

Lecture Notes in Computer Science 7092
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Dongdai Lin Gene Tsudik
Xiaoyun Wang (Eds.)

Cryptology and
Network Security

10th International Conference, CANS 2011
Sanya, China, December 10-12, 2011
Proceedings

13

Volume Editors

Dongdai Lin
Chinese Academy of Sciences
State Key Laboratory of Information Security (SKLOIS)
Beijing 100190, China
E-mail: ddlin@is.iscas.ac.cn

Gene Tsudik
University of California, Computer Science Department
Irvine, CA 92697-3435, USA
E-mail: gts@ics.uci.edu

Xiaoyun Wang
Tsinghua University, Institute of Advanced Study
Beijing 100084, China
E-mail: xywang@sdu.edu.cn

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-25512-0 e-ISBN 978-3-642-25513-7
DOI 10.1007/978-3-642-25513-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011941497

CR Subject Classification (1998): E.3, C.2, K.6.5, D.4.6, G.2.1, E.4

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

It was a real pleasure to have taken part in organizing the 10th International Con-
ference on Cryptography and Network Security (CANS 2011). It was held during
December 10–12, 2011, at the International Asia Pacific Convention Center in
Sanya, on the subtropical island of Hainan (China). CANS 2011 was sponsored
by the National Natural Science Foundation of China (NSFC) and Shandong
University (SDU). It was also held in cooperation with the International Asso-
ciation for Cryptologic Research (IACR).

The CANS 2011 Program Committee (PC) consisted of 46 internationally
recognized researchers with combined expertise covering the entire scope of the
conference.

The recent growth in the number of cryptography venues prompted stiff com-
petition for high-quality papers. Nonetheless, CANS has consistently attracted a
number of strong submissions. This year, we received a total of 65 submissions.
A few were incomplete and/or were rejected without review. Each remaining
paper was reviewed by at least four reviewers. After intensive deliberations by
the Program Committee, 18 submissions were accepted for presentation.

In addition to regular papers, the conference program included four excellent
invited talks, by Colin Boyd (QUT), Xavier Boyen (PARC), Phong Nguyen
(ENS) and Joan Daemen (STMicroelectronics).

A number of people selflessly contributed to the success of CANS 2011. First
and foremost, we thank the authors of all submissions. They are the backbone
of this conference and their confidence and support are highly appreciated. We
are similarly grateful to the dedicated, knowledgeable and hard-working Pro-
gram Committee members who provided excellent and timely reviews as well as
took part in post-review discussions. Their altruistic dedication and community
service spirit are commendable. Special thanks to “shepherds” for their extra
efforts.

We gratefully acknowledge the organizational contributions by CANS 2011
General Chair, Dongdai Lin, without whom the conference would have been im-
possible. We wish to thank Meiqin Wang as well as all the members of Organizing
Committee for the local arrangements, and Claudio Soriente for publicity. We
are also indebted to the CANS Steering Committee members for their guidance.
Last, but not least, we thank CANS 2011 sponsors: NSFC and SDU.

December 2011 Gene Tsudik
Xiaoyun Wang

Program Co-chairs

CANS 2011

The 10th International Conference
on Cryptography and Network Security

(In Cooperation with IACR)

Sanya, China
December 10–12, 2011

Sponsored and organized by

Shandong University
and

National Natural Science Foundation of China

Steering Committee

Yvo Desmedt University College London, UK
Matt Franklin University of California, Davis, USA
Juan Garay AT&T Labs - Research, USA
Yi Mu University of Wollongong, Australia
David Pointcheval CNRS and ENS, France
Huaxiong Wang NTU, Singapore

General Chair

Dongdai Lin SKLOIS, Chinese Academy of Sciences, China

Program Co-chairs

Gene Tsudik University of California, Irvine, USA
Xiaoyun Wang Shandong University, China

Program Committee

Jean-Philippe Aumasson Nagravision, Switzerland
Feng Bao I2R, Singapore
Jean-Luc Beuchat University of Tsukuba, Japan
Mike Burmester Florida State University, USA
Sherman S.M. Chow University of Waterloo, Canada
Giovanni Di Crescenzo Telcordia, USA
Emiliano De Cristofaro University of California, Irvine, USA
Reza Curtmola NJIT, USA

VIII CANS 2011

Xuhua Ding SMU, Singapore
David Galindo University of Luxembourg, Luxembourg
Amir Herzberg Bar-Ilan University, Israel
Nick Hopper University of Minnesota, USA
Tetsu Iwata Nagoya University, Japan
Charanjit Jutla IBM Research, USA
Khoongming Khoo DSO National Laboratories, Singapore
Loukas Lazos University of Arizona, USA
Gaëtan Leurent University of Luxembourg, Luxembourg
Helger Lipmaa Cybernetica AS and Tallinn University, Estonia
Feifei Li Florida State University, USA
Di Ma University of Michigan, USA
Mark Manulis TU Darmstadt, Germany
Florian Mendel Graz University of Technology, Austria
Atsuko Miyaji JAIST, Japan
Jorge Nakahara Jr. Independent Researcher
Melek Önen EURECOM, France
Bryan Parno Microsoft Research, USA
Andreas Pashalidis KU Leuven, Belgium
Thomas Peyrin NTU, Singapore
Raphael C.-W. Phan Loughborough University, UK
Josef Pieprzyk Macquarie University, Australia
Rei Safavi-Naini University of Calgary, Canada
Yu Sasaki NTT Research, Japan
Martin Schläffer Graz University of Technology, Austria
Michael Scott Dublin City University, Ireland
Elaine Shi Berkeley / PARC, USA
Claudio Soriente Universidad Politecnica de Madrid, Spain
Damien Stehlé CNRS and ENS de Lyon, France
Ron Steinfeld Macquarie University, Australia
Søren Steffen Thomsen Technical University of Denmark, Denmark
Ersin Uzun PARC, USA
Ivan Visconti University of Salerno, Italy / UCLA, USA
Huaxiong Wang NTU, Singapore
Meiqin Wang Shandong University, China
Wenling Wu Institute of Software, CAS, China
Shouhuai Xu University of Texas, San Antonio, USA
Jianying Zhou I2R, Singapore

Local Arrangements Chair

Meiqin Wang Shandong University, China

CANS 2011 IX

Local Organizing Committee

Hongbo Yu Tsinghua University, China
Keting Jia Tsinghua University, China
Puwen Wei Shandong University, China
Lidong Han Tsinghua University, China

Publicity Chair

Claudio Soriente Polytechnic University of Madrid, Spain

Secretary and Treasurer

Puwen Wei Shandong University, China

WEB/Registration

Jiazhe Chen Shandong University, China

External Reviewers

Filipe Beato
Xavier Boyen
Aldar C-F. Chan
Kai-Yuen Cheong
Kim-Kwang Raymond

Choo
Cheng-Kang Chu
Yi Deng
Orr Dunkelman
Nicolas Estibals
Kazuhide Fukushima
David Gardner
Paolo Gasti
Pierrick Gaudry
Zahra Aghazadeh Gaven

Watson
Moti Geva
Jian Guo
Francis Hsu
Xinyi Huang

Choy Jia Li Valerie
Markulf Kohlweiss
Simon Kramer
Mario Lamberger
Gregor Leander
Zi Lin
Weiliang Luo
Avradip Mandal
Tomislav Nad
Kris Narayan
Maŕıa Naya-Plasencia
Lan Nguyen
Ryo Nojima
Wakaha Ogata
Kazumasa Omote
Andreas Peter
Natacha Portier
Axel Poschmann
Francisco

Rodrguez-Henrquez

Yasuhide Sakai
Alessandra Scafuro
Jun Shao
Haya Shulman
Ashraful Tuhin
Frederik Vercauteren
Cong Wang
Wei Wu
Brecht Wyseur
Huihui Yap
Shucheng Yu
Tsz Hon Yuen
Kai Zeng
Lei Zhang
Liangfeng Zhang
Xin Zhang
Yun Zhang
Qingji Zheng

Table of Contents

Invited Talks

Expressive Encryption Systems from Lattices . 1
Xavier Boyen

Breaking Fully-Homomorphic-Encryption Challenges (Abstract) 13
Phong Q. Nguyen

Symmetric Cryptanalysis

Cube Cryptanalysis of Hitag2 Stream Cipher . 15
Siwei Sun, Lei Hu, Yonghong Xie, and Xiangyong Zeng

New Impossible Differential Cryptanalysis of Reduced-Round
Camellia . 26

Leibo Li, Jiazhe Chen, and Keting Jia

The Initialization Stage Analysis of ZUC v1.5 . 40
Chunfang Zhou, Xiutao Feng, and Dongdai Lin

Algebraic Cryptanalysis of the Round-Reduced and Side Channel
Analysis of the Full PRINTCipher-48 . 54

Stanislav Bulygin and Johannes Buchmann

Symmetric Ciphers

EPCBC - A Block Cipher Suitable for Electronic Product Code
Encryption . 76

Huihui Yap, Khoongming Khoo, Axel Poschmann, and
Matt Henricksen

On Permutation Layer of Type 1, Source-Heavy, and Target-Heavy
Generalized Feistel Structures . 98

Shingo Yanagihara and Tetsu Iwata

Public Key Cryptography

Security Analysis of an Improved MFE Public Key Cryptosystem 118
Xuyun Nie, Zhaohu Xu, Li Lu, and Yongjian Liao

A New Lattice-Based Public-Key Cryptosystem Mixed with a
Knapsack . 126

Yanbin Pan, Yingpu Deng, Yupeng Jiang, and Ziran Tu

XII Table of Contents

Achieving Short Ciphertexts or Short Secret-Keys for Adaptively
Secure General Inner-Product Encryption . 138

Tatsuaki Okamoto and Katsuyuki Takashima

Protocol Attacks

Comments on the SM2 Key Exchange Protocol . 160
Jing Xu and Dengguo Feng

Cryptanalysis of a Provably Secure Cross-Realm Client-to-Client
Password-Authenticated Key Agreement Protocol of CANS ’09 172

Wei-Chuen Yau, Raphael C.-W. Phan, Bok-Min Goi, and
Swee-Huay Heng

Passive Attack on RFID LMAP++ Authentication Protocol 185
Shao-hui Wang and Wei-wei Zhang

Privacy Techniques

Multi-show Anonymous Credentials with Encrypted Attributes in the
Standard Model . 194

Sébastien Canard, Roch Lescuyer, and Jacques Traoré

Group Signature with Constant Revocation Costs for Signers and
Verifiers . 214

Chun-I Fan, Ruei-Hau Hsu, and Mark Manulis

Fast Computation on Encrypted Polynomials and Applications 234
Payman Mohassel

Varia

AniCAP: An Animated 3D CAPTCHA Scheme Based on Motion
Parallax . 255

Yang-Wai Chow and Willy Susilo

Towards Attribute Revocation in Key-Policy Attribute Based
Encryption . 272

Pengpian Wang, Dengguo Feng, and Liwu Zhang

A Note on (Im)Possibilities of Obfuscating Programs of Zero-Knowledge
Proofs of Knowledge . 292

Ning Ding and Dawu Gu

Author Index . 313

Expressive Encryption Systems from Lattices

(Abstract from the Invited Lecture)

Xavier Boyen

Palo Alto Research Center

Abstract. In this survey, we review a number of the many “expres-
sive” encryption systems that have recently appeared from lattices, and
explore the innovative techniques that underpin them.

1 Introduction

Lattice-based cryptosystems are becoming an increasingly popular in the re-
search community, owing to a unique combination of factors. On the one hand,
lattice systems are often conceptually simple to understand and thus easy to
implement by non-specialists, at least if one makes abstraction of the finer
mathematical intricacies surrounding their security analysis. On the other, their
soundness is backed by strong complexity-theoretic evidence that the underlying
problems are suitably “hard”, of which the most often repeated are the existence
of certain average-case to worst-case equivalences [7,19] and their conjectured re-
sistance to quantum attacks. All those factors conspire to make lattices a prime
choice, if not the primary one yet, for mathematical crypto design looking out
into the future.

Although empirical uses of lattices have been made in commercial cryptog-
raphy, they have had a rather slow start in research circles. For more than a
decade, indeed, signature schemes and basic public-key encryption have essen-
tially remained their sole confine [7,19]. In the past few years, however, lattices
have flourished into a theoretically solid, comprehensive framework, owing to the
discovery of a few key concepts and techniques. This ushered the way to the con-
struction of ever more powerful and expressive public-key encryption systems,
writ large — a whole new world of cryptographic constructions waiting to be
explored and conquered.

The search for encryption systems with complex functionalities arguably orig-
inates with the field of modern cryptography itself; but it is the arrival of bilinear
maps, or pairings, that truly jumpstarted it, by providing such spectacular solu-
tions to long-standing open problems as identity-based encryption [10]. Lattices
are late to this game, and currently still lag in functionality and practicality with
respect to pairing-based constructions. Nevertheless, an unmistakable shift from
pairings to lattices is presently occurring in the research community, driven as
much as the looming threat of quantum attacks that lattices seek to alleviate, as
the sheer scientific draw of tackling tough problems from wholly new directions.

D. Lin, G. Tsudik, and X. Wang (Eds.): CANS 2011, LNCS 7092, pp. 1–12, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 X. Boyen

In this lecture, we set out to explore some of the recent advances in that search,
and distill the essential new ideas that made them possible.1

2 Background

A lattice is an additive subgroup of Rn; it is therefore generated by a basis of n
(linearly independent) vectors in Rn. In high dimensions, many computational
problems on lattices are intractable, and in some cases are even known to be
NP-hard. What makes lattices useful in cryptography, is that, though all bases
are equivalent from a linear algebraic point of view, bases whose vectors have
low norm can provide easy solutions to otherwise intractable lattice problems.
For instance, the “closest vector problem” (which consists of finding a lattice
point within a prescribed radius from a given reference in Rn) becomes soluble
if avails a low-norm lattice basis. Without such a good basis, this problem and
many related ones remain intractable.

Whereas this asymmetry is, of course, central to lattices’ use in asymmetric
cryptography, general lattices as defined above are somewhat unwieldy to work
with. One often prefers to restrict oneself to a restricted class of lattices with
special properties; be it for reasons of convenience or efficiency, or both.

To wit, many of the recently developed expressive cryptosystems make use of
Ajtai’s lattices [6]. Those are sets of vectors x ∈ Zm that lie in the kernel of
some A ∈ Zn×m modulo some prime q, i.e., defined by an equation A · x = 0
(mod q). Aside from their definitional convenience, Ajtai’s lattices are appealing
for two reasons: one of security, the other of flexibility. First, they induce rich
and usable cryptographic key spaces, owing to the Regev’s result that random
instances are just as hard as worst-case ones [19]. Second, they are closely related
to error-correction codes, and in particular the matrix A defines a “public”
computational operator that can be effectively reverted with knowledge of a
“private” trapdoor, as first shown by Gentry et al. [15]: the map x �→ A · x,
restricted to for low-norm inputs x ∈ Zm, can be reverted, in the sense of
finding a colliding pre-image x′ ∈ Zm, if one knows a good basis for the implied
lattice. This combination of features — easy-to-sample key spaces and a kind of
invertibility — are sought for in asymmetric cryptographic constructions.

By way of comparison, we mention that Gentry’s fully homomorphic encryp-
tion scheme made extensive use of a different kind of lattices, constructed from
polynomial rings, whose ring structure was crucial to realize full homomorphism
in his original system.

1 Around the same time, also appeared the first realization of “fully homomorphic
encryption” [14], a hugely significant breakthrough of both theoretical and (one
hopes) eventual practical significance. FHE undoubtedly contributed greatly to the
general surge in lattice popularity, notwithstanding the quite different flavors of
problems involved. FHE has since taken a life of its own, with the most recent
performance and conceptual improvements seemingly taking it away from its lattice
roots, and squarely into the realm of pure number theory. We refer the interested
reader to the rapidly growing literature on the subject; see [16] for pointers.

Expressive Encryption Systems from Lattices 3

Note. Due to space contraints, we do not give formal statements of the various
notions and schemes in this abstract, but refer the reader to the original papers.

2.1 Lattice Notions

We let parameters q, m, n be polynomial functions of a security parameter λ.

Lattices. Let B =
[

b1

∣∣ . . .
∣∣ bm

]
be an m × m real matrix with linearly

independent column vectors. It generates an m-dimensional full-rank lattice Λ,

Λ = L(B) =
{

y ∈ R
m s.t. ∃s = (s1, . . . , sm) ∈ Z

m , y = B s =
m∑

i=1

si bi

}
Of interest to us is the case of integer lattices that are invariant under translation
by multiples of some integer q in each of the coordinates, or Ajtai lattices.

Ajtai lattices (and their shifts). For q prime, A ∈ Zn×m
q and u ∈ Zn

q , define:

Λ⊥
q (A) =

{
e ∈ Z

m s.t. A e = 0 (mod q)
}

Λu
q (A) =

{
e ∈ Z

m s.t. A e = u (mod q)
}

Ajtai [6] first showed how to sample an essentially uniform matrix A ∈ Z
n×m
q ,

along with a full-rank set TA ⊂ Λ⊥(A) of low-norm vectors or points on the
lattice. We state an improved version of Ajtai’s basis generator, from [8].

Trapdoors for lattices. Let n = n(λ), q = q(λ), m = m(λ) be positive integers
with q ≥ 2 and m ≥ 5n log q. There exists a probabilistic polynomial-time algo-
rithm TrapGen that outputs a pair of A ∈ Zn×m

q and TA ∈ Zm×m
q such that A is

statistically close to uniform and TA is a basis for Λ⊥(A) with “Gram-Schmidt”
length L = ‖T̃A‖ ≤ m · ω(

√
log m), with all but n−ω(1) probability.

2.2 Discrete Gaussians

Central to all cryptosystems based on Ajtai lattices, is the study of the dis-
tribution of various vectors of interest (e.g., preimages to the operation A).
Multidimensional discrete Gaussian distributions are particularly useful.

Discrete Gaussians. Let m be a positive integer and Λ an m-dimensional lattice
over R. For any vector c ∈ Rm and any positive spread parameter σ ∈ R>0, let:

ρσ,c(x) = exp
(
− π ‖x−c‖2

σ2

)
: a Gaussian function of center c and parameter σ;

ρσ,c(Λ) =
∑

x∈Λ ρσ,c(x) : the infinite discrete sum of ρσ,c over the lattice Λ;
DΛ,σ,c : the discrete Gaussian distribution on Λ of center c and parameter σ:

∀y ∈ Λ , DΛ,σ,c(y) =
ρσ,c(y)
ρσ,c(Λ)

For convenience, we abbreviate ρσ,0 and DΛ,σ,0 respectively as ρσ and DΛ,σ.

4 X. Boyen

2.3 Sampling and Preimage Sampling

The public-key and secret-key functions we need for asymmetric cryptography
arise from the previous notions. Specifically, while anyone can sample a discrete
Gaussian preimage with no prescription on its image under A, only with a
trapdoor or short basis B can one sample a preimage hitting a specific target
image u with the same conditional distribution. The following results are due
to Gentry, Peikert, and Vaikuntanathan [15]. They first construct an algorithm
for sampling from the discrete Gaussian DΛ,σ,c, given a basis B for the m-
dimensional lattice Λ with σ ≥ ‖B̃‖ · ω(

√
log m). Next they give an algorithm

that given an trapdoor and a target, can sample a preimage with the same
(conditional) discrete Gaussian distribution.

Sampling a discrete Gaussian. There exists a probabilistic polynomial-time al-
gorithm, denoted SampleGaussian, that, on input an arbitrary basis B of an
m-dimensional full-rank lattice Λ = L(B), a parameter σ ≥ ‖B̃‖ · ω(

√
log m),

and a center c ∈ Rm, outputs a sample from a distribution statistically close to
DΛ,σ,c.

Preimage sampling from trapdoor. There exists a probabilistic polynomial-time
algorithm, denoted SamplePre, that, on input a matrix A ∈ Zn×m

q , a short
trapdoor basis TA for Λ⊥

q (A), a target image u ∈ Zn
q , and a Gaussian parameter

σ ≥ ‖T̃A‖ · ω(
√

log m), outputs a sample e ∈ Zm
q from a distribution within

negligible statistical distance of DΛu
q (A),σ.

Micciancio and Regev [17] show that the norm of vectors sampled from dis-
crete Gaussians is small with high probability. We omit the full statement.

2.4 Hardness Assumption

One of the classic hardness assumptions associated with Ajtai lattices, refers to
the LWE — Learning With Errors — problem, first stated by [19], and since
extensively studied and used. For polynomially bounded modulus q, the compu-
tational and decisional versions of the problems are polynomially reducible to
each other. We give the following statement of the decisional version.

The decisional LWE problem. Consider a prime q, a positive integer n, and a
distribution χ over Zq, all public. An (Zq, n, χ)-LWE problem instance consists
of access to an unspecified challenge oracle O, being, either, a noisy pseudo-
random sampler Os carrying some constant random secret key s ∈ Zn

q , or, a
truly random sampler O$, whose behaviors are respectively as follows:

Os: outputs noisy pseudo-random samples of the form (wi, vi) =
(
wi, wT

i s +
xi

)
∈ Zn

q × Zq, where, s ∈ Zn
q is a uniformly distributed persistent se-

cret key that is invariant across invocations, xi ∈ Zq is a freshly generated
ephemeral additive noise component with distribution χ, and wi ∈ Zn

q is a
fresh uniformly distributed vector revealed as part of the output.

Expressive Encryption Systems from Lattices 5

O$: outputs truly random samples
(
wi, vi

)
∈ Zn

q × Zq, drawn independently
uniformly at random in the entire domain Zn

q × Zq.

The (Zq, n, χ)-LWE problem statement, or LWE for short, allows an unspeci-
fied number of queries to be made to the challenge oracle O, with no stated
prior bound. We say that an algorithm A decides the (Zq, n, χ)-LWE problem if∣∣Pr[AOs = 1]− Pr[AO$ = 1]

∣∣ is non-negligible for a random s ∈ Zn
q .

Average to worst case. The confidence in the hardness of the LWE problem
stems in part from a result of Regev [19] which shows that the for certain noise
distributions χ, the LWE problem is as hard as (other) classic lattice problems
(such as SIVP and GapSVP) in the worst case, under a quantum reduction. A
non-quantum reduction with different parameters was later given by Peikert [18].
We state Regev’s result for reference below.

The Regev reduction theorem. Consider a real parameter α = α(n) ∈ (0, 1) and
a prime q = q(n) > 2

√
n/α. Denote by T = R/Z the group of reals [0, 1) with

addition modulo 1. Denote by Ψα the distribution over T of a normal variable
with mean 0 and standard deviation α/

√
2 π then reduced modulo 1. Denote by

�x = �x + 1
2� the nearest integer to the real x ∈ R. Denote by Ψ̄α the discrete

distribution over Zq of the random variable �q X mod q where the random
variable X ∈ T has distribution Ψα. Then, if there exists an efficient, possibly
quantum, algorithm for deciding the (Zq, n, Ψ̄α)-LWE problem, there exists a
quantum q · poly(n)-time algorithm for approximating the SIVP and GapSVP
problems, to within Õ(n/α) factors in the �2 norm, in the worst case.

Since the best known algorithms for 2k-approximations of GapSVP and SIVP
run in time 2Õ(n/k), it follows that the LWE problem with noise ratio α = 2−nε

ought to be hard for some constant ε < 1.

3 Classic Constructions

We start this presentation with the systems from which all recent developments
are based, starting with Regev’s minimalistic public-key cryptosystem.

3.1 Regev Public-Key Encryption

The basic principle of Regev’s original public-key cryptosystem is deceptively
simple, as long as one does not delve too deep in its analysis. Paradoxically,
Regev’s system predated the GPV trapdoor preimage sampling, and required
no other machinery than a basic random Ajtai lattice, not even a short basis.

The algorithms defining the system are as follows:

Key Generation. Pick a suitable modulus q, a random Ajtai matrix A ∈
Zn×m

q , and a short random vector d ∈ Zm; and let u = A · d mod q ∈ Zn
q .

The public and secret keys are:

PK = (q,A, u) SK = e

6 X. Boyen

Encryption. To encrypt a bit m ∈ {0, 1}, pick a random vector s ∈ Zn
q , a noise

scalar y0 ∼ ψ, and a noise vector y1 ∼ ψm, and output:

CT =
(
c0 = s� u + m · � q

2
�+ y0, c1 = A� s + y1

)
Decryption. The bit m is deemed to be 0 or 1, if the following quantity is

respectively closer to 0 or q
2 , modulo q:

c0 − c�1 d (mod q)

It is easy to see that all terms cancel in the decryption operation, but for the noise
contributions due to y0 and y1 and the term m · � q

2� which redundantly encodes
m. The noise is chosen sufficiently small so that, even after taking the inner
product of y1 with the secret key vector d, the message m remains recognizable.
However, for an attacker who can only find large preimages of u, decoding will fail
as the noise will completely mask the message. Technically, the noise distribution
ψ is chosen according to Regev’s reduction theorem, so that semantic security
of the system can be reduced to a worst-case lattice hardness assumption. We
refer to Regev’s paper for details.

Remark. We note that in Regev’s original paper [19], the roles of d and s were
reversed. The above is Regev’s dual, more conveniently extended as we now
describe.

3.2 GPV Identity-Based Encryption

Gentry et al. [15] first showed how to realize identity-based encryption from
lattices. In IBE, the public key is arbitrary, and the corresponding secret key
can be “extracted” from it by a central authority that holds a special trapdoor.

The GPV system can be viewed as an instantiation of the Regev system,
where instead of having a single fixed “syndrome” vector u (see the description
above), said vector is made to depend on the recipient’s identity using a hash
function, as in uid = H(id). Since no predetermined d can serve to deduce u, a
central authority will need the preimage sampling trapdoor to compute a short
preimage did for any desired target uid; the trapdoor is thus the IBE master key.

Their system is described as follows:

System Setup. Pick a suitable modulus q, and sample a random Ajtai matrix
A ∈ Zn×m

q with associated trapdoor B ∈ Zm×m. The public parameters and
master secret key are:

PP = (q,A) MK = B

Private Key Extraction. To extract a private key corresponding to a public
identity id, first compute uid = H(id) ∈ Zn

q , and then, using the trapdoor
B, find a short preimage did, i.e., a low-norm vector such that A · did = uid

(mod q). Output the private key as:

SKid = did

Expressive Encryption Systems from Lattices 7

Encryption. To encrypt a bit m ∈ {0, 1} for an identity id, compute uid =
H(id) ∈ Zn

q and then encrypt as in the Regev system; i.e., picking a random
vector s ∈ Zn

q , a noise scalar y0 ∼ ψ, and a noise vector y1 ∼ ψm, output:

CT =
(
c0 = s� uid + m · � q

2
�+ y0, c1 = A� s + y1

)
Decryption. Proceed as in the Regev system, using the private key did; i.e.,

decrypt as 0 or 1 depending on whether the following is closer to 0 or q
2 ,

modulo q:
c0 − c�1 did (mod q)

The proof of security follows readily from that of Regev’s system, given the
properties of trapdoor preimage sampling, in the random-oracle model.

4 Techniques and Refinements

Building upon those earlier results, a number of significant refinements were
quick to appear, showing that full security reductions were possible and practical,
even in the standard model.

4.1 Bit-by-Bit Standard-Model IBE

The first step was taken concurrently by several teams [3,13], that quickly figured
out a way to realize IBE from lattices in the standard model, albeit with a stiff
efficiency penalty over the GPV system.

The idea was to encode the identity not in Regev’s vector u as in GPV
(which required a random oracle), but in the matrix A itself, in a binary fashion
reminiscent of the pairing-based from [12]. Specifically, for an �-bit identity id =
(b1, . . . , b�) ∈ {0, 1}�, the matrix Aid ∈ Z

n×(�+1)m
q is defined as the following

concatenation of � + 1 constant matrices of dimension n×m:

Aid =
[
A0

∣∣A1,b1

∣∣A2,b2

∣∣ . . . ∣∣A�,b�

]
from which the following relationship between (a user’s) public and private key
will be enforced:

Aid · did = u (mod q)

It is easy to see (but harder to prove) that all that is needed to find a short
solution did in the above equation, is a preimage sampling trapdoor for any of
the matrices Ai,· intervening in Aid. Accordingly, all the submatrices Ai,bi for
i ≥ 1 can be picked at random, as merely a trapdoor B0 for A0 suffices to find
short preimages under the whole of Aid. Hence, such shall be the IBE master
key in the real system.

The full system is described as follows:

8 X. Boyen

System Setup. Pick a suitable modulus q, and sample a random Ajtai matrix
A0 ∈ Zn×m

q with associated trapdoor B0 ∈ Zm×m. Also sample 2� random
matrices Ai,b ∈ Zn×m

q for i ∈ [�] and b ∈ {0, 1}, and a random vector u ∈ Zn
q .

The public parameters and master secret key are:

PP = (q,A0, {Ai,b}, u) MK = B0

Private Key Extraction. To extract a private key corresponding to a public
identity id, using the trapdoor B0, find a low-norm vector did such that
Aid · did = u (mod q). The private key is: SKid = did.

Encryption. Proceed as in the Regev system substituting Aid for A.
Decryption. Proceed as in the Regev system, substituting did for d.

The large matrix Aid renders the system rather inefficient, but enables a security
proof against “selective-identity” attacks (where the attacker reveals the target
id∗ in advance) in the standard model. One builds a simulator that can extract
private keys for all identities but the pre-announced target id∗. The simulator
shall set itself up with a trapdoor for every submatrix Ai,(1−b∗i) where b∗i is the
i-th bit of the target identity — but not A0 (which shall be assembled from an
LWE challenge to show a reduction). This way, the resulting concatenation Aid

will have one or more known trapdoors, unless id = id∗.

4.2 All-at-Once Standard-Model IBE

Just like the “bit-by-bit” construction of [3,13], above, is a lattice analogue to
the pairing-based IBE by Canetti, Halevi, and Katz [12], a similar analogy can
be made from the “all-at-once” pairing-based IBE by Boneh and Boyen [9], as a
more efficient way to build a provably secure IBE in the standard model. The full
analysis is due to Agrawal et al. [1] and is quite involved, but the construction
is based on a simple principle.

Here, the recipient identity is encoded into the Regev matrix A all at once,
without decomposing it bit by bit. Specifically, the Regev encryption matrix
becomes (for constant A0,A1,A2 ∈ Zn×m

q),

Aid =
[
A0

∣∣A1 + id ·A2

]
when the identity id ∈ Zq, or even, in all generality,

Aid =
[
A0

∣∣A1 + Mid ·A2

]
when the identity id ∈ Zn

q , based on a straightforward deterministic encoding
into a regular square matrix Mid ∈ Zn×n

q , such that any non-trivial difference
Mid1 −Mid2 is itself non-singular.

In the real system, the central authority will have a trapdoor for A0, and thus
be able to find short solutions did for every requested id in the equation (for
constant u ∈ Zn

q):
Aid · did = u (mod q)

Expressive Encryption Systems from Lattices 9

In the simulation for the security reduction, one sets things up so that the
simulator can extract private keys for all identities id except the challenge id∗.
The matrix A0 is imposed from an external LWE challenge, and thus without a
trapdoor. We set A1 = A0 ·R−Mid∗ ·A2, for some random R ∈ {−1, 1}m×m.
It follows that for all non-challenge identities, the encryption matrix reads:

Aid =
[
A0

∣∣A0 ·R + (Mid −Mid∗) ·A2

]
For the challenge identity, the factor (Mid −Mid∗) in parentheses vanishes, and
what is left is:

Aid∗ =
[
A0

∣∣A0 ·R
]

Agrawal et al. [1] give an algorithm to find short preimages under matrices
Aid of this form,without a trapdoor for A0, provided one knows a trapdoor for
(Mid −Mid∗) ·A2, which will simply be that of A2 provided that the factor in
parentheses is regular. Their algorithm exploits the appearance of multiples of A0

on both sides of the concatenation to engineer a cancellation. Note that the role
of the matrix R is to blind the simulation setup, so that it looks indistinguishable
from the real system to an attacker. In the case where id = id∗, the term in A2

vanishes, and so with it any beneficial use of its trapdoor.
For completeness, we describe their system as follows:

System setup. Pick a suitable modulus q, and sample a random Ajtai matrix
A0 ∈ Zn×m

q with associated trapdoor B0 ∈ Zm×m. Also sample two ran-
dom matrices A1,A2 ∈ Zn×m

q , and a random vector u ∈ Zn
q . The public

parameters and master secret key are:

PP = (q,A0,A1,A2, u) MK = B0

Private key extraction. To extract a private key corresponding to a public
identity id, define its matrix encoding Mid and its encryption matrix Aid =
[A0|A1 + Mid ·A2]. Using the trapdoor B0, sample a low-norm vector did

solution of Aid · did = u (mod q). The private key is: SKid = did.
Encryption. Proceed as in the Regev system substituting Aid for A.
Decryption. Proceed as in the Regev system, substituting did for d.

4.3 Adaptive or “Full” Security

A drawback of the previous systems is their need to relax the security notion,
from a bona fide adaptive-identity attack to a less realistic selective-identity one,
in order to achieve a reduction in the standard model (sans random oracle).

In [11], we propose a scheme and accompanying proof technique that address
this limitation. The general idea is to set up the simulator to fail not on one
but several possible challenge queries, using an efficient key-space partitioning
technique that is quite specific to lattices. The full version of [1] describes the
fully secure system and its proof.

10 X. Boyen

5 Delegation and Hierarchies

A classic generalization of the notion of IBE is that of hierarchical IBE, where
private-key holders can serve as local authorities to issuing private keys to any
identity below them in the hierarchical tree of identities.

5.1 Concatenation-Based Delegation

The first inroad into HIBE from lattice is due to Cash et al. [13], who in the
same paper leverage their bit-by-bit IBE approach into a hierarchical scheme
thanks to a trapdoor delegation mechanism of their design.

The principle is as follows. Let an Ajtai matrix A0 and its associated “good”
trapdoor T0. Let A1 be an arbitrary matrix that is dimension-compatible with
A0. Cash et al. provide an algorithm that transforms A0’s trapdoor T0 into a
trapdoor T for the concatenated matrix A = [A0|A1], and in such a way that the
new trapdoor T has only a slightly higher norm than the originating trapdoor
T0. (While the norm might not increase at all under a näıve delegation process,
the degradation of quality is a by-product of a necessary re-randomization step
to ensure that the delegated basis cannot be used to reconstruct the delegator
basis).

The Cash-Hofheinz-Kiltz-Peikert HIBE. Based on this delegation algorithm,
Cash et al. [13] extend their bit-by-bit IBE scheme into a hierarchical scheme in a
straightforward manner: subordinate identities are constructed by extending an
identity prefix with additional bits; the corresponding encryption matrices are
likewise constructed by concatenating additional sub-matrices to the right; and
the corresponding private keys are obtained by invoking the delegation algorithm
for such concatenations.

The (first) Agrawal-Boneh-Boyen HIBE. Based on the same CHKP delegation
algorithm, Agrawal et al. [1] likewise extend their all-at-once IBE scheme into a
hierarchical scheme, in the same straightforward manner.

5.2 Multiplicative In-Place Delegation

A second approach to delegation and HIBE, due to Agrawal et al. [2], relies not
on concatenation, but on multiplication by invertible low-norm matrices. They
propose a delegation mechanism that operates “in place”, i.e., without increasing
the dimensions of the lattices or the number of elements in the matrices defining
them.

Given a good basis TA for an Ajtai lattice Λ⊥(A), they show how to create a
(slightly less) good basis TB for another lattice Λ⊥(B), whose defining matrix B
has the same dimension as A and can be deterministically and publicly computed
from A. The delegation mechanism furthermore ensures that given A,B and TB,
it is difficult to recover TA or any other a short basis for Λ⊥(A), thus ensuring
the “one-wayness” of the delegation process.

Expressive Encryption Systems from Lattices 11

Very informally, the delegated matrix B ∈ Zn×m
q is defined from the delegator

matrix A ∈ Zn×m
q and a low-norm invertible public delegation matrix R ∈

Zm×m
q , as the product:

B = A ·R−1

Since TA is a trapdoor for A, i.e., a short basis for Λ⊥(A), it follows that
A ·TA = 0 (mod q). Hence, we also have that (A ·R−1) · (R ·TA) = 0 (mod q).
Hence, R ·TA ∈ Zm×m

q defines a basis for Λ⊥(B), and a “good” one since R has
low norm. A final re-randomization step will ensure that the delegation cannot
be undone, ensuring its “one-wayness”.

The (second) Agrawal-Boneh-Boyen HIBE. Equipped with their delegation tool,
Agrawal et al. [2] construct an efficient HIBE system, with provable security from
the LWE assumption [19], and where the dimension of the keys and ciphertexts
does not increase with the depth of the hierarchy. In particular, for shallow hier-
archies, the efficiency of their system is directly comparable to the random-oracle
non-hierarchical system of [15]. For deep hierarchies, the number of private key
and ciphertext elements remains the same, but the bit-size of the modulus needs
to increase linearly. This results in an HIBE system whose space complexity is
only linear in the depth of the hierarchy.

6 Attributes and Predicates

To conclude this tour, we note a couple of brand new results, that concurrently
demonstrated that encryption systems even more expressive than (H)IBE could
be constructed from lattices — thereby breaking the “IBE barrier”.

Lattice-based “fuzzy IBE”. One system, due to Agrawal et al. [4], is a Fuzzy IBE
system. Fuzzy IBE, a notion originally defined and constructed from bilinear
maps in [20], was the first instance of what is now referred under the umbrella
of attribute-based encryption. In Fuzzy IBE, decryption is conditioned upon an
approximate rather than exact match between recipient attributes stated in the
ciphertext, and those actually present in the actual recipient’s private key.

Lattice-based “fuzzy IBE”. The other system, due to Agrawal et al. [5], is an
instance of Predicate-based encryption system, where decryption is controlled by
the (non-)vanishing of the inner product of two vectors of attributes: one from
the ciphertext, the other from the private key.

7 Conclusion

While a great many technical and conceptual challenges remain unsolved, if there
is a lesson to be drawn from the many recent exciting developments in just a
few focused areas of investigation, is that lattice-based cryptography is poised to
jump from the sidelines to the mainstream, and find its place into all manners
of real-world applications in the coming decades. We certainly look forward to
this transformation.

12 X. Boyen

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

2. Agrawal, S., Boneh, D., Boyen, X.: Lattice Basis Delegation in Fixed Dimen-
sion and Shorter-Ciphertext Hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010)

3. Agrawal, S., Boyen, X.: Identity-based encryption from lattices in the standard
model (July 2009) (manuscript), http://www.cs.stanford.edu/~xb/ab09/

4. Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Fuzzy iden-
tity based encryption from lattices. Cryptology ePrint Archive, Report 2011/414
(2011), http://eprint.iacr.org/

5. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional Encryption for Inner
Product Predicates from Learning with Errors. In: Lee, D.H. (ed.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011)

6. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
Proceedings of STOC 1996, pp. 99–108. ACM, New York (1996)

7. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: STOC, pp. 284–293 (1997)

8. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In:
STACS, pp. 75–86 (2009)

9. Boneh, D., Boyen, X.: Efficient selective identity-based encryption withoutrandom
oracles. J. Cryptology 24(4), 659–693 (2011); Abstract in EUROCRYPT 2004

10. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

11. Boyen, X.: Lattice Mixing and Vanishing Trapdoors – a Framework for Fully Secure
Short Signatures and More. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)

12. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
J. Cryptology 20(3), 265–294 (2007); Abstract in EUROCRYPT 2003

13. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees or, How to Delegate
a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010)

14. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178 (2009)

15. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206. ACM (2008)

16. Halevi, S.: Fully Homomorphic Encryption. Slides from Tutorial Session. In:
Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, Springer, Heidelberg (2011),
http://www.iacr.org/conferences/crypto2011/slides/Halevi.pdf

17. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. In: Proceedings of FOCS 2004, pp. 372–381. IEEE Computer Society,
Washington, DC, USA (2004)

18. Peikert, C.: Bonsai trees (or, arboriculture in lattice-based cryptography). Cryp-
tology ePrint Archive, Report 2009/359 (2009), http://eprint.iacr.org/

19. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: Proceedings of STOC 2005, pp. 84–93. ACM, New York (2005)

20. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

http://www.cs.stanford.edu/~xb/ab09/
http://eprint.iacr.org/
http://www.iacr.org/conferences/crypto2011/slides/Halevi.pdf
http://eprint.iacr.org/

Breaking

Fully-Homomorphic-Encryption Challenges

Phong Q. Nguyen

INRIA, France and Tsinghua University, China
http://www.di.ens.fr/~pnguyen/

Abstract. Following Gentry’s breakthrough work [7], there is currently
great interest on fully-homomorphic encryption (FHE), which allows to
compute arbitrary functions on encrypted data. Though the area has seen
much progress recently (such as [10,11,5,2,1,8,6]), it is still unknown if
fully-homomorphic encryption will ever become truly practical one day,
or if it will remain a theoretical curiosity. In order to find out, several
FHE numerical challenges have been proposed by Gentry and Halevi [9],
and by Coron et al. [5], which provide concrete parameters whose effi-
ciency and security can be studied. We report on recent attempts [3,4] at
breaking FHE challenges, and we discuss the difficulties of assessing pre-
cisely the security level of FHE challenges, based on the state-of-the-art.
It turns out that security estimates were either missing or too optimistic.

References

1. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. Cryptology ePrint Archive, Report 2011/344 (2011),
http://eprint.iacr.org/

2. Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-
LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

3. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better Lattice Security Estimates. In: Lee, D.H.
(ed.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011)

4. Chen, Y., Nguyen, P.Q.: Faster algorithms for approximate common divisors:
Breaking fully-homomorphic-encryption challenges over the integers. Cryptology
ePrint Archive, Report 2011/436 (2011), http://eprint.iacr.org/

5. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully Homomorphic Encryp-
tion over the Integers with Shorter Public-Keys. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011)

6. Coron, J.-S., Naccache, D., Tibouchi, M.: Optimization of fully homomorphic en-
cryption. Cryptology ePrint Archive, Report 2011/440 (2011),
http://eprint.iacr.org/

7. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proc. STOC
2009, pp. 169–178. ACM (2009)

8. Gentry, C., Halevi, S.: Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. Cryptology ePrint Archive, Report 2011/279 (2011),
http://eprint.iacr.org/

D. Lin, G. Tsudik, and X. Wang (Eds.): CANS 2011, LNCS 7092, pp. 13–14, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

14 P.Q. Nguyen

9. Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption
Scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011)

10. Smart, N.P., Vercauteren, F.: Fully Homomorphic Encryption with Relatively
Small Key and Ciphertext Sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC
2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

11. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic
Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

Cube Cryptanalysis of Hitag2 Stream Cipher

Siwei Sun1, Lei Hu1, Yonghong Xie1, and Xiangyong Zeng2

1 State Key Laboratory of Information Security,
Graduate School of Chinese Academy of Sciences, Beijing 100049, China

2 Faculty of Mathematics and Computer Science,
Hubei University, Wuhan 430062, China

{swsun,hu,yhxie}@is.ac.cn, xzeng@hubu.edu.cn

Abstract. Hitag2 is a lightweight LFSR-based stream cipher with a
48-bit key and a 48-bit internal state. As a more secure version of the
Crypto-1 cipher which has been employed in many Mifare Classic RFID
products, Hitag2 is used by many car manufacturers for unlocking car
doors remotely. Until now, except the brute force attack, only one crypt-
analysis on this cipher was released by Courtois, O’Neil and Quisquater,
which broke Hitag2 by an SAT solver within several hours. However,
little theoretical analysis and explanation were given in their work. In
this paper, we show that there exist many low dimensional cubes of the
initialization vectors such that the sums of the outputs of Hitag2 for
the corresponding initialization vectors are linear expressions in secret
key bits, and hence propose an efficient black- and white-box hybrid
cube attack on Hitag2. Our attack experiments show that the cipher
can be broken within one minute on a PC. The attack is composed of
three phases: a black-box attack of extracting 32 bits of the secret key, a
white-box attack to get several other key bits, and a brute force search
for the remaining key bits.

Keywords: Hitag2 stream cipher, cube attack, black-box and white-box
attack.

1 Introduction

Hitag2 is a lightweight stream cipher with a 48-bit secret key used in many
RFID products [17,21,22]. It was designed by Phillips Semiconductors, the same
company who designed the Crypto1 stream cipher which is widely employed in
Mifare Classic cards.

Hitag2 was first analyzed by Courtois, O’Neil and Quisquater in [10] with
algebraic attack. They broke the cipher by writing down algebraic representa-
tions, converting them to a logical satisfiability (SAT) problem and then solving
the problem by an SAT solver. It turns out that the entire key can be recovered
within several hours. However, these researchers did not find any concrete alge-
braic weakness of the cipher and they were surprised by this result, as quoted
as follows:

D. Lin, G. Tsudik, and X. Wang (Eds.): CANS 2011, LNCS 7092, pp. 15–25, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

16 S. Sun et al.

”... the boolean function used is quite large and has good ’Algebraic
Immunity’ of at least 4 ...”; and

”This surprised us, as nothing in the description of Hitag2 allows to
believe that it will be weak, ... So there is a real mystery here that
remains unsolved: why is this cipher comparatively quite weak? We don’t
answer this question, just demonstrate the weakness experimentally and
compare to the tweaked version.”

In this paper, we present a black- and white-box hybrid cube attack on Hitag2. A
cube attack is a chosen initialization vector (IV) attack. It tries to find one or high
order differentials (or superpolys in terminology of cube attack) of the outputs of
the target cipher which are linear in the secret key bits. If an output differential is
linear in the key bits of the cipher, then a linear relation in the key bits is found.
Sufficiently many linear relations can be used to reduce the effective key size of
the target cipher. Previous cube attacks [11,1,3] treat the target cipher as a black
box and do not care about the explicit polynomial description of the cipher. In our
attack, we recover 32 bits of the key by a black-box cube attack, then we execute
a white-box cube attack with explicit polynomial expressions to get some other
key bits. This white-box attack results in more exploitable superpolys for the cube
attack. Finally, the remanning key bits can be exhaustively searched. Our attack
experiments show that the 48-bit secret key of Hitag2 can be recovered within one
minute on a PC.

In Sections 2 and 3, we briefly describe the Hitag2 stream cipher and the cube
attack. In Section 4, we present our attack on Hitag2. The last section is the
conclusion.

2 Hitag2 Stream Cipher

The Hitag2 stream cipher is a LFSR-based stream cipher. The output key stream
of Hitag2 is dependent on 3 parameters: a 48-bit secret key Key, a 32-bit initial-
ization vector IV , and a 32-bit serial number Serial. The Hitag2 stream cipher
starts to output the key stream after a 32-round initialization process.

At the beginning of the initialization process, the 48-bit internal state S is
filled with 32 bits of Serial and 16 bits of Key, i.e., the initial internal state is
given as follows:

S[i] = Serial[i], i ∈ {0, . . . , 31}
S[32 + i] = Key[i], i ∈ {0, . . . , 15}

Then the internal state is left shifted and the 47th bit of the state S[47] is
updated according to the following rules:

S[i− 1] = S[i], i ∈ {1, . . . , 47}
S[47] = NF (S)⊕ IV [j]⊕Key[15 + j]

Cube Cryptanalysis of Hitag2 17

Fig. 1. Hitag2 stream cipher: initialization phase (upper) and working phase (lower)

The above two instructions are repeated 32 times as j goes from 0 to 31 and NF
is a nonlinear filter function which is built up by two layers of boolean functions
(see Fig.1) where

f4
a (x3, x2, x1, x0) = x0x1x2 + x0x2 + x0x3 + x1x2 + x0 + x1 + x3 + 1,

f4
b (x3, x2, x1, x0) = x0x1x3 + x0x2x3 + x1x2x3 + x0x1 + x0x2 + x1x2

+x0 + x1 + x3 + 1,

f5
c (x4, x3, x2, x1, x0) = x0x1x2x4 + x0x1x3x4 + x0x1 + x0x2x3 + x0x3x4

+x1x2x3 + x1x2x4 + x1x2 + x1x3 + x1x4 + x1

+x2x3x4 + x2x4 + x3x4 + x3 + 1.

Equivalently, in truth table forms, these three functions are

f4
a = (0010 1100 0111 1001), f4

b = (0110 0110 0111 0001),
f5

c = (0111 1001 0000 0111 0010 1000 0111 1011),

where the truth table of an n-variable Boolean function f is a binary string
(f(1, · · · , 1), f(1, · · · , 1, 0), · · · , f(0, · · · , 0, 1), f(0, · · · , 0)) of length 2n.

After the 32-round initialization phase, the cipher enters into the working
phase. At each clock, the internal state is updated as a pure LFSR and the
cipher outputs a keystream bit using the nonlinear filtering function NF :

18 S. Sun et al.

Z = S[0]⊕ S[2]⊕ S[3]⊕ S[6]⊕ S[7]⊕ S[8]⊕ S[16]⊕ S[22]
⊕S[23]⊕ S[26]⊕ S[30]⊕ S[41]⊕ S[42]⊕ S[43]⊕ S[46]⊕ S[47],

S[i− 1] = S[i], i ∈ {1, . . . , 47},
S[47] = Z,

output = NF (S)

These instructions are executed repeatedly sufficiently many times until suffi-
ciently many keystream bits are generated.

3 Cube Attack

Cube attack was formally introduced by Ita Dinur and Adi Shamir in Eurocrypt
2009 [11]. According to the comments and arguments of some researchers, cube
attack has been studied under other names such as higher order differential at-
tack [14] and algebraic IV differential attack [19,20]. In the following, we describe
the method of cube attack for stream ciphers with two inputs, one input is the
secret key, Key, and the other is the public initialization vector, IV , which can
be manipulated by an attacker.

Let Key = (k0, · · · , kn−1) and IV = (v0, · · · , vm−1) be the n-bit key and
m-bit initialization vector respectively. Let y(j) = f (j)(Key, IV), j ≥ 0, be the
j-th output bit of the cipher. It is well known that y(j) can be treated as a binary
multivariate polynomial, i.e.,

y(j) = p(j)(k0, . . . , kn−1, v0, . . . , vm−1) ∈ F2[k0, . . . , kn−1, v0, . . . , vm−1].

In a chosen IV attack, an attacker is able to choose his own IV s and feed them
into the cipher and observe the output bits. The goal of a cube attack is to find
many sets V of IV s such that the sum

L(k0, . . . , kn−1) =
∑

(v0,...,vm−1)∈V

p(j)(k0, . . . , kn−1, v0, . . . , vm−1)

is linear with respect to the key bits ki.

Definition 1. Assume p(k0, . . . , kn−1, v0, . . . , vm−1) is a polynomial and I ⊆
{0, · · · , m−1} is a set of indices to the bits of IV . Let tI =

∏
i∈I

vi. Then factoring

p by tI yields

p(k0, . . . , kn−1, v0, . . . , vm−1) = tIps(I) + q(k0, . . . , kn−1, v0, . . . , vm−1),

where q is a linear combination of terms which are not divided by tI . We call
ps(I) the superpoly of I in p.

Definition 2. A maxterm is a term tI with a corresponding superpoly ps(I)

such that deg(ps(I)) = 1, where ps(I) is viewed as a polynomial in the ring
F2[k0, . . . , kn−1], i.e., ps(I) is a nonconstant linear polynomial in the key
variables.

Cube Cryptanalysis of Hitag2 19

Definition 3. A size d subset I of {0, . . . , m− 1} defines a d-dimensional cube
CI in Fm

2 , where the components of the vectors in CI indexed by I are arbitrarily
assigned to 0 or 1 and the other components are set to 0. This cube is a set of 2d

vectors. For a vector v ∈ CI , we define p|v to be a derivation of p in which the
IV variables indexed by I are set to the values in v. We also define pI to be the
sum

∑
v∈CI

p|v as a polynomial in F2[k0, · · · , kn−1]. If pI is a nonconstant linear

polynomial in the key variables, we call the corresponding I a good cube and its
elements cube indices.

Theorem 1. ([11]) For any polynomail p(k0, . . . , kn−1, v0, . . . , vm−1) and I ⊆
{0, . . . , m−1}, pI = ps(I) holds as polynomials in F2[k0, . . . , kn−1, v0, . . . , vm−1].

Theorem 1 shows that for every given I, the corresponding superpoly can be
computed by the sum

∑
v∈CI

p|v. Furthermore, this theorem indicates that the

value of the superpoly ps(I) can be computed by an attacker without the explicit
polynomial expression of p provided the attacker can control the IV and observe
the output of the stream cipher corresponding to p. This is a cube attack with
only black-box access to the target cipher, and the paper [11] entitled it as a
cube attack on tweakable black box polynomials.

A cube attack can be split into two phases: offline precomputation and online
key recovery.

In the precomputation phase, the objective of an attacker is to find r index
sets I0, I1, · · · , Ir−1, which lead to r linear independent superpolys ps(I0), ps(I1),
· · · , ps(Ir−1). To accomplish this, the attacker randomly chooses a set I and
checks whether the following equality

pI(k̄0 + k̄
′
0, · · · , k̄n−1 + k̄

′
n−1) + pI(k̄0, · · · , k̄n−1)

+ pI(k̄
′
0, · · · , k̄

′
n−1) + pI(0, · · · , 0) = 0

(1)

holds for several randomly chosen key pairs (k̄0, · · · , k̄n−1) and (k̄
′
0, · · · , k̄

′
n−1).

If the above test passes continuously for many times for the particular I, the
corresponding superpoly ps(I) is probably a polynomial of degree one in the key
bits. Now, the attacker is ready to derive the algebraic structure of the superpoly
ps(I) by the following strategy. For every i ∈ {0, . . . , n− 1}, compute

λi = pI(ei) + pI(0, · · · , 0),

where ei is the j-th unit vector, and the expression of the superpoly ps(I) is

ps(I) = λ0k0 + λ1k1 + · · ·+ λn−1kn−1 + pI(0, · · · , 0).

Assume the attacker has found r cube sets I0, · · · , Ir−1, now he can perform
the second phase of online key recovery by solving the following system of linear
equations: ⎧⎪⎪⎨⎪⎪⎩

L0(k0, . . . , kn−1) = pI0(k0, · · · , kn−1)
L1(k0, . . . , kn−1) = pI1(k0, · · · , kn−1)
· · ·
Lr−1(k0, . . . , kn−1) = pIr−1(k0, · · · , kn−1).

20 S. Sun et al.

By solving this equation system, the attacker reduces the effective secret key size
from n to n− r bits and the remaining key bits may be exhaustively searched.

4 Cube Attack on Hitag2

Previous cube attacks [1,3,11] treated a target cipher as a black-box with secret
input Key and public input IV , which we call a black-box cube attack. But for
a lightweight cipher such as Hitag2, it may be possible to inspect the explicit
polynomial expressions of the output bits, therefore, a white-box cube attack
with explicit polynomial expressions is possible. The advantage of this type of
attack using explicit polynomial expressions is twofold. Firstly and obviously, we
get deeper understanding of the target cipher; secondly, the probabilistic linearity
test (1) can be omitted and more exploitable superpolys can be discovered. For
a toy example, assume a cipher is explicitly described as a polynomial:

p(k0, k1, k2, v0, v1, v2)
= v0v2k1k2 + v0v2k1 + v0v2k2 + v0v2 + v0k0k1k2 + v2k0k2 + v1k1k2 + k0 + 1
= v0v2(k1k2 + k1 + k2 + 1) + v0k0k1k2 + v2k0k2 + v1k1k2 + k0 + 1.

According to the theory of cube attack, we have

p(k0, k1, k2, 0, v1, 0) + p(k0, k1, k2, 0, v1, 1)
+ p(k0, k1, k2, 1, v1, 0) + p(k0, k1, k2, 1, v1, 1) = k1k2 + k1 + k2 + 1,

obviously, if we view p as a black box and choose I = {0, 2}, the corresponding
superpoly ps(I) can not pass the linearity test (1) in the precomputation phase.
However, this superpoly can be further exploited since

ps(I) = k1k2 + k1 + k2 + 1 = (k1 + 1)(k2 + 1),

and if ps(I) = 1 holds in the online key recovery phase, then it must be the case:
k1 = 0 and k2 = 0. Actually we do have encountered similar cases in our attack
experiments on Hitag2. On the other hand, even if the corresponding ps(I) does
not possess such special structure, its low degree is also a good property for some
other cryptanalysis method such as algebraic attack, and one may find some bits
of the key by using equation solvers such as Gröbner base, XL and F4. Yet, if
we treat the target cipher as a black-box, this kind of exploitable superpolys can
not be discovered easily.

Therefore, it is a natural idea to perform a cube attack by treating the target
cipher as a white-box. To automate the polynomial computation involved in this
kind of attack, we reimplement the C code of Hitag2 [21] in Magma over the
ring

Ω = F2[k0, . . . , k47]/ < k2
0 − k0, · · · , k2

47 − k47 >,

and we treat every bit as an element of the ring Ω. The known bits of IV
and Serial are represented by 0 or 1, and the unknown secret bits of key are
represented by ki. For convenience, we call this new implementation Ω-code.

Cube Cryptanalysis of Hitag2 21

For example, if we set k = (k0, k1, k2, 0, · · · , 0) ∈ Ω48, IV = (0, · · · , 0) ∈ Ω32,
and Serial = (0, · · · , 0) ∈ Ω32, then it can be verified that the 0th output bit of
Hitag2 is

k0k1k2 + k0k2 + k1k2

However, if many bits of the secret key are unknown, our code fails to produce
output due to huge memory consumption, and we can not execute a white-box
cube attack in this situation.

Therefore, our attack will be divided into three phases. In the first phase, we
recover 32 bits of the key, denoted by {ki0 , · · · , ki31}, by a black-box cube attack;
then a part of the remaining unknown key bits are extracted by a white-box cube
attack in the second phase; and finally in the third phase all remaining key bits
are recovered by an exhaustive search.

4.1 First Phase: Black-Box Attack

The smaller the dimension of the cube, the more practical the attack is. There-
fore, we search good cubes of low dimension d by inspecting different keystream
bits p(j) (j is small) in the precomputation phase of the black-box cube attack.
If we fail to find useful good cubes of dimension d, we repeat the same process
with cube dimension set to d + 1. That is, lower dimension is a priority in our
attack.

In our experiment, we search good cubes of dimensions from 1 to 6, and
repeat the linearity test (1) 50 times for each cube. Every time a new good cube
is found, we check whether its corresponding superpoly is linearly independent
with the superpolys that have been derived from previous good cubes. If this
condition is not satisfied, the corresponding cube is discarded. Good cubes we
found and their corresponding maxterms and the targeted output bits are listed
in Table 1 (rows are listed according to the lexicographic order of dimension of
cube, keystream clock, and index set).

Using this result, we can recover 32 bits of the secret key: k0, k1, k2, k3, k4,
k5, k6, k7, k8, k9, k10, k11, k12, k13, k14, k16, k17, k18, k20, k21, k22, k23, k24, k25,
k26, k27, k28, k29, k30, k32, k33, k35 by totally 464 times of evaluations of the
Hitag2 stream cipher. Along with these recovered key bits, a linear relation in
the remaining key bits is also extracted: k34 + k36 = v, where v is a known value
which can be determined in the online phase of the cube attack.

4.2 Second Phase: White-Box Attack

Now the remaining unknown key bits can be recovered by exhaustive search
directly, however here we propose an alternative method which may be also
applicable under other situations.

We initialize the unknown bits of the key with ring elements: k15, k19, k31,
k34, k36, k37, k38, k39, k40, k41, k42, k43, k44, k45, k46, k47 ∈ Ω, and the key
bits recovered are set to 0 or 1 ∈ Ω according to the result of the first phase

22 S. Sun et al.

Table 1. Maxterms and superpolys for Hitag2

superpoly index set keystream clock

k6 4,15 0

k3 7,10 0

k0 5,7 1

k5 3,13 2

k8 3,14 2

k17 4,6 2

k21 1,15,16 0

k2 + k8 4,15,19 0

k12 10,12,16 0

k0 + k13 5,6,23 1

k27 4,10,24 2

k25 1,13,8 3

k14 2,7,31 3

k1 + k10 3,31,13 4

k7 6,8,31 4

k22 3,6,8 6

k9 + k12 + k14 + k18 3,7,11 6

k9 2,7,9 6

k16 7,11,14 6

k28 + k33 1,8,16 7

k23 + k30 + k33 5,10,13 7

k6 + k11 + k26 1,15,20,24 0

k21 + k23 4,5,15,21, 0

k2 + k6 + k21 + k26 4,5,15,24 0

k29 26,21,11,7 0

k4 5,9,17,25 1

k12 + k14 + k34 + k36 3,7,18,31 3

k9 + k13 + k28 6,15,26,20,3 0

k1 8,5,22,28,16 0

k35 5,7,10,20,19 1

k24 7,11,13,15,20 1

k27 + k32 7,4,10,28,30 2

k5 + k9 + k16 + k18 + k20 + k23 + k26 + k28 4,16,3,20,17,26 0

black-box attack. Then we try to find some superpolys with simple expressions
by symbolically summing the outputs of the cipher over some other very low
dimensional cubes using the Ω-code. The expressions of the superpolys are de-
pendent on the values of Serial and key, we have done many experiments, all
of which show that it is very easy to use the white-box method to find by hand
superpolys with very simple expressions for very low dimensional cubes.

The following is a concrete example of our experiments, where we set
Serial = (1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0)
and key = (0, 1, 0, 1, . . . , 0, 1). Then we employ our Ω-code to compute the
superpoly p

(j)
s({31}) and we discovered that

Cube Cryptanalysis of Hitag2 23

p
(0)
s({31}) = k15k31 + 1 = 0,

p
(2)
s({31}) = k36 = 0.

Combined with the linear expression derived in the black-box attack:

p
(3)
s({3,7,18,31}) = k12 + k14 + k34 + k36 = 0,

we can get that k15 = 1, k31 = 1, k36 = 0, and k34 = 0. In a similar way, we can
find that k19 = 1 by the following expression

p
(2)
s({28}) = k19 + 1 = 0.

Also, by

p
(3)
s({31}) = k37k46 + k37 + 1 = 0,

p
(3)
s({30}) = k37k46 + 1 = 1,

we can find that k37 = 1 and k46 = 0.
Note that in the phase of white-box attack, a linearity or quadraticity test

is not required since we can inspect the symbolic expressions of the superpolys
directly.

4.3 Third Phase: Exhaustive Search Attack

The remaining key bits k38, k39, k40, k41, k42, k43, k44, k45, and k47 can be
exhaustively searched with little effort.

4.4 Experimental Results

We have randomly chosen 100 different secret keys, and tried to recover them on
a PC with Intel(R) Core(TM) Quad CPU (2.83GHz, 3.25GB RAM, Windows
XP) by the aforementioned attack. Experiments showed that the secret key can
be recovered in all cases in no more than one minute. We give a comparison
between our attack and previous attacks in [10] in Table 2, where NKI , NCI

and NK denote the numbers of the known IV s, chosen IV s and keystream bits
needed in the attack, respectively.

Table 2. Comparison with the attack in [10]

source technique NKI NCI NK attack time

[10] SAT solver 1 0 50 <11h

[10] SAT solver 4 0 32 <48h

[10] SAT solver 0 16 32 <6h

this paper cube attack 0 < 500 8 <1min

24 S. Sun et al.

5 Conclusion

In this paper we broke the Hitag2 stream cipher by black- and white-box hybrid
cube attack. Our attack combined black-box and white-box methods to find
more linear relations in the key bits, and our experiments showed that it is an
advantage to know the explicit polynomial description of a target cipher for a
cube attack.

There seems to be some obvious weakness and flaws in the design of Hitag2.
Firstly, the 48-bit key is too short even for a lightweight cipher. Secondly, the
structure of the linear feedback and the nonlinear filtering function is also too
simple for cryptanalysis, which is theoretically shown by cubes of low dimensions
of initialization vectors, even though the filtering function has good nonlinearity
and algebraic immunity against correlation attack and standard algebraic attack.
Finally, the small number (namely 32) of initialization rounds, in our opinion,
can not sufficiently confuse the bits of the key. In fact, we can recover 32 bits
of the secret key in the phase of black-box attack, the same number of the
initialization rounds and the same number of the key bits which do not feed into
the LFSR state before the initialization process. Due to the restriction of low
cost, designing secure lightweight ciphers still seems to be a challenging work.

Acknowledgement. The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions. The work of the first three authors
was supported by the Natural Science Foundation of China (NSFC) under grants
61070172 and 10990011, and the National Basic Research Program of China
(2007CB311201). The work of the fourth author was supported by the NSFC
under Grant 60973130.

References

1. Aumasson, J.-P., Dinur, I., Meier, W., Shamir, A.: Cube Testers and Key Recovery
Attacks on Reduced-Round MD6 and Trivium. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009)

2. Bogdanov, A.: Attacks on the KeeLoq Block Cipher and Authentication System.
In: RFIDSec 2007 (2007)

3. Bedi, S., Pillai, R.: Cube Attacks on Trivium. IACR Cryptology ePrint Archive,
15 (2009)

4. Biham, E., Dunkelman, O., Indesteege, S., Keller, N., Preneel, B.: How to Steal
Cars – A Practical Attack on KeeLoq. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 1–18. Springer, Heidelberg (2008)

5. Courtois, N.: The Dark Side of Security by Obscurity and Cloning MiFare Classic
Rail and Building Passes Anywhere, Anytime. In: SECRYPT 2009: International
Conference on Security and Cryptography, Milan, Italy, July 7-10 (2009)

6. Courtois, N.T., Bard, G.V., Wagner, D.: Algebraic and Slide Attacks on KeeLoq.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 97–115. Springer, Heidelberg
(2008), http://eprint.iacr.org/2007/062

http://eprint.iacr.org/2007/062

Cube Cryptanalysis of Hitag2 25

7. Courtois, N., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)

8. Courtois, N., Nohl, K., O’Neil, S.: Algebraic Attacks on MiFare RFID Chips,
http://www.nicolascourtois.com/papers/mifare_rump_ec08.pdf

9. Courtois, N., Nohl, K., O’Neil, S.: Algebraic Attacks on the Crypto-1 Stream Ci-
pher in MiFare Classic and Oyster Cards. Short paper,
http://eprint.iacr.org/2008/166

10. Courtois, N.T., O’Neil, S., Quisquater, J.-J.: Practical Algebraic Attacks on the
Hitag2 Stream Cipher. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A.
(eds.) ISC 2009. LNCS, vol. 5735, pp. 167–176. Springer, Heidelberg (2009)

11. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009)

12. de Koning Gans, G., Hoepman, J.-H., Garcia, F.D.: A Practical Attack on the
MIFARE Classic. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS,
vol. 5189, pp. 267–282. Springer, Heidelberg (2008)

13. Garcia, F.D., de Koning Gans, G., Muijrers, R., van Rossum, P., Verdult, R.,
Schreur, R.W., Jacobs, B.: Dismantling MIFARE Classic. In: Jajodia, S., Lopez, J.
(eds.) ESORICS 2008. LNCS, vol. 5283, pp. 97–114. Springer, Heidelberg (2008)

14. Lai, X.: Higher Order Derivatives and Differential Cryptanalysis. Communications
and Cryptography: Two Sides of One Tapestry, 227 (1994)

15. Nohl, K.: Cryptanalysis of Crypto-1. Short paper,
http://www.cs.virginia.edu/kn5f/Mifare.Cryptanalysis.htm

16. Nohl, K., Evans, D., Starbug, S., Plötz, H.: Reverse-engineering a cryptographic
RFID tag. In: USENIX Security 2008 (2008)

17. Philips Semiconductors Corporation: Philips Semiconductors Data Sheet, HT2
Transponder Family, Communication Protocol, Reader, HITAG2(R) Transponder,
Product Specification, Version 2.1,
http://www.phreaker.ru/showthread.php?p=226

18. Saarinen, M.: Chosen-IV statistical attacks on eStream ciphers. In: SECRYPT
2006, pp. 260–266. INSTICC Press (2006)

19. Vielhaber, M.: Breaking ONE.TRIVIUM by AIDA and Algebraic IV Differential
Attack. IACR Cryptology ePrint Archive, 413 (2007)

20. Vielhaber, M.: AIDA Breaks (BIVIUM A and B) in 1 Minute Dual Core CPU
Time. IACR Cryptology ePrint Archive, 402 (2009)

21. Wiener, I.: Hitag2 specification, reference implementation and test vectors,
http://cryptolib.com/ciphers/hitag2

22. Transponder Table, a list of cars and transponders used in these cars,
http://www.keeloq.boom.ru/table.pdf

http://www.nicolascourtois.com/papers/mifare_rump_ec08.pdf
http://eprint.iacr.org/2008/166
http://www.cs.virginia.edu/kn5f/Mifare.Cryptanalysis.htm
http://www.phreaker.ru/showthread.php?p=226
http://cryptolib.com/ciphers/hitag2
http://www.keeloq.boom.ru/table.pdf

New Impossible Differential Cryptanalysis

of Reduced-Round Camellia�

Leibo Li1,2, Jiazhe Chen1,2, and Keting Jia3

1 Key Laboratory of Cryptologic Technology and Information Security,

Ministry of Education, Shandong University, Jinan 250100, China
2 School of Mathematics, Shandong University, Jinan 250100, China

{lileibo,jiazhechen}@mail.sdu.edu.cn
3 Institute for Advanced Study, Tsinghua University, Beijing 100084, China

ktjia@mail.tsinghua.edu.cn

Abstract. Camellia is one of the widely used block ciphers, which has

been selected as an international standard by ISO/IEC. This paper intro-

duces a 7-round impossible differential of Camellia including FL/FL−1

layer. Utilizing impossible differential attack, 10-round Camellia-128 is

breakable with 2118.5 chosen plaintexts and 2123.5 10 round encryptions.

Moreover, 10-round Camellia-192 and 11-round Camellia-256 can also be

analyzed, the time complexity are about 2130.4 and 2194.5, respectively.

Comparing with known attacks on reduced round Camellia including

FL/FL−1 layer, our results are better than all of them.

Keywords: Camellia, Block Cipher, Impossible Differential, Cryptanal-

ysis.

1 Introduction

Camellia is a 128-bit block cipher with variable key length of 128, 192, 256,
which are denoted as Camellia-128, Camellia-192 and Camellia-256, respectively.
It was proposed by NTT and Mitsubishi in 2000 [1], and then was selected as
an e-government recommended cipher by CRYPTREC in 2002 [5] and NESSIE
block cipher portfolio in 2003 [15]. In 2005, it was selected as an international
standard by ISO/IEC [8].

Because of the high level of security, Camellia has drawn a great amount
of attention from worldwide cryptology researchers. In the past years, a great
number of efficient results of reduced round Camellia were published. Such as
linear and differential attacks [16], truncated differential attack [9,11,17], higher

� Supported by the National Natural Science Foundation of China (Grant No.

60931160442), and the Tsinghua University Initiative Scientific Research Program

(2009THZ01002).

D. Lin, G. Tsudik, and X. Wang (Eds.): CANS 2011, LNCS 7092, pp. 26–39, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

New Impossible Differential Cryptanalysis of Reduced-Round Camellia 27

order differential attack [7], collision attack [12,18], square attack [12], square-like
attack [6] and impossible differential attack [13,14,17,19].

An important property of the Camellia’s structure is that FL/FL−1 layers
insert every 6 rounds. This design could provide non-regularity across rounds [1]
and destroy the differential property. To our knowledge, several attacks were pro-
posed to analyze the reduced round Camellia including FL/FL−1 layers. Square
attack [12] was used to analyze 9-round Camellia-128 and 10-round Camellia-
256, the complexities are about 2122 and 2210 encryptions, respectively. Higher
order differential attack [7] was applied to analyze 11-round Camellia-256 with
complexity of about 2255.6. Recently, Chen et al. use the impossible differential
attack to analyze 10-round Camellia-192 and 11-round Camellia-256 [4], the time
complexities are about 2175.3 and 2206.8, respectively (including whitening).

Impossible differential cryptanalysis was first introduced independently by
Biham [3] and Knudsen [10]. The idea of this method is using differential that
holds with probability zero to discard the wrong keys and keep the right key.

In this paper, we present a 7-round impossible differential of Camellia with
FL/FL−1 layer. Based on the 7-round impossible differential, we construct an
attack on 10-round Camellia-128, the data complexity is about 2118.5 chosen
plaintexts, and the time complexity is about 2123.5 10-round encryptions. We are
not aware of any other published attacks that can break 10-round Camellia-128
with FL/FL−1 layer faster than exhaustively search. Furthermore, we present
the new results of attacks on 10-round Camellia-192 and 11-round Camellia-256,
the time complexities are about 2130.4 and 2194.5, respectively. Table 1 summa-
rizes our results along with previous known results of reduced-round Camellia
including FL/FL−1 layer, where * represents the attack don’t including the
whitening layers.

Table 1. Summarizes of Attack on Camellia with FL/FL−1 Layer

Cipher Rounds Attack Type Date Time Source

Camellia-128 9* Square 248 2122 [12]

10* Impossible Diff 2118.5 2123.5 Section 4

Camellia-192 10* Impossible Diff 2121 2144 [4]

10 Impossible Diff 2121 2175 [4]

10 Impossible Diff 2118.7 2130.4 Section 5.1

Camellia-256 10* Square 248 2210 [12]

11 Impossible Diff 2121 2206.8 [4]

last 11 round Higher Order Diff 293 2255.6 [7]

11 Impossible Diff 2118.7 2194.5 Section 5.2

The rest of this paper is organized as follows. Section 2 provides a brief
description of Camellia. A 7-round impossible differential of Camellia is intro-
duced in the section 3. Our proposed impossible differential attack on 10-round

28 L. Li, J. Chen, and K. Jia

Camellia-128 is presented in the section 4. Section 5 describes the impossible dif-
ferential attack on 10-round Camellia-192 and 11-round Camellia-256. Finally,
we conclude the paper in section 6.

2 Preliminaries

2.1 Notations

The following notations will be used in this paper:

Lr−1, L′
r−1 : the left 64-bit half of the r-th round input,

Rr−1, R′
r−1 : the right 64-bit half of the r-th round input,

ΔLr−1 : the difference of Lr−1 and L′
r−1,

ΔRr−1 : the difference of Rr−1 and R′
r−1,

Sr, S′
r : the output value of the S-box layer in the r-th round,

ΔSr : the difference of Sr and S′
r,

Pr, P ′
r : the output value of P function layer in the r-th round

Kr : the subkey used in the r-th round,
A(l) : the l-th byte of a 64-bit value (l = 1, . . . , 8),
x|y : bit string concatenation of x and y,
⊕, ∩, ∪ : bitwise exclusive OR(XOR), AND, OR.

2.2 A Brief Description of Camellia

Camellia [1] is a Feistel structure block cipher that uses key sizes of 128 for
18-round, 192 and 256 for 24-round. Figure 1 shows the encryption procedure of
Camellia-128.

F6 rounds

6 rounds

6 rounds

FL

FL

FL-1

FL-1

kw1

F

F

F

F

F

∩

∩ 1
klL

klR

FL-1 funciton

∩

∩ 1
klL

klR

FL funciton

kw2

kw3 kw4

Fig. 1. Encryption procedure of Camellia-128

New Impossible Differential Cryptanalysis of Reduced-Round Camellia 29

Firstly, a 128-bit plaintext M is XORed with (kw1|kw2) to get two 64-bit
data L0 and R0. Then, for r = 1 to 18, expect for r = 6 and 12, the following is
carried out:

Lr = Rr−1 ⊕ F (Lr−1, Kr), Rr = Lr−1.

For r = 6 and 12, do the following:

L′
r = Rr−1 ⊕ F (Lr−1, Kr), R′

r = Lr−1,

Lr = FL(L′
r, klr/3−1), Rr = FL(R′

r, klr/3).

Lastly, the 128-bit ciphertext C is computed as: C = (R18|L18)⊕ (kw3|kw4).
The round function F is composed of a key-addition layer, a substitution

transformation S and a diffusion layer P . There are four types of 8× 8 S-boxes
s1, s2, s3 and s4 in the S transformation layer, and a 64-bit data is substituted
as follows:

S(x1|x2|x3|x4|x5|x6|x7|x8)

= s1(x1)|s2(x2)|s3(x3)|s4(x4)|s2(x5)|s3(x6)|s4(x7)|s1(x8).

The linear transformation P : ({0, 1}8)8 → ({0, 1}8)8 maps (y1, · · · , y8) →
(z1, · · · , z8), this transformation and its inverse P−1 are defined as follows:

z1 = y1 ⊕ y3 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8 y1 = z2 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8

z2 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y7 ⊕ y8 y2 = z1 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8

z3 = y1 ⊕ y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y8 y3 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8

z4 = y2 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y7 ⊕ y8 y4 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z7

z5 = y1 ⊕ y2 ⊕ y6 ⊕ y7 ⊕ y8 y5 = z1 ⊕ z2 ⊕ z5 ⊕ z7 ⊕ z8

z6 = y2 ⊕ y3 ⊕ y5 ⊕ y7 ⊕ y8 y6 = z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8

z7 = y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y8 y7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7

z8 = y1 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7 y8 = z1 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8

The FL function is defined as (XL|XR, klL|klR) �→ (YL YR), where

YR = ((XL ∩ klL) ≪1)⊕XR, YL = (YR ∪ klR)⊕XL.

F

F

F

F

F

F

C1

C2

C3

C4

C5

C6

Fig. 2. Key Schedule of Camellia

30 L. Li, J. Chen, and K. Jia

Similarly to Camellia-128, Camellia-192/256 have 24-round Feistel structure,
and the FL/FL−1 function layer are inserted in 6, 12 and 18 round. Before the
first round and after the last round, there are pre- and post- whitening layers.

Key Schedule. Fig.2 shows the key schedule of Camellia. Two 128-bit vari-
ables KA and KB are generated form KL and KR. For Camellia-128, KL is the
128-bit K, and KR is 0. For Camellia-192, KL is the left 128-bit of K, the
concatenation of the right 64-bit of K and its complement used as KR. For
Camellia-256, KL is the left 128-bit of K, and KR is the right 128-bit of K.
Ci(i = 1 · · · 6) are 64-bit constants. The round keys of Camellia are rotations
of KL, KR, KA, KB, where KB only used in Camellia-192/256. For details of
Camellia, we refer to [1,2].

3 7-Round Impossible Differential of Camellia

In this section, we introduce a 7-round impossible differential of Camellia in-
cluding FL/FL−1 layer.

Observation 1. If the output difference of FL−1 function is ΔX = (0|0|0|0|a|0|
0|0), then the input difference of FL−1 function should satisfies with
ΔY (2,3,4,6,7,8) = 0, and ΔY (5) = a.

Proof. According to the definition of FL−1 function, the right half of output
difference is

XR ⊕X ′
R = ((XL ∩ klL) ≪1)⊕ YR ⊕ ((X ′

L ∩ klL) ≪1)⊕ Y ′
R,

where XR and XL are the left half and the right half of 64-bit value X , kl is
the 64-bit subkey used in FL−1 function. On the basis of the condition ΔX =
(0|0|0|0|a|0|0|0), we can conclude that

ΔYR = ((XL ∩ klL) ≪1)⊕XR ⊕ ((X ′
L ∩ klL) ≪1)⊕X ′

R

= XR ⊕X ′
R ⊕ (((XL ∩ klL)⊕ (X ′

L ∩ klL)) ≪1)
= ΔXR = (a|0|0|0),

ΔYL = (YR ∪ klR)⊕XL ⊕ (Y ′
R ∪ klR)⊕X ′

L

= ΔXL ⊕ (YR ∪ klR)⊕ (Y ′
R ∪ klR)

= (N |0|0|0),

where N is a unknown byte.

Observation 2. Given a 7-round Camellia encryption and a FL/FL−1 layer
inserted between the sixth and seventh round. If the input difference of the first
round is (0|0|0|0|0|0|0|0, a|0|0|0|0|0|0|0), then through the 7 rounds encryption,
the output difference (0|0|0|0|d|0|0|0, 0|0|0|0|0|0|0|0) is impossible, where a and d

are any non-zero values (see Fig.3).

New Impossible Differential Cryptanalysis of Reduced-Round Camellia 31

Proof. Firstly, we analyze the first three rounds. The input difference

(ΔL0, ΔR0) = (0|0|0|0|0|0|0|0, a|0|0|0|0|0|0|0)
becomes

(ΔL1, ΔR1) = (a|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|0)
through the first round transformation. After the F function and XOR operation
in the second round, it becomes

(ΔL2, ΔR2) = (b|b|b|0|b|0|0|b, b|0|0|0|0|0|0|0),
where b is non-zero value. Through the key addition and substitution layer of
the third round, the output difference of S-box layer in the third round is ΔS3 =
(b1|b2|b3|0|b5|0|0|b8). After the linear function P and XOR operation, the input
difference of the forth round is

(ΔL3, ΔR3) = (f1 ⊕ a|f2|f3|f4|f5|f6|f7|f8, b|b|b|0|b|0|0|b),
where bi are non-zero values, fi are unknown values.

Secondly, we consider the inverse direction. If the output difference of the
seventh round

∆L0=(0|0|0|0|0|0|0|0) ∆R0=(a|0|0|0|0|0|0|0)

∆L1=(a|0|0|0|0|0|0|0) ∆R1=(0|0|0|0|0|0|0|0)

∆L2=(b|b|b|0|b|0|0|b)

∆L7=(0|0|0|0|d|0|0|0) ∆R7=(0|0|0|0|0|0|0|0)

∆RFL=(0|0|0|0|d|0|0|0)∆LFL=(0|0|0|0|0|0|0|0)

∆L6=(0|0|0|0|0|0|0|0) ∆R6=(N|0|0|0|d|0|0|0)

∆L5=(N|0|0|0|d|0|0|0)

∆L3=(f1 |f2|f3|f4|f5|f6|
f7|f8)

(N1|0|0|0|e|0|0|0)

∆R5=(N1|N1 e|N1 e|
e|N1|e|e|N1 e)

∆L4=(N1|N1 e|N1 e|e|
N1|e|e|N1 e)

(b1|b2|b3|0|b5|0|0|b8)

P-1(b|b|b|0|b|0|0|b) P-1(N1|
N1 e|N1 e|e|N1|e|e|N1 e)
=(a|0|0|0|0|0|0|0) (N1|0|0|0|
e|0|0|0) f2,f3,f4,f6,f7,f8=0
 b1=0 contradiction !

FL FL-1

KS P

KS P

KS P

KS

KS

KS

KS P

P

P

P

∆S6

∆S3

∆S4

Fig. 3. 7-Round Impossible Differential of Camellia

32 L. Li, J. Chen, and K. Jia

(ΔL7, ΔR7) = (0|0|0|0|d|0|0|0, 0|0|0|0|0|0|0|0),
then the output difference of FL/FL−1 layer should be

(ΔLFL, ΔRFL) = (0|0|0|0|0|0|0|0, 0|0|0|0|d|0|0|0),
where d is a non-zero value. According to the observation 1, we can conclude that
the input difference of FL−1 function should satisfy with ΔR6 = (N |0|0|0|d|0|0|0).
After key addition and substitution of the sixth round, the output difference of
S-box layer in the sixth round is ΔS6 = (N1|0|0|0|e|0|0|0), where N1 is an
unknown value and e is a non-zero value. Through the P function and XOR

operation, the input difference of the sixth round should be

(ΔL5, ΔR5) = (N |0|0|0|d|0|0|0, N1|N1 ⊕ e|N1 ⊕ e|e|N1|e|e|N1 ⊕ e).

Therefore, the left half of input difference in the fifth round is ΔL4 = (N1|N1 ⊕
e|N1 ⊕ e|e|N1|e|e|N1 ⊕ e).

Finally, we observe the forth round. The output difference of P function layer
in the forth round is

ΔP4 = ΔR3 ⊕ΔL4 = (b|b|b|0|b|0|0|b)⊕ (N1|N1 ⊕ e|N1 ⊕ e|e|N1|e|e|N1 ⊕ e).

According to the definition of linear function P−1, the output difference of S-box
layer in the forth round is

ΔS4 = P−1(b|b|b|0|b|0|0|b)⊕ P−1(N1|N1 ⊕ e|N1 ⊕ e|e|N1|e|e|N1 ⊕ e)
= (a|0|0|0|0|0|0|0)⊕ (N1|0|0|0|e|0|0|0)
= (a⊕N1|0|0|0|e|0|0|0)

Because S-box are nonlinear and permutation, we can get f2 = f3 = f4 =
f6 = f7 = f8 = 0. From the expression in the third round, we know b1 =
f2 ⊕ f3 ⊕ f4 ⊕ f6 ⊕ f7 ⊕ f8 = 0, which contradicts with b1 �= 0. Similarly, we
obtain other three impossible differential of 7-round Camellia:

(0|0|0|0|0|0|0|0, 0|a|0|0|0|0|0|0) � (0|0|0|0|0|d|0|0, 0|0|0|0|0|0|0|0),
(0|0|0|0|0|0|0|0, 0|0|a|0|0|0|0|0) � (0|0|0|0|0|0|d|0, 0|0|0|0|0|0|0|0),
(0|0|0|0|0|0|0|0, 0|0|0|a|0|0|0|0) � (0|0|0|0|0|0|0|d, 0|0|0|0|0|0|0|0).

4 Impossible Differential Attack on 10-Round

Camellia-128

In this section, we present an impossible differential attack on 10-round Camellia-
128, which add three rounds on the bottom of above 7-round impossible differen-
tial (Fig. 4). For the sake of reducing the time complexity, we use precomputation
technique and consider key redundancy.

Relation between K8 and K10. The subkey bits to be considered in
our attack are K

(5)
8 |K

(1,2,3,4,6,7,8)
9 |K(1,2,3,4,5,6,7,8)

10 , which are 128 bits. Accord-
ing to the key schedule of camellia-128, if the master key KL is denoted by its

New Impossible Differential Cryptanalysis of Reduced-Round Camellia 33

KS P

KS P

KS P

7-round ID

∆L0=(0|0|0|0|0|0|0|0) ∆R0=(a|0|0|0|0|0|0|0)

∆L7=(0|0|0|0|d|0|0|0) ∆R7=(0|0|0|0|0|0|0|0)

∆L8=(0|f|f|f|0|f|f|f) ∆R8=(0|0|0|0|d|0|0|0)

∆L9=(g1|g2|g3|g4|g5|g6|
g7|g8)

∆R9=(0|f|f|f|0|f|f|f)

∆R10=(g1|g2|g3|g4|g5|
g6|g7|g8)

∆L10=(h1|h2|h3|h4|h5|h6
|h7|h8)

∆S8

∆S9

∆S10

Fig. 4. Impossible Differential Attack on 10-Round Camellia-192

bits as KL = κ1|κ2| . . . |κ128, then target subkeys of round 8 and round 10 are
equivalent to

K
(5)
8 = κ14|κ15| . . . |κ21, K10 = κ125|κ126|κ127|κ128|κ1|κ2| . . . |κ60.

Apparently, there are 8 bits’ redundancy in K
(5)
8 and K10, which is advantageous

for us to reduce the complexity of attack.

Precomputation. We need to construct precomputation tables T1,i, T2, to ob-
tain input or output values of S-box layer in our attack.

Table T1,i, i = 1, 2, 3, 4: This type of table is used to obtain the proper input
and output pair of si-box with fixed input and output difference. For all of the 216

possible pairs (x, x′), compute (si(x), si(x′)) and their difference Δsi(x, x′), store
values (x, si(x)) in a hash table T1,i indexed by 16-bit parameter (Δx|Δsi(x, x′)).

Table T2: This table is applied to get the partial input value of S-box layer with
fixed input difference and output difference. For all of 264 possible pairs (X, X ′),
which satisfy ΔX = (0|f |f |f |λ|f |f |f), where λ represents the byte that we don’t
consider in this table.1 Compute the values (S(X) , S(X ′)) and their difference
ΔS(X, X ′) = (0|f2|f3|f4|λ|f6|f7|f8). Then compute the value

y = S(X)(1) ⊕ S(X)(2) ⊕ S(X)(6) ⊕ S(X)(7) ⊕ S(X)(8),

where y equals to the value P (S(X))(5). Store the significant 56-bit value of
X = (x1|x2|x3|x4|x6|x7|x8) in a hash table T2 indexed by 64-bit parameter
(f |f2|f3|f4|f6|f7|f8|y). Apparently, there are 264 rows in this table, and on av-
erage one pair lies in each of these rows.

1 There are 28 − 1 possible values of f , and for each value of f , there are 256 possible

pairs of (X, X ′). Totally, there are about 264 possible pairs to be considered.

34 L. Li, J. Chen, and K. Jia

Attack Procedure

1. Choose 2n structures of plaintexts, and each structure contains 28 plaintexts
(L0, R0) with

L0 = (x1|x2|x3|x4|x5|x6|x7|x8), R0 = (α1|y2|y3|y4|y5|y6|y7|y8),

where xi and yi are fixed values and α1 takes all the possible values. Thus we
can collect 2n+15 plaintext pairs with the difference (ΔL0, ΔR0) = (0|0|0|0|
0|0|0|0, a|0|0|0|0|0|0|0).

2. For each structure, obtain the 28 ciphertexts and store them in a hash table
H indexed by the value R

(2)
10 ⊕ R

(3)
10 ⊕ R

(4)
10 ⊕ R

(6)
10 ⊕R

(7)
10 ⊕R

(8)
10 . Then each

two texts which lie in the same row of H form a proper pair, which satisfy

(ΔL10, ΔR10) = (h1|h2|h3|h4|h5|h6|h7|h8, g1|g2|g3|g4|g5|g6|g7|g8),

and g2 ⊕ g3 ⊕ g4 ⊕ g6 ⊕ g7 ⊕ g8 = 0, where gi, hi are unknown values. Since
this step preform a 8-bit filtration from the all 2n+15 pairs, at the end of this
step, the expected number of proper pairs is 2n+7.

3. For each of the proper pairs,compute the intermediate value

P−1(ΔL10) = P−1(h1|h2|h3|h4|h5|h6|h7|h8) = (h′
1|h′

2|h′
3|h′

4|h′
5|h′

6|h′
7|h′

8).
P−1(ΔR10) = P−1(g1|g2|g3|g4|g5|g6|g7|g8) = (0|g′2|g′3|g′4|g′5|g′6|g′7|g′8).2

4. This step consider the ciphertexts of every proper pair.
(a) For l = 1, 2, 3, 4, 6, 7, 8, access the row with index (gl|h′

l) in table T1,i,

where i denote the type of s-box used in S-box layer (see section 2). For
the pair (x, si(x)) in that row, choose the value (x⊕R

(l)
10) as a candidate

of K
(l)
10 , and the value si(x) as a candidate of S

(l)
10 . According to the

structure of table T1,i, we expect to obtain about one candidate of K
(l)
10

and S
(l)
10 for each l.

(b) For all of 28 − 1 possible non-zero value of f , access the row with index
(g5|h′

5⊕ f) in table T1,2. Consider the pair (x, s2(x)) in that row, choose
the value (x ⊕ R

(5)
10) as a candidate of K

(5)
10 , and the value s2(x) as a

candidate of S
(5)
10 .

(c) Partially decrypt S10 to get the intermediate value P (S10)⊕ L10 = R9.
Apparently, the candidate of R′

9 = R9 ⊕ (0|f |f |f |0|f |f |f). At the end
of this step, we could get about 28 candidates of K10 for each of proper
pairs.

5. For each of 28 candidates of K10 for every proper pair, perform the following
substeps.

2 To guarantee the differential characteristic holds, the difference of intermediate value

ΔS9 should equals to P−1(ΔL9⊕ΔR8) = (g′
1|g′

2⊕d|g′
3⊕d|g′

4⊕d|g′
5⊕d|g′

6⊕d|g′
7⊕d|g′

8).

Since ΔL8 = ΔR9 = (0|f |f |f |0|f |f |f), then there must be g′
1 = 0 and g′

5 = d.

New Impossible Differential Cryptanalysis of Reduced-Round Camellia 35

(a) Access the row with index (g′5|f) in table T1,2 (where g′5 = d). For the
pair (x, s2(x)) in that row, select the value (x⊕K

(5)
8) as a candidate of

R
(5)
8 , where the equivalent value of K

(5)
8 is obtained in step 2.

(b) Access the row with index (f |g′2|g′3|g′4|g′6|g′7|g′8|R
(5)
8 ⊕ R

(5)
10) in table T2.

For the 56-bit value (x1|x2|x3|x4|x6|x7|x8) in that row, select (xi⊕R
(i)
9)

as the candidates of K
(i)
9 (i = 1, 2, 3, 4, 6, 7, 8). Obviously, this 56-bit

value K
(1,2,3,4,6,7,8)
9 along with 64-bit value K

(1,2,3,4,5,6,7,8)
10 can result in

the impossible differential. Remove this 120-bit value from the list of all
the 2120 possible values.

6. After analyzing all structures, announce the remaining values in the list are
the candidates of 120-bit target subkey (KL : 1 ∼ 60, 125 ∼ 128; KA : 46 ∼
77, 86 ∼ 109). Then search for the remaining 64-bit value of master key KL

and obtain the correct key by trial encryption.

Complexity. In step 7, for each of the 2n+7 proper pairs, we can remove on
average 28 values out of the 2120 possible values of target subkey. Thus the
remaining values in the list is ε = 2120 × (1 − 28

2120)2
n+7

. If we choose ε = 256, n

will be 110.5, then this attack requires 2n+8 = 2118.5 chosen plaintexts.
Table 2 plots the time complexity of different steps of attack procedure. In

step 4 and substep 5(a), the value of candidates K10, S10 and R
(5)
8 are obtained

by performing 32-bit memory access in table T1,i, so the time complexity of
each of these operations is less than 1

4 one round encryption. In substep 5(b),
we utilize the 120-bit memory access in table T2 to get the candidate of K9,
the time complexity of this operation should be less than one round encryption.
Therefore, the time complexity of this attack is dominated by step 5(b), and the
total time complexity is about 2123.5 10 rounds encryptions.

The memory complexity of attack is dominated by excluding the wrong values
of target subkey, which needs 2120 120-bit memory blocks to list all 2120 possible
values. Thus the memory complexity is about 2120 120-bit blocks of memory.

Table 2. Time complexity in attack procedure

Step Time Complexity for n=110.5

2 2n+8 + 5 × 2n+8 × 1
32

× 1
10

≈ 2n+8E 2118.5E

3 2 × 2n+7 × 1
10

× 16
32

= 2n+3.7E 2114.2E

4(a) 7 × 2n+7 = 2n+9.8MA≈ 2n+4.5E 2115E

4(b) 28 × 2n+7 = 2n+15MA≈ 2n+9.7E 2120.2E

4(c) 28 × 2n+7 × 24
32

× 1
10

= 2n+11.2E 2121.9E

5(a) 28 × 2n+7 = 2n+15MA≈ 2n+9.7E 2120.2E

5(b) 28 × 2n+7 = 2n+15MA≈ 2n+11.7E 2122.2E

6 256 × 264 × (1 + 4
10

)E 2120.5E

36 L. Li, J. Chen, and K. Jia

5 Attack on 10-Round Camellia-192 and 11-Round

Camellia-256

In this section, we will give the new results of attack on 10-round Camellia-192,
and extend the attack to 11-round Camellia-256.

5.1 Attack on 10-Round Camellia-192

According to the key schedule of Camellia-192/256, there are no redundancy in
subkeys of round 8, 9 and 10. So we have to consider all of the 128-bit target
subkey

K
(5)
8 |K

(1,2,3,4,6,7,8)
9 |K(1,2,3,4,5,6,7,8)

10

for attack on 10-round Camellia-192. Consequently, compared with attack on 10-
round Camellia-128 in above section, in step 6(b), for each candidate of K10 and
S10, we should enumerate all of possible values of K

(5)
8 , and get 28 candidates of

R
(5)
8 by memory access. Then in step 6(c), we will perform 28 memory accesses

in table T2 to get 28 candidates of K
(1,2,3,4,6,7,8)
9 . Thus for every proper pair, we

can discard about 216 values from the list of 2128 possible values.

Complexity. The complexity of step 6(b) is 2n+23 32-bit memory accesses,
which is about 2n+17.7 10 rounds encryptions. The complexity of step 6(c) is
2n+23 120-bit memory accesses, which is about 2n+19.7 10 rounds encryptions.
Totally, if n = 110.7, the complexity of this attack is about 2130.4 10 rounds
encryptions. The memory complexity is about 2128 128-bit blocks of memory.
We note that the adjunction of whitening layers don’t effect the complexity in
this attack, because the master key could be retrieved by the guess of equivalent
keys [4].

5.2 Attack on 11-Round Camellia-256

We add one round on the bottom of the 10-round attack, and give a 11-round
attack on Camellia-256. The attack algorithm is as follows:

1. Choose 2n structures of plaintexts, and each structure contains 28 plaintexts
(L0, R0) with

L0 = (x1|x2|x3|x4|x5|x6|x7|x8), R0 = (α1|y2|y3|y4|y5|y6|y7|y8).

Obtain the corresponding ciphertext for each plaintext, then collect 2n+15

pairs which satisfy (ΔL0, ΔR0) = (0|0|0|0|0|0|0|0, a|0|0|0|0|0|0|0).

New Impossible Differential Cryptanalysis of Reduced-Round Camellia 37

2. Guess the 64 bit value of K11, partially decrypt every ciphertext pair to get
the intermediate value (R10, R

′
10) and their difference. Keep only the pairs

which satify

ΔR10
(2) ⊕ΔR10

(3) ⊕ΔR10
(4) ⊕ΔR10

(6) ⊕ΔR10
(7) ⊕ΔR10

(8) = 0.

This step preform a 8-bit filtration form all of 2n+15 pairs, then the expected
number of remaining pairs is 2n+7 at the end of this step.

3. Application of 10 Round Attack: for each of remaining pairs, perform
the following substeps:
(a) Compute the intermediate values P−1(ΔL10) = (h′

1|h′
2|h′

3|h′
4|h′

5|h′
6|h′

7|h′
8)

and P−1(ΔR10) = (0|g′2|g′3|g′4|g′5|g′6|g′7|g′8).
(b) For l = 1, 2, 3, 4, 6, 7, 8, access the row with index (ΔR10

(l)|h′
l) in table

T1,i, and get the candidates of K
(l)
10 and S

(l)
10 .

(c) For all of 28 − 1 possible non-zero value of f , access the row with index
(ΔR10

(5)|h′
5 ⊕ f) in table T1,2, and get the candidate of K

(5)
10 and S

(5)
10 .

Then we obtain about 28 candidates of K10 and S10 for each of remaining
pairs.

(d) For each candidate of K10 and S10, partially decrypt S10 to get the
intermediate value P (S10)⊕ L10 = R9.

(e) For each of the 28 possible values of K
(5)
8 , access the row with index

(g′5|f) in table T1,2, and get the candidates of R
(5)
8 .

(f) Access the row with index (f |g′2|g′3|g′4|g′6|g′7|g′8|R
(5)
8 ⊕ R

(5)
10) in table T2,

and obtain the candidates of K
(i)
9 (i = 1, 2, 3, 4, 6, 7, 8). Such 56-bit value

K
(1,2,3,4,6,7,8)
9 along with 64-bit value K

(1,2,3,4,5,6,7,8)
10 , 8-bit value K

(5)
8

and 64-bit guessed value K11 can result in the impossible differential.
Remove the 128-bit value K

(5)
8 |K

(1,2,3,4,6,7,8)
9 |K(1,2,3,4,5,6,7,8)

10 from the
list of all the 2128 possible values. For every remaining pair, there are
216 128-bit values being removed in this step.

4. After analyze all of remaining pairs, announce the remaining values in the list
along with 64-bit guessed key K11 are the candidates 192-bit target subkey
(KL : 1 ∼ 77, 86 ∼ 128; KA : 46 ∼ 109, KB : 1 ∼ 6, 127, 128). Searching for
the remaining 64-bit value of KA and 8-bit value of KL, then compute the
128-bit master key KR and get the correct key by trial encryption. Otherwise,
return to step 2 to try the other 64-bit value guess.

Complexity. In step 4, the remaining values in the list is ε = 2192×(1− 216

2128)2
n+7

,

if we choose ε = 2120, n will be 110.7, then this attack requires 2n+8 = 2118.7

chosen plaintexts.
The time complexity is dominated by substep 3(e) and 3(f). In substep 3(e),

we need 2n+87 32-bit memory accesses, which is about 2n+81.5 11 rounds en-
cryptions. Substep 3(f) requires 2n+87 120-bit memory accesses, which is about
2n+83.5 11 rounds encryptions. The total complexity of this attack is about 2194.5

38 L. Li, J. Chen, and K. Jia

11 rounds encryptions. The memory complexity is about 2128 128-bit blocks of
memory.

6 Conclusion

In this paper, we first introduced a 7-round impossible differential of Camellia
with FL/FL−1 layer, based on this impossible differential, we proposed an im-
possible differential attack on 10-round Camellia-128, which requires 2118.5 cho-
sen plaintexts and about 2123.5 10-round encryptions. Furthermore, we presented
the new result of attack on 10-round Camellia-192 and 11-round Camellia-256.
To the best of our knowledge, these results are better than all the previously
published attacks on reduced round Camellia with FL/FL−1 layer.

References

1. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,

T.: Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms - Design

and Analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.

39–56. Springer, Heidelberg (2001)

2. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J.,

Tokita, T.: Specification of Camellia-a 128-bit Block Cipher. version 2.0 (2001),

http://info.isl.ntt.co.jp/crypt/eng/camellia/specifications.html

3. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31

Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999.

LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

4. Chen, J., Jia, K., Yu, H., Wang, X.: New Impossible Differential Attacks of

Reduced-Round Camellia-192 and Camellia-256. In: Parampalli, U., Hawkes, P.

(eds.) ACISP 2011. LNCS, vol. 6812, pp. 16–33. Springer, Heidelberg (2011)

5. CRYPTREC-Cryptography Research and Evaluation Committees, report, Archive

(2002), http://www.ipa.go.jp/security/enc/CRYPTREC/index-e.html

6. Duo, L., Li, C., Feng, K.: Square Like Attack on Camellia. In: Qing, S., Imai, H.,

Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 269–283. Springer, Heidelberg

(2007)

7. Hatano, Y., Sekine, H., Kaneko, T.: igher Order Differential Attack of Camellia

(II). In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 129–146.

Springer, Heidelberg (2003)

8. International Standardization of Organization (ISO), International Standard -

ISO/IEC 18033-3, Information technology - Security techniques - Encryption al-

gorithms - Part 3: Block ciphers (2005)

9. Kanda, M., Matsumoto, T.: Security of Camellia against Truncated Differential

Cryptanalysis. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 119–137.

Springer, Heidelberg (2002)

10. Knudsen, L.R.: DEAL C a 128-bit Block Cipher. Technical report, Department of

Informatics, University of Bergen, Norway (1998)

http://info.isl.ntt.co.jp/crypt/eng/camellia/specifications.html
http://www.ipa.go.jp/security/enc/CRYPTREC/index-e.html

New Impossible Differential Cryptanalysis of Reduced-Round Camellia 39

11. Lee, S., Hong, S., Lee, S., Lim, J., Yoon, S.: Truncated Differential Cryptanalysis

of Camellia. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 32–38. Springer,

Heidelberg (2002)

12. Lei, D., Li, C., Feng, K.: New Observation on Camellia. In: Preneel, B., Tavares,

S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 51–64. Springer, Heidelberg (2006)

13. Lu, J., Kim, J.-S., Keller, N., Dunkelman, O.: Improving the Efficiency of Impos-

sible Differential Cryptanalysis of Reduced Camellia and MISTY1. In: Malkin, T.

(ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008)

14. Mala, H., Shakiba, M., Dakhilalian, M., Bagherikaram, G.: New Results on Impos-

sible Differential Cryptanalysis of Reduced–Round Camellia–128. In: Jacobson Jr.,

M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 281–294.

Springer, Heidelberg (2009)

15. NESSIE-New European Schemes for Signatures, Integrity, and Encryption, final

report of European project IST-1999-12324. Archive (1999),

https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf

16. Shirai, T.: Differential, Linear, Boomerang and Rectangle Cryptanalysis of

Reduced-Round Camellia. In: Proceedings of 3rd NESSIE Workshop (2002)

17. Sugita, M., Kobara, K., Imai, H.: Security of Reduced Version of the Block Cipher

Camellia against Truncated and Impossible Differential Cryptanalysis. In: Boyd,

C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 193–207. Springer, Heidelberg

(2001)

18. Wu, W., Feng, D., Chen, H.: Collision Attack and Pseudorandomness of Reduced-

Round Camellia. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS,

vol. 3357, pp. 252–266. Springer, Heidelberg (2004)

19. Wu, W., Zhang, W., Feng, D.: Impossible Differential Cryptanalysis of Reduced-

Round ARIA and Camellia. Journal of Computer Science and Technology 22(3),

449–456 (2007)

https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf

The Initialization Stage Analysis of ZUC v1.5�,��

Chunfang Zhou1,2, Xiutao Feng1, and Dongdai Lin1

1 State Key Laboratory of Information Security, Institute of Software,
Chinese Academy of Sciences, Beijing, 100190, China

2 Graduate University of the Chinese Academy of Science, Beijing, 100049, China
{cfzhou,fengxt,ddlin}@is.iscas.ac.cn

Abstract. The ZUC algorithm is a new stream cipher, which is the
core of the standardised 3GPP confidentiality and integrity algorithms
128-EEA3 & 128-EIA3. In this paper, we analyze the initialization stage
of ZUC v1.5. First of all, we study the differential properties of oper-
ations in ZUC v1.5, including the bit-reorganization, exclusive-or and
addition modulo 2n, bit shift and the update of LFSR. And then we
give a differential trail covering 24 rounds of the initialization stage of
ZUC v1.5 with probability 2−23.48, which extends the differential given
in the design and evaluation report of ZUC v1.5 to four more rounds.
Nevertheless, the study shows that the stream cipher ZUC v1.5 can still
resist against chosen-IV attacks.

Keywords: ZUC, initialization, chosen-IV attack, differential trail.

1 Introduction

The ZUC algorithm [1] is the core of the standardised 3GPP confidentiality
and integrity algorithms 128-EEA3 & 128-EIA3 [2]. The ZUC algorithm has
been evaluated by two independent work groups. It can resist against many
cryptanalytic attacks such as weak key attacks, guess-and-determine attacks,
linear distinguishing attacks, algebraic attacks, etc. Now the version 1.5 of ZUC
is in the second public evaluation phase.

The chosen-IV/Key attack [4,5,6], targeting at the initialization state of stream
ciphers, is one of the most important attacks of stream ciphers. For a good stream
cipher, after the initialization, each bit of the IV/Key should contribute to every
bit of the states of the ciphers and any differential of the IV/Key will result in an
almost-uniform and unpredictable differential of the internal states. Comparing
with the frequency of changing the key, the change of IV is more frequent. And
since the IV is known to the public, so the chosen-IV attack is more feasible.
� This work was supported by the National Natural Science Foundation of China

(Grant No. 60970152, 60833008 and 60902024), the National 973 Program of China
(Grant No. 2011CB302400 and 2007CB807902) and Grand Project of Institute of
Software (Grant No. YOCX285056).

�� This work had been presented informally at the Second International Workshop on
ZUC Algorithm and Related Topics without proceedings.

D. Lin, G. Tsudik, and X. Wang (Eds.): CANS 2011, LNCS 7092, pp. 40–53, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The Initialization Stage Analysis of ZUC v1.5 41

Bing Sun et al. [9] at the 2010 ZUC workshop and Hongjun Wu [10] at the
rump session of ASIACRYPT 2010 independently pointed out that there exists
entropy leakage in the initialization state of the version 1.4 of ZUC. Hongjun
Wu gave a chosen-IV attack to ZUC v1.4. In order to amend the above flaw,
the designers of ZUC modified ZUC v1.4 and presented a new version of ZUC,
namely ZUC v1.5. Wu’s attack dose not work on ZUC v1.5. A 24-round chosen-
Key differential of ZUC v1.4 was given by Ji Li at the first international workshop
on ZUC [7]. The author claimed that the chosen-Key differential still worked on
ZUC v1.5 and extended it to one more round [8]. She introduced a difference in
the key and fixed the differences after the fourth round. Then she gave the 25-
round differential. So the differential probability she given was just conditional
probability and the probability of the 4-round differential which did not give out
by her was not high by our test. A 20-round chosen-IV differential of ZUC v1.5
is given in [3].

In [11] Mouha et al. proposed the concept of S-function (”state function” in
short), which is a special T-function and widely used in the design of stream
ciphers, block ciphers and hash functions. Based on graph theory, Mouha et
al. presented a fully generic and efficient framework to determine the differen-
tial properties of S-functions, which can be efficiently calculated using matrix
multiplications.

Both modular addition and exclusive-or(XOR) are S-functions. The composi-
tion of them is still an S-function, which is used in ZUC. We study the differential
properties of the operation combined modular addition and XOR by the meth-
ods proposed by Mouha et al. Together with the differential properties of other
functions in ZUC, we analyze initialization stage of ZUC v1.5 and extend the
chosen-IV differential given in [3] to four more rounds. The differential proba-
bility is 2−23.48. It shows that ZUC v1.5 is still secure under our new analysis.

The outline of the paper is as follows. In Sect. 2, we give a brief introduction
to ZUC v1.5 and S-functions. We study the differential properties of operations
of ZUC v1.5 and analyze the initialization of ZUC v1.5 in Sect. 3. We conclude
in Sect. 4.

2 Preliminaries

2.1 ZUC v1.5

We recall ZUC v1.5 briefly in this section, for details please refer to [1]. ZUC
v1.5 is a word-oriented stream cipher, which takes 128-bit key and 128-bit IV as
inputs and outputs a 32-bit word key sequence. ZUC v1.5 has three logic layers,
see Fig. 1. The top layer is a linear feedback shift register (LFSR) of 16 cells,
the middle layer is for bit-reorganization, and the bottom layer is a nonlinear
function F .

The LFSR has 16 of 31-bit cells (s0, s1, · · · , s15). The characteristic polyno-
mial of the LFSR is a primitive polynomial over the prime field F231−1.

f(x) = x16 − (215x15 + 217x13 + 221x10 + 220x4 + (28 + 1)).

42 C. Zhou, X. Feng, and D. Lin

15
s

14s
13s

12
s 11

s
10

s
9

s 8
s

7
s

6
s 5

s
4

s
3

s 2
s

1
s 0

s

31
mod 2 1−

15
2

17
2

21
2

20
2

8
1 2+

16161616 1616 1616

1
R

2
R

16<<<

1
S L⋅

2
S L⋅

L

F

S

R

B

R

ZW

F

0X
1

X 2
X

3
X

Fig. 1. The Structure of ZUC v1.5

Each cell si(0 ≤ i ≤ 15) is restricted to take values from the set {1, 2, · · · , 231−1}.
The bit-reorganization layer extracts 128 bits from the LFSR and forms 4 of

32-bit words, where the first three words will be used by the nonlinear function
F in the bottom layer, and the last word will be involved in producing the
keystream. The bit-reorganization forms 4 words X0, X1, X2, X3 as follows:

X0 = s15H ‖ s14L, X1 = s11L ‖ s9H , X2 = s7L ‖ s5H , X3 = s2L ‖ s0H ,

where siH means bits 30 · · · 15 of si, siL means bits 15 · · · 0 of si, for 0 ≤ i ≤ 15.
”a ‖ b” denotes the concatenation of two strings a and b.

The nonlinear function F has 2 of 32-bit memory cells R1 and R2. Let the
inputs to F be X0, X1 and X2, the function F outputs a 32-bit word W . The
detailed process of F is as follows:

W = (X0 ⊕R1) � R2, W1 = R1 � X1, W2 = R2 ⊕X2,

R1 = S(L1(W1L ‖W2H)), R2 = S(L2(W2L ‖W1H)),

where ”�” denotes the addition modulo 2n. S is a 32× 32 S-box. L1 and L2 are
linear transforms. For details please refer to [1].

Let the 128-bit initial key k and the 128-bit initial vector iv be k = k0 ‖ k1 ‖
· · · ‖ k15 and iv = iv0 ‖ iv1 ‖ · · · ‖ iv15 respectively, where ki and ivi, 0 ≤ i ≤ 15,
are all bytes. The first stage of ZUC is initialization stage. The algorithm calls
the key loading procedure to load k and iv into the LFSR, si = ki ‖ di ‖ ivi,
where di is a 15-bit constant, 0 ≤ i ≤ 15. The 32-bit memory cells R1 and R2

are set to be all 0. There are 32 rounds of iterations in the initialization stage,
see Fig. 2. The update of the LFSR is as below:

The Initialization Stage Analysis of ZUC v1.5 43

s16 = 215s15 + 217s13 + 221s10 + 220s4 + (1 + 28)s0 + (W � 1) mod (231 − 1).

After the initialization stage, the algorithm moves into the working stage. For
each iteration, a 32-bit word Z is produced as Z = W ⊕X3.

15
s

14s
13s

12
s 11

s
10

s
9

s 8
s

7
s

6
s 5

s
4

s
3

s 2
s

1
s 0

s

31
mod 2 1−

15
2

17
2

21
2

20
2

8
1 2+

16161616 1616 1616

1
R

2
R

16<<<

1
S L⋅

2
S L⋅

L

F

S

R

B

R

W

F

0X
1

X 2
X

3
X

1>>

Fig. 2. The Structure of ZUC v1.5 During Initialization Stage

2.2 S-Functions

S-function was introduced by Mouha et al. in 2010 to compute the additive differ-
ential probability of XOR [11]. An S-function accepts k n-bit words a1, a2, · · · , ak

and outputs an n-bit word b. A series of states S[i](0 ≤ i ≤ n) are used to cal-
culate the output. The i-th bit of the output and the (i + 1)-th state can be
calculated using only the i-th bits of inputs and the i-th state, see Fig. 3.

(b[i], S[i + 1]) = f(a1[i], a2[i], · · · , ak[i], S[i]), 0 ≤ i < n,

where b[i] denotes the i-th bit of b, 0 ≤ i < n. Usually, the initial state is set to
be zero.

S-functions such as addition, subtraction, multiplication by a constant (all
modulo 2n), XOR and so on, are widely used in cryptographic primitives.

Mouha et al. presented a general framework to analyze S-function efficiently.
The frame is used to calculate the probability that given input differences lead
to given output differences, such as the additive differential probability of XOR,
the XOR differential probability of modular addition, the additive differential
probability of the following sequence of operations: addition, bit rotation and
XOR [12].

44 C. Zhou, X. Feng, and D. Lin

1
[1]a n −

2
[1]a n − [1]ka n −

[]S n [1]S n −

[1]b n −

f

1
[1]a

2
[1]a [1]ka

[2]S [1]S
f

[1]b

1[0]a 2[0]a [0]ka

[0]S
f

[0]b

Fig. 3. Representation of an S-function

3 The Chosen-IV Attack of ZUC v1.5

The main idea of chosen-IV attack is to choose some differences in some IV
bits and study the propagation of the differences during the initialization of the
cipher. We concern on how many rounds are iterated until the differences in
the memory cells become random and unpredictable. If the differences in some
memory cells are still not random after the initialization stage of the cipher, the
cipher is fragile to the chosen-IV attack.

3.1 The Definition of Differences

There are variables with different length in ZUC v1.5, so we define different
differences for variables with different length. For 8-bit or 16-bit variables, the
differences are defined to be the result of integer subtraction of variables. For
31-bit variables, the differences are defined to be the subtraction modulo 231−1.
For 32-bit variables, the differences are defined to be the subtraction modulo
232. We denote the differences of m-bit variables by Δm, m = {8, 16, 31, 32}.

3.2 An Chosen-IV Differential Path of ZUC v1.5

The 128-bit IV is divided into 16 parts. We introduce an 8-bit difference a in iv3.
The difference in iv3 leads to a difference in s3, the differences in other LFSR
cells, R1 and R2 are set to be zero. It has been pointed out in the evaluation
report [3] that when the 3-rd byte of the difference of IV’s is chosen to be non-
zero and the remaining 15 bytes are all 0, the differences in both the LFSR and
the two memory cells R1 and R2 propagate slowest. We extend the differential
in [3] to more rounds.

Given that Δ8iv3 = a > 0, then for given iv3, we have Δ31s3 = a. Table 1
gives the differences of the 16 cells of the LFSR and two registers R1 and R2

after i rounds of iteration (i = 0, 1, · · · , 25). Differences marked with asterisk
” ∗ ” indeed have good randomness. It is easy to see that in round 1-3, the
difference a dose not propagate and just shifts in the LFSR cells. After the third
round, the difference a has shifted to s0. The difference a propagates to s15 in the
fourth round. In round 4-9, the differences in the LFSR cells are not affected by
the S-box and linear transforms of the F function, so the variables b, c, d, e, f, g

The Initialization Stage Analysis of ZUC v1.5 45

may can be predicted with high probability. After 9 rounds of initialization,
the differences propagate into R2, which makes the differences difficult to be
predicted. We have Δ31s0 = g after 18 rounds. The differences in the LFSR
cells, R1 and R2 will be random after 25 rounds of initialization.

3.3 The Differential Properties of Operations in ZUC v1.5

In order to estimate the probability of the differential, we study the differential
properties of the operations in ZUC. There are four operations, bit-reorganization,
XOR and addition modulo 232, bit shift and the update of LFSR. We discuss
these four operations in turn. In this section, we assume that the inputs of these
operations are independent and uniformly distributed.

The Bit-Reorganization. Recall that there are three steps in bit-reorganization.
First of all, we get the most significant 16 bits of a 31-bit variable. Assume that
the difference of two 31-bit variables a1 and a2 is Δ31a. We denote the most
significant important 16 bits of Δ31a to be (Δ31a)H , and the difference of a1H

and a2H to be Δ16aH . There are four possibilities for Δ16aH :

Δ16aH = (Δ31a)H − u216 + v, u, v ∈ {0, 1}.

The calculation of the probabilities to take these values are given in Appendix
B.

The second step is to get the least significant 16 bits of a 31-bit variable.
Assume that the difference of two 31-bit variables b1 and b2 is Δ31b. We denote
the least significant 16 bits of Δ31b to be (Δ31b)L, and the difference of b1L and
b2L to be Δ16bL. There are four possibilities for Δ16bL:

Δ16bL = (Δ31b)L − u216 + v, u, v ∈ {0, 1}.

The calculation of the probabilities to take these values are similar to the calcu-
lation in Appendix B.

The third step is to concatenate two 16-bit words to a 32-bit word. We concern
on the relationship between the differences of the 16-bit words and the difference
of the 32-bit words. Assume that Δ32x = a2H‖b2L − a1H‖b1L mod 232. Then
we have:

Δx32 =

⎧⎪⎪⎨⎪⎪⎩
Δ16aH ‖ Δ16bL, if Δ16aH ≥ 0 and Δ16bL ≥ 0,
(Δ16aH + 216) ‖ Δ16bL, if Δ16aH < 0 and Δ16bL ≥ 0,
(Δ16aH + 216 − 1) ‖ (Δ16bL + 216), if Δ16aH ≤ 0 and Δ16bL < 0,
(Δ16aH − 1) ‖ (Δ16bL + 216), if Δ16aH > 0 and Δ16bL < 0.

Assume that the probabilities of differential propagations in the first step and
second step are p1 and p2, then probability of differential propagation in
bit-reorganization is p1 ∗ p2.

46 C. Zhou, X. Feng, and D. Lin

Table 1. The 24-Round Differential Path of ZUC v1.5

Round s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0 R1 R2

0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0

4 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 c b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 d c b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 e d c b 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 f e d c b 0 0 0 0 0 0 0 0 0 0 0 0 0

9 g f e d c b 0 0 0 0 0 0 0 0 0 0 0 ∗
10 ∗ g f e d c b 0 0 0 0 0 0 0 0 0 ∗ ∗
11 ∗ ∗ g f e d c b 0 0 0 0 0 0 0 0 ∗ ∗
12 ∗ ∗ ∗ g f e d c b 0 0 0 0 0 0 0 ∗ ∗
13 ∗ ∗ ∗ ∗ g f e d c b 0 0 0 0 0 0 ∗ ∗
14 ∗ ∗ ∗ ∗ ∗ g f e d c b 0 0 0 0 0 ∗ ∗
15 ∗ ∗ ∗ ∗ ∗ ∗ g f e d c b 0 0 0 0 ∗ ∗
16 ∗ ∗ ∗ ∗ ∗ ∗ ∗ g f e d c b 0 0 0 ∗ ∗
17 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ g f e d c b 0 0 ∗ ∗
18 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ g f e d c b 0 ∗ ∗
19 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ g f e d c b ∗ ∗
20 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ g f e d c ∗ ∗
21 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ g f e d ∗ ∗
22 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ g f e ∗ ∗
23 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ g f ∗ ∗
24 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ g ∗ ∗
25 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

XOR and Addition Modulo 232. The operation XOR is combined with the
addition modulo 2n. We write them by XA for short. In this section, we set that
n = 32. Let w = (x⊕ y) � z. Given the input differences Δ32x, Δ32y, Δ32z and
inputs x1, y1, z1, we can calculate the output difference Δ32w as follows:

x2 = x1 � Δ32x, y2 = y1 � Δ32y, z2 = z1 � Δ32z,

w2 = (x2 ⊕ y2) � z2, w1 = (x1 ⊕ y1) � z1,

Δ32w = w2 � w1,

where ”�” denotes the subtraction modulo 232. The probability of the differential
propagation from input differences α, β, γ to the output difference δ is defined
as below:

adpXA(α, β, γ → δ) =
{(x1, y1, z1)|Δ32x = α, Δ32y = β, Δ32z = γ, Δ32w = δ}

{(x1, y1, z1)|Δ32x = α, Δ32y = β, Δ32z = γ} .

We consider the special situation that β and γ are equal to zero. This corresponds
to the situation that the differences in LFSR cells do not lead to differences in

The Initialization Stage Analysis of ZUC v1.5 47

X1 and X2, see Table 1 in Sect. 3.2. So it is enough for us to consider this simple
situation. Now the differences Δ32w can be calculated as follows:

x2 = x1 � Δ32x, (1)
y2 = y1, z2 = z1, (2)
k2 = x2 ⊕ y2, k1 = x1 ⊕ y1, (3)
w2 = k2 � z2, w1 = k1 � z1, (4)
Δ32w = w2 � w1 = k2 � k1 = Δ32k. (5)

Apparently the output difference of XA is equal to the output difference of XOR.
The probability of the differential propagation from input differences α to the
output difference δ is defined as below:

adpXA(α, 0, 0→ δ) =
{(x1, y1)|Δ32x = α, Δ32y = 0, Δ32k = δ}

{(x1, y1)|Δ32x = α, Δ32y = 0} .

That is adpXA(α, 0, 0 → δ) = adp⊕(α, 0 → δ), where adp⊕ denotes the differ-
ential probability of XOR when differences are expressed using addition modulo
2n, which has been well studied in [11]. Here we study adp⊕ with the restriction
that one of the input difference be equal to zero.

Now we consider the pairs (x1, y1) satisfying Δ32x = α, Δ32y = 0 and Δ32k =
δ. We denote cx[i] the i-th carry of the addition in (1) and ck[i] the i-th borrow
of the subtraction in (5), cx[i] ∈ {0, 1}, ck[i] ∈ {0,−1}, 0 ≤ i ≤ n. The formula
(1)-(5) can be rewritten on a bit level:

x2[i] = x1[i]⊕Δ32x[i]⊕ cx[i], (6)
cx[i + 1] = (x1[i] + Δ32x[i] + cx[i])� 1, (7)
y2[i] = y1[i], (8)
k1[i] = x1[i]⊕ y1[i], (9)
k2[i] = x2[i]⊕ y2[i], (10)
Δ32k[i] = k2[i]⊕ k1[i]⊕ ck[i], (11)
ck[i + 1] = (k2[i]− k1[i] + ck[i])� 1. (12)

Define the state S[i] = (cx[i], ck[i]). Then (6)-(12) correspond to the S-function

(Δ32k[i], S[i + 1]) = f(x1[i], y1[i], Δ32x[i], S[i]), 0 ≤ i < n.

The computation can be represented by graph, as described in [11]. For 0 ≤ i ≤
n, we can represent every state S[i] as a vertex in a graph. This graph consists of
several subgraphs, containing only vertices S[i] and S[i+1] for some i. Set Δ32x[i]
to be equal to α[i]. We loop over the all possible values of (x1[i], y1[i], S[i]), and
for each combination, Δ32k[i] and S[i+1] are uniquely determined. We draw an
edge between S[i] and S[i + 1] if and only if Δ32k[i] equals to δ[i]. Every path
from S[0](0, 0) to any of the four vertices of S[32] corresponds to a pair (x1, y1)
satisfying the differential propagation. So if we can count the number of paths,
then we can calculate the probability of differential.

48 C. Zhou, X. Feng, and D. Lin

There are four possible subgraphs totally, see Fig. 4, corresponding to the four
possible values of α[i] and δ[i]. The pair (α[i], δ[i]) can be written as a 2-bit string,
denoted by w[i]. Each w[i] corresponds to one of the four possible subgraphs.
Since the subgraphs are bipartite graphs, we can construct their biadjacency
matrices Aw[i] = [xk,j]. The element xk,j is the number of edges connecting
vertices j = S[i] and k = S[i + 1]. All of the four biadjacency matrices are
given in Appendix A. Then the number of paths between two vertices can be
calculated by means of a matrix multiplication, that is,

adpXA(α, 0, 0→ δ) = 4−nLAw[n−1] · · ·Aw[1]Aw[0]C,

where L = [1111] is a 1× 4 matrix and C = [1000]T is a 4× 1 matrix.
For a given α, now we consider how to choose δ such that adpXA(α, 0, 0→ δ)

reaches maximum. We call a state S[i] to be uniform, if each vertex of S[i] have
only one path coming from S[i− 1].

Fig. 4. Four Possible Subgraphs

The Initialization Stage Analysis of ZUC v1.5 49

Lemma 1. For any n-bit integer α �= 0. Assume that α[i] is the least significant
nonzero bit of α, that is α[0] = α[1] = · · · = α[i−1] = 0 and α[i] = 1, 0 ≤ i < n.
If S[i + 1] is uniform and adpXA(α, 0, 0→ δ) �= 0, then α[j] = δ[j], 0 ≤ j ≤ i.

Proof. If α[0] = 1, that is i = 0, there must be δ[0] = 1. Otherwise, no path
starts from vertex S[0](0, 0) and adpXA(α, 0, 0 → δ) = 0. So S[1] is uniform. If
α[0] = 0, there must be δ[0] = 0. Now all edges starting from vertex S[0](0, 0)
end to vertex S[1](0, 0). So if α[1] = 0, there must have δ[1] = 0 in order to draw
edges between S[1] and S[2]. If α[0] = α[1] = · · · = α[i − 1] = 0, then we have
δ[0] = δ[1] = · · · = δ[i− 1] = 0. Now the paths start from vertex S[0](0, 0) and
end to vertex S[i](0, 0). In order to extend the paths to S[i + 1], there must be
δ[i] = 1. Then S[i + 1] is uniform. �

Lemma 2. For any n-bit integer α �= 0. If S[i + 1] is uniform and adpXA

(α, 0, 0→ δ) reaches maximum, then α[j] = δ[j] for all i < j < n or α[j] �= δ[j]
for all i < j < n.

Proof. Note that each vertex of S[i + 1] has only one edge coming from S[i], so
δ[i+1] = 0 has the same contribution to the differential probability as δ[i+1] = 1.
We hope that the paths reach S[n] as more as possible. So we should choose the
value of δ[j] such that the vertex of S[j] connecting with most edges from S[j−1]
has edges connecting with S[j + 1] as more as possible. If δ[i + 1] �= α[i + 1],
then for i + 1 < j < n, there should be α[j] �= δ[j]. If δ[i + 1] = α[i + 1], then for
i + 1 < j < n, we have α[j] = δ[j]. �

By Lemmas 1 and 2, we can get the following theorem:

Theorem 1. Given an input difference α �= 0. Assume that α[i] is the least
significant nonzero bit of α, that is, α[0] = α[1] = · · · = α[i − 1] = 0 and
α[i] = 1, 0 ≤ i < n. The differential probability adpXA(α, 0, 0 → δ) reaches
maximum when δ = α or δ = α⊕ (2n − 2i+1).

Bit Shift. We get the most significant 31 bits of a 32-bit variable by shifting it
one bit to the right. Assume that the difference of two 32-bit variables W1 and
W2 is Δ32W . We denote the most significant important 31 bits of Δ32W to be
(Δ32W)H31, and the difference of u1 = W1 � 1 and u2 = W2 � 1 to be Δ31u.
There are four possibilities for Δ31u:

Δ31u = {(Δ32w)H31, (Δ32w)H31 ± 1, (Δ32w)H31 − 231 + 1}.

The calculation of the probabilities to take these values are similar to the
calculation in Appendix B.

The Update of LFSR. The difference propagation caused by update of LFSR
is easy to deal with because the differences of LFSR cells are linear, that is,

Δ31s16 = 215Δ31s15 + 217Δ31s13 + 221Δ31s10 + 220Δ31s4

+(1 + 28)Δ31s0 + Δ31u mod (231 − 1). (13)

50 C. Zhou, X. Feng, and D. Lin

3.4 The Probability of the Differential

We choose the difference a with hamming weight 1. Then we can get that b =
(a � 8) + a with probability 1 by (13). We predict the differences c, d, e, f, g
according to the properties of operations given in Sect. 3.3 and then estimate
the differential probability by two sets of 228 pairs (k, iv). In the first set, all
pairs (k, iv) are randomly chosen. And in the second set, all ks in pairs (k, iv)
are identical, and ivs are distinct and randomly chosen. The test results show
that the probabilities of the differential trail in two test sets are almost identical
and are listed in Table 2.

Table 2. The Differential and Differential Probability when a = 1

a b c d e f g

Difference(hex) 01 00000101 00808000 40808100 03030081 0343c585 68070585

Probability(log2) 0 0 -0.011 -6.340 -10.134 -16.967 -23.476

We try to extend our differential trial to more rounds. When we begin with
the 1-st round, or the 2-nd round, or the 3-rd round, and backtrack in the reverse
order, the steps for a good difference propagation could be added by 1-3 rounds.
If the differential before key loading is

(0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0, δ, 0, 0; 0, 0)

and 220a + (1 + 28)δ mod (231 − 1) = 0. Then after 3 rounds, the differential
will be

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0; 0, 0).

Unfortunately, we can not find such δ.

4 Conclusion

In this paper we analyze the initialization stage of ZUC v1.5. First of all, we
study the differential properties of operations in ZUC v1.5, including the bit-
reorganization, XOR and addition modulo 2n, bit shift and the update of LFSR.
And then we give a differential trail of ZUC v1.5 which covers 24 rounds of the
initialization stage with probability 2−23.48. We fail to extend this differential
trail to more rounds.

Acknowledgement. The authors are grateful to the anonymous reviewers for
their constructive comments.

The Initialization Stage Analysis of ZUC v1.5 51

A Matrices for adpXA

A00 =

⎛⎜⎜⎝
4 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

⎞⎟⎟⎠ ,A01 =

⎛⎜⎜⎝
0 0 1 0
0 4 1 0
0 0 1 0
0 0 1 0

⎞⎟⎟⎠ ,A10 =

⎛⎜⎜⎝
0 1 0 0
0 1 0 0
0 1 4 0
0 1 0 0

⎞⎟⎟⎠ ,A11 =

⎛⎜⎜⎝
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 4

⎞⎟⎟⎠ .

B The Calculation of Differential Probability in
Bit-Reorganization

In this section, we assume that a1 and a2 are n-bit integers and take values
from the set {1, 2, · · · , 2n − 1}. We denote the most significant h bits of ai and
the least significant l bits of ai by aih and ail respectively, that is ai = aih‖ail,
where 0 < h < n, l = n−h, i = 1, 2. The difference of a1 and a2 is defined to be
the subtraction modulo 2n − 1 of a1 and a2, denoted by Δna. The difference of
a1h and a2h is defined to be the integer subtraction of a1h and a2h, denoted by
Δhah. Assume that we have known Δna, we want to predict Δhah.

By the property of modulo addition, the difference of a1 and a2 can be written
as follows:

Δna = (a1h − a2h + u2h − v)‖(a1l − a2l + v2l − u)
= (Δhah + u2h − v)‖(a1l − a2l + v2l − u), u, v ∈ {0, 1}.

The boolean variable u takes value according to the integer subtraction of a1 and
a2. If a1 < a2, we should borrow from the position n, then we have u = 1. The
boolean variable v takes value according to the integer subtraction of the least
significant l bits of a1 and a2. If a1l < a2l, we should borrow from the position
l and then we have v = 1. More explicitly, we have

(u, v) =

⎧⎪⎪⎨⎪⎪⎩
(0, 0), if a1h ≥ a2h and a1l ≥ a2l,
(1, 0), if a1h < a2h and a1l > a2l,
(0, 1), if a1h > a2h and a1l < a2l,
(1, 1), otherwise.

(14)

Obviously, Δhah and Δna have the following relationship:

Δhah = (Δna)h − u2h + v, u, v ∈ {0, 1},

where (Δna)h denotes the most important h bits of Δna and the least important
l bits of Δna is denoted by (Δna)l.

So there are four possible values for Δhah. We can get the probability that
(u, v) take certain value by counting the pairs of (a1, a2) which satisfy the cor-
responding condition in (14) and the following equation:

a1 − a2 mod (2n − 1) = Δna. (15)

52 C. Zhou, X. Feng, and D. Lin

First of all, the number of pairs of (a1, a2) satisfying (15) is 2n − 1.
The pairs of (a1, a2) satisfying (15) and the first condition in (14) can be

calculated as follows:

�{(a1, a2)|a1 − a2 mod (2n − 1) = Δna, a1h ≥ a2h, a1l ≥ a2l}
= �{(a1, a2)|a1 − a2 = Δna, a1h ≥ a2h, a1l ≥ a2l}
= �{(a1, a2)|a1h − a2h = (Δna)h, a1l − a2l = (Δna)l, a1h ≥ a2h, a1l ≥ a2l}
= (2h − (Δna)h)× (2l − (Δna)l)− 1.

Similarly, the pairs satisfying (15) and the second condition in (14) can be cal-
culated as follows:

�{(a1, a2)|a1 − a2 mod (2n − 1) = Δna, a1h < a2h, a1l > a2l}
= �{(a1, a2)|a1 − a2 + 2n − 1 = Δna, a1h < a2h, a1l > a2l}
= �{(a1, a2)|a1h − a2h + 2h = (Δna)h, a1l − a2l − 1 = (Δna)l}
= (Δna)h × (2l − (Δna)l − 1).

The pairs satisfying (15) and the third condition in (14) can be calculated as
follows:

�{(a1, a2)|a1 − a2 mod (2n − 1) = Δna, a1h > a2h, a1l < a2l}
= �{(a1, a2)|a1 − a2 = Δna, a1h > a2h, a1l < a2l}
= �{(a1, a2)|a1h − a2h − 1 = (Δna)h, a1l − a2l + 2l = (Δna)l}
= (2h − (Δna)h − 1)× (Δna)l.

The pairs satisfying (15) and the fourth condition in (14) can be calculated by
subtracting the number of pairs satisfying the first three conditions from 2n− 1.

References

1. ETSI/SAGE: Specification of the 3GPP Confidentiality and Integrity Algorithms
128-EEA3 & 128-EIA3, Document 2: ZUC Specification, Version 1.5 (January 4,
2011), http://gsmworld.com/documents/EEA3_EIA3_ZUC_v1_5.pdf

2. ETSI/SAGE: Specification of the 3GPP Confidentiality and Integrity Algorithms
128-EEA3 & 128-EIA3, Document 1: 128-EEA3 and 128-EIA3 Specification, Ver-
sion 1.5 (January 4, 2011),
http://gsmworld.com/documents/EEA3_EIA3_specification_v1_5.pdf

3. ETSI/SAGE: Specification of the 3GPP Confidentiality and Integrity Algorithms
128-EEA3 & 128-EIA3, Document 4: Design and Evaluation Report, Version 1.3
(January 18, 2011),
http://gsmworld.com/documents/EEA3_EIA3_Design_Evaluation_v1_3.pdf

4. Englund, H., Johansson, T., Sönmez Turan, M.: A Framework for Chosen IV Statis-
tical Analysis of Stream Ciphers. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 268–281. Springer, Heidelberg (2007)

5. Fischer, S., Khazaei, S., Meier, W.: Chosen IV Statistical Analysis for Key Recovery
Attacks on Stream Ciphers. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS,
vol. 5023, pp. 236–245. Springer, Heidelberg (2008)

 http://gsmworld.com/documents/EEA3_EIA3_ZUC_v1_5.pdf
http://gsmworld.com/documents/EEA3_EIA3_specification_v1_5.pdf
http://gsmworld.com/documents/EEA3_EIA3_Design_Evaluation_v1_3.pdf

The Initialization Stage Analysis of ZUC v1.5 53

6. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

7. Li, J.: Improved Differential Paths on ZUC. Appear in the First International
Workshop on ZUC Algorithm (December 2010)

8. Li, J.: Differential analysis of ZUC. Appear in the Second International Workshop
on ZUC Algorithm and Related Topics (June 2011)

9. Sun, B., Tang, X., Li, C.: Preliminary Cryptanalysis Results of ZUC. Appear in
the First International Workshop on ZUC Algorithm (December 2010)

10. Wu, H.: Cryptanalysis of the Stream Cipher ZUC in the 3GPP Confidentiality
& Integrity Algorithms 128-EEA3 & 128-EIA3. Appear at the sump session in
ASIACRYPT (2010)

11. Mouha, N., Velichkov, V., De Cannière, C., Preneel, B.: The Differential Analysis
of S-Functions. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS,
vol. 6544, pp. 36–56. Springer, Heidelberg (2011)

12. Velichkov, V., Mouha, N., De Cannière, C., Preneel, B.: The Additive Differential
Probability of ARX. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 342–358.
Springer, Heidelberg (2011)

Algebraic Cryptanalysis of the Round-Reduced

and Side Channel Analysis of the Full
PRINTCipher-48

Stanislav Bulygin1,2 and Johannes Buchmann1,2

1 Center for Advanced Security Research Darmstadt - CASED
Mornewegstraße 32, 64293 Darmstadt, Germany

{johannes.buchmann,Stanislav.Bulygin}@cased.de
2 Technische Universität Darmstadt, Department of Computer Science

Hochschulstraße 10, 64289 Darmstadt, Germany
buchmann@cdc.informatik.tu-darmstadt.de

Abstract. In this paper we analyze the recently proposed lightweight
block cipher PRINTCipher. Applying algebraic methods and SAT-solving
we are able to break 8 rounds of PRINTCipher-48 and 9 rounds under
some additional assumptions with only 2 known plaintexts faster than
brute force. We show that it is possible to break the full 48-round cipher
by assuming a moderate leakage of internal state bits or even just Ham-
ming weights of some three-bit states. Such a simulation side-channel
attack has practical complexity.

Keywords: Algebraic cryptanalysis, SAT-solving, PRINTCipher,
MiniSAT, CryptoMiniSAT.

1 Introduction

The target of this paper is the lightweight block cipher PRINTCipher proposed
in 2010 at CHES [1]. PRINTCipher proposes a security solution for low cost
devices such as RFID tags. In particular, PRINTCipher aims to facilitate secure
usage of integrated circuit (IC) printing for RFID tags. An interesting feature
of such “printing” is that a tag can obtain key dependent circuitry already at
the manufacturing phase. As a result, the authors of [1] propose to use the
same key for all rounds, but implementing key-dependent S-Boxes that may be
“printed” when a tag is manufactured. In cryptographic sense, PRINTCipher
pushes even further the limits of lightweight block cipher design set by such
ciphers as PRESENT [2] and KATAN/KTANTAN-family [3]. In fact the authors
state that e.g. PRINTCipher-48, which is claimed to provide 80-bit security, may
be implemented with almost three times less gate equivalents (GEs) than the
80-bit version of PRESENT.

Naturally, the question of security for such an extremely lightweight design
arises. The first cryptanalytic results known is the differential cryptanalysis of
22 rounds of the cipher using the entire code-book [4]. A much more powerful

D. Lin, G. Tsudik, and X. Wang (Eds.): CANS 2011, LNCS 7092, pp. 54–75, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Algebraic Cryptanalysis of the Round-Reduced and Side Channel Analysis 55

result is presented in [5]. In this paper the authors show that there exist a
non-negligible portion (252 for PRINTCipher-48 with 80 bit keys and 2102 for
PRINTCipher-96 with 160 bit keys) of weak keys. For these keys the cipher is
easily broken with only several plaintext pairs, which makes the attack practical
for these weak keys. Note, however, that the invariant coset attack of [5] may
be easily overcome by adjusting the round counter appropriately, see Section 2.3
of [5]. Therefore, analyzing PRINTCipher still is of interest and serves further
and deeper understanding of lightweight design principles, which PRINTCipher
is using extensively.

Note that although the IC printing technology itself is “in its infancy”, side
channel security is still of theoretical interest. The preprint [6] addresses, in par-
ticular, security of PRINTCipher against the fault injection. There the authors
show that by introducing faults into just one nibble position at some last rounds
and having 12–24 effective faulty samples it is possible to dramatically reduce
the key space to be searched.

In this paper we propose algebraic cryptanalysis of round-reduced
PRINTCipher-48 using SAT-solving. Algebraic cryptanalysis combined with
SAT-solving has become a popular tool in analyzing stream (e.g. [7]) and block
ciphers (e.g. [8,9,10]). We show that we are able to break 8 rounds of the cipher
having only 2 known plaintext pairs faster than the brute force. We are able
to break 9 rounds assuming knowledge of 50 key bits out of 80. The success
of this attack (i.e. it is faster than the brute force) is around 3/4. Note that
although the number of rounds we can break is rather low, the data complexity
of these attacks is minimal: exactly two known plaintexts. As indicated in [11],
it is important to consider low data complexity attacks on block ciphers due to
possible applications of block ciphers other than encryption. Note that it may
very well be possible that a linear or differential attack on 8 rounds would be
actually faster than the algebraic attack from this paper. Still it would require
many more plaintext/ciphertext pairs, which could be hard to get in practice.

Moreover we provide side-channel analysis of PRINTCipher-48. This part
comes in line with the research on algebraic methods in side channel analy-
sis, cf. e.g. [12,13]. We show that assuming knowledge of internal state bits at
round 4, we are able to break the full 48 rounds of PRINTCipher-48 in practical
time. For example, assuming knowing 6 output bits of 2 S-Boxes (3 bits each) at
round 4 for 12 known plaintext/ciphertext pairs, we estimate total key recovery
in less than 2 hours on average. Relaxing the knowledge of internal state bits by
knowing only Hamming weights of inputs and outputs to the 2 first S-Boxes at
round 4, we estimate recovery of the 80-bit key in less than 3 days on average
using 12 pairs of plaintext/ciphertext.

The paper is structured as follows. Section 2 gives a brief description of
PRINTCipher-48. Then in Section 3 we elaborate on algebraic representations
of the S-Boxes. Section 4 is a brief overview of the SAT-solving technique and
conversion techniques used in this paper. Section 5 provides analysis of tools
and conversion techniques that are further used in Section 6 to attack the ci-
pher. Section 6 has several subsections. Section 6.1 gives results of algebraic

56 S. Bulygin and J. Buchmann

cryptanalysis of the round-reduced PRINTCipher-48. Section 6.2 observes an
interesting property of the cipher, which is then applied to side channel analysis
in Section 6.3. We conclude in Section 7 and outline there some open problems.
At the end we have three appendices. Appendix A contains details on the S-Box
equations. Appendix B provides experimental evidence for the claims made in
Section 6.2. Finally Appendix C discusses potential applications of the idea in
Section 6.2 to the attack on the full PRINTCipher-48 with 48 rounds.

The main results of the paper are contained in Sections 6.1 and 6.3.

2 PRINTCipher

PRINTCipher is a substitution-permutation network. The cipher is largely in-
spired by the lightweight block cipher PRESENT [2]. The main differences with
PRESENT is absence of the key schedule (all round keys are the same and
are equal to the master key) and key-dependent S-Boxes. PRINTCipher comes
in two variations: PRINTCipher-48 encrypts 48 bits blocks with an 80 bit key
and has 48 rounds, PRINTCipher-96 encrypts 96 bit blocks with a 160 bit key
and has 96 rounds. Here we present a short overview of the cipher, referring
the reader to [1] for a more detailed description and analysis. In this paper we
concentrate on the smaller version PRINTCipher-48.

The encryption process of PRINTCipher-48 is organized as in Algorithm 1.

Algorithm 1. Encryption with PRINTCipher-48
Require:

- 48-bit plaintext p
- 80-bit key k = (sk1, sk2), where sk1 is 48 bits and sk2 is 32 bits

Ensure: 48-bit ciphertext c
Begin
state := p
for i = 1, . . . , 48 do

state := state ⊕ sk1

state := Perm(state)
state := state ⊕ RCi

state := SBOX(state, sk2)
end for
c := state
return c
End

Some comments to Algorithm 1 follow. The linear diffusion layer Perm im-
plements a bit permutation similar to PRESENT. It allows full dependency on
plaintext and key bits already at round 4. RCi for i = 1, . . . , 48 is a 6-bit round
counter that is placed in the last two 3-bit nibbles. The S-Box layer SBOX is a
layer of 16 3-bit S-Boxes numbered 0, . . . , 15, where each S-Box is chosen accord-
ing to the value of two corresponding bits of the subkey sk2. Therewith there

Algebraic Cryptanalysis of the Round-Reduced and Side Channel Analysis 57

are 4 possible S-Boxes at each position called V0, V1, V2, V3 in [1]. One may also
consider such an S-Box as a composition of a key dependent bit permutation
that acts on groups of 3 bits and then followed by the layer of fixed S-Boxes,
each one being a 3-bit S-Box with the truth table as in Table 1. This S-Box,
called V0 in [1], is preceded by a key-dependent permutation defined by Table 2.
In Table 2 the three input bits are permuted according to the two consecutive
key bits from the subkey sk2 called a0 and a1. Figure 1 provides an illustration
for one encryption round of PRINTCipher-48.

Table 1. Truth table for the S-Box V0

x 0 1 2 3 4 5 6 7

S[x] 0 1 3 6 7 4 5 2

Table 2. Key depended permutation

a1 a0 Permutation

0 0 (0,1,2)

0 1 (0,2,1)

1 0 (1,0,2)

1 1 (2,1,0)

xor sk1

xor rci

S S S S S S S S S S S S S S S S
p p p p p p p p p p p p p p p p

Fig. 1. Round function of PRINTCipher-48, cf. Figure 1 of [1].

As has been already mentioned in Section 1, in [5] the authors propose an
attack on PRINTCipher that works for a large set of weak keys. In Section 2.3
of [5] it is indicated that it is possible to overcome the attack by spreading the
round counter to e.g. the last three three-bit entries instead of two. We apply
this change and use the modified cipher when working with the full 48-round
cipher in Sections 6.2 and 6.3 and also Appendices B and C.

In our attacks we extensively use another notion defined for bit-permutations
in SP-networks. This is the notion of a low diffusion trail. The effect of a low

58 S. Bulygin and J. Buchmann

diffusion trail was observed already for PRESENT and was used as a tool for
statistical saturation attacks [14]. An observation on low diffusion trails is also
made by the authors of [1] in Section 4.4. One fixes certain S-Boxes and computes
how many bits stay within the fixed S-Boxes after the application of the bit
permutation layer. Low diffusion trails correspond to those S-Boxes with the
highest count. We number S-Boxes from 0 to 15 from left to right. For example,
looking at Figure 1 one sees that if we fix S-Boxes 0,1 and 5, then 5 out of 9
output bits at round i are input bits to these three S-Boxes at round i + 1. In
fact positions {0, 1, 5} provide a low diffusion trail for 3 S-Boxes. We cite now
Table 1 from [1] which provides examples of low diffusion trails and append it
with some other trails that we used for the number of positions 2, 9 and 10, see
Table 3. Note that many other low diffusion trails exist for every given number
of fixed S-Boxes.

Table 3. Low diffusion trails for PRINTCipher-48

of S-Boxes in trail Example trail # bits in the trail Ratio

2 {0, 1} 2 2/6

3 {0, 1, 5} 5 5/9

4 {0, 1, 5, 15} 7 7/12

5 {4, 10, 12, 14, 15} 9 9/15

6 {0, 1, 2, 5, 6, 7} 12 12/18

7 {3, 8, 9, 10, 11, 13, 15} 14 14/21

8 {0, 1, 4, 5, 10, 12, 14, 15} 18 18/24

9 {0, 1, 2, 3, 5, 10, 11, 14, 15} 20 20/27

10 {0, 1, 3, 4, 5, 10, 11, 12, 14, 15} 24 24/30

3 Algebraic Description

In this section we give an algebraic description of the PRINTCipher-48. As
usual in algebraic cryptanalysis, the most interesting part is to describe non-
linear transformations, the S-Boxes. In the case of PRINTCipher we have key
dependent S-Boxes, so we have to treat this situation.

First of all, let us describe the system of equations for r rounds of
PRINTCipher-48. We are working in the Boolean ring with variables Xi :=
(Xi,j), 0 ≤ i ≤ r, 0 ≤ j ≤ 47 input variables; Yi := (Yi,j), 1 ≤ i ≤ r, 0 ≤ j ≤ 47
output variables; K1 := (K1,j), 0 ≤ j ≤ 47 key-xor variables; K2 := (K2,j), 0 ≤
j ≤ 31 key-permutation variables. Now schematically the system of equations
Sys(p, c) is as follows⎧⎪⎪⎨⎪⎪⎩

X0 = p,
Xi = Yi−1 ⊕K1, 1 ≤ i ≤ r,
Yi = SBOX(Perm(Xi)⊕RCi, K2), 1 ≤ i ≤ r,
Yr = c.

Variables X0 and Yr do not actually appear, since they are replaced by the
values of the corresponding plaintext/ciphertext pair (p, c). Our task is to find

Algebraic Cryptanalysis of the Round-Reduced and Side Channel Analysis 59

solutions for the variables K1 and K2 which then give us the key k that encrypts
p to c. The variables Ki represent the subkey ski for i = 1, 2. Some remarks on
notation. It is clear that in the second line we simply do bitwise XOR of the
variables. The third line assumes that the variables are grouped by three and
two corresponding key-permutation variables. So SBOX is the concatenation of
16 non-linear maps. The map Perm is a bit permutation, see Algorithm 1 and
Figure 1. For example for the first S-Box we have equations:

Yi,j = SBOXj(Xi,0, Xi,16, Xi,32, K2,0, K2,1), 0 ≤ j ≤ 2,

since RCi is always zero at those positions. Another important observation is
that since the key length of PRINTCipher-48 is larger than its block length, we
actually need two plaintext/ciphertext pairs to uniquely determine the key. So
actually we need two systems Sys(p1, c1) and Sys(p2, c2), where the X− and
Y−variables are different the K1−, K2−variables are the same.

Our next goal is to look closely at the SBOX map. This map is a con-
catenation of 16 smaller maps sbox(sk2), which depend in the key sk2. Note
that each sbox can be considered as a composition of the key-dependent per-
mutation SP : F3

2 × F2
2 → F3

2 and the fixed S-Box V0, see Section 2. We need
to find equations that describe the map SP . Introducing local notation, let
X = (X0, X1, X2) be the input variables A = (A0, A1) be the key-permutation
variables and W = (W0, W1, W2) be the output variables. Then SP can be de-
scribed as W = SP (X, A) = (fij(A)) · XT , where for each assigned value for
A = (A0, A1), the matrix F := (fij(A)) is a permutation matrix according to
the table in Section 2. By using interpolation techniques, we find that fij ’s are
polynomials in A-variables of degree at most 2. The matrix is as follows:

F =

⎛⎝A0 + 1 A0A1 + A0 A0A1

A0A1 + A0 A0 + A1 + 1 A0A1 + A1

A0A1 A0A1 + A1 A1 + 1

⎞⎠ .

Therefore, we obtain cubic equations for the map SP : quadratic in key-
permutation variables and linear in the input variables. Appendix A.1 contains
the equations describing this map.

Now the S-Box V0 is a “classical” S-Box and standard techniques may be used
to describe it. Let Y = (Y0, Y1, Y2) be the output variables of the S-Box, so that
Y = V0(W). Since V0 is a F3

2 → F3
2 S-Box, we may obtain explicit quadratic

equations for the output variables in terms of the input variables:

Y0 = W1W2 + W0,
Y1 = W0W2 + W0 + W1,
Y2 = W0W1 + W0 + W1 + W2.

In total there are 14 linearly independent quadratic equations that describe V0.
Of course we may write equations for the sbox in terms of X-, A-, and

Y -variables only, eliminating the W -variables. Therewith, we obtain quartic
equations for sbox: quadratic in the key-permutation and the input variables.
We list these equations in Appendix A.2.

60 S. Bulygin and J. Buchmann

4 SAT Techniques for Algebraic System Solving

Using SAT-solvers in cryptanalysis is a quite recent trend. The idea is to trans-
late an algebraic representation of a cryptographic primitive, such as block or
stream cipher, into a satisfiability problem from propositional logic. Therewith,
the problem of solving an algebraic system of equations in a Boolean ring is
replaced with finding a satisfiability assignment of variables in a logical formula
(or proving that such an assignment does not exist). Whereas equations from an
algebraic representation are in the algebraic normal form (ANF), the resulting
satisfiability problem is usually in the conjunctive normal form (CNF). In the
block cipher cryptanalysis there are examples of using SAT-solving in analyz-
ing KeeLoq [8], DES [9], PRESENT and KTANTAN [15] whereas for stream
ciphers an example target is Grain [7]. Although the problem of finding a satisfi-
ability assignment of variables, as well as solving non-linear systems, is NP-hard
in general, highly tuned SAT-solvers can solve particular instances occurring in
practice amazingly fast. The two most commonly used SAT-solvers in the cryp-
tographic context are MiniSAT2 [16] and recently proposed CryptoMiniSAT2
[17]. The latter uses ideas of MiniSAT adding a lot of new heuristics and the
possibility to handle long XOR chains more efficiently.

There exist several methods of transforming an ANF of a polynomial into
the CNF form. In our experiments we rely on the two methods: the one due to
Courtois, Bard, Jefferson [18] and another one that is based on the truth tables
[19,7].

We would like to make a remark about estimating complexity of SAT-solving.
Whereas memory consumption of SAT-solvers is very modest (at least compared
to algebraic solvers that compute Gröbner bases), estimating time complexity
is really an issue. The problem is that due to highly heuristic and randomized
nature of SAT solvers (at least those based on the DPLL algorithm, such as
MiniSAT and CryptoMiniSAT) the execution time varies very significantly for
each trial run and also for runs of similar problems. Sometimes one observes a
difference of factor 1000. Since variance for time measurements is so high, it is
hard to make estimates even after many runs. Still, in this paper we apply the
method of averaging running times of 100 trials for each experiment in question.
This is similar to approaches of other authors in the field, e.g. [10,15]. Our
experiments with some 1000-trial instances suggest that 100 is quite accurate in
terms of the average time. A more advanced way of estimating time complexity
would be statistical hypothesis testing. We set using such an estimation tool as
a future work.

4.1 Conversion Techniques

Conversion Due to Bard, Courtois, Jefferson
ANF to CNF conversion of Bard, Courtois, Jefferson first represents separate
monomials occurring in an algebraic system as a conjunction of clauses, which
in turn are disjunctions of variables or their negations. Then one adds new
variables corresponding to these monomials, so that all equations become linear

Algebraic Cryptanalysis of the Round-Reduced and Side Channel Analysis 61

in these new variables. The next task is to represent the newly obtained linear
polynomials as conjunctions of clauses. The problem here is that representing a
linear relation (a XOR-chain) needs exponentially many clauses in the number of
variables. Therefore, one “cuts” a linear relation in several ones by introducing
new variables. Representing one cut XOR-chain then needs relatively few clauses.

As an example, consider an equation

xyz + xy + yz + xz = 0.

We introduce new variables a := xyz, b := xy, c := yz, d := xz. Then a term
a = xyz is described by a logical formula

(x ∨ ā) ∧ (y ∨ ā) ∧ (z ∨ ā) ∧ (a ∨ x̄ ∨ ȳ ∨ z̄).

Similarly one can write the terms b, c and d. Resulting linear relation a+b+c+d =
0 may be written as

(ā ∨ b ∨ c ∨ d) ∧ (a ∨ b̄ ∨ c ∨ d) ∧ (a ∨ b ∨ c̄ ∨ d) ∧ (a ∨ b ∨ c ∨ d̄)∧
(ā ∨ b̄ ∨ c̄ ∨ d) ∧ (ā ∨ b̄ ∨ c ∨ d̄) ∧ (ā ∨ b ∨ c̄ ∨ d̄) ∧ (a ∨ b̄ ∨ c̄ ∨ d̄).

As we see, the latter formula contains 4 + 4 = 8 clauses. Similarly, describing a
XOR-chain with n variables (n is odd) needs(

n

1

)
+
(

n

3

)
+ · · ·+

(
n

n

)
= 2n−1

clauses. Therefore, the concept of cutting makes sense. We could cut the number
of variables XORed in our formula above as e+a+b = 0, f+c+e = 0, g+d+f = 0
introducing new variables e, f, and g. So one needs 4 clauses for each of the three
equations. The cutting number [18] defines, how many variables are in one XOR-
chain. In the example given, it is 3. Usually cutting numbers 4–7 are used.

In our experiments we call this conversion technique BCJ. More details on
this technique may be found in [18]. The convertor is implemented in SAGE
computer algebra system [20] by Martin Albrecht and Mate Soos [21].

Conversion Based on the Truth Table
Whereas in the BCJ method the number of variables in a logical formula is
usually quite large compared to the initial number of variables in the ANF of a
polynomial, the following method preserves this number. The method, which we
call TruthTable in this paper, is based on writing a CNF for the given Boolean
function by examining the evaluation (truth) table of the function. We work with
a specific implementation of the method described in [19] and implemented by
Michael Brickenstein [22]. The core of the method dates back to Karnaugh [23]
and is also used in cryptographic context in [7]. Note that the problem of long
XOR chains also appears here. So one might want to apply the cutting technique
first and then the truth table method for resulting shorter polynomials.

As an example, the polynomial f = xyz + xy + yz + xz from above with the
method of [19] has the CNF

62 S. Bulygin and J. Buchmann

(x ∨ ȳ ∨ z̄) ∧ (x̄ ∨ y ∨ z̄) ∧ (x̄ ∨ ȳ ∨ z).

So contains only 3 clauses and 3 variables.

5 Optimal Tools and Strategies for the Attacks

Algebraic cryptanalysis is a lot about trying out certain heuristics. This is es-
pecially the case when applying SAT-solving due to highly heuristic nature of
the method. In this section we summarize strategies and tools that we used and
appear optimal in the case of PRINTCipher-48. This summary comes as a result
of experiments with different ideas and tools. Due to space limitations, we do not
provide these experiments here, only the results. A thorough discussion appears
in the full version of the paper [24].

First of all, the question arises, which algebraic representation for the cipher
to choose, since, S-Boxes have different representations. Next, we have to see
which ANF-to-CNF conversion technique is better for our application.

The question of bit guessing is an important issue that has to be analyzed.
It is known that in order to be able to solve a large system of equations coming
from a block cipher, it is a good practice to first guess some key bits and then
try to solve easier systems. In particular, we solve one easier system if we assume
that we are given the correct key bits. In the cryptanalytic context this means
that we need to make sure that if we are given (or guessed) g out of k key bits,
the resulting system solving is faster than the brute force of the remaining key
space of size 2k−g, see Section 6.1 for more details. Since PRINTCipher does
not have a key schedule, i.e. the same key is used in all rounds of the cipher, it
is particularly plausible to apply this approach. Moreover, by guessing enough
key bits, we are able to bring our timings to some feasible figures. This in turn
will give us an opportunity to make estimations of the attack complexity. So,
guessing key bits is important. But now we have to answer certain questions in
order to understand where and how to guess bits optimally.

– Since the bits in a round are grouped in groups of three bits before applying
the S-Box transformations, does it make a difference to guess the key bits in
such groups of three or random positions are as good?

– Does it make a difference which groups/positions do we choose for guessing?
– Is it better to first guess the key sk2 and then some parts of the key sk1 or

one should guess parts of these keys?
– Related to the question above, latter part: should guessing in the keys sk1

and sk2 be synchronized (that is, for example, locations of chosen groups of
three for sk1 match guessing the corresponding key-permutation bits of sk2)
or the guesses may be done independently?

– Last, but not least is the question which solver is better for our purposes:
MiniSAT2 or CryptoMiniSAT2.

Below we summarize answers to the question we stated above based on our
experiments.

Algebraic Cryptanalysis of the Round-Reduced and Side Channel Analysis 63

– We observed that a false key bits guess results in a slow-down of approxi-
mately factor 2 on average compared to correct guesses.

– We always guess (or assume given) key bits (both sk1 and sk2) at positions
grouped in groups of three, according to S-Box positions.

– Grouped positions correspond to low diffusion trails, see end of Section 2.
– We use explicit equations for the S-Boxes of the form W = SP (X, A), Y =

V0(W).
– Performance of CryptoMiniSAT2 is somewhat better than the one of Min-

iSAT2.
– TruthTable conversion is superior to BCJ (different cutting numbers were

used for comparison).

Guessing in groups of three bits seems quite natural: we fix an S-Box which
makes analysis easier. On the other hand, a non-trivial task is to optimally choose
these groups of three bits. Using low diffusion trails turned out to be particularly
efficient. The fact that in such a trail many bits stay within the set of chosen S-
Boxes, reflects favorably on reducing overall algebraic complexity of our attacks.
In fact, the fewer S-Boxes are in a trail, the larger is the efficiency gain compared
to the brute force attack. For 9 and 10 S-Boxes in a trail we obtained a speed-
up around factor 10 with low diffusion trails compared to random selections of
three-bit groups, see Section 6.1. For many instances we were not able to obtain
any figures in a reasonable time when using 2 randomly chosen S-Boxes in a
trail, whereas using a low diffusion trail made it possible, see Section 6.2. This
shows that one object may be beneficial for different cryptanalytic methods, e.g.
low diffusion trails are used in statistical saturation attacks and are a handy
instrument for algebraic attacks. See also Remark 1.

Computing environment: We do our computations on a server with 4 AMD
processors each having 4 cores working at 2.3 GHz. The computations are run us-
ing one core. The server has 128 GB of RAM and is running under Debian Linux
version 4.3.5-4 Linux kernel version 2.6.32-5-amd64. For our computations we
use SAGE version 4.3.3, MiniSAT version 2.0 beta and CryptoMiniSAT version
2.9.0.

Experimental setting: For estimating one timing figure we compute the average
time for 100 trial runs. The time in tables is given in seconds, unless is indicated
otherwise.

6 Algebraic Analysis of PRINTCipher-48

6.1 Attack on Round-Reduced PRINTCipher-48

In this subsection, basing on our choices from Section 5, we attack the round-
reduced PRINTCipher-48. First of all, we have to define what do we mean by an
attack here and when such an attack succeeds. In all our attacks a certain num-
ber of key bits will be fixed of guessed. We want to compare our method with
the brute force attack. Similarly to previous works in the field of algebraic crypt-
analysis of block ciphers, e.g. [10,15], we employ the following way of comparing

64 S. Bulygin and J. Buchmann

the methods. First, let us assume that g bits out of 80 are given to an attacker,
i.e. he/she knows correct values of those bits. Let Tcorrect be an average time
an attacker needs to solve a True-instance (corresponds to a correct key guess)
using choices from Section 5. Now let Tenc,r be the time one needs to check with
a trial encryption one key from the remaining 280−g in a reduced cipher with
r rounds. We assume that for such an encryption one needs 2 CPU cycles per
round: one for the linear layer and one for the S-Box layer. To translate this
figure to seconds, we observe that our experiments are done on a machine with
the CPU frequency 2.3 GHz. So we may assume that 1 CPU cycle is done in
1

2.3 · 10−9 ≈ 0.4 · 10−9 seconds. We have then Tenc,r = 2 · 0.4 · 10−9 · r. Note
that this is a rather optimistic estimate.1 The time complexity for a brute force
attacker is therefore

Tbf,r = 280−gTenc,r/2 = 280−g · 0.4r · 10−9

seconds. We divide over 2, since on average an attacker has to search only through
a half of the remaining key space.2 For a successful algebraic attack we require
that

Tcorrect,r < 280−g · 0.4r · 10−9. (1)

Now assume that bits of the key are not given. So we have to guess some g key
bits. As we have noted in Section 5, the time needed to solve a False-instance, i.e.
the one with an incorrect key guess, is higher than the one for a correct guess.
Therefore, in this case our time complexity is determined by the average time
needed to solve a False-instance: Twrong,r. Assuming that all False-instances are
approximately the same in difficulty, we have that the attack is successful if

Twrong,r < 2Tbf,r = 280−g · 0.8r · 10−9. (2)

Since both methods run into a correct solution on average two times faster than
the full search, we put back the factor 2, taken away in (1). For both algebraic
and the brute force attack, the memory complexity is quite low, although being
higher for the former one. Still, memory is not a bottleneck for SAT-solving, so
we ignore it in our analysis. Our first result:

Result 1. We are able to attack 8 rounds of PRINTCipher-48 with 2 known
plaintext/ciphertext pairs faster than the brute force.

We guess at g = 45 bits of the key and the low diffusion trail with 9 S-Boxes, see
Table 3. We guess subkey bits that correspond to chosen S-Boxes at positions
{0, 1, 2, 3, 5, 10, 11, 14, 15}. Two random plaintexts are taken for each of the 100
trials. Table 4 summarizes the results.
1 We do not take into account other possibilities to speed up the brute force attacks,

such as using FPGAs or GPUs.
2 In fact for a portion of 2−32 keys one needs to do the second encryption, since 232

out of 280 keys are expected to encrypt a given plaintext to a given ciphertext. Due
to negligible probability of this event, we do not take this into account.

Algebraic Cryptanalysis of the Round-Reduced and Side Channel Analysis 65

Table 4. Attack on 8 rounds, 2 known plaintexts

Guess Time for CryptoMiniSAT Time for MiniSAT

Correct 24 30

Wrong 61 60

In order to see that we are really faster than the brute force, in Table 5
we provide the figures of LHS and RHS of (2) for g = 45. Here timings for
(Crypto)MiniSAT2 correspond to False-instances. As we noted, it is necessary
to assess time complexity of the attack. Both solvers are doing the job.

We could not entirely break the 9 rounds, but still we were very close and
could achieve partial success. When doing experiments for 9 rounds we took a
look at several low diffusion trails with 10 S-Boxes. It turns out that some of them
are better than the others. Table 6 summarizes experimental results for 9 rounds
made with CryptoMiniSAT2. So we see that the trail {0, 1, 3, 4, 5, 10, 11, 12, 14, 15}
yields the best results. Still we are not able to get below the threshold for both
False- and True- instances.

Table 5. Comparing to brute force

Time for CMS Time for MS Time for brute force

g = 45 61 60 239

Table 6. Attack on 9 rounds, 2 known plaintexts, different trails

Trail Guess Time Time for brute force

{0, 1, 2, 3, 4, 5, 6, 7, 11, 12} Correct 19.5 4.2

{0, 1, 2, 3, 4, 5, 6, 7, 11, 12} Wrong 43.9 8.4

{0, 1, 3, 4, 5, 10, 11, 12, 14, 15} Correct 5.8 4.2

{0, 1, 3, 4, 5, 10, 11, 12, 14, 15} Wrong 16.3 8.4

{2, 3, 4, 6, 7, 8, 9, 11, 12, 13} Correct 14.3 4.2

{2, 3, 4, 6, 7, 8, 9, 11, 12, 13} Wrong 25.2 8.4

{3, 4, 8, 9, 10, 11, 12, 13, 14, 15} Correct 34.4 4.2

{3, 4, 8, 9, 10, 11, 12, 13, 14, 15} Wrong 56.3 8.4

Nevertheless, for True-instances we may ask a question, what is the portion of
measurements that fall below the brute force time. Table 7 shows these figures
for all four trails. We see that with probability around 3/4 we are able to solve
a True-instance faster than the brute force. Therewith,

Result 2. For 9 rounds, having 2 known plaintext/ciphertext pairs and know-
ing 50 key bits at three-bit positions {0, 1, 3, 4, 5, 10, 11, 12, 14, 15}, we may find
remaining 30 bits faster than brute force with probability around 75%.

66 S. Bulygin and J. Buchmann

Table 7. Attack on 9 rounds, 2 known plaintexts, percentage of runs faster than the
brute force

Trail %

{0, 1, 2, 3, 4, 5, 6, 7, 11, 12} 22

{0, 1, 3, 4, 5, 10, 11, 12, 14, 15} 78

{2, 3, 4, 6, 7, 8, 9, 11, 12, 13} 56

{3, 4, 8, 9, 10, 11, 12, 13, 14, 15} 30

Remark 1. In fact when using low diffusion trails, as we have seen, only looking
at how many bits stay within a trail is not enough. Actually, one should consider
how many bits one gets “for free” when having key bits corresponding to the
trail nibble positions, plaintext and ciphertext bits. Here one can observe that,
obviously, 3 known input/output bits to an S-Box yield 3 output/input bits to
the previous or next rounds. Less obviously it is possible to show that knowing
2 input/output bits yields knowledge of 1 output/input bit on average. Having
these observations, one could improve the guessing strategy for example as fol-
lows. Since knowing 2 bits yields 1 on average and knowing 3 yields 3, then if one
knows 2 input bits to an S-Box it may be worthwhile to guess at the remaining
bit. Therewith, a 2-fold slow-down due to guessing will be payed off by a 4-fold
speed-up due to knowing 2 additional internal state bits. This should result in a
speed up of a factor of 2. All in all, one may investigate how known internal state
bits propagate to yield more known bits, maybe with some probability. We do
not elaborate on this issue in this paper, although this is something to consider
and that may have impact for other methods, like statistical saturation attacks.

6.2 Additional Bits at Round Four

In the previous subsection we presented our approach of attacking the
PRINTCipher-48 based on SAT-solving. We could attack 8–9 rounds with it.
In this subsection we show that it is possible to attack the full 48 rounds
of the cipher by just having moderate amount of additional information. We
are able to do so, after discovering quite an interesting property of the cipher.
Namely, by just knowing values of output bits at round 4 of several known plain-
text/ciphertext pairs and some key bits, it is possible to recover all remaining
key bits fast. In this subsection we proceed as follows. We first provide results on
attacking the full 48 rounds of the cipher with guessing bits at rounds 4 and 5.
Then we try to explain, what makes round 4 so special by providing additional
data and observations.

In this section we use CryptoMiniSAT2 for our experiments. Note that for
the analysis of the full 48 rounds we adjusted the round counter of the cipher, so
that the attack of [5] that works for many weak keys, does not work anymore, cf.
Section 2.3 of [5]. In fact, this adjustment does not play any role for our attacks.
It will become clear why, after we look deeply into the situation of using the 4th
round for guessing.

Algebraic Cryptanalysis of the Round-Reduced and Side Channel Analysis 67

Table 8 summarizes the results. As before, we guess key bits and internal state
bits at rounds 4 and 5 using low diffusion trails. We use parameter x, meaning
how many three-bit groups are fixed in a trail, so that we guess at 5x key bits and
3xp intermediate state bits, where p is the number of known plaintext/ciphertext
pairs. As in the previous section we do averaging over 100 trials.

Table 8. Recovering key bits by having some output bits at rounds 4 or 5

r 4 4 4 4 4 4 4 4 5 5 5 5

p 10 10 12 12 2 2 2 2 2 2 2 2

x 2 2 2 2 7 7 6 6 7 7 6 6

Correct guess True Wrong True Wrong True Wrong True Wrong True Wrong True Wrong

Time 116 62 10 8 1.7 0.4 295 75 10 11 934 1426

One of the conclusions that may be drawn from the table is that assuming 6
output bits of round 4 known for 10/12 pairs and knowing only 10 key bits, the
remaining 70 key bits can be recovered very fast. The same is true for 21 bits
at round 4 for only 2 pairs and knowing 35 key bits: remaining 45 key bits are
recovered in a matter of a second. We are still able to solve quite fast by having
18 bits at round 4 for 2 pairs. We could get some results also by inserting values
at round 5, but the performance appears to be inferior to what we can get from
round 4.

Knowing internal key bits is a strong assumption. Still, it may be feasible if
one thinks about side channel security. See Section 6.3 for this. Some thoughts
on using the idea of this section to a potential attack on the full cipher are given
in Appendix C. Note also that Table 8 suggests that False-instances are solved
faster for r = 4, which is different from results of the previous sections. This is
due to the fact that wrongly assigned bits propagate from round 1 upwards and
from round 4 downwards, having a meeting point in the middle. Quite often (in
fact in around half of the cases) this leads to an immediate contradiction at this
meeting point, thus a computation is extremely fast.

Now we want to shed some light on why guessing/fixing at round 4 is so
effective; why cannot we do the same for, e.g., rounds 3 or 5 with comparable
efficiency. The main reason appears to be the following. Let us consider the
variety V (r, p, C) of keys that after r rounds encrypt p known plaintexts to some
ciphertexts that have given values at positions from C (C ⊂ {0, . . . , 47}). It turns
out that for r = 3 this variety is rather large due to incomplete diffusion (recall
that the “full” diffusion for PRINTCipher-48 is attained after 4 rounds). On
the other hand, from round 4 and on, this variety drastically looses in size. This
means that having enough pairs p we cut off many keys starting already at round
4. The second issue is how easy is it to sample elements from V (r, p, C). For r = 3
this is extremely easy (fast), for r = 4 is somewhat slower, but still quite fast.
Starting from round 5, it gets harder, at least in some cases of interest. Therefore,
roughly speaking, round 4 yields an optimal trade-off between the number of
elements in the variety V (r, p, C) and hardness of computing its elements.

68 S. Bulygin and J. Buchmann

In principle, one may run the following attack for the case one knows inter-
nal state bits at round r at positions C. Choose r < 48. Let t(r, p, C) be the
(average) time needed to compute one element from V (r, p, C). Then one may
simply run an exhaustive search on V (r, p, C) and this will have time complexity
approximately

(t(r, p, C) + Tenc,48) · |V (r, p, C)|,

where Tenc,48 � t(r, p, C) is the time needed for one trial encryption to check
the correctness of the key guess for the full 48 rounds using p known plain-
text/ciphertext pairs. Therefore, finding a trade-off as explained above is
important. The elements of V (r, p, C) may be sampled again using SAT-solving
techniques in assumption that one gets independent random solutions from
V (r, p, C) each time. Considering highly heuristic and randomized nature of
SAT-solvers this assumption does not appear unreasonable. Results from Table
8 are obtained by just assigning values at round 4 and running CryptoMiniSAT2
for the obtained systems having 48 rounds. Still we expect the solver to take ad-
vantage of the above trade-off: inserted values at round 4 give an opportunity
to narrow down the search a SAT-solver takes. We provide some experimental
evidence in Appendix B that support the above reasoning.

6.3 Side Channel Analysis of the Full PRINTCipher-48

Using results of Section 6.2, we can show that it is possible to break the full
PRINTCipher-48 with practical complexity by using side channel analysis. We
first take a strong assumption of knowing internal state bits at round 4, namely
some output bits of round 4. Then we consider more usual scenario in side
channel analysis, when only Hamming weights of inputs and outputs of certain
S-Boxes at round 4 are known. We show that due to properties of S-Boxes in
PRINTCipher, we are still able to do our attack with only moderate increase in
complexity.

Assuming knowledge of some information about internal states of a cipher
we end up in the side channel scenario. That is, we assume that we can recover
certain internal bits, which in principle can be done by examining an implemen-
tation of the cipher’s encryption function. Note that actual recovering of bits
may be a very challenging task. In this section we only consider a simulation
side channel attack, not an actual one, i.e. we simply assume some internal bits
to be given.

From the point of view of side channel analysis, it seems reasonable to concen-
trate on the case, when as few nibbles as possible are spotted for input/output
values. In this respect, using x = 2 with the nibble positions {0, 1} seems ap-
propriate. Note that in this case we are guessing at 5x = 10 bits of the key: 6
at the subkey sk1 and 4 at the subkey sk2. In Table 8 we presented timings for
recovering remaining 70 key bits. We also considered the situation, when our key
guess was wrong and how much time does it take to realize this. As has been
noted, solving False-instances, i.e. when key guess and guess of internal state
bits is wrong is actually somewhat faster than solving a True-instance. Since

Algebraic Cryptanalysis of the Round-Reduced and Side Channel Analysis 69

wrong guesses constitute the majority in the search through 10 key bits, we take
the time of solving False-instances, Twrong, as a measurement. We multiply the
values from Table 8 by 29 (i.e. the half of 210 on average) to get an estimated
average time for the full key recovery for the entire cipher with 48 rounds. The
results are in Table 9. Note that neither here nor further in the subsection did
we do actual computations to recover the unknown key.

Table 9. Side channel attack assuming knowledge of internal state bits at round 4: 6
bits for each of the p pairs are known

p Twrong, sec. Total Time, hours

10 62 8.8

12 8 1.2

Result 3. For the full cipher, by having values of 6 output bits at round 4 that
correspond to the nibble positions {0, 1}, we are able to recover the key on average
in approximately 9 hours by using 10 known pairs of plaintext/ciphertext and in
less than 2 hours with 12 pairs.

Note that we need knowledge of 6 · 10 = 60 and 6 · 12 = 72 internal bits respec-
tively.

A weaker assumption we take next is the knowledge of Hamming weights
instead of exact knowledge of values. Namely, we assume knowledge of Hamming
weights of inputs and outputs to the S-Boxes at positions 0 and 1. Small size of
the S-Boxes actually does not make our task much more difficult than before.
Examining the S-Boxes V0, . . . , V3 of PRINTCipher it may be seen that input
and output weights uniquely determine the values of inputs and outputs, except
for the case when both weights are equal to 2. In this case, for each S-Box,
there are exactly two pairs of input/output that yield weight 2. Therefore, such
an ambiguity happens with probability 1/4 for each of the S-Boxes V0, . . . , V3.
By guessing key bits at three-bit positions {0, 1}, we fix the two S-Boxes at
these positions. If for an S-Box the input and output weight is equal to 2, we
have to choose one of the two potential values of inputs/outputs. In the case of
other weights, we uniquely determine the values, since S-Boxes are fixed now.
Therefore, on average, we expect 1/4 of the guesses for the three-bit positions
{0, 1} at round 4 to be wrong for a correct key guess. Therefore, for one guess of
the 10 key bits, we will have to run our attack with p pairs on average around

22·p/4−1 = 2p/2−1

times, since p/2 out of 2p outputs will have wrong values on average and we
expect to attain correct values after 2p/2−1 times. For estimating the total attack
complexity, we use the formula

Tsc−attack = Twrong · 29+p/2−1 = Twrong · 28+p/2.

This means multiplying the values in Table 9 by 2p/2−1. Table 10 shows the
results.

70 S. Bulygin and J. Buchmann

Table 10. Side channel attack assuming knowledge of Hamming weights of in-
put/output to S-Boxes 0 and 1 at round 4

p Twrong, sec. Tsc−attack, days

10 62 12

12 8 3

Result 4. For the full cipher we are able to find the key by only knowing Ham-
ming weights for input/output to S-Boxes at positions 0 and 1 at round 4 on
average in less than two weeks for p = 10 and in around 3 days for p = 12.

Note that although the number of bits or Hamming weights we require to be
leaked is not so small, the place to get these leaks is localized to only two three-
bit positions at round 4, rather than smeared all over the cipher’s encryption
function. Therewith, it may be possible to better exploit these leaks in practice.

7 Conclusion and Future Work

In this paper we considered algebraic attacks on PRINTCipher-48 with SAT-
solving as a tool. We showed that it is possible to attack 8–9 rounds of the
cipher using only 2 known plaintexts. Next, we observed an interesting fact on
high diffusion / low algebraic complexity at round 4, which enabled us to give a
simulation side channel attack on the full cipher with 48 rounds with practical
complexity.

As future work we may identify the following points.

- Obtaining symbolically relations among internal states for several plain-
text/ciphertext pairs in line with [25].

- Apply the above point to chosen plaintext scenario and also to ideas de-
scribed in Appendix C to try to attack the full cipher.

- Provide more accurate and statistically sound estimations for time complex-
ity. This work is not specific to PRINTCipher and is of great importance for
the entire field of applying SAT-solvers to cryptanalysis.

- More research should be put in studying the effect of using low diffusion trails
as indicated in Remark 1. Therewith more advanced guessing techniques
could emerge.

- Try to adapt the performance of a SAT solver, e.g. CryptoMiniSAT, to break-
ing this specific cipher; improving guessing and conflict finding of a solver.

Acknowledgements. The first author is supported by the German Science
Foundation (DFG) grant BU 630/22-1. Special thanks go to Denise Demirel
for writing a considerable portion of the equation generator for PRINTCipher.
The author is grateful to Martin Albrecht for numerous discussions and also for
sharing his source codes for relevant matters. Thanks to Mohamed Saied Emam
Mohamed for reading this manuscript. The author is also thankful to Mate Soos
for assisting with using CryptoMiniSAT.

Algebraic Cryptanalysis of the Round-Reduced and Side Channel Analysis 71

References

1. Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTCipher: A
Block Cipher for IC-Printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010)

2. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

3. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg
(2009)

4. Abdelraheem, M.A., Leander, G., Zenner, E.: Differential Cryptanalysis of Round-
Reduced PRINTcipher: Computing Roots of Permutations. In: Joux, A. (ed.)
FSE 2011. LNCS, vol. 6733, pp. 1–17. Springer, Heidelberg (2011)

5. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A Cryptanalysis of
PRINTCipher: The Invariant Coset Attack. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 206–221. Springer, Heidelberg (2011)

6. Zhao, X., Wang, T., Guo, S.: Fault Propagate Pattern Based DFA on SPN Struc-
ture Block Ciphers using Bitwise Permutation, with Application to PRESENT and
PRINTCipher. ePrint, http://eprint.iacr.org/2011/086.pdf

7. Soos, M.: Grain of Salt - An Automated Way to Test Stream Ciphers through SAT
Solvers, http://www.msoos.org/grain-of-salt

8. Courtois, N.T., Bard, G.V., Wagner, D.: Algebraic and Slide Attacks on Keeloq.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 97–115. Springer, Heidelberg
(2008)

9. Courtois, N.T., Bard, G.V.: Algebraic Cryptanalysis of the Data Encryption Stan-
dard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887,
pp. 152–169. Springer, Heidelberg (2007)

10. Bard, G.V., Courtois, N.T., Nakahara Jr, J., Sepehrdad, P., Zhang, B.: Algebraic,
AIDA/Cube and Side Channel Analysis of KATAN Family of Block Ciphers. In:
Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 176–196.
Springer, Heidelberg (2010)

11. Bouillaguet, C., Derbez, P., Dunkelman, O., Keller, N., Fouque, P.-A.: Low Data
Complexity Attacks on AES. ePrint, http://eprint.iacr.org/2010/633.pdf

12. Renauld, M., Standaert, F.-X.: Algebraic Side-Channel Attacks. In: Bao, F., Yung,
M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410. Springer,
Heidelberg (2010)

13. Renauld, M., Standaert, F.-X.: Combining Algebraic and Side-Channel Cryptanal-
ysis against Block Ciphers. In: Proceedings of the 30th Symposium on Information
Theory in the Benelux (2009)

14. Collard, B., Standaert, F.-X.: A Statistical Saturation Attack against the Block
Cipher PRESENT. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp.
195–211. Springer, Heidelberg (2009)

15. Albrecht, M.: Algorithmic Algebraic Techniques and their Application to Block
Cipher Cryptanalysis. Ph.D. thesis. Royal Holloway, University of London,
http://www.sagemath.org/files/thesis/albrecht-thesis-2010.pdf

16. Een, N., Sorensson, N.: An Extensible SAT-Solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

 http://eprint.iacr.org/2011/086.pdf
http://www.msoos.org/grain-of-salt
http://eprint.iacr.org/2010/633.pdf
http://www.sagemath.org/files/thesis/albrecht-thesis-2010.pdf

72 S. Bulygin and J. Buchmann

17. Soos, M.: CryptoMiniSat – a SAT solver for cryptographic problems,
http://planete.inrialpes.fr/~soos/CryptoMiniSat2/index.php

18. Bard, G.V.: Algebraic Cryptanalysis. Springer, Heidelberg (2009)
19. Brickenstein, M.: Boolean Gröbner bases – Theory, Algorithms and Applications,

Logos Berlin (2010)
20. William Stein, S., et al.: SAGE Mathematics Software. The Sage Development

Team (2008), http://www.sagemath.org
21. Albrecht, M., Soos, M.: Boolean Polynomial SAT-Solver,

http://bitbucket.org/malb/algebraic_attacks/src/tip/anf2cnf.py

22. Brickenstein, M.: PolyBoRi’s CNF converter,
https://bitbucket.org/malb/algebraic attacks/src/013dd1b793e8/

polybori-cnf-converter.py

23. Karnaugh, M.: The map method for synthesis of combinational logic circuits.
Transactions of American Institute of Electrical Engineers part I 72(9), 593–599
(1953)

24. Bulygin, S.: Algebraic cryptanalysis of the round-reduced and side channel analysis
of the full PRINTCipher-48 (2011), http://eprint.iacr.org/2011/287

25. Albrecht, M., Cid, C., Dullien, T., Faugère, J.-C., Perret, L.: Algebraic Precompu-
tations in Differential and Integral Cryptanalysis. In: Lai, X., Yung, M., Lin, D.
(eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 387–403. Springer, Heidelberg (2011)

26. Gomes, C.P., Sabharwal, A., Selman, B.: Model Counting. In: Handbook of
Satisfiability, pp. 633–654. IOS Press (2009)

http://planete.inrialpes.fr/~soos/CryptoMiniSat2/index.php
http://www.sagemath.org
http://bitbucket.org/malb/algebraic_attacks/src/tip/anf2cnf.py
https://bitbucket.org/malb/algebraic_attacks/src/013dd1b793e8/polybori-cnf-converter.py
https://bitbucket.org/malb/algebraic_attacks/src/013dd1b793e8/polybori-cnf-converter.py
http://eprint.iacr.org/2011/287

Algebraic Cryptanalysis of the Round-Reduced and Side Channel Analysis 73

A Equations for Different Algebraic Representation of a
PRINTCipher S-Box

A.1 Explicit Cubic Equations Describing the Key Dependent
Permutation SP

W0 = A0A1X1 + A0A1X2 + A0X0 + A0X1 + X0,
W1 = A0A1X0 + A0A1X2 + A0X0 + A1X1 + A0X1 + A1X2 + X1,
W2 = A0A1X0 + A0A1X1 + A1X1 + A1X2 + X2.

A.2 Explicit Quartic Equations Describing the Key Dependent
S-Box

Y0 = A0A1X0X1 + A0A1X0X2 + A0A1X1 + A0A1X2 + A0X0X2 + A0X1X2+
+A0X0 + A0X1 + X1X2 + X0,
Y1 = A0A1X0X1 + A0A1X1X2 + A0A1X0 + A0A1X1 + A0X0X2 + A0X1X2+
+A1X0X1 + A1X0X2 + A1X1 + A1X2 + X0X2 + X0 + X1,
Y2 = A0A1X0X2 + A0A1X1X2 + A1X0X1 + A1X0X2 + X0X1 + X0 + X1 + X2.

B Experimental Evidence for Section 6.2

We support the reasoning in Section 6.2 with some experimental data. First
we give some experimental values for t(r, p, C) for different r, p and C. Table 11

Table 11. Time t(r, p,C)

r p C t(r, p, C)

3 8 {0, 1} 0.06

3 10 {0, 1} 0.09

3 12 {0, 1} 0.12

3 16 {0, 1} 0.15

4 8 {0, 1} 0.31

4 10 {0, 1} 1.84

4 12 {0, 1} 3.38

4 16 {0, 1} 1.22

5 8 {0, 1} 4813

3 2 {0, 1, 2, 5, 6, 7} < 0.02

4 2 {0, 1, 2, 5, 6, 7} 0.03

5 2 {0, 1, 2, 5, 6, 7} 0.25

3 2 {3, 8, 9, 10, 11, 13, 15} < 0.02

4 2 {3, 8, 9, 10, 11, 13, 15} 0.04

5 2 {3, 8, 9, 10, 11, 13, 15} 1.42

74 S. Bulygin and J. Buchmann

summarizes the results. Abusing notation, we use three-bit positions and not the
bit positions. Positions, as usual, correspond to low diffusion trails. The table
confirms the claims made before, concerning values of t(r, p, C). We observe quite
fast timings for r = 5, x = 6− 7, though.

A more complicated task is to estimate the number of elements in V (r, p, C).
One of the techniques ([15,26]) is estimating size of a variety by adding random
linear relations on variables. The hope is that a random linear relation cuts off
approximately a half of the variety in question. Therefore, if adding s random
linear relations yields a solution (a satisfying assignment of variables) and s + 1
does not, then with certain probability we may claim that the variety size is
2s. We applied this approach to estimate the values of V (r, p, C). We added
random XOR-chains that contain only key variables suggested by {0, . . . , 48}\C
(or {0, . . . , 15} \ C in the nibble notation), since these determine the rest of
the variables. Also, since adding long XOR chains obstructs a SAT-solver from
getting a solution in reasonable time, we have to work with chains of certain
length. We chose length 7 for our experiments. The results are summarized in
Table 12.3 The numbers are obtained after averaging over 100 trials. As the table
suggests, we get a serious reduction in the variety size when going from r = 3 to
r = 4. We must note, however, that the method used above is not very accurate.
By trying out sampling solutions from V (r, p, C) as described in Section 6.2, we
noticed that figures in Table 12 are underestimations of the actual values. This
is especially true for the case r = 3. This may be explained by observing that
since we do not yet have full diffusion after 3 rounds, the systems we consider
are less random than those for r ≥ 4. Therefore, the variety V (3, p, C) is not
that “homogeneous” and XOR-relations may stop the count too early. Still, we
believe that these experimental results provide rough intuition and the basis for
our claims made in Section 6.2.

Table 12. Variety size |V (r, p,C)|

r p C log2 |V (r, p,C)|
3 10 {0, 1} 25

4 10 {0, 1} 11

5 10 {0, 1} N/A

3 2 {3, 8, 9, 10, 11, 13, 15} 16

4 2 {3, 8, 9, 10, 11, 13, 15} 8

5 2 {3, 8, 9, 10, 11, 13, 15} 4

C Towards Cryptanalysis of the Full PRINTCipher-48

Here we investigate the potential of the method described in Section 6.2 to break
the full cipher. Since the complexity of the method is not exponential in the num-
ber of rounds, but rather in the number of pairs used (i.e. number of internal state
3 “N/A” means we were not able to get any results in a reasonable time.

Algebraic Cryptanalysis of the Round-Reduced and Side Channel Analysis 75

bits to be guessed), this approach appears to be worth investigating. Whereas
in Sections 6.2 and 6.3 we assumed information about intermediate values been
given to us, for the cryptanalysis we have to guess this information. Note that if
x three-bit positions are targeted for guessing and p known plaintext/ciphertext
pairs are used, we need to guess 5x key bits and 3px intermediate bits; this sums
up to (3p + 5)x bits. We estimate the attack complexity by the formula

Tattack = Twrong · 2(3p+5)x,

similarly to Section 6.3. Table 13 contains comparisons of the attack for different
x and p and the brute force attack. Namely, we compute the ratio of expected
time for our attack and the brute force. The table suggests that in the best case
we are around 217 slower than the brute force.

Table 13. Comparing our attack with brute force

p x (3p + 5)x 3px log2(Tattack/Tbf,48)

10 2 70 60 20

12 2 82 72 29

2 7 77 42 21

2 6 66 36 17

The following observation gives a hope that the method may still be applica-
ble. Note that in Section 6 we always assumed known plaintext/ciphertext pairs.
Therewith intermediate state bits at round 4 may be assumed to be indepen-
dent. So we really have to guess at 3px bits. It could be possible to apply chosen
plaintext scenario with the goal to be able to compute certain intermediate bits
via others that have been guessed at already. Ideally, we would like to have a
possibility to compute intermediate bits at round 4 for p−1 pairs from those bits
for just one plaintext/ciphertext. Clearly, plaintexts for the remaining p−1 pairs
have to be chosen accordingly to allow such a relation. Other possible scenarios
could be applied. It may be possible to compute intermediate bits for some p−s
pairs having those from s pairs. We may even be satisfied with computing values
with some reasonably high probability. It is not clear, though, whether Twrong

will stay the same or increase under these additional dependencies. Alternatively,
we could increase the number of known or chosen pairs to somehow spot those
pairs that yield prescribed values at round 4.

Anyway, results of Table 13 suggest that if we were able e.g. to reduce the
number of guessed internal bits from 60 to 39 in the case of x = 2, p = 10 or
from 36 to 18 for x = 6, p = 2 we would have been better than the brute force.
We set the problem of finding appropriate chosen plaintexts as an open problem.

EPCBC - A Block Cipher Suitable for Electronic

Product Code Encryption

Huihui Yap1,2, Khoongming Khoo1,2, Axel Poschmann2,�,
and Matt Henricksen3

1 DSO National Laboratories, 20 Science Park Drive, Singapore 118230
2 Division of Mathematical Sciences, School of Physical and Mathematical Sciences

Nanyang Technological University, Singapore
3 Institute for Infocomm Research,

A*STAR, Singapore
{yhuihui,kkhoongm}@dso.org.sg, aposchmann@ntu.edu.sg,

mhenricksen@i2r.a-star.edu.sg

Abstract. In this paper, we present EPCBC, a lightweight cipher that
has 96-bit key size and 48-bit/96-bit block size. This is suitable for
Electronic Product Code (EPC) encryption, which uses low-cost pas-
sive RFID-tags and exactly 96 bits as a unique identifier on the item
level. EPCBC is based on a generalized PRESENT with block size 48
and 96 bits for the main cipher structure and customized key schedule
design which provides strong protection against related-key differential
attacks, a recent class of powerful attacks on AES. Related-key attacks
are especially relevant when a block cipher is used as a hash function. In
the course of proving the security of EPCBC, we could leverage on the
extensive security analyses of PRESENT, but we also obtain new results
on the differential and linear cryptanalysis bounds for the generalized
PRESENT when the block size is less than 64 bits, and much tighter
bounds otherwise. Further, we analyze the resistance of EPCBC against
integral cryptanalysis, statistical saturation attack, slide attack, alge-
braic attack and the latest higher-order differential cryptanalysis from
FSE 2011 [11]. Our proposed cipher would be the most efficient at EPC
encryption, since for other ciphers such as AES and PRESENT, it is nec-
essary to encrypt 128-bit blocks (which results in a 33% overhead being
incurred). The efficiency of our proposal therefore leads to huge market
implications. Another contribution is an optimized implementation of
PRESENT that is smaller and faster than previously published results.

Keywords: Electronic Product Code, EPC, PRESENT block cipher,
RFID encryption, lightweight cryptography.

1 Introduction

The usage of tiny computing devices is gaining popularity in the consumer
market, and they are becoming an integral part of a ubiquitous/pervasive
� The research was supported in part by the Singapore National Research Foundation

under Research Grant NRF-CRP2-2007-03, and by NTU SUG.

D. Lin, G. Tsudik, and X. Wang (Eds.): CANS 2011, LNCS 7092, pp. 76–97, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

EPCBC - A Block Cipher Suitable for Electronic Product Code Encryption 77

communications infrastructure. Thus it is crucial to employ well-designed
lightweight cryptography for security purposes. A popular lightweight block ci-
pher that fulfils this requirement is the 64-bit block cipher PRESENT with
80-bit/128-bit key [10]. PRESENT takes only 1000 − 1570 GE to implement
[10,44], is secure against differential/linear cryptanalysis (DC/LC) and is resis-
tant against a slew of other block cipher attacks. As a consequence, PRESENT
is currently under standardization within the upcoming ISO 29192 Standard on
Lightweight Cryptography. In [9], the authors also generalized the PRESENT
design concept to n-bit block size, in the context of designing hash functions.
There was no description of a generic key schedule and no theoretical results
on the security properties of the generalized PRESENT in [9]. In [33], Leander
also defined small scale variants of PRESENT for the purpose of investigating
the relationship between the running time of certain attacks and the number
of rounds. He called these toy ciphers SmallPresent-[n] whose block sizes are
4n-bit. Their key scheduling algorithms produce 4n-bit round keys from an 80-
bit master key. In this paper, for ease of reference, we shall name the generalized
PRESENT block cipher with block size n bits as “PR-n”.

PRESENT only has 64-bit block size and this may not be suitable for appli-
cations which require lightweight encryption on a larger block size. One example
is the upcoming Electronic Product Code (EPC), which is thought to be a re-
placement for bar codes using low-cost passive RFID-tags, and in its smallest
form uses 96 bits as a unique identifier for any physical item [22]. A smaller
block size of 64 bits (e.g. PRESENT) requires two consecutive encryptions. On
the other hand, the use of a larger block size of 128 bits (e.g. AES) results in
a truncation to 96 bits which wastes internal state and effort. Our intention is
thus to design a lightweight and efficient 96-bit block cipher for EPC encryption
which has huge market implications, and at the same time improves previous
analysis of PRESENT for increased confidence in security.

We propose two variants of EPCBC: EPCBC(48,96) which has 48-bit block
size and 96-bit key, and, EPCBC(96,96) which has 96-bit block size and 96-bit
key. EPCBC(48,96) uses the PR-48 design for the main cipher structure and
for the key schedule, it uses an 8-round variant-Feistel structure with 4-round
PR-48 as the nonlinear function. EPCBC(96,96) uses the PR-96 design both for
the main cipher structure and the key schedule.

The security of EPCBC(96,96) against DC and LC relies on that of PR-
96 cipher structure. The DC and LC bounds can easily be inferred from that
of PRESENT [10], because the results of PRESENT applies to PR-n for any
n ≥ 64. Our contribution for the analysis of EPCBC(96,96) is that we improve on
the bounds of [10]. This allows us to deduce DC and LC bounds of EPCBC(96,96)
which are tighter than the bounds obtained by applying the results of [10].

However, in proving the security of EPCBC(48,96) against DC and LC, the
DC and LC bounds cannot be inferred from that of PRESENT [10] because the
block size n = 48 is less than 64. Therefore, we prove new DC/LC bounds for
PR-n when n < 64. Using these new bounds, we are able to prove the resistance
of EPCBC(48,96) against DC and LC.

78 H. Yap et al.

A recent class of powerful attacks against block ciphers are related-key dif-
ferential attacks [5,6,4,21] which can break well established standards such as
AES-128 and KASUMI. Although the practicality of these attacks is arguable
(due to the difficulty in obtaining related keys), resistance against related-key
differential attack is especially relevant when these block ciphers are used as hash
functions in Davies-Meyer mode (e.g. see [9] and Section 2 of this paper). This
is an important issue, since many designer of RFID security protocols assume
a lightweight hash function to be available on the tag [1,26,35]. Our customized
key schedule design ensures many active S-boxes in the key schedule when there
is a non-zero key differential. Consequently and in contrast to PRESENT, we are
able to prove resistance against related-key differential attacks for both versions
of EPCBC, which enables a secure usage of EPCBC in Davies-Meyer mode as a
lightweight hash functions.

Further, we show that EPCBC is resistant against currently best known in-
tegral cryptanalysis, statistical saturation attack, slide attack, algebraic attack
and the latest higher-order differential cryptanalysis from FSE 2011 [11].

On top of this, EPCBC performs well with respect to lightweight applications.
In fact, EPCBC(48,96) has a slightly smaller area footprint than PRESENT-80,
while at the same time offering a slightly higher speed, resulting in a 20% higher
figure of merit (FOM). Our power estimates of 2.21 μW for EPCBC(48,96) and
3.63 μW for EPCBC(96,96) (at 1.8V and 100 KHz) indicate how well EPCBC is
suited for ultra-constrained applications, such as passive RFID tags. As another
contribution, we present an optimized hardware implementation of PRESENT-
80 that is both smaller and faster than previously published results.

The remainder of this paper is organized as follows: in Section 2 we briefly
recall the Electronic Product Code before we propose two variants of EPCBC in
Section 3. Then we improve existing and prove new bounds for generalized PR-n
in Section 4, which we will use for the security analysis of EPCBC in Section 5.
Hardware implementation results are presented in Section 6 and finally the paper
is concluded in Section 7.

2 The Electronic Product Code - EPC

The Electronic Product Code (EPC) is an industry standard by EPCglobal, de-
signed to “facilitate business processes and applications that need to manipulate
visibility data (i.e. data about observations of physical objects)” [22]. In other
words, it is a unique identifier for any physical object. The standard also focuses
on EPC class 1 Gen 2 RFID tag [23] as the carrier for the EPC and proposes
a 96-bit unique identifier to be stored for low-cost applications. EPCglobal has
specified seven application-dependent identification keys for EPC, such as Seri-
alized Global Trade Item Number (SGTIN), Serialized Shipping Container Code
(SSCC), or the Global Document Type Identifier (GDTI). These numbers con-
sist at least of a company prefix and a unique serial number commisioned by
the company. Some application also comprise additional mandatory fields such
as the document type in the case of GDTI. As a consequence, the length of the

EPCBC - A Block Cipher Suitable for Electronic Product Code Encryption 79

serial number varies between 36-bits and 62-bits (note that there are further
restrictions on the choice of the serial number such as no leading zeros).

An EPC class 1 Gen 2 RFID tag consists of four memory banks: one to store
the kill and access passwords of 32-bits each, one for the EPC information, one
for the manufacturer information about the tag itself, and one for user data. The
tag manufacturer information (TID) may contain a manufacturer ID, a code for
the tag model, and a unique serial number, which can be used independently of
the EPC.

A globally unique identifier for any physical item certainly promises many
benefits, such as optimized supply chains. On the other hand it could be a
nightmare for privacy, especially since RFID tags could be read out without
notion of its owner, and readers can be easily hidden and positioned at highly
frequented locations. In this way unique movement patterns of single tags or
a selection of tags can be created, which can be used to reveal the identity of
their owner. For this reason a wide variety of protocols with the aim of securing
privacy have been proposed. Out of these protocols, there are several which
use lightweight cryptographic mechanisms with hash functions [46,42,47,26,20].
There are also some protocols which use pseudo-random number generators such
as the privacy protocol proposed by Juels in [29]. In particular, Juels proposes
a “minimalist” system in which every tag contains and rotates a short list of
pseudonyms, emitting a different pseudonym on each reader query.

A block cipher is a versatile building-block and, besides encrypting data, can
also be used as a one-way function, a pseudo random number generator or a
compression function. In a straightforward way one would encrypt the whole
96-bit EPC, but one can also envision different scenarios where a user wants to
either hide the serial number or the company’s identity for the sake of privacy.
The former may be the case that a book is borrowed from a public library: it
is fine for others to know that you borrow a book, but might not be when the
book is on cancer treatment. The latter may be the case that a pharmaceutical
product is bought: knowing the pharmaceutical company can reveal very sensi-
tive information, while a serial number might reveal no information about the
product.

A wide variety of lightweight block ciphers optimized for ultra-constrained
devices, such as passive RFID tags has been proposed over the last couple of
years. Most notably are DESXL [34], KATAN [12], or PRESENT [10] among
others. However, none of them has either key or block length that suits the
uncommon 96 bits of an EPC and with the proposal of EPCBC in the next
section we close this gap.

3 A New Block Cipher Suitable for EPC Encryption:
EPCBC

We propose two variants of EPCBC: EPCBC(48,96) which has 48-bit block size
and 96-bit key, and, EPCBC(96,96) which has 96-bit block size and 96-bit key.
(The testvectors are provided in Appendix A.2.)

80 H. Yap et al.

3.1 EPCBC(48,96) - EPCBC with 48-Bit Block Size and 96-Bit
Key Size

The main cipher of EPCBC(48,96) iterates the PR-48 structure for 32 rounds,
i.e. it uses the PRESENT description of Section 4.1 with n = 48 and r = 32.
Due to n = 48, EPCBC(48,96) will be suited for applications with the key being
changed frequently. The choice of r = 32 ensures security of the cipher against
differential and linear cryptanalysis as explained in Section 5.1.

However, the key schedule of EPCBC(48,96) is different from that of
PRESENT. The EPCBC(48,96) key schedule takes in the 96-bit secret key as a
96-bit keystate. The left half of the keystate is taken as the first subkey. Then a
variant-Feistel structure is applied to the keystate for 8 rounds. Each nonlinear
function F of the Feistel variant consists of 4 rounds of the PR-48 main cipher
structure where a subkey is output after each round, giving 8× 4 + 1 = 33 sub-
keys in total. The following is a description of the EPCBC(48,96) key schedule
where 1Round denotes one round of PR-48 without subkey addition. Subkey[i]
represents the subkey for round i of the main cipher.

(LKeystate,RKeystate) = 96-bit key
Subkey[0] ← LKeystate
for i = 0 to 7 do

temp ← LKeystate ⊕ RKeystate
for j = 0 to 3 do

RKeystate ← 1Round(RKeystate) ⊕ (4i + j)
Subkey[4i + j + 1] ← RKeystate

end for
LKeystate ← RKeystate
RKeystate ← temp

end for

3.2 EPCBC(96,96) - EPCBC with 96-Bit Block Size and 96-Bit
Key Size

The main cipher of EPCBC(96,96) iterates the PR-96 structure for 32 rounds,
i.e. it uses the PRESENT description of Section 4.1 with n = 96 and r = 32.
The choice of r = 32 ensures security of the cipher against differential and linear
cryptanalysis as explained in Section 5.1. The key schedule of EPCBC(96,96) is
also different from the PRESENT key schedule. It takes in the 96-bit secret key
as a 96-bit keystate, outputs this keystate as the first subkey and applies the
PR-96 main cipher structure1 to it for 32 rounds where a subkey is output after
each round. Let 1Round denote one round of PR-96 without subkey addition.
Subkey[i] represents the subkey for round i of the main cipher.

1 Note that the hash function WHIRLPOOL[3] and the block cipher SMS4[19] also
use an identical function for both their main cipher and key schedule.

EPCBC - A Block Cipher Suitable for Electronic Product Code Encryption 81

Keystate = 96-bit key
Subkey[0] ← Keystate
for i = 0 to 31 do

Keystate ← 1Round(Keystate) ⊕ i
Subkey[i + 1] ← Keystate

end for

4 Improved Differential and Linear Cryptanalyis of PR-n

As we are using the structure of PRESENT for the main cipher of EPCBC, we
did a security analysis of n-bit block size PRESENT (PR-n) against differential
and linear cryptanalysis, and, we obtained new results. We first give a brief
description of PR-n.

4.1 Brief Description of PR-n

The detailed description of PRESENT can be found in [10]. The r-round en-
cryption of the plaintext STATE can be written at a top-level as follows:

for i = 1 to r do
STATE ← STATE ⊕ eLayer(KEY, i)
STATE ← sBoxLayer(STATE)
STATE ← pLayer(STATE)

KEY ← genLayer(KEY, i)

end for
STATE ← STATE ⊕ eLayer(KEY, r + 1)

The eLayer describes how a subkey is combined with a cipher STATE, sBoxLayer
(S-box layer) and pLayer (permutation layer) describe how the STATE evolves,
and genLayer is used to describe the generation of the next subkey.

According to [9], the building blocks sBoxLayer and pLayer can be generalized
for n-bit block size PRESENT:

1. sBoxLayer: This denotes use of the PRESENT 4-bit to 4-bit S-box S and
is applied n

4 times in parallel.
2. pLayer: This is an extension of the PRESENT bit-permutation[10] and

moves bit i of STATE to bit position P (i), where

P (i) =

{
i · n

4 (mod n− 1), if i ∈ {0, 1, · · · , n− 2}
n− 1, if i = n− 1.

The sBoxLayer. Denote the Fourier coefficient of a S-box S by

SW
b (a) =

∑
x∈F4

2

(−1)〈b,S(x)〉+〈a,x〉.

Then the properties of the 4-bit PRESENT S-boxes can be described as follows:

82 H. Yap et al.

S1. For any fixed non-zero input difference ΔI ∈ F4
2 and any fixed non-zero

output difference ΔO ∈ F4
2,

#{x ∈ F
4
2 | S(x) + S(x + ΔI) = ΔO} ≤ 4.

S2. For any fixed non-zero input difference ΔI ∈ F4
2 and any fixed non-zero

output difference ΔO ∈ F4
2 such that wt(ΔI) = wt(ΔO) = 1,

{x ∈ F
4
2 | S(x) + S(x + ΔI) = ΔO} = ∅.

S3. For all non-zero a ∈ F4
2 and all non-zero b ∈ F4

2, it holds that |SW
b (a)| ≤ 8.

S4. For all non-zero a ∈ F4
2 and all non-zero b ∈ F4

2 such that wt(a) = wt(b) = 1,
it holds that SW

b (a) = ±4.

As in the case of PRESENT [10], for PR-n where 16|n, we divide the n
4 S-boxes

into groups of four as follows:

– Number the S-boxes from 0 to (n
4 − 1) in a right-to-left manner.

– Then Group j comprises S-boxes 4(j − 1), 4(j − 1) + 1, 4(j − 1) + 2 and
4(j − 1) + 3 for j = 1, 2, · · · , n

4 .

The pLayer. For n ≥ 64, the (generalized) pLayer observe the following
properties:

P1. The input bits to an S-box come from 4 distinct S-boxes of the same group.
P2. The input bits to a group of four S-boxes come from 16 different S-boxes.
P3. The four output bits from a particular S-box enter four distinct S-boxes,

each of which belongs to a distinct group of S-boxes in the subsequent round.
P4. The output bits of S-boxes in distinct groups go to distinct S-boxes.

For PR-48, observe that while P1 and P4 are still true, P2 and P3 do not hold.
Instead of P3, PR-48 (and in fact PR-n for all n, 16|n) obeys the following:

P3′. The four output bits from a particular S-box enter four distinct S-boxes.

In the remaining of this paper, we only consider PR-n where 16|n.

4.2 Improved Differential and Linear Cryptanalysis

Differential and linear cryptanalysis are among the most powerful techniques
available to the cryptanalyst. In order to evaluate the resistance of a block ci-
pher to differential and linear cryptanalysis, we provide a lower bound to the
number of active S-boxes involved in a differential/linear characteristic. We first
prove new bounds for the differential and linear resistance of PR-n which are of
particular interest with regards to n < 64.

Theorem 1. Any 4-round differential characteristic of PR-n has a minimum
of 6 active S-boxes.

EPCBC - A Block Cipher Suitable for Electronic Product Code Encryption 83

Proof. Suppose there are at most 5 active S-boxes for four consecutive rounds.
The numbers of active S-boxes in the four consecutive rounds takes up one of the
following patterns: 1-1-1-1, 2-1-1-1, 1-2-1-1, 1-1-2-1, or 1-1-1-2. But the patterns
1-1-1 and and 1-2-1 are impossible by virtue of S2 and P3′. The result now
follows. ��
Theorem 2. Let ε4 be the maximal bias of a linear approximation of 4 rounds
of PR-n. Then ε4 ≤ 2−7.

Proof. The proof is similar to that of [10, Theorem 2]. However note that when
n < 64, the patterns (denoting the numbers of active S-boxes over four consec-
utive rounds) 1-2-1-1 and 1-1-2-1 are now allowed, in addition to the existing
patterns of [10, Theorem 2]. But due to P3′, we must have at least one active
S-box with single-bit approximation over four rounds for all possible patterns.
It follows that ε4 ≤ 24 × (2−3)× (2−2)4 ≤ 2−7, as desired. ��
Remark 1. The new bounds in Theorems 1 and 2 are needed when analyzing
the security of EPCBC(48,96) against DC and LC because the block size n = 48
is less than 64.

In the remaining of this section, we state the improved and generalized results
on the differential and linear probability bounds of [10]. As many technicalities
and rigorous arguments are involved, we have included the formal proofs of the
theorems in Appendix A.1.

Theorem 3. For n ≥ 64, the r-round differential characteristic of PR-n has a
minimum of 2r active S-boxes for r ≥ 5.

Remark 2. Note that if we have used the differential bound in [10, Theorem 1],
we would only be able to deduce 10 (differential) active S-boxes every 5 rounds.
For example, if there are 14 rounds, [10, Theorem 1] would give 20 active S-boxes
from 10 out of 14 rounds, the security margin from the remaining 4 rounds is
not captured. In contrast, Theorem 3 would give us 28 active S-boxes from 14
rounds.

Theorem 4. Let εr be the maximal bias of a linear approximation of r rounds
of PR-n where n ≥ 64. Then εr ≤ 2−2r+1 for r = 4, 5, 6, 7, 8 and 9.

Remark 3. Note that [10, Theorem 2] only proves the LC bound for 4 rounds. If
we consider linear cryptanalysis over e.g. 11 rounds, then applying [10, Theorem
2] would give us:

ε11 ≤ 2× ε4 × ε4 ≤ 2× 2−7 × 2−7 = 2−13,

which only uses 8 out of 11 rounds, and the security margin from the remaining
3 rounds is not captured.

If we apply Theorem 4, we obtain the tighter (better) bound:

ε11 ≤ 2× ε5 × ε6 ≤ 2× 2−9 × 2−11 = 2−19.

Theorem 4 enables us to use all 11 rounds in deriving the linear probability
bound for PR-n, n ≥ 64.

84 H. Yap et al.

Remark 4. Note also that the linear probability bound for 8 rounds, which is
given by ε8 ≤ 2−15, is better than applying the bound for 4 rounds twice, which
is given by 2× (ε4)2 ≤ 2−13.

5 Security Analysis of EPCBC

We now present the results of a security analysis of EPCBC.2

5.1 Differential, Linear and Related-Key Differential Cryptanalysis

Analysis of EPCBC(48,96). We assume minus-4 round attacks, so a dis-
tinguisher of EPCBC(48,96) is on 28 rounds. For protection against differential
cryptanalysis, there are seven 4-round blocks in 28 rounds. By Theorem 1, the
differential characteristic probability is at most:

Δ28 ≤ [(2−2)6]7 = 2−84 < 2−48 = 2−blocksize.

For protection against linear cryptanalysis, there are seven 4-round blocks in 28
rounds. By Theorem 2, the linear bias is at most:

ε28 = (26)× (ε4)7 ≤ (26)× (2−7)7 = 2−43 < 2−24 = 2−blocksize/2.

For protection against related-key differential cryptanalysis, we consider the
related key differential characteristic probability, given by pc|k × pk. pc|k is the
differential characteristic probability of the main cipher conditioned on sub-
key differential and pk is the differential characteristic probability of the key
schedule.

We first bound pk which is the differential probability of the key schedule. A
minus-4 round attack would involve 7 variant-Feistel rounds of the key schedule.
By Theorem 1, every 4-round nonlinear function F of the variant-Feistel struc-
ture in the key schedule has differential probability at most (2−2)6 = 2−12. It is
easy to deduce that there are at least two active nonlinear functions F for every
three rounds of the variant-Feistel structure. We consider all three possible cases:
(ΔLKeystate, 0), (0, ΔRKeystate) and (ΔLKeystate, ΔRKeystate) �= (0, 0).
Based on the structure of the variant-Feistel, it can then be shown directly that
at least two of the three nonlinear functions have non-zero input differentials.
Thus over 6 rounds of the key schedule, we have pk ≤ [(2−12)2]2 = 2−48.

By the key schedule design, we see that the differential of four consecutive
subkeys are either all zero or all non-zero. In the case when the subkeys have
non-zero differential, for a particular round of the main cipher, if the input
differential is not cancelled by the key difference, then we have at least an active
S-box in the round. Otherwise, that round has no active S-box and zero output
difference. Then the subsequent nonzero subkey difference when xored with this
zero differential will cause an active S-box in the subsequent round. Hence, there
2 We leave the analysis of linear hull effect on EPCBC as future work.

EPCBC - A Block Cipher Suitable for Electronic Product Code Encryption 85

are at least two active S-boxes every four rounds of the main cipher when the
subkeys have non-zero differential. Hence over 28 rounds of the main cipher,
there are at least 6 active S-boxes. This is because there are always at least
three blocks of four consecutive rounds of the main cipher with non-zero key
differentials. Therefore pc|k ≤ (2−2)6 = 2−12 and the related key differential
probability satisfies pc|k× pk ≤ 2−12× 2−48 = 2−60. Thus the attack complexity
of related-key differential attack is at least 260. Moreover, the adversary needs to
obtain ciphertexts corresponding to 248 related keys, which might be infeasible
in practice.

Analysis of EPCBC(96,96). We assume minus-4 round attacks, so a dis-
tinguisher of EPCBC(96,96) is on 28 rounds. For protection against differential
cryptanalysis, we apply Theorem 3 on 28 rounds. The differential characteristic
probability is at most:

Δ28 ≤ (2−2)28×2 = 2−112 < 2−96 = 2−blocksize.

For protection against linear cryptanalysis, there are three 9-round blocks in 27
out of 28 rounds. By Theorem 4, the linear bias is at most:

ε27 ≤ (22)× ε39 ≤ (22)× (2−17)3 = 2−49 < 2−48 = 2−blocksize/2.

For protection against related-key differential attack, we need to bound both pk

and pc|k as in the proof for EPCBC(48,96). By Theorem 3, pk ≤ 2−96. With some
simple argument as before, we can prove that there are at least one active S-box
every two rounds of the main cipher because the subkeys have non-zero differ-
ential. Thus pc|k ≤ (2−2)14 = 2−28 and the related-key differential probability
satisfies pc|k × pk ≤ 2−28 × 2−96 = 2−124 < 2−96. Thus related-key differential
attack is infeasible.

5.2 Other Attacks on EPCBC

Integral Attacks. The integral attack [31] is a chosen plaintext attack origi-
nally applied to byte-based ciphers such as SQUARE and Rijndael. Lucks [37]
ported it as the ‘saturation attack’ to Twofish, which is fundamentally a byte-
based algorithm incorporating bit-oriented rotations. On this basis, the authors
of PRESENT, which contains a bit-based permutation, discarded this attack
almost out of hand. In 2008, Z’aba et al. [48] developed the bit-based integral
attack, which they applied to very reduced-round versions of Noekeon, Serpent
and PRESENT.

The attack categorizes each bit or byte across a structure of texts, as to
whether or not it is balanced (the sum of its value in each text equals zero).
At some point in the evolution of the text through the encryption, the balance
property is lost. The attacker can guess parts of the subsequent round key, and
partially decrypt this point. If the balance is not restored, the partial round key
guess is incorrect.

86 H. Yap et al.

The details of the attack are driven by the structure of the linear permutation
rather than of the S-boxes. The attack works best for ciphers in which the block
size is less than the size of the secret key. It applies to seven of PRESENT’s 31
rounds, partly due to a weakness in its key schedule that allows 61 bits of round
keys 5 and 6 to be deduced by guessing the 64 bits of round key 7.

The integral attacks on EPCBC(48, 96) and EPCBC(96, 96) use very simi-
lar differentials to those in the PRESENT attack, since the S-box is identical
and permutation scaled to a different block size. In particular, the S-box has a
probability-one differential 0x1→ w||0x1 for w ∈ {0x1, 0x3, 0x4, 0x6}.

In both cases, the attacker uses a structure of sixteen chosen plaintexts. For
EPCBC(48, 96), each text in the structure is of the form (c0, c1, c2||j), where c0

and c1 are 16-bit constants, c2 is a 12-bit constant, and j varies from 0 through
to 15. This permits a 3.5 round differential similar to that of PRESENT except
that the balance of bits relating to S-boxes 2, 5 and 8 are lost in the third
rather than fourth round. The attacker launches an attack on EPCBC(48, 96)
reduced to four rounds, recovering 32 bits of the fourth round key with 212

partial decryptions, and brute forcing the remaining 16 bits of the key for a
total complexity of O(216.13). The attack can be extended to five rounds, in
which the attacker guesses 16 bits of the fifth round key for every four bits of
the fourth round key. Due to the structure of the key schedule, the attacker does
not need to perform an additional brute force on the fourth round key, so the
complexity of the attack on five rounds is O(227.9). As per the PRESENT attack,
a seven round attack can be mounted by adding one round at the beginning of
the cipher, and brute forcing the seventh round key for a total complexity of
O(291.9) (due to the structure of the key schedule, the seventh round key does
not allow the attacker shortcuts in deducing parts of the sixth round key).

For EPCBC(96, 96), the attacker uses a structure of 16 chosen plaintexts of
form (c0, c1, c2, c3, c4, c5||j) where j varies from 0 to 16. This permits the same
3.5 round differential as PRESENT. The attack on 4 rounds has complexity
O(213.58). The structure of the key schedule means that in an attack on five
rounds, the attacker can work out the relevant parts of the fourth round key
from his guesses on the fifth. The attack can be extended to six rounds with
complexity O(233.6). It is possible to extend the attack to seven rounds, guessing
on a set of 64 key bits. The remaining 32 bits of the key can be brute forced.
The complexity of the attack is O(288).

Because the point at which the balance property is lost in the structure can-
not be easily extended, the number of rounds for which the integral attack is
applicable cannot be readily increased. So the full version of EPCBC is immune
to integral attacks.

Statistical Saturation Attacks. Statistical saturation attack (SSA) was first
proposed by Collard and Standaert in [16] to cryptanalyze PRESENT. The at-
tack targets mainly the diffusion properties of the permutation layer. By first
fixing some plaintext bits, the attacker extracts information about the key by
observing non-uniform distributions in the ciphertexts. This leads to an es-
timated attack against PRESENT up to 24 rounds, using approximately 260

EPCBC - A Block Cipher Suitable for Electronic Product Code Encryption 87

chosen plaintexts. Collard and Standaert later proposed the use of multiple
trails in [15] which provided experimental evidence that SSA can attack up to
15 rounds of PRESENT with 235.6 plaintext-ciphertext pairs. However as noted
by the authors, this attack is only of theoretical interest and their results do not
threaten the security of PRESENT in practice. Since EPCBC and PRESENT
use the same main cipher structure (in particular, the same permutation layer),
statistical saturation attack does not work on the full version of EPCBC.

Higher Order Differential Attack. Higher order differential attack was intro-
duced by Knudsen in [28]. This attack works especially well on block ciphers with
components of low algebraic degree such as the KN-Cipher (see [28]), whereby
the ciphers can be represented as Boolean polynomials of low degree in terms
of the plaintext. The attack requires O(2d+1) chosen plaintext when the cipher
has degree d. Hence we are interested in estimating the degree of a composed
function G◦F say. Trivially, deg(G◦F) ≤ deg(F)×deg(G). A first improvement
of the trivial bound was provided by Canteaut and Videau [13] and recently fur-
ther improved by Boura et al[11]. Recall that the PRESENT S-box has algebraic
degree 3. Hence by applying Theorem 2 of [11], from the composition of r S-box
layers, the algebraic degree of r rounds of EPCBC is expected to be

min(3r, blocksize− blocksize− deg(Rr−1)
3

, blocksize− 1),

where R denotes one round of EPCBC. This implies that EPCBC(48, 96) reaches
the maximum degree of 47 after 5 rounds while EPCBC(96, 96) reaches the
maximum degree of 95 after 6 rounds. Thus it is unlikely that higher order
differential attack will work on EPCBC which has 32 rounds.

Slide Attacks. Slide attacks exploit block ciphers that can be broken down into
multiple rounds of an identical F function [7,8]. Usually, a block cipher iterates a
round function, with a different subkey being xored to each round. Therefore this
boils down to the subkeys being cyclic with period t, in which case F consists of t
rounds of the cipher. The adversary needs to find a slid pair (P0, C0) and (P1, C1)
such that P0 = F (P1) and C0 = F (C1). Then with these chosen plaintexts, he only
needs to attack t rounds instead of the entire cipher. In EPCBC, the key schedule
is essentially a block cipher by itself where the input is the secret key and the
output of each round is a subkey. So it is highly unlikely that the subkeys will be
periodic to allow a slide attack. We have also added different round constants to
each round to ensure that the subkeys do not repeat.

Algebraic Attacks. In 2002, it was claimed in [17] that the XSL method is
able to break AES by expressing the cipher as a sparse system of quadratic equa-
tions and solving it. However in 2005, it was proven in [14] that the XSL attack
does not work. Instead, practical results on algebraic cryptanalysis of block ci-
phers have been obtained by applying the Buchberger and F4 algorithms within
MAGMA [39]. Therefore, the authors of PRESENT applied the F4 algorithm

88 H. Yap et al.

on MAGMA to solve a mini version of PRESENT [10]. They found that even
when considering a system consisting of seven S-boxes, i.e. a block size of 28 bits,
they were unable to obtain a solution in a reasonable time to even a two-round
version of the reduced cipher. Therefore they conclude that algebraic attacks
are unlikely to pose a threat to PRESENT, which can be written as a system
of 11067 quadratic equations in 4216 variables, arising from 527 S-boxes. The
EPCBC cipher also uses the PRESENT S-box which can be described by 21
quadratic equations in 8 input/output-bit variables over GF (2) [10]. There are
12× 32 + 12× 33 = 780 S-boxes in EPCBC(48,96). Thus it can be expressed as
a system of 780 × 21 = 16380 quadratic equations in 780 × 8 = 6240 variables.
In a similar way, EPCBC(96,96) has 1560 S-boxes and it can be expressed as
a system of 32760 quadratic equations in 12480 variables. Hence both versions
of EPCBC result in a more complex system of quadratic equations than that
of PRESENT. Therefore we do not expect algebraic attacks to be a threat to
EPCBC too.

6 Implementation of EPCBC

To demonstrate the efficiency of our proposal we have implemented
EPCBC(48,96) and EPCBC(96,96) in VHDL and used Synopsys DesignVision
2007.12 to synthesize them using the Virtual Silicon (VST) standard cell library
UMCL18G212T3, which is based on the UMC L180 0.18μm 1P6M logic process
and has a typical voltage of 1.8 Volt [45].

Figure 1 depicts serialized hardware architectures for EPCBC(48,96) (top)
and EPCBC(96,96) (bottom). Components that contain mainly sequential logic
are presented in rectangles while purely combinational components are presented
in ovals. Naturally the architecture of EPCBC is very similar to a serialized
PRESENT architecture, as published previously e.g. in [44,43]. A significant
difference is in the key schedule of EPCBC(48,96), as it does not perform any
operation on the left halve of the key (i.e. LKey) in every round. This allows to
store LKey in the simplest flip-flops available (4.67 GE per bit) contrary to the
State and RKey, which have to be stored in flip-flops with two inputs (6 GE).

Another optimization is that every round requires only n/4 clock cycles, n
being the block size, as compared to n/4 + 1 clock cycles e.g. [44,43]. This can
be achieved by by simply wiring the S-box output directly as input to the Per-
mutation layer, thus combining the execution of the S-box look-up of the last
chunk of a round with the Permutation layer into one clock cycle. Note that this
optimization can also be applied to PRESENT. Thus, a second contribution of
this paper are optimized serialized PRESENT-80 and PRESENT-128 implemen-
tations that requires only 516 and 528 clock cycles (compared to previously 547
and 559, respectively [44]). Note that in order to apply this speed-up trick a
second S-box has to be implemented (22.3 GE3), while the MUX (11 GE) for
the S-box input can be saved. In principal this would result in a 6 GE larger
3 We hereby acknowledge the support of Dag Arne Osvik to derive a more compact

S-box.

EPCBC - A Block Cipher Suitable for Electronic Product Code Encryption 89

data_in

key
State

[Reg-4/48]
RKey

[Reg-4/48]

S

P

4

48

data_out

5

counter

 EPCBC-48/96
4

4

4
4

4

4

4

4

S

P

96

LKey
[LFSR-4/48]

4

4

swap

nReset

data_in

key
State

[Reg-4/96]
Key

[Reg-4/96]

S

P

4

96

data_out

5

counter

 EPCBC-96/96

4

4

4 4
4

4

4

4

4

S

P

96

Fig. 1. Serial hardware architectures

area requirement compared to the design strategy of [44]. However, since we
optimized the control logic significantly, we were able to decrease the area re-
quirements to 1, 030 GE and 1, 343 GE, respectively. It is crucial to note that
the storage of the internal state already takes up 864 GE (1, 152 GE), which
leaves only 211 GE (239 GE) to improve. Our results relate to an improvement
of more than 20% for those parts of the implementations that can be improved
by better design decisions. To the best of our knowledge these are the smallest
and fastest PRESENT implementations in hardware.

We used Synopsys PowerCompiler version A-2007.12-SP1 to estimate the
power consumption of our implementations. The power estimates for the small-
est wire-load model (10K GE) at a supply voltage of 1.8 Volt and a frequency
of 100 KHz are between 2.21 μW for EPCBC(48,96) and 3.63 μW for EPCBC
(96,96), which indicates how well EPCBC is suited for ultra-constrained appli-
cations, such as passive RFID tags. However, the accuracy level of simulated
power figures greatly depends on the simulation tools and parameters used. Fur-
thermore, the power consumption also strongly depends on the target library
used. Thus to have a fair comparison, we do not include any power figures in
Table 1. Instead we use a figure of merit (FOM), proposed by [2] –which re-
flects the time-area-power trade-off inherent in any hardware implementation–
as a somewhat fair metric for comparison of the energy efficiency of different
block cipher implementations. Table 1 lists also latency, area requirements, and

90 H. Yap et al.

Table 1. Hardware implementation results of some lightweight block ciphers and the
AES

key block cycles/ T’put FOM
Algorithm Ref. size size block (@100 Tech. Area block 96-bits

KHz) [μm] [GE] [bits×109

clk·GE2]

KLEIN-64 [25] 64 64 207 30.9 0.18 1,220 208 156

PRINTcipher-48∗ [32] 80 48 768 6.25 0.18 402 387 387
KATAN48 [12] 80 48 255 18.8 0.13 927 219 219
KLEIN-80 [25] 80 64 271 23.62 0.18 1,478 108 81
PRESENT-80 [44] 80 64 547 11.7 0.18 1,075 101 76
PRESENT-80 This paper 80 64 516 12.4 0.18 1,030 117 88

EPCBC-48 This paper 96 48 396 12.12 0.18 1,008 119 119
KLEIN-96 [25] 96 64 335 19.1 0.18 1,528 82 61
EPCBC-96 This paper 96 96 792 12.12 0.18 1,333 68 68

PRESENT-128 This paper 128 64 528 12.12 0.18 1,339 68 51
PRESENT-128 [43] 128 64 559 11.45 0.18 1,391 59 44
AES [40] 128 128 226 56.64 0.13 2,400 98 74

PRINTcipher-96∗ [32] 160 96 3,072 3.13 0.18 726 59 59

DESXL [34] 184 64 144 44.4 0.18 2,168 95 71
∗ Hard-wired Keys

throughput of unbroken block ciphers that have a smaller area footprint than
AES.4 It is sorted after increasing key length and block size.

It can be seen that EPCBC(48,96) has a slightly smaller area footprint then
PRESENT-80, while having a slightly lower speed resulting in a somewhat sim-
ilar FOM. However, this is only the case if we consider messages that match
the block length of the cipher. In that sense it is a best case scenario for every
algorithm. If we focus on the EPC scenario with a given block length of 96-bit,
the picture changes. The efficiency of PRESENT, AES and any other algorithm,
for which the block length is not 96 bits (or that divides 96), drops significantly.
As one can see in the last column, EPCBC’s efficiency stays the same (as it does
for the other algorithms with similar block lengths). If the block cipher is going
to be used as a compression function, e.g. in Davies-Meyer or Hirose Mode, the
same drop in efficiency for 96-bit messages can be observed.

No implementation figures for MESH have been published so far, but for
MESH-96 at least 1,345 GE are required (in our technology) to store the 288 bits
internal state (GE), which is already more than what is required for
EPCBC(96,96). As MESH-96 operates on 16-bit words, a 16-bit datapath seems
a natural choice, but, given the rather complex round function of MESH-96, it
is not clear, if this would be optimal with regards to compact area.

4 Please note that this excludes 3-WAY [18], which can be broken with one related key
and about 222 chosen plaintexts [30], and SEA with a 96-bit key and 96-bit block
size which requires far more area than the AES (3,758 GE [38]).

EPCBC - A Block Cipher Suitable for Electronic Product Code Encryption 91

7 Conclusion

In this paper, we designed the EPCBC block ciphers which use a 96-bit key and
are provable secure against related-key differential/boomerang attacks. When
evaluating the security of EPCBC we could leverage on the extensive analyses
published for PRESENT, providing a good “trust” starting point for our design,
contrary to other exotic, i.e. not easy to analyze, lightweight block cipher designs.
Nevertheless during the security evaluation of EPCBC(96,96), we improved the
bounds for the differential/linear resistance of PR-n, n ≥ 64, and proved new
results on the DC/LC resistance of PR-n, n < 64, when evaluating the security
of EPCBC(48,96). For the envisioned scenario of EPC applications, we showed
that the chosen block sizes of 48 and 96 bits allow EPCBC to outperform other
lightweight or standardized algorithms, such as KLEIN, PRESENT and AES,
regardless if used as a block cipher or as a compression function. We also pre-
sented two optimized serialized PRESENT architectures that are both smaller
and faster than previous results.

It is noteworthy to stress that EPCBC’s key schedule (as opposed to PRESENT)
is optimized against related key differential attacks, which allows a secure usage
of EPCBC in such scenarios. Furthermore, EPCBC has a larger key length than
PRESENT-80, which indicates a higher security level.

References

1. Avoine, G., Oechslin, P.: A Scalable and Provably Secure Hash-Based RFID Pro-
tocol. In: PerCom Workshops, pp. 110–114. IEEE Computer Society Press (2005)

2. Badel, S., Dağtekin, N., Nakahara Jr., J., Ouafi, K., Reffé, N., Sepehrdad, P., Sušil,
P., Vaudenay, S.: ARMADILLO: A Multi-purpose Cryptographic Primitive Ded-
icated to Hardware. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 398–412. Springer, Heidelberg (2010)

3. Barreto, P., Rijmen, V.: The Whirlpool Hashing Function,
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html

4. Biham, E., Dunkelman, O., Keller, N.: A Related-Key Rectangle Attack on the
Full KASUMI. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 443–461.
Springer, Heidelberg (2005)

5. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and Related-Key Attack
on the Full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
231–249. Springer, Heidelberg (2009)

6. Biryukov, A., Khovratovich, D.: Related-Key Cryptanalysis of the Full AES-192
and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009)

7. Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999)

8. Biryukov, A., Wagner, D.: Advanced Slide Attacks. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000)

9. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin,
Y.: Hash Functions and RFID Tags: Mind the Gap. In: Oswald, E., Rohatgi, P.
(eds.) CHES 2008. LNCS, vol. 5154, pp. 283–299. Springer, Heidelberg (2008)

http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html

92 H. Yap et al.

10. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

11. Boura, C., Canteaut, A., De Cannière, C.: Higher-Order Differential Properties of
Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269.
Springer, Heidelberg (2011)

12. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg
(2009)

13. Canteaut, A., Videau, M.: Degree of Composition of Highly Nonlinear Functions
and Applications to Higher Order Differential Cryptanalysis. In: Knudsen, L.R.
(ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 518–533. Springer, Heidelberg
(2002)

14. Cid, C., Leurent, G.: An Analysis of the XSL Algorithm. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 333–352. Springer, Heidelberg (2005)

15. Collard, B., Standaert, F.-X.: Multi-trail Statistical Saturation Attacks. In: Zhou,
J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 123–138. Springer, Heidelberg
(2010)

16. Collard, B., Standaert, F.-X.: A Statistical Saturation Attack against the Block
Cipher PRESENT. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp.
195–210. Springer, Heidelberg (2009)

17. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501,
pp. 267–287. Springer, Heidelberg (2002)

18. Daemen, J., Govaerts, R., Vandewalle, J.: A New Approach to Block Cipher Design.
In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 18–32. Springer, Heidelberg
(1994)

19. Diffe, W., Ledin, G.: SMS4 Encryption Algorithm for Wireless Networks. Cryptol-
ogy ePrint Archive: Report, 329 (2008)

20. Dimitriou, T.: A lightweight RFID protocol to protect against traceability and
cloning attacks. In: Proc. IEEE Intern. Conf. on Security and Privacy in Commu-
nication Networks, SECURECOMM 2005. IEEE Press (2005)

21. Dunkelman, O., Keller, N., Shamir, A.: A Practical-Time Related-Key Attack on
the KASUMI Cryptosystem Used in GSM and 3G Telephony. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 393–410. Springer, Heidelberg (2010)

22. EPCglobal. EPC Tag Data Standard Version 1.5. EPCglobal Specification (August
2010), www.gs1.org/gsmp/kc/epcglobal/tds/

23. EPCglobal. EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF
RFID Protocol for Communications at 860 MHz - 960 MHz Version 1.2.0. EPC-
global Specification (May 2008), www.gs1.org/gsmp/kc/epcglobal/uhfc1g2

24. Gong, Z., Nikova, S., Law, Y.-W.: KLEIN, a new family of lightweight block ciphers,
http://doc.utwente.nl/73129/

25. Gong, Z., Nikova, S., Law, Y.-W.: KLEIN, a new family of lightweight block ciphers.
In: Proceedings of The 7th Workshop on RFID Security and Privacy 2011. LNCS.
Springer, Heidelberg (2011), http://rfid-cusp.org/rfidsec/

26. Henrici, D., Müller, P.: Hash-based enhancement of location privacy for radio-
frequency identification devices using varying identifers. In: Proc. IEEE Intern.
Conf. on Pervasive Computing and Communications, pp. 149–153 (2004)

 www.gs1.org/gsmp/kc/epcglobal/tds/
 www.gs1.org/gsmp/kc/epcglobal/uhfc1g2
http://doc.utwente.nl/73129/
http://rfid-cusp.org/rfidsec/

EPCBC - A Block Cipher Suitable for Electronic Product Code Encryption 93

27. Hong, D., Sung, J., Hong, S.H., Lim, J.-I., Lee, S.-J., Koo, B.-S., Lee, C.-H., Chang,
D., Lee, J., Jeong, K., Kim, H., Kim, J.-S., Chee, S.: HIGHT: A New Block Cipher
Suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

28. Jakobsen, T., Knudsen, L.R.: Attacks on Block Ciphers of Low Algebraic Degree.
Journal of Cryptology 14, 197–210 (2001)

29. Juels, A.: Minimalist Cryptography for Low-Cost RFID Tags. In: Blundo, C.,
Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 149–164. Springer, Heidelberg
(2005)

30. Kelsey, J., Schneier, B., Wagner, D.: Related-Key Cryptanalysis of 3-WAY,
Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Quing, S.
(eds.) ICICS 1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)

31. Knudsen, L., Wagnger, D., Daemen, J., Rijmen, V.: Integral Cryptanalysis. In:
Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer,
Heidelberg (2002)

32. Knudsen, L.R., Leander, G., Robshaw, M.J.B.: PRINTcipher: A Block Cipher for
IC-Printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225,
pp. 16–32. Springer, Heidelberg (2010)

33. Leander, G.: Small Scale Variants of the Block Cipher PRESENT. Cryptology
ePrint Archive, Report 2010/143 (2010), http://eprint.iacr.org/2010/143.pdf

34. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lightweight DES Vari-
ants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer,
Heidelberg (2007)

35. Lee, S.M., Hwang, Y.J., Lee, D.-H., Lim, J.-I.: Efficient Authentication for
Low-Cost RFID Systems. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A.,
Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480,
pp. 619–627. Springer, Heidelberg (2005)

36. Lim, C.H., Korkishko, T.: mCrypton - a Lightweight Block Cipher for Security
of Low-Cost RFID Tags and Sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.)
WISA 2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

37. Lucks, S.: The Saturation Attack - A Bait for Twofish. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 1–15. Springer, Heidelberg (2002)

38. Mace, F., Standaert, F.-X., Quisquater, J.-J.: ASIC Implementations of the Block
Cipher SEA for Constrained Applications. In: RFID Security - RFIDsec 2007,
Workshop Record, Malaga, Spain, pp. 103–114 (2007)

39. MAGMA v2.12. Computational Algebra Group, School of Mathematics and Statis-
tics, University of Sydney (2005), http://magma.maths.usyd.edu.au

40. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A
Very Compact and a Threshold Implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

41. Nakahara, J., Rijmen, V., Preneel, B., Vandewalle, J.: The MESH Block Ciphers.
In: Chae, K.-J., Yung, M. (eds.) WISA 2003. LNCS, vol. 2908, pp. 458–473.
Springer, Heidelberg (2004)

42. Ohkubo, M., Suzuki, K., Kinoshita, S.: Cryptographic approach to “privacy-
friendly” tags. In: Proc. RFID Privacy Workshop (2003)

43. Poschmann, A.: Lightweight Cryptography - Cryptographic Engineering for a Per-
vasive World. IT Security. Europäischer Universitätsverlag, vol. 8 (2009) Ph.D.
Thesis, Ruhr University Bochum

http://eprint.iacr.org/2010/143.pdf
http://magma.maths.usyd.edu.au

94 H. Yap et al.

44. Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-Lightweight Implementa-
tions for Smart Devices – Security for 1000 Gate Equivalents. In: Grimaud, G.,
Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 89–103. Springer,
Heidelberg (2008)

45. Virtual Silicon Inc. 0.18 μm VIP Standard Cell Library Tape Out Ready, Part
Number: UMCL18G212T3, Process: UMC Logic 0.18 μm Generic II Technology:
0.18μm (July 2004)

46. Sarma, S., Weiss, S.A., Engels, D.W.: RFID Systems and Security and Privacy
Implications. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS,
vol. 2523, pp. 454–469. Springer, Heidelberg (2003)

47. Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and Privacy As-
pects of Low-Cost Radio Frequency Identification Systems. In: Hutter, D., Müller,
G., Stephan, W., Ullmann, M. (eds.) Security in Pervasive Computing. LNCS,
vol. 2802, pp. 201–212. Springer, Heidelberg (2004)

48. Z’aba, M.R., Raddum, H., Henricksen, M., Dawson, E.: Bit-Pattern Based Integral
Attack. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 363–381. Springer,
Heidelberg (2008)

A Appendix

A.1 Improved Differential and Linear Cryptanalysis of PR-n

We first clarify the notations used. We use an unordered sequence to specify the
number of differential/linear (depending on the context) active S-boxes in each
round. For example, {1, 1, 2, 3} is used to denote that there are two rounds with
one active S-box each, one round with two active S-boxes and one round with
three active S-boxes. On the other hand, the ordered sequence 1-1-2-3 is used to
denote that there is one active S-box in the first and second rounds, third round
has two active S-boxes while the fourth round has three active S-boxes.

Differential Cryptanalysis

Lemma 1. Consider PR-n where n ≥ 64. Let Dj be the number of active S-
boxes in round j. Suppose Di = 1 and Di+1 ≥ 2. Denote the total number of
active S-boxes from round i to round (i + k − 1) (both rounds inclusive) by nk,
for k ≥ 1. Then n1 = 1, n2 ≥ 3, n3 ≥ 7, n4 ≥ 11, n5 ≥ 13, n6 ≥ 14, and
nk ≥ 2k + 1 for k = 7, 8, 9.

Proof. n1 = 1 and n2 ≥ 3 are trivial. According to P3, the output bits from the
active S-box in round i goes to different S-boxes of distinct groups. In particular,
the active S-boxes of round i + 1 have a single bit difference in their inputs.
Together with P4, Di+2 ≥ 4. This implies that n3 ≥ 7. Again, because of P4,
we see that the active S-boxes in round i + 2 have a single bit difference in their
inputs. Further, in round i + 2, due to P3, there are at least two groups of S-
boxes which contain at least one active S-box. This means that Di+3 ≥ 4. So,
n4 ≥ 11. Because of P3, there must exist two active S-boxes in round i + 3 such
that these two S-boxes belong to different groups. By P4, Di+4 ≥ 2 and this
yields n5 ≥ 13. Since Di+5 ≥ 1 trivially holds, n6 ≥ 14.

EPCBC - A Block Cipher Suitable for Electronic Product Code Encryption 95

n6 ≥ 14 implies that n7 ≥ 15. Suppose n8 = 16. Note that the sequence of ni is
strictly increasing. Hence n7 = 15 and n6 = 14. It follows that Di+6 = Di+7 = 1.
From the earlier argument, we see that the worst case of n6 = 14 is obtained
when Di+5 = 1. However by S2 and P3, there cannot be exactly one active S-box
for three consecutive rounds. Hence we must have Di+7 ≥ 2, i.e. n8 ≥ 17.

Finally, in a similar but slightly more complicated fashion, suppose for a
contradiction that n9 = 18. Then n8 = 17 and we have the following cases:

Case 1: n6 = 14, n7 = 15. Then Di+8 ≥ 4 by applying the previous argument.
So n8 ≥ 21.
Case 2: n6 = 14, n7 = 16. Then Di+5 = 1, Di+6 = 2 and Di+7 = 1, but this
violates S2 and is thus impossible.
Case 3: n6 = 15, n7 = 16. Then there are three consecutive rounds with exactly
one active S-box each, which is again not possible.
Therefore nk ≥ 2k + 1 for k = 7, 8, 9. ��

Lemma 2. Consider PR-n where n ≥ 64. Let Dj be the number of active S-
boxes in round j. Suppose Di = 1 and Di−1 ≥ 2. Denote the total number of
active S-boxes from round i to round (i−k+1) (both rounds inclusive) by nk, for
k ≤ i. Then n1 = 1, n2 ≥ 3, n3 ≥ 7, n4 ≥ 11, n5 ≥ 13, n6 ≥ 14 and nk ≥ 2k +1
for k = 7, 8, 9.

Proof. The proof is similar to that of Lemma 1 and by using P1 and P2 instead.
��

Lemma 3. For n ≥ 64, the r-round differential characteristic of PR-n has a
minimum of 2r active S-boxes for r = 5, 6, 7, 8, 9.

Proof. With no loss of generality, we consider the first round to the r-th round.
Let Di be the number of active S-boxes in round i. It is proven in [10] that the
case for r = 5 holds. Consider 6-round differential characteristic. Since there are
at least 10 active S-boxes in the first five rounds, if there are at least two active
S-boxes in the sixth round, then we are done. Otherwise, suppose that D6 = 1. If
D5 ≥ 2, then applying Lemma 2 from round 6 to round 1, there is a minimum of
14 active S-boxes. Otherwise D5 = 1. Then we must have a single bit difference
to the output of the active S-box in round 5, else it will contradict P1. Because
of S2, D4 ≥ 2. Now we can apply Lemma 2 from round 5 to round 1, yielding∑6

i=1 Di ≥ 13+1 = 14. For r = 7, 8, 9, we apply similar argument as before. ��

As a direct consequence of Lemma 3, we have the following result.

Theorem 3. For n ≥ 64, the r-round differential characteristic of PR-n has a
minimum of 2r active S-boxes for r ≥ 5.

Linear Cryptanalysis

Lemma 4. Consider linear approximations of PR-n where n ≥ 64. The active
S-boxes over consecutive rounds cannot form the following patterns:
1-2-1, 1-3-1, 1-3-2, 1-4-1, 1-4-2, 1-4-3, 1-i, i-1, for i ≥ 5.

96 H. Yap et al.

Proof. For i ≥ 5, the patterns 1-i and i-1 clearly cannot happen since the S-
boxes are four-bit. If the pattern 1-2-1 were to happen, then the active S-boxes
in the middle round are activated by the same S-box and must therefore belong
to two different groups. However, they cannot activate only one S-box in the
following round. Hence the pattern 1-2-1 is impossible. In general, we see that
the active S-boxes in the middle round must activate at least an equal number
of S-boxes in the following round. ��

Definition 1. Let a and b be the input and output mask to a S-box respectively.
If wt(a) = wt(b) = 1, then the S-box is said to have single-bit approximation.

In particular, with reference to S4, we see that the bias of any single-bit ap-
proximation is less than 2−3. Further, we define ns to be the number of active
S-boxes over r rounds with single-bit approximations.

Lemma 5. Consider r-round linear approximations of PR-n where n ≥ 64.

1. For r = 3 and the pattern 1-j-j, where 1 ≤ j ≤ 4, ns = j.
2. For r = 3 and the pattern 1-2-3, ns = 1.
3. For r = 3 and the pattern 1-3-4, ns = 2.
4. For r = 9 and {1, 1, 1, 1, 1, 1, 1, 1, i} where i ≥ 2, ns ≥ 6.
5. For r = 9 and {1, 1, 1, 1, 1, 1, 1, i, j} where i ≥ 2 and j ≥ 2, ns ≥ 3.
6. For r = 9 and {1, 1, 1, 1, 1, 1, i, j, k} where i ≥ 2, j ≥ 2 and k ≥ 2, ns ≥ 2.

Proof. (1) to (3) follows easily from P3 and P4, while (4) to (6) can be easily
deduced from Lemma 4. ��

Lemma 6. Consider nine-round linear approximations of PR-n where n ≥ 64.
Suppose there are exactly k rounds with one active S-box each and for each of
the remaining rounds, there are exactly 2 active S-boxes, where 3 ≤ k ≤ 8. Then
ns ≥ k − 2.

Proof. The result for k = 8 follows directly from Lemma 5.4. For k = 7, by
Lemma 4, we either have two active S-boxes in the first and the last rounds, or,
we have 1-2-2 occurring in the pattern. For the former, ns = 5. For the latter, by
virtue of Lemma 5, each time 1-2-2 occurs in the pattern, there are two active S-
boxes with single-bit approximations. Hence, ns ≥ 5. For k = 6, again, because
of Lemma 4, either the pattern contains 1-2-2, or is of the form 2-2-2-1-· · · -1
or 2-2-1-1-· · · -1-2. Together with Lemma 5, it can thus be easily checked that
ns ≥ 4. We can apply the same argument to the cases when k = 5, 4 and 3. ��

Theorem 4. Let εr be the maximal bias of a linear approximation of r rounds
of PR-n where n ≥ 64. Then εr ≤ 2−2r+1 for r = 4, 5, 6, 7, 8 and 9.

Proof. Since the argument is similar for r = 4, 5, 6, 7, 8 and 9, we shall just
consider the (most complicated) case of r = 9.

Let εj
9 denote the bias of a linear approximation over nine rounds involving j

active S-boxes. We consider the following cases.

EPCBC - A Block Cipher Suitable for Electronic Product Code Encryption 97

Case 1: Each round of a nine-round linear approximation has exactly one active
S-box. Then there are at least 7 active S-boxes with single-bit approximations.
By virtue of Matsui’s piling-up lemma, we have

ε99 ≤ 28 × (2−3)7 × (2−2)2 = 2−17.

Case 2: There are exactly ten active S-boxes over nine rounds. Then by Lemma
6, we have that

ε109 ≤ 29 × (2−3)6 × (2−2)4 = 2−17.

Case 3: There are exactly eleven active S-boxes over nine rounds. There are two
possiblities: {1, 1, 1, 1, 1, 1, 1, 2, 2} and {1, 1, 1, 1, 1, 1, 1, 1, 3}. It can be deduced
from Lemma 6 and Lemma 5.4 respectively that ns ≥ 5. Hence, we have

ε119 ≤ 210 × (2−3)5 × (2−2)6 = 2−17.

Case 4: There are exactly twelve active S-boxes over nine rounds. We consider:
(a) {1, 1, 1, 1, 1, 1, 2, 2, 2} (b) {1, 1, 1, 1, 1, 1, 1, 2, 3} (c) {1, 1, 1, 1, 1, 1, 1, 1, 4}
For (a) and (c), we apply Lemma 6 and Lemma 5.4 respectively to deduce that
ns ≥ 4. For (b), note that by Lemma 4, 1-3-2, 1-2-1 and 1-3-1 cannot occur
in the pattern. So either 1-2-3 occurs in the pattern, or the pattern is of the
form 2-3-1-· · · -1, 3-2-1-· · · -1, 2-1-· · · -1-3 or 3-1-· · · -1-2. Together with Lemma
5, ns ≥ 4. Therefore,

ε129 ≤ 211 × (2−3)4 × (2−2)8 = 2−17.

Case 5: There are exactly thirteen active S-boxes over nine rounds. Note that the
patterns 1-5 and 5-1 are impossible by Lemma 4. Thus it suffices to consider the
patterns {1, 1, 1, 1, 1, 2, 2, 2, 2}, {1, 1, 1, 1, 1, 1, 1, 2, 4}, {1, 1, 1, 1, 1, 1, 1, 3, 3} and
{1, 1, 1, 1, 1, 1, 2, 2, 3}. Similar to Case 4, it can be shown that ns ≥ 3.
Case 6: There are exactly fourteen active S-boxes over nine rounds. By first
noting that the patterns 1-6 and 6-1 are impossible by Lemma 4 and following
a similar argument to Cases 4 and 5, it can be shown that ns ≥ 2.
Case 7: There are exactly fifteen active S-boxes over nine rounds. In a similar
fashion to Cases 4, 5 and 6, we have ns ≥ 1.
Hence for Case 5(j = 13, ns ≥ 3), Case 6(j = 14, ns ≥ 2) and Case 7(j =
15, ns ≥ 1), we have

εj
9 ≤ 2j−1 × (2−3)ns × (2−2)j−ns = 2−17.

Case 8: There are more than 15 active S-boxes over nine rounds. Then

εj
9 ≤ 2j−1 × (2−2)j = 2−j−1 ≤ 2−17, for j > 15. ��

A.2 Testvectors

EPCBC(48,96) EPCBC(96,96)
plaintext 0123456789AB 0123456789ABCDEF01234567
key 0123456789ABCDEF01234567 0123456789ABCDEF01234567
ciphertext 0B46B67143DC 408C65649781E6A5C9757244

On Permutation Layer of Type 1, Source-Heavy,

and Target-Heavy Generalized Feistel Structures

Shingo Yanagihara and Tetsu Iwata

Dept. of Computational Science and Engineering, Nagoya University, Japan
s yanagi@echo.nuee.nagoya-u.ac.jp, iwata@cse.nagoya-u.ac.jp

Abstract. The Generalized Feistel Structure (GFS) generally uses the
sub-block-wise cyclic shift in the permutation layer, the layer between
the two F function layers. For Type 2 GFS, at FSE 2010, Suzaki and
Minematsu showed that a better diffusion property can be obtained if
one uses some other sub-block-wise permutation. In this paper, we con-
sider Type 1, Source-Heavy (SH), and Target-Heavy (TH) GFSs, and
study if their diffusion properties can be improved by changing the sub-
block-wise cyclic shift. For Type 1 GFS, we show that it achieves better
diffusion for many cases, while this is not the case for SH and TH GFSs,
i.e., the diffusion property of SH and TH GFSs does not change even
if we change the sub-block-wise cyclic shift. We also experimentally de-
rive optimum permutations in terms of diffusion, and evaluate the secu-
rity of the resulting schemes against saturation, impossible differential,
differential, and linear attacks.

Keywords: Blockcipher, generalized Feistel structure (GFS), permuta-
tion layer, computer experiment.

1 Introduction

Background. Building a secure and efficient blockcipher has been studied ex-
tensively, and the Generalized Feistel Structure, which we write GFS, is one
of the widely used structures adopted in many practical constructions. In the
classical Feistel structure used, e.g., in DES [14] or Camellia [3], the plaintext
is divided into two halves, while in GFS, the plaintext is divided into d sub-
blocks for d > 2. These structures have advantage over the SP network used
in AES [13] in that the encryption and decryption algorithms are similar and
thus allow small implementations on hardware. There are several types of GFS
known in literature [42,29]. For example, Type 1, Type 2, Type 3, Source-Heavy
(SH), Target-Heavy (TH), Alternating, and Nyberg’s GFS are known. We list
examples of the constructions that are based on these types of GFS. Type 1 GFS
is used in CAST-256 [1], as well as the blockcipher used in Lesamnta [16]. Type
2 GFS is used in RC6 [33], HIGHT [18], and CLEFIA [37]. SH GFS is used in
RC2 [32], SPEED [41], and the blockcipher used in SHA-1 and SHA-2 [15], and
TH GFS is used in MARS [19]. BEAR/LION [2] is an example that uses the
Alternating GFS.

D. Lin, G. Tsudik, and X. Wang (Eds.): CANS 2011, LNCS 7092, pp. 98–117, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On Permutation Layer of Type 1, SH, and TH GFSs 99

The security of these structures has been extensively evaluated. The pseu-
dorandomness of Type 1, Type 2, Type 3, and Alternating GFSs is analyzed
in [42,27,17]. The pseudorandomness of unbalanced Feistel structure is proved
in [23,28]. [29] shows the differential attack and linear attack against Nyberg’s
GFS, and [34] shows the differential attack and linear attack against unbalanced
Feistel structure. The distinguishing attacks against SH and TH GFSs are pre-
sented in [30] and in [20,31], respectively. The security of Type 1 GFS against
the impossible differential attack is analyzed in [21]. In [6], the security of SH
GFS against differential and linear attacks is studied. The lower bounds on the
number of active S-boxes for Type 1 and Type 2 GFSs with SP-functions and
single-round diffusion are proved in [40] and [35], respectively. The lower bounds
for Type 1 and Type 2 GFSs with SP-functions and multiple-round diffusions are
proved in [36]. The security of Type 1, Type 2, and TH GFS against impossible
boomerang attack is analyzed in [11]. [7,9,8] analyze the security of Type 1 and
Type 2 GFSs with double SP-functions and single-round diffusion. [22,26] study
the provable security of various types of GFSs against the differential attack.

Generally, GFS uses a sub-block-wise cyclic shift in the permutation layer, a
layer between the two F function layers. At FSE 2010, Suzaki and Minematsu
considered to use a permutation which is not a cyclic shift, and demonstrated
that the security of Type 2 GFS is actually improved [39]. More precisely, they in-
troduced the notion of the maximum diffusion round, which we write DRmax(π),
to evaluate the diffusion property of Type 2 GFS that uses a sub-block-wise per-
mutation π in the permutation layer. Intuitively, DRmax(π) indicates how many
rounds are needed to achieve the full diffusion, i.e., each output sub-block de-
pends on all input sub-blocks. They provided a construction of a permutation
that has a good diffusion property. They also experimentally derived the opti-
mum permutation in terms of diffusion for d ≤ 16. For the resulting schemes,
they analyzed their pseudorandomness as well as the security against the satu-
ration attack [12], impossible differential attack [4], differential attack [5], and
linear attack [24].

Our Contributions. In this paper, we closely look at Type 1, SH, and TH GFSs to
see if changing the permutation in their permutation layer from the sub-block-
wise cyclic shift improves their diffusion property or security against various
attacks. After encrypting several rounds, we expect that each output sub-block
depends on all input sub-blocks, and the blockcipher achieves the full diffusion.
However, some permutation makes the cipher weak. For example, if we use the
identity mapping in the permutation layer, then the full diffusion cannot be
achieved. For Type 1, SH, and TH GFSs, we first identify a necessary condition
on the permutation so that the blockcipher achieves the full diffusion. For Type
1 GFS, we next introduce two parameters, which we write r01 and r10. These are
the numbers of rounds so that the 0th sub-block reaches the 1st sub-block, and
vice-versa. Basing on these parameters, we obtain a lower bound on DRmax(π).
Our main result on Type 1 GFS is the explicit construction of the optimum
π in terms of diffusion for odd d, that is, our permutation tightly meets the
lower bound on DRmax(π). For SH and TH GFSs, we show that changing the

100 S. Yanagihara and T. Iwata

permutation layer does not change the diffusion property as long as they achieve
the full diffusion. In other words, basing on our definition of equivalence, as long
as DRmax(π) is finite, we show that the resulting schemes are equivalent to the
scheme that uses the cyclic shift.

We then experimentally search over all permutations. For Type 1 GFS, we
search for 3 ≤ d ≤ 16, and for SH and TH GFSs, we search for 3 ≤ d ≤ 8,
and list all permutations (but omitting the equivalent permutations) that are
better than the sub-block-wise cyclic shift in terms of diffusion. We also evaluate
the security of the resulting schemes against saturation, impossible differential,
differential, and linear attacks. As a result, we find that for Type 1 GFS and
for 3 ≤ d ≤ 16 and d �= 3, 4, 6, the diffusion property can be improved if one
changes the permutation from the cyclic shift. Furthermore, the security against
saturation, differential, and linear attacks improves in many cases, and does
not get worse. On the other hand, for d = 3, 4, 6, the diffusion property does
not change. For all cases, the security against the impossible differential attack
does not change. For SH and TH GFSs, the cyclic shift is optimum in terms of
diffusion, and changing the permutation does not change the security against
saturation, impossible differential, differential, and linear attacks.

2 Preliminaries

For two bit strings X and Y of the same length, X⊕Y is their xor (exclusive-or).
For an integer n ≥ 1, {0, 1}n is the set of all bit strings of n bits.

2.1 Generalized Feistel Structure (GFS)

In Fig. 1, we illustrate the overall structure of GFS. It takes an N -bit plaintext x
and a secret key as inputs and outputs an N -bit ciphertext y. It is parameterized
by an integer d, which we call the number of sub-blocks, where each sub-block
is n bits, and we thus have N = dn. GFS has an iterated structure and it
consists of several round functions. The number of rounds is denoted by R. The
round function itself consists of the F -layer and the Π-layer. The F -layer has
a key dependent F function and the xor operation, and its structure depends
on the types of GFS. The Π-layer, which we also call the permutation layer,
is a permutation π over the sub-blocks, i.e., π : ({0, 1}n)d → ({0, 1}n)d is a
permutation over the d sub-blocks. We assume that the final round, the R-th
round, consists of only the F -layer. The decryption is done by using F−1-layer
and Π−1-layer in an obvious way.

The sub-blocks are numbered sequentially as 0, 1, . . . , d− 1 from left to right,
and instead of treating π as a permutation over ({0, 1}n)d, we regard it as a
permutation over {0, 1, . . . , d− 1} and write π(i) for the index of the sub-block
after applying π to the i-th sub-block. For example, in Fig. 1, we have π(0) = 3,
π(1) = 0, π(2) = 1, and π(3) = 2, and they are collectively written as π =
(3, 0, 1, 2). For an integer r ≥ 1, πr(i) is the index of the sub-block after applying
the permutation π on the i-th sub-block for r times. Similarly, π−r(i) is the one

On Permutation Layer of Type 1, SH, and TH GFSs 101

x0
0 x0

1 x0
2 x0

3

F F-layer

Π-layer

d sub-blocks

round function

round function

round function

x1
0 x1

1 x1
2 x1

3

x2
0 x2

1 x2
2 x2

3

xR
0 xR

1 xR
2 xR

3

round function

ciphertext y (N bits)

plaintext x (N bits)

Fig. 1. Overview of GFS (d = 4)

after applying π−1 on the i-th sub-block for r times. We use the convention that
π0(i) = i. Let πs be defined as πs = (d− 1, 0, 1, 2, . . . , d− 2), i.e., πs corresponds
to the sub-block-wise left cyclic shift.

Let xr be the intermediate result of the encryption after r rounds, where x0 is
the plaintext and xR is the ciphertext. Let xr = (xr

0, . . . , x
r
d−1) ∈ ({0, 1}n)d be

the partition of xr into n-bit strings, i.e., xr
i is the i-th sub-block after r round.

Similarly, let yr be the intermediary result of the decryption after r rounds,
where y0 is the ciphertext and yR is the plaintext. We write yr = (yr

0 , . . . , y
r
d−1)

for its n-bit partition.
Next, we review three types of GFS.

Type 1 GFS. Let ET1(π) be Type 1 GFS that uses π in the Π-layer. For ET1(π),
xr

i is defined as

xr
i =

{
F (xr−1

0)⊕ xr−1
1 if π−1(i) = 1,

xr−1
π−1(i) otherwise,

where F : {0, 1}n → {0, 1}n. Figure 2 (left) shows ET1(πs) with d = 4.

Source-Heavy GFS. Let ESH(π) be Source-Heavy (SH) GFS that uses π. For
ESH(π), xr

i is defined as

xr
i =

{
F (xr−1

0 , . . . , xr−1
d−2)⊕ xr−1

d−1 if π−1(i) = d− 1,

xr−1
π−1(i) otherwise,

where F : {0, 1}(d−1)n → {0, 1}n. Figure 2 (middle) shows ESH(πs) with d = 4.

102 S. Yanagihara and T. Iwata

F

F

F

F

F

F

Fig. 2. Type 1 GFS (left), SH GFS (middle), and TH GFS (right), where d = 4 and
π = (3, 0, 1, 2) (= πs)

Target-Heavy GFS. Let ETH(π) be Target-Heavy (TH) GFS that uses π. For
ETH(π), xr

i is defined as

xr
i =

{
xr−1

π−1(i) if π−1(i) = 0,

Fπ−1(i)(x
r−1
0)⊕ xr−1

π−1(i) otherwise,

where F : {0, 1}n → {0, 1}(d−1)n is a function such that F = (F1, . . . , Fd−1) for
Fj : {0, 1}n → {0, 1}n. Figure 2 (right) shows ETH(πs) with d = 4.

Other types of GFS include Type 2 GFS, Type 3 GFS, Alternating GFS, and
Nyberg’s GFS.

2.2 Diffusion of GFS

In this subsection, following [39], we introduce the notion of DRmax(π) to eval-
uate the diffusion property of GFS.

Data Dependent Variables. We define variables Xr ∈ {0, 1}d and Y r ∈ {0, 1}d,
which we call data dependent variables. For the encryption, when we consider
the diffusion of the i-th sub-block of the input data (plaintext), we let X0 =
(X0

0 , X0
1 , . . . , X0

d−1), where X0
i = 1 and X0

i′ = 0 for ∀i′ �= i. Intuitively, if the
j-th sub-block after encrypting r rounds depends on the i-th input sub-block,
then we let Xr

j = 1, and Xr
j = 0 otherwise (the precise definition is given below).

We write Xr = (Xr
0 , Xr

1 , . . . , Xr
d−1).

Similarly, the data dependent variable Y r is defined for the decryption. When
we consider the diffusion of the i-th sub-block of the ciphertext, we let Y 0 =
(Y 0

0 , Y 0
1 , . . . , Y 0

d−1), where Y 0
i = 1 and Y 0

i′ = 0 for ∀i′ �= i. If the j-th sub-
block after decrypting r rounds depends on the i-th ciphertext sub-block, we let
Y r

j = 1, and Y r
j = 0 otherwise. We write Y r = (Y r

0 , Y r
1 , . . . , Y r

d−1).
Let |Xr| be the Hamming weight of Xr, that is, |Xr| is the number of bit “1”

in Xr. We say that the i-th sub-block is active if Xr
i = 1. If there exists r ≥ 0

such that all sub-blocks are active, i.e., |Xr| = d, then we say that the input X0

achieves FD (Full Diffusion). If all X0 such that |X0| = 1 achieve FD, then we
say that the blockcipher achieves FD.

On Permutation Layer of Type 1, SH, and TH GFSs 103

Definition of Xr and Y r of Type 1, SH, and TH GFSs. For ET1(π), given
X0 = (X0

0 , X0
1 , . . . , X0

d−1) ∈ {0, 1}d and Y 0 = (Y 0
0 , Y 0

1 , . . . , Y 0
d−1) ∈ {0, 1}d, Xr

and Y r for r ≥ 1 are successively defined as follows.

Xr
i =

{
Xr−1

0 ∨Xr−1
1 if π−1(i) = 1

Xr−1
π−1(i) otherwise

Y r
i =

{
Y r−1

0 ∨ Y r−1
1 if π(i) = 1

Y r−1
π(i) otherwise

We note that a ∨ b is the or operation of a and b.
Next, for ESH(π), Xr and Y r for r ≥ 1 are defined as follows.

Xr
i =

{
Xr−1

0 ∨Xr−1
1 ∨ · · · ∨Xr−1

d−1 if π−1(i) = d− 1
Xr−1

π−1(i) otherwise

Y r
i =

{
Y r−1

0 ∨ Y r−1
1 ∨ · · · ∨ Y r−1

d−1 if π(i) = d− 1
Y r−1

π(i) otherwise

Finally, for ETH(π), Xr and Y r for r ≥ 1 are similarly defined as follows.

Xr
i =

{
Xr−1

0 if π−1(i) = 0
Xr−1

0 ∨Xr−1
π−1(i) otherwise

Y r
i =

{
Y r−1

0 if π(i) = 0
Y r−1

0 ∨ Y r−1
π(i) otherwise

Definition of DRmax(π). Next, we define DRmax(π), which is used to charac-
terize the diffusion property of GFS using π in the Π-layer. Roughly speaking,
this value is defined as the minimum number of round so that every sub-block
depends on all the input sub-blocks.

More precisely, it is defined as DRmax(π) def= max{DRE
max(π), DRD

max(π)}. To
define DRE

max(π), we first define DRE
i (π), which is the minimum number of round

such that the i-th input sub-block diffuses to all the sub-blocks in the encryption
direction, i.e., it is defined as

DRE
i (π) def= min{r | ∀i′ �= i, X0

i′ = 0, X0
i = 1, |Xr| = d}.

Then DRE
max(π) is defined as the maximum of DRE

i (π) over all 0 ≤ i ≤ d− 1 as
follows.

DRE
max(π) def= max{DRE

i (π) | 0 ≤ i ≤ d− 1}

Next, DRD
max(π) is similarly defined for the decryption direction. First, DRD

i (π)
is defined as

DRD
i (π) def= min{r | ∀i′ �= i, Y 0

i′ = 0, Y 0
i = 1, |Y r| = d},

and DRD
max(π) is defined as

DRD
max(π) def= max{DRD

i (π) | 0 ≤ i ≤ d− 1}.

104 S. Yanagihara and T. Iwata

We note that smaller DRmax(π) implies the better diffusion, and DRmax(π) =∞
implies that there exists an input sub-block X0

i such that, after any rounds, some
output sub-block is independent of the i-th input sub-block. We also remark
that the above definitions are given for the sub-block-wise dependency, and that
“linear dependency” is sufficient. That is, the definition of the full diffusion does
not guarantee that every bit in every sub-block depends on all the input bits.

There are d! permutations over {0, 1, . . . , d− 1} in total, and we say that the
permutation π is optimum in terms of diffusion if DRmax(π) is the minimum
among all the d! permutations. We note that the optimum π may not be unique.

3 Equivalence of GFSs

In this section, we define the equivalence of GFSs.

Case for Type 1 GFS. Let ET1(π) and ET1(π′) be Type 1 GFSs using π and
π′, respectively, in the Π-layer. We say that ET1(π) and ET1(π′) are equivalent
if there exists π∗ = (a0, . . . , ad−1) such that π′ = π∗ ◦ π ◦ (π∗)−1 and

a0 = 0, a1 = 1, and {a2, . . . , ad−1} = {2, 3, . . . , d− 1},

where g ◦ f(x) is g(f(x)). That is, ET1(π) and ET1(π′) are equivalent if π′ is
obtained from π by permuting the last d− 2 elements under π∗. Notice that we
have ET1(π′) = π∗ ◦ ET1(π) ◦ (π∗)−1, i.e., (π∗)−1 can be moved to the input of
ET1(π), and π∗ can be moved to the output. For example, let d = 6 and consider
ET1(π) and ET1(π′), where π = (5, 0, 1, 2, 3, 4) and π′ = (4, 0, 1, 5, 3, 2). Then
we see that these two Type 1 GFSs are equivalent since π′ = π∗ ◦ π ◦ (π∗)−1 for
π∗ = (0, 1, 2, 5, 3, 4).

Case for SH GFS. Let ESH(π) and ESH(π′) be SH GFSs using π and π′. We
say that they are equivalent if there exists π∗ = (a0, . . . , ad−1) such that π′ =
π∗ ◦ π ◦ (π∗)−1 and

{a0, . . . , ad−2} = {0, 1, . . . , d− 2} and ad−1 = d− 1.

In other words, ESH(π) and ESH(π′) are equivalent if π′ is obtained from π by
permuting the first d− 1 elements under π∗.

Case for TH GFS. Let ETH(π) and ETH(π′) be TH GFSs using π and π′.
We say that they are equivalent if there exists π∗ = (a0, . . . , ad−1) such that
π′ = π∗ ◦ π ◦ (π∗)−1 and

a0 = 0 and {a1, . . . , ad−1} = {1, 2, . . . , d− 1},

i.e., if π′ is obtained from π by permuting the last d− 1 elements under π∗.

On Permutation Layer of Type 1, SH, and TH GFSs 105

4 Analysis on DRmax(π)

In the section, we present our theoretical analyses on DRmax(π) for Type 1, SH
and TH GFSs. For Type 1 GFS, in Lemma 1 and Lemma 2, we first identify
a necessary condition of π so that DRmax(π) is finite. We then introduce two
new parameters, r01 and r10, associated to π. Basing on these parameters, in
Lemma 3, we obtain a lower bound on DRmax(π). In Lemma 4, we present a
sufficient condition of π for odd d to achieve the lowest value of DRmax(π). In
Lemma 5, we show a construction of π for given r01 and r10. Our main result
is in Theorem 1, which shows an explicit construction of optimum π in terms of
diffusion for odd d.

For SH and TH GFSs, we first identify in Lemma 6 and in Lemma 8 a neces-
sary condition of π so that DRmax(π) is finite. We then show in Lemma 7 and in
Lemma 9 that, if DRmax(π) is finite, then the resulting scheme is equivalent to
ESH(πs) or ETH(πs). These results show that, in SH and TH GFSs, the diffusion
does not improve even if we change the permutation in the Π-layer.

4.1 Type 1 GFS

First, we present the following lemma.

Lemma 1. If there does not exist r ≥ 0 such that πr(i) = 0 for some 0 ≤ i ≤
d− 1, then DRmax(π) =∞.

A proof is obvious as the 0th sub-block does not depend on the i-th sub-block,
and hence the full diffusion cannot be achieved. For example, consider Type 1
GFS with π = (3, 0, 4, 1, 2). For i = 2, one can easily verify that πr(i) is either 2
or 4, and therefore we have DRmax(π) =∞ for this π. From this lemma, for all
0 ≤ i ≤ d − 1, there must exist r ≥ 0 such that πr(i) = 0 so that DRmax(π) is
finite. In other words, Lemma 1 gives a necessary condition of DRmax(π) being
finite.

The next lemma gives the equivalent condition of the necessary condition of
Lemma 1.

Lemma 2. For all 0 ≤ i ≤ d− 1, there exists r ≥ 0 such that πr(i) = 0, if and
only if for all 0 ≤ i ≤ d− 1, we have {π1(i), π2(i), . . . , πd−1(i)} = {0, 1, . . . , d−
1} \ {i} and πd(i) = i.

Proof. We first prove the “only if” direction. Consider a permutation π that,
for all 0 ≤ i ≤ d − 1, there exists r ≥ 0 that satisfies πr(i) = 0. Let I[j] be the
index of the sub-block after applying the permutation π on the 0th sub-block for
j times, i.e., I[j] = πj(0). Note that I[0] = 0. For l ≥ 1, let Ll = {I[0], I[1], . . . ,
I[l − 1]} be the list of I[j]. In the proof, we first identify a property satisfied
by the permutation, namely, we show that {I[0], . . . , I[d − 1]} = {0, . . . , d − 1}
and I[d] = I[0] hold. We then show the lemma based on the property by a
mathematical induction on i.

106 S. Yanagihara and T. Iwata

If π(I[0]) = 0, this contradicts against the fact that for all i′ �∈ L1, there
exists r ≥ 0 such that πr(i′) = 0. Therefore, we have π(I[0]) �= 0, and hence
π(I[0]) = I[1] �∈ L1. Next, if π(I[1]) = 0, this contradicts against the fact that
for all i′ �∈ L2, there exists r ≥ 0 such that πr(i′) = 0. Therefore, we have
π(I[1]) �= 0. Besides, since π is a permutation, we have π(I[1]) �= I[1]. These two
facts imply π(I[1]) = I[2] �∈ L2. Similarly, let 1 ≤ k ≤ d − 1 and suppose that
π(I[k − 1]) = 0. Then we see that this contradicts against the fact that for all
i′ �∈ Lk, there exists r ≥ 0 such that πr(i′) = 0, and hence we have π(I[k−1]) �= 0.
Considering that π is a permutation, we have π(I[k−1]) �= I[1], I[2], . . . , I[k−1].
Therefore, π(I[k − 1]) = I[k] �∈ Lk.

At this point, we have Ld = {I[0], . . . , I[d − 1]} = {0, . . . , d − 1}. From the
fact that π is a permutation, we necessary have π(I[d− 1]) = I[0], and hence we
obtain that I[d] = I[0].

Next, we consider the mathematical induction part. As we have shown that
{I[0], . . . , I[d − 1]} = {0, . . . , d − 1} holds, instead of proving the lemma for
i = 0, 1, . . . , d− 1, we show the proof for i = I[0], I[1], . . . , I[d− 1].

First, we prove the base case of i = I[0]. From the definition of I[j], we have

{π1(I[0]), π2(I[0]), . . . , πd−1(I[0])} = {π1(0), π2(0), . . . , πd−1(0)}
= {I[1], I[2], . . . , I[d− 1]}
= {I[0], I[1], I[2], . . . , I[d− 1]} \ {I[0]}
= {0, 1, . . . , d− 1} \ {0},

where the last equality follows from the property that we have proved above,
and we have πd(I[0]) = I[d] = I[0], which also follows from the above mentioned
property. This concludes the proof for the base case.

We next consider the induction step. Fix 0 ≤ j ≤ d − 2 and suppose that
the lemma holds for i = I[j]. We show the lemma for i = I[j + 1]. Because
I[j + 1] = π1(I[j]), we have

{π1(I[j + 1]), π2(I[j + 1]), . . . , πd−1(I[j + 1])}
= {π2(I[j]), π3(I[j]), . . . , πd(I[j])}
= ({π1(I[j]), π2(I[j]), π3(I[j]), . . . , πd−1(I[j])} ∪ {πd(I[j])}) \ {π1(I[j])}
=
(
({0, 1, . . . , d− 1} \ {I[j]}) ∪ {I[j]}

)
\ {π1(I[j])}

= {0, 1, . . . , d− 1} \ {I[j + 1]},

where the third equality follows from the induction hypothesis, and we also have
πd(I[j + 1]) = πd+1(I[j]) = π(πd(I[j])) = π(I[j]) = I[j + 1], where we used
the induction hypothesis at the third equality. This completes the proof for the
induction step, and we obtain the “only if” direction of the lemma.

We next consider the “if” direction. First, we obviously have π0(0) = 0 and
hence we have r ≥ 0 such that πr(i) = 0 for i = 0. Next, for 1 ≤ i ≤ d−1, we have
r ≥ 0 such that πr(i) = 0 since {π1(i), π2(i), . . . , πd−1(i)} = {0, 1, . . . , d−1}\{i}
and hence 0 ∈ {0, 1, . . . , d− 1} \ {i}. ��

On Permutation Layer of Type 1, SH, and TH GFSs 107

In the rest of the analysis of Type 1 GFS, we only consider a permutation π that
satisfies the condition in Lemma 2. We next introduce r01 and r10 which are
associated to π and will be used to characterize the diffusion property of Type
1 GFS that uses π.

Definition 1. For any permutation π over {0, 1, . . . , d−1}, let r01 be the small-
est r ≥ 1 such that πr(0) = 1. Similarly, let r10 be the smallest r ≥ 1 such that
πr(1) = 0.

It is easy to see that if π satisfies the condition in Lemma 2, we have r01+r10 = d.
We remark that, for πs = (d−1, 0, 1, . . . , d−2), we have r01 = d−1 and r10 = 1.

In the next lemma, we characterize the lower bound of DRmax(π) by using
r01 and r10.

Lemma 3. For any permutation π over {0, 1, . . . , d− 1} that satisfies the con-
dition in Lemma 2, we have

DRmax(π) ≥ max{r01, r10} × (d− 2) + d.

Proof. We see that if the 0th sub-block is active and the 1st sub-block is not,
then the number of active sub-blocks increases. We also see that this is the only
situation that the number of active sub-blocks increases. In other words, we have
|Xr+1| = |Xr| + 1 if and only if Xr

0 = 1 and Xr
1 = 0. The condition “Xr

0 = 1
and Xr

1 = 0” is referred to as the increasing condition.
We first consider DRE

max(π), and we see that DRE
max(π) ≥ R1 + R2 holds,

where R1 is the sufficient number of rounds so that the 0th sub-block being
active, and R2 is the necessary number of rounds so that the 0th sub-block (i.e.,
Xr = (1, 0, . . . , 0)) achieves FD, since the number of active sub-blocks increases
only after the 0th sub-block being active.

We first consider R1. Consider the input X0 such that X0
π−(d−1)(0)

= 1 and

∀i �= π−(d−1)(0), X0
i = 0. Then we see that R1 is d − 1, which is the maximum

over all inputs. In particular, {X0, . . . , Xd−1} becomes the set of all d-bit vectors
of Hamming weight 1, and hence it is enough to evaluate R2 for this X0.

When r = d − 1, we have Xr
0 = 1, Xr

1 = 0, and Xr
i′ = 0 for i′ �= 0, 1, and

the increasing condition is satisfied. Therefore, when r = d, we have Xr
π(0) = 1,

Xr
π(1) = 1, and Xr

i′ = 0 for i′ �= π(0), π(1). We also obtain |Xr| = 2, i.e., the
number of active sub-blocks increases.

We proceed to encrypt X0, and the number of active sub-blocks is 2 until
r = d + r10 − 1. When r = d + r10 − 1, we have Xr

0 = 1, Xr
πr10(0) = 1, and

Xr
i′ = 0 for i′ �= 0, πr10(0). If the diffusion works ideally, we may assume that

πr10(0) �= 1, and hence the increasing condition is satisfied. The implies that
when r = d + r10, we have Xr

π(0) = 1, Xr
π(1) = 1, Xπr10+1(0) = 1, and Xr

i′ = 0 for
i′ �= π(0), π(1), πr10+1(0), and we obtain that |Xr| = 3.

Similarly, when r = d+kr10−1, where k ≥ 1, we have Xr
0 = 1. If Xr

1 = 0, then
the increasing condition is satisfied. Now we consider the sufficient condition for
Xr

1 = 0 by focusing on the 0th and 1st sub-blocks. If Xr−r′
0 = 1 for some r′ = ld+

mr10 + r01, where l ≥ 0 and m ≥ 0, we have Xr
1 = 1 from the diffusion of Xr−r′

0 .

108 S. Yanagihara and T. Iwata

If r′ �= ld+mr10 + r01, we see that Xr
1 depends on Xr−r′

2 , Xr−r′
3 , . . . , Xr−r′

d−1 , but
it does not depend on Xr−r′

0 nor Xr−r′
1 . Recall that Xd−1

0 = 1 and Xd−1
i = 0

for 2 ≤ i ≤ d − 1. Therefore, the sufficient condition for Xr
1 = 0 is summarized

as follows: There does not exist (l, m) such that

l ≥ 0, m ≥ 0, and kr10 = ld + mr10 + r01. (1)

We proceed to encrypt X0, and we see that if there does not exist (l, m) satisfying
(1) for every 1 ≤ k ≤ d − 2, then we have |Xr| = d when r = d + (d − 2)r10.
Therefore, we have DRE

max(π) ≥ d + (d− 2)r10.
Similarly, the lower bound on DRD

max(π) can be obtained by using r01 instead
of r10 and we have DRD

max(π) ≥ d + (d− 2)r01.
Finally, we obtain the result as DRmax(π) = max

{
DRE

max(π), DRD
max(π)

}
≥

max{r10, r01} × (d− 2) + d. ��

In the next lemma, for odd d, we characterize a permutation π that achieves the
lower bound in Lemma 3 for the smallest value of max{r01, r10} × (d − 1) + d.
In other words, Lemma 4 shows a sufficient condition to obtain an optimum
permutation in terms of diffusion.

Lemma 4. Let d be an odd integer and let π be a permutation over {0, 1, . . . , d−
1} such that (r01, r10) = ((d+1)/2, (d− 1)/2) or ((d− 1)/2, (d+1)/2). Then we
have

DRmax(π) =
d(d + 1)

2
− 1.

Proof. If there does not exist (l, m) satisfying (1) for every 1 ≤ k ≤ d− 2, then
we have DRmax(π) = max{r01, r10} × (d− 2) + d.

We first consider DRE
max(π). For any 1 ≤ k′ ≤ d−2, if there does not exist an

integer 0 ≤ l′ ≤ k′−1 such that k′r10 = l′d+r01, then we see that there does not
exist (l, m) satisfying (1). By substituting r01 = (d ± 1)/2 and r10 = (d ∓ 1)/2,
we have 2l′ = (k′ − 1)∓ (k′ + 1)/d. Since 0 < (k′ + 1)/d < 1, there is no integer
l′ that satisfies the equality. Therefore, there does not exist (l, m) satisfying (1)
for every 1 ≤ k ≤ d− 2, and we have DRE

max(π) = r10 × (d− 2) + d.
Next, we consider DRD

max(π), and it can be proved that DRD
max(π) = r01 ×

(d− 2) + d similarly to the analysis of DRE
max(π).

Finally, we have DRmax(π) = max{r01, r10}× (d−2)+d = d(d+1)/2−1. ��

Next, we show that for any d (even or odd) and for any integers a and b such
that a + b = d, one can obtain a permutation such that r01 = a and r10 = b.

Lemma 5. Let a and b be integers such that a, b > 0 and a + b = d. If a < b,
then we have r01 = a and r10 = b for

π = (2, 3, . . . , 2a− 1, 1, 2a, 2a + 1, . . . , d− 1, 0).

If a ≥ b, then we have r01 = a and r10 = b for

π = (2, 3, . . . , 2b, 0, 2b + 1, 2b + 2, . . . , d− 1, 1).

Furthermore, both permutations satisfy the condition in Lemma 2.

On Permutation Layer of Type 1, SH, and TH GFSs 109

Proof. We prove this lemma for the case a < b, as another case can be proved
similarly. We write i

π→ j if π(i) = j. Then the 0th sub-block is permuted as

0 π→ 2 π→ 4 π→ · · · π→ 2a− 2 π→
1 π→ 3 π→ 5 π→ · · · π→ 2a− 1 π→
2a

π→ 2a + 1 π→ · · · π→ d− 1 π→ 0.

We see that πa(0) = 1 and πb(1) = 0. Furthermore, for all 0 ≤ i ≤ d− 1, there
exists r ≥ 0 such that πr(i) = 0. ��
Finally, we obtain the following theorem from Lemma 4 and Lemma 5, which
shows the construction of the optimum permutation for any odd d.

Theorem 1. Let d be an odd integer. Then ET1(π) with

π = (2, 3, . . . , d− 2, 1, d− 1, 0) or π = (2, 3, . . . , d− 2, d− 1, 0, 1)

satisfies DRmax(π) = d(d + 1)/2− 1.

4.2 Source-Heavy GFS

Let ESH(π) be SH GFS that uses π. In the next lemma, we present a necessary
condition of π so that DRmax(π) being finite.

Lemma 6. In ESH(π), if DRmax(π) �= ∞, then for all 0 ≤ i ≤ d − 1, we have
{π1(i), π2(i), . . . , πd−1(i)} = {0, 1, . . . , d− 1} \ {i} and πd(i) = i.

A proof is similar to that of Lemma 2. Specifically, the proof is obtained by
changing the definition of I[j] = πj(0) in Lemma 2 to I[j] = πj(d− 1).

In the following lemma, we show that if π satisfies the condition of Lemma 6,
then ESH(π) is equivalent to ESH(πs).

Lemma 7. If we have {π1(d−1), π2(d−1), . . . , πd−1(d−1)} = {0, 1, . . . , d−2}
and πd(d− 1) = d− 1, then ESH(π) is equivalent to ESH(πs).

Proof. In order to show that ESH(π) is equivalent to ESH(πs), it is enough to
show that there exists π∗ such that π = π∗ ◦ πs ◦ (π∗)−1. Let π∗ be

π∗ = (πd−1(d− 1), πd−2(d− 1), . . . , π(d− 1), d− 1).

In what follows, we show that this π∗ satisfies π(k) = π∗ ◦ πs ◦ (π∗)−1(k) for all
0 ≤ k ≤ d−1. First, we see that π∗(d−1−k) = πk(d−1), which is equivalent to
(π∗)−1(πk(d−1)) = d−1−k. From the assumption on π, any 0 ≤ k ≤ d−1 can
be written as k = πx(d−1) for some 0 ≤ x ≤ d−1. Basing on these observations,
we have

π∗ ◦ πs ◦ (π∗)−1(k) = π∗ ◦ πs ◦ (π∗)−1(πx(d− 1)) = π∗ ◦ πs(d− 1− x).

If x �= d − 1, then π∗ ◦ πs(d − 1 − x) = π∗(d − 1 − (x + 1)) = πx+1(d − 1) =
π(πx(d− 1)) = π(k). If x = d− 1, then π∗ ◦ πs(d− 1− x) = π∗(d− 1) = d− 1 =
πd(d− 1) = π(πd−1(d− 1)) = π(k). Therefore, we have π = π∗ ◦ πs ◦ (π∗)−1. ��
These two results imply that if DRmax(π) �= ∞, then ESH(π) is equivalent to
ESH(πs).

110 S. Yanagihara and T. Iwata

4.3 Target-Heavy GFS

We present the following result, which can be proved similarly to Lemma 2 and
Lemma 6 by using I[j] = πj(0).

Lemma 8. In ETH(π), if DRmax(π) �= ∞, then for all 0 ≤ i ≤ d− 1, we have
{π1(i), π2(i), . . . , πd−1(i)} = {0, 1, . . . , d− 1} \ {i} and πd(i) = i.

Finally, we obtain the following result. A proof is similar to Lemma 7.

Lemma 9. If we have {π1(0), π2(0), . . . , πd−1(0)} = {1, . . . , d− 1} and πd(0) =
0, then ETH(π) is equivalent to ETH(πs).

Therefore, if DRmax(π) �=∞, then ETH(π) is equivalent to ETH(πs).

5 Experimental Results

In this section, we present our experimental results on computing DRmax(π)
for ET1(π), ESH(π), and ETH(π). For ET1(π), we computed DRmax(π) for 3 ≤
d ≤ 16 and for all permutations π over {0, 1, . . . , d − 1} up to the equivalent
classes. For ESH(π) and ETH(π), we computed DRmax(π) for 3 ≤ d ≤ 8. We also
evaluated the security against the saturation attack [12], impossible differential
attack [4], differential attack [5], and linear attack [24].

DRmax(π). The results on DRmax(π) are presented in the “FD” column in Ta-
ble 1–4. In the tables, we list all π such that DRmax(π) ≤ DRmax(πs), i.e., those
permutations that are better than πs in terms of diffusion, but only the lexico-
graphically first permutation in the equivalent class is presented. We note that
a permutation with ∗ indicates that it is equivalent to πs. To obtain the results,
we first divide all permutations into equivalent classes, and list the lexicograph-
ically first permutations. We then derived the values by the actual computation
of DRmax(π). For ET1(π), we present in Fig. 3 (in Appendix A) a graph showing
the values of DRmax(πs) and DRmax(π) for optimum π in terms of diffusion.

Saturation Attack. The results on the saturation attack are presented in the
“SC” column in Table 1–4. The figures indicate the number of round of the
longest saturation path. We briefly recall the concept based on [38]. Let X =
{Xi | Xi ∈ {0, 1}n, 0 ≤ i < 2n} be a set of 2n strings. The set X is categorized
into one of the following four states:

– Constant (C): for all 0 ≤ i < j < 2n, Xi = Xj

– All (A): for all 0 ≤ i < j < 2n, Xi �= Xj

– Balance (B):
⊕

0≤i<2n Xi = 0
– Unknown (U): Otherwise

Based on the above notation, let α ∈ {C, A}d be the set of 2n plaintexts such
that it has one A and the rest is C. Let β be the result of encrypting α for r
rounds. If β �= Ud, it constitutes a saturation path α

r→ β of r rounds.
We obtained the results based on Table 5 and by making the following

assumptions.

On Permutation Layer of Type 1, SH, and TH GFSs 111

Table 1. Results on ET1(π) for 3 ≤ d ≤ 12

d π FD SC IDC DAF LAF

3
(1,2,0) 5 9 11 7 7
(2,0,1)∗ 5 9 11 7 7

4
(1,2,3,0) 10 16 19 12 12
(2,0,3,1)∗ 10 16 19 12 12

(1,2,3,4,0) 17 25 29 17 17

5
(2,0,3,4,1)∗ 17 25 29 17 17
(2,3,1,4,0) 14 21 29 16 16
(2,3,4,0,1) 14 21 29 16 16

6
(1,2,3,4,5,0) 26 36 41 22 22
(2,0,3,4,5,1)∗ 26 36 41 22 22

(1,2,3,4,5,6,0) 37 49 55 28 28
(2,0,3,4,5,6,1)∗ 37 49 55 28 28

7
(2,3,1,4,5,6,0) 32 43 55 28 27
(2,3,4,0,5,6,1) 32 43 55 28 27
(2,3,4,5,1,6,0) 27 37 55 27 27
(2,3,4,5,6,0,1) 27 37 55 27 27

(1,2,3,4,5,6,7,0) 50 64 71 36 36

8
(2,0,3,4,5,6,7,1)∗ 50 64 71 36 36
(2,3,4,5,1,6,7,0) 38 50 71 34 34
(2,3,4,5,6,0,7,1) 38 50 71 34 34

(1,2,3,4,5,6,7,8,0) 65 81 89 42 42
(2,0,3,4,5,6,7,8,1)∗ 65 81 89 42 42

9
(2,3,1,4,5,6,7,8,0) 58 73 89 40 40
(2,3,4,0,5,6,7,8,1) 58 73 89 40 40
(2,3,4,5,6,7,1,8,0) 44 57 89 40 40
(2,3,4,5,6,7,8,0,1) 44 57 89 40 40

(1,2,3,4,5,6,7,8,9,0) 82 100 109 50 50

10
(2,0,3,4,5,6,7,8,9,1)∗ 82 100 109 50 50
(2,3,4,5,1,6,7,8,9,0) 66 82 109 47 47
(2,3,4,5,6,0,7,8,9,1) 66 82 109 47 47

(1,2,3,4,5,6,7,8,9,10,0) 101 121 131 61 61
(2,0,3,4,5,6,7,8,9,10,1)∗ 101 121 131 61 61
(2,3,1,4,5,6,7,8,9,10,0) 92 111 131 57 57
(2,3,4,0,5,6,7,8,9,10,1) 92 111 131 57 57

11
(2,3,4,5,1,6,7,8,9,10,0) 83 101 131 54 54
(2,3,4,5,6,0,7,8,9,10,1) 83 101 131 54 54
(2,3,4,5,6,7,1,8,9,10,0) 74 91 131 54 54
(2,3,4,5,6,7,8,0,9,10,1) 74 91 131 54 54
(2,3,4,5,6,7,8,9,1,10,0) 65 81 131 54 54
(2,3,4,5,6,7,8,9,10,0,1) 65 81 131 54 54

(1,2,3,4,5,6,7,8,9,10,11,0) 122 144 155 68 68

12
(2,0,3,4,5,6,7,8,9,10,11,1)∗ 122 144 155 68 68
(2,3,4,5,6,7,8,9,1,10,11,0) 82 100 155 60 60
(2,3,4,5,6,7,8,9,10,0,11,1) 82 100 155 60 60

112 S. Yanagihara and T. Iwata

Table 2. Results on ET1(π) for 13 ≤ d ≤ 16

d π FD SC IDC DAF LAF

(1,2,3,4,5,6,7,8,9,10,11,12,0) 145 169 181 77 77
(2,0,3,4,5,6,7,8,9,10,11,12,1)∗ 145 169 181 77 77
(2,3,1,4,5,6,7,8,9,10,11,12,0) 134 157 181 76 76
(2,3,4,0,5,6,7,8,9,10,11,12,1) 134 157 181 76 76
(2,3,4,5,1,6,7,8,9,10,11,12,0) 123 145 181 73 73

13
(2,3,4,5,6,0,7,8,9,10,11,12,1) 123 145 181 73 73
(2,3,4,5,6,7,1,8,9,10,11,12,0) 112 133 181 70 70
(2,3,4,5,6,7,8,0,9,10,11,12,1) 112 133 181 70 70
(2,3,4,5,6,7,8,9,1,10,11,12,0) 101 121 181 70 70
(2,3,4,5,6,7,8,9,10,0,11,12,1) 101 121 181 70 70
(2,3,4,5,6,7,8,9,10,11,1,12,0) 90 109 181 71 71
(2,3,4,5,6,7,8,9,10,11,12,0,1) 90 109 181 71 71

(1,2,3,4,5,6,7,8,9,10,11,12,13,0) 170 196 209 84 84
(2,0,3,4,5,6,7,8,9,10,11,12,13,1)∗ 170 196 209 84 84

14
(2,3,4,5,1,6,7,8,9,10,11,12,13,0) 146 170 209 83 83
(2,3,4,5,6,0,7,8,9,10,11,12,13,1) 146 170 209 83 83
(2,3,4,5,6,7,8,9,1,10,11,12,13,0) 122 144 209 79 79
(2,3,4,5,6,7,8,9,10,0,11,12,13,1) 122 144 209 79 79

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,0) 197 225 239 99 99
(2,0,3,4,5,6,7,8,9,10,11,12,13,14,1)∗ 197 225 239 99 99
(2,3,1,4,5,6,7,8,9,10,11,12,13,14,0) 184 211 239 93 93

15
(2,3,4,0,5,6,7,8,9,10,11,12,13,14,1) 184 211 239 93 93
(2,3,4,5,6,7,1,8,9,10,11,12,13,14,0) 158 183 239 90 90
(2,3,4,5,6,7,8,0,9,10,11,12,13,14,1) 158 183 239 90 90
(2,3,4,5,6,7,8,9,10,11,12,13,1,14,0) 119 141 239 88 88
(2,3,4,5,6,7,8,9,10,11,12,13,14,0,1) 119 141 239 88 88

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0) 226 225 271 108 108
(2,0,3,4,5,6,7,8,9,10,11,12,13,14,15,1)∗ 226 225 271 108 108
(2,3,4,5,1,6,7,8,9,10,11,12,13,14,15,0) 198 211 271 102 102

16
(2,3,4,5,6,0,7,8,9,10,11,12,13,14,15,1) 198 211 271 102 102
(2,3,4,5,6,7,8,9,1,10,11,12,13,14,15,0) 170 183 271 101 101
(2,3,4,5,6,7,8,9,10,0,11,12,13,14,15,1) 170 183 271 101 101
(2,3,4,5,6,7,8,9,10,11,12,13,1,14,15,0) 142 141 271 98 98
(2,3,4,5,6,7,8,9,10,11,12,13,14,0,15,1) 142 141 271 98 98

Table 3. Results on ESH(π)

d π FD SC IDC DAF LAF

3 (1,2,0)∗ 3 5 5 6 8

4 (1,2,3,0)∗ 4 6 6 7 14

5 (1,2,3,4,0)∗ 5 7 7 8 18

6 (1,2,3,4,5,0)∗ 6 8 8 9 27

7 (1,2,3,4,5,6,0)∗ 7 9 9 10 32

8 (1,2,3,4,5,6,7,0)∗ 8 10 10 11 44

Table 4. Results on ETH(π)

d π FD SC IDC DAF LAF

3 (1,2,0)∗ 3 5 5 8 6

4 (1,2,3,0)∗ 4 6 7 14 7

5 (1,2,3,4,0)∗ 5 7 9 18 8

6 (1,2,3,4,5,0)∗ 6 8 11 27 9

7 (1,2,3,4,5,6,0)∗ 7 9 13 32 10

8 (1,2,3,4,5,6,7,0)∗ 8 10 15 44 11

On Permutation Layer of Type 1, SH, and TH GFSs 113

Table 5. Output of xor and F function for the saturation path. In Type 1 GFS, Fj(x)
corresponds to F (x).

input x x ⊕ C x ⊕ A x ⊕ B x ⊕ U Fj(x)

C C A B U C

A A B B U A

B B B B U U

U U U U U U

Table 6. Output of xor and F function for the impossible differential characteristic.
In Type 1 GFS, Fj(x) corresponds to F (x).

input x x ⊕ Z x ⊕ G x ⊕ D x ⊕ D ⊕ G x ⊕ R Fj(x)

Z Z G D D ⊕ G R Z

G G Z D ⊕ G D R D

D D D ⊕ G R R R D

D ⊕ G D ⊕ G D R R R R

R R R R R R R

– For ET1(π), the function F : {0, 1}n → {0, 1}n is a permutation over {0, 1}n.
– For ESH(π), the function F : {0, 1}(d−1)n → {0, 1}n can be written as

F (xr
0, x

r
1, . . . , x

r
d−2) = F0(xr

0) ⊕ F1(xr
1) ⊕ · · · ⊕ Fd−2(xr

d−2), where Fj is a
permutation over {0, 1}n.

– For ETH(π), the function F : {0, 1}n → {0, 1}(d−1)n can be written as
F (xr

0) = (F1(xr
0), F2(xr

0), . . . , Fd−1(xr
0)), where Fj is a permutation over

{0, 1}n.

We note that our results do not include the case that A or B is defined for
{0, 1}kn for k > 1.

Impossible Differential Attack. The results on the impossible differential attack
are presented in the “IDC” column in Table 1–4. The figures indicate the num-
ber of round of the longest impossible differential characteristic, which is the
differential characteristic of probability zero.

In order to obtain these results, we make the same assumptions as in the
analysis of the saturation attack. In searching the impossible differential char-
acteristic, every sub-block is categorized into one of the following five states: Z
(zero difference), G (non-zero fixed difference), D (non-zero unfixed difference),
D⊕G (xor of D and G), and R (unfixed difference). Results are obtained based
on Table 6 and by following [21].

Differential Attack. The results on the differential attack are presented in the
“DAF” column in Table 1–4. The figures indicate the number of round such
that the minimum number of differentially active F functions is equal to or
larger than the threshold. We adopted d + 1 as the threshold, and if ND is the

114 S. Yanagihara and T. Iwata

number of differentially active F functions, then we list the number of round
such that ND ≥ d + 1 holds1. The results are obtained by following [36].

Linear Attack. The results on the linear attack are presented in the “LAF”
column in Table 1–4. The figures indicate the number of round such that the
minimum number of linearly active F functions is equal to or larger than the
threshold, which was chosen to be d + 1 as is the case for the differential attack.
Therefore, if NL is the number of linearly active F functions, then the number
of round such that NL ≥ d + 1 is listed2. We obtained the results by using the
duality between differential and linear attacks [25,10], and by following [36].

Observations. We summarize the observations made from the tables.

– When 3 ≤ d ≤ 16 and d �= 3, 4, 6, the diffusion of Type 1 GFS can be
improved if one changes the permutation from πs. Furthermore, the security
against saturation, differential, and linear attacks improves in many cases,
and does not get worse.

– In Type 1 GFS, when d = 3, 4, 6, πs is the optimum permutation in terms of
diffusion, and hence changing the permutation does not improve the diffusion
property.

– In Type 1 GFS, changing the permutation does not change the security
against the impossible differential attack, and hence this attack is required
to be handled by some other means.

– In SH GFS and TH GFS, πs is the optimum permutation in terms of diffusion
as shown in the previous section. Furthermore, changing the permutation
does not change the security against other attacks.

6 Conclusions

In this paper, we studied the effect of changing the permutation layer used
in Type 1, SH, and TH GFSs. For Type 1 GFS, we introduced r01 and r10

that are useful in characterizing the diffusion property. We also presented the
explicit construction of the optimum permutation in terms of diffusion for odd
d. For SH and TH GFSs, we showed that changing the permutation layer does
not change the diffusion property as long as they achieve the full diffusion.
Then, we presented our experimental results. For Type 1 GFS, we searched for
3 ≤ d ≤ 16, and for SH and TH GFSs, we searched for 3 ≤ d ≤ 8. We listed all
permutations π such that DRmax(π) ≤ DRmax(πs) (but omitting the equivalent
permutations). We also evaluated the security of the resulting schemes against
saturation, impossible differential, differential, and linear attacks.

1 The threshold is chosen only for the purpose of a comparison. In particular, DAF
does not suggest a sufficient number of rounds so that the resulting cipher is secure
against the differential attack.

2 As is the case for the differential attack, LAF does not suggest a sufficient number
of rounds so that the resulting cipher is secure against the linear attack.

On Permutation Layer of Type 1, SH, and TH GFSs 115

Acknowledgments. The authors would like to thank the anonymous reviewers
for useful and insightful comments. A part of this work was supported by MEXT
KAKENHI, Grant-in-Aid for Young Scientists (A), 22680001.

References

1. Adams, C., Gilchrist, J.: The CAST-256 Encryption Algorithm. Network Working
Group RFC 2612 (June 1999), http://www.ietf.org/rfc/rfc2612.txt

2. Anderson, R.J., Biham, E.: Two Practical and Provably Secure Block Ciphers:
BEAR and LION. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 113–
120. Springer, Heidelberg (1996)

3. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: The 128-Bit Block Cipher Camellia. IEICE Trans. Fundamentals E85-A(1),
11–24 (2002)

4. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

5. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

6. Bogdanov, A.: On Unbalanced Feistel Networks with Contracting MDS Diffusion.
Des. Codes Cryptography 59(1-3), 35–58 (2011)

7. Bogdanov, A., Shibutani, K.: Analysis of 3-Line Generalized Feistel Networks with
Double SD-functions. Inf. Process. Lett. 111(13), 656–660 (2011)

8. Bogdanov, A., Shibutani, K.: Double SP-Functions: Enhanced Generalized Feistel
Networks. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp.
106–119. Springer, Heidelberg (2011)

9. Bogdanov, A., Shibutani, K.: Generalized Feistel Networks Revisited. In:
WCC 2011 (2011)

10. Chabaud, F., Vaudenay, S.: Links Between Differential and Linear Cryptanalysis.
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer,
Heidelberg (1995)

11. Choy, J., Yap, H.: Impossible Boomerang Attack for Block Cipher Structures. In:
Takagi, T., Mambo, M. (eds.) IWSEC 2009. LNCS, vol. 5824, pp. 22–37. Springer,
Heidelberg (2009)

12. Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

13. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

14. FIPS: Data Encryption Standard. National Institute of Standards and Technology
(1999)

15. FIPS: Secure Hash Standard. National Institute of Standards and Technology
(2002)

16. Hirose, S., Kuwakado, H., Yoshida, H.: SHA-3 Proposal: Lesamnta (2008),
http://www.hitachi.com/rd/yrl/crypto/lesamnta/index.html

17. Hoang, V.T., Rogaway, P.: On Generalized Feistel Networks. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010)

http://www.ietf.org/rfc/rfc2612.txt
http://www.hitachi.com/rd/yrl/crypto/lesamnta/index.html

116 S. Yanagihara and T. Iwata

18. Hong, D., Sung, J., Hong, S.H., Lim, J.-I., Lee, S.-J., Koo, B.-S., Lee, C.-H., Chang,
D., Lee, J., Jeong, K., Kim, H., Kim, J.-S., Chee, S.: HIGHT: A New Block Cipher
Suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

19. IBM Corporation: MARS–A Candidate Cipher for AES (September 1999),
http://domino.research.ibm.com/comm/research projects.nsf/pages/

security.mars.html

20. Jutla, C.S.: Generalized Birthday Attacks on Unbalanced Feistel Networks. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 186–199. Springer,
Heidelberg (1998)

21. Kim, J., Hong, S., Sung, J., Lee, C., Lee, S.: Impossible Differential Cryptanalysis
for Block Cipher Structures. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT
2003. LNCS, vol. 2904, pp. 82–96. Springer, Heidelberg (2003)

22. Kim, J., Lee, C., Sung, J., Hong, S., Lee, S., Lim, J.: Seven New Block Cipher Struc-
tures with Provable Security against Differential Cryptanalysis. IEICE Trans. Fun-
damentals E91-A(10), 3047–3058 (2008)

23. Lucks, S.: Faster Luby-Rackoff Ciphers. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 189–203. Springer, Heidelberg (1996)

24. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

25. Matsui, M.: On Correlation between the Order of S-Boxes and the Strength of
DES. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375.
Springer, Heidelberg (1995)

26. Minematsu, K., Suzaki, T., Shigeri, M.: On Maximum Differential Probability of
Generalized Feistel. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS,
vol. 6812, pp. 89–105. Springer, Heidelberg (2011)

27. Moriai, S., Vaudenay, S.: On the Pseudorandomness of Top-Level Schemes of Block
Ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 289–302.
Springer, Heidelberg (2000)

28. Naor, M., Reingold, O.: On the Construction of Pseudorandom Permutations:
Luby-Rackoff Revisited. J. Cryptology 12(1), 29–66 (1999)

29. Nyberg, K.: Generalized Feistel Networks. In: Kim, K.-c., Matsumoto, T. (eds.)
ASIACRYPT 1996. LNCS, vol. 1163, pp. 91–104. Springer, Heidelberg (1996)

30. Patarin, J., Nachef, V., Berbain, C.: Generic Attacks on Unbalanced Feistel
Schemes with Contracting Functions. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 396–411. Springer, Heidelberg (2006)

31. Patarin, J., Nachef, V., Berbain, C.: Generic Attacks on Unbalanced Feistel
Schemes with Expanding Functions. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 325–341. Springer, Heidelberg (2007)

32. Rivest, R.L.: A Description of the RC2(r) Encryption Algorithm. Network Working
Group RFC 2268 (March 1998), http://www.ietf.org/rfc/rfc2268.txt

33. Rivest, R.L., Robshaw, M.J.B., Sidney, R., Yin, Y.L.: The RC6 block cipher. Spec-
ification 1.1 (August 1998), http://people.csail.mit.edu/rivest/Rc6.pdf

34. Schneier, B., Kelsey, J.: Unbalanced Feistel Networks and Block Cipher Design. In:
Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 121–144. Springer, Heidelberg
(1996)

35. Shibutani, K.: On the Diffusion of Generalized Feistel Structures Regarding Differ-
ential and Linear Cryptanalysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.)
SAC 2010. LNCS, vol. 6544, pp. 211–228. Springer, Heidelberg (2011)

36. Shirai, T., Araki, K.: On Generalized Feistel Structures Using a Diffusion Switching
Mechanism. IEICE Trans. Fundamentals E91-A(8), 2120–2129 (2008)

http://domino.research.ibm.com/comm/research_projects.nsf/pages/security.mars.html
http://domino.research.ibm.com/comm/research_projects.nsf/pages/security.mars.html
http://www.ietf.org/rfc/rfc2268.txt
http://people.csail.mit.edu/rivest/Rc6.pdf

On Permutation Layer of Type 1, SH, and TH GFSs 117

37. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-Bit Block-
cipher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS,
vol. 4593, pp. 181–195. Springer, Heidelberg (2007)

38. Sony Corporation: The 128-bit Blockcipher CLEFIA, Security and Performance
Evaluations (2007) revision 1.0,
http://www.sony.net/Products/cryptography/clefia/

39. Suzaki, T., Minematsu, K.: Improving the Generalized Feistel. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010)

40. Wu, W., Zhang, W., Lin, D.: Security on Generalized Feistel Scheme with SP
Round Function. I. J. Network Security 3(3), 215–224 (2006)

41. Zheng, Y.: The SPEED Cipher. In: Hirschfeld, R. (ed.) FC 1997. LNCS, vol. 1318,
pp. 71–90. Springer, Heidelberg (1997)

42. Zheng, Y., Matsumoto, T., Imai, H.: On the Construction of Block Ciphers Prov-
ably Secure and Not Relying on Any Unproved Hypotheses. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg (1990)

A Graph of DRmax(π) of Type 1 GFS

d

3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

50

100

150

200

250

D
R

m
a
x
(π
)

DRmax(π) for optimum π

DRmax(π) for π = πs

Fig. 3. DRmax(π) of Type 1 GFS

http://www.sony.net/Products/cryptography/clefia/

Security Analysis of an Improved MFE Public

Key Cryptosystem

Xuyun Nie1,3,4, Zhaohu Xu1, Li Lu1, and Yongjian Liao1,2,3

1 School of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu 611731, China

2 Shanghai Key Laboratory of Integrate Administration Technologies
for Information Security

3 Network and Data Security Key Laboratory of Sichuan Province
4 State Key Laboratory of Information Security,

Graduate University of Chinese Academy of Sciences, Beijing 100049, China
{xynie,zhhxu,luli2009,liaoyj}@uestc.edu.cn

Abstract. MFE is a multivariate public key encryption scheme. In 2007,
MFE was broken by Ding et al using high order linearization equation
attack. In 2009, Huang et al gave an improvement of MFE. They claimed
that the improved MFE is secure against high order linearization equa-
tion attack. However, through theoretical analysis, we find that there
are many first order linearization equations(FOLEs) satisfied by this
improved version. Using linearization equation attack can break this
version. We also find the improved version satisfied Second Order
Linearization Equantions (SOLEs).

Keywords: Algebraic attack, MFE, Linearization equation, Multivari-
ate public key cryptography.

1 Introduction

Multivariate public key cryptosystem (MPKC) is one of the promising alter-
natives to public keys based number theory problems such as RSA in resisting
quantum algorithms attack. The security of MPKC relies on the difficulty of solv-
ing systems of nonlinear polynomial equations with many variables (MQ), and
the latter is a NP-hard problem in general. The public key of MPKC is mostly
a set of quadratic polynomials. These polynomials are derived from composition
of maps. Compared with RSA public key cryptosystems, the computation in
MPKC can be very fast because it is operated on a small finite field.

The Medium Field Equation (MFE) multivariate public key cryptosystem
[WYH06] is proposed by Lih-Chung Wang et al in CT-RSA 2006 conference.
MFE can be viewed as a triangular MPKC due to the structure of its central
map. Compared with TTM[Moh99], MFE hidden its triangular structure by
rational maps instead of high order polynomials. In 2007, Ding et al found that
MFE satisfied some Second Order Linearization Equations (SOLEs)[DHN07].
For given public key and a valid ciphertext, corresponding plaintext can be
recovered within 223

F216-operations after 252
F216-operations pre-computations.

D. Lin, G. Tsudik, and X. Wang (Eds.): CANS 2011, LNCS 7092, pp. 118–125, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Security Analysis of an Improved MFE Public Key Cryptosystem 119

In 2009, Jiasen Huang et al. gave an improvement [HWO09] of MFE by re-
designing the central map of MFE. They modified the matrix equations used in
MFE and claimed that the improved scheme can resist second order linearization
equation (SOLE) attack. However, our analysis shows that the scheme still sat-
isfy second order linearization equation. Furthermore, we found there are many
First order linearization equations satisfied by the improvement. Using FOLEs
attack, For given public key and a valid ciphertext, we can recover its corre-
sponding plaintext.

The paper is organized as follows. We introduce MFE and its improvement in
Section 2 and present the FOLE attack and SOLE attack in Section 3. Finally,
in Section 4, we conclude the paper.

2 MFE and Its Improvement

We use the same notation as in [WYH06]. Let K be a finite field of ”medium”
size and L be its degree r extension field and be a large field. Let q = |K|,
l = |L|. In MFE and its improvement, we always identify L with Kr by a K-linear
isomorphism π : L→ K

r. Namely we take a basis of L over K, {θ1, · · · , θr}, and
defineπ by π(a1θ1+· · ·+arθr) = (a1, · · · , ar) for any a1, · · · , ar ∈ K. It is natural
to extend π to two K-linear isomorphisms π1 : L12 → K12rand π2 : L15 → K15r.

2.1 MFE Cryptosystem

In MFE, its encryption map F : K12r → K15r is a composition of three maps
φ1, φ2, φ3. Let

(x1, · · · , x12r) = φ1(m1, · · · ,m12r),

(y1, · · · , y15r) = φ2(x1, · · · , x12r),

(z1, · · · , z15r) = φ3(y1, · · · , y15r).

where φ1 and φ3 are invertible affine maps, φ2 is its central map, which is equal
toπ1 ◦ φ̄2 ◦ π−1

2 .
φ1 and φ3 are taken as the private key, while the expression of the map

(z1, · · · , z15r) = F (m1, ...,m12r) is the public key. The map φ̄2 : L12 → L15 is
defined as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1 = X1 +X5X8 +X6X7 +Q1;
Y2 = X2 +X9X12 +X10X11 +Q2;
Y3 = X3 +X1X4 +X2X3 +Q3;
Y4 = X1X5 +X2X7; Y5 = X1X6 +X2X8;
Y6 = X3X5 +X4X7; Y7 = X3X6 +X4X8;
Y8 = X1X9 +X2X11; Y9 = X1X10 +X2X12;
Y10 = X3X9 +X4X11; Y11 = X3X10 +X4X12;
Y12 = X5X9 +X7X11; Y13 = X5X10 +X7X12;
Y14 = X6X9 +X8X11; Y15 = X6X10 +X8X12.

(1)

120 X. Nie et al.

Here Q1, Q2, and Q3 form a triple (Q1, Q2, Q3) which is a triangular map from
K3r to itself, more detail please see [WYH06]. The encryption of MFE is the
evaluation of public-key polynomials, namely given a plaintext (m1, · · · ,m12r),
its ciphertext is

(z1, · · · , z15r) = (F1(m1, · · · ,m12r), · · · , F15r(m1, · · · ,m12r)).

Given a valid ciphertext (z1, · · · , z15r), the decryption of the scheme is to calcu-
lating in turn φ−1

1 ◦ π1 ◦ φ̄2
−1 ◦ π−1

2 ◦ φ−1
3 (m1, · · · ,m8r). The key point is how

to invert φ̄2. Write X1, · · · , X8, Y4, · · · , Y15 as four 2× 2 matrices.
Write X1, · · · , X12, Y4, · · · , Y15 as six 2× 2 matrices:

M1 =
(
X1 X2

X3 X4

)
,M2 =

(
X5 X6

X7 X8

)
,M3 =

(
X9 X10

X11 X12

)
,

Z3 =M1M2 =
(
Y4 Y5

Y6 Y7

)
, Z2 =M1M3 =

(
Y8 Y9

Y10 Y11

)
,

Z1 =MT
2 M3 =

(
Y12 Y13

Y14 Y15

)
.

(2)

Then ⎧⎨⎩
det(M1) · det(M2) = det(Z3),
det(M1) · det(M3) = det(Z2),
det(M2) · det(M3) = det(Z1).

When M1, M2, and M3 are all invertible, we can get values of det(M1),
det(M2), and det(M3) from det(Z1), det(Z2), and det(Z3), for instance, det(M1)
=
(
det(Z2) · det(Z3)/det(Z1)

)1/2
.

With values of det(M1), det(M2), and det(M3), we can use the triangular
form of the central map to get X1, X2, . . . , X12 in turn. then we can recover the
ciphertext. More detail of decryption are presented in [WYH06].

2.2 Improvement of MFE

The origin MFE cryptosystems were broken by Ding et al. through SOLEs at-

tack. Denote by M∗ the associated matrix of a square matrix; for M =
(
a b
c d

)
,

its associated matrix is M∗ =
(
d −b
−c a

)
. From

Z3 =M1M2, Z2 =M1M3. (3)

we can derive

M3M
∗
3M

∗
1M1M2 =M3(M1M3)∗(M1M2) =M3Z

∗
2Z3,

M3M
∗
3M

∗
1M1M2 = (M3M

∗
3)(M1M

∗
1)M2 = det(M3)det(M1)M2 = det(Z2)M2,

and hence,
M3Z

∗
2Z3 = det(Z2)M2, (4)

Security Analysis of an Improved MFE Public Key Cryptosystem 121

Expanding it, many second order linearization equation appealed. After finding
all SOLEs, the attack can find the corresponding plaintext for a given valid
cipheretext.

To avoid the SOLE, Jiasen Huang et al. proposed a modification of MFE.
They modified only the matrix equations as follows after some analysis.
M1, M2 and M3 are defined as same as the origin MFE, while Z1, Z2 and Z3

are defined as follows:

Z3 = M1M
∗
2 =

(
Y4 Y5

Y6 Y7

)
, Z2 = M∗

1 M3 =

(
Y8 Y9

Y10 Y11

)
, Z1 = MT

2 M∗
3 =

(
Y12 Y13

Y14 Y15

)
.

(5)

where M∗
i (1 ≤ i ≤ 3) are the associated matrices of M∗

i .
These matrices are also satisfied⎧⎨⎩det(M1) · det(M2) = det(Z3),

det(M1) · det(M3) = det(Z2),
det(M2) · det(M3) = det(Z1).

so the decryption process is very similar to the origin MFE. See [HWO09] for
more detail.

3 Linearization Equation Attack

The authors of [HWO09] claimed their modified MFE can resist SOLEs attack.
Through analysis, we found that there are many FOLEs and SOLEs satisfied by
the above improved MFE. Using ciphertext-only attack, we can get the corre-
sponding plaintext.

3.1 First Order Linearnation Equation

The FOLE is of the form∑
i,j

aijmizj +
∑

i

bimi +
∑

j

cjzj + d = 0

where mi are plaintext variables and zj are ciphertext variables. Clearly, if we
have a valid cipheretext and substitute it into FOLE, we should get a linear
equation in plaintext variables.

Note that, for any square matrices M1 and M2, we have

(M∗
1)∗ =M1, (M1M2)∗ =M∗

2M
∗
1 ,

(M∗
1)T = (MT

1)∗

122 X. Nie et al.

Finding FOLEs. From

Z3 =M1M
∗
2 , Z2 =M∗

1M3

we can derive

M∗
3Z3 =M∗

3M1M
∗
2 = (M∗

1M3)∗M∗
2 = Z∗

2M
∗
2

and hence,

Z∗
2M

∗
2 =M∗

3Z3 (6)

Expanding it, we have(
Y11 −Y9

−Y10 Y8

)(
X8 −X6

−X7 X5

)
=
(
X12 −X10

−X11 X9

)(
Y4 Y5

Y6 Y7

)
then

(
X8Y11 +X7Y9 −X6Y11 −X9Y5

−X8Y10 −X7Y8 X6Y10 +X5Y8

)
=
(
X12Y4 −X10Y6 X12Y5 −X10Y7

−X11Y4 +X9Y6 −X11Y5 +X9Y7

)
that is, ⎧⎪⎪⎨⎪⎪⎩

X8Y11 +X7Y9 = X12Y4 −X10Y6;
−X6Y11 −X9Y5 = X12Y5 −X10Y7;
−X8Y10 −X7Y8 = −X11Y4 +X9Y6;
X6Y10 +X5Y8 = −X11Y5 +X9Y7.

(7)

Substituting (X1, · · · , X12) = π1 ◦ φ1(u1, · · · , u12r) and (Y1, · · · , Y15) = π−1
2 ◦

φ−1
3 (z1, · · · , z15r) into (7), we get 4r equations of the form∑

i,j

aijmizj +
∑

i

bimi +
∑

j

cjzj + d = 0 (8)

where the coefficients aij , bi, cj , d ∈ K, and the summations are respectively over
1 ≤ i ≤ 12r and 1 ≤ j ≤ 15r. These equations are exactly first order lineariza-
tion equations (FOLEs). Furthermore, we can show these 4r equations are
linearly independent.

Similarly, we can derive other 8r SOLEs. Note that

Z1M1 =MT
2 M

∗
3M1 =MT

2 Z
∗
2

Z∗
1M

T
1 = (MT

2 M
∗
3)∗MT

1 =M3(MT
2)∗MT

1 =M3(M∗
2)TMT

1 =M3Z
T
3

That is,
Z1M1 =MT

2 Z
∗
2

Z∗
1M

T
1 =M3Z

T
3

(9)

Expanding them and substituting (X1, · · · , X12) = π1 ◦ φ1(u1, · · · , u12r) and
(Y1, · · · , Y15) = π−1

2 ◦ φ−1
3 (z1, · · · , z15r) into them, we get another linearly

independent 8r FOLEs.

Security Analysis of an Improved MFE Public Key Cryptosystem 123

To continue our attack, we must find all FOLEs. The equation (8) is equiv-
alent to a system of equations on the coefficients ai, bi, cj , and d. To find all
equations is equivalent to find a basis of V , a linear space spanned by all vectors
(a1,1, · · · , a12r,15r, b1, · · · , b12r, c1, · · · , c15r, d). The number of unknown coeffi-
cients in these equations is equal to

12r × 15r + 12r + 15r + 1 = 180r2 + 27r + 1.

We made computer simulations to find all linearization equations. In one of
our experiments, we choose K = GF (216), r = 4. In this case, the number of
unknown coefficients is equal to 2989.

To find a basis of V , we can randomly select slightly more than 2989, say
3000, plaintexts (m1, · · · ,m48) and substitute them in (8) to get a system of
3000 linear equations and then solve it. Let {(a(k)

ij , b
(k)
i , c

(k)
j ,d(k)), 1 ≤ k ≤ D}

be the coefficient vectors corresponding to a basis of V , where i, and j stand for
1 ≤ i ≤ 48, 1 ≤ j ≤ 60, respectively. Hence, we derive D linearly independent
equations in mi and zj . Let Ek(1 ≤ k ≤ D) denote the equations:

12r,15r∑
i=1,j=1

a
(k)
ij mizj +

12r∑
i=1

b
(k)
i mi +

15r∑
j=1

c
(k)
j zj + d(k) = 0 (10)

The computation complexity is

(3000)3 ≤ 235.

Our experiments show that it take about 22 minutes on the execution of this
step and D = 48.

Note that, this step is independent of the value of the ciphertext and can be
done once for a given public key.

Ciphertext-Only Attack. Now we have derived all FOLEs. Our goal is to find
corresponding plaintext (m′

1, · · · ,m′
12r) for a given valid ciphertext (z′1, · · · , z′15r).

Substitute (z′1, · · · , z′15r) into basis equations Ek, we can get k equations in
following form: ⎧⎨⎩

∑
i,j

a
(k)
ij miz

′
j +

∑
i

b
(k)
i mi +

∑
j

c
(k)
j z′j + d(k) = 0

1 ≤ k ≤ D
(11)

Suppose the dimension of the basis of the system (11) solution space is s′. Then,
we can represent s′ variables of m1, · · · ,m12r by linear combinations of other
12r − s′. Denote w1, · · ·w12r−s′ are remainder variables. Our experiments show
s′ = 32, when r = 4.

Now substitute the expressions obtained above into Fj(m1, · · · ,m12r),we can
get 15r new quadratic functions F̃j(w1, · · ·w12r−s′), j = 1, · · · , 12r. Then, our
attack turn to solve the following system:{

F̃i(w1, · · ·w12r−s′) = z′i
1 ≤ i ≤ 15r

(12)

124 X. Nie et al.

There are 4r unknowns and 15r equations in system (12). We can solve this
system by F4 and recover the corresponding plaintext.

Our experiments show, it takes about 6 second to solve the system (12) and
recover the corresponding plaintext.

All of our experiments were performed on a normal computer, with Genuine
Intel(R) CPU T2300@1.66GHz, 504MB RAM by magma.

3.2 Second Order Linearization Equation

Moreover, we derive many SOLEs satisfied by the modified MFE.
From

Z3 =M1M
∗
2 , Z2 =M∗

1M3

we can derive
Z3M2Z2 =M1M

∗
2M2M

∗
1M3 = det(Z3)M3

That is (
Y4 Y5

Y6 Y7

)(
X5 X6

X7 X8

)(
Y8 Y9

Y10 Y11

)
= (Y4Y7 − Y5Y6)

(
X9 X10

X11 X12

)
Expanding it,we get equations of the form∑

aijkXiYjXk = 0 (13)

which hold for any (X1, · · · , X12, Y4, · · · , Y15). After substituting (X1, · · · , X12)
= π1 ◦ φ1(u1, · · · , u12r) and (Y1, · · · , Y15) = π−1

2 ◦ φ−1
3 (z1, · · · , z15r) into it. We

get 4r SOLEs.
Similar to the process above, we can derive

M∗
1M3M

∗
3M1M

∗
2 = Z2M

∗
3Z3 = det(Z3)M3

MT
2 M

∗
3M3(MT

2)∗MT
1 = Z1M3Z

T
3 = det(Z1)MT

1

M3(MT
2)∗MT

2 M
∗
3M1 = Z∗

1M
T
2 Z

∗
2 = det(Z1)M1

M∗
3M1M

∗
1M3(MT

2)∗ = Z∗
2M

∗
1Z

∗
1 = det(Z2)(MT

2)∗

(MT
2)∗MT

1 (MT
1)∗MT

2 M
∗
3 = ZT

3 (MT
1)∗Z1 = det(Z3)M∗

3

Hence, we get another twenty equations of form (13). That is to say, we can get
at least 24r SOLEs. So, the modified MFE can not resist SOLEs attack.

4 Conclusion

We use FOLE attack method to break an improved MFE proposed by Jiasen
Huang et al in this paper. For a given ciphertext, our method can find its corre-
sponding plaintext. Moreover, we tried different way to make the improved design
work, but it seems that it does not work anyway. Currently, there are three other
improvements on MFE [W07, WW09, WZY07]. They also have some defect and
have been broken in another paper [CNH10].

Security Analysis of an Improved MFE Public Key Cryptosystem 125

Acknowledgements. This work is supported by the Fundamental Research
Funds for the Central Universities under Grant ZYGX2010J069, the National
Natural Science Foundation of China (No. 60903155) and the Opening Project
of Shanghai Key Laboratory of Integrate Administration Technologies for Infor-
mation Security (No. AGK2010007).

References

[CNH10] Cao, W., Nie, X., Hu, L., Tang, X., Ding, J.: Cryptanalysis of Two Quartic
Encryption Schemes and One Improved MFE Scheme. In: Sendrier, N. (ed.)
PQCrypto 2010. LNCS, vol. 6061, pp. 41–60. Springer, Heidelberg (2010)

[DHN07] Ding, J., Hu, L., Nie, X., et al.: High Order Linearization Equation (HOLE)
Attack on Multivariate Public Key Cryptosystems. In: Okamoto, T., Wang,
X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 233–248. Springer, Heidelberg
(2007)

[GJ79] Garey, M., Johnson, D.: Computers and intractability, A Guide to the the-
ory of NP-compuleteness. W.H. Freeman (1979)

[HWO09] Huang, J., Wei, B., Ou, H.: An Improved MFE Scheme Resistant against
SOLE Attacks. In: PrimeAsia 2009 Asia Pacific Conference on Postgraduate
Research in Microelectronics Electronics, pp. 157–160. IEEE (2009)

[Moh99] Moh, T.: A fast public key system with signature and master key func-
tions. Lecture Notes at EE department of Stanford University, (May 1999),
http://www.usdsi.com/ttm.html

[W07] Wang, Z.: An Improved Medium-Field Equation (MFE) Multivariate Public
Key Encryption Scheme. IIH-MISP (2007),
http://bit.kuas.edu.tw/iihmsp07/acceptedlistgeneralsession.html

[WW09] Wang, X., Wang, X.: A More Secure MFE Multivariate Public Key Encryp-
tion Scheme. International Journal of Computer Science and Applications,
Technomathematics Research Foundation 6(3), 1–9 (2009),
http://www.tmrfindia.org/ijcsa/v6i31.pdf

[WYH06] Wang, L., Yang, B., Hu, Y., et al.: A Medium-Field Multivariate Public
key Encryption Scheme. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS,
vol. 3860, pp. 132–149. Springer, Heidelberg (2006)

[WZY07] Wang, Z.-w., Zheng, S.-h., Yang, Y.-x., et al.: Improved Medium-Field Mul-
tivariate Public Key Encryption. Journal of University of Electonic Science
an Technology of China 36(6), 1152–1154 (2007) (in Chinese)

 http://www.usdsi.com/ttm.html
 http://bit.kuas.edu.tw/iihmsp07/acceptedlistgeneralsession.html
http://www.tmrfindia.org/ijcsa/v6i31.pdf

A New Lattice-Based Public-Key Cryptosystem

Mixed with a Knapsack�

Yanbin Pan1, Yingpu Deng1, Yupeng Jiang1, and Ziran Tu2

1 Key Laboratory of Mathematics Mechanization
Academy of Mathematics and Systems Science, Chinese Academy of Sciences

{panyanbin,dengyp,jiangyupeng}@amss.ac.cn
2 Henan University of Science and Technology

naturetu@gmail.com

Abstract. In SAC’98, Cai and Cusick proposed an efficient lattice-based
public-key cryptosystem mixed with a knapsack. However, a ciphertext-
only attack given by Pan and Deng shows that it is not secure. In
this paper, we present a new efficient lattice-based public-key cryptosys-
tem mixed with a knapsack, which can resist Pan and Deng’s attack well.
What’s more, it has reasonable key size, quick encryption and decryp-
tion. However, we have to point out that the new cryptosystem has no
security proof.

Keywords: Lattice, Public-Key Cryptosystem, Knapsack.

1 Introduction

In 1996, Ajtai [1] presented a family of one-way hash functions based on the
worst-case hardness of several lattice problems. After his seminal work, crypto-
graphic constructions based on lattices have drawn considerable attention.

Lattice-based cryptosystems are usually considered as post-quantum cryp-
tosystems. They have resisted the cryptanalysis by quantum algorithms by now
whereas RSA [25] and ECC [14,18] can not since Shor’s [26] quantum algorithms
can factor integers and compute discrete logarithms efficiently.

The first lattice-based public-key cryptosystem was proposed by Ajtai
and Dwork [3] in 1997, whose security is based on the worst-case hardness
assumptions. Several other lattice-based cryptosystems, such as
[7,12,5,23,24,2,8,22,16,28], have been proposed after their work. Roughly, we can
classify these lattice-based public-key cryptosystems into two classes by whether
they have security proofs or not.

The lattice-based public-key cryptosystems in the class without security proofs,
including GGH [7], NTRU [12] and the Cai-Cusick cryptosystems [5], are usually
very efficient.

� This work was supported in part by the NNSF of China (No. 11071285 and No.
60821002) and in part by 973 Project (No. 2011CB302401).

D. Lin, G. Tsudik, and X. Wang (Eds.): CANS 2011, LNCS 7092, pp. 126–137, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A New Lattice-Based Public-Key Cryptosystem Mixed with a Knapsack 127

GGH [7] was proposed by Goldreich, Goldwasser and Halevi in Crypto’97. It
has efficient encryption and decryption and a natural signature scheme. Its secu-
rity is related to the hardness of approximating the CVP in a lattice. However,
it can’t provide sufficient security without being impractical due to a major flaw
found by Nguyen [20].

NTRU [12] is one of the most practical schemes known to date. It was pro-
posed by Hoffstein, Pipher, Silverman and now is an IEEE 1363.1 Standard [13].
It features reasonably short, easily created keys, high speed, and low memory
requirements. The security of NTRU is related to the hardness of some lattice
problems by the results of Coppersmith and Shamir [6]. Most of the ciphertext-
only attacks [17,10,9] against NTRU depend on the special cyclic structure of
its underlying lattice.

By the heuristic attack of Nguyen and Stern [19], in order to be secure, the
implementations of the Ajtai-Dwork cryptosystem would require very large keys,
making it impractical in a real-life environment. To increase the efficiency of the
Ajtai-Dwork cryptosystem, Cai and Cusick [5] proposed a new efficient cryp-
tosystem called the Cai-Cusick cryptosystem in 1998. By mixing the Ajtai-Dwork
cryptosystem with a knapsack, the Cai-Cusick cryptosystem has much less data
expansion. However, compared with the vectors in the public keys, the pertur-
bation vector in the ciphertext is too short to provide enough security. By the
observation, Pan and Deng [21] proposed an efficient ciphertext-only attack to
show that it’s not secure.

On the other hand, the lattice-based public-key cryptosystems in the other
class have security proofs. Their average-case security can be based on the worst-
case hardness of some lattice problems. Most of the early cryptosystems with
security proofs have less efficiency. They usually need long keys and ciphertexts.
The late cryptosystems with security proofs do much better. By using structured
lattices, one can even obtain cryptosystems with quasi-optimal asymptotic per-
formances, for example, [16,28].

No doubt, a security proof raises our confidence in the security of a cryptosys-
tem. However, none of the lattice problems, which most of the existed provably
secure cryptosystems are based on, has been proved to be NP-hard. Most of
them are assumed to be hard. Especially, when it comes to cryptosystems in-
tended to be post-quantum secure, the hardness of these lattice problems under
quantum computers should be further studied. In addition, from the point of
view of complexity theory, the hardness of a problem does make sense when the
security parameter n is big enough, so further work should be done to measure
the security of these provably secure cryptosystems for fixed n. As a result, it is
still well worth constructing an efficient lattice-based public-key cryptosystem,
which may have no security proof.

In this paper, we propose a new lattice-based public key cryptosystem mixed
with a knapsack. Like the Cai-Cusick cryptosystem, our cryptosystem also in-
volves a knapsack. However, we use a totally different way to generate the keys.
All the computations can be completed over Z, but not R as in the Cai-Cusick
cryptosystem. What’s more, a small modulus p is used to bound the entries of

128 Y. Pan et al.

the keys, so the size of the public keys can not be too large. All these makes
the cryptosystem not only more efficient but also resist the attack by Pan and
Deng [21].

Similar to GGH, our cryptosystem uses a matrix H ∈ Zm×m as its public
key to encrypt a message t ∈ {0, 1}m. A similar direct lattice-based attack can
also be used to recover a encrypted message. However, we need solve a CVP
in a 2m-dimensional lattice instead of an m-dimensional lattice which occurs in
attacking GGH. This may allow us to use small dimensional matrix as public
key to provide sufficient security. Moreover, all the entries of H is bounded by a
small positive integer p, so the public key size is usually smaller than in GGH.

The key size in our cryptosystem is bigger than in NTRU, one of the most
practical lattice-based public-key cryptosystem known to date. However, there
may be no obvious attack to obtain the private key of our cryptosystem, whereas
the private key of NTRU can be obtained by finding the short vector of the so-
called NTRU-lattice. Furthermore, the underlying lattice in our cryptosystem
has no special cyclic structure like in NTRU. This makes our system resist some
similar attacks against NTRU which are based on its cyclic structure.

We have to point out that the new cryptosystem has no security proof.
However, the heuristic analysis shows that it may resist the direct lattice attack
well. We just give an original public-key cryptosystem. To resist the adaptive
chosen-ciphertext attacks, the cryptosystem may need some additional padding.
Another drawback is that the new cryptosystem does not have a natural
signature scheme.

The remainder of the paper is organized as follows. In Section 2, we give
some preliminaries needed. In Section 3, we describe our lattice-based public
key cryptosystem. In Section 4, we present some details in the practical imple-
mentation. In Section 5, we give the security analysis and some experimental
evidence. Finally, we give a short conclusion in Section 6.

2 Preliminaries

2.1 Knapsack Problem

Given positive integers N1, N2, · · · , Nn and s, the knapsack or subset sum prob-
lem is to find, if there exists, variables a1, a2, · · · , an, with ai ∈ {0, 1}, such
that

n∑
i=1

aiNi = s.

The problem is known to be NP-complete. However, if [N1, N2, · · · , Nn] is a

superincreasing sequence, i.e. Ni >
i−1∑
j=1

Nj for i = 2, 3, . . . , n, there is an efficient

greedy algorithm to recover a1, a2, · · · , an from s. It is easy to see that

an =
{

1, if s ≥ Nn;
0, otherwise.

A New Lattice-Based Public-Key Cryptosystem Mixed with a Knapsack 129

After having an, we then substitute s by s − anNn and find an−1 similarly.
Obviously the process can be continued until all ai’s are found.

2.2 Lattice

An integer lattice L is a discrete additive subgroup of Zn. It is well-known that
there must be d linearly independent vectors b1, b2 · · · , bd ∈ Z

n in an integer
lattice L, such that

L = {
d∑

i=1

aibi|ai ∈ Z}.

We can call that L is spanned by b1, b2 · · · , bd and B = [b1, b2 · · · , bd] is a basis
of L.

A lattice is full rank if d = n. For a full rank lattice L, the determinant det(L)
is equal to the absolute value of determinant of the basis B. If A is a matrix
with d linearly independent columns, we denote by L(A) the lattice spanned by
A1, A2, · · · , Ad, where Ai the i-th column of A.

There are two main lattice problems. One is the shortest vector problem (SVP)
which refers the question to find the shortest non-zero vector in a given lattice.
SVP is known to be NP-hard under random reduction. The celebrated LLL
algorithm [15] runs in polynomial time and approximates the shortest vector
within a factor of 2n/2. The other is the closest vector problem (CVP) which
is to find a lattice vector minimizing the distance to a given vector. CVP is
known to be NP-complete. Babai [4] also gave an polynomial-time algorithm
that approximates the closest vector by a factor of (3/

√
2)n, which is usually

called Nearest Plane Algorithm.
Denote by ‖v‖ the Euclidean l2-norm of a vector v and by λ1(L) the length of

the shortest non-zero vector in the lattice L. By the Gaussian Heuristic, λ1(L) ≈√
n

2πedet(L)
1
n for an n-dimensional random lattice L. Similarly, most closest

vector problems for L have a solution whose size is approximately
√

n
2πedet(L)

1
n .

If we want to find a short vector v in L (resp. a vector v in L closest to the target
vector t), then experiences tell us the smaller ‖v‖√

n
2πe det(L)

1
n

(resp. ‖v−t‖√
n

2πe det(L)
1
n

)

is, the more easily we will find v in practice.

3 Description of Our Cryptosystem

3.1 The Basic Cryptosystem

Parameter: m
Key Generation:
Let n = 2m.

Step 1. Choose a superincreasing sequence N1, N2, · · · , Nn where N1 = 1.
Step 2. Randomly choose a permutation τ on n letters with τ−1(1) ≤ m.

130 Y. Pan et al.

Step 3. For i = m+ 1,m+ 2, · · · , n, represent Nτ(i) as

Nτ(i) =
m∑

j=1

bi−m,jNτ(j)

where bi−m,j ∈ Z and we expect their absolute values to be as small as
possible.
Define A ∈ Zm×n as belows:

A =

⎛⎜⎜⎜⎝
1 0 · · · 0 b1,1 b2,1 · · · bm,1

0 1 · · · 0 b1,2 b2,2 · · · bm,2

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1 b1,m b2,m · · · bm,m

⎞⎟⎟⎟⎠ .
So, (Nτ(1), Nτ(2), · · · , Nτ(m))A = (Nτ(1), · · · , Nτ(m), Nτ(m+1), · · · , Nτ(n)).

Step 4. Let
li,1 =

∑
j=1,··· ,n
Ai,j<0

Ai,j , i = 1, 2, · · · ,m

li,2 =
∑

j=1,··· ,n
Ai,j>0

Ai,j , i = 1, 2, · · · ,m

q = max
i=1,··· ,m

{li,2 − li,1}
p = the smallest prime greater than q.

Step 5. Randomly choose a permutation σ on n letters, such that the matrix
S = [Aσ(1), Aσ(2), · · · , Aσ(m)] is invertible in Zm×m

p .
Step 6. Let H = S−1[Aσ(m+1), Aσ(m+2), · · · , Aσ(n)] mod p.

Public Key: H , p.
Private Key: N1, N2, · · · , Nn, S, τ , σ−1τ−1, li,1, li,2 (i = 1, 2, · · · ,m).

Encryption: For any message t ∈ {0, 1}m, first, we uniformly randomly choose
a vector r from {0, 1}m, then compute the ciphertext:

c = Ht+ r mod p.

Decryption: Let v =
(
r
t

)
, and v′ =

⎛⎜⎝ vσ−1(1)

...
vσ−1(n)

⎞⎟⎠. We first compute

c′ = Sc mod p
= Sr + SHt mod p
= S[I|H]v mod p
= [S|SH]v mod p
= Av′ mod p.

By the fact that every entry of v′ is in {0, 1}, we know the i-th entry of Av′ is in
the interval from li,1 to li,2. So we can choose i-th the entries of c′ in the interval
from li,1 to li,2 since p > q and get c′ = Av′. Then we compute

(Nτ(1), Nτ(2), · · · , Nτ(m))Av′ =
n∑

i=1

vσ−1(i)Nτ(i) =
n∑

i=1

vσ−1τ−1(i)Ni.

A New Lattice-Based Public-Key Cryptosystem Mixed with a Knapsack 131

and easily get vσ−1τ−1(i) by the greedy algorithm. Finally the message t can be
found by the known permutation σ−1τ−1.

4 Implementations of Our Cryptosystem

4.1 Choosing the Superincreasing Sequence and τ

To generate a superincreasing sequence, we can first give a bound d ∈ Z+, then
select N1 = 1 and generate Ni (2 ≤ i ≤ n) inductively as follows: after having
N1, N2, · · · , Nk, we uniformly randomly choose an integer e ∈ (0, d) and let

Nk+1 =
k∑

j=0

Nj + e. Experiments show that the bigger d is, the bigger the final

p is.
We don’t uniformly randomly choose a permutation τ on n letters directly,

but use the following way:

1. For 1 ≤ i ≤ m, we uniformly randomly choose a permutation ρ on
{1, 2, · · · ,m}, and let τ(i) = 2ρ(i)− 1.

2. For m + 1 ≤ i ≤ n, we independently uniformly randomly choose another
permutation ρ′ on {1, 2, · · · ,m}, and let τ(i) = 2ρ′(i−m).

The reason to set N1 = 1 and τ−1(1) ≤ m is mainly to ensure that
Nτ(i)(m + 1 ≤ i ≤ n) can be represented as the integer linear combination
of Nτ(1), Nτ(2), · · · , Nτ(m), since 1 ∈ {Nτ(1), Nτ(2), · · · , Nτ(m)}. Notice that even
we don’t choose N1 = 1, the probability that Nτ(i)(m + 1 ≤ i ≤ n) can be
represented as an integer linear combination of Nτ(1), Nτ(2), · · · , Nτ(m) is also
very large.

As we will see in the next subsection, if we choose such τ , we can reduce some
operations for sorting Nτ(i)’s, and reduce the size of p which affects the security
of the system.

4.2 Finding Integer Linear Combination with Small Coefficients

First, we give an algorithm to represent an integer y as an integer linear com-
bination of T1, T2, · · · , Tk ∈ Z with small coefficients by the lattice reduction
algorithm.

Algorithm. LS
Input: y, T1, T2, · · · , Tk.

Output: b1, b2, · · · , bk ∈ Z which are small and y =
k∑

i=1

biTi

1. Choose b′1, b′2, · · · , b′k ∈ Z, such that y =
k∑

i=1

b′iTi.

2. Let L be the lattice {(x1, x2, · · · , xk)T ∈ Zk|
k∑

i=1

xiTi = 0}, and use Babai’s

Nearest Plane Algorithm to find (x′1, x
′
2, · · · , x′k)T ∈ L close to (b′1, b

′
2, · · · , b′k).

3. Let bi := b′i − x′i for 1 ≤ i ≤ k.
4. Output b1, b2, · · · , bk.

132 Y. Pan et al.

We don’t use the algorithm LS to find bi−m,j(1 ≤ j ≤ m) directly, because it
costs too much time when m is large. To make the algorithm more efficient, we
involve a greedy strategy.

Let Ti = Nτ(i), i = 1, 2, · · · ,m. We first sort T1, T2, · · · , Tm in ascending or-
der. Assume Tϕ(1) < Tϕ(2) < · · · < Tϕ(m), where ϕ is some permutation on m
letters. Notice that if we choose τ as in Subsection 4.1, we can easily get the
permutation ϕ since Tϕ(i) = N2i−1. Then we use the algorithm below to find
bi−m,j(1 ≤ j ≤ m) for Nτ(i)(m + 1 ≤ i ≤ n) with parameters δ and k, where
δ, k ∈ Z+ and k ≤ m.

Algorithm. Finding Integer Linear Combination with Small Coefficients
Input: δ, k, Tϕ(1), Tϕ(2), · · · , Tϕ(m), ϕ and Nτ(i) where i > m

Output: Small bi−m,1, · · · , bi−m,m ∈ Z such that Nτ(i) =
m∑

j=1

bi−m,jTj

1. for j from 1 to m do
uniformly choose an integer a ∈ [−δ, δ]
Nτ(i) := Nτ(i) − aTϕ(j)

bi−m,ϕ(j) := a
2. end for
3. for j = m to k + 1 do

compute Nτ(i) = qTϕ(j) + r, where q, r ∈ Z and |r| ≤ Tϕ(j)

2
Nτ(i) := r
bi−m,ϕ(j) := bi−m,ϕ(j) + q

4. end for
5. Compute (x1, x2, · · · , xk)T := LS(Nτ(i), Tϕ(1), Tϕ(2), · · · , Tϕ(k)), and let
bi−m,ϕ(i) := bi−m,ϕ(i) + xi for 1 ≤ i ≤ k.

6. Output bi−m,1, · · · , bi−m,m

In the algorithm, we first do some initial randomization (adding or subtracting
small multiples of Tϕ(j)) to make the coefficients of the linear combination look
more random. Then, a greedy strategy is involved. By Tϕ(1) < Tϕ(2) < · · · <
Tϕ(m) and the choice of τ , the quotient q will be usually very small. Finally,
we use LS in a k-dimensional lattice to get the last k coefficients. Notice that
Tϕ(1) = 1, so LS always return a solution. If we did not use LS, or equivalently
k = 0, the last coefficient, namely the remainder when some integer is divided
by Tϕ(2) since Tϕ(1) = 1, would be usually large.

4.3 Some Experimental Results

We implemented the cryptosystem on an Intel(R) Core(TM) 2 Duo E8400 2.99
GHz PC using Shoup’s NTL library version 5.4.1 [27]. In all our experiments,
we let the bound d in Subsection 4.1 be 40, δ = 2, and we used the function
LatticeSolve in NTL directly instead of implementing the Algorithm LS. For
m = 100, 200, 300, 400, 500, we let k = 10, 20, 30 respectively. For each m and k,
200 instances were tested. The results are stated as below.

A New Lattice-Based Public-Key Cryptosystem Mixed with a Knapsack 133

How Large p can Be?. Since p decides the size of the key directly, it is
necessary to study how large it can be. For each m and k, we give the minimum,
the maximum, the mean and the standard deviation(ST) of those p’s in our 200
instances in Table 1.

It is reasonable to assume that p ≈ 1.7m. We would like to point out that p
is not necessary a prime. We can just choose q + α as p where α is some small
positive integer. This can decrease the key size. However, choosing p as a prime
can increase the probability that S is invertible.

The Probability that S is Invertible. In our experiments, we uniformly
chose a permutation σ on n letters, and S was always invertible. Hence, it is also
reasonable to believe that S is invertible with very high probability.

Table 1. The Statistical Information on p

m 100 200 300 400 500

k 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

min 157 149 149 317 311 307 479 479 457 617 631 631 773 757 761

max 239 211 227 449 449 439 677 673 653 907 877 857 1069 1087 1087

mean 183.11 180.36 181.29 359.2 355.31 354.64 540.01 527.68 529.92 710.31 704.14 702.84 889.08 872.96 870.81

ST 14.33 13.71 15.24 23.43 22.87 21.63 32.00 33.21 33.52 42.23 41.25 43.59 48.13 52.79 54.06

The Key Size and Speed. Since p ≈ 1.7m, we give some basic information
about the new system:

Table 2. Some Basic Information

Parameter m

Public Key Size O(m2 log m)
Private Key Size O(m2 log m)

Message Size O(m)
Ciphertext Size O(m log m)

Encryption Speed O(m2 log m)
Decryption Speed O(m2 log2 m)

5 Security Analysis

5.1 Knapsack Structure

Almost all knapsack-based public-key cryptosystems have been broken. How-
ever, we did not try to hide the trapdoor in our cryptosystem by transforming
a superincreasing knapsack into a general one. A different way is used. The
knapsack structure is hidden behind the linear combinations so that no obvious
knapsack structure does appear in our cryptosystem. It seems hard to attack
our system with the successful attacks against knapsack-based cryptosystems.
What’s more, even A has been obtained, there may be no obvious attack to
recover the superincreasing sequence since τ is unknown.

134 Y. Pan et al.

5.2 Message Security

An attacker can recover the message by trying all possible t ∈ {0, 1}m to check
if all the entries of c−Ht mod p are in {0, 1}. This can be done in O(2m).

The direct lattice attack to recover the message is to find a vector in the
lattice spanned by

B =
(
αI 0
H pI

)
close to the target vector

(
0
c

)
, because there exists a vector u ∈ Zm, such that

(
αI 0
H pI

)(
t
u

)
−
(

0
c

)
=
(
αt
−r

)
,

where t is the corresponding message and r is the random vector selected in

encryption and ‖
(
αt
−r

)
‖ is small.

By the Gaussian Heuristic, the size of the solution of the closest vector prob-
lems is approximately

√
n

2πedet(L(B))
1
n =

√αpm
πe . For any message t and ran-

dom vector r, to minimize

c(t, r) =

√
α2‖t‖2 + ‖r‖2√

αpm
πe

=

√
(α2‖t‖2 + ‖r‖2)πe

αpm
,

we get α = ‖r‖/‖t‖ and

c(t, r) =

√
2πe‖t‖‖r‖
pm

.

c(t, r) gives a measure of the vulnerability of an individual message to a lat-
tice attack. An encrypted message is most vulnerable when c(t, r) is small, and
becomes less as c(t, r) gets closer to 1.

Notice that it can be expected that ‖t‖‖r‖ ≈ m
2 , c(t, r) is approximately√

πe
p . The mean and the standard deviation of the values cmsg =

√
πe
p in our

experiments are given in Table 3.

Table 3. The Statistical Information on cmsg

m 100 200 300 400 500

k 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

mean 0.216 0.218 0.218 0.154 0.155 0.155 0.126 0.127 0.127 0.110 0.110 0.110 0.098 0.099 0.099

ST 0.008 0.008 0.008 0.005 0.005 0.005 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003

An attack was performed form = 150. We generated the keys and got p = 307.
We randomly generated a message t and a random vector r. Using the embedding

method, we tried to find short vector in L(

⎛⎝ I 0 0
H pI c
0 0 1

⎞⎠) with BKZ QP1 in NTL.

A New Lattice-Based Public-Key Cryptosystem Mixed with a Knapsack 135

We let block size= 20 and prune=0, but failed to get the information about t
and r after 39962.8 seconds. The shortest vector we found was the vector which
had only one non-zero entry 307.

5.3 Key Security

It seems there is no obvious attack to obtain the whole private key in our cryp-
tosystem.

However, using the direct lattice attack to obtain A from H , we need find

m short vectors in the lattice spanned by
(
I 0
HT pI

)
, since every column of

A′ = [Aσ(1), Aσ(2), · · · , Aσ(n)]T is in the lattice. It is obviously very different to
find all m correct short vectors. However, we still discuss the attack.

We denote by l the mean of ‖A′
i‖’s for 1 ≤ i ≤ m. By the Gaussian Heuris-

tic, the size of the solution of the shortest vector problems is approximately√
n

2πedet(L(B))
1
n =

√
pm
πe . So we get the value of ckey = l√

pm
πe

. The smaller ckey

is, the more easily A′
i’s may be found. As it gets closer to 1, to find A′

i’s may be
more difficult. We give the values of l’s, the mean and the standard deviation of
ckey ’s in our experiments in Table 4.

Table 4. The Statistical Information on ckey

m 100 200 300 400 500

k 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

l 17.69 17.72 17.79 24.92 24.94 25.00 30.47 30.52 30.55 35.16 35.20 35.22 39.30 39.32 39.34

mean 0.383 0.386 0.387 0.272 0.274 0.275 0.222 0.224 0.224 0.193 0.194 0.194 0.172 0.174 0.174

ST 0.014 0.015 0.016 0.008 0.008 0.008 0.006 0.007 0.007 0.006 0.005 0.006 0.005 0.005 0.005

5.4 Remarks

Notice that cmsg and ckey become smaller slowly as m increase. From this we
can not conclude that it is easy to attack the cryptosystem with big m, since
bigger dimension of the lattice leads less efficiency of the attack. In Table 5, we
compare the constant cmsg in our cryptosystem with that in GGH and NTRU,
since cmsg is usually smaller than ckey .

What’s more, compared with GGH, to recover the message using direct lattice
reduction, we need solve a CVP for a 2m-dimensional lattice instead of m-
dimensional in GGH. This may allow us to use small dimensional matrix as
public key to provide sufficient security.

Table 5. Constants in Some Lattice-Based Public-Key Cryptosystems

m 100 200 300 400 500

k 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

Ours 0.216 0.218 0.218 0.154 0.155 0.155 0.126 0.127 0.127 0.110 0.110 0.110 0.098 0.099 0.099

GGH[20] - 0.103 0.105 0.104 -

NTRU[11] - 0.175 0.145 0.125 0.112

136 Y. Pan et al.

Compared with NTRU, there may no obvious attack to obtain the private
key in our cryptosystem whereas the private key of NTRU can be obtained by
finding the short vector in NTRU-lattice. Moreover, the underlying lattice of our
cryptosystem has no special cyclic structure like NTRU. This makes our system
resist some similar attacks against NTRU which are based on its cyclic structure.

6 Conclusion

We present a new lattice-based public-key cryptosystem mixed with a knapsack,
and give some algorithms to implement the cryptosystem in details. By our
implementation, we show it has reasonable key size, quick encryption and quick
decryption. The security analysis shows that it may resist the direct lattice attack
well. Moreover, more improvement on finding integer linear combination with
smaller coefficients will yield smaller p, which may improve the cryptosystem’s
efficiency and security.

Acknowledgments. We thank the anonymous referees for their suggestions
and discussions about the paper and further work.

References

1. Ajtai, M.: Gennerating hard instances of lattice problems. In: The 28th STOC, pp.
99–108. ACM, New York (1996)

2. Ajtai, M.: Representing hard lattices with O(n log n) bits. In: The 37th STOC, pp.
94–103. ACM, New York (2005)

3. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: The 29th STOC, pp. 284–293. ACM, New York (1997)

4. Babai, L.: On Lovász lattice reduction and the nearest lattice point problem. Com-
binatorica 6, 1–13 (1986)

5. Cai, J.-Y., Cusick, T.W.: A Lattice-Based Public-Key Cryptosystem. In: Tavares,
S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 219–233. Springer, Heidelberg
(1999)

6. Coppersmith, D., Shamir, A.: Lattice Attacks on NTRU. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997)

7. Goldreich, O., Goldwasser, S., Halevi, S.: Public-Key Cryptosystems from Lattice
Reduction Problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 112–131. Springer, Heidelberg (1997)

8. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: The 40th STOC, pp. 197–206. ACM, New York
(2008)

9. Howgrave-Graham, N.: A Hybrid Lattice-Reduction and Meet-in-the-Middle At-
tack against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
150–169. Springer, Heidelberg (2007)

10. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: A Meet-In-The-Meddle Attack
on an NTRU Private Key. Technical report,
http://www.ntru.com/cryptolab/technotes.htm#004

http://www.ntru.com/cryptolab/technotes.htm#004

A New Lattice-Based Public-Key Cryptosystem Mixed with a Knapsack 137

11. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: Choosing Parameter Sets for
NTRUEncrypt with NAEP and SVE-3. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 118–135. Springer, Heidelberg (2005)

12. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A Ring-Based Public Key Cryp-
tosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288.
Springer, Heidelberg (1998)

13. IEEE. P1363.1 Public-Key Cryptographic Techniques Based on Hard Problems
over Lattices (June 2003),
http://grouper.ieee.org/groups/1363/lattPK/index.html

14. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177),
203–209 (1987)

15. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational co-
effcients. Math. Ann. 261, 515–534 (1982)

16. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with
Errors over Rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
1–23. Springer, Heidelberg (2010)

17. May, A., Silverman, J.H.: Dimension Reduction Methods for Convolution Modu-
lar Lattices. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 110–125.
Springer, Heidelberg (2001)

18. Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

19. Nguyên, P.Q., Stern, J.: Cryptanalysis of the Ajtai-Dwork Cryptosystem. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 223–242. Springer,
Heidelberg (1998)

20. Nguyên, P.Q.: Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem
from Crypto’97. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 288–
304. Springer, Heidelberg (1999)

21. Pan, Y., Deng, Y.: A Ciphertext-Only Attack Against the Cai-Cusick Lattice-
Based Public-Key Cryptosystem. IEEE Transactions on Information Theory 57,
1780–1785 (2011)

22. Peikert, C.: Public-Key Cryptosystems from the Worst-Case Shortest Vector Prob-
lem. In: The 41th STOC, pp. 333–342. ACM, New York (2009)

23. Regev, O.: New lattice-based cryptographic constructions. Journal of the ACM 51,
899–942 (2004)

24. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: The 37th STOC, pp. 84–93. ACM, New York (2005)

25. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM 21, 120–126 (1978)

26. Shor, P.: Algorithms for Quantum Computation: Discrete Logarithms and Factor-
ing. In: The 35th Annual Symposium on Foundations of Computer Science, pp.
124–134. IEEE Computer Science Press, Santa Fe (1994)

27. Shoup, V.: NTL: A library for doing number theory, http://www.shoup.net/ntl/
28. Stehlé, D., Steinfeld, R.: Making NTRU as Secure as Worst-Case Problems over

Ideal Lattices. In Paterson. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 27–47. Springer, Heidelberg (2011)

http://grouper.ieee.org/groups/1363/lattPK/index.html
http://www.shoup.net/ntl/

Achieving Short Ciphertexts or Short

Secret-Keys for Adaptively Secure General
Inner-Product Encryption

Tatsuaki Okamoto1 and Katsuyuki Takashima2

1 NTT
okamoto.tatsuaki@lab.ntt.co.jp

2 Mitsubishi Electric
Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp

Abstract. In this paper, we present two non-zero inner-product en-
cryption (NIPE) schemes that are adaptively secure under a standard
assumption, the decisional linear (DLIN) assumption, in the standard
model. One of the proposed NIPE schemes features constant-size cipher-
texts and the other features constant-size secret-keys. Our NIPE schemes
imply an identity-based revocation (IBR) system with constant-size ci-
phertexts or constant-size secret-keys that is adaptively secure under the
DLIN assumption. Any previous IBR scheme with constant-size cipher-
texts or constant-size secret-keys was not adaptively secure in the stan-
dard model. This paper also presents two zero inner-product encryption
(ZIPE) schemes each of which has constant-size ciphertexts or constant-
size secret-keys and is adaptively secure under the DLIN assumption in
the standard model. They imply an identity-based broadcast encryption
(IBBE) system with constant-size ciphertexts or constant-size secret-keys
that is adaptively secure under the DLIN assumption.

1 Introduction

1.1 Background

Functional encryption (FE) is an advanced concept of encryption or a general-
ization of public-key encryption (PKE) and identity-based encryption (IBE). In
FE systems, a receiver can decrypt a ciphertext using a secret-key corresponding
to a parameter x if x is suitably related to another parameter y specified for the
ciphertext, or R(x, y) = 1 for some relation R (i.e., relation R holds for (x, y)) .

The first flavor of functional encryption traces back to the work of Sahai
and Waters [18], which was subsequently extended in [4,9,13,17]. In their con-
cept called attribute-based encryption (ABE), for example, parameter x for a
secret-key is an access control policy, and parameter y for a ciphertext is a
set of attributes. Decryption requires attribute set y to satisfy policy x, i.e.,
relation RABE(x, y) = 1 iff y satisfies x. Identity-based broadcast encryption
(IBBE) [1,5,6,8,19] and revocation (IBR) [12] schemes can also be thought of as

D. Lin, G. Tsudik, and X. Wang (Eds.): CANS 2011, LNCS 7092, pp. 138–159, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Achieving Short Ciphertexts or Short Secret-Keys 139

functional encryption systems where a ciphertext is encrypted for a set of iden-
tities S = {ID1, . . . , IDn} in IBBE (resp. IBR) systems, and to decrypt it by a
secret-key associated with ID requires that ID ∈ S (resp. ID �∈ S), i.e., relation
RIBBE(ID, S) = 1 (resp. RIBR(ID, S) = 1) iff ID ∈ S (resp. ID �∈ S).

Katz, Sahai and Waters [11] introduced a functional encryption scheme for
zero inner products, zero inner product encryption (ZIPE) where a ciphertext
encrypted with vector �x can be decrypted by any key associated with vector �y
such that �x · �y = 0, i.e., relation RZIPE(�x, �y) = 1 iff �x · �y = 0. Their scheme is
selectively secure in the standard model and the ciphertext size is linear in the
dimension of vectors, n, although it achieves an additional security property,
attribute-hiding, in which �x is hidden from the ciphertext. As shown in [11],
ZIPE provides functional encryption for a wide class of relations corresponding
to equalities, polynomials and CNF/DNF formulae.

Attrapadung and Libert [2] proposed a ZIPE scheme as well as a non-zero IPE
(NIPE) scheme, where NIPE relation RNIPE(�x, �y) = 1 iff �x·�y �= 0. NIPE supports
a wide class of relations corresponding to the complement of those for ZIPE. In
their ZIPE and NIPE schemes, without retaining the attribute-hiding property,
the ciphertext size reduces to a constant in n (the dimension of vectors, �x and �y),
as long as the description of the vector is not considered a part of the ciphertext,
which is a common assumption in the broadcast encryption/revocation applica-
tions. Hereafter in this paper, “constant” will be used in this sense. In addition,
the number of pairing operations for decryption in [2] is constant. Their ZIPE
system is adaptively secure in the standard model, but the NIPE scheme is not
adaptively secure (co-selectively secure) in the standard model.

The ZIPE system [2] implies an adaptively secure identity-based broadcast en-
cryption (IBBE) scheme with constant-size ciphertexts in the standard model,
while previous IBBE schemes with constant-size ciphertexts were either only
selective-ID secure [1,5,6] or secure in a non-standard model [8,19]. Among
IBBE systems with short ciphertexts (including selective-ID secure ones), the
IBBE scheme [2] is the only one relying on standard assumptions, DBDH and
DLIN assumptions. The NIPE scheme [2] implies a co-selectively secure (not
adaptively secure) identity-based revocation (IBR) system [12] with constant-
size ciphertexts in the standard model. Lewko, Sahai and Waters [12] presented
IBR systems with constant-size public and secret keys that are not adaptively
secure. Hence, the following problems are still remained.

1. No NIPE scheme with constant-size ciphertexts is adaptively secure in the
standard model, and no IBR scheme with constant-size ciphertexts or
constant-size secret-keys is adaptively secure in the standard model. No NIPE
scheme with constant-size secret-keys has been presented.

2. No ZIPE (or no IBBE) scheme with constant-size ciphertexts is adaptively
(or selectively) secure under a single standard assumption in the standard
model. No ZIPE scheme with constant-size secret-keys has been presented.

140 T. Okamoto and K. Takashima

1.2 Our Results

This paper presents the first NIPE scheme that has constant-size ciphertexts or
constant-size secret-keys and that is adaptively secure in the standard model.
The security assumption is a standard one, the decisional linear (DLIN) as-
sumption. This implies the first IBR scheme with constant-size ciphertexts or
constant-size secret-keys that is adaptively secure in the standard model.

This paper also presents the first ZIPE scheme that has constant-size cipher-
texts or constant-size secret-keys and is adaptively secure solely under a single
standard assumption, the DLIN assumption, in the standard model. This im-
plies the first IBBE scheme with constant-size ciphertexts that is adaptively
secure solely under a single standard assumption in the standard model. Our
ZIPE scheme also implies a constant-size ciphertext hierarchical ZIPE (HIPE)
scheme that is adaptively secure under DLIN, by employing delegation and re-
randomization similar to those in [13,16]. It will be given in the full version.

In addition, the number of pairing operations for decryption is constant in all
the proposed schemes. We summarize a comparison of our results with those of
[2] in Table 1 in Section 8 (see the items of ‘Security’, ‘Assump.’, ‘CT Size’ and
‘SK Size’ in Table 1, for the features discussed in Sections 1.1 and 1.2).

1.3 Related Works

Several ABE schemes [3,7,10] with constant-size ciphertexts have been proposed.
Among them, [7,10] only support limited classes of predicates that do not cover
the classes supported by ZIPE and NIPE, while [3] supports a wider class of
relations, non-monotone predicates, than those by ZIPE and NIPE. All of these
ABE schemes, however, are only selectively secure in the standard model. Adap-
tively secure and attribute-hiding ZIPE scheme under the DLIN assumption has
been presented [17], but the ciphertext-size is linear in n (not constant), while
our ZIPE scheme has constant-size ciphertexts and is adaptively secure but not
attribute-hiding.

1.4 Key Techniques

All of the proposed schemes in this paper are constructed on dual system en-
cryption [20,14] and dual pairing vector spaces (DPVS) [16,13,17]. See Section
1.5 for some notations in this section. In DPVS, a pair of dual (or orthonormal)
bases, B and B

∗, are randomly generated using a fully random linear transfor-
mation X U← GL(N,Fq) (N : dimension of span〈B〉 and span〈B∗〉) such that B

and B∗ are transformed from canonical basis A by X and (X−1)T, respectively
(see Section 2 and [16,13,17]). In a typical application of DPVS to cryptography,
a part of B (say B̂) is used as a public key and the corresponding part of B∗ (say
B̂∗) is used as a secret key or trapdoor.

Achieving Short Ciphertexts or Short Secret-Keys 141

In this paper, we develop a novel technique on DPVS, where we employ a
special form of random linear transformation X ∈ GL(N,Fq), or X ∈ L(N,Fq)

of Eq. (2) in Section 5.2, in place of fully random linear transformation X U←
GL(N,Fq). This form of X provides us a framework to achieve short ciphertexts
or short secret-keys as well as a small number of pairing operations in decryption.
It, however, is a challenging task to find such a special form ofX like Eq. (2) that
meet the several requirements for the dual system encryption method to prove
the adaptive security of ZIPE and NIPE schemes under the DLIN assumption.
Such requirements are given hereafter. To reduce the security of our schemes,
especially Problems 1 and 2 in this paper, to the DLIN assumption, the form
of X should be consistent with the distribution of the DLIN problem. The form
of X should be sparse enough to achieve short ciphertexts or secret-keys. We
should also have a special pairwise independence lemma, Lemma 3 in Section
5.4, that is due to the special form of X , where linear random transformations
U and Z are more restricted (or specific) than those of previous results, e.g.,
[17], with fully random X . See Section 5.1 for more details.

1.5 Notations

When A is a random variable or distribution, y R← A denotes that y is randomly
selected from A according to its distribution. When A is a set, y U← A denotes
that y is uniformly selected fromA. A vector symbol denotes a vector representa-
tion over Fq, e.g., �x denotes (x1, . . . , xn) ∈ F

n
q . For two vectors �x = (x1, . . . , xn)

and �v = (v1, . . . , vn), �x · �v denotes the inner-product
∑n

i=1 xivi. The vector �0 is
abused as the zero vector in F n

q for any n. XT denotes the transpose of matrixX .
I� denotes the × identity matrix. A bold face letter denotes an element of vec-
tor space V, e.g., x ∈ V. When bi ∈ V (i = 1, . . . ,), span〈b1, . . . , b�〉 ⊆ V (resp.
span〈�x1, . . . , �x�〉) denotes the subspace generated by b1, . . . , b� (resp. �x1, . . . , �x�).
For bases B := (b1, . . . , bN) and B∗ := (b∗1, . . . , b∗N), (x1, . . . , xN)B :=

∑N
i=1 xibi

and (y1, . . . , yN)B∗ :=
∑N

i=1 yib
∗
i . For dimension n of vectors, �ej denotes the

canonical basis vector (

j−1︷ ︸︸ ︷
0 · · · 0, 1,

n−j︷ ︸︸ ︷
0 · · ·0) ∈ F n

q for j = 1, . . . , n. GL(n,Fq) denotes
the general linear group of degree n over Fq. For a linear subspace V ⊂ F n

q , V ⊥

denotes the orthogonal complement, i.e., V ⊥ :={�w ∈ F n
q |�w ·�v = 0 for all �v ∈ V }.

2 Dual Pairing Vector Spaces by Direct Product of
Symmetric Pairing Groups

Definition 1. “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple
of a prime q, cyclic additive group G and multiplicative group GT of order q,
G �= 0 ∈ G, and a polynomial-time computable nondegenerate bilinear pairing
e : G×G→ GT i.e., e(sG, tG) = e(G,G)st and e(G,G) �= 1.

142 T. Okamoto and K. Takashima

Let Gbpg be an algorithm that takes input 1λ and outputs a description of
bilinear pairing groups (q,G,GT , G, e) with security parameter λ.

Definition 2. “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct
product of symmetric pairing groups (q,G,GT , G, e) are a tuple of prime q, N -

dimensional vector space V :=

N︷ ︸︸ ︷
G× · · · ×G over Fq, cyclic group GT of order q,

canonical basis A := (a1, . . . ,aN) of V, where ai := (

i−1︷ ︸︸ ︷
0, . . . , 0, G,

N−i︷ ︸︸ ︷
0, . . . , 0), and

pairing e : V×V→ GT . The pairing is defined by e(x,y) :=
∏N

i=1 e(Gi, Hi) ∈ GT

where x := (G1, . . . , GN) ∈ V and y := (H1, . . . , HN) ∈ V. This is nondegen-
erate bilinear i.e., e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then
x = 0. For all i and j, e(ai,aj) = e(G,G)δi,j where δi,j = 1 if i = j, and 0
otherwise, and e(G,G) �= 1 ∈ GT .

DPVS also has linear transformations φi,j on V s.t.φi,j(aj) = ai and φi,j(ak)

= 0 if k �= j, which can be easily achieved by φi,j(x) := (

i−1︷ ︸︸ ︷
0, . . . , 0, Gj ,

N−i︷ ︸︸ ︷
0, . . . , 0)

where x := (G1, . . . , GN). We call φi,j “canonical maps”.
DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N) and N ∈ N, and

outputs a description of param′
V

:= (q,V,GT ,A, e) with security parameter λ
and N -dimensional V. It can be constructed by using Gbpg.

For the asymmetric version of DPVS, (q,V,V∗,GT ,A,A
∗, e), see Appendix A.2

in [17].

3 Definitions of Zero and Non-zero Inner-Product
Encryption (ZIPE / NIPE)

This section defines zero and non-zero inner-product encryption (ZIPE / NIPE)
and their security. The relations RZIPE of ZIPE and RNIPE of NIPE are defined
over vectors �x ∈ F n

q \ {�0} and �v ∈ F n
q \ {�0}, where RZIPE(�x,�v) := 1 iff �x · �v = 0,

and RNIPE(�x,�v) := 1 iff �x · �v �= 0, respectively

Definition 3 (Zero and Non-zero Inner-Product Encryption: ZIPE /
NIPE). Let a relation R be RZIPE or RNIPE. A zero (resp. non-zero) inner-
product encryption scheme consists of four algorithms with R := RZIPE (resp.R
:= RNIPE).

Setup. This is a randomized algorithm that takes as input security parameter. It
outputs public parameters pk and master secret key sk.

KeyGen. This is a randomized algorithm that takes as input vector �v, pk and sk.
It outputs a decryption key sk
v.

Enc. This is a randomized algorithm that takes as input message m, a vector,
�x, and public parameters pk. It outputs a ciphertext ct
x.

Achieving Short Ciphertexts or Short Secret-Keys 143

Dec. This takes as input ciphertext ct
x that was encrypted under a vector �x,
decryption key sk
v for vector �v, and public parameters pk. It outputs either
plaintext m or the distinguished symbol ⊥.

A ZIPE (or NIPE) scheme should have the following correctness property: for all
(pk, sk) R← Setup(1λ), all vectors �v, all decryption keys sk
v

R← KeyGen(pk, sk, �v),
all messages m, all vectors �x, all ciphertexts ct
x

R← Enc(pk,m, �x), it holds that
m = Dec(pk, sk
v, ct
x) with overwhelming probability, if R(�x,�v) = 1.

Definition 4. The model for proving the adaptively payload-hiding security of
ZIPE (or NIPE) under chosen plaintext attacks is given hereafter.

Setup. The challenger runs the setup algorithm, (pk, sk) R← Setup(1λ), and gives
public parameters pk to the adversary.

Phase 1. The adversary is allowed to adaptively issue a polynomial number of
queries, �v, to the challenger or oracle KeyGen(pk, sk, ·) for private keys, sk
v,
associated with �v.

Challenge. The adversary submits two messages, m(0) and m(1), and a vec-
tor, �x, provided that no �v queried to the challenger in Phase 1 satisfies
R(�x,�v) = 1. The challenger flips a coin b U← {0, 1}, and computes ct

(b)

x

R←
Enc(pk,m(b), �x). It gives ct

(b)

x to the adversary.

Phase 2. The adversary is allowed to adaptively issue a polynomial number of
queries, �v, to the challenger or oracle KeyGen(pk, sk, ·) for private keys, sk
v,
associated with �v, provided that R(�x,�v) �= 1.

Guess. The adversary outputs a guess b′ of b.

The advantage of adversary A in the above game, AdvZIPE,PH
A (λ) (or AdvNIPE,PH

A
(λ)), is defined by Pr[b′ = b] − 1/2 for any security parameter λ. A ZIPE (or
NIPE) scheme is adaptively payload-hiding secure if all polynomial time adver-
saries have at most a negligible advantage in the game.

4 Decisional Linear (DLIN) Assumption

Definition 5. The DLIN problem is to guess β ∈ {0, 1}, given (paramG, G, ξG,

κG, δξG, σκG, Yβ) R← GDLIN
β (1λ), where GDLIN

β (1λ) : paramG := (q,G,GT , G, e)
R←

Gbpg(1λ), κ, δ, ξ, σ U← Fq, Y0 := (δ + σ)G, Y1
U← G, return (paramG, G, ξG, κG,

δξG, σκG, Yβ), for β U← {0, 1}. For a probabilistic machine E, we define the ad-

vantage of E for the DLIN problem as: AdvDLIN
E (λ) :=

∣∣∣Pr
[
E(1λ, �)→ 1

∣∣∣ � R←

GDLIN
0 (1λ)

]
− Pr

[
E(1λ, �)→ 1

∣∣∣ � R←GDLIN
1 (1λ)

]∣∣∣ . The DLIN assumption is: For

any probabilistic polynomial-time adversary E, the advantage AdvDLIN
E (λ) is

negligible in λ.

144 T. Okamoto and K. Takashima

5 Proposed NIPE Scheme with Constant-Size Ciphertexts

5.1 Key Ideas in Constructing the Proposed NIPE Scheme

In this section, we will explain key ideas of constructing and proving the security
of the proposed NIPE scheme.

First, we will show how short ciphertexts and efficient decryption can be
achieved in our scheme. Here, we will use a simplified (or toy) version of the
proposed NIPE scheme, for which the security is no more ensured in the standard
model under the DLIN assumption.

A ciphertext in the simplified NIPE scheme consists of two vector elements,
(c0, c1) ∈ G5 × Gn, and c3 ∈ GT . A secret-key consists of two vector elements,
(k∗

0 ,k
∗
1) ∈ G5 × Gn. Therefore, to achieve constant-size ciphertexts, we have to

compress c1 ∈ Gn to a constant size in n. We now employ a special form of basis

generation matrix, X :=

⎛⎜⎜⎜⎝
μ μ′1

. . .
...

μ μ′n−1

μ′n

⎞⎟⎟⎟⎠ ∈ H(n,Fq) of Eq. (1) in Section 5.2,

where μ, μ′1, . . . , μ
′
n

U← Fq and a blank in the matrix denotes 0 ∈ Fq. The system

parameter or DPVS public basis is B :=

⎛⎜⎜⎜⎝
b1

...

bn

⎞⎟⎟⎟⎠ :=

⎛⎜⎜⎜⎝
μG μ′1G

. . .
...

μG μ′n−1G
μ′nG

⎞⎟⎟⎟⎠. Let

a ciphertext associated with �x := (x1, . . . , xn) be c1 := (ω�x)B = ω(x1b1 + · · ·+
xnbn) = (x1ωμG, . . . , xn−1ωμG, ω(

∑n
i=1 xiμ

′
i)G), where ω U← Fq. Then, c1 can

be compressed to only two group elements (C1 := ωμG, C2 := ω(
∑n

i=1 xiμ
′
i)G)

as well as �x, since c1 can be obtained by (x1C1, . . . , xn−1C1, C2) (note that
xiC1 = xiωμG for i = 1, . . . , n− 1). That is, a ciphertext (excluding �x) can be
just two group elements, or the size is constant in n.

Let B
∗ := (b∗i) be the dual orthonormal basis of B := (bi), and B

∗ be the
master secret key in the simplified NIPE scheme. We specify (c0,k

∗
0 , c3) such

that e(c0,k
∗
0) = gζ

T · gωδ
T and c3 := gζ

Tm ∈ GT . We also set a secret-key for �v as
k∗

1 := (δ�v)B∗ = δ(v1b∗1+· · ·+vnb∗n). From the dual orthonormality of B and B∗, it
then holds that e(c1,k

∗
1) = gωδ(
x·
v)

T . Hence, a decryptor can compute gωδ
T if and

only if �x · �v �= 0, i.e., can obtain plaintext m by c3 · e(c0,k
∗
0)

−1 · e(c1,k
∗
1)

(
x·
v)−1
.

Since c1 is expressed as (x1C1, . . . , xn−1C1, C2) ∈ Gn and k∗
1 is parsed as a n-

tuple (K1, . . . ,Kn) ∈ Gn, the value of e(c1,k
∗
1) is

∏n−1
i=1 e(xiC1,Ki)·e(C2,Kn) =∏n−1

i=1 e(C1, xiKi) · e(C2,Kn) = e(C1,
∑n−1

i=1 xiKi) · e(C2,Kn). That is, n − 1
scalar multiplications in G and two pairing operations are enough for computing
e(c1,k

∗
1). Therefore, only a small (constant) number of pairing operations are

required for decryption.
We then explain how our full NIPE scheme is constructed on the above-

mentioned simplified NIPE scheme. The target of designing the full NIPE scheme
is to achieve the adaptive security under the DLIN assumption. Here, we adopt

Achieving Short Ciphertexts or Short Secret-Keys 145

a strategy similar to that of [17], in which the dual system encryption method-
ology is employed in a modular or hierarchical manner. That is, two top level
assumptions, the security of Problems 1 and 2, are directly used in the dual sys-
tem encryption methodology and these assumptions are reduced to a primitive
assumption, the DLIN assumption.

To meet the requirements for applying to the dual system encryption method-
ology and reducing to the DLIN assumption, the underlying vector space as
well as the basis generator matrix X is four times greater than that of the
above-mentioned simplified scheme. For example, k∗

1 := (δ�v, 0n, ϕ1�v, 0n)B∗ ,

c1 = (ω�x, 0n, 0n, η1�x)B, and X :=

⎛⎜⎝X1,1 · · · X1,4

...
...

X4,1 · · · X4,4

⎞⎟⎠ ∈ L(4n,Fq) of Eq. (2) in

Section 5.2, where each Xi,j is of the form of X ∈ H(n,Fq) in the simplified
scheme. The vector space consists of four orthogonal subspaces, i.e., real encod-
ing part, hidden part, secret-key randomness part, and ciphertext randomness
part. The simplified NIPE scheme corresponds to the first real encoding part.

A key fact in the security reduction is that L(4n,Fq) is a subgroup in GL(4n,
Fq), which enables a random-self-reducibility argument for reducing the DLIN
problem to Problems 1 and 2 in this paper. The property that H(n,Fq) ∩
GL(n,Fq) is a subgroup in GL(n,Fq) is also crucial for a special form of pairwise
independence lemma in this paper (Lemma 3), where H(n,Fq) is specified in
L(4n,Fq) or X . Our Problem 2, which is based on this lemma, employs special

form matrices U U← H(n,Fq) ∩ GL(n,Fq) and Z := (U−1)T. Informally, our
pairwise independence lemma implies that, for all (�x,�v), a pair, (�xU,�vZ), are
uniformly distributed over (span〈�x,�en〉 \ span〈�en〉)× (F n

q \ span〈�en〉⊥) with pre-
serving the inner-product value, �x · �v, i.e., (�xU,�vZ) reveal no information but �x
and �x · �v.

A difference of matrix X with the ZIPE scheme will be noted in Remark 9.

5.2 Dual Orthonormal Basis Generator

Let N := 4n,

H(n,Fq) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝
u u′1

. . .
...

u u′n−1

u′n

⎞⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
u, u′l ∈ Fq for l = 1, . . . , n,
a blank element in the matrix
denotes 0 ∈ Fq

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (1)

L(N,Fq) :=⎧⎪⎪⎪⎨⎪⎪⎪⎩X :=

⎛⎜⎝X1,1 · · · X1,4

...
...

X4,1 · · · X4,4

⎞⎟⎠
∣∣∣∣∣∣∣Xi,j :=

⎛⎜⎜⎜⎝
μi,j μ′i,j,1

. . .
...

μi,j μ
′
i,j,n−1

μ′i,j,n

⎞⎟⎟⎟⎠
∈ H(n,Fq)
for i, j =
1, . . . , 4

⎫⎪⎪⎪⎬⎪⎪⎪⎭⋂
GL(N,Fq). (2)

146 T. Okamoto and K. Takashima

We note that H(n,Fq) ∩ GL(n,Fq) is a subgroup of GL(n,Fq) and L(N,Fq) is
a subgroup of GL(N,Fq). We describe random dual orthonormal basis generator
G(1)

ob below, which is used as a subroutine in the proposed NIPE scheme.

G(1)
ob (1λ, n) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ), N0 := 5, N1 := 4n,

paramVt
:= (q,Vt,GT ,At, e) := Gdpvs(1λ, Nt, paramG) for t = 0, 1,

ψ
U← F

×
q , gT := e(G,G)ψ , paramn := ({paramVt

}t=0,1, gT),

X0 := (χ0,i,j)i,j=1,...,5
U← GL(N0,Fq), X1

U← L(N1,Fq), hereafter,
{μi,j , μ

′
i,j,l}i,j=1,...4;l=1,...,n denotes non-zero entries of X1 as in Eq. (2),

b0,i := (χ0,i,1, .., χ0,i,5)A =
∑5

j=1 χ0,i,jaj for i = 1, .., 5, B0 := (b0,1, .., b0,5),

Bi,j := μi,jG, B
′
i,j,l := μ′i,j,lG for i, j = 1, . . . , 4; l = 1, . . . , n,

for t = 0, 1, (ϑt,i,j)i,j=1,...,Nt := ψ · (XT
t)−1,

b∗t,i := (ϑt,i,1, .., ϑt,i,Nt)A =
∑Nt

j=1 ϑt,i,jaj for i=1, .., Nt, B∗
t := (b∗t,1, .., b

∗
t,Nt

),

return (paramn,B0,B
∗
0, {Bi,j , B

′
i,j,l}i,j=1,...,4;l=1,...,n,B

∗
1).

Remark 1 . Let

⎛⎜⎜⎝
b1,(i−1)n+1

...

b1,in

⎞⎟⎟⎠ :=

⎛⎜⎜⎜⎜⎜⎝
Bi,1 B′

i,1,1

. . .
...

Bi,1 B
′
i,1,n−1

B′
i,1,n

· · ·

Bi,4 B′
i,4,1

. . .
...

Bi,4 B
′
i,4,n−1

B′
i,4,n

⎞⎟⎟⎟⎟⎟⎠
for i = 1, . . . , 4,

B1 := (b1,1, . . . , b1,4n),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3)

where a blank element in the matrix denotes 0 ∈ G. B1 is the dual orthonormal
basis of B∗

1, i.e., e(b1,i, b
∗
1,i) = gT and e(b1,i, b

∗
1,j) = 1 for 1 ≤ i �= j ≤ 4n.

5.3 Construction

In the description of the scheme, we assume that input vector, �x := (x1, . . . , xn),
has an index l (1 ≤ l ≤ n − 1) with xl �= 0, and that input vector, �v :=
(v1, . . . , vn), satisfies vn �= 0.

Setup(1λ, n) : (paramn,B0,B
∗
0, {Bi,j , B

′
i,j,l}i,j=1,...,4;l=1,...,n,B

∗
1)

R← G(1)
ob (1λ, n),

B̂0 := (b0,1, b0,3, b0,5), B̂∗
0 := (b∗0,1, b

∗
0,3, b

∗
0,4), B̂

∗
1 := (b∗1,1, .., b

∗
1,n, b

∗
1,2n+1, .., b

∗
1,3n),

return pk := (1λ, paramn, B̂0, {Bi,j, B
′
i,j,l}i=1,4;j=1,...,4;l=1,...,n), sk := {B̂∗

t }t=0,1.

Achieving Short Ciphertexts or Short Secret-Keys 147

KeyGen(pk, sk, �v) : δ, ϕ0, ϕ1
U← Fq, k∗

0 := (δ, 0, 1, ϕ0, 0)B∗
0
,

k∗
1 := (

n︷︸︸︷
δ�v ,

n︷︸︸︷
0n ,

n︷ ︸︸ ︷
ϕ1�v ,

n︷︸︸︷
0n)B∗

1
, return sk
v := (�v,k∗

0,k
∗
1).

Enc(pk, m, �x) : ω, η0, η1, ζ
U← Fq, c0 := (−ω, 0, ζ, 0, η0)B0 , c3 := gζ

Tm,

C1,j := ωB1,j + η1B4,j, C2,j :=
∑n

l=1 xl(ωB′
1,j,l + η1B′

4,j,l) for j = 1, . . . , 4,
return ct
x := (�x, c0, {C1,j , C2,j}j=1,...,4, c3).

Dec(pk, sk
v := (�v,k∗
0,k

∗
1), ct
x := (�x, c0, {C1,j, C2,j}j=1,...,4, c3)) :

Parse k∗
1 as a 4n-tuple (K∗

1 , . . . ,K
∗
4n) ∈ G4n,

D∗
j :=

∑n−1
l=1 ((�x · �v)−1xl)K∗

(j−1)n+l for j = 1, .., 4,

F := e(c0,k
∗
0) ·

∏4
j=1

(
e(C1,j , D

∗
j) · e(C2,j ,K

∗
jn)
)
, return m′ := c3/F.

Remark 2 . A part of output of Setup(1λ, n), {Bi,j , B
′
i,j,l}i=1,4;j=1,...,4;l=1,...,n,

can be identified with B̂1 := (b1,1, . . . , b1,n, b1,3n+1, .., b1,4n) through the form of
Eq. (3), while B1 := (b1,1, . . . , b1,4n) is identified with {Bi,j, B

′
i,j,l}i,j=1,..,4; l=1,..,n

by Eq. (3). Decryption Dec can be alternatively described as:

Dec′(pk, sk
v := (�v,k∗
0 ,k

∗
1), ct
x := (�x, c0, {C1,j , C2,j}j=1,...,4, c3)) :

n︷ ︸︸ ︷ n︷ ︸︸ ︷
c1 := (x1C1,1, .., xn−1C1,1, C2,1, . . . , x1C1,4, .., xn−1C1,4, C2,4),

that is, c1 = (

n︷ ︸︸ ︷
ω�x,

n︷︸︸︷
0n,

n︷︸︸︷
0n,

n︷ ︸︸ ︷
η1�x)B1 , F := e(c0,k

∗
0) · e(c1, (�x · �v)−1k∗

1),
return m′ := c3/F.

[Correctness]. Using the alternate decryption Dec′, F = e(c0,k
∗
0) · e(c1, (�x ·

�v)−1k∗
1) = g−ωδ+ζ

T g
ωδ(
x·
v)/(
x·
v)
T = gζ

T if �x · �v �= 0.

5.4 Security

The proofs of Lemmas 1–9 are given in the full version of this paper.

Theorem 1. The proposed NIPE scheme is adaptively payload-hiding against
chosen plaintext attacks under the DLIN assumption.

For any adversary A, there exist probabilistic machines E1, E2-1 and E2-2 whose
running times are essentially the same as that of A, such that for any security
parameter λ, AdvNIPE,PH

A (λ) ≤ AdvDLIN
E1

(λ) +
∑ν

h=1

(
AdvDLIN

E2-h-1
(λ)+AdvDLIN

E2-h-2
(λ)
)

+ε, where E2-h-1(·) := E2-1(h, ·), E2-h-2(·) := E2-2(h, ·), ν is the maximum number
of A’s key queries and ε := (11ν + 6)/q.

148 T. Okamoto and K. Takashima

Lemmas for the Proof of Theorem 1. We will show Lemmas 1–3 for the
proof of Theorem 1.

Definition 6 (Problem 1). Problem 1 is to guess β, given (paramn,B0, B̂
∗
0, eβ,0,

{Bi,j , B
′
i,j,l}i,j=1,..,4;l=1,..,n, B̂

∗
1, {Eβ,j, E

′
β,j,l}j=1,..,4;l=1,..,n) R← GP1

β (1λ, n), where

GP1
β (1λ, n) : (paramn,B0,B

∗
0, {Bi,j , B

′
i,j,l}i,j=1,...,4;l=1,...,n, B̂

∗
1)

R← G(1)
ob (1λ, n),

B̂
∗
0 := (b∗0,1, b

∗
0,3, .., b

∗
0,5), B̂

∗
1 := (b∗1,1, . . . , b

∗
1,n, b

∗
t,2n+1, . . . , b

∗
t,4n),

ω, τ, η0, η1
U← Fq, U

U← H(n,Fq) ∩GL(n,Fq), hereafter, u, u′n ∈ F
×
q ,

u′1, . . . , u
′
n−1 ∈ Fq denote non-zero entries of U, as in Eq. (1),

e0,0 := (ω, 0, 0, 0, η0)B0 , e1,0 := (ω, τ, 0, 0, η0)B0 ,

for j = 1, . . . , 4;
E0,j := ωB1,j + η1B4,j, E

′
0,j,l := ωB′

1,j,l + η1B′
4,j,l for l = 1, . . . , n,

E1,j := ωB1,j + τuB2,j + η1B4,j ,

E′
1,j,l := ωB′

1,j,l + τuB′
2,j,l + τu′lB

′
2,j,n + η1B′

4,j,l

for l = 1, . . . , n− 1, and E′
1,j,n := ωB′

1,j,n + τu′nB
′
2,j,n + η1B′

4,j,n,

return (paramn,B0, B̂
∗
0, eβ,0, {Bi,j , B

′
i,j,l}i,j=1,...,4;l=1,...,n, B̂

∗
1,

{Eβ,j, E
′
β,j,l}j=1,...,4;l=1,...,n),

for β U← {0, 1}. For a probabilistic machine B, we define the advantage of B as the
quantity AdvP1

B (λ) :=
∣∣∣Pr
[
B(1λ, �)→ 1

∣∣∣� R← GP1
0 (1λ, n)

]
− Pr

[
B(1λ, �)→ 1 |�

R← GP1
1 (1λ, n)

]∣∣∣ .
Remark 3 . A part of output of GP1

β (1λ, n), {Bi,j , B
′
i,j,l}i,j=1,...,4;l=1,...,n, is iden-

tified with B1 := (b1,1, . . . , b1,4n) (Eq. (3)). If we make eβ,1,l ∈ V1 for β =
0, 1; l = 1, . . . , n as:

n︷ ︸︸ ︷ n︷ ︸︸ ︷
eβ,1,l := (0l−1, Eβ,1, 0n−l−1, E′

β,1,l, . . . , 0l−1, Eβ,4, 0n−l−1, E′
β,4,l)

for l = 1, . . . , n− 1,
eβ,1,n := (0n−1, E′

β,1,n, . . . , 0n−1, E′
β,4,n),

they are expressed over B1 as:

n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷
e0,1,l := (ω�el, 0n, 0n, η1�el)B1 for l = 1, . . . , n,
e1,1,l := (ω�el, τ�elU, 0n, η1�el)B1 for l = 1, . . . , n.

Using these vector expressions, the output of GP1
β (1λ, n) is expressed as (paramn,

B0, B̂
∗
0, eβ,0,B1, B̂

∗
1, {eβ,1,l}l=1,...,n).

Achieving Short Ciphertexts or Short Secret-Keys 149

Lemma 1. For any adversary B, there exists a probabilistic machine E, whose
running times are essentially the same as that of B, such that for any security
parameter λ, AdvP1

B (λ) ≤ AdvDLIN
E (λ) + 5/q.

Definition 7 (Problem 2). Problem 2 is to guess β, given (paramn, B̂0,B
∗
0,

h∗
β,0, e0, {Bi,j , B

′
i,j,l}i=1,3,4;j=1,..,4;l=1,..,n,B

∗
1, {h∗

β,1,l, Ej , E
′
j,l}j=1,..,4;l=1,..,n) R←

GP2
β (1λ, n), where

GP2
β (1λ, n) : (paramn,B0, B̂

∗
0, {Bi,j , B

′
i,j,l}i,j=1,...,4;l=1,...,n, B̂

∗
1)

R← G(1)
ob (1λ, n),

B̂0 := (b0,1, b0,3, .., b0,5), δ, ρ, ϕ0, ϕ1, ω, τ
U← Fq,

U
U← H(n,Fq) ∩GL(n,Fq), Z := (U−1)T,

hereafter, u, u′n ∈ F
×
q , u

′
1, . . . , u

′
n−1 ∈ Fq and z, z′n ∈ F

×
q , z

′
1, . . . , z

′
n−1 ∈ Fq

denote non-zero entries of U and ZT, as in Eq. (1), respectively,
h∗

0,0 := (δ, 0, 0, ϕ0, 0)B∗
0
, h∗

1,0 := (δ, ρ, 0, ϕ0, 0)B∗
0
, e0 := (ω, τ, 0, 0, 0)B0,

�el := (0l−1, 1, 0n−l) ∈ F
n
q for l = 1, . . . , n;

n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷
h∗

0,1,l := (δ�el, 0n, ϕ1�el, 0n)B∗
1

for l = 1, . . . , n,
h∗

1,1,l := (δ�el, ρ�elZ, ϕ1�el, 0n)B∗
1

for l = 1, . . . , n,
for j = 1, . . . , 4; Ej := ωB1,j + τuB2,j ,

E′
j,l := ωB′

1,j,l + τuB′
2,j,l + τu′lB

′
2,j,n for l = 1, . . . , n− 1,

E′
j,n := ωB′

1,j,n + τu′nB
′
2,j,n,

return (paramn, B̂0,B
∗
0,h

∗
β,0, e0, {Bi,j , B

′
i,j,l}i=1,3,4;j=1,...,4;l=1,...,n,B

∗
1,

{h∗
β,1,l, Ej , E

′
j,l}j=1,...,4;l=1,...,n),

for β U← {0, 1}. For a probabilistic adversary B, the advantage of B for Problem
2, AdvP2

B (λ), is similarly defined as in Definition 6.

Remark 4 . A part of output of GP2
β (1λ, n), {Bi,j , B

′
i,j,l}i=1,3,4;j=1,...,4;l=1,...,n,

can be identified with B̂1 := (b1,1, . . . , b1,n, b1,2n+1, . . . , b1,4n) in the form of
Eq. (3), while B1 := (b1,1, .., b1,4n) is identified with {Bi,j , B

′
i,j,l}i,j=1,...,4;l=1,...,n

by Eq. (3). If we make e1,l ∈ V1 for l = 1, . . . , n as:

n︷ ︸︸ ︷ n︷ ︸︸ ︷
e1,l := (0l−1, E1, 0n−l−1, E′

1,l, . . . , 0l−1, E4, 0n−l−1, E′
4,l)

for l = 1, . . . , n− 1,
e1,n := (0n−1, E′

1,n, . . . , 0n−1, E′
4,n),

they are expressed over B1 as:

150 T. Okamoto and K. Takashima

n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷ n︷ ︸︸ ︷
e1,l := (ω�el, τ�elU, 0n, 0n)B1 for l = 1, . . . , n.

Using these vector expressions, the output of GP2
β (1λ, n) is expressed as (paramn,

B̂0,B
∗
0,h

∗
β,0, e0, B̂1, B∗

1, {h∗
β,1,l, e1,l}l=1,...,n).

Lemma 2. For any adversary B, there exists a probabilistic machine E, whose
running time is essentially the same as that of B, such that for any security
parameter λ, AdvP2

B (λ) ≤ AdvDLIN
E (λ) + 5/q.

Lemma 3. Let �en := (0, . . . , 0, 1) ∈ F n
q . For all �x ∈ F n

q \ span〈�en〉 and π ∈ Fq,
let W
x,π := {(�r, �w) ∈ (span〈�x,�en〉 \ span〈�en〉)× (F n

q \ span〈�en〉⊥) | �r · �w = π}.
For all (�x,�v) ∈

(
F n

q \ span〈�en〉
)
×
(
F n

q \ span〈�en〉⊥
)
, for all (�r, �w) ∈ W
x,(
x·
v),

Pr [�xU = �r ∧ �vZ = �w] = 1
/
�W
x,(
x·
v), where U U← H(n,Fq) ∩ GL(n,Fq) and

Z := (U−1)T.

Proof Outline : At the top level of strategy of the security proof, we follow the
dual system encryption methodology proposed by Waters [20]. In the method-
ology, ciphertexts and secret keys have two forms, normal and semi-functional.
In the proof herein, we also introduce other forms of secret keys called 1st-pre-
semi-functional and 2nd-pre-semi-functional. The real system uses only normal
ciphertexts and normal secret keys, and semi-functional ciphertexts and semi-
functional/1st-pre-semi-functional/2nd-pre-semi-functional keys are used only in
a sequence of security games for the security proof. To prove this theorem, we
employ Game 0 (original adaptive-security game) through Game 3. In Game 1,
the challenge ciphertext is changed to semi-functional. When at most ν secret
key queries are issued by an adversary, there are 3ν game changes from Game 1
(Game 2-0-3), Game 2-1-1, Game 2-1-2, Game 2-1-3 through Game 2-ν-3.

In Game 2-h-1, the first (h− 1) keys are semi-functional and the h-th key is
1st-pre-semi-functional, while the remaining keys are normal, and the challenge
ciphertext is semi-functional. In Game 2-h-2, the first (h − 1) keys are semi-
functional and the h-th key is 2nd-pre-semi-functional, while the remaining keys
are normal, and the challenge ciphertext is semi-functional. In Game 2-h-3, the
first h keys are semi-functional (i.e., and the h-th key is semi-functional), while
the remaining keys are normal, and the challenge ciphertext is semi-functional.

The final game (Game 3) with advantage 0 is conceptually changed from
Game 2-ν-3. As usual, we prove that the advantage gaps between neighboring
games are negligible.

When at most ν key queries are issued by an adversary, we set a sequence
of sk := sk
v’s, i.e., (sk(1)∗, . . . , sk(ν)∗), in the order of the adversary’s queries.
Here we focus on �k(h)∗

v := (k(h)∗
0 ,k

(h)∗
1), and �c
x := (c0, {C1,j, C2,j}j=1,...,4, c3),

and ignore the other part of sk
v (resp. ct
x), i.e., �v (resp. i.e., �x), and call them
secret key and ciphertext, respectively, in this proof outline. In addition, we
ignore a negligible factor in the (informal) descriptions of this proof outline. For

Achieving Short Ciphertexts or Short Secret-Keys 151

example, we say “A is bounded by B” when A ≤ B+ε(λ) where ε(λ) is negligible
in security parameter λ.

A normal secret key, �k(h)∗norm

v , is the correct form of the secret key of the pro-

posed NIPE scheme, and is expressed by Eq. (4). Similarly, a normal ciphertext
�c norm

x , is expressed by Eq. (5). A 1st-pre-semi-functional secret key, �k(h)∗ 1st-psemi

v ,

is expressed by Eq. (7), a 2nd-pre-semi-functional secret key, �k(h)∗ 2nd-psemi

v , is ex-

pressed by Eq. (8), a semi-functional secret key, �k(h)∗ semi

v , is expressed by Eq. (9),

and a semi-functional ciphertext, �c semi

x , is expressed by Eq. (6).

To prove that the advantage gap between Games 0 and 1 is bounded by the
advantage of Problem 1 (to guess β ∈ {0, 1}), we construct a simulator of the
challenger of Game 0 (or 1) (against an adversary A) by using an instance with
β

U← {0, 1} of Problem 1. We then show that the distribution of the secret
keys and challenge ciphertext replied by the simulator is equivalent to those of
Game 0 when β = 0 and Game 1 when β = 1. That is, the advantage gap
between Games 0 and 1 is bounded by the advantage of Problem 1 (Lemma
4). The advantage of Problem 1 is proven to be bounded by that of the DLIN
assumption (Lemma 1). The advantage gap between Games 2-(h−1)-3 and 2-h-1
is similarly shown to be bounded by the advantage of Problem 2 (i.e., advantage
of the DLIN assumption) (Lemmas 5 and 2). The distributions of 1st-pre-semi-
functional secret key �k(h)∗ 1st-psemi

v (Eq. (7)) and 2nd-pre-semi-functional secret
key �k(h)∗ 2nd-psemi

v (Eq. (8)) are distinguishable by the simulator or challenger, but
the joint distributions of (�k(h)∗ 1st-psemi

v , �c semi

x) and (�k(h)∗ 2nd-psemi

v , �c semi

x) along

with the other keys are (information theoretically) equivalent for the adversary’s
view, when �x · �v = 0, i.e., RNIPE(�x,�v) �= 1. Therefore, as shown in Lemma 6, the
advantages of Games 2-h-1 and 2-h-2 are equivalent. The advantage gap between
Games 2-h-2 and 2-h-3 is similarly shown to be bounded by the advantage of
Problem 2 (i.e., advantage of the DLIN assumption) (Lemmas 7 and 2). Finally
we show that Game 2-ν-3 can be conceptually changed to Game 3 (Lemma 8)
by using the fact that basis vectors b0,2 and b∗0,3 are unknown to the adversary.

Proof of Theorem 1. To prove Theorem 1, we consider the following (3ν+ 3)
games. In Game 0, a part framed by a box indicates coefficients to be changed
in a subsequent game. In the other games, a part framed by a box indicates
coefficients that were changed in a game from the previous game.
Game 0 : Original game. That is, the reply to a key query for �v is

k∗
0 := (δ, 0 , 1, ϕ0, 0)B∗

0
, k∗

1 := (δ�v, 0n , ϕ1�v, 0n)B∗
1
, (4)

where δ, ϕ0, ϕ1
U← Fq and �v := (v1, . . . , vn) ∈ F n

q with vn �= 0. The challenge ci-
phertext for challenge plaintexts (m(0),m(1)) and �x, (�x, c0, {C1,j , C2,j}j=1,..,4, c3),
which is identified with (�x, c0, c1, c3) in Remark 2, is

152 T. Okamoto and K. Takashima

c0 := (−ω, 0 , ζ , 0, η0)B0 , c1 := (ω�x, 0n , 0n, η1�x)B1 , c3 := gζ
Tm, (5)

where b U← {0, 1};ω, ζ, η0, η1 U← Fq and �x := (x1, . . . , xn) ∈ F n
q with xl �= 0 for

some l ∈ {1, .., n− 1}.
Game 1 : Same as Game 0 except that the challenge ciphertext for challenge
plaintexts (m(0),m(1)) and �x is

c0 := (−ω, −τ , ζ, 0, η0)B0 , c1 := (ω�x, τ�xU , 0n, η1�x)B1 , c3 := gζ
Tm, (6)

where τ U← Fq, U
U← H(n,Fq) ∩GL(n,Fq), and all the other variables are gener-

ated as in Game 0.
Game 2-h-1 (h = 1, . . . , ν) : Game 2-0-3 is Game 1. Game 2-h-1 is the same
as Game 2-(h− 1)-3 except that the reply to the h-th key query for �v, (k∗

0 ,k
∗
1),

is

k∗
0 := (δ, ρ , 1, ϕ0, 0)B∗

0
, k∗

1 := (δ�v, ρ�vZ , ϕ1�v, 0n)B∗
1
, (7)

where ρ U← Fq, Z := (U−1)T for U U← H(n,Fq) ∩ GL(n,Fq) used in Eq. (6) and
all the other variables are generated as in Game 2-(h− 1)-3.
Game 2-h-2 (h = 1, . . . , ν) : Game 2-h-2 is the same as Game 2-h-1 except
that a part of the reply to the h-th key query for �v, (k∗

0 ,k
∗
1), is

k∗
0 := (δ, w , 1, ϕ0, 0)B∗

0
, k∗

1 := (δ�v, ρ�vZ, ϕ1�v, 0n)B∗
1
, (8)

where w U← Fq and all the other variables are generated as in Game 2-h-1.
Game 2-h-3 (h = 1, . . . , ν) : Game 2-h-3 is the same as Game 2-h-2 except
that the reply to the h-th key query for �v, (k∗

0 ,k
∗
1), is

k∗
0 := (δ, w, 1, ϕ0, 0)B∗

0
, k∗

1 := (δ�v, 0n , ϕ1�v, 0n)B∗
1
, (9)

where all the variables are generated as in Game 2-h-2.
Game 3 : Same as Game 2-ν-3 except that c0 and c3 of the challenge ciphertext
are

c0 := (−ω, −τ, ζ′ , 0, η0)B0 , c3 := gζ
Tm

(b),

where ζ′ U← Fq (i.e., independent from ζ
U← Fq), and all the other variables are

generated as in Game 2-ν-3.

Let Adv
(0)
A (λ),Adv

(1)
A (λ),Adv

(2-h-ι)
A (λ) (h = 1, . . . , ν; ι = 1, 2, 3) and Adv

(3)
A (λ)

be the advantage of A in Game 0, 1, 2-h-ι and 3, respectively. Adv
(0)
A (λ) is equiv-

alent to AdvNIPE,PH
A (λ) and it is obtained that Adv

(3)
A (λ) = 0 by Lemma 9. We

will show five lemmas (Lemmas 4-8) that evaluate the gaps between pairs of
Adv

(0)
A (λ), Adv

(1)
A (λ),Adv

(2-h-ι)
A (λ) for h = 1, . . . , ν; ι = 1, 2, 3 and Adv

(3)
A (λ).

From these lemmas and Lemmas 1 and 2, we obtain Theorem 1. ��

Achieving Short Ciphertexts or Short Secret-Keys 153

Lemma 4. For any adversary A, there exists a probabilistic machine B1, whose
running time is essentially the same as that of A, such that for any security
parameter λ, |Adv

(0)
A (λ)− Adv

(1)
A (λ)| ≤ AdvP1

B1
(λ).

Lemma 5. For any adversary A, there exists a probabilistic machine B2-1, whose
running time is essentially the same as that of A, such that for any security pa-
rameter λ, |Adv

(2-(h−1)-3)
A (λ) − Adv

(2-h-1)
A (λ)| ≤ AdvP2

B2-h-1
(λ), where B2-h-1(·) :=

B2-1(h, ·).

Lemma 6. For any adversary A, for any security parameter λ, |Adv
(2-h-1)
A (λ)−

Adv
(2-h-2)
A (λ)| ≤ 1/q.

Lemma 7. For any adversary A, there exists a probabilistic machine B2-2, whose
running time is essentially the same as that of A, such that for any security
parameter λ, |Adv

(2-h-2)
A (λ) − Adv

(2-h-3)
A (λ)| ≤ AdvP2

B2-h-2
(λ), where B2-h-2(·) :=

B2-2(h, ·).

Lemma 8. For any adversary A, for any security parameter λ, |Adv
(2-ν-3)
A (λ)−

Adv
(3)
A (λ)| ≤ 1/q.

Lemma 9. For any adversary A, for any security parameter λ, Adv
(3)
A (λ) = 0.

6 Proposed NIPE Scheme with Constant-Size Secret-Keys

6.1 Dual Orthonormal Basis Generator

We describe random dual orthonormal basis generator G(2)
ob below, which is used

as a subroutine in the proposed NIPE scheme, where G(1)
ob is given in Section 5.2.

G(2)
ob (1λ, n) : (paramn,D0,D

∗
0, {Di,j, D

′
i,j,l}i,j=1,...,4;l=1,...,n,D

∗
1)

R← G(1)
ob (1λ, n),

B0 := D
∗
0, B

∗
0 := D0, B1 := D

∗
1, B

∗
i,j := Di,j , B

′ ∗
i,j,l := D′

i,j,l

for i, j = 1, . . . , 4; l = 1, . . . , n,
return (paramn,B0,B

∗
0,B1, {B∗

i,j, B
′ ∗
i,j,l}i,j=1,...,4;l=1,...,n).

Remark 5 . From Remark 1, {B∗
i,j , B

′ ∗
i,j,l}i,j=1,...,4;l=1,...,n is identified with basis

B∗
1 := (b∗1,1, . . . , b

∗
1,4n) dual to B1.

6.2 Construction and Security

In the description of the scheme, we assume that input vector, �v := (v1, . . . , vn),
has an index l (1 ≤ l ≤ n − 1) with vl �= 0, and that input vector, �x :=
(x1, . . . , xn), satisfies xn �= 0.

154 T. Okamoto and K. Takashima

Setup(1λ, n) : (paramn,B0,B
∗
0,B1, {B∗

i,j , B
′ ∗
i,j,l}i,j=1,..,4; l=1,..,n) R← G(2)

ob (1λ, n),

B̂0 := (b0,1, b0,3, b0,5), B̂
∗
0 := (b∗0,1, b

∗
0,3, b

∗
0,4),

B̂1 := (b1,1, .., b1,n, b1,3n+1, .., b1,4n),

return pk :=(1λ, paramn, {B̂t}t=0,1), sk :=(B̂∗
0, {B∗

i,j, B
′ ∗
i,j,l}i=1,3; j=1,..,4; l=1,..,n).

KeyGen(pk, sk, �v) : δ, ϕ0, ϕ1
U← Fq, k∗

0 := (δ, 0, 1, ϕ0, 0)B∗
0
,

K∗
1,j := δB∗

1,j + ϕ1B
∗
3,j , K

∗
2,j :=

∑n
l=1 vl(δB

′ ∗
1,j,l + ϕ1B

′ ∗
3,j,l) for j = 1, .., 4,

return sk
v := (�v,k∗
0 , {K∗

1,j,K
∗
2,j}j=1,...,4).

Enc(pk, m, �x) : ω, η0, η1, ζ
U← Fq, c0 := (−ω, 0, 1, 0, η0)B0 ,

c1 := (ω�x, 0n, 0n, η1�x)B1 , c3 := gζ
Tm, return ct
x := (�x, c0, c1, c3).

Dec(pk, sk
v := (�v,k∗
0, {K∗

1,j,K
∗
2,j}j=1,...,4), ct
x := (�x, c0, c1, c3)) :

Parse c1 as a 4n-tuple (C1, . . . , C4n) ∈ G
4n,

Dj :=
∑n−1

l=1 ((�x · �v)−1vl)C(j−1)n+l for j = 1, .., 4,

F := e(c0,k
∗
0) ·

∏4
j=1

(
e(Dj ,K

∗
1,j) · e(Cjn,K

∗
2,j)
)
, return m′ := c3/F.

Remark 6 . A part of output of Setup(1λ, n), {B∗
i,j , B

′ ∗
i,j,l}i=1,3;j=1,...,4;l=1,...,n,

can be identified with B̂∗
1 := (b∗1,1, . . . , b

∗
1,n, b

∗
1,2n+1, . . . , b

∗
1,3n), while B∗

1 :=
(b∗1,1, . . . , b

∗
1,4n) is identified with {B∗

i,j , B
′ ∗
i,j,l}i,j=1,...,4;l=1,...,n in Remark 5. De-

cryption Dec can be alternatively described as:

Dec′(pk, sk
v := (�v,k∗
0 , {K∗

1,j,K
∗
2,j}j=1,...,4), ct
x := (�x, c0, c1, c3)) :

n︷ ︸︸ ︷ n︷ ︸︸ ︷
k∗

1 := (v1K∗
1,1, .., vn−1K

∗
1,1,K

∗
2,1, . . . , v1K

∗
1,4, .., vn−1K

∗
1,4,K

∗
2,4),

that is, k∗
1 = (δ�v, 0n, 0n, ϕ1�v)B∗

1
, F := e(c0,k

∗
0) · e((�x · �v)−1c1,k

∗
1),

return m′ := c3/F.

Theorem 2. The proposed NIPE scheme is adaptively payload-hiding against
chosen plaintext attacks under the DLIN assumption.

For any adversary A, there exist probabilistic machines E1, E2-1 and E2-2 whose
running times are essentially the same as that of A, such that for any security
parameter λ, AdvNIPE,PH

A (λ) ≤ AdvDLIN
E1

(λ) +
∑ν

h=1

(
AdvDLIN

E2-h-1
(λ) + AdvDLIN

E2-h-2
(λ)
)

+ε, where E2-h-1(·) := E2-1(h, ·), E2-h-2(·) := E2-2(h, ·), ν is the maximum number
of A’s key queries and ε := (11ν + 6)/q.

The proof of Theorem 2 is given in the full version of this paper.

Achieving Short Ciphertexts or Short Secret-Keys 155

7 Proposed ZIPE Scheme with Constant-Size Ciphertexts

7.1 Dual Orthonormal Basis Generator

Let N := 4n+ 1 and

L′(N,Fq) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩X :=

⎛⎜⎜⎜⎝
χ0,0 χ0,1�en · · · χ0,4�en
�χT

1,0 X1,1 · · · X1,4

...
...

...
�χT

4,0 X4,1 · · · X4,4

⎞⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
Xi,j ∈ H(n,Fq),
�χi,0 := (χi,0,l)l=1,...,n ∈ F

n
q ,

χ0,0, χ0,j ∈ Fq

for i, j = 1, . . . , 4

⎫⎪⎪⎪⎬⎪⎪⎪⎭⋂
GL(N,Fq). (10)

We describe random dual orthonormal basis generator G(3)
ob below, which is used

as a subroutine in the proposed Zero IPE scheme.

G(3)
ob (1λ, n) : paramG := (q,G,GT , G, e)

R← Gbpg(1λ), N := 4n+ 1,

ψ
U← F

×
q , gT := e(G,G)ψ, paramV := (q,V,GT ,A, e) := Gdpvs(1λ, N, paramG),

paramn := (paramV, gT), X U← L′(N,Fq), hereafter,
{χ0,0, χ0,j, χi,0,l, μi,j , μ

′
i,j,l}i,j=1,...4;l=1,...,n denotes non-zero entries of X,

as in Eq. (10) and Eq. (1), (ϑi,j)i,j=0,...,4n := ψ · (XT)−1,

B0,0 := χ0,0G, B0,j := χ0,jG, Bi,0,l := χi,0,lG, Bi,j := μi,jG, B
′
i,j,l := μ′i,j,lG

for i, j = 1, . . . , 4; l = 1, . . . , n,
b∗i := (ϑi,1, . . . , ϑi,N)A =

∑4n
j=0 ϑi,jaj for i = 0, . . . , 4n, B

∗ := (b∗0, . . . , b
∗
4n),

return (paramn, {B0,0, B0,j, Bi,0,l, Bi,j , B
′
i,j,l}i,j=1,...,4;l=1,...,n,B

∗).

Remark 7 . {B0,0, B0,j, Bi,0,l, Bi,j , B
′
i,j,l}i=1,...,4;j=1,...,4;l=1,...,n is identified with

basis B := (b0, . . . , b4n) dual to B∗ as in Remark 1.

7.2 Construction and Security

In the description of the scheme, we assume that input vector, �x := (x1, . . . , xn),
has an index l (1 ≤ l ≤ n − 1) with xl �= 0, and that input vector, �v :=
(v1, . . . , vn), satisfies vn �= 0.

Setup(1λ, n) :

(paramn, {B0,0, B0,j , Bi,0,l, Bi,j , B
′
i,j,l}i,j=1,...,4; l=1,...,n,B

∗) R← G(3)
ob (1λ, n),

B̂
∗ := (b∗0, . . . , b

∗
n, b

∗
2n+1, . . . , b

∗
3n),

return pk := (1λ, paramn, {B0,0, B0,j , Bi,0,l, Bi,j , B
′
i,j,l}i=1,4;j=1,...,4;l=1,...,n),

sk := B̂
∗.

KeyGen(pk, sk, �v) : δ, ϕ
U← Fq, k∗ := (1,

n︷︸︸︷
δ�v,

n︷︸︸︷
0n,

n︷ ︸︸ ︷
ϕ�v,

n︷︸︸︷
0n)B∗ ,

156 T. Okamoto and K. Takashima

return sk
v := k∗.

Enc(pk, m, �x) : ω, η, ζ
U← Fq, C0 := ζB0,0 +

∑n
l=1 xl(ωB1,0,l + ηB4,0,l),

c3 := gζ
Tm, C1,j := ωB1,j + ηB4,j ,

C2,j := ζB0,j +
∑n

l=1 xl(ωB′
1,j,l + ηB′

4,j,l) for j = 1, . . . , 4,
return ct
x := (�x,C0, {C1,j, C2,j}j=1,...,4, c3).

Dec(pk, sk
v := k∗, ct
x := (�x,C0, {C1,j, C2,j}j=1,...,4, c3)) :
Parse k∗ as a (4n+ 1)-tuple (K∗

0 , . . . ,K
∗
4n) ∈ G

4n+1,

D∗
j :=

∑n−1
l=1 xlK

∗
(j−1)n+l for j = 1, . . . , 4,

F := e(C0,K
∗
0) ·

∏4
j=1

(
e(C1,j , D

∗
j) · e(C2,j ,K

∗
jn)
)
, return m′ := c3/F.

Remark 8 . A part of output of Setup(1λ, n), {B0,0, B0,j , Bi,0,l, Bi,j , B
′
i,j,l

}i=1,4;j=1,..,4;l=1,..,n, can be identified with B̂ := (b0, .., bn, b3n+1, .., b4n), while
B := (b0, . . . , b4n) is identified with {B0,0, B0,j , Bi,0,l, Bi,j , B

′
i,j,l}i,j=1,..,4;l=1,..,n

in Remark 7. Decryption Dec can be alternatively described as:

Dec′(pk, sk
v := k∗, ct
x := (�x,C0, {C1,j , C2,j}j=1,...,4, c3)) :
n︷ ︸︸ ︷ n︷ ︸︸ ︷

c := (C0, x1C1,1, .., xn−1C1,1, C2,1, . . . , x1C1,4, .., xn−1C1,4, C2,4),

that is, c = (ζ,

n︷ ︸︸ ︷
ω�x,

n︷︸︸︷
0n,

n︷︸︸︷
0n,

n︷︸︸︷
η�x)B, F := e(c,k∗), return m′ := c3/F.

[Correctness]. Using the alternate decryption Dec′, F = e(c,k) = gζ+ωδ
x·
v
T =

gζ
T if �x · �v = 0.

Remark 9 . The proposed ZIPE in this section employs a single basis, B, gener-
ated by X ∈ GL(4n+1,Fq) (or X ∈ L′(4n+1,Fq) of Eq. (10)), and a ciphertext
can be expressed as (c, gζ

Tm) with c = (ζ, ω�x, 02n, η1�x)B as shown in Remark 8.
The proposed NIPE scheme in Sec. 5.3 employs two bases, B0 and B1, generated
by X0 ∈ GL(5,Fq) and X1 ∈ GL(4n,Fq), and a ciphertext can be expressed as
(c0, c1, g

ζ
Tm) with c0 := (−ω, 0, ζ, 0, η0)B0 and c1 = (ω�x, 02n, η1�x)B1 . Hence,

the ciphertext and secret key of the ZIPE scheme are shorter than those of the
NIPE scheme (see Table 1 in Sec. 8). It is due to the difference of the decryption
tricks in the ZIPE and NIPE schemes. Similarly to the fact on L(4n,Fq) (for the
security of the NIPE scheme) shown in Sec. 5.1, it is crucial for the security of
the ZIPE scheme that L′(4n + 1,Fq) is a subgroup in GL(4n + 1,Fq), and its
security proof is made in the essentially same manner as explained in Sec. 5.1.

Theorem 3. The proposed ZIPE scheme is adaptively payload-hiding against
chosen plaintext attacks under the DLIN assumption. For any adversary A,
there exist probabilistic machines E1, E2,h (h = 1, . . . , ν), whose running times

Achieving Short Ciphertexts or Short Secret-Keys 157

are essentially the same as that of A, such that for any security parameter λ,
AdvZIPE,PH

A (λ) ≤ AdvDLIN
E1

(λ) +
∑ν

h=1 AdvDLIN
E2,h

(λ) + ε, where ν is the maximum
number of A’s key queries and ε := (11ν + 6)/q.

The proof of Theorem 3 is given in the full version of this paper.

8 Performance

Table 1 compares the proposed ZIPE and NIPE schemes (ZIPE with short ci-
phertexts in Sec. 7, NIPE with short ciphertexts in Sec. 5, ZIPE with short secret-
keys given in the full version, and NIPE with short secret-keys in Sec. 6) with
the ZIPE and NIPE schemes in [2] that are secure under standard assumptions.

Table 1. Comparison with IPE schemes in [2], where |G|, |GT |, |Fq|, P and M represent
size of G, size of GT , size of Fq, pairing operation, and scalar multiplication on G,
respectively. CT, SK, IP and DBDH stand for ciphertexts, secret-keys, inner-product
and decisional bilinear Diffie-Hellman, respectively.

AL10 [2] AL10 [2] Proposed Proposed Proposed Proposed
ZIPE with NIPE with ZIPE with NIPE with ZIPE with NIPE with
Short CTs Short CTs Short CTs Short CTs Short SKs Short SKs

Security Adaptive Co-selective Adaptive Adaptive Adaptive Adaptive

Assump.
DLIN &
DBDH

DLIN &
DBDH

DLIN DLIN DLIN DLIN

IP Rel. Zero Non-zero Zero Non-zero Zero Non-zero

PK
Size

(n+11)|G|
+ |GT |

(n+11)|G|
+ |GT |

(10n+13)|G|
+ |GT |

(8n+23)|G|
+ |GT |

(10n+13)|G|
+ |GT |

(8n+23)|G|
+ |GT |

SK
Size

(n + 6)|G|
+(n−1)|Fq| (n + 6)|G| (4n + 1)|G| (4n + 5)|G| 9|G| 13|G|

CT
Size

9|G|+ |GT |
+ |Fq|

9|G|
+ |GT |

9|G|
+ |GT |

13|G|
+ |GT |

(4n + 1)|G|
+ |GT |

(4n + 5)|G|
+ |GT |

Dec
Time

9P + nM 9P + nM
9P +

4(n − 1)M
13P +

4(n − 1)M
9P +

4(n − 1)M
13P +

4(n − 1)M

9 Concluding Remarks

The technique with using special type matrices shown in this paper can reduce
the size of ciphertexts or secret-keys of adaptively secure FE schemes in [17]
from O(dn) to O(d), where d is the number of sub-universes of attributes, and
n is the maximal length of attribute vectors. A key-policy attribute-based en-
cryption (ABE) system with constant-size ciphertext [3] is selectively secure in
the standard model. Therefore, it is an interesting open problem to realize an
adaptively secure and constant-size ciphertext ABE scheme.

158 T. Okamoto and K. Takashima

References

1. Abdalla, M., Kiltz, E., Neven, G.: Generalized key Delegation for Hierarchical
Identity-Based Encryption. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
vol. 4734, pp. 139–154. Springer, Heidelberg (2007)

2. Attrapadung, N., Libert, B.: Functional Encryption for Inner Product: Achieving
Constant-Size Ciphertexts with Adaptive Security or Support for Negation. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 384–402.
Springer, Heidelberg (2010)

3. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive Key-Policy Attribute-
Based Encryption with Constant-Size Ciphertexts. In: Catalano, D., Fazio, N.,
Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer,
Heidelberg (2011)

4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Press
(2007)

5. Boneh, D., Hamburg, M.: Generalized Identity Based and Broadcast Encryption
Scheme. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470.
Springer, Heidelberg (2008)

6. Delerablée, C.: Identity-Based Broadcast Encryption with Constant Size Ci-
phertexts and Private Keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 200–215. Springer, Heidelberg (2007)

7. Emura, K., Miyaji, A., Nomura, A., Omote, K., Soshi, M.: A Ciphertext-Policy
Attribute-Based Encryption Scheme with Constant Ciphertext Length. In: Bao,
F., Li, H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 13–23. Springer,
Heidelberg (2009)

8. Gentry, C., Waters, B.: Adaptive Security in Broadcast Encryption Systems (with
short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
171–188. Springer, Heidelberg (2009)

9. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communication Security 2006, pp. 89–98. ACM (2006)

10. Herranz, J., Laguillaumie, F., Ràfols, C.: Constant Size Ciphertexts in Thereshold
Attribute-Based Encryption. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 19–34. Springer, Heidelberg (2010)

11. Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions,
Polynomial Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

12. Lewko, A., Sahai, A., Waters, B.: Revocation systems with very small private keys.
In: IEEE Symposium on Security and Privacy 2010 (2010)

13. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Func-
tional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product
Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010), http://eprint.iacr.org/2010/110

14. Lewko, A.B., Waters, B.: New Techniques for Dual System Encryption and Fully
Secure HIBE with Short Ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010)

15. Okamoto, T., Takashima, K.: Homomorphic Encryption and Signatures from Vec-
tor Decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS,
vol. 5209, pp. 57–74. Springer, Heidelberg (2008)

http://eprint.iacr.org/2010/110

Achieving Short Ciphertexts or Short Secret-Keys 159

16. Okamoto, T., Takashima, K.: Hierarchical Predicate Encryption for Inner-
Products. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231.
Springer, Heidelberg (2009)

17. Okamoto, T., Takashima, K.: Fully Secure Functional Encryption with General
Relations from the Decisional Linear Assumption. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010),
http://eprint.iacr.org/2010/563

18. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

19. Sakai, R., Furukawa, J.: Identity-based broadcast encryption, IACR ePrint Archive:
Report 2007/217 (2007), http://eprint.iacr.org/2007/217

20. Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under
Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
619–636. Springer, Heidelberg (2009)

http://eprint.iacr.org/2010/563
http://eprint.iacr.org/2007/217

Comments on the SM2 Key Exchange Protocol

Jing Xu and Dengguo Feng

State Key Laboratory of Information Security,
Institute of Software, Chinese Academy of Sciences, Beijing, P.R.China

xujing@is.iscas.ac.cn

Abstract. SM2 key exchange protocol is one part of the public key
cryptographic algorithm SM2 which has been standardized by Chinese
state cryptography administration for commercial applications. It be-
came publicly available in 2010 and since then it was neither attacked
nor proved to be secure. In this paper, we show that the SM2 key ex-
change protocol is insecure by presenting realistic attacks in the Canetti-
Krawczyk model. The demonstrated attack breaks session-key security
against an adversary who can only reveal session states. We also propose
a simple modification method to solve this problem.

Keywords: Key exchange protocol, SM2, security model, attack.

1 Introduction

Key exchange protocols are cryptographic primitives that specify how two or
more parties communicating over a public network establish a common session
key. This session key is then typically used to build a confidential or integrity-
preserving communication channel among the involved parties. Therefore, key
exchange protocols form a crucial component in many network protocols. The
most famous example is the classic Diffie-Hellman (DH) key exchange protocol
that marked the birth of modern cryptography [1]. However, the original DH
protocol did not provide authentication of the communicating parties, suffering
from active attacks such as a man-in-the-middle attack. Authenticated key ex-
change (AKE) not only allows parties to compute the shared key but also ensures
authenticity of the parties. AKE protocols operate in a public key infrastructure
and the parties use each other’s public keys to construct a shared secret.

1.1 Security Attributes

For authenticated key exchange protocols, it is desirable to possess the following
security attributes:

(1) (implicit) key authentication: an agreed-upon session key should be known
only by identified parties;

(2) forward secrecy: an agreed-upon session key should remain secret, even if
both parties’ long-term secret key is compromised;

D. Lin, G. Tsudik, and X. Wang (Eds.): CANS 2011, LNCS 7092, pp. 160–171, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Comments on the SM2 Key Exchange Protocol 161

(3) key compromise impersonation resilience: An adversary who reveals a long-
term secret key of some party A should be unable to impersonate other
parties to A (still, an adversary can impersonate A to anyone else).

In addition to above basic properties, another desirable attribute is resistance
to unknown key-share (UKS) attacks. In an unknown key-share attack, a party
A is coerced into sharing a key with any party E when in fact she thinks that
she is sharing the key with a party B. UKS attacks were first discussed by Diffie
et al. [2] and have been found in a number of protocols including MTI/A0 [3],
the STS-MAC variant of the Station-to-Station (STS) protocol [4], MQV [5] and
KEA [6]. Consider the situation where B is a bank system and A is an account
holder. If the UKS attack described above is successful, then the adversary E
could impersonate B (a banking system) and obtain A’s credit card number
over the resulting private communication link. Therefore, it is very significant to
design protocols secure against UKS attacks.

1.2 Related Works and Our Contribution

The design and analysis of secure key exchange protocols have been proved to
be a non-trivial task, with a large body of work written on the topic, including
[7-12] and many more. Of these protocols, the most famous, most efficient and
most standardized is the MQV protocol. The MQV protocols [7] are a family of
authenticated Diffie-Hellman protocols and have been widely standardized [13-
15]. The HMQV protocol [12] is a hashed variant of the MQV key agreement
protocol with a rigorous security proof, which is currently being standardized by
IEEE P1363 standards group [16].

SM2 key exchange protocol [17] is one part of the public key cryptographic
algorithm SM2, which has been standardized by Chinese state cryptography
administration for commercial applications and has been released in December
2010. This standard aims to provide a reference of products and techniques for
security manufacturers in China, promoting the credibility and interoperability
of security products. Indeed, SM2 key exchange protocol appears to be a remark-
able protocol which provides the same efficiency as the MQV protocol. However,
one question that has not been settled so far is whether the protocol can be
proven secure in a rigorous model of key exchange security. In order to provide
an answer to this question we analyze the SM2 protocol in the Canetti-Krawczyk
security model. Unfortunately, we show that SM2 protocol is vulnerable to un-
known key-share attacks in this model. The demonstrated attack breaks session-
key security against an adversary who can only reveal session states. Then we
present a simple patch which fixes the security problem.

1.3 Organization

The rest of this paper is organized as follows. Section 2 reviews SM2 key exchange
protocol. Section 3 provides an overview of the formal security model of key
exchange protocols, on which all of our analysis work is based. Section 4 presents

162 J. Xu and D. Feng

our attacks on SM2 key exchange protocol and offers a security patch for the
protocol. Section 5 concludes this work.

For ease of presentation, the notations and definitions used in this paper are
shown in Table 1.

Table 1. Notations and definitions

Notation Definition

A, B Clients
dA, dB The long-term private key of client A and client B respectively
PA, PB The long-term public key of client A and client B respectively
Fq The finite field containing q elements.
E(Fq) The set of all points on an elliptic curve E defined over Fq and

including the point at infinity O
G A distinguished point on an elliptic curve called the base point or

generating point
�E(Fq) The number of points on the curve (including the point at infinity O)
h h = �E(Fq)/n, where n is the order of the base point G; h is called the

co-factor
KDF (Z, klen) A key derivation function whose output length is klen
x‖y Concatenation of two strings x and y
Hash(·) a one-way hash function
[a, b] The set of integers x such that a ≤ x ≤ b
�x� The ceiling of x; the smallest integer ≥ x
x mod n The unique remainder r, 0 ≤ r ≤ n − 1, when x is divided by n
& Bitwise AND operator
[k]P Scalar multiplication of a point P , [k]P = P + P + · · · + P︸ ︷︷ ︸

ktimes

2 Review of SM2 Key Exchange Protocol

There are two entities involved in the protocol: clients A and B who wish to
establish a session key between them. Let E(Fq) be an elliptic curve defined
over a finite field Fq and let G be the base point in E(Fq) of order n. The client
A chooses a random dA ∈ [1, n − 1] as its long-term private key and computes
its long-term public key PA as PA = [dA]G. Similarly, client B’s long-term key
pair is (dB, PB), where PB = [dB]G. We also assume that the public parameters
〈E(Fq), G, n, PA, PB , ZA, ZB〉 have been fixed in advance and are known to A and
B, where ZA and ZB are hash values of the identities of A and B, respectively.
A high-level depiction of the protocol is given in Fig. 1, and a more detailed
description follows:

(1) To establish a session key with client B, client A (the initiator) performs the
steps:
(a) Select rA ∈ [1, n− 1] randomly and compute RA = [rA]G = (x1, y1).
(b) Send RA to B.
(c) Compute tA = (dA +x1 ·rA) mod n, where x1 = 2w +(x1&(2w−1)) and

w = %(%log2(n)/2) − 1.

Comments on the SM2 Key Exchange Protocol 163

(2) Client B (the responder) performs the steps:
(a) Select rB ∈ [1, n− 1] randomly and compute RB = [rB]G = (x2, y2).
(b) Compute tB = (dB + x2 · rB) mod n, where x2 = 2w + (x2&(2w − 1))

and w = %(%log2(n)/2) − 1.
(c) Verify that RA satisfies the defining equation of E. If it holds, compute

V = [h · tB](PA + [x1]RA) = (xV , yV). If V = O, then B terminates the
protocol run with failure.

(d) Compute KB = KDF (xV ‖yV ‖ZA‖ZB, klen) and (optional) SB =
Hash(0x02‖yV ‖Hash(xV ‖ZA‖ZB‖x1‖y1‖x2‖y2)).

(e) Send RB and (optional) SB to A.
(3) Upon receiving the message from B, A performs the steps:

(a) Verify that RB satisfies the defining equation of E. If it holds, compute
U = [h · tA](PB + [x2]RB) = (xU , yU). If U = O, then A terminates the
protocol run with failure.

(b) (optional) Compare SB with Hash(0x02‖yU‖Hash
(xU‖ZA‖ZB‖x1‖y1‖x2‖y2)). If they are equal, B is authenticated.

(c) Compute KA = KDF (xU‖yU‖ZA‖ZB, klen) and (optional) SA =
Hash(0x03‖yU‖Hash(xU‖ZA‖ZB‖x1‖y1‖x2‖y2)).

(d) (optional) Send SA to B for session key confirmation.
(4) (optional) Upon receiving the message SA from A, B compare SA with

Hash(0x03‖yV ‖Hash(xV ‖ZA‖ZB‖x1‖y1‖x2‖y2)). If they are equal, A is au-
thenticated.

It is straightforward to verify that both parties compute the same shared session
key K = KA = KB.

3 Formal Model for Key Exchange Protocols

This section presents an abridged description of the Canetti-Krawczyk (CK)
security model for key exchange protocols [18-19] on which all the analysis work
in this paper is based.

In the CK model there are n parties each modeled by a probabilistic Turing
machine. Each party has a long-term public-private key pair together with a
certificate that binds the public key to that party. The binding assurance is
provided by a certification authority (CA) which is only trusted to correctly
verify the identity of the registrant of a public key before issuing the certificate.
We do not assume that the CA requires a proof-of-possession of the private key
from a registrant of a public key. For simplicity, we will only describe the model
for Diffie-Hellman protocols that exchange ephemeral and long-term public keys.
In particular, in the case of SM2, two parties A, B exchange long-term public
keys PA, PB and ephemeral public keys RA, RB; the session key is obtained by
combining PA, PB , RA, RB and possibly the identities A, B.

A party can be activated to run an instance of the protocol called a session,
and each party may have multiple sessions running concurrently. The commu-
nications network is controlled by an adversary A, an interactive probabilistic
polynomial-time (PPT) machine, which schedules and mediates all sessions be-
tween the parties. A may activate a party A in two ways:

164 J. Xu and D. Feng

Client A Client B
(E(Fq), G, n, PA, PB , ZA, ZB , dA) (E(Fq), G, n, PA, PB , ZA, ZB , dB)

Select rA ∈R [1, n − 1] Select rB ∈R [1, n − 1]

Compute RA = [rA]G = (x1, y1) Compute RB = [rB]G = (x2, y2)

x2 = 2w + (x2&(2w − 1))

Compute tB = dB + x2 · rB

{RA}−−−−−−−−−−−−−−→
x1 = 2w + (x1&(2w − 1))

Compute tA = dA + x1 · rA

Verify RA?

Compute V = [h · tB](PA + [x1]RA)

= (xV , yV)

Compute KB = KDF (xV ‖yV ‖ZA

‖ZB , klen)

(optional) SB = Hash(0x02‖yV ‖
Hash(xV ‖ZA‖ZB‖x1‖y1‖x2‖y2))

{RB, (optional)SB}←−−−−−−−−−−−−−−−
Verify RB?

Compute U = [h · tA](PB + [x2]RB)

= (xU , yU)

(optional) Verify SB?

Compute KA = KDF (xU‖yU‖ZA

‖ZB , klen)

(optional) SA = Hash(0x03‖yU‖
Hash(xU‖ZA‖ZB‖x1‖y1‖x2‖y2))

{(optional)SA}−−−−−−−−−−−−−−→
(optional) Verify SA?

Fig. 1. SM2 key exchange protocol

1. By means of an establish-session(A,B) request, where B is another party
with whom the key is to be established.

2. By means of a send(A,B,m) query, where B is a specified sender and m is
an incoming message.

A session is associated with its holder or owner (the party at which the session
exists), a peer (the party with which the session key is intended to be established),
and a session identifier. The session identifier is a quadruple (A,B,Out, In)
where A is the identity of the holder of the session, B the peer, Out the outgoing
messages from A in the session, and In the incoming messages from B. identified
via a session identifier s. In particular, in the case of SM2 this results in an
identifier of the form (A,B,RA, RB) where RA is the outgoing DH value and
RB the incoming DH value to the session. The peer that sends the first message
in a session is called the initiator and the other the responder. The session
(A,B,RA, RB) (if it exists) is said to be matching to the session (B,A,RB, RA).

Comments on the SM2 Key Exchange Protocol 165

In addition to the activation of parties, A can perform the following queries:

– corrupt(P): The adversary A learns the long term private key of a party
P .

– session-key-reveal(s): The adversaryA obtains the session key for a session
s, provided that the session holds a session key.

– session-state-reveal(s): The adversary A learns the session state informa-
tion of a particular session s, but does not include the long-term private key
of the party associated with s. In particular, ifHash(x1, · · · , xn) is computed
in the session s, x1, · · · , xn are parts of the local state and can therefore be
revealed by session-state-reveal(s) query.

– test-session(s): To respond to this query, a random bit b is selected. If b = 1
then the session key is output. Otherwise, a random key is output chosen
from the probability distribution of keys generated by the protocol. This
query can only be issued to a session that has not been exposed. A session
is exposed if the adversary performs any of the following actions:
(1) A session-state-reveal or session-key-reaveal query to this session

or to the matching session, or
(2) A corrupt query to either partner associated with this session.

The security is defined based on a game played by the adversary A. In this
game A interacts with the protocol. In a first phase of the game, A is allowed to
activate sessions and perform corrupt, session-key-reveal and session-state-
reveal queries as described above. The adversary then performs a test-session
query to a party and session of its choice. The adversary is not allowed to expose
the test session. A may then continue with its regular actions with the exception
that no more test-session queries can be issued. Eventually, A outputs a bit
b′ as its guess, then halts. A wins the game if b = b′. The definition of security
follows.

Definition 1. A key agreement protocol π is session-key secure if for any ad-
versary A the following conditions hold:

(1) If two honest parties complete matching sessions, then they both compute
the same session key;

(2) The probability that A guesses correctly the bit b is no more than 1/2 plus
a negligible function in the security parameter.

Krawczyk [12] provided a stronger version of the Canetti-Krawczyk model that
captures additional security properties, including resistance to key-compromise
impersonation (KCI) attacks, weak perfect forward secrecy, and resilience to the
leakage of ephemeral private keys. Further details of the model can be found in
the original papers [12].

4 Weaknesses of SM2 Key Exchange Protocol

This section presents unknown key-share (UKS) attacks on SM2 key exchange
protocol and also offers a security patch for the protocol.

166 J. Xu and D. Feng

4.1 UKS Attack I

In this UKS attack, an adversary E selects e ∈ [1, n− 1] randomly, and registers
its own public key as PE = PA +[e]G. Note that E does not know the private key
dA + e corresponding to the public key PE . In SM2 protocol, it is not required a
proof of possession of the corresponding private key from the verification of a
public key. The attack scenario is outlined in Fig. 2. A more detailed description
of the attack is as follows:

(1) E intercepts the message {RA} from A to B and replaces the identity A with
E .

(2) B chooses his rB, and computesRB , SB and the session keyKB = KDF (xV ‖
yV ‖ZE‖ZB, klen). During the computation of KB, the adversary E uses
session-state-reveal query to learn the input to KDF . In particular, the
adversary learns xV and yV .

(3) E receives B’s message {RB, SB}. Since E knows V = (xV , yV), E will suc-
cessfully compute the session key KA of A:

U = [h · tA](PB + [x2]RB)
= [h · (dA + x1 · rA)](PB + [x2]RB)
= [h · (dB + x2 · rB)](PA + [x1]RA)
= [h · (dB + x2 · rB)](PE − [e]G+ [x1]RA)
= [h · (dB + x2 · rB)](PE + [x1]RA)− [h · (dB + x2 · rB)][e]G
= V − [e](PB + [x2]RB)
= (xU , yU)

KA = KDF (xU‖yU‖ZA‖ZB, klen)

In addition, E computes S′
B =Hash(0x02‖yU‖Hash(xU‖ZA‖ZB‖x1‖y1‖x2‖y2))

and S′
A = Hash(0x03‖yV ‖Hash(xV ‖ZE‖ZB‖x1‖y1‖x2‖y2)).

(4) E sends the message {RB, S
′
B} to A as coming fromB, and sends the message

{S′
A} to B.

As a result, A believes that a session key KA is shared with B, but all the while
with B thinking it is sharing a key KB with E . Thus, the SM2 protocol cannot
resist our unknown key-share attack.

4.2 UKS Attack II

Attack I can be prevented if certificates are only issued to users who have shown
that they know the private key corresponding to their public key. However, even
this is not sufficient to prevent UKS attacks in all cases. In our UKS attack II,
an adversary E is a legitimate client. E selects its private key dE ∈ [1, n − 1]
randomly, and registers its own public key as PE = [dE]G. The attack scenario
is outlined in Fig. 3. A more detailed description of the attack is as follows:

Comments on the SM2 Key Exchange Protocol 167

A E B

rA ∈R [1, n − 1]

RA = [rA]G
{RA}−−−−−−−−−→

e ∈ [1, n − 1]

PE = PA + [e]G
{RA}−−−−−−−−−→

rB ∈R [1, n − 1]

RB = [rB]G

tB = (dB + x2 · rB) mod n

V = [h · tB](PE + [x1]RA)

= (xV , yV)

SB = Hash(0x02‖yV ‖Hash(xV

‖ZE‖ZB‖x1‖y1‖x2‖y2))
{RB,SB}←−−−−−−−−−−−−

session-state-reveal

→ V = (xV , yV)

U = V − [e](PB + [x2]RB)

= (xU , yU)

S′
B = Hash(0x02‖yU‖Hash(xU

‖ZA‖ZB‖x1‖y1‖x2‖y2))

S′
A = Hash(0x03‖yV ‖Hash(xV

‖ZE‖ZB‖x1‖y1‖x2‖y2))

{RB,S′
B}←−−−−−−−−−−− {S′

A}−−−−−−−−−→
KA = KDF (xU‖yU‖ZA‖ZB , klen)←−−−−−−−−−−−−−−−−−−−−−−−−−→ KB = KDF (xV ‖yV ‖ZE‖ZB , klen)←−−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 2. Attack I on SM2 protocol

(1) E intercepts the message {RA} from A to B and then computes RE = PA +
[x1]RA = (x3, y3), where x1 = 2w +(x1&(2w−1)) and w = %(%log2(n)/2)−
1. Next, E sends {RE} to B.

(2) Upon receiving the message, B thinks that the protocol run is initiated by E .
Then B responds it with the message {RB, SB} by computing RB, SB and
the session key KB = KDF (xV ‖yV ‖ZE‖ZB, klen). During the computation
of KB, the adversary E uses session-state-reveal query to learn the input
to KDF . In particular, the adversary learns xV and yV .

(3) E receives B’s message {RB, SB}. Since

V = [h · tB](PE + [x3]RE)
= [h · (dB + x2 · rB)](PE + [x3](PA + [x1]RA))
= [h · dE](PB + [x2]RB) + [x3][h · (dB + x2 · rB)](PA + [x1]RA)
= [h · dE](PB + [x2]RB) + [x3]U

168 J. Xu and D. Feng

and E knows V = (xV , yV), E will successfully compute the session key KA

of A:

U = [x3]−1(V − [h · dE](PB + [x2]RB)) = (xU , yU)

KA = KDF (xU‖yU‖ZA‖ZB, klen),

where x3 = 2w+(x3&(2w−1)). In addition, E computes S′
B =Hash(0x02‖yU‖

Hash(xU‖ZA‖ZB‖x1‖y1‖x2‖y2)) andS′
A =Hash(0x03‖yV ‖Hash(xV ‖ZE‖ZB‖

x1‖y1‖x2‖y2)).
(4) E sends the message {RB, S

′
B} to A as coming from B and sends the message

{S′
A} to B.

A (dA) E (dE) B (dB)

rA ∈R [1, n − 1]

RA = [rA]G = (x1, y1)
{RA}−−−−−−−−−→

RE = PA + [x1]RA

= (x3, y3)
{RE}−−−−−−−−−→

rB ∈R [1, n − 1]

RB = [rB]G

V = [h · tB](PE + [x3]RE)

= (xV , yV)

SB = Hash(0x02‖yV ‖Hash(xV

‖ZE‖ZB‖x1‖y1‖x2‖y2))
{RB,SB}←−−−−−−−−−−−−

session-state-reveal

→ V = (xV , yV)

U = [x3]−1(V − [h · dE](PB

+[x2]RB)) = (xU , yU)

S′
B = Hash(0x02‖yU‖Hash(xU

‖ZA‖ZB‖x1‖y1‖x2‖y2))

S′
A = Hash(0x03‖yV ‖Hash(xV

‖ZE‖ZB‖x1‖y1‖x2‖y2))

{RB,S′
B}←−−−−−−−−−−− {S′

A}−−−−−−−−−→
KA = KDF (xU‖yU‖ZA‖ZB , klen)←−−−−−−−−−−−−−−−−−−−−−−−−−→ KB = KDF (xV ‖yV ‖ZE‖ZB , klen)←−−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 3. Attack II on SM2 protocol

Clearly, A believes that a session key KA is shared with B, but all the while
with B thinking it is sharing a key KB with E . Compared to UKS attack I, this
attack is much more effective. UKS attack I is readily prevented if the certificate
authority requires proof of possession of the private key. The attack here succeeds
despite such a requirement.

Comments on the SM2 Key Exchange Protocol 169

This attack is similar in spirit to Kaliski’s attack [5] on the MQV protocol,
however, the attack we present is more damaging. In Kaliski’s attack, the ad-
versary chooses its public and private keys after seeing A’s initial value RA.
Meanwhile, in our attack, the public and private keys of the adversary are de-
termined before the attack, which is off-line.

4.3 Formal Attack Description

We now interpret our UKS attack II in the context of the formal security model to
show that the attack do indeed break the security of the protocol. The description
of UKS attack I is omitted because of its similarity.

The UKS attack II on SM2 protocol is well captured in the Canetti-Krawczyk
security model. Let again A and B denote two registered clients and E also be
any registered client other than A and B. The goal of the adversary, denoted
by A, is to break the session-key security of the SM2 protocol. A begins by
issuing corrupt(E) query to obtain the private key dE of client E . Then A issues
establish-session(A,B) query to prompt instance s2 = (A,B,×,×) to initiate
the protocol with client B. The rest of the oracle queries are straightforward
from the attack scenario depicted in Fig.3. Table 2 summarizes the sequence of
queries corresponding to our UKS attack II.

Clearly, s1 = (B, E , RB , RE) and s2 = (A,B,RA, RB)1 are two non-matching
sessions. Furthermore, the test session s2 is not exposed because (1) no corrupt
query has been asked for A or B, and (2) no session-state-reveal or session-
key-reveal query has ever been made for the session s2. Since A can compute
the session key KA of the session s2, the probability that A guesses correctly the
bit b used by the test-session query is 1. Therefore, A breaks the session-key
security of the SM2 protocol.

4.4 Countermeasure

In the SM2 protocol, the client A cannot verify the real identity of the peer
B. Therefore, the adversary A can corrupt any legitimate client to mount our
described UKS attacks, and break the session-key security of the SM2 protocol.
The weaknesses of the SM2 key exchange protocol are mainly due to the fact
that the identities of the initiator and the responder are not appropriately inte-
grated into the exchanged cryptographic messages. A simple improvement is to
include the party’s own identity and the peer’s identity as input parameters for
computing x1 and x2. Specifically, the values x1 = 2w +(x1&(2w− 1)) and x2 =
2w + (x2&(2w − 1)) in the SM2 protocol are replaced with x1 = H(x1‖ZA‖ZB)
and x2 = H(x2‖ZB‖ZA), where H() is a one-way hash function whose output
is w = %(%log2(n)/2) − 1 bits.

Evidently, our improvement can effectively resist the UKS attack. For the
adversary E who learns V = (xV , yV) , it is infeasible to compute U = (xU , yU)

1 For simplicity, SB, S′
A and S′

B are not included in the sessions s1 and s2—this is
without loss of generality as they are optional parameters in SM2 protocol.

170 J. Xu and D. Feng

Table 2. The sequence of oracle queries corresponding to UKS attack II

Query Response

1 corrupt (E) dE
2 establish-session (A,B) {RA}
3 send (B, E , {RE}) {RB , SB}
4 session-state reveal (s1 = (B, E ,RB , RE)) V = (xV , yV)
5 send (A, B, {RB , S′

B}) {SA}(accept)
6 send (B, E , {S′

A}) (accept)
7 test (s2 = (A, B, RA, RB)) KA

and then obtain the shared key KA = KDF (xU‖yU‖ZA‖ZB, klen) with A. This
is due to the fact that the relation between U and V (as described in Section
4.2 and 4.3) does not exist.

5 Conclusion

In this paper, we have shown that the SM2 key exchange protocol is potentially
vulnerable to an unknown key-share attack. The weakness is due to the fact that
the identifiers of the communicants are not appropriately integrated into the
exchanged cryptographic messages. However, the attack presented here should
not discourage use of the SM2 protocol, as long as appropriate countermeasures
are taken. We also have suggested a simple modification to resist our described
attacks while the merits of the original protocol are left unchanged.

Acknowledgements. This work was supported by the National Grand Funda-
mental Research (973) Program of China under grant 2007CB311202, and the
National Natural Science Foundation of China (NSFC) under grants 61170279
and 60873197. The authors would like to thanks the anonymous referees for their
helpful comments.

References

1. Diffie, W., Hellman, H.: New directions in cryptography. IEEE Transactions of
Information Theory 22(6), 644–654 (1976)

2. Diffie, W., van Oorschot, P., Wiener, M.: Authentication and authenticated key
exchanges. Designs, Codes and Cryptography 2(2), 107–125 (1992)

3. Menezes, A., Qu, M., Vanstone, S.: Some new key agreement protocols provid-
ing mutual implicit authentication. In: Proceedings of the Second Workshop on
Selected Areas in Cryptography (SAC 1995), pp. 22–32 (1995)

4. Blake-Wilson, S., Menezes, A.: Unknown Key-Share Attacks on the Station-to-
Station (STS) Protocol. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560,
pp. 154–170. Springer, Heidelberg (1999)

5. Kaliski, B.: An unknown key-share attack on the MQV key agreement protocol.
ACM Transactions on Information and System Security (TISSEC) 4(3), 275–288
(2001)

Comments on the SM2 Key Exchange Protocol 171

6. Lauter, K., Mityagin, A.: Security Analysis of KEA Authenticated Key Exchange
Protocol. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 378–394. Springer, Heidelberg (2006)

7. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient protocol for
authenticated key agreement. Designs, Codes and Cryptography 28, 119–134 (2003)

8. Okamoto, T.: Authenticated Key Exchange and Key Encapsulation in the Standard
Model. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 474–484.
Springer, Heidelberg (2007)

9. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key
Exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

10. Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol for (H)MQV
and NAXOS. Designs, Codes and Cryptography 46(3), 329–342 (2008)

11. Cremers, C.J.F.: Session-State Reveal is Stronger than Ephemeral Key Reveal:
Attacking the NAXOS Key Exchange Protocol. In: Abdalla, M., Pointcheval, D.,
Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 20–33.
Springer, Heidelberg (2009)

12. Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg
(2005)

13. ANSI X9.42, Public Key Cryptography for the Financial Services Industry: Agree-
ment of Symmetric Keys Using Discrete Logarithm Cryptography. American Na-
tional Standards Institute (2003)

14. ANSI X9.63, Public Key Cryptography for the Financial Services Industry: Key
Agreement and Key Transport Using Elliptic Curve Cryptography. American Na-
tional Standards Institute (2001)

15. SP 800-56A Special Publication 800-56A, Recommendation for Pair-Wise Key Es-
tablishment Schemes Using Discrete Logarithm Cryptography. National Institute
of Standards and Technology (March 2006)

16. Krawczyk, H.: ”HMQV in IEEE P1363”, submission to the IEEE P1363 working
group (July 7, 2006),
http://grouper.ieee.org/groups/1363/P1363-Reaffirm/submissions/

krawczyk-hmqv-spec.pdf

17. Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves, Part 3: Key
Exchange Protocol (in Chinese),
http://www.oscca.gov.cn/UpFile/2010122214822692.pdf

18. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and anal-
ysis of authentication and key exchange protocols. In: Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing, pp. 419–428 (1998)

19. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and their use for
Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

http://grouper.ieee.org/groups/1363/P1363-Reaffirm/submissions/krawczyk-hmqv-spec.pdf
http://grouper.ieee.org/groups/1363/P1363-Reaffirm/submissions/krawczyk-hmqv-spec.pdf
 http://www.oscca.gov.cn/UpFile/2010122214822692.pdf

Cryptanalysis of a Provably Secure Cross-Realm

Client-to-Client Password-Authenticated
Key Agreement Protocol of CANS ’09�

Wei-Chuen Yau1, Raphael C.-W. Phan2,��, Bok-Min Goi3,
and Swee-Huay Heng4

1 Faculty of Engineering,
Multimedia University,

63100 Cyberjaya, Malaysia
wcyau@mmu.edu.my

2 Electronic, Electrical & Systems Engineering,
Loughborough University,

LE11 3TU Leicestershire, UK
r.phan@lboro.ac.uk

3 Faculty of Engineering & Science,
Universiti Tunku Abdul Rahman,

53300 KL, Malaysia
goibm@utar.edu.my

4 Faculty of Information Science & Technology,
Multimedia University,
75450 Melaka, Malaysia
shheng@mmu.edu.my

Abstract. In this paper, we cryptanalyze the recent smart card based
client-to-client password-authenticated key agreement (C2C-PAKA-SC)
protocol for cross-realm settings proposed at CANS ’09. While client-
to-client password-authenticated key exchange (C2C-PAKE) protocols
exist in literature, what is interesting about this one is that it is the
only such protocol claimed to offer security against password compromise
impersonation without depending on public-key cryptography, and is one
of the few C2C-PAKE protocols with provable security that has not been
cryptanalyzed. We present three impersonation attacks on this protocol;
the first two are easier to mount than the designer-considered password
compromise impersonation. Our results are the first known cryptanalysis
results on C2C-PAKA-SC.

Keywords: Client-to-client, password-authenticated key agreement,
cross realm, impersonation, attack.

� Research partially funded by the Ministry of Science, Technology & Innovation
(MOSTI) under grant no. MOSTI/BGM/R&D/500-2/8.

�� Part of this work done while the author was visiting Multimedia University.

D. Lin, G. Tsudik, and X. Wang (Eds.): CANS 2011, LNCS 7092, pp. 172–184, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Cryptanalysis of a Provably Secure C2C-PAKA-SC Protocol of CANS ’09 173

1 Introduction

The ease and low cost with which to access to networks through mobile devices
has led to the current trend of users tending to stay connected while on the
move. Mobile users (clients) roam freely within wireless networks from one realm
(network) to another. For this case, cross-realm networks allow a client registered
with a server in one realm to be still able to communicate securely with clients
in a foreign realm that it roams into. In fact, this is a more realistic scenario
than assuming all clients interacting with only one server, especially in current
environments where different types of network infrastructures co-exist.

To establish a secure end-to-end communication between these clients of dif-
ferent realms, the basic approach is to allow them to share a secret via a key
exchange protocol, and ideally to have them be able to authenticate each other
despite being in different realms. Inherent to these kinds of networks involv-
ing human users, authenticated key exchange protocols use human-memorizable
passwords.

A 2-party password-based authenticated key exchange (PAKE) protocol es-
tablishes a shared secret key between two parties. Authentication of parties is
based on knowledge of a shared low-entropy password. The first known PAKE
is due to Bellovin and Merritt [7]. This concept has also been extended to 3
parties, e.g. two clients and a trusted server or key distribution center (KDC).

While most existing literature consider PAKEs between a client and a server,
Byun et al. [8] at ICICS ’02 highlighted the need for PAKEs that allow to
establish a secure end-to-end (client-to-client) channel between clients even in
cross-realm networks. The basic idea is to use servers in the different realms as
the go-between, i.e. to perform translation of encrypted or blinded secrets in one
realm to the other under passwords shared between client and realm server and
secret key shared between the realm servers. Such protocols are more popularly
known as cross-realm C2C-PAKE protocols. For ease of notation, we will simply
call these C2C-PAKEs for the rest of this paper.

Considering this cross realm setting, several additional security issues arise
that would otherwise not be relevant in a single realm setting, e.g. protecting
secrets of the client in one realm from a malicious server [13,20] or a malicious
client [22,20] in the other realm. For more details of the variants and analyses,
see [8,13,29,22,24,31,10,30,26,12,11,19,20].

1.1 Related Work and Motivation

Provable security models. The formal model for proving the security of
2-party PAKE protocols was proposed by Bellare et al. [6] so called the Bellare-
Pointcheval-Rogaway (BPR2000) model, building on work by Bellare and Rog-
away in [4,5]. Later, Abdalla et al. [2] extended this model to the 3-party case.

One informal approach to designing security protocols is to list all known
attacks and argue why a protocol resists them. This list is not exhaustive, and
sometimes fails to catch specific types of attacks. The main problem is that this
heuristic approach assumes the particular behaviour of the adversary, i.e. he is

174 W.-C. Yau et al.

assumed to attack in some way. History [6] has shown that this is not the right
approach, because intuitively an adversary behaves in any way he prefers as long
as he can break the system. Thus it is often that such a protocol is broken and a
minor fix proposed, etc. This cycle continues resulting in many slightly different
protocol variants because breaks and subsequent fixes are heuristically done.

In contrast the approach based on formal security models does not assume
on any specific attack method an adversary may use. Instead a communication
model is defined that describes how parties within the protocol, as well as an
adversary, communicate with each other, and what sort of information formal-
ized via the notion of oracle queries, is available to or may be under the control
of the adversary. Then, security properties of a protocol are defined as one or
more games each intended to capture a security property, played by the ad-
versary within the pre-defined communication model. A protocol is secure with
respect to the defined security properties if the adversary’s advantage in win-
ning the game(s) is negligible, and further that the task of an adversary winning
is reduced to computationally intractable assumption(s). This approach is also
known as provable security [28]. Once proven secure with respect to a particu-
lar defined security property, a protocol is guaranteed to resist attacks aimed
to break the property by any adversary who works within the communication
model regardless of what specific attacks are mounted, as long as the assump-
tions remain intractable.

However, defining an appropriate model is not a trivial task [27], because not
including some types of queries e.g. the Corrupt query [14,15], or improperly
defining the adversarial game [6] may result in a security proof that fails to
capture valid attacks (see [6,14,15] for more details).

C2C-PAKE protocols. The original C2C-PAKE protocol by Byun et al. [8] at
ICICS ’02 builds on the cross-realm extension [16] of the popular Kerberos net-
work authentication protocol which is in turn based on the celebrated Needham-
Shroeder protocol [23]. Then in 2006, Byun et al. [10], and Yin and Bao [30]
independently proposed the first provably secure C2C-PAKE protocols, called
EC2C-PAKE and C2C-PAKE-YB respectively. By a provably secure protocol,
we mean one whose security is proven formally in a well-defined security model
along the style discussed in the previous subsection. In [26], undetectable online
dictionary attacks were mounted on both these protocols. Arguably, the practi-
cal significance of such types of attacks requires further investigation, as these
online dictionary attacks require the adversary to be online during the attack
to interact with a legitimate party in a protocol run. This contrasts with of-
fline dictionary attacks that an adversary can just run offline without needing to
be online in any protocol run. Subsequent to [10] and [30], Byun et al. [11] pro-
posed a security model for C2C-PAKE protocols and presented the EC2C-PAKA
scheme with security within that model. Feng and Xu [19] recently remarked that
EC2C-PAKA does not achieve security against password compromise imperson-
ation, and proceeded to propose a model that captures this kind of attack and
then presented the C2C-PAKA scheme using public key cryptography that was
proven secure within their model.

Cryptanalysis of a Provably Secure C2C-PAKA-SC Protocol of CANS ’09 175

Jin and Xu [20] later observed that the Feng-Xu C2C-PAKA protocol is ineffi-
cient since it requires public key cryptography, while previous C2C-PAKE proto-
cols only required symmetric cryptography. They thus proposed C2C-PAKA-SC
that works without public key cryptography but rather utilizes smart cards in
order to achieve security against password compromise impersonation attacks,
and its security was proven within a model that captures password compro-
mise impersonation. Jin and Xu also acknowledged [20] that it is desirable for
C2C-PAKA-SC protocols to achieve unknown key-share resilience [17,21].

Our contributions. We analyze in detail the security of Jin and Xu’s C2C-
PAKA-SC. In doing so, we advocate that while provable security is the right
approach to the analysis and design of C2C-PAKEs, and PAKEs in general,
we nevertheless caution that proving such formal security is not an easy task.
Already, some provably secure protocols have been shown [14,15] to exhibit flaws
because of subtle points missed out in the security model used to conduct the
proofs.

More precisely, we present three different attacks on C2C-PAKA-SC that work
within its defined adversarial security model. These attacks are impersonation
attacks and the first two imply unknown key-share attacks [17,21] since C2C-
PAKA-SC is an authenticated key exchange protocol.

2 The C2C-PAKA-SC Protocol

In this section, we describe the C2C-PAKA-SC protocol of Jin and Xu [20] that
we will analyze in Section 4. We will use the notations given in Table 1. Unless
otherwise mentioned, all described operations are performed modulo p, except
operations in the exponents, and all protocols are based on Diffie-Hellman (DH)
type assumptions.

Basically the C2C-PAKE protocols operate in a setting where a KDC exists
with many clients in each realm, and where each client shares a unique password
with its realm KDC and each pair of KDCs of different realms share a secret
key K. The original C2C-PAKE protocol by Byun et al. in [8] follows closely
the design principle of Kerberos in which a client interacts with a KDC to
obtain a ticket that leads to establishing a secret key for sharing between this
client and another client. The subsequent provably-secure variants EC2C-PAKE
[10], EC2C-PAKA [11], C2C-PAKA [19] and C2C-PAKA-SC [20] also follow
this principle; while another i.e. C2C-PAKE-YB [30] uses a different paradigm
because it is basically an extension of the 3-party PAKE in [3].

During the registration phase of Jin and Xu’s C2C-PAKA-SC protocol, each
client i registers with its realmKDCi by inputting its identity IDi and password
pwi, and obtains a smart card through a secure channel, within which are stored
the values 〈IDi, Ri, H1(·), p〉, where Ri = H1(IDi)x +H1(pwi), and x the secret
key of KDCi.

176 W.-C. Yau et al.

Table 1. Notations

A,B The clients
IDi The identity of client i

KDCi Key distribution center which stores the IDi and password (pwi) of client
i in its realm

pwi Client i’s human-memorizable password shared with KDCi

K The symmetric secret key shared between different KDCs
x, y The secret keys of KDCA and KDCB respectively

EK(·) Symmetric encryption using the secret key, K
p, q Sufficiently large primes such that q|p − 1

g The generator of a finite subgroup G of Z∗
p of order q

Hi Cryptographic hash functions, i = {1, 2, 3}
T icketi Ticket for receiving party i, equal to EK(k, IDj , IDi, L) where k is a ran-

dom element of Z∗
q , L is the lifetime of T icketi and IDj the identity of the

sender party
MACK(·) A message authentication code using the secret key, K

‖ Message concatenation
a ∈$ Z∗

q Randomly choosing an element a of Z∗
q

The main bulk of the protocol, i.e. its login and authentication phase is con-
cisely shown in Figure 1, and consists of the following steps:

1. A attaches his smart card to a device reader and inputs his IDA and pass-
word pwA. The device obtains the stored value RA from the smart card,
and generates a random α ∈ Z∗

q . It then computes R′
A = (RA −H1(pwA))α,

WA = H1(IDA)α and CA = H1(T1||R′
A||WA||IDA), where T1 is a times-

tamp. The message 〈IDA, IDB, T1, CA,WA〉 is then sent to KDCA.
2. KDCA checks the validity of T1 and IDA, and then computes its version

of R′
A as R′′

A = W x
A. This computed R′′

A is used together with the re-
ceived values to compute H1(T1||R′′

A||WA||IDA) which is checked against
the received CA. If the check matches, then KDCA proceeds to generate a
random k ∈ Z∗

q and computes KA = H1(R′′
A⊕T2) to be used as a password-

based shared symmetric key between KDCA and A. KDCA then computes
VA = EKA(k, IDA, IDB) and T icketB = EK(k, IDA, IDB, L) where L is
the lifetime of T icketB. The message 〈VA, T icketB, T2, L〉 is sent to A.

3. A checks the validity of T2, and computes K ′
A = H1(R′

A⊕T2). It uses this to
decrypt the received VA in order to get k and be able to verify the validity
of the decrypted IDA, IDB. It generates a random a ∈ Z∗

q and computes
Ea = ga||MACk(ga). The message 〈IDA, Ea, T icketB〉 is sent to B.

4. B attaches his smart card to a device reader and inputs his IDB and pass-
word pwB . The device reads the stored value RB from the smart card and
generates a random β ∈ Z∗

q ; these are used to compute R′
B = (RB −

H2(pwB))β , WB = H2(IDB)β and CB = H2(T3||R′
B||WB ||IDB). The

message 〈T icketB, T3, CB ,WB〉 is sent to KDCB.

Cryptanalysis of a Provably Secure C2C-PAKA-SC Protocol of CANS ’09 177

5. On receipt of the message from B, then KDCB checks the validity of T3 and
decrypts T icketB to obtain k, and checks the decrypted IDs and lifetime
L. It computes its version of R′

B as R′′
B = W y

B , and then uses this as well
as other received values to compute H2(T3||R′′

B ||WB||IDB) to check against
the received CB . KDCB then computes KB = H2(R′′

B ⊕ T4) and uses this
to compute VB = EKB (k, IDA, IDB). The message 〈VB , T4〉 is sent to B.

6. B checks the validity of T4 and computes K ′
B = H2(R′

B ⊕T4) to be used for
decrypting VB . This allows B to get k and check the validity of the decrypted
identities IDA and IDB. B generates a random b ∈ Z∗

q and computes Eb =
gb||MACk(gb); and 〈Eb〉 is sent from B to A.

7. Both A and B compute the session key as sk = H3(IDA||IDB||ga||gb||gab).

3 Adversarial Capability in the C2C-PAKA-SC Security
Model

Here we briefly review the adversarial capability of the security model of Jin-Xu
[20] within which the C2C-PAKA-SC protocol was proven secure. The adversary
is assumed to have oracle access to standard PAKE-style queries, and the Corrupt
query includes consideration of the adversary obtaining access to information
stored within a smart card.

– Execute(i, j,KDCi,KDCj , s): models passive eavesdropping on protocol ses-
sion s involving clients i, j and their KDCi, KDCj.

– Reveal(i, s): models the ability of the adversary to obtain session keys estab-
lished for some session s involving client i.

– Corrupt(i, choice): models the ability of the adversary to obtain some long-
term secret password or secret information stored in smart card of client
i, where the index choice denotes which secret is obtained, i.e. choice = 1
outputs the password pwi to the adversary while choice = 2 outputs the
information stored on the smart card of client i, i.e. 〈IDi, Ri, H1(·), p〉.

– SendClient(i, s,m): models active attacks against the client i, i.e. a message
m is sent to client i in some protocol session s.

– SendServer(KDCi, s,m): models active attacks against theKDCi, i.e. a mes-
sage m is sent to KDCi in some protocol session s.

– Test(i, s): defines the semantic security of the established key for session s
involving client i. A coin b is flipped and this determines if the real session
key (if b = 1) or a random key (if b = 0) is given to the adversary. This query
is valid only on sessions for which no Reveal or Corrupt queries have been
issued for client i or its session partner j both of which have accepted with
partner IDs being pidi,s = pidj,s = 〈i, j〉, i.e. completed the protocol run
without realizing anything is wrong and have established the key believed
to be shared with the other partnering party.

178 W.-C. Yau et al.

KDCA A B KDCB

α ∈$ Z∗q
R′A = (RA −H1(pwA))α

WA = H1(IDA)α

CA = H1(T1||R′A||WA||IDA)

IDA,IDB ,T1,CA,WA←−−−−−−−−−−−−−−

Verify T1, IDA

R′′A = Wx
A

CA
?
= H1(T1||R′′A||WA||IDA)

k ∈$ Z∗q
KA = H1(R′′A ⊕ T2)

VA = EKA
(k, IDA, IDB)

TicketB = EK (k, IDA, IDB,L)

VA,T icketB ,T2,L−−−−−−−−−−−→

Verify T2

K′A = H1(R′A ⊕ T2)

Decrypt VA

Verify IDA, IDB

a ∈$ Z∗q
Ea = ga||MACk(ga)

IDA,Ea,T icketB−−−−−−−−−−−−−−−→

β ∈$ Z∗q
R′B = (RB −H2(pwB))β

WB = H2(IDB)β

CB = H2(T3||R′B ||WB ||IDB)

TicketB ,T3,CB ,WB−−−−−−−−−−−−−→

Verify T3

Decrypt TicketB

R′′B = W
y
B

CB
?
= H2(T3||R′′B ||WB ||IDB)

KB = H2(R′′B ⊕ T4)

VB = EKB
(k, IDA, IDB)

VB ,T4←−−−−−−−−

Check T4

K′B = H2(R′B ⊕ T4)

Decrypt VB

Check IDA, IDB

b ∈$ Z∗q
Eb = gb||MACk(gb)

Eb←−−−−−
sk = H3(IDA||IDB ||ga||gb||gab) sk = H3(IDA||IDB ||ga||gb||gab)

Fig. 1. The C2C-PAKA-SC Protocol

Cryptanalysis of a Provably Secure C2C-PAKA-SC Protocol of CANS ’09 179

4 Cryptanalysis of the C2C-PAKA-SC

In this section we describe the results of our cryptanalysis of the C2C-PAKA-SC.
In more detail, we present three impersonation attacks.

4.1 By any Outsider C Impersonating A to B

This attack can be mounted by any outsider (denoted as C) and allows C to
impersonate A to B. It proceeds as follows:

1. Adversary C calls the Execute query to eavesdrop on a valid protocol session
between A and B, to obtain Ea and T icketB.

2. C initiates a new protocol run with B and calls the SendClient(B) query to
replay the Ea and T icketB obtained from Step 1 above.

3. The protocol steps continue as per normal protocol run.

In the end, B thinks it is sharing a key with A after the protocol run when
A is in fact not present. This also corresponds to the goal of an unknown key-
share attack; see [17,21] for more details, wherein some application scenarios are
discussed.

In more detail, KDCB cannot detect anything wrong and therefore believes
all is normal because

– it checks T3’s freshness (but this is a timestamp generated by B so it is fresh)
– it can decrypt T icketB properly because T icketB is rightly generated by
KDCA

– CB is verified because it was generated by B

Similarly, B cannot detect anything wrong because it has no ability to directly
verify A’s message initially, and then subsequently only checksKDCB’s message
i.e.

– T4 is fresh because it was generated by KDCB

– VB can be decrypted
– IDA and IDB are correct
– MACk(ga) resp.MACk(gb) are verified correctly since k is simply generated

by KDCA and contained in the replayed T icketB that KDCB decrypts and
passes on to B.

The reason impersonation works is because during the protocol run, the only
message required by B from A’s realm is 〈IDA, Ea, T icketB〉. Ea can be replayed
because it is a function only of ephemeral values k and a. T icketB can be replayed
because it is a function only of the ephemeral value k and static values IDA, IDB,
as long as it is within the lifetime L which cannot be too short since T icketB
needs to remain valid from the start of KDCA’s message transmission, through
A and B to KDCB.

The C2C-PAKA-2C scheme is both an authentication and key agreement
scheme, thus the above attack demonstrates that its desired authentication and

180 W.-C. Yau et al.

unknown key-share resilience requirement (the latter was explicitly listed as its
desired requirement) are broken.

This attack is within the adversarial security model of C2C-PAKA-SC and
in fact, does not even require any of the adversarial model’s Corrupt or Reveal
queries.

Another variant of this attack can be mounted by any outsider C allowing to
not only impersonate A to B but also break the scheme in the sense of semantic
security; semantic security of the scheme was proven in [20, Theorem 4.1]. This
attack works as follows (see Figure 2):

1. Adversary C calls the Execute query on (A,B, s1) to eavesdrop on a valid
protocol session (of session ID s1) between A and B, to obtain Ea and
T icketB.

2. C impersonating A initiates a new protocol run with B and calls the Send-
Client query on (B, s2, ·) to replay the Ea and T icketB obtained from Step
1 above.

3. B replies to A with Eb, but it is intercepted by C.
4. B replies to C with Eb′ ; and completes protocol session s2 in accepted state,

i.e. it thinks it has completed a normal protocol session with A and computes
the session key sks2 = H(IDA||IDB||ga||gb′ ||gab′).

5. C calls the SendClient query on (A, s1, Eb′) to replay Eb′ to A. Then A
completes protocol session s1 in accepted state, i.e. it thinks it has completed
a normal protocol session with B and computes the session key sks1 =
H3(IDA||IDB||ga||gb′ ||gab′).

6. C is able to issue a Reveal query on the session (A, s1) and obtains the key
sks1 = H3(IDA||IDB||ga||gb′ ||gab′) for session s1.

7. C issues the Test query to the session (B, s2) and obtains the key sk for
session s2 which could be sks2 = H(IDA||IDB||ga||gb′ ||gab′) = sks1 or a
randomly generated one.

8. If sk equals sks1 obtained from step 6, then C outputs 1. Else, it outputs 0.

As can be seen, at the end of the game C is able to output the guess of b correctly
with probability 1, thus breaking semantic security.

A C B

• IDA,Ea,T icketB−−−→ •

• IDA,Ea,T icketB−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ •
• Eb←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− •
• Eb′←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− •

• Eb′←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− •

Fig. 2. Attack on Semantic Security

Cryptanalysis of a Provably Secure C2C-PAKA-SC Protocol of CANS ’09 181

4.2 By Any Outsider C Impersonating B to A

An attack also exists allowing any outsider to impersonate B to A. The steps
are as follows:

1. A initiates a protocol run, and the protocol flows normally.
2. When A sends a message 〈IDA, Ea, T icketB〉 to B, the adversary C inter-

cepts this and simply replies this back to A as Eb = Ea via queries to the
SendClient oracle.

The rest of the protocol proceeds normally, and C ends up authenticated to A
as B with A thinking it has established a shared key with B.

The reason this simple attack works is because of the same structure between
Ea and Eb and because the key k used within the MAC of Ea, Eb is not jointly
established, thus even if B is absent, yet A’s presence and thus its Ea is sufficient
to be reused as Eb.

4.3 By Any Insider Client B �= A Impersonating A to KDCA

The above two attacks considered violating the authentication security between
clients A and B. In essence, A and B establish a shared session key not directly,
but via their respective KDCs. More precisely, this is done by using the authen-
tication security (via 2-party PAKE) between each client and its KDC based on
the client’s password being known to its KDC, and then by using the security
between the KDCs based on their shared secret key K.

Going further, we show that even if there exists a 2-party PAKE type authen-
tication security between a client A and its KDC based on the KDC knowing the
client’s password, yet it is still possible for any other client B of the same realm
to impersonate A to its KDC without needing to know what the impersonated
client password pwA is.

Our attack works as follows, using adversarial capability as defined within the
C2C-PAKA-SC security model:

1. B performs a Corrupt(B, 2) query to access to stored content on his/her own
smart card to get RB .

2. B computes RB − H1(pwB) = H1(IDB)x, and can then compute R′
A =

H1(IDB)x, WA = H1(IDB) and CA = H1(T1|||R′
A||WA||IDA). Note that

since B is an insider client, this implies it would obviously know its own
password pwB.

3. B issues a SendServer query to send the message 〈IDA, IDB, T1, CA,WA〉 to
KDCA.

4. KDCA will compute R′′
A = W x

A = H1(IDB)x = R′
A, so its check of CA

?=
H1(T1||R′′

A||WA||IDA) will match and therefore it does not detect that any-
thing is wrong.

Thus KDCA ends up thinking A has authenticated itself when in fact it is
another client B of the same realm; and B was able to impersonate A without
needing to know A’s password.

182 W.-C. Yau et al.

The problem here is that by right the authentication of A to KDCA should
only be possible with the knowledge of the password pwA, yet there is a flaw
in the way that KDCA checks this password knowledge. More precisely, the
checking is based on computing R′′

A from the value WA supplied by A (or some-
one claiming to be A) and checking this computed R′′

A for equality against the
received R′

A. While the computations of R′
A and R′′

A differ, by design A can
only compute R′

A via his knowledge of the password pwA while KDCA can only
compute R′′

A via knowledge of his own secret x; and irrespective of how the com-
putation is done, the two values should match. Yet, our above attack shows that
even without knowing the password pwA, an adversary could generate the proper
WA and R′

A such that the check by KDCA is satisfied, because essentially one
only needs to be able to generate a pair of values WA, R

′
A such that the latter

is the xth power of the former.

5 Concluding Remarks

Since 2006 [10,30], provable security models and protocols have been proposed
in literature for C2C-PAKE, including some recent ones. These are nice results,
since research has shown that ad hoc protocols fall to attacks over time. Never-
theless, provable security models and proofs for PAKE protocols should be done
carefully to avoid miscatching known attacks. An example is the first provably
secure n-party PAKE protocol in the DPWA setting [9] that was shown in [25] to
fall to attacks that it was designed to resist, while other examples are in [14,15].
Although the responsibility rests on protocol designers to carefully define ad-
equate security models and check the correctness of their security proofs, the
community in particular protocol implementers should exercise caution when
interpreting provable security models and proofs. Experience in the analysis and
design of security protocols [1,6,14,15] has shown that even seemingly sound
models, designs and proofs may exhibit problems, and though provable secu-
rity is the right approach, years of public scrutiny should still complement the
process before a protocol is deemed secure, or a model is deemed sufficient.

Our results also demonstrate that newer “improved” variants are not neces-
sarily more securely designed. For instance, our attacks on C2C-PAKA-SC are
more severe than previous attacks on its predecessor the Feng-Xu C2C-PAKA
protocol; e.g. our first two attacks do not require knowledge of any secrets nor
passwords, and counter-intuitively the original C2C-PAKA is not vulnerable to
these attacks. Thus, we conclude that C2C-PAKA-SC should not be deemed
secure for practical cross-realm applications.

Acknowledgements and Epilogue. We thank God for His many blessings.
We thank the anonymous reviewers for their comments, notably those of
Reviewers 1 and 3 which made this line of research much worth the while.
Quoting herein: “mercifully does not attempt to go on to fix the now broken
system”, indeed we agree wholeheartedly. The literature is rich with many vari-
ants of Cross-Realm C2C-PAKA/E protocols, fortunately some of which are

Cryptanalysis of a Provably Secure C2C-PAKA-SC Protocol of CANS ’09 183

accompanied with proofs of security. Rather than propose fixes to broken sys-
tems especially when unbroken variants still exist, it is crucial to extract the
gist of what lessons can be learnt from this experience. And beyond that, it is
a good idea to move on to designing for other settings where less cryptographic
protocols are known to exist.

References

1. Abadi, M.: Explicit Communication Revisited: Two New Attacks on Authentica-
tion Protocols. IEEE Transactions on Software Engineering 23(3), 185–186 (1997)

2. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-Based Authenticated Key
Exchange in the Three-Party Setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS,
vol. 3386, pp. 65–84. Springer, Heidelberg (2005)

3. Abdalla, M., Pointcheval, D.: Interactive Diffie-Hellman Assumptions with Ap-
plications to Password-Based Authentication. In: S. Patrick, A., Yung, M. (eds.)
FC 2005. LNCS, vol. 3570, pp. 341–356. Springer, Heidelberg (2005)

4. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

5. Bellare, M., Rogaway, P.: Provably Secure Session Key Distribution: the Three
Party Case. In: Proc. ACM STOC 1995, pp. 57–66 (1995)

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure
against Dictionary Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

7. Bellovin, S., Merritt, M.: Encrypted Key Exchange: Passwords based Protocols Se-
cure against Dictionary Attacks. In: Proc. IEEE Symposium on Security & Privacy
1992, pp. 72–84 (1992)

8. Byun, J.W., Jeong, I.R., Lee, D.-H., Park, C.-S.: Password-Authenticated Key
Exchange between Clients with Different Passwords. In: Deng, R.H., Qing, S., Bao,
F., Zhou, J. (eds.) ICICS 2002. LNCS, vol. 2513, pp. 134–146. Springer, Heidelberg
(2002)

9. Byun, J.W., Lee, D.-H.: N-Party Encrypted Diffie-Hellman Key Exchange Using
Different Passwords. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS
2005. LNCS, vol. 3531, pp. 75–90. Springer, Heidelberg (2005)

10. Byun, J.W., Lee, D.-H., Lim, J.-I.: Efficient and Provably Secure Client-to-Client
Password-Based Key Exchange Protocol. In: Zhou, X., Li, J., Shen, H.T., Kitsure-
gawa, M., Zhang, Y. (eds.) APWeb 2006. LNCS, vol. 3841, pp. 830–836. Springer,
Heidelberg (2006)

11. Byun, J.W., Lee, D.H., Lim, J.I.: EC2C-PAKA: An Efficient Client-to-Client Pass-
word Authenticated Key Agreement. Information Sciences 177, 3995–4013 (2007)

12. Cao, T., Zhang, Y.: Cryptanalysis of Two Password-Authenticated Key Exchange
Protocols between Clients with Different Passwords. International Mathematical
Forum 2(11), 525–532 (2007)

13. Chen, L.: A Weakness of the Password-Authenticated Key Agreement between
Clients with Different Passwords Scheme. Circulated for consideration at the 27th
SC27/WG2 meeting in Paris, France, ISO/IEC JTC 1/SC27 N3716, 2003-10-20.24
(2003)

14. Choo, K.-K.R., Boyd, C., Hitchcock, Y.: Examining Indistinguishability-Based
Proof Models for Key Establishment Protocols. In: Roy, B. (ed.) ASIACRYPT
2005. LNCS, vol. 3788, pp. 585–604. Springer, Heidelberg (2005)

184 W.-C. Yau et al.

15. Choo, K.-K.R., Boyd, C., Hitchcock, Y.: Errors in Computational Complexity
Proofs for Protocols. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
624–643. Springer, Heidelberg (2005)

16. Di Crescenzo, G., Kornievskaia, O.: Efficient Kerberized Multicast in a Practical
Distributed Setting. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200,
pp. 27–45. Springer, Heidelberg (2001)

17. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and Authenticated
Key Exchanges. Design, Codes and Cryptography 2(2), 107–125 (1992)

18. Ding, Y., Horster, P.: Undetectable On-line Password Guessing Attacks. ACM
Operating Systems Review 29(4), 77–86 (1995)

19. Feng, D.-G., Xu, J.: A New Client-to-Client Password-Authenticated Key Agree-
ment Protocol. In: Chee, Y.M., Li, C., Ling, S., Wang, H., Xing, C. (eds.)
IWCC 2009. LNCS, vol. 5557, pp. 63–76. Springer, Heidelberg (2009)

20. Jin, W., Xu, J.: An Efficient and Provably Secure Cross-Realm Client-to-Client
Password-Authenticated Key Agreement Protocol with Smart Cards. In: Garay,
J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 299–314.
Springer, Heidelberg (2009)

21. Kaliski Jr., B.S.: An Unknown Key-Share Attack on the MQV Key Agreement
Protocol. ACM TISSEC 4(3), 275–288 (2001)

22. Kim, J., Kim, S., Kwak, J., Won, D.H.: Cryptanalysis and Improvement of Pass-
word Authenticated Key Exchange Scheme between Clients with Different Pass-
words. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi,
O. (eds.) ICCSA 2004. LNCS, vol. 3043, pp. 895–902. Springer, Heidelberg (2004)

23. Needham, R., Schroeder, M.: Using Encryption for Authentication in Large Net-
works of Computers. Communications of the ACM 21(12), 993–999 (1978)

24. Phan, R.C.-W., Goi, B.-M.: Cryptanalysis of an Improved Client-to-Client
Password-Authenticated Key Exchange (C2C-PAKE) Scheme. In: Ioannidis, J.,
Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 33–39.
Springer, Heidelberg (2005)

25. Phan, R.C.-W., Goi, B.-M.: Cryptanalysis of the N-Party Encrypted Diffie-Hellman
Key Exchange Using Different Passwords. In: Zhou, J., Yung, M., Bao, F. (eds.)
ACNS 2006. LNCS, vol. 3989, pp. 226–238. Springer, Heidelberg (2006)

26. Phan, R.C.-W., Goi, B.-M.: Cryptanalysis of Two Provably Secure Cross-Realm
C2C-PAKE Protocols. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS,
vol. 4329, pp. 104–117. Springer, Heidelberg (2006)

27. Rogaway, P.: On the Role Definitions in and Beyond Cryptography. In: Maher,
M.J. (ed.) ASIAN 2004. LNCS, vol. 3321, pp. 13–32. Springer, Heidelberg (2004)

28. Stern, J.: Why Provable Security Matters? In: Biham, E. (ed.) EUROCRYPT 2003.
LNCS, vol. 2656, pp. 449–461. Springer, Heidelberg (2003)

29. Wang, S., Wang, J., Xu, M.: Weaknesses of a Password-Authenticated Key Ex-
change Protocol between Clients with Different Passwords. In: Jakobsson, M.,
Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 414–425. Springer,
Heidelberg (2004)

30. Yin, Y., Bao, L.: Secure Cross-Realm C2C-PAKE Protocol. In: Batten, L.M.,
Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 395–406. Springer,
Heidelberg (2006)

31. Yoon, E.-J., Yoo, K.-Y.: A Secure Password-Authenticated Key Exchange between
Clients with Different Passwords. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M.,
Zhang, Y. (eds.) APWeb 2006. LNCS, vol. 3841, pp. 659–663. Springer, Heidelberg
(2006)

D. Lin, G. Tsudik, and X. Wang (Eds.): CANS 2011, LNCS 7092, pp. 185–193, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Passive Attack on RFID LMAP++ Authentication
Protocol

Shao-hui Wang1,2,3 and Wei-wei Zhang1

1 College of Computer, Nanjing University of Post and
Telecommunication, Nanjing 210046, China

2 Jiangsu High Technology Research Key Laboratory for Wireless
Sensor Networks, Nanjing, Jiangsu 210003, China

3 Network and Data Security Key Laboratory of Sichuan Province

Abstract. LMAP++ is an ultra-lightweight mutual authentication protocol
designed for resource-constrained system such as RFID. The protocol is
designed using only logical operator XOR and modular 296 addition. In this
paper, a passive attack on LMAP++ protocol is given after constructing the
distinguisher for the random numbers used in the protocol. The attack shows the
protocol cannot resist passive attack, and after eavesdropping about 480
authentication messages, the adversary can deduce the static identifier and two
secrets with high probability.

Keywords: RFID, Authentication Protocol, Passive Attack, Distinguisher.

1 Introduction

Radio Frequency Identification (RFID) is a contactless technology used to identify
and/or authenticate remote objects or persons, through a radio frequency channel.
RFID is becoming more and more widespread in daily-life applications, from library
management or pet identification, to anti counterfeiting, access control or biometric
passports. An RFID system is usually divided into three components: reader, tag and
backend database. Tags are usually micro-chips with constrained resources, and the
unique identifier and some information related to the tag holder are stored in them.
Readers can read and modify the messages stored in the tags, and will pass the
messages to the backend database if needed. Usually the channel between the reader
and the database is secure.

However, the ubiquity of RFID raises new concerns about privacy and security at
the same time[1]. The attacks on the RFID system contain passive attacks and active
attacks. In the passive attacks, the adversaries deduce some useful information only
through eavesdropping, collecting and analyzing authentication messages between the
reader and the tag, so the passive attacks are much more feasible and operational than
active ones.

RFID tag constraints in processing power and memory make them tougher to deal
with traditional algorithms, such as AES, RSA or hash functions[2]. These kinds of

186 S.-h. Wang and W.-w. Zhang

constraints dictate a paradigm shift in security provision for RFID which is known as
lightweight cryptography, and lightweight authentication protocol is a subset of
lightweight cryptography[3,4,5]. In 2006, Peris et al. proposed a protocol named
LMAP[6], an ultra-lightweight mutual authentication protocols, which is designed
only using simple logical operations like XOR, AND, OR and Modular addition.
Afterward, Li et.al.[7] proposed the SLMAP protocol in Chinacrypt’07 to simplify
LMAP protocol. But these two protocols can not resist active attack and passive
attack[8,9,10], because logical operations and modular addition do not have good
diffusion effect. Logical operator XOR operates bit by bit, and the carry bit
introduced by modular addition only affects its left bit position.

To resist the passive attack, Li presented the LMAP++ authentication protocol
[11], and we can not use the passive attack method used in [9,10] directly to analyze
LMAP++. Except for the research on the traceability of this protocol [12], there is not
any attack outcome. In this paper, we give a passive attack on the LMAP++ protocol
using the property of modular addition and XOR and the structure of the protocol.
The attack shows that after eavesdropping about 480 authentication messages, the
adversary can deduce the identifier and two secrets with high probability. The rest of
the paper is organized as follows. In section 2, we review the LMAP++ protocol. The
passive attack on LMAP++ is illustrated in section 3, and we state our conclusion in
section 4.

2 LMAP++ Authentication Protocol

In 2008, based on LAMP architecture, Li [11] presented the LMAP++ authentication
protocol for the low cost RFID tag to avoid the weakness of LMAP. The random
numbers used are generated by the reader, and the protocol is designed using XOR(⊕)

and modular 962 addition. Because we can not deduce a formula between the random
number and some known authentication messages, the passive attack method used for
LMAP and SLMAP is not applicable directly to LMAP++.

In this section we introduce the LMAP++ protocol briefly. Every tag shares a fixed
and unique identifier (ID) with the reader. At the n -th authentication, the tag and

the reader share a pseudonym)(nIDS and two secrets ()(
2

)(
1 , nn KK), which will

update to ,)1(+nIDS)1(
1

+nK and)1(
2

+nK if authentication is successful. We omit some

superscript for convenience in the rest of the paper.
Every authentication contains three rounds: tag identification, mutual

authentication and IDS , secrets updating. Here all the variables are 96 bit.
(I) Tag Identification. After receiving the “Hello” message from the reader, the tag

sends the IDS to the reader, which will look up the tags in the database with the
same pseudonym and get the corresponding information.

(II) Mutual Authentication. The communications between the reader and the tag
are as follows:

a. Reader Authentication. Reader generates a random number r , computes and
sends the tag the messages),(BA as follow. The tag can deduce the random number

 Passive Attack on RFID LMAP++ Authentication Protocol 187

r through message A, and make sure whether the reader is valid via checking the
correctness of message B :

 rKIDSA +⊕=)(1 (1)

)(2 rKIDSB ⊕+= (2)

b. Tag Authentication. The tag sends back the answer message C using the random
number r and static identifier ID :

)())((21 rKKrIDIDSC ++⊕⊕+= (3)

(III) IDS and Secrets Updating. After authenticating successfully, the reader and tag
will update the pseudonym IDS and secrets as follow:

))(())((21
)(rKIDrKIDSIDS new ⊕++⊕+= (4)

)()(21
)(

1 IDKIDSrKK new +++⊕= (5)

)()(12
)(

2 IDKIDSrKK new +++⊕= (6)

3 Passive Attack on LMAP++

In this section, we illustrate in detail the mechanics to attack the LMAP++ passively.
The passive adversaries can only eavesdrop the communication messages between the
reader and the tag, i.e. the message),,,(CBAIDS . We first explain how to get the

least significant bit of the identifier, then construct a distinguisher to obtain the least
significant bit of the random number, thus give the algorithm to deduce the identifier
and two secrets.

We denote by ix][as the bit position i of the variable x , 1...0][−lx as the bit

from position 0 to 1−l of x , so 0][x is the least significant bit of x .

3.1 The Least Significant Bit of Identifier 0][ID

Obviously, as to the least significant bit, the modular 962 addition and subtraction of
a and b is just the same as logical operator XOR, i.e.:

000][][][baba ⊕=+ and 000][][][baba ⊕=−

Considering the least significant bit of the LMAP++ communication messages
formulas (1), (2) and (3), we can get the following formulas:

 00100][][][][rKIDSA ⊕⊕= (1’)

 00200][][][][rKIDSB ⊕⊕= (2’)

188 S.-h. Wang and W.-w. Zhang

⊕⊕⊕⊕= 010000][][][][][KrIDIDSC

020100002][][][][][][KKIDIDSrK ⊕⊕⊕=⊕ (3’)

From (1’) and (2’), it is easy to see:

020100][][][][KKBA ⊕=⊕

combining with the formula of 0][C , we can get the least significant bit of ID :

00000][][][][][BAIDSCID ⊕⊕⊕= .

3.2 The Least Significant Bit of Random Number 0][r

If we can write a formula between the random number r and the authentication
messages and the identifier, we can obtain the least significant bit of random number
r , thus to deduce the least significant bit of the secrets. But as to LMAP++ protocol,
it is not feasible to get this kind of formula for the random number appears twice in
formula (4) and (5). Next we show how to distinguish the different condition that 0][r

equals to 0 or 1.
From the formula (1) and (2), we can get the equations of the secrets:

 IDSrAK ⊕−=)(1 (7)

 rIDSBK ⊕−=)(2 (8)

After substituting the formula (7) and (8) to the formula (3) and (4), we can get the

relationship of the message C and)(newIDS with the random number r and
identifier ID :

)))(())((())((rrIDSBIDSrArIDIDSC +⊕−+⊕−⊕⊕+= (9)

+⊕⊕−+=))))(((()(rIDSrAIDSIDS new

))))((((rrIDSBID ⊕⊕−+ (10)

Now we consider the bit position 1 of the formula (9) and (10), and construct a
distinguisher for 0][0 =r and 1][0 =r using 1][ID . We must consider the carry and

borrow when considering modular 962 addition and subtraction. We use),,(ibas to

denote the carry at bit i of ba + , and),,(ibat the borrow at the bit i of ba − .

It is easy to have the following fact:

[Fact:] As to modular m2 addition and subtraction, the following formulas must
satisfy considering the bit position i)0(>i :

)1,,(][][][−⊕⊕=+ ibasbaba iii

)1,,(][][][−⊕⊕=− ibatbaba iii

 Passive Attack on RFID LMAP++ Authentication Protocol 189

If 0][b =0, it is impossible to generate carry or borrow at the bit position 1. But if 0][b
=1, the carry or borrow may appear or may not. Next we consider the bit position of 1
of formula (9) and (10) under the condition of 0][r =0 or 0][r =1.

1. The condition of 0][r =0

Under this condition, there is no carry or borrow at bit position 1. We can get the
following two formula (11) and (12) through formula (9) and (10):

⊕⊕⊕⊕⊕⊕⊕= 111111][][][)0,,(][][][IDSrAIDIDSsrIDIDSC

=−⊕⊕⊕⊕−)0,,(][][][111 IDSBIDSAsrrIDSB

)0,,(][][)0,,(][111 IDSBIDSAsIDSBAIDIDSsID −⊕⊕−⊕⊕⊕ (11)

⊕⊕⊕⊕⊕⊕⊕⊕= 1111111
)(][][)0,,(][][][][][IDrIDSAIDSsIDSrAIDSIDS new

)0),(,(][)0,,(][][111 IDSBIDAsrIDSBIDsrIDSB −+⊕⊕−⊕⊕−
⊕−⊕⊕⊕⊕= 111][][)0,,(][IDSBIDIDSAIDSsA

)0),(,()0,,(IDSBIDAsIDSBIDs −+⊕− (12)

We can get two formulas about 1][ID through (11) and (12), and these two formulas

must be equal, i.e. the necessary condition for 0][r =0 is the following equation:

⊕⊕=−⊕⊕⊕)0,,()0,,()0,,(][1 IDSAIDSsIDSBIDSAsIDIDSsC

)0),(,()0,,(][1
)(IDSBIDAsIDSBIDsIDS new −+⊕−⊕ (13)

2. the condition of 0][r =1.

Here we use the notation a to denote a variable that is different from the variable a
with the least significant bit, and the other bits is not change. Like the discussion
above, we can get the equation (14) and (15) as follow:

⊕⊕⊕⊕⊕⊕⊕⊕= 111111][)0,,(][][)0,,(][][][IDSrAtrAIDIDSsrIDIDSC

⊕⊕=−⊕⊕⊕⊕− 11111][][)0,,,(][][][AIDrIDSBIDSAsrrIDSB

)0,,,(][)0,,()0,,(1 rIDSBIDSAsIDSBrAtIDIDSs −⊕⊕−⊕⊕ (14)

⊕⊕⊕⊕⊕⊕⊕=)0,,(][)0,,(][][][][11111
)(IDSAIDSsIDSrAtrAIDSIDS new

+⊕⊕−⊕⊕−⊕⊕ IDAsrIDSBIDsrIDSBIDr ,(][)0,,(][][][][11111

⊕−⊕⊕⊕⊕⊕=− 111][][)0,,()0,,(][)0),(IDSBIDIDSAIDSsrAtAIDSB

)0),(,()0,,(IDSBIDAsIDSBIDs −+⊕− (15)

Similarly, we can get two formulas about 1][ID through (14) and (15), and these two

formulas must be equal, i.e. the necessary condition for 0][r =1 is the following

equation:

190 S.-h. Wang and W.-w. Zhang

⊕=−⊕⊕⊕ 1
)new(

1][)0,,,()0,,(][IDSrIDSBIDSAsIDIDSsC

)0),(,()0,,()0,,(IDSBIDAsIDSBIDsIDSAIDSs −+⊕−⊕⊕ (16)

Using the formulas (13) and (16), we can construct the distinguisher for 0][r = 0 or 1.

Here we poll the least significant bit)][,][,][,]([0000 IDSCBA from)0,0,0,0(to

)1,1,1,1(, and we can get 0][ID via subsection 3.1 and the left part and right part of

formula (13) and (16) as shown in the following table:

Table 1. The left and right parts of (13) and (16) with different message values

0][A 0][B 0][C 0][IDS
0][ID left part

of (13)
right part
of (13)

left part
of (16)

right part
of (16)

0 0 0 0 0 1][C
1

)(][newIDS 1][1 ⊕C
1

)(][newIDS

0 0 0 1 1 1][C
1

)(][newIDS
1][C

1
)(][newIDS

0 0 1 0 1 1][C
1

)(][newIDS 1][1 ⊕C 1][1
)(+newIDS

0 0 1 1 0 1][1 ⊕C 1][1
)(+newIDS 1][1 ⊕C

1
)(][newIDS

0 1 0 0 1 1][C 1][1
)(+newIDS 1][1 ⊕C

1
)(][newIDS

0 1 0 1 0 1][C 1][1
)(+newIDS 1][C

1
)(][newIDS

0 1 1 0 0 1][C

1
)(][newIDS 1][1 ⊕C

1
)(][newIDS

0 1 1 1 1 1][1 ⊕C 1][1
)(+newIDS 1][1 ⊕C 1][1

)(+newIDS

1 0 0 0 1 1][C 1][1
)(+newIDS 1][1 ⊕C

1
)(][newIDS

1 0 0 1 0 1][C 1][1
)(+newIDS 1][C

1
)(][newIDS

1 0 1 0 0 1][C
1

)(][newIDS 1][1 ⊕C
1

)(][newIDS

1 0 1 1 1 1][1 ⊕C 1][1
)(+newIDS 1][1 ⊕C 1][1

)(+newIDS

1 1 0 0 0 1][1 ⊕C 1][1
)(+newIDS 1][C 1][1

)(+newIDS

1 1 0 1 1 1][1 ⊕C 1][1
)(+newIDS 1][1 ⊕C 1][1

)(+newIDS

1 1 1 0 1 1][1 ⊕C 1][1
)(+newIDS 1][C

1
)(][newIDS

1 1 1 1 0 1][C

1
)(][newIDS

1][C 1][1
)(+newIDS

From the discussion above, we know that the sixth column equals to the seventh
part is the necessary condition for 0][r =0, and that the eighth column equals to the

ninth part is the necessary condition for 0][r =1. That is to say, if we observe the last

significant bit of authentication messages)][,][,][,]([0000 IDSCBA is (0,0,0,0), and

the second to last bit of C and the pseudonym)(newIDS of the next authentication

1][C and 1
)(][newIDS are not equal, then it is impossible that 0][r is equal to 0.

However, there exists some conditions that we can not determine whether 0][r =0 or

 Passive Attack on RFID LMAP++ Authentication Protocol 191

0][r =1. For example, when)][,][,][,]([0000 IDSCBA is (0,0,0,1), the necessary

condition is the same for 0][r =0 and 1. Suppose)][,][,][,]([0000 IDSCBA can take

the value from)0,0,0,0(to)1,1,1,1(with the same probability, we can get the

conclusion that the probability to distinguish 0][r is 0.5.

3.3 Algorithm to Obtain the Identifier and Secrets

If the value of 0][r is known, we can get the least significant bit of two secrets from

the formula (7) and (8):

00001][][][][rAIDSK ⊕⊕= and 00002][][][][rBIDSK ⊕⊕=

In addition, we can determine the value of 1][ID if 0][r is known using the equation

(13) or (16). Using the method discuss in 3.2, for any given bit position i , we can
construct the distinguisher for ir][using 1][+iID , and the probability of

distinguishing successfully is 0.5 also. We give the definition of distinguisher as
follow:

Definition 3.1. If the messages),,,(IDSCBA can distinguish successfully the bit

position i of the random number r , i.e. ir][, we call the messages),,,(IDSCBA

is ir][-distinguisher.

Because the distinguisher is satisfied with the probability 0.5, if the i -th bit
position ir][can not be determined, then it is difficult to obtain the value of 1][+iID .

Before we give the algorithm to deduce all the bits of identifier and secrets, we first
present the following theorem satisfied because of the structure of LMAP++.

Theorem 3.1. If in the thn − authentication, we can get the values of identifier,

random number, and secrets from bit position 0 to 1−l , i.e.
1,0][−lID , 1,0

)(][−l
nr ,

1,0
)(

1][−l
nK , 1,0

)(
2][−l

nK , then we can get the values of 1,0
)(][−l

jr , 1,0
)(

1][−l
jK ,

1,0
)(

2][−l
jK for any follow-up communication, i.e. nj > .

Proof: Here we only consider the thn −+)1(authentication. From the equation (5)

and (6), we can get values of the secrets 1,0
)1(

1][−
+

l
nK and 1,0

)1(
2][−

+
l

nK if
1,0][−lID ,

1,0
)(][−l

nr , 1,0
)(

1][−l
nK and 1,0

)(
2][−l

nK are known. Thus the random number used in

the thn −+)1(communication 1,0
)1(][−

+
l

nr can be determined using the formula (8)

via the value of)1(+nB and)1(+nIDS .
Using the theorem 3.1, we give the following algorithm to deduce the identifier

and the two secrets.

192 S.-h. Wang and W.-w. Zhang

Algorithm 3.1. Suppose the adversary has eavesdropped m authentication
successively between the reader and the tag, he can get the messages

),,,()()()()(nnnn IDSCBA , mn ,...,2,1= . After the adversary finds the 0][r -

distinguisher(for example, the thj −1 communication) , he can calculate the least

significant bit of the values of ID , r , 1K and 2K of thj −1 communication; If

this 0][r -distinguisher can still distinguish 1][r , the adversary can go on computing

1][ID , 1
)1(][jr , 1

)1(
1][jK and 1

)1(
2][jK . Otherwise the adversary will search for the

1][r -distinguisher after the thj −1 communication(for example, the thj −2 (

12 jj >) communication). Using the theorem 3.1, the adversary can calculate the

values of 0
)2(][jr , 0

)2(
1][jK and 0

)2(
2][jK even if),,,()2()2()2()2(jjjj IDSCBA is

not 0][r -distinguisher, thus to obtain
1,0][ID , 1,0

)2(][jr , 1,0
)2(

1][jK and 1,0
)2(

2][jK .

The algorithm will finish when the adversary obtain all the 96 bit of these four
variables.

Now we discuss the number of authentication (value of m) needed to eavesdrop.
Suppose the message),,,(IDSCBA take the value with the same probability, and

the probability of ir][- distinguisher appearing is 0.5, then in the successive 5

authentication, the probability that the ir][-distinguisher will appear is 5)5.0(1−

96875.0= . We can get the conclusion the ir][-distinguisher appear with high

probability in 5 successive authentication, and the adversary can deduce the identifier
and secrets after eavesdropping about 96*5=480 authentication messages. In fact, the
actual number needed is smaller than 480, for a tuple of message),,,(IDSCBA can

be a distinguisher for several successive bits of r .

4 Conclusions

In this paper, through constructing the corresponding distinguisher for different bit
position of random number, we give a passive attack on LMAP++, an ultra-
lightweight mutual authentication protocol. The attack shows that after eavesdropping
about 480 authentication messages, the adversary can deduce the identifier and two
secrets with high probability. The bad diffusion effect of logical operator XOR and
modular m2 addition makes it hard to design lightweight protocol with high security.
SASI protocol [13] and Gossamer protocol[14] introduce the circular shift operator,
which improves the ability to resist passive attack.

Acknowledgements. This work is supported by the Priority Academic Program
Development of Jiangsu Higher Education Institutions(PAPD), National Natural
Science Funds (Grant No.60903181) and Nanjing University of Post and
Telecommunication Funds (Grant No.NY208072).

 Passive Attack on RFID LMAP++ Authentication Protocol 193

References

1. Juels, A.: RFID Security and Privacy: A Research Survey. IEEE Journal on Selected Areas
in Communications 24(2), 381–394 (2006)

2. Yuan, S.-g., Dai, H.-y., Lai, S.-l.: RFID authentication protocol based on Hash functions.
Computer Engineering 34(12), 141–143

3. Sadighian, A., Jalili, R.: Afmap: Anonymous forward-secure mutual authentication
protocols for RFID systems. In: The Third IEEE International Conference on Emerging
Security Information, Systems and Technologies (SECURWARE 2009), pp. 31–36 (2009)

4. Vajda, I., Buttyan, L.: Light weight authentication protocols for low-cost RFID tags. In:
Proceedings of Workshop on Security in Ubiquitous Computing (2003),
http://www.hit.bme.hu/~buttyan/publications/VajdaB03suc.pdf

5. Juels, A.: Minimalist Cryptography for Low-Cost RFID Tags. In: Blundo, C., Cimato, S.
(eds.) SCN 2004. LNCS, vol. 3352, pp. 149–164. Springer, Heidelberg (2005)

6. Peris-Lopez, P., Hernandez-Castro, J.C., Estevez- Tapiador, J., Ribagorda, A.: LMAP: A
real lightweight mutual authentication protocol for low-cost RFID tags. In: Proceedings of
the 2nd Workshop on RFID Security (2006),
http://events.iaik.tugraz.at/RFIDSec06/Program/papers/
013-LightweightMutualAuthentication.pdf

7. Li, T., Wang, G.: SLMAP - A secure ultra-lightweight RFID mutual authentication
protocol. In: Chinacrypt 2007, pp. 19–22 (2007)

8. Li, T., Wang, G.: Security Analysis of Two ultra-Lightweight RFID Authentication
Protocols. In: 22 IFIP International Information Security and Privacy, South Africa, pp.
65–78 (2007)

9. Barasz, M., Boros, B., Ligeti, P., et al.: Breaking LMAP. In: Proc. of RFIDSec 2007, pp.
11–16 (2007)

10. Wang, S., Zhang, W.-w.: Passive attack on SLMAP authentication protocol. Journal of
Nanjing University of Posts and Telecommunications (submitted)

11. Li, T.: Employing lightweight primitives on low-cost rfid tags for authentication. In: VTC
Fall, pp. 1–5 (2008)

12. Bagheri, N., Safkhani, M., et al.: Security Analysis of LMAP++, an RFID Authentication
Protocol, http://www.eprint.iacr.org/2011/193.pdf

13. Chien, H.-Y.: SASI: A New Ultra-lightweight RFID Authentication Protocol Providing
Strong Authentication and Strong Integrity. IEEE Transactions on Dependable and Secure
Computing 4(4), 337–340 (2007)

14. Peris-Lopez, P., Hernandez-Castro, J.C., Estevez- Tapiador, J., Ribagorda, A.: Advances
in Ultralightweight Cryptography for Low-Cost RFID Tags: Gossamer Protocol. In:
Chung, K.-I., Sohn, K., Yung, M. (eds.) WISA 2008. LNCS, vol. 5379, pp. 56–68.
Springer, Heidelberg (2009)

Multi-show Anonymous Credentials
with Encrypted Attributes in the Standard Model

Sébastien Canard, Roch Lescuyer, and Jacques Traoré

Orange Labs, Applied Crypto Group, Caen, France
{sebastien.canard,roch.lescuyer,jacques.traore}@orange.com

Abstract. Anonymous credential systems allow users to obtain a cer-
tified credential (a driving license, a student card, etc.) from one or-
ganization and then later prove possession of this certified credential
to another party, while minimizing the information given to the latter.
At CANS 2010, Guajardo, Mennink and Schoenmakers have introduced
the concept of anonymous credential schemes with encrypted attributes,
where the attributes to be certified are encrypted and unknown to the
user and/or issuing organization. Their construction is secure in the ran-
dom oracle model and based on blind signatures, which, unfortunately,
restrict the credentials to be used only once (one-show) to remain unlink-
able. In their paper, Guajardo et al. left as an open problem to construct
multi-show credential schemes with encrypted attributes, or to show the
impossibility of such a construction. We here provide a positive answer
to this problem: our multi-show anonymous credential scheme with en-
crypted attributes relies on the non-interactive Groth-Sahai proof system
and the recent work on commuting signatures from Fuchsbauer (Euro-
crypt 2011) and is proven secure in the standard model.

Keywords: Privacy, Anonymous credentials, Encrypted attributes.

1 Introduction

Anonymous credential systems, introduced by Chaum in [12], permit users to
obtain the certification of their attributes by some authorized organizations. In
this context, such a certification is called a “credential”. For example, a university,
as an organization, can deliver credentials on particular attributes (name, birth
date, studies, etc.) to its students in order to certify their status. Such credential
can next be used anonymously by users to prove to a third party the possession
of the certified attributes, while minimizing the information given to this third
party. For example, a legitimate student can prove that she is a student, namely
that she owns a credential certified by a university, without revealing any other
information. She can also prove that her credential attributes satisfy some prop-
erties, for example that she is under 25, without revealing her true age, nor her
name or studies.

A lot of work has been done on anonymous credentials and, currently, there
are mainly two kinds of constructions. The first one is based on the work from

D. Lin, G. Tsudik, and X. Wang (Eds.): CANS 2011, LNCS 7092, pp. 194–213, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Multi-show Anonymous Credentials with Encrypted Attributes 195

Brands [6] and makes use of blind signatures [11]. Such constructions are secure
in the random oracle model and very practical. Unfortunately, the resulting
credentials are “one-show” as they become linkable if they are used several times.
They are implemented by Microsoft in their U-Prove technology [24]. The second
one is due to Camenisch and Lysyanskaya [8,10] and is based on the use of group
signatures [13]. The resulting anonymous credential systems are less efficient than
the Brands’ based ones, but they are “multi-show” since they use the inherent
unlinkability property of group signatures. This technology is implemented by
IBM for their Idemix product [22]. Although the original scheme was secure in the
random oracle model [8,10], recent variants such as [5] are secure in the standard
model. More recent papers have also proposed several variants of anonymous
credentials with additional features, such as the delegation of credentials [4,16],
or revocation capabilities [9,7].

Anonymous Credential with Encrypted Attributes. At CANS 2010, Gua-
jardo, Mennink and Schoenmakers [21] have introduced the concept of anony-
mous credential schemes with encrypted attributes. They argue that, in some
practical scenarios, the user should not (or does not want to) learn the certi-
fied attributes. Anonymous credentials with encrypted attributes can also be
used in the context of secure multi-party computation and in particular for the
millionaires protocol (see [21] for details).

In [21], Guajardo et al. first give the security model for anonymous credential
schemes with encrypted attributes. Such a scheme involves three kinds of par-
ticipants: issuers (or organizations), users and verifiers. It is composed of three
protocols: key generation, credential issuance and verification. The key genera-
tion protocol permits each party to compute their secret and public keys whereas
the issuance protocol allows a user to obtain, from an issuer, credentials on some
encrypted attributes. The idea here is that the user only has access to the at-
tributes in encrypted form. Finally, a verification protocol is played between a
user and a verifier, in which the user proves the possession of a credential on
encrypted attributes (without obtaining them in clear) while the verifier may
possess the decryption key to obtain the plain attributes. The authors also give
some variations where the verifier (and sometimes the issuer) does not learn the
attributes in the clear.

They next propose a practical construction of this new concept. Their scheme
is based on the Brands anonymous credential scheme [6,24] and makes use of
blind signatures. As a result, multiple uses (or multi-shows) of the same creden-
tial makes them, as with Brands’ system, linkable: thus the resulting system is
only “one-show” (a.k.a. “one-use”), as argued by the authors in [21].

The Multi-show Problem. In [21], the authors left as an open problem to
construct multi-show credential schemes with encrypted attributes, or to show
the impossibility of such a construction. In this paper, we provide a positive
answer to this problem by giving a concrete construction.

196 S. Canard, R. Lescuyer, and J. Traoré

The main difficulty is to obtain a system where, after one credential issuance
with an issuer, the user can use the resulting credential several times in an
unlinkable manner: in other words, nobody should be able to know whether two
different verification protocols were played by the same user (using the same
credential) or not. It is well-known [6,8,10] that blind signature based anonymous
credential cannot reach such an unlinkability property and it seems, as argued
in [21], that one may start from [8,10], which makes use of group signatures, that
are by essence, unlinkable.

In a nutshell, a group signature based anonymous credential system works
as follows. During the issuance protocol, the user obtains from the issuer a sig-
nature on her attributes. The verification protocol next consists in proving the
possession of an issuer’s signature on some attributes without revealing the sig-
nature (and thus reaching the unlinkability property) nor the private attributes.
When trying to apply this technique to anonymous credentials with encrypted
attributes, several solutions are conceivable.

– The issuer encrypts the attributes and next signs the resulting ciphertexts.
The user therefore needs to prove the possession of an issuer’s signature on
the ciphertexts, without revealing the signature (which can be written, using
classical notation for proofs of knowledge, Pok(σ : σ = SignI(c))). How-
ever since the ciphertexts will remain unchanged, the unlinkability property
collapses.

– One solution to the above problem would be to randomize the ciphertexts
(provided that the underlying encryption scheme supports such randomiza-
tion techniques). Unfortunately, the issuer’s signature would not be valid on
the resulting ciphertexts.

– One possibility to the above non validity of the given signature is for the
issuer not to give the signature directly, but to prove the possession of such
signature. It follows that the user next has to produce a proof of knowledge of
such a proof of knowledge, which is known to be a meta proof [25]. However,
the result would clearly be impractical.

– Another solution would be to keep the signature on the encrypted attributes.
During a verification protocol, the user would first randomize the original
ciphertext c to obtain c̃ and next prove that she knows a signature on a
randomized version of c̃, without revealing the signature nor the ciphertext
c (such a proof can be written Pok(σ, c : σ = SignI(c) ∧ c̃ = ReRand(c))).
The main problem is that, to the best of our knowledge, it does not exist
a practical instantiation of such a proof, except by using some variants of
commuting signatures [16], as we will do in our construction1.

Our Solution. In this paper, we take a different approach which can be seen as
a mix of the two last above solutions. We make use of the concept of commuting
signature which has recently been introduced by Fuchsbauer [16]. Such signa-
ture schemes allow to use a ComSig procedure which on input one or several

1 Even if the above proof is not exactly the one we will use.

Multi-show Anonymous Credentials with Encrypted Attributes 197

(extractable) commitments on some messages plus a signing secret key, outputs
a(n extractable) commitment on a signature on the committed messages along
with a (Groth-Sahai) proof [20] that the signature on the committed messages
can be recovered from the given commitment, without revealing the signature nor
the committed messages. Fuchsbauer also gives a concrete and efficient construc-
tion of commuting signatures based on automorphic signatures [2,15]. We next
associate a commuting signature to the randomization techniques on extractable
commitments and Groth-Sahai proofs to obtain our multi-show anonymous cre-
dential scheme with encrypted attributes, which is secure in the standard model.

Organization of the Paper. The paper is organized as follows. In Section 2,
we recall the concept and give the model for anonymous credential scheme with
encrypted attributes in the multi-show setting. In Section 3, we give some use-
ful tools, such as extractable commitments, Groth-Sahai proof systems and au-
tomorphic signatures. In particular, we describe an SXDH based Groth-Sahai
proof of equality under different commitment keys (the DLIN version being given
in [18]). Section 4 is devoted to commuting signatures. In this section, we intro-
duce the way to produce a commuting signature on a vector of messages that are
committed using different commitment keys. To the best of our knowledge, this
tool is new and may be of independent interest. Finally, Section 5 describes our
new anonymous credential scheme with encrypted attributes. The above exten-
sion on commuting signatures allows us to extend the work of Guajardo et al.
to the case where the issuer certifies encrypted attributes to possibly different
verifiers.

2 A Model for Anonymous Credential Systems with
Encrypted Attributes

In this section, we recall the definition of encrypted credential schemes as given
in [21]. We slightly differ from the Guajardo et al. model since we need to take
into account the multi-show case.

2.1 Protocols

In an anonymous credential scheme with encrypted attributes, there is an issuer
I who issues credentials on encrypted attributes, a user U who obtains credentials
on some of her attributes she does not know, before anonymously proving the
possession of such credentials, and a verifier V who is able to verify the validity of
credentials and may obtain the plain attributes. The list of certified attributes
are denoted M when they are in plain, and C when they are encrypted. An
anonymous credential with encrypted attributes scheme Π is next composed of
the following procedure, where λ is a security parameter.

– The key generation process is divided into three parts. The first one, denoted
ParGen is played by any designated entity (possibly the issuer I). It takes
as input the security parameter 1λ and outputs some parameters param for

198 S. Canard, R. Lescuyer, and J. Traoré

the whole system. Next, the issuer executes IssGen which on inputs 1λ

and param, outputs skI . Finally, the verifier V uses VerGen to generate
skV . This step finally publishes gpk as well as λ, param and the public keys
related to skI and skV .

– An issuance protocol Issue is played by I and U . It takes as input gpk. The
issuer additionally takes as input skI and either the list M of plain attributes
or the corresponding list C of encrypted attributes. The user always takes
as input C. This protocol outputs for the user a credential cred on the list
C of encrypted attributes related to M. The issuer outputs its view viewIss

of the protocol.
– A verification protocol Verify is played by U and V . It takes as input gpk.

The verifier (resp. the user) additionally takes as input skV (resp. cred and
C). The verifier outputs a bit representing either 1 and optionally a list M
of plain attributes (for acceptance) or 0 (for rejection).

Completeness. Such a scheme should verify the completeness property which
states that for any (gpk, skI , skV) output by the key generation procedures and
related to honest issuer and verifier, the credential cred obtained by U during
Issue will be accepted in the Verify protocol with overwhelming probability.

2.2 Security Properties

In [21], Guajardo et al. have given the security properties for the case of a one-
show anonymous credential scheme with encrypted attributes. We thus need to
modify their security model to reach the multi-show case. We moreover give more
formal definitions for some properties. Let us consider an anonymous credential
with encrypted attributes scheme denoted Π .

Used Oracles. Before giving the security experiments, we first describe the
different oracles that will be used by the adversary. The security of our scheme
is conducted in an adaptive corruption model, where the challenger C generates
public keys for all entities and allows the adversary to get secret keys for some
of them (the corrupted ones). We thus introduce a general key generation proce-
dure, denoted KeyGen which corresponds to the above execution of ParGen,
IssGen and VerGen. This procedure, executed by the challenger, takes as input
1λ and outputs (gpk, skI , skV).

In the following experiments, the adversary can play either the issuer or the
user during the Issue procedure. In the first case, the adversary requests the
ObtainC oracle2 on chosen attributes while in the second case, the requested
oracle is denoted IssueC on attributes chosen by either the adversary or the
challenger. When the role of the issuer is played by the challenger, the set of all
issuer’s views for the Issue protocol is denoted V . Each entry Vi of V includes
the set Mi of certified plain attributes. We use similar notation for the Verify
protocol, with a request to the ShowC when the adversary plays the role of the
verifier and a request to VerifyC otherwise.
2 By convention, the name of the oracle denotes the action executed by the challenger.

Multi-show Anonymous Credentials with Encrypted Attributes 199

Expunf
Π,A(λ);

– (gpk, skI , skV) ← KeyGen(1λ);
– (st) ← AIssueC,VerifyC,ShowC

g (gpk, skV);
– Verify : (⊥← AU

c (st)), out ← CV(skV));
– if out = 0, then return 0;
– if (out = (1, M̃)∧∃i : Mi = M̃, return 0;
– return 1.

Expattmask
Π,A (λ);

– b ← {0, 1};
– (gpk, skI , skV) ←− KeyGen(1λ);
– (M0,M1, st) ← AIssueC,VerifyC

g (gpk);
– Issue : (⊥← CI(Mb)), (s̃t ← AU

ch(st));
– b′ ← AIssueC,VerifyC

gu (gpk, s̃t);
– return (b = b′).

Expup
Π,A(λ)

– b ← {0, 1};
– (gpk, skI , skV) ←− KeyGen(1λ);
– (st,C) ← AObtainC,ShowC

g (gpk, skI , skV);
– Issue : (st0 ← AI

ch1
(st)), ((cred0) ← CU(C));

– Issue : (st1 ← AI
ch2(st0)), ((cred1) ← CU (C));

– Verify : (⊥← CU (credb,C)), s̃t ← AV
chf

(st1));
– b′ ← AObtainC,ShowC

gu (s̃t);
– return (b = b′).

Exphv-up
Π,A (λ)

– b ← {0, 1};
– (gpk, skI , skV) ←− KeyGen(1λ);
– (st,C0,C1) ← AObtainC,VerifyC

g (gpk, skI);
– if |C0| �= |C1|, then return 0;
– Issue : (st0 ← AI

ch1
(st)), ((cred0) ← CU(C0));

– Issue : (st1 ← AI
ch2(st0)), ((cred1) ← CU (C1));

– Verify : (⊥← CU (credb,Cb)), s̃t ← AV
chf

(st1));
– b′ ← AObtainC,VerifyC

gu (s̃t);
– return (b = b′).

Fig. 1. Security experiments

In the following, a protocol Prot between an entity E0, playing the role of
R0 (of a user, a verifier or an issuer), taking on input i0 and outputting o0 and
an entity E1, playing a role R1, taking on input i1 and outputting o1 is denoted
Prot : (o0 ← ER0

0 (i0)), (o1 ← ER1
1 (i1)).

The different security experiments are next given in Figure 1 while the related
security definitions are given as follows.

Unforgeability. As we are in the multi-show case and do not rely on blind sig-
natures, we cannot use the same definition as Guajardo et al. [21] who ask the ad-
versary to output more credentials than generated by the issuer. In fact, we give
a single definition which embeds both the one-more unforgeability and the blind-
ing invariance unforgeability properties introduced in the original model [21]. In
particular, the blinding invariance unforgeability property states in [21] that for
any attribute list output by the adversary, the number of credentials on this
list does not exceed the number of times a credential has been issued on this

200 S. Canard, R. Lescuyer, and J. Traoré

list and the one-more unforgeability property prevents an adversary from out-
putting K + 1 distinct credentials after having requested only K credentials. In
our setting, this can be simplified by preventing an adversary from being ac-
cepted during a Verify protocol with a set of attributes which has never been
certified by the issuer.

More precisely, our experiment asks the adversary to successfully play a
Verify protocol such that the embedded attributes have never been certi-
fied by the issuer. The unforgeability experiment Expunf

Π,A(1λ) for the adversary
A = (Ag,Ac), with security parameter λ, is given in Figure 1 and an anonymous
credential with encrypted attributes scheme satisfies the unforgeability prop-
erty iff there exists a negligible function ν(λ) such that for any adversary A,
Pr(Expunf

Π,A(1λ) −→ 1) < ν(λ).

Attribute Masking. This property says that no unauthorized party should
learn the encrypted attributes. We here consider, as in [21], the case where only
the user does not learn the plain attributes. Other cases (e.g. attributes not
known by the issuer) can easily be adapted. Contrary to [21], we here provide
a formal security definition, for which the experiment Expattmask

Π,A (λ) is given
in Figure 1. It follows that an anonymous credential with encrypted attributes
scheme satisfies the attribute masking property iff there exists a negligible func-
tion ν(λ) such that for any adversaryA = (Ag,Ach,Agu), Pr

(
Expattmask

Π,A (1λ) −→
1
)
< 1

2 + ν(λ).

User Privacy. Contrary to the definition given in [21], we consider the case of
a multi-show credential. Then, the user privacy should include the possibility for
one single user to use several times the same credential, without being traced.
In fact, there are two cases, depending on the possibility for the adversary to
corrupt (user privacy) or not (honest-verifier user privacy) the verifier. In both
cases, the adversary plays the role of the issuer I and executes two different
Issue protocols with the challenger. Next, one of the two output credential is
used by the challenger during a Verify protocol. If the verifier is corrupted,
this experiment can easily be won by the adversary since the corrupted issuer
can certify two different sets of attributes and the corrupted verifier can easily
check which one is used during the Verify protocol by decrypting the encrypted
attributes. Thus, when the verifier is corrupted, this experiment is only relevant
when the plain attributes are similar in both Issue protocols. For this purpose
(see Expup in Figure 1), the adversary output one single set of encrypted at-
tributes C, which is used twice in both Issue protocols. We do not need this
restriction for the case where the verifier is honest and the adversary thus output
two different encrypted attributes C0 and C1 (see Exphv-up in Figure 1).

Both experiments are given in Figure 1. Next, the scheme satisfies the user
privacy (resp. honest-verifier user privacy) property iff there exists a negligi-
ble function ν(λ) such that for any adversary A = (Ag,Ach1 ,Ach2 ,Achf

,Agu),
Pr
(
Expup

Π,A(1λ) −→ 1
)
< 1

2 + ν(λ) (resp. Pr
(
Exphv-up

Π,A (1λ) −→ 1
)
< 1

2 + ν(λ)).

Multi-show Anonymous Credentials with Encrypted Attributes 201

3 Cryptographic Tools

We here introduce the cryptographic tools we need in the following. This includes
extractable commitment schemes, Groth-Sahai (GS) proofs [20] and automorphic
signatures [2,15].

In the following, a bilinear environment is given by the tuple (p, G1, G2, GT ,
e, g1, g2) where p is a prime number, G1, G2 and GT are groups of order p, g1
(resp. g2) is a generator of G1 (resp. G2), and e : G1 × G2 −→ GT is a pairing
with the non-degeneracy (e(g1, g2) �= 1) and bilinearity (for all u ∈ G1, v ∈ G2

and a, b ∈ Zp, e(ua, vb) = e(u, v)ab) properties. For vectors of group elements,
“&” denotes the component-wise group operation.

As we use the Abe et al. proposal [3] for signing a vector of messages, we
also need an injective mapping 〈.〉 : {1, ..., nmax} → G1 × G2 such that for all
n, n′ ∈ {1, ..., nmax}, 〈n〉 & 〈n′〉 �= (1, 1), where nmax ∈ N is a fixed parameter.
In the following, we consider 〈.〉 : n �→ (g1n, g2

n) since for all reasonably small
n, n′ ∈ {1, ..., nmax} (we consider nmax as small in the following constructions),
we have (g1n+n′

, g2
n+n′

) �= (1, 1).

3.1 Randomizable and Extractable Commitment Schemes

A commitment scheme permits one user to commit to a message, using some
randomness, such that it is possible to further give the message and the ran-
domness to prove that this was truly the committed message. The commitment
becomes extractable when the commit process makes use of a public key which is
related to a secret key allowing the owner of the latter to open any commitment
and retrieve the initially committed message. Finally, the commitment scheme
is said randomizable if it exists a public procedure which permits to random-
ize a given commitment, without obtaining any information about the initially
committed message, and such that it is infeasible to know whether two given
commitments are related to the same message or not. A formal definition of
such a commitment can be found in [20].

SXDH Commitments. In the following, we will use SXDH randomizable and
extractable commitment schemes [20], which can be described as follows.

Key generation. Given a bilinear environment, the extractable keys are α1, α2 ∈
Zp and the public key ck of the commitment schemes is composed of u :=
(u1,u2),v := (v1,v2) where (for t1, t2 ∈ Zp)

u1 := (g1, g1α1),u2 := (g1t1 , g1
α1t1),v1 := (g2, g2α2),v2 := (g2t2 , g2

α2t2).

Commitment. The commitment to a group element X , with randomness ρ =
(ρ1, ρ2) ∈ Z2

p is

c := (c1, c2) = (u11
ρ1 · u21

ρ2 , X · u12
ρ1 · u22

ρ2) if X ∈ G1 and
c := (c1, c2) = (v11ρ1 · v21ρ2 , X · v12ρ1 · v22ρ2) if X ∈ G2.

Such a commitment is in the following denoted SXDHCom(ck, X, ρ).

202 S. Canard, R. Lescuyer, and J. Traoré

Extraction. The extraction retrieves X ∈ G1 (resp. X ∈ G2) by computing
c2 · c−α1

1 (resp. c2 · c−α2
1).

Randomization. Given a commitment c and some fresh randomness ρ′ = (ρ′1, ρ
′
2)

∈ Z2
p, the randomization of c is done by computing

c′ := (c1 · u11
ρ′
1 · u21

ρ′
2 , c2 · u12

ρ′
1 · u22

ρ′
2) if c ∈ G2

1 and
c′ := (c1 · v11ρ′

1 · v21ρ′
2 , c2 · v12ρ′

1 · v22ρ′
2) if c ∈ G2

2.

3.2 (SXDH) Groth-Sahai Proofs

Groth and Sahai have described in [20] a witness indistinguishable proof sys-
tem, for a class of pairing-product equations (PPE for short) over variables
X1, . . . , Xm ∈ G1 and Y1, . . . , Yn ∈ G2 as

E(X1, . . . , Xm;Y1, . . . , Yn) :
m∏

i=1

e(Xi, Bi)
n∏

j=1

e(Aj , Yj)
m∏

i=1

n∏
j=1

e(Xi, Yj)γi,j = tτ

defined by elements Aj ∈ G1, Bi ∈ G2, γi,j ∈ Zp for i ∈ [1,m], j ∈ [1, n] and
tτ ∈ GT and where the notation X means that the variable X is a secret value.
In this paper, we use the SXDH version of GS proofs. Such a proof is denoted
Prove(ck, E, (X1, . . . , Xm;Y1, . . . , Yn), (r1, . . . , rm; s1, . . . , sm)) where ri, sj ∈
Zp. We refer the reader to e.g. [20,16] for details.

In [4], it has been shown that such proofs can be publicly randomized, in such
a way that it is infeasible to link the original proof to the randomized one. This
procedure is in the following denoted RdProof(ck, E, (ci, r

′
i)

m
i=1, (dj , s

′
j)

n
j=1,

π) where ci, for i ∈ [1,m], denotes a commitment to Xi and dj , for j ∈ [1, n], a
commitment to Yj , π is the proof to be randomized and the r′i, s′j correspond to
the new randomness.

Diffie-Hellman Pairing-Product Equation. In the sequel, we will need sev-
eral times to provide a GS proof with a DH pairing-product equation. This
equation is denoted EDH and, on the values (M,N) ∈ G1 × G2 and where
g1, g2 ∈ G1 ×G2, is given by E(g1,g2)

DH (M,N) : e(M, g2) · e(g1−1, N) = 1.

3.3 GS Proof of Equality under Different Commitment Keys

In the following, we need to prove that two values X1 and X2, committed with
two different keys, are equal. Such GS proof has already been given in [18] for
the DLIN case but we here need it in the SXDH one. Such a proof is in the
following denoted

πeq ← dProveeq((ck, ck′), Eeq, (X1, X2), (r, s, r′, s′)).

When the values X1 and X2 are committed using the same key, the GS proof is
related to the PPE

Eeq(X1, X2) : e(X1, g2) · e(X2, g2
−1) = 1. (1)

Multi-show Anonymous Credentials with Encrypted Attributes 203

Consider now two commitments c1, c2 of X1, X2 under different commitment
keys ck := (u,v) and ck′ := (u′,v′) respectively. We want to construct a witness-
indistinguishable proof system that X1 and X2 satisfy Eeq from c1 and c2. We

have c1 := (u11
r1 · u21

r2 , X1 · u12
r1 · u22

r2) for uniformly chosen r1, r2
$← Zp. If

we fix X2, the proof that the committed value X1 satisfies equation e(X1, g2) =
e(X2, g2) can be reduced to (φ12 := g2r1 , φ22 := g2r2) which can be checked3 by

e(c11, g2) = e(u11, φ12) · e(u21, φ22) and (2a)
e(c12, g2) = e(X2, g2) · e(u12, φ12) · e(u22, φ22), (2b)

which gives us the first part of our GS proof.
Regarding now (2a) and (2b) as a set of equations over variables X2, φ21 and

φ22, we use the GS proof system a second time by committing to these new
variables under key u′. Note that as we have already treated the case of c11 and
c12, we consider them as fixed in the second part of the GS proof. This leads us
to apply the proof algorithm on the following equations.

Eeq′1 : e(u11, g2
r1) · e(u21, g2

r2) = e(c11, g2) (3a)

Eeq′2 : e(X2, g2) · e(u12, g2
r1) · e(u22, g2

r2) = e(c12, g2) (3b)

The resulting complete GS proof will be given in the full version of the paper.
Regarding the randomization of such a proof, one need to update commitments
and proofs to the new randomness for the commitment on X1.

3.4 Automorphic Signatures

Automorphic signatures have been introduced in [2,15] as a new signature scheme
where (i) the verification keys lie in the message space, (ii) messages and sig-
natures consist of elements of a bilinear group, and (iii) verification is done
by evaluating a set of pairing-product equations. Automorphic signatures are
used in [16] to construct commuting signatures, where a commuting signature is
concretely a verifiably encrypted automorphic signature. We now described the
instantiation given in [15].

Let (p,G1,G2,GT , e, g1, g2) be a bilinear environment as defined above. We
also need h, k, u ∈ G1. The message space is DH := {(g1m, g2

m) | m ∈ Zp}. The
secret key is x ∈ Z∗

p and the related public verification key is vk := (X,Y) =
(g1x, g2

x). The signature of a message (M,N) ∈ DH is done by picking c, r ∈ Zp

at random and computing

σ :=
(
A :=

(
h ·M · kr

) 1
x+c , B := uc, D := g2c, R := g1r, S := g2r

)
.

A signature σ = (A,B,D,R, S) on a message (M,N) ∈ DH is valid iff e(A, Y ·
D) = e(h ·M, g2) · e(k, S), e(B, g2) = e(u,D) and e(R, g2) = e(g1, S). Details
can be found in [15,16].
3 As explained in Section 6.1 of the full version of [20], two group elements are enough

for such a proof.

204 S. Canard, R. Lescuyer, and J. Traoré

4 Commuting Signatures and Some New Extensions

We here introduce commuting signatures and some extensions which are of in-
dependent interest. In our main scheme, we need to sign a vector of messages
while individual messages can be committed using different commitment extrac-
tion keys. To the best of our knowledge, this description is new and we here give
a general way to treat such a case.

4.1 Additional Commitments

Fuchsbauer [16], when constructing commuting signatures, makes use of com-
mitment on Diffie-Hellman (DH) tuples which are messages signed by the auto-
morphic signature scheme introduced above.

Commitment on Diffie-Hellman Tuples. Let k ∈ G1. A commitment on a
DH tuple (M,N) takes as input some randomness (t, μ, ν, ρ, σ). It first computes
(P,Q) = (g1t, g2

t) and U =M ·kt. It next computes SXDH commitments cM =
SXDHCom(ck,M, μ), cN = SXDHCom(ck, N, ν), cP = SXDHCom(ck, P, ρ)
and cQ = SXDHCom(ck, Q, σ). Finally, it executes the SXDH GS proofs πM =
Prove(ck, E(g1,g2)

DH , (M,N), (μ, ν)), πP = Prove(ck, E(g1,g2)
DH , (P,Q), (ρ, σ)) and

πU = Prove(ck, EU , (M,Q), (μ, σ)) where

EU (M,Q) : e(k−1, Q) · e(M, g2−1) = e(U, g2)−1

The commitment on (M,N) is C = CommitDH(ck, (M,N), (t, μ, ν, ρ, σ)) =
(cM , cN , πM , cP , cQ, πP , U, πU). Such a commitment is randomizable [16] using
the randomization techniques for SXDH commitments and GS proofs.

More Simple Commitment on DH Tuples. Before producing a commuting
signature on a message (M,N), it is necessary to produce such a commitment
on the message. In some other cases, we need to produce a commitment on
a DH tuple but without any relation with the execution of a commuting sig-
nature on the underlying message. In this case, we do not need to make so a
complicated commitment on a DH tuple. In fact, the values P and Q are in
this case not necessary (see [16] for details). The above commitment, denoted
CommitDH−(ck, (M,N), (μ, ν)) is thus reduced to the values (cM , cN , πM).

Commitment to an Automorphic Signature When the Message Is
Known But Committed. An automorphic signature (see [15] and Section 3.4)
can be committed as follows, when the signed message (M,N) is known4 but
committed as a DH tuple: CommitDH(ck, (M,N), (μ, ν)).

Let σ = (A,B,D,R, S) be an automorphic signature on the message (M,N).
A commitment on a signature corresponds to (cσ, πσ) = ((cA, cB, cD, cR, cS),
(πA, πB, πR)) where cX corresponds to SXDHCom(ck, X, αX) (for X ∈ {A,
B, D, R, S}) and where πA = Prove(ck, EA, (A,αA), (M,μ), (D,αD), (S, αS)),
4 The case where the message is not known is different, see [16].

Multi-show Anonymous Credentials with Encrypted Attributes 205

πB = Prove(ck, E(u,g2)
DH , (B,αB), (D,αD)) and finally πR ← Prove(ck,E(g1,g2)

DH ,
(R,αR), (S, αS)) with

EA(A,M,D, S) : e(k−1, S) · e(A, Y) · e(M, g2−1) · e(A,D) = e(h, g2).

In the following, such a procedure is denoted CommitSign(ck, vk, (M,N), σ,
(μ, ν, αA, αB, αD, αR, αS)).

Commitment to an Automorphic Signature When the Message Is
Known But not Committed. The case where the message (M,N) is pub-
licly known (and thus not committed) can be simplified since the equation EA

becomes

EA(A,M,D, S) : e(k−1, S) · e(A, Y) · e(A,D) = e(h ·M, g2).

The rest of the procedure is done similarly and the result is CommitSign−(ck,
vk, (M,N), σ, (μ, ν, αA, αB, αD, αR, αS)) in the following.

4.2 Simple Commuting Signature: One Committed Message and
One Commitment Key

We now recall the SigCom algorithms to sign a DH tuple committed using
the above commitment scheme for DH tuples as described in [16]. The secret
signing key is sk = x ∈ Z∗

p and the corresponding public key is the DH tuple
vk = (X = g1

x, Y = g2
x), as for an automorphic signature. The signature of

a DH commitment C = (cM , cN , πM , cP , cQ, πP , U , πU) on (M,N) is done as
follows (see [16] for details).

– The signer first picks fresh random values c, r $← Zp and α, β, δ, ρ′, σ′ $← Z2
p.

– She next computes an automorphic signature (see [2,15] and Section 3.4)

A = (h · U · kr)
1

x+c , B = uc, D = g2c, R = g1r and S = g2r.
– She also computes the SXDH commitments cA = SXDHCom(ck, A, α),

cB = SXDHCom(ck, B, β), cD = SXDHCom(ck, D, δ), cR = cP &
SXDHCom(ck, R, ρ′) and cS = cQ & SXDHCom(ck, S, σ′).

– She makes the GS proofs: π′A := πU &Prove(ck, EA† , (A,D), (α, δ)), πA :=
RdProof(ck, EA, (cA, 0), (cM , 0), (cD, 0), (cS , σ

′), π′A), πB = Prove(ck,
EDH, (B,D), (β, δ)) and πR := RdProof(ck, ER, (cR, ρ

′), (cS , σ
′), πP)

where

EA(A,M,D, S) : e(k−1, S) · e(A, Y) · e(M, g2−1) · e(A,D) = e(h, g2)
EA†(A,D) : e(A, Y) · e(A,D) = 1
EB(B,D) : e(u−1, D) · e(B, g2) = 1
ER(R,S) : e(g1−1, S) · e(R, g2) = 1

The PPE EA† is not truly verified but is necessary to produce the GS proof on EA

(see [16]). The signature is Σ :=
(
cΣ = (cA, cB , cD, cR, cS), πΣ = (πA, πB , πR)

)
.

206 S. Canard, R. Lescuyer, and J. Traoré

4.3 Vector of Committed Messages and One Commitment Key

In our anonymous credential scheme with encrypted attributes, we need to sign
several messages at the same time. For this purpose, we need to adapt the above
commuting signature, which can easily be done by using the recent technique
of [3] and [17]. On input a signing key x and a vector (C1, . . . , Cn) of commit-
ments to the DH tuples (M1, N1), . . . , (Mn, Nn), the whole procedure works as
follows. Let nmax ∈ N be the maximum number of messages we can sign together
and let sk = x ∈ Z∗

p be the used secret signing key, related to the public key
vk = (X = g1x, Y = g2x).

1. Run the signing key generation n+1 times to get (vki = (Xi, Yi), ski = xi)n
i=0,

where ski ∈ Z
∗
p.

2. Compute the following automorphic signatures (see Section 3.4): Γ0 on vk0

under sk and Δ0 on 〈n〉 (as defined at the beginning of Section 3) under
sk0. The message vk0 is next committed using CommitDH− to obtain cvk0 .
Finally, the signatures Γ0 and Δ0 are also committed using the procedures
CommitSign (resp. CommitSign− since 〈n〉 is not committed), and obtain
(cΓ0 , πΓ0) (resp. (cΔ0 , πΔ0)).

3. Executes n times the following: produce an automorphic signature Γi on vki

under sk0 and a signature Δi on vki & 〈i〉 under sk0. In addition, commit
to each message and each signature. Again, for i ∈ [1, n], the message vki is
committed using CommitDH− to obtain cvki

. The signatures Γi and Δi are
also committed using CommitSign (this time, the message vki&〈i〉 related
to Δi is not totally known), and obtain (cΓi , πΓi) and (cΔi , πΔi) respectively.

4. Executes n times the SigCom procedure for a single message (see Section 4.2
above). The i-th execution takes as inputs the commitment Ci and the re-
lated signing key ski and outputs a commuting signature Σi = (cΣi , πΣi).

5. Commit to all public keys vki as cvki = (cXi = SXDHCom(ck, Xi, ζi), cYi =
SXDHCom(ck, Yi, ψi)) and πXi = Prove(ck, E(g1,g2)

DH , (Xi, ζi), (Yi, ψi)).
6. As the above signatures Σi are valid under the plain public keys vki, we

need to use next the AdPrCK procedure5 [16] to adapt Σi so that it
is valid under the public keys which are committed in the cvki

’s. Given
Σi = (cAi , cBi , cDi , cRi , cSi , πAi , πBi , πRi), the resulting commuting signa-
ture is next Σ′

i = (cAi , cBi , cDi , cRi , cSi , π
′
Ai
, πBi , πRi) where the proof π′Ai

= RdProof(ck, EÂ, (cAi , 0), (cMi , 0), (cSi , 0), (SXDHCom(ck, Yi, 0), ψi),
(cAi , 0), πAi), with

EÂ(A,M,S, Y,D) : e(k−1, S) · e(A, Y) · e(M, g2−1) · e(A,D) = e(h, g2).

The whole commuting signature on the vector
(
(M1, N1), . . . , (Mn, Nn)

)
is finally

Σ =
(
(cvki

, cΓi ,cΔi ,πvki
, πΓi , πΔi)n

i=0, (Σ
′
i)

n
i=1

)
.

5 The AdPrCK procedure (Adapt Proof when Committing to the Key) allows to
adapt proofs when committing or decommitting to the verification key.

Multi-show Anonymous Credentials with Encrypted Attributes 207

4.4 Vector of Committed Messages and Several Commitment Keys

We now introduce the way we will use such signatures in our anonymous cre-
dential scheme with encrypted attributes. To the best of our knowledge, this
procedure is new and may be of independent interest.

We assume having the DH tuple commitments (C1, . . . , Cn) on the messages
(M1, N1), . . . , (Mn, Nn) under possibly several commitment keys (ck1, . . . , ckn),
using the randomness (μ1, ν1), . . . , (μn, νn). We use a commuting signature with
the commitment key denoted ck and the secret signing key sk = x.

The idea is to use the above procedure. We commit to each message using the
same commitment key and prove that the committed values are equals, using
our new procedure given in Section 3.3. More precisely, we have the following.

1. For all i ∈ [1, n], produce a DH tuple commitment on (Mi, Ni) using ck,
which outputs C(ck)

i = CommitDH(ck, (Mi, Ni), (μi, νi)).
2. For all i ∈ [1, n], produce a GS proof of equality under different commitment

keys (see Section 3.3): πeqi
= dProveeq((ck, cki), Eeq, (C(ck)

i , Ci), (μ(ck)
i ,

ν
(ck)
i , μi, νi)).

3. Compute the commuting signature, using the secret key x, for the vector of
messages (C(ck)

1 , . . . , C
(ck)
n) on the single commitment key ck, as described in

Section 4.3 just above. This procedure outputs Σ.

In this procedure, we remark that the two first steps are not necessarily executed
by one single actor. If the messages are known by different parties, each one can
execute these two first procedures and the owner of the signing key can next
produce the commuting signature.

Note that not all the elements need to be hidden. In particular, thanks to the
homomorphic properties of the SDXH commitment, there is no need to commit
to vki & 〈i〉 once vki is already committed. The proofs of validity are done w.r.t.
the same commitment cvki

. Furthermore, 〈n〉 must stay in clear, since the length
of the vector has to be checkable.

Security Considerations. Regarding the security of the above constructions,
we first note that signatures on vector of committed messages have the same
probability distribution as directly generated signatures on vector elements.
Then the reduction from [3] is adapted to the unforgeability notion of commuting
signatures. An adversary, given an access to an oracle which signs committed val-
ues, is not able to forge committed signatures on values that were not queried to
the oracle in a committed form (thanks to the simulation algorithm, as in [16]).
Thus, from a forgery on a vector of committed messages, we extract a forgery
on the underlying commuting signature scheme with non-negligible probability.

4.5 Commuting Signatures in Privacy Enhancing Cryptography

In this paper, we mainly focus on anonymous credential systems as described and
used in [12,8,21]. It exists in the literature several related cryptographic tools
which also aims at preserving the privacy of consumers with close methods and

208 S. Canard, R. Lescuyer, and J. Traoré

problems. This is for example the case for group [13], blind [11] and traceable [23]
signatures.

Commuting signatures have been introduced in [16] and the existing construc-
tion is based on automorphic signatures [2,15]. Automorphic signatures, as said
in [2,15], permits to efficiently create blind signatures. It is also possible to give a
more efficient variant of Groth’s group signature scheme [19] by using automor-
phic signatures instead of certified signatures. For traceable signatures, recent
papers [14,1] have also proposed variants of traceable signature, also using auto-
morphic signatures. In particular, the signature confirmation/denial [1] and the
efficient tracing [14] techniques can be incorporated into traditional anonymous
credential (and related tools) systems.

In our case, this is slightly different since automorphic signatures are not
enough. In fact, if commuting signatures can, in most cases, be used instead of
automorphic signatures (even if the result is obviously less efficient), the con-
trary is false. As for delegatable anonymous credentials [4], we need at the same
time (i) a signature process on a message which is not known by the signer (or
the receiver in our case) and (ii) a process where a unique signature is used
several times while being untraceable, even for the signer. This is exactly the
aim of commuting signatures, as explained in [16], since signing and encrypt-
ing/commuting commute. The fact that a unique signature can be used several
times, using the randomization techniques of commitment schemes and Groth-
Sahai proofs, is what permits our scheme to be multi-show, while this was not
the case for the Guajardo et al. construction [21] since they make use of blind
signatures.

5 A Multi-show Anonymous Credential Scheme with
Encrypted Attributes

We have now introduced all the elements we need to describe our multi-show
anonymous credential scheme with encrypted attributes. We first sketch an
overview before giving details and security arguments.

5.1 Overview of Our Solution

We want to design an anonymous credential scheme with encrypted attributes.
We first take as a basis the work given on non-interactive anonymous creden-
tial schemes by Belenkiy et al. in [5], and later refined by Fuchsbauer [16] by
using commuting signatures. To introduce the property of encrypted attributes,
we make use of extractable commitments, arguing that a perfectly binding ex-
tractable committed value exactly corresponds to a ciphertext of a public key
encryption scheme.

Our scheme next works as follows. In a nutshell, the issuance protocol consists
for the issuer in producing a commuting signature on the attributes, using the

Multi-show Anonymous Credentials with Encrypted Attributes 209

commitment key of the verifier to encrypt/commit to the attributes. The result-
ing commuting signature is next given to the user who can play a verification
protocol with the verifier by randomizing the commuting signature, which is com-
posed of commitments and Groth-Sahai proofs. As two different randomizations
of the same inputs are indistinguishable, we obtain the multi-show property, as
expected.

Following [21], the user, during the issuance protocol, generates a random
secret α for the issued credential cred. This secret (or the related public key)
should be signed by the issuer in the above commuting signature. However, the
verifier should not be able to obtain it and we thus need to use a commitment
key which is different from the verifier’s one for this particular message α. For
this purpose, we use the mechanism proposed in Section 4.4, which permits to
produce a commuting signature on messages committed with possibly different
commitment keys. The other commitment extraction key is related to the verifier
(who need to be known at the issuing process, as for the scheme in [21]) and the
related commitment scheme is used by the issuer to commit to the attributes.

During the verification process, the user should prove the knowledge of the
secret α, without revealing it, for obvious reasons. The GS proof system does
not permit such a proof of knowledge and we need to do something more. In
fact, we use the powerfulness of automorphic signatures [2,15] for which the
verification keys lie in the message space. Thus, during the verification process,
the user produces an automorphic signature on some plain message related to
the context (or sent by the verifier), using the committed secret key α.

Finally, as we can use the general commuting signature scheme for a vector
of committed messages and several commitment keys, we are also able to deal
with several verifiers. Thus, the issuance protocol permits the issuer to create
a credential with several encrypted attributes, for potentially several different
verifiers, which is a new property not proposed in [21]. More formally, we give
the following construction.

5.2 Algorithms and Protocols

Following [21], we outline the case where the issuer encrypts attributes for veri-
fiers. Thus, the plain attributes remain hidden to the user. Our scheme is easily
adaptable to other policies, giving the extraction key and making the extractable
commitment accordingly.

Key Generation. Our scheme works on a bilinear environment (p, G1, G2,
GT , e, g1, g2) as defined in Section 3. We also need randomly picked generators
h, k, u, v ∈ G1. As shown above (see Section 4.4), we need a commitment key for
the commuting signature. For this purpose, we generate a commitment public
key ck := (u,v), while the corresponding secret key is known by nobody6. We
finally set grp = (p,G1,G2,GT , e, g1, h, k, u, v, g2, ck)

6 As we use Groth-Sahai proofs, we are in the common reference string model.

210 S. Canard, R. Lescuyer, and J. Traoré

Issuer key generation. Each issuer generates her own keys. For this purpose, she
picks at random xI ∈ Z∗

p as her secret key skI and computes the public key as
a DH tuple: pkI = (XI , YI) = (g1xI , g2

xI).

Verifier key generation. Each verifier also generates her keys. As said before,
these corresponds to the ones for an SXDH commitment scheme: the secret key
is (αV1 , αV2) ∈ (Z∗

p)
2 and the corresponding public key is ckV := (uV ,vV) as

defined in Section 3.1.

Issuance Protocol. This protocol is played by an issuer with keys (skI , pkI)
and is related to the attributes denoted (m1, . . . ,mN), such that each mi =
(Mi, Ni). We here consider that each attribute mi is “encrypted” for the verifier
i with public key ckVi (with possibly several times the same verifier), which is
not proposed in [21].

We first assume that some entity (possibly the issuer itself) first encrypts the
plain attributes (m1, . . . ,mN). For this purpose, it produces, for all i ∈ [1, N], a
commitment Ci, using ckVi , on each (Mi, Ni) and using the DH tuple commit-
ment scheme described in Section 4.1: ci := CommitDH(ckVi , (Mi, Ni), (μi, νi)).
These commitments are next given on input to both the issuer (if necessary) and
the user. The issuance protocol is next divided into several steps.

User Generate an automorphic signing secret key α ∈ Z∗
p. The pair (X =

g1
α, Y = g2α) corresponds to the public verification key of an automorphic

signature scheme related to α and is also used to commit to α. Thus, the
user next commits to α, using the commitment key ck of the commuting
signature scheme: C0 = CommitDH(ck, (X,Y), (ξ, ξ′)). The result is sent
to the issuer.

Issuer The issuer next produces a commuting signature on all the commitments
C0, C1, · · · , CN , using the algorithm given in Section 4.4, the secret key
skI as the signing secret key, and the key ck for the related commitment
scheme. As C0 is already committed using ck, it is not necessary to commit
again to it and produce a GS proof of equality. This is however necessary
for the other Ci’s.
The resulting signature Σ is sent to the user, together with the Ci’s.

User Verify the commuting signature Σ (see [16]) and save the Ci’s and the
credential ((α, ξ, ξ′), cred := Σ).

Verification Protocol. Let U be a user having beforehand carried out an is-
suance protocol with an issuer, and thus having a credential ((α, ξ, ξ′), cred)
as defined above, and on some encrypted/committed attributes (C1, . . . , CN).
She now interacts with a verifier having access to a decryption/extraction key
(αV1 , αV2) related to one commitment key ckV used to create cred. For the sake
of simplicity, we assume that ckV = ckV1 in the above issuance protocol.

User Randomize her credential cred and commitments Ci’s (to obtain the C̃i’s)
by using the randomization technique of commuting signatures [16].

Multi-show Anonymous Credentials with Encrypted Attributes 211

The new commuting signature is Σ̃. Let (ξ̃, ξ̃′) be the new randomness
associated to C̃0 and α. User U produces7 a signature σ on some fresh
message related to the context8 (or sent by V), using the secret key α.
Let us recall that α is related to (X,Y) := (g1α, g2

α) and that (X,Y) is
committed in C̃0. The fresh message is hashed to m ∈ Zp and mapped
to (M,N) := (g1m, g2

m). User produces an automorphic signature (see
Section 3.4) σ := (A,B,D,R, S) ← Sign(α, (M,N)) and proves that the
signature σ is valid under the verification key committed in C̃0 by comput-
ing π ← Prove(ck, EY , (X,Y), (ξ̃, ξ̃′)) with

EY (Y) : e(A, Y ·D) = e(h ·M, g2) · e(k, S).

She next sends to the verifier Σ̃, π and σ.
Verifier The verifier checks the commuting signature Σ̃, the proof π and the

signature σ. She is next able to use her secret key (αV1,1 , αV1,2) to extract
the attribute (M1, N1) committed in C1 (see Section 3.1).

Remark 1. The verifier retrieves a plain attribute as a DH tuple. The way for her
to retrieve an understandable attribute can be treated by either considering bits
(as done in [21]), or very small messages (to test all possibilities) or (for bigger
messages) to publish a cross-reference table between understandable messages
and corresponding DH tuples.

Regarding the security of our new construction, we give the following theorem,
while the assumptions are given in Appendix A and the proof will be given in
the full version of the paper.

Theorem 1. Our anonymous credential scheme with encrypted attributes en-
sures the unforgeability, attribute masking and (honest-verifier) user privacy
properties under the q-ADHSDH, the AWFCDH and the SXDH assumptions
in (G1,G2).

Acknowledgments. This work has been supported by the French Agence Na-
tionale de la Recherche under the PACE 07 TCOM Project, and by the Euro-
pean Commission through the ICT Program under Contract ICT-2007-216676
ECRYPT II. We are also grateful to Georg Fuchsbauer for his suggestions of
improvement on Section 4.3, to Sherman Chow for his help on this final version
and to anonymous referees for their valuable comments.

References

1. Abe, M., Chow, S.S.M., Haralambiev, K., Ohkubo, M.: Double-Trapdoor Anony-
mous Tags For traceable Signatures. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011.
LNCS, vol. 6715, pp. 183–200. Springer, Heidelberg (2011)

7 This additional signature is added in order to prevent credentials sharing. This aspect
is not taken into account in the model. To adopt an all-or-nothing policy, each α
contained in each credential may be the same value, and this value is a user secret
necessary to prove possession of a credential.

8 Like the concatenation of the current time and the verifier public key.

212 S. Canard, R. Lescuyer, and J. Traoré

2. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
Preserving Signatures and Commitments to Group Elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

3. Abe, M., Haralambiev, K., Ohkubo, M.: Efficient Message Space Extension for
Automorphic Signatures. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I.
(eds.) ISC 2010. LNCS, vol. 6531, pp. 319–330. Springer, Heidelberg (2011)

4. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable Proofs and Delegatable Anonymous Credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009),
http://eprint.iacr.org/2008/428

5. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-Signatures and Nonin-
teractive Anonymous Credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 356–374. Springer, Heidelberg (2008), http://eprint.iacr.org/2007/384

6. Brands, S.: Rethinking PKI and digital certificates - building in privacy. PhD thesis,
Eindhoven Institute of Technology (1999)

7. Camenisch, J., Kohlweiss, M., Soriente, C.: An Accumulator Based on Bilinear
Maps and Efficient Revocation for Anonymous Credentials. In: Jarecki, S., Tsudik,
G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)

8. Camenisch, J.L., Lysyanskaya, A.: An Efficient System for Non-Transferable
Anonymous Credentials with Optional Anonymity Revocation. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg
(2001)

9. Camenisch, J.L., Lysyanskaya, A.: Dynamic Accumulators and Application to Ef-
ficient Revocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

10. Camenisch, J.L., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials
from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

11. Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO 1982, pp.
199–203 (1983)

12. Chaum, D., Evertse, J.-H.: A Secure and Privacy-Protecting Protocol for Trans-
mitting Personal Information Between Organizations. In: Odlyzko, A.M. (ed.)
CRYPTO 1986. LNCS, vol. 263, pp. 118–167. Springer, Heidelberg (1987)

13. Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

14. Chow, S.S.M.: Real Traceable Signatures. In: Jacobson Jr., M.J., Rijmen, V.,
Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 92–107. Springer,
Heidelberg (2009)

15. Fuchsbauer, G.: Automorphic signatures in bilinear groups and an application
to round-optimal blind signatures. Cryptology ePrint Archive, Report 2009/320
(2009), http://eprint.iacr.org/

16. Fuchsbauer, G.: Commuting Signatures and Verifiable Encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidelberg
(2011)

17. Fuchsbauer, G.: Personal Communication (2011)
18. Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Transferable Constant-Size Fair E-

Cash. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888,
pp. 226–247. Springer, Heidelberg (2009)

19. Groth, J.: Fully Anonymous Group Signatures without Random Oracles. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer,
Heidelberg (2007)

http://eprint.iacr.org/2008/428
http://eprint.iacr.org/2007/384
http://eprint.iacr.org/

Multi-show Anonymous Credentials with Encrypted Attributes 213

20. Groth, J., Sahai, A.: Efficient non-Interactive Proof Systems for Bilinear Groups.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

21. Guajardo, J., Mennink, B., Schoenmakers, B.: Anonymous Credential Schemes
with Encrypted Attributes. In: Heng, S.-H., Wright, R.N., Goi, B.-M. (eds.)
CANS 2010. LNCS, vol. 6467, pp. 314–333. Springer, Heidelberg (2010)

22. IBM. Identity mixer - Idemix, http://www.zurich.ibm.com/security/idemix/
23. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable Signatures. In: Cachin, C.,

Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589.
Springer, Heidelberg (2004)

24. Microsoft. Microsoft U-Prove, https://connect.microsoft.com/site1188
25. De Santis, A., Yung, M.: Cryptographic Applications of the Non-Interactive

Metaproof and many-Prover Systems. In: Menezes, A., Vanstone, S.A. (eds.)
CRYPTO 1990. LNCS, vol. 537, pp. 366–377. Springer, Heidelberg (1991)

A Used Assumptions

[q-ADHSDH] The q-Asymmetrical Double Hidden Strong Diffie-Hell-
Man Problem. Given (g1, X = g1

x, h, u, g2, Y = g2
x) ∈ G1

4 × G2
2, q − 1

tuples
{
(Ai = (h · g1vi)

1
x+ci , Bi = uci, Di = g2ci , Vi = g1vi ,Wi = g2vi)

}q−1

i=1
for

ci, vi
$← Zp find a new tuple (A,B,D, V,W) such that e(A, Y ·D) = e(h · V, g2),

e(B, g2) = e(u,D) and e(V, g2) = e(g1,W).

[AWFCDH] The Asymmetric Weak Flexible Computational Diffie-
Hellman Problem. Given (g1, g2) ∈ G1 × G2, A = g1

a for a $← Zp, find a
tuple (R,S,M,N) ∈ (G∗

1)
2 × (G∗

2)
2 such that e(A,S) = e(M, g2) e(M, g2) =

e(g1, N) e(R, g2) = e(g1, S), i.e. there exists r ∈ Zp such that (R,S,M,N) =
(g1r, g2

r, g1
ra, g2

ra)

[SXDH] The Symmetric External Diffie-Hellman Problem. Given (g1r,
g1

s, g1t) (resp. (g2r, g2
s, g2t)) for random r, s ∈ Zp (resp. r′, s′ ∈ Zp), decide

whether t = rs mod p or t is uniform in Zp.

For each problem given above, the corresponding assumption states that the
problem is hard in (G1,G2).

http://www.zurich.ibm.com/security/idemix/
https://connect.microsoft.com/site1188

Group Signature with Constant Revocation Costs
for Signers and Verifiers

Chun-I Fan1, Ruei-Hau Hsu1, and Mark Manulis2

1 Computer Science Engineering National Sun Yat-sen University
Kaohsiung, Taiwan

cifan@faculty.cse.nsysu.edu.tw,
xyzhsu@gmail.com

2 Cryptographic Protocols Group, Department of Computer Science
TU Darmstadt & CASED, Germany

mark@manulis.eu

Abstract. Membership revocation, being an important property for applications
of group signatures, represents a bottleneck in today’s schemes. Most revoca-
tion methods require linear amount of work to be performed by unrevoked sign-
ers or verifiers, who usually have to obtain fresh update information (sometimes
of linear size) published by the group manager. We overcome these disadvan-
tages by proposing a novel group signature scheme, where computation costs for
unrevoked signers and potential verifiers remain constant, and so is the length
of the update information that must be fetched by these parties from the data
published by the group manager. We achieve this complexity by increasing the
amount of work at the group manager’s side, which growths quadratic with the
total number of members. This increase is acceptable since algorithms of the
group manager are typically executed on resourceful devices. Our scheme uses a
slightly modified version of the pairing-based dynamic accumulator, introduced
by Camenisch, Kohlweiss, and Soriente (PKC 2009), which we implicitly com-
bine with the short (non-revocable) group signature scheme by Boneh, Boyen,
and Shacham (CRYPTO 2004). We prove that our revocable scheme satisfies
the desired security properties of anonymity, traceability, and non-frameability in
the random oracle model, although for better efficiency we resort to a somewhat
stronger hardness assumption.

1 Introduction

Revocable Group Signatures. Group Signatures (GS) [17] protect anonymity of sign-
ers, who are considered as members of the group, managed by a Group Manager (GM),
and who can sign on behalf of the group, while remaining traceable (identifiable) only
by the group manager. The tracing ability of the group manager is often used in case of
dispute, e.g. if the signer misused his signing rights. In many situations, identification
of the misbehaving signer should also lead to the revocation of his signing abilities.
Group signatures, allowing the group manager to additionally revoke the signing rights
of group members are called revocable. A revoked group member should no longer be
able to produce valid group signatures. In traditional public key infrastructures revo-
cation is typically handled by certification authorities that publish unique information

D. Lin, G. Tsudik, and X. Wang (Eds.): CANS 2011, LNCS 7092, pp. 214–233, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Group Signature with Constant Revocation Costs for Signers and Verifiers 215

about the revoked certificates and which is then used by verifiers for checking the valid-
ity of certificates. In group signature schemes, however, revocation process must take
into account the anonymity requirements offered by these schemes. Currently, there ex-
ist two main approaches for revocation: The first approach, originated by Camenisch
and Lysyanskaya [16], uses so-called dynamic accumulators, where each secret signing
key of an unrevoked group member contains a witness associated to the public accu-
mulator value; upon revocation of some group member GM updates the accumulator
value and publishes some update information, which in turn allows remaining group
members to update their witnesses. The accumulator value is also used as input to the
verification procedure. The second approach, termed verifier-local revocation (VLR),
originated by Boneh and Shacham [12], requires from the group manager to release a
revocation token associated with the revoked member; all published revocation tokens
are then used as input to the verification procedure, whereas unrevoked signers need not
to update their secret signing keys.

Revocation and Security. Revocation of signing rights should not compromise the
basic security properties of GS schemes. Modern GS schemes are proven secure in
(variants of) the security model, introduced by Bellare, Micciancio, and Warinschi [4],
that defined two main requirements, namely full-anonymity and full-traceability, cap-
turing many previously stated (sometimes informally described) security properties,
with regard to the anonymity of signers, unlinkability of their signatures, unforgeability
of signatures, protection against framing attacks, in particular in the presence of mali-
cious coalitions and possibly corrupted group managers. Security definitions from [4]
were designed for static schemes and later refined in [5] to address caveats with full-
traceability in dynamic schemes; in particular, full-traceability was relaxed to trace-
ability and an additional requirement of non-frameability was used to address possible
corruptions of the group manager in case of framing attacks. We observe that support for
revocation introduces dynamic behavior, even for schemes that do not provide support
for the dynamic admission of new group members. In schemes with VLR property an
additional concern arises due to the implicit opening mechanism that is inherent to all
these schemes, namely published revocation tokens also invalidate signatures that were
produced by the revoked signer before the revocation took place, and by this introduce
linkability amongst all signatures of that signer. More recent VLR schemes were en-
riched with the additional anonymity protection in form of BU-anonymity [25], where
BU stands for “backward unlinkability”, aiming to prevent linkability of signatures that
were produced by the revoked signer while he was a legitimate member of the group.
Note that BU-anonymity in VLR schemes is typically achieved by splitting the lifetime
of the GS scheme in distinct time intervals and revoking a particular signer in all sub-
sequent time intervals, starting with the interval in which his revocation took place for
the first time.

Revocation Costs and Their Impact. Ideally, support for revocation should not in-
troduce significant overhead with respect to the computational complexity, for at least
the most frequent operations on the side of members and verifiers, namely signature
generation and verification. Support for revocation should not significantly increase the
size of main parameters, such as the length of group public keys and signatures. Note

216 C.-I Fan, R.-H. Hsu, and M. Manulis

that many modern group signature schemes (without revocation) offer constant com-
plexity for these parameters. However, all existing revocable GS schemes that either
use dynamic accumulators or utilize VLR introduce linear costs in one or another way.
For example, the length of (public) update information used by signers and/or verifiers
is often linear in at least the number of revoked members: In schemes with dynamic
accumulators public information is used by each (unrevoked) signer to update his se-
cret signing key, resulting in the linear amount of computations on the signer’s side. In
schemes with VLR property public information contains revocation tokens of revoked
signers, which are only used in the verification procedure, resulting in the linear amount
of computations on the verifier’s side (to perform the revocation check). Designing a re-
vocable group signature scheme that would offer constant costs for unrevoked members
to update their secret signing keys, constant costs for verifiers to perform the revocation
check, and constant length of the update information, published by the group manager
remains an open problem1 so far.

2 Prior Work on Revocable Group Signatures

Revocation in group signature schemes was identified as a desirable property by Ate-
niese and Tsudik [1], who suggested that revoked signers should no longer be able
to generate valid group signatures, while their earlier group signatures must remain
anonymous. Thereafter, many revocable group signature schemes were built, e.g. [3,
11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23, 24, 25, 26, 31, 32]. The first popular approach
for handling revocation in group signature schemes is based on dynamic accumulators,
originally applied by Camenisch and Lysyanskaya [16], and later adopted to further
constructions [20, 15, 30]. With this approach the group manager publishes an updated
accumulator value together with some update information, which is processed by unre-
voked signers prior or during the computation of subsequent group signatures.

An alternative revocation method is used in group signatures with VLR property,
e.g. [12, 13, 19, 25, 26, 31, 32]. These schemes require from the group manager to pub-
lish a revocation list containing partial information about the secret keys of revoked
signers. This list is then used as input to the verification algorithm, which performs the
revocation check by processing all of its entries in the worst case. Unrevoked signers no
longer need to update their signing keys. Many earlier VLR constructions were not able
to offer anonymity with regard to group signatures, output in the past by the meanwhile
revoked signers. This property, known as BU-anonymity, was introduced in [13] and
further considered in [12,19,25,26,31,32]. Many of existing revocable group signature
schemes [3, 11, 12, 13, 14, 15, 16, 19, 25, 26, 31, 32] have linear computation complex-
ity for the generation and/or verification of group signatures, either O(N) with N being
the number of group members, or O(R) with R being the number of revoked members.

1 Jin et al. [18] claim that their revocable group signature scheme has constant costs with regard
to signing/verifying and lengths of signatures, group public key, and individual secret signing
keys. A closer inspection of their scheme (which was also not proven secure) reveals, however,
that one of the components published as revocation information is linear in the number of
group members and that all these components must be fetched by unrevoked signers to perform
the signing operation, resulting in its linear computation costs.

Group Signature with Constant Revocation Costs for Signers and Verifiers 217

There exist, however, several more efficient constructions: The scheme by Nakanischi et
al. [23], which improves upon [24], partitions the entire group into several subgroups,
offering constant costs for signature generation and verification, yet requiring the sign-
ers to fetch public update information of size O(N). The scheme by Nakanishi and
Funabiki [20] offers revocation for larger groups by reducing this length to O(

√
N) and

a more recent scheme by Nakanishi et al. [21] succeeded in reducing this size further to
O(R). Camenisch, Kohlweiss, and Soriente [15] introduced an accumulator-based revo-
cation mechanism that can also be applied to achieve revocation for group signatures.
Applying the specified version of their accumulator would increase the signing costs
by O(R) modular multiplications (for signers to update their keys), which is still more
efficient than previous accumulator-based constructions, where the linear amount of
work was dedicated to costlier operations, e.g. modular exponentiations. Furthermore,
the length of the group public key would be increased to O(N) as unrevoked members
would have to download their witnesses to perform the update of secret signing keys.
There is an informal discussion in [15] according to which the update procedure for
witnesses can also be offloaded to GM (or some third party). This tweak would lead
to the constant costs for signers to perform the update procedure and possibly result in
constant-size group public keys.

3 Our Results and Organization

Revocable Group Signature. Our work aims at further improving revocation costs in
group signature schemes. The main idea is to consider the accumulator-based approach
and let the group manager, who is typically responsible for the update of publicly avail-
able revocation information, to invest more computational resources (in comparison to
other schemes), and by this minimize the costs of other parties (signers and verifiers).
In particular, our revocable group signature (RGS) scheme achieves constant computa-
tion costs for signature generation, verification, and update of individual secret signing
keys. It offers constant lengths for the the group public key, the output group signa-
tures, and the amount of public information that each unrevoked signer must fetch in
order to update own secret signing key. Note that algorithms of the group manager are
typically executed on devices with rich computational resources so that increasing the
computation costs for those algorithms is a rather minor issue.

In Table 1 we emphasize our improvement through the comparison with revocable
schemes from [11, 14, 15, 20, 21, 23, 24]. The table does not include VLR schemes,
e.g. [12, 19, 22, 25, 26, 31, 32], which all have an intrinsic limitation of O(R) work in
the verification procedure, typically dedicated to pairing evaluations or modular expo-
nentiations. We compare sizes of the group public key, signatures, and update informa-
tion, which is fetched by unrevoked signers and verifiers to keep an up-to-date view
over the current composition of the group. We further indicate computational costs for
unrevoked signers to perform signature generation, for verifiers to perform signature
verification with revocation check, and for group managers to compute the update infor-
mation, which is newly published after any revocation event. Table 1 uses the following
timing notations: Te denotes the amount of time to perform one modular exponentia-
tion (in a suitable group), Tp is the time of one pairing evaluation, Tm is the time for one

218 C.-I Fan, R.-H. Hsu, and M. Manulis

modular multiplication, Ta measures one modular addition. Additionally, by Ns we de-
note the number of available subgroups (applies to [23, 20]) and ln indicates the length
of the RSA modulus (applies to [24], which is the predecessor of [23]). From the com-
parison we observe that, in general, our scheme performs by a magnitude better than
the schemes from [11, 14, 15, 24]. Although computation costs for signature generation
and verification of the schemes in [20, 21, 23] are comparable to ours, the size of the
group public key in [21] and the length of the update information fetched by signers and
verifiers in [20, 21, 23] are worse. In contrast to previous schemes, the group manager
in our construction has quadratic costs of O(NR). However, these costs refer to modular
additions, which are known to be more efficient than modular multiplications.

Table 1. Comparison of Lengths and Computation Costs in Revocable Group Signature Schemes

lengths computation costs
Schemes GPK GS UI Sign Verify GM Costs
[11] O(1) O(1) O(R) O(R) · Te O(1) · (Tp + Te) O(R) · Te

[14] O(1) O(1) O(R) O(R) · (Te) O(1) · Te O(R) · Te

[15] O(N) O(1) O(R) O(R) · Tm O(1) · (Tp + Te) O(R) · Tm

[20] O(1) O(1) O(Ns) O(1) · Te O(1) · Te O(Ns)
[21] O(

√
N) O(1) O(R) O(1) · (Tp + Te) O(1) · (Tp + Te) O(R) · (Tp + Te)

[23] O(1) O(1) O(Ns) O(1) · Te O(1) · Te O(Ns) · Te

[24] O(1) O(1) O(N) O(N/ln) · Te O(N/ln) · Te O(R) · Ta

Our RGS O(1) O(1) O(1) O(1) · (Tp + Te) O(1) · (Tp + Te) O(NR) · Ta

GPK: group public key GS: group signature UI: update information

Our Techniques. Our RGS scheme implicitly applies a variant of the pairing-based
dynamic accumulator by Camenisch, Kohlweiss, and Soriente [15] to the short pairing-
based group signature scheme by Boneh, Boyen, and Shacham [11]. We stress that
our revocable BBS scheme is different from the revocation mechanism that was dis-
cussed for the BBS scheme in [11] based on the ideas underlying the accumulator
from [16], which is much less efficient than [15]. In our construction we slightly modify
the process by which witnesses in the accumulator from [15] are updated and resort to a
stronger hardness assumption for this purpose. Our modifications shift the computation
costs for all updates from signers to the group manager and the new assumption, which
we call Power Diffie-Hellman Exponent (PDHE) is stronger than the (non-standard)
n-DHE assumption used in [15]. Under this assumption update of individual witnesses
(which we call membership tokens in the scheme) requires quadratic amount O(NR) of
modular additions, performed by the group manager. At the same time we can obtain
constant size for the group public key and for the amount of public update information,
which an unrevoked signer must fetch prior to the generation of new group signatures.
Upon revocation of some group member, the group manager will publish updated mem-
bership tokens of all unrevoked signers. In the signing phase an unrevoked signer will
only use personal membership token (together with the secret signing key). In contrast,
any verifier can check the validity of the group signature using the group public key
and the up-to-date accumulator value. Taking into account the discussion in [15] we
show how to achieve constant revocation costs for signers and constant lengths for the

Group Signature with Constant Revocation Costs for Signers and Verifiers 219

group public key. Additionally, we show how to reduce the amount of public update in-
formation that unrevoked signers must fetch prior to updating their secret signing keys
from linear to constant. We observe that our work extends the initial ideas from [15] for
offloading the computation of updated witnesses to GM towards a concrete realization
and with some optimizations: In particular, we show that quadratic computation costs on
the group manager’s side to update witnesses for all members can further be optimized,
i.e. we can replace quadratic amount of multiplications that would be necessary for the
scheme in [15] with the quadratic amount of (considerably more efficient) additions, by
slightly changing the computation of updated witnesses on the group manager’s side.
This modification, however, requires a slightly stronger hardness assumption to prove
the non-frameability property of our scheme.

Organization. We proceed as follows. In Section 4, we recall the setting of bilinear
groups and discuss several number-theoretic assumptions used in our work, including
our PDHE assumption, which we introduce as a stronger variant of n-DHE from [15].
In Section 5, we describe definitions and security model for revocable group signa-
ture schemes. Section 6 provides high-level overview and full specification of our RGS
scheme, whose security we prove in Section 7.

4 Preliminaries

4.1 Bilinear Groups

We will work in the pairing-based setting and thus recall the notion of bilinear groups:

1. G, G′, and GT are cyclic groups, all of prime order p;
2. g1 is a generator of G; g2 is a generator of G′;
3. e : G×G′ → GT is an efficiently computable map with the following two properties:

– Bilinear: for all u ∈ G, v ∈ G′, a, b ∈ Z∗p: e(ua, vb) = e(u, v)ab.
– Non-degenerate: e(g1, g2) � 1GT .

4.2 Hardness Assumptions

Here we first recall the two well-known hardness assumptions — q-SDH [7, 8] and
DLIN [11]. We then introduce our Power Diffie-Hellman Exponent (PDHE) assumption
as a stronger variant of the n-DHE assumption from [15].

Definition 1 (q-SDH Assumption). For all probabilistic polynomial-time algorithms
A, the following success probability ofA is assumed to be negligible:

Pr
[
A(g1, g2, g

γ
2, ..., g

(γq)
2) = (g

1
γ+x

1 , x) : g1 ∈ G, g2 ∈ G′, (γ, x) ∈ Z2
p

]
.

Definition 2 (Decision Linear (DLIN) Assumption). For all probabilistic polynomial-
time algorithmsA, the following advantage probability of A is assumed to be negligi-
ble:∣∣∣∣∣∣∣
Pr
[A(u, v, h, ua, vb, ha+b) =1 : (u, v, h) ∈R G

3, (a, b) ∈R Z
2
p
]−

Pr
[A(u, v, h, ua, vb, η) = 1 : (u, v, h, η) ∈R G

4, (a, b) ∈R Z
2
p
]
∣∣∣∣∣∣∣ .

220 C.-I Fan, R.-H. Hsu, and M. Manulis

Note that DLIN assumption serves as a basis for the well-known Linear Encryption
scheme [11]. The following n-DHE assumption was introduced in [15].

Definition 3 (n-DHE Assumption [15]). For all probabilistic polynomial-time algo-
rithmsA, the following success probability ofA is assumed to be negligible:

Pr

⎡⎢⎢⎢⎢⎢⎣A(g, g1, g2, ..., gn, gn+2, ..., g2n) = gn+1 : g ∈ G′, gi =gα
i
, α ∈R Zp,

i = 1, ..., n, n+ 2, ..., 2n, n ∈ N

⎤⎥⎥⎥⎥⎥⎦ .

We will rely on a stronger assumption, which we call PDHE and which can be seen as
a variant of n-DHE. Note that in n-DHE assumption, the adversary must compute gα

n+1

and is only given a set of group elements. In contrast in PDHE assumption the adversary
receives roughly twice as many group elements (from both groups) and an additional
set of integers, each denoted by η j.

Definition 4 (PDHE Assumption). For all probabilistic polynomial-time algorithms
A, the following success probability ofA is assumed to be negligible:

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
(
g, ĝ,
({gαψ+i

, ĝα
ψ+i
, gβ

ψ+i
, ĝβ

ψ+i}i, {gα2ψ+ j
gβ

2ψ+ j
, ĝα

2ψ+ j
ĝβ

2ψ+ j} j), ĝβ2ψ+n+1
, η j

)
= ĝα

2ψ+n+1

: η j = α
2ψ+ j + β2ψ+ j ∈ Z, (α, β) ∈ Z∗2p , ψ ∈ Zq, ĝ ∈ G, g ∈ G′,

i = 1, ..., n, j = 1, ..., n, n+ 2, ..., 2n, n ∈ N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where α and β generate a subgroup of Z∗p of prime order q, and p is a large prime such
that p = 2q + 1.

Note that values α, β, and ψ remain unknown to the adversary. The main difference to n-
DHE is thatA learns integers η j = α

2ψ+ j +β2ψ+ j and must output ĝα
2ψ+n+1

. In the generic
group model [29] security of PDHE could be argued as follows: A separate analysis can
be performed to prove that the probability of A breaking the PDHE assumption using
only set of elements (g, ĝ, gα

ψ+i
, ĝα

ψ+i
, gβ

ψ+i
, ĝβ

ψ+i
, gα

2ψ+ j
gβ

2ψ+ j
, ĝα

2ψ+ j
ĝβ

2ψ+ j
, ĝβ

2ψ+n+1
) fromG

and G′ remains negligible. This proof is similar to that of the n-DHE assumption. One
can then argue that integers η j perfectly hide the additional values α2ψ+ j and β2ψ+ j used
in the PDHE assumption (note that ψ is unknown to the adversary).

5 Security Model and Definitions for Revocable Group Signatures

The security model of a revocable group signature scheme (RGS) defined in this section
resembles the standard security model for static group signatures from [4], where we
additionally consider the revocation algorithm and augment signing and verification
operations of the group signature with revocation-relevant information. Therefore, this
model has also partial connection to the security model from [12], where revocation
information was handled within the verification procedure only.

Definition 5. A Revocable Group Signature (RGS) scheme consists of the following
algorithms:

Group Signature with Constant Revocation Costs for Signers and Verifiers 221

– KeyGen(λ, n): This randomized algorithm takes as input a security parameter λ ∈
N, and an integer n ∈ N (total number of group members). It outputs a group pub-
lic key gpk, a group manager’s secret key gsk, a public membership information
pmi, an n-element vector of membership tokens mt = {mt1, ...,mtn}, an n-vector of
secret signing keys sk = {sk1, . . . , skn}, and a set S of indices of unrevoked group
members (initially set to contain all indices i ∈ [1, n]).

– Sign(gpk, mti, ski, M): On input gpk, mti, a secret signing key ski of user i, and a
message M ∈ {0, 1}∗, this randomized algorithm outputs a group signature σ.

– Verify(gpk, pmi, σ, M): On input gpk, pmi, a candidate group signature σ, and
a message M, this deterministic algorithms outputs either “true" or “false". (The
output of “true" indicates that σ is a valid signature on M, meaning also that its
signer is not revoked.)

– Open(gpk, gsk, σ, M): On input gpk, gsk, a candidate signature σ, and a message
M, this algorithm outputs index i (meaning that i belongs to the signer of σ) or ⊥
(meaning that σ is untraceable for i � [1, n]).

– Revoke(gsk, S, pmi, mt, i): This deterministic algorithm takes as input gsk, the
set S containing indices of unrevoked group member, the up-to-date pmi, the up-to-
date n-element vector mt, and an index i (of the signer to be revoked). The algorithm
updates S = S\{i}, pmi, and mt (from which only pmi and mt will be published, see
below for the explanation).

An RGS scheme is correct if: (1) for all (gpk, gsk, sk, pmi,mt,S) = KeyGen(λ, n), all
i ∈ S, and any message M ∈ {0, 1}∗:

Verify(gpk, pmi, Sign(gpk,mti, ski, M), M) = “true”

and (2) for all (gpk, gsk, sk, pmi,S) = KeyGen(λ, n), all i ∈ S , and any message
M ∈ {0, 1}∗:

Open(gpk, gsk, Sign(gpk,mti, ski, M), M) = i.

In our description of the Revoke algorithm we implicitly assume that revocation is per-
formed by the group manager (not necessarily the same party that also issues secret
signing keys), who in order to revoke some group member i ∈ [1, n] removes the cor-
responding index i from S, and updates pmi and mt according to the new set S. Note
that the up-to-date set S is used by the group manager only to keep track of unrevoked
members and to update pmi. In contrast, the public membership information pmi is dis-
tributed by the group manager and is used as input to the verification procedure. In our
scheme pmi will correspond to the updated value of the accumulator, while individual
membership tokens mti will correspond to the updated witnesses of unrevoked signers.

An RGS scheme should satisfy three main security requirements, discussed in the
following. We start with the notion of full-traceability, which we define similar to [4],
except that in order to account for the introduced dynamic behavior through revocation
support, several modifications must be applied. This makes our definition somewhat
related to the traceability definition from [5] for dynamic groups. In particular, the ad-
versary must come up with a group signature which verifies successfully but for which
the opening algorithm fails to output an index in [1, n]. The adversary is allowed to
corrupt all members of the group.

222 C.-I Fan, R.-H. Hsu, and M. Manulis

Definition 6 (Full-traceability). An RGS scheme is full-traceable if no probabilistic
polynomial-time (PPT) adversary A can win the following game with non-negligible
advantage by interacting with a challenger C.

1. Setup: C runs the algorithm KeyGen(λ, n) to generate a group public key gpk,
a group master secret gsk, a public membership information pmi, an n-element
vector of membership tokens mt, an n-element vector of secret signing keys sk, and
a set S = [1, n]. C also defines an initially empty set U of corrupted members. Then
C invokesA on input (gpk, gsk, pmi,mt,S), while keeping sk private.

2. Oracles: A can make a polynomial number of queries to the following oracles
(which are answered by C):

– Signing oracle: On input a message M and i ∈ S, this oracle outputs σ =
Sign(gpk, mti, sk, M).

– UCorruption oracle: On input i ∈ S, this oracle outputs ski and updates
U = U ∪ {i}.

– Revocation oracle: On input i ∈ [1, n], this oracle responds with the output of
Revoke(gsk, S, pmi, mt, i).

– Opening oracle: On input a signature σ and a message M, this oracle re-
sponds with the output of Open(gpk, gsk, σ, M).

3. Output: Eventually,A stops and outputs a signature σ∗ and a message M∗.

A wins if all of the following holds:

– Verify(gpk, pmi, σ∗, M∗) = true.
– Open(gpk, gsk, σ∗, M∗) = ⊥.

The advantage ofA in breaking full-traceability is defined as:

Advtrace
A (λ) = Pr[A wins in the full-traceability game],

where the probability is taken over the coin tosses ofA and C.

Our next security requirement for RGS schemes is CPA-anonymity. Unlike [4, 5], by
dealing with revocability we have to address anonymity of revoked signers. Our def-
inition of CPA-anonymity comes close to the anonymity definition, that was used in
the context of the BBS scheme in [11], where the adversary is not given access to the
opening oracle.

Definition 7 (CPA-anonymity). An RGS scheme is CPA-anonymous if no PPT adver-
sary A can win the following game with non-negligible advantage by interacting with
a challenger C.

1. Setup: C runs KeyGen(λ, n) to generate a group public key gpk, a group master
secret gsk, a public membership information pmi, an n-vector of membership token
mt, group member’s signing keys sk, and a set S of members’ indices. C defines a
set U of corrupt members’ being empty initially. Then, C gives gpk, pmi, mt, and S
toA, while keeping gsk and sk private.

2. Oracles: A can make a polynomial number of queries to the following oracles
(which are answered by C):

Group Signature with Constant Revocation Costs for Signers and Verifiers 223

– Signing oracle: On input a message M and i ∈ S, this oracle outputs σ =
Sign(gpk, mti, ski, M).

– UCorruption oracle: On input i ∈ S, this oracle outputs ski and updates
U = U ∪ {i}.

– Revocation oracle: On input i ∈ [1, n], this oracle responds with the output of
Revoke(gsk,S, pmi, i).

3. Challenge:A selects a message M and two indices i0 and i1 with i0, i1 ∈ S. C picks
random bit b ← {0, 1} and computes σ∗ = Sign(gpk,mti, skib , M). Then, C sends
σ∗ toA.

4. Output: A continues querying the oracles as above until it eventually stops and
outputs a bit b′ as its answer to the challenge.

A wins the game if b′ = b and neither i0 nor i1 are revoked. The advantage of A in
breaking anonymity is defined as:

Advanon
A (λ) = Pr[A wins in the CPA-anonymity game],

where the probability is taken over the coin tosses ofA and C.

The final security requirement is non-frameability [5], which accounts for framing at-
tacks executed by a possibly corrupted group manager. Note that traceability only guar-
anties that any group signature remains traceable. However, it does not take into account
potential attacks mounted by the group manager. As motivated in [5], such attacks can-
not be captured in a meaningful way in the traceability definition for the dynamic setting
(which we have here due to revocability) if the adversary learns the group manager’s
secret key. That is why non-frameability in the presence of corrupted group managers
has to be defined separately.

Definition 8 (Non-frameability). An RGS is non-frameable if no PPT adversary A
can win the following game with non-negligible advantage by interacting with a chal-
lenger C.

1. Setup: C runs KeyGen(λ, n) to obtain a group public key gpk, a group master
secret gsk, a public membership information pmi, an n-vector of membership token
mt, group members’ signing keys sk, and a set S of members’ indices.C also defines
an empty set U as the set of corrupted members’ indices.C then gives gpk, gsk, pmi,
mt, and S toA while keeping sk private.

2. Oracles: A can make a polynomial number of queries to the following oracles
(which are answered by C):

– Signing oracle: On input a message M and i ∈ S, this oracle outputs σ =
Sign(gpk, mti, ski, M).

– UCorruption oracle: On input i ∈ S, this oracle responds with ski and updates
U = U ∪ {i}.

– Revocation oracle: On input i ∈ [1, n], this oracle responds with the output of
Revoke(gsk,S, pmi, i).

– Opening oracle: On input a signature σ and a message M, this oracle re-
sponds with the output of Open(gpk, gsk, σ, M).

3. Output: Eventually,A stops and outputs a signature σ∗ and a message M∗.

224 C.-I Fan, R.-H. Hsu, and M. Manulis

A wins if all of the following holds

– Verify(gpk, pmi, σ∗, M∗) = true.
– Open(gpk, gsk, σ∗, M∗) = i∗, where i∗ ∈ [1, n], and Sign(gpk, mti, ski∗ , M∗) has

never been queried byA.

The advantage ofA in breaking non-frameability is defined as:

Advnon− f rame
A (λ) = Pr[A wins the non-frameability game],

where the probability is taken over the coin tosses ofA and C.

6 Our RGS Scheme with Constant Costs for Signers and Verifiers

In this section we provide specification of our RGS scheme. Prior to detailing its algo-
rithms we give a high-level intuition for its construction.

6.1 High-Level Intuition

Our RGS scheme is mainly based on two previous techniques: The (non-revokable)
group signature scheme by Boneh, Boyen, and Shacham (BBS) [11] and the dynamic
accumulator by Camenisch, Kohlweiss, and Soriente (CKS) [15] (with slight modifi-
cations). The use of the BBS scheme in our RGS constructions helps to achieve con-
stant size for group public keys and group signatures, while the efficient revocation is
achieved due to the deployed CKS accumulator. The main technical problem in combin-
ing BBS scheme with CKS accumulator is as follows: The use of the CKS accumulator
results in the linear length of the group public key and in the linear increase of compu-
tation costs for signers to update their witnesses with each revoked group member. Our
main modification is to change the computation of witnesses in the CKS accumulator
by shifting the significant amount of computation costs from the signers over to the
group manager.

Combining Modified CKS Accumulator with BBS Group Signature Scheme. As
our construction builds on the BBS scheme, we require that key generation is performed
by a trusted key issuer, akin to [11]. The key issuer is responsible for the generation of:
all secret signing keys, the group manager’s secret key (which includes secrets to open
signatures and to revoke members), the group public key, and the initial public mem-
bership information. In particular, the issuer picks a secret exponent xi for each member
i and computes a secret value αψ+i and a corresponding group element ĝxi ĝα

ψ+i
g̃ in G.

It also computes the secret membership certificate Ai = (ĝxi ĝα
ψ+i

g̃)
1

μi+ω , which becomes
part of the secret signing key ski. A group member i receives further a personal witness,
containing Li =

∑
j∈S∧ j�i ηn+1− j+i, gα

ψ+i
, and gβ

ψ+i
, where Li is the initial membership to-

ken mti, which will be publicly updated by the group manager on each revocation event,
as long as i remains unrevoked. The public membership information pmi will contain
up-to-date L = ĝ

∑
j∈S αψ+n+1− j

and L′ = ĝ
∑

j∈S βψ+n+1− j
, which play the role of the public ac-

cumulator value. An unrevoked group member i can thus produce a signature to prove

Group Signature with Constant Revocation Costs for Signers and Verifiers 225

that it actually possesses a secret signing key, containing a witness accumulated in pmi.
When a member i′ is revoked, GM updates set S , values L and L′ in pmi, and Li of each
unrevoked signer i. In order to generate a new signature i must first obtain up-to-date L,
L′, and its personal Li (all of constant length). Note that major computation costs are in
the update of corresponding Li, which is performed by the group manager.

Reducing the Computation Cost of Witnesses of Accumulator. As soon as some
member gets revoked remaining group members must implicitly update their secret
signing keys upon the execution of the signing operation. For this purpose members
use information, which is prepared for them by the group manager, who performs the
revocation procedure. In our scheme for every signer there exists an individual public in-
formation (of constant length), which we call membership token, and which is updated
by the group manager for all unrevoked signers. This information is represented by ele-
ments of bilinear groups that correspond to the group elements given to the adversary in
the definition of the PDHE assumption (cf. Section 4.2). Using the CKS-like approach
for witness updates, when applied in construction, each unrevoked signer would have
to compute

∑
j∈S∧ j�i α

2ψ+n+1− j+i + β2ψ+n+1− j+i in the exponent, where i is the index of
the revoked member. This computation can be done by first requiring from the group
manager to update j group elements for j ∈ S∧ j � i, whose discrete logarithms would
correspond to each of the

∑
j∈S∧ j�i α

2ψ+n+1− j+i + β2ψ+n+1− j+i. Unrevoked signers would
then compute a product of j different group elements. Instead, we let the group man-
ager, who knows (α, β, ψ, i, j) anyway, compute and publish η j = α

2ψ+ j + β2ψ+ j for each
j. In this case computation costs for witnesses would become constant on the signer’s
side. Note that each member would have to fetch only his updated witness.

6.2 Specification of RGS Algorithms

– KeyGen(λ, n) The key generation algorithm is executed by a trusted issuer (akin
to [11, 12]), according to the following steps:

1. Select bilinear groupsG, G′, GT of prime order p < 2λ such that q = (p− 1)/2
is a prime, and the bilinear map e. Pick a cryptographic hash function H :
{0, 1}∗ → Z∗p.

2. Select (g̃, ĝ, h, u, v) ∈ G5, g ∈ G′, (ξ1, ξ2) ∈R Z
∗2
p , ω ∈ Z∗p, and ψ ∈ Zq,

where ĝ = uξ1 = vξ2 . Note that (ĝ, u, v) represents a public key of the Linear
Encryption scheme. Selects further two generators (α, β) ∈ Z∗2p of prime order
q from Zp, and computes αψ+i and βψ+i, where i = 1, ..., 2n.

3. Compute z = e(ĝα
2ψ+n+1

, g), z′ = e(ĝβ
2ψ+n+1

, g), gα,i = gα
ψ+i

, gβ,i = gβ
ψ+i

, η j =

α2ψ+ j + β2ψ+ j, where i = 1, ..., n, and j = 1, ..., n, n+ 2, ..., 2n.
4. Define the group master secret key gsk = (ξ1, ξ2, α, β, ψ) and the group public

key gpk = (H, p, G, G′, GT , e, ĝ, g̃, g, Ω, z, z′, h, u, v), where Ω = gω.
5. Define S = {1, ..., n} as the index set of group members. Compute L =

ĝ
∑

j∈S αψ+n+1− j
, L′ = ĝ

∑
j∈S βψ+n+1− j

, and Li =
∑

j∈S∧ j�i(α
2ψ+n+1− j+i + β2ψ+n+1− j+i) for

all i ∈ S. Define pmi = {L, L′} to be the public membership information, which
will be updated by the group manager upon revocation of members, and set
mt = {L1, ..., Ln} to be a vector of membership tokens; each unrevoked member
will fetch its own membership token from this vector.

226 C.-I Fan, R.-H. Hsu, and M. Manulis

6. Compute secret signing keys ski = (Ai, gα,i, gβ,i, μi, xi) for each member i ∈ S,

where Ai = (ĝxi ĝα
ψ+i

g̃)
1

μi+ω .
7. Publish gpk, pmi, and mt. Output privately gsk, {Ai}i∈S, and S to the group

manager (GM). Output privately ski to the corresponding member i. (Note that
ω remains secret and should be ideally erased by the issuer.)

– Sign(gpk, mti, ski, M) Let gpk = (H, p, G, G′, GT , e, ĝ, g̃, g, Ω, z, z′, h, u, v),
mti = Li, and ski = (Ai, gα,i, gβ,i, μi, xi). In order to sign some message M ∈ {0, 1}∗
the signer i proceeds as follows:
1. Select π, θ, ρ, δ, rπ, rθ, rμi , rρ, rxi , rπμi , rθμi , and rδ at random from Z∗p.
2. Compute T1 = Aiĝπ+θ, T2 = uπ, T3 = vθ, T4 = gρ, T5 = ĝρ, T6 = gρα,i,

T7 = (zz′)ρ, T8 = e(h, T4)δ, T9 = ĝLi hδ, T10 = gρβ,i, R1 = e(T1, T4)rμi · e(T1, Ω)rρ/
e(ĝ, T4)rxi · e(g̃, g)rρ · e(ĝ, T4)rπμi+rθμi · e(T5, Ω)rπ+rθ , R2 = urπ , R3 = vrθ , R4 = grρ ,
R5 = ĝrρ , R6 = T

rμi

2 · u−rπμi , R7 = (zz′)rρ , R8 = e(h, T4)rδ , R9 = e(T9, g)rρ ,
and R10 = T

rμi

3 · v−rθμi , where (T1, T2, T3) is a Linear Encryption ciphertext that
encrypts Ai, and T4 through T10 and R1 through R10 are required to prove the
knowledge of π, θ, μi, ρ, xi, πμi, θμi and of the accumulator {L, L′}.

3. Compute challenge c = H(gpk, M, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, R1,
R2, R3, R4, R5, R6, R7, R8, R9, R10).

4. Compute sπ = rπ+cπ, sθ = rθ+cθ, sρ = rρ+cρ, sxi = rxi+cxi, sπμi = rπμi+cπμi,
sθμi = rθμi + cθμi, and sδ = rδ + cδ.

5. Output σ = (c, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, sπ, sθ, sρ, sxi , sπμi , sθμi ,
sδ) on M.

– Verify(gpk, pmi, σ, M) Let gpk = (H, p, G, G′, GT , e, ĝ, g̃, g, Ω, z, z′, h, u, v),
pmi = (L, L′), and σ = (c, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, sπ, sθ, sρ, sxi , sπμi ,
sθμi , sδ). The validity of a candidate group signature σ on some message M can be
checked according to the following procedure:
1. Compute

R′1 = e(T1, T4)sμi · e(T1, Ω)sρ/e(ĝ, T4)sxi ·e(ĝ, T6)c · e(g̃, g)sρ · e(ĝ, T4)sμiπ+sμiθ ·
e(T5, Ω)sπ+sθ , R′2 = usπ · (T2)−c, R′3 = vsθ · (T3)−c, R′4 = gsρ · (T4)−c, R′5 =
ĝsρ · (T5)−c, R′6 = T

sμi

2 · u−sπμi , R′7 = (zz′)sρ · (T7)−c, R′8 = e(h, T4)sδ · T−c
8 , and

R′9 = (T c
7 · e(T9, g)sρ)/(T8 · e(L, T6) · e(L′, T10))c, R′10 = T

sμi

3 · v−sθμi

2. Compute c′ = H(gpk, M, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, R′1, R′2, R′3, R′4,
R′5, R′6, R′7, R′8,R′9, R′10).

3. If c′ = c then output true; else output false.
If the output is true, it means that σ on M is signed by valid signing key ski for
i ∈ S. Otherwise, ski is invalid or revoked (i.e., i � S).

– Open(gpk, gsk, σ, M) Let gpk = (H, p, G, G′, GT , e, ĝ, g̃, g, Ω, z, z′, h, u, v),
gsk = (ξ1, ξ2, α, β, ψ), and σ = (c, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, sπ, sθ,
sρ, sxi , sπμi , sθμi , sδ). In order to open some candidate group signature σ the group
manager proceeds as follows:
1. If Verify(gpk, pmi, σ, M)�true then return ⊥.
2. Otherwise, compute Ai = T1/(T

ξ1

2 T ξ2

3) with ξ1, ξ2 extracted from gsk and T2,
T3 extracted from σ. Returns i associated to Ai.

– Revoke(gsk, S, pmi, mt, i′) In order to revoke some member i′ the group manager
proceeds as follows:

Group Signature with Constant Revocation Costs for Signers and Verifiers 227

1. Update S = S\{i′}, L = L/(gα
ψ+n+1−i′

), and L′ = L′/(gψ+βn+1−i′
).

2. Compute Li = Li − α2ψ+n+1−i′+i − β2ψ+n+1−i′+i in mt for each i ∈ S.
3. Output updated S, pmi, and mt.

7 Security Analysis

Security of our RGS scheme with respect to definitions from Section 5 is established
through the following theorems.

Theorem 1 (Full-traceability). The proposed RGS scheme is fully-traceable in the
random oracle model, based on the q-SDH assumption in bilinear groups G and G′.

Proof. The proof is given in Appendix A and follows some ideas from [11, 15].

Theorem 2 (CPA-anonymity). The proposed RGS scheme is CPA-anonymous in the
random oracle model, based on the DLIN assumption in G.

Proof. The proof is given in Appendix B.

Theorem 3 (Non-frameability). The proposed RGS scheme is non-frameable in the
random oracle model, based on the PDHE assumption and the hardness of computing
discrete logarithms in G.

Proof. The proof is given in Appendix C.

8 Conclusion

In this work we made another step towards better efficiency in revocable group sig-
natures. Our proposed RGS scheme achieves constant costs for signers and verifiers
at the price of a higher amount of work for the group manager and a rather strong
Power Diffie-Hellman Exponent (PDHE) assumption. In addition to constant compu-
tation costs, our scheme keeps group public keys, group signature, and the amount of
public update information, to be fetched by either an unrevoked signer or a verifier, also
constant. Our scheme, which is based on the combination of a modified CKS dynamic
accumulator from [15] with the BBS group signature scheme from [11] preserves the
original security properties of the BBS scheme, while also offering support for the revo-
cation of the signing rights. An open problem would be to find a solution that achieves
similar complexity under somewhat more standard (pairing-based) assumptions.

Acknowledgements. Ruei-Hau Hsu acknowledges the NSC-DAAD Sandwich Pro-
gram of 2011 (Spring Season) sponsored by National Science Council (NSC) in Taiwan
and German Academic Exchange Service (DAAD) for the received financial support
during his research stay at TU Darmstadt. Mark Manulis was supported by grant MA
4957 of the German Research Foundation (DFG).

228 C.-I Fan, R.-H. Hsu, and M. Manulis

References

1. Ateniese, G., Tsudik, G.: Some Open Issues and New Directions in Group Signatures. In:
Franklin, M.K. (ed.) FC 1999. LNCS, vol. 1648, pp. 196–211. Springer, Heidelberg (1999)

2. Ateniese, G., Camenisch, J.L., Joye, M., Tsudik, G.: A Practical and Provably Secure
Coalition-Resistant Group Signature Scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

3. Ateniese, G., Song, D., Tsudik, G.: Quasi-Efficient Revocation of Group Signatures. In:
Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer, Heidelberg (2003)

4. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of Group Signatures: Formal Def-
initions, Simplified Requirements, and a Construction based on General Assumptions. In:
Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg
(2003)

5. Bellare, M., Shi, H., Zhang, C.: Foundations of Group Signatures: The Case of Dynamic
Groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Hei-
delberg (2005)

6. Biham, E., Shamir, A.: Differential Cryptanalysis of the Full 16-Round DES. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 487–496. Springer, Heidelberg (1993)

7. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Hei-
delberg (2004)

8. Boneh, D., Boyen, X.: Short Signatures without Random Oracles and the SDH Assumption
in Bilinear Groups. Journal of Cryptology 21(2), 149–177 (2008)

9. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with Constant
Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456.
Springer, Heidelberg (2005)

10. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

11. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

12. Boneh, D., Shacham, H.: Group Signatures with Verifier-Local Revocation. In: Proceedings
of 11th ACM Conference on Computer and Communication Security: ACM-CCS 2004, pp.
168–177 (2004)

13. Bresson, E., Stern, J.: Efficient Revocation in Group Signatures. In: Kim, K.-c. (ed.)
PKC 2001. LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg (2001)

14. Camenisch, J.L., Groth, J.: Group Signatures: Better Efficiency and New Theoretical As-
pects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133. Springer,
Heidelberg (2005)

15. Camenisch, J., Kohlweiss, M., Soriente, C.: An Accumulator Based on Bilinear Maps and
Efficient Revocation for Anonymous Credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009.
LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)

16. Camenisch, J.L., Lysyanskaya, A.: Dynamic Accumulators and Application to Efficient Re-
vocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442,
pp. 61–76. Springer, Heidelberg (2002)

17. Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

18. Jin, H., Wong, D.S., Xu, Y.: Efficient Group Signature with Forward Secure Revocation. In:
Ślęzak, D., Kim, T.-h., Fang, W.-C., Arnett, K.P. (eds.) SecTech 2009. CCIS, vol. 58, pp.
124–131. Springer, Heidelberg (2009); Proceedings of ANTS IV. LNCS 1838, pp.385–394.
Springer (2000)

Group Signature with Constant Revocation Costs for Signers and Verifiers 229

19. Libert, B., Vergnaud, D.: Group Signatures with Verifier-Local Revocation and Back-
ward Unlinkability in the Standard Model. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.)
CANS 2009. LNCS, vol. 5888, pp. 498–517. Springer, Heidelberg (2009)

20. Nakanishi, T., Funabiki, N.: Efficient Revocable Group Signature Schemes Using Primes.
Journal of Information Processing 16, 110–121 (2008)

21. Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable Group Signature Schemes with
Constant Costs for Signing and Verifying. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 463–480. Springer, Heidelberg (2009)

22. Nakanishi, T., Funabiki, N.: “Verifier-Local Revocation Group Signature Schemes with
Backward Unlinkability from Bilinear Maps. IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences E90-A(1), 65–74 (2007)

23. Nakanishi, T., Kubooka, F., Hamada, N., Funabiki, N.: Group Signature Schemes with Mem-
bership Revocation for Large Groups. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005.
LNCS, vol. 3574, pp. 443–454. Springer, Heidelberg (2005)

24. Nakanishi, T., Sugiyama, Y.: A Group Signature Scheme with Efficient Membership Revoca-
tion for Reasonable Groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004.
LNCS, vol. 3108, pp. 336–347. Springer, Heidelberg (2004)

25. Nakanishi, T., Funabiki, N.: Verifier-Local Revocation Group Signature Schemes with Back-
ward Unlinkability from Bilinear Maps. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS,
vol. 3788, pp. 533–548. Springer, Heidelberg (2005)

26. Nakanishi, T., Funabiki, N.: A Short Verifier-Local Revocation Group Signature Scheme
with Backward Unlinkability. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y.,
Kawamura, S.-i. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 17–32. Springer, Heidelberg
(2006)

27. Pointcheval, D., Stern, J.: Security Proofs for Signature Schemes. In: Maurer, U.M. (ed.)
EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996)

28. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures.
Journal of Cryptology 13(3), 361–396 (2000)

29. Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)

30. Tsudik, G., Xu, S.: Accumulating Composites and Improved Group Signing. In: Laih, C.-S.
(ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 269–286. Springer, Heidelberg (2003)

31. Zhou, S., Lin, D.: A Shorter Group Signature with Verifier-Local Revocation
and Backward Unlinkability, Cryptology ePrint Archive: Report 2006/100 (2006),
http://eprint.iacr.org/2006/100

32. Zhou, S., Lin, D.: Shorter Verifier-Local Revocation Group Signatures from Bilinear Maps.
In: Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301, pp. 126–143.
Springer, Heidelberg (2006)

A Proof of Theorem 1 (Full-Traceability)

Let A be an adversary that breaks the full-traceability of the proposed protocol by
returning an untraceable signature σi∗ with probability at least ε. We construct a PPT
algorithmB that interacts withA and breaks the q-SDH assumption with probability at
least ε′. The interaction of B withA proceeds as follows.

– Setup: B is given an n-SDH instance (g̃,g,gω,gω
2
, ...,gω

n
) by a challenger Cs of n-

SDH assumption, where g̃ ∈ G, g ∈ G′, and n is the number of group members. B
defines set S = [1, n] and an initially empty set U, and randomly selects an index

 http://eprint.iacr.org/2006/100

230 C.-I Fan, R.-H. Hsu, and M. Manulis

i∗ ∈ S of a member to be attacked by A. B then randomly selects (α, β, τ, ξ1, ξ2) ∈
Z
∗5
p , ψ ∈ Zq, and computes ĝ = g̃τ, {gα,i = gα

ψ+i
, gβ,i = gβ

ψ+i}1≤i≤n. B uses gω as
Ω and computes gpk, gsk, pmi, and mt given to A. After that, B turns an n-SDH

instance into values (g̃, g, Ω = gω) and n − 1 SDH pairs (g̃
1

μi+ω , μi) by Lemma 3.2

from [7] such that e(g
1

μi+ω , Ωgμi) = e(g̃, g). B then transforms the n − 1 SDH pairs

to n − 1 members’ signing key ski = (Ai(= (g̃
1

μi+ω)τ(xi+α
ψ+i)+1 = (ĝxi ĝα

ψ+i
g̃)

1
μi+ω), gα,i,

gβ,i, μi, xi), where i � i∗.
– Oracles: B simulates RGS by answering the following oracle queries.
• Hash oracle: The hash oracle as a random oracle is simulated by B. B ran-

domly selects element in Zp as the output of hash query and makes sure the
responses are identical to the same queries by maintaining a hash list H-list.

• Signing oracle: On input a pair (i, M), if i ∈ [1, n],B can successfully responds
with the corresponding σ by ski. If i ∈ U, reject this request. If i = i∗, the
simulation fails.

• UCorruption oracle: On input i, if i ∈ S ∧ i � i∗, B responds with ski =

(Ai, gα,i, gβ,i, μi, xi) to A and appends i to U. If i ∈ U, B returns ski without
changing S and U. If i = i∗, the simulation fails.

• Revocation oracle: On inputi, if i ∈ S, B updates S = S\{i}, pmi = {L, L′},
and mt = {Li}i∈S. B outputs S, pmi, and mt toA.

• Opening oracle: On inputσ, A decrypt (T1, T2, T3) of σ to obtain Ai and re-
turns the corresponding i of Ai toA. Otherwise, return ⊥.

– Output: Finally,A outputs a signature-message pair (σ∗, M∗).

A is the adversary to break the proposed scheme if σ∗ is correct and belongs to some
member i � [1, n] with probability at least ε. Then A outputs a forged signature σi∗ of
the member i∗ with probability at least ε/n. By Forking Lemma [27, 28], if A outputs
a valid message-signature tuple (M, σ0 = (T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, R1,
R2, R3, R4, R5, R6, R7, R8, R9, T10), c, σ1 = (sπ, sθ, sρ, sxi , sπμi , sθμi , sδ)). We rewind the
framework andA with the same random tape and the different random oracle H′. Then
A still can output a forgery (M, σ0, c′, σ′1) with probability at least ε/4. Consequently,
we obtain two valid tuples (M,σ0,c,σ1) and (M,σ0, c′,σ′1) of the same member i∗ with
probability at least ε/4n. B can extract the secrets xi∗ = (s′xi∗ − sxi∗)/(c

′ − c), π =
(sπ − s′π)/(c− c′), and θ = (sθ − s′θ)/(c− c′) from the above two valid signature tuples of

the member i∗. After that, B computes g̃
1

μi∗ +ω = ((ĝxi∗ ĝα
ψ+ig̃)

1
μi∗ +ω)(τ(xi∗+αψ+i)+1)−1

to obtain

an SDH pair (g̃
1

μi∗+ω , μi∗).

B Proof of Theorem 2 (CPA-Anonymity)

SupposeA is an adversary that breaks the CPA-anonymity of our RGS scheme with the
advantage at least ε. We construct a PPT algorithmB that breaks Linear encryption (and
by this the DLIN assumption) with the advantage at least ε by playing the anonymity
game from Definition 7. The interaction between B andA proceeds as follows.

– Setup: First,B selects the groupsG,G′, andGT of prime order p.B is in possession
of a public key (u, v, ĝ) ∈ G3 for the Linear encryption scheme (which it received

Group Signature with Constant Revocation Costs for Signers and Verifiers 231

from the Linear encryption challenger Cle). Recall that ĝ = uξ1 = vξ2 for some
unknown (ξ1, ξ2) ∈ Z2

p. B randomly picks g̃ ∈ G, g ∈ G′, ω ∈ Z∗p, (α, β) ∈ Z∗p
of prime order q, and ψ ∈ Zq. B then initializes the sets S = {1, ..., n} and U (set
of corrupted signers). Then, B generates the remaining parts of gpk, pmi, and mt
according to the key generation procedure of the RGS scheme. B computes secret
signing keys ski = {Ai, gα, j, gβ, j, μi, xi} for all i ∈ S. B then provides A with
gpk = (p, G, G′, GT , e, ĝ, g̃, g, Ω, z, z′, h, u, v), pmi = {L, L′}, mt = {Li}i∈S, S, U,
and stores ω, α, β, and ψ for later use.

– Oracles: B answers oracle queries ofA as follows.
• Hash oracle: B simulates the random oracle H by maintaining a hash list H-

list, and responds on new queries with random elements from Zp, while making
sure that previous queries when asked again are answered consistently with H-
list.

• Signing oracle: Before the simulation, B also maintains a list E-list for stor-
ing the corresponding identity information of signatures. In the simulation of
signing queries, B responds with σi for the oracle query with the correspond-
ing input (i, M) of A as follows. B selects π and θ ∈R Z

∗
p, and encrypts Ai as

a ciphertext (T1 = Aiĝπ+θ, T2 = uπ, T3 = vθ). B then randomly selects ρ, δ, rπ,
rθ, rμi , rρ, rxi , rπμi , rθμi , rδ, and rδ to generates T4, T5, T6, T7, T8, T9, T10, R1,
R2, R3, R4, R5, R6, R7, R8, R9, and R10. B also updates the output of hash list at
(gpk, M, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, R1, R2, R3, R4, R5, R6, R7, R8,
R9, R10) is equal to c ∈ Zp and outputs σ = (c, T1, T2, T3, T4, T5, T6, T7, T8,
T9, T10, sπ, sθ, sρ, sxi , sπμi , sθμi , sδ). B also adds (σ, i) into E-list.

• UCorruption oracle: On input i ∈ S, B responds with the corresponding ski

toA and appends i to U.
• Revocation oracle: On input i ∈ S, B removes i from S, re-computes pmi =
{L, L′} and mt = {Li}i∈S, and responds with the updated S, pmi, and mt toA.

• Signing oracle: B also maintains a list E-list for keeping track of output sig-
natures. In the simulation of signing queries, B responds with σi computed on
input (i, M) from A as follows. B selects π and θ ∈R Z

∗
p, and compute Linear

encryption of Ai, i.e. ciphertext (T1 = Aiĝπ+θ, T2 = uπ, T3 = vθ). B then ran-
domly selects ρ, δ, rπ, rθ, rμi , rρ, rxi , rπμi , rθμi , rδ, and rδ to generates T4, T5, T6,
T7, T8, T9, T10, R1, R2, R3, R4, R5, R6, R7, R8, R9, and R10. B defines the output
of H(gpk, M, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, R1, R2, R3, R4, R5, R6, R7,
R8, R9, R10) to be equal to c ∈ Zp and outputs σ = (c, T1, T2, T3, T4, T5, T6,
T7, T8, T9, T10, sπ, sθ, sρ, sxi , sπμi , sθμi , sδ). Finally, B adds (σ, i) into E-list.

• UCorruption oracle: If A corrupts i ∈ S then B hands the corresponding
secret signing key ski over toA and includes i into U.

• Revocation oracle: IfA wishes to revoke some member i ∈ S thenB removes
i from S and updates pmi = {L, L′} and mt = {Li}i∈S as specified in the RGS
scheme. B then hand updated pmi and mt over toA.

– Challenge: In the challenge phase, A selects a message M, two indices i0 and
i1, and sends them to B. If (i0, i1) ∈ S2 ∧ (i0, i1) � U2, B returns Ai0 and Ai1 as
its challenge to Cle. Cle replies with Linear encryption ciphertext (T1, T2, T3) of Aib
according to some random (unknown) bit b ∈ {0, 1}. ThenB randomly selects ρ and
δ to compute T4, T5, T6, T7, T8, T9, and T10. It further selects random sπ, sθ, sρ, sxi ,

232 C.-I Fan, R.-H. Hsu, and M. Manulis

sπμi , sθμi , sδ, and c from Z∗p, and computes R1 = e(T1, T4)sμi · e(T1, Ω)sρ/e(ĝ, T4)sxi

·e(T6, g)c · e(g̃, g)sρ · e(ĝ, T4)sμiπ+sμiθ · e(T5, Ω)sπ+sθ , R2 = usπ · (T2)−c, R′3 = vsθ · (T3)−c,
R4 = gsρ · (T4)−c, R5 = ĝsρ · (T5)−c, R6 = T

sμi

2 · u−sπμi , R7 = (zz′)sρ · (T7)−c, R8 =

e(h, T4)sδ ·T−c
8 , R9 = (T c

7 ·e(T9, g)sρ)/(T8 ·e(L, T6) ·e(L′, T10))c, and R10 = T
sμi

3 ·v−sθμi .
B then sends σib = (c, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, sπ,sθ,sρ, sxi , sπμi , sθμi ,
sδ) toA.

– B continues answering oracle queries ofA as specified above, untilA outputs a bit
b′.

B forwards b′ as its answer on the challenge of Cle in the Linear encryption game.
Clearly, ifAwins thenB breaks the IND-CPA security of the Linear encryption scheme.

C Proof of Theorem 3 (Non-frameability)

We consider two types of adversaries to break non-frameability in the proposed scheme.
Type I adversary can forge group signatures of the member i for i ∈ S and type II
adversary for i ∈ [1, n] ∧ i � S .

Type I Adversary. Let A be the type I adversary of non-frameability of our RGS
scheme with the probability at least ε by forging a group signature of member i for
i ∈ S. We then construct an algorithm B that can break the classical discrete logarithm
(DL) assumption with probability at least ε′ in polynomial time by playing the game in
Definition 8. The algorithm B proceeds as follows.

– Setup:B is given a DL instance (ĝ,U = ĝx) by a challengerCDL of DL assumption,
where ĝ ∈ G and x ∈R Zp. B then prepares the sets S and U, and an index i∗ ∈ S
of the target member to be attacked by A. After that, B generates gsk, gpk, pmi,
mt, and {ski}i∈S as well as the proposed scheme except ski∗ . Here B computes Ai∗ =

(Ug̃)
1

μi+ω and sets xi∗ = x, which is unknown.
– Oracles:

• Hash oracle: The simulation of hash queries is the same as in the proof of
Theorems 2 and 1.

• Signing oracle: Here B also maintains a list E-list for storing the correspond-
ing identity and signature pairs. On input a pair (i, M), if i ∈ S and i � i∗, B
can successfully generate any signature of the member i. If i = i∗, B generates
T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, R1, R2, R3, R4, R6, R7, R8, R9, and T10 as
in the RGS specification by using random sπ, sθ, sρ, sxi , sπμi , sθμi , and sδ from
Z
∗
p. After that, B responds with σ = (c, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10,

sπ, sθ, sρ, sxi , sπμi , sθμi , sδ).
• UCorruption oracle:On input i ∈ S, if i � i∗ then B returns ski. Otherwise, B

aborts.
• Revocation and opening oracles: The simulations of the revocation and open-

ing oracles are the same as that of Theorem 2 and 1.

– Output: Finally, B outputs a signature-message pair (σ∗, M∗).

Group Signature with Constant Revocation Costs for Signers and Verifiers 233

A breaks the proposed scheme if Verify(gpk, pmi, σ∗, M∗) = true. In addition, if A
outputs a forged σi with probability at least ε, thenA outputs a forged σi∗ of the target
member i∗ with probability at least ε/n. B then can successfully obtain two forged
signatures σi∗ = (σi∗0 = (T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, R1, R2, R3, R4, R5, R6,
R7, R8, R9, R10), c,σi∗1 = (sπ, sθ, sρ, sxi , sπμi , sθμi , sδ) andσ′i∗ = (σi∗0 = (T1, T2, T3, T4, T5,
T6, T7, T8, T9, T10, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10), c′ ,σ′i∗1 = (s′π, s′θ, s′ρ, s′xi

, s′πμi
,

s′θμi
, s′δ)) by applying Forking Lemma [27] and extract xi∗ = (s′xi∗ − sxi∗)/(c

′ − c) as the
solution of DL problem with probability at least ε/4n. Hence, we have that ε/4n ≤ ε′.
Type II Adversary. Let A be an adversary that breaks the non-frameability of the
proposed scheme with the probability at least ε by forging a group signature of member
i for i ∈ [1, n] ∧ i � S. We then construct an algorithm B to break PDHE assumption
with probability at least ε′′. The construction of B and its interaction with A proceed
as follows.

– Setup: B is given a PDHE instance (g, ĝ, gα
ψ+i

, ĝα
ψ+i

, gβ
ψ+i

, ĝβ
ψ+i

, η j}1≤i, j≤n∧i� j) by
a challenger CPDHE of PDHE assumption, where i = 1, ..., n and j = 1, ..., n, n +
2, ..., 2n. B then prepares sets S and U being the same as that of the simulation for
type I adversary and prepares gsk and gpk as well as that of the proposed scheme
except that α, β, and ψ are unknown. Then B simulates ski = (Ai, gα,i, gβ,i, μi, xi)
for the member i by using PDHE instance, gsk, and gpk.

– Oracles: B answers the following oracles to simulates RGS interacting withA.
• Hash oracle: The simulation of hash queries are the same as that of the simu-

lation for type I adversary.
• Signing oracle:On inputting a pair (i, M), if i ∈ [1, n], B generates the corre-

sponding σ by ski. Otherwise, reject this request.
• UCorruption, revocation, and opening oracles: The simulations of ucorrup-

tion revocation and opening oracles are the same as that for type I adversary.
– Output: Finally,A output a signature-message pair (σ∗, M∗).

A is a type II adversary of non-frameability to break the proposed scheme if σ∗ is
correct and belongs to some i ∈ [1, n] ∧ i � S with probability at least ε. Then B can
successfully break PDHE assumption as follows. B can apply Forking Lemma as well
as the proof for type I adversary to extract secrets ρ and δ such that (zz′)ρ = e(L, T6) ·
e(L′, T11) ·T8/e(T9, g)ρ = (e(ĝα

2ψ+n+1
, g) · e(ĝβ

2ψ+n+1
, g))ρ. This means that ĝα

2ψ+n+1
ĝβ

2ψ+n+1
=∏

j∈S ĝα
2ψ+n+1− j+i ∏

j∈S ĝβ
2ψ+n+1− j+i

T9·(hδ)−1 . B can directly compute
∏

j∈S ĝα
2ψ+n+1− j+i

and
∏

j∈S ĝβ
2ψ+n+1− j+i

since i � S such that i � j. Therefore, B can successfully break PDHE assumption by
extracting ĝα

2ψ+n+1
from the forged signature σ∗ by using ĝβ

2ψ+n+1
.

Fast Computation on Encrypted Polynomials

and Applications

Payman Mohassel

University of Calgary
pmohasse@cpsc.ucalgary.ca

Abstract. In this paper, we explore fast algorithms for computing on
encrypted polynomials. More specifically, we describe efficient algorithms
for computing the Discrete Fourier Transform, multiplication, division,
and multipoint evaluation on encrypted polynomials. The encryption
scheme we use needs to be additively homomorphic, with a plaintext do-
main that contains appropriate primitive roots of unity. We show that
some modifications to the key generation setups and working with vari-
ants of the original hardness assumptions one can adapt the existing
homomorphic encryption schemes to work in our algorithms.

The above set of algorithms on encrypted polynomials are useful build-
ing blocks for the design of secure computation protocols. We demon-
strate their usefulness by utilizing them to solve two problems from the
literature, namely the oblivious polynomial evaluation (OPE) and the
private set intersection but expect the techniques to be applicable to
other problems as well.

1 Introduction

Polynomials are powerful objects with numerous applications in computer sci-
ence and cryptography in particular. It is easy to find their trace in a range of
cryptographic primitives and protocols. A common approach is to use polynomi-
als to represent the input data and then to perform the necessary computation
on the new representation. Examples of this approach include well-studied prob-
lems such as private information retrieval [2], secret sharing [26], as well as more
recent applications such as private set intersection [11], privacy-preserving set
operations [20], and private keyword search [12].

In almost all of these constructions, the data is first represented using one or
more polynomial and then various operations such as addition, multiplication,
and point evaluation on the polynomials are performed in the relevant setting.
Furthermore, due to the security requirements, in many cases the polynomials
are encrypted, secret-shared, or committed to and the computation is performed
on the encrypted versions. Currently, the efficiency gains in these protocols are
often the result of focusing on the specific problem at hand and taking advantage
of the unique properties of that problem.

D. Lin, G. Tsudik, and X. Wang (Eds.): CANS 2011, LNCS 7092, pp. 234–254, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Fast Computation on Encrypted Polynomials and Applications 235

However, faster algorithms for computing on encrypted polynomials, would
potentially lead to more efficient protocols for such applications. In fact, a
natural question we study in this paper is whether the existing computer al-
gebra techniques – that have been around for over half a century – can be used
to improve the efficiency of the cryptographic protocols for applications that use
polynomials to represent their data. We are not aware of any previous work on
this question. The advantage of such an approach compared to the customized
improvements for specific problems is that the resulting techniques are more
general and can be used in a range of applications. In essence, they provide a
cryptographic toolkit that can be used by protocol designers in almost a black-
box manner. For instance, as we will see in Section 4, our algorithms can be used
(without much additional effort) to design simple and efficient protocols for pri-
vate set intersection (PSI) and batch oblivious polynomial evaluation (OPE).
The resulting PSI protocol is a logarithmic factor less efficient than the best ex-
isting constructions, while the Batch OPE construction is more efficient than the
only other alternative (to the best of our knowledge) of repeating an OPE pro-
tocol multiple times. Nevertheless, we mostly present these protocols as simple
demonstrations of applicability of our techniques to different privacy-preserving
problems.

With the recent developments in designing fully-homomorphic encryption
schemes [15], it is possible to run any plaintext algorithm (including fast com-
puter algebra techniques) on encrypted data without the need for decryption (or
interaction) and with efficiency that is asymptotically similar to the complexity
of the original algorithms. However, the existing fully homomorphic schemes are
not yet practical, and hence it is desirable to rely on more efficient schemes but
with limited homomorphic properties.

When working with encryption schemes with limited homomorphic properties,
we need to make sure that the computer algebra algorithms can be computed
on encrypted data without the use of the decryption key. Also, since these al-
gorithms work over rings with special properties, we need to ensure that the
existing homomorphic encryption schemes can be adapted to work in the re-
quired plaintext domains.

In this paper, we demonstrate how given the right setup and the appropriate
computational assumptions for the encryption schemes, one can implement some
of the main computer algebra techniques for fast polynomial computation on
encrypted data. We then show how to use these techniques to develop efficient
protocols for several privacy-preserving problems studied in the literature. Next,
we describe our contributions in more detail.

1.1 Our Contribution

Fast Computation on Encrypted Polynomials. We design efficient algorithms
for performing different computational tasks on encrypted polynomials. Par-
ticularly, given polynomials that are encrypted using an additively homomorphic

236 P. Mohassel

encryption scheme, we design algorithms for computing the encrypted Discrete
Fourier Transform, polynomial multiplication, division1, and multipoint evalua-
tion all with computational complexities that are linear in the size of the poly-
nomials (upto a logarithmic factor). The constant factors in the complexities are
fairly small and specified in the body of the paper.

In designing our algorithms we rely heavily on computer algebra techniques
designed for fast symbolic computation. We show that the additive homomorphic
properties of the underlying encryption scheme are sufficient to implement these
techniques efficiently and non-interactively.

The encrypted Fast Fourier Transform (FFT) algorithm which is the starting
point of our work, operates over a commutative ring that contains primitive nth
roots of unity for appropriate values of n that are powers of two. We take a closer
look at two widely used additively homomorphic encryption schemes in the lit-
erature, i.e. the Paillier encryption [25], and the El Gamal encryption [13] with
messages in the exponent. We show that modulo some modifications to the key
generation setups and working with variants of the original hardness assump-
tions, namely the fourier DDH and fourier DCRA assumptions (see Section 2),
one can adapt these schemes to work in our protocols.

A number of other papers in the literature investigate the connection between
secure computation and polynomials. For example, the work of [10] and [7] looks
at evaluating public multivariate polynomials on parties’ private inputs. Similar
to us (and independently), Cheon et al [4] also consider the use of fast computer
algebra techniques with the aim of designing more efficient protocols (multiparty
PSI in this case). Our main goal, and what separates our work from the related
papers, is to introduce an efficient framework for fast computation on encrypted
polynomials with the intention that they can be used in privacy preserving ap-
plications.

We demonstrate the usefulness of our encrypted polynomial toolkit by apply-
ing it to several cryptographic problems.

Batch Oblivious Polynomial Evaluation. We first look at the oblivious polyno-
mial evaluation problem [24]. In the OPE problem a sender holds a polynomial
f of degree n over some ring R. A receiver holding an input u ∈ R wants to learn
f(u) without learning anything else about the polynomial f and without reveal-
ing to the sender any information about u. OPE can be seen as a generalization
of the 1-out-of-n oblivious transfer, and the private keyword search problem.

One can envision a wide range of applications that can take advantage of
oblivious evaluation of polynomials. It is common practice to approximate a
function by using a finite number of terms of its Taylor series and evaluating
the polynomial corresponding to it. Through such approximations, OPE can
be used to obliviously evaluate a variety of functions. One concrete example is
the Taylor series approximation of the ln(x) function used in privacy-preserving

1 We consider the variants of polynomial multiplication and division where one poly-
nomial is encrypted and the other is in plaintext. This variant appears to be sufficient
for all the applications we have in mind.

Fast Computation on Encrypted Polynomials and Applications 237

data mining protocols [21]. OPE has also been used to design privacy-preserving
protocols for machine learning methods such as neural learning [3].

In most applications, one is interested in performing the polynomial evaluation
many times and on different input values. The naive solution of rerunning the
protocol for each instance, which to the best of our knowledge is the only existing
solution, is costly since the computation cost grows multiplicatively with the
number of points being evaluated.

In Section 4.1, we show how our techniques for computation on encrypted
polynomials help with designing a protocol for batch evaluation of k < n OPE
instances with only O(n) communication and O(n log n+k(log k)2) computation
compared to the O(kn) complexity of the naive solution. Private Set Intersec-
tion. We also use our algorithmic ideas to solve the private set intersection
(PSI) problem. The PSI problem involves two or more parties each with their
own private data sets who want to learn which data items they share without
revealing anything more about their data. A number of organizations dealing
with sensitive data such as healthcare providers, insurance companies, law en-
forcement agencies, and aviation security need to perform such an operation on
their data. A large body of work has been studying the design of PSI proto-
cols [11,20,16,18,6,17,9,19,8,1].

In Section 4, we provide two efficient protocols for the PSI problem. While
the computational efficiency of our (more efficient) construction is a logarithmic
factor worse than the best existing works, our protocols are obtained with little
effort and are almost immediate applications of the algorithms we introduce.
In fact, our main motivation is not to design more efficient PSI protocols but
to demonstrate the usefulness of the techniques discussed in this paper, in the
design of privacy-preserving protocols.

Our batch OPE protocol can be used to solve the private set intersection
problem with almost linear computation. In order to find the intersection of two
datasets A and B, it is sufficient to represent A via a polynomial fA (where
elements of A are roots of fA), and then obliviously evaluate all elements of B
at fA. Those values evaluated to zero are in the intersection while the rest are
not. The resulting PSI protocol requires O(n) communication and O(n(log n)2)
computation.

Kissner and Song [20] designed a simple and elegant protocol for the private
set intersection problem. Given two sets A and B of equal size n, the idea is to
represent the sets using polynomials fA and fB. Then, one can show that roots of
the polynomial o = rfA +sfB for random polynomials r and s are either random
or in the intersection of the two sets. This idea can be turned into a PSI protocol,
and can easily be extended to work for the multiparty case. The main drawback
of the construction, as pointed out in the literature, is that it requires com-
putational complexity that is quadratic in the size of the datasets. However, in
light of the new algorithms we designed for encrypted polynomial multiplication,
the PSI protocol we derive has O(n) communication and O(n log n) computa-
tion. The constant factors in the complexity are also small. In particular the

238 P. Mohassel

computation involved consists of n encryptions, n decryptions, 2n logn homo-
morphic additions/subtractions and n logn homomorphic multiplications.

2 Homomorphic Encryption and Hardness Assumptions

We use a semantically secure public-key encryption scheme that is also additively
homomorphic. In particular, we call an encryption scheme E additively homo-
morphic if given two ciphertexts E(m1) and E(m2), we can efficiently compute
an encryption of m1 +m2. We denote this by E(m1 +m2) = E(m1) +h E(m2).
This implies that given an encryption E(m) and a value c, we can efficiently
compute a random encryption E(cm); we denote this by E(cm) = c ×h E(m).
For a vector v we denote by E(v) an entry-wise encryption of the vector. We
define the encryption of a polynomial by the encryption of the vector of its
coefficients. We can add two encrypted vectors (polynomials) by adding each
encrypted component individually (we use the same notation +h for this oper-
ation as well). When measuring efficiency of our algorithms, we often count the
number of homomorphic additions/subtractions and multiplications separately,
since homomorphic addition/subtraction tends to be significantly faster for all
existing encryption schemes.

There are a number of homomorphic encryption schemes each with their own
special properties. Generalized versions of our protocols would work with any
encryption scheme that is additively homomorphic as long as the domain of the
plaintexts is a commutative ring. However, the protocols become simpler and
more efficient when we can guarantee that the underlying ring contains a primi-
tive nth root of unity for an appropriate choice of n that is a power of two. Hence,
it is important to review the existing homomorphic encryption schemes and to
determine whether they can be instantiated with plaintext domains that satisfy
our requirement. We take a closer look at two widely used additively homomor-
phic encryptions schemes in the literature, i.e. the Paillier encryption [25] and
the El Gamal encryption [13] with messages in the exponent and introduce the
two hardness assumptions fourier DDH and fourier DCRA which we need for
our protocols. While these new assumptions are closely related to the standard
DDH and DCRA assumptions, a better understanding of their hardness requires
more careful analysis.

2.1 Additive Variant of El Gamal

Consider the additive variant of the El Gamal encryption scheme where mes-
sages are encoded in the exponent. In other words, a message m is encrypted
by computing Epk(m, r) = (gr, hrgm) where g is a generator for a cyclic group
Gq over which the DDH assumption is hard. It is easy to see that multiplying
two ciphertexts adds the two corresponding messages in the exponent. Decryp-
tion can be performed efficiently as long as the messages are small. For most

Fast Computation on Encrypted Polynomials and Applications 239

of the applications we consider, it is sufficient to determine whether a cipher-
text encrypts the message 0 or not, but otherwise there is no need to decrypt
a ciphertext. The additive variant of the El Gamal encryption is sufficient for
such applications. For example, in our private set intersection protocol (based
on polynomial multiplication), it suffices for one party to test whether cipher-
texts are encryptions of 0 without fully decrypting them. In applications such
as private keyword search where one is required to decrypt larger plaintexts (i.e.
the payload), it is still possible to get around this limitation at the cost of a less
efficient construction. In particular, one can use a different polynomial for each
bit (or a constant number of bits) of the payload, and invoke the OPE protocol
once for each polynomial. Nevertheless, the additive variant of the El Gamal
scheme is not a suitable choice for all applications, and should be used with this
limitation in mind.

In most cases, the DDH assumption is considered over a finite field Fq, where q
is a prime. In order to make sure the underlying finite field contains the necessary
primitive roots of unity, we take advantage of the following lemma:

Lemma 1. [14] For a prime power q and n ∈ N, a finite field Fq contains a
primitive nth root of unity if and only if n divides q − 1.

Based on this Lemma, if we choose q carefully such that q = r2� + 1 for positive
integers r and , then the corresponding finite field Fq has nth roots of unity for
any n = 2s for which s ≤ . The primes of this form are sometimes referred to
as Fourier primes.

Definition 1 (Fourier Primes). A prime number p is called a fourier prime
if p = r2� + 1 for two positive integers r and .

Given the above lemma, in order to use the additive variant of El Gamal in
our protocols, we need to make sure that the prime we use is in fact a fourier
prime. In other words, we need to modify the key generation step in order to
sample from the space of primes of the form r2� + 1. It is not hard to show that
successively testing 2� + 1, 2.2� + 1, 3.2� + 1, . . ., for primality is bound to find a
fourier prime in a small number of iterations. See Chapter 18 of [14] for more
details on efficiency of this step. In addition to generating a fourier prime, the
key generation algorithm also needs to find a root of unity. The following lemma
guarantees an efficient way of generating such roots of unity.

Lemma 2. Let p = r2� + 1 be a prime number where r and are positive
integers. Let a be a nonsquare modulo p. ar mod p is a primitive 2�th root of
unity in F∗

p.

While we are not aware of any algorithms for solving the discrete log problem
or any attacks against the DDH assumption that takes advantage of the fact
that the prime number we work with is a fourier prime, the effect of this extra
assumption requires further analysis. In this paper, we denote this new variant
of the DDH assumption with the fourier DDH assumption.

240 P. Mohassel

Definition 2 (Fourier DDH Assumption). We denote by fourier DDH, the
DDH assumption over the group Fp where p is a fourier prime.

2.2 Paillier’s Encryption Scheme

Paillier’s encryption [25] is another widely used additively homomorphic en-
cryption scheme. In Paillier’s encryption, plaintexts are in ZN where N = pq is
product of two prime numbers. Once again, in order to take advantage of effi-
cient FFT algorithms, we need to make sure that we can find nth roots of unity
for all values of n we might be interested in for our applications. Consider the
following lemma:

Lemma 3 ([14], Exercise 8.19). Let p, q be two distinct odd primes and N =
pq. Z∗

N contains a primitive kth root of unity if and only if k|lcm(p− 1, q − 1).

More specifically, in order to use Paillier’s encryption scheme in our protocols, we
need to make sure that at least one of the two primes p and q is a fourier prime.
We can use the method discussed above to generate such a prime efficiently. Pail-
lier’s encryption is based on the hardness of a mathematical assumption called
decisional composite residuosity assumption (DCRA). We denote the variant of
the assumption where at least one of the primes is a fourier prime with fourier
DCRA.

3 Non-interactive Computation on Encrypted
Polynomials

In this section, we describe efficient and non-interactive algorithms for comput-
ing on encrypted polynomials. This collection of algorithms on encrypted data
provides us with a useful toolkit for designing efficient privacy-preserving proto-
cols for a number of problems.

We start by showing that the FFT algorithm and the interpolation on roots of
unity (reviewed in Section A) can be efficiently extended to work on inputs that
are encrypted using an additively homomorphic encryption scheme. More impor-
tantly, performing these computations on encrypted data can be done locally and
without the use of the decryption algorithm. Then, we show how to use these
two techniques to perform polynomial multiplication, division and multipoint
evaluation on partially encrypted data (also non-interactively). The complexity
of all the algorithms are linear, upto a logarithmic factor, in the degree of the
polynomials we work with.

For simplicity, we assume that the plaintext domain of the encryption scheme
is a commutative ring containing a primitive nth root of unity, for an appropriate
value of n. As explained in Section 2, it is possible to modify both Paillier’s and
the El Gamal encryption schemes to meet this requirement.

Fast Computation on Encrypted Polynomials and Applications 241

Computing the DFT of Encrypted Polynomials. Let f be a polynomial
of degree d with coefficients in a finite Ring R, and let w ∈ R be an nth root
of unity where d < n and n = 2k. Given the encryption of the polynomial f
via an additively homomorphic encryption scheme (and without the knowledge
of the decryption key), we want to compute an encryption of f ’s DFT, namely
encryption of the vector 〈f(w), f(w2), . . . , f(wn−1)〉. In essence, DFT can be
seen as a special case of multipoint evaluation, at the powers of nth root of
unity w.

Using Horner’s rule and the homomorphic properties of an additive encryp-
tion scheme, one can compute an encryption of each f(wi) via d homomorphic
multiplications and d homomorphic additions. This leads to a total of O(dn)
homomorphic operations for computing the DFT. But this is not the best we
can do. Using the Fast Fourier Transform we show how to reduce the total cost
to O(n log n) homomorphic operations.

The Fast Fourier Transform, or FFT for short, can be used to compute the
DFT quickly. The algorithm was (re)discovered by Cooley and Tukey [5], and is
one of the most important algorithms in practice. The high level idea is to divide
f by xn/2−1 and xn/2 +1. Computing the DFT of f is then recursively reduced
to computing the DFT of the remainder polynomials of the two divisions. We
review the FFT algorithm in Appendix A and here only describe its adaptation
to work on encrypted polynomials.

Our main observation is that the FFT algorithm lends itself quite nicely to
(additive) homomorphic properties of the encryption scheme, and hence can be
computed non-interactively and efficiently on encrypted data.

Encrypted FFT Algorithm
EncFFTw,n(Epk(f))

Input: n = 2k ∈ N for k ≥ 1; powers of a primitive nth root of
unity w ∈ R; the public key pk for an additively homomorphic encryp-
tion scheme E with the plaintext domain R, and the encrypted vector
Epk(f) = 〈Epk(f0), Epk(f1), . . . , Epk(fn−1)〉 where f(x) =

∑
0≤i<n fix

i.

Output: Encrypted vector 〈Epk(f(1)), Epk(f(w)), . . . , Epk(f(wn−1))〉

1. If n = 2 then return Epk(f0) + Epk(f1) ×h w.
2. For 0 ≤ j < n/2 compute Epk(r0,j) = Epk(fj) +h Epk(fj+n/2).
3. For 0 ≤ j < n/2 compute Epk(r1,j) = Epk(fj) −h Epk(fj+n/2).
4. For 0 ≤ j < n/2 compute Epk(r∗1,j) = Epk(r1,j) ×h wj .
5. Let r0 = 〈r0,0, r0,1, . . . , r0,n/2−1〉 and r∗

1 = 〈r∗1,0, r
∗
1,1, . . . , r

∗
1,n/2−1〉.

6. Compute the two encrypted vectors O0 = 〈o0,0, . . . , o0,n/2−1〉 and
O1 = 〈o′1,0, . . . , o

′
1,n/2−1〉 by letting O0 ← EncFFTw2,n/2(Epk(r0))

and O1 ← EncFFTw2,n/2(Epk(r∗
1)).

7. Return 〈o0,0, o1,0, o0,1, o1,1, . . . , o0,n−1, o1,n−1〉.

242 P. Mohassel

Efficiency. It is easy to verify that the above protocol requires n logn homomor-
phic additions/subtractions and n/2 logn homomorphic multiplications by wi.
As noted earlier, each homomorphic addition subtraction) translates to a group
multiplication (inversion) while each homomorphic multiplication requires an
exponentiation. On the other hand, if w is chosen to be small, some of these ex-
ponentiations (which are homomorphic multiplications with powers ofw) become
more efficient. In particular, based on Lemma 2, for a fourier prime p = r2� + 1,
we know that w = ar is primitive root of unity for any non-square a. Hence, as
long as we make sure r is a small integer, w can also be chosen to be fairly small.

Encrypted Interpolation on Powers of Roots of Unity. In the interpola-
tion problem, given the vector 〈f(1), f(w), f(w2), . . . , f(wn−1)〉, our goal is to
compute the coefficients of the corresponding polynomial f . As discussed in de-
tail in Appendix A.3, interpolation at powers of w can essentially be reduced to
computing DFT of a polynomial of degree n, and hence be computed efficiently
using the EncFFT algorithm. Next, we briefly describe this algorithm.

Encrypted Interpolation on Powers of nth Root of Unity
EncInterpolw,n(v)

Input: n = 2k ∈ N with k ≥ 1, a primitive nth root of unity w ∈ R,
public key pk for an additively homomorphic encryption scheme E and
an encrypted vector Epk(v) = 〈Epk(v0), · · · , Epk(vn−1)〉 where w ∈ Rn.

Output: The encrypted polynomial Epk(f) of degree n where f(wi) = vi

for 0 ≤ i < n.

1. Compute w−1, w−2, . . . , w−(n−1).
2. Compute and return 1/n ×h EncFFTw−1,n(Epk(v))

The algorithm’s efficiency is almost identical to that of the EncFFT algorithm
as the bulk of the computation is one invocation of that algorithm.

Multiplying Encrypted Polynomials. Next we show how to use the EncFFT
and EncInterpol algorithms described above to efficiently multiply encrypted
polynomials. We are mostly interested in the variant of the multiplication where
one polynomial is encrypted and the other polynomial is in plaintext. The idea
for the fast polynomial multiplication is to compute the DFT of both polyno-
mials, multiply the components of the DFT individually to obtain the DFT of
the product polynomial and then interpolate to recover the product polynomial
itself.

As we show next, given an additively homomorphic encryption scheme, this
variant can be computed non-interactively and without the need for decrypting
any ciphertexts. The algorithm only requires computation that is linear in the
degree of the polynomials.

Fast Computation on Encrypted Polynomials and Applications 243

Encrypted Polynomial Multiplication Algorithm
EncPolyMultw,n(Epk(f), g)

Input: Encryption of the polynomial f(x) =
∑

0≤i<d1
fix

i, i.e. Epk(f) =

〈Epk(f0), . . . , Epk(fd1)〉 and the plaintext polynomial g =
∑

0≤i<d2
gix

i,

and a primitive nth root of unity w where n = 2k and d1 + d2 < n.
Output: Encryption of the product polynomial h = fg.

1. Compute 〈Epk(f(1)), . . . , Epk(f(wn−1))〉 ← EncFFTw,n(f).
2. Compute 〈g(1), . . . , g(wn−1)〉 ← FFTw,n(g).
3. For 0 ≤ i < n, compute Epk(h(i)) = g(i) ×h Epk(f(i)).
4. Let vh ← 〈h(1), . . . , h(n − 1)〉.
5. Compute and return EncInterpolw,n(Epk(vh)).

Efficiency. The algorithm requires 2n logn homomorphic additions/subtractions
and n logn homomorphic multiplications, since the EncFFT and the EncInterpol
are each invoked exactly once.

Encrypted Polynomial Division. Here, we describe a protocol for performing
the division with remainder on encrypted polynomials. We focus on the version
of the division protocol where polynomial a of degree n is encrypted, a monic
polynomial b of degree m < n is in plaintext and we want to compute encryp-
tions of two polynomials q and r such that a = qb+r and r is of degree less than
m. Next we review simple algebraic tricks that allow us to reduce the encrypted
polynomial division algorithm to the encrypted polynomial multiplication al-
gorithm we described earlier. We note that similar tricks were used in [22] in
the context of secure computation but in a different setting and with different
applications in mind.

We define reversal of a polynomial a as revk(a) = xka(1/x). When k = n,
this is the polynomial with the coefficients of a reversed, that is, if a = anx

n +
an−1x

n−1 + · · ·+ a1x+ a0, then rev(a) = revn(a) = a0xn + · · ·+ an−1x+ an.
We can now rewrite the division with remainder expression as

revn(a) = revn−m(q)revm(b) + xn−m+1revm−1(r)

and therefore, revn(a) = revn−m(q)revm(b) mod xn−m+1

Note that since we assume b is a monic polynomial, revm(b) has the constant
coefficient 1 and thus is invertible modulo xn−m+1. Hence we have that

revn−m(q) ≡ revn(a)revm(b)−1 mod xn−m+1,

and can obtain q = revn−m(revn−m(q)) and r = a− qb.
In other words, performing the polynomial division with remainder is reduced

to inverting the polynomial b modulo xn−m+1, two polynomial multiplications
and one polynomial subtraction. Since in our variant of the algorithm b is in
plaintext, we can use standard computer algebra algorithms for inverting b which

244 P. Mohassel

requires O(n log n) ring operations. Since in all our applications we are only
interested in the remainder polynomial, we define the output of the protocol to
be only r. The algorithm follows.

Encrypted Polynomial Division Algorithm
EncPolyDivw,n′ (Epk(a), b)

Input: Encryption of the polynomial a(x) =
∑

0≤i≤n aix
i, i.e.

Epk(a) = 〈Epk(a0), . . . , Epk(an)〉 and the plaintext polynomial
b(x) =

∑
0≤i≤m bix

i, and a primitive n′th root of unity w where

n′ = 2k and n′ > 2n − m + 1.

Output: Encryption of the remainder polynomial r of degree less than m
where a = qb + r.

1. Compute w2, . . . , wn−1.
2. Let a′ = revn(a). By reversing the order of coefficients of Epk(a), we

arrive at the encrypted version of a′ denoted by Epk(a′).
3. Compute the polynomial b′ = revn−m(b)−1 mod xn−m+1 using stan-

dard computer algebra techniques.
4. Compute Epk(q1) = EncPolyMultw,n′ (b′, Epk(a′)).
5. Compute Epk(q2) = Epk(q1) mod xn−m+1 . This is a simple operation

that can be performed non-interactively given the additive homomor-
phic property of the encryption scheme.

6. Compute Epk(q) = revn−m(Epk(q2)) by reversing the coefficients.
7. Compute Epk(r) = Epk(a) −h EncPolyMultw,n′ (Epk(q), b).
8. Output Epk(r).

Efficiency. The protocol invokes the EncPolyMult protocol twice, and requires m
and n −m homomorphic additions/subtractions in steps 5 and 7, respectively.
This leads to a total of 2n′ logn′ homomorphic multiplication and 4n′ logn′ +n′

homomorphic additions.

Encrypted Multipoint Polynomial Evaluation. Given an encrypted poly-
nomial f of degree n and n points u0, · · · , un−1 ∈ R, our goal is to compute the
encrypted vector 〈f(u0), f(u1), · · · , f(un−1)〉. Through the use of the Horner’s
rule and the additive homomorphic properties of the encryption scheme, it is
possible to perform this task with O(n2) homomorphic operations. However, we
are interested in a significantly more efficient algorithm. We have already seen
that in the special case when ui = wi where w is a primitive nth root of unity,
the EncFFT algorithm performs the same task with O(n log n) homomorphic op-
erations. Our goal is to design an efficient algorithm for the general case of the
problem.

Let n = 2k and mi = x − ui for 0 ≤ i < n. We first compute the following
sequence of polynomials:

Mi,j = mj2imj2i+1 · · ·mj2i+(2i−1) =
∏

0≤�<2i

mj2i+�

Fast Computation on Encrypted Polynomials and Applications 245

for 0 ≤ i ≤ k = logn and 0 ≤ j < 2k−i. In other words, each Mi,j is a sub-
product with 2i factors from Mk,0 =

∏
0≤�<nm�. There exist a simple recursive

algorithm for computing the polynomials Mi,j for 0 ≤ i ≤ k and 0 ≤ j < 2k−i,
with O(n(log n)2) ring operations. Note that since ui’s are in plaintext, the ring
additions and multiplications are significantly cheaper than say encryption or
homomorphic multiplication both of which require exponentiation.

The algorithm for multipoint evaluation uses these subproducts in a recur-
sive way. The idea is to divide the polynomial we want to evaluate by two of
these subproduct polynomials (see Step 3 of algorithm) and recursively run the
multipoint evaluation algorithm on the remainder polynomials. Evaluating the
remainder polynomials gives the same result as evaluating the original polyno-
mial itself. We describe the detailed algorithm next:

Encrypted Multipoint Polynomial Evaluation Algorithm
EncMultiEvaln(Epk(f), u)

Input: Encryption of the polynomial f(x) =
∑

0≤i<n fix
i over R,

i.e. Epk(f) = 〈Epk(f0), . . . , Epk(fn)〉, and the plaintext vector u =
〈u0, u1, · · · , un−1〉. Let n = 2k, for k ∈ N, and w the a primitive nth
root of unity.
Output: The encrypted vector 〈Epk(f(u1)), · · · , Epk(f(un−1))〉.

1. Compute the subproduct polynomials Mi,j for 0 ≤ i ≤ k, and 0 ≤
j < 2k−i, as described above.

2. If n = 1 then return f . f is a constant in this case.
3. Compute Epk(r0) ← EncPolyDivw,n(Epk(f), Mk−1,0), and Epk(r1) ←

EncPolyDivw,n(Epk(f), Mk−1,1). Note that r0 and r1 are of degree less
than n/2.

4. Let u0 = 〈u0, · · · , un/2−1〉 and u1 = 〈un/2, · · · , un〉. Recursively call
the algorithm twice
(a) 〈Epk(r0(u0)), · · · , Epk(r0(un/2−1))〉 ←

EncMultiEvalw,n/2(Epk(r0), u
0)

(b) 〈Epk(r1(un/2)), · · · , Epk(r1(un−1))〉 ←
EncMultiEvalw,n/2(Epk(r1), u

1)
5. Output Epk(r0(u0)), · · · , Epk(r0(un/2−1)), Epk(r1(un/2)), · · · , Epk(r1(un−1)).

Efficiency. A careful calculation we omit here (See Chapter 10 of [14]) shows
that the above algorithm requires at most D(n) log n operations where D(n) is
the number of operations needed for dividing a polynomial of degree less than
2n by a monic polynomial of degree n. Given the complexity of our division
algorithm, this leads to at most 6n(logn)2 homomorphic multiplications and
12n(logn)2 + 3n logn homomorphic additions/subtractions.

4 Applications

4.1 Batch Oblivious Polynomial Evaluation

In the Oblivious Polynomial Evaluation (OPE) problem a sender holds a poly-
nomial f of degree n over some ring R. A receiver holding an input u ∈ R wants

246 P. Mohassel

to learn f(u) without learning anything else about the polynomial f and without
revealing to the sender any information about u.

OPE was originally studied in [24], and can be seen as a generalization of a
number of problems studied in the literature such as the 1-out-of-n oblivious
transfer (e.g. see [23]), and private keyword search [12]. In case of 1-out-of-n
oblivious transfer with a database D = {d1, . . . , dn}, the sender can choose f
such that f(i) = di. In case of private keyword (PKS) search where the database
is D = {(w1, d1), . . . , (wn, dn)}, the sender can choose a polynomial f where
f(wi) = di and wi is the keyword associated to di for 1 ≤ i ≤ n.2

Given an additively homomorphic encryption scheme over the ring R, there
exist a simple protocol for the OPE problem which requires O(n) encryp-
tion/homomorphic operations when implemented using the Horner’s rule. How-
ever, in most applications one is interested in evaluating the polynomial on
many points. Given k evaluation points, the naive solution (and the only so-
lution we are aware of) is to repeat the OPE protocol k times. This leads to
O(kn) encryption/homomorphic operations. For large values of k this is ineffi-
cient. Next, we use the techniques developed in previous sections to design a
protocol for batch OPE that only requires O(n(log n)+ k(log k)2) homomorphic
operations. The protocol is a natural composition of the EncPolyDiv algorithm
and the EncMultiEval algorithms we have designed. More specifically, to evalu-
ate the polynomial f at points u1, · · · , uk, we first divide f by the polynomial
(x− u1) · · · (x− uk). Denote the resulting polynomial by r. It is easy to see that
r(ui) = f(ui) for 1 ≤ i ≤ k. Therefore we can use the EncMultiEval protocol to
evaluate r at u1, . . . , uk. The protocol follows:

Batch Oblivious Polynomial Evaluation Protocol
BatchOPE(f, u)

Sender’s Input: A polynomial f of degree n with coefficients in R.
Receiver’s Input: The vector u = 〈u1, u2, · · · , uk〉 in the ring Rn.
Receiver’s Output: 〈f(u1), . . . , f(uk)〉

1. Sender generates a key pair (pk, sk) for the public key encryption
scheme E, and sends pk to the receiver.

2. Sender sends Epk(f) to the receiver.
3. Receiver computes the polynomial g = (x − u1)(x − u2) · · · (x − uk).
4. Receiver computes the encrypted polynomial Epk(r) ←

EncPolyDiv(Epk(f), g) of degree k.
5. Receiver computes Epk(o) ← EncMultiEvalk(Epk(r), u).
6. Receiver computes and sends Epk(o + or) = Epk(o) +h Epk(or) for

a random vector or ∈ Rk to the sender.
7. Sender decrypts the encrypted vector and sends o + or back to the

receiver.
8. Receiver computes and outputs o = o + or − or .

2 A standard assumption made in PKS protocols is that the keywords are unique.

Fast Computation on Encrypted Polynomials and Applications 247

Efficiency: The protocol executes the EncPolyDiv protocol on a polynomial of
degree n and the EncMultiEval protocol on a polynomial of degree k. This adds
to a total of O(n log n+ k(log k)2) homomorphic operations.

Claim. The BatchOPE protocol is secure against semihonest adversaries, if the
encryption scheme E is semantically secure.

Proof Sketch: The proof of security of the protocol against semi-honest ad-
versaries follows naturally from the semantic security of the encryption scheme,
and the randomization steps that take place in the protocol. For completeness we
include a sketch of the proof here. This also serves as a good example, since the
proofs for all the other protocols follow the same pattern. The full proof of our
protocol (deferred to the full version) follows the ideal/real simulation paradigm.
In this extended abstract, however, we only give a proof sketch. In case of semi-
honest adversaries, it is sufficient to simulate the view of the corrupted party
given only his input/output. We have the following two cases:

Sender Is Corrupted. The Sender’s view is only the message he receives in
step 6 of the protocol. This message is an encryption of a uniformly random
message vector. This is because the sender does not know the random vector or

which masks the output vector o. Hence the simulator can simulate the sender’s
view by computing an encryption of a randomly chosen message vector.

Receiver Is Corrupted. The simulator knows the receiver’s input and ran-
domness and the output vector o and wants to simulate the receiver’s view in
the real protocol. He first generates a dummy polynomial f ′ of appropriate de-
gree (arbitrary coefficients) to use in place of the sender’s input polynomial f .
The simulator encrypts f ′ using the encryption scheme and performs all the
computation on the encrypted f ′ instead to get an encrypted vector Epk(o′).
Note that due to the semantic security of the encryption, the view generated
using f ′ is computationally indistinguishable from the one generated using the
real polynomial f .

To simulate the only remaining part of receiver’s view (i.e. the message re-
ceived in step 7), given or generated by the receiver, the simulator computes
o + or. the generated vector is identical to the vector in receiver’s view. This
completes the proof sketch of security for the above scheme.

4.2 Private Set Intersection via OPE

The set intersection problem involves two or more parties each with their own
private data sets who want to learn which data items they share without reveal-
ing anything more. As mentioned earlier, several recent works have focused on
designing protocols with linear computation and communication complexity.

Interestingly, our batch oblivious polynomial evaluation protocol can be used
to solve the private set intersection problem with linear complexity. In order to
find the intersection of two datasets A and B, it is sufficient to represent A via
a polynomial fA (where elements of A are roots of fA), and then obliviously

248 P. Mohassel

evaluate all elements of B at fA. Those values evaluated to zero are in the in-
tersection while the rest are not. Simple randomization techniques can be added
to avoid leaking any information about those elements that are not in the set.
The protocol follows.

Private Set Intersection Protocol (via OPE)

Inputs: Alice holds the dataset A of size na, and Bob holds the dataset B
of size nb with elements in R. Without loss of generality we assume that
na > nb.
Output: Alice learns the intersection of A and B.

1. Alice computes the polynomial fA of degree na by letting the roots
of fA be the elements in A.

2. Bob randomly permutes and arranges the elements of B in a vector
b ∈ Rnb .

3. Alice and Bob run the Steps 1 to 5 of the BatchOPE(fA, b) protocol.
At this point Bob holds the encrypted vector Epk(o) which contains
the evaluation of elements of B at polynomial fA.

4. Bob generates two random vectors r1, r2 ∈ Rnb . He then computes
and sends Epk(o1) = r1 ×h Epk(o) +h b and Epk(o2) = r2 ×h Epk(o)
where the vector multiplications are component-wise multiplications.
Note that o2 is zero in components corresponding to the elements in
the intersection, and random otherwise. For indices corresponding to
elements in the intersection, o1 holds the actual values.

5. Alice decrypts o2 to learn the locations of the elements in the inter-
section (they are the ones with 0). She marks the indices for those
locations, decrypts o1 and outputs the values in the marked indices
as the final output.

The above protocol can be easily modified to compute the size of the intersection
set instead. Particularly, if in the final stage we only compute the vector o2 and
count the number of zeros, we have a protocol that computes the size of the
intersection.

Efficiency. The bulk of computation consists of running the BatchOPE protocol
once, and hence the computational complexity of the scheme is O(na logna +
nb(lognb)2) homomorphic operations.

Claim. the above protocol is secure against semihonest adversaries if the en-
cryption scheme E is semantically secure.

Similar to proof of Claim 4.1, the security follows from the semantic security
of the encryption scheme in a standard way. Details are deferred to the full
version.

4.3 Private Set Intersection via Polynomial Multiplication

Kissner and Song [20] designed a simple and elegant protocol for the private
set intersection problem. Given two sets A and B of equal size n, the idea is

Fast Computation on Encrypted Polynomials and Applications 249

to represent the sets using polynomials fA and fB, respectively. Let r and s
be two uniformly random polynomials of degree greater or equal to n over R.
The polynomial o = rfA + sfB = gcd(fA, fB)u, where the polynomial u has
coefficients uniformly distributed in R. Note that an element a ∈ R is a root of
gcd(fA, fB) if and only if a appears in A∩B. Furthermore, if R is large, the fact
that u is uniformly distributed implies that with overwhelming probability, the
roots of u do not represent any elements in A or B (see [20] for more detail).
Hence, one can determine if an element is in the intersection set by testing
whether the element evaluates to zero at polynomial o.

This construction easily extends to work for computing the intersection of
many sets (held by many users). As discussed in the literature, the main draw-
back of the construction is that it requires computational complexity that is
quadratic in the size of the datasets. However, in light of the algorithms we have
designed for computing on encrypted polynomials, this can be improved.

Private Set Intersection Protocol (via EncPolyMult)

Inputs: Alice holds the dataset A of size na, and Bob holds the dataset B
of size nb with elements in R. Without loss of generality we assume that
na > nb.
Output: Bob learns the intersection of A and B.

1. Bob generates a key pair (pk, sk) for the public key encryption scheme
E, and sends pk to Alice.

2. Alice and Bob represent their data sets using polynomials fA and fB

of degree na and nb respectively.
3. Bob encrypts his polynomial and sends Epk(fB) to Alice.
4. Alice generates two uniformly random polynomials r and s over R

of degree na. She then computes the encrypted polynomial Epk(o) =
EncPolyMult(r,Epk(fB)) +h PolyMult(s, fA) and sends it to Bob.

5. Bob then evaluates the encrypted polynomial Epk(o) at his input set
using the homomorphic properties of the encryption and for each ci-
phertext that is an encryption of 0, he outputs the corresponding
input as part of the intersection.

Efficiency. Note that the protocol requires one invocation of the EncPolyMult
algorithm. Hence the computation consists of nb encryptions, na+nb decryptions,
2na logna homomorphic additions and na logna homomorphic multiplications.

Claim. The above private set intersection protocol is secure against semi-honest
adversaries if the encryption scheme E is semantically secure.

References

1. Ateniese, G., De Cristofaro, E., Tsudik, G.: (if) size matters: size-hiding private
set intersection, pp. 156–173 (2011)

2. Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.F.: Breaking the O(n
1

2k−1) bar-
rier for information-theoretic private information retrieval. In: FOCS 2002, pp.
261–270 (2002)

250 P. Mohassel

3. Chang, Y.-C., Lu, C.-J.: Oblivious Polynomial Evaluation and Oblivious Neural
Learning. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 369–384.
Springer, Heidelberg (2001)

4. Cheon, J.H., Jarecki, S., Seo, J.H.: Multi-party privacy-preserving set intersection
with quasi-linear complexity. Cryptology ePrint Archive, Report 2010/512 (2010)

5. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
Fourier series. Mathematics of Computation, 297–301 (1965)

6. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient Robust Private
Set Intersection. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D.
(eds.) ACNS 2009. LNCS, vol. 5536, pp. 125–142. Springer, Heidelberg (2009)

7. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Secure Efficient Mul-
tiparty Computing of Multivariate Polynomials and Applications. In: Lopez, J.,
Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 130–146. Springer, Heidelberg
(2011)

8. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-Complexity Private Set Intersection
Protocols Secure in Malicious Model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 213–231. Springer, Heidelberg (2010)

9. De Cristofaro, E., Tsudik, G.: Practical Private Set Intersection Protocols with
Linear Complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159.
Springer, Heidelberg (2010)

10. Franklin, M., Mohassel, P.: Efficient and Secure Evaluation of Multivariate Polyno-
mials and Applications. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123,
pp. 236–254. Springer, Heidelberg (2010)

11. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set In-
tersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 1–19. Springer, Heidelberg (2004)

12. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword Search and Oblivious
Pseudorandom Functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–
324. Springer, Heidelberg (2005)

13. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS,
vol. 196, pp. 10–18. Springer, Heidelberg (1985)

14. von zur Gathen, J., Gerhard, J.: Modern computer algebra. Cambridge University
Press, New York (1999)

15. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178 (2009)

16. Hazay, C., Lindell, Y.: Constructions of truly practical secure protocols using stan-
dard smartcards. In: ACM CCS, pp. 491–500 (2008)

17. Hazay, C., Nissim, K.: Efficient Set Operations in the Presence of Malicious Ad-
versaries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
312–331. Springer, Heidelberg (2010)

18. Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Function with Applications
to Adaptive ot and Secure Computation of Set Intersection. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009)

19. Jarecki, S., Liu, X.: Fast Secure Computation of Set Intersection. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg
(2010)

20. Kissner, L., Song, D.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

21. Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000)

Fast Computation on Encrypted Polynomials and Applications 251

22. Mohassel, P., Franklin, M.K.: Efficient Polynomial Operations in the Shared-
Coefficient Setting. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 44–57. Springer, Heidelberg (2006)

23. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evalutation. In: STOC,
pp. 245–254 (1999)

24. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM Journal on Comput-
ing, 12–54 (2006)

25. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

26. Shamir, A.: How to share a secret. Communications of the ACM, 612–613 (1979)

A Computer Algebra Techniques

A.1 Roots of Unity

Definition 3. Let R be a ring, n ∈ N, and w ∈ R.

– w is an nth root of unity if wn = 1.
– w is a primitive nth root of unity, if it is an nth root of unity, n ∈ R is a

unit in R, and wn/t − 1 is not a zero divisor for any prime divisor t of n.

Here n has two meanings: in w it is an integer used as a counter to express
the n-fold product of w with itself, and in n ∈ R it stands for the ring element
n · 1R ∈ R, the n-fold sum of 1R with itself.

A.2 Computing the Discrete Fourier Transform

Definition 4. Let f ∈ R[x] be a polynomial of degree d < n. The Dis-
crete Fourier Transform (DFT) mapping DFTw : Rn → Rn denotes
the evaluation of the polynomial f at the powers of w, i.e., DFTw(f) =
〈f(1), f(w), f(w2), . . . , f(wn−1)〉.

The Discrete Fourier Transform can be seen as a special case of multipoint eval-
uation, at the powers of nth root of unity w. Next, we introduce the Fast Fourier
Transform, or FFT for short, that computes DFT quickly. The algorithm was
(re)discovered by Cooley and Tukey [5], and is one of the most important algo-
rithms in practice. Let n ∈ N be even, w ∈ R a primitive nth root of unity, and
f ∈ R[x] of degree less than n. To evaluate f at the powers 1, w, w2, . . . , wn−1,
we divide f by xn/2 − 1 and xn/2 + 1 with remainder:

f = q0(xn/2 − 1) + r0 = q1(xn/2 + 1) + r1

for some q0, r0, q1, r1 ∈ R[x] of degree less than n/2. Due to the special form
of the divisor polynomials, the computation of the remainders r0 and r1 can
be done by adding the upper n/2 coefficients of f to, respectively subtracting
them from, the lower n/2 coefficients. In other words, if f = F1x

n/2 + F0 with

252 P. Mohassel

deg(F0), deg(F1) < n/2, then xn/2−1 divides f−F0−F1, and hence r0 = F0+F1

and r1 = F0 − F1. If we plug in a power of w for x we have:

f(w2�) = q0(w2�)(wn� − 1) + r0(w2�) = r0(w2�) (1)

f(w2�+1) = q1(w2�+1)(wn�wn/2 + 1) + r1(w2�+1) = r1(w2�+1) (2)

for all 0 ≤ < n/2. In the above, we use the facts that wn� = 1 and wn/2 = −1,
since

0 = wn − 1 = (wn/2 − 1)(wn/2 + 1)

andwn/2−1 is not a zero divisor. It remains to evaluate r0 at the even powers of w
and r1 at the odd powers. Now, w2 is a primitive (n/2)th root of unity. It is easy
ot see that the evaluation of r0 reduces to a DFT of order n/2. The evaluation
of r1(w2�+1) = r∗1(w2�) where r∗1(x) = r1(wx), reduces to the computation of
the coefficients of r∗1 which uses n/2 multiplications by powers of w, and a DFT
of order n/2 for r∗1 . If n is a power of 2, we can proceed recursively to evaluate
r0 and r∗1 at the power of w2, which leads to the following FFT algorithm:

Fast Fourier Transform
FFTw,n(f)

Input: n = 2k ∈ N with k ∈ N, f =
∑

0≤j≤n fjx
j ∈ R[x], and the powers

w, w2, . . . , wn−1 of a primitive nth root of unity w ∈ R.

Output: DFTw,n(f) = 〈f(1), f(w), . . . , f(wn−1)〉 ∈ Rn

1. If n = 1 then return f0.
2. Compute r0 ← ∑

0≤j<n/2(fj + fj+n/2)x
j , and r∗1 ← ∑

0≤j<n/2(fj −
fj+n/2)w

jxj

3. Call the algorithms FFTw2,n/2(r0) and FFTw2,n/2(r
∗
1) to compute

r0, r
∗
1 at the powers of w2.

4. Return r0(1), r
∗
1(1), r0(w

2), r∗1(w
2), . . . , r0(w

n−2), r∗1(wn−2).

Efficiency. The above algorithm computes DFTw,n(f) using n logn additions in
R and (n/2) logn multiplications by powers of w.

A.3 Interpolation on Roots of Unity

It turns out that interpolation at powers of w is again essentially a Discrete
Fourier Transform, and can be computed efficiently using the above algorithm.
In the interpolation problem, given the vector 〈f(1), f(w), f(w2), . . . , f(wn−1)〉,

Fast Computation on Encrypted Polynomials and Applications 253

our goal is to compute the coefficients of f . Let Vw be the Vandermonde matrix:

Vw =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1

1 w w2 · · · wn−1

1 w2 w4 · · · w2(n−1)

...
...

...
. . .

...

1 wn−1 w2(n−1) · · · w(n−1)2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Then, we can compute the coefficients of f via the following matrix-vector mul-
tiplication: ⎛⎜⎜⎜⎜⎜⎝

f0

f1
...

fn

⎞⎟⎟⎟⎟⎟⎠ = (Vw)−1

⎛⎜⎜⎜⎜⎜⎝
f(1)

f(w)
...

f(wn−1)

⎞⎟⎟⎟⎟⎟⎠
The following theorem shows how we can compute inverse of Vw via DFT com-
putation.

Theorem 1 ([14]). Let R be a ring (commutative, with 1), n ∈ N, and w ∈ R
be a primitive nth root of unity. Then w−1 is a primitive nth root of unity and
(Vw)−1 = 1/nVw−1 .

Based on above theorem we can interpolate on powers of an nth root of unity
using the following algorithm:

Interpolation on powers of nth Root of Unity
Interpolw,n(V)

Input: n = 2k ∈ N with k ∈ N, a primitive nth root of unity w ∈ R and
a vector V = 〈v0, v2, . . . , vn−1〉 ∈ Rn.

Output: Polynomial f of degree n where f(wi) = vi for 0 ≤ i < n.

1. Compute w−1, w−2, . . . , w−(n−1).
2. Let the components of V represent the coefficients of a polynomial

denoted by v(x). Compute and return 1/n FFTw−1,n(v).

The efficiency of the algorithm is similar to that of the DFT algorithm. The
only additional cost is to compute powers of w−1. This requires n additional
multiplications by w.

A.4 Polynomial Multiplication via FFT

The idea for the polynomial multiplication is to compute the DFT of both poly-
nomials, multiply the components of the DFT individually to obtain the DFT of

254 P. Mohassel

the product polynomial and then interpolate to recover the product polynomial
itself.

Polynomial Multiplication via FFT
PolyMult(f, g)

Input: n = 2k ∈ N with k ∈ N, f =
∑

0≤j≤df
fjx

j and g =
∑

0≤j≤dg
fjx

j

in R[x] where df + dg < n. The algorithm also takes input powers
w, w2, . . . , wn−1 of a primitive nth root of unity w ∈ R.

1. Compute 〈f(1), . . . , f(wn−1)〉 ← FFTw,n(f).
2. Compute 〈g(1), . . . , g(wn−1)〉 ← FFTw,n(g).
3. For 0 ≤ i < n compute S(i) = f(i)g(i).
4. Let Vs = 〈S(1), . . . , S(n − 1)〉.
5. Computes S ← Interpolw,n(Vs).

AniCAP: An Animated 3D CAPTCHA Scheme Based
on Motion Parallax

Yang-Wai Chow1 and Willy Susilo2,�

1 Advanced Multimedia Research Laboratory
2 Centre for Computer and Information Security Research

School of Computer Science and Software Engineering
University of Wollongong, Australia

{caseyc,wsusilo}@uow.edu.au

Abstract. CAPTCHAs are essentially challenge-response tests that are used
to distinguish whether a user is a human or a computer. To date, numerous
CAPTCHA schemes have been proposed and deployed on various websites to
secure online services from abuse by automated programs. However, many of
these CAPTCHAs have been found to suffer from design flaws that can be ex-
ploited to break the CAPTCHA. Hence, the development of a good CAPTCHA
scheme that is both secure and human usable is an important research problem.
This paper addresses this problem by presenting AniCAP, a new animated 3D
CAPTCHA scheme that is designed to capitalize on the difference in ability be-
tween humans and computers at the task of perceiving depth through motion. In
this paper, we present the design of AniCAP, along with a formal definition of
its underlying Artificial Intelligence (AI) problem family. In addition, we analyze
the security issues and considerations concerning AniCAP.

Keywords: CAPTCHA, animation, segmentation-resistant, motion parallax.

1 Introduction

CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans
Apart) are automated tests that humans can pass but current computers programs cannot
pass [23]. These days, CAPTCHAs are a ubiquitous part of the Internet and have been
effective in deterring automated abuse of online services intended for humans [7]. A
variety of different CAPTCHA schemes have emerged over the years, many of which
have been deployed on numerous websites. Even major companies such as Google, Ya-
hoo! and Microsoft, and social networks like Facebook, employ the use of CAPTCHAs
to provide some level of security against online abuse.

However, many CAPTCHAs have been found to be insecure against automated at-
tacks. Several researchers have demonstrated that certain design flaws in a number of
CAPTCHAs can be exploited to break the CAPTCHA with a high degree of success
[17,18,9,26,28,1,3]. This has given rise to the important research problem of how to de-
velop CAPTCHAs that are secure against such attacks. The task of developing a good

� This work is supported by ARC Future Fellowship FT0991397.

D. Lin, G. Tsudik, and X. Wang (Eds.): CANS 2011, LNCS 7092, pp. 255–271, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

256 Y.-W. Chow and W. Susilo

CAPTCHA scheme is a challenging problem. This is because the resulting CAPTCHA
must be secure against attacks, yet at the same time it must be usable by humans.

The tradeoff between CAPTCHA security and usability is a hard act to balance. In
addition, it has been argued that the difficulty in creating robust CAPTCHAs is further
compounded by the fact that the current collective understanding of CAPTCHAs is
rather limited [28]. The design of a robust CAPTCHA must in someway capitalize on
the difference in ability between humans and current computer programs [7]. This raises
the question about whether or not it is possible to design a CAPTCHA that is easy for
humans but difficult for computers [8].

This paper addresses the important problem of developing a robust CAPTCHA
scheme. While there are three main categories of CAPTCHAs; namely, text-based
CAPTCHAs, audio-based CAPTCHAs and image-based CAPTCHAs, this paper fo-
cuses on text-based CAPTCHAs. In this paper, we propose the design of a new animated
3D text-based CAPTCHA scheme that attempts to exploit the gap between natural hu-
man perception and the ability of computers to emulate perception.

Previous Work. This research was motivated by our previous work on stereoscopic
3D CAPTCHAs, or STE3D-CAP [22]. In previous work, we introduced a novel
approach of presenting text-based CAPTCHA challenges in 3D by using stereo-
scopic images. The key idea behind STE3D-CAP is that humans can perceive depth
from stereoscopic images. Thus, by adding random clutter to the scene, the resulting
CAPTCHA would be hard for a computer to solve, whereas a human should easily be
able solve the CAPTCHA as the text would appear to stand out from the rest of the
scene when perceived in 3D. However, the limitation behind this approach was that it
relied on the availability of specialized stereoscopic viewing devices, which may be the
way of the future but are not ubiquitous at present. Nevertheless, our previous work
gave rise to the notion of creating CAPTCHAs based on depth perception.

Our Contributions. This paper presents a new approach to creating animated 3D CAP-
TCHA challenges based on the concept of motion parallax. Motion parallax is a monoc-
ular cue that allows an observer to perceive depth information from the relative motion
between objects in a scene. From the viewpoint of a moving observer, objects that are
closer to the observer will appear to move by larger distances as compared to objects
that are located further away from the observer. This apparent difference in the motion
of objects is one of the means by which the human visual system can perceive depth.

We dubbed our novel animated 3D CAPTCHA scheme ‘AniCAP’, and its key fea-
tures are listed as follows:

– Unlike other approaches that add random clutter to the CAPTCHA challenge in
an attempt to deter automated attacks, AniCAP, which is a text-based CAPTCHA,
uses text itself to increase the difficulty of the challenge. When viewed as a static
image, AniCAP has the appearance of overlapping text-on-text, and with no distinct
colors or borders around the characters it is not possible to solve the challenge in
that manner. However, when AniCAP is viewed from the point of view of a moving
camera, this gives rise to motion parallax. As such, it is not possible to use this
unique text-on-text approach in the absence of depth perception.

AniCAP: An Animated 3D CAPTCHA Scheme Based on Motion Parallax 257

– Hence, while most existing animated CAPTCHAs are 2D CAPTCHAs, AniCAP is
actually a 3D CAPTCHA.

– In contrast to a number of other animated CAPTCHA schemes, where the challenge
is only displayed for a certain period of time before the user has to wait for the next
animation cycle, in AniCAP the challenge is present at all times throughout the
animation cycle.

– In addition, the distortion in AniCAP constantly changes in successive frames, thus
increasing security by making it difficult for a computer to compare pixel positions
between frames.

– Furthermore, unlike the depth perception approach used in previous work [22],
this approach does not rely on availability of specialized viewing devices. Instead,
AniCAP can be implemented as an animated Graphics Interchange Format (GIF)
file, or a video file, which can easily be included on webpages and viewed with
standard computer equipment. We have provided an example of AniCAP (an actual
animated version) that is available at

http://www.uow.edu.au/∼wsusilo/CAPTCHA/CAPTCHA.html.

The correct solution to the challenge is ‘SYAK’.

This paper presents the design principles and implementation details of AniCAP. We
then formalized the notion of AniCAP and describe the hard Artificial Intelligence (AI)
problem underlying this unique CAPTCHA scheme. Additionally, we present a discus-
sion about the various security issues that had to be considered in relation to this novel
CAPTCHA technique.

2 Background

2.1 Security and Usability

In order for a CAPTCHA scheme to have any practical value, humans must be able
to correctly solve it with a high success rate, whilst the chances for a computer to
solve it must be very small. While security considerations push designers to increase
the difficulty of CAPTCHAs, usability issues force the designer to make the CAPTCHA
only as hard as they need to be and still be effective at deterring abuse. These conflicting
requirements have resulted in an ongoing arms race between CAPTCHA designers and
those who try to break them [7].

With advances in research areas like computer vision, pattern recognition and ma-
chine learning, and enhancements in Optical Character Recognition (OCR) software,
increasingly sophisticated attacks have been developed to break CAPTCHAs. On the
other hand, humans have to rely on their inherent abilities and are unlikely to get better
at solving CAPTCHAs. Hence, in order to exploit the gap in ability between human and
computers it is vital to examine work by others, which highlight the security flaws and
usability issues of various CAPTCHAs.

In terms of usability, text-based CAPTCHAs that are based on dictionary words
are intuitive and easier for humans to solve. This is because humans find familiar text

258 Y.-W. Chow and W. Susilo

easier to read as opposed to unfamiliar text [24]. At the same time, CAPTCHAs based
on language models are easier to break via dictionary attacks. Mori and Malik [17]
were successful in breaking a number of CAPTCHAs that were based on the English
language. Rather than attempting to identify individual characters, they used a holis-
tic approach of recognizing entire words at once. Similar attacks exploiting language
models have also been performed on a number of other CAPTCHAs [4,10].

To take advantage of text familiarity without using actual dictionary words, it is pos-
sible to use ‘language-like’ strings instead. Phonetic text or Markov dictionary strings
are pronounceable strings that are not words of any language. Humans perform better
at correctly identifying pronounceable strings in contrast to purely random character
strings. Nevertheless, the disadvantage of using this approach is that certain characters
(e.g. vowels) will appear at higher frequencies compared to other characters in pro-
nounceable strings [24].

In an attempt to show that machine learning techniques could be used to break
CAPTCHAs, Chellapilla and Simard [9] deliberately avoided exploiting language mod-
els and were still successful at breaking in a variety of CAPTCHAs. Solving text-based
CAPTCHAs consists of a segmentation challenge, the identification of character lo-
cations in the right order, followed by recognition challenges, recognizing individual
characters [7]. Their work demonstrated that computers could outperform humans at
the task of character recognition. Hence, this led to the important principle that if a
CAPTCHA could be segmented, it was essentially broken. As such, the state-of-the-
art in robust text-based CAPTCHA design relies on the difference in ability between
humans and computers when it comes to the task of segmentation [1].

In order to increase the difficulty of segmentation, techniques such as crowding or
connecting characters together can be employed. In addition, the use of both local and
global warping to distort characters can also make the task of segmentation harder
[25,28]. It should also be noted that CAPTCHAs with fixed length strings, with char-
acters that possibly appear at fixed locations, are easier to segment [26]. While color
and/or textures can be used for aesthetic reasons, or for making it easier to distinguish
text from background clutter, the inappropriate use of color and textures can have detri-
mental effects on both the security and usability of a CAPTCHA [27]. In general, if the
use of color or textures does not contribute to the security strength of the CAPTCHA,
it may be better not to use any.

2.2 Animated CAPTCHAs

Animated CAPTCHAs have been proposed to overcome the limitations of static CAP-
TCHAs. There are a number of existing animated text-based CAPTCHA schemes that
are currently deployed on various websites. This section presents an overview of the
main ideas behind the construction of a number of these animated CAPTCHAs.

The HELLOCAPTCHA [20] is an animated 2D CAPTCHA that is freely available
via the developers’ web service. The developers of HELLOCAPTCHA provide a num-
ber of different variants to their attractive CAPTCHA scheme. We select a characteristic
subset of these, shown in Fig. 1, for discussion in relation to the security considerations
presented in the preceding section. The examples depict frames taken at different times,
where time increases from the left frame to the right frame. In most of the examples

AniCAP: An Animated 3D CAPTCHA Scheme Based on Motion Parallax 259

shown in Fig. 1, excluding Fig. 1(e), the challenge is not always on display. Therefore,
if the users misses these specific frames, he/she will have to wait for the next animation
cycle. The variant in Fig. 1(c), has multiple correct answers because of the changing se-
quence of characters. This will increase an attacker’s chances of success. Background
text in the variant shown in Fig. 1(d) can easily be filtered out as the challenge text is
in a distinct color. In the examples shown in Fig. 1(a), Fig. 1(b), Fig. 1(c) and Fig. 1(d)
the characters are located at fixed locations, thus making it easier to predict where the
challenge will appear. All variants are fixed length character string challenges, thus a
computer would have foreknowledge about the total number of required characters. In
addition, none of the variants employ the segmentation-resistant principle or character
warping, so an OCR program can easily recognize the characters. Hence, by correlating
information between different frames, it is highly likely that a computer can break this
CAPTCHA.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 1. Examples showing different variants of HelloCaptcha [20]

The JkCaptcha, shown in Fig. 2, is an example of an animated 2D CAPTCHA that
uses a text-on-text approach. In this CAPTCHA, what the user sees is a number of per-
sistent characters over a continuously changing background. In the example shown in

260 Y.-W. Chow and W. Susilo

Fig. 2(a), the challenge is displayed using a distinct color which can easily be sepa-
rated from the background. From a usability point of view, the use of color in Fig. 2(b)
is highly distracting as it changes from frame to frame. The user sees this as continu-
ously flashing color. From a security standpoint, the persistent characters can easily be
separated from the characters that change from frame to frame in the background. Fur-
thermore, the characters in the foreground always occlude characters in the background.
Additionally, the foreground characters are somewhat larger than the background char-
acters so a simple pixel-count attack can easily be used to separate them [28]. Once
separated, an OCR program can easily recognize the characters.

(a)

(b)

Fig. 2. Examples of JkCaptcha [15]

In contrast to the previously discussed animated CAPTCHAs, NuCaptcha [19] is
a state-of-the-art animated 2D CAPTCHA, which adopts the segmentation-resistant
principle. The developers of this CAPTCHA state that tests have shown that animated
CAPTCHA puzzles are easier for humans to recognize and solve than static, scrambled
CAPTCHA images. The concept behind NuCaptcha is that when the letters are mov-
ing, a human’s mind sees the different parts and fills in the blanks; the parts that are
moving together are grouped together, and a human can clearly differentiate the letters.
Whereas computers do not have this advantage and see a smear of pixels. In addition,
unlike CAPTCHAs created in Flash which are not secure, NuCaptcha is displayed as
an H.264 MPEG-4 Video Stream that is rendered in the user’s browser [19]. An easy-
to-use example of NuCaptcha is shown in Fig. 3. The difficulty level of NuCaptcha can
be augmented by increasing the number of characters in the challenge and by crowding
the characters closer together. Fig. 3(a) to Fig. 3(c) demonstrate three frames taken at
different times. It can be seen that the text scrolls from right to left, with the challenge,
that is not always in the display, rendered in a distinct color.

In the research community, animated CAPTCHAs have been proposed by a number
of researchers. Cui et al. [11,12] decribed a sketch of an animated CAPTCHA approach
based on moving letters amidst a noisy background. However, this approach is hard
for humans to use. An animated CAPTCHA based on the idea of presenting distorted
text on the face of a deforming surface was proposed by Fischer and Herfet [14]. An-
other proposed animated CAPTCHA with images of moving objects was suggested by
Athanasopoulos and Antonatos [2]. However, none of the above proposed methods are
related to depth perception in animated images, nor do they analyze the security of their
approaches.

AniCAP: An Animated 3D CAPTCHA Scheme Based on Motion Parallax 261

(a) (b) (c)

Fig. 3. Example of NuCaptcha [19]

2.3 CAPTCHA: Formal Definition and Notation

The term ‘CAPTCHA’ was introduced by von Ahn et al. [23]. In their seminal work,
they describe CAPTCHAs as hard Artificial Intelligence (AI) problems that can be ex-
ploited for security purposes. The definitions and notation provided below are adapted
and simplified from their work.

A CAPTCHA is a test V where most humans have success close to 1, while it is hard
to write a computer program that has overwhelming probability of success over V . This
means that any program that has a high probability of success over V can be used to
solve a hard AI problem. Let C be a probability distribution. If P (·) is a probabilistic
program, let Pr(·) denote the deterministic program that results when P uses random
coins r.

Definition 1. [23] A test V is said to be (α, β)-human executable if at least an α portion
of the human population has success probability greater than β over V .

Definition 2. [23] An AI problem is a triple P = (S,D, f) where S is a set of problem
instances, D is a probability distribution over S and f : S → {0, 1}∗ answers the
problem instances. Let δ ∈ (0, 1]. For α > 0 fraction of the humans H , we require
Prx←D [H(x) = f(x)] > δ.

Definition 3. [23] An AI problem P is said to be (ψ, τ)-solved if there exists a program
A that runs in time for at most τ on any input from S, such that

Prx←D,r [Ar(x) = f(x)] � ψ.

Definition 4. [23] An (α, β, η)-CAPTCHA is a test V that is (α, β)-human executable
and if there exists B that has success probability greater than η over V to solve a (ψ, τ)-
hard AI problem P , then B is a (ψ, τ) solution to P .

Definition 5. [23] An (α, β, η)-CAPTCHA is secure iff there exists no program B such
that

Prx←D,r [Br(x) = f(x)] � η
for the underlying AI problem P .

262 Y.-W. Chow and W. Susilo

3 AniCAP

3.1 Design and Implementation

A CAPTCHA’s robustness is determined by the cumulative effects of its design choices
[7]. AniCAP is an animated 3D CAPTCHA that was designed to overcome security
flaws highlighted in other text-based CAPTCHA schemes. The main concept underly-
ing AniCAP is that of motion parallax. This capitalizes on the inherent human ability
to perceive depth from the apparent difference in motion of objects located at different
distances from a moving viewpoint.

A number of approaches were employed to make AniCAP segmentation-resistant.
Firstly, in AniCAP the main characters are rendered over background characters, and
characters are overlapped and crowded together. To give rise to motion parallax, the
foreground and background characters occupy different ranges of spatial depths. Sec-
ondly, some sections of the characters are rendered with a certain degree of translucency
to prevent foreground characters from completely occluding background characters.
This creates a somewhat ‘see through’ effect at certain places by blending the over-
lapping foreground and background characters together. Thirdly, all characters were
deliberately rendered using the same font and color, with no distinct borders around
the characters. Collectively, these factors make it difficult for a computer to segment
the characters, whereas a human can distinguish the main characters in the foreground
from the background characters due to motion parallax. This is because the foreground
characters will appear to move at different rates compared to the background characters.

Since AniCAP is a 3D CAPTCHA, each 3D character can have random 3D trans-
formations applied to it. For instance, rotations are in all three dimensions and are
not merely restricted to the standard clockwise and counterclockwise rotations of 2D
CAPTCHAs. When a 3D scene is viewed using perspective projection, objects that are
closer to the viewpoint will appear larger than objects that are further away; a concept
known as perspective foreshortening. This would mean that to ascertain the foreground
characters, one simply had to identify the larger characters. To prevent this, we scale
each character so that they all appear to have similar sizes, and AniCAP is made up of
random character strings to prevent dictionary attacks.

In addition, characters are all rendered with local and global distortion to deter char-
acter recognition and pixel-count attacks. Local distortion refers to distortion applied to
individual characters, whereas global distortion is distortion that is applied to the whole
scene. To deter computer vision techniques like 3D scene reconstruction and optical
flow (discussed in section 4), the global distortion appears to change from frame to
frame. However, the change from frame to frame is not completely random, otherwise
this would significantly impede human usability. Instead, the global distortion is based
on the pixel’s location in the frame. What the user sees is like a moving scene viewed
through ‘frosted glass’. Despite the distortion, when the moving scene is viewed as a
whole, a human can perceive the characters because the human mind will group the
fragments together as explained by the Gestalt principles of perceptual organization.

Examples of static AniCAP frames are shown in Fig. 4. Note that the same AniCAP
challenge is used throughout this paper so that the reader can compare differences be-
tween the AniCAP images provided in this paper. A frame without any distortion is

AniCAP: An Animated 3D CAPTCHA Scheme Based on Motion Parallax 263

shown in Fig. 4(a), whereas a frame with local distortion only is provided in Fig. 4(b),
Fig. 4(c) shows the same frame with both local and global distortion and Fig. 4(d) de-
picts the same frame with different distortion parameters. Fig. 5 shows a number of
animation frames1. It can be seen from the static frames themselves that one cannot
differentiate the foreground characters from the background characters.

(a) No distortion (b) Local distortion only

(c) Local and global distortion (d) Different distortion parameters

Fig. 4. AniCAP distortion

Fig. 5. Example AniCAP animation frames

The current implementation of AniCAP consists of 3 rows, with a variable number
of characters per row. Characters in the rows are made to overlap in the vertical direc-
tion and the characters in the columns are crowded together in the horizontal direction,
at times overlapping or joining together. The foreground characters consist of a certain
number of characters, that are located in sequence somewhere in the middle row. The
challenge is deliberately placed at random locations in the middle to as it is conceivable
that a computer may be able to identify the shape of some non-overlapping characters
at the edges. The reason why they are in sequence is to help human usability, because it
is more difficult for a human to identify individual characters at random locations. We
can adjust the difficulty level of AniCAP by varying the number of characters in the
challenge, as well as the degree of character crowding and overlapping. The number

1 Please refer to http://www.uow.edu.au/˜wsusilo/CAPTCHA/CAPTCHA.html
for the animated AniCAP example.

http://www.uow.edu.au/~wsusilo/CAPTCHA/CAPTCHA.html

264 Y.-W. Chow and W. Susilo

of background characters, crowding and overlapping will also have to vary proportion-
ately. Additionally, the amount of distortion can also be varied.

In order to facilitate motion parallax, the choice of camera movement is important.
The highest degree of motion parallax occurs when camera movement is perpendicular
to the direction that the text is facing. Translating the camera closer or further away
from the 3D text will also create motion parallax, as objects closer to the viewpoint
will increase, or decrease, in size at higher rates as opposed to objects further away.
However, motion parallax due to size changes are not as apparent compared to changes
in horizontal and vertical movement. In addition, the camera can be rotated to view the
3D text from different angles, and it can also be made to focus on different sections
of the text. In the current implementation, the camera’s movement and rotation are
randomized to incorporate all of the above movements at varying degrees. Depending
of the camera’s movement, the motion of the foreground characters can either be faster
or slower than the background characters.

One of the drawbacks of AniCAP is that it may not immediately be obvious what
the user is supposed to look for to solve the challenge. However, once this is described
to the user, this should be obvious.

3.2 New AI Problem Family

Here we introduce a family of AI problems that is used to build AniCAP. Let us con-
sider two layers of space, namely P1 and P2. Layer P2 consists of t sub-layers, namely
{P21,P22, · · · ,P2t}. Each layer (or sub-layer) has a transparent background. The dis-
tance between P1 and P2 is denoted by δ1, while the distance between P2i and P2(i+1)

is δ2. We require that δ1 be sufficiently large to facilitate motion parallax, and typically
δ2 < δ1.

Let I2d be a distribution on characters, I3d be a distribution on 3D characters. Let
Imov be a distribution of animation frames. Let Δ : I2d → I3d be a lookup function
that maps a character in I2d and outputs a 3D character in I3d with random 3D transfor-
mations. Let ΩD be a distribution on local distortion factors. Let D : I3d ×ΩD → I3d

be a distribution of local distortion functions. Let S : I3d → I3d be a distribu-
tion of scaling functions. Let ΩD̃ be a distribution on global distortion factors. Let
D̃ : I3d × ΩD̃ → I3d be a distribution of global distortion functions. The distortion
function is a function that accepts a 3D image and a distortion factor ∈ ΩD and outputs
a distorted 3D image. Let |A| denote the cardinality of A.

When a 3D character i ∈ I3d appears in P1 (orP2j , resp), we denote it as i � P1 (or i
� P2j , resp). The camera C views the stacks of layers of space from degree θ, whereP1

is the top layer, followed by all the P2j , where j ∈ {1, · · · , t}. This is denoted as C (θ

{P1,P21, · · · ,P2j}. The movement of the camera C is recorded as ViewC∈ Imov. Let
P1||P21|| · · · ||P2t be the stacks of layers of space that C views. For clarify, for the rest
of this paper, we will use Roman boldface characters to denote elements of I3d, while
Sans Serif characters to denote elements of I2d.

Problem Family (PAniCAP)
Assume that the CAPTCHA challenge length is . Let φ : Z → {1, · · · , } denote a
function that maps any integer to the set {1, · · · , }. Let rand(c) be the pseudorandom
generator function with the seed c. Consider the following experiment.

AniCAP: An Animated 3D CAPTCHA Scheme Based on Motion Parallax 265

– Stage 1. 3D Scene Generation
1. For i := 1 to do

(a) Randomly select j ∈ I2d.
(b) Compute j← Δ(j).
(c) Select a local distortion function d← D.
(d) Compute k← d(j, ω), where ω ∈ ΩD is selected randomly.
(e) k � P1.

2. For i := 1 to t do
(a) For k := 1 to φ(rand(time)) do

i. Randomly select j ∈ I2d.
ii. Select the scaling function s ∈ S.

iii. Compute j← s(Δ(j)).
iv. Select a local distortion function d← D.
v. Compute k← d(j, ω), where ω ∈ ΩD is selected randomly.

vi. k � P2i.
– Stage 2. Recording Animation

3. Select a global distortion function d← D̃.
4. For θ := start to end do

(a) Compute ψ ← d(C (θ (P1||P21|| · · · ||P2t) , ω), where ω ∈ ΩD̃ is se-
lected randomly.

(b) ViewC:= ViewC∪{ψ}.

The output of the experiment is ViewC∈ Imov, which is an animated CAPTCHA.
PAniCAP is to write a program that takes ViewC∈ Imov, assuming the program

has precise knowledge of C and I2d, and outputs characters of j ∈ I2d.

Problem Description: PAniCAP
Essentially, a problem instance in PAniCAP comprises two stages, namely 3D scene
generation and recording the animation frames. The first stage, denoted as S1, accepts
the length of the CAPTCHA challenge, , and outputs a 3D scene, im. im consists of
t+ 1 layers. Formally, this is defined as

im← S1().

The second stage, denoted as S2, accepts a 3D scene, im, and a range of movements
for the camera C, from start to end, which defines the camera motion, and outputs the
sequence of camera recordings ViewC∈ Imov. Formally, this is defined as

ViewC ← S2(im, start, end).

Hard Problem in PAniCAP
We believe that PAniCAP contains a hard problem. Given the distribution of C and
I2d, for any program B,

Pr∀B,C,I2d
(j� ← ((im← S1()) , (ViewC ← S2(im, start, end)))) < η,

where j ∈ I2d, and is the length of the CAPTCHA challenge. Based on this hard
problem, we construct a secure (α, β, η)-CAPTCHA.

266 Y.-W. Chow and W. Susilo

Theorem 1. A secure (α, β, η)-CAPTCHA can be constructed from PAniCAP as de-
fined above.

Proof. Based on the problem family PAniCAP, we construct a secure (α, β, η)-
CAPTCHA. We show the proof of this statement in two stages, namely showing that
the instance of PAniCAP is (α, β)-human executable. Then, we need to show that
(α, β, η)-CAPTCHA is hard for a computer to solve.

Given PAniCAP, humans receive an instance of ViewC ← S2(S1(), start, end).
We note that the only viewable contents from this instance is ViewC . When the start
and end are selected to provide motion parallax, then humans can easily output j�, which
is the characters in P1. Hence, the instance of PAniCAP is (α, β)-human executable.

However, given the instance of PAniCAP, computers cannot output j�. Note that by
only analyzing ViewC , computers need to use computer vision or other techniques
to recognize the characters. Since machines cannot view the 3D contents, hence this
problem is hard for computers. This justifies that the instance of PAniCAP is (α, β, η)
hard, as claimed. �

4 Security Considerations for AniCAP

In this section, we analyze the security of AniCAP by considering several different
attack scenarios.

4.1 Image Processing and Computer Vision Attacks

In image processing and computer vision attacks, the adversary A is provided with
an AniCAP challenge, ViewC. The task of the adversary is to output the CAPTCHA
solution, j�. In other words, A would like to extract j� from ViewC. In order to achieve
this goal, A can launch attacks based on a number of different strategies. These are
described as follows.

Edge Detection
The aim of the edge detection technique is to find the edges of the objects in the given
image. To perform this attack,A will first have to decompose ViewC to its constituting
frames. For clarity, we denote the frames contained in ViewC as

ViewC := {ViewC1, · · · ,ViewCn}

where without losing generality, we assume that there are n frames in ViewC. Note
that ViewCi, i ∈ {1, · · · , n} is a 2D image. Then, A will conduct edge detection on
these images which include all the foreground and background characters as well as the
distortion embedded in the image. Since the global distortion, d ∈ D̃, changes from
frame to frame, ViewCi, there is little correlation between the resulting edge detection
images. Fig. 6 depicts an example of a resulting Canny edge detection image. As can
be seen this does not help in solving the challenge.

AniCAP: An Animated 3D CAPTCHA Scheme Based on Motion Parallax 267

Fig. 6. Example of an edge detection image

Image Difference
This attack can be conducted in a manner similar to that of the edge detection technique.
First, the frames in ViewC will have to be decomposed. Hence, we obtain

ViewC := {ViewC1, · · · ,ViewCn}

as defined earlier. Now, A will compute the difference between {ViewCi} and
{ViewCi+j}, where i = {1, · · · , n− 1}, j = {1, · · · , n− i}. The results of difference
images, obtained between two views, can be further analyzed by using other techniques,
such as edge detection techniques. Nevertheless, this still does not yield much useful
information for the task of segmentation, as there are too many overlapping characters.
Fig. 7(a) shows an example of a resulting difference image between successive frames,
and Fig. 7(b) shows the edge detection image after edge detection is performed on Fig.
7(a). It can be seen that no useful information can be obtained to solve the challenge.

(a) (b)

Fig. 7. Difference image and edge detection image

3D Reconstruction
The purpose of this attack is to attempt to reconstruct an approximate 3D scene from
ViewC in order to separate the foreground characters from the background characters
in three dimensional space. Formally,A would like to solve

j� ← (ViewC ← S2(S1(), start, end))

A fundamental problem in 3D reconstruction is assigning correspondence between
points in two or more images that are projections of the same point in three dimensional
space. Most automated 3D reconstruction approaches use pixels or object silhouettes to

268 Y.-W. Chow and W. Susilo

specify correspondence [29]. Factors that impede correspondence between frames in-
clude noise, textureless regions, non-rigid objects, etc. as this creates ambiguity as to
whether or not the selected point is actually the same point in other frames. Current
3D reconstruction algorithms are meant for images or image sequences typically cap-
tured from real world scenarios [16], which do no continuously distort from frame to
frame. AniCAP is designed with global distortion that changes from frame to frame,
in order to inhibit correspondence required for 3D reconstruction. In addition, the dis-
tortion, translucency and camera parameters are randomized, so A does not have prior
knowledge about these.

Optical Flow
Optical flow in general refers to determining the apparent motion of objects in a scene
based on the relative motion of the observer. Some definitions vary somewhat and dif-
ferentiate between motion field estimation and apparent motion estimation [6]. Never-
theless, these are related techniques that may be used in an attempt to break AniCAP.
The basic idea is similar to that of 3D reconstruction techniques in that certain points in
ViewC have to be selected and tracked between successive frames. As with 3D recon-
struction techniques, many current optical flow methods fail when it comes to handling
hard problem that involve scenarios with noise, textureless regions, non-rigid objects,
etc. [5]. This is again due to ambiguity in the selected points that have to be tracked
from frame to frame [21]. AniCAP is designed to facilitate this ambiguity via random-
ized distortion, translucency and camera parameters, as well as textureless regions with
no distinct colors or borders distinguishing the characters.

4.2 Brute Force Attacks

To attack AniCAP, A can conduct a straightforward attack by adopting the brute force
strategy. In this type of attack, A will provide a random solution to the challenge un-
til one succeeds. We note that the length of the CAPTCHA challenge in AniCAP is
. Suppose there are 26 possible characters which comprise of uppercase alphabetic
characters, then the chance of a successful brute force attack is 1

26� , which is negligi-
ble. Additionally, in practice CAPTCHAs are usually equipped with techniques such as
token bucket algorithms to combat denial-of-service attacks [13].

4.3 Machine Learning Attacks

The aim of this attack is to provide supervised training data to the adversary,A, in order
to equip A with sufficient knowledge that can be used to attack the system. Intuitively,
a training set of AniCAP challenges will have to be provided with their respective
solutions, υ’s. Then, after the training is conducted, A will be given a fresh AniCAP
challenge, in which A has to solve using the knowledge from its database. This attack
is inspired by the supervised learning approach in machine learning and the notion of
known plaintext attacks in cryptographic literature.

The outline of a practical situation adopting this attack is as follows. Consider a
‘smart’ attacker program being trained by a human. The human is presented with sev-
eral AniCAP challenges, and the human can answer these challenges correctly. This
information supplied to the attacker program as supervised training data and will be

AniCAP: An Animated 3D CAPTCHA Scheme Based on Motion Parallax 269

conducted during the learning stage. Once the learning stage is over, the program will
be presented with a fresh AniCAP challenge. This time, the attacker program will need
to answer the challenge itself, given the knowledge that it has gathered during the learn-
ing stage. The second stage is known as the attacking stage. The attack is considered
successful if the attacker program can answer the fresh AniCAP challenge correctly.
Formally, this attack is defined as a game among the challenger C, an attacker A and a
humanH as follows.

Stage 1. Learning Stage

1. Define L := ∅.
2. Repeat this process q times: For all CAPTCHA challenges given by C (i.e.

ViewCi), the humanH will perform the following.
(a) Output the correct answer υi.
(b) Add this knowledge to L, i.e. L := L ∪ {ViewCi, υi}.

3. Output L.

Stage 2. Attacking Stage
At this stage the attacker A is equipped with L = ∀i(ViewCi, υi), where |L| = q.

1. C outputs a fresh CAPTCHA challenge ViewC
∗ �⊂ ∀i{ViewCi}, where

∀i{ViewCi} ∈ L.
2. A needs to answer with the correct υ∗.

Note that the required ViewC
∗ in the attacking stage is ViewC

∗ �⊂ ∀i{ViewCi}, where
∀i{ViewCi} ∈ L.

Definition 1. A CAPTCHA is secure against machine learning attacks if no adversary
can win the above game with a probability that is non-negligibly greater than (1

n)�,
where is the length of the CAPTCHA challenge, and n represents the number of char-
acters used in the CAPTCHA challenge.

Theorem 2. AniCAP is secure against machine learning attacks.

Proof (sketch). During the learning stage,A can form a data set L := {ViewCi, υi}, for
i = 1, · · · , n. During the attacking stage, A will be provided with a AniCAP challenge
ViewC

∗. Note that ViewC
∗ �⊂ ∀i{ViewCi}, where ∀i{ViewCi} ∈ L. Therefore,

Pr (ViewC
∗|{ViewCi, υi}, where L := {ViewCi, υi}) = Pr(ViewC

∗).

Hence, the knowledge on L clearly does not help A to solve the fresh AniCAP chal-
lenge, ViewC

∗. �

5 Conclusion

This paper presents AniCAP, a novel text-based animated 3D CAPTCHA. AniCAP is
built on the underlying concept that humans can perceive depth through motion paral-
lax, thus capitalizing on the difference in ability between humans and computers at the

270 Y.-W. Chow and W. Susilo

task of perceiving depth through motion. Foreground characters and background char-
acters in AniCAP are placed at different depths in the 3D scene. Thus, from the point of
view of a moving camera, humans can distinguish the main characters in the foreground
from the background characters, because the foreground characters will appear to move
at different rates compared to the background characters.

AniCAP is designed to be segmentation-resistant by adopting a number of features
such as the overlapping and crowding of characters together. Furthermore, by deliber-
ately adopting a distortion approach that changes from frame to frame, this will prevent
techniques that attempt to correlate or track points between frames, from succeeding.
Other features employed in the design of AniCAP to deter automated attacks include
randomized distortion, translucency and camera parameters, as well as textureless re-
gions with no distinct colors or borders to distinguish between characters.

References

1. Ahmad, A.S.E., Yan, J., Marshall, L.: The Robustness of a New CAPTCHA. In: Costa, M.,
Kirda, E. (eds.) EUROSEC, pp. 36–41. ACM (2010)

2. Athanasopoulos, E., Antonatos, S.: Enhanced CAPTCHAS: Using Animation to Tell Hu-
mans and Computers Apart. In: Leitold, H., Markatos, E.P. (eds.) CMS 2006. LNCS,
vol. 4237, pp. 97–108. Springer, Heidelberg (2006)

3. Baecher, P., Fischlin, M., Gordon, L., Langenberg, R., Lützow, M., Schröder, D.: Captchas:
The good, the bad, and the ugly. In: Freiling, F.C. (ed.) Sicherheit. LNI, vol. 170, pp. 353–
365. GI (2010)

4. Baird, H.S., Coates, A.L., Fateman, R.J.: PessimalPrint: a Reverse Turing Test. IJDAR 5(2-
3), 158–163 (2003)

5. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and
evaluation methodology for optical flow. In: ICCV, pp. 1–8. IEEE (2007)

6. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and
evaluation methodology for optical flow. International Journal of Computer Vision 92(1),
1–31 (2011)

7. Chellapilla, K., Larson, K., Simard, P.Y., Czerwinski, M.: Building Segmentation Based
Human-Friendly Human Interaction Proofs (HIPs). In: Baird, H.S., Lopresti, D.P. (eds.) HIP
2005. LNCS, vol. 3517, pp. 1–26. Springer, Heidelberg (2005)

8. Chellapilla, K., Larson, K., Simard, P.Y., Czerwinski, M.: Designing Human Friendly Human
Interaction Proofs (HIPs). In: van der Veer, G.C., Gale, C. (eds.) CHI, pp. 711–720. ACM
(2005)

9. Chellapilla, K., Simard, P.Y.: Using Machine Learning to Break Visual Human Interaction
Proofs (HIPs). In: NIPS (2004)

10. Chew, M., Baird, H.S.: BaffleText: a Human Interactive Proof. In: Kanungo, T., Smith,
E.H.B., Hu, J., Kantor, P.B. (eds.) DRR. SPIE Proceedings, vol. 5010, pp. 305–316. SPIE
(2003)

11. Cui, J.-S., Mei, J.-T., Wang, X., Zhang, D., Zhang, W.-Z.: A captcha implementation based
on 3d animation. In: Proceedings of the 2009 International Conference on Multimedia Infor-
mation Networking and Security, MINES 2009, vol. 2, pp. 179–182. IEEE Computer Society,
Washington, DC, USA (2009)

12. Cui, J.-S., Mei, J.-T., Zhang, W.-Z., Wang, X., Zhang, D.: A captcha implementation based
on moving objects recognition problem. In: ICEE, pp. 1277–1280. IEEE (2010)

AniCAP: An Animated 3D CAPTCHA Scheme Based on Motion Parallax 271

13. Elson, J., Douceur, J.R., Howell, J., Saul, J.: Asirra: a CAPTCHA that Exploits Interest-
Aligned Manual Image Categorization. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F.
(eds.) ACM Conference on Computer and Communications Security, pp. 366–374. ACM
(2007)

14. Fischer, I., Herfet, T.: Visual captchas for document authentication. In: 8th IEEE Interna-
tional Workshop on Multimedia Signal Processing (MMSP 2006), pp. 471–474 (2006)

15. Kessels, J.C.: JkCaptcha, http://kessels.com/captcha/
16. Lu, Y., Zhang, J.Z., Wu, Q.M.J., Li, Z.-N.: A survey of motion-parallax-based 3-d recon-

struction algorithms. IEEE Transactions on Systems, Man, and Cybernetics 34, 532–548
(2004)

17. Mori, G., Malik, J.: Recognizing Objects in Adversarial Clutter: Breaking a Visual
CAPTCHA. In: CVPR (1), pp. 134–144 (2003)

18. Moy, G., Jones, N., Harkless, C., Potter, R.: Distortion Estimation Techniques in Solving
Visual CAPTCHAs. In: CVPR (2), pp. 23–28 (2004)

19. NuCaptcha Inc. NuCaptcha, http://www.nucaptcha.com/
20. Program Produkt. HELLOCAPTCHA, http://www.hellocaptcha.com/
21. Shi, J., Tomasi, C.: Good features to track. Technical report, Ithaca, NY, USA (1993)
22. Susilo, W., Chow, Y.-W., Zhou, H.-Y.: Ste3d-cap: Stereoscopic 3d Captcha. In: Heng, S.-

H., Wright, R.N., Goi, B.-M. (eds.) CANS 2010. LNCS, vol. 6467, pp. 221–240. Springer,
Heidelberg (2010)

23. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: Using Hard AI Problems for
Security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 294–311. Springer,
Heidelberg (2003)

24. Wang, S.-Y., Baird, H.S., Bentley, J.L.: CAPTCHA Challenge Tradeoffs: Familiarity of
Strings versus Degradation of Images. In: ICPR (3), pp. 164–167. IEEE Computer Society
(2006)

25. Yan, J., Ahmad, A.S.E.: Breaking Visual CAPTCHAs with Naive Pattern Recognition Algo-
rithms. In: ACSAC, pp. 279–291. IEEE Computer Society (2007)

26. Yan, J., Ahmad, A.S.E.: A Low-Cost Attack on a Microsoft CAPTCHA. In: Ning, P., Syver-
son, P.F., Jha, S. (eds.) ACM Conference on Computer and Communications Security, pp.
543–554. ACM (2008)

27. Yan, J., Ahmad, A.S.E.: Usability of CAPTCHAs or Usability Issues in CAPTCHA Design.
In: Cranor, L.F. (ed.) SOUPS. ACM International Conference Proceeding Series, pp. 44–52.
ACM (2008)

28. Yan, J., Ahmad, A.S.E.: CAPTCHA Security: A Case Study. IEEE Security & Privacy 7(4),
22–28 (2009)

29. Ziegler, R., Matusik, W., Pfister, H., McMillan, L.: 3d reconstruction using labeled
image regions. In: Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium
on Geometry processing, SGP 2003, Aire-la-Ville, Switzerland, pp. 248–259. Eurographics
Association (2003)

http://kessels.com/captcha/
http://www.nucaptcha.com/
http://www.hellocaptcha.com/

Towards Attribute Revocation in Key-Policy

Attribute Based Encryption

Pengpian Wang1,2, Dengguo Feng1,2, and Liwu Zhang1,2

1 State Key Laboratory of Information Security,
Institute of Software, The Chinese Academy of Sciences, Beijing, China

2 National Engineering Research Center of Information Security, Beijing, China
{wangpengpian,feng,zlw}@is.iscas.ac.cn

Abstract. Attribute revocation is important to the attribute-based en-
cryption (ABE). The existing ABE schemes supporting revocation mainly
focus on the revocation of the user’s identity, which could only revoke
the user’s whole attributes by revoking the user’s identity. In some cases,
we wish to revoke one attribute of a user instead of the whole attributes
issued to him without affecting any other user’s private key, such that
the user still can use his private key to decrypt as long as the unrevoked
attributes of him satisfy the decryption condition. In this paper, we pro-
pose two KP-ABE schemes realizing the attribute revocation under the
direct revocation model.

Keywords: Attribute Revocation, Attribute Based Encryption, Key-
Policy, Access Structure, Access Tree.

1 Introduction

As a generalization of IBE, the concept of attribute-based encryption (ABE)
is first proposed by Sahai[1] in the context of fuzzy IBE. In ABE, each user
possesses an attribute set which is associated with a private key issued by PKG
(Private Key Generator), the sender should select an attribute set to encrypt
the message, the receiver could decrypt the ciphertext correctly if and only if the
private key he has satisfies the decryption condition which is referred to as policy.
ABE schemes can be categorized by the place where the policy is embedded:
whether the policy is embedded in the private key or in the ciphertext. These
are called KP-ABE (Key Policy-Attribute Based Encryption) [3,4] and CP-ABE
(Ciphertext Policy-Attribute Based Encryption) [5,6] scheme respectively. ABE
schemes can also be categorized by the size of the attribute universe that such
a scheme can deal with: whether it is of polynomial or super-polynomial size.
These are called small and large universe scheme respectively[18].

ABE enables an access control mechanism over encrypted data by using the
policy, which is very useful in secure cloud storage. In cloud storage, the resource
owner stores the data in the cloud, and wants to control the accesses to the
resource. Though the resource owner can give the access control policies to the
cloud provider, a malicious cloud provider may return the resource to a request

D. Lin, G. Tsudik, and X. Wang (Eds.): CANS 2011, LNCS 7092, pp. 272–291, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Towards Attribute Revocation in Key-Policy Attribute Based Encryption 273

without evaluating the access control policies, even more, the cloud provider
may leak the sensitive data of the resource owner. By utilizing the ABE, we can
resolve this problem, but another problem arises, that is, attribute revocation.

It is common to revoke an attribute of a user in traditional access control
system which uses the reference monitor, but it is hard in ABE, the key point is
how to revoke an attribute of a user without affecting any other user’s private
key. To the best of our knowledge, there exists no ABE scheme that meets
this requirement. In this paper, we construct two KP-ABE schemes realizing
attribute revocation to resolve this problem.

Related Work. Most of the ABE schemes don’t consider the issue of attribute
revocation specially, and use the same method for identity revocation of IBE
schemes to realize the attribute revocation.

There are mainly two methods for identity revocation of IBE schemes: one
is to use a trusted third party (TTP) that helps the user to decrypt, such as
[7,8], the user’s private key is divided into two parts, one is hold by the user, the
other (not known by the user) is kept by TTP, if a user is revoked, the TTP will
not help him to decrypt; The other method is to update the user’s private key
periodically, such as [9,10], the user’s private key actually consists of two parts,
one part contains the user’s identity and is kept secretly by the user, the other
part contains the time information and is published periodically by the PKG.
When encrypting, The sender will use a user’s identity and a time attribute to
encrypt the message, if the receiver’s identity is revoked at that time, since the
PKG will not update the private key that contains the specific time attribute for
the receiver, the receiver will not decrypt the ciphertext correctly. Though each
ABE scheme could use these two methods to realize the attribute revocation,
the TTP and PKG will be the bottleneck of the system.

In the literature [11,12], Attrapadung defines two revocation models explicitly:
one is indirect revocation model, in this model, the user’s identity (or attribute)
is revoked by affecting the user’s private key as mentioned above, when encrypt-
ing a message, the sender doesn’t care the revocation list; the other is direct
revocation model, in this model, the user’s identity (or attribute) is revoked by
embedding the revocation list in the ciphertext without affecting any user’s pri-
vate key. In some cases, for example the broadcast encryption [13], it is more
efficient to use the direct revocation model, and Attrapadung [11] constructed
four schemes supporting user’s identity revocation under the direct revoca-
tion model(two KP-ABE schemes and two CP-ABE schemes). Actually, before
the work of Attrapadung, there existed a few schemes that realized identity (or
attribute) revocation under direct revocation model: Boneh[13] constructed a re-
vocable broadcast IBE scheme; Staddon [14] gave a KP-ABE scheme supporting
identity revocation, but it required that the size of attribute set used for en-
cryption must be the half size of the attribute universe N. After Attrapadung’s
work, Lewko [15] proposed two IBE schemes supporting identity revocation un-
der direct revocation model, one is very efficient with small private keys, the
other is less efficient but the security is based on the standard DBDH assump-
tion(See Appendix A). In addition, Yu [16] proposed a revocation system(in ABE

274 P. Wang, D. Feng, and L. Zhang

setting) that is quite different from the existing ones, in their scheme, the at-
tribute is revoked by changing the public parameters and any other user’s private
key simultaneously, so the cost of the attribute revocation is big.

We note that, for most of the existing ABE schemes supporting revocation,
the issue of revocation is focused on the user’s identity rather than the attribute.
When the user’s identity is revoked, each of the attributes he has will be revoked,
too. In some cases, we wish to revoke one of the user’s attributes instead of his
identity(represents the whole attributes issued to him) under the direct revoca-
tion model, that is, the user can still use his private key to decrypt as long as
the unrevoked attributes of him satisfy the decryption condition.

Our Contribution. We formalize the notion of attribute revocation for KP-
ABE under the direct revocation model and present two concrete constructions
for it, one is a small universe scheme and the other is a large universe scheme.

Our constructions is inspired by the schemes proposed by Attrapadung [11],
which are based on the KP-ABE scheme proposed by Goyal [3] and broadcast
encryption scheme proposed by Boneh [13]. In our schemes, each user has two
same access trees, but each of these two trees is associated with a different
private key. When giving a ciphertext encrypted under an attribute set with
a revocation list of an attribute which belongs to the attribute set: if the user
is not in the revocation list, he could use the first access tree to decrypt as
long as the attribute set satisfies the access tree; if the user is in the revocation
list, which means that one attribute of him is revoked, then he could only use
the second access tree to decrypt as long as the attribute set excluding the
revoked attribute satisfies the access tree. Though our schemes can only revoke
one attribute per encryption, which is not desirable in practice, we believe it is
the first step to realize the fine-grained attribute revocation, that is, the sender
can revoke arbitrary number of attributes used for encryption.

Organization. The rest of the paper is organized as follows. In Section 2 we
provide the relevant background on bilinear groups, access structure, access tree,
lagrange coefficient and state our complexity assumption. Then we give the def-
inition of KP-ABE that supports attribute revocation and the security model in
Section 3. In Section 4 we give two concrete constructions and analysis the effi-
ciency of those two schemes, then prove the security under the selective security
model defined in Section 3. In Section 4, we briefly discuss how to achieve CCA-
security and extend the Goyal’s scheme [3] to support fine-grained attribute
revocation. Finally, we conclude in Section 6.

2 Background

2.1 Bilinear Groups

We briefly review the necessary facts about bilinear map and bilinear map
groups.

Towards Attribute Revocation in Key-Policy Attribute Based Encryption 275

1. G1 and G2 are two (multiplicative) cyclic groups of prime order p;
2. g is a generator of G1;
3. e : G1 ×G2 → G2 is a bilinear map.

Let G1 and G2 be two groups as above. A bilinear map is a map e : G1×G2 → G2

with the following properties:

1. Bilinear: for all u, v ∈ G1 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab;
2. Non-degenerate: e(g, g) �= 1.

We say that G1 is a bilinear group if the group action in G1 can be computed
efficiently and there exists a group G2 and an efficiently computable bilinear
map e : G1 ×G2 → G2 as above. Note that, e(,) is symmetric since e(ga, gb) =
e(g, g)ab = e(gb, ga).

2.2 Access Structure and Access Tree

Definition 1. (Access Structure [17]) Let {P1, ..., Pn} be a set of paries. A col-
lection A ⊆ 2{P1,...,Pn} is monotone if ∀B,C :, if B ∈ A and B ⊆ C then C ∈ A.
An access structure (respectively, monotonic access structure) is a collection (re-
spectively, monotone collection) A of non-empty subsets of {P1, P2..., P2}, ie.,
A ⊆ 2{P1,...,Pn}\{∅}. The sets in A are called the authorized sets, and the sets
not in A are called the unauthorized sets.

Currently, there are mainly two methods to describe the access structure, one
is the linear secret sharing schemes (LSSS)[17], the other is the access tree. We
use the access tree to build our scheme for the reason that, in general, it is more
practical to use access tree than to use LSSS. We briefly review the essential
facts about access tree.

Access Tree. As mentioned above, an access tree represents an access structure.
Each node represents a threshold, for the node x in the tree, denote nx to be the
number of its children, vx to be the threshold value, we have 0 < vx ≤ nx, when
vx = 1, the threshold gate is an OR gate, when vx = nx, the threshold gate is
an AND gate. In addition, each leaf-node also represents an attribute, and the
threshold value of each leaf-node is 1, that is, each leaf-node represents an OR
gate. We define four operations on the nodes of the access tree:

1. parent(x): For each node x except the root node, this denotes the parent
node of x ;

2. children(x): For each non-leaf node, this denotes the set of all the child
nodes of x ;

3. index(x): We assume that the access tree defines an ordering between the
children of every node, so for each node except the root node, the index(x)
returns such a number associated with node x, and we have that, 1 ≤
index(x) ≤ |children(parent(x))|;

4. attr(x): For each leaf node, this denotes the attribute represented by the leaf
node x.

276 P. Wang, D. Feng, and L. Zhang

We also define an function Γx(ω) on each node x of the access tree A under an
attribute set ω, the function Γx(ω) is defined as below:

1. If x is a leaf node:

Γx(ω) =
{

0, attr(x) �∈ ω
1, attr(x) ∈ ω

2. If x is a non-leaf node:

Γx(ω) =

⎧⎪⎨⎪⎩
0,

∑
z∈children(x)

Γz(ω) < vx

1,
∑

z∈children(x)

Γz(ω) ≥ vx

Definition 2. Let A be an access tree with the root node r, we say an attribute
set ω satisfies the access tree A if and only if Γr(ω) = 1.

2.3 Lagrange Coefficient

By given (n+1) different points (xi, yi) in Zp, we can use the polynomial inter-
polation to fix the polynomial f(x), the degree of which is n, and:

f(x) =
n+1∏
i=1

(yi ·
∏

1≤j≤n+1∧j �=i

x−xj

xi−xj
)

Let S ⊆ Zp, for each i ∈ S, the lagrange coefficient is defined as:

)i,S(x) =
∏

j∈S∧j �=i

x−xj

xi−xj

2.4 Decision q-BDHE Assumption

Security of our scheme is based on a complexity assumption called the Decision
q-BDHE (Bilinear Diffie-Hellman Exponent) assumption. It is stated as follows:

Let G1 be a bilinear group of prime order p, given a vector of 2q+1 elements:

(g, gs, gα, gα2
, ..., gαq

, gαq+2
, ..., gα2q

) ∈ G
2q+1
1

We say that the Decision q-BDHE assumption holds in G1 if no polynomial-
time algorithm has a non-negligible advantage to distinguish e(g, g)sαq+1

from a
random element in G2.

3 Definition

Denote U ={1,2,...n} to be the universe of all the users and N to be the uni-
verse of all the attributes. An attribute based encryption scheme that supports

Towards Attribute Revocation in Key-Policy Attribute Based Encryption 277

fine-grained attribute revocation under the direct revocation model consists of
four algorithms Setup, Encryption, KeyGen, Decryption , we describe each
of these four algorithm below:

Setup → (pk,msk): This is a randomized algorithm that takes no input
other than the implicit security parameters. It outputs a public key pk and a
master secret key msk ;

Encryption(ω, Rj, M, pk) → C : This is a randomized algorithm that takes
as input an attribute set ω ⊆ N , a revocation list Rj ⊆ U of attribute j ∈ ω, a
message M, and the public key pk. It outputs a ciphertext C.

KeyGen(ID, A, msk, pk) → SKID ,A: This is a randomized algorithm that
takes as input a user index ID ∈ U , an access tree A, the master secret key msk,
and the public key pk. It outputs a user’s private key SK ID,A.

Decryption(C, ω, Rj, SKID ,A, pk)→ M : This algorithm takes as input
a ciphertext C that was encrypted under an attribute set ω with an attribute
revocation list Rj ⊆ U of attribute j ∈ ω, the user’s private key SK ID,A for user
ID ∈ U with the access tree A. Define the attribute set ω

′
for the user ID : if

ID ∈ Rj , let ω
′
= ω − {j}; otherwise, let ω

′
= ω. It outputs the message M if

and only if the attribute set ω
′
satisfies the access tree A.

Selective Security Model. The selective security notion is defined in the fol-
lowing game:

Init : The adversary declares an attribute set ω∗ ⊆ N and an attribute revo-
cation list R∗

j ⊆ U of attribute j ∈ ω∗ that it wishes to be challenged upon;

Setup: The challenger runs the Setup algorithm of ABE and gives the public
key pk to the adversary;

Phase1: The adversary is allowed to issue queries for user private key SK ID,A

of the user ID ∈ U with the access tree A, such that ω
′

(see the definition of
Decryption) doesn’t satisfy the access tree A.

Challenge: The adversary submits two equal-length messages M0,M1. The
challenger chooses a random bit b ∈ {0, 1}, and encrypt the message Mb under
the attribute set ω∗ with the attribute revocation list R∗

j . Then the challenger
gives the challenge ciphertext C∗ to the adversary.

Phase2: Phase1 is repeated.

Guess: The adversary outputs a guess b
′
of b.

278 P. Wang, D. Feng, and L. Zhang

The advantage of the adversary in this game is defined as Pr[b
′

= b]-1/2. We
note that the model can easily be extended to handle chosen-ciphertext attacks
by allowing for decryption queries in Phase1 and Phase2.

Definition 3. A KP-ABE scheme supporting attribute revocation under direct
revocation model is secure in the selective security model if all polynomial time
adversaries have at most a negligible advantage in the above game.

4 Construction

In ours schemes, each attribute has two values, and each user has two same
access trees: For the first access tree, PKG will use all the first values of the
attributes and αIDγ to generate the first part of the user’s private key; For the
second tree, all the second values of the attributes and αIDβ will be used to
generate the second part of the user’s private key. When encrypting a message
under an attribute set ω with a revocation list Rj of the attribute j ∈ ω, define
ω

′
= ω − {j}, Ti,0 as the first value of the attribute i, Ti,1 as the second value

of the attribute i, then the sender will give all the values of {T s
i,0}i∈ω (used by

the first part of the user’s private key) and {T s
i,1}i∈ω′ (used by the second part

of the user’s private key). When a user with the private key SK ID,A wants to
decrypt the ciphertext:

1. if ω doesn’t satisfy the access tree A, we can know that, the ω
′
doesn’t satisfy

the access tree A either. So neither of the two parts of the private key can
be used to decrypt the ciphertext correctly;

2. if ω satisfies the access tree A,
(a) If ID is not in the attribute revocation list Rj , then he can use the first

part of his private key to decrypt the ciphertext correctly. Note that,in
such a case, ω

′
may also satisfies the access tree, if so, the second part

of the private key can decrypt the ciphertext correctly, too;
(b) If ID is in the attribute revocation list Rj , which means the attribute j

of the user is revoked. In such a case, the user could only use the second
part of the private key to decrypt, and he can recover the message if and
only if ω

′
satisfies A.

4.1 Small Universe Construction

Let G1 and G2 be groups of prime order p, and g is a generator of G1. In addi-
tion, define e: G1×G1→G2 to be a bilinear map.

Setup: Define the universe of users U ={1,2,...,n} and attributes N ={1,2,...,m},
let U

′
= U ∪ {n+ 2, n+ 3, ..., 2n}:

1. Choose a random element α from G1, for each j ∈ U ′
, compute the gj = gαj

;
2. For each attribute of i∈N, choose two random elements ti,0 and ti,1 from Z∗

p,
then set Ti,0 = gti,0 and Ti,1 = gti,1 ;

Towards Attribute Revocation in Key-Policy Attribute Based Encryption 279

3. Choose two random elements γ and β;

The public key pk is:

pk = {G1,G2, g, {(Ti,0, Ti,1)}i∈N , {gj
}j∈U ′ , gγ , gβ}

The master secret key msk is:

msk = {{(ti,0, ti,1)}i∈N , α, γ, β}

Encryption(ω, Rj, M, pk): To encrypt a message M ∈ G2 under a set of
attribute ω, with a user revocation list Rj ⊂ U of attribute j ∈ ω, choose a
random value s ∈ Zp, let S0 = U −Rj , S1 = U , then set:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0 = e(g1, gn)sM,
C1 = gs,
C2,0 = {T s

i,0}i∈ω,
C2,1 = {T s

i,1}i∈ω∧i�=j ,
C3,0 = (gγ

∏
i∈S0

gn+1−i)s,

C3,1 = (gβ
∏

i∈S1

gi)s

The ciphertext C is published as:

C = {ω,Rj, C0, C1, C2,0, C2,1, C3,0, C3,1}

KeyGen(ID, A, msk, pk): To generate a secret key for user ID ∈ U under
an access tree A, the algorithm proceeds in a top-down manner as follows:

1. For the root node r, choose two polynomials qr,0 and qr,1 of degree vr−1. For
qr,0, first let qr,0(0) = αIDγ and then randomly choose other vr − 1 points
to define qr,0 completely. The way to choose qr,1 is the same to qr,0 except
that, we let qr,1(0) = αIDβ

2. For any other node x in access tree A, the way to choose polynomials
qx,0 and qx,1 is the same to root node, except that, we let qx,0(0) =
qparent(x),0(index(x)) and qx,1(0) = qparent(x),1(index(x));

3. Once the polynomials have been decided, for each leaf node x, let i=attr(x),
we give the secret values to the user:

Dx,0 = g
qx,0(0)

ti,0 , Dx,1 = g
qx,1(0)

ti,1

Define L to be the set of leaves of access tree A, the user’s secret key SK ID,A is
given as:

SK ID,A = {(Dx,0, Dx,1)}x∈L

Decryption(C, ω, Rj, SKID,A, pk): For a user with a secret key SK ID,A,
if ID ∈ Rj , we let ω′ = ω − {j}, if not, we let ω′ = ω. The user could decrypt
the ciphertext correctly if and only if Γr(ω′) = 1(r is the root node of A), ie. the
attribute set ω′ satisfies the access tree A. The decryption algorithm proceeds
in a down-top manner as follows:

280 P. Wang, D. Feng, and L. Zhang

1. if ID �∈ Rj :

(a) For each leaf node x of access tree A, let i = attr(x): If i �∈ ω′ , we let
Fx =⊥; If i ∈ ω′, we let Fx = e(Dx,0, T

s
i,0) = e(g, g)s·qx,0(0);

(b) For any other node x (including the root node) of access tree A, denote Sx

to be the set of children of node x, such that for each node z ∈ Sx, Fz �=⊥.
If |Sx| < vx, Fx =⊥;Otherwise, choose a subset S

′
x ⊆ Sx, such that |S′

x| =
vx, then set S

′′
= {index(z)|z ∈ S′

x} and use polynomial interpolation
to compute:

Fx =
∏

z∈S′
x

F
�

i,S
′′ (0)

z = e(g, g)s·qx,0(0), i = index(z),

We observe that, for the root node, we have:

Fr = e(g, g)s·qr,0(0) = e(g, g)s·αIDγ

(c) Finally, we recover the Message M by computing:

C0 · Fr ·

e(
∏

j∈S0
∧j �=ID

gn+1−j+ID , C1)

e(g
ID
, C3,0)

Correctness: We can verify its correctness as(note that ID �∈ Rj , so ID ∈ S0):

C0 · Fr · e(
∏

j∈S0∧j �=ID

gn+1−j+ID , C1) · 1
e(g

ID
,C3,0)

= e(g1, gn)sM ·e(g, g)s·αIDγ ·e(
∏

j∈S0∧j �=ID

gn+1−j+ID, g)s · 1
e(g

ID
,gγ

∏
i∈S0

gn+1−i)s

= e(g1, gn)sM ·e(gID , gγ)s·e(∏
j∈S0∧j �=ID

gn+1−j+ID, g)s· 1
e(g

ID
,gγ)se(g,

∏
i∈S0

gn+1−i+ID)s

=M

2. if ID ∈ Rj

(a) Same to the previous situation except that, If i ∈ ω′, we let Fx =
e(Dx,1, T

s
i,1) = e(g, g)s·qx,1(0);

(b) Same to the previous situation, but for the root node, we have:
Fr = e(g, g)s·qr,1(0) = e(g, g)s·αIDβ

(c) Finally, we recover the Message M by computing:

C0 · Fr ·

e(
∏

j∈S1
∧j �=ID

gn+1−j+ID , C1)

e(gID , C3,1)

4.2 Large Universe Construction

Let G1 and G2 be groups of prime order p, and g is a generator of G1. In addition,
define e: G1×G1→G2 to be a bilinear map. We assume that the sender uses at

Towards Attribute Revocation in Key-Policy Attribute Based Encryption 281

most m attributes when encrypting (bounded ABE), denote N ={1,2,...,m+1}.

Setup: Define the universe of users U ={1,2,...,n}, let U
′
= U ∪ {n+ 2, n+

3, ..., 2n}:

1. Choose a random element α from G1, for each j ∈ U ′
, compute the gj = gαj

;
2. Choose two random elements γ and β;
3. For each i∈N, also choose two random elements hi,0 and hi,1 from G1, then

define two functions;

T0(x) = gγxm
m+1∏
i=1

h
�i,N (x)
i,0 , T1(x) = gβxm

m+1∏
i=1

h
�i,N (x)
i,1

The public key pk is:

pk = {G1,G2, g, {(hi,0, hi,1)}i∈N , {gj
}j∈U ′ , gγ , gβ}

The master secret key msk is:

msk = {α, γ, β}

Encryption(ω, Rj, M, pk): To encrypt a message M ∈ G2 under a set of
attribute ω, with a user revocation list Rj ⊂ U of attribute j ∈ ω, choose a
random value s ∈ Zp, let S0 = U −Rj , S1 = U , then set:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0 = e(g1, gn)sM,
C1 = gs,
C2,0 = {T0(i)s}i∈ω,
C2,1 = {T1(i)s}i∈ω∧i�=j,
C3,0 = (gγ

∏
i∈S0

gn+1−i)s,

C3,1 = (gβ
∏

i∈S1

gi)s

The ciphertext C is published as:

C = {ω,Rj, C0, C1, C2,0, C2,1, C3,0, C3,1}

KeyGen(ID,A, msk, pk): To generate a secret key for user ID ∈ U under
an access tree A, the algorithm proceeds exactly the same to our small universe
construction except that, for each leaf node x, we choose two elements rx,0, rx,1

uniformly at random from Z∗
p, let i=attr(x), we give the secret values to the user:{

Dx,0 = gqx,0(0) · T0(i)rx,0 , Rx,0 = grx,0

Dx,1 = gqx,1(0) · T1(i)rx,1 , Rx,1 = grx,1

Define L to be the set of leaves of access tree A, the user secret key SK ID,A is
given as:

SK ID,A = {(Dx,0, Dx,1, Rx,0, Rx,1)}x∈L

282 P. Wang, D. Feng, and L. Zhang

Decryption(C, ω, Rj, SKID,A, pk): The decryption algorithm proceeds
exactly the same to our small universe construction except that, for each leaf
node x, let i = attr(x), If i �∈ ω′ , we let Fx =⊥, otherwise:

1. if ID �∈ Rj :

Fx =
e(Dx,0, g

s)
e(Rx,0, T0(i)s)

=
e(gqx,0(0), gs)e(T0(i)rx,0 , gs)

e(grx,0, T0(i)s)
= e(g, g)qx,0(0)s

2. if ID ∈ Rj :

Fx =
e(Dx,1, g

s)
e(Rx,1, T1(i)s)

=
e(gqx,1(0), gs)e(T1(i)rx,1 , gs)

e(grx,1, T1(i)s)
= e(g, g)qx,1(0)s

4.3 Efficiency

In this section, we analysis the efficiency of our two schemes. Denote n to be the
number of users of the system, m to be the maximum number of attributes that
can be used per encryption, L to be the set of the leaf nodes of access tree A (or
to be the set of the rows in the LSSS access structure matrix), ω to be the set
of attributes used for encryption, R to be the revocation list, we compare our
schemes with Staddon’s [14] and Attrapadung’s [12] in Table 1.

Table 1. Comparisons of efficiency

Schemes Staddon [14]
Attrapadung [12] Our Schemes

1st scheme 2nd scheme 1st scheme 2nd scheme

size of PK m + n + 4 m + n + 1 m + 6 2(m + n + 1) 2(m + n + 1)

size of MSK 3m + 2n + 2 2 2 2m + 3 3

size of SK 2|L| 2|L| 2|L|+2 2|L| 4|L|
size of Ciphertext m + |R| + 2 |ω| + 3 |ω| + |R| + 2 2|ω| + 3 2|ω| + 3

Attribute Revocation × × × √ √

Table 1 shows that, in each of our schemes, the size of the ciphertext is inde-
pendent of the revocation list. Though our schemes could realize the attribute
revocation, the sizes of the public keys are much larger than the schemes of
Attrapadung’s.

4.4 Security

Theorem 1. If an adversary can break our small universe scheme with advan-
tage ε in the selective security model, then a simulator can be constructed to
solve the Decision n-BDHE problem.

Proof: See Appendix B.

Towards Attribute Revocation in Key-Policy Attribute Based Encryption 283

Theorem 2. If an adversary can break our large universe scheme with advan-
tage ε in the selective security model, then a simulator can be constructed to
solve the Decision n-BDHE problem.

Proof: See Appendix C.

5 Discussion

CCA Secure. Though our scheme is proven to be CPA-secure,by using the
generic method presented by Amada [18], we can transform our CPA-secure
schemes to be CCA-secure schemes under the same security model.

Fine-Grained Attribute Revocation. Note that, our schemes only support
the revocation of one attribute per encryption. We can build a KP-ABE scheme
supporting fine-grained attribute revocation by extending the Goyal’s scheme
[3], but the extension is somewhat trivial. The main idea is stated as follows:

1. Setup: For each attribute i ∈ {N}, choose n random elements {ti,j}1≤j≤n

from Z∗
p as part of the master secret key, and publish the {Ti,j}1≤i≤m,1≤j≤n

as part of the parameters. The left parts of the public key and the master
secret key are the same to that of the Goyal’s scheme.

2. KeyGen : It is exactly the same to the Goyal’s scheme except that, for user
ID ∈ U , the PKG use (y, {tID,j}1≤j≤n) to generate the user’s private key
SK ID,A;

3. Encryption : To encrypt a message M ∈ G2 under an attribute set ω ⊆ N ,
let Ri ⊆ U to be the revocation list of attribute i ∈ ω, define Si = U − Ri,
then for each attribute i ∈ ω, compute {Ei,j = T s

i,j}j∈Si as part of the
ciphertext.

4. Decryption : To decrypt a ciphertext encrypted under the attribute set ω ⊆
N , with the revocation lists {Ri}i∈ω, we first define ω

′
= {i|i ∈ ω, ID �∈ Ri}

to be the set of the unrevoked attribute for user ID. The user with private
key SKID,A can decrypt the ciphertext correctly if and only if ω

′
satisfies

the access tree A.

The security of this KP-ABE scheme can be reduced to DBDH assumption(See
Appendix A) as the Goyal’s scheme, but we note that, the efficiency of this
scheme is very low.

6 Conclusion and Future Work

In this paper, we presented two KP-ABE schemes supporting attribute revoca-
tion, which can revoke one attribute per encryption, and the security of these two
schemes can be reduce to the q-BDHE assumption under the selective security
model. Some possible future work includes: 1)realize a KP-ABE scheme with
fine-grained attribute revocation supported which will be more efficient than the
extended scheme given in Section 5; 2)construct a CP-ABE scheme supporting
attribute revocation under the direct revocation model.

284 P. Wang, D. Feng, and L. Zhang

Acknowledgement. Thanks for the anonymous reviewers’s comments and ad-
vices. This work was supported by the National Natural Science Foundation of
China under Grant No.60803129, the Next Generation Internet Business and
Equipment Industrialization Program under Grant No.CNGI-09-03-03 and the
Opening project of Key Lab of Information Network Security of Ministry of
Public Security (The Third Research Institute of Ministry of Public Security)
under Grant No.C11604.

References

1. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

2. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

3. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98. ACM Press, New
York (2006)

4. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Proceedings of the 14th ACM Conference on Com-
puter and Communications Security, pp. 195–203. ACM Press, New York (2007)

5. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: Proceedings of the 2007 IEEE Symposium on Security and Privacy, pp.
321–334. IEEE Press, New York (2007)

6. Waters, B.: Ciphertext-Policy Attribute-Based Encryption: An Expressive, Effi-
cient, and Provably Secure Realization. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg
(2011)

7. Hanaoka, Y., Hanaoka, G., Shikata, J., Imai, H.: Identity-Based Hierarchi-
cal Strongly Key-Insulated Encryption and Its Application. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 495–514. Springer, Heidelberg (2005)

8. Libert, B., Quisquater, J.-J.: Efficient revocation and threshold pairing based cryp-
tosystems. In: Proceedings of the Twenty-Second Annual Symposium on Principles
of Distributed Computing, pp. 163–171. ACM Press, New York (2003)

9. Naor, M., Pinkas, B.: Efficient Trace and Revoke Schemes. In: Frankel, Y. (ed.)
FC 2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)

10. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient re-
vocation. In: Proceedings of the 15th ACM Conference on Computer and Commu-
nications Security, pp. 417–426. ACM Press, New York (2008)

11. Attrapadung, N., Imai, H.: Conjunctive Broadcast and Attribute-Based Encryp-
tion. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 248–265.
Springer, Heidelberg (2009)

12. Attrapadung, N., Imai, H.: Attribute-Based Encryption Supporting Direct/Indirect
Revocation Modes. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS,
vol. 5921, pp. 278–300. Springer, Heidelberg (2009)

13. Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with
Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

Towards Attribute Revocation in Key-Policy Attribute Based Encryption 285

14. Staddon, A., Golle, P., Gagne, M., Rasmussen, P.: Content-driven access control
system. In: Proceedings of the 7th symposium on Identity and trust on the Internet,
pp. 26–35. ACM Press, New York (2008)

15. Lewko, A., Sahai, A., Waters, B.: Revocation systems with very small private keys.
In: Proceedings of the 2010 IEEE Symposium on Security and Privacy, pp. 273–285.
IEEE Press, New York (2010)

16. Yu, S.C., Wang, C., Ren, K., Lou, W.J.: Attribute based data sharing with at-
tribute revocation. In: Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security, pp. 261–270. ACM Press, New York
(2010)

17. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. PhD thesis,
Israel Institute of Technology (1996)

18. Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: Generic Constructions
for Chosen-Ciphertext Secure Attribute Based Encryption. In: Catalano, D., Fazio,
N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 71–89.
Springer, Heidelberg (2011)

Appendix A: DBDH Assumption

Decisional Bilinear Diffie-Hellman Assumption: Let G1 be a bilinear
group of prime order p, given a vector of three random elements (ga, gb, gc),
We say that the DBDH assumption holds in G1 if no polynomial-time algorithm
has a non-negligible advantage to distinguish e(g, g)abc from a random element
in G2.

Appendix B: Security Proof of Theorem 1

Suppose there exists a polynomial-time adversary A, that can attack our small
universe scheme in the selective security model with advantage ε. We can build
a simulator B that can solve the Decision n-BDHE problem with advantage ε/2.
The simulation proceeds as follows:

The challenger chooses two groups G1 and G2 of prime order p, and ran-
domly picks a generator g from G1, In addition, the challenger defines a bilinear
map e:G1×G1→G2 and the user universe U ={1,2,...n}, the attribute universe
N ={1,2,...,m}. The challenger sets:

Y =(g, gs, g1 = gα, g2 = gα2
, ..., gn = gαn

, gn+2 = gαn+2
, ..., g2n = gα2n

).

Then the challenger flips a fair binary coin μ: If μ = 0, the challenger set
Z=e(g1, gn)s; If μ = 1, the challenger picks a random element Z from G2.
Finally, the challenger gives (Y,Z) to the simulator B. B proceeds as follows:

Init. The simulator B runs adversary A. A selects an attribute set ω∗ ⊆ N and
a revocation list R∗

j ⊆ U of attribute j ∈ ω∗ that it wishes to be challenged
upon.

286 P. Wang, D. Feng, and L. Zhang

Setup. The simulator B acts as follows:

1. Let S0 = U −R∗
j , choose a random element u0 ∈ Z

∗
p, then set:

gγ = gu0(
∏

i∈S0

gn+1−i)−1;

2. Let S1 = U , choose a random element u1 ∈ Z∗
p, then set:

gβ = gu1(
∏

i∈S1

gi)−1;

3. For each attribute i ∈ N : if i ∈ ω∗, it chooses a random value ri,0 ∈ Z∗
p,

and set Ti,0 = gri,0(thus,ti,0 = ri,0); otherwise it chooses a random value
ηi,0 ∈ Z∗

p, and sets Ti,0 = gγηi,0(thus, ti,0 = γηi,0);
4. Let ω

′
= ω∗ − {j}, for each attribute i ∈ N : if i ∈ ω′

, it chooses a random
value ri,1 ∈ Z∗

p, and sets Ti,1 = gri,1(thus, ti,1 = ri,1); otherwise it chooses a
random value ηi,1 ∈ Z∗

p, and set Ti,1 = gβηi,1(thus, ti,1 = βηi,1);

Then B gives the public key pk = {G1,G2, Y \ {gs}, {(Ti,0, Ti,1)}i∈N , g
γ , gβ} to

the adversary A. Note that, since g, α, u0, u1 are chosen uniformly at random,
this public key has an identical distribution to that in the actual construction.

Phase1. At any time, the adversaryA may make a private key extraction query
of user ID ∈ U with access tree A, such that ω

′
doesn’t satisfy the access tree

A, where ω
′
= ω∗ if ID �∈ R∗

j , or ω
′
= ω∗−{j} if ID ∈ R∗

j . The simulator B acts
as follows to generate the private key SK ID,A:

1. When ID �∈ R∗
j (in this case, we have ω

′
= ω∗):

(a) For the root node r, choose two polynomials qr,0 and qr,1 of degree
vr − 1. The way to choose qr,1 is the same to qr,0, so we only de-
scribe how to choose qr,0. First set qr,0(0) = αID . Denote Sr =
{x}x∈children(r)∧Γx(ω′)=1, For each node x ∈ Sr, select a random value kx

from Z∗
p and let qr,0(index(x)) = kx. Since ω

′
doesn’t satisfy the access

tree A, we have |Sr| < vr. Then select randomly other vr−|Sr|−1 points
from Z∗

p to completely fix qr,0; Note that, for the child node x of the root
node r, if Γx(ω

′
) = 1, we know qx,0(0), if Γx(ω

′
) = 0, we can’t get the

value qx,0(0), but we can use the polynomial interpolation to compute
gqx,0(0).

(b) Since the private key is generated in a top-down manner, according to
the way of choosing qr,0 and qr,1, for every other node x in access tree
A: if Γx(ω

′
) = 1, we can get the value qx,0(0) and qx,1(0), then we

can fix the qx,0, qx,1 as the actual construction; if Γx(ω
′
) = 0, we can

get the value gqx,0 , gqx,1(if Γparent(x)(ω
′
) = 1, we also know the value

qx,0(0), qx,1(0)),then fix the qx,0, qx,1 as the root node.
(c) For each node x of access tree A, we define Qx,0 = γqx,0, Qx,1 = βqx,1,

thus Qr,0 = γαID, Qr,1 = βαID. Then for each leaf node z, let i =
attr(z), we set:

Towards Attribute Revocation in Key-Policy Attribute Based Encryption 287

Dz,0 =

⎧⎨⎩ g
Qz,0(0)

ti,0 = g
γqz,0(0)

ri,0 = (gγ)
qz,0(0)

ri,0 , i ∈ ω′

g
Qz,0(0)

ti,0 = g
γqz,0(0)

γηi,0 = (gqz,0(0))
1

ηi,0 , i �∈ ω′

Dz,1 =

⎧⎨⎩ g
Qz,1(0)

ti,1 = g
βqz,1(0)

ri,1 = (gβ)
qz,1(0)

ri,1 , i ∈ ω′ ∧ i �= j

g
Qz,1(0)

ti,1 = g
βqz,1(0)

βηi,1 = (gqz,1(0))
1

ηi,1 , i �∈ ω′ ∨ i = j

2. When ID ∈ R∗
j (in this case, we have ω

′
= ω∗−{j}), if ω∗ doesn’t satisfy the

access tree A, the simulation is exactly the same to the previous case, so we
only concentrate on the simulation of the special case, in which ω∗ satisfies
the A, but ω

′
doesn’t satisfy the A.

For Dz,1: Since ω
′
doesn’t satisfy the A, B simulates exactly the same with

the previous case, and for each leaf node z, gives the Dz,1 (we assume that
i = attr(z)):

Dz,1 =

⎧⎨⎩ g
Qz,1(0)

ti,1 = g
βqz,1(0)

ri,1 = (gβ)
qz,1(0)

ri,1 , i ∈ ω′

g
Qz,1(0)

ti,1 = g
βqz,1(0)

βηi,1 = (gqz,1(0))
1

ηi,1 , i �∈ ω′

For Dz,0:

(a) For the root node r, choose a polynomial qr,0 of degree vr − 1. First
set qr,0(0) = αID . Then select randomly other vr − 1 points from Z∗

p to
completely fix qr,0; Note that, for the child x of the root r, we only know
the value gqx,0(0) by using the polynomial interpolation;

(b) For every other node x in access tree A, the way to choose qx,1 is the
same to root node, and we know the value gqx,0(0);

(c) For each node x in access tree A, define Qx,0 = γqx,0. For root node r,
we have:

gQr,0(0) = (gu0(
∏

i∈S0

gn+1−i)−1)αID

= (g
ID

)u0(
∏

i∈S0

gn+1−i+ID)−1)

Since ID ∈ R∗
j , we have ID �∈ S0, thus the term gn+1 will not exist in

(
∏

i∈S0

gn+1−i+ID)−1), and we can compute the value gQr,0(0) in polyno-

mial time. Then for each node x in access tree A, by using using the
polynomial interpolation, we can also compute the value gQx,0(0);

(d) Then for each leaf node z, let i = attr(z), we set:

Dz,0 =

⎧⎨⎩ g
Qz,0(0)

ti,0 = g
Qz,0(0)

ri,0 = (gQz,0(0))
1

ri,0 , i ∈ ω∗

g
Qz,0(0)

ti,0 = g
γqz,0(0)

γηi,0 = (gqz,0(0))
1

ηi,0 , i �∈ ω∗

Define L to be the set of leaves of access tree A, B returns the user private key
SK ID,A = {(Dx,0, Dx,1)}x∈L to A.

Challenge. The adversary A chooses two challenge messages M0,M1 ∈ G2

with equal length and sends to B. B randomly chooses a bit b ∈ {0, 1}, and sets:

288 P. Wang, D. Feng, and L. Zhang⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

C∗
0 = ZMb,
C∗

1 = gs,
C∗

2,0 = {T s
i,0 = gti,0s = (gs)ri,0}i∈ω∗ ,

C∗
2,1 = {T s

i,0 = gti,1s = (gs)ri,1}i∈ω′ ,
C∗

3,0 = (gγ
∏

i∈S0

gn+1−i)s = (gs)u0 ,

C∗
3,1 = (gβ

∏
i∈S1

gi)s = (gs)u1

The B sends the challenge ciphertext C ∗ = {ω∗, R∗
j , C

∗
0 , C

∗
1 , C

∗
2,0, C

∗
2,1, C

∗
3,0, C

∗
3,1}

to the adversaryA. If μ = 0 then Z = e(g1, gn)s, since s is chosen randomly from
G2 by the challenger, the challenge ciphertext C ∗ is a valid random encryption
of message Mb. If μ = 1, then Z is a random element of G2, so C∗

0 is also a
random element of G2 from the adversary’s view and contains no information of
Mb.

Phase2. Phase1 is repeated.

Guess. The adversary outputs the guess b
′
of b.

Let μ
′
be the guess of μ by the simulator B:

If b
′
= b, B outputs μ

′
= 0;

If b
′ �= b, B outputs μ

′
= 1;

Then we analysis the advantage of B to solve the Decision n-BDHE problem.

1. when μ = 0: In this case, Z = e(g1, gn)s, so the C ∗ is a valid ciphertext,
then the adversary A sees an encryption ofMb. By definition, the advantage
of A is ε, thus, we can conclude that Pr [b

′
= b|μ = 0] = ε - 1/2, then we

have:

Pr[μ
′
= μ|μ = 0] = Pr[b

′
= b|μ = 0] = ε− 1/2;

2. when μ = 1: In this case, Z is a random element of G2, and the adversary
gains no information of b. Therefore, we have Pr [b

′
= b|μ = 1] = Pr [b

′ �= b]
= 1/2, then we conclude that:

Pr[μ
′
= μ|μ = 1] = Pr[b

′ �= b|μ = 1] = 1/2;

Finally, we have:

Pr[μ
′
= μ] = Pr[μ

′
= μ|μ = 0]Pr[μ = 0] + Pr[μ

′
= μ|μ = 1]Pr[μ = 1]

= (ε− 1/2) · 1/2 + 1/2 · 1/2
= ε/2

This concludes the proof of Theorem 1.

Appendix C: Security Proof of Theorem 2

Suppose there exists a polynomial-time adversary A, that can attack our large
universe scheme in the selective security model with advantage ε. We can build

Towards Attribute Revocation in Key-Policy Attribute Based Encryption 289

a simulator B that solve the Decision n-BDHE problem with advantage ε/2. The
simulation proceeds as follows:

The challenger chooses two groups G1 and G2 of prime order p, and randomly
picks a generator g from G1, In addition, the challenger defines a bilinear map
e:G1×G1→G2 and the user universe U ={1,2,...n}, The challenger sets:

Y =(g, gs, g1 = gα, g2 = gα2
, ..., gn = gαn

, gn+2 = gαn+2
, ..., g2n = gα2n

).

Then the challenger flips a fair binary coin μ: If μ = 0, the challenger sets
Z=e(g1, gn)s; If μ = 1, the challenger picks a random element Z from G2.
Finally, the challenger gives (Y,Z) to the simulator B. B proceeds as follows:

Init. The simulator B runs adversary A. A selects an attribute set ω∗ ∈ Zm
p

and a revocation list R∗
j ⊆ U of attribute j ∈ ω∗ that it wishes to be challenged

upon.

Setup. The simulator B acts as follows:

1. Let S0 = U −R∗
j , choose a random element u0 ∈ Z∗

p, then set:

gγ = gu0(
∏

i∈S0

gn+1−i)−1;

2. Let S1 = U , choose a random element u1 ∈ Z∗
p, then set:

gβ = gu1(
∏

i∈S1

gi)−1;

3. Choose two random m degree polynomial f0(x), f1(x), define ω
′
= ω∗−{j},

then calculate two polynomials k0, k1 as follows: set k0(x) = −xm for all
x ∈ ω∗ and k0(x) �= −xm for some other x. set k1(x) = −xm for all x ∈ ω′

and k1(x) �= −xm for some other x ;
4. For each i ∈ {1, 2, ...,m + 1}, calculate hi,0 = gf0(i)(gγ)k0(i), hi,1 = gf1(i)

(gβ)k1(i), so the T0(x), T1(x) are fixed.

Then B gives the public key pk = {G1,G2, Y \ {gs}, {(hi,0, hi,1)}i∈{1,2,...,m+1},
gγ , gβ} to the adversaryA. Note that, since g, α, u0, u1, f(x) are chosen uniformly
at random, this public key has an identical distribution to that in the actual
construction.

Phase1. At any time, the adversaryA may make a private key extraction query
of user ID ∈ U with access tree A, such that ω

′
doesn’t satisfy the access tree

A, where ω
′
= ω∗ if ID �∈ R∗

j , or ω
′
= ω∗−{j} if ID ∈ R∗

j . The simulator B acts
as follows to generate the private key SK ID,A:

1. When ID �∈ R∗
j (in this case, we have ω

′
= ω∗):

(a) The way to fix the polynomials Qx,0 = γqx,0, Qx,1 = βqx,1 for each node
x is same to that in the proof of Theorem 1 (See Appendix B).

(b) For each leaf node z, let i = attr(z):

290 P. Wang, D. Feng, and L. Zhang

i. If i ∈ ω′
, then we know the values of qz,0(0), qz,1(0). Choose two

random values rz,0, rz,1 from Z∗
p and set:⎧⎪⎪⎨⎪⎪⎩

Rz,0 = grz,0

Rz,1 = grz,1

Dz,0 = gQz,0(0) · T0(i)rz,0 = (gγ)qz,0(0) · T0(i)rz,0

Dz,1 = gQz,1(0) · T1(i)rz,1 = (gβ)qz,1(0) · T0(i)rz,1

ii. If i �∈ ω′
, then we only know the values of gqz,0(0), gqz,1(0). Choose

two random values r
′
z,0, r

′
z,1 from Z

∗
p, let rz,0 = −qz,0(0)

im+k0(i) +r
′
z,0, rz,1 =

−qz,1(0)
im+k1(i) + r

′
z,1, then set:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Rz,0 = grz,0 = g
−qz,0(0)
im+k0(i) +r

′
z,0 = (gqz,0(0))

−1
im+k0(i) gr

′
z,0

Rz,1 = grz,1 = g
−qz,1(0)
im+k1(i) +r

′
z,1 = (gqz,1(0))

−1
im+k1(i) gr

′
z,1

Dz,0 = gQz,0(0) · T0(i)rz,0 = (gqz,0(0))
−f0(i)

im+k0(i)T0(i)r
′
z,0

Dz,1 = gQz,1(0) · T1(i)rz,1 = (gqz,1(0))
−f1(i)

im+k1(i)T1(i)r
′
z,1

2. When ID ∈ R∗
j (in this case, we have ω

′
= ω∗−{j}), if ω∗ doesn’t satisfy the

access tree A, the simulation is exactly the same to the previous case, so we
only concentrate on the simulation of the special case, in which ω∗ satisfies
the A, but ω

′
doesn’t satisfy the A.

For Dx,1: Since ω
′
doesn’t satisfy the A, B simulates exactly the same with

the previous case, and for each leaf node z, gives the Dz,1, Rz,1;
For Dx,0: The simulation of this case is same to that in the proof of of
Theorem 1 (See Appendix B), and for each node, we know the values of
gQx,0(0), gQx,1(0). For each leaf node z, let i = attr(z), then choose two ran-
dom values rz,0, rz,1 from Z∗

p and set:⎧⎪⎪⎨⎪⎪⎩
Rz,0 = grz,0

Rz,1 = grz,1

Dz,0 = gQz,0(0) · T0(i)rz,0 = (gγ)qz,0(0) · T0(i)rz,0

Dz,1 = gQz,1(0) · T1(i)rz,1 = (gβ)qz,1(0) · T0(i)rz,1

Define L to be the set of leaves of access tree A, B returns the user private key
SK ID,A = {(Dx,0, Dx,1, Rx,0, Rx,1)}x∈L to A.

Challenge. The adversary A chooses two challenge messages M0,M1 ∈ G2

with equal length and sends to B. B randomly chooses a bit b ∈ {0, 1}, and sets:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

C∗
0 = ZMb,
C∗

1 = gs,
C∗

2,0 = {T0(i)s = (gγim

gf0(i)+γk0(i))s = (gs)f0(i)}i∈ω∗ ,

C∗
2,11 = {T1(i)s = (gβim

gf1(i)+βk1(i))s = (gs)f1(i)}i∈ω′ ,
C∗

3,0 = (gγ
∏

i∈S0

gn+1−i)s = (gs)u0 ,

C∗
3,1 = (gβ

∏
i∈S1

gi)s = (gs)u1

Towards Attribute Revocation in Key-Policy Attribute Based Encryption 291

The B sends the challenge ciphertext C ∗ = {ω∗, R∗
j , C

∗
0 , C

∗
1 , C

∗
2,0, C

∗
2,1, C

∗
3,0, C

∗
3,1}

to the adversaryA. If μ = 0 then Z = e(g1, gn)s, since s is chosen randomly from
G2 by the challenger, the challenge ciphertext C ∗ is a valid random encryption
of message Mb. If μ = 1, then Z is a random element of G2, so C∗

0 is also a
random element of G2 from the adversary’s view and contains no information of
Mb.

Phase2. Phase1 is repeated.

Guess. The adversary outputs the guess b
′
of b.

Let μ
′
be the guess of μ by the simulator B:

If b
′
= b, B outputs μ

′
= 0;

If b
′ �= b, B outputs μ

′
= 1;

Then we analysis the advantage of B to solve the Decision n-BDHE problem.

1. when μ = 0: In this case, Z = e(g1, gn)s, so the C ∗ is a valid ciphertext,
then the adversary A sees an encryption ofMb. By definition, the advantage
of A is ε, thus, we can conclude that Pr [b

′
= b|μ = 0] = ε - 1/2, then we

have:

Pr[μ
′
= μ|μ = 0] = Pr[b

′
= b|μ = 0] = ε− 1/2;

2. when μ = 1: In this case, Z is a random element of G2, and the adversary
gains no information of b. Therefore, we have Pr [b

′
= b|μ = 1] = Pr [b

′ �= b]
= 1/2, then we conclude that:

Pr[μ
′
= μ|μ = 1] = Pr[b

′ �= b|μ = 1] = 1/2;

Finally, we have:

Pr[μ
′
= μ] = Pr[μ

′
= μ|μ = 0]Pr[μ = 0] + Pr[μ

′
= μ|μ = 1]Pr[μ = 1]

= (ε− 1/2) · 1/2 + 1/2 · 1/2
= ε/2

This concludes the proof of Theorem 2.

A Note on (Im)Possibilities of Obfuscating

Programs of Zero-Knowledge Proofs
of Knowledge

Ning Ding and Dawu Gu

Department of Computer Science and Engineering
Shanghai Jiao Tong University, China

{dingning,dwgu}@sjtu.edu.cn

Abstract. Program obfuscation seeks efficient methods to write pro-
grams in an incomprehensible way, while still preserving the function-
alities of the programs. In this paper we continue this research w.r.t.
zero-knowledge proofs of knowledge. Motivated by both theoretical and
practical interests, we ask if the prover and verifier of a zero-knowledge
proof of knowledge are obfuscatable. Our answer to this question is as
follows. First we present two definitions of obfuscation for interactive
probabilistic programs and then achieve the following results:

1. W.r.t. an average-case virtual black-box definition, we achieve some
impossibilities of obfuscating provers of zero-knowledge and witness-
indistinguishable proofs of knowledge. These results state that the
honest prover with an instance and its witness hardwired of any
zero-knowledge (or witness-indistinguishable) proof of knowledge of
efficient prover’s strategy is unobfuscatable if computing a witness
(or a second witness) for this instance is hard. Moreover, we extend
these results to t-composition setting and achieve similar results.
These results imply that if an adversary obtains the prover’s code
(e.g. stealing a smartcard) he can indeed learn some knowledge from
it beyond its functionality no matter what measures the card de-
signer may use for resisting reverse-engineering.

2. W.r.t. a worst-case virtual black-box definition, we provide a possi-
bility of obfuscating the honest verifier (with the public input hard-
wired) of Blum’s 3-round zero-knowledge proof for Hamilton Cycle.
Our investigation is motivated by an issue of privacy protection (e.g.,
if an adversary controls the verifier, he can obtain all provers’ names
and public inputs. Thus the provers’ privacy may leak). We construct
an obfuscator for the verifier, which implies that even if an adver-
sary obtains the verifier’s code, he cannot learn any knowledge, e.g.
provers’ names, from it. Thus we realize the anonymity of provers’
accesses to the verifier and thus solve the issue of privacy protection.

Keywords: Program Obfuscation, Zero Knowledge, Witness Indistin-
guishability, Proofs of Knowledge.

D. Lin, G. Tsudik, and X. Wang (Eds.): CANS 2011, LNCS 7092, pp. 292–311, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Note on (Im)Possibilities of Obfuscating Programs 293

1 Introduction

In recent years, cryptography community has focused on a fascinating research
line of program obfuscation. Loosely speaking, obfuscating a program P is to
construct a new program which can preserve the functionality of P , but its
code is fully “unintelligent”. Any adversary can only use the functionality of P
and cannot learn anything more than this, i.e. cannot reverse-engineering nor
understand it. In other words, an obfuscated program should not reveal anything
useful beyond executing it.

[2] formalized the notion of obfuscation through a simulation-based definition
called the virtual black-box property, which says that every adversary has a
corresponding simulator that emulates the output of the adversary given oracle
(i.e. black-box) access to the same functionality being obfuscated. Following [2],
many works focused on how to obfuscate different cryptographic functionalities.
Among them, there are some negative results, e.g. [2,19,22]. [2] showed there
doesn’t exist any general obfuscation method for all programs. [19,22] showed
that this negative result holds even w.r.t. some other definitions of obfuscation.
On the other hand, some obfuscation methods have been proposed for several
cryptographic functionalities. [26,24] demonstrated how to securely obfuscate
re-encryption and encrypted signature respectively. [13] showed that with fully
homomorphic encryption in e.g. [17], a category of functionalities, which can
be characterized as first secret operation and then public encryption, are obfus-
catable. Some works e.g. [27,25,4,8,11,10,9] focused on obfuscation for a basic
and simple primitive, i.e. (multiple-bit) point functions, traditionally used in
some password based identification systems, and its applications in constructing
encryption and signature schemes of strong security.

We continue this research line w.r.t. zero-knowledge [21] (as well as witness-
indistinguishable [16]) protocols in this paper. Motivated by theoretical and prac-
tical interests, we ask whether or not the prover and verifier of a zero-knowledge
(or witness-indistinguishable) proof or argument of knowledge are obfuscatable.
Before demonstrating our motivation, we first present some works related to this
issue. [23] first addressed this issue, which gave some definitions of obfuscators
(which security allows the distinguisher to obtain the obfuscated program, like a
stronger definition in [25], but only requires the indistinguishability holds w.r.t.
an individual adversary). [23] showed that there exists a cheating verifier for a
constant-round non-black-box zero-knowledge protocol which is unobfuscatable,
while the first such protocol was later constructed by [1]. Actually the non-black-
box simulator in [1] doesn’t reverse-engineering verifiers’ codes. [20] investigated
obfuscation for protocols based on tamper-proof hardware, and showed that with
the help of hardware, all programs including provers are one-time obfuscatable.

We now turn to our motivation. As we know, zero-knowledge proofs of knowl-
edge are a secure way to implement identification as well as other tasks. We use
identification as an example to illustrate the motivation. Briefly, an identifica-
tion scheme consists of a trusted party and multi-clients and multi-servers. The
trusted party generates a verifiable public input (a.k.a. statement or instance,
e.g. a directed graph or a modular square) and a witness (e.g. a Hamilton cycle

294 N. Ding and D. Gu

or a modular square root) for each client. A client’s name and its public input
constitute a record and the trusted party maintains all records. Each client stores
his witness secretly and when he needs to identify himself to a server, he proves
to the server the knowledge of the witness via the identification scheme.

We now first present the motivation of obfuscating provers (with public inputs
and witnesses hardwired). Consider the applications of smartcards, in which a
holder of a smartcard may use his card to identify himself to a server via some
zero-knowledge proof of knowledge where the card runs as prover and the server
runs as verifier. If an adversary obtains the card, he can perform side channel
attacks, physical attacks and white-box cryptoanalysis etc. to recover the witness
(i.e. secret) in the prover’s program. Thus card designers need to develop many
countermeasures in designing prover’s programs against such attacks. Since these
approaches are heuristic without rigorous security proofs, they are usually broken
by new developed attacks. Thus it is very interesting to ask if there is a way to
write the prover’s program such that any adversary cannot break it even if he
possesses the actual program. Namely, can we obfuscate the prover? We think
that this question is of both theoretical and practical interests.

We then present the motivation of obfuscating verifiers. Note that the im-
possibility in [23] says that a cheating verifier with its random coins hardwired
is unobfuscatable, while herein we investigate obfuscation for honest verifiers
without random coins hardwired. Thus an obfuscated verifier in this paper, if
possible, is still a PPT algorithm, which needs fresh coins in execution. Due to
this motivation, a question immediately arises. That is, a honest verifier doesn’t
contain any secret and is publicly available, so why do we need to obfuscate it?
Our answer to this question is that what we need to obfuscate is a honest verifier
with a public input hardwired rather than the verifier’s strategy only, and the ob-
fuscation for such verifiers is meaningful for an issue of privacy protection. (Some
works e.g. [12] discussed the input privacy of zero-knowledge protocols, which
especially work as sub-protocols of large cryptographic protocols. We here only
concern the privacy issue for verifiers of zero-knowledge protocols in the stand
alone setting and obfuscation seems to be a conceptually direct solution.)

For instance, consider the case of ID cards, which have been wildly used in
our society. However, some secret governmental organizations may need to read
data from cards for some secret goals. Before their card readers can read data
from cards, they usually need to pass identification. In this scenario the readers
of the organizations act as prover and cards act as verifier. Thus cards should
store all legal clients’ (i.e. organizations) names and their public inputs, while on
the contrary these organizations may not want their names stored in any card
since they would like to access cards anonymously without being identified. If
cards indeed store their names, a holder (or an adversary) can of course extract
these names from the verifier’s program in his own card, which frustrates the
anonymity of their accesses. Thus, to realize the anonymity for them, it is very
natural to ask if we can obfuscate the verifier’s program (incorporated with
clients’ names and public inputs) before an ID card is issued officially such
that any holder or adversary cannot find this information from the card. More

A Note on (Im)Possibilities of Obfuscating Programs 295

discussion of this motivation can be referred to Section 5.1. In this paper we are
interested in finding the answers to these questions, and correspondingly achieve
the following results.

1.1 Our Results

As we see, most known works on obfuscation focused upon non-interactive pro-
grams, while the main objects in this paper, i.e. provers and verifiers, are interac-
tive. Nevertheless, there are still some works focused upon interactive programs.
For instance, [23] presented some definitions for interactive deterministic pro-
grams. In this paper we first discuss how to combine the known definitions with
the probabilistic property of provers and verifiers to define obfuscation for in-
teractive probabilistic programs. We then present two definitions. Both of these
two definitions require a functionality property and a virtual black-box (VBB)
property. They differs mainly in the characterization of the VBB property.

The first one adopts the average-case virtual black-box (ACVBB) requirement
introduced by [25,26], which is proposed for investigating obfuscation for provers.
Note that to use zero-knowledge proofs of knowledge, a general paradigm is that
a trusted party first samples a random hard public input (i.e. instance) and a
witness for each prover, which then keeps its witness secret, and later a prover
proves to a verifier the knowledge of the witness. Since the public input and
witness are chosen randomly, it is natural to require that the prover’s program
with the random public input and witness hardwired satisfies ACVBB only. For
this consideration it is reasonable to adopt this definition when investigating the
obfuscation for provers.

The second definition adopts the worst-case VBB requirement introduced by
[7,8,29], which is proposed for investigating obfuscation for verifiers. In this case,
our goal is to hide all provers’ names and public inputs in the verifier’s program.
Although the public inputs are usually randomly chosen, provers’ names are not
random. Thus the worst-case VBB requirement is more suitable when investi-
gating obfuscation for verifiers.

Based on the ACVBB definition, we achieve some impossibilities of obfuscat-
ing honest provers of zero-knowledge and witness-indistinguishable (WI) proofs
of knowledge. These results state that the prover with a public input and its
witness hardwired of any zero-knowledge (or witness-indistinguishable) proof of
knowledge of efficient prover’s strategy is unobfuscatable if computing a witness
(or a second witness) for the public input is hard. Moreover, we extend these
results to t-composition setting and achieve similar results. These results imply
that if an adversary obtains the prover’s code (e.g. stealing a smartcard) he can
indeed learn some knowledge beyond its functionality from it no matter what
measures the card designer may use for resisting reverse-engineering. Note that
this result doesn’t contradict the general obfuscation in [20] since [20] assumed
the tamper-proof hardware.

Based on the worst-case VBB definition, we provide a possibility of obfus-
cating the honest verifier (with any public input hardwired) of Blum’s 3-round
zero-knowledge proof for Hamilton Cycle [5]. We construct an obfuscation for

296 N. Ding and D. Gu

the verifier, which implies that even if an adversary obtains the verifier’s code,
he cannot learn any knowledge, e.g. a prover’s name, from it. Thus we realize the
anonymity of the prover’s access to the verifier and thus solve the issue of privacy
protection. We further present some second-level considerations, e.g. achieving
negligible soundness error, extending the possibility to multi-prover setting etc.
Lastly, we point out that the approach for obfuscating the verifier is not suitable
for obfuscating verifiers of other known zero-knowledge protocols e.g. Goldreich
et al.’s proof for Graph 3-colorability [18]. Note that this result doesn’t contradict
the impossibility in [23], which showed a deterministic cheating verifier (without
any public input hardwired) of some non-black-box protocol is unobfuscatable,
while our possibility says that the honest verifier of Blum’s (black-box) proof
with any public input hardwired is obfuscatable and the obfuscation is still a
PPT algorithm.

1.2 Organizations

The rest of the paper is arranged as follows. In Section 2, we present the prelimi-
naries for this paper. In Section 3 we present the two definitions of obfuscation for
interactive probabilistic programs. In Section 4 we present the impossibilities of
obfuscating honest provers of zero-knowledge and witness-indistinguishable pro-
tocols. In Section 5 we present an obfuscation for the honest verifier of Blum’s
proof for Hamilton Cycle.

2 Preliminaries

For space limitations we assume familiarity with the notions of negligible func-
tions (we use neg(n) to denote an unspecified negligible function), computational
indistinguishability, interactive proofs [21] and arguments [6], and show the def-
initions of the following notions.

2.1 Point Functions and Their Obfuscation

A point function, Ix : {0, 1}|x| → {0, 1}, outputs 1 if and only if its input
matches x, i.e., Ix(y) = 1 iff y = x, and outputs 0 otherwise. Let In denote the
family of all Ix where |x| = n. [7,8,29] showed some constructions of obfuscation
for In based on some non-standard complexity assumptions w.r.t. the following
definition.

Definition 1. Let F be any family of functions. A PPT, O, is called an obfus-
cator of F , if:

Approximate Functionality. For any f ∈ F : Pr[∃x,O(F)(x) �= F (x)] is
negligible, where the probability is taken over all choices of O’s coins.

Polynomial Slowdown. There is a polynomial p such that, for any f ∈ F ,
O(F) runs in time at most p(Tf), where Tf is the worst-case running time of f .
VBB. For any non-uniform PPT A and any polynomial p, there exists a non-
uniform PPT S such that for any f ∈ F and sufficiently large n: |Pr[A(O(f)) =
1]− Pr[Sf (1n) = 1]| ≤ 1/p(n).

A Note on (Im)Possibilities of Obfuscating Programs 297

2.2 Zero-Knowledge

Zero-knowledge was introduced by [21]. Usually, it is defined as that the view
of any verifier in a real interaction can be simulated by the simulator. Here we
adopt an equivalent definition for this paper which says the verifier’s output in
a real interaction can be simulated by the simulator, as follows.

Definition 2. Let L = L(R) be some language and let (P, V) be an interac-
tive proof or argument for L. We say (P, V) is zero-knowledge if there exists
a probabilistic polynomial-time algorithm, called simulator, such that for every
polynomial-sized circuit V ∗ and every (x,w) ∈ R, the following two probability
distributions are computationally indistinguishable:
1. V ∗’s output in the real execution with P (x,w).
2. The simulator’s output on input (x, V ∗).

Concurrent zero-knowledge [14] is a generalization of zero-knowledge, which says
that for any verifier taking part in multiple sessions there exists a simulator which
output is indistinguishable from the verifier’s output in the multiple sessions. The
detailed definition can be found in [14].

2.3 Witness Indistinguishability

Witness indistinguishability is a weaker property than zero-knowledge, intro-
duced by [16]. In a witness indistinguishable proof system if both w1 and w2 are
witnesses that x ∈ L, then it is infeasible for the verifier to distinguish whether
the prover used w1 or w2 as auxiliary input. We adopt the following definition.

Definition 3. Let L = L(R) be some language and (P, V) be a proof or argu-
ment system for L. We say that (P, V) is witness indistinguishable if for any
polynomial-sized circuit V ∗, any x,w1, w2 where (x,w1) ∈ R and (x,w2) ∈ R,
it holds that V ∗’s output in the interaction with P (x,w1) is computationally
indistinguishable from V ∗’s output in the interaction with P (x,w2).

It is shown in [16] that witness indistinguishability is preserved under concurrent
composition.

2.4 Proofs of Knowledge

We adopt the following definition of proofs of knowledge shown in [15,3].

Definition 4. Let L = L(R) and let (P, V) be a proof (argument) system for
L. We say that (P, V) is a proof (argument) of knowledge for L if there ex-
ists a probabilistic polynomial-time algorithm E (called the knowledge extractor)
such that for every polynomial-sized prover P ∗ and for every x ∈ {0, 1}n, if we
let p′ denote the probability that V accepts x when interacting with P ∗, then
Pr[E(P ∗, x) ∈ R(x)] ≥ p′(n)− neg(n).

298 N. Ding and D. Gu

3 Definitions of Obfuscation for Interactive Probabilistic
Programs

In this section we show the two definitions of obfuscation for interactive proba-
bilistic programs. Basically, these definitions follow the paradigm in the known
definitions by requiring the functionality and the (AC)VBB properties. In Sec-
tion 3.1 we present the considerations in formalizing these two properties and in
Section 3.2 we give the definitions.

3.1 Considerations

We first show our consideration in formalizing the functionality property. Re-
call that [23] presented some definitions for interactive deterministic programs,
which require that an obfuscation of a program is of same functionality with
it. First notice that an interactive program, on a message sequence, may gen-
erate a communicated message and a local output (if there is no such message
or output, let it be empty). Thus the functionality property in [23] says that
on input a same message sequence, the program and its obfuscation generate
same communicated messages and same local outputs (if the message sequence
is illegal, the communicated message and local output can be ⊥).

For interactive probabilistic programs, we could also adopt a probabilistic
variant of this functionality property. That is, we could require that on input
a fixed same message sequence, a program and its obfuscation should generate
identically distributed communicated messages and identically distributed local
outputs. Actually, this is indeed the main idea in formalizing the functionality
property in this work. But we relax it in the two definitions in different ways.

First, we can relax the exact identical distribution requirement to a com-
putational indistinguishability requirement. Informally, let f ∈ F denote an
interactive probabilistic program and assume O is a possible obfuscator for F .
Our relaxed requirement says that for any PPT machine M , in the executions
of M<f> and M<O(f)>, the outputs of M in the two executions are compu-
tationally indistinguishable and f ’s and O(f)’s local outputs (which M cannot
access) are also computationally indistinguishable. We will adopt this relaxation
in Definition 6 for investigating obfuscation for provers, which can make our
impossibilities even stronger.

Here < f > (resp. < O(f) >) denotes the (probabilistic) functionality of f
(resp. O(f)) and any machine cannot access its internal state (including coins).
The notation of M 〈f〉 (resp. M<O(f)>) denotes a joint computation between M
and f (resp. O(f)). We introduce this new notation in order to distinguish it
from some known notations in literature, e.g. AI where A is a PPT machine and
I is a point function, or S′V where S′ is a simulator for proving zero-knowledge
and V is a verifier, or EP where E is a knowledge extractor and P is a valid
prover. The formal definition of this joint computation is shown in Definition 5.

Second, we can also adopt a similar relaxation in e.g. [8] by requiring that
O(f) and f satisfy the identical distribution requirement except for a negligible

A Note on (Im)Possibilities of Obfuscating Programs 299

fraction of O’s coins, i.e. the approximate functionality (for interactive prob-
abilistic programs). Actually, we will adopt this relaxation in Definition 7 for
investigating obfuscation for verifiers.

We now turn to our consideration in formalizing the (AC)VBB property.
Informally, we require that for any adversary A, there is a PPT simulator S
satisfying that S<f> can output a fake program such that A cannot tell it from
O(f) (w.r.t. ACVBB in Definition 6) or what A can learn from O(f) is also
computable by S<f> (w.r.t. VBB in Definition 7). Notice that here we also
employ the new notation of S<f>. Thus all that is left is to characterize the
joint computation of S<f>,M<f>,M<O(f)>, as follows.

We illustrate this w.r.t. S<f> and then M<f>,M<O(f)> can be defined sim-
ilarly. This is actually the issue how to characterize the black-box access to f .
Notice that if f were deterministic, f ’s response to a same S’s query, which
can be either a message or a message sequence, would be always same. But the
situation becomes complex if f is interactive and probabilistic. We think that
a reasonable characterization that S can access oracle f which conforms to the
intuition of black-box access to f is as follows. First, S can play a consecutive
interaction with f , as a real interaction. In each step, f on receiving a new
message, computes the response and the local output using fresh coins. S can
either play with f throughout the whole interaction, or cancel the interaction
by sending an invalid message to f which then aborts the current interaction.
Notice that f is a stateful machine in a consecutive interaction. By stateful, we
mean that f can preserve its current internal state for later computation. When
this interaction is finished or aborted, f cleans its internal state and is reset to
the initial state. Second, after one interaction, S may invoke a new interaction
with f , which is also reset to the initial state and computes the message with
the fresh coins for its first step.

(We remark that the access of S to f in S<f> should be distinguished from the
access of a black-box simulator for proving zero-knowledge to a verifier. Notice
that this simulator is allowed to obtain the verifier’s code and the term of “black-
box” only means that the simulator doesn’t reverse-engineering the verifier, but
it can access the verifier’s internal state and accordingly the simulator can rewind
the verifier etc. It can be seen that such kind of access requires the knowledge
of the verifier’s program instead of the knowledge of the verifier’s input-output
behavior only. In S<f>, S cannot behave like this.)

Thus we can see in each S’s access to f , S should specify the way it tries to
access f . For simplicity of characterizing S<f>, we assume that in each access
S should additionally send a bit b indicating if this access is for a consecutive
step of the current interaction or for the first step of a new interaction. More
concretely, each S’s access to f consists of a message m and a bit b. If m is for
a consecutive step of the current interaction, S resets b = 0 and requests that
f responds to m based on its current internal state. If m is for the first step of
a new interaction (m can be arbitrary if it is f that sends the first message), S
sets b = 1 and requests that f responds to m where f is reset to the initial state.
Formally, our characterization of S<f> is shown as follows.

300 N. Ding and D. Gu

Definition 5. (characterization of S<f>) For any two interactive probabilistic
machines S, f , S<f> refers to the following joint computation between S and f :
S starts a local computation (with an input) and then during the computation it
needs to access f for responses. Each S’s access to f consists of a message m
and a bit b ∈ {0, 1}. On receiving (m, b), f responds as follows:

1. if b = 0: f continues the interaction with it current internal state, computes
the message corresponding to m and the local output where it tosses fresh
coins if needed, and responds with the message. If this interaction is finished
after this step, f is reset to the internal state.

2. if b = 1: f is reset to the internal state and computes the message corre-
sponding to m and the local output where it tosses fresh coins if needed, and
responds with the message. If this interaction is finished after this step, f is
reset to the internal state.

3. if b /∈ {0, 1}: f responds with ⊥ and is reset to the internal state.

When receiving f ’s response, S proceeds to its local computation until the next
access to f .

3.2 Definitions

Now we present our definitions. Since our objects in this work are provers and
verifiers which are programs with some inputs hardwired, it is convenient to
use circuits to represent such programs. So we present the definitions w.r.t.
circuits explicitly, in which the meaning of M<f>,M<O(f)>, S<f> conforms
to Definition 5. First, we present the definition w.r.t. ACVBB which basically
follows the known definitions in [25,26], as Definition 6 shows.

Definition 6. Let Fn be a family of interactive probabilistic polynomial-size cir-
cuits. Let O be a PPT algorithm which maps (description of) each f ∈ Fn to
a circuit O(f). We say that O is an obfuscator for Fn w.r.t. distribution βn iff
the following holds:

Computational Functionality: for random f ∈ Fn chosen from distribution
βn, for a random sample of O(f), for any PPT machineM , in the two executions
of M<f> and M<O(f)>, M ’s outputs are computationally indistinguishable and
f ’s and O(f)’s local outputs are also computationally indistinguishable.

ACVBB: there is a PPT simulator S such that for each non-uniform PPT
D and random f ∈ Fn chosen from distribution βn, |Pr[D(O(f)) = 1] −
Pr[D(S<f>(1n)) = 1]| = neg(n), where the probabilities are taken over all
choices of f and O’s, S’s and (the oracle) f ’s coins.

Definition 6 is proposed for establishing our impossibilities. We could further
require that D is given the access to oracle f , as [25,26] adopted. This weaker
handling makes the impossibilities stronger. On the other hand, to show the
possibility of obfuscating verifiers, we follows [7,8,29] to adopt the following
definition, which requires the VBB property holds for each f rather than for a
random f .

A Note on (Im)Possibilities of Obfuscating Programs 301

Definition 7. Let Fn, O be as Definition 6 shows. We say that O is an obfus-
cator for Fn iff the following holds:

Approximate Functionality: for each f ∈ Fn, O(f) and f are of equivalent
functionality except for a negligible fraction of O’s coins.

VBB: for each non-uniform PPT A and each polynomial p, there is an non-
uniform PPT S such that for each f ∈ Fn, |Pr[A(O(f)) = 1]−Pr[S<f>(1n) =
1]| < 1/p(n), where the probabilities are taken over all choices of A’s, S’s and
O’s coins.

As shown in [28], the above two definitions are incomparable. To use zero-
knowledge proofs of knowledge to realize identification, a general paradigm is to
first sample a random hard instance and a witness for each prover, which then
keeps its witness secret. Thus when investigating the obfuscation for provers, it is
natural to adopt Definition 6. On the other hand, when investigating the obfus-
cation for verifiers, our goal is to hide the instance and the client’s name where
the latter is not random. Thus Definition 7 is more suitable in this scenario.

4 Impossibilities of Obfuscating Provers

In this section we address the question whether or not the honest prover’s algo-
rithm incorporated with a public input and a witness is obfuscatable. The results
in this section basically say that for a zero-knowledge (or WI) proof or argument
of knowledge which uses an efficient prover’s strategy, the honest prover is unob-
fuscatable w.r.t. Definition 6 under some hardness requirements. In Section 4.1
we present the negative results. In Section 4.2 we extend these negative results
to t-composition setting.

4.1 Impossibilities for Zero Knowledge and Witness
Indistinguishability

We now present the impossibilities for obfuscating provers of zero-knowledge and
WI proofs of knowledge. We first present the impossibility for zero-knowledge.
Assume (P, V) is a zero-knowledge proof or argument of knowledge for a relation
R and P admits an efficient strategy if given (x,w) ∈ R. Moreover, we require
that there is a hard-instance sampling algorithm that can randomly select a hard
instance x and a witness w such that given x it is hard to compute a witness for
x. More precisely, we have the following definition.

Definition 8. (hard-instance sampler) A PPT machine SamR is called a hard-
instance sampler for relation R, if for any (non-uniform) PPT A, Pr[SamR(1n)→
(x,w), (x,w) ∈ Rn : A(x) → w′ s.t. (x,w′) ∈ Rn] = neg(n), where Rn denotes
the subset of R in which all instances are of length n and SamR(1n)’s output is
always in Rn, and the probability is taken over all choices of SamR’s and A’s
coins.

302 N. Ding and D. Gu

A probability distribution βRn over Rn is called a distribution induced by
SamR, if letting ξ denote the random variable conforming to βRn , for each
(x,w) ∈ Rn, Pr[ξ = (x,w)] is defined as Pr[SamR(1n) = (x,w)], where the
latter is taken over all choices of SamR’s coins.

For instance, for an arbitrary one-way function f let Rf denote {(f(x), x)} for all
x. Then a hard-instance sampler for {(f(x), x)} can be the one simply choosing
x0 ∈ {0, 1}n uniformly and outputting (f(x0), x0). Usually, it is unnecessary to
calculate βRn explicitly. For instance, in the case of Rf , we don’t need to calcu-
late the induced distribution of (f(x0), x0) generated by the sampler explicitly.
Actually, we only need to be ensured that given f(x0) it is hard to compute a
x′ satisfying f(x′) = f(x0).

For (x,w) ∈ Rn, let P (x,w) denote P ’s program with (x,w) hardwired. Let
P (X,W) denote the family of all P (x,w) for all (x,w) ∈ Rn. Our first impossi-
bility says that P (X,W) cannot be obfuscated, as the following claim states.

Claim 1. Assume (P, V) is a zero-knowledge proof or argument of knowledge
for relation R. Assume SamR is a hard-instance sampler for R and βRn is the
probability distribution over Rn induced by SamR. Then P (X,W) is unobfuscat-
able w.r.t. βRn under Definition 6.

Proof. Suppose the claim is not true. This means that there exists an obfuscator
O for P (X,W). For (x,w)←R SamR(1n) (i.e. choose (x,w) conforming to βRn),
let Q denote O(P (x,w)). Then there exists a PPT simulator S satisfying that for
any polynomial-sized distinguisher D, |Pr[D(Q) = 1]−Pr[D(S<P (x,w)>(1n)) =
1]| = neg(n). (Here we assume S can obtain x by querying P (x,w) with a spe-
cific command. We do this for the consideration that we are trying to provide
negative results. If S given x cannot satisfy ACVBB, then S without x by no
means satisfies ACVBB.) Since Q is an obfuscation for P (x,w), Q can con-
vince V that x ∈ L(R) with overwhelming probability for every true x or V
rejects x with overwhelming probability for every false x. Since |Pr[D(Q) =
1]−Pr[D(S<P (x,w)>(1n)) = 1]| = neg(n), we have that S’s output is also a valid
prover’s program which behaves indistinguishably from Q.

Now let us focus on S<P (x,w)>(1n). First, according to Definition 5, we have
that S can perform arbitrary interaction (including some half-baked executions)
with P (x,w). Since (P, V) is zero-knowledge, the interaction can be simulated by
the simulator for proving zero-knowledge of (P, V). Let S′ denote the simulator
for proving zero-knowledge of (P, V). Then for S (now viewed as a verifier) and
x, S′ on input S’s code and x can simulate S’s output with the interaction with
P (x,w) (S′ can send x to S). That is, S′’s output is indistinguishable from S’s
output. Let Q′ denote S′’s output.

Thus, we can construct a PPT algorithm, denoted D(S′), which can compute
a witness for x ∈ L(R) with overwhelming probability. D(S′) works as follows.
On input x generated by SamR(1n), D(S′) runs S′(x) (w.l.o.g. assume S′ having
S’s code hardwired) to generate Q′. Then since (P, V) is a proof or argument
of knowledge, D runs the knowledge extractor E of (P, V) on input Q′ to out-
put a witness. Since Q′ is indistinguishable from S’s output in the execution

A Note on (Im)Possibilities of Obfuscating Programs 303

of S<P (x,w)>(1n), which is indistinguishable from Q, Q′ is also a valid prover
program which can convince V x ∈ L(R) with overwhelming probability. Thus
the probability that E on input Q′ succeeds in generating a witness for x is over-
whelming. This contradicts the assumption on SamR. This absurdity is caused
by the hypothesis that P (X,W) is obfuscatable. So the claim follows.

��
Now let us consider the case that (P, V) is not zero-knowledge but witness-
indistinguishable. Is P (X,W) still unobfuscatable? Actually, we cannot show
this fact. But if each x has at least two witnesses and assume that for any PPT
A, given (x,w) ←R SamR(1n), Pr[SamR(1n) → (x,w), (x,w) ∈ Rn : A(x,w) →
w′ s.t. (x,w′) ∈ Rn, w

′ �= w] = neg(n), where the probability is taken over all
choices of SamR’s and A’s coins, we have that P (x,w) is indeed unobfuscatable.
We say that SamR is now second-witness resistant. For instance, let f, g denote
two one-way permutations,Rf,g denote {((y1, y2), x)) : f(x) = y1 or g(x) = y2.}.
A second-witness resistant sampler for Rf,g can simply choose x1, x2 ∈R {0, 1}n
and output ((f(x1), g(x2)), x1)). Any A on input ((f(x1), g(x2)), x1)) cannot
output x2 with non-negligible probability. Thus the impossibility for WI is shown
as follows.

Claim 2. Assume (P, V) is a WI proof or argument of knowledge for relation R
and each x in L(R) has at least two witnesses. Assume SamR is a second-witness
resistant sampler for R and βRn is the probability distribution over Rn induced
by SamR. Then P (X,W) is unobfuscatable w.r.t. βRn under Definition 6.

Proof. Suppose that P (X,W) is obfuscatable. Then there exists an obfuscator
O for P (X,W). For (x,w) ←R SamR(1n) let Q denote O(P (x,w)). Then there
exists a PPT simulator S such that for any polynomial-sized distinguisher D,
|Pr[D(Q) = 1]− Pr[D(S<P (x,w)>(1n)) = 1]| = neg(n).

Let Q′ denote S<P (x,w)>(1n)’s output. Since Q is an obfuscation for P (x,w),
the extractor E of (P, V) on input Q’s description can output a witness for
x ∈ L(R) with non-negligible probability. By the indistinguishability of Q and
Q′, we have that E on input Q′’s description can also output a witness for
x ∈ L(R) with non-negligible probability.

Then we can show that there exists a verifier which can tell which witness P
is using. The verifier runs as follows. It adopts S’s strategy to interact with P
and finally output a program, denoted Q′. Then it adopts E’s strategy on input
Q′ to extract a witness and output it. Since SamR is second-witness resistant,
we claim that this witness is w. Otherwise, we can construct an A which can
violate the second-witness resistance. That is, on input (x,w) ←R SamR(1n),
A constructs P (x,w) and adopts S’s strategy with P (x,w) to generate Q′ and
then runs E with input Q′ to output a witness. If this witness is not x, the
second-witness resistance of SamR is violated.

Thus it can be seen that the verifier’s outputs in different interactions where
P uses different witnesses for x ∈ L(R) are obviously distinguishable. However,
notice that any sequential repetitions of (P, V) are still witness-indistinguishable.
It is a contradiction. Thus the claim follows.

��

304 N. Ding and D. Gu

Note that the result in this subsection requires the proof of knowledge property
for (P, V). Then what about those proof systems without the proof of knowledge
property? We leave this an interesting question in future works.

4.2 Extending the Impossibilities to t-Composition Setting

Definition 6 defines that S given access to f can output a fake program which
is indistinguishable from the true obfuscated program. What about the case
that the distinguisher obtains multiple such programs? To address this question,
[8,9,4] introduced the notion of t-composeability of obfuscated programs, which
requires that ACVBB or VBB holds in t-composition setting. Basically, an ob-
fuscation w.r.t. t-composition setting requires that even if the distinguisher can
obtain t obfuscated programs, he cannot distinguish them from t fake programs
generated by S given access to the t programs. We now follow [8,9,4] to extend
Definition 6 to t-composition setting as follows.

Definition 9. Let Fn,O, V be those in Definition 6. We say that O is an obfus-
cator for Fn w.r.t. distribution βn in t-composition setting for any polynomial
t(n) iff the same conditions appeared in Definition 6 hold except that the ACVBB
property is now modified as follows:

ACVBB: there is a uniform PPT oracle simulator S such that for each non-
uniform PPT D, and randomly chosen f1, · · · , ft conforming to distribution βn,
Qi = O(fi) for all i, |Pr[D(Q1, · · · , Qt) = 1] − Pr[D(S<f1>,···,<ft>(1n, t)) =
1]| = neg(n), where the probabilities are taken over all choices of S’s coins and
Qi for all i, and the access of S to each fi conforms to Definition 5.

The result in this subsection says that if (P, V) is concurrent zero-knowledge or
witness-indistinguishable, then the result in the previous subsection still holds.

Claim 3. Assume (P, V) is a concurrent zero-knowledge proof or argument of
knowledge for R. Assume SamR is a hard-instance sampler for R and βRn is the
probability distribution over Rn induced by SamR. Then P (X,W) is unobfuscat-
able w.r.t. βn under Definition 9.

Proof (Proof Sketch:). The proof is similar to that of Claim 1. The route for
proving this claim is that if there exists a simulator S which can output t indistin-
guishable programs, then it is easy to compute a witness for xi ∈ L(R). The key
point in the proof is that in the computation of S<P (x1,w1)>,···,<P (xt,wt)>(1n, t)
S can interact with all P (xi, wi) for all i and it can adopt any scheduling’s
strategy for all sessions, so the computation of S<P (x1,w1)>,···,<P (xt,wt)>(1n, t)
is actually a concurrent interaction between S and these P (xi, wi). Then using
the similar proof and the simulator for proving concurrent zero-knowledge, we
can also construct a PPT algorithm which computes a witness for xi. It is a
contradiction. The claim follows. ��

Claim 4. Given the same conditions in Claim 2, P (X,W) is unobfuscatable
w.r.t. βRn under Definition 9.

A Note on (Im)Possibilities of Obfuscating Programs 305

Proof (Proof Sketch:). The proof is similar to that of Claim 2. The route for
proving this claim is that if there exists a simulator S which can output t indis-
tinguishable programs, then there exists a verifier interacting with P (xi, wi) for
all i which can tell the witnesses that t copies of P are using. Notice that witness
indistinguishability can be preserved in concurrent setting. The construction of
the verifier can be referred to the proof of Claim 2. The claim follows. ��

5 Possibilities of Obfuscating Verifiers

In this section we turn to the possibility of obfuscating verifiers of zero-knowledge
protocols. The result in this section is that we provide an obfuscation for the
honest verifier of Blum’s proof for HC w.r.t. Definition 7. In Section 5.1 we
present the privacy issue and the motivation of obfuscating verifiers aroused
by this issue in detail. In Section 5.2 we present an obfuscation for the honest
verifier of Blum’s proof for HC which can hide the privacy information (i.e.
public inputs).

5.1 Motivation for Obfuscating Verifiers

To run a zero-knowledge protocol, the prover and verifier first need to know
the public input. Then the prover proves to the verifier that the public input is
true or he knows a witness for it. Usually, the public input is not a secret and
both the parties as well as adversaries can obtain it. The security requirements
of zero-knowledge protocols don’t concern the secrecy of public inputs either.
Thus, we ask if public inputs to zero-knowledge protocols are really not secrets
and thus we don’t need to hide or protect them at all.

Consider the scenario of identification. As we know, zero-knowledge proofs of
knowledge are a secure way to implement identification. Briefly, an identification
scheme consists of a trusted party and multi-clients (i.e. provers) and multi-
servers (i.e. verifiers). The trusted party generates a verifiable public input (a.k.a.
statement or instance, e.g. a directed graph or a modular square) and a witness
(e.g. a Hamilton cycle or a modular square root) for each client. A client’s name
and its public input constitute a record and the trusted party maintains all
records. Each client stores his witness secretly and when he needs to identify
himself to a server, he proves to the server the knowledge of the witness via
the identification scheme. It is obvious that the server needs to obtain his public
input firstly. Actually, it has two options in obtaining this public input as follows.

One is that the server queries the trusted party online with a client’s name
for his public input each time the client needs to identify himself. But this online
method is quite impractical or even impossible in some applications (consider
the case that there are some secret governmental organizations that the trusted
party cannot publish their names and public inputs, and the case that the trusted
party cannot be available in many offline applications). The other one is that the
server stores all clients’ names and public inputs locally (incorporated in verifier’s
program) and when a client invokes an identification procedure by informing the

306 N. Ding and D. Gu

server his name, the server can find the corresponding public input and proceeds
with the procedure.

Although the second method is practical, there is a risk for leaking clients’
privacy. That is, if an adversary can control a server absolutely, he can gain all
clients’ names from the verifier’s program and thus the privacy of these clients
leaks. First consider the case of medical systems. If an adversary controls some
medical server, which clients are usually patients, then he may extract all pa-
tients’ names in this server and thus these patients’ privacy leaks.

Second, consider the case of ID cards. As we see, ID cards are wildly used
in our society. Some secret governmental organizations may need to read data
from cards for some secret goals. Before their card readers can read data from a
card, they need to pass identification procedures. Thus, by adopting the second
method, cards store all legal clients’ names and their public inputs. However,
these governmental organizations may not want their names stored in cards
since they would like to access them anonymously without being identified. Thus
a adversarial card-holder can of course extract their names from the verifier’s
program in his own card, which frustrates the anonymity of their accesses.

Thus, clients’ names and public inputs should be protected in some applica-
tions. In both of the two cases above, even if a server encrypts clients’ names
and public inputs, adversaries can first extract the encryption key in the server
when they control it and then perform decryption to obtain the desired data.
This shows to us that it is important to obfuscate verifiers’ programs to hide all
information, especially, clients’ names and public inputs. In the next subsection,
we will provide a desired verifier’s strategy of Blum’s protocol which can solve
this privacy issue.

5.2 Obfuscation for Verifiers

In this subsection we provide an obfuscation for the honest verifier of Blum’s
protocol [5] while keeping the prover’s strategy unchanged. Before proceeding to
the obfuscation, we first explain why to choose Blum’s proof to demonstrate the
possibility of obfuscating verifiers. Basically, when the question of obfuscating
verifiers is proposed, we would like to first provide a (theoretical) solution and
then propose some practical solutions (as the research community usually does
for other problems). Currently we can only present such a possibility for the
verifier of Blum’s proof. Moreover, we remark in the end of this section that the
approach in obfuscating the verifier of Blum’s proof cannot be directly used for
obfuscating verifiers of other protocols.

For each directed graph G, we use M to denote the entries of G’s adjacency
matrix. For eachM , let IM denote the point function that on inputM outputs 1
or outputs 0 otherwise. Let OIM denote an obfuscation of IM w.r.t. Definition 1.

We assume familiar with Blum’s protocol. For convenience of constructing ob-
fuscation, we require that the verifier of Blum’s proof lastly sends its
accept/reject decision to the prover. In the following we present the basic ver-
sion of our modified protocol in detail and after that we present some second-
level considerations such as reducing soundness error via parallel repetitions or

A Note on (Im)Possibilities of Obfuscating Programs 307

Prover’s input: a directed graph G = (V, E) with n = |V |; C: a directed Hamilton
cycle, C ⊂ E, in G.

Verifier’s input: OIM : an obfuscation of point function IM where M is the entries of
the adjacency matrix of G.

Step P1: The prover selects a random permutation π of the vertices V and computes
a graph G′ = (V ′, E′) where V ′ = π(V) and E′ consists of those edges (π(i), π(j))
for each (i, j) ∈ E. Then it commits to the entries of the adjacency matrix of G′.
That is, it sends an n-by-n matrix of commitments such that the (π(i), π(j)) entry is
a commitment to 1 if (i, j) ∈ E and is a commitment to 0 otherwise.

Step V2: The verifier uniformly selects σ ∈ {0, 1} and sends it to the prover.

Step P3: If σ = 0, then the prover sends π to the verifier along with the revealing
(i.e., pre-images) of all commitments. Otherwise, the prover reveals to the verifier only
the commitments to entries (π(i), π(j)), with (i, j) ∈ C.

Step V4: (This step differs from the original construction.) If σ = 0, then the verifier
computes the inverse permutation of π, denoted π−1, and computes H = π−1(G′). Then
it inputs the entries of the adjacency matrix of H to O(IM). If O(IM) returns 1, then
the verifier accepts or else rejects. If σ = 1, the verifier simply checks that all revealed
values are 1 and that the corresponding entries form a simple n-cycle. (Of course, in
both cases, the verifier checks that the revealed values do fit the commitments.) The
verifier accepts if and only if the corresponding condition holds. Lastly, the verifier
sends its accept/reject decision to the prover.

Protocol 1 . The obfuscated verifier for Blum’s proof for HC

sequential repetitions of the basic protocol, extending the protocol to multi-
prover setting, adding provers’ names in the verifier’s program.

Our obfuscated verifier is shown in Protocol 1. It can be first seen that the
verifier doesn’t receive G as input and instead its input is OIM . Second, our
verifier differs from the original verifier in [5] is in Step V4. Third, ensured by
Claim 5, this protocol is also a zero-knowledge proof of knowledge. If it is used for
identification, the prover needs to send its name to the verifier before invoking
the identification procedure. But now we ignore the step of prover’s sending its
name and accordingly, we only need to refer to point function IM . We will later
show that when considering that step, we only need to slightly modify the point
function by adding prover’s name.

Let V er denote the honest verifier of Blum’s protocol, V er(G) denote V er
having G hardwired. Let V er′ denote the verifier in Protocol 1, V er′(OIM) de-
note V er′ having OIM hardwired (satisfying that OIM ’s description can be read
from V er′(OIM)’s code). Then we have the following claim.

Claim 5. Assume OIM is an obfuscation of point function IM w.r.t. Defini-
tion 1. Then V er′(OIM) is an obfuscation of V er(G) w.r.t. Definition 7.

Proof. We now show that the two properties in Definition 7 can be satisfied.

308 N. Ding and D. Gu

Approximate Functionality. The difference between V er′(OIM) and V er(G)
lies in Step V4. So we only focus on the two verifiers’ outputs in Step V4. By
[5] and Protocol 1, in the case of σ = 1, the two verifiers behaves identically.
Thus we only need to show that their outputs are also identical in the case of
σ = 0 in the following. Due to [5], in this case V er(G) checks if G′ and G are
isomorphic via π. If they are isomorphic, V er(G) accepts or rejects otherwise.
On the other hand, for V er′(OIM), due to Protocol 1 if G′ and G are isomorphic
via π, then H = π−1(G′) is indeed G. So by Definition 1, except for negligible
probability (in generating OIM), OIM on input the adjacency matrix of H should
output 1. Thus V er′(OIM) accepts. If the two graphs are not isomorphic, both
the two verifiers reject, except for negligible probability. Thus, the approximate
functionality property is satisfied.

VBB. To establish the VBB property, we need to show that for each A and each
polynomial p(n), there exists a simulator S satisfying that |Pr[A(V er′(OIM)) =
1] − Pr[S<V er(G)>(1n) = 1]| < 1/p(n) where n = |V |. We can see that for
A, there exists a PPT A′ such that A(V er′(OIM))’s output is identical to A′’s
output on input O(IM). Thus Pr[A(V er′(OIM)) = 1] = Pr[A′(OIM) = 1].

Since OIM is an obfuscation of IM w.r.t. Definition 1, for A′ and 2p(n), there
exists a simulator S′ satisfying that |Pr[A′(OIM) = 1] − Pr[S′IM (1n) = 1]| <
1/2p(n). We now turn to construct the desired S such that |Pr[S′IM (1n) = 1]−
Pr[S<V er(G)>(1n) = 1]| < 1/2p. S works as follows. It emulates S′’s computation
and is responsible for answering all S′ queries. During the emulation, for each
S′’s query S adopts the following strategy. For an arbitrary S′’s query M ′, Let
GM ′ denote the graph corresponding to M ′ (if M ′ is an invalid encoding of
the adjacency matrix of a graph of n vertexes, S simply responds with 0). S
adopts the prover’s strategy of Blum’s protocol to commit to the entries of the
adjacency matrix of a random isomorphism to GM ′ and sends the commitments
to its oracle V er(G). Then V er(G) responds with a random bit σ. If σ = 0, then
S sends the permutation and opens all the commitments to V er(G). If V er(G)
accepts, S knows that GM ′ is identical to G and then responds to S′ with 1.
Otherwise, S responds to S′ with 0. If σ = 1, S aborts the current interaction
and re-interacts with V er(G) from the beginning. We allow S to perform the
re-interactions at most n times.

It can be seen that S runs in polynomial-time and the probability that σ is
always 1 in n interactions is 2−n (notice that V er is the honest verifier). On
the occurring that there exists an interaction in which σ = 0, S can respond
to S with the correct answer. Thus |Pr[S′IM (1n) = 1] − Pr[S<V er(G)>(1n) =
1]| = 2−n < 1/2p. Thus, |Pr[A′(OIM) = 1] − Pr[S<V er(G)>(1n) = 1]| < 1/p.
Namely, |Pr[A(V er′(OIM)) = 1] − Pr[S<V er(G)>(1n) = 1]| < 1/p. Thus the
VBB property is satisfied. Taking the above two conclusions, we have the claim
follows.

��
Claim 5 ensures that even if an adversary obtains V er′(OIM)’s description to-
tally, he cannot learn anything from this program beyond its functionality, e.g.
the prover’s public input. We remark that to protect some provers’ privacy in

A Note on (Im)Possibilities of Obfuscating Programs 309

practice, the trusted party should keep these provers’ names and public inputs
secret, or else an adversary may obtain these records easily and input each of
them to OIM one by one to locate the prover. Now we present several second-level
considerations for Protocol 1 as follows.

Achieving Negligible Soundness Error. Protocol 1 admits almost 1/2 sound-
ness error. We now may adopt ω(logn) repetitions of Protocol 1 or ω(1) repe-
titions of the logn parallel composition of Protocol 1 to reduce the soundness
error to negligible.

Extension to Multi-prover Setting. In practice there are multi-provers who
need to prove to V er′ via Protocol 1. In this case, V er′ needs to store the public
inputs of these provers securely such that an adversary cannot extract these
inputs even he can obtain the verifier’s program totally. Based on Protocol 1,
we can easily extend the obfuscation of the verifier to the multi-prover setting.

Assume there exist m provers with public inputs G1, · · · , Gm which are pair-
wise different. Let M1, . . . ,Mm denote the the entries of the adjacency matrix
of G1 · · · , Gm respectively. The solution for hiding these public inputs in V er′

is to replace OIM in Protocol 1 by OIM1,···,Mm
, which denotes an obfuscation for

the multi-point function IM1,···,Mm shown in [8]. In Step V4 of each session, V er′

sends H to OIM1,···,Mm
and if OIM1 ,···,Mm

returns 1 then it accepts or else rejects
in the case of σ = 0. It can be seen that V er′ with OIM1,···,Mm

hardwired is also
an obfuscation of V er(G1, · · · , Gm).

Adding Provers’ Names in the Point Function. As mentioned previously,
a prover may send its name before invoking the identification procedure. We
consider the case that there is only a prover for simplicity. Assume that the
prover’s name is α ∈ {0, 1}∗ and its public input isG. We construct an obfuscated
point program OIα◦M , which now becomes V er′’s input. In Step V4, in the
case of σ = 0, V er′ computes H and sends α ◦ H to OIα◦M , where ◦ denotes
concatenation. Notice that V er′ receives α from the prover before running the
identification procedure. Using the similar analysis, we have the result in this
subsection still holds.

Remark 1. It can be seen that our approach for obfuscating the verifier is to let
the verifier receive an obfuscated whole information of G as input and then com-
pare the information in Step P3 to the whole information. While, for some other
constructions e.g. Goldreich et al.’s protocol [18], their verifiers don’t behave in
such way. Thus our approach doesn’t suit for obfuscating these verifiers.

6 Conclusions

In this paper we address the question of obfuscating provers and verifiers of
zero-knowledge proofs of knowledge, motivated by theoretical and practical in-
terests. First, we achieve some impossibilities of obfuscating provers w.r.t. the
ACVBB definition, i.e., provers are unobfuscatable. This negative result means
that if someone obtains a prover’s program, he can indeed learn some knowledge.

310 N. Ding and D. Gu

Namely we can say the prover’s program contains knowledge beyond its function-
ality. Second, we present an obfuscation for the verifier of Blum’s protocol w.r.t.
the VBB definition. This positive result means that for anyone who possesses
the verifier’s program, he cannot learn any knowledge beyond its functionality,
which solves the privacy issue of hiding provers’ names and public inputs.

Acknowledgments. The authors show their deep thanks to the reviewers of
CANS 2011 for their detailed and useful comments, with the help of which
the presentation of this work is significantly improved. This work is supported
by the National Natural Science Foundation of China (61100209) and Shanghai
Postdoctoral Scientific Program (11R21414500) and Major Program of Shanghai
Science and Technology Commission (10DZ1500200).

References

1. Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS, pp.
106–115 (2001)

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of Obfuscating Programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

3. Bellare, M., Goldreich, O.: On Defining Proofs of Knowledge. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

4. Bitansky, N., Canetti, R.: On Strong Simulation and Composable Point Obfusca-
tion. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 520–537. Springer,
Heidelberg (2010)

5. Blum, M.: How to prove a theorem so no one else can claim it. In: The International
Congress of Mathematicians, pp. 1441–1451 (1986)

6. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

7. Canetti, R.: Towards Realizing Random Oracles: Hash Functions that Hide all
Partial Information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 455–469. Springer, Heidelberg (1997)

8. Canetti, R., Dakdouk, R.R.: Obfuscating Point Functions with Multibit Output.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer,
Heidelberg (2008)

9. Canetti, R., Kalai, Y.T., Varia, M., Wichs, D.: On Symmetric Encryption and
Point Obfuscation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 52–
71. Springer, Heidelberg (2010)

10. Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of Hyperplane Membership.
In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89. Springer, Heidel-
berg (2010)

11. Canetti, R., Varia, M.: Non-malleable Obfuscation. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 73–90. Springer, Heidelberg (2009)

12. Crescenzo, G.D.: You Can Prove so Many Things in Zero-Knowledge. In: Feng,
D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 10–27. Springer,
Heidelberg (2005)

13. Ding, N., Gu, D.: A Note on Obfuscation for Cryptographic Functionalities
of Secret-Operation then Public-Encryption. In: Ogihara, M., Tarui, J. (eds.)
TAMC 2011. LNCS, vol. 6648, pp. 377–389. Springer, Heidelberg (2011)

A Note on (Im)Possibilities of Obfuscating Programs 311

14. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: STOC, pp. 409–
418 (1998)

15. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptol-
ogy 1(2), 77–94 (1988)

16. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
STOC, pp. 416–426. ACM (1990)

17. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178. ACM (2009)

18. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their valid-
ity and a methodology of cryptographic protocol design (extended abstract). In:
FOCS, pp. 174–187. IEEE (1986)

19. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: FOCS, pp. 553–562. IEEE Computer Society (2005)

20. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-Time Programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)

21. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: STOC, pp. 291–304. ACM (1985)

22. Goldwasser, S., Rothblum, G.N.: On Best-Possible Obfuscation. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Heidelberg (2007)

23. Hada, S.: Zero-Knowledge and Code Obfuscation. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 443–457. Springer, Heidelberg (2000)

24. Hada, S.: Secure Obfuscation for Encrypted Signatures. In: Gilbert, H. (ed.)
EUROCRYPT 2010. LNCS, vol. 6110, pp. 92–112. Springer, Heidelberg (2010)

25. Hofheinz, D., Malone-Lee, J., Stam, M.: Obfuscation for cryptographic purposes.
J. Cryptology 23(1), 121–168 (2010)

26. Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely Ob-
fuscating Re-Encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
233–252. Springer, Heidelberg (2007)

27. Lynn, B., Prabhakaran, M., Sahai, A.: Positive Results and Techniques for Obfusca-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 20–39. Springer, Heidelberg (2004)

28. Varia, M.: Studies in Program Obfuscation. Ph.D. thesis, Massachusetts Institute
of Technology (2010)

29. Wee, H.: On obfuscating point functions. In: Gabow, H.N., Fagin, R. (eds.) STOC,
pp. 523–532. ACM (2005)

Author Index

Boyen, Xavier 1
Buchmann, Johannes 54
Bulygin, Stanislav 54

Canard, Sébastien 194
Chen, Jiazhe 26
Chow, Yang-Wai 255

Deng, Yingpu 126
Ding, Ning 292

Fan, Chun-I 214
Feng, Dengguo 160, 272
Feng, Xiutao 40

Goi, Bok-Min 172
Gu, Dawu 292

Heng, Swee-Huay 172
Henricksen, Matt 76
Hsu, Ruei-Hau 214
Hu, Lei 15

Iwata, Tetsu 98

Jia, Keting 26
Jiang, Yupeng 126

Khoo, Khoongming 76

Lescuyer, Roch 194
Li, Leibo 26
Liao, Yongjian 118
Lin, Dongdai 40
Lu, Li 118

Manulis, Mark 214
Mohassel, Payman 234

Nguyen, Phong Q. 13
Nie, Xuyun 118

Okamoto, Tatsuaki 138

Pan, Yanbin 126
Phan, Raphael C.-W. 172
Poschmann, Axel 76

Sun, Siwei 15
Susilo, Willy 255

Takashima, Katsuyuki 138
Traoré, Jacques 194
Tu, Ziran 126

Wang, Pengpian 272
Wang, Shao-hui 185

Xie, Yonghong 15
Xu, Jing 160
Xu, Zhaohu 118

Yanagihara, Shingo 98
Yap, Huihui 76
Yau, Wei-Chuen 172

Zeng, Xiangyong 15
Zhang, Liwu 272
Zhang, Wei-wei 185
Zhou, Chunfang 40

	Title
	Preface
	Table of Contents
	Invited Talks
	Expressive Encryption Systems from Lattices
	Introduction
	Background
	Lattice Notions
	Discrete Gaussians
	Sampling and Preimage Sampling
	Hardness Assumption

	Classic Constructions
	Regev Public-Key Encryption
	GPV Identity-Based Encryption

	Techniques and Refinements
	Bit-by-Bit Standard-Model IBE
	All-at-Once Standard-Model IBE
	Adaptive or ``Full'' Security

	Delegation and Hierarchies
	Concatenation-Based Delegation
	Multiplicative In-Place Delegation

	Attributes and Predicates
	Conclusion
	References

	BreakingFully-Homomorphic-Encryption Challenges
	References

	Symmetric Cryptanalysis
	Cube Cryptanalysis of Hitag2 Stream Cipher
	Introduction
	Hitag2 Stream Cipher
	Cube Attack
	Cube Attack on Hitag2
	First Phase: Black-Box Attack
	Second Phase: White-Box Attack
	Third Phase: Exhaustive Search Attack
	Experimental Results

	Conclusion
	References

	New Impossible Differential Cryptanalysisof Reduced-Round Camellia
	Introduction
	Preliminaries
	Notations
	A Brief Description of Camellia

	7-Round Impossible Differential of Camellia
	Impossible Differential Attack on 10-Round Camellia-128
	 Attack on 10-Round Camellia-192 and 11-Round Camellia-256
	Attack on 10-Round Camellia-192
	Attack on 11-Round Camellia-256

	Conclusion
	References

	The Initialization Stage Analysis of ZUC v1.5
	Introduction
	Preliminaries
	ZUC v1.5
	S-Functions

	The Chosen-IV Attack of ZUC v1.5
	The Definition of Differences
	An Chosen-IV Differential Path of ZUC v1.5
	The Differential Properties of Operations in ZUC v1.5
	The Probability of the Differential

	Conclusion
	References

	Algebraic Cryptanalysis of the Round-Reducedand Side Channel Analysis of the Full PRINTCipher-48
	Introduction
	PRINTCipher
	Algebraic Description
	SAT Techniques for Algebraic System Solving
	Conversion Techniques

	Optimal Tools and Strategies for the Attacks
	Algebraic Analysis of PRINTCipher-48
	Attack on Round-Reduced PRINTCipher-48
	Additional Bits at Round Four
	Side Channel Analysis of the Full PRINTCipher-48

	Conclusion and Future Work
	References

	Symmetric Ciphers
	EPCBC - A Block Cipher Suitable for ElectronicProduct Code Encryption
	Introduction
	The Electronic Product Code - EPC
	A New Block Cipher Suitable for EPC Encryption: EPCBC
	EPCBC(48,96) - EPCBC with 48-Bit Block Size and 96-Bit Key Size
	EPCBC(96,96) - EPCBC with 96-Bit Block Size and 96-Bit Key Size

	Improved Differential and Linear Cryptanalyis of PR-n
	Brief Description of PR-n
	Improved Differential and Linear Cryptanalysis

	Security Analysis of EPCBC
	Differential, Linear and Related-Key Differential Cryptanalysis
	Other Attacks on EPCBC

	Implementation of EPCBC
	Conclusion
	References

	On Permutation Layer of Type 1, Source-Heavy,and Target-Heavy Generalized Feistel Structures
	Introduction
	Preliminaries
	Generalized Feistel Structure (GFS)
	Diffusion of GFS

	Equivalence of GFSs
	Analysis on DRmax()
	Type 1 GFS
	Source-Heavy GFS
	Target-Heavy GFS

	Experimental Results
	Conclusions
	References

	Public Key Cryptography
	Security Analysis of an Improved MFE PublicKey Cryptosystem
	Introduction
	MFE and Its Improvement
	MFE Cryptosystem
	Improvement of MFE

	Linearization Equation Attack
	First Order Linearnation Equation
	Second Order Linearization Equation

	Conclusion
	References

	A New Lattice-Based Public-Key CryptosystemMixed with a Knapsack
	Introduction
	Preliminaries
	Knapsack Problem
	Lattice

	Description of Our Cryptosystem
	The Basic Cryptosystem

	Implementations of Our Cryptosystem
	Choosing the Superincreasing Sequence and
	Finding Integer Linear Combination with Small Coefficients
	Some Experimental Results

	Security Analysis
	Knapsack Structure
	Message Security
	Key Security
	Remarks

	Conclusion
	References

	Achieving Short Ciphertexts or ShortSecret-Keys for Adaptively Secure General Inner-Product Encryption
	Introduction
	Background
	Our Results
	Related Works
	Key Techniques
	Notations

	Dual Pairing Vector Spaces by Direct Product of Symmetric Pairing Groups
	Definitions of Zero and Non-zero Inner-Product Encryption (ZIPE / NIPE)
	Decisional Linear (DLIN) Assumption
	Proposed NIPE Scheme with Constant-SizeCiphertexts
	Key Ideas in Constructing the Proposed NIPE Scheme
	Dual Orthonormal Basis Generator
	Construction
	Security

	Proposed NIPE Scheme withConstant-SizeSecret-Keys
	Dual Orthonormal Basis Generator
	Construction and Security

	Proposed ZIPE Scheme with Constant-Size Ciphertexts
	Dual Orthonormal Basis Generator
	Construction and Security

	Performance
	Concluding Remarks
	References

	Protocol Attacks
	Comments on the SM2 Key Exchange Protocol
	Introduction
	Security Attributes
	Related Works and Our Contribution
	Organization

	Review of SM2 Key Exchange Protocol
	Formal Model for Key Exchange Protocols
	Weaknesses of SM2 Key Exchange Protocol
	UKS Attack I
	UKS Attack II
	Formal Attack Description
	Countermeasure

	Conclusion
	References

	Cryptanalysis of a Provably Secure Cross-RealmClient-to-Client Password-Authenticated Key Agreement Protocol of CANS ’09
	Introduction
	Related Work and Motivation

	The C2C-PAKA-SC Protocol
	Adversarial Capability in the C2C-PAKA-SC Security Model
	Cryptanalysis of the C2C-PAKA-SC
	By any Outsider C Impersonating A to B
	By Any Outsider C Impersonating B to A
	By Any Insider Client B=A Impersonating A to KDCA

	Concluding Remarks
	References

	Passive Attack on RFID LMAP++ AuthenticationProtocol
	Introduction
	LMAP++ Authentication Protocol
	Passive Attack on LMAP++
	The Least Significant Bit of Identifier 0 [ID]
	The Least Significant Bit of Random Number [r]0
	Algorithm to Obtain the Identifier and Secrets

	Conclusions
	References

	Privacy Techniques
	Multi-show Anonymous Credentialswith Encrypted Attributes in the Standard Model
	Introduction
	A Model for Anonymous Credential Systems with Encrypted Attributes
	Protocols
	Security Properties

	Cryptographic Tools
	Randomizable and Extractable Commitment Schemes
	(SXDH) Groth-Sahai Proofs
	GS Proof of Equality under Different Commitment Keys
	Automorphic Signatures

	Commuting Signatures and Some New Extensions
	Additional Commitments
	Simple Commuting Signature: One Committed Message and One Commitment Key
	Vector of Committed Messages and One Commitment Key
	Vector of Committed Messages and Several Commitment Keys
	Commuting Signatures in Privacy Enhancing Cryptography

	A Multi-show Anonymous Credential Scheme with Encrypted Attributes
	Overview of Our Solution
	Algorithms and Protocols

	References

	Group Signature with Constant Revocation Costsfor Signers and Verifiers
	Introduction
	PriorWork on Revocable Group Signatures
	Our Results and Organization
	Preliminaries
	Bilinear Groups
	Hardness Assumptions

	Security Model and Definitions for Revocable Group Signatures
	Our RGS Scheme with Constant Costs for Signers and Verifiers
	High-Level Intuition
	Specification of RGS Algorithms

	Security Analysis
	Conclusion
	References

	Fast Computation on Encrypted Polynomialsand Applications
	Introduction
	Our Contribution

	Homomorphic Encryption and Hardness Assumptions
	Additive Variant of El Gamal
	Paillier's Encryption Scheme

	Non-interactive Computation on Encrypted Polynomials
	Applications
	Batch Oblivious Polynomial Evaluation
	Private Set Intersection via OPE
	Private Set Intersection via Polynomial Multiplication

	References

	Varia
	AniCAP: An Animated 3D CAPTCHA Scheme Basedon Motion Parallax
	Introduction
	Background
	Security and Usability
	Animated CAPTCHAs
	CAPTCHA: Formal Definition and Notation

	AniCAP
	Design and Implementation
	New AI Problem Family

	Security Considerations for AniCAP
	Image Processing and Computer Vision Attacks
	Brute Force Attacks
	Machine Learning Attacks

	Conclusion
	References

	Towards Attribute Revocation in Key-PolicyAttribute Based Encryption
	Introduction
	Background
	Bilinear Groups
	Access Structure and Access Tree
	Lagrange Coefficient
	Decision q-BDHE Assumption

	Definition
	Construction
	Small Universe Construction
	Large Universe Construction
	Efficiency
	Security

	Discussion
	Conclusion and Future Work
	References

	A Note on (Im)Possibilities of Obfuscating Programs of Zero-Knowledge Proofs of Knowledge
	Introduction
	Our Results
	Organizations

	Preliminaries
	Point Functions and Their Obfuscation
	Zero-Knowledge
	Witness Indistinguishability
	Proofs of Knowledge

	Definitions of Obfuscation for Interactive Probabilistic Programs
	Considerations
	Definitions

	Impossibilities of Obfuscating Provers
	Impossibilities for Zero Knowledge and Witness Indistinguishability
	Extending the Impossibilities to t-Composition Setting

	Possibilities of Obfuscating Verifiers
	Motivation for Obfuscating Verifiers
	Obfuscation for Verifiers

	Conclusions
	References

	Author Index

