT scan (whole body, head, kidney etc.) as it determines the amount
of work to be done; (iii) the particular infrastructure node a service execution
has been executed on; (iv) the status of a service execution (successful, faulted);
and (v) the type of infrastructure the services have been executed on (internal
or external – available through Laysi).

The Influential Factor Analysis shows that from the 100 scans which violated
the KPI target, 90 scans have been “whole body CT scans” executed on an
external infrastructure. It also shows that the infrastructure has caused service
execution faults only in 12 cases (out of 400). Finally, all scans performed on the
internal infrastructure were successful. Based on this analysis, the Adaptation
Needs Analysis selects predefined adaptation actions which can improve the
“overall process duration in case of whole body CT scans”. It selects process
activity parallelization as it is the only adaptation which has been specified to
have a direct positive effect on this metric.

This adaptation action is passed to the CLAM which updates the process
model so that all activities are executed in parallel. The Cross-Layer Rule Engine
detects the change in the process model and understands that these changes
have to be checked by the composition checker and by the infrastructure checker
(as the parallel execution of services has to be supported by the underlying
infrastructure). The composition checker invokes the Process Re-Writing Planner
which considers the original data- and control-flows of the process. It notices
that the activities cannot all be executed in parallel since five of them depend
on CSDA’s results; thus the planner returns a new adaptation action which
ensures that CSDA is executed first, while all the other activities are conducted
in parallel. The model is updated in CLAM as shown in Figure 6 (b) and a
new node is added to the adaptation tree. In the next step, the Cross-Layer
Rule Engine invokes the infrastructure checker component which, through Laysi,
discovers that the activities for tomographic reconstruction (i.e. FTR, STR, and
ATR) can only be executed on the node N2. The Rule Engine handles this

Multi-layered Monitoring and Adaptation 371

new adaptation need by invoking again the Process Re-Writing Planner with a
new set of control-flow constraints (i.e. FTR, STR, and ATR must be executed
sequentially). The resulting process structure is shown in Figure 6 (c), in which,
after CSDA, there are three parallel branches. In one of these branches FTR,
STR, and ATR are executed sequentially, while, in the other two, the process
executes the 3D and PACS services. The model is updated and the infrastructure
checker component is invoked again. This new version of the process passes the
infrastructure validation and, since there are no more checkers to be invoked, the
corresponding strategy is enacted. In particular, the adapted process is handed
over to DyBPEL, which manages the transition to the new process definition.

The adapted process is executed and after a certain period of time we notice
that the number of KPI violations has been reduced to 10%, and that most KPI
violations happen when the PACS service’s execution time is too high. Therefore,
two alternative adaptation actions are found: either (i) move the PACS service
instance to another (better performing) node, or (ii) replace PACS with the new
service PACS3D. Both alternatives are passed to CLAM.

The CLAM Rule Manager invokes the infrastructure checker with the con-
straint to the Laysi infrastructure stating that the PACS service should never
be executed on node N4. Unfortunately, Laysi responds that, due to constraints,
this is not possible and that PACS must always be executed on N4. The CLAM
Rule Manager drops the first adaptation action alternative as it is not realizable,
and repeats the procedure with the second adaptation action, the substitution of
the PACS service with a service called PACS3D, capable of providing both stor-
age and 3D reconstruction at a higher cost. This alternative has to be checked
both by the composition checker and by the infrastructure checker. The Process
Re-writing Planner detects that a new process restructuring is necessary: a new
control-flow requirement is introduced by the protocol of the PACS3D service
which requires to receive and store all the X-Ray data information (PACS) before
computing the 3D Scan (3D). The SBA Model resulting from this new adapta-
tion action is depicted in Figure 6 (d). The parallel branches are now only two,
one for FTR, STR, and ATR, and one for PACS3D which is called twice, once
to perform 3D reconstruction, and once to perform storage. The infrastructure
checker validates the new model and the corresponding strategy is enacted.

8 Related Work

There are not many approaches in literature that integrate multi-layered moni-
toring and adaptation of service-based systems. There are however many that fo-
cus on layer-specific problems. For example, Moser et al. [10] present VieDAME,
a non-intrusive approach to the monitoring of BPEL processes. The approach ac-
cumulates runtime data to calculate QoS values such as response time, accuracy,
or availability. It also provides a dynamic adaptation and message mediation ser-
vice for partnerlinks, using XSLT or regular expressions to transform messages
accordingly. Colombo et al. [3] extend the BPEL composition language with pol-
icy (re)binding rules written in the Drools language. These rules take the form

372 S. Guinea et al.

of if-then-else statements, allowing service bindings to depend on process data
collected at run time. The approach also provides mediation capabilities through
a special-purpose mediation scripting language.

Researchers that do consider multi-layered applications, on the other hand,
tend to concentrate either on monitoring them or on adapting them. We present
the most prominent research being done in both these fields. Foster et al. [5]
have proposed an extensible framework for monitoring business, software, and
infrastructure services. The framework allows different kinds of reasoners, tai-
lored to different kinds of services, to be integrated and to collaborate to monitor
decomposable service level agreement terms and expressions. The framework au-
tomatically assigns the decomposed atomic terms to specific reasoners, yet the
approach does not support the correlation of terms monitored at different layers.
Mos et al. [9] propose a multi-layered monitoring approach that considers service
and infrastructure level events produced by services deployed to a distributed
enterprise service bus. Basic computations can be performed on the events to
produce aggregate information (e.g., averages) or complex event processing can
be used for more complex correlations and verifications. The resulting data are
analyzed by comparing them to thresholds, and the knowledge collected at the
various levels are presented through appropriately differentiated user interfaces
and visualization techniques. The approach does not correlate knowledge col-
lected at the different levels.

Regarding multi-level adaptation, Efstratiou et al. [4] present an approach for
adapting multiple applications that share common resources. These applications
are not composed, but rather single entities affected by the same contextual at-
tributes. Since these applications live in the same space they need to coordinate
how they manage the shared resources to avoid conflicts. However, they ex-
pect the users to perceive and model the conflicts manually. Finally, Popescu et
al. [11] propose a framework for multi-layer adaptation of service-based systems
comprised of organization, coordination and service layers. In this approach a
designer needs to prepare a taxonomy of the adaptation mismatches, and then
a set of adaptation templates, known as patterns, that define generic solutions
for these mismatches. This differs from our proposed approach since we do not
require on design-time knowledge but discover our strategies on-the-fly.

9 Conclusion and Future Work

In this paper we have presented an integrated approach for monitoring and
adapting multi-layered service-based systems. The approach is based on a variant
of the well-known MAPE control loops that are typical in autonomic systems.
All the steps in the control loop acknowledge the multi-faceted nature of the
system, ensuring that we always reason holistically, and adapt the system in a
cross-layered and coordinated fashion. We have also presented initial validation
of the approach on a dynamic CT scan scenario.

In our future work we will continue to evaluate the approach through new
application scenarios, and through the addition of new adaptation capabilities

Multi-layered Monitoring and Adaptation 373

and adaptation enacting techniques. We will also integrate additional kinds of
layers, such as a platforms, typically seen in cloud computing setups, and busi-
ness layers. This will also require the development of new specialized monitors
and adaptations. Finally, we will study the feasibility of managing different kinds
of KPI constraints.

References

1. Baresi, L., Caporuscio, M., Ghezzi, C., Guinea, S.: Model-Driven Management of
Services. In: Proceedings of the Eighth European Conference on Web Services,
ECOWS, pp. 147–154. IEEE Computer Society (2010)

2. Baresi, L., Guinea, S.: Self-Supervising BPEL Processes. IEEE Trans. Software
Engineering 37(2), 247–263 (2011)

3. Colombo, M., Di Nitto, E., Mauri, M.: SCENE: A Service Composition Execution
Environment Supporting Dynamic Changes Disciplined Through Rules. In: Dan,
A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 191–202. Springer,
Heidelberg (2006)

4. Efstratiou, C., Cheverst, K., Davies, N., Friday, A.: An Architecture for the Ef-
fective Support of Adaptive Context-Aware Applications. In: Tan, K.-L., Franklin,
M.J., Lui, J.C.-S. (eds.) MDM 2001. LNCS, vol. 1987, pp. 15–26. Springer, Heidel-
berg (2000)

5. Foster, H., Spanoudakis, G.: SMaRT: a Workbench for Reporting the Monitorability
of Services from SLAs. In: Proceedings of the 3rd International Workshop on Princi-
ples of Engineering Service-oriented Systems, PESOS, pp. 36–42. ACM (2011)

6. Horn, P.: Autonomic Computing: IBM’s Perspective on the State of Information
Technology. IBM TJ Watson Labs (October 2001)

7. Kazhamiakin, R., Wetzstein, B., Karastoyanova, D., Pistore, M., Leymann, F.:
Adaptation of Service-Based Applications Based on Process Quality Factor Anal-
ysis. In: ICSOC/ServiceWave Workshops, pp. 395–404 (2010)

8. Kertész, A., Kecskemeti, G., Brandic, I.: Autonomic SLA-Aware Service Virtual-
ization for Distributed Systems. In: Proceedings of the 19th International Euromi-
cro Conference on Parallel, Distributed and Network-based Processing, PDP, pp.
503–510 (2011)

9. Mos, A., Pedrinaci, C., Rey, G.A., Gomez, J.M., Liu, D., Vaudaux-Ruth, G.,
Quaireau, S.: Multi-level Monitoring and Analysis of Web-Scale Service based Ap-
plications. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009.
LNCS, vol. 6275, pp. 269–282. Springer, Heidelberg (2010)

10. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive Monitoring and Service Adap-
tation for WS-BPEL. In: Proceeding of the 17th International Conference on World
Wide Web, WWW, pp. 815–824. ACM (2008)

11. Popescu, R., Staikopoulos, A., Liu, P., Brogi, A., Clarke, S.: Taxonomy-Driven
Adaptation of Multi-layer Applications Using Templates. In: Proceedings of the
Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Sys-
tems, SASO, pp. 213–222 (2010)

12. Wetzstein, B., Leitner, P., Rosenberg, F., Dustdar, S., Leymann, F.: Identifying
Influential Factors of Business Process Performance using Dependency Analysis.
Enterprise IS 5(1), 79–98 (2011)

13. Zengin, A., Kazhamiakin, R., Pistore, M.: CLAM: Cross-layer Management of
Adaptation Decisions for Service-Based Applications. In: Proceedings of the 9th
International Conference on Web Services, ICWS (2011)

Efficient, Interactive Recommendation

of Mashup Composition Knowledge

Soudip Roy Chowdhury, Florian Daniel, and Fabio Casati

University of Trento
Via Sommarive 5, 38123 Povo (TN), Italy

{rchowdhury,daniel,casati}@disi.unitn.it

Abstract. In this paper, we approach the problem of interactively
querying and recommending composition knowledge in the form of re-
usable composition patterns. The goal is that of aiding developers in their
composition task. We specifically focus on mashups and browser-based
modeling tools, a domain that increasingly targets also people without
profound programming experience. The problem is generally complex,
in that we may need to match possibly complex patterns on-the-fly and
in an approximate fashion. We describe an architecture and a pattern
knowledge base that are distributed over client and server and a set of
client-side search algorithms for the retrieval of step-by-step recommen-
dations. The performance evaluation of our prototype implementation
demonstrates that - if sensibly structured - even complex recommenda-
tions can be efficiently computed inside the client browser.

1 Introduction

Mashing up, i.e., composing, a set of services, for example, into a data process-
ing logic, such as the data-flow based data processing pipes proposed by Yahoo!
Pipes (http://pipes.yahoo.com/pipes/), is generally a complex task that
can only be managed by skilled developers. People without the necessary pro-
gramming experience may not be able to profitably use mashup tools like Pipes
– to their dissatisfaction. For instance, we think of tech-savvy people, who like
exploring software features, author and share own content on the Web, that
would like to mash up other contents in new ways, but that don’t have pro-
gramming skills. They might lack appropriate awareness of which composable
elements a tool provides, of their specific function, of how to combine them, of
how to propagate data, and so on. The problem is analogous in the context of
web service composition (e.g., with BPEL) or business process modeling (e.g.,
with BPMN), where modelers are typically more skilled, but still may not know
all the features of their modeling languages.

Examples of ready mashup models are one of the main sources of help for
modelers who don’t know how to express or model their ideas – provided that
suitable examples can be found (examples that have an analogy with the mod-
eling situation faced by the modeler). But also tutorials, expert colleagues or

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 374–388, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://pipes.yahoo.com/pipes/

Efficient, Interactive Recommendation of Mashup Composition Knowledge 375

friends, and, of course, Google are typical means to find help. However, search-
ing for help does not always lead to success, and retrieved information is only
seldom immediately usable as is, since the retrieved pieces of information are
not contextual, i.e., immediately applicable to the given modeling problem.

Inspired by a study on how end users would like to be assisted in mashup
development [1], we are working toward the interactive, contextual recommen-
dation of composition knowledge, in order to assist the modeler in each step of
his development task, e.g., by suggesting a candidate next component or a whole
chain of tasks. The knowledge we want to recommend is re-usable composition
patterns, i.e., model fragments that bear knowledge that may come from a vari-
ety of possible sources, such as usage examples or tutorials of the modeling tool
(developer knowledge), best modeling practices (domain expert knowledge), or
recurrent model fragments in a given repository of mashup models (community
knowledge [2]). The vision is that of developing an assisted, web-based mashup
environment (an evolution of our former work [3]) that delivers useful composi-
tion patterns much like Google’s Instant feature provides search results already
while still typing keywords into the search field.

In this paper, we approach one of the core challenges of this vision, i.e., the
fast search and retrieval of a ranked list of contextual development recommen-
dations. The problem is non-trivial, in that the size of the respective knowledge
base may be large, and the search for composition patterns may be complex;
yet, recommendations are to be delivered at high speed, without slowing down
the modeler’s composition pace. Matching a partial mashup model with a repos-
itory of modeling patterns, in order to identify which of the patterns do in fact
represent useful information, is similar to the well-known inexact sub-graph iso-
morphism problem [4], which has been proven to be NP-complete in general.
Yet, if we consider that the pattern recommender should work as a plug-in for
a web-based modeling tool (such as Pipes or mashArt [3], but also instruments
like the Oryx BPMN editor [http://bpt.hpi.uni-potsdam.de/Oryx/]), fast
response times become crucial.

We provide the following contributions, in order to approach the problem:

– We model the problem of interactively recommending composition knowl-
edge as pattern matching and retrieval problem in the context of data
mashups and visual modeling tools (Section 2). This focus on one specific
mashup/composition model is without loss of generality as for what regards
the overall approach, and the model can easily be extended to other contexts.

– We describe an architecture for an assisted development environment, along
with a client-side, recommendation-specific knowledge base (Section 3).

– We describe a set of query and similarity search algorithms that enable the
efficient querying and ranking of interactive recommendations (Section 4).

– We study the performance of the conceived algorithms and show that inter-
actively delivering composition patterns inside the modeling tool is feasible
(Section 5).

In Section 6 we have a look at related works, and in the conclusion we recap the
lessons we learned and provide hints of our future work.

http://bpt.hpi.uni-potsdam.de/Oryx/

376 S. Roy Chowdhury, F. Daniel, and F. Casati

2 Preliminaries and Problem Statement

Recommending composition knowledge requires, first of all, understanding how
such knowledge looks like. We approach this problem next by introducing the
mashup model that accompanies us throughout the rest of this paper and that
allows us to define the concept of composition patterns as formalization of the
knowledge to be recommended. Then, we characterize the typical browser-based
mashup development environment and provide a precise problem statement.

2.1 Mashup Model and Composition Patterns

As a first step toward more complex mashups, in this paper we focus on data
mashups. Data mashups are simple in terms of modeling constructs and expres-
sive power and, therefore, also the structure and complexity of mashup patterns
is limited. The model we define in the following is inspired by Yahoo! Pipes and
JackBe’s Presto (http://www.jackbe.com) platform; in our future work we will
focus on more complex models.

A data mashup model can be expressed as a tuple m = 〈name, C, F, M, P 〉,
where name is the unique name of the mashup, C is the set of components used
in the mashup, F is the set of data flow connectors ruling the propagation of
data among components, M is the set of data mappings of output attributes1 to
input parameters of connected components, and P is the set of parameter value
assignments for component parameters. Specifically:

– C = {ci|ci = 〈namei, desci, Ini, Outi, Confi〉} is the non-empty set of com-
ponents, with namei being the unique name of the component ci, desci

being a natural language description of the component (for the modeler),
and Ini = {〈inij, reqij〉}, Outi = {outik}, and Confi = {〈confil, reqil〉},
respectively, being the sets of input, output, and configuration parame-
ters/attributes, and reqij , reqil ∈ {yes, no} specifying whether the param-
eter is required, i.e., whether it is mandatory, or not. We distinguish three
kinds of components:

• Source components fetch data from the web or the local machine. They
don’t have inputs, i.e., Ini = ∅. There may be multiple source compo-
nents in C.

• Regular components consume data in input and produce processed data
in output. Therefore, Ini, Outi �= ∅. There may be multiple regular
components in C.

• Sink components publish the output of the data mashup, e.g., by printing
it onto the screen or providing an API toward it, such as an RSS or
RESTful resource. Sinks don’t have outputs, i.e., Outi = ∅. There must
always be exactly one sink in C.

1 We use the term attribute to denote data attributes in the data flow and the term
parameter to denote input and configuration parameters of components.

http://www.jackbe.com

Efficient, Interactive Recommendation of Mashup Composition Knowledge 377

– F = {fm|fm ∈ C × C} are the data flow connectors that assign to each
component ci it’s predecessor cp (i �= p) in the data flow. Source components
don’t require any data flow connector in input; sink components don’t have
data flow connectors in output.

– M = {mn|mn ∈ IN × OUT, IN = ∪i,jinij , OUT = ∪i,koutik} is the data
mapping that tells each component which of the attributes of the input
stream feed which of the input parameters of the component.

– P = {po|po ∈ (IN∪CONF)×(val∪null), CONF = ∪i,lconfil} is the value
assignment for the input or configuration parameters of each component,
val being a number or string value (a constant), and null representing an
empty assignment.

This definition allows models that may not be executed in practice, e.g., because
the data flow is not fully connected. With the following properties we close this
gap:

Definition 1. A mashup model m is correct if the graph expressed by F is
connected and acyclic.

Definition 2. A mashup model m is executable if it is correct and all required
input and configuration parameters have a respective data mapping or value
assignment.

These two properties must only hold in the moment we want to execute a mashup
m. Of course, during development, e.g., while modeling the mashup logic inside
a visual mashup editor, we may be in the presence of a partial mashup model
pm = 〈C, F, M, P 〉 that may be neither correct nor executable. Step by step, the
mashup developer will then complete the model, finally obtaining a correct and
executable one, which can typically be run directly from the editor in a hosted
fashion.

Given the above characterization of mashups, we can now define composition
knowledge that can be recommended as re-usable composition patterns for
mashups of type m, i.e., model fragments that provide insight into how to solve
specific modeling problems. Generically – given the mashup model introduced be-
fore – we express a composition pattern as a tuple cp = 〈C, F, M, P, usage, date〉,
where C, F, M, P are as defined for m, usage counts how many times the pat-
tern has been used (e.g., to compute rankings), and date is the creation date of
the pattern. In order to be useful, a pattern must be correct, but not necessar-
ily executable. The size of a pattern may vary from a single component with a
value assignment for at least one input or configuration parameter to an entire,
executable mashup; later on we will see how this is reflected in the structure of
individual patterns.

Finally, to effectively deliver recommendations it is crucial to understand when
to do so. Differently from most works on pattern search in literature (see Section
6), we aim at an interactive recommendation approach, in which patterns are
queried for and delivered in response to individual modeling actions performed
by the user in the modeling canvas. In visual modeling environments, we typically

378 S. Roy Chowdhury, F. Daniel, and F. Casati

have action ∈ {select, drag, drop, connect, delete, fill, map, ...}, where action is
performed on an object ⊆ C ∪ F ∪ IN ∪ CONF , i.e., on the set of modeling
constructs affected by the last modeling action. For instance, we can drop a
component ci onto the canvas, or we can select a parameter confil to fill it
with a value, we can connect a data flow connector fm with an existing target
component, or we can select a set of components and connectors.

2.2 Problem Statement

In the composition context described above, providing interactive, contextual
development recommendations therefore corresponds to the following problem
statement: given a query q = 〈object, action, pm〉, with pm being the partial
mashup model under development, how can we obtain a list of ranked com-
position patterns R = [〈cpi, ranki〉] (the recommendations), such that (i) the
provided recommendations help the developer to stepwise draw an executable
mashup model and (ii) the search, ranking, and delivery of the recommendations
can be efficiently embedded into an interactive modeling process?

3 Recommending Composition Knowledge: Approach

The key idea we follow in this work is not trying to crack the whole problem at
once. That is, we don’t aim to match a query q against a repository of generic
composition patterns of type cp in order to identify best matches. This is instead
the most followed approach in literature on graph matching, in which, given a
graph g1, we search a repository of graphs for a graph g2, such that g1 is a sub-
graph of g2 or such that g1 satisfies some similarity criteria with a sub-graph of
g2. Providing interactive recommendations can be seen as a specific instance of
this generic problem, which however comes with both a new challenge as well
as a new opportunity: the new challenge is to query for and deliver possibly
complex recommendations responsively; the opportunity stems from the fact
that we have an interactive recommendation consumption process, which allows
us to split the task into optimized sub-steps (e.g., search for data mappings,
search for connectors, and similar), which in turn helps improve performance.

Having an interactive process further means having a user performing model-
ing actions, inspecting recommendations, and accepting or rejecting them, where
accepting a recommendation means weaving (i.e., connecting) the respective
composition pattern into the partial mashup model under development. Thanks
to this process, we can further split recommendations into what is needed to
represent a pattern (e.g., a component co-occurrence) from what is needed to
use the pattern in practice (e.g., the exact mapping of output attributes to input
parameters of the component co-occurrence). We can therefore further leverage
on the separation of pattern representation and usage: representations (the rec-
ommendations) don’t need to be complete in terms of ingredients that make up
a pattern; completeness is required only at usage time.

Efficient, Interactive Recommendation of Mashup Composition Knowledge 379

3.1 Types of Knowledge Patterns

Aiming to help a developer to stepwise refine his mashup model, practically
means suggesting the developer which next modeling action (that makes sense)
can be performed in a given state of his progress and doing so by providing as
much help (in terms of modeling actions) as possible. Looking at the typical
modeling steps performed by a developer (filling input fields, connecting compo-
nents, copying/pasting model fragments) allows us to define the following types
of patterns (for simplicity, we omit the usage and date attributes):

– Parameter value pattern: cppar = 〈cx, ∅, ∅, px
o〉. Given a component, the

system suggest values for the component’s parameters.
– Connector pattern: cpconn = 〈{cx, cy}, fxy, ∅, ∅〉. Given two components,

the system suggests a connector among the components.
– Data mapping pattern: cpmap = 〈{cx, cy}, fxy, {mxy

n }, ∅〉. Given two com-
ponents and a connector among them, the system suggests how to map the
output attributes of the first component to the parameters of the second
component.

– Component co-occurrence pattern: cpco = 〈{cx, cy}, fxy, {mxy
n }, {px

o}∪{py
o}〉.

Given one component, the system suggests a possible next component to be
used, along with all the necessary data mappings and value assignments.

– Complex pattern: cpcom = 〈C, F, M, P 〉. Given a fragment of a mashup
model, the system suggests a pattern consisting of multiple components and
connectors, along with the respective data mappings and value assignments.

Our definition of cp would allow many more possible types of composition pat-
terns, but not all of them make sense if patterns are to be re-usable as is, that
is, without requiring further refinement steps like setting parameter values. This
is the reason for which we include also connectors, data mappings, and value
assignments when recommending a component co-occurrence pattern.

3.2 The Interactive Modeling and Recommender System

Figure 1 illustrates the internals of our prototype modeling environment equipped
with an interactive knowledge recommender. We distinguish between client and
server side, where the whole application logic is located in the client, and the
server basically hosts the persistent pattern knowledge base (KB; details in
Section 3.3). At startup, the KB loader loads the patterns into the client envi-
ronment, decoupling the knowledge recommender from the server side.

Once the editor is running inside the client browser, the developer can visually
compose components (in the modeling canvas) taken from the component tool
bar. Doing so generates modeling events (the actions), which are published on
a browser-internal event bus, which forwards each modeling action to the rec-
ommendation engine. Given a modeling action, the object it has been applied
to, and the partial mashup model pm, the engine queries the client-side pat-
tern KB via the KB access API for recommendations (pattern representations).

380 S. Roy Chowdhury, F. Daniel, and F. Casati

Modeling editor in client browser

HTML rendering window

Modeling canvas

Event bus

Recommendation
engine

KB access API

KB loader

C
om

po
ne

nt
 to

ol
 b

ar

R
ec

om
en

da
tio

n
pa

ne
l

Client-side
pattern KB

Partial mashup model

Composition server

Data
transformer

Mashup models

Pattern
extractor

Modeling actions
<object,action>

Modeling
instructions

Selection
events

Modeling actions
<object,action>

Recom-
menda-
tions R

Query

Patterns {cpi}

<mashup>
...
</mashup>

Raw pattern KB

<mashup>
...
</mashup>

Persistent
pattern KB

C
om

po
si

tio
n

pa
tte

rn
 K

B

P
at

te
rn

 u
sa

ge
 s

ta
tis

tic
s

Pattern weaver

Selection
events

Modeling
instruct.

Modeling expert

Solid lines are part of this work Dotted lines are future work

Object-action-
recommend. mapping

Similarity
metrics

Ranking
algos

Partial
mashup
model pm KB access API

P
at

te
rn

 c
p i

D
et

ai
ls

Fig. 1. Simplified architecture of the assisted modeling environment with client-side
knowledge base and interactive recommender. We focus on recommendations only and
omit elements like the mashup runtime environment, the component library, etc.

An object-action-recommendation mapping (OAR) tells the engine which type
of recommendation is to be retrieved for each modeling action on a given object.

The list of patterns retrieved from the KB (either via regular queries or by
applying dedicated similarity criteria) are then ranked by the engine and ren-
dered in the recommendation panel, which renders the recommendations to the
developer for inspection. In future, selecting a recommendation will allow the
pattern weaver to query the KB for the usage details of the pattern (data map-
pings and value assignments) and to automatically provide the modeling canvas
with the necessary modeling instructions to weave the pattern into the partial
mashup model.

3.3 Patterns Knowledge Base

The core of the interactive recommender is the KB that stores generic patterns,
but decomposed into their constituent parts, so as to enable the incremental
recommendation approach. If we recall the generic definition of composition
patterns, i.e., cp = 〈C, F, M, P, usage, date〉, we observe that, in order to convey
the structures of a set of complex patterns inside a visual modeling tool, typ-
ically C and F (components and connectors) will suffice to allow a developer

Efficient, Interactive Recommendation of Mashup Composition Knowledge 381

1..N

DataMapping
ID
SourceAttribute
TargetParameter
Usage
Date
_ConnID
_CompCooID
_CompTopID

ComponentCooccur
ID
SourceComponent
TargetComponent
Usage
Date

ParameterValues
ID
Component
Parameter
Value
Usage
Date
_CompCooID
_CompTopID

Connectors
ID
SourceComponent
TargetComponent
Usage
Date

ComplexPattern
ID
C
F
F'
Usage
Date

0..1

1..N
0..1

1..N

0..1

1..N

0..1

0..1
1..N

Fig. 2. Model of the pattern knowledge base for client-side knowledge management

to select a candidate pattern. Ready data mappings and value assignments are
then delivered together with the components and connectors only upon selection
of a pattern by the developer.

This observation leads us to the KB illustrated in Figure 2, whose structure
enables the retrieval of the representations of the types of recommendations
introduced in Section 3.1 with a one-shot query over a single table. For in-
stance, the entity Connectors contains all connector patterns, and the entity
ComplexPattern contains the structure of the complex patterns (in Section 4
we explain the meaning of the attributes C, F, F ′). The KB is partly redun-
dant (e.g., the structure of a complex pattern also contains components and
connectors), but this is intentional. It allows us to defer the need for joins to
the moment in which we really need to retrieve all details of a pattern, i.e.,
when we want to use it. In order to retrieve, for example, the representation of
a component co-occurrence pattern, it is therefore enough to query the Com-
ponentCooccur entity for the SourceComponent and the TargetComponent at-
tributes; weaving the pattern then into the modeling canvas requires querying
ComponentCooccur 	
 DataMapping 	
 ParameterV alues for the details.

4 Exact and Approximate Search of Recommendations

Given the described types of composition patterns and a query q, we retrieve
composition recommendations from the described KB in two ways: (i) we query
the KB for parameter value, connector, data mapping, and component co-occur-
rence patterns; and (ii) we match the object against complex patterns. The
former approach is based on exact matches with the object, the latter leverages
on similarity search. Conceptually, all recommendations could be retrieved via
similarity search, but for performance reasons we apply it only in those cases
(the complex patterns) where we don’t know the structure of the pattern in
advance and, therefore, are not able to write efficient conventional queries.

Algorithm 1 details this strategy and summarizes the logic implemented by
the recommendation engine. In line 3, we retrieve the types of recommendations
that can be given (getSuitableRecTypes function), given an object-action combi-
nation. Then, for each recommendation type, we either query for patterns (the

382 S. Roy Chowdhury, F. Daniel, and F. Casati

Algorithm 1. getRecommendations
Data: query q = 〈object, action, pm〉, knowledge base KB, object-action-recommendation

mapping OAR, component similarity matrix CompSim, similarity threshold Tsim,
ranking threshold Trank, number n of recommendations per recommendation type

Result: recommendations R = [〈cpi, ranki〉] with ranki ≥ Trank

R = array();1
Patterns = set();2
recTypeToBeGiven = getSuitableRecTypes(object, action, OAR);3
foreach recType ∈ recTypeToBeGiven do4

if recType ∈ {ParV alue, Connector, DataMapping, CompCooccur} then5
Patterns = Patterns∪ queryPatterns(object, KB, recType) ; // exact query6

else7
Patterns = Patterns∪8
getSimilarPatterns(object, KB.ComplexPattern, CompSim, Tsim) ; // similarity
search

foreach pat ∈ Patterns do9
if rank(pat.cp, pat.sim, pm) ≥ Trank then10

append(R, 〈pat.cp, rank(pat.cp, pat.sim, pm)〉) ; // rank, threshold, remember11

orderByRank(R);12
groupByType(R);13
truncateByGroup(R, n);14
return R;15

queryPatterns function can be seen like a traditional SQL query) or we do a sim-
ilarity search (getSimilarPatterns function, see Algorithm 2). For each retrieved
pattern, we compute a rank, e.g., based on the pattern description (e.g., contain-
ing usage and date), the computed similarity, and the usefulness of the pattern
inside the partial mashup, order and group the recommendations by type, and
filter out the best n patterns for each recommendation type.

As for the retrieval of similar patterns, our goal was to help modelers, not
to disorient them. This led us to the identification of the following principles
for the identification of “similar” patterns: preference should be given to exact
matches of components and connectors in object, candidate patterns may differ
for the insertion, deletion, or substitution of at most one component in a given
path in object, and among the non-matching components preference should be
given to functionally similar components (e.g., it may be reasonable to allow a
Yahoo! Map instead of a Google Map).

Algorithms 2 and 3 implement these requirements, although in a way that
is already optimized for execution, in that they don’t operate on the original,
graph-like structure of patterns, but instead on a pre-processed representation
that prevents us from traversing the graph at runtime. Figure 3(a) illustrates the
pre-processing logic: each complex pattern is represented as a tuple 〈C, F, F ′〉,
where C is the set of components, F the set of direct connections, and F ′ the set
of indirect connections, skipping one component for approximate search. This
pre-processing logic is represented by the function getStructure, which can be
evaluated offline for each complex pattern in the raw pattern KB; results are
stored in the ComplexPattern entity introduced in Figure 2. Another input that
can be computed offline is the component similarity matrix CompSim, which
can be set up by an expert or automatically derived by mining the raw pat-
tern KB. For the purpose of recommending knowledge, similarity values should

Efficient, Interactive Recommendation of Mashup Composition Knowledge 383

A

B

C

E

D

AB

AC

BE

CD

CE
DE

AE

AD

A

F

C

AC

AF

E
CE

(a) An example composition pattern cp

getStructure(cp) = <C,F,F'> with
C = {A,B,C,D,E},
F = {AB,AC,BE,CD,DE}, and
F' = {AE,AD,CE}

getStructure(object) = <C,F,F'> with
C = {A,C,E,F},
F = {AF,AC,CE}, and
F' = {AE}

(b) An example object of a query q

Direct connection
f ∈ F

Indirect connection f' ∈ F'Component c ∈ C

A
B
C
D
E
F

1 - - - - -
- 1 - - - 0.5
- - 1 - - -
- - - 1 - -
- - - - 1 -
- 0.5 - - - 1

A B C D E F

(c) Component similarity
matrix CompSim

Fig. 3. Pattern pre-processing and example of component similarity matrix CompSim.
Components are identified with characters, connectors with their endpoints.

reflect semantic similarity among components (e.g., two flight search services);
syntactic differences are taken into account by the pattern structures. Figure
3(c) illustrates a possible matrix for the components in the sub-figures (a) and
(b); similarity values are contained in [0..1], 0 representing no similarity, 1 rep-
resenting equivalence.

Algorithm 2 now works as follows. First, it derives the optimized structure
of object (line 2). Then, it compares it with each complex pattern cp ∈ CP in
four steps: (i) it computes a similarity value for all components and connectors
of obj and cp that have an exact match (line 5); (ii) it eliminates all matching
components and connectors from the structure of obj (lines 6-8); (iii) it computes
the best similarity value for the so-derived obj by approximating it with other
components based on CompSim (lines 9-16); and it aggregates to two similarity
values (line 17). Specifically, the algorithm substitutes one component at a time
in obj (using getApproximatePattern in line 13), considering all possible substi-
tutes simc and their similarity values simc.sim obtained from CompSim. The
actual similarity value between two patterns is computed by Algorithm 3.

Let’s consider the pattern, object, and similarity matrix in Figure 3. If in Algo-
rithm 3 we use the weights wi ∈ {0.5, 0.2, 0.1, 0.1, 0.1} in the stated order, sim in
line 4 of Algorithm 2 is 0.57 (exact matches for 3 components and 2 connectors).
After the elimination of those matches, obj = 〈{F}, {AF}, ∅〉, and substituting
F with B as suggested by CompSim allows us to obtain an additional approxi-
mate similarity of approxSim = 0.35 (two matches and simc.sim = 0.5), which
yields a total similarity of sim = 0.57 + 0.35/4 = 0.66.

5 Implementation and Performance Evaluation

We implemented the recommendation engine, the KB access API, and the client-
side pattern KB along with the recommendation and similarity search algo-
rithms, in order to perform a detailed performance analysis. The prototype
implementation is entirely written in JavaScript and has been tested with a
Firefox 3.6.17 web browser. The implementation of the client-side KB is based

384 S. Roy Chowdhury, F. Daniel, and F. Casati

Algorithm 2. getSimilarPatterns
Data: query object object, set of complex patterns CP , component similarity matrix

CompSim, similarity threshold Tsim

Result: Patterns = {〈cpi, simi〉} with simi ≥ Tsim

Patterns = set();1
objectStructure = getStructure(object) ; // computes object’s structure for comparison2
foreach cp ∈ CP do3

obj = objectStructure;4
sim = getSimilarity(obj, cp) ; // compute similarity for exact matches5
obj.C = obj.C − cp.C ; // eliminate all exact matches for C, F, F’ from obj6

obj.F = obj.F − cp.F − cp.F ′;7

obj.F ′ = obj.F ′ − cp.F ′ − cp.F ;8
approxSim = 0; // will contain the best similarity for approximate matches9
foreach c ∈ obj.C do10

SimC = getSimilarComponents(c,CompSim) ; // get set of similar components11
foreach simc ∈ SimC do12

approxObj = getApproximatePattern(obj, c, simc) ; // get approx. pattern13
newApproxSim = simc.sim∗getSimilarity(approxObj, cp) ; // get similarity14
if newApproxSim > approxSim then15

approxSim = newApproxSim ; // keep highest approximate similarity16

sim = sim + approxSim ∗ |obj.C|/|objectStructure.C| ; // normalize and aggregate17
if sim ≥ Tsim then18

Patterns = Patterns ∪ 〈cp, sim〉 ; // remember patterns with sufficient sim19

return Patterns;20

Algorithm 3. getSimilarity
Data: query object object, complex pattern cp
Result: similarity

initialize wi for i ∈ 1..5 with
∑

i wi = 1;1
sim1 = |object.C ∩ cp.C|/|object.C| ; // matches components2
sim2 = |object.F ∩ cp.F |/|object.F | ; // matches connectors3

sim3 = |object.F ∩ cp.F ′|/|object.F | ; // allows insertion of a component4

sim4 = |object.F ′ ∩ cp.F |/|object.F ′| ; // allows deletion of a component5

sim5 = |object.F ′ ∩ cp.F ′|/|object.F ′| ; // allows substitution of a component6
similarity =

∑
i wi ∗ simi;7

return similarity;8

on Google Gears (http://gears.google.com), which internally uses SQL Lite
(http://www.sqlite.org) for storing data on the client’s hard drive. Given
that SQL Lite does not support set data types, we serialize the representation of
complex patterns 〈C, F, F ′〉 in JSON and store them as strings in the respective
ComplexPattern table in the KB; doing so slightly differs from the KB model in
Figure 2, without however altering its spirit. The implementation of the persis-
tent pattern KB is based on MySQL, and it is accessed by the KB loader through
a dedicated RESTful Java API running inside an Apache 2.0 web server. The
prototype implementation is installed on a MAC machine with OS X 10.6.1, a
2.26 GHz Intel Core 2 Duo processor, and 2 GB of memory. Response times are
measured with the FireBug 1.5.4 plug-in for Firefox.

For the generation of realistic test data, we assumed to be in the presence of
a mashup editor with 26 different components (A−Z), with a random number of
input and configuration parameters (ranging from 1− 5) and a random number
of output attributes (between 1 − 5). To obtain an upper bound for the perfor-
mance of the exact queries for parameter value, connector, data mapping, and

http://gears.google.com
http://www.sqlite.org

Efficient, Interactive Recommendation of Mashup Composition Knowledge 385

Fig. 4. Performance evaluation of the client-side knowledge recommender

component co-occurrence patterns, we generated, respectively, 26 ∗ 5 = 130
parameter values for the 26 components, 26 ∗ 25 = 650 directed connectors,
650 ∗ 5 = 3250 data mappings, and 650 component co-occurrences. To measure
the performance of the similarity search algorithms, we generated 5 different
KBs with 10, 30, 100, 300, 1000 complex patterns, where the complexity of
patterns ranges from 3 − 9 components. The patterns make random use of all
available components and are equally distributed in the generated KBs. Finally,
we generated a set of query objects with |obj.C| ∈ {1..7}.

In Figure 4, we illustrate the tests we performed and the respective results.
The first test in Figure 4(a) studies the performance in terms of pattern retrieval
times of Algorithm 2 for different KB sizes; the figure plots the retrieval times
for different object sizes. Considering the logarithmic scale of the x-axis, we note
that the retrieval time for complex patterns grows almost linearly. This somehow
unexpected behavior is due to the fact that, compared to the number of patterns,
the complexity of patterns is similar among each other and limited and, hence,
the similarity calculation can almost be considered a constant. We also observe
that there are no significant performance differences for varying object sizes. In
Figure 4(b) we investigate the effect of the object size on the performance of
Algorithm 2 only for the KB with 1000 complex patterns (the only one with
notable differences). Apparently, also the size of the query object does not affect
much retrieval time. Figure 4(c), finally, studies the performance of Algorithm
1, i.e., the performance perceived by the user, in a typical modeling situation: in
response to the user placing a new component into the canvas, the recommenda-
tion engine retrieves respective parameter value, connector, co-occurrence, and
complex patterns (we do not recommend data mappings for single components);

386 S. Roy Chowdhury, F. Daniel, and F. Casati

the overall response time is the sum of the individual retrieval times. As ex-
pected, the response times of the simple queries can be neglected compared to
the one of the similarity search for complex patterns, which basically dominates
the whole recommendation performance.

In summary, the above tests confirm the validity of the proposed pattern rec-
ommendation approach and even outperform our own expectations. The number
of components in a mashup or composition tool may be higher, yet the number
of really meaningful patterns in a given modeling domain only unlikely will grow
beyond several dozens or 100. Recommendation retrieval times of fractions of
seconds will definitely allow us – and others – to develop more sophisticated,
assisted composition environments.

6 Related Work

Traditionally, recommender systems focus on the retrieval of information of
likely interest to a given user, e.g., newspaper articles or books. The likelihood
of interest is typically computed based on a user profile containing the user’s
areas of interest, and retrieved results may be further refined with collabora-
tive filtering techniques. In our work, as for now we focus less on the user and
more on the partial mashup under development (we will take user preferences
into account in a later stage), that is, recommendations must match the partial
mashup model and the object the user is focusing on, not his interests. The ap-
proach is related to the one followed by research on automatic service selection,
e.g., in the context of QoS- or reputation-aware service selection, or adaptive or
self-healing service compositions. Yet, while these techniques typically approach
the problem of selecting at runtime a concrete service for an abstract activity,
we aim at interactively assisting developers at design time with more complex
information in the form of complete modeling patterns.

In the context of web mashups, Carlson et al. [5], for instance, react to
a user’s selection of a component with a recommendation for the next com-
ponent to be used; the approach is based on semantic annotations of compo-
nent descriptors and makes use of WordNet for disambiguation. Greenshpan
et al. [6] propose an auto-completion approach that recommends components
and connectors (so-called glue patterns) in response to the user providing a set
of desired components; the approach computes top-k recommendations out of
a graph-structured knowledge base containing components and glue patterns
(the nodes) and their relationships (the arcs). While in this approach the actual
structure (the graph) of the knowledge base is hidden to the user, Chen et al.
[7] allow the user to mashup components by navigating a graph of components
and connectors; the graph is generated in response to the user’s query in form
of descriptive keywords. Riabov et al. [8] also follow a keyword-based approach
to express user goals, which they use to feed an automated planner that derives
candidate mashups; according to the authors, obtaining a plan may require sev-
eral seconds. Elmeleegy et al. [9] propose MashupAdvisor, a system that, starting
from a component placed by the user, recommends a set of related components
(based on conditional co-occurrence probabilities and semantic matching); upon

Efficient, Interactive Recommendation of Mashup Composition Knowledge 387

selection of a component, MashupAdvisor uses automatic planning to derive how
to connect the selected component with the partial mashup, a process that may
also take more than one minute. Beauche and Poizat [10] apply automatic plan-
ning in the context of service composition. The planner generates a candidate
composition starting from a user task and a set of user-specified services.

The business process management (BPM) community more strongly fo-
cuses on patterns as a means of knowledge reuse. For instance, Smirnov et al.
[11] provide so-called co-occurrence action patterns in response to action/task
specifications by the user; recommendations are provided based on label similar-
ity, and also come with the necessary control flow logic to connect the suggested
action. Hornung et al. [12] provide users with a keyword search facility that al-
lows them to retrieve process models whose labels are related to the provided
keywords; the algorithm applies the traditional TF-IDF technique from infor-
mation retrieval to process models, turning the repository of process model into
a keyword vector space. Gschwind et al. [13] allow users in their modeling tool
to insert control flow patterns, as introduced by Van der Aalst et al. [14], just
like other modeling elements. The proposed system does not provide interactive
recommendations and rather focuses on the correct insertion of patterns.

In summary, the mashup and service composition approaches either focus on
single components or connectors, or they aim to automatically plan complete
compositions starting from user goals. The BPM approaches do focus on pat-
terns as reusable elements, but most of the times pattern similarity is based on
label/text similarity, not on structural compatibility. We assume components
have stable names and, therefore, we do not need to interpret text labels.

7 Conclusion and Future Work

In this paper, we focused on a relevant problem in visual mashup development,
i.e., the recommendation of composition knowledge. The approach we followed
is similar to the one adopted in data warehousing, in which data is transformed
from their operational data structure into a dimensional structure, which op-
timizes performance for reporting and data analysis. Analogously, instead of
querying directly the raw pattern knowledge base, typically containing a set of
XML documents encoding graph-like mashup structures, we decompose patterns
into their constituent elements and transform them into an optimized structure
directly mapped to the recommendations to be provided. We access patterns
with fixed structure via simple queries, while we provide an efficient similarity
search algorithm for complex patterns, whose structure is not known a-priori.

We specifically concentrated on the case of client-side mashup development
environments, obtaining very good results. Yet, the described approach will per-
form well also in the context of other browser-based modeling tools, e.g., business
process or service composition instruments (which are also model-based and of
similar complexity), while very likely it will perform even better in desktop-
based modeling tools like the various Eclipse-based visual editors. As such, the
pattern recommendation approach discussed in this paper represents a valuable,
practical input for the development of advanced modeling environments.

388 S. Roy Chowdhury, F. Daniel, and F. Casati

Next, we will work on three main aspects: The complete development of the
interactive modeling environment for the interactive derivation of search queries
and the automatic weaving of patterns; the discovery of composition patterns
from a repository of mashup models; the fine-tuning of the similarity and ranking
algorithms with the help of suitable user studies. This final step will also allow
us to assess and tweak the set of proposed composition patterns.

Acknowledgments. This work was partially supported by funds from the Eu-
ropean Commission (project OMELETTE, contract no. 257635).

References

1. De Angeli, A., Battocchi, A., Roy Chowdhury, S., Rodŕıguez, C., Daniel, F., Casati,
F.: End-user requirements for wisdom-aware eud. In: IS-EUD 2011. Springer, Hei-
delberg (2011)

2. Roy Chowdhury, S., Rodŕıguez, C., Daniel, F., Casati, F.: Wisdom-aware comput-
ing: On the interactive recommendation of composition knowledge. In: WESOA
2010, pp. 144–155. Springer, Heidelberg (2010)

3. Daniel, F., Casati, F., Benatallah, B., Shan, M.-C.: Hosted Universal Composition:
Models, Languages and Infrastructure in mashArt. In: Laender, A.H.F., Castano,
S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp.
428–443. Springer, Heidelberg (2009)

4. Hlaoui, A., Wang, S.: A new algorithm for inexact graph matching. In: ICPR 2002,
vol. 4, pp. 180–183 (2002)

5. Carlson, M.P., Ngu, A.H., Podorozhny, R., Zeng, L.: Automatic Mash up of Com-
posite Applications. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC
2008. LNCS, vol. 5364, pp. 317–330. Springer, Heidelberg (2008)

6. Greenshpan, O., Milo, T., Polyzotis, N.: Autocompletion for mashups. In: VLDB
2009, vol. 2, pp. 538–549 (2009)

7. Chen, H., Lu, B., Ni, Y., Xie, G., Zhou, C., Mi, J., Wu, Z.: Mashup by surfing a
web of data apis. In: VLDB 2009, vol. 2, pp. 1602–1605 (2009)

8. Riabov, A.V., Boillet, E., Feblowitz, M.D., Liu, Z., Ranganathan, A.: Wishful search:
interactive composition of data mashups. In: WWW 2008, pp. 775–784. ACM (2008)

9. Elmeleegy, H., Ivan, A., Akkiraju, R., Goodwin, R.: Mashup advisor: A recommen-
dation tool for mashup development. In: ICWS 2008, pp. 337–344. IEEE Computer
Society (2008)

10. Beauche, S., Poizat, P.: Automated Service Composition with Adaptive Planning.
In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,
pp. 530–537. Springer, Heidelberg (2008)

11. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action Patterns in Business
Process Models. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave
2009. LNCS, vol. 5900, pp. 115–129. Springer, Heidelberg (2009)

12. Hornung,T.,Koschmider, A., Lausen,G.: Recommendation Based Process Modeling
Support: Method and User Experience. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A.
(eds.) ER 2008. LNCS, vol. 5231, pp. 265–278. Springer, Heidelberg (2008)

13. Gschwind, T., Koehler, J., Wong, J.: Applying Patterns during Business Process
Modeling. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS,
vol. 5240, pp. 4–19. Springer, Heidelberg (2008)

14. Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distrib. Parallel Databases 14, 5–51 (2003)

A Semantic and Information Retrieval Based

Approach to Service Contract Selection�

Silvia Calegari, Marco Comerio, Andrea Maurino,
Emanuele Panzeri, and Gabriella Pasi

University of Milano-Bicocca,
Department of Informatics, Systems and Communication (DISCo), Milano, Italy

{calegari,comerio,maurino,panzeri,pasi}@disco.unimib.it

Abstract. Service contracts represent the agreement between the ser-
vice provider and potential service consumers to use a specific service
under given conditions; for each service multiple service contracts are
available. In this paper we investigate a new approach to support the
service contract selection by exploiting preferences both explicitly de-
fined by a user and implicitly inferred from his/her context. The core of
our approach is the use of multi-constraint queries expressed on punctual
values and on textual descriptions. Both semantic-based and information
retrieval (IR) techniques are applied. Experimental evaluations show the
effectiveness of the proposed approach.

1 Introduction

The visionary idea of Service-Oriented Computing (SOC) is a service ecosystem
where application components are assembled with little effort into a loosely-
coupled network of services to create agile applications that might span organi-
zations and computing platforms [1]. One of the building block of SOC is service
discovery that is the activity of locating a machine-processable description of a
service that meets certain functional requirements [2].

Since more than one service is likely to fulfill the functional requirements,
some ranking mechanisms are needed in order to provide support for the (semi)
automatic selection of a restricted number of services (usually one) among the
discovered ones. Broadly speaking we can identify two phases in the service
discovery activity: the first one is devoted to identify services that satisfy the
functional requirements, while the second one (also called service selection) is
in charge of ranking retrieved services according to non-functional properties
(NFPs) that represent the description of the service characteristics (e.g., avail-
ability, performance, price) that are not directly related to the provided func-
tionality. As in the real world also in SOC ecosystem, NFPs can be enclosed in
service contracts representing the agreement between the service provider and
potential service consumers. In the last years, increasing research efforts are

 This work is partially supported by the Italian MoSeForAgroFood project (funded

by the Lombardy region), and by the SAS Institute srl (Grant Carlo Grandi).

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 389–403, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

390 S. Calegari et al.

aimed at defining solutions for service contract management [3]. For each ser-
vice, multiple service contracts are available and each service contract can be
offered to specific user categories under predefined applicability conditions. More
specifically, constraints based on NFPs consist in the specification of contractual
terms. They can be expressed by numeric values defined in different units (e.g.,
price in Euro or in USD), or by qualitative values (e.g., trust is high, software
is open source). The service contract selection is the activity of ranking service
contracts according to the constraints on NFP explicitly specified by the user,
and/or implicitly inferred from user information.

Service contract selection is definitively one of the most important enabling
factors for supporting flexible and dynamic business processes and agile appli-
cations. Nevertheless, conversely to the real world where contract selection is a
largely studied problem [4,5], this activity has not yet been extensively investi-
gated, and current approaches [6,7,8,9] lack, among others, in providing support
for the formulation of user requests, in the evaluation of applicability conditions
and in managing the heterogeneity of NFPs that can be specified in a service con-
tract. The management of NFPs is a complex task since there exists no standard
terminology for describing these properties. This means that service providers
and consumers specify their service contracts as they wish, thus raising the term
ambiguity problem when multiple services governed by different contracts are
utilized. In fact, similar properties may have different names (e.g., in different
languages or domains) or the same name may refer to different properties (e.g., in
different domains a property may have different implications). This current lack
of agreed terminology, combined with a major absence of trust in claims about
service contracts, renders service contract selection difficult if not impossible in
commercial organizations.

In this paper we present a new approach to service contracts selection based
on the exploitation of preferences explicitly defined by a user and implicitly
inferred from his/her context and the use of both semantic-based and informa-
tion retrieval (IR) techniques to rank service contracts. In particular, the main
contributions of our approach are:

– multi-constraint query formulation: the constraints on NFP composing the
user query are defined by considering preferences explicitly specified by the
user, and implicitly inferred from user information (e.g., personal informa-
tion specified at registration-time, historical information related to formerly
service used). The constraints can be either expressed as data constraints or
keyword-based constraints and they can be defined on a wide set of NFPs.

– hybrid approach to service contract ranking: the ranking of service contracts
is based on the combination of semantic and information retrieval tech-
niques to evaluate the degree of matching between contractual terms and user
preferences.

The rest of the paper is organized as follows: Section 2 presents the state of
the art of service contract selection and related fields. Section 3 describes the
proposed approach. In Section 4, and 5 our hybrid service contract selection
approach is described. Sections 6 and 7 present an exhaustive example and the

A Semantic and Information Retrieval 391

experimental evaluations of our approach. Conclusions and future works con-
clude the paper in Section 8.

2 State of the Art

The agreement between a service provider and a service consumer can be estab-
lished by using different approaches (e.g., policies [10] and service level agree-
ments [11]). Even if some differences exist among these approaches, the common
term service contract is generally used [3].

Currently, service contract selection is executed by either non-semantic or
semantic approaches. Non-semantic approaches (e.g.,[6,7]) are characterized by
a high efficiency but low precision due to the management of only syntactic
service contract descriptions. The evaluation of degrees of matching between re-
quested and offered contractual terms related to qualitative NFPs is reduced to
the syntactic comparison among values, raising semantic misunderstandings and
inefficient selections. Semantic approaches (e.g., [8,9]) are based on automated
reasoning techniques on service contract descriptions. These techniques are par-
ticularly suitable to mediate different terminologies and data models. Therefore,
reasoning techniques can be used for the evaluation of degrees of matching of
contractual terms related to qualitative NFPs in order to exploit semantic rela-
tions between NFP values. However, the evaluation based on logical reasoning
is characterized by a low efficiency since many reasoners show poor effectiveness
when dealing with non trivial numeric functions (e.g., weighted sums) which are
needed to manage more properties at the same time.

The most important problems in both semantic or non-semantic approaches
above mentioned are: (i) expressivity as the possibility to evaluate qualitative
descriptions by means of logical expressions on ontology values, and quantitative
descriptions by mean of expressions including ranges and inequalities; (ii) exten-
sibility as the possibility to define parametric degree of matching evaluation by
customizing evaluation functions and (iii) flexibility as the possibility to perform
evaluation in case of incomplete specifications.

For example, the approaches in [6,7,8] present some limitations in expres-
sivity and extensibility. The NFP-based service selection approach proposed in
[6] considers the evaluation of qualitative properties but it does not consider
the semantic relations among property values. The framework described in [7]
allows the definition of requested contractual terms only using the equal op-
erator and the selection process is simplified and modelled as the problem to
maximize the difference between prices (associated with each contract using a
pricing function) and score (associated with each requested contract and stating
the maximum price for which the costumer is willing to carry out the trade).
Finally, the semantic approach in [8] is applicable only for properties character-
ized by ordered scale values and fixed tendencies (e.g., the cost must always be
minimized) limiting the freedom of the user in defining his/her preferences.

The approach to Web service selection based on the usage of axioms for re-
quested and offered contractual terms defined in [9] lacks in flexibility. The ex-
ploitation of axioms supports complex and conditioned term definition (e.g., if

392 S. Calegari et al.

the client is older than 60 or younger than 10 years old the invocation price is
lower than 10 euro) but forces the user to specify all the necessary information
(e.g., age) in advance.

In [12], an hybrid approach to Web service contract selection that combines
logic-based and algorithmic techniques and offers high levels of expressivity, ex-
tensibility and flexibility is proposed and tested. The limitation of the approach
is that applicability conditions on service contracts are not evaluated and the
approach lacks in providing support for the formulation of user requests. In this
paper, we extend the approach in [12] by means of IR techniques.

3 The Proposed Approach

The aim of the whole service contract selection process is to propose to the
user a list of service contracts ranked according to his/her preferences. The
process is composed of set-up time and run time activities and it is based on the
software architecture shown in Figure 1. At set-up time, the user interacts with
the registration module in order to create his/her user profile. At run time the
user specifies preferences on functional and non-functional properties in order
to perform the service discovery and the service contract selection. At set-up
time, during the registration, the user selects from a list one of the pre-defined
profiles expressed in natural language. The pre-defined profiles help the user to
provide relevant information on generic characteristics (e.g., spoken languages,
used devices). Then, the user completes the registration by inserting personal
information such as (i) his/her personal data, (ii) his/her agenda in order to know
at which time the user is located in a particular location, and (iii) preferences

Fig. 1. The proposed approach to service contract selection

A Semantic and Information Retrieval 393

on specific properties such as the preferred payment method. Preferences are
specified by means of textual descriptions. The user information gathered in this
phase (i.e., personal information, selected profiles and textual descriptions) are
jointly considered to define the user profile. It is worth noting that our approach
to build the user profile is not tailored to any specific context model, and several
context models can be applied to our approach.

Once the phase of information gathering is completed, the user can access
to the next phase. At run time, when the user looks for a service offering a
specific functionality, the service discovery component (not discussed in this
paper) is invoked. Each discovered service is associated with different service
contracts representing different NFPs, and applicable to different user categories.
In order to support the user in choosing the contract that best complies to his/her
preferences, the service contract selection module is invoked. This module is
composed of three components that support:

– Query Formulation: the user selects pre-defined preferences (e.g., I want to
receive information on my mobile phone) from a list, and he/she personal-
izes them by writing a text into a textual area, like the following ”I want
a blanket insurance on the service delivery”. User preferences, user profile
and information extracted from the user history (i.e., information on past
interactions between the user and services) represent the contextual user
information that are used to formulate the multi-constraint query.

– Filtering: service contracts are filtered complying to the user category and
contextual user information. The result is a set of filtered service contracts.

– Query Evaluation: the multi-constraint query is evaluated against the filtered
service contracts. A ranked list of service contracts is returned to the user.

In our approach, we adopt the Policy Centered Meta-model (PCM)1 as a meta-
model for service contracts and contextual user information specifications. As
shown in [13], the PCM outperforms other models by supporting: (i) expres-
sive descriptions addressing qualitative contractual terms by means of logical
expressions, quantitative terms by means of expressions including ranges and
inequalities and, (ii) structured descriptions that aggregate different term de-
scriptions into a single entity with an applicability condition.

The Query Formulation phase will be detailed in Section 4, whereas Filtering
and Query Evaluation will be described in Section 5.

4 Multi-constraint Query Formulation

The simplest query formulation allows the user to select a query from a pre-
defined list. This list is made up of the most frequent user queries, and each of
them is formally defined by the service provider in the PCM format in order to
easily represent the query constraints. But each predefined query is presented to
1 The PCM formalizations in OWL and WSML-Flight are available at:

http://www.siti.disco.unimib.it/research/ontologies/

394 S. Calegari et al.

the user as a textual description to ease the selection process. A query is formu-
lated by means of constraints on data values: we allow the specification of both
precise and flexible constraints. Precise constraints are specified on a selected
attribute by a specific value of the attribute domain, e.g. insurance=damage.
Flexible constraints can be specified on attributes with a numeric domain by a
linguistic label which constraints the values of the attribute domain, e.g. price
= at most 40 e. Formally, such a linguistic label is associated with the member-
ship function of a fuzzy subset of the domain. Additional details related to the
definition of query constraints are presented in Section 5.

In Listing 1, a PCM-formulation of the pre-defined query “I’m looking for a
CHEAP (i.e., price at most 40e) delivery service by having an INSURANCE on
damage” is shown. In the above example, both a flexible (price=at most 40e),
and a precise constraint (insurance=damage) are specified.

Listing 1. An example of user query in PCM format

� �

nonFunctionalProperties
dc#description hasValue ”Request Instance for Logistic Operator”

endNonFunctionalProperties

pcm#hasNfp hasValue requestedPrice
pcm#hasNfp hasValue requestedInsurance

instance requestedPrice memberOf nfpo#PriceRequest
pcm#hasExpression hasValue requestedPriceExpression

instance requestedPriceExpression memberOf nfpo#PriceExpression
pcm#hasOperator hasValue pcm#atMost
pcm#hasParameters hasValue 40
pcm#hasUnit hasValue nfpo#euro

instance requestedInsurance memberOf nfpo#InsuranceRequest
pcm#hasExpression hasValue requestedInsuranceExpression

instance requestedInsuranceExpression memberOf nfpo#InsuranceExpression
pcm#hasOperator hasValue pcm#exist
pcm#hasParameters hasValue ins#damage

� �

At this point, a user can personalize the selected query in three ways: (1) by
modifying the pre-defined constraints, (2) by adding further constraints, and/or
(3) by adding a short textual description. This way the user can provide more
details and/or refine the constraints about the required service contracts. As an
example, the value assigned to the precise constraint insurance=damage can be
replaced by insurance=fire&theft.

Once the user has completed the formulation of his/her query, some addi-
tional constraints are automatically added based on the information obtained
from the personal context, where constraints on both the user information and
the user history are examined. The analysis of the user information (stored at
registration time) determines additional precise constraints like the list of infor-
mation channels that can be used to deliver information to the user. Instead,
from the user history implicit user preferences are extracted, such as how many

A Semantic and Information Retrieval 395

times a specific service contracts has been employed by the user in the past (for
an example see Section 6).

5 Filtering and Query Evaluation

As explained in Section 4, the PCM-based multi-constraint query is composed of
two types of constraints: constraints on punctual values (data), and constraints
on textual descriptions. In the following subsections, we will describe how the
query is evaluated for filtering and ranking the service contracts.

5.1 Service Contract Filtering

The first step executed by the query evaluation process is the service contract
filtering; such filtering is based on the user category affiliation and aimed to filter
out from the set of service contracts the ones that do not relate to the current
user. This is done by matching the user category to the contract applicability
and then by removing service contracts that require categories that the current
user does not belong to. For each service contract a category is defined by a set
of applicability conditions (e.g.: user age, VAT owner) that a user must have. A
user is associated with a category if and only if all the conditions are respected.
As an example, if the category called SeniorUser has the applicability condition
”User must be at least 65 years old”, and the current user is 35 years old, then
service contracts related to this category will be filtered out.

5.2 Constraints Evaluation

The NFP expressed in a service contract are defined by both specific data (such
as prices, insurance, . . .) and textual descriptions. With each query constraint
a constraint evaluation function (in short CF) is associated. The evaluation
of a constraint produces a matching degree, in the interval [0, 1], between the
constraint itself and a service contractual term. In the following sub-sections, the
evaluation functions are described in relation to the different types of constraints.

Flexible Constraints on numeric data values. As explained in Section 4,
we allow the specification of flexible constraints on data values. The evaluation
of these constraints, formally defined as fuzzy subsets of the considered attribute
domains, is performed by means of membership functions that express the com-
patibility between the flexible constraints and the related attribute domains. We
define a membership function as a parametric linear function the value of which
is in the interval [0, 1]. An example of membership function for the price=at
most 40e constraint is depicted in Figure 2: service contracts with prices lower
(or equal) than the required one (e.g., 40e) will have a matching degree of 1,
whereas service contracts with prices higher than 60ewill have a matching de-
gree of 0. The flexibility of the adopted solution is for the range of values between
(40e,60e) where the matching degree will decrease as the price will continue to
increase.

396 S. Calegari et al.

Fig. 2. Constraint evaluation function for “at most 40” constraint

Concept-based constraint evaluation. Service contracts could include NFPs
that use concepts to represent their values. For example, the Insurance NFP
assumes values (e.g., blanket, fire&theft) characterized by relations among them
(e.g., a blanket insurance includes a fire&theft insurance). The evaluation of
concept-based NFP constraints makes use of an ontology/thesaurus that maps
all the possible values with all the relations among them. The matching degree
is evaluated by the distance from the required value and the one provided by
the service contract. Given the taxonomic hierarchy, the matching degree is
maximum if the value required by the user is the same or a descendant of the one
provided by the service contract. As opposite, if the required value is an ancestor
of the provided one, the resulting matching degree is calculated according to the
distance between the two values and it is normalized in the [0, 1] set. Examples
of concept-based constraint evaluation are in [12].

Set-based constraint evaluation. A third type of values that can be associ-
ated with NFP is called Set-based. Set-based constraints are defined by a set of
values that have to be matched against the offered set based NFPs. As an ex-
ample, the matching degree for the InformationChannel constraint is computed
by applying the following formula:

CFInfoChannel(sc, q) =
|qInfoChannel ∩ scInfoChannel|

|qInfoChannel|
, (1)

where sc is a service contract, q is the user query, qInfoChannel is the set of
the Information channels specified in the user query, and scInfoChannel is the
set of the Information Channels provided by the service contract. The matching
degree for the Information Channel will be in the set [0, 1], where 1 represents a
fully satisfied constraint and 0 will be returned for service contracts that do not
provide any of the required characteristics in the user PCM-based query.

Keyword-based Evaluation. For the service contract textual description eval-
uation an IR approach is adopted to compute the user based query and the
service contract matching; the relevance is estimated by a matching degree (in
the set [0,1]) between the user needs and the textual description. The service
contract description is a plain text that describes the service functionalities and
characteristics in natural language. To index the textual description, simple IR
techniques are applied, such as keyword extraction (words and terms are identi-
fied and extracted from the service contract textual description), and stop words

A Semantic and Information Retrieval 397

removal (the terms that are non-significant or do not provide any meaning are
removed), respectively. For sake of simplicity we do not give a formal description
of each of the above IR techniques, for more information and further details we
recommend the reader to refer to the IR literature [14]. A user query is specified
as a set of keywords that represent the main features that the service contract
should have.

The previously cited IR functionalities enable to estimate the relevance de-
gree between the user query keywords and the keywords extracted from the
service contract description. To this aim we use a classical IR model for rele-
vance evaluation called the Vector Space Model that represents each set of terms
(or keywords) as vectors and can evaluate the relevance degree by the similarity
between two vectors using a vector distance such as the Cosine similarity. It is
worth noting that in reference to the term ambiguity problem raised in Section
1, some term disambiguation techniques [15] could be applied either at the in-
dexing phase or at the query formulation. We will address this issue in a future
research.

5.3 Overall Degree of Matching

The proposed aggregation function, a linear combination where the previously
described constraint evaluation functions are aggregated to compute the overall
service contract score, is defined by the following formula:

DoM(sc, q) =
[
∑nc

i=1 CFi(sc, q)] + CosSim(−→sc,−→q)
nc + 1

, (2)

where nc is the number of constraints, CFi is the constraint evaluation function
for the query constraint i and CosSim(−→sc,−→q) is the service contract textual
description evaluation performed using the Cosine Similarity on −→sc (i.e., key-
word vector related to the service contract), and −→q (i.e., the keyword vector of
the query). In the Formula 2 the overall service contract degree of matching is
calculated as the average of the query constraint evaluation scores.

6 An Exhaustive Example

The logistic operator is the domain chosen to provide a complete example of
the approach described in this paper. In the logistic operator domain a service
provider offers one or more facilities to potential users. For instance, a service
provider can offer freight transportation of cumbersome goods and traceabil-
ity information to the consumers through different channels (e.g. SMS, e-mail,
phone call). A transportation service is characterized by a set of functionalities,
and it is associated with one or more service contracts. Furthermore, a service
contract contains one or more contractual terms and it is addressed to specific
user categories. Examples of NFPs on which contractual terms can be defined
are:

398 S. Calegari et al.

– payment method : how the user can perform the payment (e.g., credit card,
electronic transfer, cash on delivery);

– insurance: the type of prevention applied to the service;
– price: the amount of money that must be paid for the transportation and

the traceability service;
– hours to delivery: the number of hours required for the service fulfilment;
– information channels: the channels (e.g., SMS, e-mail, phone call) used to

send traceability information to the user.

Table 1 shows a set of service contracts for two hypothetical providers defined on
the basis of the above mentioned NFP list. For example, (i) pay-flex offers maxi-
mum flexibility with respect to payment methods; (ii) high-trace is characterized
by maximum flexibility with respect to information channels and languages; (iii)
secure offers a maximum insurance coverage; (iv),(v) fast-plus and fast support
fast transportation, and (vi) cheap performs transportation at lower price. Each
contract is characterized by advantageous/disadvantageous contractual terms
(e.g., the fast service contract offers a fast delivery but at an higher price).

Table 1. Examples of service contracts traceable freight transportation services

Provider A
Contract PayMeth Insurance Price HToDel InfoC Vector
pay-flex credit card,

elect.transf,
cash

Fire&theft 30 24-48 SMS, e-mail traceability, cheap, english

high-trace credit card,
elect.transf

Fire&theft 35 48-72 SMS, e-mail, call traceability, english, italian

secure credit card,
elect.transf

Blanket 35 48-72 SMS secure, traceability, english

Provider B
Contract PayMeth Insurance Price HToDel InfoC Vector
fast-plus credit card Fire&theft 40 12-24 SMS fast, traceability, english
fast credit card Fire&theft 40 24-36 SMS fast, traceability, english
cheap credit card - 20 72-96 SMS cheap

Each service provider specifies the user categories that can access each offered
service contract; such user categories are usually hierarchical in the sense that a
higher level category includes the facilities of a lower level category. Examples of
user categories are sketched in Table 2. The affiliation to the BusinessOne cate-
gory is addressed to users that are VAT owners and mobile phone owners, instead
the BusinessPlus is dedicated to users who respect all the BusinessOne condi-
tions, and who have also used service contracts offered by a specific provider
for at least 30 times in the past. SilverUser and BronzeUser categories have
memberships conditions defined exclusively on the number of historical service
utilizations. Finally, the SeniorUser category presents a condition on member-
ship based on the user’s age. Notice that BusinessPlus/BusinessOne and Sil-
verUser/BronzeUser are hierarchical categories (e.g. a BusinessPlus user is also
a BusinessOne user, but not viceversa).

A Semantic and Information Retrieval 399

Table 2. Examples of user categories

Contract Category Condition
pay-flex BusinessPlus VAT owner, mobile phone owner, 30 shipments

high-trace,secure BusinessOne VAT owner, mobile phone owner
fast-plus SilverUser 20 shipments

fast BronzeUser 10 shipments
cheap SeniorUser ≥ 65 years old

Let us suppose that the customer “Mario Rossi” has interacted several times
with our system by selecting the appropriate service contracts for his specific
tasks. In particular, the user has used high-trace and secure contracts from
Provider A for 5 times and fast contract from Provider B for 20 times. The
identification of the categories for Mario Rossi with respect to the service con-
tracts is performed. The information considered from the user profile are the
user’s age, as well as the VAT and mobile phone information. From the history,
the information that he has used for 10 times a service from ProviderA reserved
to Business One users, and for 20 times a service from ProviderB reserved to
Bronze users are considered. Thus, by analyzing the above user context and these
conditions, the selected categories for Mario Rossi are: BusinessOne, SilverUser,
and BronzeUser, respectively. For the filtering phase, the service contracts listed
in Table 1 are filtered by using the previously obtained user categories affilia-
tion. In Table 3 the user category affiliation has been associated with the related
Service Contract. Thus, the service contracts cheap (with SeniorUser category)
and pay-flex (with BusinessPlus category) will be filtered out and they will not
be further analyzed in the ranking process.

Table 3. Example of service contracts category filtering

Provider Contract Category User Membership
Provider A pay-flex BusinessPlus no
Provider A high-trace BusinessOne yes
Provider A secure BusinessOne yes
Provider B fast-plus SilverUser yes
Provider B fast BronzeUser yes
Provider B cheap SeniorUser no

Let us now suppose that Mario Rossi interacts with the system to formulate
a query. He selects the following pre-defined query: “I am a user who needs to
perform a transportation of a valuable good. I am looking for a FAST (at most
48 hours) delivery service having a blanket INSURANCE. I would like to re-
ceive TRACEABILITY information about the transportation”. The user decides
to modify the query by introducing some specific constraints; in particular he
modifies the flexible constraint FAST into at most 24 hours, and he adds new
constraints not defined in the query, such as price at most 40e, and payment
method=credit card and electronic transfer. The user’s query is enriched with
the information provided by the user at registration time: the user is interested

400 S. Calegari et al.

in secure and cheap services and his preferred information channels are phone
call and e-mail.

For sake of simplicity, the evaluation process of each constraint will be de-
scribed for one of the contracts listed before: the fast-plus contract. The same
evaluation process will be then applied to the other contracts. By considering
the fast-plus contract its NFPs evaluations are commented here below:

– Hours to Delivery: the evaluation of this NFP produces a matching de-
gree of 1, since the service contract provides the delivery in 24hours as re-
quested in the user query. The matching degree is calculated as explained in
Section 5.2.

– Insurance: the Fire & theft insurance type provided by this contract is a
subset of the insurance type required by the user (Blanket); the matching
degree is 0.33 as the given contracts covers only one third of the Blanket one
(the Blanket insurance is composed by the Fire & theft, Damage and Loss
sub-insurances).

– Price: the service contract price (40e) is equal to what required from the
user: the matching is fulfilled and the constraint evaluation function is 1.00
according to Section 5.2.

– Payment Method: the payment methods offered from this contract match
only partially the user query: the fast-plus contract provides only the credit
card method. The matching degree is 0.50.

– Info. Channel: the service do not provide any of the user requested Infor-
mation Channels, for this reason the constraint evaluation function of this
constraint is 0.00.

– Description: the service contract description contains only the terms trace-
ability and fast defined in the user query. The estimated relevance degree is
0.50.

The GDoM matching degree for the fast-plus contract is finally evaluated as
described in Formula 2; where

∑nc
i=1 CFi(sc, q) = 2.83, and the final DoM degree

is evaluated as DoM(sc, q) = 2.83+0.50
6 = 0.555.

7 Experimental Evaluation

In order to assess the effectiveness of the proposed service contract selection
strategy we adopt the normalized discounted cumulative gain (NDCG) measure
[16]. This metric has been designed in order to compare IR methods with respect
to their ability to favour relevant search results. DCG, discounted cumulative
gain, measures the gain of a document based on its position in the result list. The
gain is accumulated from the top of the result list to the bottom with the gain of
each result discounted at lower ranks. In our scenario a result refers to a service
contract, and for our tests we adopt the modified NDCG formulation proposed
in [17]. This modification explicitly models a judgment value in addition to the
ranking obtained after the application of the methodology presented in Section
5, and it normalizes the DCG values by comparing them with respect to an ideal

A Semantic and Information Retrieval 401

rank. The ideal rank is obtained as an agreement of a pool of experts. In detail, we
asked to 3 experts, given both a set of queries and a user profile, to independently
indicate a judgement for each service contract with the consequence to obtain 3
ideal ranks. After this, the experts have indicated a common assessor on them
to provide a unique ideal rank.

Given a ranked result set of service contracts Sr, and an ideal ordering of the
same set of service contracts Si, the (DCG) at a particular rank threshold k is
defined as DCG(Sr , k) =

∑k
i=1

2jdg(i)−1
log(1+i) , where jdg(i) is the judgement (0=Bad,

1=Fair, 2=Good, 3=Excellent) at position i in set Sr.
The ideally ordered set Si contains all service contracts rated for the given

query sorted descending by the judgement values. Formally, the NDCG at a
particular rank threshold k is defined as:

NDCG(Sr , k) =
DCG(Sr, k)
DCG(Si, k)

, (3)

Higher NDCG values correspond to better agreements with human judgements.

7.1 Experiments

To the best of our knowledge there is no benchmark defined to compare different
service contract selection tools, consequently we have simulated the interaction
of a user with our system. Thus, we have defined 32 service contracts from 5
distinct providers, and the NFPs on which contractual terms have been defined
are those specified in Section 6. We asked to a user to perform three queries by
increasing the complexity of each request. This means that for each new query
a new constraint has been added. In details, the first query, i.e. Q1= “I am
looking for a SECURE and FAST delivery service”, has been selected by the
user from the provided list without specifying any further detail. As indicated in
Section 4, for each pre-defined query the constraints on attributes are identified;
in query Q1 the constraints are insurance = blanket and delivery <= 48 hours,
respectively. In the second query, Q2, the user specifies his/her meaning for the
data fast as 24 for indicating a delivery services at the most of 24 hours. At
the end, for the third query, Q3, the user adds the data “traceability” in the
free-text area in addition to 24 as a punctual value for the data-field fast. In
order to show the effectiveness of our approach, we have performed simulations
in different conditions by considering for each of them the above three queries
as follows: (i) without considering the user context model (i.e., “case 1”), (ii)
only by having the user information taken at registration time (i.e., “case 2”),
(iii) only by considering the user history (i.e., “case 3”), (iv) only by considering
information based on punctual values (i.e., “case 4”), (v) only by analyzing
information obtained from textual descriptions (i.e., “case 5”), and at the end
(vi) all the information provided in the previous steps that characterize the
system described in this work (i.e., “case 6”). Thus, we have compared and
evaluated the six approaches by applying the NDCG metric at various rank cuts
(@5, @10, and @20). Fig. 3 shows the NDCG average values obtained for the
above cases at different @-cuts.

402 S. Calegari et al.

By analyzing case 1, it emerges how the knowledge of user information allows
to obtain better results in all the other cases where no additional information is
considered with respect to the queries. In our system the usage of data prevails
with respect to the textual description, and this implies a better performance
in case 2 and case 4 with respect to case 5. Another consideration can be made
by analyzing the use of the history information, case 3, where lower values are
obtained with respect to the information taken at registration time. This means
that our strategy gives more importance to the personal information of the user
(i.e., his/her role/job, info languages, . . .). By considering all cases our method
(case 6) outperforms the other ones. This means that the proposed methodology
produces higher NDCG as it preserves the ranking given by the ideal ranking
better than the other cases.

������ ������ �����	 �����
 ������ ������

��

��

�	

�

��

��

��

��

��

�

��������	

������ ������ ������

Fig. 3. Comparison of all the considered cases

8 Conclusions and Future Works

Service contract selection is an important factor to enhance service discovery.
In this paper we have proposed a novel approach to support service contract
selection based on semantic and IR techniques. The approach exploits precise
and flexible preferences both explicitly defined by a user and implicitly inferred
from his/her context. The user’s preferences on the NFPs are formulated by
means of a multi-constraint query that is used to filter and rank the service
contracts offered by discovered services. The filtering is performed by evaluating
the user categories, and the ranking is performed by aggregating the single con-
straint matching degrees of each service contract. Experimental results show the
effectiveness of our approach to rank 32 service contracts from 5 distinct service
providers according to 3 multi-constraint queries formulated by the user.

Our future research will address the problem of building a large benchmark
of real service contracts to make comparative evaluations of different approaches
possible. Moreover, we are investigating how to handle the management of qual-
itative NFPs (e.g., security and trust) which cannot be directly quantified. Fi-
nally, we are also studying how to integrate our approach with the aggregated
search of data and services presented in [18].

A Semantic and Information Retrieval 403

References

1. Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F., Kramer, B.: Service Ori-
ented Computing Research Roadmap. In: Dagstuhl Seminar Proceedings 05462
(SOC) (2006)

2. Toma, I., Roman, D., Fensel, D.: On describing and ranking services based on non-
functional properties. In: Third International Conference on Next Generation Web
Services Practices (NWESP 2007), pp. 61–66. IEEE Computer Society, Washing-
ton, DC, USA (2007)

3. Comerio, M., Truong, H.-L., De Paoli, F., Dustdar, S.: Evaluating Contract Com-
patibility for Service Composition in the seCO2 Framework. In: Baresi, L., Chi,
C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 221–236.
Springer, Heidelberg (2009)

4. Wang, Y., Tang, B., Huan, Z.: Study on contract selection decision based on hybrid
supply chains. In: Proc. of the Inter. Conf. on Measuring Technology and Mechatron-
ics Automation. ICMTMA 2010, Washington, DC, USA, pp. 572–575 (2010)

5. Talluria, S., Leea, J.Y.: Optimal supply contract selection. International Journal
of Production Research 48(24), 7303–7320 (2011)

6. Yu, H.Q., Reiff-Marganiec, S.: A method for automated web service selection. In:
Proc. of the Congress on Services (SERVICES), pp. 513–520 (2008)

7. Lamparter, S., Ankolekar, A., Studer, R., Grimm, S.: Preference-based selection of
highly configurable web services. In: Proc. of the 16th International Conference on
World Wide Web (WWW 2007), pp. 1013–1022. ACM, New York (2007)

8. Wang, X., Vitvar, T., Kerrigan, M., Toma, I.: A QoS-Aware Selection Model for
Semantic Web Services. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,
vol. 4294, pp. 390–401. Springer, Heidelberg (2006)

9. Garcia, J.M., Toma, I., Ruiz, D., Ruiz-Cortes, A.: A service ranker based on
logic rules evaluation and constraint programming. In: Proc. of 2nd Non Func-
tional Properties and Service Level Agreements in SOCWorkshop (NFPSLASOC),
Dublin, Ireland (2008)

10. Bajaj, S., Box, D., Chappell, D., et al.: Web Service Policy 1.2 - Framework (2006),
http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/

11. Keller, A., Ludwig, H.: The WSLA framework: Specifying and monitoring ser-
vice level agreements for web services. Journal of Network and Systems Manage-
ment 11(1), 57–81 (2003)

12. Palmonari, M., Comerio, M., De Paoli, F.: Effective and Flexible NFP-Based Rank-
ing of Web Services. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave
2009. LNCS, vol. 5900, pp. 546–560. Springer, Heidelberg (2009)

13. De Paoli, F., Palmonari, M., Comerio, M., Maurino, A.: A Meta-Model for Non-
Functional Property Descriptions of Web Services. In: Proc. of the IEEE Interna-
tional Conference on Web Services (ICWS), Beijing, China, pp. 393–400 (2008)

14. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press (2008)

15. Stokoe, C.: Word sense disambiguation in information retrieval revisited. In: ACM
SIGIR, pp. 159–166 (2003)

16. Järvelin, K., Kekäläinem, J.: Cumulated gain-based evaluation of ir techniques.
ACM Transaction on Information Systems (TOIS) 20(4), 422–446 (2002)

17. Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results. In:
WSDM 2009, pp. 5–14. ACM, New York (2009)

18. Palmonari, M., Sala, A., Maurino, A., Guerra, F., Pasi, G., Frisoni, G.: Aggregated
search of data and services. Information Systems 36(2), 134–150 (2011)

http://www.w3.org/Submission/2006/SUBM-WS-Policy-20060425/

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 404–420, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Modeling and Managing Variability
in Process-Based Service Compositions

Tuan Nguyen, Alan Colman, and Jun Han

Faculty of Information and Communication Technology,
Swinburne University of Technology, Melbourne, Australia

{tmnguyen,acolman,jhan}@swin.edu.au

Abstract. Variability in process-based service compositions needs to be
explicitly modeled and managed in order to facilitate service/process
customization and increase reuse in service/process development. While related
work has been able to capture variability and variability dependencies within a
composition, these approaches fail to capture variability dependencies between
the composition and partner services. Consequently, these approaches cannot
address the situation when a composite service is orchestrated from partner
services some of which are customizable. In this paper, we propose a feature-
based approach that is able to effectively model variability within and across
compositions. The approach is supported by a process development
methodology that enables the systematic reuse and management of variability.
We develop a prototype system supporting extended BPMN 2.0 to demonstrate
the feasibility of our approach.

Keywords: Process variability, service variability, variability management,
service composition, feature modeling, model mapping, Software Product Line
(SPL), Model Driven Engineering (MDE).

1 Introduction

Process-based service compositions are efficient approaches for developing
composite services and applications using process modeling techniques. The two de
facto standards for this purpose are BPMN (Business Process Modeling Notation) for
modeling purposes and BPEL (Business Process Execution Language) for execution
purposes. Generally, in both techniques, each composite service is described by a
process model which specifies the flow of activities (i.e. control flow), the interaction
between the process and partner services (i.e. message flow), and the way data is
moved throughout the process (i.e. data flow).

Due to the diversification and the personalization of service consumption, service
variability has become an important factor in the lifecycle of service development [1,
2]. Service variability is defined as the ability of a service/process to be efficiently
extended, changed, customized or configured for use in a particular context [3]. Such
variability can originate from a service provider wishing to provide different versions
of the same service for different market segments or with different pricing models, or

Modeling and Managing Variability in Process-Based Service Compositions 405

from service consumers wishing to customize a service to match their particular
business requirements.

Service variability brings about a new type of service, namely customizable
service, in service ecosystems [4]. A customizable service is a service whose runtime
customization by a consumer will result in a particular service variant matching the
consumer’s requirements [5-7]. For services with a large number of service variants,
the deployment of customizable services, instead of conventional services, will much
benefit service consumers. This is because there is disadvantage with either deploying
an all-in-one non-customizable service or deploying all service variants separately. In
the first case, the resulting non-customizable service has a large service description
most of which is not relevant to one particular consumer. In the second case, it is
difficult for service consumers to recognize the similarity and difference among those
service variants in order to select the most appropriate one [2].

Modeling and managing variability in customizable composite services are
challenging. There are two key concerns that need to be addressed [8]. Firstly, how to
model variation points and variants? Secondly, how to capture dependencies among
variabilities? Variability dependencies describe such relationships as the binding of
variants at one or several variation points requires or excludes the binding of variants
at other variation point(s). We identified in our previous work that, in the service
computing context, besides variability intra-dependencies which represent
dependencies within a service composition, there are variability inter-dependencies
which represent dependencies between the composition and its customizable partner
services [9]. Variability inter-dependencies reflect the situation when the runtime
resolution of variability in the composition requires the runtime resolution of
variability at partner services. And this process may also cause a ripple effect in the
service ecosystem since service composition is recursive.

In terms of variability management, Software Product Line (SPL) is a successful
paradigm that builds upon techniques for systematic identification and management
of variability [10]. Many related efforts have exploited concepts and techniques from
SPL in addressing variability in process-based service compositions, e.g. [11-14].
These approaches are able to capture variability and variability dependencies within
the control flow and the data flow of a process model. However, all these efforts fail
to capture variability inter-dependencies. Consequently, these approaches are not
capable of managing variability in such service compositions that are aggregated from
customizable partner services.

To address this problem, we propose a comprehensive approach to modeling and
managing variability in process-based service compositions. In particular, we extend
the BPMN 2.0 metamodel to incorporate variation points and variants with respect to
not only control flow and data flow but also message flow. We then extend a feature
modeling technique from SPL to capture variability dependencies within and across
service compositions. We also specify a process development methodology that
elaborates how to systematically model and manage variability at design time, as well
as instantiating variability at runtime. The methodology builds upon Model Driven
Engineering (MDE) techniques to automate large parts of its operations.

406 T. Nguyen, A. Colman, and J. Han

The structure of the paper is as follows. Section 2 presents a discussion of related
work. In section 3, we describe a motivating scenario, followed by the explanation of
techniques underpinning our research in section 4. Section 5 presents our approach to
modeling variability and variability dependencies. We describe an approach to
developing service compositions with managed variability in section 6. The prototype
system is described in section 7 before our conclusion of the paper in section 8.

2 Related Work

A number of works has been proposed for modeling and managing variability in
process-based service compositions [1, 2, 11-16]. In general, they can be classified
into two categories.

The first category consists of work that aims to extend BPEL [12, 13, 15]. In
particular, Chang [15] and VxBPEL [12] extend the XML schema for BPEL in order
to incorporate information about variation points and variants into the business
process definition. In contrast, Mietzner [13] uses a separate variability descriptor to
define the location of variation points in the business process definition and possible
variants. In general, the advantage of extending BPEL is that an executable process
variant can be automatically derived by resolving all variation points. However,
VxBPEL and Chang's work suffer from tangled and scattered business process
definitions. Mietzner's work overcomes this problem by using a separate variability
description. Nevertheless, since variability is modeled at the implementation level,
these approaches become very complex due to the large number of variation points.

Work in the second category focuses on extending process models described using
BPMN or UML Activity diagrams [1, 2, 11, 14, 16]. The general approach for these
efforts is to extend the process metamodel so that variation points and variants can be
explicitly introduced. Since variability is modeled at the architectural level, the
number of variation points is much smaller than the ones at the process definition
level. Therefore, these approaches overcome the complexity issue of the ones in the
first category. However, except [14, 16], all other works only focus on variation
points and variants with respect to the control flow of process models. Works in [14,
16] takes a step further to consider the data flow as well. Consequently, only these
works can support the derivation of executable process variants.

Although variability intra-dependencies have been considered in most of the
related work, e.g. [2, 12], the major issue with work in both categories is that they are
not able to capture variability inter-dependencies. All work builds on an assumption
that all partner services are not customizable. Consequently, those approaches are not
applicable to composite services orchestrated from partner services some of which are
customizable.

3 Motivating Scenario

A Content Management System (CMS) Provider wants to develop a composite
service which allows various Content Providers to post news entries (cf. Figure 1).

Modeling and Managing Variability in Process-Based Service Compositions 407

Content
Provider

CMS
Provider

Content
Retriever

Content
Checker

Content
Approver

Submit Content Retrieve
Content

Check Content

Approve
Content

Notify Status

Submission Result

Service Client Customizable Service Non-customizable Service

Fig. 1. A news posting composite service

Due to different requirements from Content Providers, the CMS Provider will support
the following variability in its business process:

• Content Providers may choose to directly send news entries or specify an
external URL resource as the content source.

• Content Providers may also opt to receive posting status update from the
CMS Provider.

There are many services available that the CMS Provider may reuse in implementing
its process. For example, there are services for checking the correctness of the news
entry (e.g. grammar check) and there are services for approving the news submission
(e.g. checking the publishing policies). In this case study, the CMS Provider will
utilize two of those services, namely ContentChecker service and ContentApprover
service. While the ContentApprover service is a non-customizable service accepting
the news content and returning the approving result, the ContentChecker service is a
customizable service. It has two service variants. The first service variant accepts the
news content, performs the checking and then returns the result. The second variant
accepts a URL and invokes the ContentRetriever service for retrieving the content
before performing the checking. The utilization of this ContentChecker service frees
the CMS Provider from the overhead of retrieving the content in a case a URL is
provided from a Content Provider. Consequently, variability in the CMS Provider will
depend on the variability in the ContentChecker.

4 Underpinnings of Our Approach

In this section, we explain the techniques that underpin our approach. In particular,
we briefly describe feature modeling techniques from SPL, our solution for describing
variability of customizable services based on the concept of features, and how the
service variability description is utilized to support runtime service customization.

408 T. Nguyen, A. Colman, and J. Han

4.1 Feature Modeling Technique

Feature modeling are techniques in SPL for capturing the commonalities and
differences among a family of software products [17]. Features are visible
characteristics that are used to differentiate one family member from others. A feature
model is represented as a hierarchically arranged set of features with composed-by
relationship between a parent feature and its child features. In addition, there are
cross-tree constraints that typically describe inclusion or mutual exclusion
relationships. A feature model is an efficient abstraction of variability and provides an
effective means for communicating variability between different stakeholders. In
addition, it helps to drive the design and the development of variability throughout all
stages of the product line development.

News Posting Web Service

Posting Resource Status Update

Direct External Resource

[1-1]

[1-1] [0-1]

[a-b]

Feature
Group

CardinalityComposed-of
relationship

Feature
Legend

ContentCheckingService

ContentBasedChecking URLBasedChecking

[1-1]

a) News posting composite service b) ContentChecker service

Fig. 2. Examples of feature model

While there are many manifestations of feature modeling techniques, e.g. [18-20],
in our work we exploit Czarnecki’s cardinality-based feature modeling technique
[21]. The main reason for this choice is that the concepts of feature cardinality and
group cardinality well suit the needs of service customization. A feature cardinality,
associated with a feature, determines the lower bound and the upper bound of the
number of the feature that can be part of a product. A group cardinality, associated
with a parent feature of a group of features, limits the number of child features that
can be part of a product when the parent feature is selected.

Figure 2a demonstrates a feature model representing variability of the news posting
composite service. Based on their cardinality, “Posting Resource” is a mandatory
feature, while “Status Update” is an optional feature. In addition, “Posting
Resource” is a group of alternative features. It means that, all consumers need
“Posting Resource” capability, which can be either “Direct” or “External
Resource”, while they can opt to have “Status Update” capability when consuming
the service. Similarly, Figure 2b demonstrates the feature model for the
ContentChecker service. Its variability is represented as a group of two alternative
features, “ContentBasedChecking” and “URLBasedChecking”.

Modeling and Managing Variability in Process-Based Service Compositions 409

4.2 Feature-Based Service Variability Description

In order to describe variability of a services and facilitate service customization, we
define a new language, namely WSVL (Web Service Variability description Language),
based on the concept of features. Due to space limitation, we briefly describe the
language through the example of the ContentChecker service without going into the
detail of motivations and requirements behind it. The language (cf. Figure 3) has three
parts. Firstly, the ServiceDescription part describes the capability of the service and
represents the superset of the capability of all service variants. In this scenario, the
service description consists of two operations, ContentBasedCheck and
URLBasedCheck, using different message formats for realizing two service variants.
The service description is only expressed at the abstract level for modeling purposes.
Once a service variant is derived, its complete service description, described in WSDL,
will be generated. Secondly, the FeatureDescription part describes the variability of the
service in term of features. It is actually the serialization of the feature model for the
corresponding service (cf. Figure 2b). And thirdly, the MappingDescription part
describes the mapping from variant features in the feature description part to variable
capability in the service description part as a set of links. For example, the first link
shows the mapping between the feature “ContentBasedChecking” and the
corresponding operation, “ContentBasedCheck”. In general, a link represents 1-to-m
mapping between a feature and service capabilities. The service variability description
provides information on what capability of the corresponding service is available in a
service variant given a feature configuration1.

<servicevariabilitydescription>
<serviceDescription>

<message name="ContentBasedCheckRequest"/>
<message name="ContentBasedCheckResponse"/>
………………
<interface name="ContentCheckingService">
<portType name="ContentCheckingPortType">
<operation name="ContentBasedCheck">

<input name="ContentBasedCheckRequest" message="//@serviceDescription/@message.0"/>
<output name="ContentBasedCheckResponse" message="//@serviceDescription/@message.1"/>

</operation>
<operation name="URLBasedCheck“/>

</portType>
</interface>

</serviceDescription>
<featureDescription>

<featureHierarchy>
<feature name="ContentCheckingService">
<featureGroup min="1" max="1">

<feature name="ContentBasedChecking"/>
<feature name="URLBasedChecking"/>

</featureGroup>
</feature>

</featureHierarchy>
</featureDescription>
<mappingInfo>

<link name="ContentBasedCheck">
<featureRef ref="//@featureDescription/@featureHierarchy/@feature.0/@featureGroup/@feature.0"

name="ContentBasedChecking"/>
<serviceElementRef ref="//@serviceDescription/@interface.0/@portType.0/@operation.0"

name="ContentBasedCheck"/>
</link>
<link name="URLBasedCheck“/>

</mappingInfo>
</serviceVariabilityDescription>

Service
Description

Feature
Description

Mapping
Description

Fig. 3. Service variability description for the ContentChecker service

1 A feature configuration is a specialized form of a feature model in which all variability is

resolved, i.e. all variant features are selected or removed.

410 T. Nguyen, A. Colman, and J. Han

4.3 Feature-Based Service Customization Framework

In previous work, we developed a feature-based service customization framework that
allows service consumers to customize a service at the business level [5]. In
particular, based on the service variability description, service consumers can select
features they need and unselect features they do not need. Feature selection has to
conform to feature cardinality, group cardinality and constraints described in the
feature model to generate a valid feature configuration. The feature configuration is
then communicated back to the service provider so that the service provider can
generate a service interface description and a service implementation bound to the
service interface description. This service variant is then dynamically deployed to an
endpoint so that the service consumer can invoke. In previous work, we have focused
on how to model, manage and instantiate variability at the service interface level. The
work in this paper complements that work in addressing the issues of how to model
and manage variability in the service implementation (i.e. business process), and then
generating a variant based on a particular feature configuration. In addition, the work
in this paper also exploits that technique for customizing partner services.

5 Modeling Variability in Process-Based Service Compositions

As explained, variation points and variants need to be explicitly introduced into
process models. To this end, there are two requirements for our approach. Firstly, the
complexity in modeling variability needs to be alleviated. Modeling variability in
business processes is challenging because of the existence of a large number of
variation points and variants. Therefore, it is important to reduce the number of
variation points and variants that need to be considered. Secondly, the approach needs
to support variability instantiation, i.e. the runtime derivation of executable process
variants for customization purposes.

a) Variation points and variants b) PartnerTask and ConsumerTask

Fig. 4. Process metamodel extension

Modeling and Managing Variability in Process-Based Service Compositions 411

In order to satisfy these two requirements, we have decided to model and manage
variability within process models described by BPMN. The advantage of using
BPMN or UML Activity diagram over BPEL is that the number of variation points
and variants within a BPEL definition is much more than the ones within a BPMN or
UML model. And we selected BPMN over UML Activity because of its wide
acceptance and well support. At the time we developed our approach, BPMN 2.0 has
been released and it provided a sufficient metamodel for modeling process-based
service compositions. However, there is no significant difference between the two.
One can easily apply the solution we present here over to UML Activity diagrams and
achieve similar results. In addition, we exploit MDE techniques in our approach to
automate large parts of the solution and facilitate not only variability management but
also variability instantiation.

5.1 Extending BPMN for Representing Variation Points and Variants

Our key idea for introducing variability modeling capability into process modeling is
to define a general metamodel for variation points and variants, then weave this
metamodel into the BPMN 2.0 process metamodel to make it capable of supporting
variability. The extension will focus on all three aspects of service compositions:
control flow, data flow, and message flow. In addition to modeling variability in the
control flow and data flow as done in related work, our approach takes a further step
to capture variability in the message flow as well. Hence, the approach is capable of
not only supporting executable process variant derivation, but also capturing
variability inter-dependencies. The result of this is shown in Figure 4.

The general variability metamodel is composed of two elements: VariationPoint
and Variant. A VariationPoint represents any place in the process model where
variability can occur. Each VariationPoint is associated with a set of Variants from
which one or several will be bound to VariationPoint when the variability is resolved.
The attributes minCardinality and maxCardinality define how many Variants should
be bound to one VariationPoint. These attributes have the same semantics as the
cardinality concept adopted in the feature modeling technique.

Variation point in the control flow can be interpreted as any location in the process
model at which different execution paths can take place. Therefore, we introduce new
FlowNode elements, namely ControlFlowVP, and its two direct inheritances, namely
ControlFlowVPStart and ControlFlowVPEnd, for representing starting point and end
point of each variability. Variants in the control flow can be arbitrary process
fragments. Therefore, ControlFlowVariant is inherited from FlowElementContainer.

Variability in data flow can be considered as different ways for storing data (i.e.
DataObject) or different ways for moving data around (i.e. DataAssociation). Since
variants in data flow are usually alternative variants, we model both variation points
and variants as inherited elements from the same element type. That is, for variability
of DataObject, we define both variation points, i.e. DataObjectVP, and variants, i.e.
DataObjectVariant, as inherited elements from DataObject. A similar approach
applies with DataAssociation, DataAssociationVP, and DataAssociationVariant.

412 T. Nguyen, A. Colman, and J. Han

Fig. 5. Mapping metamodel

Variability in message flow can be seen as alternative Conversations between two
parties, i.e. the process and a partner service (or a consumer). Therefore, in a similar
fashion to modeling variability in data flow, we model both variation points, i.e.
ConversationVP, and variants, i.e. ConversationVariant, as inherited elements from
Conversation. In addition, we introduce new elements, namely PartnerTask and
AbstractPartnerTask (cf. Figure 4b). A PartnerTask models a task performed by a
partner service. An AbstractPartnerTask models a set of alternative PartnerTasks and
it represents a variable capability provided by a partner service. The introduction of
PartnerTask and AbstractPartnerTask facilitates the modeling of variability inter-
dependencies since variability inter-dependencies will be the mapping between these
elements and variant features of partner services, namely variant partner features. In
a similar fashion, we introduce ConsumerTask and AbstractConsumerTask for the
interaction between the business process and its consumers. These extended elements
facilitate the generation of the service variability description for this service
composition.

5.2 Modeling Variability Intra-dependencies

Variability intra-dependencies represent dependencies among variation points and
variants within a process model. Therefore, the intuitive way for modeling variability
intra-dependencies is to model variability constraints as elements of the process
models. However, the disadvantage of this approach is twofold. Firstly, the resulting
process model will be swamped with dependencies information and become too
complex. Secondly, since variability intra-dependencies are embedded in process
model definitions, it becomes harder to identify conflicts in such dependencies [22].

In fact, variability in the process model is the realization of variability in the
feature model of the service composition. In other words, the identification and
modeling of variation points and variant in a process are driven by variant features in
the feature model. Variability intra-dependencies among different variants come from
the fact that those variants realize variant features. Therefore, we exploit the model
mapping technique for relating variation points and variants in the process model with
variant features in the feature model. We refer to this type of mapping model as
FeatureTask mapping model. Due to mentioned realization relationships, those

Modeling and Managing Variability in Process-Based Service Compositions 413

mappings along with feature constraints in the feature model account for all
variability intra-dependencies in the process model. In addition, this approach has the
following advantages in comparison with embedding constraints in the process
definition. On the one hand, it helps to separate variability constraint information
from the process model, thus simplifies the definition. On the other hand, the
validation of process configuration is led to the validation of a feature configuration,
which is well-studied in SPL [23].

The mapping metamodel for this purpose is shown in Figure 5. A MappingModel
relates variant features in a feature model, referenced by FeatureModelRef, with
variants in a process model, referenced by ProcessModelRef. It is composed of Links
and each Link consists of a Feature and at least one ProcessElement. Feature and
ProcessElement reference elements in the feature model and the process model
respectively. In this way, each Link enables a feature to be mapped to one or several
variant process elements in the process model.

5.3 Modeling Variability Inter-dependencies

Variability inter-dependencies represent dependencies between variability in the
process model and variability in partner services. Since variability of partner services
can be described using feature models (cf. Figure 3), in a similar fashion as modeling
variability intra-dependencies, we exploit the model mapping technique to model
these dependencies. The main difference between the mapping model for variability
intra-dependencies and the mapping model for variability inter-dependencies is the
origin of variant features. While variability intra-dependencies is modeled with
respect to variant features in the feature model of the service composition, variability
inter-dependencies is modeled with respect to variant partner features.

In particular, a mapping model for variability inter-dependencies captures the
correspondence between PartnerTasks within the process model and variant partner
features. We refer to this mapping model as PartnerTaskFeature mapping model. It
should be noted that between PartnerTasks and variant partner features, there does
not exist a “natural” realization relationship as the ones for variability intra-
dependencies. If the identification and modeling of PartnerTasks and
AbstractPartnerTasks are driven by the variant partner features, such realization
relationships establish. Otherwise, the identification and modeling of PartnerTasks
and AbstractPartnerTasks are independent of variant partner features, and realization
relationships may not exist. In this way, all variability inter-dependencies exist by
chance. Therefore, high inter-dependency between the service composition and
partner services represents high chance of reuse of service variability from partner
services toward the service composition. In later section, we describe a process
development methodology that systematically increases the chance of reuse of service
variability.

Since variability in the feature model of the business process is mapped to
variability in the process model, i.e. FeatureTask mapping model, and a part of
variability in the process model, i.e. PartnerTasks, is mapped to variability in partner
feature models, i.e. PartnerTaskFeature mapping model, it is possible to generate the

414 T. Nguyen, A. Colman, and J. Han

mapping from variant features in the feature model of the service composition to
variant partner features. This mapping model conforms to a similar mapping
metamodel as Figure 5 and allows us to capture variability inter-dependencies at the
highest level of abstraction, i.e. the feature level. We refer to this type of mapping
model as FeatureFeature mapping model. In summary, there are two types of feature
mapping models for representing variability inter-dependencies: PartnerTaskFeature
and FeatureFeature mapping models.

6 A Bottom-Up Process Development Methodology

In this section, we describe a methodology for developing service compositions with
systematic management and reuse of variability (cf. Figure 6). One key feature of the
methodology is that, it increases the chance of reusing service variability provided by
partner services. To this end, variability information from partner services is explicitly
utilized in driving the identification and modeling of variability within the business
process.

6.1 Overview

In the first activity, the capability of the service composition is modeled using the
feature modeling technique. The result of this activity is a feature model capturing
commonalities and variabilities of the composite service to be. Given a model of
desired features, the next activity will be the selection of partner services that can be
used for the service composition. There are two types of services that will be selected:
(conventional) non-customizable partner services and customizable partner services.
The explicit selection of customizable partner services helps to reduce overhead of
addressing variability within the service composition. Customizable partner services
come with service variability descriptions.

Feature
Modeling

Service
Selection

Process
Modeling

Dependency
Modeling

Variant
Derivation

Variability
Description
Generation

Feature
Model

PartnerTask
Repository

PartnerTask
Feature
Mapping

Model

Process
model with
variability

FeatureTask
Mapping

Model

FeatureFeature
Mapping

Model

Process
Variant

Service
Variability

Description

Activity Sequence Flow Data Flow Artifact

Fig. 6. A methodology for developing process-based service compositions

During the second activity, both non-customizable partner services and
customizable partner services are transformed into a set of partner tasks that will be
selectable for modeling the process. A partner task is an operation provided by a
partner service that is responsible for an atomic message flow between the partner

Modeling and Managing Variability in Process-Based Service Compositions 415

service and the service composition. While non-customizable partner services are
transformed to a set of non-customizable partner tasks, results of transforming
customizable partner services are sets of alternative partner tasks. For each set of
alternative partner tasks, we also generate an abstract partner task representing all
partner tasks in the set. Since the variability of customizable partner services are
expressed as feature models with mapping to customizable capabilities, we also
derive mapping models that represent the correspondence between alternative partner
tasks and variant partner features, i.e. PartnerTaskFeature mapping models.
Consequently, results of the service selection activity are a repository of (alternative)
partner tasks and PartnerTaskFeature mapping models. It should be noted that in this
methodology, the PartnerTaskFeature mapping model is intentionally generated
before modeling the process.

In the third activity, the business process for the service composition is modeled
using the extended metamodel. The identification of variation points and variants are
based on the feature model identified in the first activity. Tasks from the partner task
repository will be used to model the message flow between the service composition
and partner services. The selection of (alternative) partner tasks and abstract partner
tasks from the partner task repository will not only facilitate the reuse of variability
provided by partner services in the process modeling, but also enable the use of
already generated PartnerTaskFeature mapping model in capturing variability inter-
dependencies. The result of this activity is a process model with variability.

In the next activity, the model mapping technique is exploited to first model
variability intra-dependencies. That is, all variation points and variants in a process
model are mapped to variant features in the feature model of the business process.
The result is a FeatureTask mapping model. Since the PartnerTaskFeature mapping
model is already produced, model transformation techniques are utilized to
automatically generate FeatureFeature mapping model as mentioned.

The resulting software artifacts of the first four activities will be used in two
different ways. Firstly, they are used for the derivation of process variants given a
particular feature configuration as the result of a customization (i.e. Variant
Derivation activity). Secondly, those software artifacts are used to generate the
variability description of the resulting service composition (i.e. Variability
Description Generation activity) which can contribute to other service compositions.
Due to space limitation, we just describe the first usage in the following subsection.

6.2 Deriving Executable Process Variants

While the modeling of variability and variability dependencies is a design time
process, the derivation of an executable process variant usually happens at runtime.
This is triggered when the service composition is customized by consumers or the
service provider itself. As explained, the customization is performed using the feature
model of the service composition (cf. section 4.3) and generally requires the runtime
customization of respective partner services.

Given a feature configuration of the composition, we exploit model transformation
techniques as follows to derive a particular executable process variant:

416 T. Nguyen, A. Colman, and J. Han

1. The FeatureTask mapping model is referenced for specializing the process model.
The process model is actually a model template which is the superset of all
process variants. Therefore, those process elements, which are mapped to selected
features, are maintained while those process elements, which are mapped to
removed features, are purged from the process model. The result of this task is an
abstract process variant which does not have variability but still contains partner
tasks and consumer tasks. The detail of specializing a model template can be
found in our previous work [5].

2. The FeatureFeature mapping model is referenced for generating a feature
configuration for each customizable partner service. These feature configurations
are used to customize corresponding partner services and produce particular
partner service variants.

3. From the abstract process variant and partner service variants, an executable
process variant is generated. We presume the use of BPEL for the executable
process. It is important to note that the existence of partner tasks in the abstract
process variant will help to create partner links and accurate service invocation
between the process variant and partner service variants.

4. Finally, based on the information of consumer tasks in the abstract process variant,
the service interface description of this process variant is generated.

At the end of this activity, a fully executable process variant that matches the given
feature configuration is generated along with a service interface description. The
process variant will invoke a set of automatically customized partner service variants.

7 Prototype Implementation

We have developed a prototype system for validating the feasibility of our approach.
Key components are an Eclipse plugin for modeling business processes along with
their variability (cf. Figure 7) and a model mapping tool for capturing all types of

Fig. 7. A screenshot of modeling business processes with variability

Modeling and Managing Variability in Process-Based Service Compositions 417

variability dependencies (cf. Figure 8). Using our business process modeling tool,
we successfully modeled the case study with all possible variation points and
variants. This case study, despite of its simplicity, cannot be modeled by any
approach in related work because all those approaches do not cater for the
variability of partner services. In the following paragraphs, we introduce these key
components.

Figure 7 is a screenshot of our process modeling tool. From the BPMN 2.0
metamodel, we extracted a subset that contains all model elements relevant to service
compositions. We then introduced our process metamodel extension into the extracted
metamodel. Our Eclipse plugin enables the development of any business process
conforming to the extended metamodel. Modelers can select existing and new process
elements from the right Palette tool. The screenshot displays the process model for the
case study with three variation points: one variation point in the control flow, namely
VPS1 and VPE1 for ControlFlowVPStart and ControlFlowVPEnd, one variation point
in the data flow, namely DataObjectVP1, and one variation point in the message flow,
namely ConversationVP1. ConversationVP1 is associated with two alternative
variants, namely ConversationVariant1_1 and ConversationVariant1_2. While
ConversationVariant1_1 represents the message flow between the “CheckContent”
task and the “ContentBasedCheck” partner task, ConversationVariant1_2 represents
the message flow between the same “CheckContent” task and the “URLBasedCheck”
partner task. “ContentBasedCheck” and “URLBasedCheck” are alternative partner
tasks associated with the same AbstractPartnerTask, namely “ContentCheck”. These
PartnerTasks, AbstractPartnerTask, as well as the PartnerTaskFeature mapping
model are generated from the service variability description of the ContentChecker
service (cf. Figure 3). Modeling variability in this way enables the capturing of
variability inter-dependencies between the CMS Provider and the ContentChecker
service.

Figure 8 is a screenshot depicting how to capture variability intra-dependencies,
i.e. FeatureTask mapping model, using our model mapping tool. In the screenshot, the
feature model is presented in the left panel, while the process model is presented in
the right panel and the middle panel presents the mapping model. Three mapping
links are created in the screenshot. The first link associates the “Direct” feature with
one DataObjectVariant and one ConversationVariant. Similarly, the second link
associates the “External Resource” feature also with one DataObjectVariant and one
ConversationVariant. The third link associates the “Status Update” feature with one
ControlFlowVP. The creation of model elements is based on the context menus as
shown in Figure 8. This component is implemented as an extension to Atlas Model
Weaver (AMW) [24]. We then perform model transformations using Atlas
Tranformation Language (ATL) [25] to derive FeatureFeature mapping model. As
explained, PartnerTaskFeature mapping model and FeatureFeature mapping model
account for variability inter-dependencies.

418 T. Nguyen, A. Colman, and J. Han

FEATURE MODEL MAPPING MODEL PROCESS MODEL

Specify ElementRef

FeatureRef for
Feature

ProcessElementRef for
ProcessElement

Link

Fig. 8. A screenshot of a mapping model between a feature model and a process model

8 Conclusion

In this paper, we have proposed a feature-oriented approach to modeling and
managing variability in process-based service compositions. We have extended the
BPMN 2.0 metamodel for introducing variation points and variants in all three aspects
of service compositions, i.e. control flow, data flow, and message flow. These
extensions enable not only comprehensive modeling of variability, but also the
generation of executable process variants as the result of a service customization. In
addition, we have introduced a feature mapping technique for capturing not only
variability intra-dependencies among variants within a process model, but also
variability inter-dependencies between variants in a process model and variants in
partner services. Consequently, our approach is able to address the situation when a
customizable composition is orchestrated using partner services some of which are
customizable. This is not achievable using existing approaches.

We have also described a methodology that facilitates the development of business
processes conforming to the extended process metamodel with systematic variability
management. The key advantage of the methodology is the systematic exploitation of
variabilities provided by partner services to increase the chance of reusing variability.
The methodology exploits MDE techniques for automating most parts, especially the
generation of executable process variants. In addition, we present a prototype system
for demonstrating the feasibility of our approach.

As future work, we plan to develop techniques for the generation of service
variability description from the process model leading to a framework for the
recursive delivery of customizable services in service ecosystems.

Acknowledgments. This research was carried out as part of the activities of, and
funded by, the Smart Services Cooperative Research Centre (CRC) through the
Australian Government’s CRC Programme (Department of Innovation, Industry,
Science and Research).

Modeling and Managing Variability in Process-Based Service Compositions 419

References

1. Sun, C.-A., et al.: Modeling and managing the variability of Web service-based systems.
Syst. & Softw. 83(3), 502–516 (2009)

2. Hallerbach, A., et al.: Capturing variability in business process models: the Provop
approach. Softw. Maint. & Evol.: Res. & Pract. 22(6-7), 519–546 (2010)

3. Svahnberg, M., et al.: A taxonomy of variability realization techniques: Research Articles.
Softw. Pract. Exper. 35(8), 705–754 (2005)

4. Barros, A.P., et al.: The Rise of Web Service Ecosystems. IT Prof. 8(5), 31–37 (2006)
5. Nguyen, T., et al.: A Feature-Oriented Approach for Web Service Customization. In: IEEE

Int. Conf. on Web Services, pp. 393–400 (2010)
6. Stollberg, M., Muth, M.: Service Customization by Variability Modeling. In: Dan, A.,

Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 425–434.
Springer, Heidelberg (2010)

7. Liang, H., et al.: A Policy Framework for Collaborative Web Service Customization. In:
Proc. of the 2nd IEEE Int. Sym. on Service-Oriented System Engineering (2006)

8. Schmid, K., et al.: A customizable approach to full lifecycle variability management.
Science of Computer Programming 53(3), 259–284 (2004)

9. Nguyen, T., et al.: Managing service variability: state of the art and open issues. In: Proc.
of the 5th Int. Workshop on Variability Modeling of Software-Intensive Systems (2011)

10. Pohl, K., et al.: Software Product Line Engineering: Foundations, Principles and
Techniques. Springer-Verlag New York, Inc. (2005)

11. Hadaytullah, et al.: Using Model Customization for Variability Management in Service
Compositions. In: IEEE Int. Conf. on Web Services 2009 (2009)

12. Koning, M., et al.: VxBPEL: Supporting variability for Web services in BPEL.
Information and Software Technology 51(2), 258–269 (2009)

13. Mietzner, R., et al.: Generation of BPEL Customization Processes for SaaS Applications
from Variability Descriptors. In: IEEE Int. Conf. on Services Computing 2008 (2008)

14. Razavian, M., et al.: Modeling Variability in Business Process Models Using UML. In: 5th
Int. Conf. on Information Technology: New Generations 2008 (2008)

15. Chang, S.H., et al.: A Variability Modeling Method for Adaptable Services in Service-
Oriented Computing. In: Proc. of the 11th Int. Conf. on Software Product Line (2007)

16. Schnieders, A., et al.: Variability Mechanisms in E-Business Process Families. In: Proc. of
Int. Conf. on Business Information Systems, pp. 583–601 (2006)

17. Kang, K.C., et al.: Feature-Oriented Domain Analysis (FODA) Feasibility Study, in
Technical Report, Softw. Eng. Inst., CMU. p. 161 pages (November 1990)

18. Kang, K.C., et al.: FORM: A feature-oriented reuse method with domain-specific reference
architectures. Ann. Softw. Eng. 5, 143–168 (1998)

19. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink, H., Pohl,
K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

20. Griss, M.L., et al.: Integrating Feature Modeling with the RSEB. In: Proc. of the 5th Int.
Conf. on Software Reuse (1998)

21. Czarnecki, K., et al.: Formalizing cardinality-based feature models and their specialization.
Software Process: Improvement and Practice 10(1), 7–29 (2005)

22. Sinnema, M., Deelstra, S., Nijhuis, J., Dannenberg, R.B.: COVAMOF: A Framework for
Modeling Variability in Software Product Families. In: Nord, R.L. (ed.) SPLC 2004.
LNCS, vol. 3154, pp. 197–213. Springer, Heidelberg (2004)

420 T. Nguyen, A. Colman, and J. Han

23. Benavides, D., et al.: Automated analysis of feature models 20 years later: A literature
review. Information Systems 35(6), 615–636 (2010)

24. Didonet, M., et al.: Weaving Models with the Eclipse AMW plugin. In: Proceedings of
Eclipse Modeling Symposium, Eclipse Summit Europe (2006)

25. Jouault, F., et al.: ATL: A model transformation tool. Science of Computer
Programming 72(1-2), 31–39 (2008)

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 421–435, 2011.
© Springer-Verlag Berlin Heidelberg 2011

QoS-Driven Proactive Adaptation of Service Composition

Rafael Aschoff and Andrea Zisman

Department of Computing, City University London,
London, EC1V 0HB, United Kingdom

{abdy961,a.zisman}@soi.city.ac.uk

Abstract. Proactive adaptation of service composition has been recognized as a
major research challenge for service-based systems. In this paper we describe
an approach for proactive adaptation of service composition due to changes in
service operation response time; or unavailability of operations, services, and
providers. The approach is based on exponentially weighted moving average
(EWMA) for modelling service operation response time. The prediction of
problems and the need for adaptation consider a group of services in a
composition flow, instead of isolated services. The decision of the service
operations to be used to replace existing operations in a composition takes into
account response time and cost values. A prototype tool has been implemented
to illustrate and evaluate the approach. The paper also describes the results of a
set of experiments that we have conducted to evaluate the work.

Keywords: Proactive adaptation, response time, cost, spatial correlation.

1 Introduction

A major research challenge for service-based systems is the support for service
compositions that need to adapt autonomously and automatically to new situations
[9][10][23][28]. Some approaches for adaptation of service compositions have been
proposed in [1][2][16][29]. However, these approaches support adaptation of service
compositions in a reactive way, which is time-consuming and may lead to several
unwanted consequences (e.g. user and business dissatisfaction, loss of money, loss of
market opportunities). Therefore, it is important to provide approaches that consider
adaptation of service composition in a proactive way, predicting problems in a
composition before they occur. Some initial works for proactive adaptation of service
composition have been proposed in [8][15][19][30]. Overall, these few approaches
are fragmented, limited, and in their initial stages.

We define proactive adaptation of service composition as the detection of the need
for changes and implementation of changes in a composition, before reaching an
execution point in the composition where a problem may occur. For example, the
identification that the response time of a service operation in a composition may cause
the violation of the service level agreement (SLA) for the whole composition,
requiring other operations in the composition to be replaced in order to maintain the
SLA; or the identification that a service provider P is unavailable requiring other

422 R. Aschoff and A. Zisman

services in the composition from provider P to be replaced, before reaching the
execution part in the composition where services from P are invoked.

Proactive adaptation of service composition includes four main steps, namely (i)
prediction of problems, (ii) analysis of the problems triggered by prediction, (iii)
decision of actions to be taken due to the problems, and (iv) execution of the actions.
As defined in [26], the prediction of problems is concerned with the identification of
the occurrence of a problem in the near future based on an assessment of the current
state of the system. More specifically, in the scope of service-based systems, problem
prediction is concerned with the assessment of what is the impact of a service
misbehaviour, or of a group of services, in other parts of the service composition.

In this paper we describe ProAdapt, a framework for proactive adaptation of
service composition due to changes in service operation response time; or
unavailability of operations, services, or providers. ProAdapt provides adaptation of a
composition during its execution time and for future executions of the composition.
The framework is based on function approximation and failure spatial correlation
techniques [26]. The approach uses exponentially weighted moving average (EWMA)
[22] for modelling expected service operation response time, and monitors operation
requests and responses to identify the availability of services and their providers.

In ProAdapt, the need for adaptation considers a group of operations in a
composition flow, instead of isolated operations, in order to avoid replacing an
operation in a composition when there is a problem, and this problem can be
compensated by other operations in the composition flow. The framework also
identifies other operations that may be affected in a composition flow due to problems
caused by a specific one. For example, when the observed response time of an
operation is greater than its expected response time, the approach verifies the
implication of this response time discrepancy in the service composition, instead of
triggering immediate replacement of the operation. This verification considers service
level agreements (SLAs) specified for the whole composition and (variable) observed
values of quality aspects of the operations in the composition. When it is necessary to
replace an operation, or a group of operations, the candidate operations to be used in
the composition are selected based on both response time and cost constraints. This is
because, in practice, there is a strong correlation between the response time and the
cost for an operation.

The remainder of this paper is structured as follows. In Section 2 we present
ProAdapt framework. In Section 3 we describe the proactive adaptation process for
predicting and analysing problems in service composition, and for deciding and
executing the adaptation actions. In Section 4 we discuss implementation and
evaluation aspects of our work. In Section 5 we give an account of related work.
Finally, in Section 6 we discuss concluding remarks and future work.

2 Proactive Adaptation Framework

Fig. 1 shows the overall architecture of ProAdapt framework with its main
components (represented as rectangles), namely: execution engine, specification
translator, service discovery, monitor, and adaptor. It also shows the different types

 QoS-Driven Proactive Adaptation of Service Composition 423

of data used as input or generated as output by the main components (represented as
documents). We describe below each of these main components.

The execution engine receives and executes service composition specifications. We
assume service composition specifications represented as BPEL4WS [5] due to its
wide use and acceptance. The service composition specifications provide the flow of
the application and do not have information of the exact services that need to be
invoked in a composition. Instead, it contains abstract partner links information. The
exact services will be instantiated by the adaptor component.

The specification translator is responsible to parse a service composition
specification in BPEL4WS and the service level agreement (SLA) for the composition
and to create a composition model template that will be used to generate execution
models of the composition. An example of an execution model is described below.

The service discovery component identifies possible candidate service operations
to be used in the composition, or to be used as replacement operations in case of
problems. We assume the use of the service discovery approach [27][31] that has
been developed by one of the authors of this paper to assist with the identification of
candidate operations. This approach advocates a proactive selection of service
operations that match functional, behavioural, quality, and contextual aspects. Details
of this approach are out of the scope of this paper. The identified operations are used
to create and adapt execution models by the adaptor component.

Fig. 1. ProAdapt architecture overview

The monitor verifies the QoS aspects of the operations used in the instantiated
execution models and the replacement candidate operations, and provides historical
data of these QoS aspects. The adaptor uses the historical data to predict and analyse
the need for adaptation. The current implementation of the framework uses a simple
monitor that we have developed that intercepts calls to the services, calculates the
response time that it takes from the invocation of an operation and the receipt of its
results, and accumulates the calculated response times as historical data.

The adaptor is the main component of our framework. It (a) receives calls from the
execution engine to invoke operations in the composition and provides the results to
the execution engine; (b) instantiates composition model templates and generates the
execution models with real endpoint service operations to be invoked in the
composition and other information; (c) predicts and analysis problems that may exist
in a composition; and (d) decides on and executes actions to be taken.

424 R. Aschoff and A. Zisman

Execution Model. We advocate the use of an execution model for each execution of a
service composition. This is necessary to provide information to support prediction
and analysis for adaptation, given the lack of such information in BPEL4WS [5]
specifications. An execution model is a graph representation of the service
composition specification with information about the (i) execution flow, (ii) deployed
endpoint service operations, (iii) state of a service operation in a composition (e.g.,
completed, to be executed, and executing), (iv) observed QoS values of a service
operation after its execution, (v) expected QoS values of a service operation, and (vii)
SLA parameter values for the service operations and the composition as a whole.

Fig. 2. Example of composition execution model

Fig. 2 shows an example of an execution model for a RoutePlanner service
composition scenario to assist users to request information from a PDA about optimal
routes to be taken when driving. As shown in the figure, the composition offers
services to support the identification of a driver’s current location, identification of an
optional route for a certain location, display of maps of the area and route to be taken,
provision of traffic information throughout the route to be taken, computation of new
routes at regular intervals due to changes in traffic, and provision of information
about near gas stations. In Fig. 2, for each service operation, we show its deployed
endpoint, status, SLA cost values, and expected and observed response time (RT)
values. We also show these values for the whole composition.

3 Proactive Adaptation Process

In ProAdapt, the adaptation process may be triggered due to (i) changes in the
response times values of operations in a service composition that affects SLA values
of a composition, (ii) unavailability of operations in a composition, (iii) unavailability
of services, or (iv) unavailability of providers. When one of cases (i) to (iv) occurs,
the adaptor verifies if the composition needs to be changed and modifies the
composition during its execution time, if necessary. More specifically, the changes
are performed in the execution models by trying to identify operations that can
replace existing operations participating in the remaining parts of the execution model
such that the aggregation of the response time and cost values of these replacement
operations, together with the response time and cost values of the operations that have
already been executed in the composition and the ones that are still to be executed,
comply with the SLA values of response time and cost for the composition.

 QoS-Driven Proactive Adaptation of Service Composition 425

Response Time Modeling. In order to guarantee compliance of the SLA response
time and cost values in an execution model (EM), it is necessary to consider the
aggregation of the response time values of the participating operations; and the time
for the adaptor to identify and analyse problems and perform changes in the execution
model when necessary, as specified in the function below.

 T(EM) = Aggreg(RT(Set(O))) + T(Adapt), where: (1)

• T(EM) is the time to complete the execution model EM;
• RT(Set(O)) is the response time of the operations in EM;
• Aggreg() is a function that returns the aggregated values of the response time of the

operations depending on the execution logic of the model;
• T(Adapt) is the time required by the adaptor.

The aggregation of the response time values of the service operations in the execution
model considers different execution logics in a model such as sequence, parallel,
conditional selection, and repeat logics. In the example in Fig. 2, sequence execution
logics are composed of operations (a) GetLocation and FindRoute, and (b) GetMap
and IdentifyGasStation; while a parallel execution logic is found in operations
GetMap and IdentifyGasStation with operation GetTraffic. In the case of sequence
execution logic, the aggregated response time is calculated as the sum of the response
times of the operations in the sequence; in the case of parallel execution logic, the
aggregated response time is calculated as the maximum of the response time values
for the operations in the parallel execution logic.

The aggregated response times of the operations in an execution model and
candidate replacement operations is calculated based on expected response time
values of the operations not yet executed and the observed response time values of the
operations already executed. As outlined in [8], the response time for an operation
request combines the time for executing the operation and the network time for
sending the operation request and receiving its response. We observed that there are
also other times that should be considered such as the time of
marshaling/unmarshaling a request, and the time that a request may need to stay in a
queue in both client and server sides. We define the response time of an operation as:

 RT(O) = PT(O) + DT(O), where: (2)

• PT(0) is the processing time for an operation O, which is given by service providers.
• DT(0) is the variable delay time associated with an operation O, including the

network, queue, and marshaling/unmarshaling times.

As shown above, the response time is considered a variable parameter that can be
affected due to changes in the network and system resources. Therefore, in order to
identify expected response time values, it is necessary to use techniques that predict
the behaviour of random parameters. ProAdapt uses exponentially weighted moving
average (EWMA) [22] technique for this prediction due to its simplicity.

The expected response time value of an operation changes with time. At time t0, an
operation expected response time value is its processing time. At time ti (i>0), the
expected response time is given by the EWMA function [22] below:

 Ev(O(ti)) = Obv(O(ti-x))(1- α) + Ev(O(ti-x))* α + β*SD, where (3)

426 R. Aschoff and A. Zisman

• Ev(O(ti)) is the expected response time value of operation O at time ti of execution;
• Obv(O(ti-x)) is the last observed response time value of O at time ti-x of execution

(0<x<i; and ti-x<ti);
• Ev(O(ti-x)) is the expected response time value of O at time ti-x of execution

(0<x<i; and ti-x<ti);
• α is a weight given for the past expected response time value;
• β*SD is a threshold calculated based on the standard deviation (SD) of previous

observed response time values of O and β is as a constant parameter.

For each operation in an execution model, a set of candidate replacement operations is
identified by the service discovery tool (see Fig. 1), based on functional and
behavioural matching. The identified candidate operations are ordered by the
weighted sum of the normalised response time and cost values of an operation, as per
the function below. The weights are used to specify priorities in QoS values.

 V(O) = wRT * Norm(Ev(O)) + wC * Norm(C(O)), where: (4)

• O is a candidate service operation;
• Norm(Ev(O)) is the normalised value for the expected response time of O;
• Norm(C(O)) is the normalised value for the cost of operation O;
• wRt and wC are weights used for response time and cost, with wRt+wC = 1.

Execution of Adaptation Process. For each user Ui of a service composition, an
execution model EMUi is created. The initial endpoint operations used in an execution
model is identified by the adaptor based on available operations, current expected
response times for these operations, and SLA values of the composition.

During the execution of EMUi, the model is updated in several ways by: (a)
changing the status of its operations (e.g., from “to be executed” to “executing” and
“executed”), (b) calculating the observed and expected response time values of the
operations as per the functions defined above, and (c) changing operations in not yet
executed paths in the model, if necessary. For any of cases (i) to (iv) that may trigger
the need for adaptation, the process tries to identify other parts in the execution model
that may be affected by a problem. The process is based on spatial correlations of
operations, services, and providers (dependencies that may exist between these
elements). For example, when a service S becomes unavailable, the process considers
all other operations of S in the model since these operations may not be able to be
executed. Similarly, when a provider P is unavailable, the process considers all
services and operations in the model from P; and when an operation O becomes
unavailable, the process considers future invocations of O in the model.

We describe below the process for each case (i) to (iv). Suppose O an operation in
the model being invoked by the adaptor (status “executing”); S the service associated
with O; P the provider of S; Obv(O) the observed response time for O; and Ev(O) the
last expected response time for O calculated using function (3).

Case (i): Changes in the response time of O
In this case, if the Obv(O)<=Ev(O), there is no need for adaptation and the model
continues its execution. Otherwise, (Obv(O)>Ev(O)), the process verifies if the
model’s SLA response time is affected. This analysis is done by using function (1)
above. If the SLA value is maintained, the process continues its execution. If not, the

 QoS-Driven Proactive Adaptation of Service Composition 427

process considers operations in the model that have not yet been executed and tries to
find possible combinations of replacement operations that provide the functionality of
those operations, and maintain the SLA response time and cost values. The operations
in the model are considered inside the smaller possible execution logic. If a
combination cannot be found, the process identifies the best possible combination.

Case (ii): O is unavailable
In this case, S has been changed and the adaptor receives a message from S about the
unavailability of O. The process tries to identify another operation O’ in the set of
candidate replacement operations with the same functionality of O and acceptable
expected response time and cost values. If O’ exists, O is replaced by O’. The process
also identifies other parts in the model not yet executed that use O and possible
replacement operations for O in these parts. If these replacements operations are
identified, they are use to replace O in those parts. The replacement operations are
identified as in case(i) above. O is also removed from the set of candidate replacement
operations.

Case (iii): S is unavailable
In this case, P informs the adaptor that S is not available. The process detects all other
operations in the model associated with S that have not yet been executed, if any;
identifies replacement operations for them from the set of candidate replacement
operations; changes the execution model by replacing the operations; and removes the
operations of S from the set of candidate replacement operations.

Case (iv): P is unavailable
In this case, the component receives a “connection exception” message indicating that
the provider is unavailable. Similar to case (iii), the process detects all operations in
the execution model associated with P that have not yet been executed; identifies
replacement operations from the set of candidate replacement operations; changes the
execution model by replacing the operations; and removes the operations of P from
the set of candidate replacement operations.

For cases (ii) to (iv) above, if the identified replacement operations match the
functionality of the operations to be replaced, but do not maintain the SLA values of
the composition, the process identifies the best possible combination of replacement
operations to be used. When there are no replacement operations that match the
functionality, the execution model cannot be adapted and the process terminates.

In order to illustrate consider case (i) above. Suppose the observed value of
FindRoute operation in Fig. 2 as 68ms. In this case, the response time of the execution
model will be 451ms (see function 1), which is higher than the composition’s SLA
time value (450ms). The process tries to identify replacement operations in the
following parallel execution logic (GetTraffic and GetMap, and IdentifyGasStation
operations) that can guarantee the SLA value. If no solution is available for the
operations in the parallel execution logic, the process includes operation DisplayInfo
and considers the combined execution logics for analysis. Suppose that a replacement
operation for GetMap is identified with expected response time value of 90 ms, which
is used to compensate for the high response time of FindRoute.

428 R. Aschoff and A. Zisman

4 Implementation Aspects and Evaluation

A prototype tool of the framework has been implemented in Java (J2SE). The
execution engine and the adaptor components were implemented as a single
component for simplicity. The tool assumes service compositions in BPEL4WS[5]
exposed as Web Services using SOAP protocol, and participating operations and user
requests emulated using soapUI[11]. The service discovery tool was also
implemented in Java and is exposed as a web service using Apache Axis2. The
external service registry uses eXist database [12]. In order to evaluate ProAdapt we
focused on three cases described below.

Case (1): Demonstration that the framework provides time reduction when compared
to non-proactive approaches;
Case (2): Demonstration that the framework manages to adapt compositions ensuring
the SLA values of the composition, and considering prioritization of QoS values;
Case (3): Analysis of the performance of the framework.

The evaluation was executed in a service composition with 12 operations and
different types of execution logics, as shown in Fig. 3. We assumed the same
syntactic and semantic characteristics for the 12 operations, with each operation
having two input parameters and producing one output result. The size of each
message representing an operation request (or an operation response) was around 60
bytes. Each operation has different associated costs and processing time values, as
summarised in Table 1. We assumed SLA values for cost as 2800 pence and response
time as 3.5 seconds for the whole composition; and the weights for the cost and
response times as 0.9 and 0.1, respectively.

Fig. 3. Experiment service composition

We used an environment with five different machines, namely: (a) client machine
responsible to create simultaneous requests to the service composition, simulating
several concurrent users; (b) adaptor engine machine connected to three service
providers; and (c) one machine for each service provider P1, P2, P3. Table 1 presents
a summary of the specification of each machine and the speed of the network links
between the machines. We used different speeds for the network links to emulate
bottleneck situations that may occur when using an Internet environment. Each
service provider contains four different services, with each service implementing
three different operations in the composition in Fig. 3. The operations in the four
services in provider P1 are similar in terms of their functionalities to the ones in
providers P2 and P3, in order to simulate possible candidate replacement operations.
We assumed different costs and processing time values for the operations in the
various providers as summarised in Table 1.

 QoS-Driven Proactive Adaptation of Service Composition 429

We appreciate that in a real scenario the operations used in a composition may be
from different providers. In the experiment, for the initial execution model we
assumed all operations from the same provider (P1) to enforce a more realistic
bottleneck situation. This does not invalidate our experiments since it is important to
consider the network capacity between the adaptor and providers.

For the EWMA function (see Section 3), we used a threshold of 1.5 and the weight
for past expected response time values of 0.6. These values were identified after
executing the operations in the composition in Fig. 3 several times, and verifying that
with these values the expected response times of the operations were below their
observed times for 95% of the cases. We describe below how we conducted the
experiments and their results for each of cases (1) to (3) above.

Table 1. Configuration of experiment environment

Machine Configuration Services/
Operations

Cost
(pence)

Processing
Time (ms)

Network Links
(Mb/s)

Client (C) Turion 1GHz 2GB
RAM

C-A = 3.0

Adaptor (A) Core 2.33 GHz
3GB RAM

Provider P1 Pentium 4.3 GHz
1GB RAM

S0:O00, O04, O08
S1:O01, O05, O09
S2:O02, O06, O010
S3:O03, O07, O011

100 150
A-P1 = 1.0

Provider P2 Core 1.86 GHz
2GB RAM

S0’:O00, O04, O08
S1’:O01, O05, O09
S2’:O02, O06, O010
S3’:O03, O07, O011

150 100
A-P2 = 1.5

Provider P3 Pentium 3.0 GHz
3GB RAM

S0”:O00, O04, O08
S1”:O01, O05, O09
S2”:O02,O06, O010
S3”:O03,O07, O011

300 50
A-P3 = 3.0

Case (1): In this case, we compared the execution times of the composition in Fig. 3
when there is no need for adaptation with the execution times when there are
problems and adaptation is required. More specifically, we analysed the times for the
situations in which the need to execute adaptation is triggered by problems with (a)
operations, (b) services, and (c) providers, as described in Section 3. In all these
situations, we assumed the processing times of the operations in providers P2 and P3
as the same as P1. This is necessary to create a homogeneous environment and avoid
using a replacement operation with faster processing time and, therefore, diminishing
the impact of the time wasted when trying to invoke an unavailable operation.

Fig. 4. Impact of spatial correlation on composition response times

430 R. Aschoff and A. Zisman

For problems at the operation level (case (a)), we assumed no spatial correlation
and analysed the time to execute the composition when replacement operations need
to be identified for all the 12 operations in the composition. For problems at the
service level (case (b)), we considered the spatial correlation between operations from
the same service, and analysed the time to execute the composition when each of the
four services have a problem and adaptation is required. For problems at the provider
level (case (c)), we considered spatial correlation between services, and analysed the
time to execute the composition when a new provider needs to be identified.

Fig. 4 presents the results of this experiment. As shown in the figure, for case (a)
the time to execute the composition and change all operations without considering
any spatial correlation is two times more than the time to execute the composition
without any need for adaptation (normal execution). The results also show that for
case (b), the time to execute the composition is improved by 36% when compared to
case (a), and that for case (c) this time is improved even further by 43% when
compared to case (a). We verify an improvement of using our proactive adaptation
approach when compared to the situation in which a non-proactive approach is used.

Case (2): In this case, we simulated the client machine to support an increase in the
number of users invoking the composition in an incremental way. More specifically,
we analysed the framework in 30 intervals of ten seconds each (total of 300 seconds)
with a rate of one user per second in the first interval of ten seconds, two users per
second in the second interval, and an increment of one extra user every ten seconds
reaching 30 users per second in the last interval. It is worth noting that for each user
request performed by our client machine, 12 operations are executed and, therefore,
the number of simultaneous operation executions in the experiment is greater than the
number of user requests in the various intervals. Moreover, at a certain time t in the
experiment, the number of users invoking the composition and consuming resources
is greater than the number of new users at t, since the time to execute the composition
without any problem is more than 1 second (see Fig. 4).

The above simulation was used in order to provide an environment that could on its
own create problems to the composition in terms of response time and cost values due
to the number of users and network resources being consumed and, therefore, allow
the verification of the behaviour of ProAdapt in cases of problems.

Fig. 5. Number of simultaneous users consuming resources during the experiment

Fig. 5 shows the number of concurrent users consuming resources during the
different times of the experiment. As expected, the accumulated number of users is
greater than the rate of new users invoking the composition. The graph in Fig. 5

 QoS-Driven Proactive Adaptation of Service Composition 431

shows a larger number of accumulated users towards the end of the experiment since
during this time there are a larger number of invocations for the operations in the
compositions causing degradation in the response times of the operations and,
therefore, delaying the execution of the compositions.

Fig. 6 shows the time to execute each execution of the composition (represented as
squares) during the whole experiment, and the compositions that were able to adapt
themselves and finish within the SLA response time values (dotted line in the graph).
As shown, the majority of the executions managed to adapt themselves and finish
within the SLA response time value. The graph also shows a stable response time for
the executions in the beginning of the experiment and oscillations in the response
times starting at 200 seconds of the experiment. This is because between 20 and 25
service composition requests per second provider P1 reaches its full capacity, causing
degradation in the operations response times, and eventually, the need to adapt the
composition executions so that the SLA values are maintained.

Fig. 6. Variation of composition response times during the experiment

(a) (b)

Fig. 7. Cumulative frequency distribution of (a) response times and (b) costs

The cases in which the executions did not finish before the SLA value (cases above
dotted line in Fig. 6), were due to bottlenecks in the providers and lack of available
operations that could be executed faster and with the cost values specified in the
experiment. In order to verify the impact of these cases, we present the cumulative
frequency distribution for the response times of the executions in Fig. 7(a). As shown,

432 R. Aschoff and A. Zisman

the response times of the executions where below 1.5 seconds for 80.65% of the
cases, and in 99.69% of the cases the executions respected the SLA response time
value. Therefore, from a total of 4650 user requests performed during 300 seconds of
experiments, only 14 user requests could not be executed for the given SLA value.

Similarly, Fig. 7(b) presents the cumulative frequency distribution for the costs of
the executions. As shown, the cheapest executions (1200 pennies) occurred in 85% of
the cases. The graph also shows that the SLA cost value was respected in all 4650
requests, which was expected since the framework identifies only operations that
respect the cost values when adapting the composition.

(a) (b)

Fig. 8. (a) Adaptation time and (b) cumulative adaptation time over the experiment

Case (3): In this case, we analysed the time spent by ProAdapt to adapt the
compositions. Fig. 8(a) shows the times of the adaptor component in milliseconds for
all executions in our experiment, while Fig. 8(b) shows the cumulative frequency
distribution. As shown, in the majority of the cases the overall adaptation time is very
small and does not cause a significant increase on the overall response time of the
composition execution. The experiment shows that only in few cases the time for the
adaption process was 3 milliseconds at most, which is very low when compared with
the time to execute the composition when there is no need for adaptation. This is due
to the way the process is implemented in which compositions are analysed based on
execution logics and without looking for the optimal combination of operations, but
for combinations that meet given SLA values.

Overall, the results of our experiments are very positive and demonstrate that the
framework can support proactive adaptation of service composition during execution
time, due to different QoS characteristics. The experiments also show that the
performance of the adaptation process is good and that the process does not cause
penalties when changes in the composition are necessary.

5 Related Work

Some approaches have focussed on dynamic service composition, in which services
are identified and aggregated during runtime in support of certain functional and
quality characteristics of the desired systems [1][3][6][7][13][24][25].

 QoS-Driven Proactive Adaptation of Service Composition 433

Approaches for reactive adaptation of service composition were proposed in
[1][2][16][18][29]. These approaches propose changes in service composition based
on pre-defined policies [2], self-healing of compositions based on detection of
exceptions and repair using handlers [29], context-based adaptation of compositions
using negotiation and repair actions [1]; and key performance indicator (KPI) analysis
and the use of adaptation strategies related to the KPI fulfilment [16].

Exceptions to the reactive approaches are found in the works in
[8][14][15][17][19][21][28]. As in the case of ProAdapt, the work in [8] is based on
prediction of performance failures to support self-healing of compositions. The work
uses semi-Markov models for performance predictions, service reliability model, and
minimization in the number of service re-selection in case of changes. The decision to
adapt is based on the performance of a single service, while our framework considers
a group of related service operations in a composition, avoiding unnecessary changes
to the composition. Moreover, the work in [8] does not support unavailability and
malfunctioning of operations, services, and providers, as well as spatial correlations
between these elements in a composition.

In [17] the PREvent approach is described to support prediction and prevention of
SLA violations in service compositions based on event monitoring and machine
learning techniques. The prediction of violations is calculated only at defined
checkpoints in a composition based on regression classifiers prediction models.

The works in [14][19][28] advocate the use of testing to anticipate problems in
service compositions and trigger adaptation requests. The approach in [28] supports
identification of nine types of mismatches between services to be used in a
composition and their requests based on pre-defined test cases. In [14][19] test cases
are created during the deployment of service compositions and used to identify
violations after a service is invoked for the first time. However, the creation of test
cases is not an easy task and the work does not specify how to generate new test cases
for a modified composition.

In [15] the authors describe a two-stage adaptation approach due to dependability
requirements of service-oriented systems. The work combines proactive adaptation to
support self-protection of the system and reactive adaptation to support self-healing of
the system. The paper does not describe the advantages of combining both approaches
and lacks details of the proactive approach.

Similar to our framework, some works have been proposed to support prediction of
response time on the web [21][30]. In [21] the authors describe a probability function
for web-access response time that uses file-size cumulative function and delay
probability density function. The work in [30] presents a framework for performance
evaluation of web services based on queuing networks and fork-and-join. As in the
case of our framework, this work considers the execution of a service and, therefore
its response time, from the moment a service request leaves a client machine to the
moment service results return to the client. Our framework complements the above
works and applies prediction of operation response time.

Similar to our approach, in [4] the authors advocate that the management of service
compositions during runtime needs to consider the structure of a composition and the
dependencies between the participating services, and propose an approach that
determines the impact of each service in a composition on its overall performance.
The reactive region-based reconfiguration approach presented in [18] also has
similarities with our work since it considers services that are in certain regions in a

434 R. Aschoff and A. Zisman

composition. However, in [18] the reconfiguration approach is used only for future
executions of the composition, instead of current executions as in our work.

Our framework complements existing works for service composition adaptation
and contributes to the challenge of supporting adaptation in a proactive way during
execution time, taking into consideration SLA values for the whole composition.

6 Conclusion and Final Remarks

In this paper we presented ProAdapt, a framework for proactive adaptation of service
composition due to changes in service operation response times; or unavailability of
operations, services and providers. The framework uses function approximation and
failure spatial correlation of operations, services, and providers to predict problems. It
also uses exponentially weighted moving average (EWMA) to model response times
of operations. The adaptation process is performed during the execution of a
composition and considers a group of operations in a composition to verify if a
problem can be compensated by other operations in a composition flow. Replacement
operations are selected based on their response times and cost values. A prototype
implementation of the framework has been developed and used to evaluate the
framework with positive results

Currently, we are extending the framework to support proactive adaptation due to
other types of QoS aspects and other circumstances. Examples of these circumstances
are availability of new (better) service operations than the ones used in a composition,
and changes in requirements or emergence of new requirements for the system. We
are also investigating other ways of adapting compositions including changes in the
structure of the composition’s workflow (e.g., replacement of one service by a group
of services, or vice-versa). We are expanding our prototype tool to support analysis of
the impact of a problem in conditional and repetition execution logics in service
compositions, and integrating the adaptor component with our proactive service
discovery framework for identification of candidate replacement operations.

References
1. Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P.: PAWS: A Framework for

Executing Adaptive Web-Service Processes. IEEE Software 24(6) (2007)
2. Baresi, L., Di Nitto, E., Ghezzi, C., Guinea, S.: A Framework for the Deployment of Adaptable

Web Service Compositions. Service Oriented Computing and Applications Journal (to appear)
3. Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: Heuristics for QoS-aware

Web Service Composition. In: IEEE International Conference on Web Services (2006)
4. Bodenstaff, L., Wombacher, A., Reichert, M., Jaeger, M.C.: Analyzing Impact Factors on

Composite Services. In: IEEE Int. Conf. on Services Computing (September 2009)
5. BPEL4WS,

http://www.download.boulder.ibm.com/ibmdl/pub/software/dw/
specs/ws-bpel/ws-bpel.pdf

6. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: QoS-Aware Replanning of
Composite Web Services. In: IEEE Int. Conf. on Web Services (2005)

7. Colombo, M., Di Nitto, E., Muri, M.: SCENE: A Service Composition Execution
Environment Supporting Dynamic Changes Disciplined Through Rules. In: Proc. of the
4th Int. Conf. on Service Oriented Computing (2006)

8. Dai, Y., Yang, L., Zhang, B.: QoS-Driven Self-Healing Web Service Composition Based on
Performance Prediction. Journal of Computer Science and Technology 24(2) (March 2009)

 QoS-Driven Proactive Adaptation of Service Composition 435

9. Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl, K.: A Journey to Highly
Dynamic, Self-Adaptive, Service-based Applications. Automated Software Engineering
Journal 15, 313–341 (2008)

10. Dustdar, S., Papazoglou, M.P.: Services and Service Composition – An Introduction. IT
Information Technology 2, 86–92 (2008)

11. Eviware. soapUI; the Web Services Testing tool, http://www.soapui.org
12. eXist, http://exist.sourceforge.net
13. Fujii, K., Suda, T.: Semantics-based Dynamic Web Service Composition. Int. Journal of

Cooperative Inf. Systems 15(3), 293–324 (2006)
14. Hielscher, J., Kazhamiakin, R., Metzger, A., Pistore, M.: A Framework for Proactive Self-

Adaptation of Service-based Applications Based on Online Testing. In: Mähönen, P., Pohl,
K., Priol, T. (eds.) ServiceWave 2008. LNCS, vol. 5377, pp. 122–133. Springer,
Heidelberg (2008)

15. Jun, N., Bin, Z., Xiamgyu, Z., Zhiliang, Z., Dancheng, L.: Two-Stage Adaptation for
Dependable Service-Oriented System. In: International Conference on Service Sciences (2010)

16. Kazhamiakin, R., Wetzstein, B., Karastoyanova, D., Pistore, M., Leymann, F.: Adaptation
of Service-based Applications Based on Process Quality Factor Analysis. In: Dan, A.,
Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 395–404.
Springer, Heidelberg (2010)

17. Leitner, P., Michlmayr, A., Rosenber, F., Dustdar, S.: Monitoring, Prediction and Prevention of
SLA Violations in Composite Services. In: Int. Conf. on Web Services (2010)

18. Lin, K.J., Zhang, J., Zhai, Y., Xu, B.: The Design and Implementation of Service Process
Reconfiguration with End-to-end QoS Constraints in SOA. Journal of Service Oriented
Computing and Applications 4 (2010)

19. Metzer, A., Sammodi, O., Pohl, K., Rzepka, M.: Towards Pro-active Adaptation with
Confidence Augumenting Service Monitoring with Online Testing. In: Software
Engineering for Adaptive and Self-managing Systems, SEMAS, South Africa (May 2010)

20. Mitchell, T.M.: Machine Learning. McGraw-Hill International Editions (1997)
21. Miyagi, M., Ohkubo, K., Kataoka, M., Yoshizawa, S.: Performance Prediction Method for

Web-Access response Time Distribution Using Formula. In: Network Operations and
Management Symposium (2004)

22. NIST/SEMATECH eHandbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook

23. Papazoglou, M.P., Traverso, P., Dustdar, S., Leyman, F., Kramer, B.: Service-Oriented
Computing Research Roadmap, http://tinyurl.com/6jhvd44

24. Pernici, B. (ed.): MAIS Project. Mobile Information Systems – Infrastructure and Design
for Flexibility and Adaptability. Springer, Heidelberg (2006)

25. Pistore, M., Marconi, A., Bertolini, P., Traverso, P.: Automated Composition of Web Services
by Planning at the Knowledge Level. In: Int’l Joint Conf. Artificial Intelligence (2005)

26. Salfner, F., Lenk, M., Malek, M.: A Survey of Online Failure Prediction Methods. ACM
Computing Surveys 42(3) (2010)

27. Spanoudakis, G., Zisman, A.: Discovering Services during Service-based System Design
using UML. IEEE Transactions of Software Engineering 36(3), 371–389 (2010)

28. Tosi, D., Denaro, G., Pezzè, M.: Towards Autonomic Service-Oriented Applications.
International. Journal of Autonomic Computing (IJAC), 58–80 (2009)

29. WSDiamond, http://wsdiamond.di.unito.it/status.html
30. Youcef, S., Bhatti, M.U., Mokdad, L., Monfort, V.: Simulation-based Response-time

Analysis of Composite Web Services. In: 10th IEEE International Multitopic Conference
31. Zisman, A., Dooley, J., Spanoudakis, G.: A Framework for Dynamic Service Discovery.

In: Int. Conf. on Automated Software Engineering, Italy (2008)

A Quality Aggregation Model for Service-Oriented
Software Product Lines Based on Variability

and Composition Patterns

Bardia Mohabbati1, Dragan Gašević1,2, Marek Hatala1, Mohsen Asadi1,
Ebrahim Bagheri2,3, and Marko Bošković1,2

1 Simon Fraser University, Canada
{mohabbati,mhatala,masadi}@sfu.ca

2 Athabasca University, Canada
{dragang,ebagheri,marko.boskovic}@athabascau.ca

3 University of British Columbia, Canada

Abstract. Quality evaluation is a challenging task in monolithic software
systems. It is even more complex when it comes to Service-Oriented Software
Product Lines (SOSPL), as it needs to analyze the attributes of a family of SOA
systems. In SOSPL, variability can be planned and managed at the architectural
level to develop a software product with the same set of functionalities but dif-
ferent degrees of non-functional quality attribute satisfaction. Therefore, archi-
tectural quality evaluation becomes crucial due to the fact that it allows for the
examination of whether or not the final product satisfies and guarantees all the
ranges of quality requirements within the envisioned scope. This paper addresses
the open research problem of aggregating QoS attribute ranges with respect to ar-
chitectural variability. Previous solutions for quality aggregation do not consider
architectural variability for composite services. Our approach introduces vari-
ability patterns that can possibly occur at the architectural level of an SOSPL. We
propose an aggregation model for QoS computation which takes both variability
and composition patterns into account.

Keywords: Software Product Line (SPL), Service-Oriented Architecture (SOA),
non-functional properties, QoS aggregation, process family, service variability,
variability management, feature modeling.

1 Introduction

The Service-Oriented Architecture (SOA) paradigm enables the realization of Software-
as-a-Service (SaaS). Some service providers have already moved towards the adoption
of customizable product-development models to efficiently tailor solutions for their
stakeholders. Within this process, they need to consider, manage and withstand both
variable functional and non-functional (quality) requirements to produce new applica-
tions systematically [1]. Software Product Line Engineering (SPLE) provides a plat-
form to capture both functional and non-functional aspects and allows for the rapid
customization of new products. Several researchers have proposed to integrate SOA
and SPLE paradigms into Service-Oriented Software Product Lines (SOSPLs) as a way

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 436–451, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Quality Aggregation Model for Service-Oriented Software Product Lines 437

to formalize customizable product-development and take the benefits and synergies of
both paradigms [1,2].

Researchers have explored various strategies for the realization of software applica-
tions, e.g., how the most appropriate services can be selected for a given product line
and how they can be efficiently composed. However, previous works often fails to con-
sider Quality-of-Service (QoS) in the context of product lines. Quality evaluation is a
challenging task in monolithic software systems and it is even more complex when it
comes to SOSPL, as it needs to analyze the attributes of a family of SOA systems.

This paper contributes a solution to the following open research problem: How can
the quality attributes of a software product line be aggregated with respect to architec-
tural variability? The novelty of our approach is in accounting for variability during
architecture quality aggregation, which has not been considered in any related work, to
the best of our knowledge. Our work focuses on the development of a framework for
computing the quality ranges of features in an SOSPL by aggregating QoS properties at
the architectural level. Building on our previous work [3,4], we assume that QoS dimen-
sions are captured in terms of quantitative properties. In particular, this paper makes the
following contributions:

1. The introduction and classification of a set of possible variability patterns that oc-
cur at the architectural level of an SOSPL. This can be seen as a catalog of patterns
for variability modeling;

2. The development of a quality model framework for the aggregation of QoS based
on different architectural patterns;

3. The formalization of a computational model for architectural quality evaluation,
which takes into account both variability and composition patterns and allows for
tradeoff analysis and architectural decision making between options that provide
similar functional properties but different levels of quality.

The reminder of this paper is organized as follow: Section 2 describes SOSPL and its
related conceptual modeling and formalism. QoS aggregation and computation model
for SOSPL architecture is described in Section 3. The discussion and complexity eval-
uation of methods is presented in Section 4. The related work is discussed in Section 5.
Finally, Section 6 presents the conclusion and future work.

2 Service-Oriented Software Product Lines

SPLE has been recognized as a successful approach to variability management and
reuse engineering, which enables mass customization, enhances software quality and
reduces the time-to-market of new software products [5]. Different software products
derived from a software product line are distinguishable based on their included fea-
tures. A feature reflects the stakeholders’ requirements. It is an increment in the product
functionality and offers a configuration option [5]. Given this definition for a feature,
SPLE relies on the essential concepts of commonality and variability of features among
products.

SPLE consists of two main lifecycles: Domain Engineering and Application Engi-
neering [5]. Domain Engineering is concerned with the analysis and identification of

438 B. Mohabbati et al.

the scope of the product line and the capturing of the entire domain of interest through
modeling of common and variation points. An Application Engineering cycle builds
the understanding of specific requirements of different stakeholders, for whom the cus-
tomization and configuration of the product line is carried out. We have presented the
details of these two distinctive lifecycles in [3].

Given that software product line models are often abstract representations of a do-
main/application of interest, it is important that they are interrelated with solution
space models that would allow their actual operationalization. To this end, many re-
searchers and practitioners have already investigated the importance of leveraging the
synergies between SOA and SPL to create Service-Oriented Software Product Lines
(SOSPLs) [1,2]. Such approaches benefit from SOA principles to provide an actual im-
plementation of SPL products. Let us review an illustrative example in this regard.

2.1 Illustrative Example

In Fig.1, we show a simplified business process model for e-Payment in a global
online retailer scenario to illustrate the concepts and further discussions. As shown,
different features from the feature model (on the left) that can be used within the
business process model (on the right) to implement the functionality of the payment
process. These features can be realized using appropriate services, which can have
different QoS characteristics. For example, the activities represented in gray color
in the process model indicate optional features; i.e., those features can be option-
ally included or excluded from the target product based on stakeholders’ require-
ments. For instance, the Notification feature can be included in a product by
selecting one of the Mobile-based notification, Phone-Fax notification,
or Email/Voicemail notification features, which have different range of quality
values, since they are implemented by different services. Hence, the QoS characteristics
of a developed product are closely dependent upon the features that get included in a
final product.

A feature model such as the one in Fig.1(a) is a model of a family of products (SPL),
while each variant (customized service) is a member of that family. Variation points are

(a)

Debit Card
Payment

Credit Card
Validation

Fraud
Detection

Payment

Credit Card
Payment

Email-
Voicemail

Phone
Fax

Mobile-based
Notification

Payment
Method

Identity
Federation Notification

(b)

P
ay

m
en

t P
ro

ce
ss

[10 , 45]

[8 , 27]

[3 , 25]
[10 , 54]

[15 , 51]

[5 , 17] [12 , 30]

[8 , 20] [17 , 48]
Payment
Gateway
Interface

2 3

Require & Exclude
Constraints

k k

Or Alternative Optional Mandatory Group
Cardinality Process Pool Activity Gateway Sequence Flow

Feature Model Notation BPMN Notation- Basic constructs

kf

mf nflf

f

...
jfif

Fig. 1. a) Feature model representing structural variability in business process family b)
E-payment feature and its process flow

A Quality Aggregation Model for Service-Oriented Software Product Lines 439

those places in the design of the SOSPL architecture where a specific decision has been
narrowed down to several options. However, the options to be selected for a particu-
lar application w.r.t. stakeholder’s requirements are left open for configuration. Hence,
the variation points provide the possibility to derive different products, i.e., different
final composite services. In SOSPL, particularly during the domain engineering cycle,
determining the implied QoS ranges for individual features, based on the underlying
architecture and implementation, helps domain engineers to ensure that the product
line architecture will fulfill and deliver the upper and lower bounds or values of qual-
ity requirements requested by stakeholders. In other words, the aggregation of the QoS
properties of a feature model based on the QoS characteristics of its features, as de-
rived from underlying processes and services implementing those features, provides
the means to estimate the likely lower and upper bounds of QoS properties for poten-
tial products that will be derived from that product family. Furthermore, in the context
of SOSPL, quality range computation through the construction of a generic evaluation
model enables us to keep track of the product line quality ranges even during or after
specifications of the service quality have changed. Therefore, the main contribution of
this work is an introduction of the process how these QoS ranges are computed in the
presence of variability.

2.2 Feature Modeling

Feature modeling is one of the important techniques for capturing, modeling and de-
scribing the commonalities and differences between the products of a family based on
their features. A feature model is a means for describing a permissible configuration
space of all the products of a family in terms of its features and their relationships. A
feature model consists of both formal semantics and graphical representation, which
is a rooted directed acyclic graph (DAG). Fig.1(a) depicts a part of the feature model
in our example, which describes common and variable features and represents archi-
tectural variability in the reference business process model. Parent-child relationships
in the feature diagram indicate the refinement of application functionality. As not all
features are assumed to be present in every product, this differentiation is expressed by
a classification of feature types and relationships, which drive architectural variability
patterns as follows:

1. Mandatory-Optional: A mandatory feature must be included in every member of
a product line if its parent feature is selected. An optional feature may or may not
be included if their parent is included;

2. Or groups: Or feature groups are non-empty subsets of features that can be in-
cluded if a parent feature is included;

3. Alternative groups: Alternative feature groups indicate that from a set of alter-
native features exactly one feature must be included if the parent of that set is
included.

We formally define a feature model as follows:

Definition 1 (Feature Model). A feature model FM=GFM(V, E) is a directed acyclic
graph consisting of the set of vertices V representing features and edges E⊆ V×V rep-

resenting the parent-child relations between the features, such that E={
•
f,

◦
f, for, fxor},

440 B. Mohabbati et al.

where
•
f and

◦
f denote mandatory and optional parent-child feature relations, respec-

tively; for and fxor denote Or and Alternative group relations between parent-child
features with common parents, respectively.

In general, cardinality is also defined among a group of n > 1 sub-features, which is
denoted by <k−k′>, where 1≤k≤ k′ ≤ n. Hence, <k−k′> cardinality defined over
Or feature groups indicates at least k and at most k′ features can be included out of the
n features in a group if the parent is selected. In addition, integrity constraints, i.e., the
includes and excludes relations, can be defined over features of a feature model. They
are the means to express that the presence of a certain feature in the product imposes
the presence or exclusion of another feature.

As it can be observed, except for the mandatory feature type, all the other types of
features imply architectural variability.

2.3 Reference Business Process Model

A template-based approach, where a reference model is designed as a template and is
further customized for various purposes, has been widely adopted by practitioners [6].
The reference model contains a union of the business processes for the entire prod-
uct line in a superimposed way. The reference model provides the common business
logic for orchestration and choreography of services. The design of reference models
is accomplished in the course of the domain engineering lifecycle [5].

The configuration (tailoring and customization) of a reference models is performed
by the selection/elimination of features from the feature model. In other words, due
to the fact that architectural variations in the reference model are encoded as features,
the various parts of the reference business processes are organized in variation points,
which are managed and configured by means of feature models. It should be noted
that we distinguish between design and runtime variability. Feature models capture and
encapsulate only architectural variability at design time. In contrast, business process
models describe behavioral variability, i.e., how features are composed, which drives
runtime variability through composition patterns (discussed in the next section).

We consider a business process model as a workflow which is formally defined as
follows:

Definition 2 (Business Process Model). Business process model BP is defined as a
directed acyclic graph GBP = (V, E), where V = {nε, Vσ , VA, VG} denotes a set of
disjoint nodes, nε is a unique initial state,Vσ is a final state, VA is a set of activities,
and E represents the edges (transitions) between the nodes. VG is a set of nodes as
gateways.

A business process is viewed as a series of activities where an activity represents a func-
tional abstraction of services. An activity can be 1) atomic (a.k.a., task) or 2) non-atomic
(a.k.a., sub-process). Each activity is delegated and bound to one or more services that
provide the required functionality with different quality properties. Gateways, as routing
constructs, represent a control flow of branchings, i.e., routing points. In this paper, we
impose the following well-formedness conditions on a business process structure [7]:
i) a business process model has a single source node, i.e., a node with no incoming

A Quality Aggregation Model for Service-Oriented Software Product Lines 441

edge; ii) every activity node has a single incoming and a single outgoing edge; iii) for
every node with multiple outgoing arcs (i.e., a split), there is a corresponding node with
multiple incoming arcs (a join), such that the set of nodes between the split and the join
forms a single-entry-single-exit region [8].

In our work, architectural and behavioral variability are described by means of two
models, i.e., feature models and business process models, respectively. Hence, we will
assume that there is a mapping model available which interconnects these two mod-
els [3,6]. This injective mapping (i.e., one-to-one) reciprocally links each feature in the
feature model to the corresponding activity in the reference business process model.

3 Quality of Service Aggregation and Computation for Product
Line Architecture

In this section, we describe our proposed quality aggregation model for product line
architectures. We will cover the following issues in order to provide a model for aggre-
gating and computing QoS range values in the presence of variability: 1) quality criteria
and quality range values for SOSPL; 2) the combination of variability and composition
patterns; 3) based on the combination of variability and composition patterns; and 4)
computational algorithms for computing aggregate quality range values.

3.1 Quality Criteria for Service-Oriented Product Line

Different fields of research and standards have proposed diverse definitions and ontolo-
gies for describing QoS properties based on their target application domains [9].

We consider some quantitative QoS characteristics of Web services, which have
been taken into consideration as selection criteria in the research literature [10,9,11,12].
Specifically, cost and response time will be the two indexed QoS properties included in
our work, which will be denoted by qpr and qrt, respectively, throughout the paper. Of
course, our approach is not limited to these two QoS types, but these are the only ones
discussed here due the limited space of the paper.

Let us now proceed with some formal definitions as a basis for our work.

Definition 3 (Quality Range). The quality range values of the ith quality property
(dimension) is defined as qR

i = [qLB
i , qUB

i], where qLB
i and qUB

i are lower and upper
bound values of the quality property, respectively.

The above definition shows that each property such as response time or cost can be
described by a range of numerical values. This range specifies both lower and upper
bounds for that quality property. In order to be able to compute such a quality range,
appropriate aggregation operators are needed. We consider the following three types of
quality aggregation operators for computing the quality ranges of a software product
line:

• Summation: The quality range values of the product line is determined by a sum
of the QoS range values of the quality attributes of services. An example would be
cost;

442 B. Mohabbati et al.

• Multiplication: The range values of quality attributes are determined by production
of the QoS values of the services, for instance, reliability and availability;

• Min-Max: The quality range values of the product line are computed with respect
to critical paths [9,13] in the business process structure, for instance, response time
(i.e., execution duration).

In order to employ the above operators, we consider the following. We assume that
for each activity an∈VA in a business process model BP , there is a bounded set of
candidate services, San = 〈sn1, . . . , snm〉, in which all of the candidates provide the
same functionality, but with different degrees of QoS properties. The quality of a service
s is a vector Qs = 〈q1(s), . . . , qk(s)〉 ∈ R, where the function qi(s) determines the
values of the ith quality property.

The quality of each activity an is defined as a matrix [Qan]i×j ; 1≤ i ≤ k, 1≤ j≤ m,
where each row corresponds to a quality property qi, while each column corresponds to
a service candidate. Thereby, the range of the ith quality property for feature fn corre-
sponding to activity an is obtained by the quality range function qR

i (fn) = [qLB
i , qUB

i],
where qLB

i =Qmin
an and qUB

i =Qmax
an .

For example, let us assume that there are five service candidates in Sai binding to
activity ak, mapped to feature fk, and that their service cost values (qpr) are given by
vector Qak

(i, j) =〈100, 250, 65, 130, 95〉. The cost range values of feature fk could be
set as follows: qR

pr(fk) = [65, 250], because we are interested in the lower and upper
bound values for the quality range.

3.2 Combining Variability and Composition Patterns

In essence, the aggregation model for quality computation in the context of SOSPL
depends on: a) structural variability captured by a feature model; and b) behavioral
variability captured by a business process model, which describes the composition
structure.

Composition patterns1, which have their roots in workflow management
systems[14], aim at building composition structures that are derived from the require-
ments in the process modeling phase.

In other words, these patterns describe the behavior of features during execution
time. They represent the abstract control flow and execution sequence of features within
the reference business process model for the whole family. Similar to [12], we con-
sider composition patterns that address the behavioral structure of a composition. These
patterns can be grouped into two main groups: a) sequential patterns and b) parallel
patterns. These patterns are defined in terms of how the process flow proceeds in se-
quences and splits into branches for executing the activities and how they merge or
converge. For our work, we consider the combination of parallel split, convergence and
synchronization patterns.

Fig.2 illustrates three variability patterns (left side), as described in Sec.2.2, in com-
bination with nine composition patterns (CP1-CP9) represented using BPMN notation
(right side). We perform quality aggregation based on a set of proposed aggregation
rules described below.

1 We use the terms workflow and composition patterns, interchangeably.

A Quality Aggregation Model for Service-Oriented Software Product Lines 443

Sequential Patterns

CP1: Sequence CP2: Loop

Parallel Patterns

CP3: Parallel split – Synchronization
 (AND-AND)

CP4: Parallel split – Discriminator
(AND-DISC)

CP5: Parallel Split – Simple merg
(AND-XOR)

CP6: Multi-Choice – Sync. merg
(OR-OR)

CP7: Multi-choice – Discriminator
(OR- DISC)

CP8: Multi-choice – Simple merg
(OR-XOR)

 Activity: Task/Sub-process

Gateway

 AND OR XOR m/nCP9: Exclusive – Simple merg

(XOR-XOR)

 Variability Patterns Composition Patterns

...

f

Or

Alternative

k k

...

f

1f 2f nf

1f nf

k k

...

f

1f 2f nf

fi Mapping

}

Fig. 2. Variability and composition patterns

3.3 Aggregation Rules Based on Variability and Composition Patterns

Based on the patterns described above, we define aggregation rules for each QoS prop-
erty by primarily taking into account the variability patterns which may occur within
each composition pattern. In the following, we present the aggregation rules for two
numerical QoS properties: cost and response time (i.e., execution time). The cost of a
feature is the cost which can be associated with the deployment, execution, manage-
ment, maintenance and monitoring of a service. The aggregation rules for availability
and throughput are presented in a longer version of the current paper which is acces-
sible online2. The summary of the aggregation rules that we have defined are given in
Tables 1 and 2.

According to Definition 3, the definition of a lower bound, qLB
i , for different quality

properties must indispensably consider the mandatory features for sequential and par-
allel split patterns (CP1-CP4). In addition to mandatory features, the optional features
generally contribute to the upper bound range value, qUB

i . For instance, in the sequen-
tial patterns, the cost of feature f should be determined by the sum of the cost values
of each mandatory feature for the lower bound; while the upper bound is determined by
the accumulated cost for mandatory as well as optional features.

By adopting a hierarchical approach, described in the next section, the range val-
ues (upper and lower bounds) for QoS properties are computed for a combination of
variability and composition patterns, based on our formulated aggregation rules. To de-
termine the upper and lower bounds for QoS range values, qR

i (f), for a parent feature

2 http://qos-sospl.sourceforge.net/

http://qos-sospl.sourceforge.net/

444 B. Mohabbati et al.

Table 1. Aggregation rules based on Mandatory-Optional variability patterns
M

an
da

to
ry

-O
pt

io
na

l V
ar

ia
bi

lit
y

Pa
tte

rn

QoS Properties Cost (qc) Response Time (qrt)

Se
q.

 P
at

te
rn

s

1 Sequence
LB UB

1 1
() : (:),n n

pr i i pr i i
i i

q f f q ff ff f
= =

• •
∀ ∈ ∀ ∈ ∨

LB UB

1 1
() : (:),n n

pr i i pr i i
i i

q f f q ff ff f
= =

• •
∀ ∈ ∀ ∈ ∨

2 Arbitrary
Cycle

LB UB
 () : () :,pr i i pr i icq f f f f cq f f f f

• •
∨ ∨∈ ∈ LB UB

 () : () :,rt i i rt i icq f f f f cq f f f f
• •

∨ ∨∈ ∈

Pa
ra

lle
l P

at
te

rn
s

3 AND-AND
LB UB

1 1
() : (:),n n

pr i i pr i i
i i

q f f q ff ff f
= =

• •
∀ ∈ ∀ ∈ ∨

LB UB
() : () :max max,rt i i i rt i iq f f f q f f f f

• •
∀ ∀ ∈∈ ∨

4 AND-DISC LB UB
() : () :min max,rt i i i rt i iq f f f q f f f f

• •
∀ ∀ ∈∈ ∨

5 AND-XOR

6 XOR-XOR
LB UB

() : () :min max,pr i i pr i iq f f f f q f f f f
• •

∈ ∈ ∨∨ LB UB
() : () :min max,rt i i rt i iq f f f f q f f f f

• •
∀ ∈ ∨ ∀ ∈ ∨

7 OR-XOR
LB UB

() min max: () :,
i iSub Sub

pr i Sub pr i Sub
f F f F

n n
m mC C

q f F qF Ff F
∈ ∈

∀ ∈ ∀ ∈8 OR-OR LB UB
1

() : () min m , :ax max,pr i i Sub Sub rt i in
mC

q f f F F q f f fF f
•

∈ ∀ ∈ ∀ ∈ ∨
9 OR-DISC

1For example, assuming three features (m =3) out of seven (n=7) in CP6-CP7, the minimum of 3rd quickest should be considered

f (see Fig.2), the aggregation rules are applied on the basis of each composition pattern
according to the variability patterns.

To further introduce the principles of our aggregation model, the following expla-
nation is provided. Feature set FCn

l
contains all of the permissible combinations of the

feature sets, where the number of distinct l-element subsets is a binomial coefficient de-
noted as Cn

l . To compute the quality range values, the aggregation operators are applied
to each member set of FSub∈FCn

l
. For instance, for the lower and upper range values

of cost (qpr), the summation operator is first applied to each element of FSub, which
results in a new set. For this new set, the min-max operator is then applied.

The mandatory and optional features in the Multi-choice parallel patterns (cf. CP6,
CP7 and CP8) follow different aggregation rules. To determine the lower and upper
bounds, the aggregation model also requires knowing which paths in the business pro-
cess flow will be chosen at runtime particularly for OR-Splits. We assume that an exe-
cution of all possible choices for an OR-Split gateway is equally probable. The business
rules defined over business process models (i.e., OR-Split gateway) specify how many
paths (m) can be executed at runtime. This results in a feature set FSub ∈ FCn

m
where

k≤m≤k′≤n.
For instance, in our example, assume that two notification features

Email-voicemail and Mobile-based notification are included in an in-
stance of the reference business process. Hence, the decision concerning which
notification service should be invoked w.r.t. OR-split semantics is left to runtime.

To address Or group and Alternative group feature variability in combination with
Multi and Exclusive choice composition patterns (CP7, CP8, and CP9), the aggregation
model must consider all possible combinations of features corresponding to the given
cardinality <k−k′> over the n features of the feature group specified at design time.
Therefore, the resulting feature set (i.e., FSub) is a subset of FCk′

k
and FCn

k′ for lower
and upper bound quality range values, respectively.

3.4 Quality of Service Range Aggregation

The QoS range values for features in a feature model are computed by hierarchically
aggregating the QoS for variability patterns at the level of each composition pattern.
Aggregation is performed by gradually collapsing features into a single feature in the

A Quality Aggregation Model for Service-Oriented Software Product Lines 445

Table 2. Aggregation rules based on Or and Alternative variability patterns
O

r(*
)1

 /
 A

lte
rn

at
iv

e(*
*)

1
Va

ri
ab

ili
ty

 P
at

te
rn

s

QoS Properties Cost (qc) Response Time (qrt)

Se
q.

Pa

tte
rn

1 Sequence

LB

UB
(*) (**)

min

ma

(

) :x

) :

(

,
|

pr i Sub

pr i Sub

f Fi S k

k k

ub

f Fi Sub

n

n n

C

C C

q f F

q f FF

F

F

∈

∈ ′

∀

∈

∈

∀

LB UB
(*) (**)

(min ma: :x) () |,
Sub Subi i

rt i Sub rt i Sub
f fk kF kF

n n nC C C
q f F qF f F F F

∈ ∈ ′
∀ ∈ ∀ ∈

Pa
ra

lle
l P

at
te

rn
s

3 AND-AND
LB UB

(*) (**)

min max max max () : () : |,rt i Sub rt i Sub
k k k
n n nC C C

q f F q fF FF F
′

∀ ∀∈ ∈

4 AND-DISC
LB UB

(*) (**)

min min max max () : () : |,rt i Sub rt i Sub
k k k
n n nC C C

q f F q fF FF F
′

∀ ∀∈ ∈ 5 AND-XOR
6 OR-XOR
7 OR-OR

LB UB
(*) (**)

min max max max () : () : |,rt i Sub rt i Sub
k k k
n n nC C C

q f F q fF FF F
′

∀ ∀∈ ∈ 8 OR-DISC
9 XOR-XOR

1(*) and (**) represent the feature set combinatorial operators which are applied for Or and Alternative variability patterns, respectively

feature model, by employing the notion of a virtual feature. This approach enables us
to perform the aggregation from both micro and macro perspectives. In other words, the
quality range values can be computed for each of the given features from a local view
and also for the entire feature model from a global view.

Algorithm 1. Aggregate QoS range for feature: AggregateQoSRange(f)
Input: f : given feature of feature model FM
Output: QoS reange- qRoffeaturef
begin1

// All direct child features of f ;
Sf [] ←− ∀ChildFeatureOf(f) ;2

if Sf = ∅ then return qR(f);3

else4

for i = 1 to |Sf | do5

AggregateQoSRange(Sf[i]);6

PST ←− ProcessStructure(Sf [i]);7

if PST =∅ then return qR(f) else qR(f)= ComputeQoSR(PST)8

9

end10

Algorithms 1 and 2 detail the procedure for computing QoS ranges for a feature
model. In these algorithms, the feature model is traversed from a given feature node
by post-order depth-first traversal, i.e., computing the aggregated QoS ranges from
leaves and the right-most nodes up to the root node. For each feature, the business
Process Structure Tree (PST) corresponding to a given feature is subsequently created
and parsed (Fig.3(b)). For every trivial Single-Entry Single-Exit (SESE) component in
PST, the control flow analysis is performed, whose details are omitted from Alg. 2 for
the sake of brevity; interested readers are referred to [15].

In order to analyze and identify how features at the same level in the feature model
are composed, we decompose the process graph into process components (Fig. 3). A
process component is a subgraph of the composition model with a SESE region, which
may include individual tasks but also larger subgraphs. We employ the Refined Pro-
cess Structure Tree (RPST)-based approach proposed in [13,8] to create and parse the
process model into a tree of SESE components (line 7 in Alg. 1).

446 B. Mohabbati et al.

Alg. 2 operates over a PST, and the aggregation is performed at the level of each pro-
cesses component. Lines 3 to 18 iteratively aggregate the quality for each child com-
ponent. For individual process components, features are grouped into virtual features
corresponding to the variability patterns.

Algorithm 2. Compute QoS range values of business process associated to feature
f : ComputeQoSR(C)

Input: C : Process component- node of process structure tree PST
Output: qR: aggregated QoS range of process component
begin1

foreach Ci ∈ ChildOf(C) do ComputeQoSR(Ci)2

forall fk ∈ Ci do3

//[�]Group features w.r.t. variability patterns and

step-wise collapsing features by means of virtual

features;
switch feature fk.Type do4

case fk ∈
◦
f ∨

•
f5

fVmo [] ←− fk ;6

qR(fVmo) = AggQoS(fVmo) w.r.t. Formulas in Table 1;7

if ∀fk ∈ fVmo : fk ∈
◦
f then fVmo .Type=

◦
f else fVmo .Type=

•
f ;8

case fk ∈ an Or-group9
•
fVor

[] ←− fk ;10

qR(
•
fVor

) = AggQoS(
•
fVor

) w.r.t. Formulas in Table 2;11

case fk ∈ an Alternative-group12
•
fVxor

[] ←− fk ;13

qR(
•
fVxor

) = AggQoS(
•
fVxor

) w.r.t. Formulas in Table 2;14

end15

fV [] ←− fVmo ,
•
fVor

,
•
fVxor

;16

qR(fV) = AggQoS(fV) w.r.t. Formulas given in Tables 1,2;17

if ∃fk ∈ fV : fi ∈
•
f then fV .Type=

•
f else fV .Type=

◦
f ;18

end19

return qR(fV)20

end21

The control flow information is used for identifying the pattern in each of the
SESE components. The virtual features, which are denoted as fVmo , fVor , fVxor , represent
Mandatory-Optional, Or and Alternative grouped virtual features, respectively. Quality
range values of virtual features are computed by an aggregation function (AggQoS) ac-
cording to the aggregation rules introduced earlier in the paper and shown in Tables 1
and 2. In order to comply further with the aggregation rules, the type of virtual fea-
tures should also be determined. Hence, the type of the corresponding virtual feature
is labeled as optional if all the collapsed features are optional, otherwise it is labeled
as mandatory (i.e., Line 8). However, it is noted that according to the given semantic
descriptions of feature variability of Or and Alternative groups, corresponding virtual

A Quality Aggregation Model for Service-Oriented Software Product Lines 447

C1

C2 C3

C4
C5C6

C7
C8

C9

C10 C11

C14

C13

C12
VG1 VG2

VG3
VG4

VG5 VG6

C1

C2 C3 C4 C5

C6 C7 VG2VG2

C9 C8 VG6VG5

C10 C11

C12 C13 VG4VG3 C14

f1 f2

f4 f9 f10 f11

f7

f6 f8

(a) (b)

Fig. 3. a) Decomposition of business process model to SESE components b) Business process
structure tree

features fVor and fVxor are labeled mandatory. The virtual feature fV includes all of the
collapsed virtual features, which are grouped in each basic composition patterns, and its
type is determined such that if there is at least one mandatory feature in a grouped fea-
ture, the type of the collapsed virtual features is considered mandatory as well (line 18).

To exemplify the aggregation algorithm described above, we compute the QoS range
values of cost (qpr) for the payment feature in the feature model shown in Fig.1. Fig.4
depicts the step-wise transformation of the feature model through gradual hierarchical
aggregations. The following is also the step-wise process for computing the QoS range
values for the payment feature. To show how each of the transformations is actually
performed and how the range values are computed, we refer to the relevant lines of the
algorithm that is used besides each step.

qR
pr(f) =

{
[qLB

pr , qUB
pr] := qR

pr(fV)|fV = Agg.
n⋃

i=1

fi

}
(Alg.1 lines 2-11)

qR
pr(

◦
f1) = [8, 20]; qR

pr(
•
f2) = [17, 48]; qR

pr(
◦
f4) = [10, 54]; (Alg.1 lines 3)

qR
pr(

•
fV1) =

{
qR
pr(

◦
f6), q

R
pr(

•
f8)
}︸ ︷︷ ︸

1�
=
[
qLB
pr (

•
f8) ,

∑{
qUB
pr (

•
f8), q

UB
pr (

◦
f6)

}]
︸ ︷︷ ︸

Table1-Agg.rule No.1

=[12, 47]; (Alg.2 lines 5-8)

qR
pr(

•
f3) =

{
qR
pr(

•
fV1), q

R
pr(

•
f7)
}︸ ︷︷ ︸

2�
=
[

min

({
qLB
pr (

•
fV1), q

LB
pr (

•
f7)
})

,max

({
qUB
pr (

•
fV1), q

UB
pr (

◦
f7)
})]

︸ ︷︷ ︸
Table1-Agg.rule No.6

(Alg.2 lines 5-8)

= [12, 51];

qR
pr(

•
fV2) =

{
qR
pr(

•
f3), q

R
pr(

◦
f4)

}︸ ︷︷ ︸
3�

=
[
qLB
pr (

•
f3) ,

∑{
qUB
pr (

•
f3), q

UB
pr (

◦
f4)

}]
︸ ︷︷ ︸

Table 1.Agg. rule No. 3

=[12, 105]; (Alg.2 lines 5-8)

qR
pr(

•
f5) =

[
min

(∑
fi∈FSub

qLB
pr (fi) :∀FSub∈FC3

2

)
, max

(∑
fi∈FSub

qUB
pr (fi) :∀FSub∈FC3

3

)]
︸ ︷︷ ︸

4� Table 2.Agg. rule No.7

(Alg.2 lines 9-11)

=

[
min

(∑{
{f9,f10}, {f9,f11}, {f10,f11}

)
,max

(∑
{f9,f10,f11}

)]
=
[

min

({
18, 13, 11}

)
,97

]
=[11, 97];

qR
pr(

•
fV3) =

{
qR
pr(

•
f2), q

R
pr(

◦
f5), q

R
pr(

•
fV2)

}︸ ︷︷ ︸
5�

(Alg.2 lines 5-8)

448 B. Mohabbati et al.

f2 f3 f4 f5

f

f1

f6 f7 f8 f9 f10 f11

2 3

f2 f3 f4 f5

f

f1

f6,8 f7 f9 f10 f11

2 3

f2 f6,8,7 f4 f5

f

f1

f9 f10 f11

2 3

f2 f4,6,8,7 f9,10,11

f

f1 f5

f9 f10 f11

2 3

f2 f4,6,8,7

f

f1 f2,4,6,8,7,9,10,11

f

f1

f

[5,17] [15,51] [12,30]

[10,54][8,20] [17,48]

[10,45] [8,27] [3,25]

[10,54][8,20] [17,48]

[10,45] [8,27] [3,25][12,47] [15,51]

[10,54][8,20] [17,48]

[10,45] [8,27] [3,25]

[12,51]

[8,20] [17,48] [12,105] [11,97]

[10,45] [8,27] [3,25]

[8,20] [17,48] [12,105] [8,20] [40,250]

[40,270]

3 54

1 2

1

2

3 4 5

6

Fig. 4. Step-wise feature model transformation

=

[∑{
qLB
pr (

•
f2), q

LB
pr (

•
fV2)

}
,
∑{

qUB
pr (

•
f2), q

UB
pr (

◦
f5), q

UB
pr (

•
fV2)

}]
︸ ︷︷ ︸

Table 1.Agg. rule No. 1

=[40, 250];

qR
pr(f) =

{
qR
pr(

◦
f1), q

R
pr(

•
fV3)︸ ︷︷ ︸

6�

}
=
[
qLB
pr (

•
fV3),

∑{
qUB
pr (

•
f2), q

UB
pr (

◦
f5), q

UB
pr (

•
fV2)

}]
︸ ︷︷ ︸

Table 1.Agg. rule No.1

=[40, 270]

It should be noted that the cost represents a QoS property in this example, which follows
certain aggregation rules as described formerly; however, different rules are applied for
aggregation of range values for other QoS properties, e.g., response time.

4 Discussion

In this section, we analyze the computational complexity of the proposed aggregation
method, and then critically discuss its advantages and disadvantages.

4.1 Complexity Evaluation

The proposed QoS aggregation model includes the following three high-level steps: 1)
quality range aggregation of features for feature models; 2) process structure tree con-
struction related to each feature and finding canonical process components based on
composition patterns; and 3) aggregation of QoS of process components w.r.t. aggrega-
tion rules and their propagation over the feature model.

The size of the state-space in a feature model depends primarily on the size of the
given feature model graph GFM(V, E). Backtracking of a feature model produces an
ordering of the features in which the parent nodes are placed in post-order of their an-
cestors. The traversal of a feature model requires O(|VFM|+|EFM|), which has linear time
complexity. Given the presence of integrity constraints (includes and excludes relations)
in a feature model, the size of the resulting graph will be proportional to the number of

A Quality Aggregation Model for Service-Oriented Software Product Lines 449

constraints. This step could have exponential time complexity if the number of integrity
constraints on a feature model is too high. We show below that this is usually not the
case.

In the second step, the modular decomposition of business processes and the con-
struction of PST is performed in linear-time proportional to the size of the directed
graph of the business process (see [16]). The third step of the algorithm for comput-
ing and aggregating quality range values is achieved by parsing the PST of the business
process model GBP(V, E) and control flow analysis via alternative post-order depth-first
traversals. This step requires O((|VBP|+|EBP|).(C+S)), where C and S denote the exe-
cution time of control flow analysis for each process component; and computing quality
range values according to both the aggregation rules and the size of candidate service
lists for each activity. The time required for grouping features based on variability pat-
terns and capturing quality values does not add any computational complexity and can
hence be ignored.

As a result, given that the worst-case time complexity of the first step can be in some
cases exponential, the time complexity of the entire algorithm can be exponential in the
worst-case. However, it is important to note that the algorithm has a linear time com-
plexity when the number of integrity constraints is smaller than the number of features
in a feature model, which is usually the case based on our analysis of standard feature
models available at http://www.splot-research.org/, where the number of
integrity constraints to the number of features ratio is approximately 0.18.

4.2 Critical Analysis

As mentioned earlier, we have made some assumptions regarding the topology of the
business process graph, i.e., the proposed aggregation method is performed over well-
structured business process models. Well-structured business processes have a number
of desirable properties, which result in less sophisticated verification mechanisms [7].
However, such an assumption requires the transformation of any ad hoc business pro-
cess graph into a structural business process model. Substantial amount of work for the
transformation of unstructured and arbitrary business process models to structured mod-
els already exists [13,17,8,7]. Therefore, our proposed approach can be further adapted
and applied to both structured and unstructured business process models (through trans-
formation). The limitation of the presented aggregation model is that it has not con-
sidered the integrity constraints and dependencies between features to deliver a more
precise aggregation of QoS values. This is left for future work.

Revisiting our original formulated challenge, the goal of QoS range aggregation is
to ensure that the required quality levels are achieved for SOSPL architecture for each
product in the family. The proposed quality aggregation model considers variability
patterns from both structural and behavioral perspectives. The presented approach is a
step towards achieving quality-aware product line configuration. Even in this early stage
of the development, this approach supports quality aware staged configuration. It can be
used to assure that every stage yields a subset of products whose quality ranges satisfy
the desired QoS ranges. Finally, this work can be further considered for facilitating the
management and customization of multi-tenant cloud applications [18].

http://www.splot-research.org/

450 B. Mohabbati et al.

5 Related Work

There are several contributions and previous studies addressing QoS aggregation in
terms of different process model structures for composite services. The works of Car-
doso et al. [11] and Jaeger et al. [12] are the seminal works in the literature, which
address the aggregation and estimation of QoS values for Web services composition in
well-structured process models. Their approaches are based on (some) workflow pat-
terns in the work by van der Aalst et al. [14]. In [11], the authors propose Stochastic
Workflow Reduction (SWR) to compute and estimate the entire workflow QoS values.
The SWR algorithm iteratively applies a set of reduction rules for some sequential and
parallel patterns over a given structured process graph. Their proposed algorithm for
aggregation makes it possible to predict the QoS performance of the entire process by
repeatedly performing substitution until the whole process is transformed into one com-
posite service node. In [12], where the aggregation method is the most similar to ours, a
QoS aggregation method is proposed for composite Web services by considering work-
flow patterns and computing upper and lower bounds for QoS values. Authors represent
a process model as a graph which is collapsed step-by-step by applying composition pat-
terns. Hwang et al. [19] have proposed a probability-based method where a composite
service is represented by a process structure, which is recursively parsed and analyzed
to aggregate quality attributes. In a more recent work [13], an aggregation approach
employs RPST and supports process models which include unstructured components.

Most of the above studies are related to our proposal. However, existing solutions do
not consider the constituent structural variability of process models and do not address
modeling and managing variation points, which may occur within such an architecture
and can significantly impact the proper QoS aggregation. To the best of our knowledge,
this is the first work that takes both structural and behavioral variability into account for
evaluating QoS dimensions in the context of SOSPL.

6 Conclusion

In this paper, we have provided a systematic approach for QoS range aggregation to
support evaluation of quality ranges captured by SOSPL(s), which further helps us
for quality-aware product derivation. As the main contribution, we have identified a
set of variability patterns which may occur within composition patterns and proposed
new aggregation rules for QoS range computation. We also presented an algorithm that
analyzes variability and process models to aggregates QoS ranges for an SOSPL. The
present work is a continuation of our previous works [3,4], where we have presented ap-
proaches for configuration of SOSPLs in the application engineering lifecyle. In those
works, we also proposed a method for features prioritization based on stakeholders’
objectives and preferences concerning functional and QoS requirements. We also pre-
sented how that method can be leveraged by using linear optimization methods for
optimal service selection within boundaries of constraints specified by the stakehold-
ers. The approach presented in this paper takes our previous work to next stage where
automatic computation of quality ranges in the presence of variability is made possible.
As the future work, we also intend to evaluate how our proposed approaches for config-
uration enabled by the contribution of this work can be applied to real-world scenarios.

A Quality Aggregation Model for Service-Oriented Software Product Lines 451

References
1. Cohen, S.G., Krut, R.: Managing variation in services in a software product line context.

Technical Report SEI-2010-TN-007, Carnegie Mellon University (2010)
2. Lee, J., Kotonya, G.: Combining service-orientation with product line engineering. IEEE

Software 27, 35–41 (2010)
3. Mohabbati, B., Hatala, M., Gašević, D., Asadi, M., Bošković, M.: Development and config-

uration of service-oriented systems families. In: Proceedings of the 2011 ACM Symposium
on Applied Computing, SAC 2011, pp. 1606–1613. ACM, New York (2011)

4. Bagheri, E., Asadi, M., Gasevic, D., Soltani, S.: Stratified Analytic Hierarchy Process: Prior-
itization and Selection of Software Features. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS,
vol. 6287, pp. 300–315. Springer, Heidelberg (2010)

5. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations,
Principles and Techniques. Springer-Verlag New York, Inc. (2005)

6. Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach Based
on Superimposed Variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676,
pp. 422–437. Springer, Heidelberg (2005)

7. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.J.: On Structured Workflow Modelling.
In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789, pp. 431–445. Springer,
Heidelberg (2000)

8. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data Knowl. Eng. 68,
793–818 (2009)

9. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-aware mid-
dleware for web services composition. IEEE Transactions on Software Engineering 30, 311–
327 (2004)

10. Yu, T., Lin, K.-J.: Service Selection Algorithms for Composing Complex Services with Mul-
tiple qoS Constraints. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS,
vol. 3826, pp. 130–143. Springer, Heidelberg (2005)

11. Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.: Quality of service for workflows
and web service processes. J. Web Sem. 1, 281–308 (2004)

12. Jaeger, M.C., Rojec-Goldmann, G., Muhl, G.: Qos aggregation for web service composition
using workflow patterns. In: Proceedings of the Eighth IEEE International Conference on En-
terprise Distributed Object Computing, pp. 149–159. IEEE Computer Society, Washington,
DC, USA (2004)

13. Dumas, M., Garcı́a-Bañuelos, L., Polyvyanyy, A., Yang, Y., Zhang, L.: Aggregate Quality of
Service Computation for Composite Services. In: Maglio, P.P., Weske, M., Yang, J., Fanti-
nato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 213–227. Springer, Heidelberg (2010)

14. Van Der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distrib. Parallel Databases 14, 5–51 (2003)

15. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and More Focused Control-Flow Analysis
for Business Process Models Through SESE Decomposition. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer, Heidelberg (2007)

16. McConnell, R.M., de Montgolfier, F.: Linear-time modular decomposition of directed graphs.
Discrete Appl. Math. 145, 198–209 (2005)

17. Ouyang, C., Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M., Mendling, J.: From
business process models to process-oriented software systems. ACM Trans. Softw. Eng.
Methodol. 19, 2:1–2:37 (2009)

18. van der Aalst, W.M.P.: Configurable Services in the Cloud: Supporting Variability While
Enabling Cross-Organizational Process Mining. In: Meersman, R., Dillon, T.S., Herrero, P.
(eds.) OTM 2010. LNCS, vol. 6426, pp. 8–25. Springer, Heidelberg (2010)

19. Hwang, S.Y., Wang, H., Tang, J., Srivastava, J.: A probabilistic approach to modeling and
estimating the qos of web-services-based workflows. Inf. Sci. 177, 5484–5503 (2007)

Optimization of Complex QoS-Aware

Service Compositions

Dieter Schuller1, Artem Polyvyanyy2,
Luciano Garćıa-Bañuelos3, and Stefan Schulte1

1 Technische Universität Darmstadt, Multimedia Communications Lab
{dieter.schuller,stefan.schulte}@kom.tu-darmstadt.de

2 Hasso Plattner Institute at the University of Potsdam, Germany
Artem.Polyvyanyy@hpi.uni-potsdam.de

3 Institute of Computer Science, University of Tartu, Estonia
luciano.garcia@ut.ee

Abstract. In Service-oriented Architectures, business processes can be
realized by composing loosely coupled services. The problem of QoS-
aware service composition is widely recognized in the literature. Exist-
ing approaches on computing an optimal solution to this problem tackle
structured business processes, i.e., business processes which are composed
of XOR-block, AND-block, and repeat loop orchestration components.
As of yet, OR-block and unstructured orchestration components have not
been sufficiently considered in the context of QoS-aware service compo-
sition. The work at hand addresses this shortcoming. An approach for
computing an optimal solution to the service composition problem is
proposed considering the structured orchestration components, such as
AND/XOR/OR-block and repeat loop, as well as unstructured orches-
tration components.

Keywords: Service composition, Quality of Service, Optimization,
Structured and unstructured orchestration components.

1 Introduction

To support and enable agile business processes, the Service-oriented Architecture
(SOA) paradigm is often recommended [1]. One of the key features of SOA is
that (IT-supported) business processes and, respectively, workflows are realized
by composing loosely coupled services – a practice known as service composi-
tion. These services autonomously provide a more or less coarse-/fine-grained
functionality [2]. Following the vision of the Internet of Services, multiple ser-
vice providers offer various services at different service marketplaces. If multiple
services, which are equally appropriate to accomplish certain tasks, are available
at service marketplaces, enterprises can choose to compose those services which
meet cost and Quality of Service (QoS) constraints best. This service composi-
tion problem (SCP), which forms an optimization problem, is widely recognized
in the literature and has been discussed by several authors, e.g. [3,4,5,6,7]. An
optimal solution to the SCP constitutes an execution plan, i.e., a set of selected

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 452–466, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Optimization of Complex QoS-Aware Service Compositions 453

services, which achieves an efficient business process execution with respect to
specified cost and QoS requirements.

As real world business processes do not solely consist of structured orchestra-
tion components, it is necessary to account for complex structures when com-
posing services. However, existing approaches aiming at computing an optimal
solution to the SCP consider complex structures only insufficiently. They usu-
ally examine all execution paths resulting from conditional branchings or repeat
loops, which leads to significant drawbacks, cf. Section 2. Our approach does not
need every possible path of a business process to be examined separately and,
thus, does not need all execution paths to be known. We are able to account for
OR-blocks. Moreover, our approach goes beyond structured orchestration com-
ponents by considering unstructured components, viz. unstructured Directed
Acyclic Graphs (DAG1). To the best of our knowledge, DAGs have not been
addressed previously in the context of QoS-aware service composition.

Thus, the work at hand significantly extends the related work in the field
of computing optimal solutions to the SCP. We initially formulate the SCP
as a non-linear optimization problem and transform it into a linear one. The
linear optimization problem is then optimally solved by applying Integer Linear
Programming (ILP) techniques from the field of operations research [8,9].

The remainder of the paper is structured as follows: In Section 2, we distinguish
our approach fromrelatedwork.The orchestrationmodels and components consid-
ered in the work at hand are introduced in Section 3. We discuss QoS aggregation
functions in Section 5 after having presented the applied system model in Section 4.
Based on the aggregation functions, the SCP is formulated as an optimizationprob-
lem in Section 6 and our solution to this problem is evaluated in Section 7. Finally,
Section 8 draws conclusions and outlines next steps in our research.

2 Related Work

As already mentioned, the SCP is widely recognized in the literature. A survey
of current approaches to the SCP can be found in [7]. The related work in this
area can be broadly divided into two groups: heuristic suboptimal SCP methods,
e.g., [5,10,11,12,13,14], and optimal SCP methods, e.g., [4,6,15,16].

In [10], the authors present and evaluate (basic) heuristic algorithms, such as
greedy and pattern-wise selection. A hill-climbing approach is proposed in [5]. In
the same vein, [11,12,13] tackle the optimization problem with genetic algorithms.
In all the above cases, the input orchestration is assumed to be structured.

As for optimal SCP methods, the common approach is to analyze every pos-
sible execution path. Zeng et al. [15] compute an optimal solution for every
execution path. They require a merging step afterwards to account for situa-
tions where different services have been selected for the same task in different
execution plans. Thus, it is not guaranteed that the merged execution plans
still provide the optimal solution as the authors do not consider probabilities of
XOR-blocks for the optimization. Anselmi et al. [4] consider all possible execu-
tion paths in a single optimization problem; however, they consider probabilities
1 In the following, we omit explicitly stating that DAG components are unstructured.

454 D. Schuller et al.

for the different execution paths only in the objective function. Thus, they fail to
integrate probabilities into the process restrictions, which leads to a worst-case
analysis. In other words, the result of ignoring probabilities regarding different
branchings for the process restrictions is that, effectively, only the worst path of
an XOR-block is considered although all possible execution paths are required
to be integrated into the optimization. Our approach allows probabilities for the
specification of process restrictions to be considered. This enables an average-
case analysis in addition to the worst-case analysis. In [6], Huang et al. consider
only one execution path for the optimization – the worst one. Hence, they also
fail to consider probabilities of conditional branchings. Ardagna et al. [16] do
not consider conditional branchings at all, but they account for repeat loops,
cf. Section 3.2. They unfold the cyclic structure and consider all the resulting
execution paths. Similar to Anselmi et al., Ardagna et al. integrate all execu-
tion paths into a single optimization problem. Thus, the number of constraints
grows with the number of considered repeated executions. Furthermore, such an
approach does not allow for limiting behavior considerations for a repeat loop.

The work at hand addresses computing an optimal solution to the SCP. In
contrast to the related work mentioned above, we do not need to identify all
possible execution paths of a given orchestration model. Our approach allows
for the consideration of probabilities when specifying constraints for conditional
branchings. Thus, we account for all execution possibilities directly. Further-
more, we can perform limiting behavior considerations regarding repeat loops.
In addition, our approach accounts for OR-blocks and DAGs. In the next section,
we provide a detailed description of all the considered orchestration components.

3 Orchestration Models and Components

3.1 Orchestration Models

Fig. 1. An orchestration model

An (orchestration) model is a directed
graph consisting of edges (n1, p, n2),
such that n1 and n2 are nodes (the
source and target of the edge) and p is
the edge probability, i.e., probability
of taking the edge assuming that the
execution of the orchestration model
has reached node n1. Nodes in an or-
chestration model are of two types:
tasks and gateways. Tasks represent
units of work that are accomplished
by atomic services. Gateways encode
the routing logic of the orchestration
model. Gateways are of three types,
cf. [17]: XOR gateways represent conditional branching (XOR-split) or merg-
ing of exclusive branches (XOR-join). AND gateways represent parallel forking

Optimization of Complex QoS-Aware Service Compositions 455

(AND-split) or synchronization points (AND-join). OR gateways represent mul-
tiple choice (OR-split) or general synchronizing merge (OR-join). A split gateway
is the one with a single incoming edge and multiple outgoing edges, while a join
gateway is the one with multiple incoming edges and a single outgoing edge.

We expect all orchestration models to be well-formed. A well-formed orches-
tration model meets the following requirements: (i) An orchestration model has
a single source node, i.e., a node with no incoming edges, and a single sink node,
i.e., a node with no outgoing edges. (ii) Every node is on a path from the source
to the sink. (iii) Every task node has at most one incoming and at most one
outgoing edge. (iv) Every gateway is either a split or a join. (v) The sum of
the probabilities attached to the outgoing edges of an XOR-split gateway is 1.
(vi) The sum of the probabilities attached to the outgoing edges of an OR-split
gateway is larger or equal to 1. (vii) An edge whose source is neither an XOR-
nor an OR-split gateway has a probability of 1. Fig. 1 shows a well-formed
orchestration model using BPMN notation (without edge probabilities).

3.2 Orchestration Components

An orchestration model can be parsed into a hierarchy of (orchestration) compo-
nents, each with a single entry and single exit node. Such orchestration compo-
nents constitute logically independent units of work in the orchestration model.
The result of the parsing procedure is a parse tree, which is the containment
hierarchy of orchestration components of the orchestration model.

B1

(a) P1

R1

P2

(b) B1 (c) P2

a

(d) B2 (e) B3 (f) B4

Fig. 2. Orchestration components

The Refined Process Structure Tree (RPST) is a technique for workflow graph
parsing [18,19], i.e., for discovering the structure of a workflow graph. The RPST
of an orchestration model is the set of all its canonical orchestration components.
An orchestration component is canonical, if it does not overlap (on edges) with
any other orchestration component of the orchestration model.

Fig. 3. DAG component R1

The set of all canonical orchestration com-
ponents of a model clearly forms a hierarchy
that can be represented as a tree. The parent
of an orchestration component is the smallest
component that contains it. The root of the
tree captures the entire orchestration model.
A leaf of the tree is an edge of the model.
Orchestration components can be classified
based on their structure, cf. [19] for details. In

456 D. Schuller et al.

the following, we assume that orchestration models are composed of the follow-
ing structural classes of orchestration components: sequence, AND-block, XOR-
block, OR-block, repeat loop, and DAG. Fig. 2 shows all structured orchestration
components of the model in Fig. 1. Note that in the following, when referring
to a component, we abstract from the internal logic of its child components (see
boxes with dotted borderlines in Fig. 1). In the figure, P1 and P2 are sequences,
B1 is an AND-block, B4 is an XOR-block, B3 is an OR-block, and B2 is a
repeat loop component. Finally, Fig. 3 shows the only DAG component of the
orchestration model.

4 System Model

This section describes the system model. We label the set of all tasks with I,
i � I = �1, ..., i#�. Referring to Fig. 1, the task numbers i correspond to the iden-
tifiers of the tasks, i.e., to “a”, “b”, etc. The order of the task numbers is not im-
portant as long as the respective sets are defined properly. Each task is required
to be accomplished by exactly one service j � Ji = �1, ..., j#

i �. Whether or not
service j is selected for task i is indicated by the decision-variables xij � �0,1�.
In this work, we take execution time e (duration to execute a service in seconds),
reliability r (probability of successful service execution), and throughput d (num-
ber of service requests the service is able to serve within a certain time interval)
as QoS parameters, as well as cost c (charge for a service invocation in cent
considering a pay-per-use pricing model) into account. With these parameters –
in fact, even with a subset of these parameters – the aggregation types summa-
tion, multiplication, and min/max-operator are covered. Thus, the integration
of further QoS parameters into the optimization problem is straightforward. We
label bounds for the QoS parameters with be, br, bd, bc.

Regarding branchings, the set L of paths is specified as L = �1, ..., l#�. Thereby,
l � L indicate the path numbers within a branching. To give an example, we refer
to Fig. 2(b). There are two paths l within the AND-block, thus L = �1,2�. In
order to distinguish multiple sets of paths from each other, we utilize additional
indices, i.e., La, Lx, Lo, Lg for AND/XOR/OR-blocks and DAGs, and refer to
them as branching La, Lx, etc. The set IW L � I represents the set of tasks
within a branching and IW l � IW L the set of tasks within path l � L. The re-
maining tasks, which are not located within a branching, are covered in the set
IS = I � (IW l � l � L). The probability of executing a certain path l is indicated
by pl. When it comes to repeat loops, we label the probability that a task i
is repeated with ρi. To give an example for such a repeat situation, assume a
task that tries, e.g., to initialize a resource. The probability that the resource is
initialized, is indicated by 1−ρi. In case we require the resource to be initialized,
we have to repeat the initialization until we achieve that aim.

The above described system model is used to develop the aggregation func-
tions which are proposed in the next section.

5 Aggregation Functions

In this section, we describe QoS aggregation functions. These functions are re-
quired to specify the objective function and the constraints of the SCP. In order

Optimization of Complex QoS-Aware Service Compositions 457

to aggregate the QoS values of the considered candidate services for the whole
orchestration model, the regarded orchestration components as well as the re-
spective aggregation type of each QoS parameter have to be taken into account.
Table 1 indicates aggregation functions for sequence, AND-block, and XOR-
block. In a sequence, the QoS of all services has to be aggregated according
to the respective aggregation type. Regarding an AND-block, we have to take
the path with the highest aggregated execution time – the critical path – into
account for execution time. For the other QoS parameters, all services within
the AND-block are aggregated. For the XOR-block, we perform an average-case
analysis by considering possible paths l according to their probabilities pl in
contrast to a worst-case analysis, where the worst of the alternative paths is
considered for service selection. Further details on these aggregation functions
are available in [20]. For the sake of clarity, we define es, ea, ex, etc. in Table 1
to represent the respective aggregation functions in Section 6.

Table 1. Aggregation Functions

QoS Sequence AND-block XOR-block

e es �= �
i�IS
�

j�Ji

eijxij ea �=max
l�L
(�

i�IW l

�

j�Ji

eijxij) ex �= �
l�L

pl �
i�IW l

�

j�Ji

eijxij

c cs �= �
i�IS
�

j�Ji

cijxij ca �= �
l�L
�

i�IW l

�

j�Ji

cijxij cx �= �
l�L

pl �
i�IW l

�

j�Ji

cijxij

r rs �= �
i�IS
�

j�Ji

rijxij ra �= �
l�L
�

i�IW l

�

j�Ji

rijxij rx �= �
l�L

pl �
i�IW l

�

j�Ji

rijxij

d ds �=min
i�IS
(�

j�Ji

dijxij) da �=min
l�L
(min

i�IW l

(�

j�Ji

dijxij)) dx �= �
l�L

pl min
i�IW l

(�

j�Ji

dijxij)

Regarding repeat loops, we propose to perform limiting behavior considera-
tions taking the mentioned probability ρi into account. Thus, we exchange eij

for e�ij =
1

1−ρi
eij , cij for c�ij =

1
1−ρi

cij , and rij for r�ij =
(1−ρi)rij

1−ρirij
, cf. [20] for further

explanations. Throughput dij is not affected by a repeat loop.
The application of these aggregation functions implies a sequential arrange-

ment of the process steps within a split and join [20]. To overcome this shortcom-
ing and in order to account for recursive interlacings of the regarded patterns,
we propose to abstract from the interlacing by adding a new service, which re-
places the interlacing [21]. This new service as well as the computation of its
QoS parameters is then considered for the optimization.

In the following, we propose aggregation functions to account for an OR-block
and for a DAG component.

5.1 OR-Block

Regarding the pattern multi-choice (OR-split), not only one (as in XOR-block)
and not necessarily all (as in AND-block), but any subset of paths can be exe-
cuted. In an OR-block, the execution of one, two, three, etc. or even all paths
is allowed. In fact, it is also possible that none of the alternative paths are exe-
cuted. All the selected paths are executed in parallel. When combined with an
OR-join (as assumed here), a synchronizing merge is carried out. Note that it

458 D. Schuller et al.

is not known before execution which of the alternative paths will be executed
– leading to different aggregation functions when considering the average- or
worst-case. In the average-case, only started paths are considered for QoS aggre-
gation, whereas in the worst-case, all paths are executed in parallel. In the latter
case, the aggregation functions for an AND-block, cf. Table 1, can be applied.

Regarding the average-case, we have to consider the started paths. Therefore,
we are required to take all possible combinations of paths l into account. Let
L = �1, ..., l#� be the set of all paths l. If only one path is started, we have
�l

#

1
	 possibilities to select one of them; if two paths are to be started, there

are �l
#

2
	 alternative paths. For three paths, it would be �l

#

3
	 and so on and

so forth. Altogether, we have h#
= �l�L �
l#

l
	 possible combinations. We define

H = �1, ..., h#�, h � H , as the set that contains an index number h for every
possible path combination. In addition, Lh = �l � l � L � h � H� specifies the set
containing the selected paths for path combination h.

To make this clear, we refer to Fig. 2(e). As there are two alternative paths
after the OR-split (executing g or h), l# = 2 and L = �1,2�. There are �2

1
	 = 2

possibilities to select exactly one path and �2
2
	 = 1 possibility to select exactly two

paths. Adding these possibilities leads to h#
= �l�L �
2
l
	 = �2

1
	 + �2

2
	 = 3 possible

path combinations. H would be H = �1,2,3�, and the sets Lh are the following:
L1 = �1�, L2 = �2�, L3 = �1,2�.

We label the probability that a certain combination h of paths is executed with
ph. Thereby, p0 represents the probability that none of the paths l is executed.
We assume p0 + �h�H ph = 1. For the sake of simplicity and in order to make
sure that the execution does not reach a deadlock situation, we set p0 = 0. As
the selected paths are executed in parallel, the aggregation functions are based
on the functions for an AND-block. We extend these functions by integrating
the selection of the respective paths l. The resulting aggregation functions for
an OR-block component are depicted in (1) to (4).

eo
=
h�H

ph max
l�Lh
(
i�IW l

j�Ji

eijxij) (1)

co
=
h�H

ph
l�Lh

i�IW l

j�Ji

cijxij (2)

ro
=
h�H

ph �
l�Lh

�
i�IW l

j�Ji

rijxij (3)

do
=
h�H

ph min
l�Lh
(min
i�IW l

(
j�Ji

dijxij)) (4)

5.2 Directed Acyclic Graph

In order to account for DAGs, we firstly identify all possible runs of a DAG
component. A run is a (potentially concurrent) execution path in the DAG along
with the probability of the occurrence of this run. Thus, the original DAG can be
rewritten in the form of a XOR-block that combines all possible runs – with their

Optimization of Complex QoS-Aware Service Compositions 459

B2

c

b

d
f

e

(a)

B2 b

c f

B2 b

d f

c

B2 b

d e

e

f

(b)

Fig. 4. (a) R1 with rewritten OR-splits, and (b) runs of R1 combined in a XOR-block

respective aggregated probabilities. An algorithm to compute runs is given in [22]
but only considers DAG components composed of XOR and AND gateways and,
therefore, has to be extended to account for OR gateways. To this end, every
OR-split is transformed into an XOR-split followed by AND-splits according to
the path combinations H as described in Section 5.1. To illustrate this, consider
the DAG component shown in Fig. 4(a), which is the transformed version of
the DAG presented in Fig. 3. Having removed OR-splits, we can now compute
runs with a slightly modified version of the algorithm in [22], so as to replace
OR-joins by AND-joins where required. Fig. 4(b) presents the XOR-block with
the runs computed for R1. At this stage, we can apply our aggregation functions
for XOR-block from Table 1.

As the tasks in each of the identified runs and the execution paths of the
XOR-block respectively, are not arranged sequentially, we again apply our recur-
sive pattern interlacing technique to abstract from the complex N-structure [23]
within the runs. This way, we create one new service jrun for each path l of the
outer XOR-block. To compute the QoS values for each of these new services,
we apply the aggregation functions for an AND-block from Table 1 and specify
erun, crun, rrun, drun in (5)–(8). Please note that we ignore the complexity of the
respective N-structures for the QoS parameters c, r, d by applying the respective
functions for AND-blocks, as each of the services is executed only once. This is
indicated by utilizing La instead of L for the set of paths within the N-structure.
Regarding the execution time e, the path with the highest aggregated execution
time has to be taken into account, as the paths are executed in parallel, cf. [20]
for additional explanations.

erun
= max
l�L
(
i�IW l

j�Ji

eijxij) (5)

crun
=
l�La

i�IW l

j�Ji

cijxij (6)

460 D. Schuller et al.

rrun
= �
l�La

�
i�IW l

j�Ji

rijxij (7)

drun
= min
l�La

(min
i�IW l

(
j�Ji

dijxij)) (8)

Having performed this “abstraction” step, we utilize the aggregation functions
for XOR-block from Table 1 to aggregate the QoS for each path within the XOR-
block according to its respective probability. This is done in (9)–(12) resulting
in the aggregation functions for the DAG considered here (indexed with g).

eg
=
l�L

plerunl
(9)

cg
=
l�L

plcrunl
(10)

rg
=
l�L

plrrunl
(11)

dg
=
l�L

pldrunl
(12)

6 Optimization Problem

As mentioned in the introduction, the SCP describes the problem of selecting and
composing those services (from sets of services equally appropriate to accomplish
certain tasks) which meet cost and QoS constraints best. In this section, we
describe the steps to model the SCP as a linear optimization problem. We,
therefore, initially formulate a non-linear optimization problem in Section 6.1
based on the aggregation functions presented in Section 5. In order to obtain the
linear optimization problem, in Section 6.2, we conduct adaptations of Model 1
from Section 6.1. Finally, in Section 6.3, we additionally describe a heuristic
solution method based on our approach.

6.1 Non-linear Optimization Problem

In order to formulate the non-linear optimization problem in Model 1, we specify
an objective function in (13), which is aimed at minimizing the overall cost of
the selected services, as well as a set of restrictions for the aggregated QoS values
in (14)–(19). We perform an average-case analysis by applying the aggregation
functions described in Section 5. For readability reasons, we utilize variables ea,
ca, ra, etc. in Model 1 to represent these aggregation functions. Regarding repeat
loops, we exchange the QoS parameters e, c, r for the adapted expression e�, c�,
r�, as described in Section 5; i.e., if there is a loop at task i, then the respective
QoS values of the candidate services ji appropriate to realize task i are adjusted.
Otherwise, the respective QoS values are not modified.

Model 1 depicts the optimization problem in a general form to account for
sequences, repeat loops, AND/XOR/OR-blocks, and DAGs that are not inter-
laced. In (14)–(17), the restrictions for the regarded QoS parameters are specified

Optimization of Complex QoS-Aware Service Compositions 461

Model 1. Generic Service Composition Problem
Objective Function

minimize F (x) = cs + ca + cx + co + cg (13)
so that

es + ea + ex + eo + eg � be (14)

cs + ca + cx + co + cg � bc (15)

rs ċ ra ċ rx ċ ro ċ rg � br (16)

min (ds, da, dx, do, dg) � bc (17)

�

j�Ji

xij = 1 ∀i
 I (18)

xij
 �0,1� ∀i
 I,∀j
 Ji (19)

by aggregating the considered aggregation functions and restricting them to be
lower/greater or equal to the respective bounds be, bc, br, bd for the QoS param-
eters. For reasons of clarity, we omit defining es, ea, etc. in Model 1, but it has
to be noted that their respective equations (from Table 1) are also part of the
optimization problem and, therefore, of Model 1. Restriction (18) ensures that
every task is accomplished by exactly one service and restriction (19) indicates
the integrality restriction.

In order to account for the orchestration model shown in Fig. 1, we utilize
the identified orchestration components, cf. Fig. 2 and Fig. 3, and formulate the
respective optimization problem in Model 2. Regarding Fig. 2(a) and Fig. 2(b),
we apply the aggregation functions for an AND-block. As the orchestration com-
ponents R1 and P2 do not belong to the structural class “sequence” (as required
for the application of the AND-block formulae), we abstract from their actual
structure by creating new services jR1 and jP2 and use these services for the
optimization, i.e., we apply the mentioned AND-block aggregation function for
jR1, jP2 in (21)–(24).

Model 2. Optimization Problem for Orchestration Model in Fig. 1
Objective Function

minimize F (x) = cR1 + cP2 (20)

max(eR1, eP2) � be (21)

cR1 + cP2 � bc (22)

rR1 ċ rP2 � br (23)

min(dR1, dP2) � bd (24)

�

j�Ji

xij = 1 ∀i
 I (25)

xij
 �0,1� ∀i
 I,∀j
 Ji (26)

462 D. Schuller et al.

In order to calculate the QoS for jP2, we apply the aggregation functions for
an OR-block (B3) and XOR-block (B4) in (27)–(30) with respect to Fig. 2(c).

eo + ex = eP2 (27)

co + cx = cP2 (28)

ro ċ rx = rP2 (29)

min(do, dx) = dP2 (30)

In order to account for DAG R1 in Fig. 3, we compute the corresponding choice
component as described in Section 5.2 and apply the respective aggregation
functions in (5)–(12) to calculate the QoS for jR1. We thereby utilize e�ij , c�ij ,
and r�ij to account for the repeat loop at B2. In analogy to Model 1, the equations
for the aggregation functions eo, ex, etc. as well as (27)–(30) and (5)–(12) are
part of the optimization problem, but are omitted in Model 2 for clarity reasons.

6.2 Linearization of the Non-linear Optimization Problem

In (16), (17), (23), (24), the decision-variables xij are multiplied and aggregated,
respectively, using the min/max-operator, i.e., the decision-variables are aggre-
gated in a non-linear way. As we aim to solve the SCP by applying ILP, we have
to adapt these non-linear aggregations.

Regarding the max-operator, e.g., in (21), or in the aggregation function for
AND-blocks in Table 1, it has to be noted that if the maximum of a set has
to be lower or equal to an upper bound, each element of this set has to fulfill
this constraint. Thus, we exchange the term with the max-operator for a new
variable, e.g., emax

a , and restrict each element in the max-operator to be lower
or equal to emax

a . To make this clear, we exemplify the linearization of ea, cf.
Table 1, in (14) for Model 1. Here, we exchange ea for emax

a and add restriction
(31) to Model 1. To replace the min-operator, we analogously specify variables
dmin and add appropriate restrictions for each min-operator in (17) to Model 1,
cf. [21].

i�IW l

j�Ji

eijxij � emax
a ∀l � L (31)

To linearize restrictions (16), (23), where the decision-variables are multiplied
with each other, we utilize the approximation in (32) for the aggregation of QoS
parameters r, which is very accurate for parameter values zij that are very close
to 1, such as reliability. We thereby avoid having to multiply the reliabilities of
the alternative services and allow for summing up the respective approximated
reliabilities instead. This way, we avoid the multiplication of decision-variables in
all aggregation functions with respect to the QoS parameter r leading to linear
aggregation functions and restrictions. For further details, we refer to [20].

�
i�I

j�Ji

zijxij � 1 −
i�I

(1 −
j�Ji

zijxij) (32)

Optimization of Complex QoS-Aware Service Compositions 463

�
i�I

j�Ji

zijxij = 1 −
i�I

(1 −
j�Ji

zijxij) + ε (33)

Applying the described linearization steps results in a linear optimization
problem in Models 1 and 2. An optimal solution can be computed by applying
ILP, if a solution exists. But, as we have utilized the approximation in (32)
instead multiplying the reliabilities of the alternative services, we inserted an
error into the optimization problem. The larger the set of tasks I, the higher
is this error. Thus, in order to ensure that our approach actually computes the
optimal solution, we compute the value of this error, labeled with ε, for the
current solution and account for this error by considering its value explicitly in
(33). Afterwards, we recompute the optimal solution taking (33) into account.
If the resulting execution plan does not change, we obviously found the optimal
solution. Otherwise, we recalculate the error and recompute the optimal solution
taking this new error into account. This way, we run the optimization at least
two times, but in the end, we guarantee that the solution is the optimal one.

6.3 Scalability

Applying our approach, computing the optimal solution to the SCP requires
increased computational effort with a growing number of tasks and candidate
services per task. To address scalability issues, we propose to relax the integrality
restrictions (19) and (26), and to compute a solution by applying mixed integer
linear programming (MILP) without considering the error ε. This probably re-
sults in an invalid solution to the SCP with no explicit indication which service
to select for a certain task, as the decision-variables xij may contain values be-
tween 0 and 1 and not exactly 0 or 1. Afterwards, in order to obtain a valid but
probably not optimal solution, i.e., xij � �0,1�, we apply a heuristic selection
strategy. Based on the values of the decision variables xij , we randomly select
services which satisfy the constraints. The performance of this heuristic solution
method compared to the optimal solution is depicted in Fig. 5 and Fig. 6.

Alternatively, we could interpret the xij values as probabilities to select re-
spective services for the accomplishment of a certain task. This way, if a business
process is executed not only once but multiple times (as is assumed to be the
normal case), the business process execution can be seen as realization of a ran-
dom experiment – selecting respective services based on their probabilities –
with minimal average cost satisfying the constraints in average.

7 Evaluation

As a proof of concept, we implemented our approach to the SCP using the linear
programming solver CPLEX2. In order to evaluate the efficiency and the solution
quality of our approach, i.e., the time for computing the execution plan and its

2 http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

464 D. Schuller et al.

cost, we conducted a series of experiments to compare our approach, which
we label with ILP, to the heuristic solution method mentioned in the previous
section and to a BruteForce algorithm, which iterates through all possible service
combinations. Thus, BruteForce computes the optimal solution per definitionem.
Our proposition to interpret the values of the decision variables as execution
probabilities corresponds to the label MILP in Fig. 5 and Fig. 6. The experiments
were performed on an Intel Core 2 Quad processor at 2.66 GHz, 4 GB RAM,
running Microsoft Windows 7.

In order to evaluate the influence of the number m of candidate services ji

per task i, we varied m in Fig. 5(a) and Fig. 6(a) from 2 to 40 with step 2 for the
orchestration model in Fig. 1, which is composed of the orchestration components
sequence, AND-block, XOR-block, OR-block, repeat loop, and DAG. Regarding
the influence of the number n of tasks, we varied n from 2 to 40 with step 2
considering 10 candidate services per task. The resulting orchestration models
thereby only comprise of sequences.

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 5 10 15 20 25 30 35 40C
om

pu
ta

tio
n

tim
e

(in
 m

se
c)

Candidate Services (m)

ILP
MILP

heuristic
BruteForce

(a) Impact of candidate services

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 5 10 15 20 25 30 35 40C
om

pu
ta

tio
n

tim
e

(in
 m

se
c)

Tasks (n)

ILP
MILP

heuristic
BruteForce

(b) Impact of tasks

Fig. 5. Evaluation of computation time

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25 30 35 40

C
os

t

Candidate Services (m)

ILP
MILP

heuristic
BruteForce

(a) Impact of candidate services

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30 35 40

C
os

t

Tasks (n)

ILP
MILP

heuristic
BruteForce

(b) Impact of tasks

Fig. 6. Evaluation of cost

Regarding the efficiency of our ILP approach, we observe that the computation
time increases with the number of tasks and candidate services. However, the
computation time remains lower than 100 msec. For the heuristic approach as
well as for MILP, the computation times increase only slightly. As indicated in
Fig. 5(a) and Fig. 5(b), the computation time using the BruteForce algorithm is

Optimization of Complex QoS-Aware Service Compositions 465

greatly increasing. Regarding Fig. 5(a), BruteForce requires 63,883.92 msec for
m = 4, which is not displayed in Fig. 5(a). For n = 4 and n = 6, which would be
the next plots for BruteForce in Fig. 5(b), the algorithm requires 209.62 msec
and 29,261.48 msec, respectively.

With respect to the solution quality, the ILP approach computes an optimal
solution, which is indicated in Fig. 6(a) and Fig. 6(b) by comparing the cost of
the ILP solution to the cost of BruteForce. As the MILP algorithm does not
create integer values for the decision variables, it must not be compared to ILP
regarding cost.

The evaluation results show that ILP requires more time than the heuristic
method for computing a solution, but the heuristic does not achieve the solu-
tion quality of ILP, i.e., the cost for execution plans computed by the heuristic
are always higher than cost for execution plans computed by ILP. Compared
to the BruteForce algorithm, which also computes the optimal solution, ILP’s
computation time is rather small.

8 Conclusion

The problem of selecting services based on their QoS – the QoS-aware SCP –
is widely recognized in the literature and has been discussed recently by several
authors. In the work at hand, we addressed the SCP for orchestration models
composed of sequences, AND-blocks, XOR-blocks, OR-block, repeat loops, and
DAGs, which has, to date, been insufficiently considered in the literature, cf.
Section 2. We thereby aim to compute an optimal solution to the SCP. In our
future work, we will focus on considering further structural classes of orchestra-
tion components such as loops with multiple entry and/or multiple exit points.
We further aim to consider stochastic QoS values for the SCP.

Acknowledgment. This work is supported in part by E-Finance Lab e. V.,
Frankfurt am Main, Germany (http://www.efinancelab.com).

References

1. Papazoglou, M.P.: Service-oriented computing: Concepts, characteristics and di-
rections. In: Web Information Systems Engineering (WISE), pp. 3–12. IEEE Com-
puter Society (2003)

2. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Service-Oriented Architecture
Best Practices. Prentice Hall PTR, Upper Saddle River (2004)

3. Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: Heuristics for
QoS-aware web service composition. In: International Conference on Web Services
(ICWS), pp. 72–82. IEEE Computer Society (2006)

4. Anselmi, J., Ardagna, D., Cremonesi, P.: A QoS-based selection approach of
autonomic grid services. In: Service-Oriented Computing Performance (SOCP),
pp. 1–8. ACM (2007)

5. Menascé, D.A., Casalicchio, E., Dubey, V.K.: A heuristic approach to optimal
service selection in service oriented architectures. In: Workshop on Software and
Performance (WOSP), pp. 13–24. ACM (2008)

http://www.efinancelab.com

466 D. Schuller et al.

6. Huang, A.F.M., Lan, C.W., Yang, S.J.H.: An optimal QoS-based web service se-
lection scheme. Information Sciences (ISCI) 179(19), 3309–3322 (2009)

7. Strunk, A.: QoS-aware service composition: A survey. In: European Conference on
Web Services (ECOWS), pp. 67–74. IEEE Computer Society (2010)

8. Hillier, F., Lieberman, G.: Introduction to Operations Research, 8th edn. Mc Graw
Hill, Boston (2005)

9. Taha, H.: Operations Research – An Introduction, 8th edn. Pearson Prentice Hall,
London (2007)

10. Jaeger, M.C., Mühl, G., Golze, S.: QoS-Aware Composition of Web Services: An
Evaluation of Selection Algorithms. In: Meersman, R., Tari, Z. (eds.) OTM 2005.
LNCS, vol. 3760, pp. 646–661. Springer, Heidelberg (2005)

11. Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: An approach for QoS-aware
service composition based on genetic algorithms. In: Genetic and Evolutionary
Computation Conference (GECCO), pp. 1069–1075. ACM (2005)

12. Gao, C., Cai, M., Chen, H.: QoS-aware service composition based on tree-coded ge-
netic algorithm. In: International Computer Software and Applications Conference
(COMPSAC), pp. 361–367. IEEE Computer Society (2007)

13. Lécué, F.: Optimizing QoS-Aware Semantic Web Service Composition. In:
Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E.,
Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 375–391. Springer, Hei-
delberg (2009)

14. Mabrouk, N.B., Georgantas, N., Issarny, V.: A semantic end-to-end QoS model for
dynamic service oriented environments. In: Workshop on Principles of Engineering
Service-oriented Systems (PESOS), pp. 34–41. IEEE Computer Society (2009)

15. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:
QoS-aware middleware for web services composition. IEEE Transactions on Soft-
ware Engineering (TSE) 30(5), 311–327 (2004)

16. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE
Transactions on Software Engineering (TSE) 33(6), 369–384 (2007)

17. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases (DPD) 14(1), 5–51 (2003)

18. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data &
Knowledge Engineering (DKE) 68(9), 793–818 (2009)

19. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified Computation and General-
ization of the Refined Process Structure Tree. In: Bravetti, M. (ed.) WS-FM 2010.
LNCS, vol. 6551, pp. 25–41. Springer, Heidelberg (2011)

20. Schuller, D., Eckert, J., Miede, A., Schulte, S., Steinmetz, R.: QoS-aware service
composition for complex workflows. In: International Conference on Internet and
Web Applications and Services (ICIW), pp. 333–338. IEEE Computer Society
(2010)

21. Schuller, D., Miede, A., Eckert, J., Lampe, U., Papageorgiou, A., Steinmetz, R.:
QoS-Based Optimization of Service Compositions for Complex Workflows. In:
Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS,
vol. 6470, pp. 641–648. Springer, Heidelberg (2010)

22. Dumas, M., Garćıa-Bañuelos, L., Polyvyanyy, A., Yang, Y., Zhang, L.: Aggregate
Quality of Service Computation for Composite Services. In: Maglio, P.P., Weske,
M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 213–227.
Springer, Heidelberg (2010)

23. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.: On Structured Workflow
Modelling. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789,
pp. 431–445. Springer, Heidelberg (2000)

Goal-Driven Business Process Derivation�

Aditya K. Ghose1, Nanjangud C. Narendra2, Karthikeyan Ponnalagu2,
Anurag Panda3, and Atul Gohad3

1 University of Wollongong, Wollongong, Australia
{aditya.ghose}@gmail.com

2 IBM Research India, Bangalore, India
{narendra,karthikeyan.ponnalagu}@in.ibm.com

3 IBM India Software Lab, Bangalore, India
{panurag,agohad}@in.ibm.com

Abstract. Solutions to the problem of deriving business processes from goals
are critical in addressing a variety of challenges facing the services and business
process management community, and in particular, the challenge of quickly gen-
erating large numbers of effective process designs (often a bottleneck in industry-
scale deployment of BPM). The problem is similar to the planning problem that
has been extensively studied in the artificial intelligence (AI) community. How-
ever, the direct application of AI planning techniques places an onerous burden
on the analyst, and has proven to be difficult in practice. We propose a practi-
cal yet rigorous (semi-automated) algorithm for business process derivation from
goals. Our approach relies on being able to decompose process goals to a more
refined collection of sub-goals whose ontology is aligned with that of the effects
of available tasks which can be used to construct the business process. Once pro-
cess goals are refined to this level, we are able to generate a process design using
a procedure that leverages our earlier work on semantic effect annotation of pro-
cess designs. We illustrate our ideas throughout this paper with a real-life running
example, and also present a proof-of-concept prototype implementation.

Keywords: business process, goals, tasks, capabilities.

1 Introduction

One of the most crucial (and difficult) tasks in enterprises today is the derivation of
business processes to meet stated business goals. Poor process derivation could result
in wasteful and/or wrong tasks, and would require significant and costly rework to en-
sure that business process executions are able to adhere to their goals. Additionally, the
requirement of business process compliance [1–3] - over and above the basic business
goals - adds further complexity and difficulty.

Traditional approaches towards business process derivation from goals have focused
on modeling this problem as an artificial intelligence (AI) planning problem [4], e.g., ci-
tations such as [5–7]. While such methods undoubtedly produce accurate solutions, they
require specialist knowledge of planning and formal knowledge representation tech-
niques that business analysts typically do not possess.

 Thanks to GR Gangadharan for his feedback.

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 467–476, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

468 A.K. Ghose et al.

Therefore, in this paper, we take a different approach. We assume the following in-
puts: (a) a set of process goals represented as a collection of boolean conditions in
conjunctive normal form (CNF); (b) a capability library of existing tasks that can be
used to satisfy the goals, with each annotated via its effects [8]; (c) a set of domain con-
straints that impose restrictions on how task execution in the business process should
be sequenced. Given these inputs, the salient contribution of our paper is an algorithm
for deriving a business process design from these inputs.

Our algorithm works as follows. First, the goals are successively refined using goal
refinement strategies leveraged from the KAOS methodology [9, 10]. This refinement
continues until there is an ontological match with the effects of the tasks in the capabil-
ity library. Second, using the capability library, tasks are identified for each leaf-level
goal. Third, precedence constraints among the tasks are derived from the given domain
constraints. Finally, the business process design is generated from the goals and prece-
dence constraints. Our approach also does not require the use of preconditions, which
we show can be encoded via domain constraints.

2 Running Example

Our running example is a simplified version of an incident management process. In-
cidents are customer initiated calls based on service issues. The mission of incident
management process is to handle all requests for problem solving and support in a con-
sistent, timely and cost-effective manner. Typically, the process begins with a request
from a client or with a problem statement highlighting the concerns of the client. It
concludes with the client being satisfied with the response and the solution provided to
solve the problem.

The goals and derived sub-goals of this process are depicted in Fig. 1. An AND
link in Fig. 1 specifies that all sub-goals of a goal need to be satisfied for the goal
to be satisfied; an XOR link specifies that the sub-goals are mutually exclusive, and
only one is needed to satisfy the goal. For example, the goal of Incident and Problem
management fulfills the goals Fix Problem, Detect Problem and Verify Problem, viz., a
case of AND relationship. If we consider the goals Isolate Problem or Escalate Problem
they share an XOR Relationship as in any given situation only one of the goals can be
fulfilled and they are mutually exclusive in nature.

Some of the applicable domain constraints for this business process are: whether to
escalate the problem to the next level, and whether a new incident should be linked to a
previous incident in order to enhance reuse of earlier solutions.

3 Background

A business process is a sequence of tasks, with each task producing an effect. The
accumulated effects of all task executions is the overall effect of the business process.
The effect is the result of an activity executed by a cause or agent. Effects can be viewed
as both: normative - as they state required outcomes (i.e., goals); and descriptive in that
they describe the normal, and predicted, subset of all possible outcomes. We formally
represent effect annotations using first-order logic. For simplicity, our business process

Goal-Driven Business Process Derivation 469

Fig. 1. Goals & Sub-Goals

does not contain loops; they can be incorporated into our business process model by
abstracting them into single tasks.

We define a process for pair-wise effect accumulation [8, 11], which, given an or-
dered pair of tasks with effect annotations, determines the cumulative effect after both
tasks have been executed in contiguous sequence. The procedure serves as an easily
understandable yet rigorous methodology for analysts to follow. We assume that the ef-
fect annotations have been represented in conjunctive normal form (CNF) [12]. Simple
techniques (e.g., [12]) exist for translating arbitrary sentences into CNF.

Let < ti, tj > be the ordered pair of tasks, and let ei and ej be the corresponding
pair of effect annotations. Let ei = {ci1, ci2, ..., cim} and ej = {cj1, cj2, ..., cjn} (we
can view CNF sentences as sets of clauses, without loss of generality). If ei ∪ ej is
consistent, then the resulting cumulative effect is ei ∪ ej . Else, we define e′i = {ck|ck ∈
ei and {ck} ∪ ej is consistent} and the resulting cumulative effect to be e′i ∪ ej . In
other words, the cumulative effect of the two tasks consists of the effects of the second
task plus as many of the effects of the first task as can be consistently included. We
remove those clauses in the effect annotation of the first task that contradict the effects
of the second task. The remaining clauses are undone, i.e., these effects are overridden
by the second task. In the following, we shall use acc(e1, e2) to denote the result of
pair-wise effect accumulation of two contiguous tasks t1 and t2 with effects e1 and e2.

In addition to the effect annotation of each task, we annotate each task t with a cumu-
lative effect Et. Et is defined as a set {es1, es2, ..., esp} of alternative effect scenarios.
Alternative effect scenarios are introduced by OR-joins or XOR-joins, as we shall see
below. Cumulative effect annotation involves a left-to-right pass through a sequence of
tasks. Tasks which are not connected to any preceding task via a control flow link are
annotated with the cumulative effect {e} where e is the immediate effect of the task

470 A.K. Ghose et al.

in question. We accumulate effects through a left-to-right pass of a sequence, applying
the pair-wise effect accumulation procedure on contiguous pairs of tasks. The process
continues without modification over splits. Joins require special consideration. In the
following, we describe the procedure to be followed in the case of 2-way joins only, for
brevity. The procedure generalizes in a straightforward manner for n-way joins.

AND-joins: Let t1 and t2 be the two tasks immediately preceding an AND-join.
Let their cumulative effect annotations be E1 = {ec11, ec12, ..., ec1m} and E2 =
{ec21, ec22, ..., ec2n} respectively (where ecsc denotes an effect clause within an ef-
fect scenario). Let e be the immediate effect annotation, and E the cumulative ef-
fect annotation of a task t immediately following the AND-join. We define E =
{acc(ec1i, e)∪acc(ec2j , e)|ec1i ∈ E1andec2j ∈ E2}. Note that we do not consider the
possibility of a pair of effect scenarios ec1i and ec2j being inconsistent, since this would
only happen in the case of intrinsically and obviously erroneously constructed process
models. The result of effect accumulation in the setting described here is denoted by
ANDacc(E1, E2, e).

XOR-joins: Let t1 and t2 be the two tasks immediately preceding an XOR-join.
Let their cumulative effect annotations be E1 = {ec11, ec12, ..., ec1m} and E2 =
{ec21, ec22, ..., ec2n} respectively. Let e be the immediate effect annotation, and E the
cumulative effect annotation of a task t immediately following the XOR-join. We de-
fine E = {acc(eci, e)|eci ∈ E1oreci ∈ E2}. The result of effect accumulation in the
setting described here is denoted by XORacc(E1, E2, e).

OR-joins: Let t1 and t2 be the two tasks immediately preceding an OR-join. Let
their cumulative effect annotations be E1 = {ec11, ec12, ..., ec1m} and E2 =
{ec21, ec22, ..., ec2n} respectively. Let e be the immediate effect annotation, and E the
cumulative effect annotation of a task t immediately following the OR-join. The result
of effect accumulation in the setting described here is denoted by ORacc(E1, E2, e) =
ANDacc(E1, E2, e) ∧ XORacc(E1, E2, e). Henceforth in our paper, for simplicity,
we consider that OR-joins can be represented via XOR-joins themselves.

Pair-wise effect accumulation as described above will form the basis of our busi-
ness process derivation algorithm, and will enable our algorithm to verify whether the
derived business process design does meet the stated goals.

4 Goal Refinement and Constraint Specification

4.1 Goal Refinement

We define the goals of a business process as a combinationG1∧G2∧. . .∧Gn of boolean
conditions in CNF, all of which need to be satisfied at the end of the process execution.
For example, the goal ’Link to Existing problem’ of our running example in Fig. 1 can
be represented as follows: Goal: Achieve[LinkIncidentToProblemTicket] (∀ i: incident,
pt: problem ticket, p: problem, it: incident ticket) IsCausedBy(p,i) ⇒ link(it, pt).

Each boolean condition Gi can itself be broken down into a (conjunctive as well
as disjunctive) combination of clauses, each of which is a sub-goal of Gi. The case of
conjunction is best illustrated by the goal ’Incident and Problem Management’ as it is

Goal-Driven Business Process Derivation 471

a combination of sub goals ’Fix Problem’, ’Diagnose Problem’ and ’Verify Problem’
and we expect all these sub goals to be realized in conjunction. Similarly the disjunctive
case is illustrated again by the goal ’Diagnose Problem’ as realizing this goal can satisfy
one of the goals ’Link to existing problem’ or ’Enrich Problem’.

Our goal refinement procedure is based on the KAOS methodology [9]. For a goal
Gi, let it be expressed as Gi1 ∧ Gi2 . . . ∧ Gim, where each sub-goal Gij is of the
form Gij1 ∨ Gij2 . . . ∨ Gijl. That is, each clause Gij is a purely disjunctive clause. In
accordance with [9], we say that the sub-goals refine Gi if the following hold:

1. Gi1 ∧ Gi2 . . . ∧ Gim � Gi (entailment)
2. ∀i : ∧j �=iGij �� Gi (minimality)
3. Gi1 ∧ Gi2 . . . ∧ Gim �� false (consistency)

That is, the set of sub-goals for a goal will achieve the goal (entailment); it will be the
smallest set of sub-goals to achieve the goal (minimality); and it will never be incorrect
(consistency).

In its turn, each disjunctive clause can itself be refined into a collection of one or
more conjunctive clauses, each of which could themselves possess a collection of two
or more disjunctive clauses, and so on. Indeed, the presence of a disjunctive clause
signifies a set of mutually exclusive options by which the particular sub-goal is to be
satisfied. Later in Section 5, we will show how these clauses can be used to design
XOR-splits and joins.

Our goal refinement procedure, therefore, refines the overall goals of a business pro-
cess alternatively using conjunctive and disjunctive clauses, until all sub-goals have
been completely specified to the user’s satisfaction. The goal model that we presented
in Fig. 1, is the outcome of such an exercise.

We define a singleton clause in a (refined) goal specification as a clause that is a sin-
gle literal. In contrast, a non-singleton clause is a disjunctive combination L1∨L2 . . .∨
Ln of literals. The relevance of this distinction will become clear in Section 5.1, when
we present our business process derivation algorithm.

4.2 Domain Constraint Specification

As we have seen, a goal is merely a collection of boolean conditions, without any spe-
cific ordering on how they have to be fulfilled in the business process. In case the analyst
desires to impose an ordering, he/she can specify them in the form of what we call do-
main constraints, which are restrictions on the way in which the goal conditions are
to be achieved. Business compliance constraints [1–3] can also be specified using our
domain constraint formalism.

Formally, we define a domain constraint as a tuple < Ci, Cj , rel >; where Ci and Cj

are boolean conditions; and rel is one of the following relations - IMM standing for
immediately, EV E standing for eventually. This is to be interpreted as: the condition
Ci has to be realized in the business process before the condition Cj can be realized.
The operator rel qualifies this constraint by specifying how soon Cj should be realized
after Ci. Please note that our domain constraints are at a higher level of abstraction
than task precedence constraints expressible in languages such as concurrent transaction
logic (see [7] and the citations contained therein); indeed, later in Section 5.1 we will

472 A.K. Ghose et al.

show how these constraints are used to create precedence constraints among the derived
business process steps.

From the above formulation of domain constraints, the following proposition can be
stated.

Proposition 1. Any precondition can be represented via a domain constraint.

Proof: If a task Ti has no predecessors, then it is the starting task of a busi-
ness process, and its precondition can be represented via the domain constraint <
precondition(Ti), effect(Ti), IMM >. If Ti has at least one predecessor, then its
precondition can be represented as a boolean condition C1 ∧C2 ∧ . . .∧Cn, where each
Ck is an effect of a predecessor. If the effect of Ti is effect(Ti), then the precondition
of Ti can be represented via the set of domain constraints {< Ck, effect(Ti), IMM >
}, 0 ≤ k ≤ n. QED

In our running example, considering the goal ’Try Potential Fixes’, we can construct the
domain constraint as: < IsProblemIsolated(it) ∧ AreKnownFixesAvaliable(it),
TryPotentialF ixes(it), EV E >, where it denotes the incident ticket,
IsProblemIsolated(it) and AreKnownFixesAvailable(it) as boolean condi-
tions share the relation EV E with TryPotentialF ixes(it), again another boolean
condition. Similarly the condition ’CanCreateNewProblem’ has to be realized after the
condition ’CannotEscalate’ in realizing the goal ’CreateNewProblem’ and they share
the relation IMM .

5 Process Derivation from Goals

For deriving a business process design from goals and constraints, we assume the fol-
lowing inputs: a set of effect-annotated tasks in a capability library; a set of goals and
sub-goals, refined until the level of an ontological match with the effects of the tasks in
the capability library; and a set of domain constraints.

5.1 Process Derivation Algorithm

Our process derivation algorithm takes as input the refined (i.e., ontologically match-
ing with effects) goals G & domain constraints DC, and effect-annotated tasks in the
capability library, and produces a set of effect-annotated process steps PS and a set of
precedence constraints PREC among the process steps. A precedence constraint among

two process tasks Ti
rel→ Tj specifies the order in which each task should execute vis-a-

vis the other, and where rel ∈ {IMM, EV E}, with IMM standing for immediately
and EV E standing for eventually. The former type of precedence specifies that Tj

must execute immediately after Ti has executed, whereas the latter specifies that Tj can
executed any time after Ti has executed.

Our algorithm consists of the following steps. First, it distinguishes between single-
ton and non-singleton clauses; for each singleton clause, it identifies the appropriate
task in the capability library whose effect entails the clause, and adds that task to the set
of process steps PS. For each non-singleton clause, however, the algorithm determines a
collection of tasks whose collective effects entail the clause. It then adds the tasks to PS,

Goal-Driven Business Process Derivation 473

along with an appropriate XOR gateway. Second, the algorithm generates precedence
constraints from the domain constraints. Third, the algorithm evaluates the generated
precedence constraints for inconsistencies and alerts the user in case it discovers any, so
that the user can resolve the inconsistencies. Finally, the algorithm generates a business
process design from the (user-resolved) precedence constraints.

Precedence Constraint Generation: For now, we consider the sub-case when both Ci

and Cj can be fulfilled by single tasks; the sub-case when either Ci or Cj is fulfilled by
a disjunctive combination of tasks, is dealt with under XOR gateways.

Hence our algorithm for generating precedence constraints from the domain con-
straint < Ci, Cj , rel >, with each condition represented by a single task, works as
follows. First, each condition Ci and Cj is analyzed, and the appropriate process tasks
that fulfil the condition, are identified. Second, for each pair of tasks Ti, Tj , with Ti

(resp. Tj) pertaining to Ci (resp. Cj), the precedence constraint Ti
rel→ Tj is generated,

where rel is represented by EV E or IMM .

XOR Gateway Generation: We represent a disjunctive clause via an XOR gateway. In
addition, we also need to accommodate domain constraints of the form < Ci, Cj , rel >,
where either Ci or Cj is a disjunctive clause, and where one of either Ci or Cj is a
non-singleton clause. This is needed in order to generate the appropriate precedence
constraints from these domain constraints. Hence if such a domain constraint exists, we
have three sub-cases:

1. Only Ci is a disjunctive clause: Ci would be represented via an XOR gateway Ti1 ∨
Ti2 . . . Tim, by tasks Ti1 . . . Tim that collectively fulfill condition Ci; and Cj by the
single task Tj that fulfills condition Cj . For this sub-case, we create a “dummy”
XOR-join node Ti,m+1, whose effect is Ci; and we create the following precedence

constraints: Tik
IMM→ Ti,m+1, k = 1, . . . , m, and Ti,m+1

rel→ Tj .
2. Only Cj is a disjunctive clause: this is the reverse of the above sub-case; if Cj is

represented via the XOR gateway Tj1 ∨Tj2 . . . Tjm, and Ci by the task Ti, then the

precedence constraints, Ti
rel→ Tjk, k = 1, . . . , m, are generated.

3. Both Ci and Cj are disjunctive clauses: Let Ci be represented by an XOR gateway
with pi paths, and Cj be represented by an XOR gateway with pj paths. Then, as
in the first sub-case above, a “dummy” XOR-join node Ti,m+1, is first generated,
whose effect is Ci. Next, for each node Tik, 0 ≤ k ≤ j on the XOR gateway

whose effect is Cj , the following precedence constraint is generated: Ti,m+1
rel→ Tik,

0 ≤ k ≤ j.

For instance, our running example shows different types of problems based on their
escalation support; escalation/Non-escalation cases would therefore differ. Hence there
are 4 possible branches in the above scenario just based on the support for escalation at
a given level. The user can later tweak the XOR gateway by pruning the variables, and
thereby, the number of branches. However, that is beyond the scope of this algorithm.

Inconsistency Resolution & Business Process Design Generation: Once the prece-
dence constraints are generated, inconsistencies could arise. For any pair of tasks Ti

and Tj , we define an inconsistency as the existence of two precedence constraints that

474 A.K. Ghose et al.

are mutually conflicting. That is, if there are two precedence constraints Ti
rel→ Tj and

Tj
rel→ Ti, where rel ∈ {IMM, EV E}, then this is an inconsistency. For each prece-

dence constraint Ti
rel→ Tj , our inconsistency detection procedure checks whether there

exists a (direct or transitively obtained) constraint Tj
rel→ Ti. Inconsistencies are flagged

to the user, who will then need to resolve them manually. (We will be investigating
automated inconsistency resolution for future work.)

The actual generation of the business process design, assumes that all inconsisten-
cies have been resolved by the user. It basically consists of adding edges between tasks
Ti and Tj based on the derived precedence constraints, whether ti is supposed to im-
mediately or eventually precede Tj . For the former case, the edge between two tasks
is added right away. For the latter, on the other hand, we first check whether a chain
of immediately-type constraints already exists on a path between the tasks. If so, then
the last task on this chain is made the predecessor of Tj . If not, then Ti itself is made
Tj’s predecessor. While doing so, the algorithm also uses the effect accumulation pro-
cedure described in Section 3 to verify the compatibility of the business process under
generation with the refined goals.

6 Prototype Implementation

Our prototype implementation is built as a plugin on IBM’s Rational Software Architect
(RSA) tool, and is depicted in Fig. 2. It was tested on a PC with 3.2 GHz processor
speed and 3 GB of RAM. For our running example, once the user recorded the goals
and domain constraints, the business process was generated within one minute.

The plugin provides the business analyst with various views that help define the in-
puts to business process derivation. The Goal Modeling view provides options to define
the goals and sub-goals. Expected effect outcomes can be added as annotations for the
respective goals and sub-goals that are represented in the AND/XOR logic. The domain
constraints are defined in the Constraint Modeling view, which also helps generate the
precedence constraints. The Capability Modeling view helps add various capabilities
that can be used in order to fulfill the goals. Based on the capability availability and
matching of capability effects with that of the specific goal/sub-goal in question, the
goal-capability matching is arrived at. This helps in derivation of the incident manage-
ment business process in BPMN format, which is also depicted in Fig. 2.

7 Related Work

Planning-based Business Process Derivation: The work reported in this paper is in-
spired in part by planning techniques from AI [4], in particular, partial-order planning.
However, as we have already shown, such techniques require non-trivial adjustments in
order to make them usable for business process derivation. Our business process deriva-
tion technique is also inspired in part by our earlier work [13], where we proposed a
technique to map user’s process goals into scenario descriptions described in the form
of sequence diagrams. Appropriate composition of the sequence diagrams yields the
final business process design.

Goal-Driven Business Process Derivation 475

Fig. 2. Prototype Implementation

The citations [14–16] describe techniques for semantic annoations of business pro-
cesses using mining techniques, with applications such as adaptation and token analysis
to identify components in business processes. While undoubtedly powerful, these tech-
niques lack the simplicity of our semantic annotation approach. However, we will be
investigating the adaptation application from [15] for future work.

Goal Modeling and Decomposition: The primary goal decomposition methodology
that we have leveraged in this paper is KAOS [9], which provides a language and
method for goal-driven requirements elaboration.

Business Process Compliance: Business process compliance management [2, 3] in-
volves several aspects, of which the following are relevant for this paper, viz., verifying
process compliance against compliance requirements, and business process derivation
to ensure adherence to compliance requirements. For the former aspect, various frame-
works [2, 11] have been developed to manage and check the violation of compliance
policies by a given business process at design time, in order to minimize the cost of non-
compliance. The citation [3] presents a semi-automated approach to synthesize business
process templates out of compliance requirements expressed in linear temporal logic;
however, that paper only focuses on compliance requirements, whereas our approach
also considers functional requirements expressed as goals.

476 A.K. Ghose et al.

8 Future Work

Future work will involve testing our approach on larger case studies, and incorporating
automated inconsistency resolution, process adaptation and incremental redesign.

References

1. Governatori, G., Rotolo, A.: A conceptually rich model of business process compliance. In:
APCCM, pp. 3–12 (2010)

2. Governatori, G., Milosevic, Z., Sadiq, S.W.: Compliance checking between business pro-
cesses and business contracts. In: EDOC, pp. 221–232 (2006)

3. Awad, A., Goré, R., Thomson, J., Weidlich, M.: An Iterative Approach for Business Process
Template Synthesis from Compliance Rules. In: Mouratidis, H., Rolland, C. (eds.) CAiSE
2011. LNCS, vol. 6741, pp. 406–421. Springer, Heidelberg (2011)

4. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall
(2009)

5. Henneberger, M., Heinrich, B., Lautenbacher, F., Bauer, B.: Semantic-based planning of pro-
cess models. In: Multikonferenz Wirtschaftsinformatik (2008)

6. Heinrich, B., Bolsinger, M., Bewernik, M.: Automated planning of process models: The
construction of exclusive choices. In: ICIS, paper 184 (2009)

7. Mukherjee, S., Davulcu, H., Kifer, M., Senkul, P., Yang, G.: Logic based approaches to
workflow modeling and verification (2003)

8. Hinge, K., Ghose, A.K., Koliadis, G.: Process seer: A tool for semantic effect annotation of
business process models. In: EDOC, pp. 54–63 (2009)

9. Darimont, R., van Lamsweerde, A.: Formal refinement patterns for goal-driven requirements
elaboration. SIGSOFT Software Engineering Notes 21, 179–190 (1996)

10. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci.
Comput. Program. 20(1-2), 3–50 (1993)

11. Ghose, A., Koliadis, G.: Auditing Business Process Compliance. In: Krämer, B.J., Lin, K.-
J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 169–180. Springer, Heidelberg
(2007)

12. Carbonell, J., et al.: Context-based machine translation. In: Proceedings of the 7th Confer-
ence of the Association for Machine Translation in the Americas, pp. 19–28 (2006)

13. Narendra, N.: A goal-based and risk-based approach to creating adaptive workflow pro-
cesses. In: AAAI Spring Symposium on Bringing Knowledge to Business Processes (2000)

14. Lautenbacher, F., Bauer, B., Forg, S.: Process mining for semantic business process mod-
eling. In: Enterprise Distributed Object Computing Conference Workshops, EDOCW 2009,
September 13, pp. 45–53 (2009)

15. Lautenbacher, F., Eisenbarth, T., Bauer, B.: Process model adaptation using seman-
tic technologies. In: Enterprise Distributed Object Computing Conference Workshops,
EDOCW 2009, September 13, pp. 301–309 (2009)

16. Gotz, M., Roser, S., Lautenbacher, F., Bauer, B.: Token analysis of graph-oriented
process models. In: Enterprise Distributed Object Computing Conference Workshops,
EDOCW 2009, September 13, pp. 15 –24 (2009)

Defining and Analysing Resource Assignments

in Business Processes with RAL�

Cristina Cabanillas, Manuel Resinas, and Antonio Ruiz-Cortés

Universidad de Sevilla, Spain
{cristinacabanillas,resinas,aruiz}@us.es

Abstract. Business process (BP) modelling notations tend to stray
their attention from (human) resource management, unlike other aspects
such as control flow or even data flow. They not only offer little intu-
itive languages to assign resources to BP activities, but neither link BPs
with the structure of the organization where they are used, so BP mod-
els can easily contain errors such as the assignment of resources that do
not belong to the organizational model. In this paper we address this
problem and define RAL (Resource Assignment Language), a domain-
specific language explicitly developed to assign resources to the activities
of a BP model. RAL makes BPs aware of organizational structures. Be-
sides, RAL semantics is based on an OWL-DL ontology, which enables
the automatic analysis of resource assignment expressions, thus allow-
ing the extraction of information from the resource assignments, and the
detection of inconsistencies and assignment conflicts.

Keywords: resource-aware business process model, RAL, workflow
resource pattern, organizational model, OWL, description logics.

1 Introduction

In this paper we face human-resource1 management in BP models. Specifically,
we deal with resource assignment to the activities of a BP, aiming at easing
and improving the way resources can be associated with BP activities. Unfortu-
nately, unlike other aspects such as control flow, resources have received much
less attention. However, the participation of people in BPs is of utmost im-
portance, both to supervise the execution of automatic activities and to carry
out software-aided and/or manual activities, so they should be considered when
designing and modelling the BPs used in an organization.

Furthermore, the alignment of the BPs of an organization with its organiza-
tional structure enables the automation of work in different directions. On the
one hand, it makes it possible to infer interesting information, such as: (i) the
potential performers of each BP activity, i.e., the set of people that fulfill the

 Partially supported by the European Commission (FEDER), Spanish Government

under project SETI (TIN2009-07366); and projects THEOS (TIC-5906) and ISABEL
(P07-TIC-2533) funded by the Andalusian Local Government.

1 From now on we will use the term resource to refer to human resources.

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 477–486, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

478 C. Cabanillas, M. Resinas, and A. Ruiz-Cortés

Fig. 1. Excerpt of the organizational metamodel described by Russell et al. [1]

resource-related constraints imposed in the model; or (ii) the potential set of
activities each person of an organization can be assigned at runtime. This kind
of information may be beneficial for an organization in several ways. For in-
stance, in the previous case: the former benefits the person in charge of resource
allocation, and the latter provides an employee-oriented vision, informing about
the possible workload of each employee and, hence, allowing reacting in time
to avoid having people overburderned with work. On the other hand, it enables
the detection of inconsistencies between the resource assignments associated to
activities of a BP and the structure of the organization where it is used, e.g.
non-existent roles or persons.

The main contribution of this paper is the description and formalization of RAL
(Resource Assignment Language), a DSL (Domain Specific Language) to express
resource assignments in the activities of a BP in terms of the concepts used in the
organizational metamodel proposed by Russell et al. [1]. This formal description
is provided by means of a semantic mapping between RAL and description logics
(DLs), which is a logical formalism widely used by the semantic web community.
A semantic mapping is a way to provide semantics to a model, RAL, by mapping
its concepts into a target domain whose semantics has been formally defined [2].
An important advantage of our approach is that one can capitalize on existing
efficient DLs algorithms for inferring the aforementioned interesting information
from RAL expressions, instead of having to invent a corresponding ad-hoc algo-
rithm for each problem. Furthermore, a prototype has been developed to show the
use of RAL and the benefits of its DL-based semantics.

After introducing RAL is Section 2, we describe the semantic mapping in Sec-
tion 3. Then, we detail how we can leverage DLs to analyse resource assignments
in Section 4. Related work can be found in Section 5, and a set of conclusions
and future work are discussed in Section 6.

2 Introduction to RAL. Definition and Application

RAL is a DSL that allows the assignment of resources to BP activities in terms
of the concepts used in organizational models such as persons, roles, positions,
capabilities, or organizational units. Specifically, the concepts used in RAL (cf.
Figure 1) are a subset of those included in the organizational metamodel de-
scribed by Russell et al. [1]. This metamodel was used by the authors as basis to

Defining and Analysing Resource Assignments with RAL 479

Language 1. RAL’s EBNF definition
Express ion := IS PersonConstra int

| HAS GroupResourceType GroupResourceConstraint
| SHARES Amount GroupResourceType WITH PersonConstra int
| HAS CAPABILITY Capab i l i t yCons t ra in t
| IS ASSIGNMENT IN ACTIVITY activityName
| Re la t i on sh ipExpre ss i on
| CompoundExpression

Re l a t i on sh ipExpre s s i on := ReportExpression
| DelegateExpress ion

ReportExpression := REPORTS TO Pos i t i onCons t r a i n t Depth
| IS Depth REPORTED BY Pos i t i onCons t ra i n t

De legateExpress ion := CAN DELEGATE WORK TO Pos i t i onCons t r a i n t
| CAN HAVE WORK DELEGATED BY Pos i t i onCons t ra i n t

CompoundExpression := NOT (Express ion)
| (Express ion) OR (Express ion)
| (Express ion) AND (Express ion)
| (Express ion) AND IF POSSIBLE (Express ion)

PersonConstra int := personName
| PERSON IN DATA FIELD dataObject . f ie ldName
| PERSON WHO DID ACTIVITY activityName

GroupResourceConstraint := groupResourceName
| IN DATA FIELD dataObject . f ie ldName

Capab i l i t yCons t ra in t := capabi l i tyName
| Capab i l i t yRe s t r i c t i on

Pos i t i onCons t r a in t := POSITION namePosit ion
| POSITION OF PersonConstra int

Amount := SOME GroupResourceType := POSITION
| ALL | ROLE

| UNIT
Depth := DIRECTLY

| λ

define a set of workflow resource patterns. These patterns have already been used
by other authors as framework to extend BPMN regarding resource management
[3], so we believe it is reasonable to use the same metamodel.

Building on this metamodel, RAL allows formulating expressions that de-
fine who can perform an activity in the BP. The concrete syntax of RAL is
specified in Language 1, whereas its abstract representation can be found at
http://www.isa.us.es/cristal. In short, RAL allows expressing that an ac-
tivity has to be performed by, e.g.: a) a concrete person, the person who did
another activity, or the person indicated in a data field; b) someone with a spe-
cific group resource2; c) a person that has a group resource in common with
other person; d) someone with certain capability; and e) someone that reports
to or can delegate work to a given position. The language also allows stating that
an activity has the same RAL expression as another activity (no matter which

2 We use the term group resource when referring to concepts that represent groups of
persons, i.e., positions, roles and organizational units.

http://www.isa.us.es/cristal

480 C. Cabanillas, M. Resinas, and A. Ruiz-Cortés

Project Coordinator

Manuel Resinas

Project THEOS

Account Delegate Responsible for Work
Package

Administrat ive
AssistantSenior Technician

PhDStudent

Ana GalánBeatriz Bernárdez Sergio Segura

Adela del RíoCrist ina Cabanillas

Antonio Ruiz

Beatriz Bernárdez

Position Role

Project Coordinator

Responsible
Account Administrator
Resource Manager
Doctoral Thesis Advisor
Researcher

Responsible for Work Package
Responsible
Researcher
Doctoral Thesis Advisor

Position Role
PhD Student Research Assistant
Senior Technician Responsible
Account Delegate Account Administrator
Administrative Assistant Clerk

Fig. 2. Excerpt of ISA group’s organizational model from a project perspective

it is), and formulating negative and compound assignments with conjunctions
NOT, AND, OR and AND IF POSSIBLE. The last one helps indicate preferences. For
a more detailed description, we refer the reader to [4].

Figure 2 depicts a possible instantiation of the organizational metamodel
shown in Figure 1. This instance is an excerpt of the ISA Research Group of
the University of Seville from a research project perspective. There are six posi-
tions that are members of one organizational unit (Project THEOS), and seven
persons occupying these positions. Each position of the model can delegate work
to any inferior position and reports work to its immediately upper position.
Relationship participatesIn is summarized in a table. A table with relationship
hasCapability is also required, but it is omitted here for space limitations.

Based on that organizational model, one can use RAL to assign resources to
the activities of a BP. For instance, Figure 3 shows resource assignments for
some activities of the example BP, along with the corresponding DL queries,
which will be explained in Section 3.

3 RAL Semantics

In this section, we provide a precise definition of RAL by means of a semantic
mapping into DLs. Knowledge representation systems based on DLs consist of
two components: TBox and ABox. The TBox describes terminology, i.e., the
ontology in the form of concepts and roles (relations between the concepts)
definitions and their relationships, while the ABox contains assertions about
individuals (instances of concepts) using the terms from the ontology (see [5]
for more details about DLs and their syntax). We have chosen DLs because of

Defining and Analysing Resource Assignments with RAL 481

Send Travel
Authorizat ion

Register
at Conference

Travel
Authorizat ion

- Applicant:

Make
Reservat ions

Travel
Authorizat ion

Flight

Hotel

Submit Paper Fill Travel
Authorizat ion

Sign Travel
Authorizat ion

Travel
Authorizat ion

Submit Paper: Only Researchers and Research Assistants are authorized to execute
this task, and they must have a degree.
RAL: ((HAS ROLE Researcher) OR (HAS ROLE ResearchAssistant)) AND (HAS

CAPABILITY Degree)

DL: AssignmentSubmitPaper ≡ ((∃occupies.(∃participatesIn.{Researcher})) �
(∃occupies.(∃participatesIn.{ResearchAssistant})))� (∃hasCapability.{Degree})

Sign Travel Authorization: This task must be undertaken by someone that is re-
ported by (the position of) the person that undertook task Submit Paper.
RAL: (IS REPORTED BY POSITION OF PERSON WHO DID ACTIVITY SubmitPaper)

DL: AssignmentSignTravelAuth ≡ ∃occupies.(∃isExtendedReportedBy.
(∃isOccupiedBy.{AssignmentSubmit}))

Make Reservations: Antonio cannot execute this task but the performer must either
have some role in common with Antonio.
RAL: (NOT (IS Antonio)) AND (SHARES SOME ROLE WITH Antonio)

DL: AssignmentMakeReservations ≡ (¬{Antonio}) � (∃occupies.(∃participatesIn.
(∃developedIn.(∃isOccupiedBy.{Antonio}))))

Fig. 3. Resource assignments to activities of a process for Conference Travel

two reasons. First, DLs provide a very natural way to describe an organizational
structure. Second, there is a plethora of DLs reasoners that can be used to
automatically analyse RAL expressions efficiently and, hence, to automatically
infer information from them.

Note that, since RAL builds on an organizational metamodel, it is necessary
to provide a mapping not only to RAL expressions but also to the organizational
metamodel and its instances. Next, we detail all those mappings. A full version
can be found at http://www.isa.us.es/cristal, in which we use the W3C
recommendation OWL 2 [6] to define the ontologies3.

3.1 Mapping the Organizational Structure into DLs

Mapping the organizational metamodel into an ontology: It is quite straight-
forward since the elements used in both domains are quite similar. Each class
of the metamodel is mapped to one concept and the hierarchies are mapped
using the subclassOf relationship. The remaining relationships (i.e., hasCapabil-
ity, occupies, canDelegateWorkTo, reportsTo, participatesIn and isMemberOf)
3 Sometimes OWL terms classes, properties and objects will be used to refer to DL

terms concepts, roles and individuals, respectively.

http://www.isa.us.es/cristal

482 C. Cabanillas, M. Resinas, and A. Ruiz-Cortés

are mapped into properties together with their corresponding cardinality re-
strictions. In addition, properties isOccupiedBy, isReportedBy, developedIn and
formedBy have been defined as the inverse properties of occupies, reportsTo,
participatesIn and isMemberOf, respectively, to make it easier the formulation
of some RAL expressions. Properties hasDegree and hasExperience have been
added to represent the existing specific capabilities. Furthermore, in order to be
able to transitively refer to upper positions in the organizational model, a tran-
sitive super-property extendedReportsTo has been added. For the same reason,
property extendedCanDelegateWorkTo has been added as well.

Instantiating the Organizational Ontology: The structure of a concrete organi-
zation, such as that in Figure 2, is mapped as individual assertions in the ABox
(e.g., Role(Researcher)) and the relationships between the individuals are stated
as property assertions (e.g., participatesIn(ProjectCoordinator, Researcher)).
Besides, an additional individual assertion has been made for each individual
to state that each individual has exactly the properties stated and no more
(e.g. Position Project Coordinator has exactly five participatesIn relationships:
(= 5 participatesIn)(ProjectCoordinator)). This is a technical detail that is
necessary to be able to express the negation included in RAL because of the open
world assumption of DLs. The open world assumption means that DLs assume
that the knowledge may be incomplete and, hence, the absence of a property as-
sertion stating that participatesIn(ProjectCoordinator, Clerk) does not mean
that a Project Coordinator does not have role Clerk.

3.2 Mapping RAL Expressions into DLs

Each RAL expression can be seen as a definition of a subset of all the people
in the organization who can do an activity, e.g. a RAL expression stating that
certain activity can only be done by someone occupying position Project Co-
ordinator reduces the set of potential owners to the persons that occupy that
position. In terms of DL, a RAL expression can be seen as a new concept that
characterises the individuals that belongs to it amongst all the individuals of
type Person that there are in the ABox. Therefore, the concept that defines the
resource assignment of a certain BP activity a whose RAL expression is expra is
defined as: AssignmentA ≡ map(expra), where map(expr) is a mapping from
a RAL expresion into DL as summarised in Table 1. Figure 3 shows the DL
queries for some activities of the BP model.

PersonConstraints provide ways to refer to a concrete person. However, in the
last two cases the concrete person is unknown until runtime, in which case an
approximation is made. The approximation is either all persons in the organi-
zation, in case the concrete person is defined in a data field, because we cannot
figure out who might be; or all the persons who can do a certain activity in the
BP, in case the concrete person is defined as the person who did that activity.

IS PersonConstraint is defined as the PersonConstraint mapping it uses.

Defining and Analysing Resource Assignments with RAL 483

Table 1. Mapping of some RAL expressions into DLs concepts

PersonConstraints (pConst) DL Mapping (mapp(pConst))

personName {personName}
PERSON IN DATA FIELD d . f i e l d Person
PERSON WHO DID ACTIVITY name AssignmentActivityName

RAL expression (expr) DL Mapping (map(expr))

IS pConst mapp(pConst)

HAS POSITION posName ∃occupies.{posName}
HAS ROLE roleName ∃occupies.(∃participatesIn.{roleName})
HAS UNIT unitName ∃occupies.(∃isMemberOf.{unitName})
HAS GroupResourceType

IN DATA FIELD d . f i e l d
Person

SHARES SOME POSIT WITH pConst ∃occupies.(∃isOccupiedBy.mapp(pConst))
SHARES SOME ROLE WITH pConst ∃occupies.(∃participatesIn.(∃developedIn.

(∃isOccupiedBy.mapp(pConst))
SHARES ALL UNIT WITH pConst ∃occupies.(∃isMemberOf.(∀formedBy.

(∃isOccupiedBy.mapp(pConst))

HAS CAPABILITY name ∃hasCapability.{name}
HAS CAPABILITY name . a t t r=va l ∃hasCapability.(name � ∀attr.{val})
IS ASSIGNMENT IN ACTIVITY name AssignmentActivityName

REPORTS TO POSITION posName ∃occupies.(∃extendedReportsTo.
{posName})

REPORTS TO ∃occupies.(∃extendedReportsTo.
(POSITION OF) pConst (∃isOccupiedBy.mapp(pConst))

(expr1) AND (expr2) map(expr1) �map(expr2)
(expr1) OR (expr2) map(expr1) �map(expr2)
NOT (expr) ¬map(expr)
(expr1) AND IF POSSIBLE (expr2) map(expr1)

HAS GroupResourceType GroupResourceConstraint is defined either as the per-
sons that occupy a given position, or as the persons that occupy a given position
that participatesIn or isMemberOf a certain roleName or unitName, respec-
tively. When the specific resource name is given in a data field, the mapping is
generalized to any person.

SHARES Amount GroupResourceType WITH PersonConstraint assigns persons
that share some or all positions, roles or organizational units with the given
person. Expressions with group resource types ROLE or UNIT apply the same
idea but changing it accordingly for each group resource type.

HAS CAPABILITY CapabilityConstraint is defined as those persons who have the
given capability and/or persons who have a capability with certain value in some
of its attributes. Table 1 shows the case of equal operator. Other operator could
be used provided it can be mapped to DLs.

IS ASSIGNMENT IN ACTIVITY activityName is defined by making it equivalent
to the concept defined for the assignment of the given activity.

484 C. Cabanillas, M. Resinas, and A. Ruiz-Cortés

Table 2. Some possible analyses of RAL expressions

Question DL operations
Who are the people that can do activity A? individuals(AssignmentA)
Who are the activities that can do person p? realization(p) and, then, select all those concepts

that are assignments
Is there any person that can do all of the
activities of the BP?

individuals(AssignmentA … AssignmentX),
where AssignmentA … AssignmentX are all of
the assignments of the BP

Are the people that can do activity B a
subset of those that can do activity A?

subsumes(A,B)

Can the same people do activities A and B? subsumes(A,B) ∧ subsumes(B,A)

REPORTS TO PositionConstraint Depth is defined as the persons who occupy
a position that has a reportsTo or extendedReportsTo relationship with a given
position name depending on whether it is DIRECTLY reported or not, respec-
tively. Also, the positions of a given person can be used instead of a concrete
position name. The other relationship expressions are like this one, but changing
the property accordingly, e.g., changing extendedReportsTo for extendedCanDel-
egateWorkTo. In delegate expressions no direct delegations are allowed.

CompoundExpression has a quite direct mapping except for expressions AND IF
POSSIBLE and NOT. The former expresses a preference for allocation, but it is not
mandatory. Thus, in order to ensure the actual potential owner of the activity is
within the result, the right side of the expression is ignored in the mapping. The
latter must be generalized to any person if expr contains runtime information,
e.g. the person who did an activity.

4 DL-Based Analysis of Resource Assignments

The definition of the semantics of RAL expressions in terms of DLs makes it
possible to automate their analysis by means of a DL reasoner. DL reasoners are
software tools that implement several operations on the ontologies in an efficient
manner by using several heuristics and techniques. Some of these operations are:

– satisfiability(C): Determine whether concept C is not contradictory.
– subsumes(A, B): Determine whether concept A subsumes concept B, i.e.,

whether description of A is more general than description of B.
– individuals(C): Find all individuals that are instances of concept C.
– realization(i): Find all concepts which the individual i belongs to.

By using these operations, we can analyse the assignment of resources made to
a BP model in order to extract information from it and answer questions such
as “Who are the activities that can do person P?” Table 2 depicts some of these
questions and how they can be written on the basis of DL operations. These
operations allow us to detect problem situations, such as that in which there is
an activity that cannot be allocated to any person given the RAL expression of
the activity and the organizational model of the company.

Defining and Analysing Resource Assignments with RAL 485

5 Related Work

The need of including organizational aspects in BP design can be seen in [7],
where Künzle et al. present a set of challenges that should be addressed to make
BPs both data-aware and resource-aware. Bertino et al. have defined a language
to express constraints in role-based and user-based assignments to the tasks of
a WF [8]. They get to check whether the configured assignments are possible
at runtime and to plan possible resource allocation based on the assignments.
They consider also dynamic aspects for these checkings. However, the language
is more complex and hard to use than RAL because its goal is wider.

Russell et al. defined the workflow resource patterns with the aim of explaining
the requirements for resource management in workflow (WF) environments [1].
They analysed the support provided by some WF tools, but they did not provide
a specific way to assign resources to WF activities. These patterns were used by
other authors as a reference framework to analyse the ability of BPMN to deal
with resources and to propose solutions to improve BPMN [3]. The creation
patterns have been used to assess the expressiveness of RAL in [4].

Strembeck et al. presented a formal metamodel for process-related role-based
access control models and they defined a runtime engine to enforce the different
policies and constraints in a software system [9]. However, the resource assign-
ments that can be made with their metamodel is less expressive than RAL. Be-
sides, they have to use ad-hoc algorithms instead of reusing those already imple-
mented for DLs. An optimal approach to allocate the most proficient set of em-
ployees for a whole BP from event logs based on Hidden Markov Models is intro-
duced in [10] and Nakatumba et al. proposed a way to analyse and characterise
resource behaviour after BP execution from event logs using process mining [11].

Finally, some extensions to enhance resource management in BP execu-
tion environments have been recently released, e.g., BPEL4People and WS-
HumanTask are two extension proposals for BPEL (both can be found at
http://www.oasis-open.org/committees/bpel4people/). However, there is
limited support to express and manage resource allocation on higher level mod-
elling languages such as BPMN.

6 Conclusions and Future Work

The result of this work lets us conclude that defining and automatically analysing
new languages to describe resource assignments in BP models is possible. RAL,
our proposal, allows not only precisely defining the assignments required to cover
most of the creation patterns proposed by Russell et al. [1] and more expressive
assignments, but also automatically reasoning about the resource assignments
configured. To this end, RAL semantics has been described in an OWL-DL on-
tology and we have shown how DL reasoners can be used to extract information
from them. However, it is important to notice that RAL currently addresses only
expressions involving a single instance of a BP, i.e., the history of individual re-
sources and past executions are not considered for now.

We have developed a prototype that analyses RAL expressions associated to
BPMN activities and returns the potential owners of a selected activity. It has

http://www.oasis-open.org/committees/bpel4people/

486 C. Cabanillas, M. Resinas, and A. Ruiz-Cortés

been implemented as a plugin for Oryx [12] and it can be tested following the
instructions described at http://www.isa.us.es/cristal.

We believe the present work settles the basis towards the spread of the use
of resource assignments in BP models, something we consider vital to be able
to incorporate business environments (organizations) currently limited, due to
their inability to link the organizational structure with BPs, in a efficient and
standardized way, and extracting information from them.

In the near future we intend to refine the mapping to obtain more precise
information about the potential owners of the activities of a process, according
to the execution state of a process instance. In addition, we plan to develop a
visual notation for RAL and to define a specific catalogue of analysis operations
for the extraction of interesting resource-related information.

References

1. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow
Resource Patterns: Identification, Representation and Tool Support. In: Pastor,
Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer,
Heidelberg (2005)

2. Rivera, J.E., Guerra, E., de Lara, J., Vallecillo, A.: Analyzing rule-based behavioral
semantics of visualmodeling languageswithmaude. In:Gašević, D., Lämmel, R., Van
Wyk, E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 54–73. Springer, Heidelberg (2009)

3. Awad, A., Grosskopf, A., Meyer, A., Weske, M.: Enabling resource assignment
constraints in BPMN, tech. rep., BPT at Hasso Plattner Institut (2009)

4. Cabanillas, C., Resinas, M., Ruiz-Cortés, A.: RAL: A high-level user-oriented re-
source assignment language for business processes. In: BPM Workshops, BPD 2011
(in press, 2011)

5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logics Handbook: Theory, Implementations, and Applications. Cam-
bridge University Press (2003)

6. Motik, B., Patel-Schneider, P.F., Grau, B.C.: OWL 2 Web Ontology Language
Direct Semantics (2009)

7. Künzle, V., Reichert, M.: Integrating Users in Object-Aware Process Management
Systems: Issues and Challenges. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.)
BPM 2009. LNBIP, vol. 43, pp. 29–41. Springer, Heidelberg (2010),
http://www.informatik.uni-trier.de/~ley/db/conf/bpm/bpmw2009.html

8. Bertino, E., Ferrari, E., Atluri, V.: The specification and enforcement of authoriza-
tion constraints in workflow management systems. ACM Trans. Inf. Syst. Secur. 2,
65–104 (1999)

9. Strembeck, M., Mendling, J.: Modeling process-related RBAC models with ex-
tended UML activity models. Inf. Softw. Technol. 53(5), 456–483 (2011)

10. Yang, H., Wang, C., Liu, Y., Wang, J.: An Optimal Approach for Workflow Staff
Assignment Based on Hidden Markov Models. In: Meersman, R., Herrero, P. (eds.)
OTM-WS 2008. LNCS, vol. 5333, pp. 24–26. Springer, Heidelberg (2008)

11. Nakatumba, J., van der Aalst, W.M.P.: Analyzing Resource Behavior Using Process
Mining. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP,
vol. 43, pp. 69–80. Springer, Heidelberg (2010),
http://www.informatik.uni-trier.de/~ley/db/conf/bpm/bpmw2009.html

12. Decker, G., Overdick, H., Weske, M.: Oryx - An Open Modeling Platform for the
BPM Community. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008.
LNCS, vol. 5240, pp. 382–385. Springer, Heidelberg (2008)

http://www.isa.us.es/cristal
http://www.informatik.uni-trier.de/~ley/db/conf/bpm/bpmw2009.html
http://www.informatik.uni-trier.de/~ley/db/conf/bpm/bpmw2009.html

Stochastic Optimization for Adaptive Labor Staffing
in Service Systems

L.A. Prashanth1, H.L. Prasad1, Nirmit Desai2,
Shalabh Bhatnagar1, and Gargi Dasgupta2

1 Indian Institute of Science, Bangalore, India
{prashanth,hlprasu,shalabh}@csa.iisc.ernet.in

2 IBM Research, Bangalore, India
{nirmdesa,gaargidasgupta}@in.ibm.com

Abstract. Service systems are labor intensive. Further, the workload tends to
vary greatly with time. Adapting the staffing levels to the workloads in such sys-
tems is nontrivial due to a large number of parameters and operational variations,
but crucial for business objectives such as minimal labor inventory. One of the
central challenges is to optimize the staffing while maintaining system steady-
state and compliance to aggregate SLA constraints. We formulate this problem
as a parametrized constrained Markov process and propose a novel stochastic op-
timization algorithm for solving it. Our algorithm is a multi-timescale stochastic
approximation scheme that incorporates a SPSA based algorithm for ‘primal de-
scent’ and couples it with a ‘dual ascent’ scheme for the Lagrange multipliers.
We validate this optimization scheme on five real-life service systems and com-
pare it with a state-of-the-art optimization tool-kit OptQuest. Being two orders of
magnitude faster than OptQuest, our scheme is particularly suitable for adaptive
labor staffing. Also, we observe that it guarantees convergence and finds better
solutions than OptQuest in many cases.

Keywords: Service systems, labor optimization, constrained stochastic
optimization.

1 Introduction

In service-based economies, the clients and service providers exchange value through
service interactions and reach service outcomes. Service requests of a client can vary
greatly in the skills required to fulfill the request, expected turn-around time, and the
context of the client’s business needs. As a result, service delivery is a labor-intensive
business and it is crucial to optimize labor costs. A Service System (SS) is an organiza-
tion composed of (i) the resources that support, and (ii) the processes that drive service
interactions so that the outcomes meet customer expectations [1]. The contributions of
this paper are focused on data-center management services but can be extended to all
service domains. The service providers manage the data-centers from remote locations
called delivery centers where groups of service workers (SW) skilled in specific tech-
nology areas support corresponding service requests (SR). In each group, the processes,
the people and the customers that drive the operation of center constitute a SS. A deliv-
ery center is a system of multiple SS. A central component in these operational models

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 487–494, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

488 L.A. Prashanth et al.

is the policy for assigning SRs to SWs, called the dispatching policy. The fundamen-
tal challenges here are: (i) given an SS with its operational characteristics, the staffing
across skill levels and shifts needs to be optimized while maintaining steady-state and
compliance to Service Level Agreement (SLA) constraints. (ii) the SS characteristics
such as work patterns, technologies and customers supported change frequently, and
hence the optimization needs to be adaptive.

This paper presents a novel stochastic optimization algorithm SASOC (Staff Alloca-
tion using Stochastic Optimization with Constraints) to address the above challenges.
SASOC is a three timescale stochastic approximation scheme that uses SPSA-based
[2] estimates for performing gradient descent in the primal, while having a dual ascent
scheme for the Lagrange multipliers. In the evaluation step of SASOC, we leverage
the simulation-based operational models developed in [3] for two of the dispatching
policies, namely, PRIO-PULL (basic priority scheme) and EDF (earliest deadline first).
We evaluate our algorithm on data from five real-life SS in the data-center manage-
ment domain. In comparison with the state-of-the-art OptQuest optimization toolkit
[4], we find that (a) SASOC is two orders of magnitude faster than OptQuest, (b) it
finds solutions of comparable quality to OptQuest, and (c) it guarantees convergence
where OptQuest does not find feasibility even with 5000 iterations. Precisely due to
the guaranteed convergence and by returning good solutions quickly, SASOC is well
suited to better address the above two challenges, especially with respect to adaptivity.
By comparing SASOC results on two independent operational models corresponding
to PRIO-PULL and EDF dispatching policies, we show that SASOC’s performance is
independent of the operational model of SS.

We now review relevant literature in service systems and stochastic optimization. In
[5], a two step mixed-integer program is formulated for the problem of dispatching SRs
within service systems. While their goal is similar, their formulation does not model the
stochastic variations of arrivals or processing times. Further, unlike our framework, the
SLA constraints in their formulation cannot be aggregates. In [6], the authors propose
a scheme for shift-scheduling in the context of third-level IT support systems. Unlike
this paper, they do not validate their method against data from real-life third-level IT
support. In [3], a simulation framework for evaluating dispatching policies is proposed.
A scatter search technique is used to search over the space of SS configurations and
optimize the staff there. While we share their simulation model, the goal in this paper is
to propose a fundamentally new algorithm that is based on stochastic optimization. In
general, none of the above papers propose an optimization algorithm that is geared for
SS and that leverages simulation to adapt optimization search parameters.

A popular and highly efficient simulation based local optimization scheme for gra-
dient estimation is Simultaneous Perturbation Stochastic Approximation (SPSA) pro-
posed by [7]. SPSA is based on the idea of randomly perturbing the parameter vector
using i.i.d., symmetric, zero-mean random variables that has the critical advantage that
it needs only two samples of the objective function for any N -dimensional parameter.
Usage of deterministic perturbations instead of randomized was proposed in [2]. The de-
terministic perturbations there were based either on lexicographic or Hadamard matrix
based sequences and were found to perform better than their randomized perturbation
counterparts. In [8], several simulation based algorithms for constrained optimization

Stochastic Optimization for Adaptive Labor Staffing in Service Systems 489

have been proposed. Two of the algorithms proposed there use SPSA for estimating the
gradient, after applying Lagrangian relaxation procedure to the constrained optimiza-
tion problem.

2 Problem Formulation

We consider the problem of finding the optimal number of workers for each shift and
of each skill level in a SS, while adhering to a set of SLA constraints. We formulate
this as a constrained optimization problem with the objective of minimizing the labor
cost in the long run average sense, with the constraints being on SLA attainments. The
underlying dispatching policy (that maps the service requests to the workers) is fixed
and is in fact, parametrized by the set of workers. In essence, the problem is to find the
‘best’ parameter (set of workers) for a given dispatching policy.

In a typical SS, the arrival as well as service time of SRs are probabilistic. Thus, the
system can be modeled to be evolving probabilistically over states, where each state
transition incurs a cost. The objective is to minimize the long run average sum of this
single stage cost, while adhering to a set of SLA constraints. The state is the vector of
the utilization of workers for each shift and skill level, and the current SLA attainments
for each customer and each SR priority. Any arriving SR has a customer identifier and
a priority identifier. Let A be the set of shifts of the workers, B be the set of skill levels
of the workers, C be the set of all customers and P be the set of all possible priorities
in the SS under consideration. The state Xn at time n is given by

Xn = (u1,1(n),, u|A|,|B|(n), γ′
1,1(n),, γ′

|C|,|P |(n), q(n)),

where 0 ≤ ui,j ≤ 1 is the per-unit utilization of the workers in shift i and skill level
j. 0 ≤ γ′

i,j ≤ 1 denotes the SLA attainment level for customer i and priority j. q is
a Boolean variable that denotes the queue feasibility status of the system at instant n.
In other words, q is false if the growth rate of the SR queues (for each complexity) is
beyond a threshold and true otherwise. We need q to ensure system steady-state which
is independent of SLA attainments because SLA attainments are computed only on the
SRs that were completed and not on SRs queued up in the system. The action an at
instant n specifies the number of workers of each skill level in each shift.

The single stage cost function is designed so as to minimize the under-utilization of
workers as well as over-achievement/under-achievement ofSLAs. Here, under-utilization
of workers is the complement of utilization and in essence, this is equivalent to maxi-
mizing the worker utilizations. The over-achievement/under-achievementof SLAs is the
distance between attained SLAs and the contractual SLAs. Hence, the cost function is
designed to balance between two conflicting objectives and has the form:

c(Xn) = r ×

⎛⎝1 −
|A|∑
i=1

|B|∑
j=1

αi,j × ui,j(n)

⎞⎠ + s ×

⎛⎝ |C|∑
i=1

|P |∑
j=1

∣∣γ′
i,j(n) − γi,j

∣∣⎞⎠ , (1)

where r, s ≥ 0 and r + s = 1. 0 ≤ γi,j ≤ 1 denotes the contractual SLA for customer i
and priority j. Note that the first factor uses a weighted sum of utilizations over workers

490 L.A. Prashanth et al.

from each shift and across each skill level. The weights αi,j are derived from the work-
load distribution across shifts and skill levels over a month long period. These weights
satisfy 0 ≤ αi,j ≤ 1,

∑|A|
i=1

∑|B|
j=1 αi,j = 1. This prioritization of workers helps in

optimizing the worker set based on the workload.
The constraints are on the SLA attainments and are given by:

gi,j(Xn) = γi,j − γ′
i,j(n) ≤ 0, ∀i = 1, . . . , |C|, j = 1, . . . , |P |, (2)

h(Xn) = 1 − q(n) ≤ 0, (3)

where constraints (2) specify that the attained SLA levels should be equal to or above
the contractual SLA levels for each pair of customer and priority. The constraint (3)
ensures that the SR queues for each complexity in the system stay bounded.

Considering that the state is a vector of utilization levels and the current SLA attain-
ments, it is easy to see that {Xn, n ≥ 1} is a constrained Markov process for any given
dispatch policy. Further, {Xn, n ≥ 1} is parametrized with

θ = (W1,1,, W|A|,|B|)T ∈ R|A|×|B|,

where Wi,j indicates the number of service workers whose skill level is j and whose
shift index is i. We want to find an optimal value for the parameter vector θ that min-
imizes the long-run average sum of single-stage cost c(Xn) while maintaining queue
stability h(Xn) and compliance to contractual SLAs gi,j(Xn), ∀i = 1, . . . , |C|, j =
1, . . . , |P |.

We let the parameter vector θ ∈ R|A|×|B| take values in a com-

pact set M
�
= [0, Wmax]|A|×|B| through the projection operator Π defined

by Π(θ)
�
= (π(W1,1), . . . , π(W|A|,|B|))T , θ ∈ R|A|×|B|. Here π(x)

�
=

min(max(0, x), Wmax). In essence, the projection operator Π keeps each Wi,j

bounded between 0 and Wmax and this is necessary for ensuring the convergence of θ.
Our aim is to find a θ that minimizes the long run average cost,

J(θ)
�
= lim

n→∞
1
n

n−1∑
m=0

E[c(Xm)]

subject to

Gi,j(θ)
�
= lim

n→∞
1
n

n−1∑
m=0

E[gi,j(Xm)] ≤ 0 ∀i = 1, . . . , |C|, j = 1, . . . , |P |,

H(θ)
�
= lim

n→∞
1
n

n−1∑
m=0

E[h(Xm)] ≤ 0

(4)

Here each step from n to n+1 indicates a state transition from Xn to Xn+1, incurring a
cost c(Xn). The parameter θ decides what cost is incurred and whether the constraints
are met. The actions aj are assumed to be governed by the underlying dispatching policy
of the SS. We make a standard assumption that the Markov process {Xn, n ≥ 1} is
ergodic for the given dispatching policy, which is true in general. Thus, the limits in the
above optimization problem are well defined. While it is desirable to find the optimum
θ∗ ∈ M i.e.,

θ∗ = argmin {J(θ) s.t. θ ∈ M, Gi,j(θ) ≤ 0, i = 1, . . . , |C|, j = 1, . . . , |P |, H(θ) ≤ 0} ,

Stochastic Optimization for Adaptive Labor Staffing in Service Systems 491

it is in general very difficult to achieve a global minimum. We apply the Lagrangian
relaxation procedure to the above problem and then use a local optimization scheme
based on SPSA for finding the optimum parameter θ∗.

3 Our Algorithm (SASOC)

The constrained optimization problem (4) can be expressed using the standard Lagrange
multiplier theory as an unconstrained optimization problem given below.

max
λ

min
θ

L(θ, λ)
�
= lim

n→∞

1
n

n−1∑
m=0

E

⎧⎨⎩c(Xm) +
|C|∑
i=1

|P |∑
j=1

λi,jgi,j(Xm) + λfh(Xm)

⎫⎬⎭
(5)

where λi,j ≥ 0, ∀i = 1, . . . , |C|, j = 1, . . . , |P | represent the Lagrange multipliers
corresponding to constraints gi,j(·) and λf represents the Lagrange multiplier for the
constraint h(·), in the optimization problem (4). The function L(θ, λ) is commonly re-
ferred to as the Lagrangian. An optimal (θ∗, λ∗) is a saddle point in the Lagrangian i.e.
L(θ, λ∗) ≥ L(θ∗, λ∗) ≥ L(θ∗, λ). Thus, it is necessary to design an algorithm which
descends in θ and ascends in λ to find the optimum point. The simplest iterative proce-
dure for this purpose would use the gradient of the Lagrangian with respect to θ and λ
to descend and ascend respectively. However, for the given system the computation of
gradient with respect to θ would be intractable due to lack of a closed form expression
of the Lagrangian. Thus, a simulation based algorithm is required. We employ an SPSA
technique [7,2] for obtaining a stochastic approximation descent procedure for θ. For
λi,j and λf , values of gi,j(·) and h(·) respectively can be seen to provide a stochastic
ascent direction.

The above explanation suggests that an algorithm would need three stages in each
of its iterations. (i) The inner-most stage which performs one or more simulations over
several time steps; (ii) The next outer stage which computes a gradient estimate using
simulation results of the inner most stage and then updates θ along descent direction.
This stage would perform several iterations for a given λ and find out the best θ; and
(iii) The outer-most stage which computes the long-run average value of each constraint
using the iterations in the inner two stages and updates the Lagrange multipliers λ for
using that as the ascent direction. The above three steps need to be performed itera-
tively till the solution converges to a saddle point described previously. However, this
approach suffers from a serious drawback of requiring to perform several simulations
as a whole as one outer stage update happens for one full run of inner stages at both
levels. This issue gets addressed by using simultaneous updates to all three stages but
with different time-steps, the outer-most having the smallest while the inner-most hav-
ing the largest time-steps. This comes under the realm of multiple time-scale stochastic
approximation [9, Chapter 6]. We develop a three time-scale stochastic approximation
algorithm that does primal descent using an SPSA based actor-critic algorithm while
performing dual ascent on the Lagrange multipliers. The update rule for SASOC is
given below:

492 L.A. Prashanth et al.

Wi,j(n + 1) = Π
(
Wi,j(n) + b(n)

(
L̄(nK)−L̄′(nK)

δ�i,j(n)

))
,

∀i = 1, 2, . . . , |A|, j = 1, 2, . . . , |B|,

where for m = 0, 1, . . . , K − 1,

L̄(nK + m + 1) = L̄(nK + m)+

d(n)(c(XnK+m) +
|C|∑
i=1

|P |∑
j=1

λi,j(nK)gi,j(XnK+m) + λfh(XnK+m) − L̄(nK + m)),

L̄′(nK + m + 1) = L̄′(nK + m)+

d(n)(c(X̂nK+m) +
|C|∑
i=1

|P |∑
j=1

λi,j(nK)gi,j(X̂nK+m) + λfh(X̂nK+m) − L̄′(nK + m)),

λi,j(n + 1) = (λi,j(n) + a(n)gi,j(Xn))+ , ∀i = 1, 2, . . . , |C|, j = 1, 2, . . . , |P |,

λf (n + 1) = (λf (n) + a(n)h(Xn))+ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6)

where

– X̂m represents the state at iteration m from the simulation run with perturbed pa-
rameter θ[n

K] + δΔ[n
K]. Here [n

K] denotes the integer portion of n
K . For simplicity,

hereafter we use θ + δΔ to denote θ[n
K] + δΔ[n

K];
– δ > 0 is a fixed perturbation control parameter while Δ represents a determin-

istic perturbation sequence chosen according to an associated Hadamard matrix,
explained later in this section;

– The operator Π(·) ensures that the updated value for θ stays within the chosen
compact space T ;

– L̄ and L̄′ represent Lagrangian estimates for θ and θ + δΔ respectively. Thus, for
each iteration two simulations are carried out, one with θ parameter and the other
with the perturbed parameter θ + δΔ, the result of which is used to update L̄ and
L̄′; and

– K ≥ 1 is a fixed parameter which controls the rate of update of θ in relation to that
of L̄ and L̄′. This parameter allows for accumulation of updates to L̄ and L̄′ for K
iterations in between two successive θ updates.

The step-sizes {a(n)}, {b(n)} and {d(n)} satisfy
∑

n a(n) =
∑

n b(n) =∑
n d(n) = ∞;

∑
n(a2(n) + b2(n) + d2(n)) < ∞,

b(n)
d(n)

,
a(n)
b(n)

→ 0 as n → ∞..

The above choice of step-size ensure separation of time-scales between the recursions
of Wi,j , L̄, L̄′ and λ. The perturbation sequence {�(n)} is constructed using Hadamard
matrices and the reader is referred to Lemma 3.3 of [2] for details of the construction.

4 Simulation Experiments

We use the simulation framework developed in [3] and focus on the PRIO-PULL and
EDF dispatching policies. However, SASOC algorithm is agnostic to the dispatching
policies. In PRIO-PULL policy, SRs are queued in the complexity queues based directly

Stochastic Optimization for Adaptive Labor Staffing in Service Systems 493

on the priority assigned to them by the customers. On the other hand, in the EDF policy
the time left to SLA target deadline is used to assign the SRs to the SWs i.e., the SW
works on the SR that has the earliest deadline. We implemented our SASOC algorithm
as well as an algorithm for staff allocation using the state-of-the-art optimization tool-
kit OptQuest. OptQuest is a well-established tool for solving simulation optimization
problems [4].

For the SASOC algorithm, we set the weights in the single-stage cost function c(Xm),
see (1), as r = s = 0.5. We thus give equal weightage to both the worker utiliza-
tion and the SLA over-achievement components. The feasibility Boolean variable q
used in the constraint (3) was set to false (i.e., infeasible) if the queues were found
to grow by 1000% over a two-week period. On each SS, we compare our SASOC al-
gorithm with the OptQuest algorithm using Wsum as the performance metric. Here

Wsum
�
=
∑|A|

i=1

∑|B|
j=1 Wi,j is the sum of workers across shifts and skill levels. We ob-

serve that simulation run-times are proportional to the number of SS simulations and
hence, an order of magnitude higher for OptQuest as compared to SASOC.

(a) W ∗
sum achieved for PRIO-PULL (b) W ∗

sum achieved for EDF

Fig. 1. Performance of OptQuest and SASOC for two different dispatching policies on five real
SS (Note: OptQuest is infeasible over SS4)

Figs 1(a) and 1(b) compare the W ∗
sum achieved for OptQuest and SASOC algorithms

using PRIO-PULL on five real life SS. Here W ∗
sum denotes the value obtained upon

convergence of Wsum. On three SS pools, namely SS3, SS4 and SS5, respectively, we
observe that our SASOC algorithm finds a significantly better value of W ∗

sum as com-
pared to OptQuest. Note in particular that the performance difference between SASOC,
and OptQuest on SS3 and SS5 is nearly 100%. Further, on SS4, OptQuest is seen to be
infeasible whereas SASOC obtains a feasible good allocation. On the other two pools,
SS1 and SS2, OptQuest is seen to be slightly better than SASOC. Further, the SASOC
algorithm requires 500 iterations, with each iteration having 20 replications of the SS
- 10 each with unperturbed parameter θ and perturbed parameter θ + δΔ respectively,
whereas OptQuest requires 5000 iterations with each iteration of 100 replications. This
implies a two orders of magnitude improvement while searching for the optimal SS
configuration in SASOC as compared to OptQuest. Fig 1(b) presents similar results for

494 L.A. Prashanth et al.

the case of EDF dispatching policy. The behavior of OptQuest and SASOC algorithms
was found to be similar to that of PRIO-PULL and SASOC shows significant perfor-
mance improvements over OptQuest here as well. We observe that SASOC is a robust
algorithm that gives a reliably good performance, is computationally efficient and is
provably convergent, unlike OptQuest that does not possess these features.

5 Conclusions

We presented an efficient algorithm SASOC for optimizing staff allocation in the con-
text of SS. We formulated the problem as a constrained optimization problem where
both the objective and constraint functions were long run averages of a state depen-
dent single-stage cost function. A novel single stage cost that balanced the conflict-
ing objectives of maximizing worker utilizations and minimizing the over-achievement
of SLA was employed. Numerical experiments were performed to evaluate SASOC
against prior work in the context of a real-life service system. SASOC showed much
superior performance compared to the state-of-the-art simulation optimization toolkit
OptQuest, as it (a) was an order of magnitude faster than OptQuest, (b) found solutions
of quality comparable to those found by OptQuest even in scenarios where OptQuest
did not find feasibility even after 5000 iterations. By comparing SASOC results on two
independent operational models, we showed that SASOCs performance is independent
of the operational model of SS. We are in the process of developing and applying a
second-order Newton based scheme with SPSA estimates for this problem. It would be
of interest to compare the performance of that scheme with the one proposed here. It
would also be of interest to prove the theoretical convergence of these algorithms.

References

1. Alter, S.: Service system fundamentals: Work system, value chain, and life cycle. IBM Sys-
tems Journal 47(1), 71–85 (2008)

2. Bhatnagar, S., Fu, M., Marcus, S., Wang, I.: Two-timescale simultaneous perturbation stochas-
tic approximation using deterministic perturbation sequences. ACM Transactions on Model-
ing and Computer Simulation (TOMACS) 13(2), 180–209 (2003)

3. Banerjee, D., Desai, N., Dasgupta, G.: Simulation-based evaluation of dispatching policies in
service systems. In: Winter Simulation Conference (2011) (under review)

4. Laguna, M.: Optimization of complex systems with optquest. OptQuest for Crystal Ball User
Manual, Decisioneering (1998)

5. Verma, A., Desai, N., Bhamidipaty, A., Jain, A., Nallacherry, J., Roy, S., Barnes, S.: Auto-
mated optimal dispatching of service requests. In: SRII Global Conference (2011)

6. Wasserkrug, S., Taub, S., Zeltyn, S., Gilat, D., Lipets, V., Feldman, Z., Mandelbaum, A.:
Creating operational shift schedules for third-level it support: challenges, models and case
study. International Journal of Services Operations and Informatics 3(3), 242–257 (2008)

7. Spall, J.: Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE Transactions on Automatic Control 37(3), 332–341 (1992)

8. Bhatnagar, S., Hemachandra, N., Mishra, V.: Adaptive multivariate three-timescale stochastic
approximation algorithms for simulation based optimization. ACM Transactions on Modeling
and Computer Simulation (TOMACS) 21(3) (2011)

9. Borkar, V.S.: Stochastic approximation: a dynamical systems viewpoint. Cambridge Univ. Pr.
(2008)

Declarative Enhancement Framework

for Business Processes�

Heerko Groefsema, Pavel Bulanov, and Marco Aiello

Distributed Systems Group, Johann Bernoulli Institute, University of Groningen,
Nijenborgh 9, 9747 AG Groningen, The Netherlands

{h.groefsema,p.bulanov,m.aiello}@rug.nl
http://www.cs.rug.nl/ds/

Abstract. While Business Process Management (BPM) was designed
to support rigid production processes, nowadays it is also at the core of
more flexible business applications and has established itself firmly in
the service world. Such a shift calls for new techniques. In this paper, we
introduce a variability framework for BPM which utilizes temporal logic
formalisms to represent the essence of a process, leaving other choices
open for later customization or adaption. The goal is to solve two major
issues of BPM: enhancing reusability and flexibility. Furthermore, by
enriching the process modelling environment with graphical elements,
the complications of temporal logic are hidden from the user.

Keywords: BPM, Variability, Temporal Logic, e-Government.

1 Introduction

The world of Business Process Management (BPM) has gone through some
major changes [4] due, among other things, to the advent of Web services and
Service-orientation; providing opportunities as well as challenges [2]. Variability
is an abstraction and management method that addresses a number of the open
issues. In the domain of software engineering, variability refers to the possibility
of changes in software products and models [13]. When this is introduced to
the BPM domain, it indicates that parts of a business process remain either
open to change, or not fully defined, in order to support different versions of
the same process depending on the intended use or execution context, see for
instance our survey [3]. Since BPM is moving into more fields of business and
rely on autonomous remote building blocks, a need for flexible processes has
arisen. Today, when a number of closely related processes are in existence, they
are either described in different process models or in one large model using
intricate branching routes, resulting in redundancy issues in case of the former
and maintainability and readability issues in the case of the latter [14,3]. When
applied to process models, variability introduces solutions to both issues by
offering support for reusability and flexibility.
� The research is supported by the NWO SaS-LeG project, http://www.sas-leg.net,

contract No. 638.001.207.

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 495–504, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.cs.rug.nl/ds/

496 H. Groefsema, P. Bulanov, and M. Aiello

Considering the two features introduced by variability, we immediately notice
how the two tend to coincide with design– and run–time aspects. The reusabil-
ity attribute is usually introduced at design–time, and the flexibility attribute
at run–time. Generally two approaches to variability are considered, impera-
tive and declarative ones [12]. While imperative approaches focus on how a
task is performed, declarative approaches focus on what tasks are performed.
When mapping these to the two areas where variability would operate, design–
and run–time, we notice four possible directions regarding variability in BPM.
Most research currently focuses on the areas of imperative/design–time and
declarative/run–time, while in this paper we shall focus on an approach which is
able to capture both imperative and declarative methods at design–time [3]. The
common problem with the frameworks of the imperative/design–time area is that
in many cases they introduce unnecessary restrictions for process designers [1].
The source of such restrictions lies in the fact that imperative approaches require
all variations from the main process to be predefined, limiting variations to only
those added explicitly. On the other hand, declarative run–time frameworks lie
on the far side of the semantic gap between the traditional and well–understood
way of imperative process specification and the unintuitive way of declarative
specification. We intend to solve these issues through a design–time declarative
framework, in which the principles of process designing are similar to the ones of
traditional imperative–based process modelling. This is achieved via introducing
a set of visual modelling elements, which are internally transposed into a set of
declarative constraints.

In this paper, we start by introducing the Process Variability - Declara-
tive’n’Imperative (PVDI) framework which enhances process models with vari-
ability management through the introduction of temporal logics which capture
the essence of a process. In doing so, we provide both the BPM and service
composition domains with a formal way to model processes such that they can
be used as a template for either the modelling of process variants or automatic
service composition. In addition, by enriching the traditional process modelling
environment with graphical elements, the complications of the underlying tem-
poral logic is hidden from the user. We then show the expressive power of these
graphical elements by utilizing them on an e-Government related case–study.
Then, we evaluate the strengths and weaknesses of the framework by looking at
the requirements for variability management in service-oriented systems intro-
duced in [3]. Finally, we conclude with related work, and some final remarks.

2 The PVDI Framework

A PVDI process is defined as a directed graph and can serve as a frame for a
modal logic of processes, including computational tree logic+(CTL+)[6]. Using
CTL+, we can introduce constraints for processes, which allow us to capture the
basic meaning of a process in such a way that we can control changes within the
process while keeping its essence, its intended use, intact as long as none of these
constraints are violated. It is then possible to allow anyone to design a variant
from such a template process without compromising its intended use.

Declarative Enhancement Framework for Business Processes 497

Definition 1 (Process). A process P is a tuple 〈A, G, T 〉 where:

– A is a finite set of activities, with selected start � and final ⊗ activities;
– G = Ga ∪ Go ∪Gx is a set of gateways, consisting of and, or, and xor gates

as defined by BPMN, respectively;
– S = A ∪ G is a set of states;
– T = Ta ∪ Tg, where:
– Ta : (A\{⊗}) → S is a finite set of transitions, which assign a next state for

each activity;
– Tg : G → 2S is a finite set of transitions, which assign a nonempty set of

next states for each gateway.

In order to use a process as a model, we introduce a set of variables and a
valuation function. We use the so–called natural valuation, that is, for each
state (i.e., for each activity or gateway) we introduce its dedicated variable, and
this variable is valuated to TRUE on this state only. Additionally, under the
natural valuation we can use the same letter to represent both activity and its
corresponding variable.

Definition 2 (Constraint). A constraint over the process P is a computa-
tion tree logic+(CTL+) formula. A constraint is valid for a process P iff it is
valuated to TRUE in each state of the process under the natural valuation. More
formally, let φ be a constraint, M be a model built on the process P using the
natural valuation, and S be the set of states of the process P . Then φ is valid iff
M, x, φ |= TRUE ∀x ∈ S.

Notice how, now that we introduced constraints, a template process can be
defined without strictly defining the precise structure of all activities and their
respective ordering. The mapping of T can therefore be a partial one. As a
result, a template may range from being a list of tasks to being a fully specified
process. On the other hand, templates are enriched with a set of constraints,
which outline the general shape of a process or set of processes.

Definition 3 (Template). A template T is a tuple 〈A, G, T, Φ〉 where:

– A, G, S, and T are from Definition 1;
– Ta : (A\{⊗}) → S is a finite set of transitions, which assign a next state for

some activities;
– Tg : G → 2S is a finite set of transitions, which assign a nonempty set of

next states for some gateways.
– Φ is a finite set of constraints.

In order to facilitate template design we introduce a number of graphic–elements
for the design process. Constraints as embedded within templates are then gener-
ated from these graphical–elements. For every element contained in the template,
we generate one or more CTL+ formulas. Of course, this process differs greatly
per element and even per situation. Some of the simpler elements directly re-
semble simple CTL+ formulas, whereas other more complex structures resemble

498 H. Groefsema, P. Bulanov, and M. Aiello

a set of CTL+ formulas. A potentially large number of graphic–elements can
be considered for the template design, ranging from simple flows to complex
groupings of tasks. We discuss only those elements needed in order to introduce
the wide variety of options available trough PVDI.

2.1 Flow Constraints

Flow Constraints state that all elements from one set are followed by at least
one element from another set in either a single or all paths. With a path being
a series of consecutive transitions.

Fig. 1. Flow elements

Definition 4 (Flow Constraint). AFlow Constraint F is a tuple 〈s, t, Ω, Π, N〉
where:

– s is a finite set of process elements;
– t is a finite set of process elements; s

⋂
t = ∅;

– Ω ∈ {A, E} is a state quantifier from CTL+;
– Π ∈ {X, F, G} is a path quantifier from CTL+;
– N ∈ {TRUE, FALSE} being a negation.

The graphical–elements related to Flow Constraints are shown in Figure 1. These
graphical–elements describe flow relations over two dimensions; path and dis-
tance. The rows of Figure 1 relate to the temporal dimensions; F (Finally) and
X (neXt), which require the linked elements to either follow each other eventu-
ally or immediately. The first two columns relate to the paths; E (there Exists
a path) and A (for All paths), which require the linked elements to follow each
other in either a path or all paths respectively. The third column represents a
negation of two of these flows. These flows are related to simple CTL+ formulas
of the form M, p |= AXq (At p, in All paths, the neXt task is q), M, p |= EFq
(At p, there Exists a path, where Finally a task is q), and their negations.

The CTL+ constraints are generated from the graphical–elements according
to the steps below. Remember that we reuse the same symbol to represent both
the state and the variable representing that state.

1. Let s1, . . . sn be elements of source, and t1, . . . tm be elements of target.
2. If N = TRUE, then create a formula (s1∨s2∨. . . sn) ⇒ ΩΠ(t1∨t2∨. . . tm).
3. If N = FALSE, then create a formula (s1 ∨ s2 ∨ . . . sn) ⇒ ΩΠ¬(t1 ∨ t2 ∨

. . . tm).
4. If N = FALSE and Π = F , then create a formula (s1 ∨ s2 ∨ . . . sn) ⇒

ΩG¬(t1 ∨ t2 ∨ . . . tm).

Declarative Enhancement Framework for Business Processes 499

2.2 Parallel Constraints

Parallel Constraints (Figure 1), enforce that two sets of states do not appear in
the same path. Meaning that any series of consecutive transitions taken from
any state in either set may never lead to any element from the other set.

Definition 5 (Parallel Constraint). A Parallel Constraint P is a tuple 〈S, T 〉
where:

– S and T are sets of states; S
⋂

T = ∅;

The CTL+ constraints are generated from the graphical–elements according
to the steps below. This construction enforces that all states from each set or
branch, S and T , can never be followed by any state from the other set. Further
constraints between states in the branches S and T , and the specification of
a specific preceding gate should be added through other means, i.e. flow con-
straints.

1. Let s1, . . . sn be elements of S, and t1, . . . tm be elements of T.
2. Create a formula (s1 ∨ s2 ∨ . . . sn) ⇒ AG¬(t1 ∨ t2 ∨ . . . tm)
3. Create a formula (t1 ∨ t2 ∨ . . . tm) ⇒ AG¬(s1 ∨ s2 ∨ . . . sn)

2.3 Frozen Groups

Frozen Groups are sub–processes which cannot be modified. Such a restriction
is achieved by generating a set of CTL+ formulas which constrain all elements
inside of a frozen group. Figure 2 includes an example of such a group.

Definition 6 (Frozen group). A frozen group is a pair 〈P, M〉, where P is a
process (Definition 1), and M ⊆ PA is a set of mandatory activities.

The group itself is a process but can be part of a bigger process or template,
which is why we refer to groups as sub–processes. Since this element is not limited
to one set of simple sources and targets like the previous ones, its transformation
to CTL+ is more complicated, and yields a set of CTL+ formulas instead of a
single one. A Frozen Group will be constrained in such a way that all paths, being
a series of consecutive transitions, within it, must be kept intact. The CTL+

constraints are generated from the graphical–elements (Figure 2) according to
the steps below.

1. For each state a let the chain of states P = 〈a1, . . . ak〉 be a path between a
and ⊗. If the path P is not empty, then do the following steps:

2. If the path P is empty (i.e., the next step is the final one), then create a
CTL+ formula of type a ⇒ AX⊗.

3. If the path P is the only path from a to ⊗, then create a CTL+ formula of
type a ⇒ A((a1 ∨ a2 ∨ . . . ∨ ak)U⊗). A and U are quantifiers of CTL+.

4. If there are several paths which lead from a to ⊗, let say paths P1, . . . Pt

lead from a to ⊗. Then, the formula of step 3 becomes more complicated:
a ⇒ A[PT

1 ∨ . . . ∨ PT
t], where PT

i = (ai
1 ∨ ai

2 ∨ . . . ∨ ai
k)U⊗, with ai

1 . . . ai
k

being the steps of the path Pi.

500 H. Groefsema, P. Bulanov, and M. Aiello

Example 1 (Frozen Group).

� � a � b �
���

�
���

c �

e �

d

f �
���

�
���

⊗

a ⇒ A[(b ∨ c ∨ d)U⊗]∨
[(b ∨ e ∨ f)U⊗]

b ⇒ A[(c ∨ d)U⊗] ∨ [(e ∨ f)U⊗]
c ⇒ A(dU⊗)
e ⇒ A(fU⊗)
d ⇒ AX⊗
f ⇒ AX⊗

In this example, the process illustrated above is encoded as a set of CTL+ formu-
las. To do that, we take each step one by one and generate a formula according to
the algorithm presented above. The first two formulas are the most complicated,
because there are two possible paths from a to ⊗ (and from b to ⊗ as well).
Therefore, according to the step 4 of the algorithm, the formula splits into two
pieces, one per each path. In the case of activity b, one path contains activities
c and d, and the other one contains e and f .

2.4 Semi–frozen Group

Semi–frozen groups are Frozen Groups with less strict constrains, allowing for
removal or replacement, addition, or moving of activities. The advantage of this
group representation is that for example any activity inside a frozen group can be
made optional and can therefore be removed during the customization process.

Optional activities will not affect the consistency of the group, since the
CTL+ formulas remain valid as long as at least no new activity is added into
the group. Actually, if an activity a is removed, then all formulas of kind a ⇒ . . .
become automatically valid, and formulas of kind b ⇒ aU⊗ are valid as long
as there is either activity a or nothing between b and ⊗. The same is true for
more complicated cases like b ⇒ a∨ . . . U⊗. In other words, any activity can be
removed from a frozen group but not replaced by another one.

Weaken a link between two states thus allowing to insert a new activity into
a specific place(s) in a group. To do that, we have to modify the base algorithm.

1. Let the chain of states P = 〈a1, . . . ak〉 be a path between a and ⊗. For
example, the link between ai and ai+1 is “weak”. Then the appropriate
CTL+ formula is a ⇒ A[(a1 ∨ . . . ai)UAFA[(ai+1 ∨ . . . an)U⊗]].

2. If there are several “weak” links in a path, for example, links ai → ai+1 and
aj → aj+1, i < j are weak. In this case, build a formula aj ⇒ φ according to
p.1, and the final formula is a ⇒ A[(a1∨ . . . ai)UA[(ai+1∨ . . . aj)Uφ]], where
φ is retrieved in the previous step.

3. The same recursive rule applies in the case of three or more “weak” links.

Declarative Enhancement Framework for Business Processes 501

Making an activity floating thus allowing to swap two activities or drag an
activity into another place in the group. The algorithm is as follows:

1. Create the set of constraints for the group as described above;
2. To make an activity a floating, remove all constraints of kind a ⇒ φ.

Each move of an activity can be split into two atomic operations: (i) remove
the activity (ii) insert this activity into another place. As it has already been
shown above, no special correction needed in order to remove the activity. The
next step, however, is only possible when there is a “weak” link in the process –
otherwise we can only put the activity back into its original place.

Fig. 2. Simplified WMO process (Left) and template (Right)

502 H. Groefsema, P. Bulanov, and M. Aiello

3 Case–Study: Variability in Local eGovernment

The Netherlands consists of 418 municipalities which all differ greatly. Because
of this, each municipality is allowed to operate independently according to their
local requirements. However, all the municipalities have to provide the same
services and execute the same laws. An example of such a law which is heavily
subjected to local needs is the WMO (Wet maatschappelijke ondersteuning, So-
cial Support Act, 2006), a law providing needing citizens with support ranging
from wheelchairs, help at home, home improvement and homeless sheltering.
Figure 2 illustrates a simplified version of a WMO process found at one of the
Dutch municipalities of the Northern region of the Netherlands (Left), and an
example of how one transforms this process into a template usable by all munici-
palities (Right). Variant processes can then be obtained via customization of the
template process. The flexibility of a process, bounded with such constraints, can
vary from zero (a frozen block over the whole process) to unlimited, when there
are no constraints at all. On examination of the figure, we notice how constraints
are not evaluated for templates but only for processes resulting from templates.
Using a frozen group we restrict the decision making process, which because of
this must be kept intact at all times. The rest of the template is captured using
simple flow constraints and one parallel constraint. Therefore, extra activities
could be easily included at most places except the frozen group, and certain
parts could be moved around without affecting the correctness of the process.

4 Related Work

Existing tools and frameworks for variability management in BPM concentrate
on a single view on variability. Most focus either on imperative design–time or
on declarative run–time solutions, while we combine imperative and declara-
tive techniques. In addition, most research disregards services entirely and fo-
cuses solely on the BPM aspects. One framework which does look at services
specifically is the Variability extension to Business Process Execution Language
(VxBPEL) [15] that we proposed previously. This BPEL extension introduces a
number of new keywords allowing for the inclusion of variation points, variations,
and realization relations into BPEL. Other imperative frameworks focus solely
on BPM, most notably ADEPT [5], Process Variants by Options(Provop) [8],
and configurable workflow models [7]. These imperative frameworks however re-
quire that all variability options must be included into the template process
directly, leading to maintainability and readability issues. On the other hand,
our framework does not focus on what can be done, but on what should be done,
and leaves any other options open; resulting in a much higher degree of flexibility.
Declarative frameworks focus mostly on run–time solutions to flexibility issues,
of which most notable are the DECLARE framework [10], and Business Process
Constraint Network (BPCN) and Process Variant Repository(PVR) [9,11]. Our
framework on the contrary hides this complexity by the introduction of sim-
ple graphical elements which can be directly incorporated into business process
models.

Declarative Enhancement Framework for Business Processes 503

Table 1. Evaluation on Requirements

Requirement Support

Structural variations

(a) Insert Process Fragment Achieved via introducing a “weak” link in a frozen group.
(b) Delete Process Fragment Achieved via making an activity optional.
(c) Move Process Fragment Achieved via an floating activity at frozen groups.
(d) Replace Process Fragment Achieved through a combination of an optional activity

and a weak link.
(e) Swap Process Fragment Special case of moving a process fragment, therefore it

is also supported.

Constraint expressions

(a) Mandatory selection Achieved with PVDI through a flow constraint emerging
from � and targeting the activity.

(b) Prohibitive selection Achieved with PVDI through a negated flow constraint
emerging from � and targeting the prohibited activity.

(h) Mandatory execution Achieved with PVDI through a flow constraint of the
type “for All paths” emerging from �.

(i) Order of execution Achieved through flow constraints.
(j) Parallel execution Achieved through a combination of flow constraints

emerging from a gate and a parallel constraint.
(k) Exclusive execution Achieved through a combination of flow constraints

emerging from a gate and a parallel constraint.

5 Conclusion

We have shown how a variability framework for process modelling adds a large
amount of functionality to both the area of BPM, as well as service composition.
By enriching the process modelling environment with graphical elements, we
provided an easy way to hide the complications of temporal logic from the end
user. Using a case–study from the area of e–Government, we then explained how
the high amount of reusability and flexibility enriches templates in such a way
that variants become easily maintainable and templates easily readable.

In order to evaluate the flexibility of PVDI, we consider the expressive power
requirements proposed in [3]. Two types are discussed: structural variations re-
lated to imperative techniques, and constraint expressions related to declarative
techniques. In Table 1 the requirements which are directly supported by our
framework are enlisted along with the description of the support. Due to the ap-
proach taken with PVDI, both declarative and imperative techniques are being
considered. In cases of imperative techniques we consider a semi–frozen block,
which keeps the process structure intact while allowing some modification.

Many items are open for further investigation, among which the support of
data flows, dependencies between constraints, template publication, and auto-
mated composition from templates as a constraint satisfaction problem.

504 H. Groefsema, P. Bulanov, and M. Aiello

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business Process Man-
agement: A Survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.
(eds.) BPM 2003. LNCS, vol. 2678, pp. 1–12. Springer, Heidelberg (2003)

2. van der Aalst, W., Jablonski, S.: Dealing with workflow change: Identification of
issues and solutions. International Journal of Computer Systems, Science, and En-
gineering 15(5), 267–276 (2000)

3. Aiello, M., Bulanov, P., Groefsema, H.: Requirements and tools for variabil-
ity management. In: IEEE Workshop on Requirement Engineering for Services
(REFS 2010) at IEEE COMPSAC (2010)

4. Bandara, W., Indulska, M., Sadiq, S., Chong, S.: Major issues in business pro-
cess management: an expert perspective. In: European Conference on Information
Systems, ECIS (2007)

5. Dadam, P., Reichert, M.: The adept project: a decade of research and development
for robust and flexible process support. Computer Science - R&D 23(2), 81–97
(2009)

6. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. In: Proceedings of the Fourteenth Annual ACM
Symposium on Theory of Computing, pp. 169–180 (1982)

7. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H., Rosa, M.L.: Config-
urable workflow models. Int. J. Cooperative Inf. Syst. 17(2), 177–221 (2008)

8. Hallerbach, A., Bauer, T., Reichert, M.: Managing process variants in the process
life cycle. In: ICEIS, vol. (3-2), pp. 154–161 (2008)

9. Lu, R., Sadiq, S., Governatori, G.: On managing business processes variants. Data
Knowl. Eng. 68(7), 642–664 (2009)

10. Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-
Based Workflow Models: Change Made Easy. In: Meersman, R. (ed.) OTM 2007,
Part I. LNCS, vol. 4803, pp. 77–94. Springer, Heidelberg (2007)

11. Sadiq, S.W., Orlowska, M.E., Sadiq, W.: Specification and validation of process
constraints for flexible workflows. Inf. Syst. 30(5), 349–378 (2005)

12. Schonenberg, H., Mans, R., Russell, N., Mulyar, N., van der Aalst, W.M.P.: Process
flexibility: A survey of contemporary approaches. In: Dietz, J.L.G., Albani, A.,
Barjis, J. (eds.) CIAO! / EOMAS. LNBIP, vol. 10, pp. 16–30. Springer, Heidelberg
(2008)

13. Sinnema, M., Deelstra, S., Hoekstra, P.: The COVAMOF Derivation Process. In:
Morisio, M. (ed.) ICSR 2006. LNCS, vol. 4039, pp. 101–114. Springer, Heidelberg
(2006)

14. Sun, C., Rossing, R., Sinnema, M., Bulanov, P., Aiello, M.: Modelling and
managing the variability of web service-based systems. Journal of Systems and
Software 83, 502–516 (2010)

15. Sun, C.-a., Aiello, M.: Towards Variable Service Compositions Using VxBPEL.
In: Mei, H. (ed.) ICSR 2008. LNCS, vol. 5030, pp. 257–261. Springer, Heidelberg
(2008)

RSCMap: Resiliency Planning in Storage Clouds

Vimmi Jaiswal2, Aritra Sen1, and Akshat Verma1

1 IBM Research, India
2 JIMS, India

Abstract. Clouds use economies of scale to host data for diverse enter-
prises. However, enterprises differ in the requirements for their data. In this
work, we investigate the problem of resiliency or disaster recovery (DR)
planning in a cloud. The resiliency requirements vary greatly between dif-
ferent enterprises and also between different datasets for the same enter-
prise. We present in this paper Resilient Storage Cloud Map (RSCMap), a
generic cost-minimizingoptimization framework fordisaster recoveryplan-
ning,where the cost functionmaybe tailored tomeetdiverse objectives.We
present fast algorithms that come up with a minimum cost DR plan, while
meeting all the DR requirements associated with all the datasets hosted
on the storage cloud. Our algorithms have strong theoretical properties: 2
factor approximation forbandwidthminimizationandfixedparameter con-
stant approximation for the general cost minimization problem. We per-
form a comprehensive experimental evaluation of RSCMap using models
for a wide variety of replication solutions and show that RSCMap outper-
forms existing resiliency planning approaches.

1 Introduction

Infrastructure as a Service (IaaS) clouds have rapidly emerged as a popular IT
delivery model to reduce costs and improve resource utilization in data cen-
ters. Data governance and Reliability have emerged as the key challenges in
the adoption of clouds by enterprises. The always-online 24/7 business model of
enterprises today has led to a situation, where downtime leads to direct business
loss and customer erosion. Further, enterprises must comply with many regula-
tions that require data governance. By moving the data into the cloud, end users
lose the ability to govern their own data set and rely on the service providers to
guarantee the safety of their data.

The unique selling point of cloud computing has been a low cost delivery
model, which necessitates multi-tenancy or sharing of resources between end
users and standardized offerings. Multi-tenancy implies that end users with
varying data governance or reliability needs are co-hosted on the cloud. Cloud
providers would increasingly need to provide disaster recovery support for indi-
vidual customers in line with their governance and reliability requirements.

The crux of a disaster recovery plan is data replication [4,5]; where application
data is replicated on same or a different site. Data replication technologies differ
in (a) the time taken to restore data (RTO) (b) the amount of updates lost before
disaster in terms of seconds or minutes (RPO) (c) the impact on application

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 505–512, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

506 V. Jaiswal, A. Sen, and A. Verma

performance due to data replication and (d) the maximum distance that they
can replicate the data. Resilient data replication technologies with quick recovery
are very expensive, and in some cases require expensive network infrastructure as
well [1,2,11]. Hence, applying a common replication technology for all data in the
cloud is infeasible and a replication technology needs to be selected as per user
requirements. Further, the licensing models of various replication technologies
are complicated; differing based on the amount of data being replicated, the
amount of unique updates being made by the applications, the number of users,
and even the number of servers. The diversity amongst the capabilities and costs
of replication technologies makes disaster recovery planning a complex problem.

The easy way out that enterprises take today is to select one replication tech-
nology to mirror all its data in an ad-hoc manner, independent of its criticality.
Such an approach is infeasible in a cloud, which has the goal to provide IT ser-
vices at a low price point. Hence, a formal approach to resiliency planning is a
necessity for emerging clouds.

1.1 Contribtution

The contribution of our work is two-fold. First, we present a formal framework
to study the DR plan composition problem, using realistic models for high per-
formance replication technologies and their costs. To the best of our knowledge,
this is the first attempt to rigorously study the DR plan composition problem.
Secondly, we present an efficient algorithm for the DR plan composition problem
that provides a constant factor approximation for an important sub-class of the
problem. Further, we present extensions of the algorithm for the general case
with an approximation guarantee bounded by the number of parameters in the
cost function, which is typically a constant. Our model and algorithms have been
developed in the context of existing DR Planning tools [8,3,10,12].

2 Model and Problem Formulation

We now present the model for the Plan Composition Problem. We start with
some definitions.

Definition 1. Disaster Recovery Service Class (DRSC): A Disaster Recovery
Service Class denotes a specific class of service in terms of meeting Disaster
Recovery requirements. The DRSCs are named as Gold, Silver, Bronze where
the classification is based on attributes like RTO, RPO, Application Impact,
distance etc.

Definition 2. Data Container: A Data Container Di is any set of logically
grouped data that has identical DR requirements. (e.g., all files of a particular
user (/home/akshat etc) or of a particular type (temp files, mpeg files) that have
the same criticality). For a data container Di, si denotes the space (in terms of
GBytes) and wi denotes the write workload seen by the data container.

RSCMap: Resiliency Planning in Storage Clouds 507

Definition 3. Replication Solution: A Replication Solution Rj is any technol-
ogy that can provides a specific DR Protection for a given failure. Hence, any
Replication Solution has tuples of failure class and DRSC parameters. To take
an example, the IBM Global Mirror solution provides an RTO of 30 mins and
an RPO of 3 seconds for site failure.

Disaster recovery planning essentially consists of two phases [10]. The first phase
is what we term as the matching phase. In the matching phase, we match the
requirements of a data container to replication solutions. Hence, for each data
container Di, we create a set of solutions RSi that meet the DR requirements of
Di. In the second phase called the plan composition phase, we select one replica-
tion solution for each data container such that the overall cost of deploying the
solutions is minimized. This is followed by actual deployment of the computed
plan. The cost-minimizing plan composition is the focus of this work. For more
details on the matching problem and the plan deployment problem, the reader
is referred to [10].

2.1 The DR Cost Minimization Framework

Consider the problem of designing a storage provisioning plan for a set of data
containers, each of which has certain service requirements. Every data container
belongs to a storage service class (SSC), where each SSC has performance,
availability and Disaster Recovery Service Class(DRSC) with it. We focus only
on the Disaster Recovery Service Class in this work. Every data container is
associated with multiple replication solutions that meet its DR requirements
(as a result of the matching step) and its workload information (space si, read
throughput ri and write throughput wi). Every replication solution also has an
associated cost metric, which is a function of the space of data protected by the
replication solution and its characteristics (write rate, read rate, users etc). We
use the terms si, ri, wi to denote the space, read throughput and write through-
put of data container Di and the terms sj , rj , wj to denote the total space, read
throughput and write throughput of all data containers protected by replication
solution Rj . Further, each replication solution transforms the traffic of the data
containers protected by it and this is captured using a bandwidth transforma-
tion factor Bi,j . The output of the problem is a detailed provisioning plan, which
maps a data container to exactly one of its eligible solution, and strives to min-
imize the cost of the overall solution. A formal mathematical description of the
problem is available in an extended report [6].

2.2 Disaster Recovery Service Class (DRSC) Model

The Disaster Recovery Service Class notion captures the important attributes
of disaster recovery. DRSC is used both to denote the DR requirements of a
data container as well as the DR capabilities of a replication solution. A DRSC
consists of the following attributes
– Recovery Time Objective (RTO): Recovery Time Objective is defined as the

maximum time that will be taken to recover data after a disaster.

508 V. Jaiswal, A. Sen, and A. Verma

– Recovery Point Objective (RPO): The Recovery Point objective denotes the
amount of time by which the recovered data lags behind the lost data.

– Application Impact:Application Impact denotes the latency impact that oc-
curs as a result of deploying the replication solution.

– Resource Impact:A replication solution takes away system resources (CPU
cycles, Disk bandwidth), which is captured by resource impact.

– Distance:This represents the maximum supported distance between the
copies of a replication solution.

2.3 Replication Solution Model

A Disaster Recovery requirement is met by deploying a replication technology. A
replication technology is characterized by the RTO, RPO, impact and distance
parameters provided by the technology. In addition, deploying a replication tech-
nology leads to license cost, labour cost, and network costs. The sum of all these
costs is captured as total cost, which we aim to minimize in this work. The
network costs of replication are determined by the amount of network traffic
generated due to the technology. A synchronous replication solution generates
network traffic equal to the total amount of writes on the data container. Hence,
the network bandwidth provisioned equals the peak write rate (or burst rate) to
the data container. On the other hand, an asynchronous replication technology
only needs network bandwidth equal to the average write rate. Further, some
technologies like IBM Global Mirror use techniques like write-coalescing to re-
duce the number of writes and need to provision only for unique writes. We
use the bandwidth transformation function Bi,j is to capture the real network
bandwidth required by the replication solution.

3 Model Assumptions

We now use insights from the practical setting of the Plan Composition problem
to simplify the problem. The reader may observe that all the restricted versions
of the problem we consider that take into account the practical constraints of the
problem are also NP-hard. We first make the simplifying assumption that the
amount of data to be protected by any DR Service Class is more than the space
taken by a single instance of any replication solution. One may observe that this
is true for public as well as private clouds that protect a large amount of data.
We now investigate more intricate properties about the replication solution sets
RSi that are typically true in real deployments.

3.1 Pure Subset Replication Set Property

We observe that a replication solution that can meet the Gold service class would
also meet Silver or Bronze service class. Hence, any data container that requires
a low level DR protection can use all the replication solutions that provide
protection for that or any higher class for the given failure type. We capture this
real-life constraint in the Pure Subset Replication Set Property defined next.

RSCMap: Resiliency Planning in Storage Clouds 509

Definition 4. Pure Subset Replication Set: A Plan Composition problem is said
to satisfy the Pure Subset Replication Set Property if

∀Di, Dj RSi ∩ RSj �= φ ⇒ RSi ⊆ RSj or RSj ⊆ RSi (1)

3.2 Traffic Independent Bandwidth Transformation

The replication bandwidth generated by a replication solution typically depends
entirely on the replication technology being used and not on the properties of
the data container. We use this fact to simplify the bandwidth transformation
function (Bi,j) from being a function of both the replication technology Rj and
data container Di to being a function Bj of only the replication technology Rj .
This greatly simplifies the problem since the the cost of a replication solution
only depends on additive properties of data containers (space, burst rate, write
rate etc for multiple data containers can be added to obtain the parameters for
the replication solution whereas Bi,j can not be added).

4 RSCMap Algorithms

We now present fast algorithms that solve the plan composition problem and
prove approximation guarantees for the algorithms. We first present algorithms
for a simplified version of the problem, where cost is only a function of the size of
data being protected, i.e., Cost of a replication technology is a function of only
the total space taken by all the data containers protected by the technology.
This one-dimensional cost problem, as noted earlier, is also NP-hard and is of
independent interest, since it captures the bandwidth minimization variant of
the plan composition problem. Moreover, we will later enhance the algorithm to
work with multiple parameters or multi-dimensional cost functions.

4.1 Algorithms for the One-Dimensional Cost Problem

In the One-dimensional variant of the problem, cost of a replication technology
is dependent on only one parameter. We assume that cost is a function of space,
i.e., Costj = C(sj), while noting that the same formulation and results hold for
any other dimension as well.

A Plan Composition algorithm makes two decisions: (i) Pick a [cost,space]
point for each selected replication technology and (ii) map data containers to
a selected replication technology for DR protection. In order to solve the first
problem, we use the greedy strategy of filling up as much space as possible at the
least cost. Hence, we favour replication solution corner points min{Aj} that can
provide protection to data at the least cost per unit amount of data protected.
(From now on, we use replication solution Rj to indicate Rj at the least slope
corner point) This greedy strategy may lead to incompletely filled replication so-
lutions Rj (or equivalently incompletely filled replication solution corner points
min{Aj}) and we bound this fragmentation cost by separately listing these par-
tially filled replication solutions, to add to the least slope solutions later. For

510 V. Jaiswal, A. Sen, and A. Verma

the second problem, we pick the data container Di to be protected first that
have the minimum number of eligible replication technologies (smallest |RSi|).
The LeastSlopeFirst (LSF) algorithm greedily picks replication technologies and
bounds the cost due to fragmentation. The selectMostConstrainedDC method
captures the data container selection technology. The procedures used by LSF
are detailed next.
Definition 5. selectMostConstrainedDC Selection: Given a set of data
containers Di, a replication solution Rj, and a space constraint s∗j ,
selectMostConstrainedDC sorts the data containers by the arity of their list
of feasible replication solutions. It then keeps on adding data containers from
the sorted list to its selection, till the accumulated space of the selected data
containers equals s∗j .

Definition 6. PickBest Procedure: Given a set of k partial matches PMk and
a match M , the PickBest procedure returns the minimum cost subset of PMk

and M that covers all the data containers.
We proved the optimality of the selectMostConstrainedDC data container se-
lection process and then use it to prove approximation guarantees on LSF . For
lack of space, all proofs have been omitted and are available in [6].
Lemma 1. selectMostConstrainedDC is a Maximum Matching Selection.
Theorem 1. The LeastSlopeFirst algorithm returns a plan P such that the cost
CP of the plan is no more than twice the cost CO of the optimal solution O.

4.2 Algorithms for General Cost Functions

We now consider the k-dimensional version of the Plan Composition problem,
where the cost of a replication solution depends on k parameters/dimensions,
from d1 to dk. Since any traffic transformation (e.g., bandwidth transformation)
is already captured in the cost function (Sec. 3.2), the value of a replication solu-
tion Rj across any dimension dl is summation of the value along the dimension
dl all the data containers protected by Rj .

∀l ∈ [1, d], ∀j ∈ [1, m], dl
j =

N∑
i=1

xi,jd
l
i (2)

Our strategy remains the same as in LSF . We pick replication solutions that
can protect data containers at the least cost per unit amount of data protected.
However, since data containers have more than one relevant dimension now, we
need to make a slight modification. In our first version, we order dimensions by
their relative cumulative sizes (dl

a =
∑N

i=1 dl
i). We then pick the dimension dmax

with the greatest accumulated sum (maxk
l=1 dl

a) and order replication solution
corner points by δCj

δdmax
j

. We follow the LSF procedure with the dimension dmax

replacing the space parameter s. Once, we use up the dimension dmax, we use the
next largest dimension and continue till we have protected all data containers
(currDC = φ).

RSCMap: Resiliency Planning in Storage Clouds 511

We also make the following enhancement to selectMostConstrainedDC to
capture the affinity of data containers with specific dimensions. When two or
more data containers have the same arity, we use a tie-breaker method to choose
an ordering among them. For tie breaking, we consider the solid angle the data
container’s requirement vector makes with the dominant dimension axis. We first
select containers whose requirement runs only along the dominant dimension, in
decreasing order of magnitude. We next select containers in decreasing order of
their solid angle computed in the previous step. We add data containers from
this sorted list to its selection, till the accumulated value in any dimension of
the selected data containers equals the capacity of the replication solution in
that dimension. To illustrate the strategy, consider a hyper-cuboid, where we
move along the dominant dimension until we hit its wall. We then pick another
dimension to move along. We have proved the following result for the algorithm.

Theorem 2. Multi-dimensional LSF returns a plan that has a cost no more
than 2k times the cost of the optimal solution.

We now propose a variant of Multi-dimensional LSF called LSAF that also has
an approximation guarantee of 2k. However, it satisfies additional theoretical
properties, which may lead to a better approximation guarantee. The LeastSoli-
dAngleFirst (LSAF) algorithm differs from multi-dimensional LSF by ordering
the replication solutions by δC

δ
√∑

k
l=1(d

l)2
. Hence, LSAF uses the derivative of

the cost (or the solid angle) to pick the replication solutions. If at any given
time, it consumes any particular dimension than it removes that dimension from
the derivative calculation. Hence, the method has a list of active dimensions,
which is initialized with all the dimensions and pruned as one or more dimen-
sions get exhausted. To take a geometric view, if the process hits any walls of
the hyper-cuboid, it takes out that dimension from any future calculations (i.e.
the set of active dimensions). Along the lines of theorem 2, one can show that
LSAF provides an approximation guarantee of 2k. However, note that LSAF
always incurs less cost per unit distance traveled in the protected space of ac-
tive dimensions than the optimal. On the other hand, the optimal can travel
along the diagonal whereas LSAF can be forced to travel along the sides of the
hypercuboid. We have proved the following results.

Lemma 2. The total distance traveled by LSAF is no more than
√

(k) times
the distance traveled by optimal.

5 Related Work and Conclusion

Disaster Recovery in data centers has attracted a lot of attention in recent times
with work on improved replication mechanisms [7], modeling dependability of
a system [9], planning papers [8,3,10], plan deployment papers [10] and recov-
ery papers [12]. Nayak et al. present an end-to-end disaster recovery planning
and deployment tool whose focus is on the match-making phase and plan de-
ployment [10]; our work is geared towards providing the optimization engine for

512 V. Jaiswal, A. Sen, and A. Verma

the plan composition phase. Keeton et al. [8] tackle the problem of creating a
cost-effective disaster recovery plan for a single application site and extend it
in [3] to include shared applications. They use a linear cost model, which does
not take into account price-bundling, which makes the cost functions incapable
of capturing many typical planning scenarios. Further, they do not propose any
optimization algorithms and suggests using off-the-shelf algorithms. The opti-
mization algorithms used (including the new one in [3]) are based on mixed-
integer programming and expensive, making them unsuitable for use in highly
interactive disaster recovery planning tools [10]. Hence, earlier planning work
[8,10,3] only provide a framework for DR planning without efficient algorithms,
and this is exactly the deficiency that we address. In this way, our work com-
plements earlier work; by using the match-making methodologies of [10] and the
cost-functions proposed in [8,3] for the optimization framework. Our proposed
algorithms provide the last missing piece required for integrated DR Planning.

References

1. Datamonitor Computer Wire Article,
http://www.computerwire.com/industries/research/?pid=1CEC81FD-5FDA-

41D8-8FFC-79A959A87FD7

2. Synchronous Optical Network,
http://www.iec.org/online/tutorials/acrobat/sonet.pdf

3. Gaonkar, S., Keeton, K., Merchant, A., Sanders, W.H.: Designing Dependable Stor-
age Solutions for Shared Application Environments. In: Proc. DSN (2006)

4. IBM TotalStorage Solutions for Disaster Recovery. In: IBM Redbook,
http://www.redbooks.ibm.com

5. IBM TotalStorage Business Continuity Solutions Overview. In: IBM Redbook,
http://www.redbooks.ibm.com

6. Jaiswal, V., Sen, A., Verma, A.: RSCMap: Resiliency Planning in Storage Clouds.
In: IBM Technical Report RI11012 (2011)

7. Ji, M., Veitch, A., Wilkes, J.: Seneca: remote mirroring done write. In: Proc.
USENIX Annual Technical Conference (2003)

8. Keeton, K., Santos, C., Beyer, D., Chase, J., Wilkes, J.: Designing for Disasters.
In: Proc. USENIX FAST (March 2004)

9. Keeton, K., Merchant, A.: A framework for evaluating storage system dependabil-
ity. In: Proc. DSN (2004)

10. Nayak, T., Routray, R., Singh, A., Uttamchandani, S., Verma, A.: End-to-end
Disaster Recovery Planning: From Art to Science. In: IEEE NOMS (2010)

11. Oracle License Prices, http://www.pro-dba.com/pricing.html
12. Verma, A., Voruganti, K., Routray, R., Jain, R.: SWEEPER: An Efficient Disaster

Recovery Point Identification Mechanism. In: Usenix FAST (2008)

http://www.computerwire.com/industries/research/?pid=1CEC81FD-5FDA-41D8-8FFC-79A959A87FD7
http://www.computerwire.com/industries/research/?pid=1CEC81FD-5FDA-41D8-8FFC-79A959A87FD7
http://www.iec.org/online/tutorials/acrobat/sonet.pdf
http://www.redbooks.ibm.com
http://www.redbooks.ibm.com
http://www.pro-dba.com/pricing.html

Dynamically Selecting Composition Algorithms

for Economical Composition as a Service

Immanuel Trummer and Boi Faltings

Artificial Intelligence Laboratory
Ecole Polytechnique Fédérale de Lausanne

{immanuel.trummer,boi.faltings}@epfl.ch

Abstract. Various algorithms have been proposed for the problem of
quality-driven service composition. They differ by the quality of the re-
sulting executable processes and by their processing costs. In this paper,
we study the problem of service composition from an economical point of
view and adopt the perspective of a Composition as a Service provider.
Our goal is to minimize composition costs while delivering executable
workflows of a specified average quality. We propose to dynamically se-
lect different composition algorithms for different workflow templates
based upon template structure and workflow priority. For evaluating our
selection algorithm, we consider two classic approaches to quality-driven
composition, genetic algorithms and integer linear programming with dif-
ferent parameter settings. An extensive experimental evaluation shows
significant gains in efficiency when dynamically selecting between differ-
ent composition algorithms instead of using only one algorithm.

Keywords: Quality-Driven Service Composition, Composition as a
Service, Dynamic Algorithm Selection.

1 Introduction

Over the last years, large scale, public registries for Web services have been
emerging. These include domain-specific registries (e.g. biology1, geospatial Web
services2) as well as general purpose registries such as Seekda!3 which currently
advertises over 28.000 Web services. Due to the large number of available ser-
vices, a common situation is that several services are able to fulfill the same
functionality. In order to select between them, non-functional properties such as
service availability and response time can be taken into account. This issue is at
the heart of quality-driven service composition [12] (QDSC). In QDSC, tasks of
an abstract workflow are associated with sets of functionally equivalent services
which differ in their non-functional properties. The goal is to select one service for
every task such that the aggregated quality properties of the workflow are opti-
mized while certain minimum requirements are fulfilled. Various algorithms have
1 http://www.biocatalogue.org/
2 http://services.eoportal.org/
3 http://webservices.seekda.com/

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 513–522, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

514 I. Trummer and B. Faltings

been proposed for QDSC. Some of them produce optimal executable workflows
but have high resource requirements, others sacrifice optimality for efficiency. In
this paper, we propose to select different composition algorithms for different
workflow templates in order to maximize the overall performance. The selection
should consider structural properties of the template as well as workflow pri-
ority. Classifying workflow templates according to structural properties allows
to predict the behavior of composition methods more accurately. Considering
workflow priority allows to select high-quality composition algorithms for high-
priority workflows and high-efficiency algorithms for low-priority workflows.

The original scientific contributions of this paper are i) an algorithm that maps
workflow templates to composition algorithms, minimizing the overall processing
costs for a specified average target quality, and ii) an extensive experimental
evaluation of our algorithm in comparison to naive approaches. The remainder of
the paper is organized as follows. In Sect. 2, we present a motivating scenario, in
Sect. 3 the corresponding formal model. We review related literature in Sect. 4.
In Sect. 5, we describe our approach in detail, followed by the experimental
evaluation in Sect. 6. We conclude with Sect. 7.

2 Motivating Scenario

We adopt the perspective of a fictive Composition as a Service provider as de-
scribed and motivated by Rosenberg et al. [10] and Blake et al. [4]. Fig. 1 shows
an overview of the corresponding architecture. Clients are companies with a
portfolio of business processes corresponding to different products and services
(presumably more than one). Clients submit their whole portfolio as set of com-
position requests to the composition service. Every request is associated with
a specific workflow template, minimum requirements on the QoS of the exe-
cutable process, and a utility function weighting between different QoS of the
executable process. Clients subscribe and pay for regularly receiving executable
processes corresponding to their requests. It is necessary to repeat the compo-
sition regularly since the set of available services may change. We consider the
processing cost for the provider to be proportional to the running time of the
used composition algorithms (this is the case if an Infrastructure as a Service
offer like Amazon EC2 [1] is used). The 80/20 rule predicts strong variations
in the relative importance of different products and services in industry [8]. It
is plausible that this translates to different priorities of the workflows within
the portfolio. We will use the number of workflow executions per time unit as
priority measure while different measures could be applied as well. Clients spec-
ify the expected number for every workflow (eventually using a rough estimate
first and refining it later). The composition provider can exploit this information
and select computationally cheap composition algorithms for less frequently ex-
ecuted workflows. These cost savings can in part be passed on to the clients. We
assume that the composition provider has set a target average quality for the
resulting compositions and assigns requests to algorithms in order to minimize
the processing cost while guaranteeing this average quality.

Dynamically Selecting Composition Algorithms 515

Composition
Service

Client Request
-Workflow template
-Minimum QoS
-Utility function
-No. executions

Composition as a Service Infrastructure

Algorithm Selection

Composition
Algorithm 1

Composition
Algorithm 2 ...

Service
Registry

Infrastructure as a Service Provider

Client

Client Business Process Portfolio

Executable
Workflow

Fig. 1. Architectural overview

3 Formal Model

Our model is similar to the one presented by Zeng et al. [12] and makes the same
fundamental assumptions. QDSC starts from an abstract workflow W . Every
task of W is associated with a set of services which fulfill the required function-
ality. Those services expose different non-functional properties. We denote the
set of relevant quality properties by A and by QoS(s, a) the value of attribute
a ∈ A for service s. A binding is a function that maps every workflow task to
one service in its associated set. The selected binding will determine the aggre-
gated quality properties of the workflow as a whole. We denote by QoS(W, B, a)
the value of attribute a for workflow W and binding B. Zeng et al. [12] have
shown how to map QoS values to the interval [0, 1] such that 1 corresponds to
best quality. Hence, we have QoS(W, B, a) ∈ [0, 1]. Depending on the attribute
type, different aggregation functions must be used. Dumas et al. [7] classify QoS
attributes into additive, multiplicative, and attributes whose value is aggregated
over the critical path. We consider attributes where the value is aggregated as
sum (e.g. response time) or as product (e.g. reliability) over the tasks on the
(previously known) critical path.

In QDSC, the goal is to find a binding for a workflow such that (i) cer-
tain minimum requirements on the quality of the composite workflow are re-
spected, and (ii) a user-defined measure of optimality on the quality attributes
of the workflow is optimized. Assuming that the attributes in A are ordered
(A = {a1, a2, . . . , an}), we can express the quality requirements on the compos-
ite workflow as vector −→r = (r1, . . . , rn). A valid binding B must satisfy (1).

∀i ∈ {1, . . . , n} : QoS(W, B, ai) ≥ ri (1)

The ranking between different admissible bindings depends on the preferences
of the user. Some users will prefer having a lower response time even if this does
mean additional invocation costs, for other users it may be the inverse. Users

516 I. Trummer and B. Faltings

specify their preferences via a vector of weights −→w = (w1, . . . , wn) where the
sum over all components is 1: |−→w | = 1. We define the utility of a binding B:

Utility(W, B,−→w) =
∑

i∈{1,...,n}
wiQoS(W, B, ai) (2)

For a fixed set of available services, requirements and preferences, we define the
relative quality of a binding B by comparison with the optimal binding Bopt:

relQuality(B, W,−→r ,−→w) =
Utility(W, B,−→w)

Utility(W, Bopt,
−→w)

(3)

We assume that workflows are associated with an expected number of executions
(during a specific time period) nExec. In our model, the number of executions
determines the relative importance between workflows in the same set. In sum-
mary, a composition request CR is defined by the tuple CR = (W,−→r ,−→w , nExec).
Clients submit sets of composition requests crSet = {CRi} and obtain a set of
pairs resultSet = {(CRi, Bi)} with corresponding bindings for every request.
The relative quality of a result set is the weighted average over the relative
quality of all included bindings weighted by the number of executions:

relQuality(resultSet) =
∑

i relQuality(Bi, Wi,
−→r i,

−→w i) · nExeci∑
i nExeci

(4)

4 Related Work

Among the most popular approaches for QDSC are integer linear programming
and genetic algorithms. We will use these two approaches in different config-
urations for evaluating our dynamic selection algorithm. An Integer Linear
Program (ILP) consists of a set of variables, a set of linear constraints and a
linear objective function. After having translated the QDSC problem into this
formalism, specific solver software such as CPLEX [2] can be used. Examples for
this approach include the work by Zeng et al. [12] and Ardagna et al. [3]. Canfora
et al. [5] introduced Genetic Algorithms (GA) for QDSC. Individuals of the
population correspond to different bindings, their genes to the workflow tasks and
the possible gene values to the available services. While GAs do not guarantee
to find the optimal solution, they can be more efficient than ILP-based methods
(which have exponential worst-case time complexity). By tuning parameters like
the number of iterations, the probability of finding a close-to-optimal solution
can be improved. Various other approaches have been applied to QDSC. Many
of them offer specific parameters for trading result quality for lower running time
(e.g. [6,11]). Such parameters can be leveraged by our selection algorithm for
reducing the composition effort for low-priority workflows.

5 Approach for Selecting Composition Algorithms

In this section we will present an algorithm that maps composition requests to
composition methods. The goal is to guarantee an average quality for the result

Dynamically Selecting Composition Algorithms 517

set while minimizing the composition cost. In Sect. 5.1, we describe a preliminary
filtering for composition methods, in Sect. 5.2 the selection algorithm.

By Methods we designate the set of composition methods. Every method
refers to a specific algorithm with a specific parameter setting (e.g. genetic algo-
rithm with population size 50 chromosomes and 100 generations). For selecting
between different methods, we characterize them by the delivered average rela-
tive quality (see (3)) and invocation cost. However, the behavior of composition
methods depends on the properties of the composition request (e.g. the running
time of an ILP method correlates with the number of workflow tasks). We as-
sume that requests can be classified such that the behavior does not vary too
much for requests within the same class. RequestClasses designates the set of
classes, class(cr) the class of a request cr. We characterize methods for specific
classes using the functions Ecost (expected cost) and ErelQ (expected relative
quality)—data can be gained by experiments with representative request sets:

Ecost : Methods× RequestClasses −→ N (5)
ErelQ : Methods× RequestClasses −→ [0, 1] (6)

5.1 Initialization: Filtering Composition Methods

During initialization, each request class is assigned to a set of recommended
composition methods. The result is the function

efficientMethods : RequestClasses → P(Methods) (7)

Initially, all methods are considered efficient for all request classes. Then, two
filtering steps are performed for each request class separately based upon the
experimental data. First, composition methods have to be filtered out that risk
to produce workflows of too low quality. We only consider average quality during
our dynamic selection, therefore this step is important—having single bindings
of very bad quality within the result set may dissatisfy clients even if the average
quality is good. Further, methods can be filtered out for certain request classes
if they are dominated by other methods, meaning that they have higher cost
and deliver lower average quality. Filtering out dominated methods diminishes
the search space for the dynamic selection and improves therefore the efficiency.

5.2 Mapping Composition Requests to Composition Methods

Every time that a new set of composition requests is submitted by the client,
the requests in the set have to be mapped to composition algorithms based upon
their relative importance and request class. This mapping has to be done effi-
ciently since the mapping time adds as overhead to the total processing time.
Our goal is to minimize the processing cost of the request set while the minimum
requirements on the average quality must be met. We will show how our mapping
problem can be reformulated as multi-choice 0-1 knapsack problem (MCKP) [9].

518 I. Trummer and B. Faltings

Algorithm 1. Select and execute composition methods for request set
1: function TreatRequestSet(crSet, efficientMethods, Ecost, ErelQ, tQ)
2: // Transform selection problem into multi-choice 0-1 knapsack
3: weightLimit ← 0
4: for all cr = (W,−→r ,−→w , nExec) ∈ crSet do
5: optM(cr) ← argmaxm∈efficientMethods(class(cr))(ErelQ(m, class(cr)))
6: mckItems(cr) ← ∅
7: for all m ∈ efficientMethods(class(cr)) \ {optM(cr)} do
8: costSavings ← Ecost(optM(cr), class(cr)) − Ecost(m, class(cr))
9: qualityLoss ← ErelQ(optM(cr), class(cr)) − ErelQ(m,class(cr))

10: newItem ← (m, qualityLoss · nExec, costSavings)
11: mckItems(cr) ← mckItems(cr)∪ {newItem}
12: end for
13: weightLimit ← weightLimit + nExec · (ErelQ(optM(cr), class(cr)) − tQ)
14: end for
15: mckSelected ← approximateKnapsack(crSet, mckItems,weightLimit, ε)
16: // Use approximated solution and call corresponding composition methods
17: resultSet ← ∅
18: for all cr ∈ crSet do
19: if mckSelected(cr) =⊥ then
20: binding ← Execute(optM(cr), cr)
21: else
22: (m, qualityLoss, costSavings) ← mckSelected(cr)
23: binding ← Execute(m, cr)
24: end if
25: resultSet ← resultSet ∪ {(cr, binding)}
26: end for
27: return resultSet
28: end function

This problem is NP-hard but can be approximated efficiently using a fully poly-
nomial time approximation scheme (FPTAS). Such an approximation scheme
guarantees polynomial running time and a close-to-optimal solution. If the op-
timal utility value for a given problem instance is Popt, then the approximation
scheme finds a solution with utility value at least P such that Popt −P ≤ ε ·Popt

where ε can be chosen. The running time grows polynomial in 1
ε and in the size

of the problem. We use the MCKP FPTAS by Lawler [9] for our implementation.
Alg. 1 is executed every time a client submits a set of composition requests. It

takes as input the submitted request set crSet, the set of recommended methods
for every request class efficientMethods, the characteristics of the available
methods ErelQ, Ecost, and the targeted relative quality of the result set tQ. In a
first phase, the algorithm reformulates the problem of selecting optimal methods
for every composition request as MCKP. The classes correspond to the different
requests that have to be treated. Items within a specific class are associated with
composition methods. Selecting an item for a class symbolizes the choice of the
associated composition method for treating the request corresponding to that
class. The item weight corresponds to the quality loss in comparison with the

Dynamically Selecting Composition Algorithms 519

optimal method, weighted by the number of executions. The total weight limit
is proportional to the total number of executions of all workflow templates in
the request set. It integrates the distance between target quality tQ ∈ [0, 1] and
the expected quality of the best method for every request. We want to minimize
the processing cost, a solution to the MCKP is optimal once it maximizes the
aggregated profit. Therefore, item profits correspond to cost savings that can be
realized by choosing the associated method instead of the optimal one.

The item associated with the optimal method has weight and profit 0. This
is equivalent to selecting no element in the class. Therefore, we do not integrate
these items and interpret an empty selection for a class as selection of the optimal
method for the corresponding request. The algorithm uses the auxiliary function
approximateKnapsack which implements the FPTAS proposed by Lawler [9].
The functions takes as input the set of item classes, the sets of items for every
class, the weight limit and the accuracy ε (Lawler’s algorithm works with integer
weights hence we round weights to percent). It returns a function that assigns
classes to selected items or to ⊥ if no item was selected. The algorithm uses
the auxiliary function Execute(m, cr) which executes m on cr and returns the
produced binding. The set of pairs between bindings and requests is returned.

Example 1. Let crSet = {cr1, cr2} with cl1 = class(cr1) and cl2 = class(cr2),
we have nExec = 10 for both requests. Assume that methods m1 and m2 are effi-
cient for cl1 with ErelQ(m1, cl1) = 0.9, ErelQ(m2, cl1) = 0.8, Ecost(m1, cl1) =
10, and Ecost(m2, cl1) = 5. Only m1 is efficient for cl2 with ErelQ(m1, cl2) =
0.95 and Ecost(m1, cl2) = 5. Our algorithm generates item set {(m2, 1.0, 5)} for
knapsack class cl1 and ∅ for cl2. The weight limit is 2.5 for tQ = 0.8.

6 Experimental Evaluation

In this section, we experimentally evaluate our dynamic selection approach. In
subsection 6.1, we benchmark two classic algorithms for QDSC—integer linear
programming and genetic algorithms—in different configurations for different
classes of composition queries. The experimental data we obtain in subsection 6.1
forms the input for our selection algorithm that we evaluate in subsection 6.2.

We implemented a test suite in Java that randomly generates composition
requests including workflow templates and available services. We treat workflows
with between 5 and 45 tasks. We considered 8 quality attributes for services: two
additive attributes that depend on all tasks, two that depend only on critical
tasks, two multiplicative attributes that depend on all tasks, and two that depend
only on critical tasks. The QoS properties of services were chosen with uniform
random distribution. We considered 50 functional categories and generated 100
services for every category. Workflow tasks were randomly assigned to functional
categories. The probability that a task belongs to the critical path for one of
the quality attributes that depend only on critical tasks was 50%. The quality
weights were chosen randomly as well as the quality requirements which were
chosen with uniform distribution between 0.01 and 0.5. The number of workflow
executions for every single request was chosen out of a Pareto distribution as

520 I. Trummer and B. Faltings

0

200

400

600

800

1000

0.8 0.85 0.9 0.95 1

Co
m

po
si

tio
n

Ti
m

e
(m

s)

Relative Composition Quality

ILP
GA 200
GA 100
GA 50
GA 10

(a) Workflows with 5 to 15 tasks

0
500

1000
1500
2000
2500
3000
3500

0.8 0.85 0.9 0.95 1

Co
m

po
si

tio
n

Ti
m

e
(m

s)

Relative Composition Quality

ILP
GA 200
GA 100
GA 50
GA 10

(b) Workflows with 31 to 45 tasks

Fig. 2. Characteristics of composition methods for different request classes

motivated before. For implementing the ILP based algorithm, we used IBM
ILOG CPLEX 12.1 [2] as solver. We set the thread count to 1 and used the
default parameters otherwise. For the GA composition approach, we use the
same Java libraries and settings as Canfora et al. [5]. However, we vary the
number of generations between 10 and 200. The approximation algorithm for
the MCKP was implemented in Java as well. All experiments were executed on
a 2.53 GHz Intel Core Duo processor with 2.5 GB RAM running Windows 7.

6.1 Benchmarking and Filtering Composition Methods

In this section, we characterize different configurations of the two composition
algorithms. We partitioned requests into 3 classes, based upon the number of
workflow tasks (5 − 15, 16 − 30, and 31 − 45 tasks). Note that a more fine-
grained partitioning could additionally consider different request properties like
the strength of the quality requirements. For every class we generated 100 test
cases (corresponding to a randomly generated registry and workflow request).
We executed every method 10 times for every test case and take the arithmetic
average execution times. Fig. 2 shows the characteristics of different composition
methods within the cost-quality space. For determining the relative quality, we
compared with the optimal solution produced by ILP. We benchmark GA with
different numbers of generations (10, 50, 100, and 200).

We make the following observations. i) The only case of dominance between
different methods occurs for small workflows: ILP dominates GA 200 since it
delivers better quality at lower cost. ii) The running time of the GA-based
methods is approximately proportional to the number of generations and the
average number of tasks. The growth of composition time for the ILP approach
is over-proportional such that “GA 200” is not dominated anymore for large
workflows. iii) For the same number of generations, the relative quality of the
genetic algorithms slightly decreases when the number of workflow tasks grows.
iv) The standard deviation was always below 1% (of average value) for the
relative quality while reaching up to 9% for the running time.

Dynamically Selecting Composition Algorithms 521

0

1000

2000

3000

4000

5000

Pr
oc

es
si

ng
 T

im
e

in
 m

s Naive ~Opt 0.1 Selection

Low-Cost
(tQ=0.9)

Standard
(tQ=0.95)

Premium
(tQ=0.99)

Low-Cost
(tQ=0.9)

Standard
(tQ=0.95)

Premium
(tQ=0.99)

20 Requests per Set 50 Requests per Set

Fig. 3. Comparison of naive and optimized selection approaches

5000

3474
33

1104

389 ILP
GA 200
GA 100
GA 50
GA 10

Optimized Selection Naive Selection

(a) Premium composition (tQ=0.99)

1876

1818

1306 1306

41

3653

ILP
GA 200
GA 100
GA 50
GA 10

Optimized Selection Naive Selection

(b) Low-Cost composition (tQ=0.9)

Fig. 4. No. selections for composition methods (100 times 50 requests per set)

6.2 Evaluating Selection Algorithms

We compare our near-optimal selection approach with ε = 0.1 to a naive al-
gorithm. Both variants work with the data from the previous subsection. The
naive approach selects for a given request cr and target average quality tQ
the composition method m ∈ efficientMethods(class(cr)) which has mini-
mum expected cost among the methods that deliver the required target quality
ErelQ(m, class(cr)) ≥ tQ. Fig. 3 shows the results of our comparison with 5%
confidence intervals. We generated and solved 100 request sets and report the
arithmetic average times. We compare the two selection algorithms for request
sets of different size (20 and 50 requests) and different quality requirements (from
tQ = 0.9 to tQ = 0.99). Our criterion is the total processing time per request set.
For the near-optimal selection strategy, we divide the time into time required
to map requests to algorithms and time required for executing the selected al-
gorithms. We observe the following. i) The processing time increases for higher
number of requests and increasing quality requirements. ii) The time for the
selection phase accounts only for between 0.2% and 4% of the total processing
time for the near-optimal selection. iii) Our selection approach takes only 40%
(37%) of the time of the naive approach for 20 requests per set (50 requests per
set) and for tQ = 0.9, 40% (41%) for tQ = 0.95, and 71% (70%) for tQ = 0.99.

522 I. Trummer and B. Faltings

We verified that the relative quality of the result sets (rounded to percent) pro-
duced by our approach always met the specified bounds. Fig. 4 shows how many
requests the different selection approaches assigned to the different composition
methods. ILP is the dominant method for high target quality (tQ = 0.99) while
GAs dominate for lower quality (tQ = 0.9). Our approach is able to select more
low-cost composition methods which explains the higher efficiency.

7 Conclusion

In this paper, we classify existing composition algorithms in terms of running
cost and expected quality. We dynamically assign different workflow templates
to different composition algorithms based upon template structure and relative
importance. Our experimental evaluation shows that our approach reduces com-
position cost significantly while introducing little overhead.

Acknowledgments. We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “SOSOA: Self-Organizing
Service-Oriented Architectures” (SNF Sinergia Project No. CRSI22 127386/1).

References

1. Amazon elastic compute cloud, http://aws.amazon.com/ec2/
2. Ibm ilog cplex, http://www.ibm.com/software/products/de/de/ibmilogcple/
3. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE

Transactions on Software Engineering, 369–384 (2007)
4. Blake, M., Tan, W., Rosenberg, F.: Composition as a service (web-scale workflow).

Internet Computing 14(1), 78–82 (2010)
5. Canfora, G., Di Penta, M., Esposito, R., Villani, M.: An approach for QoS-aware

service composition based on genetic algorithms. In: Conf. on Genetic and Evolu-
tionary Computation, pp. 1069–1075. ACM (2005)

6. Comes, D., Baraki, H., Reichle, R., Zapf, M., Geihs, K.: Heuristic Approaches for
QoS-Based Service Selection. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M.
(eds.) ICSOC 2010. LNCS, vol. 6470, pp. 441–455. Springer, Heidelberg (2010)

7. Dumas, M., Garćıa-Bañuelos, L., Polyvyanyy, A., Yang, Y., Zhang, L.: Aggregate
Quality of Service Computation for Composite Services. In: Maglio, P.P., Weske,
M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 213–227.
Springer, Heidelberg (2010)

8. Koch, R.: Das 80-20-Prinzip. Campus-Verl. (1998)
9. Lawler, E.: Fast approximation algorithms for knapsack problems. In: 18th Annual

Symposium on Foundations of Computer Science, 1977, pp. 206–213. IEEE (1977)
10. Rosenberg, F., Leitner, P., Michlmayr, A., Celikovic, P., Dustdar, S.: Towards

composition as a service-a quality of service driven approach. In: Int. Conf. on
Data Engineering, pp. 1733–1740. IEEE (2009)

11. Trummer, I., Faltings, B.: Optimizing the Tradeoff between Discovery, Composi-
tion, and Execution Cost in Service Composition. In: Int. Conf. on Web Services
(2011)

12. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
aware middleware for web services composition. IEEE Transactions on Software
Engineering 30(5), 311–327 (2004)

http://aws.amazon.com/ec2/
http://www.ibm.com/software/products/de/de/ibmilogcple/

A Service Model for Development and Test Clouds

Debdoot Mukherjee1, Monika Gupta1,
Vibha Singhal Sinha1, and Nianjun Zhou2

1 IBM Research – India
{debdomuk,monikgup,vibha.sinha}@in.ibm.com

2 IBM TJ Watson Research Center
jzhou@us.ibm.com

Abstract. A Development & Test Cloud (DTC) enables IT service enterprises to
host standardized configurations of just about any tool-set on cloud – the hosted
software need not be designed for multi-tenancy and they may come from a multi-
tude of vendors. However, since most enterprise software are available only under
perpetual licenses, DTCs cannot become truly pay-per-use – customers of a DTC
have to upfront purchase software licenses. This paper proposes a service model
for a DTC vendor wherein the vendor purchases software licenses and recovers
the cost from its clients based on their period of usage. Our model allows the ven-
dor to maximize returns from a purchased license by using it in multiple projects
separated in time. We set up an optimization problem to decide how best a DTC
operator can invest in buying software licenses such that it gets maximum op-
portunity to resale purchased licenses. We conduct empirical studies to validate
the feasibility and usefulness of our approach. Also, we enlist characteristics of
tool-sets that make them profitable for the DTC vendor.

1 Introduction

Even as the economy recovers from the downturn, IT services enterprises continue to
cut down on all forms of operational expenditure so that receding profit margins of ser-
vices contracts do not affect their balance sheets adversely. All large companies with
massive, geographically distributed workforces are upset with burgeoning IT support
costs, under-par utilization of hardware resources and sub-optimal management of soft-
ware licenses. Again, they wish to improve productivity of their personnel by equip-
ping them with the latest developer toolsets, which often require advanced hardware
configurations to run effectively. A cloud based service delivery environment addresses
the above issues and offers many interesting possibilities toward shaping the next gen-
eration IT services enterprise. Using a high performance cloud platform for hosting
development and test environments, not only reduces IT infrastructure and support
costs drastically but also helps to streamline delivery by provisioning pre-configured,
standardized toolsets and leads to significant improvements in developer productivity.
Moreover, it empowers lines-of-businesses (LOBs) in an enterprise with extreme agility
to contend changing market realities; they can easily scale up or scale down their IT in-
frastructure because they do not incur any capital expenditure to own hardware/software
but simply pay a price as per their usage.

A Development & Test Cloud (DTC) comes across as a unique offering specifi-
cally designed to ensure application development and maintenance activities can move

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 523–531, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

524 D. Mukherjee et al.

to the cloud. A DTC is a service environment that can automatically provision pre-
configured, integrated sets of software on hardware configurations chosen by the user
(See our technical report [5] for details on DTC use-cases, architecture and benefits). It
can turn-around defect-free, ready-to-use development and testing environments within
minutes; thus results in faster time-to-market of deliverables as well as lower idle times
for project personnel. Initial pilots [7,5] of Development & Test Clouds have shown
drastic reduction in provisioning overheads, elimination of configuration defects and
improvement in developer productivity. However, current DTC implementations force
their customers to upfront purchase licenses for most software. Very seldom, one finds
software being rented in a pay-per-use manner – mostly limited to cases where the
software comes from the cloud vendor itself. This poses a serious issue for enterprise
application development since service engagements typically leverage software com-
ing from a multitude of technology vendors. Clearly, in such a scenario, the promises
of lower software costs and easier scaling of usage levels will not be realized – the
licenses have to be purchased at the same rates as they are available for lifelong stan-
dalone use. Hence, the adoption of DTCs may be hit. In fact, a 451 Group report1 and
Lori [4] point out that old models of software licensing are entirely incompatible with
cloud computing environments and this fact proves to be a severe roadblock for greater
cloud adoption.

In this paper, we propose a service model whereby the DTC vendor purchases all
software licenses and recovers the cost from its clients based on their period of usage.
Our model allows the vendor to maximize returns from a purchased license by using it
in multiple projects separated in time. We set up an optimization problem to decide how
best a DTC operator can invest in buying software licenses such that it gets maximum
opportunity to resale purchased licenses. Also, we empirically study characteristics of
tool-sets that can lead to profitable DTC hosting.

The main contributions of the paper include:

1. Design of a service model for a DTC operator that optimally transforms costs in-
curred in buying software licenses to pay-per-use prices. The model guides the DTC
vendor to purchase a set of software so that it can maximize returns (Section 2).

2. Empirical evaluation of the DTC service model to demonstrate its feasibility and
an evaluation of heuristics that can decide whether a toolset is a preferred candidate
for stocking in a DTC (Section 3).

2 DTC Service Model

We propose a service model for a Development & Test Cloud (DTC) offering that helps
a DTC vendor to decide which software appliances2 to stock on a DTC and how to

1 http://www.informationengineer.org/2010/02/06/the-451-groups-cloud-computing-outlook-
for-2010.html

2 An appliance is a common set of software that when installed and tuned to a certain configura-
tion can support development and testing activities across service engagements of a particular
kind. For example, SOA engagements may always use an integrated appliance consisting of
certain software from Websphere stack.

A Service Model for Development and Test Clouds 525

price them (per unit usage) in order to run the operations most profitably. We suggest
the following scheme whereby the DTC provider purchases licenses and the end-users
pay a just fee per their usage:

1. A DTC provider purchases licenses of different kinds of software and collects the
same in license pools.

2. Every time an appliance is provisioned for a client, each software in the appliance
is assigned with a license available in its pool. A fee for license usage, which com-
puted as per the proposed model, is bundled into the appliance cost. The user may
have to pay a premium price (higher than the fixed rate, possibly close to the license
cost) only if there are no licenses available in the pool for a particular software.

3. The licenses are returned back to the pool after the appliances get de-provisioned.

Now, the DTC vendor wishes to keep just enough licenses in the pool to serve demand
for appliances at any point of time. Also, it is desirable that a license once purchased
finds use in several projects over the course of time. Greater license reuse across projects
separated in time will bring down the fees paid by the end-user and enhance the DTC
vendor’s profitability. Thus, we have the following problem:

Problem Definition: How can the DTC enterprise effectively invest a fixed
amount of capital to buy licenses of software present in common appliances
and then appropriately price the appliances in a pay-per-use model, based on
available demand forecasts?

At first sight, one may relate the above problem to the standard problem of inventory
management [6] – how much goods do you stock in your inventory so that you do
not run out of materials when you need them? Turns out, the drivers for these two
problems are quite different! The reason for maintaining an inventory of goods is to
avoid shortage costs. The time taken to refill stock after placing an order is generally
significant, thus replenishment is ordered in advance. For purposes of our problem,
it can be assumed that an order for a new license is served instantaneously and thus,
shortage costs are not applicable. However, the strategy of purchasing licenses every
time a provisioning request arrives is not optimal. We want licenses to be reused to
increase profitability; therefore, we wish to invest in purchase of only those licenses
for which we expect sufficient future demand. Again, buying licenses in advance may
help save money if price increases are common. We set up an optimization problem to
determine the number of licenses of each kind of software that should be purchased in
order to maximize the return on investment for the DTC vendor. Solving such a problem
also helps us ascertain the price that can be set for each appliance or software usage.

We consider a finite set, A = {α1, α2, . . . αn}, composed of appliances that are
sought after in typical service engagements. An appliance is a set of software, αi =
{S1, S2, . . . Sm}, with pre-built configurations commonly used in a particular form of
engagement. It is assumed that engagements using a certain appliance, αi, have similar
duration. If not, new appliances are created in A such that we enforce the standard devi-
ation of durations of all projects using a single appliance to be small. Furthermore, we
conjecture that solutioning teams in service enterprises have the engagement pipeline
data, which gives demand forecasts for each engagement type.

526 D. Mukherjee et al.

Our service model works with the following inputs:
Δi : Mean project duration of engagements using αi

Di : Demand for αi as a function of time
T : Time period for which all price calculations are made
F : Capital that may be invested in license purchase during time interval [0, T]

We introduce the notion of a license unit for an appliance. One license unit for αi

includes one license each for every software Sj contained in it. Again, in our model,
time t can take up discrete values in the time interval [0, T]. In practice, a time period
T of a quarter or a year may be discretized in terms of the different weeks or months in
them. Suppose,
χi : Number of license units of αi purchased at t = 0

Li(t) : Number of license units of αi available in pool at time t

Ui(t) : Number of license units of αi taken out of pool for use in projects starting at time t

As mentioned before, at any point of time, license units move out from the pool
and get assigned to projects. Again, the license pool gets augmented by licenses from
projects that have just ended. Thus, we can write:

Li(t + 1) =

⎧⎪⎨⎪⎩
Li(t) + Ui(t − Δi) − Ui(t), t ≥ Δi

Li(t) − Ui(t), 0 < t < Δi

χi, t = 0

(1)

Solving the above recurrence relation we get:

Li(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
χi −

t−1∑
t′=t−Δi

Ui(t
′), t ≥ Δi

χi −
t−1∑
t′=0

Ui(t
′), 0 < t < Δi

(2)

Now, we can only assign license units for an appliance only if there is demand for that
appliance and there exist free units in its pool. Therefore, Ui(t) ≤ min[Li(t), Di(t)]. The
cost Ci of a license unit for appliance αi is calculated as sum of license prices for
each software Sj ∈ αi. Now, the returns derived by the DTC each time an appliance is
used in a project are directly proportional to the cost of the appliance. We formulate an
optimization problem in Equation 3 that seeks to maximize such returns. The constraints
are: license purchases are limited to as many units as are permitted by the available
capital, F ; and existence of both demand and unassigned license units.

max.
∑
∀i

Ci

T∑
t=1

Ui(t)

s.t.
∑
∀i

Ciχi ≤ F

Ui(t) ≤ Li(t) ∀i, t ∈ {1, 2, . . . T}
Ui(t) ≤ Di(t) ∀i, t ∈ {1, 2, . . . T}

(3)

The optimization problem contains n(T + 1) variables; where n is the number of
appliances and T is the upper limit of the discrete time interval that we consider.
For example, the variables for αi are: χi, Ui(1), Ui(2), . . . , Ui(T). All variables take
up integer values only; so the problem is NP-complete like all integer programming
problems.

A Service Model for Development and Test Clouds 527

Pricing Appliances: Once we solve the optimization problem in Eqn. 3, we can ascer-
tain the price for using an appliance per unit time. This is computed by amortizing the
total costs spent on licenses and configuration over the period of time when instances
of that appliance find use. Additionally, support charges may be bundled; if support is
important.

Price of αi per unit time =
Configuration Cost + Ciχi

Δi

T∑
t=1

Ui(t)

(4)

3 Experiments and Results

In this section, we experimentally show that our model is tractable and also validate its
usefulness. Further, we design statistical tests to derive indicators that can help a DTC
vendor to choose profitable appliances to stock in the cloud. First, we discuss the data
and the setup used in our experiments and then we present the emprirical studies.

3.1 Experimental Data and Setup

Our service model is designed to source its inputs from the forecasted deal pipeline
and the archives of financials for recent projects. Since, such data is highly confidential
we resort to data synthesis to create data-sets for the purposes of this paper. Wherever
possible we try to mimic real samples coming from services enterprises which engage
in application development and maintenance. Table 1 shows how the different levers in
our model are simulated for our evaluation (See [5] for further details).

To solve the integer linear program described in Equation 3, we used an IP solver
engine called Gurobi available within a commercial optimization and simulation pack-
age3. All experiments were run on a machine with a configuration – 2.16 GHz, 2 GB
RAM, Windows XP. The entire experimental data-set as well as the solution set-up in
MS-Excel is available for download4.

3.2 Study 1: Feasibility and Effectiveness of the DTC Service Model

Goals and Method: This study seeks to demonstrate the feasibility and validity of
our approach on synthesized practical data-sets. We solve the optimization problem in
Equation 3 on several data-sets that are produced as per Table 1. We vary the number
of appliances and the available capital to generate different data-sets for this study.

After solving the optimization problem, we obtain values for the number of license-
units to be purchased, χi, as well as the weekly allocations, Ui, for each appliance, αi.
Now, in order to quantify the value of our approach stemming from license reuse across
projects, we compute the Overall-Potential score defined below:

Overall-Potential (%) =

∑
∀i

Ci

T∑
t=1

Ui(t) −
∑
∀i

Ciχi∑
∀i

Ciχi

× 100

3 http://www.solver.com
4 http://researcher.watson.ibm.com/researcher/files/in-debdomuk/dtc-data.zip

528 D. Mukherjee et al.

Results and Analysis: Table 2 list various details of the solutions obtained to our op-
timization problem for 5 data-sets with different combinations of available capital, F
and number of appliances, n.

Every run of the IP solver completes within 15 seconds and ends up with a glob-
ally optimal solution. The fact that the Left-Over capital (F −

∑
∀i

Ciχi) is always less

than the lowest license-unit cost available in the data-sets indicate the no more license
allocations are possible beyond what is obtained in the solutions. Unsatisfied Demand
points to cases where no allocations where possible despite presence of demand. Non-
zero values for unsatisfied demand show that there were no trivial solutions to the IP.

Table 1. Data-set Parameters

Time 54 weeks
Period, T
Weekly Gaussian data
Demand sample with
Function, μ, σ from
Di(t) [5,10], [0,5]

respectively.
License-Unit Random from
Cost, Ci [$500, $3000].
Project Uniformly from
Duration {2, 4, 6, 8, 12,
Δi (weeks) 16, 20, 24, 32,

> 54}

Table 2. Validating Feasibility and Effectiveness

n 20 50 100 100 100
F $0.5 mn $5 mn $2 mn $5 mn $10 mn

Variable 1100 2750 5500 5500 5500
(= n[T + 1])
Time taken 5.45 9.23 13.6 12.7 13.28
(in secs)
Total 11088550 27654900 22558400 35874900 49131000
Objective
Left-Over 200 50 0 250 0
Capital(in $)
Unsatisfied 23 16.6 66.9 46.1 24.4
Demand (%)

Overall- 2117 453 1028 617.5 391
Potential (%)

Our approach yields high values of Overall-Potential in all cases. This under-
scores the significant financial benefits that can stem from optimal license management
and license resale in DTC environments. Overall-Potential subsides as we add
availability of capital in our experiments. With less capital, our solution always allo-
cates licenses to the most profitable appliances. When we add more capital, the solution
serves relatively less profitable appliances, so the average potential decreases.

3.3 Study 2: Identifying Profitable Appliances

Goals: Optimal solutions to Equation 3 indeed help a DTC provider to decide the cor-
rect amount of stock to keep for each appliance. However, in many practical scenarios,
one needs to decide whether an appliance is a good candidate to stock on cloud without
complete information of the other appliances in contention. It is often desirable to be
able to independently form an opinion on an appliance’s profitability simply by study-
ing its characteristics – either in isolation or with respect to high level trends observed
in other appliances. This study aims to identify some characteristics of an appliance
that can possibly serve as indicators of profitability. We organize the study in terms of
3 research questions; each of which tries to evaluate a parameter in our service model
on whether its value can throw some light upon the preferredness of the appliance.

– RQ1: Investigate the effect of project duration, Δi, on an appliance’s profitability.

– RQ2: Investigate the effect of cost of a license-unit, Ci, on an appliance’s
profitability.

A Service Model for Development and Test Clouds 529

– RQ3: Investigate the effect of demand function, Di, on an appliance’s profitability.

Method: We empirically evaluate the dependence of different parameters in our service
model, Δi, Ci and Di, on a quantitative measure of an appliance’s profitability – the
Profit-Potential (PP) of an appliance:

Profit-Potential (%) =

Ci

T∑
t=1

Ui(t) − Ciχi

Ciχi

× 100

In the context of any solution to our service model, the Profit-Potential for an ap-
pliance signifies the degree of license re-sale that can be effected for the appliance in the
solution. Of course, greater the re-sale, higher is the profit. Now, for each RQ, we empir-
ically measure the correlation of the parameter in question with Profit-Potential.
We analyse every parameter in isolation, i.e., while studying the effect of a param-
eter, we generate the data such that the other parameters take identical values in all
appliances being monitored. Next, we perform statistical tests to decide whether the
correlation is significant at 0.01 level. If the correlation is found to be significant, then
we conclude that the parameter is indicative of an appliance’s profitability.

Statistical Analysis and Results: To address all 3 research questions, we create sam-
ples of data pertaining to 100 appliances. Table 3 shows the values taken up by differ-
ent model parameters in the three cases and also summarizes the experimental results.
For RQ1, we measure the correlation between the project-duration and the observed
Profit-Potential for appliances to be -0.632, which is significant at 0.01 level.
Since, the project duration demonstrates a strong negative correlation we can conclude
that lower project duration means greater profitability for the DTC vendor. The result
is intuitively true since lower the project duration, greater are the chances of license re-
sale. For RQ2, we measure the correlation between the cost of a single license-unit and
the observed Profit-Potential for appliances to be -0.17. Such a value for corre-
lation is not significant, thus we cannot make conclusive statements about the effect of
license-unit cost on appliance’s profitability. For RQ3, we wish to determine whether
uniformity in demand is good for profitability of an appliance. Thus, we measure the
correlation between the standard-deviation of weekly demand for appliances across the
one year period and the observed Profit-Potential for appliances to be -0.382,
which is significant at 0.01 level. Since, lower deviation in demand leads to greater
profitability, we can conclude that uniform demand for an appliance augurs well for the
DTC vendor.

In summary, appliances that find use in projects having smaller durations and appli-
ances having uniform demand functions are better prospects for stocking in a DTC.

4 Related Work

License management for cloud computing environments has been recognized as an open
problem in literature. The 451 group report3 and [4] identified restrictive license terms
to be a major threat to cloud adoption. Dalheimer et. al. [2] propose GenLM, a license
management framework that allows ISVs to manage their license usage in a distributed

530 D. Mukherjee et al.

Table 3. Identifying Profitable Appliances

RQ1 RQ2 RQ3
Weekly Demand, Di(t) 10 10 Gaussian with μ, σ

from [5, 10] and [0,5] resp.
License-Unit Cost, Ci 1000 Random from

[$500, $3000] 1000
Project Duration, Δi {2, 4, 6, 8, 12, 16, 20, 6 weeks 6 weeks

24, 32, 54} weeks.
Available Captial, F $10000000 $2000000 $2500000
Time Period, T 54 weeks 54 weeks 54 weeks
Study Variable, X Δi Ci σ(Di)
Pearson’s-Correlation(X, PP) -0.632 -0.17 -0.382
Significance at 0.01 level Yes No Yes

world. The main idea of GenLM is to attach the license not to a node or a person but
to issue licenses for the input datasets, thus allowing users to buy a per-job license and
run the job on any suitable resource. However, such a model is only applicable for web
applications and does not suit standalone software that run on desktops.

Cacciari et. al. [1] propose elasticLM - Licence as a Service (LaaS) for creating
and managing software licenses. The framework enables a user to negotiate terms and
policies with a license provider service to be able to procure a license token to execute
an application. [8,9] discuss issues related to implementation of license management
systems for Grid environments. But, none of these address how a LaaS can be run
profitably.

5 Conclusions

We note that unavailability of enterprise software under usage based pricing models
can potentially affect adoption of a Development & Test Cloud (DTC) – a delivery
platform that promises revolutionary cost advantages and efficiency improvements for
an IT service enterprise. As a counter, we propose a novel service model wherein the
DTC acts as a proxy to help transform software costs from perpetual licensing to pay-
per-use. We suggest that a DTC can centrally buy all software licenses and maintain
them in license pools. All software present in an image are assigned licenses from
the pools whenever a new instance is provisioned; the licenses return back to their
respective pools on deprovisioning of the instance. We set up an optimization problem
that can determine how many licenses for every software should a DTC buy in order to
meet the forecasted demand in the most effective yet profitable manner. Our empirical
studies show that it is feasible to obtain optimal solutions to the service model. Also,
we find that stocking appliances that are used in projects with a small duration and the
ones that exhibit uniform demand can lead to greater profitability of the DTC vendor.

References

1. Cacciari, C., D’Andria, F., Gozalo, M., Hagemeier, B., Mallmann, D., Martrat, J., Peréz, D.,
Rumpl, A., Ziegler, W., Zsigri, C.: Elasticlm: A Novel Approach for Software Licensing in
Distributed Computing Infrastructures. In: 2nd IEEE International Conference on Cloud Com-
puting Technology and Science, pp. 67–74 (2010)

A Service Model for Development and Test Clouds 531

2. Dalheimer, M., Pfreundt, F.: GenLM: License Management for Grid and Cloud Computing
Environments. In: 9th IEEE/ACM International Symposium on Cluster Computing and the
Grid, pp. 132–139 (2009)

3. IDC and Flexera. Inc. 2010 Key Trends in Software Pricing & Licensing Survey (2010)
4. MacVittie, L.: Cloud Computing’s Other Achilles’ Heel: Software Licensing (2009)
5. Mukherjee, D., Gupta, M., Sinha, V.S., Zhou, N.: Development & Test Cloud: A

Next Generation Service Delivery Platform. IBM Technical Report No. RI11007 (2011),
http://domino.research.ibm.com/library/cyberdig.nsf/index.html

6. Silver, E., Pyke, D., Peterson, R., et al.: Inventory management and production planning and
scheduling, vol. 2. Wiley, New York (1998)

7. Singh, A., Hung, E., Balepin, I., et al.: IBM Technology Adoption Program Cloud Sandbox
Internal Pilot (2009)

8. Dornemann, K., Freisleben, B.: Licensing the Use of Grid Services, Citeseer (2007)
9. Dong, X., et al.: Floating License Sharing System in Grid Environment. In: 1st International

Conference on Semantics, Knowledge and Grid, p. 96 (2005)

http://domino.research.ibm.com/library/cyberdig.nsf/index.html

Time Based QoS Modeling and Prediction

for Web Services

Leilei Chen1, Jian Yang2, and Liang Zhang1

1 School of Computer Science, Fudan University, China
{081024012,lzhang}@fudan.edu.cn

2 Department of Computing, Macquarie University, Australia
jian.yang@mq.edu.au

Abstract. Quality of Service (QoS) prediction and aggregation for com-
posite services is one of the key issues in service computing. Existing so-
lutions model service QoSs either as deterministic values or probabilistic
distributions. However, these works overlooked an important aspect in
QoS modeling, time. Most QoS metrics, such as response time, availabil-
ity, are time-dependent. We believe time variation should be explicitly
reflected in QoS modeling as well as aggregation. In this paper, we pro-
pose a dynamic web service QoS model to capture the time based QoS
patterns, based on which QoS of composite services are aggregated.

1 Introduction

The QoS aspect of web services has attracted much attention from the research
community [1,2,3,4,5,6,7]. QoS aggregation, i.e., estimating the QoS of a com-
posite service based on the available QoS information of the component services,
becomes crutial for QoS-based service selection [1,2,3,4]. Here, two issues need to
be addressed: (1) how QoS of web services can be effectively modeled? (2) how
the QoS of individual services can be aggregated according to the composition
structure.

QoS modeling of web services in existing works can be classified as following:
(1) Deterministic QoS value [2,3]. (2) Probability Mass Function (PMF) [4],
which represents the probability of a QoS over its discrete values; (3) Probability
Density Function (PDF) of some standard statistical distributions [1,5]; (4) PDF
of irregular distributions [6]. However, all the above works have neglected a
commonly observed phenomenon in reality: service QoSs often exhibit some time
related patterns. Taking stock service as an example, usually the service is mostly
accessed during trading hours and the usage of the service outside these peak
hours is relatively low. As a result, within different time periods, service QoS
can vary dramatically. A static QoS model is inadequate to represent service
QoS with different characteristics in different time periods, and the aggregated
QoS for composite service based on these models can not effectively reflect the
impact of time.

Modeling and aggregating time based QoS is challenging. First of all, how can
we find the time-based QoS Change Cycle? This cycle of QoS change presents

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 532–540, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Time Based QoS Modeling and Prediction for Web Services 533

repeating patterns on the regular basis. Secondly, how can we capture the indi-
vidual time spans within the cycle, in which the QoSs exhibit different patterns?
Thirdly, aggregating component QoSs need to consider both the composition
structure and the distinctive characteristics for each QoS aspect. In this paper,
we will tackle this challenge by establishing dynamic QoS models for web services
and providing methods for QoS aggregation based on these dynamic models.

The paper is organized as follows: Section 2 discusses the related work. In
Section 3, we develop the time based dynamic QoS model for web services. In
Section 4, QoS aggregation based on the dynamic model is explained. Section 5
presents the simulation results and Section 6 concludes the paper.

2 Related Work

Several previous studies have addressed the problems of QoS modeling and QoS
aggregation. Cardoso et al [1] propose a Stochastic Workflow Reduction (SWR)
algorithm to compute the QoS of a composition with sequential, parallel, con-
ditional and simple loop blocks. Jaeger et al [2] examine more composition pat-
terns and Dumas et al [3] propose a QoS aggregation method that can handle
unstructured acyclic fragments. Hwang et al [4] propose a probability-based QoS
model where a QoS measure of an atomic or composite service is quantified as
a PMF. Zheng et al [6] adopts a Gaussian Kernel Density estimation approach
to generate the PDFs for component services, based on which, QoS aggregation
is implemented to get more accurate estimations for composite services.

None of the above studies take the timing characteristics of QoS into consid-
eration. Klein et al [7] address the inherent variability in the actual values of
QoS at runtime. Our research is motivated by the similar concern as Klein’s.
However, we focus more on the details of setting up dynamic QoS models and
computing aggregated QoSs for composite services.

3 Dynamic QoS Modeling for Web Services

Web services can exhibit different quality in different environmental conditions
such as usage, network traffic. In many real-world cases, the change of the en-
vironmental conditions presents certain periodical patterns, which leads to the
changes on the service QoSs. We use time cycle (TC) to represent the period
when the service has different qualities which will re-appear in the next cycle.

We differentiate two kinds of QoS metrics based on the feature of their value
space: continuous values and discrete values, which bring different complexities
into QoS aggregation. We use PDF to model continuous QoS metrics such as
response time. For discrete QoS metrics including reliability and cost, we use
PMF. Moreover, as different QoS metrics always correlate in the same time
period, it is preferable to integrate all QoS metrics into one dynamic model in
order to capture the impact of time pattern on the service. In this work, we
will consider three representative QoS metrics: response time, reliability and cost.

534 L. Chen, J. Yang, and L. Zhang

Definition. A Dynamic QoS Model(DQM) for a service is a tuple (TC, I, DM),
where

• TC = [T0, T0 + T) is the QoS change time cycle and T0 is the cycle starting
time; T is the length of the time cycle.

• I = {I0, I1, ..., IN−1} is a segmentation of TC, where Ii = [ti, ti+1) , and⋃
i Ii = TC
• DM =< SM0, SM1, ..., SMN−1 > is a sequence of QoS models in the time

segments, where SMi = (frespi , Preli , Pcosti) is a vector of probability models
corresponding to the segment Ii, and

	frespi is the PDF of response time
	Preli is the PMF of reliability
	Pcosti is the PMF of cost

Given the DQM of a service, the QoS probability model can be represented
as a function of time, i.e., Q(t) = (frespi , Preli , Pcosti), where t ∈ [ti, ti+1).

The construction of the segment models can be achieved using existing prob-
abilistic methods that have been discussed in previous works. Here, we focus on
identifying the time cycle TC of QoS and getting a reasonable segmentation of
the cycle for the DQM of a service.

We regard a service combined with its executing environment as a ’QoS-
generating’ system. We observe the dynamic QoS displayed by the system to
find the internal mechanism that generates the QoS. For this purpose, we adopt
a Hidden Markov Model (HMM) [8] based method, assuming that the hidden
mechanism is a state machine, each state corresponds to a certain environmental
condition, within which the system exhibits stable behavior (i.e., the QoS the
system generates within each state demonstrates the stable statistical proper-
ties), and state transitions have certain regularity.

A HMM is formally defined as λ = (S, A, B, Π), where
• S is a finite set of states;
• A = {aij} is the transition probability matrix, in which, aij is the probability

of state i transiting to state j in the next step;
• B = {bi(o)} is the emission probability matrix, where o is an observation

and bi(o) represents the probability of observing o when the system is in state i;
• Π = {πi}, in which πi is the probability of the system beginning in state i.
In this paper, we adopt two traditional HMM algorithms. The first one is

Baum-Welch algorithm, i.e., given an observation sequence Oi(i = 1, 2, ...) gen-
erated by a system, to get a model λ to best describe the system. And the second
one is Viterbi algorithm, i.e., given a model λ and a sequence of observations
Oi, to find the hidden state sequence Si.

To model the system as a HMM, we first partition the time into equal intervals.
Next, we get the QoS statistics of the service in each time interval and take them
as the interval’s observation. As discussed before, some QoS metrics have discrete
value domains while others have inherently continuous values. In order to uni-
formly represent the QoS metrics in HMM, for each time interval, we compute the
expectation value of each QoS metric by taking the mean of the observed values,
and combine them into a QoS observation vector. The QoS observation vector of

Time Based QoS Modeling and Prediction for Web Services 535

the ith time interval is Oi(Erespi , Ereli , Ecosti), where Erespi ,Ereli ,Ecosti repre-
sent the expectation values of response time, reliability and cost respectively. In
this vector, Ereli and Ecosti are represented as continuous values with the sam-
ple spaces as Dom(Ereli) = [0, 1] and Dom(Ecosti) = [min(cost), max(cost)],
respectively. In this way, all the QoS metrics are represented as continuous vari-
ables uniformly. As different QoS features have quite different scales, we normal-
ize all variables into the scale range of [0, 1] according to the following formula:

E
′
qi

=

⎧⎨⎩
Eqi

−Emin
q

Emax
q −Emin

q
if Emax

q − Emin
q
= 0

1 if Emax
q − Emin

q = 0

where Eqi represents the element of Oi, Emax
q = max(Eqi) and Emin

q =
min(Eqi). So, we get a sequence of observation vectors represented as:
O

′
i(E

′
respi

, E
′
reli

, E
′
costi

), i = 1, 2, ...n, where n is the total number of the time
intervals created. As now the elements of the vector have continuous values,
we assume they obey Gaussian Mixture distribution. Therefore, the system is
eventually modeled as a Gaussian Mixture HMM with the emission probability
density function for each state defined by multivariate Gaussian distribution.

Given the observation vector sequence O =< O
′
1, O

′
2, ..., O

′
n >, we use the

Baum-Welch algorithm to get the HMM λ that best describes the system. Then,
with λ and O, utilize the Viterbi algorithm to get the hidden state sequence.
Next, self-transitive states are gradually merged, from which we get the segmen-
tation of the state sequence. The time cycle TC will be eventually recognized
from the segmentation.

With the time cycle pattern recognized, we can set up segment QoS models
for each time segment and integrate them into the final DQM.

4 QoS Aggregation Based on DQM

In this section, we shall address the issue of estimating the QoS of a composite
service based on the DQMs of its component services. We focus on composite
services with four structured composition patterns, including sequential pattern,
parallel pattern, conditional pattern and loop pattern. Three challenge issues
remain: (1) determining the time cycle of a composite service; (2) estimating the
QoS of the composite service if it is invoked at a certain time point; (3) obtaining
the DQM of the composite service.

4.1 Estimating the Time Cycle Length of Composite Services

The cycle length of a composite service (denoted as T) is computed as the least
common multiple (LCM) of all the cycle lengths of its component services. We
then standardize the DQMs of all the component services. That is, expanding
the cycles of all the component services to the standard T . By doing this, all
services under consideration have the same cycle length, and the time can be
represented uniformly in all the DQMs.

536 L. Chen, J. Yang, and L. Zhang

4.2 Estimating QoS of Composite Services for Single Invocation

Problem Statement: Suppose composite service CS is recursively constructed
using the following basic composition patterns: sequential, parallel, conditional,
and loop, its component services are ws1, ..., wsM , and the respective stan-
dardized DQMs are DQM1, ..., DQMM , given an invocation time t0, (T0 ≤ t0 <
T0+T , where T0 is the standardized cycle starting time and T is the standardized
cycle length), estimate the QoS of CS for this invocation.

The impact of a single component service wsi on the overall QoS of CS corre-
lates with the time when wsi is invoked. So, we need to estimate the invocation
time for every wsi. Furthermore, as the response time of wsi affects the invocation
time of all services that are invoked after it, the estimation of invocation time have
to be conducted in one direction, i.e., traversing the composition process step by
step and from the beginning to the end. We identify two set of parameters in rela-
tion to the reduction of a composition pattern: input QoS parameters and output
QoS parameters. We use SubCS to represent a sub composition structure of CS.
Given the input QoS parameters of SubCS, we compute its output parameters
according to its composition pattern, which will then be transferred to its direct
successor as the inputs. The reduction algorithm will be repeatedly executed from
the very beginning and the effect of each component service is gradually reduced
and merged till the end of CS’s process.

Input QoS parameters of a SubCS include: (1) startT ime, a continuous
variable that represents the time when SubCS is invoked, with its PDF denoted
as fstime; (2) startRel, a discrete variable whose value domain is {0, 1}, where
P (startRel = 1) represents the probability of SubCS can be successfully
invoked, with its PMF denoted as Psrel; (3) startCost, a discrete variable that
represents the cumulated cost of CS before SubCS is invoked, with its PMF
denoted as Pscost. And output parameters of a SubCS include: (1) endT ime,
a continuous variable that represents the time when the executing of SubCS
is finished, with its PDF denoted as fetime; (2) endRel, a discrete variable
whose value domain is {0, 1}, where P (endRel = 1) represents the probability
that SubCS is just successfully executed, with its PMF denoted as Perel; (3)
endCost, a discrete variable that represents the cumulated cost of CS just after
SubCS is executed, with its PMF denoted as Pecost.

For the first SubCS that should be invoked in CS, the initial input param-
eter models are as follows: fstime(x) = δ(x − t0), Psrel(1) = 1, Psrel(0) = 0,
Pscost(0) = 1. Below, we will introduce the method for calculating output
parameters for different structured SubCS, including a single service, parallel
composition, conditional composition and loop composition. Sequential compo-
sition will not be discussed here since it is just the simple repeating of single
services.

A Single Service: endT ime is the sum of startT ime and ws’s response time;
The probability of ws being successfully executed is the product of the proba-
bility of it being successfully invoked and the reliability of ws; endCost is the
sum of startCost and ws’s cost.

Time Based QoS Modeling and Prediction for Web Services 537

fetime(x) = fstime(x) �
N−1∑
i=0

(
∑
m

∫ ti+1+mT

ti+mT

fstime(x)dx) · frespi(x) (1)

Perel(1) = Psrel(1) ·
N−1∑
i=0

(
∑
m

∫ ti+1+mT

ti+mT

fstime(x)dx) · Preli(1)

Perel(0) = 1 − Perel(1)

(2)

Pecost(z) =
∑

y1+y2=z

Pscost(y1) ·
N−1∑
i=0

(
∑
m

∫ ti+1+mT

ti+mT

fstime(x)dx) · Pcosti(y2) (3)

Parallel Composition: We first compute the output models for each branch.
The models for the jth branch are calculated according to Formula (1), (2) and
(3), and we denote them as f j

etime, P j
erel and P j

ecost. The endT ime of the compo-
sition is the maximum endT ime of each branch; the composition is successfully
ended if and only if all the branches are successfully ended; the endCost of the
composition is the sum of each branch’s endCost.

F j
etime(x) =

∫
f j

etime(x)dx

fetime(x) =
k∑

j=1

f j
etime(x) ·

∏
l=1,...,k&l�=j

F l
etime(x)

(4)

Perel(1) =
k∏

j=1

P j
erel(1) Perel(0) = 1 − Perel(1) (5)

Pecost(z) =
∑

y1+...+yk=z

k∏
j=1

P j
ecost(yj) (6)

Conditional Composition: We first compute the output models for each
branch. The output parameters are the probability weighted sum of each branch.

fetime(x) =
k∑

j=1

pjf
j
etime(x) (7)

Perel(1) =
k∑

j=1

pjP
j
erel(1) Perel(0) = 1 − Perel(1) (8)

Pecost(z) =

k∑
j=1

pjP
j
ecost(z) (9)

Loop Composition: We model the iteration number as a PMF. So a loop
composition can be transformed into a conditional composition with a sequential
composition in each path. The output models are then calculated according to
the corresponding formulas.

By applying the above calculation methods, we get the probabilistic model
for a composite service’s endT ime, endRel and endCost when it is invoked
at a certain time t0. The definitions of endRel and endCost remain the same
with reliability and cost respectively. However, endT ime is not the response
time of the composite service. We get the response time model as fresp(x) =
fetime(x + t0).

538 L. Chen, J. Yang, and L. Zhang

4.3 Establishing DQM for a Composite Service

With the problem of QoS estimation for single invocation solved, now we
discuss how DQM is established for a composite service to reveal its QoS change
patterns in a time cycle. If two invocation time points (to the same service)
are very close, it is very likely that the QoS of these two invocations are very
similar. Based on this observation, we first select a sequence of time points t0,
t1, ..., tl (T0 ≤ t0 < t1 < . . . < tl ≤ T0 + T , where T0 is the cycle starting time
and T is the cycle length). Then we compute the corresponding QoS models and
get a model sequence Mt0 ,...,Mtl

. Next, we gradually merge adjacent models
which are most similar. A merged model is computed as the average of two
adjacent models. The merge procedure will continue until the similarities of
current resultant models are all below a certain threshold. When the merge
is finished, a new model sequence Mt0...ta , Mta+1...tb

,, Mtx...tl
is generated.

Then, we segment the time cycle in the following way: if two adjacent time
point ty and ty+1 are assigned to two different models, then we set the middle
of them as a split time point: st = ty+ty+1

2 . And Mtp...tq is the corresponding
segment model for time span [tp−1+tp

2 ,
tq+tq+1

2).
In the merging process, we use Kullback-Leibler divergence to measure the

difference of two probability distributions. Two distributions are similar if the
KL divergence of them is small. There are three elements in our QoS model and
we need to compute the KL divergence for every element and compute the sum
of them as the final distance of two models.

50 100 150 200 250
0

0.02

0.04

0.06

0.08

Response Time

D
en

si
ty

StockInfoWS

50 100 150 200 250
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Response Time

D
en

si
ty

ExchangeRateWebService

60 80 100 120 140
0

0.02

0.04

0.06

0.08

0.1

0.12

Response Time

D
en

si
ty

WeatherWS

Peak time
Off peak time

Peak time
Off peak time

Peak time
Off peak time

Fig. 1. PDFs of Real World Services

5 Experiment and Evaluation

To justify the effectiveness of the proposed dynamic QoS model and approach,
we collect the response time from three real world web services: StockInfoWS 1,
ExchangeRateWebService2, and WeatherWS 3. We first identify the QoS change
1 http://www.webxml.com.cn/WebServices/StockInfoWS.asmx?wsdl
2 http://webservice.webxml.com.cn/WebServices/

ExchangeRateWebService.asmx?wsdl
3 http://webservice.webxml.com.cn/WebServices/WeatherWS.asmx?wsdl

Time Based QoS Modeling and Prediction for Web Services 539

pattern for these services based on the HMM method. The results show that all
three services possess a circle length of 24 hours. StockInfoWS exhibits higher
values for response time during work hours from approximately 9:30 to 15:00,
medium values during lunch time and lower values for other time periods; The
QoS pattern of ExchangeRateWebService is similar to StockInfoWS except that
it does not present medium values during lunch time; For WeatherWS, the re-
sponse time is high only within the peak hours between 9:15 and 10:45, and
relatively low outside this time range. The PDFs of the services during peak
hours and off peak hours are shown in Figure 1.

Fig. 2. A Composition

Next, we will show the accuracy of the QoS aggre-
gation method proposed in Section IV. We create three
web services ws1, ws2 and ws3, and their response
time values are generated randomly from the collected
samples of StockInfoWS, ExchangeRateWebService and
WeatherWS, respectively. Then, these services are com-
posed according to the composition structure shown in Figure 2. The probability
of each conditional branch is set to be 0.5. And the probabilities that the loop
structure will be executed 2 and 3 times are all set to be 0.5.

100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0.03

Response Time

D
en

si
ty

PDFs of the Composite Service

simulation
dynamic estimation
static estimation

Fig. 3. PDFs of the Composition

Monte Carlo simulation method is
then used to simulate the QoS of the
composite service. Based on the DQMs
of the component services, we apply our
estimation method to compute the PDF
for the composite service. In addition, we
also generate static QoS models for the
component services when the time cycle
related QoS changes are not taken into
consideration, and compute the PDF of
the composition accordingly. Figure 3 il-
lustrates the experiment results when the invocation time is set that all compo-
nent services are within peak hours. It shows that the PDF computed based on
DQMs is very close to the simulation results, while the static models generate
more deviations.

6 Conclusion

In this paper we propose a dynamic QoS model to represent the time related
characteristics of QoS. Various techniques are employed to develop the DQMs
for component services as well as composite services. Experiments show that the
proposed solution achieves high accuracy in QoS modeling and prediction.

Acknowledgment. This work is supported in part by NSFC grant 60873115.

540 L. Chen, J. Yang, and L. Zhang

References

1. Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of service for
workflows and web service processes. Journal of Web Semantics 1, 281–308 (2004)

2. Jaeger, M.C., Rojec-Goldmann, G., Muhl, G.: QoS aggregation for Web service
composition using workflow patterns. In: EDOC 2004, pp. 149–159 (2004)

3. Dumas, M., Garćıa-Bañuelos, L., Polyvyanyy, A., Yang, Y., Zhang, L.: Aggregate
Quality of Service Computation for Composite Services. In: Maglio, P.P., Weske, M.,
Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 213–227. Springer,
Heidelberg (2010)

4. Hwang, S.-Y., Wang, H., Tang, J., Srivastava, J.: A probabilistic approach to mod-
eling and estimating the QoS of web-services-based workfows. Information Sci-
ences 177(23), 5484–5503 (2007)

5. Rosario, S., Benveniste, A., Haar, S., Jard, C.: Probabilistic qos and soft contracts
for transaction-based web services orchestrations. IEEE Transactions on Services
Computing 1(4), 187–200 (2008)

6. Zheng, H., Yang, J., Zhao, W.: Qos Probability Distribution Estimation for Web
Services and Service Compositions. In: SOCA 2010 (2010)

7. Klein, A., Ishikawa, F., Bauer, B.: A Probabilistic Approach to Service Selection
with Conditional Contracts and Usage Patterns. In: Baresi, L., Chi, C.-H., Suzuki, J.
(eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 253–268. Springer, Heidelberg
(2009)

8. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in
speech recognition, pp. 267–296 (1990)

CANPRO: A Conflict-Aware Protocol

for Negotiation of Cloud Resources and Services

Marco A.S. Netto

IBM Research
Sao Paulo, Brazil

Abstract. In a Cloud environment, users face the challenge of selecting
and composing resources and services from a single or multiple providers.
As several negotiations can occur concurrently, information on service
and resource availability may be out-of-date, thus requiring several iter-
ations between users and providers until an agreement is achieved. To
address this problem, we introduce CANPRO, a Conflict-Aware Nego-
tiation Protocol for allocating Cloud resource and services aimed at re-
ducing cancellation messages during negotiation. CANPRO allows users
(or entities on their behalf) to know the amount of resources being con-
currently negotiated by other users and the number of users interested
in such an amount, while still keeping users’ information private. By
knowing this information, users can, for instance, confirm allocation re-
quests with lower chances of having collisions with other users. In addi-
tion, for the same reason, users can increase their time deciding which
(combination of) resources they want to allocate. The paper presents
comparative results of CANPRO against the popular two-phase commit
protocol (2PC) and a state-of-the-art protocol named SNAP-3PC. We
used think time, network overhead, number of concurrent negotiations
and providers as main metrics. The results are promising and the proto-
col can be used in scenarios other than Cloud Computing; for instance,
bookings of health services, cars, tickets for venues, schedule of appoint-
ments, among others.

1 Introduction

Users have access to several services in the Internet to perform tasks that range
from exchanging e-mails to allocating high performance computing resources.
Some of these services and resources are offered by Cloud providers using a pay-
as-you-go model. As the number of these providers and services increases, users
face the challenge of selecting, and possibly, composing them in a complex and
dynamic computing environment.

Several users may request resources and services at the same (or within the
same time interval). During negotiations, information about resource availability,
from the moment of selecting to the moment of confirming the allocations, may
be out-of-date. This has a particular impact when users are composing services
from multiple providers, as a failure in a single allocation may result in a rene-
gotiation with all the resource providers. The failure generates a phenomenon

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 541–548, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

542 M.A.S. Netto

called livelock, in which multiple users keep trying to allocate resources over and
over gain without success, thus requiring a considerable number of negotiation
messages to satisfy all users. This problem is well-known and investigated in the
area of Distributed Transactions [2], mainly investigated in the data base com-
munity and in the last decade in the Grid community [10]. For Cloud Computing,
such renegotiation may cause violation of Service Level Agreements (SLAs) for
confirmed requests.

A number of protocols for allocating distributed resources have been proposed
in the literature [5–8, 10–12], being most of them aimed at avoiding deadlocks
and livelocks, and reducing the number of messages during negotiations. These
protocols consider that a user is not aware that other users are concurrently
negotiating for the same resources—the user only receives a message that was
not possible to commit the selected resources. Therefore, users have no chance
of optimizing their resource selection in order to avoid such a competition. As a
consequence, negotiations require several messages and users have little time to
make their allocation decisions.

The main contribution of this paper is the Conflict-Aware Negotiation Pro-
tocol (CANPRO), which aims at reducing the number of cancellation messages
during negotiations and increasing the time users can spend to decide which
resources they want to allocate. This is achieved by allowing users (or entities
on their behalf) to know the amount of resources being concurrently negoti-
ated by other users and the number of users interested in such an amount. In
other words, all users are aware about intentions of other users concurrently
negotiating for conflicting resources. By knowing this information, users can,
for instance, confirm allocation requests with lower chances of having collisions
with other users. In addition, for the same reason, users can increase their time
deciding which (combination of) resources they want to allocate. We compare
CANPRO against the popular two-phase commit (2PC) protocol and a state-
of-the-art protocol named SNAP-3PC, which is a three-phase commit extension
of the Service Negotiation and Acquisition Protocol. The results are promising
and the protocol can be used in scenarios other than Cloud Computing.

2 Conflict-Aware Negotiation Protocol

The Conflict-Aware Negotiation Protocol (CANPRO) allows users to be aware
about concurrent negotiations that conflict with one another. Whenever a
provider receives a message from a user requesting for resources, this provider
sends back to the user a message describing: (1) whether the requested capacity
is available; (2) the percentage of that requested capacity that conflicts with the
capacity being concurrently negotiated by other users; and (3) the number of
those users negotiating the conflicting capacity. The users that already received
offers from the provider(s) obtain an update on conflicts, which has an influence
on their decision regarding where and how many resources they should commit.

Figure 1 illustrates an example of information flow between one resource
provider and two users. In this example, User2 requests for resources just after

CANPRO: A Conflict-Aware Protocol 543

Fig. 1. CANPRO execution example

resource provider sends User1 information about resource availability. Knowing
that User1 is negotiating resources, the provider sends User2 information about
resource availability considering the possible conflicts with User1, who is also
notified about a possible conflict. For this particular example, User1 commits
the original request, whereas User2 commits only part of it in order to avoid
collision. Both users receive confirmations on their commit requests.

CANPRO requires a data structure to keep track of the concurrent nego-
tiations. Our current implementation utilizes a linked list of resource offers
called NegotiationQueue. These resource offers [9] contain the resource avail-
ability given to a user by the provider. For CANPRO, these offers are extended
to add conflict information: percentage of conflicting resources and the number
of users negotiating those resources. The NegotiationQueue is updated when (i)
a new request gets to the resource provider; (ii) the provider confirms the re-
source allocation (commit message); (iii) the provider rejects user request; (iv)
the user decides not to continue the negotiation or when the user has to start a
new negotiation.

Based on the NegotiationQueue, the provider can generate conflict informa-
tion and notify users whenever this information changes. The conflict represents
the percentage of resource being concurrent negotiated by multiple users. Be-
fore the resource provider receives the request from User2, the NegotiationQueue
contains only the offer given to User1.

The NegotiationQueue is updated with the offer given to User2 once the new
request arrives. At this point, the provider triggers the algorithm to calculate
conflicts and notify users if any original offer has been changed. Algorithm 1
presents a pseudo-code of how conflicts can be calculated. The algorithm receives
the NegotiationQueue and returns a list of offers containing conflict information.

The variables used in the algorithm are:

– bin: data structure (e.g. array) that stores request capacity information;
– binList: list of bins;

544 M.A.S. Netto

Algorithm 1. Pseudo-code for generating list of offers with conflicting
information based on the NegotiationQueue

bin ← create a bin with the size of the available capacity1

for ∀request ∈ NegotiationQueue do2

Fill bin with requested capacity3

if bin full = true then4

binList.add(bin)5

Create another bin with same capacity6

Fill it with the remaining requested capacity7

for ∀request ∈ NegotiationQueue do8

conflictPortion ← numberOfConflicts ← 09

for ∀bin ∈ binList do10

capacityRange ← find capacity range in bin that contains request11

if capacityRange found = true then12

conflictPortion ← conflictPortion + conflict part with other requests13

in this capacityRange
Increment numberOfConflicts with requests on this capacityRange14

offer ← request information plus conflictPortion and numberOfConflicts15

offerList.add(offer)16

return offerList17

– capacityRange: if bin is an array, capacityRange is a range index;
– offer: resource availability information to be sent to users;
– offerList: list of offers.

From the user side, once they receive offers (new or updated ones), they can select
providers that sent offers with fewer number of conflicts and lower percentage of
conflicting capacity.

3 Evaluation

The basis for the design of CANPRO is predicated on the idea that by users
knowing that other users are negotiating the same (or a portion of their) re-
sources, they can select a group of resources with lower chances of failures when
commiting the allocation. The experimental results in this section demonstrate
that the principle is sound.

We evaluated CANPRO against the popular two-phase commit protocol (2PC)
and SNAP-3PC protocol. The latter protocol allows users who are negotiating
for resources to be notified when the status of a resource is changed. We devel-
oped a multi-thread event-driven simulator with the implementation of the two
protocols and CANPRO. The simulator receives a file containing information
on user requests, such as user think time, allocation strategy (single x multiple
providers), network delay to communicate with the providers, and the provider’s
processing time for the request.

CANPRO: A Conflict-Aware Protocol 545

We created sets of workloads that vary network delay to send messages, think
time, and processing time that follow a Gaussian distribution. The values vary
1000±200, 2000±1000, and 1000±200 respectively (time in milliseconds). We
also varied the number of concurrent requests and resource providers. For each
workload, half of users requests a specific provider and the other half requests a
group of providers. The total number of requests processed for the three protocols
in the experiments varying all parameters is 14400. As metrics, we measured
the number of trials and number of cancellation messages until a request is
successfully committed.

Figures 2 (a), (c), and (e) present the number of trial allocations for three,
five, and seven providers, respectively, as a function of the number of concur-
rent negotiations (starting with the same number of providers, and a fixed think
time). The lower the number of trials the better the protocol is. The average
number of trials per request increases with both the number of concurrent nego-
tiations and the number of providers. This happens because the chances of users
receiving out-of-date information on resource availability increase with these two
variables. CANPRO outperforms 2PC and SNAP-3PC with the same propor-
tion for the three numbers of providers. This indicates that the improvement
scalability of CANPRO is similar to 2PC and SNAP-3PC.

Figures 2 (b), (d), and (f) present the total number of cancellation messages
for three, five, and seven providers, respectively, as a function of the number of
concurrent negotiations. The behavior of this metric is similar to the previous
one, however when the number of providers is three, it is observed that the higher
the number of concurrent negotiations the higher the advantage of CANPRO
in relation to 2PC. This happens because the number of negotiations is lower
enough so that the percentage of conflicting capacity has more influence than
the number of conflicting negotiations. This scenario is therefore the one where
CANPRO has higher benefits.

In order to observe the effect of the think time for both negotiation protocols,
we fixed the number of providers in five, and the number of concurrent negoti-
ations as ten. As observed in Figure 3, the higher the think time the better the
performance of CANPRO in relation to 2PC and SNAP-3PC. This is due to the
fact that users can receive messages about negotiation conflicts while they are
deciding on resource selection. For 2PC and SNAP-3PC, the higher the think
time values the higher the probability of users receiving out-of-date information.
As it is showed in Figure 3, 2PC and SNAP-3PC do not produce a steady per-
formance, i.e. there is high variability when changing the average think time,
whereas for CANPRO, the number of cancellations is reduced with the increase
in the think time. This is a particularly promising result, as we expect users to
have access to more services in the Internet, so they require time to think about
their decisions.

4 Related Work

Existing protocols on resource negotiation fall into following categories: Two-
Phase Commit (2PC), Three-Phase Commit (3PC), Order-based Deadline, and

546 M.A.S. Netto

2 3 4 5 6 7 8 9 10 11
Number of Concurrent Negotiations

0.5

1.0

1.5

2.0

2.5

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

T
ri

a
ls

 p
e
r

R
e
q
u
e
s
t

2PC SNAP-3PC CANPRO

(a) Three Providers.

2 3 4 5 6 7 8 9 10 11
Number of Concurrent Negotiations

0

10

20

30

40

50

60

T
o
ta

l
N

u
m

b
e
r

o
f

C
a
n
c
e
ll
a
ti

o
n
 M

e
s
s
a
g
e
s

2PC

SNAP-3PC

CANPRO

(b) Three Providers.

2 4 6 8 10 12 14 16
Number of Concurrent Negotiations

0.5

1.0

1.5

2.0

2.5

3.0

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

T
ri

a
ls

 p
e
r

R
e
q
u
e
s
t

2PC SNAP-3PC CANPRO

(c) Five Providers.

2 4 6 8 10 12 14 16
Number of Concurrent Negotiations

0

50

100

150

200

T
o
ta

l
N

u
m

b
e
r

o
f

C
a
n
c
e
ll
a
ti

o
n
 M

e
s
s
a
g
e
s

2PC

SNAP-3PC

CANPRO

(d) Five Providers.

5 10 15 20
Number of Concurrent Negotiations

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

T
ri

a
ls

 p
e
r

R
e
q
u
e
s
t

2PC SNAP-3PC CANPRO

(e) Seven Providers.

5 10 15 20
Number of Concurrent Negotiations

0

100

200

300

400

500

600

T
o
ta

l
N

u
m

b
e
r

o
f

C
a
n
c
e
ll
a
ti

o
n
 M

e
s
s
a
g
e
s

2PC

SNAP-3PC

CANPRO

(f) Seven Providers.

Fig. 2. Number of trial allocations and cancellation messages as a function of the
number of providers and concurrent negotiations

CANPRO: A Conflict-Aware Protocol 547

0 200 400 600 800 1000 1200 1400
Think time (ms) to commit offers

20

40

60

80

100

120

140

T
o
ta

l
N

u
m

b
e
r

o
f

C
a
n
c
e
ll
a
ti

o
n
 M

e
s
s
a
g
e
s

2PC SNAP-3PC CANPRO

Fig. 3. Number of cancellation messages for five RPs as a function of think time

Polling-based protocols. Most of these projects have as motivation the problem
of resource co-allocation for Grid Computing environments [10].

Kuo and Mckeown [7] presented a protocol for advance reservations and co-
allocation, which extends the 2PC protocol with support for cancellations that
may occur at any time. Park [11] introduced a decentralized protocol for allocat-
ing large-scale distributed resources, which is free from deadlocks and livelocks.
The protocol is based on the Order-based Deadlock Prevention Protocol ODP 2,
but with parallel requests in order to increase its efficiency. Another approach
to avoid deadlock and livelock is the exponential back-off mechanism [6].

Takefusa et al. [12] developed a 2PC-based protocol that uses polling from the
client to the server. Maclaren et al. [8] introduced a system called HARC (Highly-
Available Robust Co-allocator), which uses 3PC protocol based on Paxos con-
sensus algorithm [4] and focuses on fault tolerance aspects. Azougagh et al.
[1] introduced the Availability Check Technique (ACT) to reduce the conflicts
during the process of resource co-allocation. Requests wait for updates from
providers until they fulfill their requirements. The main difference of ACT and
CANPRO is that in the former, users are not aware about possible conflicts dur-
ing negotiation, therefore it cannot optimize their resource selection decisions.

Czajkowski et al. [3] proposed the Service Negotiation and Acquisition Proto-
col (SNAP), which aims at managing access to and use of distributed computing
resources by means of Service Level Agreements (SLAs). The protocol is not
optimized to work with out-of-date information on resource availability. In order
to solve this problem, Haji et al. [5] developed a 3PC protocol for SNAP-based
brokers. Its key feature is the use of probes, which are signals sent from the
providers to the candidates interested in the same resources to be aware of re-
source status’ changes. Different from Haji et al.’s protocol, CANPRO notifies
users on other concurrent negotiations, which is before the status’ changes, so
users can select resources with lower chances of being taken by other users.

5 Concluding Remarks

This paper presented CANPRO, a conflict-aware protocol for negotiation of
Cloud resources and services. With CANPRO, users can have higher thinking
time to commit requests and network communication can have higher latency.

548 M.A.S. Netto

This is achieved by allowing users to be aware that there are other concurrent
users negotiating for the same resources. With this conflict information in hands,
users can select resources/providers with lower probability of having requests
rejected. Based on experimental results, CANPRO is able to reduce cancellation
messages when there are concurrent negotiations compared to 2PC and SNAP-
3PC protocols. We observed that it is quite frequent to have situations where
users base their resource selection decisions on out-of-date information, and a
conflict-aware protocol, in this case, CANPRO, is an important tool to handle
this problem. CANPRO could also be used for other scenarios such as booking of
air planes, cars, health services, and scheduling of people and rooms for meetings.

References

1. Azougagh, D., Yu, J.L., Kim, J.S., Maeng, S.R.: Resource co-allocation: A com-
plementary technique that enhances performance in grid computing environment.
In: Proceedings of ICPADS (2005)

2. Bernstein, P.A., Goodman, N.: Concurrency control in distributed database sys-
tems. ACM Computing Surveys 13(2), 185–221 (1981)

3. Czajkowski, K., Foster, I.T., Kesselman, C., Sander, V., Tuecke, S.: SNAP: A proto-
col for negotiating service level agreements and coordinating resource management
in distributed systems. In: Proceedings of JSSPP (2002)

4. Gray, J., Lamport, L.: Consensus on transaction commit. ACM Transactions on
Database Systems 31(1), 133–160 (2006)

5. Haji, M.H., Gourlay, I., Djemame, K., Dew, P.M.: A SNAP-based community
resource broker using a three-phase commit protocol: A performance study. The
Computer Journal 48(3), 333–346 (2005)

6. Jardine, J., Snell, Q., Clement, M.J.: Livelock avoidance for meta-schedulers. In:
Proceedings of HPDC (2001)

7. Kuo, D., Mckeown, M.: Advance reservation and co-allocation protocol for grid
computing. In: Proceedings of e-Science 2005 (2005)

8. Maclaren, J., Keown, M.M., Pickles, S.: Co-allocation, fault tolerance and grid
computing. In: Proceedings of the UK e-Science All Hands Meeting (2006)

9. Netto, M.A.S., Buyya, R.: Offer-based scheduling of deadline-constrained bag-of-
tasks applications for utility computing systems. In: Proceedings of HCW/IPDPS
(2009)

10. Netto, M.A.S., Buyya, R.: Resource co-allocation in grid computing environments.
In: Handbook of Research on P2P and Grid Systems for Service-Oriented Com-
puting: Models, Methodologies and Applications, IGI Global (2009)

11. Park, J.: A deadlock and livelock free protocol for decentralized internet resource
coallocation. IEEE Transactions on Systems, Man, and Cybernetics Part A 34(1),
123–131 (2004)

12. Takefusa, A., Nakada, H., Kudoh, T., Tanaka, Y., Sekiguchi, S.: GridARS: an
advance reservation-based grid co-allocation framework for distributed computing
and network resources. In: Proceedings of JSSPP (2007)

Game-Theoretic Analysis of a Web Services
Collaborative Mechanism

Babak Khosravifar1, Jamal Bentahar1, Kathleen Clacens2,
Christophe Goffart2, and Philippe Thiran2

1 Concordia University, Montreal, Canada
2 University of Namur, Namur, Belgium

b khosr@encs.concordia.ca, bentahar@ciise.concordia.ca,
{k.clacens,darkyunsung}@gmail.com, pthiran@fundp.ac.be

Abstract. Web services are business applications having the capability to coop-
erate within groups to increase the efficiency of serving customers. There have
been a number of proposed frameworks aggregating web services for the pur-
pose of enhancing their capabilities with respect to providing the required ser-
vice. However, the grouping procedure has got less attention. In this paper, we
discuss the mechanism web services can use to join existing groups of web ser-
vices (known as communities). Moreover, we analyze the scenarios where the
community is filled up with web services that lied about their capabilities before
joining. The objective is to provide and maintain a truthful environment where
involving components act truthfully.

Keywords: Web services, Reputation, Agents.

1 Introduction

During recent years, web services have obtained a strong attention as they represent
distributed cooperation in business and IT networks. Web services hold predefined ca-
pabilities that let them realize their goals by engaging in interactions with one another.
They are loosely-coupled business applications and willing to cooperate in distributed
settings for the sake of efficiency. To this end, there have been efforts made in col-
laboration between web services [4]. The objective of this collaboration is to increase
web services’ capabilities. However, web services also need to be located in environ-
ments where requests are received from users in continuous manner, which requires a
high reputation. Furthermore, there are many aspects that should be considered when
analyzing web services working within groups (generally called communities). In this
paper, we mainly concentrate on the joining aspect of web services to existing com-
munities by focusing on their rational behaviors. The concept of community of web
services together with its relative details are explained in Section 2.4.

In this paper, we present a game-theoretical model analyzing the communities of
web services from the perspective of hosting different web services. A game is de-
fined between the master web service acting as the representative of the community and
agents acting as information providers within a group called information service group.

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 549–556, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

550 B. Khosravifar et al.

Agents in this group, called information service agents, provide the necessary infor-
mation regarding the web service that is attempting to join a community. The involved
information service agents can either lie or tell the truth about the requested informa-
tion. A payment mechanism that provides diverse ranges of payoffs to the information
service agents according to their chosen strategies is discussed and analyzed. Overall
contribution of the paper is summarized in game-theoretic analysis investigating the
stabilized situation where information service agents provide their actual information
and act truthfully.

2 Related Preliminaries

2.1 Web Services

The main motivation behind the use of web services technology is the development of
loosely-coupled, cross-enterprize business processes. This means web services can be
used without worrying about how they are implemented or where in the world they
are hosted. As in [4,5] and [8], we abstract web services as rational intelligent agents,
which are benefit maximizers. In our framework, the goal of these agents is to receive
user requests and satisfy them the best they can.

2.2 Information Service Agents

Information service agents provide a ranking of web services. They know all the ac-
tive web services and depending on their personal behavior and incentives, they could
provide accurate or non-accurate information about these web services.

2.3 Reputation

As for non-internet based services, for example buying a plane ticket from a travel
agency, it is possible that several web services have the same functionalities. We there-
fore need to differentiate those different, but functionally similar web services. We will
use the concept of reputation that strongly depends on the quality of service (QoS).
The Quality represents the capability of a web service to handle the users’ requests in
a timely fashion. In order to use this concept of reputation, we use a system architec-
ture having the following elements: (1) some registries containing entries that describe
individual web services; and (2) a reputation mechanism [8]. The registries can be im-
plemented using the UDDI protocol, which defines a standard method for publishing
and discovering web services [3].

2.4 Community of Web Services

A web service alone can easily be overloaded by an intense flow of user’s requests. It
will lead to a poor efficiency and therefore a drop in the users’ satisfaction and rep-
utation [6]. As argued in [4] and [6], a solution is to group different web services

Game-Theoretic Analysis of a Web Services Collaborative Mechanism 551

in a community. By aggregating the total number of requests that each single web ser-
vice can handle, and redistributing them among all the members, a community will be
granted a better availability and hence better efficiency.

In a community, we distinguish between two types of web services: a unique com-
munity master and two or more community slaves. The master takes the responsibility
of leading the community. He must attract new web services in the community by using
rewards, convince web services to stay in the community, and select the web service
that will respond to a user’s request. When a user sends a request to a community, the
master has to nominate a slave from his community that can handle that request.

3 The Model

3.1 The Modelled Structure

In general, when a customer asks an information service agent, there are two possible
strategies: lying or telling the truth. The utility uk(x) of an information service agent
k choosing the strategy x is a function having 3 incentive components where the agent
obtains rewards or penalties according to the chosen strategy. It is defined as follows:

uk(x) = fk(x) + gk(x) + c.hk(x) where

fk(x)>0, fk(x)< |gk(x)| and fk(x) + |gk(x)|< |hk(x)| (1)

The first component fk(x) is a positive reward that a customer gives to the information
service agent k who is willing to provide the asked information. The second component
incentive gk(x) corresponds to a value that will be granted to the information service
agent depending on the similarity between the information she gives and the average
information revealed by the other information service agents. This second value can
be negative if the distance is high and therefore acts as a punishment preventing the
information service agent to reveal incorrect information. Finally, after having used
the service being evaluated, the customer can tell whether the provided QoS fits the
information service agents’ predictions. The difference between what was expected and
what was actually experienced is used to calculate the third component incentive hk(x).
Of course, the latter can only be considered if the customer decides to have a transaction
with the provider. In this case, c will be set to 1 in the utility function, otherwise, c will
be equal to 0.

It is important that each incentive has to be higher than the summation of the previous
ones, that is to say fk(x) < |gk(x)| and fk(x) + |gk(x)| < |hk(x)|. It guarantees the
incentive compatibility property which means that information service agents, as a util-
ity maximizers, will reveal exactly what they believe about the service being evaluated
or, in other words, they will tell the truth.

Lemma 1. The utility function uk(x) satisfies the following properties:

1. Revealing the true trust value about the service being evaluated is a Nash equilib-
rium strategy.

552 B. Khosravifar et al.

2. If the service being evaluated is untrustworthy, revealing a false trust value is not
a Nash equilibrium strategy.

3. If the provider is trustworthy, revealing a false trust value is a Nash equilibrium
strategy.

Proof. As the first component is guaranteed, an information service agent has an incen-
tive to lie only if the second incentive gk(x) is strictly positive and the third incentive
is not obtained (c = 0). Therefore, the gained utility will be |fk(x) + gk(x)|. However,
by truth telling, the information service agent can get the third incentive as well, so the
gained utility will be |fk(x)+gk(x)+hk(x)|. Consequently, telling the truth is the best
strategy under Nash equilibrium. Adversely, if the service is untrustworthy, the agent
will gain less by lying as c.|hk(x)| will be strictly negative. Thus, lying is not a Nash
equilibrium. However, if the service is trustworthy but all the information service agents
decide to lie, no one can gain a better payoff by deviating from the group’s telling as
gk(x) will be negative and c.|hk(x)| null, which proves the third property.

The problem we would like to investigate is the situation where a web service, aiming
to join a community, pays the information service agent each time he gets chosen to join
a community after being referenced by this agent. The web service could be tempted to
cheat and pay more the information service agents so that they improve his reputation
when informing a community master. If the reward a web service gives to information
service agents to fake their opinion is big enough, these agents can be tempted to lie. In
that case, a community will hire the web service and maybe expect more than what the
service can really handle.

3.2 The Modelled Game

In the set up game, there is a number of involving agents: (1) a typical community (Mi);
(2) a typical single web service (Sj); and (3) a typical information service agent (Ik).
In the set up game, both the community of web services and single web service han-
dle user requests according to their capacities. In the ideal case, Mi and Sj desire to
be neither overloaded, nor idle. When Mi asks Ik for information about the quality of
Sj , a reputation value is produced. This value, representing what Ik reports to be the
reputation of Sj , is assigned to the triplet (Mi, Sj , Ik). Such a value is saved by Mi

in registries to keep a record of who reported what about the different services so the
value of the actual quality can be compared with the provided one. We define strategies
of truth telling and lying within strategy profile st = {0, 1}, where 0 and 1 respectively
reflect lying and telling the truth. As rational agent, an information service agent would
choose his strategy based on the gained utility. For instance, he might obtain an accept-
able offer that encourages him to lie and provide inaccurate information. Meanwhile,
there might be other effective parameters that encourage agents to provide truthful in-
formation. This paper mainly focuses on the truth telling issues and discusses the way
of converging towards this situation.

3.3 Payments

The payments information service agents receive can come from Mi and from the ser-
vice being evaluated. For simplicity reasons and to avoid notation confusion, we use

Game-Theoretic Analysis of a Web Services Collaborative Mechanism 553

three simple variables α, β, and γ that refer to the previously described incentives fk(x),
gk(x), and hk(x) in Equation 1. Mi pays α to Ik as an incentive to provide informa-
tion about Sj . Parameter β is the payment Mi gives to Ik after collecting reports about
Sj from I0, . . . , In. β is calculated in Equation 2 where TrIx

Mi
represents the value of

trust (confidence) Mi has towards Ix, and Rr
Sj

Ix
represents the value of the reputation

of Sj reported by Ix. β is then a decreasing logarithmic function (0 < b < 1) on the
difference between the average reported value by all the information service agents and
the value reported by Ik . Consequently, Ik receives the highest payment for the closest
reported value to this average (we assume that this distance is always different from 0,
otherwise a fixed payment, close to the highest, can be given).

β = logb(|
∑n

x=0 TrIx

Mi
Rr

Sj

Ix∑n
x=0 TrIx

Mi

− Rr
Sj

Ik
|) (2)

γ is the payment Mi gives to Ik if Mi has registered Sj in Ci and evaluated his repu-

tation. After this evaluation, Mi can compare Rr
Sj

Ix
to Ro

Sj

Mi
and pay Ik with a value

of γ, which is computed in Equation 3, where Rr
Sj

Ix
represents the value of the reputa-

tion of Sj reported by Ix, and Ro
Sj

Mi
represents the value of the actual reputation of Sj

observed by Mi. As in Equation 2, Ik receives the highest payment when the reported
reputation value is the closest to the observed one. If the distance between these two
values is 0, a fixed payment can be set.

γ = logb(|Rr
Sj

Ix
− Ro

Sj

Mi
|) (3)

The single web service Sj can pay π to Ik in order to encourage him to increase his
reputation when reporting to communities. This payment will only be received if Mi

chooses to add Sj to the community. As shown in Equation 4, this payment is an expo-
nentially decreasing function on the actual web service’s reputation RrSj , which means
if Sj has a high reputation, only a small payment can be given to Ik, but if this reputa-
tion is low, Sj has to reward high Ik if he is getting selected by Mi. In this equation, λ
is application-dependent that measures the decreasing slope. In this paper, we assume
λ = 1.

π = e−λRrSj
(4)

4 Cases Overview

In this section, we analyze different cases using a game involving two players (I.S for
a typical information service agent and O.I.S for the other information service agents).
Each game is represented as a table where the rows show the strategies of I.S and the
columns indicate the strategies of O.I.S. Each cell of the table represents the action
profile, i.e. the outcome that each player has according to the adopted strategy. The first
outcome is for I.S and the second one for O.I.S. If the received payment is negative,
we use the superscript −. For example, β− means a negative β, otherwise, β is positive.

We focus on the cases where Sj is honest (with good and bad QoS). Due to space
limitations, we skip the case where Sj is dishonest, however, this case could be easily

554 B. Khosravifar et al.

generalized. In our considered cases, Sj does not try to corrupt I.S and O.I.S by re-
warding them. Therefore, we will only take into account the first three payments α, β
and γ. Then, we apply the same analysis on the dishonest Sj , where the information ser-
vice agents can receive the incentive π in order to improve fraudulently the information
they report about Sj .

Sj has good QoS. The assigned payoff regarding each strategy is set up in
Table 1. If every information service agent tells the truth, i.e. informing Mi that Sj is
good, everyone will receive a maximum payment of α+β +γ. Indeed, the information
services will receive α in reward for processing the request. They will gain β because
the value of the report that each information service agent will give will be close to the
average of all the reported values. Finally, they will receive the third payment γ since
the observed reputation and announced one will be close to each other.

Table 1. Honest single web services - Sj has good QoS

O.I.S
Truth Lie

I.S Truth (α + β + γ), (α + β + γ) (α + β−), (α + β−)
Lie (α + β− + γ−), (α + β− + γ) (α + β), (α + β)

If I.S decides to lie while O.I.S continue to tell the truth, I.S will degrade his total
payment to α + β− + γ−. He will still receive α but a negative β and γ as computed
in Equations 2 and 3 because the reputation he reported will be far from the average
and observed reputation. On the other hand, O.I.S will also perceive a degradation in
their total payment. In fact, because one information service agent decided to report a
reputation totally different from those reported by the others, the average will be smaller
than if every information service agent had reported close values. In this case we use
β− instead of β. If O.I.S decide to change their strategies and lie, they will only get α
and β− as payment. Majority announcement that Sj is bad implies that the community
will not accept him, and therefore the third payment γ will not be granted. As I.S did
not change his strategy, he will get α and a negative β because of the big distance from
the average and not γ because Sj will not enter the community. If everyone decides
to lie, all the information services will get α and β and nobody will receive γ as the
service will not join the community. Thus, there is an incentive to tell the truth for
everyone because it corresponds to the situation that guarantees the maximum payment
α + β + γ. This game has the following properties:

Lemma 2. Telling the truth by all the information service agents is the only Pareto
optimal and Nash equilibrium (Pareto-Optimal-Nash).

Proof. The proof is straightforward from Table 1 since any change of strategy of telling
the truth would degrade other agents’ payoffs and no other situation has this property.

Lemma 3. Lying by all the information service agents is Pareto optimal.

Proof. The proof is straightforward from Table 1 since any change of one’s strategy of
lying would degrade the opponent’s payoff.

Game-Theoretic Analysis of a Web Services Collaborative Mechanism 555

Sj has bad QoS. In this second case, we assume that the honest Sj provides a bad
QoS.

Table 2. Honest single web services - Sj has bad QoS

O.I.S.
Truth Lie

I.S. Truth (α+β), (α+β) (α+β−+γ), (α+β−+γ−)
Lie (α+β−), (α+β−) (α+β+γ−), (α+β+γ−)

If every player tends to tell the truth and reveals that Sj has bad QoS, they will all
get a payment of α + β (see Table 2). If I.S decides to modify his strategy and lie
by announcing that Sj has good QoS, he will degrade his total payment. He will still
receive α but a negative β because the reputation he announced is far from the average.
However, O.I.S will get the two first payments but the second one will be slightly
decreased in comparison to the previous situation. Therefore, they will perceive α+β−.
In the next situation, assume that O.I.S change their strategies and start to lie. Because
the majority of information service agents will declare Sj as good, the web service will
join the community. Soon, Mi will realize that Sj has actually bad QoS. Therefore, the
group of O.I.S will receive α+β− +γ−. On the other hand, I.S who kept his strategy
of telling the truth will get α + β− + γ. Indeed, the information service will receive a
negative β but will be rewarded by γ as he reported correctly that Sj has bad QoS. If
everyone decides to lie, all the information service agents will get α + β + γ−. γ will
be negative because Sj will join the community, so Mi will discover his bad QoS. The
following property results directly from Table 2.

Lemma 4. Telling the truth is the only Pareto-Optimal-Nash.

5 Related Work

In many frameworks proposed in the literature, service selection and task allocation
are regulated based on the reputation parameter [10,11]. In [1], the proposed frame-
work regulates the service selection based on the trust policies expressed by the service
users. In [9], authors propose ontology for quality of service. Users compute the web
services’ reputation using ratings. The frameworks proposed in [3,8] address effective
reputation mechanism for web services. All these models address the reputation in en-
vironments where web services function alone. In such models, web service efficiency
is not discussed in details and in general, balancing the market share with the capacity
is not considered as an issue for web service besides his reputation.

There have been few work addressing the communities of services. The objective is
to facilitate and improve the process of service selection and effectively regulate the
process of request and task allocation [2]. In [4], authors propose a reputation-based
architecture for communities and investigate the collusion scenarios that might falsely
increase communities’ reputation in the network. In [5], the authors mainly address
the overall assessed reputation that is used as a main reason for service selection. The
authors do not consider truth/lie telling analysis as a factor impacting service selection.

556 B. Khosravifar et al.

6 Conclusion

The contribution of this paper is the proposition of a game-theoretic based model to
analyze the best efficiency characteristics for the active services in open networks. The
proposed framework considers the chances of web services in joining a community in
different cases with truthful and lying information service agents. The proposed game
analyzes the existing Nash equilibrium and situations where the maximum payoff is
obtained. Our model has the advantage of being simple and taking into account three
important factors: (1) rational services seek better status in the environment by joining
the community; (2) rational information service agents obtain higher payoff by truth
telling; and (3) the community is obtaining more effective web services while the in-
formation service agents challenge for providing truthful information. As future work,
we plan to consider the user role in the game to obtain more accurate results when
users act rationally. Moreover, we would like to achieve a collusion resistant efficiency
mechanism, which is still an open problem in open environments.

References

1. Ali, A.S., Ludwig, S.A., Rana, O.F.: A cognitive trust-based approach for Web service dis-
covery and selection. In: Proc. of the Euro. Conference on Web Services, pp. 38–40 (2005)

2. Jacyno, M., Bullock, S., Luck, M., Payne, T.R.: Emergent Service Provisioning and Demand
Estimation through Self-Organizing Agent Communities. In: 8th International Joint Confer-
ence on Autonomous Agents and Multiagent Systems, pp. 481–488 (2009)

3. Kalepu, S., Krishnaswamy, S., Loke, S.W.: A QoS metric for selecting Web services and
providers. In: Proc. of the 4th International Conference on Web Information Systems Engi-
neering Workshops, pp. 131–139 (2003)

4. Khosravifar, B., Bentahar, J., Moazin, A., Thiran, P.: Analyzing communities of web services
using incentives. International Journal of Web Services Research 7(3), 30–51 (2010)

5. Khosravifar, B., Bentahar, J., Thiran, P., Moazin, A., Guiot, A.: An approach to incentive-
based reputation for communities of Web services. In: Proc. of IEEE 7th International Con-
ference on Web Services, pp. 303–310 (2009)

6. Khosravifar, B., Bentahar, J., Moazin, A., Maamar, Z., Thiran, P.: Analyzing communities
vs. single agent-based web services: trust perspectives. In: Proc. of the IEEE international
Conference on Services Computing, pp. 194–201 (2010)

7. Maamar, Z., Subramanian, S., Thiran, P., Benslimane, D., Bentahar, J.: An approach to engi-
neer communities of web services: Concepts, architecture, operation, and deployment. Inter-
national Journal of E-Business Research 5(4), 1–21 (2009)

8. Maximilien, E.M., Singh, M.P.: Conceptual model of Web service reputation. SIGMOD
Record 31(4), 36–41 (2002)

9. Maximilien, E.M.: Multiagent system for dynamic web services selection. In: The 1st Work-
shop on Service-Oriented Computing and Agent-based Eng., pp. 25–29 (2005)

10. Rosario, S., Benveniste, A., Haar, S., Jard, C.: Probabilistic QoS and soft contracts for trans-
action based web services. In: IEEE International Conference on Web Services, pp. 126–133
(2007)

11. Ruth, M., Shengru, T.: Concurrency issues in automating RTS for Web services. In: IEEE
International Conference on Web Services, ICWS 2007, pp. 1142–1143 (2007)

Importance Sampling of Probabilistic

Contracts in Web Services

Ajay Kattepur

IRISA/INRIA, Campus Universitaire de Beaulieu, Rennes, France

Abstract. With web services quality of service (QoS) modeled as ran-
dom variables, the accuracy of sampled values for precise service level
agreements (SLAs) come into question. Samples with lower spread are
more accurate for calculating contractual obligations, which is typically
not the case for web services QoS. Moreover, the extreme values in case
of heavy-tailed distributions (eg. 99.99 percentile) are seldom observed
through limited sampling schemes. To improve the accuracy of contracts,
we propose the use of variance reduction techniques such as importance
sampling. We demonstrate this for contracts involving demand and re-
fuel operations within the Dell supply chain example. Using measured
values, efficient forecasting of future deviation of contracts may also be
performed. A consequence of this is a more precise definition of sampling,
measurement and variance tolerance in SLA declarations.

Keywords: Web Services, QoS, Importance Sampling, SLA.

1 Introduction

Web services continue to attract applications in many areas [1]. With increasing
efforts to standardize performance of web services, focus has shifted to Quality of
Service (QoS) levels. This is important to consider in case of orchestrations that
specify the control flow for multiple services. To this end, contractual guarantees
and service level agreements (SLAs) [2] are critical to ensure adequate QoS
performance.

QoS metrics being random variables, the treatment of contractual obligations
tends toward probabilistic criterion [3]. Contractual obligations may be specified
as varying percentile values of such distributions rather than “hard” values. In
[4], composition and monitoring such contracts with stochastic dominance have
been examined.

As metrics such as response time and throughput rates can have heavy tails,
estimating extreme values becomes difficult with few observations. The avail-
ability of a web service might need contracts for extreme percentiles in the re-
sponse time profile (99.99 percentile). For instance, an ambulance or disaster
management web service must be available 24× 7, indicating a high availability
requirement. These values are dependent on sampled random values and can
lead to high variance in contractual guarantees.

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 557–565, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

558 A. Kattepur

The use of importance sampling [5] is proposed as a solution to these prob-
lems. Disadvantages of conventional Monte-Carlo techniques such as high vari-
ance of percentile values may be eliminated. In case of heavy tailed distributions,
unobserved extreme percentiles can be quantified with higher accuracy. These
are stochastically “important” observations to estimate contractual deviations.
These issues are demonstrated with the Dell example [6], a choreography involv-
ing Dell Plant and Supplier orchestrations. We study more accurate bounds for
supplier contracts with varying plant demand rates. Further, we show how QoS
metrics such as stock level deviations (specially long delays) can be estimated
with low variance.

The rest of the paper is organized as follows: Section 2 introduces the proba-
bilistic contract composition procedure for web services’ QoS. Importance sam-
pling is briefly introduced in Section 3 with emphasis on contractual sampling
in web services and sample deviations. The Dell application is introduced in
Section 4 with two workflows interacting in a choreography. The two application
of importance sampling with respect to the Dell supply chain are described in
Sections 4.1 and 4.2. Related work and conclusions of the paper are included in
Sections 5 and 6, respectively.

2 Probabilistic QoS Contracts

Available literature on industry standards in QoS [7] provides a family of QoS
metrics that are needed to specify SLAs. These can be subsumed into the follow-
ing four general QoS observations: Service Latency, Per Invocation Cost, Output
Data Quality and Inter-Query Intervals. To handle such diverse domains, metrics
and algebra for QoS, a framework is proposed in [4]. Using such an algebra, QoS
metrics may be defined explicitly with domains, increments and comparisons
within service orchestrations.

For a domain DQ of a QoS parameter Q, behavior can be represented by its
distribution FQ:

FQ(x) = P(Q ≤ x) (1)

Making use of stochastic ordering [8], this is refined for probability distributions
F and G over a totally ordered domain D:

GQ � FQ ⇐⇒ ∀x ∈ DQ, GQ(x) ≥ FQ(x) (2)

That is, there are more chances of being less than x (partial order �) if the
random variable is drawn according to G than according to F . A QoS contract
must specify the obligations of the two parties:

– The obligations that the orchestration has regarding the service are seen as
assumptions by the service - the orchestration is supposed to meet them.

– The obligations that the service has regarding the orchestration are seen as
guarantees by the service - the service commits to meeting them as long as
assumptions are met.

Importance Sampling of Probabilistic Contracts in Web Services 559

Definition 1. A probabilistic contract is a pair (Assumptions, Guarantees),
which both are lists of tuples (Q, DQ, FQ), where Q is a QoS parameter with
QoS domain DQ and distribution FQ.

Once contracts have been agreed, they must be monitored by the orchestration
for possible violation as described in [3].

3 Importance Sampling

In case of web services’ SLAs, these rare event simulations can be used to deter-
mine the occurrence of failure or deviation from contracts. Traditional Monte-
Carlo (MC) methods waste a lot of time in a region of the state space which is
“far” from the rare set of interest. Modifying the underlying distributions to move
“near” the states of interest provides a more efficient means of analysis. With typ-
ical Monte-Carlo (MC), if the mean μ = 10−5 and if we want the expected number
of occurrences of this event to be at least 100,we must take approximatelyN = 107

runs. For lower values of N , not even a single occurrence of this event may be seen
- leading to the faulty conclusion that the event does not occur.

Importance sampling (IS) [5] increases the probability of the rare event while
multiplying the estimator by an appropriate likelihood ratio so that it remains
unbiased. Consider the case of a random variable Q with probability density
function (PDF) FQ for which the probability of a rare event P(H(Q) > Φ) is
to be estimated. Here H(Q) is a continuous scalar function and Φ is the thresh-
old. Using Monte-Carlo, one generates independent and identically distributed
samples Q1, Q2, ...QN from the PDF FQ and then estimates the probability:

PMC =
1
N

N∑
i=1

1H(Qi)>Φ (3)

where 1H(Q)>Φ is 1 if H(Q) > Φ and 0 otherwise. For a rare event, such a
technique needs many runs for low variance estimates.

With Importance Sampling (IS) [5], variance can be reduced without increas-
ing the number of samples. The idea is to generate samples Q1, Q2, ...QN from
an auxiliary PDF GQ and then estimate probability:

PIS =
1
N

N∑
i=1

H(Qi)1H(Qi)>Φ
FQ(Qi)
GQ(Qi)

(4)

It is evident that GQ should be chosen such that it has a thicker tail than FQ. If

FQ is large over a set but GQ is small, then
(

FQ

GQ

)
would be large and it would

result in a large variance. It is useful if we can choose GQ to be similar to FQ in
terms of shape. Analytically, we can show that the best GQ is the one that would
result in a variance that is minimized [5]. In order to perform this selection, some
sort of knowledge about the distribution is assumed, either through theory or
pre-collected statistical data.

560 A. Kattepur

As in the case of most statistical techniques, the monitoring of contracts is
also based on samples of the population of QoS. If the variance in values of the
sample set is large then the mean is not as representative of the data as if the
spread of data is small. If only a sample is given and we wish to make a statement
about the population standard deviation(from which the sample is drawn), then
we need to use the sample standard deviation. If Q1, Q2, ..., QN is a sample of
N observations, the sample variance is given by:

s2 =
∑N

i=1(Qi − Q̄2)
N − 1

(5)

with Q̄ as the sample mean. This sample standard deviation can be used to
represent the deviation in the population QoS output and is used in this paper.

4 Dell Supply Chain

To demonstrate the variation in the QoS domains in real-world services, we study
the Dell example [6]. The Dell application is a system that processes orders from
customers interacting with the Dell webstore. According to [6], this consists of
the following prominent entities:

– Dell Plant - Receive the orders from the Dell webstore and are responsible
for the assembly of the components. For this they interact with the Revolvers
to procure the required items.

– Revolvers - Warehouses belonging to Dell which are stocked by the suppliers.
Though Dell owns the revolvers, the inventory is owned and managed by the
Suppliers to meet the demands of the Dell Plant.

– Suppliers - They produce the components that are sent to the revolvers at
Dell. Periodic polling of the Revolvers ensure estimates of inventory levels
and their decrements.

Essentially, there are a Dell Plant and Supplier orchestrations that are chore-
ographed through common Revolvers. The critical aspect in the Dell choreogra-
phy is efficient management of revolver levels. It is a shared buffer resource that
is accessed by both the Dell Plant and the Suppliers. As discussed in [6], for the
efficient working of the supply chain, the interaction between the Dell Plant and
the Supply-side workflows should be taken into account.

The requests made by the plant for certain items will be favorably replied to
if the revolvers have enough stock. This stocking of the revolvers is done inde-
pendently by the suppliers. The suppliers periodically poll (withdraw inventory
levels) from the revolvers to estimate the stock level. In such a case, a contract
can be made on the levels of stock that must be maintained in the revolver. The
customer side agreement limits the throughput rate. The supplier side agree-
ment ensures constant refueling of inventory levels, which in turn ensures that
the delay time for the customer is minimized. Thus, it represents a choreography
comprising two plant-side and supplier-side orchestrations interacting via the
revolver as a shared resource.

Importance Sampling of Probabilistic Contracts in Web Services 561

4.1 Contract Composition

For the Dell example, as QoS metrics are inherent to the functionality of the
choreography, specifying explicitly probabilities of outage is necessary. Proposed
are the following two concrete metrics that qualitatively evaluate these work-
flows:

– Assumption: The demand (number of orders/hour) distributions from the
Dell plant made to a particular revolver. It is the prerogative of the plant to
maintain demand within acceptable range of the contracts.

– Guarantee: The delay (hours) distribution in obtaining products from re-
volvers. This, in turn, is dependent on the availability of products in the
revolver. The suppliers ensure efficient and timely refueling to maintain
acceptable delays in the supply chain.

Consider the assumption on the query rate of the customer shown as an exponen-
tial distribution as in Fig. 1. Repeatedly pinging the service in order to receive
boundary values of the distribution is expensive and not reflective of run-time
performance. This is demonstrated for three values in Table 1 with 10000 runs.
Conventional Monte-Carlo does not detect the probability of inter-query peri-
ods being less than 100, 50 or 20 minutes (which can be fallaciously interpreted
as the rare event never occurring). Using an importance sampling distribution,
accurate mean and sampling variance values are produced for the probability of
crossing these thresholds. Such a level of accuracy is needed specially for critical
web services (crisis management such as ambulance or fire stations). For con-
ventional web services contracts as well, such precise contractual obligations can
reduce the need for extended monitoring of services contracts.

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

3500

Inter−Query Interval (minutes)

F
re

qu
en

cy

Observation
Importance Sampling

Fig. 1. Inter-query period fitting

0 20 40 60 80 100 120
0

50

100

150

200

250

Response Time (minutes)

F
re

qu
en

cy

Observations
Importance Distribution
99.9 percentile
99.99 percentile
99.999 percentile

Fig. 2. Response time fitting

A corresponding guarantee from the service provider regarding the response
time may be estimated as a long tailed distribution (Fig. 2, Table 2). Once again
we concentrate on the outlying percentile values. The outputs for the traditional
Monte-Carlo runs produce higher sample variance compared to the importance
sampling scheme.

562 A. Kattepur

Table 1. Inter-query periods by Monte-Carlo (MC) and Importance Sampling (IS)

Inter-query period (mins.) mean MC variance MC mean IS variance IS
100 0 0 0.0086 0.0094

50 0 0 0.0018 7.36 × 10−5

20 0 0 7.99 × 10−5 7.37 × 10−6

Table 2. Latency by Monte-Carlo (MC) and Importance Sampling (IS) schemes

Percentile Latency (mins.) mean MC variance MC mean IS variance IS

99.9 44.61 0.0022 2.456 × 10−6 0.0018 3.5548 × 10−7

99.99 69.58 5.2 × 10−4 5.65 × 10−7 3.04 × 10−4 3.82 × 10−8

99.999 125.70 1.1 × 10−4 1.19 × 10−7 3.47 × 10−7 3.12 × 10−9

An advantage of this scheme is that the contracts will be formulated as explicit
probabilities of contractual deviation. The WSLA framework [10], refined with
precise probabilistic percentile values of QoS distributions specified as:

<Assumptions>
<SLAParameter name="InterQueryPeriod" type="float" unit="seconds" />
<Predicate xsi:type="wsla:Greater">

<Percentile> 95 </Percentile> <Value> 30 </Value>
<SampleVariance> 10^-3 </SampleVariance> </Predicate> </Assumptions>

<Guarantees>
<SLAParameter name="ResponseTime" type="float" unit="seconds" />
<Predicate xsi:type="wsla:Less">

<Percentile> 99 </Percentile> <Value> 15 </Value>
<SampleVariance> 10^-3 </SampleVariance> </Predicate> </Guarantees>

The contract now specifies the contract from the assumption-guarantee
viewpoint. For any measurement period, the Percentile values of the
ResponseTime should be less than the specified bounds. On the other hand,
the InterQueryPeriod should be greater than the threshold values. In both
cases, the SampleVariance is taken into account. Such a framework allows
for distributions to be used for both contractual specification and monitoring
deviations.

4.2 Forecasting

Traditional forecasting models like autoregressive moving averages [9] rely heav-
ily on accurate mathematical modeling of workflow processes. In this section, we
propose using pre-identified contracts / observations to provide an easier method
of forecasting outages in web services orchestrations. Consider a Dell revolver
with critical stock of 10 items, refueling batch 50 items and a polling period of
10 hours. With an assumption distribution of orders/hour shown in Fig. 3, the
response time distribution obtained over a period of 1 week is shown in Fig.
4. If an item is available, it is procured immediately. Else, it is refueled with a
supplier delay when polling detects sub-critical revolver levels.

In order to develop a guarantee distribution, the Dell plant must estimate
the probability that delays over 72, 96 or 120 hours are experienced (leading
to cancellation in orders). Through importance sampling, these values can be
better estimated as in Table 3. Notice that the variance through importance

Importance Sampling of Probabilistic Contracts in Web Services 563

9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14
0

20

40

60

80

100

120

Number of Orders / Hour

F
re

qu
en

cy

Fig. 3. Assumption: Plant side demand
distributions

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Procurement Delay (hours)

F
re

qu
en

cy

Observation
Importance Sampling
Threshold 1
Threshold 2
Threshold 3

Fig. 4. Guarantee: Supplier side procure-
ment delays

sampling is several orders of magnitude lower than conventional Monte-Carlo.
The Dell plant can provision more stringent supplier obligations to reduce the
delays. For instance, changing the critical stock to 50 items, refueling batch 200
items produces a new set of values, with lower probabilities of crossing outlying
values as shown in Table 4.

Such changes produced by improved supplier performance is barely observed
through traditional Monte-Carlo sampling, thus proving the efficacy of Impor-
tance Sampling. Application of forecasting through pre-negotiated contracts em-
phasize the need for precise contractual obligations needed in web services.

Table 3. Original contract estimates

Delay (hours) mean MC variance MC mean IS variance IS

72 0.002 3.2 × 10−3 0.0016 1.72 × 10−7

96 0 0 3.88 × 10−4 3.71 × 10−8

120 0 0 1.02 × 10−4 6.25 × 10−9

Table 4. Reformulated contract estimates providing lower probabilities of delay

Delay (hours) mean MC variance MC mean IS variance IS

72 0 0 4.08 × 10−4 1.35 × 10−8

96 0 0 9.91 × 10−5 1.89 × 10−9

120 0 0 2.734 × 10−5 6.74 × 10−10

5 Related Work

The use of probabilistic QoS and contracts was introduced by Rosario et al
[3] and Bistarelli et al [11]. Instead of using hard bound values for parameters
such as response time, the authors proposed a probabilistic contract monitoring
approach to model the QoS bounds. The composite service QoS was modeled
using probabilistic processes by Hwang et al [12] where the authors combine
orchestration constructs to derive global probability distributions.

564 A. Kattepur

In [14], Gallotti et al propose using a probabilistic model checker to assess
non-functional quality attributes of workflows such as performance and relia-
bility. Validating SLA conformance is studied by Boschi et al [15]. A series of
experiments to evaluate different sampling techniques in an online environment
is studied.

The use of importance sampling to change probability of occurrence of events
in well known [5]. An associated work in this area is importance splitting [13].
Importance splitting considers the estimation of a rare event by deploying several
conditional probabilities during simulation runs, reducing the need to identify
importance distributions as used in this case.

6 Conclusion

QoS aspects are critical to the functioning of most web service orchestrations
and choreographies, needing more precise specifications of SLAs. This is difficult
as distributions of QoS values have high variance when sampled with inefficient
Monte-Carlo techniques. In most cases, the tails of QoS distributions are either
neglected or averaged out in contractual specifications. Applying importance
sampling to such distributions can provide better estimates of outlying values
with relatively low variance. As demonstrated in this paper on the Dell supply
chain application, importance sampling can have significant imperatives for both
contract composition as well as forecasting deviations for critical services. The
extension of this approach in case of WSLA specifications are also provided with
a precise definition of sample variance.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Archi-
tectures and Applications. Springer (2004)

2. Bhoj, P., Singhal, S., Chutani, S.: SLA management in federated environments. In:
Symp. on Dist. Mgmt. for the Networked Millennium, pp. 293–308 (1999)

3. Rosario, S., Benveniste, A., Haar, S., Jard, C.: Probabilistic QoS and soft contracts
for transaction based Web services. In: IEEE ICWS (2007)

4. Rosario, S., Benveniste, A., Jard, C.: Flexible Probabilistic QoS Management of
Orchestrations. Int. J. Web Service Res. 7(2), 21–42 (2010)

5. Bucklew, J.A.: Introduction to rare event simulation. Springer, Heidelberg (2004)
6. Kapunscinski, R., Zhang, R.Q., Carbonneau, P., Moore, R., Reeves, B.: Inventory

Decisions in Dells Supply Chain. Interfaces 34(3), 191–205 (2004)
7. World Wide Web Consortium, “QoS for Web Services: Requirements and Possible

Approaches,” W3C Working Group Note (November 2003)
8. Shaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer Statistics (2006)
9. Makridakis, S., Wheelwright, S.: Adaptive Filtering: An Integrated Autoregres-

sive/Moving Average Filter for Time Series Forecasting. Operational Research
Quarterly 28(2), 425–437 (1977)

10. Ludwig, H., Keller, A., Dan, A., King, R.P., Franck, R.: Web Service Level Agree-
ment (WSLA) Language Specification. IBM Corporation (2003)

Importance Sampling of Probabilistic Contracts in Web Services 565

11. Bistarelli, S., Santini, F.S.: Soft Constraints for Quality Aspects in Service Oriented
Architectures. In: Workshop on Service Oriented Computing, Italy (2009)

12. Hwang, S.Y., Wang, H., Tang, J., Srivastava, J.: A probabilistic approach to model-
ing and estimating the QoS of web-services-based workflows. Elsevier Information
Sciences 177, 5484–5503 (2007)

13. Morio, J., Pastel, R., Le Gland, F.: An overview of importance splitting for rare
event simulation. European J. of Physics 31, 1295–1303 (2010)

14. Gallotti, S., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Quality Prediction of Ser-
vice Compositions Through Probabilistic Model Checking. In: Becker, S., Plasil, F.,
Reussner, R. (eds.) QoSA 2008. LNCS, vol. 5281, pp. 119–134. Springer, Heidelberg
(2008)

15. Boschi, E., Denazis, S., Zseby, T.: A measurement framework for inter-domain SLA
validation. Elsevier Computer Communications 29, 703–716 (2006)

Particle Filtering Based Availability
Prediction for Web Services

Lina Yao and Quan Z. Sheng

School of Computer Science
The University of Adelaide, Australia

{lina,qsheng}@cs.adelaide.edu.au

Abstract. Guaranteeing the availability of Web services is a significant chal-
lenge due to unpredictable number of invocation requests the Web services have
to handle at a time, as well as the dynamic nature of the Web. The issue becomes
even more challenging for composite Web services in the sense that their avail-
ability is inevitably affected by corresponding component Web services. Current
Quality of Service (QoS)-based selection solutions assume that the QoS of Web
services (such as availability) is readily accessible and services with better avail-
ability are selected in the composition. Unfortunately, how to real-time maintain
the availability information of Web services is largely overlooked. In addition,
the performance of these approaches will become questionable when the pool
of Web services is large. In this paper, we tackle these problems by exploiting
particle filtering-based techniques. In particular, we have developed algorithms
to precisely predict the availability of Web services and dynamically maintain
a subset of Web services with higher availability. Web services can be always
selected from this smaller space, thereby ensuring good performance in service
compositions. Our implementation and experimental study demonstrate the fea-
sibility and benefits of the proposed approach.

1 Introduction

Web services and service-oriented computing (SOC) represent a new paradigm for
building distributed computing applications over the Internet. Unfortunately, after the
development of nearly one decade, Web services are still in their infancy [10,17,13].
According to a recent study in Europe [2], the Web currently contains 30 billion Web
pages, with 10 million new pages added each day. In contrast, only 12,000 real Web
services exist on the Web. Even worse, many Web services have been deployed with
dependability problems (e.g., unexpected behaviors, reliability, availability etc).

Guaranteeing the availability of a Web service is a significant challenge due to the
unpredictable number of invocation requests the Web service has to handle at a time,
as well as the dynamic nature of the Web. Over the last few years, many works have
emerged in solving Web service availability problem. Almost all of these approaches are
based on the concept of service community where Web services with similar function-
alities (but different non-functional properties such as quality of service (QoS)) [1,18]
are grouped in a particular community. The basic idea on improving the availability of
Web service in a composition is to substitute Web services with poor quality using other

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 566–573, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Particle Filtering Based Availability Prediction for Web Services 567

services with better quality from the same service community. This typically involves
QoS based service selection.

Most QoS service selection approaches assume that the QoS information (e.g., avail-
ability of Web service) is pre-existing and readily accessible. This unfortunately is not
true. In reality, the availability status, as well as other QoS properties, of a Web ser-
vice is highly uncertain, which changes over the time. How to accurately estimate and
predict the availability status of a Web service becomes an important research problem.
In addition, given the wide adoption of Web service in industry, more and more Web
services will be available and the size of service communities will be inevitable large.
Selecting from such a big space will lead to performance problem. Ideally, low quality
Web services should be automatically filtered during service composition.

In this paper, we focus on solving above problems. In particular, we propose a par-
ticle filter based approach to precisely predicate and adjust Web service availability in
real time. By continuously monitoring the service status, our approach offers more effi-
cient and effective solution in service composition while ensure the high availability of
composite Web services. Our work can be summarized as the following three original
contributions:

– A model for availability of Web services using particle filter technique, which can
perform precise prediction of the availability of Web services. Service availability is
considered by combining both historical information and the predicted availability.

– An algorithm to optimize Web services selection by dynamically reducing the can-
didate Web services search space during Web services composition, and

– An implementation and experimental studies to validate the proposed approach.

The rest of the paper is organized as follows. Section 2 briefly introduces service avail-
ability model and the particle filter techniques. Section 3 describes the details of our
approach and the algorithms. Section 4 reports the implementation and some prelimi-
nary experimental results. Finally, Section 5 overviews the related work and Section 6
provides some concluding remarks.

2 The Service Availability Model and the Particle Filter

In this section, we briefly introduce the service availability model and the particle filter
technique, which serves as the core component of our approach on high availability of
Web services composition.

2.1 Modeling Web Services Availability

There are different classifications of availability and many ways to calculate it [3]. Al-
most all existing approaches (e.g., [19,8,4]) use operational availability that measures
the average availability over a period of time (i.e., the ratio of the service uptime to total
time). Although this is simple to calculate, it is hard to measure the availability of a
Web service at a specific time.

In this work, we model Web service availability as instantaneous (or point) avail-
ability. The instantaneous availability of a Web service s is the probability that s will

568 L. Yao and Q.Z. Sheng

be operational (i.e., up and running) at a specific time t. The following discusses how
to calculate the instantaneous availability of a Web service.

At given time t, a Web service s will be available if it satisfies one of the following
conditions:

– The Web service s is working in the time frame of [0,t] (i.e., it never fails by time
t). We represent the probability of this case as R(s, t).

– The Web service s works properly since the latest repair at time u (0 < u < t).
The probability of this condition is

∫ t

0
R(s, t − u)m(s, u)du, where m(s, u) is the

renewal density function of service s.

Based on these two conditions, the availability of service s at time t, A(s, t), can be
calculated using the following formula:

A(s, t) = R(s, t) +
∫ t

0

R(s, t − u)m(s, u)du (1)

2.2 The Particle Filter

We consider the availability of Web services as a dynamic system (i.e., it changes from
time to time), which can be modeled as two equations: state transition equation and
measurement equation. The states can not be observed directly and need to be esti-
mated, while the measurements can be observed directly. Specifically, state transition is
represented as:

xk = fk(xk−1, uk−1, vk−1) (2)

where fk is a non-linear function, xk, xk−1 are current and previous states, vk−1 is
the state noise in non-Gaussian distribution, and uk−1 is the known input. Similarly,
measurement is represented as

zk = hk(xk, uk, nk) (3)

where hk is a non-linear function, zk is a measurement, xk is a state, and uk is the
known input.

The availability of Web services changes over time, which is full of uncertainty due
to problems of network issues, hosting servers, and even service requester environ-
ments. We exploit the generic particle filter [7] to solve the dynamic availability of Web
services, which will be discussed in the next section.

3 The Approach

Figure 1 shows the basic idea of our approach. Specifically, we propose to add a filtering
layer between Web service layer and composition layer (right side of Figure 1). The
layer of Web services contains several service communities and each of them consisting
of Web services with similar functionalities. Each community may have large number
of members.

Particle Filtering Based Availability Prediction for Web Services 569

QoS Controller

C1
C2

C3

C4
C5

Original Layer

Composition Layer

(a)

QoS Controller

C1 C2

C3

C4
C5

C’1 C’2

C’3

C’4

C’5

Original Layer

Filtering Layer

Composition Layer

(b)

Fig. 1. (a) Existing approaches and (b) Our proposed approach

The filtering layer is essentially a subset of service communities, which consists of
Web services with high availability that will directly involve in service compositions.
The Web services are selected based on the accurate estimation and ranking algorithm
described in this section. It should be noted that the relationship between Web service
communities and the filtering layer is dynamic and adaptive. Our approach dynamically
adjusts the members in the filtered service communities where degrading Web services
will be replaced automatically with Web service with better availability from service
communities. Web services’ availability state is highly dynamic and therefore needs an
adaptive approach to monitor and track each Web service’s state. This is important to
conduct optimized selection algorithm for composite Web services.

In our approach, we model the availability of a Web service i at time t as xi(t), which
maintains the probability distribution for service availability estimation at time t, and
inducted as the belief Bel(xi(t)) = {xi(t), wi(t)}, i = 1, 2, ...,M, where wi(t) are
the different weight values, which indicate the contribution of the particle to the overall
estimation, also called important factors (

∑
wi(t) = 1). Algorithm 1 shows the brief

process on how it works.
Based on Algorithm 1, we can sort the top k Web services with high availability

according to the monitoring and prediction. We call this estimated availability Ei. In
addition, for the overall filtering algorithm, we also take the history information on
availability Hi into account, on top of the estimated availability by using the particle
filter technique. The historical fluctuation of Web services availability has important
impact on the current availability of the services. We call this historical fluctuation H
impact as availability reputation. The most common and effective numerical measure
of the center tendency is using the mean, however, it is sensitive to the extreme values

570 L. Yao and Q.Z. Sheng

Algorithm 1. Particle Filter based Algorithm
1. Initialization: compute the weight distribution Dw(a) according to IP address distribution.
2. Generation: generate the particle set and assign the particle set weight, which means N dis-
crete hypothesis

– generate initial particle set P0 which has N particles, P0 = (p0,0, p0,1, ...p0,N−1) and dis-
tribute them in a uniform distribution in the initial stage. Particle p0,k = (a0,k, weight0,k)
where a represents the Web service availability.

– assign weight to the particles according to our weight distribution Dw(a).

3. Resampling:

– Resample N particles from the particle set from a particle set Pt using weights of each
particles.

– generate new particle set Pt+1 and assign weight according to Dw(a)

4. Estimation: predict new availability of the particle set Pt based on availability function f(t).
5. Update:

– recalculate the weight of Pt based on measurement ma, wt,k=∏
(Dw(a))(

1√
2πφ

)exp(−dx2
k + dy2

k

2φ2
), where δak = ma − at,k

– calculate current availability by mean value of pt(at)

6. Go to step 3 until convergence

Algorithm 2. Overall Adaptive Filtering Algorithm
Input: initial availability values, α, τ .
Output: predicted availability, referencing availability, candidate list.
1. Read in the initial parameters;
2. Calculate each values for Web service aij(s, t) in Web service community j at time t;
3. Predict the availability state of next time slot using particle filter (see Algorithm 1);
4. Looking up database and calculate the mean values of availability H.
5. Calculating the reference availability R.
6. Update the top k candidate list in each Web services community for every time interval τ ;
7. Go to step 2.

(e.g., outliers) [5]. In our work, we define the final availability of a Web service as
reference availability R, which is calculated using:

Ri(τ) = αEi(τ) + (1 − α)Hi(
τ−1∑

1

(τ − 1)) (4)

where α ∈ [0, 1] is the weight and users can assign different weight based on their dif-
ferent preference, τ is a time span which can be defined by users. Finally, we summarize
the overall particle filter algorithm in Algorithm 2.

Particle Filtering Based Availability Prediction for Web Services 571

(a)

(b)

Fig. 2. (a) Actual availability vs estimated availability and (b) Availability of a composite Web
service

4 Experimental Results

The proposed approach has been implemented in a prototype system in Java. In this
section, we present two experimental results. For the experiments, we simulated 500
Web services of five different Web service communities (i.e., 100 Web services for each
service community). We set the failure probability for the Web services as 3.5 percent,
which complies with the findings in [6].

The first experiment studies the estimation accuracy of our approach, we simulated
Web services’ availability fluctuation and tracked their fluctuation of availability for
50 time steps (each time step counted as an epoch). The actual availability of Web
services and corresponding estimated availability using our particle filter approach were
collected and compared. Figure 2 (a) shows the result of one particular Web service.
From the figure, we can see that our approach works well in tracing and predicting the
availability of Web services.

The second experiment studies the impact our approach brought to the availability of
composite Web services. We randomly generated composite Web services by compos-
ing services from five different communities. We simulated a comparatively significant
fluctuation on the availability (i.e., changes in availability) of Web services for 50 dif-
ferent rounds and collected the availability information of the composite services under
the situations of i) using our approach and ii) without using our approach. The availabil-
ity of a composite Web service, Ac, is represented as the mean value of its component
Web services, i.e., Ac(c, t) = α(

∑n
i=1 A(si, t))/n. Figure 2 (b) shows the availability

of a particular composite Web service. From the figure we can see that the availability of
the composite Web service is more stable when using our approach. In contrast, with-
out using our approach, its availability is very sensitive to the fluctuations of service
availability.

572 L. Yao and Q.Z. Sheng

5 Related Work

There is a large body of research work related to the topic we have discussed in this
paper. One important area on achieving high availability of Web services focuses on
replication technology [11,12,14]. Serrano et al. [12] discuss an autonomic replication
approach focusing on performance and consistency of Web services. Salas et al. [11]
propose a replication framework for highly available Web services. Sheng et al. [14]
further developed the idea by proposing an on-demand replication decision model that
offers the solution to decide how many replicas should be created, when and where they
should be deployed in the dynamic Internet environment. While these approaches focus
on improving service availability through replication, our work concentrates on mon-
itoring and predicting service availability. Our work is complementary to these works
in the sense that the estimations provide a good source of information for replication
decisions.

Many works achieve high availability of Web services based on the concept of ser-
vice communities where Web services are selected based on QoS [8,19,16,9]. The basic
idea is that services with similar functionalities are gathered as communities. If a Web
service is unavailable, another service will be selected. However, most approaches as-
sume that QoS is readily accessible and ignore its dynamic nature.

The works presented in [4,15] are the most similar ones to our work. In [4], Guo
et al. model a composition process into the Markov Decision Process and use Kalman
Filter to tracking the state of composite Web services. Sirin et al. [15] propose a fil-
tering methodology that exploit matchmaking algorithms to help users filter and select
services based on semantic Web services in composition process. However, these works
focus on adaptive maintaining the composition of Web services and do not pay atten-
tion on the availability of component Web services. Our approach uses particle filter to
precisely predict the availability of Web services and dynamically maintains a subset
of Web services with higher availability, from which service developers can choose in
their compositions.

6 Conclusion

Despite active development and research over the last decade, Web service technol-
ogy is still not mature yet. In particular, guaranteeing the availability of Web services
is a significant challenge due to unpredictable number of invocation requests the Web
services have to handle at a time, as well as the dynamic nature of the Web. Many ex-
isting approaches ignore the uncertain nature of service availability and simply assume
that the availability information of a Web service is readily accessed. In this paper, we
have proposed a novel approach to monitor and predict Web service’s availability based
on particle filter techniques. Furthermore, we have developed algorithms to filter Web
services for efficient service selection. The implementation and experimental results
validated our approach.

Our ongoing work includes validating our approach on real Web services, conducting
more experiments to study the performance of our approach (e.g., scalability). We also
consider to extend our approach to other important service dependability properties
(e.g., reputation, reliability, security).

Particle Filtering Based Availability Prediction for Web Services 573

References

1. Benatallah, B., Sheng, Q.Z., Dumas, M.: The Self-Serv Environment for Web Services Com-
position. IEEE Internet Computing 7(1) (January/February 2003)

2. Domingue, J., Fensel, D.: Toward A Service Web: Integrating the Semantic Web and Service
Orientation. Service Web 3.0 Project, http://www.serviceweb30.eu

3. Elsayed, A.: Reliability Engineering. Addison-Wesley (1996)
4. Guo, H., Huai, J.-p., Li, Y., Deng, T.: KAF: Kalman Filter Based Adaptive Maintenance for

Dependability of Composite Services. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008.
LNCS, vol. 5074, pp. 328–342. Springer, Heidelberg (2008)

5. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann (2006)
6. Kim, S., Rosu, M.: A Survey of Public Web Services. In: Proceedings of the 13th Interna-

tional World Wide Web Conference (WWW 2004), New York, NY, USA (May 2004)
7. Kitagawa, G.: Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space

Models. Journal of Computational and Graphical Statistics 5(1), 1–25 (1996)
8. Liu, Y., Ngu, A., Zeng, L.: QoS Computation and Policing in Dynamic Web Service Selec-

tion. In: Proceedings of the 13th International World Wide Web Conference (WWW 2004),
New York, NY, USA (May 2004)

9. Maamar, Z., Sheng, Q.Z., Benslimane, D.: Sustaining Web Services High Availability Using
Communities. In: Proceedings of the 3rd International Conference on Availability, Reliabil-
ity, and Security (ARES 2008), Barcelona, Spain (March 2008)

10. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing: State
of the Art and Research Challenges. IEEE Computer 40(11), 38–45 (2007)

11. Salas, J., Pérez-Sorrosal, F., Patiño-Martı́nez, M., Jiménez-Peris, R.: WS-Replication: A
Framework for Highly Available Web Services. In: Proceedings of the 15th International
Conference on World Wide Web (WWW 2006), Edinburgh, Scotland (May 2006)

12. Serrano, D., Patiño-Martı̀nez, M., Jimenez-Peris, R., Kemme, B.: An Autonomic Approach
for Replication of Internet-based Services. In: Proceedings of the 27th IEEE International
Symposium on Reliable Distributed Systems (SRDS 2008), Napoli, Italy (October 2008)

13. Sheng, Q.Z., Maamar, Z., Yahyaoui, H., Bentahar, J., Boukadi, K.: Separating Operational
and Control Behaviors: A New Approach to Web Services Modeling. IEEE Internet Com-
puting 14(3), 68–76 (2010)

14. Sheng, Q.Z., Maamar, Z., Yu, J., Ngu, A.H.: Robust Web Services Provisioning Through
On-Demand Replication. In: Proceedings of the 8th International Conference on Information
Systems Technology and Its Applications (ISTA 2009), Sydney, Australia (April 2009)

15. Sirin, E., Parsia, B., Hendler, J.: Filtering and Selecting Semantic Web Services with Inter-
active Composition Techniques. IEEE Intelligent Systems 19(4), 42–49 (2004)

16. Wang, X., Vitvar, T., Kerrigan, M., Toma, I.: A QoS-Aware Selection Model for Seman-
tic Web Services. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294,
pp. 390–401. Springer, Heidelberg (2006)

17. Yu, Q., Bouguettaya, A., Medjahed, B.: Deploying and Managing Web Services: Issues,
Solutions, and Directions. The VLDB Journal 17(3), 537–572 (2008)

18. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality Driven Web
Services Composition. In: Proceedings of The 12th International World Wide Web Confer-
ence (WWW 2003), Budapest, Hungary (2003)

19. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-aware Mid-
dleware for Web Services Composition. IEEE Transactions on Software Engineering 30(5),
311–327 (2004)

http://www.serviceweb30.eu

A Penalty-Based Approach for QoS

Dissatisfaction Using Fuzzy Rules

Barbara Pernici1, S. Hossein Siadat1, Salima Benbernou2, and Mourad Ouziri2

1 Politecnico di Milano, Italy
2 LIPADE, Université Paris Descartes, France

Abstract. Quality of Service (QoS) guarantees are commonly defined
in Service Level Agreements (SLAs) between provider and consumer of
services. Such guarantees are often violated due to various reasons. QoS
violation requires a service adaptation and penalties have to be associ-
ated when promises are not met. However, there is a lack of research in
defining and assessing penalties according to the degree of violation. In
this paper, we provide an approach based on fuzzy logic for modelling
and measuring penalties with respect to the extent of QoS violation.
Penalties are assigned by means of fuzzy rules.

Keywords: QoS, service level agreement, penalty, fuzzy logic.

1 Introduction

QoS guarantees defined in contracts may be violated due to various reasons.
This situation needs to be handled through applying adaptation techniques not
to bring dissatisfaction. The concept of penalty has been used in SLAs to com-
pensate the conditions under which guarantee terms are not met [1]. Despite
some research have been done on the description, negotiation and monitoring
of SLAs, however there is not much work on the definition of penalty clauses.
[4] studied on WS-Agreement specification to define penalties based on different
types of violation. However, penalties are assigned to violation of a single prop-
erty instead of assigning penalties to violation of overall QoS. Moreover, the
approach introduces a method for measuring penalties which is for fixed pre-
defined number of violations, instead of measuring the extent of violation and
assigning penalties accordingly.

One main issue is how to determine the appropriate amount of penalties as
compensations from providers to satisfy customers. As quality parameters can
be satisfied partially, the assessment of penalties can be based on the degree
of quality violation. Understanding the violation degree is a prerequisite for as-
sessing penalties. However, measuring such violation is yet an open research
challenge. In addition, the influencing factors in defining penalties need to be
identified. A static amount of penalty (manual approaches) does not reflect the
extent of violation at runtime. The amount and level of penalties are related to
the degree of quality violation provided from the provider side. On the other
side, the customers characteristics may also affect the amount of penalties. For

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 574–581, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Penalty-Based Approach for QoS Dissatisfaction Using Fuzzy Rules 575

example a penalty to satisfy a gold/loyal customer is different with the one for
an occasional customer. To the best of our knowledge, there is no formal relation
between the assigned penalty and its influencing factors. Moreover, the extent
and type of penalties are not clearly expressed in related work. However, under-
standing such relation and providing a mapping between them are complicated
issues. We argue what is missing is a suitable mechanism for modelling penalties
that takes into account both provider and consumer sides. Apart from the de-
gree of violation, we also consider the state of customer and service provider with
respect to their past history (e.g. whether the service has been penalised pre-
viously) in determining the right amount of penalties. However, as the relation
between a given penalty and its influencing factors is not linear, conventional
mathematical techniques are not applicable for modelling penalties.

Recent approaches are dealing with the issue of partial satisfaction for qual-
ity commitments and different techniques were used such as applying soft con-
straint [6], fuzzy sets [3] and semantic policies [2]. Among them, [6] introduced
the concept of penalties for unmet requirements. However, defining penalties
and finding a relation between the assigned penalties and the violated guaran-
tees are remained challenges in similar approaches. The goal of this paper is
to apply an inference technique using fuzzy logic as a solution [5] to propose a
penalty-based approach for compensating conditions in which quality guarantees
are not respected. Fuzzy logic is well suited for describing QoS and measuring
quality parameters [3]. We demonstrate a penalty inference model with a rule-
based mechanism applying fuzzy set theory. Measuring an appropriate value for
penalties with respect to the amount of violation is the main contribution of the
paper.

In the following, we start by a motivating example in Section 2. In Section 3 we
show the descriptions of penalties and in Section 4 we provide a rule-based system
using fuzzy set theory for modelling and reasoning penalties. Section 5 shows
some experiments in applying penalty for the problem of QoS dissatisfaction
and we conclude the paper in Section 6.

2 Motivating Example

Let’s assume that a user is wishing to use a food delivery service. Therefore, a
contract is established between the user and the service provider. The contract
defines non functional criteria such as delivery time, quality of the perceived
service (the quality of food during the delivery service, for example the food is
maintained at the ideal temperature), and availability of the delivery service.
Therefore we define a list of parameters for our example as follows: time to
delivery (td), quality of delivered food (qd), availability of delivery service (ad).
These quality parameters together with a list of penalty terms are defined in a
contract and illustrated in Table 1.

The delivery service will be penalized if it is not able to provide the quality
ranges defined in the contract. An overall QoS violation will be calculated first
and afterwards a penalty is assigned with respect to the extent of the violation.

576 B. Pernici et al.

Table 1. Motivating example

Quality Parameters time to delivery between 10 to 15 min
quality of delivered food between 0.8 to 1
availability between 90 to 100% of the time

Penalties: Minor or Null penalties
Penalties on quality parameters
Extra Service penalties
Termination penalty

We also take into account customer and provider perspectives by considering
parameters from both parties. Parameters such as history of a delivery service
and state of a customer can be involved. The history of a service shows whether
the service is penalized previously. This can influence the amount of given penal-
ties for future. The current state of a customer presents the importance of the
customer for service provider. For example, minor violation of service delivery
can cause a major penalty for provider in case the customer is gold (with good
history). In contrast, a normal customer (with ordinary history) will not be given
any extra service if the quality of delivered food is not good.

3 Definition of Penalties

In order to provide a formal model of penalties and build a reasoning mechanism
to handle the penalties in the contract, in the following we try to summarize the
different types of penalties that can be applied. We categorize the penalties into
two main classes:

1. Numerical penalties: They are related to measurable qualities of service.
In other words, we have to handle and work with variables of the service (e.g
the availability > 0.9, the responsetime < 0.2ms).

2. Behavioural penalties: They are related to the behaviour of either the
customer or the service provider. Consider the following case: a merchant
wishes to obtain a service for online payment by bank card. The financial
institution offered a 25% off if the settlement proceeds within two days of
the request. Beyond these two days, the penalty is such as the trader does
not have the discount and will therefore be required to pay all fees.

A penalty clause in an SLA may be of the following types:

– Penalty Null and denoted by P0: no penalty is triggered because all agreed
QoS are satisfied or minor violation has occurred.

– Penalty on the QoS: a penalty should be triggered on one of the QoS pa-
rameters Qj in the contract if Qi is not fulfilled.

– Penalty on the penalty: a new penalty Pj should be triggered if the previous
one Pi is unfulfilled. Such penalty will be handled through the long term
contract validation. The reasoning on the time aspect of the contract is out
of the scope of the paper.

A Penalty-Based Approach for QoS Dissatisfaction Using Fuzzy Rules 577

– Extra service penalty: if a QoS is not fulfilled by the service provider, to
penalize him, an extra service might be offered to the customer.

– Cancellation penalty: this is a dead penalty for the service provider. A service
substitution occurs.

4 Modelling Penalties

We present a fuzzy model to express penalties in a rule-base system. Our fuzzy
penalty model is defined by the couple FP =< S,R >, where S is a fuzzy set
on penalties and R is a set of inference rules.

4.1 Fuzzy Sets for Penalties

Our knowledge system includes linguistic variables defined by tuple (Q, C,H,P),
where Q is a set of QoS parameters defined by fuzzy parameters as Q =
{td, qd, ad} where td is the time to delivery, qd is the quality of the delivered
service and ad is the availability of the delivery service. C is the current state
of the customer, H is the history of the service to show whether the service is
penalized previously and P is the set of penalties. We define these linguistic
variables by fuzzy sets in the following.

The linguistic parameter of customer is defined by three fuzzy sets as in C =
{Normal, Silver, Gold}. We define two fuzzy sets to represent the state of service
with respect to previous penalties as in H = {Penalized, Not − penalized}.
Finally penalties are described by five fuzzy sets to show the diverse range of
penalties as in P = {Null, Minor, Average, Major, T ermination}, where null is
no penalty, and termination is the situation in which the customer will terminate
his contract with the delivery service. A fuzzy set represents the degree to which
an element belongs to a set and it is characterized by membership function
μÃ(x) : X → [0, 1]. A fuzzy set Ã in X is defined as a set of ordered pairs

Ã = {(x, μÃ(x)) | x ∈ X, μÃ(x) ∈ [0, 1]} (1)

where μÃ(x) is the membership function of x in Ã. Therefore, a membership
function shows the degree of affiliation of each parameter by mapping its values
to a membership value between 0 and 1.

We associate membership functions to a given fuzzy set to define the appropri-
ate membership value of linguistic variables. We start by providing membership
functions for quality parameters from the motivating example. We take an ap-
proach that calculate an overall degree of violation with respect to the violation
of each quality parameters. This way, we perform a trade-off mechanism and
quality parameters are not treated independently. For each quality parameter
a membership function is provided to show the degree of their satisfaction. We
define three linguistic variables for each parameters such that td belongs to the
set {Slow, Normal, Perfect} and qd is in the set {Unacceptable, Bad, Good}
and ad is in the set {Low, Medium, High}. Figure 1 depicts the membership

578 B. Pernici et al.

(a) Time-to-Delivery membership function (b) Availability membership function

Fig. 1. Membership function for quality parameters

functions of time to delivery (a) and service availability (b). The functions are
defined according to the contract and by an expert of the system. For example,
the time to delivery between 10 to 15 min is perfect, between 15 to 20 min is good
and more than 20 min is slow. Membership functions of penalty and customer
state are shown in Figure 2 in (2a) and (2b) respectively.

(a) Penalty mf (b) Customer-state mf (c) QoS-violation mf

Fig. 2. Membership function for penalty ,state of the customer and QoS violation

4.2 Inference Rules on Penalties

The inference rules to trigger penalties are expressed as follows:

– RQ : QoS-based penalty rules. These are rules that reflect the violation of
quality parameters. Penalties will be applied to a service if QoS guarantees
stipulated in SLA are not fulfilled. It will be presented formally by RQ :
Q → P .

For instance, in the SLA, the delivery service agreed with the customer:
10mns ≤ delivery time ≤ 15mns and good quality of delivered food. If
the QoS delivery time is not fulfilled (partially), then penalty pe1 (e.g. 10%
discount) will be applied. Depending on the severity of the violation a harder
penalty might be applied. For example, if both QoS are not fulfilled then
penalty pe2 (e.g. 20% discount) will be applied. The fuzzy inference system
gives us such degrees for penalties. Both cases are presented respectively
below by rules:

A Penalty-Based Approach for QoS Dissatisfaction Using Fuzzy Rules 579

• R1 (td = Slow) ∧ (qd = Good) → pe1

• R2 (td = Slow) ∧ (qd = Bad) → pe2

– RP : penalty on penalty rules. These rules reflect whether the service was
given a penalty. If a service was penalized previously and again does not
fulfil a QoS, then a penalty will be harder. It will be presented formally by
RP : Q×P → P such that RP(q, p1) = p2 ⇒ p1 ≺ p2.
For instance, let us consider a service having a penalty pe1 w.r.t rule R1 and
again provides a slow delivery time, then the penalty pe3 (e.g. 10% discount
plus free delivery) will be applied. The rule can be presented as below:
• R3 (td = Slow) ∧ pe1 → pe3

– RC : customer-related penalty rules. The rules defined here will be adapted
according to a customer qualification. Such rules will be presented formally
by RC : Q×P × C → P .
For instance, if the provided QoS is not fulfilled knowing that a penalty is
assigned to the service, and if a customer is gold (has a good history), then
extra service penalty pe4 (giving some extra service to the gold customer e.g.
one movie ticket) will be harder than the one applied for normal customer
pe3. The rules can be presented as below:
• R4 (td = Slow) ∧ pe1 ∧ (C = Normal) → pe3

• R5 (td = Slow) ∧ pe1 ∧ (C = Gold) → pe4

5 Experiments and Implementation

We have simulated our approach in a simulator based on fuzzy inference sys-
tem. Initial membership functions were designed based on the contract in the
motivating example and fuzzy rules are defined by the expert of the system.
Figure 2c illustrates membership function for QoS violation (see [3] for further
details). Having defined the QoS violation, we measure the extent of penal-
ties taken into account the state of customers and previously applied penal-
ties for the same service. For this, fuzzy rules are defined considering all three
influencing factors. Figure 3 depicts fuzzy rules for penalty based on QoS vi-
olations, customer’s state and service status with respect to previous penal-
ties which are defined by the service-state parameter represented by fuzzy set
{Penalized, Not− penalized}.

For example rule no. 8 shows that a major penalty will be given to a silver
customer if major violation occurs from defined QoS, while rule no. 7 will give a
normal penalty (has lesser effect than major penalties) to the normal customer
when the same amount of violation happens. The role of service-state can be
seen in the rule, e.g. by comparing the rule no. 5 with the rule no. 14. In general,
a harder penalty will be given to the service which is already penalized from the
provider side.

The inference system calculates the degree of penalty by applying all the rules
in a parallel approach for given input values of influencing factors. For example
assume a QoS violation of 0.7 which has a membership degree of 0.5 for both

580 B. Pernici et al.

Fig. 3. Fuzzy rules for penalty based on QoS violations, customer’s state and previous
penalties on the service

Fig. 4. A view of the inference system for applying penalties

normal and major fuzzy sets (according to their membership functions presented
in the figure 2c). Such a violation, can trigger all the rules that include normal
and major QoS violations. Note that the result of each rule depends on the mem-
bership degrees of other linguistic variable. For this example, rules with minor
QoS-violation are not triggered at all. This situation is demonstrated in Figure
4. The result of each rule is integrated with an aggregation method to include
the effect of all the rules. Figure 5 depicts a plot showing the penalties regard-
ing QoS violation and customer’s state. The figure represents possible values
for penalties after defuzzification for all values of QoS violation and customer’s
state. For example, for the QoS violation of 0.7 and customer-state of 0.4 the
penalty degree is 0.66 which is shown in the figure. The relation between QoS
violation and customer’s state can also be seen in the figure.

A Penalty-Based Approach for QoS Dissatisfaction Using Fuzzy Rules 581

Fig. 5. The plot showing the penalties regarding QoS violation and customer’s state

6 Conclusions and Future Work

Applying penalties is a complex research issue in service oriented computing
which has not been paid enough attention in the literature. In this work, we
elaborated the concept of penalty and propose a mechanism for modelling and
measuring penalties. Penalties are modelled using a fuzzy approach and applying
fuzzy set theory. The relation between penalties and their influencing factor are
defined by fuzzy rules through an inference method. We have demonstrated the
proposed penalty model through a motivating example and performed some
initial result in measuring penalties.

Acknowledgements. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme FP7/2007-
2013 under grant agreement 215483 (S-Cube).

References

1. Andrieux, A., et al.: Web Services Agreement Specification (WS-Agreement). Rec-
ommended standard, Open Grid Forum (March 2007)

2. Li, P., Comerio, M., Maurino, A., De Paoli, F.: Advanced non-functional property
evaluation of web services

3. Pernici, B., Siadat, S.H.: A Fuzzy Service Adaptation Based on Qos Satisfaction.
In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 48–61.
Springer, Heidelberg (2011)

4. Rana, O., Warnier, M., Quillinan, T.B., Brazier, F., Cojocarasu, D.: Managing vi-
olations in service level agreements (2008)

5. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)
6. Zemni, M.A., Benbernou, S., Carro, M.: A Soft Constraint-Based Approach to Qos-

Aware Service Selection. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.)
ICSOC 2010. LNCS, vol. 6470, pp. 596–602. Springer, Heidelberg (2010)

Cellular Differentiation-Based Service Adaptation

Ichiro Satoh

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

ichiro@nii.ac.jp

Abstract. This paper proposes an approach to adapting services in a distributed
system whose computational resources are dynamically changed. It supports the
notions of cellular differentiation and dedifferentiation. When a service dele-
gates a function to another component coordinating with it, if the former has
the function, this function becomes less-developed and the latter’s function be-
comes well-developed. When some differentiated services are not available, it
enables remaining services to automatically support the functions provided from
the unavailable services. The approach was constructed as a middleware system
and allowed us to define agents as Java objects. We present several evaluations of
the framework in a distributed system.

1 Introduction

Cellular differentiation is the mechanism by which cells in a multicellular organism
become specialized to perform specific functions in a variety of tissues and organs.
Different kinds of cell behaviors can be observed during embryogenesis: cells double,
change in shape, and attach at and migrate to various sites within the embryo. This
paper introduces the notion of cellular differentiation into distributed systems as an
adaptive approach. Distributed systems tend to be dynamic by nature because units,
e.g., computers and networks, may fail and new units may have to be added to include
new resources, applications, or users. Furthermore, such units tend to be heterogeneous
and have limited computational resources. A federation of services running on multiple
computers whose computational resources are different is needed to support functions
beyond the capabilities of individual computers.

Our approach involves service matching as the service differentiation factors in ser-
vices. When a service delegates a function to another service, if the former has the
function, its function becomes less-developed and the latter’s function becomes well-
developed. As a result, differentiated services become specialized or degenerated ac-
cording to demands from other services. Furthermore, the approach also supports the
concept of dedifferentiation for managing contingencies, e.g., network partitioning and
system or service failures, where dedifferentiation is the process of reverting partially
or terminally differentiated cells to an earlier developmental stage.

2 Background

Service composition involves the development of customized services often by dis-
covering, integrating, and executing existing services. Most existing work on service

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 582–589, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Cellular Differentiation-Based Service Adaptation 583

composition has been designed to support coordination/mashups between services rather
than adapting service themselves. Several researchers have explored genetic computa-
tion/programming [5] and swarm intelligence [2]. Such approaches have often been too
diverse, but real systems may have no chance of ascertaining the fitness of randomly
generated parameters or programs, and many agents because they have an effect on the
real world and no surplus computational resources. There have been several attempts to
support software adaptation in the literature on adaptive computing. Blair et al. [1] tried
to introduce self-awareness and self-healing into a CORBA-compatible Object Request
Broker (ORB). Their system had a meta-level architecture with the ability of dynami-
cally binding CORBA objects. Several researchers had proposed bio-inspired middle-
ware for dynamic and large-scale networks [7]. Although they introduced the notion of
energy into distributed systems and have enabled agents to be replicated, moved, and
deleted according to the number of service requests, they have had no mechanism for
adapting agents’ behaviors unlike ours.

3 Basic Approach

Our approach assumes that each service is defined as an autonomous software compo-
nent, called an agent, that is like a cell and consists of one or more functions that can be
invoked by itself or other agents. The approach introduces the undertaking/delegation
of behaviors in agents from other agents as a differentiation factor. Behaviors in an
agent, which are delegated from other agents more frequently in a cell, are well devel-
oped, whereas other behaviors, which are delegated from other agents less frequently,
in the cell are less developed. Finally, the agent only provides the former behaviors and
delegates the latter behaviors to other agents.

Computer 1

Function A

Initial phase Differentiation phase

Function B Function A Function B

Computer 2 Computer 1 Computer 2

Network

Agent 1 Agent 2

Network

Computer 1

Dedifferentiation phase

Computer 2

Network
partioning

Function B
(progression)

Function A
(regression)

Function A
(progression)

Function B
(regression)

Function A Function B Function A Function B

Fig. 1. Differentiation mechanism for software configuration

Differentiation: When dictyostelium discoideum cells aggregate, they can be differ-
entiated into two types: prespore cells and prestalk cells. Each cell tries to become a
prespore cell and periodically secretes cAMP to other cells. If a cell can receive more
than a specified amount of cAMP from other cells, it can become a prespore cell. There
are three rules. 1) cAMP chemotaxically leads other cells to prestalk cells. 2) A cell
that is becoming a prespore cell can secrete a large amount of cAMP to other cells. 3)
When a cell receives more cAMP from other cells, it can secrete less cAMP to other
cells (Fig. 1).

Each agent has one or more functions with weights, where each weight corresponds
to the amount of cAMP and indicates the superiority of its function. Each agent initially
intends to improve all its functions and periodically multicasts restraining messages

584 I. Satoh

to other agents federated with it instead of cAMP. The messages lead other agents to
degenerate their functions specified in the messages and to decrease the superiority of
these functions. As a result, agents complement others in the sense that each agent can
provide some functions to other agents and delegate other functions to other agents that
can also provide the functions.

Dedifferentiation: Agents may lose their functions due to differentiation as well as
being busy or having failed. The approach also offers a mechanism for recovering from
such problems based on dedifferentiation, which is a mechanism for regressing special-
ized cells to simpler, more embryonic, unspecialized forms. If there are no other agents
that are sending restraining messages to an agent, the agent can perform its dedifferen-
tiation process and strengthen their less-developed or inactive functions again.

4 Design and Implementation

The whole system consists of two parts: runtime systems and agents. The former is a
middleware system for running at computers and the latter is a self-contained and au-
tonomous entity and corresponds to a service and consists of more than one function,
called the behavior part, and its state, called the body part, with information for differen-
tiation, called the attribute part. The first part defines more than one application-specific
behavior, which is a general/practical-purpose program defined in JavaBean-compatible
Java objects. The second is responsible for maintaining program variables shared by its
behaviors parts. When it receives a request message from an external system or other
agents, it dispatches the message to the behavior part that can handle the message. The
third maintains descriptive information with regard to the agent, including its own iden-
tifier in its two key-value databases for maintaining the weights of its own behaviors
and for recording information on the behaviors that other agents can provide. Note that
we never expect that the latter is complete. In fact, the mechanism can still work, even
if it is not complete.

4.1 Differentiation

Each agent (k-th) assigns its own maximum to the total of the weights of all its behav-
iors. The agent has behaviors bk

1 , . . . , bk
n and wk

i is the weight of behavior bk
i . The W k

i

is the maximum of the weight of behavior bk
i . The maximum total of the weights of its

behaviors in the k-th agent must be less than W k. (W k ≥
∑n

i=1 wk
i), where wk

j − 1
is 0 if wk

j is 0. The W k may depend on agents. Our mechanism consists of two phases.
The first-step phase involves the progression of behaviors in four steps.

Step 1: When an agent (k-th agent) receives a request message from another agent, it
selects the behavior (bk

i) that can handle the message from its behavior part and
dispatches the message to the selected behavior (Figure 2 (a)).

Step 2: It executes the behavior (bk
i) and returns the result.

Step 3: It increases the weight wk
i of the behavior.

Step 4: It multicasts a restraining message with the signature of the behavior, its
identifier (k), and the behavior’s weight (wk

i) to other agents (Figure 2 (b)).

Cellular Differentiation-Based Service Adaptation 585

Body
part

Attribute
part

Agent B

(b) Progression/Regression phase

(c) Differentiated phase

Restraining
message

Well-developed Less-developed

Agent A

Agent B

(a) Invocation phase

Request message

w1 5 Behavior 1

w2 5 Behavior 2

w15Behavior 1

w25Behavior 2

Body
part

Attribute
part

Body
part

Attribute
part

Agent A

Agent B

w1 5 Behavior 1

w2 5 Behavior 2

w15Behavior 1

w25Behavior 2

Body
part

Attribute
part

Body
part

Attribute
part

Agent A

Agent B

w1 6 Behavior 1

w2 5 Behavior 2

w14Behavior 1

w25Behavior 2

Body
part

Attribute
part

Agent B

Agent B

(d) Dedifferentiated phase

Initial weight

Body
part

Attribute
part

Agent A

Agent B

w1 5 Behavior 1

w2 5 Behavior 2

w15Behavior 1

w25Behavior 2

Body
part

Attribute
part

Agent B

Initial weight

Fig. 2. Differentiation mechanism for agent

Note that when behaviors are internally invoked by their agents, their weights are not
increased. The key idea behind this approach is to distinguish between internal and
external requests. If the total weights of the agent’s behaviors,

∑
wk

i , is equal to their
maximal total weight W k, it decreases one of the minimal (and positive) weights (wk

j

is replaced by wk
j − 1 where wk

j = min(wk
1 , . . . , wk

n) and wk
j ≥ 0). The above phase

corresponds to the degeneration of agents. Restraining messages correspond to cAMP in
differentiation. When the runtime system multicasts information about the signature of
a behavior in restraining messages, the signature is encoded into a hash code by using
Java’s serial versioning mechanism and transmitted as code. The second-step phase
supports the retrogression of behaviors in three steps.

Step 1: When an agent (k-th agent) receives a restraining message with regard to bj
i

from another agent (j-th), it looks for the behaviors (bk
m, . . . bk

l) that can satisfy the
signature specified in the received message.

Step 2: If it has such behaviors, it decreases their weights (wk
m, . . . wk

l) in its first
database and updates the weight (wj

i) in its second database (Figure 2 (c)).
Step 3: If the weights (wk

m, . . . , wk
l) are under a specified value, e.g., 0, the behaviors

(bk
m, . . . bk

l) are inactivated.

4.2 Service Matching

When an agent wants to execute a behavior, it needs to select one of the behaviors, even
if it has the behavior, according to the values of their weights. This involves three steps.

Step 1: When an agent (k-th agent) wants to execute behavior bi, it looks up the weight
(wk

i) of the same or compatible behavior from its first database and the weights
(wj

i , . . . , w
m
i) of such behaviors (bj

i , . . . , b
m
i) from the second database.1

Step 2: If multiple agents, including itself, can provide the wanted behavior, it selects
one of the agents according to selection function φk , which maps from wk

i and
wj

i , . . . , w
m
i to bl

i, where l is k or j, . . . , m.
Step 3: It delegates the selected agent to execute the behavior and waits for the result

from the agent.

1 The agent (k-th) may have more than one same or compatible behavior.

586 I. Satoh

The approach permits agents to use their own evaluation functions, φ, because the selec-
tion of behaviors often depends on their applications. For example, one of the simplest
evaluation functions makes the agent that wants to execute a behavior select a behavior
whose weight has the highest value and whose signature matches the wanted behav-
ior if its first and second databases recognizes one or more agents that provide the same
behavior, including itself. There is no universal selection function for mapping from be-
haviors’ weights to at most one appropriate behavior like that in a variety of creatures.
Therefore, the approach is open to defining functions by over-writing Java classes for a
selection function.

4.3 Dedifferentiation

We need a mechanism for detecting failures in networking, remote computers, and other
agents. To do this, each agent (j-th) periodically multicasts messages, called heartbeat
messages, for behavior (bj

i), which is still activated with its identifier (j). This involves
two cases.

Case 1: When an agent (k-th) receives a heartbeat message with regard to behavior
(bj

i) from another agent (j-th), it keeps the weight (wj
i) of the behavior (bj

i) in its
second database.

Case 2: When an agent (k-th) does not receive any heartbeat messages with regard
to behavior (bj

i) from another agent (j-th) for a specified time, it automatically
decreases the weight (wj

i) of the behavior (bj
i) in its second database, and resets the

weight (wk
i) of the behavior (bk

i) to the initial value or increases the weight (wk
i) in

its first database (Figure 2 (d)).

The weights of behaviors provided by other agents are automatically decreased without
any heartbeat messages from the agents. Therefore, when an agent terminates or fails,
other agents decrease the weights of the behaviors provided from the agent and if they
have the same or compatible behaviors, they can then activate the behaviors, which may
be inactivated. After a request message is sent to another agent, if the agent waits for
the result to arrive for longer than a specified time, it selects one of the agents that can
handle the message from its first and second databases and requests the selected agent.
If there are no agents that can provide the behavior that can handle the behavior quickly,
it promotes other agents that have the behavior in less-developed form (and itself if it
has the behavior).

4.4 Current Status

Each runtime system is constructed as a middleware system that enables agents to dupli-
cate themselves and migrate to other computers by using mobile agent technology [6].
It is responsible for executing agents and exchanging messages in runtime systems on
other computers through a network. Restraining and heartbeat messages are multicasted
as UDP packets, which may be unreliable. When a runtime system is (re)connected to
a network, it multicasts heartbeat messages to other runtime systems to advertise itself,
including its network address through UDP multicasts. Request and reply messages are
implemented through TCP sessions.

Cellular Differentiation-Based Service Adaptation 587

Although the current implementation was not constructed for performance, we eval-
uated that of several basic operations in a distributed system where eight computers
(Intel Core 2 Duo 1.83 GHz with MacOS X 10.6 and J2SE version 6) were connected
through a Giga Ethernet. The cost of transmitting a heartbeat or restraining message
through UDP multicasting was 11 ms. The cost of transmitting a request message be-
tween two computers was 22 ms through TCP.2

5 Evaluation

This experiment was aimed at evaluating the basic performance of adaptation, where
one or more simple agents at computers and each agent issued heartbeat messages ev-
ery 100 ms. Figure 3 shows the evaluation of differentiation. Each agent had three be-
haviors, called A, B, and C. The A behavior periodically issued messages to invoke its
B and C behaviors or those of other agents every 200 ms and the B and C behaviors
were null behaviors. Each agent that wanted to execute a behavior, i.e., B or C, selected
a behavior whose weight had the highest value if its database recognized one or more
agents that provided the same or compatible behavior, including itself. When it invoked
behavior B or C and the weights of its and others behaviors were the same, it randomly
selected one of the behaviors. The weights of the B and C behaviors of each agent in
this experiment would initially be five and the maximum weight of each behavior and
the total maximum of weights would be ten.

0

2

4

6

8

10

12

1 2 3

W
ei

gh
t

0

2

4

6

8

10

12

1 2 3

W
ei

gh
t

0

2

4

6

8

10

12

1 2 3

W
ei

gh
t

Function B in Agent 1
Function C in Agent 1
Function B in Agent 2
Function C in Agent 2
Function B in Agent 3
Function C in Agent 3
Function B in Agent 4
Function C in Agent 4
Function B in Agent 5
Function C in Agent 5
Function B in Agent 6
Function C in Agent 6
Function B in Agent 7
Function C in Agent 7
Function B in Agent 8
Function C in Agent 8

Time (s)

Time (s)

Time (s)

b) Differentiation in four agentsa) Differentiation in two agents

c) Differentiation in eight agents

Fig. 3. Degree of progress in differentiation-based adaptation

2 These costs were estimated from measurements of round-trip times between computers.

588 I. Satoh

Figure 3 presents the results we obtained from the experiment. Both diagrams have
a timeline on the x-axis and the weights of behavior B in each agent on the y-axis. Fig-
ure 3 (a) details the results obtained from our differentiation between two agents. Their
weights were not initially varied and then they forked into progression and regression
sides. Figure 3 (b) shows the detailed results of our differentiation between four agents
and Figure 3 (c) shows those of that between eight agents. The results in (b) and (c) fluc-
tuated more and then converged faster than those in (a) because the weights of behaviors
in four agents were increased or decreased more than those in two agents. Although the
time of differentiation depended on the period behaviors were invoked it was indepen-
dent of the number of agents. This is important to prove that this approach is scalable.

Figure 4 shows the evaluation of dedifferentiation against failures in a distributed
system. We assumed in the following experiment that three differentiated agents would
be running on different computers and each agent had four behaviors, called A, B, C,
and D, where the A behavior invoked other behaviors every 200 ms. The maximum for
each behavior was ten and the agents’ total maximum of weights was twenty. The initial
weights of their behaviors (wi

B , wi
C , wi

D) in the i-th agent were (10, 0, 0) in the first,
(0, 10, 0) in the second, and (0, 0, 10) in the third.

Time (s)

Agent 3 terminate

Time (s)

0

2

4

6

8

10

12

0 1 2 3

W
ei

gh
t

Function B in Agent 1

Function C in Agent 1

Function D in Agent 1

Function B in Agent 2

Function C in Agent 2

Function D in Agent 2

Function B in Agent 3

Function C in Agent 3

Function D in Agent 3
Time (s)

Netwrok
partioning

Netwrok
reconnection

Time (s)

0

2

4

6

8

10

12

1 2 3 4

W
ei

gh
t

Function B in Agent 1

Function C in Agent 1

Function D in Agent 1

Function B in Agent 2

Function C in Agent 2

Function D in Agent 2

Function B in Agent 3

Function C in Agent 3

Function D in Agent 3

Fig. 4. Degree of progress in adaptation to failed agent

Figure 4 shows how remaining agents adapt to the termination of an agent. The third
agent was terminated one second later. The remaining agents, i.e., the first and second
agents, could not invoke the behavior, i.e., D, provided by it, and they dedifferentiated
the behavior inside themselves.

6 Application

Here, we present a practical application with this approach to illustrate the utility of our
(de)differentiation for service deployment and composition in a disaggregated comput-
ing setting. This application was inspired by the concept of disaggregated computing,
which is an approach to dynamically composing devices, e.g., displays, keyboard, and
mice that are not attached to the same computer, into a virtual computer among dis-
tributed computers in an ambient computing environment [3].

Our application is constructed as a single drawing service consisting of model, view,
and control behaviors like a model-view-control (MVC) pattern. The first manages and
stores drawing data and should be executed on a computer equipped with a powerful
processor and a lot of memory. The second part displays drawing data on the screen

Cellular Differentiation-Based Service Adaptation 589

of its current host and should be deployed at computers equipped with large screens.
The third part forwards drawing data from the pointing device, e.g., touch panel, of its
current computer to the first behavior.

The service is initially deployed at a server, which lacks displays and storage. When
the server is connected to a network, its runtime system discovers a computer equipped
with a pointing device and a large display, e.g., a smart TV; the agent makes a clone of
it with its behaviors and deploys the clone agent at the smart TV. The original agent,
which is running on the server, decreases the weights of its behaviors corresponding
to the view and control parts and the clone agent, which is running on the smart TV,
decreases the weight of its behavior corresponding to the model part. This is because
the server has no display or pointing device and the smart TV had no storage device.
Therefore, each of the agents delegates the behaviors that its computer does not support
to another agent according to the capabilities of their current computers. When a user
disconnects the server from the network, the agent running on the server dedifferentiates
itself, because it lacks co-partners, and it delegates the behaviors corresponding to the
view and control parts.

7 Conclusion

This paper proposed a approach to adapting services on distributed systems, in partic-
ular ambient computing environments. It is unique to other existing software adapta-
tions in introducing the notions of differentiation and dedifferentiation in cellular slime
molds, e.g., dictyostelium discoideum, into software agents. When an agent delegates
a behavior to another agent, if the former has the behavior, its behavior becomes less-
developed and the latter’s behavior becomes well-developed. The approach was con-
structed as a middleware system on real distributed systems instead of any simulation-
based systems.

References

1. Blair, G.S., Coulson, G., Blair, L., Duran-Limon, H., Grace, P., Moreira, R., Parlavantzas, N.:
Reflection, self-awareness and self-healing in OpenORB. In: Proceedings of 1st Workshop on
Self-healing systems (WOSS 2002), pp. 9–14. ACM Press (2002)

2. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Sys-
tems. Oxford University Press (1999)

3. Brumitt, B.L., Meyers, B., Krumm, J., Kern, A., Shafer, S.: EasyLiving: Technologies for In-
telligent Environments. In: Proceedings of International Symposium on Handheld and Ubiq-
uitous Computing, pp. 12–27 (2000)

4. Georgiadis, I., Magee, J., Kramer, J.: Self-Organising Software Architectures for Distributed
Systems. In: Proceedings of 1st Workshop on Self-healing systems (WOSS 2002), pp. 33–38.
ACM Press (2002)

5. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press (1992)

6. Satoh, I.: Handbook of Ambient Intelligence and Smart Environments, pp. 771–791. Springer,
Heidelberg (2010)

7. Suda, T., Suzuki, J.: A Middleware Platform for a Biologically-inspired Network Architec-
ture Supporting Autonomous and Adaptive Applications. IEEE Journal on Selected Areas in
Communications 23(2), 249–260 (2005)

Graceful Interruption of Request-Response
Service Interactions�

Mila Dalla Preda, Maurizio Gabbrielli, Ivan Lanese,
Jacopo Mauro, and Gianluigi Zavattaro

Lab. Focus, Department of Computer Science/INRIA, University of Bologna, Italy
{dallapre,gabbri,lanese,jmauro,zavattar}@cs.unibo.it

Abstract. Bi-directional request-response interaction is a standard communica-
tion pattern in Service Oriented Computing (SOC). Such a pattern should be
interrupted in case of faults. In the literature, different approaches have been con-
sidered: WS-BPEL discards the response, while Jolie waits for it in order to allow
the fault handler to appropriately close the conversation with the remote service.
We investigate an intermediate approach in which it is not necessary for the fault
handler to wait for the response, but it is still possible on response arrival to
gracefully close the conversation with the remote service.

1 Introduction

Service-oriented computing (SOC) is a programming paradigm based on the composi-
tion of services, computational entities available on the net. According to WSDL [9],
the standard for describing web service interfaces, services can be invoked according
to two main modalities: one-way and request-response. In one-way communication a
message is sent to a remote service. In request-response communication a message is
sent and an answer is waited for before continuing the computation.

Interaction with remote services may incur in errors of different kinds: the remote
service may disconnect, messages may be lost, or a client may interrupt the interaction
with a remote service exactly in between the request and the corresponding response.
To avoid that such an error causes the failure of the whole application, error handling
techniques have been developed. They are commonly based on the concept of fault han-
dler and compensation. A fault handler is a piece of code devoted to take the application
to a consistent state after a fault has been caught. A compensation is a piece of code
devoted to undoing the effect of a previous activity because of a later error.

As an example, consider a hotel reservation service. A reservation can be canceled,
but if it is not annulled the cost of one night will be charged in case of no show. If the
trip has to be annulled, the compensation for the hotel reservation has to be executed,
thus canceling the reservation and avoiding the cost of a no show.

Jolie [3] is a language for programming service-oriented applications. Jolie request-
response invocation establishes a strong connection between the caller and callee, thus
it should not be disrupted by faults. To this end, callee faults are notified to the caller
that can thus manage them. Symmetrically, in case of caller faults the answer from the

� Partly funded by the projects EU FP7-231620 HATS and ANR-2010-SEGI-013 AEOLUS.

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 590–600, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Graceful Interruption of Request-Response Service Interactions 591

callee is waited for and used during recovery. This allows, in particular, to compensate
successful remote activities which are no more needed because of the local fault. This
is the case of the hotel reservation above.

WS-BPEL [8], a main standard in the field, has a different approach: in case of caller
faults execution can continue without waiting for the response, and the response is dis-
carded upon arrival. In particular, it is not possible to write code that will be executed
upon receipt of the response. The Jolie approach allows for programming safer appli-
cations. The fact that the request-response pattern is not disrupted by errors has been
proved in [3], by relying on SOCK [4,2], a calculus defining the formal semantics of
Jolie. A nasty side effect of the Jolie approach is that the client has to wait for answers
of request-response invocations before proceeding in its execution. This slows down
the caller execution. For instance, referring to the hotel reservation example, the client
cannot continue its operations before the answer from the hotel has been received and
(s)he gets stuck whenever the answer is lost. This drawback is unacceptable for pro-
gramming applications over the net. Such a kind of problem is normally solved using
timeouts, but they are not available in Jolie. Also, they are not easy to mimic.

We propose here a new approach to error handling in Jolie, allowing on one side
to compensate undesired remote side effects, and ensuring on the other side that local
computation is not slowed down in case of late answers. In particular, this new approach
allows to easily program timeouts. We also extend the approach to deal with concurrent
invocations of multiple services, as needed for implementing speculative parallelism.

2 SOCK

We first introduce SOCK [4], the calculus that defines the semantics of Jolie [3] pro-
grams, and then we extend it to account for request-response and multiple request-
response service invocations. SOCK is suitable for illustrating our approach since it
has a formal SOS semantics, it provides request-response as a native operator, and it
has a refined approach to error handling.

In the following we present the three layers in which SOCK is structured, omitting
the aspects that are not central for us (see [4] for a detailed description).
Service behavior layer. The service behavior layer describes the actions performed
by services. Actions can be operations on the state or communications. Services are
identified by the name of their operations, and by their location.

SOCK error handling is based on the concepts of scope, fault, and compensation.
A scope is a process container denoted by a unique name. A fault is a signal raised by
a process when an error state is reached. A compensation is used either to smoothly
stop a running activity in case of an external fault, or to compensate the activity after
its successful termination (this encompasses both WS-BPEL termination and compen-
sation mechanisms). Recovering mechanisms are implemented by exploiting processes
called handlers. We use fault handlers and compensation handlers. They are executed
to manage respectively internal faults and external faults/compensation requests.

SOCK syntax is based on the following (disjoint) sets: V ar, ranged over by x, y,
for variables, V al, ranged over by v, for values, O, ranged over by o, for one-way
operations, Faults, ranged over by f , for faults, and Scopes, ranged over by q, for

592 M. Dalla Preda et al.

Table 1. Service behavior syntax with faults

P, Q : : = o@l(y) output o(x) input
x := e assignment P ;Q sequence
P |Q parallel comp.

∑
i∈I oi(xi); Pi external choice

if χ then P else Q det. choice while χ do (P) iteration
0 null process {P : H : u}q⊥ active scope
inst(H) install handler throw(f) throw
comp(q) compensate 〈P 〉 protection

scope names. Loc is a subset of V al containing locations, ranged over by l. We denote
as SC the set of service behavior processes, ranged over by P, Q, We use q⊥ to
range over Scopes ∪ {⊥}, whereas u ranges over Faults ∪ Scopes ∪ {⊥}. Here ⊥
is used to specify that a handler is undefined. H denotes a function from Faults and
Scopes to processes (or ⊥). The function associating Pi to ui for i ∈ {1, . . . , n} is
[u1 → P1, . . . , un → Pn]. Finally, we use the notation k = 〈k0, k1, ..., ki〉 for vectors.

The syntax of service behavior processes is defined in Table 1. A one-way output
o@l(y) invokes the operation o of a service at location l, where y are the variables
that specify the values to be sent. Dually, in a one-way o(x), x contains the variables
that will receive the communicated values. Assignment, sequence, parallel composition,
external and deterministic choice, iteration, and null process are standard.

We denote with {P}q a scope named q executing process P . An active scope has
instead the form {P : H : u}q⊥ , where H specifies the defined handlers. Term {P}q

is a shortcut for {P : H0 : ⊥}q, where H0 evaluates to ⊥ for all fault names and to 0
for all scope names. The argument u is the name of a handler waiting to be executed,
or ⊥ if there is no such handler. When a scope has failed its execution, either because
it has been killed from a parent scope, or because it has not been able to manage an
internal fault, it reaches a zombie state. Zombie scopes have ⊥ as scope name. Primi-
tives throw(f) and comp(q) respectively raises fault f and asks to compensate scope
q. 〈P 〉 executes P in a protected way, i.e. not influenced by external faults. Handlers are
installed into the nearest enclosing scope by inst(H), where H is the required update
of the handler function. We assume that comp(q) occurs only within handlers, and q
can only be a child of the enclosing scope. For each inst(H), H is defined only on fault
names and on the name of the nearest enclosing scope. Finally, scope names are unique.

The service behavior layer semantics generates all the transitions allowed by the
process behavior, specifying the constraints on the state that have to be satisfied for
them to be performed. The state is a substitution of values for variables. We use σ to
range over substitutions, and write [v/x] for the substitution assigning values in v to
variables in x. Given a substitution σ, Dom(σ) is its domain.

Let Act be the set of labels of the semantics, ranged over by a. We use structured
labels of the form ι(σ : θ) where ι is the kind of action while σ and θ are substitu-
tions containing respectively the assumptions and the effects on the state. We also use
the unstructured labels th(f), cm(q, P), inst(H). We use operator � for updating the
handler function:

(H�H′)(u) =
{
H′(u) if u ∈ Dom(H′)
H(u) otherwise

Graceful Interruption of Request-Response Service Interactions 593

Table 2. Standard rules for service behavior layer (a
= th(f))

(ONE-WAYOUT)

o@l(x)
o(v)@l(v/x:∅)−−−−−−−−−→ 0

(ONE-WAYIN)

o(x)
o(v)(∅:v/x)−−−−−−−→ 0

(ASSIGN)

Dom(σ) = Var(e) �eσ� = v

x := e
τ(σ:v/x)−−−−−→ 0

(IF-THEN)

Dom(σ) = Var(χ) �χσ� = true

if χ then P else Q
τ(σ:∅)−−−−→ P

(SEQUENCE)

P
a−→ P ′

P ; Q
a−→ P ′; Q

(PARALLEL)

P
a→ P ′

P | Q
a→ P ′ | Q

(CHOICE)

oi(xi)
a−→ Qi i ∈ I∑

i∈I oi(xi); Pi
a−→ Qi; Pi

STRUCTURAL CONGRUENCE

P | Q ≡ Q | P P | 0 ≡ P P | (Q | R) ≡ (P | Q) | R 0; P ≡ P 〈0〉 ≡ 0

Intuitively, handlers in H′ replace the corresponding ones in H. We also use cmp(H)
to denote the part of H dealing with compensations.

The SOCK semantics is defined as a relation →⊆ SC ×Act× SC. The main rules
for standard actions are in Table 2, while Table 3 defines the fault handling mechanism.

Rule ONE-WAYOUT defines the output operation, where v/x is the assumption on
the state. Rule ONE-WAYIN corresponds to the input operation: it makes no assumption
on the state, but it specifies a state update. The other rules in Table 2 are standard. The
internal process P of a scope can execute thanks to rule SCOPE in Table 3. Handlers are
installed in the nearest enclosing scope by rules ASKINST and INSTALL. According to
rule SCOPE-SUCCESS, when a scope successfully ends, its compensation handlers are
propagated to the parent scope. Compensation execution is required by rule COMPEN-
SATE. The actual compensation code Q is guessed, and the guess is checked by rule
COMPENSATION. Faults are raised by rule THROW. A fault is caught by rule CATCH-
FAULT when a scope defining the corresponding handler is met. Activities involving the
termination of a sub-scope and the termination of internal error recovery are managed
by the rules for fault propagation THROW-SYNC, THROW-SEQ and RETHROW, and by
the partial function killable. Function killable computes the activities that have to be
completed before the handler is executed and it is applied to parallel components by
rule THROW-SYNC. Moreover, function killable guarantees that when a fault is thrown
there is no pending handler update. This is obtained by making killable(P, f) undefined
(and thus rule THROW-SYNC not applicable) if some handler installation is pending in
P . The 〈P 〉 operator (described by rule PROTECTION) guarantees that the enclosed
activity will not be killed by external faults. Rule SCOPE-HANDLE-FAULT executes
a handler for a fault. A scope that has been terminated from the outside is in zombie
state. It can execute its compensation handler thanks to rule SCOPE-HANDLE-TERM,
and then terminate with failure using rule SCOPE-FAIL. Similarly, a scope enters the
zombie state when reached by a fault it cannot handle (rule RETHROW). The fault is
propagated up along the scope hierarchy. Zombie scopes cannot throw faults any more,
since rule IGNORE-FAULT has to be applied instead of RETHROW.

594 M. Dalla Preda et al.

Table 3. Faults-related rules for service behavior layer (a
= th(f))

(SCOPE)

P
a−→ P ′ a
= inst(H), cm(q′,H′)

{P : H : u}q⊥
a−→ {P ′ : H : u}q⊥

(INSTALL)

P
inst(H)−−−−−→ P ′

{P : H′ : u}q⊥
τ(∅:∅)−−−−→ {P ′ : H′ �H : u}q⊥

(ASKINST)

inst(H)
inst(H)−−−−−→ 0

(THROW)

throw(f)
th(f)−−−→ 0

(COMPENSATE)

comp(q)
cm(q,Q)−−−−−→ Q

(SCOPE-SUCCESS)

{0 : H : ⊥}q
inst(cmp(H))−−−−−−−−−→ 0

(SCOPE-HANDLE-FAULT)

{0 : H : f}q⊥
τ(∅:∅)−−−−→ {H(f) : H�[f �→ ⊥] : ⊥}q⊥

(COMPENSATION)

P
cm(q,Q)−−−−−→ P ′,H(q) = Q

{P : H : u}q′⊥
τ(∅:∅)−−−−→ {P ′ : H�[q �→ 0] : u}q′⊥

(SCOPE-HANDLE-TERM)

{0 : H : q}⊥ τ(∅:∅)−−−−→ {H(q) : H�[q �→ 0] : ⊥}⊥
(SCOPE-FAIL)

{0 : H : ⊥}⊥ τ(∅:∅)−−−−→ 0

(PROTECTION)

P
a−→ P ′

〈P 〉 a−→ 〈P ′〉

(THROW-SYNC)

P
th(f)−−−→ P ′, killable(Q, f) = Q′

P |Q th(f)−−−→ P ′|Q′

(THROW-SEQ)

P
th(f)−−−→ P ′

P ; Q
th(f)−−−→ P ′

(CATCH-FAULT)

P
th(f)−−−→ P ′,H(f)
= ⊥

{P : H : u}q⊥
τ(∅:∅)−−−−→ {P ′ : H : f}q⊥

(IGNORE-FAULT)

P
th(f)−−−→ P ′,H(f) = ⊥

{P : H : u}⊥ τ(∅:∅)−−−−→ {P ′ : H : u}⊥
(RETHROW)

P
th(f)−−−→ P ′,H(f) = ⊥

{P : H : u}q
th(f)−−−→ 〈{P ′ : H : ⊥}⊥〉

where

killable({P : H : u}q , f) = 〈{killable(P, f) : H : q}⊥〉 if P ≡/ 0
killable(P | Q,f) = killable(P, f) | killable(Q,f)
killable(P ; Q,f) = killable(P, f) if P ≡/ 0
killable(〈P 〉 , f) = 〈P 〉 if killable(P, f) is defined
killable(P, f) = 0 if P ∈ {0, o(x), o@l(x), x := e, if χ then P else Q, while χ do (P)∑

i∈W oi(xi); Pi, throw(f), comp(q)}

Service engine layer. The service engine layer manages the service state and instances.
A service engine Y can be a session (P,S), where P is a service behavior process and
S is a state, or a parallel composition Y |Y of them. The service engine layer allows to
propagate only labels such that the condition σ (if available) is satisfied by the current
state, and applies to the state the state update ρ.

Services system layer. The service system layer allows the interaction between dif-
ferent engines. A service system E can be a located service engine Y @l or a parallel
composition E ‖ E of them. The services system layer just allows complementary com-
munication actions to interact, transforming them into internal steps τ , and propagates
the other actions.

Graceful Interruption of Request-Response Service Interactions 595

3 Request-Response Interaction Pattern

A request-response pattern is a bi-directional interaction where a client sends a message
to a server and waits for an answer. When a server receives such a message, it elaborates
the answer and sends it back to the client. In the literature there are two proposals to deal
with a client that fails during a request-response interaction. The WS-BPEL approach
kills the receive activity and, when the message arrives, it is silently discarded. In Jolie
instead, clients always wait for the answer and exploit it for error recovery.

Here we present an intermediate approach: in case of failure we wait for the answer,
but without blocking the computation. Moreover, when the answer is received we allow
for the execution of a compensation activity. Let Or be the set of request-response oper-
ations, ranged over by or. We define the request-response pattern in terms of the output
primitive or@l(y, x, P), also called solicit, and of the input primitive or(x1, y1, Q).
When interacting, the client sends the values from variables y to the server, that stores
them in variables x1. Then, the server executes process Q and, when Q terminates, the
values in variables y1 are sent back to the client who stores them in variables x. Only
at this point the execution of the client can restart. If a fault occurs on the client-side
after the remote service has been invoked, but before the answer is received, we allow
the client to handle the fault regardless of the reply, so that recovery can start immedi-
ately. However, we create a receiver for the missing message in a fresh session so that,
if later on the message is received, the operation can be compensated. The compensa-
tion is specified by the parameter P of the solicit operation. If instead a fault is raised
on the server-side during the computation of the answer, the fault is propagated to the
client where it raises a local fault. In this case there is no need to compensate the remote
invocation, since we assume that this is dealt with by local recovery of the server.

Service behavior calculus - extension. We extend here the behavioral layer with the
request-response and with few auxiliary operators used to define its semantics.

or@l(y, x, P) Solicit or(x1, y1, Q) Request-Response
Exec(l, or, y, P) Req.-Resp. execution Wait(or , y, P) Wait
or!f@l Fault output Bubble(P) Bubble

Exec(l, or, y, P) is a server-side running request-response: P is the process computing
the answer, or the name of the operation, y the vector of variables to be used for the
answer, and l the client location. Symmetrically, Wait(or, y, P) is the process waiting
for the response on client-side: or is request-response operation, y is the vector of vari-
ables for storing the answer and P is the compensation code to run in case the client
fails before the answer is received. When a fault is triggered on the server-side, an error
notification has to be sent to the client: this is done by or!f@l, where or is the operation,
f the fault and l the client location. If a fault occurs on client-side, we have to move
the receipt operation to a fresh, parallel session, so that error recovery can start imme-
diately. This is done by the primitive Bubble(P), which allows to create a new session
(a “bubble”) executing code P . This primitive is the key element that allows a failed
solicit to wait for a response outside its scope and potentially allowing its termination
regardless of the arrival of the answer.

The semantics of the behavior layer is extended with the rules presented in Table 4
(the last rule refers to the engine). Function killable is also extended, as follows:

596 M. Dalla Preda et al.

Table 4. Request-response pattern and engine rules

(SOLICIT)

or@l(y,x, P)
or(v)@l(∅:v/x)−−−−−−−−−−→ Wait(or,x, P)

(REQUEST)

or(x,y, P)
or(v)::l(∅:v/x)−−−−−−−−−→ Exec(l, or,y, P)

(REQUEST-EXEC)

P
a−→ P ′

Exec(l, or,y, P)
a−→ Exec(l, or,y, P

′)

(THROW-REXEC)

P
th(f)−−−→ P ′

Exec(l, or,y, P)
th(f)−−−→ P ′| 〈or!f@l〉

(REQUEST-RESPONSE)

Exec(l, or,y,0)
or(v)@l(v/y:∅)−−−−−−−−−−→ 0

(SOLICIT-RESPONSE)

Wait(or,x, P)
or(v)(∅:v/x)−−−−−−−−→ 0

(SEND-FAULT)

or!f@l
or(f)@l(∅:∅)−−−−−−−−→ 0

(RECEIVE FAULT)

Wait(or,x, P)
or(f)(∅:∅)−−−−−−→ throw(f)

(CREATE BUBBLE)

Bubble(P)
τ(∅:∅)[[P]]−−−−−−→ 0

(ENGINE-BUBBLE)

P
τ(∅:∅)[[Q]]−−−−−−→ P ′ Q 	= 0

(P,S) τ−→ (P ′,S) | (Q,S)
– killable(Exec(l, or, y, P), f) = killable(P, f)|〈or !f@l〉
– killable(Wait(or, x, P), f) = Bubble(Wait(or, x,0); P)
– killable(or!f@l, f) = or!f@l
– killable(Bubble(P), f) = Bubble(P)

Rules SOLICIT and REQUEST start a solicit-response operation on client and server
side respectively. Upon invocation, the request-response becomes an active construct
executing process P , and storing all the information needed to send back the answer.
The execution of P is managed by rule REQUEST-EXEC. When P terminates, rule
REQUEST-RESPONSE sends back an answer. This synchronizes with rule SOLICIT-
RESPONSE on the client side.

A running request-response reached by a fault is transformed into a fault notification
(see rule THROW-REXEC and the definition of function killable) on server side. Fault
notification is executed by rule SEND-FAULT, and it interacts with the waiting receive
thanks to rule RECEIVE-FAULT. When received, the fault is re-thrown at the client side.

A fault on client side instead gives rise to a bubble, creating the process that will wait
for the answer in a separate session. The bubble is created by rule CREATE BUBBLE,
and will be installed at the service engine level by rule ENGINE-BUBBLE. The label
for bubble creation has the form τ(∅ : ∅)[[P]], where P is the process to be run inside
the new session. We will write τ(∅ : ∅) for τ(∅ : ∅)[[0]]. The new receive operation
inside the bubble has no handler update, since it will be executed out of any scope, and
its compensating code P has been promoted as a continuation. In this way, P will be
executed only in case of successful answer. In case of faulty answer, the generated fault
will have no effect since it is in a session on its own.

Service engine calculus - extension. We have to add to the service engine layer a rule
for installing bubbles: when a bubble reaches the service engine layer, a new session is
started executing the code inside the bubble (rule ENGINE-BUBBLE in Table 4).

Service system calculus - extension. The service system calculus semantics is
extended by allowing the labels for request-response communication to be matched.

Graceful Interruption of Request-Response Service Interactions 597

Example. We present now an example of usage of the request-response primitive. A
first solution for the hotel reservation example described in the introduction is:

CLIENT :== bookr@hotel Imperial(〈CC,dates〉,〈res num〉,
annul@hotel Imperial(〈res num〉));

P
The bookr operation transmits the credit card number CC and the dates of the reser-

vation and waits for the reservation number. In case the user wants to cancel the reserva-
tion before receiving an answer from the hotel a fault can be used to kill this operation.
In such a case the annul operation is invoked when the answer is received to compen-
sate the bookr operation. The annul operation will be executed in a new session by
using our mechanism based on bubbles.

As a more concrete instance, we could consider the case where the user is willing
to wait a limited amount of time for the answer from the hotel, after which (s)he will
cancel the reservation. This case could be programmed by assuming a service timeout
that offers a request-response operation that sends back an answer after n seconds1:

CLIENT:==
res num:= 0;
{ inst(f → if res num==0 then throw(tm));
(timeoutr@timeout(〈60〉,〈 〉,0); throw(f)
| bookr@hotel Imperial(〈CC,dates〉,〈res num〉,

annul@hotel Imperial(〈res num〉)); throw(f))
}q ; P

In this scenario the timeout operation is in parallel with the booking. The first opera-
tion that finishes raises the fault f that is caught by the handler of the scope q. The fault
will kill the remaining operation and if the hotel response has not arrived yet (i.e. the
value of res num is still 0) then the fault tm is raised. P is executed otherwise.

A similar solution is not viable in BPEL: in case of timeout, the booking invocation
is killed, and if an answer arrives, it is discarded. Thus one does not know whether the
invocation succeeded or not, neither the reservation number in case of success.

In Jolie, the answer is used for error recovery. However, in case no answer is received
from the booking service, the whole service engine gets stuck. In our approach instead
the main session can continue its execution without delays.

It is difficult to apply the proposed solution when two or more solicits install handlers
or require compensation. One may try to exploit the handler update primitive, but in
this way compensations are executed inside the scope, thus they have to be terminated
before execution can proceed. This problem, and other technical difficulties, justify the
multiple solicit response primitive introduced in the next section.

4 Multiple Request-Response Communication Pattern

The request-response pattern allows one invocation to be sent and one answer to be
received. For optimization reasons, it may be important to invoke many services in
parallel, and only consider the first received answer (speculative parallelism).

1 Clearly, because of network delay the answer may be received later than expected.

598 M. Dalla Preda et al.

Table 5. Multiple request-response pattern rules

(MSR-SOLICIT)
z1 = or@l(y,x, P)
→ Q wm+1 = Wait(or,y, P)
→ Q

Wait+(z1, . . . , zn � w1, . . . , wm)
or(v)@l(∅:v/x)−−−−−−−−−−→ Wait+(z2, . . . , zn � w1, . . . , wm, wm+1)

(MSR-RESPONSE)
∀k ∈ {1, . . . , n} : wk = Wait(ork ,yk, Pk)
→ Qk i ∈ {1, . . . , n} J = {1, . . . , n} \ {i}

Wait+(� w1, . . . , wn)
ori (v)(∅:v/yi)−−−−−−−−−→ Qi|∏j∈J Bubble(Wait(orj ,yj ,0);Pj)

(MSR-IGNORE FAULT)
n > 1 wi = Wait(ori ,yi, Pi)
→ Qi i ∈ {1, . . . , n}

Wait+(� w1, . . . , wn)
ori (f)(∅:∅)−−−−−−−→ Wait+(� w1, . . . , wi−1, wi+1, . . . , wn)

Wait+(� Wait(or,y, P)
→ Q) ≡ Wait(or,y, P);Q

We model this communication pattern using a dedicated primitive that we call multi-
ple solicit-response (MSR for short). A MSR consists of a list of solicit-responses, each
one equipped with its own continuation. Formally, we define the syntax of the MSR
primitive as MSR{z1, . . . , zn} where each zi is a solicit-response with continuation
written zi = ori@li(yi, xi, Pi) → Qi. Intuitively, the continuation Qi is executed only
when ori@li(yi, xi, Pi) is the first to receive a successful answer.

Service behavior calculus - extension. We extend the service behavior calculus with
the MSR primitive and with some auxiliary operators:

P, Q : : = . . .
MSR{z1, . . . , zn} multiple solicit-response
Wait+(z1, . . . , zn � w1, . . . , wm) multiple wait

z : : = or@l(y, x, P) → Q solicit with continuation
w : : = Wait(or, y, P) → Q wait with continuation

In a MSR the solicits are sent one after the other, and only when all the requests have
been sent the MSR can receive a response. For this reason we introduce the multiple
wait Wait+(z1, . . . , zn � w1, . . . , wm) that specifies the solicits that still have to be
sent z1, . . . , zn, and the ones that will wait for an answer w1, . . . , wn. Thus, the MSR
primitive MSR{z1, . . . , zn} above is a shortcut for Wait+(z1, . . . , zn �). Moreover,
we have that a multiple wait with only one waiting process is structurally equivalent to
a standard wait. We formally define the behavior of the MSR primitive by extending the
service behavior semantics with the rules presented in Table 5.

The multiple wait executes all the solicit-responses through rule MSR-SOLICIT.
Once all the solicits have been sent, the multiple wait receives a successful answer
through rule MSR-RESPONSE. It continues the execution with the corresponding con-
tinuation code, and kills all the other solicits by creating a bubble for each remaining
waiting process. If a fault notification arrives as an answer, it is discarded by rule MSR-
IGNORE FAULT if there is at least another available wait. If instead there is no other
solicit waiting for an answer, the last fault received is raised (rule RECEIVE FAULT

Graceful Interruption of Request-Response Service Interactions 599

described in Table 4). When an external fault arrives a bubble containing a dead so-
licit response is created for every solicit that has been sent, as specified by the function
killable that is extended in the following way:

killable(Wait+(z1, . . . , zn � w1, . . . , wm), f) =∏
Wait(orj

,yj ,Pj) �→Qj∈{w1,...,wm}
Bubble(Wait(orj , yj ,0); Pj)

The MSR primitive is perfectly suited to capture speculative parallelism scenarios. Con-
sider for instance the hotel reservation problem defined in the introduction. Suppose to
use two booking services for making the hotel reservation, and that you would like to
get the acknowledgment in 1 minute. If the booking services are located at A and B and
if we use the timeout service introduced before, this service could be defined as:
CLIENT :== msr {

timeoutr@timeout(〈60〉,〈 〉,0) → throw(tm)
bookr@H 1(〈CC,dates〉,〈res num〉, annul@H 1(〈res num〉)) → 0
bookr@H 2(〈CC,dates〉,〈res num〉, annul@H 2(〈res num〉)) → 0 }

5 Related and Future Work

Among the most related approaches, Web-π [6] has no request-response pattern and its
treatment of faults is rather different from ours. Orc [5] has a pruning primitive similar
to our MSR. However, since Orc has no notion of fault, all the difficulties coming from
error management do not emerge. Finally, the service oriented calculi CaSPiS [1] and
COWS [7] include low-level mechanisms allowing the programmer to close ongoing
conversations. However, our approach is different, since we aim at providing primitives
which free the programmer from this burden.

As a future work, we plan to incorporate the primitives we propose in Jolie. Also we
would like to study their expressive power: the implementation of MSR in terms of the
existing primitives is not easy and we believe that a separation result could be proved.

References

1. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and Pipelines for Structured Ser-
vice Programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp.
19–38. Springer, Heidelberg (2008)

2. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: On the interplay between fault handling and
request-response service invocations. In: ACSD 2008, pp. 190–198. IEEE Press (2008)

3. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: Dynamic error handling in service oriented
applications. Fundamentae Informaticae 95(1), 73–102 (2009)

4. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: A Calculus for Service
Oriented Computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294,
pp. 327–338. Springer, Heidelberg (2006)

5. Kitchin, D., Quark, A., Cook, W., Misra, J.: The Orc Programming Language. In: Lee, D.,
Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS 2009. LNCS, vol. 5522, pp. 1–25. Springer,
Heidelberg (2009)

600 M. Dalla Preda et al.

6. Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V. (ed.) FOSSACS
2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005)

7. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Services. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer, Heidelberg (2007)

8. OASIS. Web Services Business Process Execution Language Version 2.0,
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

9. World Wide Web Consortium. Web Services Description Language (WSDL) 1.1,
http://www.w3.org/TR/wsdl

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.w3.org/TR/wsdl

Adaptation of Web Service Interactions

Using Complex Event Processing Patterns

Yéhia Taher, Michael Parkin, Mike P. Papazoglou,
and Willem-Jan van den Heuvel

European Research Institute for Service Science, Tilburg University, The Netherlands
{y.taher,m.s.parkin,mikep,wjheuvel}@uvt.nl

Abstract. Differences in Web Service interfaces can be classified as sig-
nature or protocol incompatibilities, and techniques exist to resolve one
or the other of these issues but rarely both. This paper describes com-
plex event processing approach to resolving both signature and protocol
incompatibilities existing between Web Service interfaces. The solution
uses a small set of operators that can be applied to incoming messages
individually or in combination to modify the structure, type and number
of messages sent to the destination. The paper describes how CEP-based
adapters, deployable in CEP engines, can be generated from automata
representations of the operators through a standard process and presents
a proof-of-concept implementation.

1 Introduction

Web services allow the integration of distributed software through standard in-
terface definition languages, transport mechanisms and aspects such as security
and quality of service. Web Service interfaces (i.e., WSDL, BPEL, etc.) define
the messages and protocol that should be used to communicate with the ser-
vice [7]. However, if two services wish to interact successfully, they must both
support the same messages and protocol through the implementation of compat-
ible WSDL and/or BPEL documents. Unfortunately, this is difficult to achieve
in practice; Web Services are often developed independently and follow different
standards or approaches in constructing their interfaces and Web Service com-
positions will often use them in ways that were not foreseen in their original
design and construction [3,2]. Therefore, it is likely that most Web Services will
be incompatible as services will not support the same interface.

This is a short paper describing a general approach to resolving differences
between Web Services protocols through the use of Complex Event Processing
(CEP [4]) technology. Specifically, we extend our previous work [10,11] to show
how a small set of general operators can be used to match the messages from one
service with those of another. By using a continuous query engine running within
a CEP platform, we demonstrate signature and protocol adaptation between
Web Services in a proof-of-concept implementation.

This paper is structured as follows: Section 2 describes our CEP-based ap-
proach to signature and protocol adaptation; Section 3 introduces the opera-
tors used to resolve differences in Web Service protocols; Section 4 presents the

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 601–609, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

602 Y. Taher et al.

CEP solution and a proof-of-concept implementation; Section 5 compares related
work; Section 6 contains conclusions and our plans for future work.

2 Approach

Incompatibilities between Web Service protocols can be classified as either [2,3]:
1. Signature Incompatibilities arise due to the differences between services
in expected message structure, content and semantics. In Web Services, XML
schema provides defines a set of ‘built-in’ types to allow the construction of
complex input and output message types from these primitives. This flexibility
in constructing message types in XML often means that a message from one Web
Service will not be recognized by another and, therefore, there is a requirement
to provide some function that maps the schema of one message to another [6].
2. Protocol Incompatibilities are found when Web Services wish to inter-
act but are incompatible because they support of different message exchange
sequences. For example, if two services perform the same function, e.g., accept
purchase orders, but Service A requires a single order containing one or more
items while Service B expects an order message for each item, there is a mis-
match in their communication protocols that must be resolved in order for them
to interoperate. To solve these incompatibilities, there are two approaches: a) to
force one of the parties to support the other’s interface, or b) to build an adapter
that receives messages, converts them to the correct sequence and/or maps them
into a desired format and sends them to their destination. However, both of these
solutions are unsatisfactory; imposing the development of an interface for each
target service can lead to an organization having to maintain a different client
for each service it uses, and the implementation of bespoke ad-hoc point-to-point
adapters is costly and not-scalable.

Our solution is to automate the generation of adapters so the process is repeat-
able and scalable and remove the necessity to build costly bespoke adapters. Our
approach for generating adapters is described in [9], which presents an algorithm
for detecting signature and protocol incompatibilities between two Web Service
protocol descriptions (i.e., interfaces) and a CEP-based mediation framework
to perform protocol adaptation practically. This paper completes the mediation
framework by showing how the incompatibilities found between two Web Service
protocols, classified according to a set of basic transformation patterns by the
algorithm in [9], can be transformed into configurable automata operators which
are used to generate adapters.1 In Section 3 we describe the operators required
for each transformation pattern then in Section 4 show how they are used to
generate CEP adapters and deployed to a CEP engine.
Complex Event Processing technology can discover relationships between
events through the analysis and correlation of multiple events and triggers and
1 Adapters are therefore the components that resolve sets of incompatibilities found

between two services and are aggregations of predefined operators who’s purpose is
to resolve individual, specific incompatibilities.

Web Service Interaction Adaptation Using CEP Patterns 603

take actions (e.g., generate new events) from these observations. CEP does this
by, for example, modeling event hierarchies, detecting causality, membership
and/or timing relationships between events and abstracting event-driven pro-
cesses into higher-level concepts [4]. CEP platforms allow streams of data to
run through them to detect conditions that match the continuous computational
queries (CCQs, written in a Continuous Computation language, or CCL) as they
occur. As a result, CEP has an advantage in performance and capacity compared
to traditional approaches: CEP platforms typically handle many more events
than databases and can process throughputs of between 1,000 to 100k messages
per second with low latency. These features make a CEP platform an excellent
foundation for situations that have real-time business implications.

In the context of Web Services, events occur when SOAP messages are sent
and received. Therefore, CEP adaptation requires the platform to consume in-
coming messages, process them and send the result to its destination. However,
a CCQ written for a particular adaptation problem is similar to the bespoke
adapter solution described earlier. To offer a universal solution and a scalable
method for Web Service protocol adaptation, we automate the generation and
deployment of CCQs to transform incoming message(s) into the required output
message format(s) using the predefined set of transformation operators.

3 Operators

[3] describes five basic transformation patterns that can reconcile protocol mis-
matches. We have developed an operator for each of these patterns that can
be applied individually or in combination to incoming messages to achieve a
transformation in both the structure, type and number of messages sent to the
destination — i.e., to resolve both signature and protocol incompatibilities.

The operators developed for each of the transformation patterns are: Match-
make, which translates one message type to another, solving the one-to-one
transformation; Split, a solution for the one-to-many pattern, which separates
one message sent by the source into two or more messages to be received sepa-
rately; the Merge operator is the opposite of the Split operator (i.e., it performs
a many-to-one transformation) and combines two or more messages into a single
message; the Aggregate operator is used when two or more of the same message
from the source service interface correspond to one message at the target ser-
vice and is a solution for the one+-to-one transformation; finally, Disaggregate
performs the opposite function to Aggregate operator.

Following [9], the operators are represented as configurable automata. Tran-
sitions between states represent both observable and non-observable actions.
Observable actions describe the behavior of the operator vis-à-vis the service
consumer and provider, i.e., an action is observable if it is a message consump-
tion or transmission event. Unobservable actions describe the internal transitions
of the operator, such as the transformation of a messages contents, and are per-
formed transparently to the source and target services.

Transitions caused by observable actions are denoted as <a,?/!m,a’>, where
a is the starting state and a’ the end state following the consumption (?) or

604 Y. Taher et al.

!(CheckOut)
?(Item List)

One Item One+-to-One

e1

e2

e’1

e’2

Aggregate
Operator

?(One Item)

a0

a1

?(CheckOut)

Item List :=
Aggregation (OneItem[n])

a2

a3

!(Item List)

Source Service Target Service

Fig. 1. The Aggregate Operator

transmission (!) of message m. An unobservable action is denoted as <a, ψ,
a’>, where a and a’ are the start and end states following internal action ψ.

For reasons of space it is not possible to describe all five operators in de-
tail and we have chosen the Aggregate operator to illustrate how they work.
Figure 1 shows the operator to resolve one+-to-one incompatibilities between
services, e.g., when a customer submits a purchase order for each item but the
retailer expects a list of all items together. To resolve this incompatibility the
aggregate operator consumes and stores ?OneItem messages until it receives
the message (?CheckOut) indicating all messages have been sent. The oper-
ator aggregates the stored messages into a list of items message using Item-
List=Aggregation(OneItem[n]) and forwards the new message using !(ItemList).

4 CEP-Based Adaptation

4.1 General Principles

The adaptation of interactions between source and target services is specified
using automata, therefore deploying them as CEP adapters requires their trans-
lation into continuous queries. To do this, we modeled message consumption and
transmission actions as events. For each message type consumed or transmitted
we create an input or output stream. A continuous query subscribes to the input
stream of messages it wants to adapt and publishes the adapted message(s) to
the corresponding output stream(s). For convenience, we name the input/output
stream the same name as the message it consumes or transmits. This method
allows a CEP engine to intercept messages exchanged between two services, to
detect patterns of incompatibilities and implement corresponding adaptation
solution, i.e., combinations of the operators encoded as continuous queries.

4.2 Conceptual Architecture

Figure 2 illustrates the conceptual architecture of the CEP implementation that
translates the adapter specified in automata into continuous queries, i.e., via
Automata → Continuous Queries. This includes the creation of input and out-
put streams for the continuously running queries in the CEP engine, waiting for
messages arriving through input streams.

Web Service Interaction Adaptation Using CEP Patterns 605

Service A

SOAP/HTTP

Service B

SOAP/HTTP

Automata of the
Adapter

Automata → Continuous Query

Continuous
Query

SOAP Message
Interceptor

CEP EngineSOAP → Event Event → SOAP

Deployed In

Fig. 2. Conceptual CEP Adaptation
Architecture

CEP Engine

Input
Wrapper

Output
Wrapper

Input
Wrapper

Output
Wrapper

SOAP Interceptor

Runtime Environment

CCL Generator

Adaptor Generator

Incompatibility
Detector

Resolution
Operator

Templates

Provider
Service

Automaton

Incompatibility
Patterns

Customer
Service

Automaton

Automaton Adapter

Incompatibilities

Design-time
Envrionment

Service A Service B

SOAP/HTTP SOAP/HTTP

Fig. 3. Architectural Framework for the
CEP Solution

In the second step, the SOAP Message Interceptor’s role is to control the
exchange of messages between the two services. Upon receipt of a message, the
Interceptor sends it to the input stream with the same name (through SOAP →
Event). The message received is published as an event and is consumed by the
query that subscribes to the input stream. The message(s) produced as a result
of applying the operators is published to the corresponding output stream. Once
on the output stream, the message is consumed by the SOAP message interceptor
(through Event → SOAP) and sent to the target.

Figure 4 shows the transformation of the Aggregation automata to a contin-
uous query. First, an input stream and a window to store messages arriving on
the input stream are created for action ?(m1) and an input stream is created
for action ?(m2). The aggregation query is then specified: it subscribes to the
window where messages from action ?(m1) are stored and to the input stream
for action !(m2) actions. After an !(m2) action, messages in the window with the
same correlation criteria as new message are aggregated into a single message,
the input messages are removed and the result is published to the output stream.

Figure 5 shows a concrete example where messages arriving through the input
stream Order In are stored in the window Order Win. When the message arrives
through CheckOut In indicating order number #03203 is complete, messages in
Order Win with the same order number (#03203, the correlation criteria) are
aggregated into a single message. The final message, containing Item1 and Item2,
is published to Order Out.

4.3 Proof of Concept

This section illustrates the practical generation and deployment of CEP-based
adapters using model transformation. It has two stages: the design phase mod-
els the adapter using operator automata through the use of an incompatibility
detection process to produce a platform independent model, whilst the transfor-
mation phase takes the platform independent model to produce the adapter as
a CCQ for a CEP engine, i.e, a platform specific model.

606 Y. Taher et al.

a0 a1 a2 a3

Aggregation
Query

Source 2

Source 1 M1 M1

M2

Window

m Target

Subscribe

Subscribe

Publish

OutputStream: m
Schema: Type(m)

InputStream: M2
Schema: Type(M2)

InputStream: M1
Schema: Type(M1)

?(m2) m = F(m[n]) !(m)

Create Specify Create

?(m1):C

Fig. 4. Aggregate Translation

 INSERT INTO OutputStream PayAdrs_Out
 SELECT XMLTRANSFORM(SOAPBody, XMLPARSE($FAgregation))
 From Window Order_Win, InputStream Validation_In
 Where Order_Win.Order_ID=Validation_In.Order_ID

TimeStamp

Order_ID

Order_Items

TimeStamp

Order_ID

Order_Items

07:32:01

#03203

item1

 INSERT INTO Window Order_Win
 SELECT * From InputStream Order_In;
 Order_Out

07:45:21

#03203

item1, item2

TimeStamp

Order_ID
07:45:21

#03203

CheckOut_In

Order_In

07:32:06

#03203

item2

ItemX#0124307:32:09
Item2
Item1

Order_Item
#03203

Order_ID

#0320307:32:06
07:32:01

TimeStamp07:32:09

#1243

itemX

Window: Order_Win

Fig. 5. Aggregate Flow

Figure 3 shows the framework for the automatic generation of adapters. If two
incompatible services, A and B, wish to communicate, at design-time an adaptor
can be generated for the runtime CEP engine by classifying the incompatibili-
ties between two service interfaces (using the method described in [9]) and using
them to construct the adapter using resolution operator templates (described in
Section 3). The resulting adapter is converted into the CEP engine’s continu-
ous computation language (CCL) that is deployed at run-time within a SOAP
message interceptor to provide a message serialization/deserialization capability.

The Design Time Environment is used to instantiate the template operators
described in Section 3 so they can be used in a specific Web Service protocol
adaptation. The design-time tools can be used to develop strategies for dealing
with complex adaptation situations by allowing the composition of the template
operators. In these cases, the designers of the adaptation must identify what
adaptations are required between two services and use a graphical user interface
(the Design Tool shown) to wrap the corresponding composition of operators
in a map. Maps are exported to the CCQ code generation tool that includes a
compiler to produce a CEP execution-time module (i.e., the CCQ) which is then
loaded into the CEP execution engine.

Web Service Interaction Adaptation Using CEP Patterns 607

The Run Time Environment contains a CEP platform with a continuous
query engine and a set of SOAP message integration layers to allow it to send
and receive messages to and from Web Services. The continuous query engine
provides the capability for the system to receive, process, correlate and ana-
lyze SOAP messages against a CCQ. However, since Web services communicate
through the use of SOAP messages, intermediate adapters are required to pro-
vide entry and exit points to the engine. These intermediate adapters are of two
types: input and output wrappers. An input wrapper receives SOAP messages
from the source’s service interface and transforms it to the representation appro-
priate for the CEP engine and then sends it to the engine. Similarly, an output
wrapper receives events produced by the engine and transforms it to a SOAP
message before forwarding the message to the target service.

4.4 Demonstration and Experimentation

A demonstration of our prototype can be seen at: http://www.youtube.com/watch?
v=g05ciEPZ Zc.

5 Related Work

As [3] describes, there are many commercial tools to achieve Web Service sig-
nature mediation and solve signature incompatibilities, including: Microsoft’s
Biztalk mapper2, Stylus Studio’s XML Mapping tools3, SAP’s Exchange In-
frastructure (XI) Mapping Editor4 and Altova’s MapForce5. Academic research
also exists in resolving signature incompatibilities through the use of seman-
tic web technology (i.e., OWL), such as that described in [5] that presents a
“context-based mediation approach to [. . .] the semantic heterogeneities between
composed Web services”, and the Web Service Modeling Ontology (WSMO)
specification [8] that provides a foundation for common descriptions of Web
Service behavior and operations. This research does not attempt to resolve the
associated problem of protocol incompatibility, however.

Active research is also being performed into the adaptation of web service
protocols, although all work we have surveyed does not tackle both problems
of signature and protocol incompatibility and all use different approaches to
the CEP-based technique presented. For example, although [3] presents medi-
ation patterns together with corresponding BPEL templates, a technique and
engineering approach for semi-automatically identifying and resolving identify-
ing protocol mismatches and a prototype implementation (the Service Mediation
Toolkit), it does not solve the signature adaptation problem. Similarly, [2] “dis-
cusses the notion of protocol compatibility between Web Services” and [1] again
only “focusses on the protocol mismatches, leaving data mismatches apart” —
2 http://www.microsoft.com/biztalk/en/us/default.aspx
3 http://www.stylusstudio.com/xml_mapper.html
4 http://www.sdn.sap.com/irj/sdn/nw-xi
5 http://www.altova.com/mapforce/web-services-mapping.html

http://www.youtube.com/watch?
http://www.microsoft.com/biztalk/en/us/default.aspx
http://www.stylusstudio.com/xml_mapper.html
http://www.sdn.sap.com/irj/sdn/nw-xi
http://www.altova.com/mapforce/web-services-mapping.html

608 Y. Taher et al.

i.e., they present solutions to protocol mismatches and do not tackle the asso-
ciated problem of signature incompatibility. Our chosen approach solves both
signature and protocol incompatibilities.

6 Conclusion

Web service incompatibilities are found in either their message signatures or
protocols. This paper presents an CEP approach to adapt Web Service inter-
actions and resolve these conflicts. Using predefined operators represented as
configurable automata allows us to automatically CEP generate adapters capa-
ble of intercepting incoming messages sent between services and adapting their
structure, type and number into the desired output message(s). Our future work
will be in two areas: (i) performing extensive testing on real services, and (ii)
developing tools to assist service designers to generate adapters.

Acknowledgment. The research leading to these results has received funding
from the European Community’s Seventh Framework Program [FP7/2007–2013]
under grant agreement 215482 (S-CUBE). We thank Marie-Christine Fauvet,
Djamal Benslimane and Marlon Dumas for their comments and contributions
on earlier stages of this work.

References

1. Ardissono, L., Furnari, R., Petrone, G., Segnan, M.: Interaction Protocol Media-
tion in Web Service Composition. International Journal of Web Engineering and
Technology 6(1), 4–32 (2010)

2. Dumas, M., Benatallah, B., Nezhad, H.R.M.: Web Service Protocols: Compatibility
and Adaptation. IEEE Data Engineering Bulletin 31, 40–44 (2008)

3. Li, X., Fan, Y., Madnick, S., Sheng, Q.Z.: A Pattern-Based Approach to Proto-
col Mediation for Web Services Composition. Information & Software Technol-
ogy 52(3), 304–323 (2010)

4. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Longman (2001)

5. Mrissa, M., Ghedira, C., Benslimane, D., Maamar, Z., Rosenberg, F., Dustdar, S.:
A Context-Based Mediation Approach to Compose Semantic Web Services. ACM
Transactions on Internet Technology (TOIT) 8(1), 1–23 (2008)

6. Nezhad, H.R.M., Benatallah, B., Martens, A., Curbera, F.: Semi-Automated Adap-
tation of Service Interactions. In: Proceedings of the 16th International Conference
on World Wide Web, pp. 993–1002 (2007)

7. Papazoglou, M.: Web Services: Principles & Technology. Pearson Education (2008)
8. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres,

A., Feier, C., Bussler, C., Fensel, D.: Web Service Modeling Ontology. Applied
Ontology 1(1), 77–106 (2005)

9. Taher, Y., Aı̈t-Bachir, A., Fauvet, M.C., Benslimane, D.: Diagnosing Incompat-
ibilities in Web Service Interactions for Automatic Generation of Adapters. In:
Proceedings of the 23rd International Conference on Advanced Information Net-
working and Applications (AINA 2009), pp. 652–659 (2009)

Web Service Interaction Adaptation Using CEP Patterns 609

10. Taher, Y., Marie-Christine, F., Dumas, M., Benslimane, D.: Using CEP TEchnol-
ogy to Adapt Messages Exchanged by Web Services. In: Proceedings of the 17th
International Conference on the World Wide Web (WWW 2008), Beijing, China,
pp. 1231–1232 (April 2008)

11. Taher, Y., Nguyen, D.K., van den Heuvel, W.J., Ait-Bachir, A.: Enabling Inter-
operability for SOA-Based SaaS Applications Using Continuous Computational
Language. In: Proceedings of the 3rd European ServiceWave Conference, Ghent,
Belgium, pp. 222–224 (December 2010)

Employing Dynamic Object Offloading

as a Design Breakthrough for SOA Adoption

Quirino Zagarese�, Gerardo Canfora, and Eugenio Zimeo
{quirino.zagarese,gerardo.canfora,eugenio.zimeo}@unisannio.it

Department of Engineering, University of Sannio

Abstract. In several application contexts, Web Services adoption is lim-
ited due to performance issues. Design methods and migration strategies
from legacy systems often propose the adoption of coarse-grained inter-
faces to reduce the number of interactions between clients and servers.
This is an important design concern since marshaling and transferring
small parts of complex business objects might entail sensible delays, es-
pecially in high latency networks. Nevertheless, transferring large data
in coarse-grained interactions might bring useless data on the client side,
whereas a small part of the transferred object is actually used.

This paper presents a novel approach to extend existing Web ser-
vices run-time supports with dynamic offloading capabilities based on an
adaptive strategy that allows servers to learn clients behaviors at run-
time. By exploiting this approach, service based applications can improve
their performances, as experimental results show, without any invasive
change to existing Web services and clients.

Keywords: web-services, performance, xml serialization, service design,
adaptation.

1 Introduction

Web Services emerged as a breakthrough for cross-platform communication in
heterogeneous environments thanks to the use of standards such as XML, SOAP
[12] and WSDL[13]. However, performance issues slew down their adoption in
environments where performance matters. This is mostly due to high latency
and low bandwidth characterizing world-wide networks, something really tough
to deal with when it comes to marshaling and transferring complex business
objects. Meaningful examples of such objects can be found in the PLM (Prod-
uct Life-cycle Management) area, where large data concerning structural and
management aspects of products need to be shared among multiple systems [4],
and in the telecommunication area, where providers sales and ordering systems
expose interfaces to extract data on customers’ orders [3]. In these complex and
often multi-organisational environments, design an migration strategy to em-
brace the SOA paradigm can be very challenging.

� The work of this author is supported by Provincia di Benevento.

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 610–617, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Employing Dynamic Object Offloading 611

The need to minimize the overhead due to network latency often leads to
the design of coarse-grained service interfaces. However, this approach can cause
unnecessary data transfers, since each service invocation implies the serializa-
tion of a large XML document, even if the client needs only a small portion of
such document. Over the years, many solutions have been proposed to minimize
client-server interaction time, by compressing XML documents or by incremen-
tally loading XML structures. The XMill[1] tool, Cheney’s SAX events encoding
[6] and Rosu’s incremental dictionary-based compression[7] represent important
results concerning the former approach. Incremental loading has been proposed
in [2], where web services calls are inserted in XML documents in place of their
results, as well as in [8], where a placeholder of the result of an invocation is
propagated among services and lazily loaded only when needed. The latter ap-
proach seems more promising since it allows for reducing the amount of data
transferred on the network by delivering to the caller only the data used by the
application, whereas XML compression could still be used to further reduce the
size of exchanged messages. However, the idea of incremental loading is in its
infancy and current Web services technology does not yet provide tools for smart
lazy-serialization of object attributes.

This paper tries to fill this gap by proposing an architecture for a middle-
ware aimed at optimizing network-based interactions for data-intensive services.
Optimization is achieved by applying a technique that combines eager and lazy
serialization of the attributes of objects resulting from services invocations. We
call such technique Dynamic Object Offloading.

The remainder of the paper is organized as follows. Section 2 introduces and
characterizes the problem. Section 3 describes the architecture of the proposed
middleware. Section 4 presents some preliminary experimental results. Section
5 discusses the results, concludes the paper and outlines future work.

2 Problem Characterization

Most systems that expose functions through web-services communicate with
other systems through an inherently eager-loading approach: every time a new
request is received, a result is computed, serialized to the network, and unserial-
ized on the client side. A different approach consists of adopting a lazy-loading
strategy. In such case, for each incoming request, a result is computed as well,
but XML fragments get serialized to the client as soon as they are needed. The
former approach may lead to unnecessarily transferred data, but the interaction
is completed within a single request-response cycle. This means any network
latency overhead contributes only once to the overall time needed to complete
the client-server interaction. The latter approach ensures that only needed frag-
ments get serialized to the client, but leads to multiple request-response cycles.
Consider an object Obj containing n attributes whose sizes are defined in vec-
tor S = {s1, s2, . . . , sn}. If the web-services stack is based on an eager-loading
strategy, the time needed by the client application in order to retrieve Obj can
be computed as:

612 Q. Zagarese, G. Canfora, and E. Zimeo

Tretrieve = L +
∑n

i=0 si

Th
where L represents SOAP transport latency and Th stands for SOAP transport
throughput. In order to characterize Tretrieve for a lazy-loading strategy, we
introduce a binary vector A = {a1, a2, . . . , an} where the generic element ai is
defined as:

ai =
{

1 if client uses ni

0 otherwise

As mentioned, for a lazy-loading strategy, multiple request-response cycles occur,
since each access to a not-yet-loaded attribute triggers a new request. For such
scenario, Tretrieve can be defined as:

Tretrieve = L(1 +
n∑

i=0

ai) +
∑n

i=0 aisi

Th

To achieve a performance gain in terms of Tretrieve, the following must apply:

L ·
n∑

i=0

ai +
∑n

i=0 aisi

Th
<

∑n
i=0 si

Th
(1)

If we assume that all attributes in Obj exhibit the same size S and define the
number of accessed attributes as Naccess =

∑n
i=0 ai, then we can rewrite (1) as

follows:

LNaccess +
NaccessS

Th
<

NS

Th
where N is the total number of attributes in Obj. A performance gain is achieved
if:

Naccess <
NS

L · Th + S

So far, we have explored when a plain lazy-loading strategy performs better than
a eager-loading one. One could combine the mentioned approaches in order to
minimize both request-response cycles and downloaded fragments. In this case,
Naccess must be split into two terms: Neager and Nlazy. The former represents
the number of attributes downloaded during the first request-response cycle;
the latter concerns the number of attributes downloaded on demand, by issuing
further requests. The problem then consists of keeping the value of Nlazy as low
as possible in order to minimize Tretrieve.

3 Middleware Architecture

In this section, we introduce an architecture for a middleware that minimizes
Tretrieve by combining eager and lazy-loading. We split XML documents re-
turned by Simple Object Access Protocol (SOAP) Web Services into two sets

Employing Dynamic Object Offloading 613

respectively having Neager and Nlazy cardinalities: the former contains the ea-
gerly loaded object attributes, the latter contains the lazy loaded ones. For each
service request, the server decides which attributes are likely to be used by the
client application, thus eagerly serializing them, and which are not, making them
available for lazy access.

Choosing which attributes should be eagerly serialized cannot be evaluated
in a static way, since clients behaviour is not likely to be known a priori. For
this reason, we propose to monitor clients behaviour and characterize them by
considering the following scenarios:

1. clients accessed an eagerly loaded property of the object
2. clients accessed a lazily loaded property of the object
3. clients did not access a lazily loaded property of the object
4. clients did not access an eagerly loaded property of the object.

The first and third scenarios describe desirable situations, as the system predicts
the actual client behavior: no cache-misses are issued, nor any eager serialization
is wasted. The second and forth scenarios concern negative situations; the former
takes place when the server does not eagerly serialize an object attribute, but
the client tries to use it; the latter happens when the server eagerly serializes an
attribute, but the client does not use it.

Clients behaviors are stored in a Knowledge Base (KB) component which
exposes two kinds of operations: “query”, to decide if an object attribute should
be eagerly serialized, and “update”, to instruct it about clients behaviour.

Figure 1 describes a client-server interaction mediated by our proposed mid-
dleware. Gray components realize a standard architecture based on Web Services.
Service Interceptor is a JAX-WS [5] compliant component, able to access service
incoming and outgoing messages. It is responsible for analysing services invoca-
tions results and applying dynamic offloading, based on information obtained
by querying KB. It implements the Interceptor architectural pattern that allows
services to be added transparently to a framework and triggered automatically
when certain events occur[11].

Data Access Layer (DAL) is a set of components that hide objects attributes
loading strategy from the client-side and notify server about clients behaviour.
Lazy Data Access Service (LDAS) enables lazy loading of objects attributes. It is
responsible for updating the Knowledge Base, on the basis of notifications from
DAL, and delivering offloaded attributes. It behaves like a dictionary where each
entry is an InvocationID-ObjectPropertyName pair.

A sample invocation scenario can help better describing the whole architec-
ture. When a service request is issued by a client (no. 1 on the diagram), Service
Interceptor inspects the outgoing response message and queries the KB (2, 3) in
order to decide which attributes of the returned object should be eagerly serial-
ized to the client, after assigning an invocation id to them (5), and which ones
should be offloaded to the LDAS (4). Offloading is performed asynchronously,
in order to minimize response time.

After the client receives the result of the invocation, DAL keeps track of ac-
cesses to object properties. When the client requests an eagerly loaded attribute,

614 Q. Zagarese, G. Canfora, and E. Zimeo

Fig. 1. Interaction phases in the proposed architecture

DAL simply saves such information and returns the attribute. When a request
for an offloaded attribute is issued, DAL forwards a request (6), containing the
id related to the invocation that generated the root object and accesses related
data recorded since the last miss, to LDAS that, in turn, asynchronously updates
KB (7) and serializes the requested attribute back to the client (8).

4 Preliminary Evaluation

We have implemented the described architecture in a prototype system based on
the Apache CXF framework [10]. CXF is a JAX-WS compliant implementation
and offers a flexible API for message interception.

The LDAS component has been implemented as a separate CXF Web service.
The KB implements a profiling strategy, where for each attribute in the business
object returned by the target service, the following probability is computed and
updated:

Paccess =
#attribute accesses

#service invocations

We defined a target service that allows the client to retrieve a sample business
object containing 100 fixed-size attributes. The client is emulated through a
component that actually invokes the target service, accesses the attributes of
the returned objects and possibly raises requests to LDAS. The access pattern
is specified through a binary input vector Acc, where Acc[i] is defined as follows:

Acc[i] =
{

1 if client uses ni

0 otherwise

where ni is the ith attribute in the business object.

Employing Dynamic Object Offloading 615

The evaluation process has been based on two cases. First, we compare ea-
ger loading, pure-lazy loading, random dynamic offloading and learning dynamic
offloading for a client that never changes its behaviour. The eager loading ap-
proach makes the server always serialize the whole object; when pure lazy loading
is used, the server always returns an empty object and the client can retrieve
attributes by issuing new requests; with random dynamic offloading, the server
randomly decides, for each attribute, whether it should be serialized; learning
dynamic offloading implements a simple strategy where the probability to use
an attribute is computed as the number of accesses to such attribute, divided
by the number of invocations of the service, as outlined in section 3. In this
phase, we make the client access a constant number of attributes; in the first
round, the client constantly accesses 10 of the 100 attributes in the business
object. Then we make the client access 20 of the 100 attributes and so on, until
all of the attributes in the business object get accessed. Each round consists
of 100 invocations of the target service. For each round we evaluate the aver-
age Tretrieve. The process has been repeated for three different attribute sizes:
1MB, 100KB, 10KB. These are realistic sizes for attributes in business objects
characterizing the PLM area, such as object attributes encapsulating CAD files
or images. By repeating measures for different attribute sizes, we are also able
to outline how multiple request-response cycles impact Tretrieve, when network
overhead dominates object size.

In the second case, we compare the mentioned strategies for a client that
randomly decides to access or not a generic attribute. We evaluate the average
Tretrieve over 1000 invocations of the target service.

Table 1. Experimental results with static and random client behavior

Nacc 10 20 30 40 50 60 70 80 90 100 Rand.

Size 1MB

T
r
e
tr

ie
v
e
[s

]

Eager 119,89 119,89 119,89 119,89 119,89 119,89 119,89 119,89 119,89 119,89 119,89
Lazy 12,53 25,02 37,50 49,98 62,47 74,95 87,44 99,92 112,40 124,89 62,47
Rand. 66,21 72,85 79,39 85,23 91,44 97,85 103,28 110,15 115,97 122,36 91,25
Learn. 12,04 24,03 36,02 48,00 59,99 71,98 83,97 95,96 107,95 119,94 94,78

Size 100KB

T
r
e
tr

ie
v
e
[s

]

Eager 11,75 11,75 11,75 11,75 11,75 11,75 11,75 11,75 11,75 11,75 11,75
Lazy 1,72 3,39 5,06 6,73 8,40 10,07 11,74 13,41 15,08 16,75 8,40
Rand. 6,70 7,56 8,42 9,30 10,05 10,94 11,79 12,57 13,41 14,25 10,08
Learn. 1,23 2,40 3,58 4,75 5,93 7,10 8,28 9,45 10,63 11,80 10,29

Size 10KB

T
r
e
tr

ie
v
e
[s

]

Eager 1,22 1,22 1,22 1,22 1,22 1,22 1,22 1,22 1,22 1,22 1,22
Lazy 0,67 1,28 1,90 2,52 3,14 3,75 4,37 4,99 5,60 6,22 3,14
Rand. 0,93 1,25 1,54 1,88 2,19 2,48 2,78 3,13 3,39 3,72 2,18
Learn. 0,17 0,29 0,42 0,54 0,66 0,78 0,90 1,03 1,15 1,27 2,06

616 Q. Zagarese, G. Canfora, and E. Zimeo

Experimental results are reported in table 1 where each column contains the
average Tretrieve values for a round of 100 invocations, given a specific Naccess

value. The right most column contains the average Tretrieve values obtained in
the second case. Results show that a learning strategy outperforms all the other
strategies in terms of Tretrieve, if the client application keeps a static behaviour
and if it does not access all the attributes of the business object.

We expected that a pure lazy-loading strategy would outperform eager-loading.
Surprisingly, a random offloading strategy outperforms eager-loading, as long as
the client does not access more than 90% of the attributes. The table shows that
a pure eager-loading strategy is nearly always the worst choice, if the business
object exhibits coarse-grained attributes. As object granularity decreases, lazy-
loading and random offloading become less competitive. Learning offloading still
outperforms other strategies regardless of object granularity.

Results from the second case show that learning offloading is still a good
compromise, also if the client exhibits an unpredictable behaviour. The results
shown in the right most column of table 1, confirm again that whilst lazy-loading
outperforms other strategies when the business object contains coarse-grained
attributes, it becomes the worst choice as soon as granularity decreases. On the
other hand, random and learning offloading are the best compromises.

5 Conclusion

Experimental results show that learning offloading can considerably reduce the
amount of time needed by a client to retrieve a business object, or a useful subset
of its attributes strictly needed to execute its business logic. Client predictabil-
ity is a key factor: a client exhibiting a static behaviour leads to a remarkable
reduction of Tretrieve. However, even when the client is characterized by a ran-
dom behaviour, results show that learning offloading is still a good compromise
between pure-eager and pure-lazy loading.

An important requirement to make correct decisions on eager or lazy serial-
ization is to have a good idea of how a client is going to use the object returned
by a service invocation. The decision should be based on a realistic expecta-
tion of the customer usage, which, in turn, depends upon the specific task to
be performed in a given interaction. A strong basis of information on how the
object attributes will be accessed will result in optimized decisions that will ex-
hibit fewer failures in the field. In this context, usage profiles can be useful to
actively gather information on how clients are actually using the objects they
receive from services. We intend exploring usage profiles to characterize families
of interaction between a set of services to perform a given task; usage profile
information will then be used to guide predictive decisions on eager and lazy
serialization of sets of attributes based on the task to be performed.

The attributes of an object do not live in isolation and, for any given usage
profile, certain subsets of attributes are more likely to be used than others. Thus,
once the usage profile is known, access to an object attribute can suggest which
attributes are likely to be accessed in the near future; this information can be

Employing Dynamic Object Offloading 617

used to implement predictive strategies for serialization. Of course, relationships
among attributes are non-deterministic, and this calls for probabilistic models.
Among these models, Bayesian networks are a promising tool to infer the prob-
ability that an attribute be accessed, given the accesses to other attributes, by
modeling the conditional dependencies via a directed acyclic graph. We plan
exploring learning procedures for Bayesian networks to learn the network that
depicts the dependencies among attributes from usage profiles data.

Acknowledgements. The authors would like to thank C. Sementa, A. K. Hos-
seini and P. Cantiello for stimulating discussion on preliminary ideas behind this
work [9].

References

1. Liefke, H., Sucio, D., Mill, X.: An Efficient Compressor for XML Data. In: Proc.
of ACM SIGMOD International Conference on Management of Data, pp. 153–164
(2000)

2. Abiteboul, S., Benjelloun, O., Manolescu, I., Milo, T., Weber, R.: Active XML:
Peer-to-peer data and Web services integration. In: VLDB (2002)

3. Amer-Yahia, S., Kotidis, Y.: A Web-service architecture for efficient XML. data
ex-change. In: ICDE (2004)

4. Siemens PLM Software, Open product lifecycle data sharing using XML (2011)
5. JSR-000224 Java API for XML-Based Web Services 2.0,

http://jcp.org/aboutJava/communityprocess/final/jsr224

6. Cheney, J.: Compressing XML with multiplexed hierarchical PPM models. In: Data
Compression Conference, pp. 163–173 (2001),
http://citeseer.ist.psu.edu/cheney01compressing.html

7. Rosu, M.C.: A-soap: Adaptive soap message processing and compression. In: Pro-
ceedings of the IEEE International Conference on Web Services, Salt Lake City,
Utah, USA, pp. 200–207 (2007)

8. Tretola, G., Zimeo, E.: Extending Web Services Semantics to Support Asyn-
chronous Invocations and Continuation. In: ICWS 2007, pp. 208–215 (2007)

9. Zagarese, Q., Sementa, C., Hosseini, A.K., Cantiello, P.: Improving the performance
of Web Services by Dynamic Object Offloading. In: WIP Proceedings of PDP 2011,
Ayia Napa, Cyprus (2011)

10. Apache CXF, http://cxf.apache.org/
11. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software

Architecture. In: Patterns for Concurrent and Networked Objects, vol. 2, p. 101.
John Wiley & Sons (2000)

12. SOAP Specifications, http://www.w3.org/TR/soap/
13. Web Service Definition Language, http://www.w3.org/TR/wsdl

http://jcp.org/aboutJava/communityprocess/final/jsr224
http://citeseer.ist.psu.edu/cheney01compressing.html
http://cxf.apache.org/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl

A Survey of SOA Migration in Industry

Maryam Razavian and Patricia Lago

Department of Computer Science, VU University Amsterdam, The Netherlands�

{m.razavian,p.lago}@vu.nl

Abstract. Migration of legacy software to service-based systems is an
increasingly important problem area. So far, many SOA migration ap-
proaches have been proposed in both industry and academia. There is,
however, considerable difference between SOA migration approaches de-
fined in academia and those emerged in industry. This difference pin-
points a potential gap between theory and practice. To bridge this gap,
we conducted an industrial interview survey in seven leading SOA so-
lution provider companies. Results have been analyzed with respect to
migration activities, the available knowledge assets and the migration
process. In addition, industrial approaches have been contrasted with
academic ones, hence discussing differences and promising directions for
industry-relevant research. As a result we found that, in fact, all com-
panies converge to the same, one, common SOA migration approach.
This suggests that, with experience, enterprises mature toward a similar
approach to SOA migration.

1 Introduction

Migration of legacy systems to service-based systems enables enterprises to
achieve advantages offered by SOA, while reusing the business functions embed-
ded in the legacy systems. Enterprises nowadays have many software systems
that are needed to be modernized because they are difficult to change and they
cannot cope with everlasting requirements changes. Service-enabling the legacy
systems allows enterprises to modernize their pre-existing business functions as
added-value services, and therefore achieve SOA promises such as agility and
flexibility. Hence, identification of migration strategies for service engineering is
critical for migration of legacies, and SOA adoption in industrial setting.

So far, many SOA migration approaches have been proposed in both industry
and academia with the ultimate goal of adoption in practice. There is, however,
considerable difference between SOA migration approaches defined in academia
and those emerged in industry. For example, while scientific approaches mainly
take a reverse engineering perspective, industrial practitioners developed best
practices in forward engineering from requirements to SOA technologies, where
legacy code is not transformed but used as a reference. This difference pinpoints
� This research has been received funding from Jacquard (contract 638.001.206 SAPI-

ENSA: Service-enAbling PreexIsting ENterprISe Assets); and FP7 contract 215483
(S-Cube). We would like to thank all architects that participated in this study.

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 618–626, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Survey of SOA Migration in Industry 619

a potential gap between theory and practice. One of the key causes of such a gap
is that the approaches proposed in academia do not fully fit the main goals and
needs of practice. To bridge this gap, it is necessary to understand the properties
of migration approaches that are both feasible and beneficial for practice.

This paper provides deeper understanding of the types of migration approaches
in industrial practice. To this end, we conducted an industrial interview survey
in seven leading SOA solution provider companies. To the best of our knowl-
edge, this is the first survey of this kind. With the objective of understanding
the industrial migration approaches, we designed and executed the interviews.
Each interview was analyzed considering the constituent conceptual elements of
a migration process as proposed in [1], including the activities carried out, the
available knowledge assets, and the overall organization of migration process.
Furthermore, we looked for the best practices that companies have developed
out of experience for successful legacy migration.

As a result we found that, in fact, all companies converge to the same, one,
common SOA migration approach. This suggests that industrial migration ap-
proaches converge to a similar set of activities, process organization, and best
practices, in other words, with experience enterprises mature toward a similar
approach to SOA migration. In addition, we contrasted the industrial approaches
with academic ones, which we identified from a previous Systematic Literature
Review (SLR) on SOA migration [2]. Here we use the results of the SLR to dis-
cuss the differences and draw promising directions for industry-relevant research.

2 Results

To gain an understanding on industrial migration approaches, we needed to
typify the approaches in a unified manner. For this purpose, we used the SOA
Migration Framework (SOA-MF) introduced in our earlier work [1] (see Fig. 1.I).
The analysis of the approaches revealed patterns common among various com-
panies1. These are listed in four key findings presented in this section. Each
finding is summarized in a Reflection Box, which is followed by detailed discus-
sion of the finding. Furthermore, each finding is compared with the results of our
previous study on academic SOA migration approaches (the SLR mentioned in
Section 1). Major differences between industrial approaches and academic ones
can reflect gaps between theory and practice.

2.1 Migration Activities

Reflection Box.1.

– F1.1. Different companies share the same set of activities for migration.
– F1.2. Industrial migration approaches converge to one, common, type of mi-

gration.

1 Due to space constraints, our research methodology including the research
questions, the study design, and data analysis method are made available at
http://www.few.vu.nl/~mrazavi/IndustrialSurveyAppendix.pdf

http://www.few.vu.nl/~mrazavi/IndustrialSurveyAppendix.pdf

620 M. Razavian and P. Lago

I. SOA-MF

Code Analysis

Architectural
Recovery

Business Model
Recovery

Service
Implementation

Service Design

Service
Analysis

Business Model
Transformation

Composition
Transformation

Design Element
Transformation

Basic Design Element

Code
Transformation

Composite Design Element

Concept

R
ev

er
se

 E
ng

in
ee

rin
g Forw

ard Engineering

Transformation

Code Analysis

Architectural
Recovery

Business Model
Recovery

Service
Implementation

Service Design

Service
Analysis

Business Model
Transformation

Composition
Transformation

Design Element
Transformation

Code
Transformation

II. Mapping of III(a) on SOA-MF

a) b) c)

III. Activity Coverage Patterns IV. Activity Sequence Patterns

a) b) c)

Fig. 1. Industrial Approaches Mappings

To answer what is done in industrial approaches, we identified the constituent
activities of various approaches and mapped them on SOA-MF. Fig. 1.III, rep-
resents the schematic forms of those mappings. Mappings revealed two main
findings: a) industrial approaches share the same set of activities for migration
and b) industrial approaches are convergent to a subset of those activities. The
two findings are further discussed in the following.

Finding F1.1. Various companies, independent from the company type (i.e.,
consultancy vs. in-house) and migration application domain, share the same set
of activities for migration. This is evident from Fig. 1.III, where the activities
correspond to three graphically similar coverage patterns. It should be noted
that the similarity among coverage patterns, thanks to expressiveness of SOA-
MF, indicates the conceptual similarity of constituent activities and artifacts
of the migration approaches. According to [2], SOA migration approaches with
similar set of activities constitute a migration family. Similarly, the three similar
approaches identified in the interviewed companies belong to the same family.

Contrast with theory. While the industrial approaches are all members of
one family, the SLR revealed that the academic approaches belong to eight very
different families. By covering different sets of activities each of these eight fam-
ilies provide a very different view on what SOA migration entails. For instance,
one family reverse engineers the legacy code and transforms the extracted code
segments to services, another family only covers the forward engineering sub-
process. Considering the industrial approaches, all the approaches are catego-
rized into (only) one of the eight families. Interestingly, the size of that family,

A Survey of SOA Migration in Industry 621

called industrial family, is the smallest as compared to the others (i.e. 3% of
academic approaches). Thus, one could conclude that 97% of the academic ap-
proaches do not fit in industrial family. This may indicate that academic research
might be digging into aspects (like sub-processes and techniques) that are less
relevant for industry. On the contrary, by looking at the characteristics of the
industrial family research could better focus on the open research questions per-
taining such family and hence have a better chance to close the gap between
academic research results and industry needs.

Finding F1.2. By further analyzing the activities of the industrial approaches,
we found that those common among all approaches, called core activities, are
the ones shown in Fig. 1.II with bold boxes. The variable activities, i.e., those
not common to all approaches, pertain to the coverage of the two transforma-
tion activities shown in Fig. 1.II by dashed line boxes. Furthermore, we observed
that the core activities are those performed more frequently and systematically,
while the variable activities are carried out less frequently and in an ad-hoc man-
ner. More precisely, the limitations posed by legacy systems makes the variable
activities less frequent. Several of the interview participants mentioned that,
transformations that require decomposing the legacy systems are rarely carried
out because they are not feasible as legacy systems are mainly monolithic. Fur-
thermore, we observed that core activities are mainly supported by the state-of-
the-practice methodologies and techniques such as SOMA [3]. The variable ac-
tivities, however, are mainly carried out using local best practices. Consequently,
we argue that, due to higher feasibility of the core activities and support of well-
established methodologies and techniques, the industrial migration approaches
are characterized by core activities.

Contrast with theory. None of the migration approaches in the SLR fully
covers the core activities. I.e., none of the academic approaches comprehensively
supports the type of migration that is both feasible and beneficial in indus-
trial setting. This indicates an important gap between the migration activities
emerged from practice and the ones researched in academia.

2.2 Sequencing of Migration Activities

Reflection Box.2.

– F2. In the industrial migration approaches the To-Be situation initiates and
drives the migration.

By providing the mappings on SOA-MF, previous section addressed what activ-
ities are covered in the industrial migration approaches. Here we focus on what
is the sequencing of those activities. There are two main types of sequencing
of activities in the migration approaches, namely arc-shaped and bowl-shaped
[4]. In summary, in arc-shaped approaches migration is driven by As-Is situa-
tion, while it is the To-Be situation that drives the bowl-shaped ones. All the
industrial approaches elicited by our study were bowl-shaped.

622 M. Razavian and P. Lago

This categorization of approaches is based on the graphical representation
resulted from mapping their sequencing of activities on SOA-MF (e.g. Fig. 1.IV).
The sequencing of activities in an arc-shaped approach starts from the reverse
engineering sub-process. In this category, the As-Is situation initiates and drives
the migration. Unlike the arc-shaped category, the bowl-shaped one starts from
forward engineering and the To-Be situation is the main driver of migration.

Finding F2. The bowl-shaped sequencing of activities in industrial approaches
implies the following: in all of the migration approaches the To-Be situation,
characterized by requirements or properties of the target service-based system,
drives and shapes the migration. To shape the migration process, first the To-
Be situation is defined within the forward engineering sub-process; further, the
To-Be situation is compared with the As-Is and as such, the legacy elements
are selected and re-shaped to services. A question that arises is why industries
perform migration in a bowl-shaped manner. Some of the participants, in one
way or another, stated that in order to reach the migration goals they need
to have the To-Be situation as the primary shaping force behind migration. As
such, we conclude that to ensure achieving the migration goals, companies shape
their migration decisions primarily by the To-Be situation.

Contrast with theory. Unlike the industrial migration approaches, the aca-
demic ones are mainly arc-shaped. In the SLR only 30 % of the primary studies
are categorized as bowl-shaped approaches and the rest are arc-shaped. As such,
70% of the approaches do not support To-Be driven migration, which is con-
sidered as the best practice among the practitioners. This highlights promising
opportunities for research to focus on how to support To-Be driven migration.

2.3 Legacy Understanding through Personalization

Reflection Box.3.

– F3.1. The industrial migration approaches do not use reverse-engineering tech-
niques to understand the legacy systems.

– F3.2. The required knowledge is elicited from the stakeholders who own the
knowledge.

Understanding the legacy systems plays an important role in SOA migration as
it enhances extracting the best candidates among existing legacies for migra-
tion to SOA. In traditional software engineering, this understanding is gathered
by extracting the representation of the legacy systems using reverse engineer-
ing techniques. As shown in Fig. 1.III, we observed that in the industry-defined
approaches none covers the reverse-engineering subprocess. This observation re-
sulted in two key findings discussed in the following.

Finding F3.1. To gain the required understanding of the legacy system, the
industrial approaches do not use reverse engineering techniques. This is due to
the following two reasons: a) the knowledge about the pre-existing system mainly
resides in the stakeholders’ minds (e.g. maintainer, developer, and architect). As
such, the stakeholders know what functionalities are supported, and where they

A Survey of SOA Migration in Industry 623

are located in the legacy system. As a result, reverse engineering of the pre-
existing system is not favorable considering the little Return On Investment
(ROI) it brings.
b) the legacy systems are usually comprised of a set of heterogeneous systems
that are implemented in different programming languages ranging from COBOL
to Java. As a result, for reverse engineering of the code different tools are needed
and this implies a considerable amount of costs.

Contrast with theory. To understand the legacy systems, more than 60% of
the approaches in the SLR use reverse engineering techniques. Those approaches
extract the representations of the legacy systems using techniques such as code
analysis and architectural recovery. Only one of the academic approaches (out of
39), supports the legacy understanding without reverse engineering techniques
(i.e. using structured interviews)[5]. This indicates an important gap between
theory and practice since reverse engineering is not favorable in practice.

Finding F3.2. We further observed that the industrial migration approaches
elicit the relevant knowledge by directly asking the stakeholders, who own, de-
veloped, or maintained that system. More precisely, knowledge about the legacy
system mainly remains tacit in stakeholders minds. As such, understanding is
achieved by person-to-person knowledge elicitation. We argue that, this type
of knowledge elicitation is in-line with personalization knowledge management
strategy [6]. Personalization deals with exchanging tacit type of knowledge. Us-
ing personalization, the legacy understanding is gained by knowing ‘who knows
what’ and consequently sharing the tacit knowledge about the legacy systems in
that regard.

Contrast with theory. In the SLR, all the approaches focus on capturing
the knowledge by documenting it. As such, they are in-line with codification
strategy addressing explicit documentation of the knowledge. The results of this
study, however, suggests the importance of personalization. As such, research is
needed to improve elicitation techniques, especially targeted for SOA migration,
supporting personalization strategy.

2.4 Service Extraction by Defining the Ideal Services

Reflection Box.4.

– F4.1. The main driver in extraction of the legacy assets for migration is the
portrait of ideal service.

– F4.2. Approaches emerged out of more experience portray the ideal services
in more detail.

Finding F4.1. The migration approaches, inherently, embrace trade-off analysis
between the level of reuse of legacy elements and characteristics of the ideal
services. We observed that, in this trade-off analysis, the industrial approaches
assign considerably higher weight to the later rather than the former. To do
so, first they determine the ideal services during the forward engineering sub-
process. Later, those ideal services are re-shaped in a way that the reuse of

624 M. Razavian and P. Lago

pre-existing assets are realized. This way, the portrait of the ideal service is
the main driver of service extraction. That is, the services identified from the
pre-existing capabilities would likely be substantially different in the absence of
that portrait of the ideal service. This is in-line with our other finding that all
the migration approaches are bowl-shaped meaning that the To-Be candidate
services guide the analysis and transformation of the As-Is legacy elements.

Contrast with theory. A characteristic of the bowl-shaped approaches is hav-
ing the ideal services (To-Be situation) as the main driver in service extraction.
As such, this finding points out the same gap between theory and practice as
discussed in finding F.2, namely inadequate support of To-Be driven migration.

Finding F4.2. We further observed that, industrial approaches vary in the
level of detail in which they portray their ideal services. Some of the approaches
only define the capability of the desired services at conceptual level (e.g. order
business service), while some others also provide the design of such services
along with its associated service contract (e.g. order software service design).
Some of the approaches externalize the constraints which each service should
meet, while some others do not explicitly consider any constraints. Interestingly,
we observed that the companies with more experience in providing service-based
solutions tend to define the ideal services more detailed compared to the ones
with less experience. Hence, we argue that the extent to which the ideal service
is codified is an indicator of the maturity of the migration approach.

Contrast with theory. Detailed description of the ideal services is a best prac-
tice that companies have developed with experience. Interestingly, we could not
trace back this best practice to the academic approaches.

3 Discussion

In software engineering as an applied science, research in principle should serve
the final purpose of being applied in practice. The extent to which this principle
is supported by research, however, has been subject of debate for decades, and
remains a still unsolved problem. The premier conference on software engineering
featured in 2011 a panel on “What Industry Wants from Research” discussing
the current gaps between theory and practice, and how to address them. All
panel members in one way or another hinted the following cause of such gap:
what research proposes does not fit the fundamental problems, goals, strategies
and weaknesses of practice. We argue that, this paper is a step towards filling
the theory and practice gap as it sheds light on how migration is performed in
practice and further contrasting it with how academic research addressed the mi-
gration problem. By identifying the characteristics which make these approaches
favorable for practice, we could identify directions for future research that have
better chance of adoption by practitioners.

I) Migration approaches fitting core activities. Getting back to finding
F1, we argue that core activities can act as a frame of mind confining the mi-
gration approaches that are more aligned with practice. From that perspective,

A Survey of SOA Migration in Industry 625

one would see that, for instance, the approaches addressing wrapping the ap-
plications as a whole are more in-line with practitioners concerns, compared to
the ones addressing the automatic recovery of the legacy architecture. Hence,
this frame of mind pinpoints the types of industry-relevant research in SOA
migration methodologies and techniques.

II) To-Be driven migration approaches. As noted in finding F2, inadequate
support for the bowl-shaped approaches in academia highlights promising op-
portunities for research to focus on how to support To-Be driven migration. For
instance, future research can focus on addressing the following challenge of the
practitioners: how to systematically elicit and capture the migration drivers and
how to shape the migration process using those drivers.

III) Legacy understanding without reverse-engineering. Although re-
verse engineering is not covered in industrial migration approaches (see finding
F3), elicitation of the knowledge about the legacy system is crucial for a success-
ful migration. In this regard, research can benefit practice by providing methods,
techniques, or guidelines that facilitate elicitation of migration-relevant knowl-
edge from different sources of such knowledge.

IV) Legacy evaluation from multiple perspectives. As noted, companies
evaluate and extract the legacy assets for migration to SOA by depicting their
ideal services. This is, however, done in an ad-hoc manner, which may hinder
successful service extraction. An immediate concern calling for further research
is how to systematically evaluate pre-existing legacy assets based on different
aspects of the ideal services.

4 Conclusions

This paper explored the types of migration approaches employed by leading
SOA solution providers in practice. Results show that by supporting similar
set of activities, process organization, and best practices, industrial migration
approaches do converge to one, common, type of migration. As such, this paper
suggests that the industrial approaches mature towards a similar approach to
SOA migration. Further findings (removed for sake of space) show that industrial
approaches, strictly follow incremental migration.

In spite of what academics think, practitioners still face difficulties in consol-
idating to a successful yet cost-effective migration approach. The many avail-
able methods often prove to be abstract or commercial to be applicable. By
contrasting the industrial migration approaches and the academic ones, this pa-
per emphasizes important gaps between theory and practice and consequently
sketches the promising industry-relevant research directions. Those research di-
rections enable finding solutions to problems that industrial practice confronts
in real-world migration cases and is tailored to individual needs.

When a company wants to devise or select a specific approach for migration of
its pre-existing assets to services there are many issues that need to be resolved.
In this study we identified the type of industrial migration approaches that

626 M. Razavian and P. Lago

is feasible in practice. What issues, goals, assumptions, and decisions explicitly
make that specific type of migration favorable in practice, though, is yet unclear.
We are carrying out follow-up studies to identify the goals, assumptions and
issues that shape the migration decision making process.

References

1. Razavian, M., Lago, P.: Towards a Conceptual Framework for Legacy to SOA Migra-
tion. In: Fifth International Workshop on Engineering Service-Oriented Applications
(WESOA 2009), pp. 445–455 (2010)

2. Razavian, M., Lago, P.: A Frame of Reference for SOA Migration. In: Di Nitto, E.,
Yahyapour, R. (eds.) ServiceWave 2010. LNCS, vol. 6481, pp. 150–162. Springer,
Heidelberg (2010)

3. Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Gariapathy, S., Holley, K.:
SOMA: a method for developing service-oriented solutions. IBM Syst. J. 47, 377–396
(2008)

4. Razavian, M., Lago, P.: A Dashboard for SOA Migration (under submission, 2011)
5. Lewis, G., Smith, D.B.: Developing Realistic Approaches for the Migration of Legacy

Components to Service-Oriented Architecture Environments. In: Draheim, D., We-
ber, G. (eds.) TEAA 2006. LNCS, vol. 4473, pp. 226–240. Springer, Heidelberg
(2007)

6. Hansen, M.T., Nohria, N., Tierney, T.: What’s your strategy for managing knowl-
edge? Harvard Business Review 77(2) (1999)

Forms-Based Service Composition

Ingo Weber, Hye-Young Paik, and Boualem Benatallah

School of Computer Science and Engineering
University of New South Wales
Sydney, NSW, Australia, 2052

{ingo.weber,hpaik,boualem}@cse.unsw.edu.au

Abstract. In many cases, it is not cost effective to automate business
processes which affect a small number of people and/or change frequently.
We present a novel approach for enabling domain experts to model
and deploy such processes from their respective domain as Web service
compositions. The approach is based on user-editable service naming, a
graphical composition language where Web services are represented as
forms, a targeted restriction of control flow expressivity, automated pro-
cess verification mechanisms, and code generation for executing orches-
trations. A Web-based service composition prototype implements this
approach, including a WS-BPEL code generator.

1 Introduction

Business process management (BPM) refers to a discipline and software suites
that automate, improve, and optimize business processes to enhance productivity
[12]. Despite BPM’s success, the reality is that today many processes are in
fact not automated. First, among other reasons, BPM products are not suitably
equipped to deal with processes that are ad-hoc [14]. Second, there are costs and
high skills involved in implementing automated processes. This affects primarily
the “long tail of processes” [9], i.e. processes that are less structured, that do
not affect many people uniformly, or that are not critical.

In recent reports and studies [10,11], the split between BPM technology and
its value for end-users is acknowledged. The reports include recommendations
on increasing the relevance of BPM for end-users, allowing process changes by
non-technical personnel, and reducing the complexity of BPM technology.

Motivated by the need for user-friendly BPM technology, the goal of this work
is to devise an approach to support domain experts in their long-tail process
automation needs. We focus on processes that can be implemented as Web
service compositions. As a user group, we target business domain experts, i.e.,
non-IT professionals. We believe that these often have a good understanding
of the processes they participate in; and that they are able to abstract from
single process instances to the bigger picture of the process model containing
alternatives and exceptions. An example is hiring a new employee, where HR
recruiters have a good understanding of the default process and under which
circumstances they may deviate from it.

The traditional approaches to BPM for process automation have inherited
from programming. We believe this causes difficulties for the targeted users.
The following lists the problems and requirements that are relevant to our goal:

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 627–635, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

628 I. Weber, H.-Y. Paik, and B. Benatallah

– Programming requires writing code as abstract artifacts, symbolic or textual
[5]. It is hard for untrained users to match their tasks to the abstractions.

– The so-called selection barrier [6] refers to the fact that often the users do
not know how to express what they want the computer to do.

– Immediate program verification is needed to give feedback to the user [5].
– The system needs to understand high-level instructions of the user and trans-

late them to a formal representation [5].

Our goal is to create a language and system for forms-based service composi-
tion, to allow domain experts to address their idiosyncratic, long-tail process
automation needs themselves.Since we want to include processes where parts
are executed conditionally, we propose a scripting approach to design process
models. We focus on a graphical representation based on forms for designing
processes. In the approach, services can be described using names that are
meaningful to the user, and independent of the services’ technical names. We
use these names during service discovery and in the process design.

Also, we aim at keeping the complexity of process modeling low, in order to
make the approach applicable to domain experts. As such, we include features
to verify the correct combination of the modeled control and data flows through
automated verification techniques. A code generator can automatically translate
the models to an executable language. The complexity is further limited through
a targeted restriction of control flow expressivity. However, to enable fast execu-
tion, we include an automatic parallelization technique in our code generation.
We note that the approach outlined above is very different to other service com-
position or workflow tools (e.g., JOpera, Kepler, Taverna)1, which tend to support
highly complex modelling and programming capacity, and demand higher level of
assumed knowledge from their users. We conduct a preliminary case study with
use cases from the financial domain: data analysis processes such as finding a
correlation between news and stock price changes. The use cases are taken from
our industry partner, Sirca2.

In summary, the contributions of this paper are the following:

– A forms-based composition method, where (i) forms are linked to Web ser-
vices; and (ii) compositions can be modeled in a restricted, yet powerful
generic language.

– Immediate automated process verification for reducing the burden on the
user to build a correct composition.

– Automatic code generation with parallelization, to generate executable or-
chestrations from the forms-based composition language.

We also present a prototype and show how the approach can be enacted.3

1 www.jopera.org/, kepler-project.org/, www.taverna.org.uk/, respectively
2 http://www.sirca.org.au
3 A full technical report and a demonstration video of the prototype can be found at
http://www.cse.unsw.edu.au/~FormSys/FormSys/. The tool has also been demon-
strated at the 9th Intl. Conference on Business Process Management (BPM) in
August 2011, without publication.

www.jopera.org/
kepler-project.org/
www.taverna.org.uk/
http://www.sirca.org.au
http://www.cse.unsw.edu.au/~FormSys/FormSys/

Forms-Based Service Composition 629

2 Forms-Based Service Composition Approach

In this section, we explain how services are created and managed in a repository,
how they are represented for domain experts, and how domain experts can then
model processes graphically. We start by introducing a running example.

2.1 Use Case: News and Financial Data Analysis Process

Research and development within Sirca on the possible utilization of available
datasets led to the implementation of numerous Web services [13]. The types
of Web services range from query/search, data cleaning, to complex statistical
analysis. Currently, each Web service is invoked by a simple user interface based
on Web forms, and the services operate independently. One such example is
described in Fig. 1, where each step represents a Web service.

1. Find news data: e.g., news data on the company ‘BHP’
2. Find performance data: e.g., hourly stock price summary for code ‘BHP.AX’
3. Merge datasets: e.g., merge the result data sets from the first two steps
4. Perform statistical analysis: e.g., which news were possibly influential on the price
5. Visualize dataset: e.g., influential news and the prices

Fig. 1. Financial data analysis from Sirca, for an Australian mining company ‘BHP’

Repeating the above process by operating the Web forms involves around 30
mouse clicks, as well as entering the same information repeatedly at multiple
steps. Once the processing is complete, the exact parameters that resulted in a
given graph are lost. The set of changing parameters and the details of which
service to use with which parameters differs between analysts and their tasks at
hand. Therefore, while being repetitive, the processes are required to be flexibly
executable or adaptable by the analyst.

Automating such processes is of interest to (i) reduce the required amount of
user interaction, and (ii) retain the parameters that led to some visualization.
The latter is important, because comparable graphs can be required periodically.
With this motivating example in mind, we present our approach next.

2.2 Forms as Service Interface Representations

In our repository, every service is collectively represented by a WSDL document,
a user-editable name, an icon, and forms as graphical representations of input
and output messages. While WSDL needs to be present in the repository, it is
completely hidden from the domain expert designing processes.

Graphical Representations: The service is a computational entity that per-
forms some function, which is represented with an icon. For example, Figure 2
shows the icon for the “Find News Data” service.

630 I. Weber, H.-Y. Paik, and B. Benatallah

Fig. 2. Find News Data ser-
vice as icon

Fig. 3. Graphical representation of Input Message
for Find News Data

The technical information about a service is stored as standard WSDL. In fact,
a service in our approach corresponds to a WSDL operation. An invocable WSDL
operation has an input and an optional output message4. The input and output
messages for a service are represented as forms – reflecting the service’s running
user interface. Fig. 3 shows an example of an input message as a form. The
names of form fields, corresponding to the service’s input/output parameters,
as well as the names of services themselves can be set to names meaningful to
the users, which are used during search and composition of services. The form
representation is also useful when the domain experts specify data mappings
between messages.

Each data field from the message which is to used in process designs has a box
associated to it, somewhere in the form. How the boxes correspond to data fields
in the message has to be marked up manually for now, to enable automatic
execution of designed processes. By default, the form could be rendered from
the XML Schema type that belongs to the respective message. However, given
our focus on domain experts, we believe that the form representation should be
something the user is already familiar with. Hence, a screenshot of the UI through
which the user commonly accesses this service makes a good representation.

Using Service Names Meaningful to Users: Besides the technical informa-
tion from WSDL and the graphical representations, the services in our repository
are also given non-technical names. These names are created by users, at the time
when entering a service into the repository. In the process modeling tool, the user
can assign different names to services, if they prefer them for the processes at
hand. For instance, while some user called a service “Find News Data”, another
user may refer to it as “Import News Data”.

4 For simplicity, we currently neglect fault messages and exception handling, as well
as certain XML Schema constructs and certain WSDL features.

Forms-Based Service Composition 631

2.3 Forms-Based Control Flow Modeling

Using the rich service descriptions outlined in the previous section, modeling an
executable process becomes a matter of drag-and-drop and clicking. We treat
control flow and data flow as two separate, but not independent, layers. The
control flow serves as an abstract process description: which services should be
executed, under which conditions and in which order? The data flow adds more
detail, by specifying how the input and output message fields of the various
services interact.

In order to retain the focus on domain experts, the control flow modeling
is restricted: services are arranged into a single sequence, and may be subject
to some condition. If the condition evaluates to true in a process instance, the
associated services are executed; if it evaluates to false, they are skipped in this
instance. The conditions are free text, and, through code generation, are turned
into questions to users starting process instances. The above restrictions have
strong impact on expressiveness5. However, anecdotal evidence from experience
with industry contacts suggests that forcing the occasional user of our system
to understand the particularities of the semantics of an expressive language
alienates most targeted domain experts. Therefore, we try to keep the control
flow modeling as simple as possible – see Fig. 4 for a screenshot from our tool.

Fig. 4. Graphical Process Modeling of the Running Example

2.4 Forms-Based Data Flow Modeling

The data flow modeling works roughly as follows in our approach. Each service
has an input and possibly an output message. A message consists of a set of
fields, and has a form as graphical representation – c.f. Fig. 3. Data fields from
one message can be mapped to data fields of another message in our approach.
For instance, in our running example, the outputs of the two import services can
be mapped to the merge service’s input; the from/to dates in one data import
service can be mapped to the date range of the other import service; etc.

Data fields of input messages fall into one of three categories, with respect
to processes: user-static (i.e., always the same value for some user), process-
static (i.e., always the same value for some process model), and process-instance-
specific data (i.e., likely to be different for each instance of a process).
5 In the technical report3 , we discuss the expressiveness issue of our approach in detail

with regards to workflow patterns.

632 I. Weber, H.-Y. Paik, and B. Benatallah

In our method, the user can define certain kinds of mappings between / as-
signments to fields of messages of different Web services:

– specifying that an output field of one service corresponds to the input field
of another (output-input mapping);

– specifying that two (or more) input fields of separate services will get the
same value from the process-specific user input (input-input mapping);

– specifying a static value for an input field, including null (static
assignment).

2.5 Process Verification

Implicitly, a data flow graph is created from output-input mappings (the di-
rected edges of the graph). There can be contradictions within the data flow, or
between the data flow and control flow of a process. Our approach includes an
automatic verification for a set of problems that may appear. With the verifica-
tion technique, the modeler can be kept from modeling, e.g., (illegal) loops in the
data flow. More details, including a (semi-)formal treatment of the problems and
solutions (based on well-known graph algorithms), are in the technical report3.

2.6 Code Generation for Process Execution

The goal of modeling a process in our approach is to automate the execution
of repetitive tasks. In order to determine the necessary input for the process,
our solution combines all inputs for all services, and removes any field which is
the target of a mapping or static assignment. The result forms a message with
the consolidated input data format to start the process. For this message, we
generate a Web form, where the user can enter the information and trigger an
instance of the process. Analogously, the outputs of all services are consolidated
to one output message of the process, for which again a Web form is created.

When desired by the user, our approach can parallelize steps in the process
based on the data flow, by ignoring additional constraints from the control flow.
This is achieved by mapping the problem onto graph algorithms, as before.
The resulting, non-redundant process is then translated to WS-BPEL directly.
Details can be found in the technical report3.

3 Related Work

Here we present related work in brief; an exhaustive discussion of related work
is included in the technical report3.

Mashups have similar goals to our system. Topics such as data harvesting and
visualization, composition of existing data and UI, and custom views or UIs for
existing services are common in mashups [18]. While this may facilitate certain
processes, the predominant composition paradigms in mashups are event-based
synchronization [19] and data flow between components, not control flow over

Forms-Based Service Composition 633

process activities [4]. While there is some overlap between mashup approaches
and ours, we see them as largely complementary.

End-User Process Modelling: Todor Stoitsev [15] investigates using Task
Management (Outlook plugin) for “process modelling by example”: the system
tracks how people split up larger tasks into subtasks, and delegate some subtasks
to others; this can be used as input to a workflow design tool. [8] describes a
technique for constructing process models with formal execution semantics from
informal models (e.g., Powerpoint drawings). The technique stops at producing
BPMN, but possibly could be extended to generate executable models. However,
the missing aspects to enable that (e.g., service selection, data flow) are not
explored. [3] describes BPEL4UI / MarcoFlow: a language and tool for enabling
BPEL designers to incorporate distributed UI composition in BPEL processes.
Mashup-like UI components are synchronized between each other (for a single
user), with UI components at other users, and the process. Microsoft InfoPath6

essentially is a code-free software engineering tool. However, it is still for users
familiar with programming, e.g., who know how databases work or what Web
service are. PICTURE is a domain-specific modeling method and notation for
public administration [1]. The key differences to our work are: PICTURE targets
capturing the processes, and does not support creating executable processes; and
PICTURE is domain-specific, whereas our tool is generic.

End-User Programming: A field of research that has a similar goal to ours,
although in a different domain, is end-user programming (EUP). EUP is the um-
brella term for approaches that “make limited forms of programming sufficiently
understandable and pleasant that end users will be willing and able to program”
[2]. An approach in EUP that we consider closely related work is CoScripter [7],
which primarily focuses on personal processes in the scope of browsing and us-
ing Web applications. The user can record, play and publish/share such browser
processes on a public Wiki. The processes are stored in a simple end-user under-
standable language, using natural language keywords such as “go to <URL>”
and “click on <link>”. In CoScripter, all steps in a script need to be standard
operations in a browser. While closely related to our work in terms of the under-
standability of process steps and the user focus, it does not support Web service
invocation or conditional execution.

Own work: The work presented herein is also related to our own work. The
tool in its current form has been presented (without publication)3. The tool and
approach are significant extensions of earlier work for processes made up of PDF
forms [17]. The PDF form-filling services are, in turn, the result of a separate
work [16], with which FormSys Process Designer shares some database tables.
The idea to relate Web services and their messages to forms stems from the
earlier work, but representing arbitrary WSDL Web services through forms is a
novel contribution of this paper.

6 http://office.microsoft.com/en-us/infopath/

http://office.microsoft.com/en-us/infopath/

634 I. Weber, H.-Y. Paik, and B. Benatallah

4 Conclusion, Discussion and Future Work

We have presented a forms-based service composition approach which allows
domain experts with little technical knowledge to encode idiosyncratic, repetitive
business processes themselves from design to execution.

Our preliminary evaluation revealed the following as desirable: user-editable
input/output forms of the process; conditional data mappings; and process simu-
lation in the design environment. For our use cases, the number of data mappings
stayed reasonably small and therefore using colors to represent them was suf-
ficient. However, if too many colors are required, they can eventually become
confusing. These findings guide part of our immediate future work; in particu-
lar, a richer language for data mapping is under investigation, to enable more
complex mappings and conditions over data fields. The tool will be further tested
by our industry partner, and user studies will be conducted.

Acknowledgements. This work has been supported by a grant from the Smart
Services CRC7. We thank Maurice Peat, Fethi Rabhi, Kader Lattab, and Angel
Lagares Lemos for their valuable feedback.

References

1. Becker, J., Algermissen, L., Pfeiffer, D., Räckers, M.: Bausteinbasierte Model-
lierung von Prozesslandschaften mit der PICTURE-Methode am Beispiel der Uni-
versitätsverwaltung Münster. Wirtschaftsinformatik 49, 267–279 (2007)

2. Cypher, A., Dontcheva, M., Lau, T., Nichols, J. (eds.): No Code Required - Giving
Users Tools to Transform the Web. Morgan Kaufmann (2010)

3. Daniel, F., Soi, S., Tranquillini, S., Casati, F., Heng, C., Yan, L.: From People to
Services to UI: Distributed Orchestration of User Interfaces. In: Hull, R., Mendling,
J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 310–326. Springer, Heidelberg
(2010)

4. Di Lorenzo, G., Hacid, H., Paik, H.-Y., Benatallah, B.: Data Iintegration in
Mashups. SIGMOD Rec. 38(1), 59–66 (2009)

5. Harel, D.: Can Programming Be Liberated, Period? Computer 41, 28–37 (2008)
6. Ko, A.J., Myers, B.A., Aung, H.H.: Six learning barriers in end-user programming

systems. In: VLHCC 2004, pp. 199–206 (2004)
7. Leshed, G., Haber, E., Matthews, T., Lau, T.: CoScripter: Automating & Sharing

How-To Knowledge in the Enterprise. CHI Letters: Human Factors in Computing
Systems 10(1), 1719–1728 (2008)

8. Mukherjee, D., Dhoolia, P., Sinha, S., Rembert, A.J., Gowri Nanda, M.: From
Informal Process Diagrams to Formal Process Models. In: Hull, R., Mendling, J.,
Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 145–161. Springer, Heidelberg (2010)

9. Oracle White Paper. State of the Business Process Management Market (August
2008), http://tinyurl.com/3c4u436 (accessed November 20, 2009)

10. Pettey, C., Goasdu, L.: Gartner Reveals Five Business Process Management
Predictions for 2010 and Beyond. Gartner Press Release (January 13, 2010),
http://www.gartner.com/it/page.jsp?id=1278415 (accessed September 2, 2010)

7 http://www.smartservicescrc.com.au

http://tinyurl.com/3c4u436
http://www.gartner.com/it/page.jsp?id=1278415
http://www.smartservicescrc.com.au

Forms-Based Service Composition 635

11. Reijers, H.A., van Wijk, S., Mutschler, B., Leurs, M.: BPM in Practice: Who Is
Doing What? In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336,
pp. 45–60. Springer, Heidelberg (2010)

12. Richardson, C., Vollmer, K., Clair, C.L., Moore, C., Vitti, R.: Business Process
Management Suites, Q3 2009 – The Need For Increased Business Agility Drives
BPM Adoption. Forrester TechRadar For BP & A Pros (August 13, 2009)

13. Robertson, C., Rabhi, F., Peat, M.: Consumer Information Systems and Rela-
tionship Management: Design, Implementation and Use. In: A Service-Oriented
Approach towards Real Time Financial News Analysis. IGI Global (2011)

14. Schurter, T.: BPM State of the Nation 2009. bpm.com,
http://www.bpm.com/bpm-state-of-the-nation-2009.html (accessed November
25, 2009)

15. Stoitsev, T.: End-User Driven Business Process Composition. PhD thesis, TU
Darmstadt, Fachbereich Informatik, Telekooperation (2009)

16. Weber, I., Paik, H., Benatallah, B., Gong, Z., Zheng, L., Vorwerk, C.: FormSys:
Form-processing Web Services. In: WWW 2010: Proceedings of the 19th Interna-
tional World Wide Web Conference, Demo Track (2010)

17. Weber, I., Paik, H.-Y., Benatallah, B., Vorwerk, C., Gong, Z., Zheng, L., Kim,
S.W.: Managing Long-Tail Processes Using FormSys. In: Maglio, P.P., Weske, M.,
Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 702–703. Springer,
Heidelberg (2010)

18. Wong, J., Hong, J.: What Do We “Mashup” When We Make Mashups? In: WEUSE
2008, pp. 35–39 (May 2008)

19. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development.
IEEE Internet Computing 12(5), 44–52 (2008)

http://www.bpm.com/bpm-state-of-the-nation-2009.html

Contractually Compliant Service Compositions�

Enrique Mart́ınez, Gregorio Dı́az, and M. Emilia Cambronero

Department of Computer Science
University of Castilla - La Mancha, Spain

{emartinez,gregorio,emicp}@dsi.uclm.es

Abstract. In the field of service-oriented computing, an e-contract is
used to regulate the acceptable behaviours of the services taking part in
a composition. C-O Diagrams are a visual model for the specification of
deontic e-contracts, including reparations, conditional clauses and real-
time restrictions. In this work we define a set of satisfaction rules based
on timed automata to see whether a composition is compliant with the
contract specification, providing the model with the mathematical rigour
necessary for formal verification.

Keywords: Contracts, deontic logic, formal verification, visual models,
timed automata.

1 Introduction

An e-contract is defined as a contract regulating business-to-business interac-
tions over the Internet. Its purpose is to ensure that the partners taking part
in the business process (possibly Web Services) comply with certain obligations,
permissions and prohibitions by means of specifying a set of clauses. Moreover,
these clauses can include the conditions required to be applied, the time bound-
aries to be satisfied, and references to secondary contracts (reparations).

In [4] we have already presented a visual model for the specification of e-
contracts called C-O Diagrams. The approach followed is inspired by the formal
language CL [5], in which a contract is expressed as a composition of obligations,
permissions and prohibitions over actions, and reparations for obligations and
prohibitions can be defined. The main contribution of this work is the definition
of a set of satisfaction rules for C-O Diagrams based on timed automata [1].
These rules allow us to formally check if all the possible behaviours of a service
composition are compliant with the e-contract specified by a C-O Diagram. Let
us note that in this work we does not focus on how the behaviours of a service
composition are translated into timed automata, as many other works in the
literature are related to this aspect (e.g. [2,3]).

The rest of the work is structured as follows: Section 2 is a brief description
of C-O Diagrams and its syntax. Section 3 defines the set of satisfaction rules.
Finally, in Section 4, we present the conclusions and future work.
� Partially supported by the Spanish government (cofinanced by FEDER founds) with

the project TIN2009-14312-C02-02 and the JCCLM regional project PEII09-0232-
7745. The first author is supported by the European Social Fund and the JCCLM.

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 636–644, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Contractually Compliant Service Compositions 637

2 C-O Diagrams Description and Syntax

In Fig. 1 we show the basic element of C-O Diagrams. It is called a box and it is
divided into four fields. On the left-hand side of the box we specify the conditions
and restrictions. The guard g specifies the conditions under which the contract
clause must be taken into account (boolean expression). The time restriction
tr specifies the time frame during which the contract clause must be satisfied
(deadlines, timeouts, etc.). The propositional content P, on the center, is the
main field of the box, and it is used to specify normative aspects (obligations,
permissions and prohibitions) that are applied over actions, and/or the specifi-
cation of the actions themselves. The last field of these boxes, on the right-hand
side, is the reparation R. This reparation, if specified by the contract clause, is
a reference to another contract that must be satisfied in case the main norm is
not satisfied (a prohibition is violated or an obligation is not fulfilled, there is
no reparation for permission), considering the clause eventually satisfied if this
reparation is satisfied. Each box has also a name and an agent. The name is
useful both to describe the clause and to reference the box from other clauses,
so it must be unique. The agent indicates who is the performer of the action.

name

agent

Fig. 1. Box structure

These basic elements of C-O Diagrams can be refined by using AND/OR/SEQ
refinements, as shown in Fig. 2. The aim of these refinements is to capture the
hierarchical clause structure followed by most contracts. An AND-refinement
means that all the subclauses must be satisfied in order to satisfied the parent
clause. An OR-refinement means that it is only necessary to satisfy one of
the subclauses in order to satisfy the parent clause, so as soon as one of its
subclauses is fulfilled, we conclude that the parent clause is fulfilled as well. A
SEQ-refinement means that the norm specified in the target box (SubClause2
in Fig. 2) must be fulfilled after satisfying the norm specified in the source box
(SubClause1 in Fig. 2). By using these structures we can build a hierarchical
tree with the clauses defined by a contract, where the leaf clauses correspond to
the atomic clauses, that is, to the clauses that cannot be divided into subclauses.
There is another structure that can be used to model repetition. This structure

Clause Clause

SubClause1 SubClause1SubClause2 SubClause2

Clause

SubClause1 SubClause2

And-refinement

Clause

SubClause1 SubClause2

Or-refinement Seq-refinement

Fig. 2. AND/OR/SEQ refinements and repetition in C-O Diagrams

638 E. Mart́ınez, G. Dı́az, and M. Emilia Cambronero

is represented as an arrow going from a subclause to one of its ancestor clauses
(or to itself), meaning the repetitive application of all the subclauses of the target
clause after satisfying the source subclause. For example, in the right-hand side
of Fig. 2, we have an OR-refinement with an arrow going from SubClause1 to
Clause. It means that after satisfying SubClause1 we apply Clause again, but
not after satisfying SubClause2.

We have given here an abridged description of C-O Diagrams. A more detail
description can be found in [4], including a qualitative and quantitative evalua-
tion underlining the advantages of having a visual model for the specification of
e-contracts, and a discussion on related work.

Definition 1. (C-O Diagrams Syntax) We consider a finite set of real-valued
variables C standing for clocks, a finite set of non-negative integer-valued vari-
ables V, a finite alphabet Σ for atomic actions, a finite set of identifiers A for
agents, and another finite set of identifiers N for names. The greek letter ε
means that and expression is not given, i.e., it is empty.

We use C to denote the contract modelled by a C-O Diagram. The diagram
is defined by the following EBNF grammar:

C := (agent, name, g, tr, O(C2), R) |
(agent, name, g, tr, P (C2), ε) |
(agent, name, g, tr, F (C2), R) |
(ε, name, g, tr, C1, ε)

C1 := C (And C)+ |C (Or C)+ | C (Seq C)+

C2 := a |C3 (And C3)
+ |C3 (Or C3)

+ |C3 (Seq C3)
+

C3 := (ε, name, ε, ε, C2, ε)
R := C | ε

where a ∈ Σ, agent ∈ A and name ∈ N . Guard g is ε or a conjunctive for-
mula of atomic constraints of the form: v ∼ n or v − w ∼ n, for v, w ∈ V,
∼∈ {≤, <, =, >,≥} and n ∈ IN, whereas timed restriction tr is ε or a conjunc-
tive formula of atomic constraints of the form: x ∼ n or x− y ∼ n, for x, y ∈ C,
∼∈ {≤, <, =, >,≥} and n ∈ IN. O, P and F are the deontic operators cor-
responding to obligation, permission and prohibition, respectively, where O(C2)
states the obligation of performing C2, F (C2) states prohibition of performing
C2, and P (C2) states the permission of performing C2. And, Or and Seq are
the operators corresponding to the refinements we have in C-O Diagrams, AND-
refinement, OR-refinement and SEQ-refinement, respectively.

The simplest contract we can have in C-O Diagrams is that composed of only
one box including the elements agent and name. Optionally, we can specify a
guard g and a time restriction tr. We also have a deontic operator (O, P or F)
applied over an atomic action a, and in the case of obligations and prohibitions
it is possible to specify another contract C as a reparation.

We use C1 to define a more complex contract where we combine different
deontic norms by means of any of the different refinements we have in C-O
Diagrams. In the box where we have the refinement into C1 we cannot specify
an agent nor a reparation because these elements are always related to a single
deontic norm, but we still can specify a guard g and a time restriction tr that
affect all the deontic norms we combine.

Contractually Compliant Service Compositions 639

Once we write a deontic operator in a box of our diagram, we have two
possibilities as we can see in the specification of C2: we can just write a simple
action a in the box, being the deontic operator applied only over it, or we can
refine this box in order to apply the deontic operator over a compound action. In
this case we have that the subboxes (C3) cannot define a new deontic operator
as it has already been defined in the parent box (affecting all the subboxes).

3 C-O Diagrams Satisfaction Rules

In this section we define a set of satisfaction rules for C-O Diagrams based on
timed automata. The purpose of this definition is providing a formal mechanism
to check if a service composition behaviour (specified by a timed automaton) is
compliant with respect to a contract (specified by a C-O Diagram). To define
this satisfaction rules we follow the C-O Diagrams syntax given in Definition 1.
The satisfiability of a contract is defined based on the states of a timed labelled
transition system associated to a timed automaton. Basically, a timed automaton
(TA) [1] is a tuple (N, n0, E, I), where N is a finite set of locations (nodes),
n0 ∈ N is the initial location, E is the set of edges, and I is a function that assigns
invariant conditions (which could be empty) to locations. We write n

g,a,r−→s n′ to
denote (n, g, a, s, r, n′) ∈ E, where n, n′ ∈ N , g is a guard, a is an action, r
is a set of clocks we want to reset, and s is a set of variable assignments. The
semantics of a timed automaton is defined as a timed labelled transition system
(Q, q0,→), where Q is a set of states, q0 ∈ Q is the initial state, and → is the
set of transitions. Due to the lack of space, refer to [2] for a complete definition
of timed automaton and its semantics.

The C-O Diagrams satisfaction rules consist of a set of rules where the satisfi-
ability of a contract is defined based on the states of the timed labelled transition
system associated to a timed automaton. To define this set of rules we follow
the C-O Diagrams syntax given in Definition 1.

Definition 2. (C-O Diagrams Satisfaction Rules: Part I)

Let A = (N, n0, E, I) be a timed automaton, with the associated timed labelled
transition system (Q, q0,→) and q ∈ Q. Given a C-O Diagram C, one can define
(A, q) |= C (A in state q satisfies contract C) as follows:

(1) (A, q) |= (agent, name, g, tr, O(a), R) iff ∀ 〈q1 −→ q2 −→ . . . −→ qj〉 for q = q1:

– The main clause holds, that is, ∃i ∈ [1, j − 1] such that qi
a−→s qi+1 with

ni
g′,a,r−−−−→

s
ni+1 where (g ∧ tr) ∈ g′ and agent(a)

– The main clause does not hold but reparation holds, that is, R �= ε and (A, qi+1) |= R

for the first i ∈ [1, j − 1] such that qi
d−→s qi+1 with

(ni, u)
d−→ (ni, u + d) and (u + d) �∈ tr

(2) (A, q) |= (agent, name, g, tr, P (a), ε) iff ∃ 〈q1 −→ q2 −→ . . . −→ qj〉 for q = q1 where the

main clause holds, that is, ∃i ∈ [1, j − 1] such that qi
a−→s qi+1 with ni

g′,a,r−−−−→
s

ni+1 where

(g ∧ tr) ∈ g′ and agent(a)

640 E. Mart́ınez, G. Dı́az, and M. Emilia Cambronero

(3) (A, q) |= (agent, name, g, tr, F (a), R) iff ∀ 〈q1 −→ q2 −→ . . . −→ qj〉 for q = q1:

– The main clause holds, that is, � ∃i ∈ [1, j − 1] such that qi
a−→s qi+1 with

ni
g′,a,r−−−−→

s
ni+1 where (g ∧ tr) ∈ g′ and agent(a),

– The main clause does not hold but reparation holds, that is, R �= ε and (A, qi+1) |= R

for the first i ∈ [1, j − 1] such that qi
a−→s qi+1 with ni

g′,a,r−−−−→
s

ni+1 where (g ∧ tr) ∈ g′ and

agent(a)

Lines (1)–(3) correspond to the satisfaction rules of applying an obligation, a
permission or a prohibition over an atomic action a. In the case of obligation,
for all the possible paths in our automaton we must have the performance of a
by the specified agent (denoted by agent(a)) and fulfilling also any condition or
time restriction we have specified (denoted by (g∧ tr) ∈ g′). If the obliged action
is not performed in the expected time frame, we have the alternative possibility
of satisfying reparation R from the moment at which timed restriction is not
fulfilled anymore (denoted by (u + d) �∈ tr). In permission we consider that the
performance of a is only necessary in one of the paths. This interpretation of
permission is because we think that an automaton satisfying a contract must
offer the possibility of performing a permitted action in at least one of its paths.
Prohibition is the opposite of permission, so we cannot have a path where we
perform the forbidden action a, but in case we perform the action we still have
the possibility of satisfying reparation R after that.

Definition 2. (C-O Diagrams Satisfaction rules: Part II)

(4) (A, q) |= (ε, name, g, tr, (agent1, name1, g1, tr1, O(a), R1) Seq
(agent2, name2, g2, tr2, C2, R2)Seq . . . Seq (agentk, namek, gk, trk, Ck, Rk), ε)
iff ∀ 〈q1 −→ q2 −→ . . . −→ qj〉 for q = q1:

– The first main clause holds, that is, ∃i ∈ [1, j − 1] such that qi
a−→s qi+1 with

ni
g′,a,r−−−−→

s
ni+1 where (g ∧ tr) ∈ g′ and agent(a), and remaining sequence holds, that is,

(A, qi+1) |= (ε, name, g, tr, (agent2, name2, g2, tr2, C2, R2) Seq
. . . Seq (agentk, namek, gk, trk, Ck, Rk), ε)
– The first main clause does not hold but its reparation and remaining sequence holds,
that is, R �= ε and
(A, qi+1) |= (ε, name, g, tr, R1 Seq (agent2, name2, g2, tr2, C2, R2)Seq . . . Seq

(agentk, namek, gk, trk, Ck, Rk), ε) for the first i ∈ [1, j − 1] such that qi
d−→s qi+1

with (ni, u)
d−→ (ni, u + d) and (u + d) �∈ tr

(5) (A, q) |= (ε, name, g, tr, (agent1, name1, g1, tr1, P (a), R1) Seq
(agent2, name2, g2, tr2, C2, R2)Seq . . . Seq (agentk, namek, gk, trk, Ck, Rk), ε)
iff ∃ 〈q1 −→ q2 −→ . . . −→ qj〉 for q = q1 where the first main clause holds, that is, ∃i ∈
[1, j − 1] such that qi

a−→s qi+1 with ni
g′,a,r−−−−→

s
ni+1 where

(g ∧ tr) ∈ g′ and agent(a), and remaining sequence holds, that is,
(A, qi+1) |= (ε, name, g, tr, (agent2, name2, g2, tr2, C2, R2) Seq . . . Seq
(agentk, namek, gk, trk, Ck, Rk), ε)

(6) (A, q) |= (ε, name, g, tr, (agent1, name1, g1, tr1, F (a), R1) Seq
(agent2, name2, g2, tr2, C2, R2)Seq . . . Seq (agentk, namek, gk, trk, Ck, Rk), ε)
iff ∀ 〈q1 −→ q2 −→ . . . −→ qj〉 for q = q1:

– The first main clause holds, that is, � ∃i ∈ [1, j − 1] such that qi
a−→s qi+1 with

ni
g′,a,r−−−−→

s
ni+1 where (g ∧ tr) ∈ g′ and agent(a), and remaining sequence holds, that is,

(A, qi+1) |= (ε, name, g, tr, (agent2, name2, g2, tr2, C2, R2) Seq
. . . Seq (agentk, namek, gk, trk, Ck, Rk), ε)
– The first main clause does not hold but its reparation and remaining sequence holds,
that is, R �= ε and
(A, qi+1) |= (ε, name, g, tr, R1 Seq (agent2, name2, g2, tr2, C2, R2)Seq . . . Seq

Contractually Compliant Service Compositions 641

(agentk, namek, gk, trk, Ck, Rk), ε) for the first i ∈ [1, j−1] such that qi
a−→s qi+1 with ni

g′,a,r−−−−→
s

ni+1 where (g ∧ tr) ∈ g′ and agent(a)

Lines (4)–(6) correspond to the satisfaction rules for a contract consisting of
a SEQ-refinement when the first subcontract of the sequence is just a deontic
operator applied over an atomic action. The satisfaction of the contract consists
of the satisfaction of the first subcontract of the sequence and, after that, the
satisfaction of the rest of the sequence starting from a location we reach after
satisfying the first subcontract. Alternatively, if reparation R of the first sub-
contract is not empty, we can satisfy a SEQ-refinement having this reparation
as its first subcontract.

Definition 2. (C-O Diagrams Satisfaction Rules: Part III)

(7) (A, q) |= (agent, name, g, tr,D((ε, name1, g1, tr1, C1, ε)REF
(ε, name2, g2, tr2, C2, ε)REF . . .REF (ε, namek, gk, trk, Ck, ε)), R) iff
(A, q) |= (ε, name, g, tr, (agent, name1, g1, tr1,D(C1), R)REF
(agent, name2, g2, tr2,D(C2), R)REF . . .REF
(agent, namek, gk, trk,D(Ck), R), ε)

(8) (A, q) |= (ε, name, g, tr, (agent1, name1, g1, tr1, C1, R1)RE
(agent2, name2, g2, tr2, C2, R2)RE . . .RE
(agentk, namek, gk, trk, Ck, Rk), ε) iff
(A, q) |= (agent1, name1, g ∧ g1, tr ∧ tr1, C1, R1) �

(A, q) |= (agent2, name2, g ∧ g2, tr ∧ tr2, C2, R2) � . . . �

(A, q) |= (agentk, namek, g ∧ gk, tr ∧ trk, Ck, Rk)

(9) (A, q) |= (ε, name, g, tr, (agent1, name1, g1, tr1,D(
(ε, name11, g11, tr11, C11, ε)REF (ε, name12, g12, tr12, C12, ε)REF . . .REF
(ε, name1m, g1m, tr1m, C1m, ε)), R1) Seq (agent2, name2, g2, tr2, C2, R2)
Seq . . . Seq (agentk, namek, gk, trk, Ck, Rk), ε) iff
(A, q) |= (ε, name, g, tr, (ε, name1, g1, tr1, (agent1, name11, g11, tr11,
D(C11), R1)REF (agent1, name12, g12, tr12,REF(C12), R1)
REF . . .REF (agent1, name1m, g1m, tr1m,D(C1m), R1), ε)Seq
(agent2, name2, g2, tr2, C2, R2)Seq . . . Seq (agentk, namek, gk, trk, Ck, Rk), ε)

In line (7) we have that D ∈ {O, P, F } and REF ∈ {And, Or, Seq }, so it
corresponds to the satisfaction rule of applying a deontic norm over an AND-
refinement, an OR-refinement or a SEQ-refinement of subcontracts. For all the
deontic operators we just propagate them into each one of the subcontracts, as
well as reparation R and agent, and the satisfaction of the main contract consists
of the satisfaction of the refinement REF of these new subcontracts.

In line (8) we have that RE ∈ {And, OR } and � ∈ {∧,∨}. It corresponds to
the satisfaction rule for an AND-refinement or an OR-refinement of subcontracts
with no deontic operator applied over the refinements (they will be specified in
the subcontracts). In these cases, the satisfaction of the main contract consists
of the conjunction (∧ for AND-refinement) or disjunction (∨ for OR-refinement)
of the satisfaction of each one of the subcontracts, propagating any condition or
time restriction in the main contract into these subcontracts (denoted by g ∧ gk

and tr ∧ trk).
Line (9) corresponds to the satisfaction rule for a SEQ-refinement when the

first element of the sequence is a deontic norm D ∈ {O, P, F } applied over
another refinement of subcontracts REF ∈ {And, Or, Seq }. In all these cases
we propagate the deontic operator into each one of the subcontracts, as well as

642 E. Mart́ınez, G. Dı́az, and M. Emilia Cambronero

reparation R and agent, so the satisfaction of the main contract consists of the
satisfaction of the SEQ-refinement when the first element of the sequence is the
refinement REF we have before but now combining these new subcontracts.

Definition 2. (C-O Diagrams Satisfaction Rules: Part IV)

(10) (A, q) |= (ε, name, g, tr, (ε, name1, g1, tr1, (agent11, name11, g11, tr11, C11, R11)
RE (agent12, name12, g12, tr12, C12, R12)RE . . .RE
(agent1m, name1m, g1m, tr1m, C1m, R1m), ε) Seq (agent2, name2, g2, tr2, C2, R2)
Seq . . . Seq (agentk, namek, gk, trk, Ck, Rk), ε) iff
(A, q) |= (ε, name, g, tr, ((agent11, name11, g11 ∧ g1, tr11 ∧ tr1, C11, R11) Seq
(agent2, name2, g2, tr2, C2, R2) Seq . . . Seq (agentk , namek, gk, trk, Ck, Rk))
RE ((agent12, name12, g12 ∧ g1, tr12 ∧ tr1, C12, R12) Seq
(agent2, name2, g2, tr2, C2, R2) Seq . . . Seq (agentk , namek, gk, trk, Ck, Rk))
RE . . .RE ((agent1m , name1m, g1m ∧ g1, tr1m ∧ tr1, C1m, R1m) Seq
(agent2, name2, g2, tr2, C2, R2) Seq . . . Seq (agentk , namek, gk, trk, Ck, Rk)), ε)

(11) (A, q) |= (ε, name, g, tr, (ε, name1, g1, tr1, (agent11, name11, g11, tr11, C11, R11)
Seq (agent12, name12, g12, tr12, C12, R12) Seq . . . Seq
(agent1m, name1m, g1m, tr1m, C1m, R1m), ε) Seq (agent2, name2, g2, tr2, C2, R2)
Seq . . . Seq (agentk, namek, gk, trk, Ck, Rk), ε) iff
(A, q) |= (ε, name, g, tr, (agent11, name11, g11 ∧ g1, tr11 ∧ tr1, C11, R11) Seq
(agent12, name12, g12 ∧ g1, tr12 ∧ tr1, C12, R12) Seq . . . Seq
(agent1m, name1m, g1m ∧ g1, tr1m ∧ tr1, C1m, R1m) Seq
(agent2, name2, g2, tr2, C2, R2) Seq . . . Seq (agentk , namek, gk, trk, Ck, Rk), ε)

Lines (10) corresponds to the satisfaction rule for a SEQ-refinement when the
first element of the sequence is a refinement RE ∈ {And, OR } of subcontracts,
with no deontic operator applied over it. We consider SEQ-refinement as dis-
tributive over AND-refinement and OR-refinement, so the satisfaction of this
contract consists of the satisfaction of the contract where we have applied this
property, propagating any condition or time restriction in the AND-refinement
or the OR-refinement into their subcontracts.

Finally, line (11) corresponds to the satisfaction rule for a SEQ-refinement
when the first element of the sequence is another SEQ-refinement of subcon-
tracts, with no deontic operator applied over it. We consider SEQ-refinement
to be associative, so the satisfaction of this contract consists of the satisfaction
of the contract where we have applied this property to have only one SEQ-
refinement, propagating any condition or time restriction in the internal SEQ-
refinement into their subcontracts.

After defining these satisfaction rules, the definition of the algorithm checking
whether a timed automaton A = (N, n0, E, I) with associated timed labelled
transition system (Q, q0,→) satisfies a C-O Diagram C is quite straightforward.
It returns “YES” if (A, q0) |= C, otherwise it returns “NO”.

Example 1. Let us consider the Second Update C-O Diagram of the Software
Provision System case study presented in [4]. It models a contract we denote as
C. According to the C-O Diagrams syntax, this diagram can be written as:

(ε, Second Update, ε, ε, (Software provider, Sends Update2, ε, tr4, O(a4), R4)
Seq (ε, Client Second Behavior, ε, ε, (Client, Second Payment, ε, ε, O(a5), ε)
And (Client, Second Changes, ε, ε, F (a6), R6), ε), ε)

Contractually Compliant Service Compositions 643

where we use tr4 to denote the temporal restriction we have in Sends Update2,
R4 is the reparation we define for this clause, and R6 is the reparation we define
for clause Second Changes, stating the obligation of performing r6a or r6b.

a 4

Software Provider

n 0 n 1

n 2

n 3 n 4 n 5

tr 4

a 5

Client

a 5

Client

r 6a

Client
a 6

Client

Fig. 3. Automaton A of Example 1

We want to check if the timed automaton A shown in Fig. 3 satisfies this
contract C starting from n0. First, we have a SEQ-refinement where the first
subcontract states the obligation of performing a4. Then, we apply rule (4)
and we see that the initial obligation is fulfilled, performing Software provider
a4 within time frame tr4 in the edge from n0 to n1. Next, we have an AND-
refinement between an obligation and a prohibition, so applying rule (8) we have
to check the satisfaction of the obligation and the satisfaction of the prohibition
from n1. According to rule (1), we have to see that a5 is performed by Client in
every possible path. An edge performing a5 exists in all cases, so the obligation
is satisfied. According to rule (3), we have to see that a6 is not performed by
Client in any possible path. For path n1 −→ n2 it is fulfilled, but for path
n1 −→ n3 we have that a6 is performed. Nevertheless, as there is a reparation
R6 defined, we have to see if this reparation is fulfilled. We can see that, after
applying rules (7) and (8), it is enough to satisfy the obligation of one of the
two actions (r6a or r6b) in order to fulfill the reparation. We have that the edge
from n4 to n5 performs r6a, so the reparation is fulfilled and the subcontract is
eventually fulfilled. Therefore, we conclude that contract C is satisfied by A.

4 Conclusions and Future Work

In this paper we have defined a set of satisfaction rules for C-O Diagrams based
on timed automata to check whether a service composition is compliant with
a contract specified by a C-O Diagram. We have also shown an example about
how to apply this approach.

As future work, we are planning to apply this model to several case studies in
order to check its usefulness in different fields and the evaluation of its computa-
tional complexity. We are also working on the definition of a transformation that
automatically generates a timed automaton compliant with the contract speci-
fied by a C-O Diagram. This can be useful for several purposes, for example to
check the correctness of the contract specification.

644 E. Mart́ınez, G. Dı́az, and M. Emilia Cambronero

References

1. Alur, R., Dill, D.L.: Automata For Modeling Real-Time Systems. In: Paterson, M.
(ed.) ICALP 1990. LNCS, vol. 443, Springer, Heidelberg (1990)

2. Cambronero, M.E., Valero, V., Dı́az, G., Mart́ınez, E.: Web Services Choreogra-
phies Verification. Technical Report DIAB-09-04-1, University of Castilla-La Man-
cha (2009)

3. Lomuscio, A., Qu, H., Solanki, M.: Towards verifying contract regulated service
composition. In: Proceedings of IEEE International Conference on Web Services
(ICWS 2008), pp. 254–261 (2008)

4. Mart́ınez, E., Dı́az, G., Cambronero, M.E., Schneider, G.: A Model for Visual Spec-
ification of e-Contracts. In: Proceedings of the 7th IEEE 2010 International Confer-
ence on Services Computing (SCC 2010), pp. 1–8 (2010)

5. Prisacariu, C., Schneider, G.: A Formal Language for Electronic Contracts. In: Bon-
sangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 174–189.
Springer, Heidelberg (2007)

Profit Sharing in Service Composition

Shigeo Matsubara

Department of Social Informatics, Kyoto University,
Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan

matsubara@i.kyoto-u.ac.jp

http://www.ai.soc.i.kyoto-u.ac.jp/~matsubara

Abstract. Component services are often provided by different organi-
zations, which needs to determine how to divide the profit obtained for
the composite service to the component service providers. Previous stud-
ies have mainly focused on the process of aggregating multiple compo-
nent services into a composite service. However, the process of the profit
sharing has not yet discussed sufficiently. This problem can be formal-
ized as a coalition game in the game theory. However, its flexibility of
defining the policy of utilizing the services causes a problem. This paper
shows that the existing profit sharing methods, more precisely, neither
the equal division method nor the division method based on the Shap-
ley value cannot satisfy the following two desiderata; (1) the sufficient
level of service provision is attained, and (2) component services are not
broken up more than is necessary. Moreover, we examine what factors
make difficult to attain the sufficient level of service provision, and give
a discussion toward mitigating this problem.

Keywords: Game theory, Shapley value, Incentive problem, Web
services.

1 Introduction

An essential part of service-oriented computing technologies is service compo-
sition, i.e., a user’s task is accomplished by aggregating multiple component
services into a single composite service. Service composition has been actively
studied [4,1] but the automated composition is still far from being achieved.
We consider one of the reasons exists in lacking a sufficient discussion about an
incentive problem, although recently incentive issues are getting more attention
among the service-oriented computing researchers [2,5].

It seems that previous studies naively assumed that services are voluntarily
provided and discussed how to find appropriate services among a huge amount
of services. Here, voluntarily does not mean that services are provided with no
charge but means that service providers do not strategically restrict the use of
their services. However, as shown below, service providers may be motivated to
impose a restriction on the use of their services.

A simple method of pricing a composite service is that the service providers set
the prices of their own services individually, calculate the sum of each component

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 645–652, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.ai.soc.i.kyoto-u.ac.jp/~matsubara

646 S. Matsubara

service included in the composite service, and charge it to the user as a price of
the composite service. The providers, however, are often difficult to set optimal
prices that maximize their profit. This is because the providers are difficult to
know in advance how their services are combined with other services.

A solution to overcome this drawback is to first set the price of the composite
service that is equivalent to the user’s valuation and then divide the profit to
the component service providers included in the composite service. This paper
focuses on how to solve a profit sharing problem.

Profit sharing problems are formalized as coalitional game in the game theory
[3]. The coalitional game theory assumes that the members included in a coali-
tion are disjoint with each other. That is, it assumes that any combinations of
the component services are available if these component services are provided.
However, such an assumption does not hold in the domain of web services. The
service provider of s1 can set the term of use in that utilizing s1 in a composite
service s1s2s3 is allowed but utilizing s1 in another composite service s1s3 is not
allowed.1

Thus, we have to examine how this flexibility affects the profit sharing prob-
lem. More precisely, this paper examines whether the requirements for profit
sharing in Web services are satisfied in the existing profit sharing methods such
as equal division, profit sharing based on the Shapley value. We show that these
methods cannot attain the sufficient level of service provision, examine what
factors deteriorate the level of service provision, and finally give a discussion
toward mitigating this problem.

2 Model

In this section we formalize the problem of profit sharing. n service provider
agents S = {s1, s2, · · · , sn} and service user agents exist. To keep the discussion
simple, we assume that a service provider agent provides a single component
service. Thus, the set S can be viewed as the set of component services as well
as the set of service provider agents. A composite service can be composed from
any subset Si of S if it is allowed.

The users have their valuation v : 2n → % for component services and com-
posite services, which is called as characteristic function, where, % is a set of real
values and v(∅) = 0. This paper assumes that the valuation values are given for
all the combinations of component services. In composing services by sequencing
component service si and component service sj , it may happen that the type of
output in si does not compatible with the type of input in sj . In such a case, we
just let the valuation of the composite service to zero.

This paper assumes that zero monotonicity for the characteristic function.
Zero monotonicity means that the value of a composite service gets larger as the
number of component services included in the composite service increases. The
assumption of zero monotonicity does not mean that users should choose the
1 In this paper, s1s2s3 represents a composite service, while s1,s2,s3 represent a set of

component services.

Profit Sharing in Service Composition 647

services including more components of services. Users have a budget constraint
and it may happen that users choose a low-price service, although its quality of
service is not high.

The relevant characteristics of a user agent are summarized in that user’s type
θi = (vi, bi) where vi is the characteristic function and bi is the budget constraint.
We assume that the distribution function of the user’s type is known. From this
assumption the profit for any combinations of the composite services can be
calculated if the prices for each component service and each composite service
are given. In addition, this paper does not consider the user’s strategic behavior.

As mentioned above, a characteristic of web service is that service providers
can flexibly set the term of use of their services. s1s2 represents a composite
service that each component service is also available, while [s1s2] represents a
composite service that each component service is not available.

3 Desiderata for Profit Sharing Methods

Defining appropriate guiding principles is important in developing, maintaining,
and utilizing the SOA. Granularity and composability have been discussed as
design principles. Incentive issues, however, have not been examined sufficiently.
Incentive issues become very significant especially in applying the SOA concept
to inter-organizational services domain.

This paper considers the two requirements for profit sharing methods: (1)
a variety of component services are provided to meet the user’s requirements,
(2) the unit of component services is appropriate, that is, a unit service is not
too fine-grained. For example, we consider the service is too fine-grained if a
dictionary service is divided to services of having indexes A, B, C, and so on.
If a unit of service is too fine-grained, the computational burden of calculating
service composition appears.

In the rest of this section, we explain why under-provision of services should
be considered. It happens that more than one Web services provided by different
providers collude with each other and provide only a composite service, that is, do
not provide each component service to users. Satisfying the sufficient provision of
component services means that component services are provided in the manner
that users are allowed to combine these services to other services to achieve the
user’s task.

Here, note that we do not intend to discuss the one-time usage of the services
by service users. Consider user1 and user2 exist. If the times of utilizing the ser-
vices are different, the identity of user1 might be equal to the identity of user2.
user1 wants to use composite service s1s2s3 and user2 wants to use composite
service s1s3. Here, if component service s1 allows users to use s1 as s1s2s3 but
does not allow users to use s1 as s1s3, under-provision of services occurs. From
the viewpoint of user1 it is sufficient if user1 can use composite service s1s2s3.
This can be dealt with in the ordinal cooperative game theory, i.e., the profit
sharing methods such as the Shapley values can be applied. However, if user2
exists, whether using s1s3 is allowed or not should be considered simultaneously.

648 S. Matsubara

Discussion on this paper is different from that about coalitional rationality in
the cooperative game theory. For example, the collusion by s1 and s2 does not
mean that s1 and s2 deviate the coalition of s1s2s3 and create a new coalition
including only s1 and s2. s1 and s2 will not reject to form a coalition of s1s2s3

if it brings larger profit to s1 and s2. Here, collusion means that s1 and s2 reject
to be included in the composite service s1s3 nor s2s3.

This discussion is caused from the fact that the granularity of the service
is not clear. In the profit distribution problem in the game theory, the unit of
player(agent) has no ambiguity. For example, in dealing with the problem of
corporate alliance, a player represents a company.

We introduce the term of a level of service provision for the later discussions.
A level of service provision means to what extent users are allowed to arbitrary
combine these services with each other to accomplish their tasks.

4 Drawbacks in the Existing Profit Sharing Methods

This section proves that equal-division method and profit sharing method based
on the Shapley value do not satisfy the requirements for the profit sharing in
Web services.

4.1 Profit Sharing by Equal Division

A simple method for profit sharing is to share the profit for the composite service
equally among the component service providers. This method is simple but has
a drawback. Consider the following example. Two component services of s1, s2

and a composite service s1s2 exist. The characteristic functions are v(s1) = 8,
v(s2) = 2, v(s1s2) = 12. Here, if the profit is equally divided, s1 and s2 earn
12/2 = 6, respectively. However, if the cost for providing component service of
s1 is 7, s1 suffers a loss. On the other hand, if s1 provides its service as a single
service, its profit becomes 8, i.e., s1 can make a money. Therefore, even if users
want to use the composite service of s1s2, s1 will prevent it.

4.2 Profit Sharing by Using the Shapley Value

Next, we consider to use the Shapley value. The Shapley value has been studied
as a profit/cost sharing method [3]. The Shapley value represents the marginal
contribution of component service si, i.e., to what extent the user’s valuation
increases by introducing si to the existing service Si − si.

φsi =
∑

Si:si∈Si⊂S

(#Si − 1)!(n − #Si)!
n!

{v(Si) − v(Si − si)}

Here, #Si represents the number of component services included in Si and
v(∅) = 0.

The Shapley value satisfies the desirable properties such as Pareto optimality,
the null player property, the equal treatment property, and additivity. However,

Profit Sharing in Service Composition 649

it causes a problem if we apply it to the profit sharing problem among Web
services because the unit of services is not obvious.

Consider the following example. Three component services of s1,s2,s3 exist
and the characteristic function is given as v(s1) = v(s2) = v(s3) = 0, v(s1s2) = 5,
v(s2s3) = 3, v(s1s3) = 3, v(s1s2s3) = 10. The Shapley values are calculated as
follows. φs1 = 11/3, φs2 = 11/3, and φs3 = 8/3.

Next, consider the case that services providers of s1 and s2 do not provide s1

and s2 as a component service but only provide a composite service of [s1s2].
Here, users are not allowed to use the composite services of [s1s3] nor [s2s3]. The
characteristic function is given as v([s1s2]) = 5, v(c) = 0, v([s1s2]s3) = 10. In
this case, the Shapley values are calculated as φ[s1s2] = 15/2 and φs3 = 5/2.

Compared the two cases, s1 and s2 can earn 11/3 + 11/3 = 22/3 if s1 and s2

are provided as component services, while they can earn 15/2 if s1 and s2 do not
provide s1 nor s2 as a component service. The profit in the latter case is larger
than that in the former case, which means that users cannot use the composite
service of [s1s3] nor [s2s3]. This means that a virtue of service computing that a
variety of services are provided and users can arbitrarily combine these services
to satisfy their demands is spoiled. The next section examines the conditions
that providers choose a strategy of not providing a component service even if
they can do it.

5 Analysis of the Levels of Service Provision

This section discusses the profit sharing based on the Shapley values. We draw
the conditions in the case including only three component services, and then, we
analyzes what factors affect the levels of service provision.

5.1 Case of Thee Component Services

This section discusses the case of three component services available. If s1,s2,s3

are provided by each provider, the Shapley values are calculated as follows.

s1 : 1
6 (v(s1) + v(s1) + v(s1s2) − v(s2) + v(s1s3)− v(s3) + v(s1s2s3) − v(s2s3) +

v(s1s2s3) − v(s2s3))
s2 : 1

6 (v(s2) + v(s2) + v(s1s2) − v(s1) + v(s2s3)− v(s3) + v(s1s2s3) − v(s1s3) +
v(s1s2s3) − v(s1s3))

Therefore, s1 and s2 obtain the following profit in total.

1
6
(v(s1) + v(s2) − 2v(s3) + 2v(s1s2) − v(s2s3) − v(s1s3) + 4v(s1s2s3)) (1)

Next, if s1 and s2 collude with each other and [s1s2] is provided as a component
service, the profit share is calculated as follows.

1
2
(v(s1s2) + v(s1s2s3) − v(s3)) (2)

650 S. Matsubara

By calculating the difference between the expressions of (1) and (2), we obtain
the followings.

1
6
(v(s1) + v(s2) + v(s3) − v(s1s2) − v(s2s3) − v(s1s3) + v(s1s2s3))

Therefore, if the following inequality holds, the composite services of s1s3 and
s2s3 are available for users.

v(s1s2s3) + v(s1) + v(s2) + v(s3) > v(s1s2) + v(s2s3) + v(s1s3)

Whether component services are provided so that any combinations of these
component services are allowed can be affected by the following two strategic
behaviors. One is to eliminate the contribution of other composite service (s1s3,
s2s3 in the above example) and increase the own contribution of (s1s2) relatively
by providing it as a single service. Another is to increase the profit share by
providing the component service without any restrictions and increasing the
number of share holders.

When the user’s valuation considerably increases if the three services of s1,
s2, s3 are used as a set, the share of s1 and s2 increase by individually having
the share. On the other hand, if the user’s valuation for s1s2s3 is not so larger
than s1s2, s1s3, s2s3, s1 and s2 can increase their share by preventing each of
s1 and s2 as a component service.

If the number of the component services becomes more than three, the prob-
lem becomes more complicated. This is because the collusion by the three
providers as well as the collusion by the two providers may occur. Here, we
have a question on what conditions the levels of service provision is spoiled. The
next section examines how the number of providers affects the levels of service
provision.

5.2 Effects of the Number of Providers

Suppose that a composite service of X including k component services and X is
provided as a composite service, i.e., a subset of component services in X are not
provided to users. In addition, to make analysis tractable, we assume that the
composite services are homogeneous, which means that the characteristic func-
tion is symmetric to any component services. Here, we can say that the value
of the characteristic function can be determined by the number of component
services i included in the composite service. We designate the value per compo-
nent service as vi(v1 < v2 < · · · < vn) in the case that i component services are
included.

Here, if component services of X and y exist, the characteristic function can
be represented as follows.

v(Xy) = (k + 1)vk+1, v(X) = kvk, v(y) = v1

The share of X is given as follows.

1
2
(kvk + (k + 1)vk+1 − v1)

Profit Sharing in Service Composition 651

On the other hand, if the component services included in X are provided in-
dividually, the profit share of each service can be given by dividing the profit
(k + 1)vk+1 for providing the composite service Xy equally to (k + 1) providers
because we assumes that the component services are homogeneous. Thus, the
increase of the profit share of each component service by providing X as a com-
ponent service can be calculated as follows.

1
2
(vk − k − 1

k
vk+1 −

1
k

v1)

This expression tells that the increase becomes less than zero if k increases.
Service providers can claim that the set of their services is more valuable by
colluding each other and preventing users from using any combinations of these
services. However, the number of k further increases, the profit has to be shared
by the more providers, which results in reducing the profit share increase by the
collusion.

6 Toward Problem Solving

To overcome the drawbacks that applying the profit sharing method based on
the Shapley values to the service computing domain spoils the sufficient service
provision, we propose the direction of dealing with the problem. The idea is to
give the same share as that obtained by forming a collusion if the collusion gives
a larger amount of profit, which discourage providers to collude with each other.

In the example in section 4.2, we showed that s1 and s2 have an incentive
to collude with each other and provide s1s2 as a component service. Here, if s1

and s2 are paid 15/2, they do not have an incentive not to provide s1 or s2 as a
component service, which enables users to utilize composite services of s1s3 or
s2s3. The profit share of 15/2 between s1 and s2 are determined by calculating
the Shapley values, although s1 and s2 share equally 15/4 each because we
assume services are homogeneous. The share of component service s3 decreases
to 5/2. However, its share is larger than zero that is the share in providing s3

without combining other services.
As mentioned above, if the number of component services is more than three,

a various type of collusions may exist. Here, we have a good news that we do not
have to examine a case of including quite a many providers because the number
of component services becomes large, the providers are less motivated to collude
with each other. Carrying out more detained analysis is included in our future
work.

So far, we have discussed how to maintain the sufficient level of service pro-
vision. However, satisfying only the sufficient level of service provision is not
sufficient in the context of incentive. This is because providers may have an in-
centive to break a service into many of too fine-grained component service as
explained in Section 3. For example, a provider of operating dictionary service
can break the dictionary service into sub services of having only index-a entries,
index-b entries, etc. if it brings the provider larger profit.

652 S. Matsubara

A method to solve this problem is to deal with a set of services as a component
service if these services are provided by a single provider. This prevents too fine-
grained services to be provided.

7 Concluding Remarks

This paper pointed out that neither the adding-up method nor the equal-division
method have drawback in sharing the profit among the providers in the service-
oriented computing domain. Next, we introduced the concept of a level of service
provision, which means to what extent users are allowed to arbitrary combine
these services with each other to accomplish their tasks. We showed that the
profit sharing method based on the Shapley values, which has been studied
in the game theory, cannot attain the sufficient level of service provision. The
analysis showed that the level of service provision gets worse if the number of
the component services included in the corresponding composite service is small.
In addition, we gave a direction to solve this problem.

The discussion shows a possibility of solving the problem of service-oriented
computing by introducing the game theory. On the other hands, service-oriented
computing might be possible to affect the studies of the Shapley values. So far,
the research efforts have been invested in clarifying the axioms of the Shapley
values in the game theory and in dealing with the computational complexity
of calculating the Shapley values for a large-scale problem in computer science.
Here, the flexibility of defining the policy of service utilization causes a new type
of collusion. Further investigation about this problem is included in our future
work.

Acknowledgments. This research was partially supported by a Grant-in-Aid
for Scientific Research (B) (22300052, 2010-2012) and a Grant-in-Aid for Scien-
tific Research (A) (21240014, 2009-2011) from Japan Society for the Promotion
of Science (JSPS).

References

1. Ben Hassine, A., Matsubara, S., Ishida, T.: A Constraint-Based Approach to Hor-
izontal Web Service Composition. In: Cruz, I., Decker, S., Allemang, D., Preist,
C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS,
vol. 4273, pp. 130–143. Springer, Heidelberg (2006)

2. Cheng, H.K., Tang, Q.C., Zhao, J.L.: Web services and service-oriented application
provisioning: An analytical study of application service strategies. IEEE Transac-
tions on Engineering Management 53(4), 520–533 (2006)

3. Shapley, L.S.: A value for n-person games. Annals of Mathematical Studies 28,
307–317 (1953)

4. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service
composition using shop2. Journal of Web Semantics 1(4), 377–396 (2004)

5. Zheng, X., Martin, P., Powley, W., Brohman, K.: Applying bargaining game the-
ory to web services negotiation. In: Proceedings of the 2010 IEEE International
Conference on Services Computing (SCC 2010), pp. 218–225 (2010)

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 653–660, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Predictive Business Agility Model for Service
Oriented Architectures

Mamoun Hirzalla1,2, Peter Bahrs2, Jane Cleland-Huang1,
Craig S. Miller1, and Rob High2

1 School of Computing, DePaul University,
243 S. Wabash Ave, Chicago, IL 60604

{mhirzall,jhuang,cmiller}@cs.depaul.edu
2 IBM, 11501 Burnet Road, Austin, TX, USA

{mamoun.hirzalla,bahrs,highr}@us.ibm.com

Abstract. Service-Oriented Architecture (SOA) is now considered a mainstream
option for delivering solutions that promise business agility benefits.
Unfortunately, there is currently no quantitative approach for predicting the
expected agility of a SOA system under development. In this paper we present
an empirically validated Predicted Business Agility Index (PBAI) which is
designed to measure the expected business agility of a SOA deployment. The
PBAI is constructed through statistically analyzing the relationship between 150
technical attributes and the attainment of business agility in 39 SOA
deployments. 37 of the technical attributes, classified into three areas of
architecture, business process management, and impact analysis are determined
to be the primary contributors to achieving business agility. The PBAI is
evaluated using a leave-one-out cross validation experiment of the SOA projects
in our study.

Keywords: Business Agility, SOA, Metrics, Architecture, Impact Analysis.

1 Introduction

The introduction of SOA into the enterprise has resulted in the proliferation of
enterprise level solutions that significantly leverage services to solve very large scale
problems [1]. As a result, it is now almost impossible to conduct business on the web
without using some type of service. According to High et al [2], SOA solutions
facilitate increased agility and resilience within an organization. They enable the
alignment of information systems with business processes to allow the organization to
respond more quickly to changing market conditions. Dove [3] defines business
agility as the ability to “manage and apply knowledge effectively, so that an
organization has the potential to thrive in a continuously changing and unpredictable
business environment.” The development of a SOA solution represents a non-trivial
investment in human resources, capital and time. It is often undertaken with the
expectations that it will position the organization to respond more adeptly to changing
market conditions. Unfortunately, SOA projects that do not consider the impact of

654 M. Hirzalla et al.

various architectural, process, and governance-related decisions upon future business
agility may fail to achieve these desired benefits [4]. Therefore, we have developed a
business agility predictor model, which is designed to evaluate a SOA deployment
currently under development in order to (i) predict the extent to which it is likely to
achieve business agility in the future, (ii) identify deficiencies, and (iii) suggest
corrective measures. One of the benefits of our approach is that it can be used during
the planning and development phase by technical IT stakeholders.

The business agility predictor model was constructed in several stages. First, a
Business Agility Index (BAI) was developed to measure after-the-fact attainment of
business agility in each of the studied SOA deployments. In the second stage of model
construction, we developed a Predicted BAI (PBAI) which is designed for use in early
stages of a SOA project to predict future business agility based on the degree to which
various attributes are present in the project. The PBAI was developed using a version
of the Goal-Question-Metric (GQM) approach known as GQM-MEDIA
(GQM/MEDEA) [5] to identify technical attributes of the project which were believed
to potentially impact business agility. These attributes were later grouped into
meaningful categories, and a statistical analysis was performed to construct the PBAI
model, and to validate it against the BAI.

In the remainder of this paper, section 2 describes the BAI and how it was
constructed and validated, while sections 3 and 4 describe construction, validation of
the PBAI model and threats to validity. Finally, in sections 5 and 6, we review related
work and provide a summary of our contributions.

2 The Business Agility Index (BAI)

In our previous work [6], we analyzed 5 major SOA practices that were comprised of
35 attributes that had the potential to impact business agility. The 35 attributes were
factored out of more than 150 original attributes which were collected through an
IBM Academy of Technology virtual conference and through personal interviews
with personnel from non-IBM projects. Data collection was driven by 215 questions,
of which 80 were designed for purposes of this study and produced the 150 attributes
that were considered for the study. A total of 39 projects were ultimately included in
the data analysis. Of these, 30 projects were executed by IBM professionals, while 9
were non-IBM projects.

To construct the Business Agility Index (BAI), various experts from IBM with
significant SOA experience devised eight equally weighted true/false questions, referred
to from now on as the BAI. The BAI index was computed by assigning one point to
each question answered positively for a project. The BAI scale therefore ranged from 0
(no indication of business agility) to 8 (strong indication of business agility).

As part of the data collection process, each study participant was responsible for
engaging an extensive set of business stakeholders for their project in providing a
simple yes/no answer to the more direct question: “Did this project achieve business
agility?” They were also responsible for answering the eight BAI questions. Reported
results in Table 2 show that 18 of the projects were classified as business agile, while

 A Predictive Business Agility Model for Service Oriented Architectures 655

14 were classified as non business agile. The remaining 7 projects were unclassified.
Results show that 12 of the business agile projects achieved BAI scores of 5 or
higher, while 6 achieved scores of 4 or lower. Furthermore, 13 of the non-business
agile projects achieved BAI scores of 4 or lower. Consequently, for the SOA projects
included in our study, 100% of projects receiving high BAI scores were in fact
perceived as business agile. In contrast, 70% of projects receiving low BAI scores
were classified as non-business agile.

3 Predicted Business Agility Index (PBAI)

Although the BAI is able to largely differentiate between business and non-business
agile projects, its usefulness is limited because it requires business expertise and can
only be assessed after the fact. In contrast, the PBAI model incorporates a concrete
set of factors and attributes that are easily collectable by technical project personnel
during early phases of a project, and which have the capability of accurately
differentiating between projects which are likely to attain business agility and those
which are not.

Building the PBAI therefore involved first identifying a very broad set of 150-
candidate SOA attributes that were collected as a result of executing the data
collection questions. Factor analysis was later used to identify 37 attributes that
accounted for the differences in attained business agility as measured by the BAI. The
37 attributes were grouped into meaningful composite factors. This grouping was
necessary because the relatively small sample size of 39 projects and the problem of

Table 1. Business Agility Index Questions

1. As a result of deploying this SOA solution, is your organization able to achieve
better business outcomes and respond faster to customer changing
requirements and demands? (Yes, No)

2. As a result of deploying this SOA solution, is your organization able to address
potential ad-hoc business situations? (Yes, No)

3. As a result of deploying this SOA solution, is your organization able to adapt
better to dynamic business situations once they were identified? (Yes, No)

4. As a result of deploying this SOA solution, is your organization able to create
solutions that address market requests and competitors faster and more
efficiently? (Yes, No)

5. As a result of deploying this SOA solution, is your organization able to get a
better view of their business conditions and react faster to events that have the
potential to cause disruption of their business? (Yes, No)

6. As a result of deploying this SOA solution, is your organization able to adapt
better to changing situations and enabled efficient routing of business needs
with minimal interruptions? (Yes, No)

7. As a result of deploying this SOA solution, is your organization able to view
trusted and useful data? (Yes, No)

8. As a result of deploying this SOA solution, is your organization able is able to
create services faster to the marketplace? (Yes, No)

656 M. Hirzalla et al.

incomplete data made it infeasible to analyze all of the attributes individually. We
developed a set of five composite metrics described as architecture (SOA), impact
analysis (IA), Business Process Modeling (BPM), loose coupling (LC), and
governance (Gov), each of which aggregated metric results from its associated
individual attributes. For example, the Governance Metric evaluated the extent to
which a SOA project exhibited governance practices, and was computed by summing
the associated individual attributes. In the following section we describe the statistical
analysis that evaluates the extent to which each composite factor contributes to
attained business agility. These findings were used to build the PBAI model.

Table 2. BAI Assessment of 39 SOA Deployments

3.1 The Business Agility Predictor Model

The overall sample provided sufficient representation of both business agile and non-
business agile SOA deployments: 38% of projects we studied scored below the
midpoint of the BAI scale, while the remaining 62% performed above it. The SOA,
Impact Analysis, BPM, loose coupling, Governance scores, and the BAI index were
computed for each project. The projects that claimed business agility had a mean
value for the SOA score 102.19% higher than the projects that did not claim to
achieve business agility. A less significant result was reported for BPM, Impact
Analysis and Loose Coupling scores with values 48.27%, 56.16% and 9.50%
respectively. The Governance factor showed a difference of -6.39% in the mean
between projects that achieved business agility versus those that did not.

3.2 Building the Predictor Model

To construct the PBAI we utilized multiple linear regression analysis to investigate
the relationship between composite factors (i.e. the independent variables) and the
business agility index (i.e. the dependent variable. The descriptive statistics for the
identified factors were generated and examined. Projects with missing data were
simply dropped from the analysis, reducing the number of analyzed projects from 39
to 32. Regression assumptions such as normality and collinearity were checked and
found to be appropriate for the analysis. Correlation analysis between each of the

 A Predictive Business Agility Model for Service Oriented Architectures 657

factors and the dependent variable BAI showed positive correlations for each factor.
Correlation values revealed that SOA, IA and BPM are the most significantly
correlated factors to achieving business agility in SOA solutions with correlation
values of (.67, p = .000), (.52, p=.002), (.50, p=.004) respectively. Loose coupling is
also significant (p=.019), however, to a lesser degree than the other factors. SOA
Governance, on the other hand, is not significant (p=.305) based on the collected data.

The results of multiple regression showed that our independent variables produced
an adjusted R2 of .64 (F(3,31) = 19.46, p = .000) for the prediction of achieving
business agility. All of the tested predictors turned out to be significant (p < .05)
except for the Governance Score (p =.309) and Loose Coupling (p=.133)). Based on
the results, the regression analysis indicated that SOA, BPM and IA are reliable
factors for predicting BAI, while Gov and LC were not. We consequently excluded
Gov and LC from our model. Using our model parameters, we write the predicted
business agility index PBAI calculation equation as follows:

PBAI = 0.65 SOA + 0.41 BPM + 0.44 IA – 1.98

where SOA is the SOA Score, BPM is BPM Score and IA is Impact Analysis Score.

3.3 Analysis

A closer look at the individual elements contributing to the SOA Score reveals that
inherent support of a given architecture for rules, events, task automation, alerts,
monitoring and analytics is essential to achieving the desired business agility
improvements. Given that business agility is primarily concerned with the continuous
sensing and adapting to new conditions, the significance of this factor seems logical.

Similarly it is not surprising to find that impact analysis and BPM capabilities
contribute to business agility. Impact analysis ensures that SLAs are monitored
proactively and it therefore contributes directly to the business agility goals of
responding to ad-hoc changes. Furthermore, the optimized business processes and
proper alignment with IT that happen as a result BPM’s best practices ensures that
business processes are well thought out and not created randomly. BPM attributes
such as modeling, monitoring of key performance indicators and the use of rule
engines to externalize business rules add a significant amount of flexibility to SOA
solutions. It is worth noting that monitoring SLAs or KPIs is not restricted to SOA
solutions. Any IT solution can be architected to incorporate aspects of dynamic and
predictive impact analysis components as well as BPM best practices.

As previously discussed, our analysis could not conclusively identify loose
coupling as a significant factor. However, our results show a positive correlation
between loose coupling and the BAI. Given the significance levels reported in
regression analysis results, we chose not to include this factor in the overall predictive
model. The Governance score predictor was found to be insignificant. The
governance score includes a mix of capabilities including establishing and tracking
project management and architect roles, advertising and sun-setting services, and
tracking requirements and requests for change. One reason that the factor may not
have been identified as significant in our model is because all projects that scored

658 M. Hirzalla et al.

high in impact analysis also tended to score high on the governance factor implying
the adoption of strong governance practices. This overlap will be explored further in
our future work.

We were not able to draw conclusions concerning reuse due to the missing data
with respect to re-use questions. As a result of dropping projects with missing data, it
is possible that re-use was not given full consideration as a predictive factor.

4 Validating the PBAI

We conducted a standard leave-one out cross-validation experiment based on the 32
existing projects. The 32 projects were the final set of projects used after excluding
projects that did not meet the project selection profile from our original set of 39
projects. In each experimental run, one project was set aside for testing purposes,
while the remaining 31 projects were used to repeat the entire regression analysis and
construct a new PBAI equation. The PBAI equation was then used to compute a PBAI
score for the test project. This process was repeated 32 times, until each project had
been tested.

We evaluated the stability of the PBAI equation over the 32 computations. In all of
the experiments, the generated PBAI model included the three factors of SOA, BPM,
and IA, and excluded Gov, and LC. Furthermore, in 90% of the cases the identified
factors remained the same, and differences in coefficient values were found to be
minor. In the remaining 10% of cases, the LC factor nudged the BPM factor (i.e. LC
factor p < 0.05 while BPM factor p > 0.05) .

4.1 Threats to Validity

The primary threat to validity in our study arises from the fact that only 39 SOA
deployments were included in our study; however it is not trivial to increase the
number of projects studied as each SOA project involved many hours of hands-on
data collection and a significant investment in time. Nevertheless, the relatively
small sample size did impact our ability to explore certain factors such as the re-use
factor, for which there was a problem with missing data. Additional threat to validity
was introduced through the fact that 30 of the 39 projects are IBM related. However,
these projects represented a wide range of complexity, duration, industry participation
and scope, and the leave-one-out cross-validation experiment demonstrated that the
results were at least applicable across this broad sample of projects.

5 Related Work

Most techniques for measuring business agility are domain specific and are unrelated
to SOA deployments. Several authors have argued that the vagueness of the agility
concept makes it extremely difficult to measure using regular quantitative methods
[7], [8], [9]. Tsourveloudis et al. [7] used fuzzy logic to measure agility in the
manufacturing sector. Their approach measures operational characteristics such as

 A Predictive Business Agility Model for Service Oriented Architectures 659

change in quality, versatility, and product variety, rather than measuring the indirect
results of agility such as better profits, time to market, or customer satisfaction. The
authors associate specific attributes with more general areas of agility infrastructure.
Infrastructure agility parameters and their variations are used to compute an overall
agility score. In some respects, Tsourveloudis et al’s approach is similar to ours, as
both methods group attributes or factors into large categories and then evaluate an
organization with respect to those larger categories.

Lin et al. [9], [10] also used fuzzy logic by developing the fuzzy agility evaluation
(FAE) framework and its associated fuzzy agility index (FAI). The FAE used a
survey to collect and analyze agility drivers such as IT integration, competence, team
building, technology, quality, change, partnership, market, education and welfare.
The framework included steps to analyze and synthesize the answers to the agility
drivers and provide associated weightings that are used to establish FAI thresholds
and map scores to different agility levels.

While some of these methods are effective for measuring business agility in
specific domains or even for general IT solutions, they do not address the problem of
measuring business agility in SOA deployments. In contrast, our approach is
designed specifically for use with SOA deployments and incorporates a mixture of
factors which are general to all IT solutions as well as factors specific to SOA
projects.

6 Conclusions and Future Work

This paper has presented a PBAI model for predicting whether a SOA project under
development is likely to attain business agility. The model was developed through
analyzing data from over 32 successful SOA deployments, and has been shown
experimentally to serve as a relatively strong predictor of business agility. The
empirical validation reported in this paper substantiates many of the ideas that have
previously been anecdotally claimed as best practices, while challenging other
broadly accepted ideas. For example, governance is broadly touted as a best practice
for achieving business agility, but our analysis did not identify it as a significant
factor, r =.187. On the other hand, stronger correlations were reported for SOA, IA,
BPM, and LC with r values of .675, .52, .50 and .41 respectively. In future work, we
plan to extend the validation steps of the model to include a detailed comparison of
BAI and PBAI values to assess the predictability capabilities of the resulting model.
Additional work may involve the inclusion of additional dimensions to our BAI and
PBAI factors.

Acknowledgments. We thank our IBM colleagues who participated in the
discussions while working on the 3rd SOA Best Practices conference. We also thank
the many participants who invested many hours in the data collection process.

660 M. Hirzalla et al.

References

[1] Newcomer, E.: Understanding SOA with Web services. Addison-Wesley, Upper Saddle
River NJ (2005)

[2] High, R., Kinder, S., Graham, S.: IBM SOA Foundation: An architectural introduction
and overview - version 1.0 (November 2005),
http://www.ibm.com/developerworks/webservices/library/ws-
soa-whitepaper/#download (accessed: March 27, 2011)

[3] Dove, R.: Response ability: the language, structure, and culture of the agile enterprise. J.
Wiley, New York (2001)

[4] Fiammante, M.: Dynamic SOA and BPM: best practices for business process
management and SOA agility. IBM Press/Pearson, Upper Saddle River NJ (2010)

[5] Briand, L.C., Morasca, S., Basili, V.R.: An operational process for goal-driven definition
of measures. IEEE Transactions on Software Engineering, 1106–1125 (2002)

[6] Hirzalla, M., Bahrs, P., Huang, J., Miller, C., High, R.: An Analysis of Business Agility
Indicators in SOA Deployments. In: Int’l Conference on Software Engineering Research
and Practice (SERP), Las Vegas, USA (2011)

[7] Tsourveloudis, N.C., Valavanis, K.P.: On the measurement of enterprise agility. Journal
of Intelligent and Robotic Systems 33(3), 329–342

[8] Lim, S.L., Ishikawa, F., Platon, E., Cox, K.: Towards Agile Service-oriented Business
Systems: A Directive-oriented Pattern Analysis Approach. In: 2008 IEEE International
Conference on Services Computing, Honolulu, HI, USA, pp. 231–238 (2008)

[9] Lin, C.T., Chiu, H., Tseng, Y.H.: Agility evaluation using fuzzy logic. International
Journal of Production Economics 101(2), 353–368 (2006)

[10] Lin, C.-T., Chiu, H., Chu, P.-Y.: Agility Index in the supply chain. International Journal
of Production Economics 100(2), 285–299 (2006)

Personal-Hosting RESTful Web Services

for Social Network Based Recommendation

Youliang Zhong, Weiliang Zhao, and Jian Yang

Department of Computing, Macquarie University,
North Ryde, NSW 2109, Australia

{youliang.zhong,weiliang.zhao,jian.yang}@mq.edu.au

Abstract. Recommender systems have been widely used in information
filtering. However the existing recommendation methods do not work ef-
fectively in the situations when a group of people want to share informa-
tion and make recommendations within a social network. In this paper
we propose a personal-hosting web services architecture ph-REST for so-
cial network based recommendation, in which every user is represented
by a dedicated RESTful web services engine that collaborates with oth-
ers over a social structure formed by co-peers with common interests.
The proposed architecture explores the potential of applying service and
Cloud computing to personal and social information sharing and assim-
ilation.

Keywords: Personal-hosting web services, Social network based recom-
mendation, Recommendation methods.

1 Introduction

With the surge in the popularity of Web 2.0 technologies, people routinely use so-
cial networking, collaboration tools, and wikis to search, accumulate and acquire
new knowledge, as well as to share the acquisitions with their friends and col-
leagues. Recommender systems have been widely accepted in information sharing
and assimilation. However the current filtering methods have limitations in many
situations where most items have few user ratings, and the users prefer to share
their information within peer groups and make decisions as they wish.

Considering a scenario of research literature search, when a researcher wants
to expand her collections in a particular area, she will ask her colleagues to
give recommendations, and her colleagues may continue with the requests to
their social associates and pass the results back to the researcher. This is usu-
ally a relay process for getting recommendations through social networks. To
follow the human behaviour of social networking, it is necessary to build a truly
distributed architecture with corresponding filtering methods by exploiting the
’social association’ structure in recommendation process.

Web services [2] would be one of the promising technologies to achieve the
above goal. Especially the recently popular RESTful web services architecture

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 661–668, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

662 Y. Zhong, W. Zhao, and J. Yang

[6] has demonstrated its strengths in the applications where the services are
consumed by a large number of clients simply through HTTP protocols.

In this paper we propose a personal-hosting web services architecture ph-
REST with a relay-based recommendation method for social network based
recommendation. In the architecture every user is represented by a dedicated
RESTful web services engine referred to REST-engine, which collaborates with
other users through web services provision and consumption. A recommenda-
tion process starts with a requesting user’s collection of items and associated
ratings. Then the user’s friends or peers can forward the request to their friends
or peers and so forth. All the peers produce and adjust recommendations, and
return the recommendation results backwards to the requesting user. The main
contributions of the paper are as follows:

– An architecture of personal-hosting RESTful web services. This pa-
per proposes a personal-hosting RESTful web services architecture ph-REST,
in which every user is equipped with a dedicated web services engine that
plays both roles of service provider and service consumer. The proposed ar-
chitecture shows a great potential of applying Service and Cloud computing
to social network based recommendation.

– A relay-based model for social network based recommendation.
This paper introduces a relay-based recommendation model by explicitly
utilizing social association, which is based on a dynamically formed social
structure. Having recommendations be adjusted by direct and indirect peers
in the social structure broadens the range of recommending peers therefore
increases the quality of recommendation results.

The rest of the paper is organized as follows. We firstly present a motivating
example and the ph-REST structure in Section 2, then discuss the social net-
work based recommendation model in Section 3. Prototype and experiments are
discussed in Section 4, and the related work is reviewed in Section 5. Concluding
remarks are provided in Section 6.

2 Personal-Hosting Web Services Architecture

2.1 A Motivating Example

Fig 1 illustrates how recommendations are produced followed ”social association”
in a social network by a relay mechanism. In the picture, each user maintains
a collection of items and associated ratings. For instance, user Alex possesses
a list of item ”a, c, e”, with associated ratings ”8, 7, 3”, he also has three
friends: John, Peter, Eddy. Alex has commonly rated item c with John, and e
with Peter, but nothing common with Eddy. We call an item like c or e as co-
rated-item (CRI), and friends who have CRIs as co-peers. Consequently, Alex
and John are co-peers, and so are Alex and Peter.

When user Alex wants to expand his collection. He sends a request to his
co-peers John and Peter; similarly John can forward the request to his co-peer

Personal-Hosting REST for Social Network Based Recommendation 663

Eddy

Alex

eca
378

dcb
762 qxj

321

brs
786

Peter

yfe
734

John

Helen

...

.........

.........

...

Gary

.........

.........

rs
......

Tony

wrd
543

<c>

<e>

<d>

<y>

.........

.........

...

wr
......

wrd
.........

...

.........

.........

snmy
5243

<s>

Fig. 1. A motivating example of social recommendation

Helen and Tony, and so forth. For a given request, the initial requestor and all its
successive co-peers will form a social structure, and every user in the structure
will produce recommendations on his own. Finally, after getting responses from
his co-peers John and Peter, Alex aggregates and filters the recommended items
to create a final recommendation list for himself.

2.2 ph-REST: Personal-Hosting RESTful Web Services

A personal-hosting web services architecture ph-REST is proposed, in which
every user is represented by a dedicated web services engine (REST-engine). The
communication between REST-engines follows a Producer-Consumer pattern
[14]. Figure 2 shows the components of a REST-engine. Of each engine, there are
HTTP Server and HTTP Client for communicating with other engines, REST
Router handles recommendation requests and responses. In a Recommendation
application, Relay Manager maintains co-peer relationship and communicates
with recommendation components: Prediction and Filtering, which work with
Resource Manager through to various data sources mapped to actual data in an
embedded database.

3 Social Network Based Recommendation

3.1 Notation

From the motivating example, we introduce a co-peer graph CPG(q, V, A) as a
labeled directed acyclic graph, where q is a recommendation request, V a set of
vertices and A a set of directed arcs over V, such that,

664 Y. Zhong, W. Zhao, and J. Yang

REST engine

HTTP Server HTTP Client

REST Router

Recommendation application

Relay Manager

Prediction Filtering

Resource Manager

UserRsc

ProfileRsc ItemRsc

RatingRsc

Embedded DB

User Profile Item Rating

Fig. 2. The components of REST-engine

• For any v ∈ V , it represents a user that possesses a pair of tuples of items
and ratings. T (v) = {ti | i = 1..n} is a set of items possessed by v, and
R(v) = {v(ti) | i = 1..n} the associated ratings over T (v).

• q is a recommendation request made by a root node v0 ∈ V . The request q
includes a user’s preferences such as items and ratings. In Fig (1), Alex is
the root node, he sends out a recommendation request with his possession
of items (a, c, e) and ratings (8, 7, 3).

• For a pair of vertices u, v ∈ V , the set intersection of T (u)∩ T (v) is denoted
as Cv

u. If Cv
u �= ∅, then Cv

u is referred to co-rated-items (CRI) between v and
u, and u and v become co-peers. Consequently, a directed arc a(u, v) ∈ A
from u to v is established in the graph.

• For v ∈ V , a co-peer u that sends a request to v is called an inbound co-
peer of v, or Icp(v) = {u}. And those co-peers that receive a request from v
are called outbound co-peers of v, denoted as Ocp(v). Ocp(v) ∩ Icp(v) = ∅.
Furthermore, of the outbound co-peers of v, a group of them that commonly
rate on a particular item ti(ti /∈ T (v)) is denoted as Ocpi(v).

• For v ∈ V , if Ocp(v) = ∅, then v is called a leaf peer in the graph. The set
of all leaf peers is referred to as L.

3.2 Prediction Formulas

Every user in a co-peer graph may carry out three tasks when participating a
recommendation process: (1) makes predictive ratings of potential items, which
are rated by a user but not its inbound-co-peer. (2) aggregates the recommenda-
tions replied from its outbound co-peers, (3) selects highly recommended items
based on predictive ratings or/and other criteria for its inbound co-peer.

Personal-Hosting REST for Social Network Based Recommendation 665

Considering a pair of co-peers u and v, with co-rated-items Cv
u, and u is the

inbound co-peer of v, or v is an outbound co-peer of u. For an item ti ∈ P v
u ,

where P v
u = T (v)\T (u) indicating the ”potential items” from v for u. We want to

predict a rating for the item ti, denoted as rv
u(ti). Let us have rv

u(ti) = v(ti)+ b,
where v(ti) is the rating made by v, and b an adjustment constant. According to
Minimum Mean Square Error principle, we have E =

∑
tj∈Cv

u
(v(tj)+b−u(tj))2,

and the predictive rv
u(ti) can be obtained by minimizing E. Formally,

rv
u(ti) = v(ti) + b,

b = 1
|Cv

u|
∑

tj∈Cv
u
(u(tj) − v(tj)),

so, rv
u(ti) = 1

|Cv
u|
∑

tj∈Cv
u
(v(ti) − v(tj)) + Rv(u), (1)

where Rv(u) = 1
|Cv

u|
∑

tj∈Cv
u

u(tj).

From the standing point of an inbound co-peer say user u, it may associate with
multiple outbound co-peers which have made individual predictions on a same
potential item say ti. The user then needs to aggregate all the predictive ratings
of ti. To this end, we use the following formula (2) for simplicity of representation,
where ru(ti) is the aggregated rating of ti for u.

ru(ti) = 1
|Ocpi(u)|

∑
v∈Ocpi(u) rv

u(ti). (2)

T (u) = T (u) ∪ T r(u), where T r(u) = ∪v∈Ocp(u)P
v
u ,

R(u) = R(u) ∪ {ru(tj) | tj ∈ T r(u)}.

3.3 Web Services Operations

In ph-REST, every user is represented by a REST-engine that provides three
public operations: init request, relay request and receive recommendation, and
two internal methods: wait and make and make recommendation. Both init
request and relay request are used for receiving and relaying recommenda-
tion requests, and receive recommendation for propagating recommendation
responses. wait and make is designed to control recommendation process, and
lastly make recommendation to actually produce recommendations.

Through a full cycle of a replaying and adjusting process, a root node v0

in a co-peer graph will get a set of recommended items and associated ratings
< T r(v0), Rr(v0) >, which will be aggregated and filtered by the root node.

T r(v0) = ∪v∈Ocp(u)
u,v∈V P̃ v

u , and Rr(v0) = {rv0(tj) | tj ∈ T r(v0)}. (3)

4 Prototype and Evaluation

4.1 Prototype of ph-REST

A prototype system of ph-REST has been developed by using Restlet, one of
the most popular RESTful web services framework. The experiment data were

666 Y. Zhong, W. Zhao, and J. Yang

taken from ISI Web of Knowledge database [11], consisting of 500 articles, each
bibliographic item of an article included title, author, publish year, abstract and
keywords. 30 users were created with totally 635 ratings.

Besides the general considerations of web services deployment, several special
issues have been addressed in the prototype system. Particularly, REST-engines
need to control recommendation propagation under conditions. To this end, each
request is relayed with control information including the endorsed co-peers, the
maximum relay depth, and the longest period of waiting time. Doing so, the
system ensures that the recommendation requests and responses are propagated
through a well-controlled and tree-structured service chain.

4.2 Performance of Recommendation Model

To measure the effectiveness of recommendation results, we adopt commonly
used NMAE [7] and Coverage [3] metrics, as well as our own defined metric
peMAE as follows (formula 4, 5 and 6). In these formulas, the superscript ”e”
stands for items or ratings originally made by a user, rv(.) for the predictive
ratings made by co-peers. T r(v) represents the recommended items and T r

l (v)
the highly relevant items from T r(v).

NMAE= 1
|V |

∑
v∈V

Mv

Re
max(v)−Re

min(v) , Mv = 1
|T e(v)|

∑
tj∈T e(v)

|rv(tj) − ve(tj)|. (4)

Coverage = 1
|V |

∑
v∈V

|T r
l (v)|

|T r(v)| . (5)

peMAEv = 1
|T r(v)|

∑
tj∈T r(v)

rv(tj) − 1
|T e(v)|

∑
ti∈T e(v)

ve(ti). (6)

Figure 3 shows our experiment results. The left table lists a set of NMAE, Cov-
erage (%) and peMAE values. The average NMAE was about 0.2 and average
peMAE marginally over 0.1, that indicates the recommendation results are fairly
accurate. The average Coverage (%) was about 60%, that actually reflects the

a-Table: NMAE-Coverage-peMAE b-Figure: Personalized recommendation

User NMAE Coverage (%) peMAE

2 0.3447 0.621 0.2631

3 0.1629 0.457 0.0752

4 0.2533 0.7547 0.1078

…

28 0.3882 0.5235 0.2148

29 0.388 0.5023 0.2622

30 0.184 0.4742 0.0996

AVG 0.1994 0.5922 0.1143

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

User-1: Received
Recommendation
User-1: Average
Rating (8.531)
User-2: Received
Recommendation
User-2: Average
Rating (4.7977)

Fig. 3. Performance of recommendation relay model

Personal-Hosting REST for Social Network Based Recommendation 667

nature of recommendation in social networks where novelty and serendipity usu-
ally get much more concerns than content relevance [9,10].

To exemplify how the proposed method achieves personalized recommenda-
tion, a set of commonly recommended items were selected from the recommen-
dation results for two users. The average rating of user-1 was 8.5310 and that of
user-2 was 4.7977. The right part of Figure 3 shows that these two users with
different rating styles received individual recommendations that matched their
personal modus operandi, even if the recommended items were the same.

5 Related Work

Generally speaking, two types of filtering approaches are widely used in existing
recommender systems: content-based filtering (CN) and collaborative filtering
(CF) [1]. While CN recommends items to a user based on the similarities be-
tween potential items and existing ones rated by the user [3,4], CF based on
the ratings assigned by other users with ”similar taste” [15,17]. Our prediction
formulas leverage both Slope One method [12] and peer relationship so that
recommendations can be relayed through the co-peers in social networks.

Few researches on recommendation methods deploy web services [19,20,16],
all of them followed a centralized filtering approach. In contrast, our approach
utilizes personal-hosting web services so that recommendations are produced
and adjusted by every user in a social network.

While most researches on distributed recommendation focus on complex-
ity, scalability and privacy-protection, few ones emphasize on distributed data
sources or computation mechanism [18,5,8,13]. Nearly all these researches col-
lect raw data from users, and may execute processing by using a global dataset.
Our model does not rely on a global dataset nor a centralized process. Equipped
with a personal-hosting web services engine, every user maintains its collection
of data and produces recommendations on its own.

6 Conclusion

In this paper we propose a novel architecture ph-REST for social network based
recommendation, in which every user is represented by a dedicated personal-
hosting RESTful web services engine. The ph-REST architecture, the web ser-
vices deployment and the prediction algorithms are discussed in the paper. The
proposed architecture shows a great potential of using Service and Cloud com-
puting in social network based recommendation.

Co-rated items and co-peer relationship are very basic relationships in social
networking, there should be more meaningful factors that affect recommenda-
tion results, such as the depth of social relationship, the size of co-peers, and
the centrality of peers. Future work can take these options into account during
recommendation process, as well as the qualitative aspects of social networks
such as trust and credibility.

668 Y. Zhong, W. Zhao, and J. Yang

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: A survey of the State-of-the-Art and possible extensions. IEEE Trans. on
Knowl. and Data Eng. 17(6), 734–749 (2005)

2. Alonso, G.: Web services: concepts, architectures and applications. Springer,
Heidelberg (2004)

3. Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern information retrieval, vol. 463.
ACM press, New York (1999)

4. Belkin, N.J., Croft, W.B.: Information filtering and information retrieval: two sides
of the same coin? Communications of the ACM 35(12), 29–38 (1992)

5. Berkovsky, S., Busetta, P., Eytani, Y., Kuflik, T., Ricci, F.: Collaborative Filtering
over Distributed Environment. In: DASUM Workshop, Citeseer (2005)

6. Fielding, R.T.: Architectural styles and the design of network-based software ar-
chitectures. PhD thesis, University of California, Irvine (2000)

7. Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A Constant Time
Collaborative Filtering Algorithm. Information Retrieval 4(2), 133–151 (2001)

8. Gong, S.J., Ye, H.W., Su, P.: A Peer-to-Peer based distributed collaborative filter-
ing architecture. In: International Joint Conference On Artificial Intelligence, pp.
305–307 (2009)

9. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collabora-
tive filtering recommender systems. ACM Transactions on Information Systems
(TOIS) 22(1), 5–53 (2004)

10. Iaquinta, L., de Gemmis, M., Lops, P., Semeraro, G., Filannino, M., Molino, P.:
Introducing serendipity in a content-based recommender system. In: International
Conference on Hybrid Intelligent Systems, pp. 168–173. IEEE (2008)

11. ISI-WoK (2010), http://wokinfo.com/
12. Lemire, D., Maclachlan, A.: Slope one predictors for online Rating-Based collabo-

rative filtering. Society for Industrial Mathematics (2005)
13. Liu, Z., Qu, W., Li, H., Xie, C.: A hybrid collaborative filtering recommendation

mechanism for p2p networks. Future Gener. Comput. Syst. 26, 1409–1417 (2010)
14. Milanovic, N.: Service engineering design patterns. In: International Workshop

Service-Oriented System Engineering, pp. 19–26. IEEE (2006)
15. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: an

open architecture for collaborative filtering of netnews. In: ACM Conference on
Computer Supported Cooperative Work, pp. 175–186. ACM (1994)

16. Sen, S., Geyer, W., Muller, M., Moore, M., Brownholtz, B., Wilcox, E., Millen,
D.R.: FeedMe: a collaborative alert filtering system. In: Anniversary Conference
on Computer Supported Cooperative Work, pp. 89–98. ACM (2006)

17. Shardanand, U., Maes, P.: Social information filtering: algorithms for automating
word-of-mouth. In: SIGCHI Conference on Human Factors in Computing Systems,
pp. 210–217. ACM Press/Addison-Wesley Publishing Co. (1995)

18. Tveit, A.: Peer-to-peer based recommendations for mobile commerce. In: Interna-
tional Workshop on Mobile Commerce, pp. 26–29. ACM, Rome (2001)

19. Xu, J., Zhang, L.J., Lu, H., Li, Y.: The development and prospect of personalized
TV program recommendation systems. In: International Symposium on Multime-
dia Software Engineering, pp. 82–89. IEEE (2002)

20. Zadel, M., Fujinaga, I.: Web Services for Music Information Retrieval (2004)

http://wokinfo.com/

Work as a Service

Daniel V. Oppenheim, Lav R. Varshney, and Yi-Min Chee

IBM Thomas J. Watson Research Center, Hawthorne NY 10532, USA
{music,lrvarshn,ymchee}@us.ibm.com

Abstract. Improving work within and among enterprises is of pressing
importance. We take a services-oriented view of both doing and coordi-
nating work by treating work as a service. We discuss how large work
engagements can be decomposed into a set of smaller interconnected ser-
vice requests and conversely how larger engagements can be built up
from smaller ones. Encapsulating units of work into service requests en-
ables assignment to any organization qualified to service the work, and
naturally lends itself to ongoing optimization of the overall engagement.

A service request contains two distinct parts: coordination infor-
mation for coordinating work and payload information for doing work.
Coordination information deals with business concerns such as risk, cost,
schedule, and value co-creation. On the other hand, payload information
defines the deliverables and provides what is needed to do the work, such
as designs or use-cases. This general two-part decomposition leads to a
paradigm of work as a two-way information flow between service sys-
tems, rather than as a business process that needs to be implemented or
integrated between two organizations.

Treating work as information flow allows us to leverage extant
understanding of information systems and facilitates information tech-
nology support for work using mainstream service-oriented architectures
(SOA). Significant benefits from this approach include agility in setting
up large engagements to be carried out by distributed organizations,
visibility into operations without violating providers’ privacy or requir-
ing changes to internal processes, responsiveness to unpredictability and
change, and ongoing optimizations over competing business objectives.

Keywords: Work, encapsulation, service, decoupling, information flow.

1 Introduction

Differences among labor pools globally, rapid proliferation of capacious informa-
tion technology infrastructures, and increased churn due to a millennial genera-
tion that is project-based rather than jobs-based [6] has disrupted the nature of
work in many institutions, causing increased decentralization of workforces and
increased leverage of communities, networks, and ecosystems of people and of
firms to do work. These business, technological, and social trends have intensified
interest in general ways of structuring the coordination and doing of work.

The fundamental problem of doing work is to transform inputs into outputs to
meet specified requirements. For human tasks, work systems can be individuals

G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 669–678, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

670 D.V. Oppenheim, L.R. Varshney, and Y.-M. Chee

or groups that may be distributed within or among organizations. But most
work required by businesses is complex. The problem then becomes how to
translate a business need, perhaps expressed as a service request, into an optimal
decomposition of units of work and how to optimally coordinate its execution.

The basic problem of coordinating work is to decompose a service request
into units that can be assigned to a set of work systems, provide the necessary
inputs and requirements to the work systems, and aggregate their outputs, while
continuously responding to changing conditions. Often there are dependencies
among work assigned to different work systems. The work systems may have
conflicting local objectives and may perform work with differing costs, schedules,
and reliabilities. Optimal coordination must take these factors into account.

In this paper we treat work as a service (WaaS). Doing of work is encapsulated
as a service request and coordination of work involves routing service requests
to work systems. Within the WaaS paradigm, large work engagements can be
decomposed into a set of smaller interconnected service requests and conversely
larger work engagements can be built up from smaller ones.

An encapsulated service request contains two distinct parts: coordination in-
formation for coordinating work and payload information for doing work. Coor-
dination information deals with business concerns such as risk, cost, schedule,
and value. Payload information defines deliverables and provides what is needed
to do the work, such as designs or use-cases. This general two-part decomposi-
tion leads to a paradigm of work as a two-way information flow between work
systems, rather than as a business process that needs to be implemented or
integrated between two organizations.

Encapsulation eliminates search inefficiencies on inputs, requirements, and
formats for work systems. But more importantly, it enables assignment of work
requests to any qualified work system, leading naturally to ongoing optimiza-
tion of the overall engagement in response to unpredictable system dynamics.
Coordination becomes a problem of dynamically routing information flow.

By treating work as information flow, several patterns of and organizational
structures for doing work can be treated in a common framework.

Since work is encapsulated as service requests, mainstream service-oriented
architectures (SOA) can be used to provide information technology support.

As demonstrated in the sequel, significant benefits from this approach include
agility in setting up large engagements to be carried out by distributed work
systems, visibility into operations without violating providers’ privacy or requir-
ing changes to internal processes, responsiveness to unpredictability and change,
and ongoing optimizations over competing system-level business objectives.

2 The Changing Nature of Work and Workforce

The combined force of the trends described earlier has been the emergence of
new models of work including: globally dispersed teams in firms [18], outsourc-
ing, crowdsourcing [20], information factories [8], virtual enterprises [13], cross-
enterprise collaborations [17], open source, social production [5], and asset reuse
[2].

Work as a Service 671

With these new models, there is greater division of labor and workforce spe-
cialization, but traditional coordination mechanisms such as mutual adjustment
through informal communication [14] are no longer effective [11]. The trade-
off between specialization benefits and coordination costs are well known [4],
but formal mechanisms may reduce these costs without reducing benefits from
specialization. The goal of the WaaS paradigm is precisely this.

As will be evident, encapsulation of work makes it procedurally equivalent to
plug in any work system, whether a crowd, partner organization or combination
of several work systems. This is in contrast to business process management
(BPM) approaches, where recombining the doing of work requires a new business
process to connect the pieces together, a provably complex undertaking [15].
Further BPM models do not lend themselves to many optimizations [25], whereas
the information flow paradigm herein readily supports optimization.

Notwithstanding, the work for a single encapsulated work request may be
carried out using BPM. Further, it is possible to use fulfillment of work requests
as signals to transition between states in business process models.

3 Work as a Service (WaaS) Encapsulation

In this section, we describe the essential aspects of the WaaS encapsulation and
the resultant information flow paradigm.

As depicted schematically in Fig. 1(a), a work engagement consists of essen-
tially three parts:

1. A requestor, which is a service system that requests work to be done, provides
inputs, and specifies the requirements.

2. A provider, which is a service system charged with fulfilling the work request
to meet requirements.

3. An encapsulated service request, which captures the interaction between the
requestor and provider, the two-way information flow among them.

There are three aspects of a work task that must be established between the
requestor and the provider. First, a so-called service level agreement (SLA) must
be reached, which specifies business-level properties, such as cost and schedule.
Second, as work is ongoing, there may be monitoring by the requestor of partial
results and checkpoints achieved by the provider, so as to have appropriate
visibility. Third, at the conclusion of a work engagement, the provider sends
deliverables to the requestor who either confirms or rejects the delivered work.
Note that all three involve two-way flows of information.

These two-way communications that arise should all be captured in the encap-
sulated work request. We define a general two-part decomposition of work into
business concerns and domain concerns. These two parts are called coordination
information and payload information, respectively, and are depicted schemati-
cally in Fig. 1(b). Coordination mechanisms can restrict attention to the former
part whereas work systems can restrict attention to the latter.

672 D.V. Oppenheim, L.R. Varshney, and Y.-M. Chee

(a) (b)

Fig. 1. (a) Work as an encapsulated service request with requestor R and provider P.
(b) The encapsulated request partitioned into coordination and payload information.

In detailing the contents of coordination and payload information, it is easiest
to first consider an atomic service request : an encapsulation of a unit of work so
small that it cannot be broken into pieces. We will later see how to combine and
recombine atomic service requests into molecular service requests.

3.1 Coordination Information

What information about an atomic service request is needed for coordination?
Since the goal of coordination is to satisfy concerns, we enumerate several pos-
sible business concerns that arise in work. Note that coordination may be done
by the requestors and providers themselves or by an external agent.

A first consideration is schedule: how long will it take for an atomic piece
of work to be done. Note that this varies across different work systems and is
also potentially stochastic. A second consideration is cost: how much money will
the provider charge the requestor to do work and whether there are bonuses
or penalties associated with speed or quality [3]. Although the encapsulation
formalism is eminently amenable to outcomes-based pricing [21] rather than
effort-based pricing, the cost may still have some variability as well. A third
consideration is quality: how good will the deliverable be with respect to the
requirements. One way to certify the quality of a work system is through the use
of CMMI level—higher levels imply more stringent process and quality control.

Each of these concerns can be captured as a mapping from the Cartesian
product of the possible set of work systems and the possible set of work tasks to
the space of random variables that represent time, cost, or quality. As milestones
are reached and partial results are achieved, the probability distributions can be
updated with new information that is furnished by the provider. Exogenous
perturbations to the system such as natural disasters might also change these
distributions, as can changes in requirements imposed by the requestor.

In reality, schedule, cost, and quality are very much intertwined. For example,
loosening schedules may reduce costs. These competing business concerns can
be balanced through the notion of value, which is what should be optimized.
The value-dominant logic brings this point out even further [23], and indeed we
feel that the encapsulated service request is the seat of value co-creation.

For molecular service requests, coordination information needs to also contain
the interdependencies among its atomic constituents. This includes not only
things like the fact that one piece of work needs to be done before another, but
also inertia effects and other factors, cf. [26].

Work as a Service 673

3.2 Payload Information

We now ask what information is needed by a work system to do work. Broadly,
payload information should include the inputs that are to be transformed into
outputs and the requirements that specify what is to be done. This should be
the minimal sufficient information for doing work.

More specifically, for software development, payload information may include
APIs, architectural diagrams, and requirements documents; for engine design,
it may include specifications of mechanical, hydraulic, and electrical interfaces,
performance requirements and CAD language. The WaaS encapsulation is de-
signed to be general, supporting the needs of any specific domain.

As the lifecycle of the work request proceeds, payload information is updated
based on partial results and milestones. Technological developments that im-
pact the doing of work, or changes in requirements would can evolve payload
information. Fixes for errors made in execution may also be incorporated.

3.3 Information Flow

The WaaS paradigm may be interpreted as an information flow description. One
can think of the encapsulated service request as a multidimensional variable
that captures the current state of things, including the value being generated.
As things happen, information flows to the service request for it to be updated.
Updates to both payload and coordination information happen continuously,
capturing both business and domain concerns.

Coordination mechanisms can also be thought of in informational terms as
routing. Essentially, coordination involves connecting requestor and provider to-
gether to interact through an encapsulated service request. Moreover, as in Sec. 4,
large work engagements can be constructed by routing several service requests
within a work ecosystem. Coordination must then consider governance issues
such as accountability, responsibility, and decision-making rights. There may be
different organizational structures for coordination. See Sec. 5.

4 Patterns and Structures

Now we discuss the structural building blocks that enable composition and de-
composition of encapsulated service requests to form large work engagements.
Several canonical patterns emerge, which are tied to various organizational struc-
tures that arise in businesses; cf. Malone’s notions of flow, sharing, and fit [12,
p. 140]. This demonstrates that the WaaS paradigm applies to its targeted prob-
lem space of complex work within or between organizations.

First consider delegating work from one work system to another, as in Fig. 2.
This may be done, e.g. if the original provider is overloaded. The original provider
becomes a requestor (delegator) for the downstream provider. Payload infor-
mation and the interdependency portion of coordination information are copied

674 D.V. Oppenheim, L.R. Varshney, and Y.-M. Chee

Fig. 2. Delegation of work by re-routing an encapsulated service request. The original
provider becomes a requestor for the downstream provider.

essentially unchanged to the new re-routed service request, perhaps adding in-
formation useful to the new provider. The remaining coordination information,
however, is written anew to capture the business concerns of the delegator and to
hide the business concerns of the original requestor, which are not of direct rele-
vance to the new provider. The delegator remains accountable and responsible to
the original requestor, but the new provider is only responsible and accountable
to the delegator. Note that the original request may specify that when delegated
some coordination information must also flow downstream.

Another possible pattern of work is to tear a molecular service request into
pieces and re-route them to several producers. Payload information is partitioned
into (possibly overlapping) pieces with minimal sufficient information required
to do the newly reconstituted work. The interdependency portion of the coordi-
nation information is also partitioned, and remaining coordination information
is written anew. Recursive hierarchical tearing can also be done.

Tearing should be done for specialization gains, or when work systems can
be leveraged in parallel. For example, if a general service provider has several
sourcing channels such as a crowd and a factory, different pieces might be routed
to different places. Note that tearing requires PR to monitor and eventually
integrate or aggregate the completed work so as to be able to respond to R.

A third pattern is to merge several service requests (from one or more re-
questors) into one. The payload information of the merged request is simply the
union of the payloads of the requests being merged. Coordination interdepen-
dencies must be combined with any new interdependencies that arise. Remaining
coordination information is written afresh, typically meeting the minimum spec-
ifications of the original requests. Hierarchical merging can also occur.

Economies of scale are a prime motivator for merging. For example consider
several requests to perform environmental testing for electronics where a single
cold room could be used simultaneously for all the requests.

Another kind of re-routing that can arise is to withdraw a service request from
one provider and assign it to another. This could happen if changing conditions
prevent the original provider from completing the service request.

The basic operations described above can be used in combination to generate
other structures. As an example, consider a coordination hub [16], a centralized
authority charged with coordinating work to derive maximal value, by taking
work from several requesters, tearing and merging, and then delegating to several
providers, while responding to changing conditions. A hub can be thought of as

Work as a Service 675

Fig. 3. Tearing and delegating work by re-routing encapsulated service requests. The
original provider aggregates and becomes a requestor for downstream providers.

Fig. 4. Merging and delegating work by re-routing encapsulated service requests. The
original provider becomes a requestor for the downstream provider.

a kind of intermediate delegator. Cross-enterprise collaboration, when several
organizations partner to do work, may take the form of a hub [3], as may robust
supply chain collaboration [19].

Formal proof aside, it should be clear that arbitrary topologies can be con-
structed using the basic building blocks and operations we have defined.

5 Coordination and Governance

We have discussed how service requests can be combined and recombined in
various patterns, but it is still unclear how to initially make the plan for doing
so or in response to change. That is the purpose of a coordination mechanism.

Initial coordination involves appropriately tearing and merging requests, and
then determining routes for work to assign it to qualified producers; unlike com-
munication networks the source and destination are not pre-specified.

Over time as more information becomes available, the work plan may need
to be modified and requests re-routed, whether due to environmental events, or
updates in the work lifecycle itself or in interdependent tasks and systems.

Coordination mechanisms may be implemented with an automatic program
in SOA built on a protocol like WS-coordination, a human program manager or
program executive, or a governance council in cross-enterprise collaboration.

676 D.V. Oppenheim, L.R. Varshney, and Y.-M. Chee

Any of these, however, require both access to the coordination information
in the encapsulated work requests and the ability to make re-routing decisions,
which are matters of governance and organization. By requiring coordination in-
formation to be freshly written, the WaaS paradigm naturally limits information
to the requester and provider who clearly need it. But when required, governance
policies may provide a window to other work systems.

Many possible visibility and governance policies exist, as in Fig. 5. In a central-
ized hub with complete visibility, responsibility, and decision-making authority
[17], a globally optimal coordination scheme can be used [3]. If there is hierarchi-
cal authority, as in a globally integrated enterprise [18], visibility and decision-
making authority is restricted to one level depth in the tree and coordination
mechanisms must respect this. In a fully decentralized governance structure,
each pair of service systems is responsible for their own coordination.

Due to differing visibility and authority for re-routing, these various forms of
coordination have different abilities to react when conditions change.

(a) (b) (c)

Fig. 5. Coordination, with coordinators C. (a) central coordinator with full visibility
and authority into all encapsulated service requests. (b) globally integrated enterprise
with hierarchical visibility and authority. (c) decentralized organization with localized
visibility and authority.

6 Agility, Optimization, and Innovation

Having discussed the doing of work and the coordination of work within the
WaaS framework, we discuss some beneficial attributes of this paradigm.

Due to the block-building nature of WaaS, there is agility in setting up large
engagements involving work systems that may be globally distributed within or
across enterprises. Since service requests contain sufficient information for work,
any admissible work system of any kind, whether a crowd or a virtual enter-
prise, can be plugged in as a provider. Due to encapsulation, how work is done
matters little; only what work is done and the collaboration induced between
the requestor and provider. As such, business processes need not be integrated
nor internal processes changed. Moreover, agility extends to response to change;
reconfiguration by re-routing is as easy as initial setup. The recombinant nature
of the encapsulated service requests provides exponential flexibility.

Work as a Service 677

A second thing to note about the WaaS paradigm is that visibility is provided
into operations without violating providers’ privacy. Since the payload informa-
tion in the encapsulated service request is the minimal sufficient statistic needed
to do work, by the data processing inequality in information theory [9], it min-
imizes information leakage. When service requests are delegated, coordination
information is not passed to the new provider, again preserving privacy.

Within the WaaS paradigm, optimizing value becomes a partitioning and
routing question, but with destination also subject to choice. In particular, de-
termining how to restructure and then re-route service requests is rather similar
to the routing problem faced by packet-switched communication networks like
the internet. Centralized hub optimizations are essentially equivalent to non-
linear multicommodity flow problems with a further optimization for balancing
destinations, cf. [3], for which optimal flows can be found in polynomial time
[7]. When performing distributed coordination, as in Fig. 5(c), efficient routing
algorithms developed for internet protocols can be adapted.

When BPM approaches are used, optimal coordination becomes a scheduling
problem rather than a routing problem; optimal scheduling problems are often
NP-hard [22]. Although routing and scheduling are rather similar, the computa-
tional complexity of finding an optimal solution can be different.

When design complexity is low, as with small loosely coupled service requests,
innovation is easier due to increased opportunities to experiment [1].

7 Concluding Remarks

We presented a new way for describing work as an information flow and then
defined the underlying formalisms that enable the decomposition of requests
into fine-grained units that can be coordinated and optimized over competing
business, customer, provider, and resource objectives. We further demonstrated
how this model generalizes over disparate models of work and can be utilized to
support different patterns of organization, business, and governance.

Our approach in this paper has been to describe the basic structural elements
and decompositions in the WaaS paradigm. Moving forward, detailed study of
optimal coordination mechanisms that really make WaaS go is necessary. The
role of uncertainty should take greater prominence [24]; after all, “Uncertainty
is what typifies projects. It’s the nature of the beast” [10].

One of the biggest revolutions in the evolution of multi-cellular organisms oc-
curred when neurons emerged. Before neurons, cells had to be very close to each
other to coordinate their functions. After neurons, cells could communicate from
a distance and ongoing two-way flow of information became central to complex
life. This allowed cells to be rearranged and assigned different functions in a wide
variety of life forms. The information flow paradigm for work developed herein
may similarly allow an expansion in the variety of economic and organizational
forms that are then able to efficiently fill a wide variety of niches.

678 D.V. Oppenheim, L.R. Varshney, and Y.-M. Chee

References

1. Auerswald, P., Kauffman, S., Lobo, J., Shell, K.: The production recipes approach
to modeling technological innovation: An application to learning by doing. J. Econ.
Dyn. Control 24, 389–450 (2000)

2. Bacon, D.F., Bokelberg, E., Chen, Y., Kash, I.A., Parkes, D.C., Rao, M., Sridha-
ran, M.: Software economies. In: Proc. FSE/SDP Workshop Future Softw. Eng.
Research (FoSER), pp. 7–12 (2010)

3. Bagheri, S., Oppenheim, D.V.: Optimizing cross enterprise collaboration using a
coordination hub. In: Proc. SRII 2011 Global Conf. (2011)

4. Becker, G.S., Murphy, K.M.: The division of labor, coordination costs, and knowl-
edge. Quart. J. Econ. 107, 1137–1160 (1992)

5. Benkler, Y.: The Wealth of Networks. Yale University Press, New Haven (2006)
6. Bollier, D.: The Future of Work. Aspen Inst., Washington (2011)
7. Cantor, D.G., Gerla, M.: Optimal routing in a packet-switched computer network.

Comput. C-23, 1062–1069 (1974)
8. Chaar, J.K., et al.: Work packet delegation in a software factory, Patent Application

Publication US 2010/0031226 A1 (2010)
9. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons,

New York (1991)
10. Goldratt, E.M.: Critical Chain. North River Press (1997)
11. Gumm, D.C.: Distribution dimensions in software development projects: A taxon-

omy. IEEE Softw. 23, 45–51 (2006)
12. Malone, T.W.: The Future of Work. Harvard Business School Press (2004)
13. Mehandjiev, N., Grefen, P.: Dynamic Business Process Formation for Instant Vir-

tual Enterprises. Springer, London (2010)
14. Mintzberg, H.: Mintzberg on Management. Free Press, New York (1989)
15. Norta, A.H.: Exploring Dynamic Inter-Organizational Business Process Collabo-

ration. Ph.D. thesis, TU-Eindhoven (2007)
16. Oppenheim, D., Bagheri, S., Ratakonda, K., Chee, Y.M.: Coordinating Distributed

Operations. In: Maximilien, E.M., Rossi, G., Yuan, S.-T., Ludwig, H., Fantinato,
M. (eds.) ICSOC 2010. LNCS, vol. 6568, pp. 213–224. Springer, Heidelberg (2011)

17. Oppenheim, D.V., Bagheri, S., Ratakonda, K., Chee, Y.M.: Agility of enterprise
operations across distributed organizations: a model of cross enterprise collabora-
tion. In: Proc. SRII 2011 Global Conf. (2011)

18. Palmisano, S.J.: The globally integrated enterprise. Foreign Aff. 85, 127–136 (2006)
19. Tang, C.S.: Robust strategies for mitigating supply chain disruptions. Int. J. Lo-

gist. 9, 33–45 (2006)
20. Tapscott, D., Williams, A.D.: Wikinomics. Portfolio Penguin, New York (2006)
21. Tiwana, A.: Does technological modularity substitute for control? a study of al-

liance performance in software outsourcing. Strateg. Manage. J. 29, 769–780 (2008)
22. Ullman, J.D.: NP-complete scheduling problems. J. Comput. Syst. Sci. 10, 384–393

(1975)
23. Vargo, S.L., Lusch, R.F.: Evolving to a new dominant logic for marketing. J.

Mark 68, 1–17 (2004)
24. Varshney, L.R., Oppenheim, D.V.: Coordinating global service delivery in the pres-

ence of uncertainty. In: Proc. 12th Int. Research Symp. Service Excellence Manage,
QUIS12 (2011)

25. Vergidis, K., Tiwari, A., Majeed, B.: Business process analysis and optimization:
Beyond reengineering. IEEE Trans. Syst., Man, Cybern C 38, 69–82 (2008)

26. Wiredu, G.O.: A framework for the analysis of coordination in global software de-
velopment. In: Proc. Int. Wksp. Global Softw. Dev. Practitioner, pp. 38–44 (2006)

Author Index

AbuJarour, Mohammed 235
Aiello, Marco 495
Asadi, Mohsen 436
Aschoff, Rafael 421
Awad, Ahmed 235

Bagheri, Ebrahim 436
Bahrs, Peter 653
Bannerman, Paul L. 265
Belardinelli, Francesco 142
Benatallah, Boualem 219, 627
Benbernou, Salima 574
Bentahar, Jamal 549
Benveniste, Albert 77
Bhatnagar, Shalabh 487
Bošković, Marko 436
Bouguettaya, Athman 47
Bulanov, Pavel 495

Cabanillas, Cristina 477
Calegari, Silvia 389
Cambronero, M. Emilia 636
Canfora, Gerardo 610
Carbone, Marco 125
Carro, Manuel 62
Casati, Fabio 374
Chee, Yi-Min 669
Chen, Leilei 532
Chen, Liang 204
Clacens, Kathleen 549
Cleland-Huang, Jane 653
Colman, Alan 404
Comerio, Marco 389
Compton, Paul 219

Dalla Preda, Mila 590
Daniel, Florian 374
Dasgupta, Gargi 487
Delis, Alex 172
Deng, Shuiguang 204
Desai, Nirmit 487
Dı́az, Gregorio 636
Dustdar, Schahram 297

Emmerich, Wolfgang 344

Faltings, Boi 513
Farahani, Armin Zamani 16
Fernandez, Pablo 280

Gabbrielli, Maurizio 590
Garćıa-Bañuelos, Luciano 452
Gašević, Dragan 436
Ghose, Aditya K. 467
Goffart, Christophe 549
Gohad, Atul 467
Groefsema, Heerko 495
Guinea, Sam 359
Gupta, Monika 523

Han, Jun 404
Hatala, Marek 436
Hermenegildo, Manuel 62
High, Rob 653
Hirzalla, Mamoun 653
Hu, Liukai 204

Ivanović, Dragan 62

Jaiswal, Vimmi 505
Jard, Claude 77

Kaschner, Kathrin 108
Kattepur, Ajay 77, 557
Kaviani, Nima 157
Kecskemeti, Gabor 359
Khazankin, Roman 297
Khosravifar, Babak 549
Kim, Yang Sok 219
Kumar, Apurva 312

Lago, Patricia 618
Lanese, Ivan 590
Lea, Rodger 157
Lemey, Elisah 250
Li, Ying 204
Lohmann, Niels 92
Lomuscio, Alessio 142
Lu, Qinghua 265

Marconi, Annapaola 359
Mart́ınez, Enrique 636

680 Author Index

Matsubara, Shigeo 645
Maurino, Andrea 389
Mauro, Jacopo 590
Miller, Craig S. 653
Mohabbati, Bardia 436
Montesi, Fabrizio 125
Mukherjee, Debdoot 523

Narendra, Nanjangud C. 467
Netto, Marco A.S. 541
Nguyen, Tuan 404
Noor, Talal H. 328

Oppenheim, Daniel V. 669
Ouziri, Mourad 574

Paik, Hye-Young 219, 627
Panda, Anurag 467
Panzeri, Emanuele 389
Papazoglou, Mike P. 601
Parejo, José Antonio 280
Parkin, Michael 601
Pasi, Gabriella 389
Patrizi, Fabio 142
Pautasso, Cesare 32
Pernici, Barbara 574
Poels, Geert 250
Polyvyanyy, Artem 452
Ponnalagu, Karthikeyan 467
Prasad, H.L. 487
Prashanth, L.A. 487
Psaier, Harald 297

Razavian, Maryam 618
Resinas, Manuel 477
Roussopoulos, Mema 172
Roy Chowdhury, Soudip 374
Ruiz-Cortés, Antonio 280, 477
Ryu, Seung Hwan 219

Satoh, Ichiro 582
Schall, Daniel 297
Schuller, Dieter 452

Schulte, Stefan 452
Sen, Aritra 505
Sheng, Quan Z. 328, 566
Siadat, S. Hossein 574
Sinha, Vibha Singhal 523
Smirnov, Sergey 16
Su, Jianwen 1
Sun, Yutian 1

Taher, Yéhia 601
Thiran, Philippe 549
Tosic, Vladimir 265
Trummer, Immanuel 513
Tsakalozos, Konstantinos 172

van den Heuvel, Willem-Jan 601
Varshney, Lav R. 669
Verma, Akshat 505

Wassermann, Bruno 344
Weber, Ingo 627
Weske, Mathias 16
Wetzstein, Branimir 359
Wilde, Erik 32
Wohlstadter, Eric 157
Wolf, Karsten 92
Wu, Jian 204

Yang, Jian 47, 532, 661
Yao, Lina 566
Yin, Jianwei 204
Yu, Qi 188

Zagarese, Quirino 610
Zavattaro, Gianluigi 590
Zhang, Liang 532
Zhao, Weiliang 47, 661
Zheng, Huiyuan 47
Zheng, Zibin 204
Zhong, Youliang 661
Zhou, Nianjun 523
Zimeo, Eugenio 610
Zisman, Andrea 421

	Title Page
	Preface
	Organization
	Table of Contents
	Research Papers – Long
	Business Process Modeling
	Computing Degree of Parallelism for BPMN Processes
	Introduction
	A Formal Model for Processes
	Homogeneous Processes
	Acyclic Choice-Less Processes
	Asynchronous Processes
	Related Work
	Conclusions
	References

	State Propagation in Abstracted Business Processes
	Introduction
	Motivating Example and Research Challenges
	Activity Instance State Propagation
	Preliminaries
	State Propagation
	Activity Instance State Uniqueness
	Activity Instance State Transition Correctness

	Behavioral Inconsistencies
	Example
	Formalization of Behavioral Inconsistencies
	Classification of Behavioral Inconsistencies

	Related Work
	Conclusion and Future Work
	References

	Push-Enabling RESTful Business Processes
	Introduction
	RESTful Business Processes
	Publishing Processes as Resources
	Process Representations
	Uniform Interface

	Example
	RESTful Push Interactions
	Using HTTP
	Dedicated Push Frameworks

	Architecture
	Representing Process Resources as Feeds
	Push-Enabled RESTful Process Execution Engine

	Related Work
	Conclusions
	References

	Quality of Service 1
	QoS Analysis for Web Service Compositions Based on Probabilistic QoS
	Introduction
	Related Work
	Preliminaries
	Modeling Composite Services and Composition Patterns
	Model Processing Algorithm for Composite QoS Computation

	Probabilistic QoS Aggregation
	Approach Overview and Underlying Assumptions
	QoS Probability Distribution Calculation for Composition Patterns

	Experiment
	Validation
	Efficiency

	Conclusion
	References

	Constraint-Based Runtime Prediction of SLA Violations in Service Orchestrations
	Introduction
	Motivation
	Constraint-Based QoS Prediction
	The General Prediction Framework
	QoS Prediction Architecture
	Representing Orchestrations and Their Continuations
	Deriving QoS Constraints from Continuations
	Using Computational Cost Functions
	Solving the Constraints

	Experimental Evaluations
	Implementation Notes
	Conclusions
	References

	Optimizing Decisions in Web Services Orchestrations
	Introduction
	Fundamentals
	Optimization Models
	QoS in Web Services
	Analytic Hierarchy Process

	Methodology
	Formulating Optimization Problems
	Optimization Routines in Orc
	QOrc: Upgrading Orc for QoS Management
	Interfacing QOrc to Optimization Services

	Optimal Decision Results
	Related Work
	Conclusion
	References

	Formal Methods
	Decidability Results for Choreography Realization
	Introduction
	Basic Definitions
	Interconnected Models and Interaction Models
	Languages and Traces

	Partial Realizability
	The Synchronous Case
	The Asynchronous Case

	Distributed Realizability
	The Synchronous Case
	The Asynchronous Case
	Complexity

	Complete Realizability
	The Synchronous Case
	The Asynchronous Case
	Complexity

	Related Work
	Conclusion and Open Problems
	References

	Conformance Testing for Asynchronously Communicating Services
	Introduction
	Correct Behavior
	Conformance Partner
	Test Case Generation
	Related Work
	Conclusion
	References

	Programming Services with Correlation Sets
	Introduction
	Key Concepts in Service-Oriented Computing

	Language Overview
	Data Structures, Syntax and Semantics
	Properties and Types
	Language Implementation in JOLIE
	Example: A Decentralised Authentication Protocol
	Related Work and Conclusions
	References

	Verification of Deployed Artifact Systems via Data Abstraction
	Introduction
	Artifacts and Artifact Systems
	The Order-to-Cash Business Process
	Verification of Artifact Systems
	The General Problem

	Verification of Deployed Artifact Systems
	Conclusions and Future Work
	References

	XaaS Computing
	Profiling-as-a-Service: Adaptive Scalable Resource Profiling for the Cloud in the Cloud
	Introduction
	Profiling as a Service (PraaS)
	Adaptive Resource Profiling in the Cloud
	Constraint-Guided Profiling Adaptation

	Technical Details
	Profiling Service Policy Specifications
	System Architecture
	Prototype Profiling Support

	Evaluation
	Measuring Profiling Overhead
	Measuring Profiling Accuracy
	Stress Testing of the Deployment and Financial Implications
	Evaluation Summary

	Related Work
	Conclusion
	References

	VM Placement in non-Homogeneous IaaS-Clouds
	Introduction
	Overview of Our Approach
	User Provided Hints and Constraints
	Synthesis of Dynamic Infrastructures
	Deployment Plan Production
	Elastic Solver Service
	Evaluation
	Related Work
	Conclusions
	References

	Service Discovery
	Place Semantics into Context: Service Community Discovery from the WSDL Corpus
	Introduction
	Framework for Service Community Discovery
	Community Discovery via NMTF
	Result Interpretation
	Objective Function

	Semantic Extension Integration
	Computing the Semantic Extensions of the WSDL Corpus
	Semantic Extension Integration

	Empirical Study
	Evaluation Metrics
	Experiment Design and Parameter Setting
	Performance Comparison

	Related Work
	Service Community Discovery
	Service Search and Discovery
	Service Selection

	Conclusion and Future Directions
	References

	WTCluster: Utilizing Tags for Web Services Clustering
	Introduction
	Related Work
	WTCluster
	Framework for Web Service Discovery
	Feature Extraction and Similarity Computation
	Similarity Integration

	Tag Recommendation
	Experiment
	Experiment Setup
	Performance of Web Service Clustering
	Evaluation of Tag Recommendation Strategies

	Conclusion
	References

	Similarity Function Recommender Service Using Incremental User Knowledge Acquisition
	Introduction
	Preliminaries
	Community Data Graph
	Measuring Entity Similarity
	Overall Architecture

	Exploiting Community User Knowledge
	Recommendation Rule Representation Model
	Matching Recommendation Rules
	Ranking Recommendation Rules

	Incremental Knowledge Acquisition
	Knowledge Acquisition Method: Ripple Down Rule
	Acquiring Knowledge through Different Rule Types
	Attribute Type-Based Rule (Default Rule).
	Key Attribute-based Rule.
	Relationship-based Rule.
	Lexical Relation-based Rule.

	Implementation, Usage, and Evaluation
	Implementation
	Usage Scenario of the Recommender Service
	Evaluation

	Related Work
	Conclusion and Future Work
	References

	Revealing Hidden Relations amongWeb Services Using Business Process Knowledge
	Introduction: Relations among Web Services
	Related Work
	Preliminaries
	The Extended Behavioral Profile
	FormalModel
	Running Example

	Deriving a Global Behavioral Profile
	Merging Individual Behavioral Profiles
	Predicting Potential Resolutions for Unknown Relations (a?b)

	Experiments and Evaluation
	Discussion
	References

	Service Science and Management
	Towards a Service System Ontology for Service Science
	Introduction
	Foundational Concepts of the Service Systems Worldview
	Overview of Service Theories and Frameworks
	Analysis
	Discussion
	Conclusion and Future Work
	References

	Support for the Business Motivation Model in the WS-Policy4MASC Language and MiniZnMASC Middleware
	Introduction
	Background and Related Work
	WS-Policy4MASC and MiniZnMASC
	Business Motivation Model (BMM)
	Other Related Work

	Extension of WS-Policy4AMSC and MiniZnMASC with Key BMM Constructs
	Evaluation
	Conclusions and Future Work
	References

	WS-Governance: A Policy Language for SOA Governance
	Introduction
	A Motivating Use Case
	Using WS-Policy for SOA Governance
	From WS-Policy to WS-Governance
	SOA Modeling with SADL
	Specifying Governance Properties, and Policy Assertions with GAL

	Automatic Consistency Checking through CSPs
	Checking for Consistency
	WS-Governance Tooling: GDA and GDE

	Related Work
	Conclusions and Future Work
	References

	QoS-Based Task Scheduling in Crowdsourcing Environments
	Introduction
	Related Work
	Crowdsourcing Platform Model
	Integration of Service Level Agreements (SLAs)
	Discussion

	Quality and Skill-Aware Crowdsourcing
	Skills and Suitability
	Worker and Consumer Communication
	Scheduling
	Profile Management

	Experiments
	Experiment Setup
	Experiment Types and Results

	Conclusion and Future Work
	References

	Service Security and Trust
	Model Driven Security Analysis of IDaaS Protocols
	Introduction
	Related Work
	Overview of Logic of Authentication
	Extending Belief Logic
	Reasoning about Users, Actions and Secrets
	Example: Analysis of SAML Web Single Sign-On

	Model Driven Security Protocol Analysis
	Automated Analysis of Belief Logics
	Overview
	Benefits of Model Driven Analysis
	Modeling of Extended Belief Logic
	Unification Algorithms

	OAuth Protocol Analysis
	Conclusion
	References

	Credibility-Based Trust Management for Services in Cloud Environments
	Introduction
	Related Work
	The Trust Management Framework
	Assumptions and Attack Models

	Trust Management Service
	Trust Feedback Collection and Assessment
	Availability of the Trust Management Service

	The Credibility Model
	Majority Consensus
	Feedback Density

	Implementation and Experimental Evaluation
	Conclusions and Future Work
	References

	Service Monitoring
	Monere: Monitoring of Service Compositions for Failure Diagnosis
	Introduction
	The Polymorph Search Workflow
	Monere
	Metrics
	Overview
	Dependency Discovery

	Performance Analysis
	Experiment
	Experiment Setup
	Results
	Success Rate.
	Diagnosis Time.
	Failures.

	A Short Cost-Benefit Analysis
	Validity

	Related Work
	Dependency Discovery
	Monitoring

	Conclusions
	References

	Multi-layered Monitoring and Adaptation
	Introduction
	The Integrated Monitoring and Adaptation Framework
	Monitoring and Correlation
	Analysis of Adaptation Needs
	Identification of Multi-layer Adaptation Strategies
	Adaptation Enactment
	The CT Scan Scenario
	Related Work
	Conclusion and Future Work
	References

	Service Composition
	Efficient, Interactive Recommendation of Mashup Composition Knowledge
	Introduction
	Preliminaries and Problem Statement
	Mashup Model and Composition Patterns
	Problem Statement

	Recommending Composition Knowledge: Approach
	Types of Knowledge Patterns
	The Interactive Modeling and Recommender System
	Patterns Knowledge Base

	Exact and Approximate Search of Recommendations
	Implementation and Performance Evaluation
	Related Work
	Conclusion and Future Work
	References

	A Semantic and Information Retrieval Based Approach to Service Contract Selection
	Introduction
	State of the Art
	The Proposed Approach
	Multi-constraint Query Formulation
	Filtering and Query Evaluation
	Service Contract Filtering
	Constraints Evaluation
	Overall Degree of Matching

	An Exhaustive Example
	Experimental Evaluation
	Experiments

	Conclusions and Future Works
	References

	Modeling and Managing Variability in Process-Based Service Compositions
	Introduction
	Related Work
	Motivating Scenario
	Underpinnings of Our Approach
	Feature Modeling Technique
	Feature-Based Service Variability Description
	Feature-Based Service Customization Framework

	Modeling Variability in Process-Based Service Compositions
	Extending BPMN for Representing Variation Points and Variants
	Modeling Variability Intra-dependencies
	Modeling Variability Inter-dependencies

	A Bottom-Up Process Development Methodology
	Overview
	Deriving Executable Process Variants

	Prototype Implementation
	Conclusion
	References

	Quality of Service 2
	QoS-Driven Proactive Adaptation of Service Composition
	Introduction
	Proactive Adaptation Framework
	Proactive Adaptation Process
	Implementation Aspects and Evaluation
	Related Work
	Conclusion and Final Remarks
	References

	A Quality Aggregation Model for Service-Oriented Software Product Lines Based on Variability and Composition Patterns
	Introduction
	Service-Oriented Software Product Lines
	Illustrative Example
	Feature Modeling
	Reference Business Process Model

	Quality of Service Aggregation and Computation for Product Line Architecture
	Quality Criteria for Service-Oriented Product Line
	Combining Variability and Composition Patterns
	Aggregation Rules Based on Variability and Composition Patterns
	Quality of Service Range Aggregation

	Discussion
	Complexity Evaluation
	Critical Analysis

	Related Work
	Conclusion
	References

	Optimization of Complex QoS-Aware Service Compositions
	Introduction
	Related Work
	Orchestration Models and Components
	Orchestration Models
	Orchestration Components

	SystemModel
	Aggregation Functions
	OR-Block
	Directed Acyclic Graph

	Optimization Problem
	Non-linear Optimization Problem
	Linearization of the Non-linear Optimization Problem
	Scalability

	Evaluation
	Conclusion
	References

	Research Papers – Short
	Business Process Modeling
	Goal-Driven Business Process Derivation
	Introduction
	Running Example
	Background
	Goal Refinement and Constraint Specification
	Goal Refinement
	Domain Constraint Specification

	Process Derivation from Goals
	Process Derivation Algorithm

	Prototype Implementation
	Related Work
	Future Work
	References

	Defining and Analysing Resource Assignments in Business Processes with RAL
	Introduction
	Introduction to RAL. Definition and Application
	RAL Semantics
	Mapping the Organizational Structure into DLs
	Mapping RAL Expressions into DLs

	DL-Based Analysis of Resource Assignments
	Related Work
	Conclusions and Future Work
	References

	Stochastic Optimization for Adaptive Labor Staffing in Service Systems
	Introduction
	Problem Formulation
	Our Algorithm (SASOC)
	Simulation Experiments
	Conclusions
	References

	Declarative Enhancement Framework for Business Processes
	Introduction
	The PVDI Framework
	Flow Constraints
	Parallel Constraints
	Frozen Groups
	Semi–frozen Group

	Case–Study: Variability in Local eGovernment
	Related Work
	Conclusion
	References

	XaaS Computing
	RSCMap: Resiliency Planning in Storage Clouds
	Introduction
	Contribtution

	Model and Problem Formulation
	The DR Cost Minimization Framework
	Disaster Recovery Service Class (DRSC) Model
	Replication Solution Model

	Model Assumptions
	Pure Subset Replication Set Property
	Traffic Independent Bandwidth Transformation

	RSCMap Algorithms
	Algorithms for the One-Dimensional Cost Problem
	Algorithms for General Cost Functions

	Related Work and Conclusion
	References

	Dynamically Selecting Composition Algorithms for Economical Composition as a Service
	Introduction
	Motivating Scenario
	Formal Model
	Related Work
	Approach for Selecting Composition Algorithms
	Initialization: Filtering Composition Methods
	Mapping Composition Requests to Composition Methods

	Experimental Evaluation
	Benchmarking and Filtering Composition Methods
	Evaluating Selection Algorithms

	Conclusion
	References

	A Service Model for Development and Test Clouds
	Introduction
	DTC Service Model
	Experiments and Results
	Experimental Data and Setup
	Study 1: Feasibility and Effectiveness of the DTC Service Model
	Study 2: Identifying Profitable Appliances

	Related Work
	Conclusions
	References

	Quality of Service
	Time Based QoS Modeling and Prediction for Web Services
	Introduction
	Related Work
	Dynamic QoS Modeling for Web Services
	QoS Aggregation Based on DQM
	Estimating the Time Cycle Length of Composite Services
	Estimating QoS of Composite Services for Single Invocation
	Establishing DQM for a Composite Service

	Experiment and Evaluation
	Conclusion
	References

	CANPRO: A Conflict-Aware Protocolfor Negotiation of Cloud Resources and Services
	Introduction
	Conflict-Aware Negotiation Protocol
	Evaluation
	Related Work
	Concluding Remarks
	References

	Game-Theoretic Analysis of aWeb Services Collaborative Mechanism
	Introduction
	Related Preliminaries
	Web Services
	Information Service Agents
	Reputation
	Community of Web Services

	The Model
	The Modelled Structure
	The Modelled Game
	Payments

	Cases Overview
	Sj has good QoS.
	Sj has bad QoS.

	Related Work
	Conclusion
	References

	Importance Sampling of Probabilistic Contracts in Web Services
	Introduction
	Probabilistic QoS Contracts
	Importance Sampling
	Dell Supply Chain
	Contract Composition
	Forecasting

	Related Work
	Conclusion
	References

	Particle Filtering Based Availability Prediction for Web Services
	Introduction
	The Service Availability Model and the Particle Filter
	Modeling Web Services Availability
	The Particle Filter

	The Approach
	Experimental Results
	Related Work
	Conclusion
	References

	A Penalty-Based Approach for QoS Dissatisfaction Using Fuzzy Rules
	Introduction
	Motivating Example
	Definition of Penalties
	Modelling Penalties
	Fuzzy Sets for Penalties
	Inference Rules on Penalties

	Experiments and Implementation
	Conclusions and Future Work
	References

	Service Runtime Infrastructures
	Cellular Differentiation-Based Service Adaptation
	Introduction
	Background
	Basic Approach
	Design and Implementation
	Differentiation
	Service Matching
	Dedifferentiation
	Current Status

	Evaluation
	Application
	Conclusion
	References

	Graceful Interruption of Request-Response Service Interactio
	Introduction
	SOCK
	Request-Response Interaction Pattern
	Multiple Request-Response Communication Pattern
	Related and Future Work
	References

	Adaptation of Web Service Interactions Using Complex Event Processing Patterns
	Introduction
	Approach
	Operators
	CEP-Based Adaptation
	General Principles
	Conceptual Architecture
	Proof of Concept
	Demonstration and Experimentation

	Related Work
	Conclusion
	References

	Service Migration and Adoption
	Employing Dynamic Object Offloading as a Design Breakthrough for SOA Adoption
	Introduction
	Problem Characterization
	Middleware Architecture
	Preliminary Evaluation
	Conclusion
	References

	A Survey of SOA Migration in Industry
	Introduction
	Results
	Migration Activities
	Sequencing of Migration Activities
	Legacy Understanding through Personalization
	Service Extraction by Defining the Ideal Services

	Discussion
	Conclusions
	References

	Service Composition
	Forms-Based Service Composition
	Introduction
	Forms-Based Service Composition Approach
	Use Case: News and Financial Data Analysis Process
	Forms as Service Interface Representations
	Forms-Based Control Flow Modeling
	Forms-Based Data Flow Modeling
	Process Verification
	Code Generation for Process Execution

	Related Work
	Conclusion, Discussion and Future Work
	References

	Contractually Compliant Service Compositions
	Introduction
	C-O Diagrams Description and Syntax
	C-O Diagrams Satisfaction Rules
	Conclusions and Future Work
	References

	Profit Sharing in Service Composition
	Introduction
	Model
	Desiderata for Profit Sharing Methods
	Drawbacks in the Existing Profit Sharing Methods
	Profit Sharing by Equal Division
	Profit Sharing by Using the Shapley Value

	Analysis of the Levels of Service Provision
	Case of Thee Component Services
	Effects of the Number of Providers

	Toward Problem Solving
	Concluding Remarks
	References

	Service Applications
	A Predictive Business Agility Model for Service Oriented Architectures
	Introduction
	The Business Agility Index (BAI)
	Predicted Business Agility Index (PBAI)
	The Business Agility Predictor Model
	Building the Predictor Model
	Analysis

	Validating the PBAI
	Threats to Validity

	Conclusions and Future Work
	References

	Personal-Hosting RESTful Web Services for Social Network Based Recommendation
	Introduction
	Personal-Hosting Web Services Architecture
	A Motivating Example
	ph-REST: Personal-Hosting RESTful Web Services

	Social Network Based Recommendation
	Notation
	Prediction Formulas
	Web Services Operations

	Prototype and Evaluation
	Prototype of ph-REST
	Performance of Recommendation Model

	Related Work
	Conclusion
	References

	Work as a Service
	Introduction
	The Changing Nature of Work and Workforce
	Work as a Service (WaaS) Encapsulation
	Coordination Information
	Payload Information
	Information Flow

	Patterns and Structures
	Coordination and Governance
	Agility, Optimization, and Innovation
	Concluding Remarks
	References

	Author Index

