


Lecture Notes in Computer Science 7090
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA



Ning Chen Edith Elkind Elias Koutsoupias
(Eds.)

Internet
and Network
Economics
7th International Workshop, WINE 2011
Singapore, December 11-14, 2011
Proceedings

13



Volume Editors

Ning Chen
Nanyang Technological University
School of Physical and Mathematical Sciences
SPMS-MAS-03-01
21 Nanyang Link, Singapore 637371
E-mail: ningc@ntu.edu.sg

Edith Elkind
Nanyang Technological University
School of Physical and Mathematical Sciences
SPMS-MAS-03-01
21 Nanyang Link, Singapore 637371
E-mail: eelkind@ntu.edu.sg

Elias Koutsoupias
University of Athens
Panepistimiopolis, Ilissia
Athens 15784, Greece
E-mail: elias@di.uoa.gr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-25509-0 e-ISBN 978-3-642-25510-6
DOI 10.1007/978-3-642-25510-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011941124

CR Subject Classification (1998): C.2, F.2, D.2, H.4, F.1, H.3

LNCS Sublibrary: SL 3- Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This volume contains the papers presented at WINE 2011: 7th Workshop on In-
ternet and Network Economics held during December 11–14, 2011 in Singapore.

Over the past decade, there has been a growing interaction between re-
searchers in theoretical computer science, networking and security, economics,
mathematics, sociology, and management sciences devoted to the analysis of
problems arising from the Internet and the World Wide Web. The Workshop on
Internet and Network Economics (WINE) is an interdisciplinary forum for the
exchange of ideas and results arising from these various fields.

There were 100 submissions to this edition of the workshop, including both
long (12 pages) and short (8 pages) papers. All papers were rigorously reviewed
by the Program Committee members and/or external referees; almost all papers
received at least three detailed reviews. The papers were evaluated on the basis
of their significance, novelty, soundness and relevance to the workshop.

A new feature of this year’s WINE was that the authors were allowed to des-
ignate their papers as working papers: such papers had to be submitted in the
usual format (12 or 8 pages) and reviewed in the same way as regular submis-
sions, but only a 1–2-page abstract appears in the proceedings. This allows the
authors to subsequently publish the full versions of their papers in journals that
do not permit prior publication of the same material in conference proceedings.
The Program Committee accepted 3 such papers, in addition to 31 full papers
and 5 short papers.

Besides the regular talks, the program also included three invited talks by
Cynthia Dwork (MSR Silicon Valley, USA), Preston McAfee (Yahoo! Research,
USA) and Herve Moulin (Rice University, USA). The program of the workshop
also included tutorials by Jason Hartline (Northwestern University) and Nicole
Immorlica (Northwestern University).

We are very grateful to Google Research, Yahoo! Research and Microsoft
Research for their generous financial contribution to the conference. We would
also like to thank the School of Physical and Mathematical Sciences of Nanyang
Technological University (Singapore) for hosting the tutorials and providing or-
ganizational support.

We also acknowledge EasyChair, a powerful and flexible system for manag-
ing all stages of the paper-handling process, from the submission stage to the
preparation of the final version of the proceedings.

September 2011 Ning Chen
Edith Elkind

Elias Koutsoupias



Organization

Program Committee

Suzanne Albers Humboldt University of Berlin, Germany
Niv Buchbinder Open University, Israel
Ioannis Caragiannis University of Patras, Greece
Ning Chen Nanyang Technological University, Singapore
Giorgos Christodoulou University of Liverpool, UK
Jose Correa University of Chile, Chile
Shahar Dobzinski Cornell University, USA
Edith Elkind Nanyang Technological University, Singapore
Angelo Fanelli Nanyang Technological University, Singapore
Arpita Ghosh Yahoo! Research, USA
Paul Goldberg University of Liverpool, UK
Laurent Gourves LAMSADE, France
Gianluigi Greco University of Calabria, Italy
Tobias Harks TU Berlin, Germany
Martin Hoefer RWTH Aachen University, Germany
Anna Karlin University of Washington, USA
Elias Koutsoupias University of Athens, Greece
Ron Lavi Technion, Israel
Pinyan Lu Microsoft Research Asia, China
Yishay Mansour Tel Aviv University, Israel
Preston Mcafee Yahoo! Research, USA
Vahab Mirrokni Google Research, USA
Herve Moulin Rice University, USA
David Pennock Yahoo! Research, USA
Troels Bjerre Sorensen University of Warwick, UK
Vijay Vazirani Georgia Tech, USA
Adrian Vetta McGill University, Canada

Additional Reviewers

Alaei, Saeed
Anari, Nima
Arava, Radhika
Ashlagi, Itai
Augustine, John
Badanidiyuru,

Ashwinkumar
Balseiro, Santiago

Barbay, Jérémy
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The Snowball Effect of Uncertainty

in Potential Games

Maria-Florina Balcan, Florin Constantin, and Steven Ehrlich

College of Computing, Georgia Institute of Technology
{ninamf,florin,sehrlich}@cc.gatech.edu

Abstract. Uncertainty is present in different guises in many settings,
in particular in environments with strategic interactions. However, most
game-theoretic models assume that players can accurately observe in-
teractions and their own costs. In this paper we quantify the effect on
social costs of two different types of uncertainty: adversarial perturba-
tions of small magnitude to costs (effect called the Price of Uncertainty
(PoU) [3]) and the presence of several players with Byzantine, i.e. arbi-
trary, behavior (effect we call the Price of Byzantine behavior (PoB)).
We provide lower and upper bounds on PoU and PoB in two well-studied
classes of potential games: consensus games and set-covering games.

1 Introduction

Uncertainty, in many manifestations and to different degrees, arises naturally
in applications modeled by games. In such settings, players can rarely observe
accurately and assign a precise cost or value to a given action in a specific state.
For example a player who shares costs for a service (e.g. usage of a supercomputer
or of a lab facility) with others may not know the exact cost of this service.
Furthermore, this cost may fluctuate over time due to unplanned expenses or
auxiliary periodic costs associated with the service. In a large environment (e.g.
the Senate or a social network), a player may only have an estimate of the
behaviors of other players who are relevant to its own interests. Another type of
uncertainty arises when some players are misbehaving, i.e., they are Byzantine.

The main contribution of this paper is to assess the long-term effect of small
local uncertainty on cost-minimization potential games [7]. We show that uncer-
tainty can have a strong snowball effect, analogous to the increase in size and
destructive force of a snowball rolling down a snowy slope. Namely, we show
that small perturbations of costs on a per-player basis or a handful of players
with Byzantine (i.e. adversarial) behavior can cause a population of players to
go from a good state (even a good equilibrium state) to a state of much higher
cost. We complement these results highlighting the lack of robustness under un-
certainty with guarantees of resilience to uncertainty. We assess the effects of
uncertainty in two important classes of potential games using the framework
introduced by [3]. The first class we analyze is that of consensus games [2,6] for
which relatively little was previously known on the effect of uncertainty. The
second class we analyze is that of set-covering games [5], for which we improve

N. Chen, E. Elkind, and E. Koutsoupias (Eds.): WINE 2011, LNCS 7090, pp. 1–12, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 M.-F. Balcan, F. Constantin, and S. Ehrlich

on the previously known bounds of Balcan et al. [3]. We review in detail the
uncertainty models and these classes of games, as well as our results below.

We consider both improved-response (IR) dynamics in which at each time step
exactly one player may update strategy in order to lower his (apparent) cost and
best-response (BR) dynamics in which the updating player chooses what appears
to be the least costly strategy. Any state is assigned a social cost, which for most
of our paper is defined as the sum of all players’ costs in that state. We measure
the effect of uncertainty as the maximum multiplicative increase in social cost
when following these dynamics. We instantiate this measure to each type of
uncertainty.

For the first uncertainty type, we assume adversarial perturbations of costs of
magnitude at most 1 + ε for ε > 0 (a small quantity that may depend on game
parameters). That is, a true cost of c may be perceived as any value within
[ 1
1+εc, (1 + ε)c]. Consider a game G and an initial state S0 in G. We call a

state S (ε, IR)-reachable from S0 if there exists a valid ordering of updates in
IR dynamics and corresponding perturbations (of magnitude at most ε) leading
from S0 to S. The Price of Uncertainty [3] (for IR dynamics) given ε of game G
is defined as the ratio of the highest social cost of an (ε, IR)-reachable state S
to the social cost of starting state S0.

PoUIR(ε, G) = max
{ cost(S)

cost(S0)
: S0; S (ε, IR)-reachable from S0

}
For a class G of games and ε > 0 we define PoUIR(ε,G) = supG∈G PoUIR(ε, G)
as the highest PoU of any game G in G for ε. PoUBR is defined analogously.

For the second uncertainty type, we assume B additional players with ar-
bitrary, or Byzantine [8] behavior. We define the Price of Byzantine behavior
(PoB(B)) as the effect of the B Byzantine players on social cost, namely the
maximum ratio of the cost of a state reachable in the presence of B Byzantine
agents to that of the starting state.

PoB(B, G) = max
{ cost(S)

cost(S0)
: S0; S B-Byz-reachable from S0

}
where state S of G is B-Byz-reachable from S0 if some valid ordering of updates
by players (including the B Byzantine ones) goes from S0 to S. PoB(B,G) =
supG∈G PoB(B, G) for class G. PoB, like PoU, may depend on the dynamics1.

A low PoU or PoB shows resilience of a system to small errors by players in
estimating costs or behavior of others. In the games we study, social costs cannot
increase much without uncertainty (namely PoU(0) = PoB(0) are small), yet
modest instances of uncertainty (in terms of ε or B) can lead to significant
increases in costs (i.e. large PoU(ε) and PoB(B)). We introduce in the following
the classes of games we study and summarize our results.

Consensus games [6] model a basic strategic interaction: choosing one side or
the other (e.g. in a debate) and incurring a positive cost for interacting with
1 We omit parameters from PoU and PoB when they are clear from context.
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each agent that chose the other side. More formally, there are two colors (or
strategies), white (w) and red (r), which each player may choose; hence IR and
BR dynamics coincide. Each player occupies a different vertex in an undirected
graph G with vertices {1, . . . , n} and edges E(G) (without self-loops). A player’s
cost is defined as the number of neighbors with the other color. We establish
PoU(ε) = Ω(n2ε3) for ε = Ω(n−1/3) and PoU(ε) = O(n2ε) for any ε. These
bounds are asymptotically tight for constant ε. We exactly quantify PoB(B)
as Θ(n

√
nB) by exhibiting an instance with Θ(n

√
nB) edges that is flippable

(i.e. it can flip from one monochromatic state to the other given B Byzantine
players) and then reducing any other consensus game to this instance.

Set-covering games [5] model many applications where all users of a resource
share fairly its base cost. These natural games fall in the widely studied class
of fair-cost sharing games [1]. In a set-covering game, there are m sets, each
set j with its own fixed weight (i.e. base cost) wj . Each of the n players must
choose exactly one set j (different players may have access to different sets)
and share its weight equally with its other users, i.e incur cost wj/nj(S) where
nj(S) denotes the number of users of set j in state S. We prove PoUIR(ε) =
(1 + ε)O(m2)O(log m) for ε = O( 1

m ) — this it is small for a small number of
resources even if there are many players. This improves over the previous bounds
of [3], which had an additional dependence on the number of players n. We also
improve the existing lower bound for these games (due to [3]) to PoUIR(ε) =
Ω(logp m) for ε = Θ( 1

m ) and any constant p > 0. Our new lower bound is
a subtle construction that uses an intricate “pump” gadget with finely tuned
parameters. A pump replaces, in a non-trivial recursive manner with identical
initial and final pump states, one chip of small cost with one chip of high cost.
Finally, we show a lower bound of PoUBR(ε) = Ω(εn1/3/ logn) for ε = Ω(n−1/3)
and m = Ω(n) which is valid even if an arbitrary ordering of player updates is
specified a priori, unlike the existing lower bound of [3].

We note that our lower bounds use judiciously tuned gadgets that create
the desired snowball effect of uncertainty. Most of them hold even if players
must update in a specified order, e.g. round-robin (i.e. cyclically) or the player
to update is the one with the largest reduction in (perceived) cost. Our upper
bounds on PoU hold no matter which player updates at any given step.

Due to the lack of space we only provide sketches for most proofs in this
paper. Full proofs appear in the long version of the paper [4].

2 Consensus Games

In this section, we provide lower and upper bounds regarding the effect of uncer-
tainty on consensus games. Throughout the section, we call an edge good if its
endpoints have the same color and bad if they have different colors. The social
cost is the number of bad edges (i.e. half the sum of all players’ costs) plus one,
which coincides with the game’s potential. Thus PoU(0) = PoB(0) = 1. Since
the social cost is in [1, n2], PoU(ε) = O(n2), ∀ε and PoB(B) = O(n2), ∀B.
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2.1 Lower Bound and Upper Bound for Perturbation Model

Perturbation model. The natural uncertainty here is in the number of neighbors
of each color that a vertex perceives. We assume that if a vertex i has n′ neighbors
of some color, then a perturbation may cause i to perceive instead an arbitrary
integer in [ 1

1+εn
′, (1+ε)n′]. Since each action’s cost is the number of neighbors of

the other color, this is a cost perturbation model. In this model, only an ε = Ω( 1
n )

effectively introduces uncertainty.2 We also assume ε ≤ 1 in this section.

Theorem 1. PoU(ε, consensus) = Ω(n2ε3) for ε = Ω(n−1/3) even for arbitrary
orderings of player updates.

Proof sketch. We sketch below the three components of our construction assum-
ing that the adversary can choose which player updates at any step. We can
show that the adversary can reduce an arbitrary ordering (that he cannot con-
trol) to his desired schedule by compelling any player other than the next one
in his schedule not to move.

– The output component has kout = Θ(1
ε (log n − 2 log 1

ε )) levels, where any
level i ≥ 0 has 1

ε (1 + ε)i nodes. Each node on level i ≥ 1 is connected to all
the nodes on levels i − 1 and i + 1.

– The input component consists of two cliques, Kred and Kwhite, each of size
1/ε2, and each of these nodes is connected to the first output level. The
dynamics are “seeded” from the input component.

– There is an initializer gadget3 with kinit = 1
ε log 2

ε levels, where level i has
1
ε (1+ ε)i nodes. Again, each node on level i ≥ 1 is connected to all the nodes
on levels i − 1 and i + 1. Every node of the final level of the initializer is
connected to all nodes in the clique Kred.

We require ε ≥ n−1/3 so that the number Θ( 1
ε3 ) of initializer nodes is at most

a constant fraction of the total n nodes. Then the number Θ( 1
ε2 (1 + ε)kout) of

output nodes will be a large fraction of the n nodes.
The initial coloring is: all output nodes white, Kred and Kwhite white, and

all initializer nodes white except for the first two levels which are red. We thus
initially have (1+ε)3

ε2 bad edges, all in the initializer. Throughout the dynamics, for
both the initializer and output components, the nodes in each level have the same
color, except for the level that is currently being updated. The schedule consists
of two epochs. The first epoch is for all the initializer nodes and the clique Kred

2 If ε < 1/3n, consider a node with r red neighbors, w white neighbors, and r > w.
Since r and w are both integers, r ≥ w + 1. For a cost increasing move to occur, we
must have (1+ ε)2w ≥ r ≥ w +1. This implies that n ≥ w ≥ 1/(2ε+ ε2) ≥ 1/3ε > n.

3 Without this initializer, we can get a worse lower bound PoU(ε, consensus) =
Ω(n2ε4), for a wider range of ε = Ω(n−1/2), again for an arbitrary ordering. The
main difference is that Kred is initially red and the initial state has Θ( 1

ε3
) bad edges.

In the long version of our paper, we additionally show that when the adversary can
control the ordering of updates to match its schedule, we can improve both this lower
bound and that of Theorem 1 to Ω(n2ε3) for the range ε = Ω(n−1/2).
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to change color. Thereafter they are left alone. At this point, the adversary can
prevent the clique nodes from changing their color, and he can change the color
of nodes in the first output level at will. Indeed, these nodes have 1

ε2 neighbors
of either color in each clique and Θ(1

ε ) neighbors in the second output level,
difference small enough to be overcome by a (1 + ε)-factor perturbation. The
second epoch has a phase for each two consecutive output levels i and i + 1 in
which these levels obtain their final color and then are never considered again.
This is achieved by changing all prior levels to the intended color of i and i + 1.

In the final state we have the first two output levels colored red, the next two
colored white, then the next two red, and so on. The final number of bad edges
is Ω(n2ε). Since we started with only Θ( 1

ε2 ) bad edges the number of bad edges
has increased by a factor of Ω(n2ε3). Thus PoU(ε, consensus) = Ω(n2ε3).

We note that the previously known lower bound of Ω(1 + nε) due to Balcan et.
al [3] was based on a much simpler construction. Our new bound is better by a
factor of at least n1/3 for ε = Ω(1/n3). We also note that since PoU(ε) = O(n2)
for any ε, it implies a tight PoU bound of Θ(n2) for any constant ε. We also
provide a PoU upper bound for consensus games that depends on ε. It implies
that the existing Θ(n2) lower bound cannot be replicated for any ε = o(1). The
proof is based on comparing the numbers of good and bad edges at the first
move that increases the social cost.

Theorem 2. PoU(ε, consensus) = O(n2ε).

2.2 Tight Bound for Byzantine Players

As described earlier, Byzantine players can choose their color ignoring their
neighbors’ colors (and therefore their own cost). Note however the Byzantine
players cannot alter the graph4. In this section we show a tight bound on the
effect of B Byzantine players, for any B: the effect of one Byzantine player is very
high, of order n

√
n and that the subsequent effect of B ≤ n Byzantine players

is proportional to the square root of B. As was the case for PoU , the effect of
uncertainty is decomposed multiplicatively into a power of n and a power of the
extent of uncertainty (ε for PoU, B for PoB).

Theorem 3. PoB(B, consensus) = Θ(n
√

n · B).

The proof of the O(n
√

n · B) upper bound follows from Lemmas 1, 2 and 3 below.
The key to this bound is the notion of a flippable graph. For any consensus game,
let Sred be the configuration where all nodes are red, and similarly let Swhite be
the configuration where all nodes are white.

4 For the lower bound, we assume that a player will break ties in our favor when he
chooses between two actions of equal cost. With one more Byzantine player the same
bound holds even if players break ties in the worst possible way for us. For the upper
bound, we assume worst possible players’ moves from the social cost point of view.
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Definition 1 (B-Flippable graph). Consider graph G on n vertices of which B
are designated special nodes and the other n − B nodes are called normal. We
say G is B-flippable (or just flippable when B is clear from context) if in the
consensus game defined on G where the special nodes are the Byzantine agents,
the state Swhite is B-Byz-reachable from Sred.

We now describe the concept of a conversion dynamics in a consensus game
which we use in several of our proofs. In such a dynamics, we start in a state
where all vertices are red and have Byzantine players change their color to white.
Then all normal nodes are allowed in a repeated round-robin fashion to update,
so long as they are currently red. This ends when either every vertex is white or
no vertex will update its color.

We note that in a flippable graph the conversion dynamics induces an order-
ing of the normal vertices: nodes are indexed by how many other white nodes
are present in total at the state when they change color to white. We note
that there may be more than one valid ordering. In the following with each
B-flippable graph, we shall arbitrarily fix a canonical ordering (by running the
conversion dynamics). Where there is sufficient context, we shall use v a vertex
interchangeably with its index in this ordering. Using this ordering we induce
a canonical orientation by orienting edge uv from u to v if and only if u < v.
We also orient all edges away from the B special nodes. To simplify notation,
we shall write vin = |δ−(v)| and vout = |δ+(v)| for a vertex v’s in-degree and
out-degree respectively. We note that by construction, for a flippable graph we
have vin ≥ vout. One can easily show the following:

Claim 1. A graph is B-flippable if and only if there exists an ordering on the
n−B normal vertices of the graph such that, in the canonical orientation of the
edges, every normal vertex v has vin ≥ vout. A graph is B-flippable if and only
if for every pair of states S, S′, S is B-Byz-reachable from S′.

Lemma 1. Fix a game G on n vertices, B of which are Byzantine, and a
pair of configurations S0 and ST such that ST is B-Byz-reachable from S0. If
cost(S0) ≤ n, then there exists a B-flippable graph F with at most 3n nodes and
at least cost(ST ) edges (in total).

Proof Sketch. The proof has two stages. In the first stage, we construct a consen-
sus game G′ and configuration S′

T such that cost(S′
T ) ≥ k, S′

T is B-Byz-reachable
from Sred, but V (G′) ≤ 3n. In the second stage, we delete some edges of G′ to
create a graph G′′, showing that Swhite is B-Byz-reachable from Sred in G′′ (thus
G′′ is flippable) while ensuring that E(G′′) ≥ k.

We first describe the construction of G′. We separate the nodes of G into two
sets Ir and Iw based on their color in the initial configuration S0. For each edge
that is bad in S0 we introduce a ‘mirror’ gadget. A mirror consists of a single
node whose color the adversary can easily control and a helper node to change
the color. The nodes of G′ are all the nodes of G and at most 2n nodes from
mirror gadgets. The edges of G′ are all edges that are good in state S0 of G, and
at most 5n edges introduced by the mirrors.
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In G′, the nodes of Ir and Iw interact with each other only indirectly, via
mirrors that are controlled by the adversary. Using this fact, the adversary can
simulate the dynamics from S0 to ST on Ir . For any state S, let S̄ be the state
in which every node has the opposite color from in S. The adversary can also
simulate the dynamics over states in which the color of every node has been
reversed. Thus the adversary can simulate dynamics from S̄0 to S̄T in Iw.

At the end of this process, every edge that was bad in ST is also bad in this
final state S′

T . Note that the initial state is one in which all nodes in Ir are red,
and all nodes in Iw are red (since they are red in S̄0). Thus the dynamics lead
to S′

T from Sred. Thus we have created G′ and a state ST where cost(S′
T ) ≥ k

and G′ is flippable, but |V (G′)| ≤ 3n.
In the second stage, we identify a set of edges in G′, and delete them to form

G′′. This set of edges are precisely those whose endpoints both remain red in the
conversion dynamics. We show that these edges are not bad in any state, hence
none of these edges are bad in S′

T , and secondly in G′′, Swhite is B-Byz-reachable
from Sred. The first statement implies that cost(S′

T ) ≤ |E(G′′)|, and the second
statement implies that G′′ is flippable, which was what we wanted.

Definition 2 (Fseq(n, B)). Let Fseq(n, B) be the B-flippable graph with n − B
normal nodes with labels {1, 2, . . . , n − B}. There is an edge from each special
node to each normal node. Every normal node v satisfies vout = min(vin, (n −
B) − v), and v is connected to the nodes of {v + 1, . . . , v + vout}. This is called
the no-gap property. In general, if k = min(vin, n − v) then v has out-arc set
{v + 1, . . . , v + k}.

By claim 1 we immediately get that Fseq is B-flippable. Our upper bound follows
by showing |E(F )| ≤ |E(Fseq(n, B))| for any flippable graph F on n vertices.
For this, we take a generic flippable graph and transform it into Fseq without
reducing the number of edges. We say there is a gap(a, b, c) for a < b < c if
vertex a does not have an edge to b but does have an edge to c. Note that this is
defined in terms of an ordering on the vertices; we use the conversion ordering
for each graph.

Lemma 2. A flippable graph on n vertices has at most as many edges as
Fseq(n, B).

Proof sketch. We prove this by inducting on the lexicographically minimal gap
of flippable graphs. If a gap is present, then we can either add or move edges
to create a lexicographically greater gap. Eventually this eliminates all gaps
without reducing the number of edges. Since a graph with no gaps is a subgraph
of Fseq(n, B), we have bounded the number of edges in any flippable graph.

Our last lemma tightly counts the number of edges in Fseq(n, B) via an inductive
argument and thus, by Lemma 2, it also upper bounds the number of edges in
any flippable graph.

Lemma 3. If B ≤ n
2 , the flippable graph Fseq(n, B) has Θ(n

√
nB) edges.
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Proof sketch. We count the edges by counting the number of in-edges to a given
node. By induction, we show that the first node to have jB in-edges has index(
j+1
2

)
B + 1. This implies that any node k ∈ [n] has Θ(

√
kB) in-edges. Summing

over all n nodes, we find there are Θ(n
√

nB) edges in the graph in total.

Proof of Theorem 3. We first argue that the PoB(B, consensus) = O(n
√

nB).
Consider a consensus graph G on n nodes, and a pair of configurations S0 and
ST B-Byz-reachable from S0. If B ≥ n/2, then the statement is trivial, so we
may assume that B < n/2. We assume cost(S0) < n: if cost(S0) ≥ n, since G has
fewer than n2 edges, we get PoB(B, G) ≤ n2/n = n. Denote by k := cost(ST )−1
the number of bad edges in ST . By Lemma 1, we demonstrate a flippable graph
F on fewer than 3n nodes, with at least k edges. By Lemma 2, F has at most
as many edges as Fseq(3n, B), which has only O(n

√
nB) edges by Lemma 3. We

get PoB(B) = O(n
√

nB).
It will now be enough to prove that PoB(B, Fseq(n, B)) = Ω(n

√
nB). We

claim now that if G is a flippable graph with m edges, then PoB(B, G) ≥ m
2 .

We get this via the following probabilistic argument using the fact that the
adversary can color G arbitrarily (by claim 1). Consider a random coloring of
the graph, where each node is colored white independently with probability 1/2.
The probability an edge is bad is 1/2, so in expectation, there are m/2 bad edges.
Thus some state has at least m/2 bad edges and it is reachable via dynamics
from any other state (claim 1) since G is a flippable graph. This establishes
PoB(B, G) ≥ m

2 . Since Fseq(n, B) is flippable and it has m = Θ(n
√

nB) edges,
we get PoB(B, Fseq(n, B)) = Ω(n

√
nB).

In contrast to the existing bound PoB(1) = Ω(n), our bound is parametrized
by B, sharper (by a Θ(

√
n) factor for B = 1) and asymptotically tight.

3 Set-Covering Games and Extensions

Set-covering games (SCG) are a basic model for fair division of costs, and have
wide applicability, ranging e.g. from a rental car to advanced military equipment
shared by allied combatants. A set-covering game admits the potential function
Φ(S) =

∑m
j=1

∑nj(S)
i=1

wj

i =
∑m

j=1 Φj(S) where Φj(S) =
∑nj(S)

i=1
wj

i . Φj(S) has
an intuitive representation as a stack of nj(S) chips, where the i-th chip from
the bottom has a cost of wj/i. When a player i moves from set j to j′ one can
simply move the topmost chip for set j to the top of stack j′. This tracks the
change in i’s costs, which equals by definition the change in potential Φ. We will
only retain the global state (number of players using each set) and discard player
identities. This representation has been introduced for an existing PoUIR upper
bound of [3]; we refine it for our improved upper bound.

SCGs have quite a small gap between potential and cost [1]: cost(S)≤Φ(S)≤
cost(S)Θ(log n), ∀S. Hence without uncertainty, the social cost can only increase
by a logarithmic factor: PoU(0) = PoB(0) = Θ(log n).
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3.1 Upper Bound for Improved-Response

We start with an upper bound on PoUIR in set-covering games that only depends
on the number m of sets.

Theorem 4. PoUIR(ε, set-covering) = (1 + ε)O(m2)O(log m) for ε = O( 1
m ).

In particular for ε = O( 1
m2 ) we obtain a logarithmic PoUIR(ε).

Proof of Theorem 4. We let J0 denote the sets initially occupied and W0 =
cost(S0) =

∑
j∈J0

wj be their total weight. We discard any set not used during
the dynamics.

With each possible location of a chip at some height i (from bottom) in some
stack j, we assign a position of value5 wj/i. Thus a chip’s cost equals the value of
its position in the current state. We will bound the cost of the m most expensive
chips by bounding costs of expensive positions and moves among them.

It is easy to see that any set has weight at most W0(1 + ε)2(m−1) (clearly the
case for sets in J0). Indeed, whenever a player moves to a previously unoccupied
set j′ from a set j, the weight of j′ is at most (1 + ε)2 times the weight of j; one
can trace back each set to an initial set using at most m − 1 steps (there are m
sets in all). We also claim that at most mi(1+ε)2mpositions have value at least
W0
i , ∀i: indeed positions of height i(1 + ε)2m or more on any set have value less

than W0
i since any set has weight at most W0(1 + ε)2(m−1).

Fix a constant C > (1 + ε)2m (recall ε = O( 1
m )). Note that any chip on a

position of value less than W0
m in S0 never achieves a cost greater than W0

m (1 +
ε)2Cm2

. Indeed, by the reasoning above for i = m, there are at most m · m ·
(1 + ε)2m ≤ Cm2 positions of greater value. Thus the chip’s cost never exceeds
W0
m (1 + ε)2Cm2

as it can increase at most Cm2 times (by an (1 + ε)2 factor).
We upper bound the total cost of the final m most expensive chips, as it

is no less than the final social cost: for a set, its weight equals the cost of its
most expensive chip. We reason based on chips’ initial costs. Namely, we claim
h(i) ≤ W0

i−1 · (1 + ε)2Cm2
, ∀i ∈ [m], where h(i) denotes the cost of ith most

expensive chip in the final configuration. If this chip’s initial cost is less than
W0
m then the bound follows from the claim above. Now consider all chips with

an initial cost at least W0
m . As argued above, at most Cm2 positions have value

W0
m or more, and any of these chips increased in cost by at most (1 + ε)2Cm2

.
A simple counting argument6 shows that for any i, there are at most i chips of
initial cost at least W0

i and thus h(i) ≤ W0
i−1 · (1 + ε)2Cm2

, ∀i.

5 We refer to the weight of a set, the cost of a chip and the value of a position.
6 We claim that for any k, there are at most k chips of initial cost at least W0

k
. Let J0,

be the set of initially used resources. For each j ∈ J0, let rj be set j’s fraction of the
initial weight (i.e. wj = rjW0), and let pj be the number of initial positions with value

greater than W0
k

in set j. We have
wj

pj
=

rjW0
pj

≥ W0
k

, implying pj ≤ krj . Counting the

number of initial positions with sufficient value yields
∑

j pj ≤
∑

j krj = k
∑

j rj = k
since

∑
j rj = 1.



10 M.-F. Balcan, F. Constantin, and S. Ehrlich

As the ith most expensive chip has cost at most W0
i−1 (1+ε)2Cm2

(at most i−1
chips have higher final cost),∑m

i=1 h(i) = h(1) +
∑m

i=2 h(i) ≤ h(1) +
∑m

i=2
W0
i−1 (1 + ε)2Cm2

= O(W0(1 + ε)2m + W0(1 + ε)2Cm2
log m) = W0 · (1 + ε)O(m2)O(log m)

As desired, PoUIR(ε, set-covering) = (1+ε)O(m2)O(log m) as the final social cost
is at most

∑m
i=1 h(i).

The existing bound [3] is PoUIR(ε) = O((1+ε)2mn log n). Unlike our bound, it
depends on n (exponentially) and it does not guarantee a small PoUIR(ε) for
ε = Θ( 1

m2 ) and m = o(n). This bound uses chips in a less sophisticated way,
noting that any chip can increase its cost (by (1 + ε)2) at most mn times.

Our technique also yields a bound of PoUBR(ε) = (1 + ε)O(m2)O(log m) for
ε = O( 1

m ) in matroid congestion games [3] – see the full version for details [4].
These games are important in that they precisely characterize congestion games
for which arbitrary BR dynamics (without uncertainty) converge to a Nash equi-
librium in polynomial time.

3.2 Lower Bound for Improved-Response

Our upper bound showed that PoUIR(ε) is logarithmic for ε = O( 1
m2 ). A basic

example (one player hopping along sets of cost 1, (1 + ε)2, . . . , (1 + ε)2(m−1)),
applicable to many classes of games, yields the lower bound (1 + ε)2(m−1) ≤
PoUIR(ε, set-covering). In fact, this immediate lower bound was the best known
on PoUIR(ε). For ε = ω( 1

m ), we get that PoUIR(ε) is large. An intriguing ques-
tion is what happens in the range [ω( 1

m2 ), Θ( 1
m )], in particular for natural un-

certainty magnitudes such as ε = Θ( 1
m ) or ε = Θ( 1

n ).
In this section we show that for ε = Θ( 1

min(m,n)), PoU can be as high as
polylogarithmic. We provide a construction that repeatedly uses the snowball
effect to locally increase one chip’s cost, without other changes to the state.
Our main gadget is a pump, which is used as a black box in the proof. A pump
increases a chip’s cost by α = log n′, where n′ = min(m, n). We use p pumps to
increase each chip’s cost by a Ω(logp n′) factor. As pumps are “small”, the total
cost increase is Ω(logp n′).

Theorem 5. PoUIR(ε, set-covering) = Ω(logp min(m, n)), for ε = Θ( 1
min(m,n))

and constant p > 0.

Before providing a sketch of Theorem 5, we provide the formal definition of a
pump. An (α, W )-pump uses O(1

ε ) sets and O(2α) players to increase, one by
one, an arbitrary number of chip costs by an α factor from W/α to W . For ease
of exposition, we assume m = Θ(n) and we only treat p = 2, i.e. how to achieve
PoUIR( 1

n ) = Ω(log2 n). For general p, we use p pump gadgets instead of two.

Definition 3 (Pump). An (α, W )-pump P is an instance of a set-covering game
specified as follows:
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– The number mP of sets used is O(1
ε ). For our choice of ε, mP = O(n). The

total weight WP of all sets in P that are initially used is in (2αW, e2αW ).
The number of players used is nP = 2α+1 − 2.

– Within O(n3) moves of IR dynamics contained within the pump, and with a
final state identical to its initial state, a pump can consume any chip of cost
at least W/α to produce a chip of cost W .

Proof sketch of Theorem 5. Let N := α22α. The number of players will be n :=
N + nP1 + nP2 . Thus α=Θ(log n). Note that each player can use any set.

We use two pumps, an (α, 1/α) pump P1, and a (α, 1) pump P2. Aside from
the pumps, we have Type-I, Type-II and Type-III sets, each with a weight of
1/α2, 1/α and 1 respectively. At any state of the dynamics, each such set will
be used by no player or exactly one player. In the latter case, we call the set
occupied. We have N Type-I sets, 1 Type-II set, and N Type-III sets, i.e. m :=
2N + 1 + mP1 + mP2 = Θ(n) sets in all.

Let cfg(i, j, k) refer to the configuration with i Type-I sets occupied, j Type-II
sets occupied, and k Type-III sets occupied. We shall use 2N + 1 intermediate
states, denoted statei. Our initial state is state0 = cfg(N, 0, 0), and our final
configuration will be state2N = cfg(0, 0, N). In general, state2i = cfg(N − i, 0, i)
and state2i+1 = cfg(N − i − 1, 1, i). Thus we want to move each player on a
Type-I set (initially) to a corresponding Type-III set, an α2 increase in cost. To
this purpose, we will pass each such player through the first pump and move it
on the Type-II set. This achieves the transition from state2i to state2i+1. Since
the player’s cost is increased by an α factor (from 1

α2 to 1
α ), we can pass it

through the second pump and then move it on the Type-III set. This achieves
the transition from state2i+1 to state2i+2.

The social cost of our initial configuration is W0 = N · 1
α2 + WP1 + WP2 ≤

2α + e · 1
α2α + e · 2α ≤ 7 · 2α. The final social cost (excluding the pumps) is at

least N = α22α. Thus PoU = Ω(α2), and α = Θ(log n).
Finally, we note that the pump is constructed using 1 + 1/ε sets s0, . . . , s 1

ε

where set si has weight W (1 + ε)i. Additionally there are α ‘storage’ sets tj
with weight 2W/j. In the initial configuration, the sets s1, . . . , s2α are occupied,
with set si having max(0, α − �log2 1 + i�) players on it, for i ≥ 1. s0 also
has α − 1 players. The pump is activated by a chip of cost W/α moving onto
set s0. The chips then advance into a configuration where set si has precisely
max(0, α−� 1

ε −i+1�) chips. Note that this roughly doubles the cost of each chip.
The chips on set s 1

ε
then use the storage sets to capture their current cost. The

chip in storage with cost 2W exits the pump, and the other chips in storage fill
up set s0. All the other chips can return to the initial configuration by making
only cost decreasing moves. Note that the chip to leave the pump is not the same
chip that entered.

In the full version of the paper, we show how our pump gadget can be tweaked
to provide a polylogarithmic lower bound on PoU for generalized set-covering
games with increasing delay functions, as long as they have bounded jumps,
i.e. if an additional user of a resource cannot increase its cost by more than a
constant factor.
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3.3 Lower Bound for Best-Response

We also show that a significant increase in costs is possible for a large range of
ε even if players follow best-response dynamics with arbitrary orderings. This
construction will use more sets than players, and so will not contradict Theorem 4

Theorem 6. PoUBR(ε, set-covering) = Ω(εn1/3/ log n), for any ε = Ω(n−1/3).
This holds for any arbitrary ordering of the dynamics, i.e. no matter which player
is given the opportunity to update at any time step.

Proof sketch. The proof has two stages. Our first step provides a construction
which shows that in a set-covering game with best-response dynamics, the ad-
versary can compel an increase of social cost that is polynomial (of fractional
degree) in n. With our new construction, we then separately show that the ad-
versary can cause this increase even when it cannot control which players update
– we show that the adversary can cause only the relevant players to update.

We note that previous work provided a stronger lower bound of Ω(εn1/2/ log n)
[3], but which only works for a specific ordering of the updates.

4 Open Questions

It would be interesting to close our gap on PoU for consensus games. It would
also be interesting to study a model where the perturbations are not completely
adversarial, but instead chosen from some distribution of bounded magnitude.
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Abstract. In recent years, algorithms for computing game-theoretic so-
lutions have been developed for real-world security domains. These games
are between a defender, who must allocate her resources to defend po-
tential targets, and an attacker, who chooses a target to attack. Existing
work has assumed the set of defender’s resources to be fixed. This as-
sumption precludes the effective use of approximation algorithms, since a
slight change in the defender’s allocation strategy can result in a massive
change in her utility. In contrast, we consider a model where resources
are obtained at a cost, initiating the study of the following optimization
problem: Minimize the total cost of the purchased resources, given that
every target has to be defended with at least a certain probability. We
give an efficient logarithmic approximation algorithm for this problem.

1 Introduction

Taking a game as input and computing a solution of it is one of the core problems
of algorithmic game theory. To be more precise, it is a collection of problems, one
for each combination of a representation scheme and a solution concept. Perhaps
the best-known example is the problem of computing a Nash equilibrium of a
normal-form game, which is now known to be PPAD-complete for two-player
games [2,3] and FIXP-complete for games with three or more players [5].

In contrast, this paper deals with an alternative solution concept, correspond-
ing to a “Stackelberg” model. In this model, there are two players, a “leader”
and a “follower”. The leader first commits to a mixed strategy, and the follower
responds only after observing the commitment. Recently, algorithms for comput-
ing optimal leader strategies have been developed for various real-world security
domains, including US airports [11,12], the US Federal Air Marshals [13], and
the US Coast Guard [1].

Motivated by such applications, Kiekintveld et al. [8] proposed a general model
of security games. The players are a defender and an attacker. There is a set of
targets that the attacker may want to attack (in the Federal Air Marshal exam-
ple, these would be individual flights), and the defender has a set of resources
(Federal Air Marshals). The defender can assign each resource to a schedule,
which consists of a subset of the targets (for example, a tour of multiple flights
that a single Federal Air Marshal can take). In general, not every resource can
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be assigned to every schedule. If a resource is assigned to a schedule, then it
defends all the targets contained in that schedule.

A pure (resp., mixed) strategy for the defender is a deterministic (resp., ran-
domized) assignment of the resources to schedules. The typical motivation given
for the Stackelberg model, where the defender (the leader) commits to a mixed
strategy and the attacker (the follower) subsequently best-responds, is as fol-
lows. Every day, the defender draws an assignment from her distribution. Over
the course of time, the attacker observes the realized assignments and eventu-
ally learns the probabilities with which each target is defended on any given
day. Then, the attacker decides to attack a single target that maximizes her
expected utility. The utilities of both players usually depend on: (a) the target
that is attacked, and (b) whether or not that target is defended on the day of
the attack. In the existing literature on this topic, the typical problem is to find
the optimal mixed strategy for the defender to commit to, that is, the one that
will maximize the defender’s expected utility.

In this paper, we explore the setting where the resources can be purchased by
the defender at a cost. To be more specific, we consider the following problem.
Some resources are to be (deterministically) purchased in advance. Next, they
are to be randomly assigned to schedules, ensuring that each target is defended
with at least a certain probability. The objective is to minimize the total cost of
the purchased resources.

For example, suppose that the Federal Air Marshal Service can hire a set of
Marshals on a contractual basis for one year, thereby incurring a certain cost.
During each day of the following year, the hired Marshals are (randomly) as-
signed to the schedules, according to the mixed strategy chosen. It is important
to emphasize that we require a set of resources to be purchased deterministi-
cally, after which these resources can be randomly assigned to schedules. It is
impractical to randomize the resource supply itself each day, since, for example,
security personnel cannot be hired as day laborers.

Existing literature [8,9] on security games assumes a fixed set of resources. In
contrast, our model assumes that the resources are available in unlimited supply,
but they can be purchased at a cost. There is a connection between these two
settings: Given a fixed set of resources, there is an efficient algorithm to compute
the optimal commitment strategy for a defender if and only if we can decide in
polynomial time whether each target can be defended with a certain probability.
The proof of this claim appears in the full version of our paper.

Our Results and Techniques. In Section 2, we formally state our problem and
show that it is a generalization of Set Cover, and hence the problem is unlikely
to admit an approximation ratio better than O(log |T |), where |T | is the number
of targets [6]. Section 3 gives an O(log |T |+log |S|) approximation algorithm for
this problem, where |S| is the number of schedules. The algorithm partitions the
set of targets into two subsets, depending on whether their required coverage
probabilities are small or big, and separately deals with these two subsets.

In Section 3.1, we show that the subproblem of defending the targets with big
probabilities admits an LP relaxation (LP (3)), and it can be converted to the
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LP relaxation for Set Cover (LP (6)) while losing at most a constant factor in the
objective value. Thus, a greedy algorithm (Figure 1) gives a good approximation
for this case. Unfortunately, this analysis cannot be extended to defend the
targets with small probabilities, because the gap between the optimal objective
value of LP (3) and the cost of the optimal solution can become arbitrarily large.

Section 3.2 considers the remaining subproblem—to defend the targets with
small probabilities. For this, we present an exponentially sized covering integer
program (IP (9)) that bounds the cost (Lemma 3) of the optimal solution. In-
terestingly, the LP relaxation of IP (9) can again be far away from the optimal
solution, and thus, it is necessary to impose the integrality constraints.

IP (9) has the additional property that all of its constraint data are integral.
Under such circumstances, a simple greedy heuristic (see Dobson [4]) gives a
logarithmic approximation to the integer optimum (Lemma 4). The idea is to
treat every variable as a set that covers part of the constraints, and during each
iteration, increment the variable that gives maximum coverage per unit cost.
However, IP (9) has exponentially many variables, and hence, we cannot directly
apply Dobson’s algorithm to solve it in polynomial time. Instead, we show that
the subroutine of selecting the variable with maximum coverage per unit cost
is exactly equivalent to maximizing a submodular function subject to a budget
constraint. Hence, we can use another greedy algorithm [10] to implement this
subroutine upto a constant factor approximation. Accordingly, we solve IP (9),
and its outcome determines the resources we purchase and the way in which we
randomly assign them to the schedules (Theorem 2).

Remark. All the missing proofs appear in the full version of this paper.

2 Notations and Preliminaries

There are a set of targets T , a set of schedules S, and a set of resource-types Θ.
There is an unlimited supply of resources of each type. Any resource of type θ ∈ Θ
has cost c(θ). In addition, there is a subset S(θ) ⊆ S such that any resource of
type θ can be assigned to at most one schedule in S(θ). The type of a resource
r is denoted by θr ∈ Θ. Whenever some resource is assigned to schedule s ∈ S,
it defends all targets in the subset T (s) ⊆ T . Furthermore, each target t ∈ T
has a threshold requirement 0 ≤ qt ≤ 1. In the Security Game problem, we
want to (deterministically) purchase some resources, and randomly assign them
to schedules so that every target t ∈ T is defended with probability at least qt.
We want to minimize the sum of the costs of the purchased resources.1

Consider an example. There are 4 targets, 3 schedules, and 2 different types
of resources. Target t1 (resp. t4) needs to be defended with probability 2/3

1 Note that the unlimited availability of resources guarantees the existence of a fea-
sible solution satisfying all the threshold requirements: simply purchase a sufficient
number of resources of each type. This assertion holds provided each target can be
defended by some schedule, and for each schedule, there is some resource that can
be assigned to it. We will make these assumptions without any loss of generality.
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(resp. 1/3), whereas each of the targets in {t2, t3} has a threshold requirement
of 1. Any resource of type θ1 costs 2, and any resource of type θ2 costs 3. A
resource of type θ1 (resp. θ2) can be assigned to at most one schedule in the set
{s1, s2} (resp. {s2, s3}). Finally, whenever it has some resource assigned to it,
schedule s1 defends target t1; schedule s2 defends both the targets t2, t3; and
schedule s3 defends both the targets t3, t4. In terms of notations, we have

T = {t1, t2, t3, t4}, S = {s1, s2, s3}, Θ = {θ1, θ2}
qt1 = 2/3, qt2 = qt3 = 1, qt4 = 1/3

c(θ1) = 2, c(θ2) = 3
S(θ1) = {s1, s2}, S(θ2) = {s2, s3}

T (s1) = {t1}, T (s2) = {t2, t3}, T (s3) = {t3, t4}

The optimal solution will purchase one resource r1 of type θ1 and one resource
r2 of type θ2 so that θr1 = θ1, θr2 = θ2; thereby incurring a total cost of
2+3 = 5. Next, with probability 2/3, it will simultaneously assign resource r1 to
schedule s1 and resource r2 to schedule s2; and with the remaining probability
1−2/3 = 1/3, it will simultaneously assign resource r1 to schedule s2 and resource
r2 to schedule s3. It is important to note how the optimal solution correlates the
random assignments of the resources to schedules.

The Security-Game problem is a generalization of Set-Cover. Consider
an instance of the Security-Game problem where the threshold requirements
of all the targets are equal to 1, and there is only one resource-type. In this
case, the task of finding the optimal solution is equivalent to finding a minimum
cardinality subset of schedules to defend all the targets, which is exactly the
Set-Cover problem. As a consequence, the Security-Game problem is NP-
hard and unless NP has slightly superpolynomial time algorithms, we cannot
even approximate it to a factor better than O(log |T |) [6]. In the next section,
we give an O(log |T | + log |S|) approximation algorithm.

3 Approximation Algorithm

First, we partition the set of targets into two groups depending on their threshold
requirements. Define

Tbig = {t ∈ T : 1/e < qt ≤ 1} (1)
Tsmall = {t ∈ T : qt ≤ 1/e} (2)

We deal with the two subsets separately. In Section 3.1, we consider the sub-
problem where we need to defend only the subset Tbig of targets, and give an
O(log |T |) approximation algorithm for this task. On the other hand, Section 3.2
deals with the subproblem where we have to defend only the targets t ∈ Tsmall.
For this task, we present an O(log |T |+log |S|) approximation algorithm. Finally,
we take the union of the two solutions, and this results in an O(log |T |+ log |S|)
approximation for the Security-Game problem.
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3.1 Targets with Big Threshold Requirements

Let OPTbig denote the minimum-cost solution that only defends the targets in
the subset Tbig ⊆ T according to their threshold requirements, and ignores the
remaining targets in Tsmall = T \ Tbig. We now derive an LP-relaxation.

min
∑
θ∈Θ

c(θ)
∑

s∈S(θ)

w(θ, s) (3)

s.t.
∑
θ∈Θ

∑
s∈S(θ): t∈T (s)

w(θ, s) ≥ qt, ∀t ∈ Tbig (4)

w(θ, s) ≥ 0 , ∀θ ∈ Θ, s ∈ S(θ) (5)

Let R∗ be the set of resources purchased by OPTbig . For all r ∈ R∗, s ∈ S(θr),
let y∗

rs be the probability that OPTbig assigns resource r to schedule s. Recall
that the type of a resource r is denoted by θr. Define

w∗(θ, s) =
∑

r∈R: θr=θ

y∗
rs

It is easy to verify that the w∗(θ, s) values are a feasible solution to LP (3).
Constraint (4) holds since OPTbig defends every t ∈ Tbig with probability at
least qt and by the union bound, the left hand side of the constraint is an
overestimate of the probability with which target t is defended. The relaxation
assumes that the resources can be purchased partially and hence, the objective
value is at most the total cost incurred by OPTbig . This leads us to Lemma 1.

Lemma 1. LP (3) gives a lower bound on the total cost incurred by OPTbig.

Consider the following linear program (6). It replaces the right hand of Con-
straint (4) by 1. Recall that all targets in the subset Tbig ⊆ T have qt ≥ 1/e.
Therefore, if we solve LP (3) optimally and multiply every w(θ, s) by e, then we
get a feasible solution to LP (6). However, the objective value also increases by
a factor of e. Combining this observation with Lemma 1, we obtain Fact 1.

min
∑
θ∈Θ

c(θ)
∑

s∈S(θ)

w(θ, s) (6)

s.t.
∑
θ∈Θ

∑
s∈S(θ): t∈T (s)

w(θ, s) ≥ 1, ∀t ∈ Tbig (7)

w(θ, s) ≥ 0 , ∀θ ∈ Θ, s ∈ S(θ) (8)

Fact 1. The optimal objective value of LP (6) is at most O(1) (specifically, e)
times the cost incurred by OPTbig.

We note that LP (6) is an LP-relaxation for the Set-Cover problem, where
the targets t ∈ Tbig behave like elements that have to be covered, and each pair
(θ, s) acts like a set T (s) ∩ Tbig having a cost c(θ). Hence the greedy algorithm
described in Figure 1 gives a O(log |T |) approximation [7] to LP (6). Hence,
Fact 1 implies the following Theorem 1.
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Initialize D ← ∅, F ← ∅.
While D �= Tbig do

Find an ordered pair (θ′, s′) ∈ arg maxθ∈Θ,s∈S(θ) |(T (s) ∩ Tbig) \ D|/c(θ)
F ← F ∪ {(θ′, s′)}
D ← D ∪ (T (s′) ∩ Tbig)

For all (θ, s) ∈ F do
Buy a resource of type θ, and deterministically assign it to schedule s.

Fig. 1. Greedy algorithm for targets with big threshold requirements. It defends every
target t ∈ Tbig with probability 1.

Theorem 1. The greedy algorithm described in Figure (1) gives an O(log |T |)
approximation to OPTbig .

3.2 Targets with Small Threshold Requirements

Let SGsmall be the problem where we must defend each target t ∈ Tsmall with
probability at least qt, but we are free to ignore the remaining targets in Tbig . A
solution to the SGsmall problem purchases some resources and randomly assigns
them to schedules so that each target t ∈ Tsmall is defended with probability qt.

Definition 1. Given any solution to the SGsmall problem, every purchased re-
source r can be associated with an assignment vector. It is a vector with |S|
components, where the value of component s equals yrs if s ∈ S(θr) and is zero
otherwise. Here, yrs is the probability that resource r is assigned to schedule s.

Lemma 2 shows that we can restrict our attention to a subset of feasible solutions
to the SGsmall problem. Specifically, we focus on those solutions where the values
of all components of the assignment vectors come from a discrete set.

Lemma 2. Let Opt be the minimum-cost solution to the SGsmall problem.
There exists a solution Discrete-Opt to the SGsmall problem such that:

1. The cost incurred by Discrete-Opt is at most 2 times the cost of Opt.
2. For every resource purchased by Discrete-Opt, all the components of the

corresponding assignment vector are integral multiples of 1/|S|2.

Fix any target t ∈ Tsmall with 0 < qt < 1/|S|2. The solution Discrete-Opt
defends this target according to its threshold requirement. Thus, Discrete-Opt
purchases some resource of type θ, and assigns it with non-zero probability to
some schedule s ∈ S(θ) such that t ∈ T (s). However, the probability of assigning
the resource to schedule s is an integral multiple of 1/|S|2 (Lemma 2), and hence
the target t is defended with probability at least 1/|S|2.

Corollary 1. The solution Discrete-Opt defends each target t ∈ Tsmall with
probability at least min(qt, 1/|S|2).
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Let P denote the set of all assignment vectors that have been discretized ac-
cording to Lemma 2. More formally, the set P consists of all possible |S|-tuples
where the value of each component is an integral multiple of 1/|S|2, and the sum
of the values of all the components is at most 1. For all p ∈ P , s ∈ S, let p(s)
denote the component of the assignment vector p corresponding to schedule s.

Suppose that a resource r cannot be assigned to some schedule s, that is,
s /∈ S(θr), and a valid solution assigns the resource r to different schedules with
probabilities that are given by the components of the vector p ∈ P . In this case,
we must have p(s) = 0. Definition 2 formalizes this concept.

Definition 2. An assignment vector p ∈ P is feasible for a resource-type θ ∈ Θ
if p(s) = 0 for all schedules s ∈ S \ S(θ). Define Pθ to be the set of all feasible
assignment vectors for resource type θ ∈ Θ.

Now we present an Integer Program to bound the cost of Discrete-Opt.

min
∑

θ∈Θ, p∈Pθ

c(θ)x(θ, p) (9)

s.t.
∑

θ∈Θ, p∈Pθ

∑
s: t∈T (s)

η(p, s)x(θ, p) ≥ λt, ∀t ∈ Tsmall (10)

x(θ, p) ∈ N , ∀θ ∈ Θ, p ∈ Pθ (11)

IP (9) introduces some new notation. In Constraint (11), the set of all nonneg-
ative integers is denoted by N. In Constraint (10), we have

λt = �e × qt × |S|2� for all t ∈ Tsmall (12)
η(p, s) = p(s) × |S|2 for all p ∈ P , s ∈ S (13)

By definition, each p(s) ∈ [0, 1] is an integral multiple of 1/|S|2, and qt ∈ [0, 1/e]
for all t ∈ Tsmall. These observations lead to the the following fact.

Fact 2. IP (9) is a covering integer program where all the coefficients in the
constraint data, that is, all the values of η(p, s) and λt, are integers lying between
0 and |S|2.

Lemma 3. The optimal objective value of the Integer Program (9) is at most 4
times the cost incurred by Discrete-Opt.

We now describe some intuitions behind IP (9). The variable x(θ, p) denotes the
number of purchased resources that satisfy both of the following conditions.

1. The resource is of type θ ∈ Θ, and
2. For all s ∈ S, the probability that the resource is assigned to schedule s is

given by p(s).

Each resource of type θ costs c(θ). Therefore, summing over all possible resource
types and feasible assignment vectors, we see that the total cost is given by the
objective function. We now proceed towards verifying Constraint (10). Applying
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union-bound, we can show that the left hand side of Constraint (10) is at least
|S|2 times the probability of defending target t. Glossing over some of the details,
the constraint holds since, the right hand side is roughly equal to |S|2 times the
probability of defending target t.2

1. Let δ denote a vector with |Tsmall| components, where δ(t) gives
the value of the component corresponding to target t ∈ Tsmall.

2. For all t ∈ Tsmall : Initialize δ(t) ← λt.
3. For all θ ∈ Θ, p ∈ Pθ : Initialize X(θ, p) ← 0.
4. While δ �= 0 Do
5. For all p ∈ P , and t ∈ Tsmall

ΔCov(p, δ, t) ← min
(
δ(t),

∑
s: t∈T (s) p(s) × |S|2

)
.

6. For all p ∈ P : ΔCov(p, δ) ←
∑

t∈Tsmall
ΔCov(p, δ, t).

7. Find some (θ, p) ∈ arg maxθ∈Θ, p∈Pθ

{
ΔCov(p, δ)/c(θ)

}
.

8. X(θ, p) ← X(θ, p) + 1.
9. For all t ∈ Tsmall : δ(t) ← δ(t) − ΔCov(p, δ, t).
10. Return the X(θ, p) values for all θ ∈ Θ, p ∈∈ Pθ.

Fig. 2. Dobson’s Algorithm applied to LP (9)

If a covering integer program has a constraint matrix with integral entries,
then a simple greedy heuristic returns a logarithmic approximation to the integral
optimum (Dobson [4]). Fact 2 tells us that we can apply Dobson’s heuristic
to IP (9). A simple intuition behind the algorithm (Figure 2) comes from an
alternate way of viewing the problem: Each target t has to be covered by a
threshold amount λt. The total coverage required is

∑
t∈Tsmall

λt. This coverage
can be achieved by incrementing the columns {(θ, p)}, where each column (θ, p)
corresponds to the variable x(θ, p). We want to increment the columns so that
the required coverage is attained at minimum cost.

At the beginning of a typical iteration of the While loop (Steps 4–9), the
value of δ(t) equals the remaining coverage required for target t before we can
attain its threshold λt. If we increment a column (θ, p) by 1, then the cost of
our solution will increase by c(θ), and at the same time, the coverage of target t
will increase (Step 5) by the amount ΔCov(p, δ, t). Hence, the increase in total
coverage of all the targets (Step 6) will be equal to ΔCov(p, δ). Let us term
this quantity ΔCov(p, δ) as marginal coverage. The algorithm myopically selects
the column that has the maximum marginal coverage to cost ratio (Step 7),
and increments that column by 1 (Step 8). The remaining coverage required for
all the targets are adjusted accordingly (Step 9). The While loop terminates
(Step 4) when δ = 0, that is, when all the targets in Tsmall have been covered
up to their corresponding thresholds.

2 To be more precise, the RHS is equal to 
e×qt×|S|2�. While converting the IP solu-
tion to a feasible (random) assignment of resources to schedules, the final algorithm
(Figure 3) looses a factor of e in the probability of defending any target t ∈ Tsmall.
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Note that IP (9) contains exponentially many variables x(θ, p). This follows
from the fact that the set P of possible assignment vectors is exponential in
size. Hence, we have to prove that Dobson’s algorithm can be implemented in
polynomial time. We also need to establish a bound on the approximation ratio.

Lemma 4. Dobson’s algorithm (Figure 2) can be used to solve the Integer Pro-
gram (9). Although IP (9) contains exponentially many variables, an approxi-
mate version of Dobson’s algorithm can be implemented in polynomial time. It
returns a feasible solution to IP (9), where each variable x(θ, p) is assigned a
nonnegative integral value X(θ, p). The solution satisfies two properties.

1. The objective value of the solution is at most O(log |T | + log |S|) times the
optimal objective value of IP (9).

2. The number of variables taking nonzero values are polynomially bounded.

Proof (Sketch). The approximation ratio of Dobson’s algorithm [4] grows loga-
rithmically with the maximum column sum of the coefficient matrix. Recall that
(Fact 2) each η(p, s) is an integer lying between 0 and |S|2, and the number of
constraints in IP (9) is at most |T |. Thus, in case of IP (9), the maximum col-
umn sum is upper bounded by |S|2×|T |. Hence the approximation ratio is given
by O(log(|S|2 |T |)) = O(log |S| + log |T |). Next, we will show that an approx-
imate version of Dobson’s algorithm can be implemented in polynomial time,
and asymptotically, it gives the same approximation ratio of O(log |S|+log |T |).

It is sufficient to discuss the implementations of Step 3, the While loop
(Steps 4–9) and Step 10. We implement Step 3 by implicitly assuming that all the
X(θ, p) values have been initialized to zero. During the course of the algorithm,
we keep track of only those X(θ, p) values that have been incremented at least
once. Since each λt is an integer lying between 0 and |S|2 (Fact 2), the total
coverage required of all targets is at most |T | × |S|2. Every iteration of the
While loop (Steps 4–9) contributes at least 1 towards this total coverage, and
it increments exactly one X(θ, p). Therefore, at the termination of the While
loop, the number of nonzero X(θ, p) values is upper bounded by the polynomial
|T | × |S|2. In Step 10, the algorithm returns only these nonzero X(θ, p) values,
and all other variables are implicitly set to zero.

Regarding the While loop (Steps 4–9), note that the marginal coverage
ΔCov(p, δ), as a function of the assignment vector p, is monotone and submodu-
lar. To be more precise, fix some resource type θ. Next, take any two assignment
vectors p, p′ ∈ Pθ such p is dominated by p′, that is, p(s) ≤ p′(s) for all s ∈ S.
Furthermore, suppose that

∑
s∈S p′(s) < 1. Fix some schedule s∗ ∈ S(θ) and

consider two new assignment vectors p1, p
′
1 ∈ Pθ with the following properties.

For all s ∈ S \ {s∗}, we have p1(s) = p(s), and p′
1(s) = p′(s). We also have

p1(s∗) = p(s∗) + 1/|S|2, and p′
1(s∗) = p′(s∗) + 1/|S|2. Now, submodularity of

marginal coverage means that the next inequality will always be satisfied.

ΔCov(p′
1, δ) − ΔCov(p′, δ) ≤ ΔCov(p1, δ) − ΔCov(p, δ)

We can exploit this submodularity condition as follows. While implementing
Step 7, suppose we have correctly guessed the resource type θ that maximizes
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the marginal coverage to cost ratio.3 All we need to do is to find an assignment
vector p ∈ Pθ with maximum marginal coverage, subject to the constraints that
each component of the vector p is an integral multiple of 1/|S|2, and the sum of
all the components is at most one (Lemma 2). This is equivalent to maximizing
a monotone submodular function subject to a budget constraint [10]. A simple
greedy algorithm is known to give a (1 − 1/e) approximation for this problem.

To summarize, in polynomial time we can obtain a column (θ, p) that gives a
constant approximation to the optimal ratio of marginal coverage to cost. Going
through Dobson’s proof [4], it is easy to verify the following statement. Even if
we implement Step 7 in this approximate fashion, the algorithm will have the
same asymptotic approximation guarantee. This concludes the proof. ��

We are now ready to present our algorithm for the SGsmall problem (Figure 3).
First, we solve IP (9) according to Lemma 4. Let B∗ denote the set of columns
of IP (9) where the corresponding variable is set to some nonzero value, that is,
B∗ = {(θ, p) : X(θ, p) = 0}. For each (θ, p) ∈ B∗, we purchase X(θ, p) resources
of type θ and tag them with the assignment vector p. Finally, each purchased re-
source is randomly assigned to some schedule according to its assignment vector;
and this process occurs independently of all other resources.

Solve IP (9) according to Lemma 4.
Define P∗

θ = {p ∈ Pθ : X(θ, p) �= 0} for all θ ∈ Θ.
Let Rθ be the set of resources of type θ that will be purchased.
Let R =

⋃
θ∈Θ Rθ be the set of all resources that will be purchased.

Let Rθ,p ⊆ Rθ denote the resources in Rθ whose
assignment probabilities are specified by p ∈ P∗

θ .
For all resource-types θ ∈ Θ

|Rθ | =
∑

p∈P∗
θ

X(θ, p).

For all p ∈ P∗
θ : |Rθ,p | = X(θ, p).

Randomly assign each resource r ∈ Rθ,p to schedules, according to the
assignment probabilities specified by p, independently of all other resources.

Fig. 3. Approximation Algorithm for the SGsmall Problem

Theorem 2. The algorithm described in Figure 3 gives an O(log |T | + log |S|)
approximation to the SGsmall problem.

Proof. If we purchase the resources according to Figure 3, then the total cost
is equal to the objective value of the IP solution returned by Lemma 4. Now
Lemma 2, Lemma 3 and Lemma 4 imply that this cost is at most O(log |T | +
log |S|) times the cost incurred by Opt. It remains to show that the solution
defends all the targets in Tsmall according to their threshold requirements. Fix
some target t ∈ Tsmall for the rest of this proof. Given any purchased resource r ∈
R, let pr be its assignment vector according to Figure 3. Since the X(θ, p) values

3 Clearly, in O(|Θ|) time we can iterate over all possible resource types.
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constitute a feasible solution to IP (9), we have that
∑

r∈R
∑

s: t∈T (s) η(pr, s) ≥
λt. Recall that η(pr, s) = pr(s) |S|2 and λt = �e × qt × |S|2� ≥ eqt |S|2. For all
r ∈ R, define φr(t) =

∑
s: t∈T (s) pr(s). Therefore, we get∑

r∈R
φr(t) =

∑
r∈R

∑
s: t∈T (s)

pr(s) ≥ eqt (14)

The probability that resource r does not defend target t is given by the expression
1 −
∑

s: t∈T (s) pr(s) = 1 − φr(t). Since the event of assigning a resource to some
(random) schedule occurs independently of other resources, the probability that
no resource defends the target t is equal to

∏
r∈R(1 − φr(t)). Since qt ≤ 1/e,

∏
r∈R

(1 − φr(t)) ≤
∏
r∈R

exp(−φr(t)) = exp

(
−
∑
r∈R

φr(t)

)
≤ exp(−eqt)

Thus, the probability of defending target t is at least 1 − exp(−eqt) ≥ qt. ��

Remark. We note that it is possible to devise a polynomial time algorithm that
gives an O(log |T |) approximation to the SGsmall problem. We have to consider
an exponential sized Linear Program that is similar to IP (9), solve it approx-
imately using an approximate separation oracle for its dual, and then directly
employ randomized rounding. However, the running time of such an algorithm
might become prohibitive. We omit the details due to space constraints.

4 Conclusion

We investigated the security game problem when there is an unlimited supply
of resources that can be purchased at a cost. We designed an algorithm for (de-
terministically) purchasing some resources at minimum cost, and then randomly
assigning them to schedules so that each target is defended with at least a certain
probability. The algorithm is efficient and gives a logarithmic approximation.

Since this problem is a generalization of Set-Cover, we cannot get a sub-
logarithmic approximation ratio. However, if each target has at most two sched-
ules that are capable of defending it (a generalization of the Vertex-Cover
problem) and resources are homogeneous, then we can get a constant factor ap-
proximation algorithm. We omit the proof due to lack of space. We leave open
the questions of exploring other settings with better approximation guarantees,
and investigating the fixed parameter tractability of the problem.

Acknowledgements. The authors thank Dmytro Korzhyk and Ronald Parr
for several helpful discussions. This research was supported by NSF under award
numbers IIS-0812113, IIS-0953756, CCF-1101659, CCF-0745761, CCF-1008065,
a gift from Cisco, by Conitzer’s Alfred P. Sloan Research Fellowship, and by
Munagala’s Alfred P. Sloan Research Fellowship.



24 S. Bhattacharya, V. Conitzer, and K. Munagala

References

1. An, B., Pita, J., Shieh, E., Tambe, M., Kiekintveld, C., Marecki, J.: GUARDS
and PROTECT: next generation applications of security games. ACM SIGecom
Exchanges 10(1), 31–34 (2011)

2. Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In:
FOCS, pp. 261–272 (2006)

3. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. In: STOC, pp. 71–78 (2006)

4. Dobson, G.: Worst-case analysis of greedy heuristics for integer programming with
nonnegative data. Mathematics of Operations Research 7(4), 515–531 (1982)

5. Etessami, K., Yannakakis, M.: On the complexity of Nash equilibria and other fixed
points. SIAM J. Comput. 39(6), 2531–2597 (2010)

6. Feige, U.: A threshold of ln n for approximating set-cover. Journal of the
ACM 45(4), 634–652 (1998)

7. Hochbaum, D.: Approximation Algorithms for NP-hard Problems. PWS Publishing
Company (1997)

8. Kiekintveld, C., Jain, M., Tsai, J., Pita, J., Ordóñez, F., Tambe, M.: Computing
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Abstract. We consider the problem of a monopolist seller who wants to
sell some items to a set of buyers. The buyers are strategic, unit-demand,
and connected by a social network. Furthermore, the utility of a buyer
is a decreasing function of the number of neighbors who do not own the
item. In other words, they exhibit negative externalities, deriving utility
from being unique in their purchases. In this model, any fixed setting of
the price induces a sub-game on the buyers. We show that it is an exact
potential game which admits multiple pure Nash Equilibria. A natural
problem is to compute those pure Nash equilibria that raise the most and
least revenue for the seller. These correspond respectively to the most
optimistic and most pessimistic revenues that can be raised.

We show that the revenues of both the best and worst equilibria are
hard to approximate within sub-polynomial factors. Given this hardness,
we consider a relaxed notion of pricing, where the price for the same
item can vary within a constant factor for different buyers. We show a 4-
approximation to the pessimistic revenue when the prices are relaxed by a
factor of 4. The interesting aspect of this algorithm is that it uses a linear
programming relaxation that only encodes part of the strategic behavior
of the buyers in its constraints, and rounds this relaxation to obtain a
starting configuration for performing relaxed Nash dynamics. Finally, for
the maximum revenue Nash equilibrium, we show a 2-approximation for
bipartite graphs (without price relaxation), and complement this result
by showing that the problem is NP-Hard even on trees.

1 Introduction

This paper considers pricing and allocations over a social network, when buyers
derive utility from being unique in their purchase. Such negative externalities
arise in several consumer goods where buyers derive value from “showing off”
the product to friends lacking it. Consider the following example. For many
years, the DVD publication industry has utilized the so called ”double-dipping”
policy, a term for releasing multiple versions of the same movie on discs. A
quick search for the movie “The Matrix” shows besides the original, there are
“The Matrix Revisited”, “The Matrix: Platinum Limited Edition Collector’s
Set”, and “The Ultimate Matrix Collection”. It is often the case that these
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editions have the same core content (in this case, the movie), while they differ in
the some “unique” different material that is packed with the disc, for instance,
sound tracks of the music, toy character of the figures in the movie, etc. And
it is often the case that the price discrepancy between these versions outweighs
the “real value” or intrinsic value the extra material provides. An incentive as
observed in [21] is that “..the extra 20 or 30 bucks . . . is discreet enough to
display without geek alarms flashing and whirling anytime I have friends and/or
new people over”. The same marketing policy exists in many other different
industries, book publishing, expensive electronic gadgets to name a few.

The model for negative externalities we study in the paper is simple: The
buyers are unit-demand and connected by a social network that we model as a
graph; the edges in the graph represent friendships. There are two types of items,
each with unlimited supply - a “cheap” item and an “expensive” item. Each user
has an intrinsic value for each type of item; however, buyers of the expensive item
also derive additional extrinsic utility from friends who only possess the cheaper
item. We assume the edges in the graph are weighted, so that the extrinsic utility
is the sum of the weights of edges leading to friends possessing the cheaper item.

In this model, a monopolist wishes to price the items to maximize revenue.
Any fixed setting of prices induces a sub-game on the buyers where they decide
which item to purchase in order to maximize their individual utility. If a buyer
buys the cheaper item, then she gets its intrinsic valuation; else if she buys the
more expensive item, she gets the sum of its intrinsic and extrinsic valuations.
The whole process can be viewed as a strategic game occurring in two rounds:
The seller commits to the two prices in advance, and then each buyer simulta-
neously decides which item to purchase. We term this the Pricing Game, and
investigate two natural questions for a fixed setting of prices:

– What is the pessimistic Nash equilibrium, i.e., one that raises minimum
revenue? This gives a guarantee on the revenue the seller raises regardless
of the behavior of the buyers; a risk-averse seller will choose prices at which
this revenue is as large as possible.

– What is the best Nash equilibrium, i.e., one that raises largest revenue? This
will give the most optimistic view of the buyers’ behavior, and is appropriate
when the seller can recommend which item to buy via targeted advertising.

Given efficient algorithms for the above problems, the seller can treat them as
subroutines while iterating over all possible prices. This will help her set the
prices in such a way that maximizes the pessimistic (resp. optimistic) revenue.

Sequential Pricing: Though our model is motivated by negative externalities,
the same model arises in an entirely different context that is well-studied in
economics. In sequential pricing, buyers derive positive utility from neighbors
who bought the item earlier in time, and strategically decide when to buy the
item to maximize their utility. The goal of the seller is to decide the prices to
set for each stage, with later stages having higher prices, so that the resulting
subgame among the buyers raises large revenue. Such a model of externality is
motivated by buyers deciding to wait on a purchase if a lot of her friends buy
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now, since waiting will lead to more product feedback and hence raise utility.
This is a well-studied problem: Exact and approximation algorithms are known
for models with no network effects [11, 7, 9, 13, 20], non-atomic buyers [5, 2], or
with non-strategizing buyers [14, 1, 3]. Our formulation exactly models two-stage
sequential pricing for a single item with strategic, atomic buyers on a network:
Buyers derive both an intrinsic utility from the item as well as linear utility
from neighbors who have bought the item in the previous stage. To map this
to our problem, simply note that the buyers in the second stage of sequential
pricing correspond to buyers of the more expensive item, and those in the first
stage, to the cheaper item. As we show next, the presence of atomic, strategizing
buyers on a network causes the problem to become structurally different from
previously considered versions.

1.1 Our Results

We first show that the Pricing Game is an exact potential game, and hence
admits to a pure Nash Equilibrium (Theorem 1). As a corollary, the Nash dy-
namics converges in poly-time when the edge-weights are polynomially bounded
integers. It is straightforward to check that not only are there multiple pure
Nash equilibria in this game, but also they have vastly different revenue prop-
erties for the seller. This motivates us to focus on computing equilibria with
certain optimality properties. In particular, we show the following results:

– For the Pessimistic (minimum) Nash equilibrium problem, we show that its
revenue is NP-Hard to approximate within a factor of O(n1/3−ε), where n
is the number of nodes in the social network (Theorem 2). Interestingly, our
hardness results hold even when the buyers derive significantly large intrinsic
utility compared to the externalities.

– In view of the above lower bound, we focus on a δ-relaxed notion of Nash
equilibria,1 where the seller posts different prices to different buyers of the
expensive item, but these prices are within a factor of δ of each other. We
give an algorithm (Theorem 6) for computing a 4-relaxed NE that is a 4-
approximation to the pessimistic revenue. The algorithm uses a linear pro-
gram relaxation to bound the revenue of the pessimistic NE. It is interesting
to note that this linear program only encodes the constraint that the buyers
do not deviate from buying the cheaper item to the more expensive item, al-
lowing the buyers of the more expensive item to deviate. Based on the ideas
from vertex cover, we present a rounding scheme for this LP, and use the
resulting solution as a starting point for performing relaxed Nash dynamics.

– We show (Theorem 7) that the Best Nash equilibrium problem is also hard to
approximate within a factor of O(n1/3−ε) by reduction from the independent
set problem. However, in contrast with independent set, our problem is NP-
Hard even on trees (Theorem 8). We finally present a 2-approximation to
maximum revenue when the underlying network is bipartite (Theorem 9).

1 Refer to the discussion in the beginning of Section 3.1 for more details.
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We emphasize that all the three hardness results (Theorems 2, 7, 8) hold even if
the edge-weights are small integers so that Nash dynamics converges quickly to
some Nash equilibrium. In contrast, both the algorithms presented in this paper
- a 4 approximation with relaxed prices to the revenue of the Pessimistic Nash
Equilibrium, and a 2 approximation to the revenue of the Best Nash Equilibrium
on bipartite graphs - run in polynomial time for arbitrary edge-weights.

Remark. All the missing proofs appear in the full version of this paper.

1.2 Related Work

Viral Marketing: Marketing strategies in social networks have been studied ex-
tensively, starting with the seminal paper by Kempe et. al. [16]. Several recent
papers [2, 14, 1, 3, 12] consider pricing and auction design in social networks
when buyers exhibit positive network externalities, meaning they derive positive
utility from neighbors possessing the product. Our main contribution is to show
that the structure induced by uniqueness and negative externalities is very dif-
ferent from positive externalities. In particular, we show that computing Nash
Equilibria with desirable revenue properties ends up being hard to approximate,
and we need to consider relaxed notions of equilibria for positive results.

Potential Games: Our problem is a special case of potential (or congestion)
games [18], which always admit to pure Nash equilibria. Typically, these games
have been studied from two perspectives - how bad can the welfare of the result-
ing equilibria be compared to optimal social welfare (price of anarchy) [17, 19];
and how quickly does the Nash dynamics converge [10, 8, 4]. The literature on
price of anarchy aims to find worst case loss in efficiency due to strategizing
across all game instances. In contrast, our focus is on computing the best or
worst equilibria for a specific input network. It is relatively easy to check that
the worst-case revenue of these equilibria across all networks can be Ω(n) factor
off from the optimal revenue that can be raised with non-strategizing buyers;
and furthermore, the revenues of best and worst equilibria can be separated by a
factor of Ω(n). For general potential games, computing a pure Nash equilibrium
is PLS-complete [10], and most literature in this domain have tried to circumvent
this hardness by considering the notion of approximate Nash equilibrium [6]. Our
focus is not on PLS-completeness; in fact, our problem is interesting (and hard)
even in the regime where the Nash dynamics converges in polynomial time.

2 Notations and Preliminaries

There is a cheap item and an expensive item, each of them being available in
unlimited supply. The buyers are unit demand. Consider an undirected graph
G = (V, E) with a weight function over the edges w : E → R

+. Each node i ∈ V
denotes a buyer, there is an edge (i, j) ∈ E if buyers i, j are friends, and the
weight of their friendship is given by the quantity w(i, j). The price of the cheap
(resp. expensive) item is set at p1 (resp. p2). Naturally, the price of the cheap
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item should be less than that of the expensive one, that is, p1 ≤ p2. The pricing
is uniform in the sense that the same item is offered at the same price to all
the nodes. Say that a node is black (resp. white) if she buys the cheap (resp.
expensive) item, while paying an amount p1 (resp. p2).

Definition 1. The externality Ext(i) of node i is the total weight of the edges
it shares with black nodes. Thus, we have Ext(i) =

∑
(i,j)∈E: j is black w(i, j).

Definition 2. The weighted degree D(i) of node i is the total weights of the
edges incident to it. Thus, we have D(i) =

∑
(i,j)∈E w(i, j).

Any buyer purchasing the cheap (resp. expensive) item gets an intrinsic valuation
of a (resp. b), where 0 ≤ a ≤ b, and a, b are publicly known and fixed in advance.
In addition, any buyer purchasing the expensive item gets an extrinsic valuation
that increases as more of her friends purchase the cheap item, and her total
valuation equals the sum of intrinsic and extrinsic valuations. To be more specific,
the valuation of every black node is equal to a; whereas the valuation of a white
node i is given by the expression b + Ext(i).

The buyers have quasi-linear utilities. If a node i is black, then her utility is
U(i) = a−p1. Else if the node i is white, then her utility is U(i) = b+Ext(i)−p2.
And if node i does not purchase any item, then she gets zero utility. We assume
p1 ≤ a and p2 ≤ b. These two inequalities guarantee that every buyer purchases
the item, or equivalently, every node is colored either black or white.

In this paper, we consider the setting where we are given the values of p1, p2, a
and b. This induces a normal form game between the buyers, and we term it as
the Pricing Game. The strategy of each node consists of choosing whether to
be colored black or white. A coloring of the nodes defines a strategy profile, and
in a Nash equilibrium, the color chosen by each node is a best response to the
colors chosen by other nodes. Thus, node i is colored black iff:

a − p1 ≥ b + Ext(i) − p2 ⇒ Ext(i) ≤ p2 − p1 + a − b = Δ (say)

Similarly, node i is colored white if and only if Ext(i) ≥ Δ.2

The game can therefore be summarized as follows.

Pricing Game. In any pure Nash equilibrium, every node is colored either
black or white, and each black (resp. white) node has an externality of at most
(resp. at least) Δ. Let BC (resp. WC = V \ BC) denote the set of black (resp.
white) nodes under coloring C. Each black (resp. white) node mays a payment
of p1 (resp. p2). Thus:

Seller’s Revenue = p1 × |BC | + p2 × |WC | = (Δ + b − a) × |WC | + p1 × |VC |

In the above equation, the second equality holds since p2 = p1 + Δ + b − a.

2 If Δ < 0, then it is a dominant strategy for each buyer to purchase the more expensive
item, and the pure NE degenerates to the case where all nodes are colored white.
Throughout the rest of the paper, we will consider the generic setting where Δ ≥ 0.



30 S. Bhattacharya et al.

Our first theorem shows that the Pricing Game is an exact potential game.
Associate each coloring C with a potential φ(C), given by the total weight of
black-black edges plus Δ times the number of white nodes. In terms of notations,

φ(C) = Δ × |WC | +
∑

(i,j)∈E:i,j∈BC

w(i, j)

Theorem 1. The Pricing Game is an exact potential game with potential
function φ(), and hence it admits a pure Nash equilibrium. If a, b, p1, p2 and
all the edge weights w(i, j) take integral values in the range {1, . . . , μ}, then the
Nash dynamics converges within Θ(μ|V |2) steps.

In this paper, we are interested in estimating the maximum (resp. minimum)
revenue the seller may obtain from any pure Nash equilibrium. Towards this
end, we define the following problems.

Problem 1 (BNE: Best Nash Equilibrium). Given an instance of the Pricing
Game, find a pure Nash equilibrium that generates the maximum revenue.

Problem 2 (PNE: Pessimistic Nash Equilibrium). Given an instance of the Pric-
ing Game, find a pure Nash equilibrium that generates the minimum revenue.

Our focus is not on studying Nash dynamics. Instead we ask the question: Even
if the edge-weights are small integers so that Nash dynamics converges in poly-
nomial time (Theorem 1), how hard is it to compute a pure Nash equilibrium
with specific revenue properties? All our hardness results (Theorems 2, 7, 8) hold
under this very natural scenario of small integer edge-weights. Our hardness re-
sults also hold when intrinsic valuations are large compared to each individual
externality (the reductions set a = b = 1), and the seller wants to obtain non-
negligible revenue from each item (the reductions set p1 = 1). However, both the
positive results in this paper - a 4 approximation with relaxed prices to the rev-
enue of the Pessimistic Nash Equilibrium (Theorem 6), and a 2 approximation
to the revenue of the Best Nash Equilibrium on bipartite graphs (Theorem 9) -
do not make any assumption on the input, and hold for arbitrary edge-weights.

3 The Pessimistic Nash Equilibrium

First, we derive a strong inapproximability result for the Pessimistic Nash Equi-
librium (PNE) problem by reducing it from Minimum Maximal Independent
Set (MMIS). In the MMIS problem, we are given a graph, and the objective to
find an independent set of minimum size such that every node in the graph is
adjacent to at least one node in the independent set. Kann [15] shows that it is
NP-hard to get a poly-time O(n1−ε) approximation for MMIS [15].

Theorem 2. It is NP-hard to compute in poly-time a pure Nash equilibrium
whose revenue is a O(n1/3−ε) approximation to the minimum revenue, where n
is the number of nodes in the social network.
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Proof. Given an instance G = (V, E) of the minimum maximal independent set
problem, we reduce it to an instance of PNE as outlined below. The resulting
weighted graph will be denoted by G.

– Set a = b = 1, p1 = 1, and p2 = |V |2, implying that Δ = (p2 − p1 + a− b) =
Θ(|V |2). Consequently, in any pure Nash equilibrium of the PNE instance
we construct, every black (resp. white) node should have an externality at
most (resp. at least) Δ. Further, every black node makes a payment of 1,
whereas every white node contributes Θ(|V |2) towards total revenue.

– Start with G = (V, E) and assign a weight of 3 to each edge (i, j) ∈ E.
– For all nodes i ∈ V :

• Create a new set of nodes Ti of cardinality (3Δ − 1).
• Partition Ti into four disjoint subsets as Li, Ri, Si and {αi, α̃i, βi, γi, δi},

where |Li| = |Ri| = |Si| = Δ − 2.
• Create a cycle connecting the nodes of Li.
• For all u ∈ Li, v ∈ Ri, create an edge (u, v). For all u ∈ Li ∪ Ri, create

the edges (u, γi), (u, δi). For all u ∈ Li, create an edge (u, βi). For all
u ∈ Si, create the edges (u, αi), (u, i).

• Create the edges (βi, γi), (βi, δi), (αi, βi), (i, αi) and (αi, α̃i).
• Assign a weight of 2 to each of the edges (αi, βi) and (αi, α̃i). Every

other newly created edge gets a weight of 1.

Since all nodes in Si ∪ {α̃i} have a weighted degree of 2, and Δ > 2, we have:

Observation 1. For all i ∈ V , the set of nodes Si ∪ {α̃i} must be colored black
in any pure Nash equilibrium.

The next three lemmas will be crucial in deriving the lower bound.

Lemma 3. Consider any pure Nash equilibrium in graph G. The nodes of the
set V that are colored black form a maximal independent set in G = (V, E).

Lemma 4. Consider the pure Nash equilibrium in graph G with minimum rev-
enue. If a node i ∈ V is colored white, then the revenue from the set Ti is Θ(Δ).

Lemma 5. Consider any pure Nash equilibrium in graph G. If a node i ∈ V is
colored black, then the revenue from the set Ti is Θ(Δ2).

Let B∗ (resp. W ∗ = V \B∗) denote the set of black (resp. white) nodes from V in
the pure Nash equilibrium of graph G that minimizes revenue. By Lemmas 4, 5,
the revenue of the coloring is given by the expression |B∗|×Θ(Δ2)+|W ∗|×Θ(Δ).
Since Δ = Θ(|V |2) and |W ∗| can be at most |V |, the first term dominates the
second one, and revenue equals |B∗|×Θ(|V |4). Since the coloring minimizes the
quantity |B∗| × Θ(|V |4), Lemma 3 implies that, upto a constant factor, the set
B∗ is a minimum maximal independent set in the graph G = (V, E).

Now, let B (resp. W = V \ B) denote the set of black (resp. white) nodes
from V in any pure Nash equilibrium of G. By Lemma 5, the revenue obtained is
at least |B| ×Θ(Δ2) = |B| ×Θ(|V |4). By Lemma 3, the set B is also a maximal
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independent set in the graph G = (V, E). Hence an approximation for the PNE
instance will imply an approximation for the MMIS of graph G = (V, E).

Finally, the graph G contains Θ(|V | × Δ) = Θ(|V |3) = n nodes. As a con-
sequence, a O(n1/3−ε) approximation for the PNE instance will translate into
a O(|V |1−3ε) approximation for the minimum maximal independent set of the
graph G = (V, E). This completes the reduction.

3.1 Nash Equilibrium with Relaxed Prices

At first glance, it seems that a possible way to circumvent the hardness result
(Theorem 2) is to focus on the relaxed notion of approximate Nash equilibrium,
which is defined as a coloring where any node on flipping color can improve her
utility by at most a constant factor. Unfortunately, such an approach is not going
to work, for the following reason. In the proof of Theorem 2, we have p1 = a, that
is, the cheap item is offered at a price equal to its intrinsic valuation. Hence every
black node gets zero utility. In this situation, any approximate Nash equilibrium
must be an exact Nash equilibrium. As a result, the hardness lower bound carries
over to the seemingly relaxed notion of approximate Nash equilibrium.

On a positive note, we provide a 4-approximation algorithm for the PNE
problem when the constraint of uniform pricing is relaxed slightly, allowing the
seller to offer different prices to different buyers purchasing the same item, under
the condition that these prices are within a constant factor of each other. Our
algorithm returns a coloring C satisfying the two properties described below.

– Every white node has an externality of at least Δ = (p2 − p1 + a − b), and
every black node has an externality of at most 4Δ. It is easy to verify that
such a coloring is a pure Nash equilibrium under the following relaxed pricing
scheme: Each black (resp. white) node is offered the price 4p2 (resp. p2) for
the expensive item, whereas the cheap item is offered at the same price p1

to every node.
– The revenue of the coloring C is at most 4 times the revenue of any pure Nash

equilibrium where the cheap (resp. expensive) item is offered to all buyers
at the same price p1 (resp. p2).

The algorithm is described in Figure 1. We give a LP relaxation for the PNE
instance, encoding the constraint that every black node has an externality of at
most Δ. Surprisingly, the LP does not enforce any lower bound on the exter-
nalities of the white nodes. Using a simple rounding scheme, we get an integral
solution whose revenue is at most 4 times the minimum revenue. In the integral
solution, every black node has an externality of at most 2Δ. Next, we employ an
iterative improvement process that flips the colors of bad (see Definition 3) nodes.
We show that the revenue does not increase during the iterative improvement
process and that the process converges in polynomial time to a coloring that is
a pure Nash equilibrium under the relaxed pricing scheme mentioned above.

We first write down the LP relaxation for the given PNE instance. Recall
that the notation D(i) denotes the weighted degree of node i (Definition 2).
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Consider any pure Nash equilibrium. For all i ∈ V , if node i is colored white
(resp. black), set xi = 1 (resp. xi = 0). For all (i, j) ∈ E, set yij = 1 if edge
(i, j) has both its end vertices colored black, otherwise set yij = 0. The revenue
is given by the objective value of LP-Min. Constraint (3) states that if a node
has weighted degree less than Δ, then it must be colored black. Constraint (2)
ensures yij = 1 if and only if both endpoints of the edge (i, j) are black. Finally,
Constraint (1) requires that if a node is black, then she has an externality of at
most Δ. Thus, any pure Nash equilibrium is a feasible solution to LP-Min, and
optimal objective value of the LP lower bounds the minimum revenue obtainable
from any pure Nash equilibrium.

Minimize (Δ + b − a)
∑

i

xi + p1|V | (LP-Min)

∑
j:(i,j)∈E w(i, j)yij ≤ Δ ∀i : D(i) ≥ Δ (1)

xi + xj + yij ≥ 1 ∀(i, j) ∈ E (2)
xi = 0 ∀i : D(i) < Δ (3)
xi ∈ [0, 1] ∀i (4)

Definition 3. A node is called bad if either it is white and has an externality
less than Δ, or if it is black and has an externality more than 4Δ.

RELAXED

Input: A graph G = (V, E), and some Δ > 0.
Output: A coloring of the nodes.

Let {x∗
i , y∗

ij} denote the optimal solution to LP-Min.
Rounding: For all nodes i ∈ V :

If x∗
i ≥ 1/4, then color node i as white; Else color node i as black.

Iterative Improvement:
While there exists a bad a node i ∈ V : Flip the color of node i.

a See Definition 3

Fig. 1. Approximation Algorithm for the Pessimistic Nash Equilibrium (PNE) problem
with relaxed prices

Theorem 6. Given an instance of the PNE problem, Algorithm RELAXED
(Figure 1) returns a coloring of the nodes with the following properties.

– The algorithm terminates in polynomial time.
– The revenue of the returned coloring is a 4-approximation to the optimal

objective value.
– It returns a coloring where each white node has an externality of at least Δ

and each black node has an externality of at most 4Δ.
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Proof. Let C denote the coloring obtained from the rounding step. Since every
white node has x∗

i ≥ 1/4, the revenue of coloring C is at most 4 times the optimal
objective value of LP-Min. We now show that the revenue can only decrease
during the iterative improvement process, which converges in polynomial time.

Consider a node i which is black under coloring C. Consider any other black
node j that is adjacent to node i. It follows that x∗

i , x
∗
j < 1/4, and by con-

straint (2) of LP-Min, we have y∗
ij ≥ 1/2. Now constraint (1) implies that

Ext(i) ≤ 2Δ. Hence, under coloring C, every black node i has Ext(i) ≤ 2Δ.
At any instant of the iterative improvement process, let W (resp. B = V \W )

denote the set of white (resp. black) nodes. Associate with every node i a variable
called bank(i), and define the potential of the system at any instant as Φ =
Δ × |W | +

∑
i∈V

bank(i). Initially, all the bank variables are set to 0. Hence, the

potential of the coloring C is given by Δ times the number of white nodes. As the
process unfolds, we adjust the bank variables according to the following rules.

– If a node i is flipped from white to black, then for all black nodes j adjacent
to i, increment bank(j) by an amount w(i, j). Furthermore, set bank(i) to 0.

– If a node i is flipped from black to white, then set bank(i) to 0.

First, we observe that when a node i is flipped from white to black, we have:

Decrease in Potential = Δ −
∑

j∈B: (i,j)∈E

w(i, j) = Δ − Ext(i) > 0

The last inequality holds since any node flipped from white to black has an
externality strictly less than Δ. Next, we note that whenever a black node i is
flipped to white, then the decrease in potential is −Δ + bank(i).

The last time instant when node i was colored black, we had Ext(i) ≤ 2Δ
and bank(i) was set to 0. At the present instant, when we are flipping node i
to white, Ext(i) is at least 4Δ. During this time period, node i has therefore
gained an externality of 2Δ. During the same time period, whenever a friend
j of node i has been flipped to black, both the externality of node i and the
variable bank(i) have increased by the same amount w(i, j). Consequently, at
the present time instant, the variable bank(i) has a value at least 2Δ, and when
we are flipping node i to white, we are decreasing the potential by at least Δ.

The preceding discussion shows that the iterative improvement process never
increases the potential. The highest potential is obtained at the beginning of the
process when all bank variables are zero, and consequently, this value is bounded
from above by the expression Δ×|V |. And whenever a node is flipped from black
to white, the potential decreases by at least Δ. Since a flip from black to white
must occur at least once amongst any sequence of |V | + 1 consecutive flips, it
follows that the process decreases the potential by an amount Δ within every
Θ(|V |) steps. As a result, the process converges in Θ(|V |2) steps.

Since the bank variables are initially set to zero and the potential decreases
as the process unfolds, it implies that the number of white nodes (and hence
revenue) in the final coloring must be lower than that of the coloring C obtained
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from the rounding step. Recall that the revenue of the coloring C is at most 4
times the minimum revenue, and the approximation guarantee follows.

The iterative improvement step is repeated till there are no bad nodes (Defi-
nition 3), and hence the final part of the theorem can be easily verified.

4 The Best Nash Equilibrium

This section begins with a strong inapproximability result for the BNE problem.

Theorem 7. Unless NP = ZPP , it is not possible to compute in polynomial
time a pure Nash equilibrium whose revenue is a O(n1/3−ε) approximation to
maximum revenue, where n is the number of nodes in the social network.

In view of the above hardness result on general graphs, we consider the BNE
problem on bipartite graphs. Unfortunately, the next theorem shows that the
problem is NP-hard even on trees (and hence on general bipartite graphs).

Theorem 8. It is NP-hard to optimally solve the BNE problem on trees.

On the positive side, we can show a simple 2 approximation for the BNE problem
on bipartite graphs. Consider a BNE instance on a bipartite graph with partite-
sets L, R and set of edges E ⊆ L×R. Suppose that |L| ≥ |R|, and the weighted
degree (Definition 2) of every node in the graph is at least Δ. In this case, it is
easy to check that coloring all the nodes in L (resp. R) as white (resp. black)
gives a 2 approximation to the BNE problem. This idea can be extended to
graphs where nodes can have arbitrary weighted degrees.

Theorem 9. There is an efficient algorithm that gives 2 approximation to the
BNE problem on bipartite graphs.

5 Conclusion

We considered the setting of monopoly pricing over a social network in presence
of negative externalities. All of our algorithmic results, both for BNE and PNE,
can easily be adapted to the scenario where different buyers have different in-
trinsic valuations for the same item. In addition, the algorithms work even if the
extrinsic valuation for the expensive item increases linearly with the externality
only upto a certain threshold, and then remains fixed at the threshold value.

It will be interesting to extend our results to pricing with more than two
items, and investigate other solution concepts such as mixed Nash equilibrium.
We also note that our work assumed a perfect information model where the seller
knows the valuations of the buyers, and we leave open the question of studying
the effects of imperfect information under a Bayesian setting.
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Abstract. We study a mechanism design version of matching compu-
tation in graphs that models the game played by hospitals participating
in pairwise kidney exchange programs. We present a new randomized
matching mechanism for two agents which is truthful in expectation and
has an approximation ratio of 3/2 to the maximum cardinality matching.
This is an improvement over a recent upper bound of 2 [Ashlagi et al., EC
2010] and, furthermore, our mechanism beats for the first time the lower
bound on the approximation ratio of deterministic truthful mechanisms.
We complement our positive result with new lower bounds. Among other
statements, we prove that the weaker incentive compatibility property
of truthfulness in expectation in our mechanism is necessary; universally
truthful mechanisms that have an inclusion-maximality property have
an approximation ratio of at least 2.

1 Introduction

In an attempt to address the wide need for kidney transplantation and the
scarcity of cadaver kidneys, several countries have launched, or are considering,
national kidney exchange programs involving live donors [7,11,1,4]. Patients can
enter such a program together with a member of their family or friend who is
willing to donate them a kidney but cannot due to incompatibility. National
kidney exchange programs aim to implement exchanges between two compatible
patient-donor pairs u and v so that the donor of pair u donates her kidney to
the patient of pair v and vice versa. This requires four simultaneous operations.
More complicated exchanges involving more than two donor-patient pairs are
also possible; however, we focus on pairwise exchanges since they are easier to
perform in practice.

Donor-patient pairs approach a hospital in order to enroll into the national
kidney exchange programs. In an ideal scenario, each hospital reports its donor-
patient pairs to the program and a central authority runs an algorithm that
decides which pairwise kidney exchanges will take place. In practice, strategic
issues immediately arise. A hospital may prefer to not enroll some easy-to-match
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donor-patient pairs to the program and instead match them and perform the
kidney exchange operations internally. This may have an impact on patients
of other hospitals who could have benefited if the hospital truthfully reported
all its donor-patient pairs to the program. The current paper follows the line
of research that seeks to design algorithms (or mechanisms) that discourage
hospitals from behaving untruthfully. The main objective is to perform as many
kidney exchanges as possible under this constraint. This is a mechanism design
[5] problem, and in particular—because paying for organs is illegal in almost all
countries—it falls within the scope of approximate mechanism design without
money [6].

We can model the problem as a matching problem in graphs. The input con-
sists of a graph in which the nodes represent donor-patient pairs and an edge
connects two nodes u and v when the donor of pair u and the patient of pair v
are compatible, and the donor of pair v and the patient of pair u are compati-
ble. Each node of the graph is controlled by exactly one self-interested agent (a
hospital). A mechanism takes the graph as input and returns a matching, i.e., a
disjoint pair of edges indicating which pairwise kidney exchanges will take place.
The gain of an agent is the number of nodes under her control that are matched.
Clearly, an optimal solution is easy to find by a maximum matching computa-
tion. Unfortunately, a mechanism that returns such a solution may incentivize
hospitals to behave untruthfully in the following sense. A hospital could hide
some of its nodes from (i.e., not enroll them into) the system so that the mecha-
nism is essentially applied on a graph that contains neither the hidden nodes nor
the edges incident to them. Then, the gain of the hospital is the number of its
nodes that are matched by the mechanism plus the number of nodes it managed
to match internally. Such behavior can lead to fewer matched nodes compared
to the best possible solution, i.e., fewer patients who receive kidneys. So, we
seek mechanisms that guarantee that no agent has any incentive to deviate from
truth-telling. Our goal is to design such mechanisms that also return matchings
of high cardinality, i.e., high total gain.

The mechanisms can be deterministic or randomized. Given an instance of the
problem, a deterministic mechanism returns a simple matching. A randomized
mechanism returns a probability distribution over matchings. In the latter case,
we distinguish between universally truthful mechanisms and mechanisms that
are truthful in expectation. The former are induced by a probability distribution
over truthful deterministic mechanisms, whereas the latter guarantee that no
agent can deviate from truth-telling in order to increase her expected gain. The
efficiency of truthful mechanisms is assessed through their approximation ratio,
i.e., the maximum ratio over all possible instances of the problem of the size
of the maximum cardinality matching over the expected size of the matching
returned by the mechanism.

Early work on kidney exchange problems in Economics [8,9,10] has considered
the incentives of incompatible donor-patient pairs. However, as national kidney
exchange programs emerged, it has become apparent that such incentives are less
important compared to the incentives of the hospitals [3]. The model considered
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in the current paper has also been studied in [2,3,12,13]. The fact that the
maximum cardinality matching mechanism is not truthful was first observed by
Sönmez and Ünver [12] (see also [3]). Ashlagi et al. [2] present a universally
truthful randomized 2-approximation mechanism (called Mix-and-Match) for
arbitrarily many agents. Mix-and-Match is based on a simple deterministic
truthful 2-approximation mechanism for two agents, henceforth called Match.
Match returns a matching that contains the maximum number of internal edges
(where the nodes on both sides are controlled by the same agent), breaking ties
in favor of the matching with maximum cardinality. A nice property of Match
is inclusion-maximality; this translates to the requirement that a donor-patient
pair does not participate in any kidney exchange only when all its compatible
donor-patient pairs participate in some pairwise kidney exchange. A randomized
mechanism has this property when it returns a probability distribution over
inclusion-maximal matchings. On the negative side, there are lower bounds of 2
and 8/7 for deterministic truthful mechanisms and randomized mechanisms that
are truthful in expectation, respectively [2,3]. Ashlagi et al. [2] also propose the
mechanism Flip-and-Match for two agents. Flip-and-Match equiprobably
selects among the outcome of Match and a maximum cardinality matching.
They prove that this mechanism has approximation ratio 4/3 and leave open
the question of whether it is truthful in expectation. Ashlagi and Roth [3] and
Toulis and Parkes [13] consider weaker notions of truthfulness in random graph
models that reflect the compatibility frequency among donors and patients from
the human population. As in [2], no such information is required in our setting.

In an attempt to better understand the potential and limitations of random-
ized mechanisms, we consider the case of two agents. This case is of special
interest because efficient mechanisms can enable cooperation between pairs of
hospitals on an ad-hoc basis, in countries where a national kidney exchange pro-
gram is not yet in place. Our main result is a randomized mechanism called
Weight-and-Match for 2-agent pairwise kidney exchange that is truthful in
expectation and has a tight approximation ratio of 3/2. This establishes, for
the first time, a separation between the power of randomized mechanisms and
deterministic mechanisms (for which there is a lower bound of 2).

Weight-and-Match is inspired by the mechanism Flip-and-Match pro-
posed in [2]. Unfortunately, it turns out that Flip-and-Match is not truthful
due to its use of maximum cardinality matchings. This observation is our start-
ing point for the definition of the new mechanism. Weight-and-Match first
assigns weights to the edges of the input graph and then selects equiproba-
bly among two maximum-weight matchings: one with minimum cardinality (the
particular weights assigned to the edges guarantee that this matching is identi-
cal to the one returned by Match) and one with maximum cardinality (which
replaces the second matching used by Flip-and-Match). Informally, this def-
inition guarantees that the bad incentives created by the second matching are
canceled out by the outcome of Match.

We complement this result with new lower bounds on the approximation ra-
tio of randomized mechanisms that are truthful in expectation or universally
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truthful, distinguishing between mechanisms that are inclusion-maximal and
those that are not. Here we use the same 2-agent instance as in previous
work [2,3,12] but our stronger analysis leads to improved bounds for inclusion-
maximal and universally truthful mechanisms. Our general lower bound is 5/4.
Interestingly, we prove a lower bound of 2 for inclusion-maximal universally
truthful mechanisms that indicates that the weaker notion of truthfulness satis-
fied by Weight-and-Match (which is inclusion-maximal) is indeed necessary.

The rest of the paper is structured as follows. We warm up by showing that
Flip-and-Match is not truthful in Section 2. Our mechanism and its analysis
are presented in Section 3. The lower bounds are presented in Section 4. We
conclude with a short discussion of open problems in Section 5.

2 An Unsuccessful Attempt: Flip-and-Match

Throughout the paper, we refer to the two agents as agent 1 and agent 2. We
also call the nodes of agents 1 and 2 white and gray nodes, respectively.

Let us warm up by considering the mechanism Flip-and-Match proposed
in [2]. Flip-and-Match selects equiprobably among the matching returned by
Match and a maximum cardinality matching. In the original definition of [2],
ties among maximum cardinality matchings are broken in favor of matchings that
maximize the number of internal edges (i.e., edges between two nodes controlled
by the same agent) and then arbitrarily. In our proof, we essentially show that
any modification of the tie-breaking rule violates truthfulness.

Theorem 1. Flip-and-Match is not truthful.

Proof. Our proof uses the instance I and subinstances I1 and I2 of Fig-
ure 1. When applied to instance I, Match returns the matching M1 =
{(v2, v3), (v4, v5), (v7, v8)}. The gain of agent 1 is 4 while the gain of agent 2
is 2. Let M2 be a maximum cardinality matching. It leaves exactly one node
unmatched; this can be either a white or a gray node, i.e., M2 matches either
4 white nodes and 4 gray nodes or 5 white nodes and 3 gray nodes. We distin-
guish between these two cases and show that, in both cases, some agent has an
incentive to withhold nodes.

v1 v2 v3 v4 v5 v6 v7 v8 v9

v1 v2 v3 v4 v5 v6 v7 v8 v9

v1 v2 v3 v4 v5 v6 v7 v8 v9

Fig. 1. The original instance I used in the proof of Lemma 1 and the two subinstances
I1 and I2 used in cases 1 and 2, respectively. The dashed nodes and edges are not part
of the instances I1 and I2 but are shown here in order to compare with instance I .
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Case 1. M2 matches 4 white nodes and 4 gray nodes and, hence, the expected
gain of agent 1 from the application of Flip-and-Match on instance I is 4.
Consider the instance I1 in which agent 1 hides the white nodes v7 and v8 and
matches them internally. In the new instance, Match returns the matching
{(v2, v3), (v4, v5)} that contains 2 matched white nodes while the maximum car-
dinality matching is {(v1, v2), (v3, v4), (v5, v6)} that contains 3 matched white
nodes. The expected gain of agent 1 (including the hidden nodes) is 4.5.

Case 2. M2 matches 5 white nodes and 3 gray nodes and hence the expected
gain of agent 2 from the application of Flip-and-Match to the original in-
stance I is 2.5. Consider the instance I2 in which agent 2 hides nodes v2 and v3

(and matches them internally). In the new instance, Match returns the match-
ing {(v4, v5), (v7, v8)} that contains no matched gray nodes while the maximum
cardinality matching is {(v4, v5), (v6, v7), (v8, v9)} that contains 2 matched gray
nodes. The expected gain of agent 2 (including the hidden nodes) is 3. ��

3 Our Mechanism: Weight-and-Match

In this section, we present our new mechanism for two agents, which we call
Weight-and-Match. The main idea behind it is similar to the one that led to
Flip-and-Match: we try to combine mechanism Match with another mech-
anism that yields a higher gain. However, given the negative result for Flip-
and-Match presented in the previous section, we should be careful with the
definition of our mechanism. We can think of the following alternative definition
for Match. We first assign weights to the edges of the input graph as follows.
Internal edges have weight 1; edges between nodes of different agents have weight
1/2. The matching returned by Match is then a maximum-weight matching on
the weighted version of the input graph, where ties are broken in favor of the
matching with minimum cardinality. Our mechanism Weight-and-Match also
computes a maximum-weight maximum-cardinality matching on the weighted
version of the input graph, and selects equiprobably among the two matchings.
Note that Weight-and-Match is inclusion maximal. The rest of the section is
devoted to proving the following statement.

Theorem 2. Mechanism Weight-and-Match can be implemented in polyno-
mial time, has approximation ratio 3/2, and is truthful in expectation.

Due to lack of space, we omit the proof that our mechanism can be implemented
efficiently; we proceed with the proof of its approximation guarantee.

Lemma 1. Weight-and-Match has an approximation ratio of 3/2.

Proof. Let M be a matching of maximum cardinality and let M1 and M2 be
the maximum-weight matchings of minimum and maximum cardinality, respec-
tively, that are used by Weight-and-Match. Consider the symmetric differ-
ence MΔM1 = (M \M1)∪(M1\M). It consists of several connected components
which are either cycles (of even length), or paths with edges alternating between
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edges of M and edges of M1. Let m1 be the number of edges of M that either
belong also to M1 or belong to cycles or paths of MΔM1 with even length.
Let m3 and m5 be the edges of M that belong to paths of MΔM1 with length
exactly 3 and odd length at least 5, respectively. Clearly, |M | = m1 + m3 + m5.

Note that the number of edges of M1 that either belong also to M or belong
to cycles or paths of MΔM1 of even length is exactly m1 as well. Also, since M
has maximum cardinality, the first and the last edge in a path with odd length
in MΔM1 belong to M . So, M1 contains exactly m3/2 edges in paths of MΔM1

of length 3 and at least 2m5/3 edges in paths of MΔM1 of odd length at least
5. Hence, |M1| ≥ m1 + m3/2 + 2m5/3.

We now show that M2 (the maximum-weight matching of maximum cardi-
nality) contains at least m1 + m3 + 2m5/3 edges. Observe that, since M1 is a
maximum-weight matching, in any path with length 3 in MΔM1, the edge of
M1 should have endpoints belonging to the same agent (and, hence, weight 1)
and the two edges of M should have endpoints belonging to different agents
(and, hence, weight 1/2). Consider the edges of M1 that do not belong to paths
of length 3 of MΔM1 and the edges of M that belong to paths of length 3 in
MΔM1. All these edges form a matching that has the same total weight as the
edges of M1, and their cardinality is at least m1 + m3 + 2m5/3. Clearly, this is
also a lower bound on the cardinality of M2, i.e., |M2| ≥ m1 + m3 + 2m5/3.

Hence, the expected cardinality of the mechanism’s matching is

1
2
(|M1|+ |M2|) ≥ m1 +

3m3

4
+

2m5

3
≥ 2

3
(m1 + m3 + m5) =

2
3
|M |. ��

v1 v2 v3 v4 v5 v6

Fig. 2. An instance indicating that the analysis of Lemma 1 is tight. The maximum
matching matches all 6 nodes but mechanism Weight-and-Match returns the match-
ing that consists of edges (v2, v3) and (v4, v5). Note that here the symmetric difference
is a path of length 5.

The bound obtained in Lemma 1 is tight through the example of Figure 2.
We now turn to proving that our mechanism is truthful.

Lemma 2. Weight-and-Match is truthful in expectation.

Proof. We will show that agent 1 never has an incentive to deviate from truth-
telling. The case of agent 2 is identical.

Let G be the input graph and consider the maximum-weight matchings M1

and M2 of minimum and maximum cardinality, respectively, that are used by
Weight-and-Match. Also, assume that agent 1 hides some nodes and matches
them internally. Then, the mechanism is applied to the subgraph G′ of G which
does not contain the hidden white nodes and edges incident to them. Let M3 and
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M4 be the maximum-weight matchings of minimum and maximum cardinality
computed by Weight-and-Match on input G′, augmented by the edges used
by agent 1 to match the hidden white nodes internally. Denote by gain(M) the
gain of agent 1 from matching M and by wgt(M) the weight of matching M .
Our proof will follow from the next two lemmas.

Lemma 3. gain(M3) = gain(M1) − 2(wgt(M1) − wgt(M3)).

Proof. Denote by nww(M), nwg(M), and ngg(M) the number of edges in matching
M connecting two white nodes, two nodes belonging to different agents, and two
gray nodes, respectively. We will first show that ngg(M1) = ngg(M3). Consider
the symmetric difference of the two matchings M1ΔM3 = (M1 \ M3) ∪ (M3 \
M1) and the subgraph of G induced by these edges. This subgraph consists of
several connected components which can be cycles or paths (see Figure 3 for an
example). Consider such a connected component C and let C1 and C3 be the
sets of edges of M1 and M3 it contains, respectively.

v1 v2 v3 v4 v5 v6 v7 v8 v9

v10v11v12v13v14v15v16v17v18

M1 M3 M1 M3 M1 M3 M1 M3

M1

M3M1M3M1M3M1M3M1

Fig. 3. A connected component of M1ΔM3 considered in the proof of Lemma 3. The
sets of gray nodes {v1}, {v5, v6, v7}, {v9, ..., v13}, and {v15} form blocks. The main
argument in the proof is that each block has an odd number of gray nodes.

In order to prove that ngg(M1) = ngg(M3), it suffices to prove that ngg(C1) =
ngg(C3). This is clearly true if C is a cycle consisting of gray nodes only, since
such a cycle should have an even number of edges, half of which belong to C1

and half to C3. Assume that C contains a block of t consecutive gray nodes
b1, b2, ..., bt such that the first and the last have either degree 1 or are con-
nected to another white node outside the block. We will show that t cannot
be even. Assume that this was the case; then one of the two matchings (say
M1; the argument for M3 is completely symmetric) would contain the t

2 − 1
edges (b2, b3), (b4, b5), . . . , (bt−2, bt−1) and the other (say M3) would contain the
t
2 edges (b1, b2), (b3, b4), . . . , (bt−1, bt). Then, by replacing the t

2 − 1 edges of
matching M1 in the block as well as the edges of M1 that are incident to nodes
b1 and bt (if any) with the t

2 edges of M3 in the block, we would obtain a match-
ing that either has higher weight than M1 (if some of nodes b1 and bt has degree
1) or the same weight as M1 (recall that the edges connecting nodes b1 and
bt to white nodes outside the block have weight 1/2) but smaller cardinality.
Both cases contradict the fact that the matching M1 is a minimum cardinality
maximum-weight matching. Hence, every block has an odd number of nodes and
an even number of edges between gray nodes that alternate between matchings
M1 and M3. This implies that ngg(C1) = ngg(C3). Consequently, by summing
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over all connected components of M1ΔM3 and the edges of M1∩M3 connecting
gray nodes, we also have that ngg(M1) = ngg(M3).

Next, observe that gain(M) = 2nww(M) + nwg(M) and wgt(M) = nww(M) +
ngg(M) + nwg(M)/2. Hence, since ngg(M1) = ngg(M3), we have

gain(M3) = 2nww(M3) + nwg(M3)
= 2nww(M3) + nwg(M3) + 2ngg(M3) − 2ngg(M1)
= gain(M1) − 2(wgt(M1) − wgt(M3)),

as desired. ��

Lemma 4. gain(M4) ≤ gain(M2) + 2(wgt(M2) − wgt(M4)).

Proof. First consider each edge in M2 ∩ M4 and observe that its contribution
to gain(M4) equals its contribution to gain(M2) + 2(wgt(M2) − wgt(M4)). We
will now consider the symmetric difference of the two matchings M2ΔM4 =
(M2 \ M4) ∪ (M4 \ M2) and the subgraph of G induced by these edges. Again,
this subgraph consists of several connected components which can be cycles or
paths. Consider such a connected component C and let C2 and C4 be the sets
of edges of M2 and M4 it contains, respectively. We will complete the proof of
the lemma by showing that

gain(C4) ≤ gain(C2) + 2(wgt(C2) − wgt(C4). (1)

First, observe that since M2 is a maximum-weight matching in G, it holds that
wgt(C2) ≥ wgt(C4) (otherwise, we could replace the edges of C2 with the edges
of C4 in M2 and obtain a matching with higher weight). We now use a four-
letter/number notation to classify the connected components of the subgraph
of G induced by M2ΔM4 that are paths into different types: the first and last
letters are w or g and denote whether the left and right endpoint of the connected
component is a white or gray node, respectively. The second and third numbers
are either 2 or 4 and denote whether the first and the last edge of the connected
component belong to matching M2 or M4, respectively. Examples of paths of
type w22w, w44g, and w44w are depicted in Figure 4. We distinguish between
three main cases:

Case 1. If C is a cycle, or a path of type w22w, w24w, w42w, w22g, w24g, g22g,
g24g, g42g, or g44g, we have gain(C4) ≤ gain(C2) and inequality (1) follows
easily since wgt(C2) ≥ wgt(C4).

Case 2. If C is a path of type w42g or w44g, we claim that wgt(C2) + wgt(C4)
is non-integer. Indeed, since the first and the last node in the path belong to
different agents, there is an odd number of external edges (between a white and
a gray node) in C, and each such edge contributes 1/2 to the sum wgt(C2) +
wgt(C4). Recall that wgt(C2) ≥ wgt(C4), and therefore wgt(C2)−wgt(C4) ≥ 1/2.
Inequality (1) follows by observing that gain(C2) = gain(C4) − 1 in this case.

Case 3. If C is of type w44w, observe that C4 contains one more edge than C2

and, hence, wgt(C2) > wgt(C4) (otherwise, we could replace the edges of C2 with
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v1 v2 v3 v4 v5 v6 v7 v8
M2 M4 M2 M4 M2 M4 M2

v1 v2 v3 v4 v5 v6 v7 v8
M4 M2 M4 M2 M4 M2 M4

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
M4 M2 M4 M2 M4 M2 M4 M2 M4

Fig. 4. Examples of connected components of M2ΔM4 considered in the proof of
Lemma 4 (paths of type w22w, w44g, and w44w)

the edges of C4 in M2 in order to obtain a matching of the same weight but with
higher cardinality). Also, observe that the number of external edges in C is even,
and hence wgt(C2) + wgt(C4) is integer. It follows that wgt(C2) ≥ wgt(C4) + 1.
Inequality (1) follows by further observing that gain(C2) = gain(C4) − 2. ��

Since wgt(M1) = wgt(M2) and wgt(M3) = wgt(M4), by Lemmas 3 and 4 we have
that the expected gain 1

2 (gain(M3)+gain(M4)) of agent 1 when she hides some
white nodes and matches them internally is upper-bounded by the expected gain
1
2 (gain(M1) + gain(M2)) when she acts truthfully. ��

4 Lower Bounds

Ashlagi et al. [2] and Ashlagi and Roth [3] provide a lower bound of 8/7 for
truthful-in-expectation randomized mechanisms.1 The proof of the next lemma
starts with the same initial instance as [2,3] but uses a more detailed reasoning
in order to prove lower bounds for randomized mechanisms that are either uni-
versally truthful or truthful in expectation, distinguishing between mechanisms
that are inclusion-maximal and those that are not.

Theorem 3. Let A be a randomized mechanism for 2-agent kidney exchange.

(a) If A is truthful in expectation, then its approximation ratio is at least 5/4.
(b) If A is truthful in expectation and inclusion-maximal, then its approximation

ratio is at least 4/3.
(c) If A is universally truthful, then its approximation ratio is at least 3/2.
(d) If A is universally truthful and inclusion-maximal, then its approximation

ratio is at least 2.

Proof. Our proof uses the instances depicted in Figure 5. The starting point
is instance I. We denote by I1 the instance obtained by removing the white nodes

1 Ashlagi et al. [2] actually claim a bound of 4/3 but this is inaccurate. In fact it
is not hard to design an artificial mechanism (as a probability distribution over
matchings) that is truthful in expectation and has approximation ratio at most 5/4
for the instances considered in their proof.
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v1 v2 v3 v4 v5 v6 v7

v1 v2 v3 v4 v5 v6 v7

v1 v2 v3 v4 v5 v6 v7

v1 v2 v3 v4 v5 v6 v7

Fig. 5. The instances I , I1, I2, and I3 used in the proof of Theorem 3. The dashed
nodes and edges are not part of the instances I1, I2, and I3 but are shown here in order
to compare with instance I .

v5 and v6 and their incident edges from I, by I2 the instance obtained from I by
removing the nodes v2 and v3 and their incident edges, and by I3 the instance
obtained from I2 by removing the nodes v4 and v5 and their incident edges.

(a) Consider the application of mechanism A to instance I. Observe that the
maximum cardinality matching of this instance has size 3, i.e., the total gain
of both agents from any matching is at most 6. So, assume that the expected
gain of agents 1 and 2 from the matching returned by A is at most 4 − u and
at most 2 + u respectively, for some u ∈ [0, 1]. Then, consider the application of
mechanism A to instance I1. The expected gain of agent 1 from the matching
returned by A should be at most 2 − u (otherwise, in the original instance I,
agent 1 would have an incentive to hide the white nodes v5 and v6 and match
them internally). This means that, on input I1, the probability that A returns a
matching consisting of two edges is at most 1 − u/2. Hence, the approximation
ratio of mechanism A on instance I1 is at least 4

4−u .
Also, consider the application of mechanism A to instance I2. The expected

gain of agent 2 from the matching returned by A should be at most u (otherwise,
in the original instance I, agent 2 would have an incentive to hide the gray
nodes v2 and v3 and match them internally). This means that, on input I2, the
probability that A returns a matching consisting of two edges is at most u. Hence,
the expected gain of agent 1 from instance I2 is at most 2 + u. Now, consider
the application of A to instance I3; A should return a non-empty matching with
probability at most u (otherwise, agent 1 would have an incentive to hide nodes
v4 and v5 from instance I2 and match them internally). Hence, the approximation
ratio of mechanism A on instance I3 would be 1/u.

We conclude that the approximation ratio of A is at least max
{

4
4−u , 1

u

}
which

is minimized to 5/4 for u = 4/5.

(b) From the analysis of (a), we have that A is inclusion-maximal only when
u = 1 (otherwise, it would return an empty matching for instance I3 with non-
zero probability). In this case, the approximation ratio of A is at least 4/3.

(c) Since A is universally truthful, it uses a probability distribution over de-
terministic truthful mechanisms. We partition the set of truthful deterministic
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mechanisms into two sets Aw and Ag: the set Aw (respectively, Ag) consists of
mechanisms which, on input instance I, return a matching that leaves at least
one white node (respectively, at least one gray node) unmatched. Any other
truthful deterministic mechanism is arbitrarily put in one of the two sets.

Let Aw be a deterministic mechanism that belongs to Aw. On input instance
I1, Aw should return a matching with just one edge. Otherwise, a matching with
two edges would match the two white nodes v1 and v4 which means that agent
1 would have an incentive to hide nodes v5 and v6 from instance I and match
them internally; this would violate the truthfulness of mechanism Aw. Hence,
mechanism Aw returns matchings of size at most 1 on input instances I1 and I3.

Also, let Ag be a deterministic mechanism that belongs to Ag. Consider the
application of Ag to instance I2. The matching it returns should not match node
v7 since otherwise agent 2 would have an incentive to hide nodes v2 and v3 in the
original instance I and match them internally. Hence, only two white nodes are
matched by mechanism Ag on input instance I2. Now consider the application
of Ag to the instance I3. It should return an empty matching otherwise agent
1 would have an incentive to hide the white nodes v4 and v5 from instance I2

and match them internally. Hence, the matchings returned by mechanism Ag on
input instances I2 and I3 have size at most 2 and 0, respectively.

Next, let p be the probability that mechanism A runs a deterministic truthful
mechanism from Aw. Then, the expected size of the matching returned by A on
input instances I1 and I3 is at most 2 − p and p, respectively, and its approxi-
mation ratio is at least max

{
2

2−p , 1
p

}
which is minimized to 3/2 for p = 2/3.

(d) In the proof of (c), the mechanisms in Ag are not inclusion-maximal. Hence, if
A is universally truthful and inclusion-maximal, it should use only deterministic
mechanisms from Aw, i.e., p = 1. Following the analysis in the previous case for
instance I1, we obtain that A has approximation ratio at least 2. ��

Theorems 2 and 3(d) establish a separation between truthfulness in expectation
and universal truthfulness with respect to inclusion-maximal mechanisms.

5 Discussion and Open Problems

Our work has shed some light on the efficiency of randomized truthful mecha-
nisms for the 2-agent pairwise kidney exchange problem. Although the number
of agents is restricted, we believe that this case is of special interest because
2-agent mechanisms can enable ad-hoc arrangements between hospitals in coun-
tries where national exchanges are not in place.

Clearly, the question of whether the upper bound of 2 of Ashlagi et al. [2]
can be improved for instances with arbitrarily many agents remains wide open.
Unfortunately, several extensions of Weight-and-Match that we have consid-
ered for this case have failed, and in fact it seems likely that this upper bound
is tight for more than two agents. Still, the 2-agent case deserves some fur-
ther investigation because there are gaps between our upper and lower bounds.
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In this context, it is especially interesting to know whether a truthful in expec-
tation, inclusion-maximal, 4/3-approximation mechanism exists. For the 2-agent
case, we also believe that characterizations of truthful mechanisms would be very
useful in order to complete the picture. Finally, Ashlagi et al. [2] were unable to
provide a truthful deterministic mechanism for the case of more than two agents
that gives any nontrivial approximation ratio. Providing such a mechanism, or
proving a lower bound, remains an enigmatic open problem.
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Abstract. In revenue maximization of selling a digital product in a so-
cial network, the utility of an agent is often considered to have two parts:
a private valuation, and linearly additive influences from other agents.
We study the incomplete information case where agents know a common
distribution about others’ private valuations, and make decisions simul-
taneously. The “rational behavior” of agents in this case is captured by
the well-known Bayesian Nash equilibrium.

Two challenging questions arise: how to compute an equilibrium and
how to optimize a pricing strategy accordingly to maximize the revenue
assuming agents follow the equilibrium? In this paper, we mainly focus
on the natural model where the private valuation of each agent is sampled
from a uniform distribution, which turns out to be already challenging.

Our main result is a polynomial-time algorithm that can exactly com-
pute the equilibrium and the optimal price, when pairwise influences are
non-negative. If negative influences are allowed, computing any equilib-
rium even approximately is PPAD-hard. Our algorithm can also be used
to design an FPTAS for optimizing discriminative price profile.

1 Introduction

In this paper, we study the problem of selling a digital product to agents in a
social network. To incorporate social influence, we assume each agent’s utility of
having the product is the summation of two parts: the private intrinsic valuation
and the overall influence from her friends who also have the product. In this
paper, we study the linear influence case, i.e., the overall influence is simply the
summation of influence values from her friends who have the product.
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Given such assumption, the purchasing decision of one agent is not solely
made based on her own valuation, but also on information about her friends’
purchasing decisions. However, a typical agent does not have complete informa-
tion about others’ private valuations, and thus might make the decision based
on her belief of other agents’ valuations.

We study the case when this belief forms a public distribution, and rely on
the solution concept of Bayesian Nash equilibrium [8]. Specifically, each agent
knows her own private valuation (also referred to as her type); in addition, there
is a distribution of this private valuation, publicly known by everyone in the
network as well as the seller. We assume that the joint distribution is a product
of uniform distributions, and the valuations for all agents are sampled from it.

Computing the Equilibria. Usually, there exist multiple equilibria in this game.
We first study the case when all influences are non-negative. We show that there
exist two special ones: the pessimistic equilibrium and the optimistic equilibrium,
and all other equilibria are between these two. We then design a polynomial time
algorithm to compute the pessimistic (resp. optimistic) equilibrium exactly.

The overall idea is to utilize the fact that the pessimistic (resp. optimistic)
equilibrium is “monotonically increasing” when the price increases. However, the
iterative method requires exponential number of steps to converge, just like many
potential games which may well be PLS-hard. Our algorithm is based on the line
sweep paradigms, by increasing the price p and computing the equilibrium on
the way. There are several challenges we have to address to implement the line
sweep algorithm. See Section 3.1 for more discussions on the difficulties.

On the negative side, when there exist negative influences among agents,
the monotone property of the equilibria does not hold. In fact, we show that
computing an approximate equilibrium is PPAD-hard for a given price, by a
reduction from the two player Nash equilibrium problem.

Optimal Pricing Strategy. When the seller considers offering a uniform price,
our proposed line sweep algorithm calculates the equilibrium as a function of
the price. This closed form allows us to find the price for the optimal revenue.

We also discuss the extensions to discriminative pricing setting: agents are
partitioned into k groups and the seller can offer different prices to different
groups. Depending on whether the algorithm can choose the partition or not, we
discuss the hardness and approximation algorithms of these extensions.

1.1 Related Work

Pricing with equilibrium models. When there is social influence, a large stream
of literature is focusing on simultaneous games. This is also known as the “two-
stage” game where the seller sets the price in the first stage, and agents play
a one-shot game in their purchasing decisions. Agents’ rational behavior in this
case is captured by Nash equilibrium (or Bayesian Nash equilibrium).

The concept and existence of pessimistic and optimistic equilibria is not new.
For instance, in analogous problems with externalities, Milgrom and Roberts [12]
and Vives [17] have witnessed the existence of such equilibria in the complete
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information setting. Notice that our pricing problem, when restricted to complete
information, can be trivially solved by an iterative method.

In incomplete information setting, Vives and Van Zandt [16] prove a simi-
lar existential result using iterative methods. However, they do not provide any
convergence guarantee. In our setting, such type of iterative methods may take
exponential time to converge. (See the full version of this paper for an example.)
Our proposed algorithm instead exactly computes the equilibrium, through a
much move involved (but constructive) method. In parallel to this work, Sun-
dararajan [15] also discover the monotonicity of the equilibria, but for symmetry
and limited knowledge of the structure (only the degree distribution is known).

It is worth noting that those works above have considered non-linear influ-
ences. Though our paper focuses on linear influences, our monotonicity results
for equilibria do easily extend to non-linear ones. See Section 2.

When the influence is linear, Candogan, Bimpikis and Ozdaglar [4] study the
problem with (uniform) pricing model for a divisible good on sale. It differs
from our paper in the model: they are in complete information and divisible
good setting; more over, they have relied on a diagonal dominant assumption,
which simplifies the problem and ensures the uniqueness of the equilibrium.

Another paper for linear influence is by Bloch and Querou [3], which also
studies the uniform pricing model. When the influence is small, they approxi-
mate the influence matrix by taking the first 3 layers of influence, and then an
equilibrium can be easily computed. They also provide experiments to show that
the approximation is numerically good for random inputs.

Pricing with cascading models. In contrast to the simultaneous-move game con-
sidered by us (and many others), another stream of work focuses on the cascading
models with social influence.

Hartline, Mirrokni and Sundararajan [9] study the explore and exploit frame-
work. In their model the seller offers the product to the agents in a sequential
manner, and assumes all agents are myopic, i.e., each agent is making the de-
cision based on the known results of the previous agents in the sequence. As
they have pointed out, if the pricing strategy of the seller and the private value
distributions of the subsequent agents are publicly known, the agents can make
more “informed” decisions than the myopic ones. In contrast to them, we con-
sider “perfect rational” agents in the simultaneous-move game, where agents
make decisions in anticipation of what others may do given their beliefs to other
agents’ valuations.

Arthur et al. [2] also use the explore and exploit framework, and study a
similar problem; potential buyers do not arrive sequentially as in [9], but can
choose to buy the product with some probability only if being recommended by
friends.

Recently, Akhlaghpour et al. [1] consider the multi-stage model that the seller
sets different prices for each stage. In contrast to [9], within each stage, agents
are “perfectly rational”, which is characterized by the pessimistic equilibrium in
our setting with complete information. As mentioned in [1], they did not consider
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the case where a rational agent may defer her decision to later stages in order
to improve the utility.

Other works. Another notable body of work in computer science is the optimal
seeding problem (e.g. Kempe et al. [11] and Chen et al. [5]), in which a set of k
seeds are selected to maximize the total influence according to some stochastic
propagation model. If the value of the product does not exhibit social influence,
the seller can maximize the revenue following the optimal auction process by
the seminal work of Myerson [13]. Truthful auction mechanisms have also been
studied for digital goods, where one can achieve constant ratio of the profit with
optimal fixed price [7,10]. On computing equilibria for problems that guarantees
to find an equilibrium through iterative methods, most of them, for instance the
famous congestion game, is proved to be PLS-hard [6].

2 Model and Solution Concept

We consider the sale of one digital product by a seller with zero cost, to the set
of agents V = [n] = {1, 2, . . . , n} in a social network. The network is modeled as
a simple directed graphs G = (V, E) with no self-loops.

– Valuation: Agent i has a private value vi ≥ 0 for the product. We assume vi

is sampled from a uniform distribution with interval [ai, bi] for 0 ≤ ai < bi,
which we denote as U(ai, bi). The values ai and bi are common knowledge.

– Price: We consider the seller offering the product at a uniform price p.
– Revenue: Let d = {d1, . . . , dn} ∈ {0, 1}n be the decision vector the agents

make, i.e., di = 1 if agent i buys the product and 0 otherwise. The revenue
of the seller is defined as

∑
i p ·di. When the decisions are random variables,

the revenue is defined as the expected payments received from the users.
– Influence: Let matrix T = (Tj,i) with Tj,i ∈ R and i, j ∈ V represent the

influences among agents, with Tj,i = 0 for all (j, i) /∈ E. In particular, Tj,i

is the utility that agent i receives from agent j, if both of them buy the
product. Except for the hardness result, we consider Tj,i to be non-negative.

– Utility: Let d−i be the decision vector of the agents other than agent i. For
convenience, we denote 〈d′i,d−i〉 the vector by replacing the i-th entry of d
by d′i. In particular, given the influence matrix T, the utility is defined as:

ui(〈di,d−i〉, vi, p) =
{

vi − p +
∑

j∈[n] dj · Tj,i, if di = 1
0, if di = 0

(1)

Remark 2.1. In our algorithm later, the requirement ai < bi is only for ease of
presentation. It can be relaxed to ai ≤ bi to handle fixed value case as well.

We study the agents’ rational behavior using the concept Bayesian Nash equi-
librium (BNE).1

1 Given equilibrium q in our definition, the strategy profile that each agent i “buys
the product iff her valuation vi ≥ p −

∑
j �=i Tj,iqj” is a BNE. See the full version of

this paper for details.
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Definition 2.2. The probability vector q = (q1, q2, ..., qn) ∈ [0, 1]n is an equi-
librium at price p, if for all i ∈ [n]: (where med is the median function)

qi = Pr
vi∼U(ai,bi)

[
vi − p +

∑
j∈[n]

Tj,i · qj ≥ 0
]

= med

{
0, 1,

bi − p +
∑

j∈[n] Tj,iqj

bi − ai

}
. (2)

Eq.(2) can be also defined in the language of a transfer function, which we will
extensively reply on in the rest of the paper.

Definition 2.3 (Transfer function). Given price p, we define the transfer
function fp : [0, 1]n → [0, 1]n as

[fp(q)]i = med{0, 1, [gp(q)]i} (3)

in which

[gp(q)]i =
bi − p +

∑
j∈[n] Tj,iqj

bi − ai
.

Notice that q is an equilibrium at price p if and only fp(q) = q.

Using Brouwer fixed point theorem, the existence of BNE is not surprising, even
when influences are negative. However, we will show in Section 4 that computing
BNE will be PPAD-hard with negative influences. We now define the pessimistic
and optimistic equilibria based on the transfer function.

Definition 2.4. Let f
(1)
p = fp, and f

(m)
p (q) = fp(f

(m−1)
p (q)) for m ≥ 2. When

all influences are non-negative, we define

– Pessimistic equilibrium: q(p) = limm→∞ f
(m)
p (0);

– Optimistic equilibrium: q(p) = limm→∞ f
(m)
p (1).

We remark that both limits exist by monotonicity of f (see Fact 2.5 below), when
all influences are non-negative. In addition, q(p) and q(p) are both equilibria
themselves, because fp(q(p)) = q(p) and fp(q(p)) = q(p). We later show that
q(p) and q(p) are the lower bound and upper bound for any equilibrium at price
p respectively. Now we state some properties of equilibria, which we will use
extensively later. See the full version of this paper for proofs.

For two vectors v1,v2 ∈ R
n, we write v1 ≥ v2 if ∀i ∈ [n], [v1]i ≥ [v2]i and

we write v1 > v2 if v1 ≥ v2 and v1 = v2.

Fact 2.5. When all influences are non-negative, given p1 ≤ p2,q1 ≤ q2, the
transfer function satisfies fp2(q

1) ≤ fp1(q
1) ≤ fp1(q

2).

Lemma 2.6. When all influences are non-negative, equilibria satisfy the follow-
ing properties:

a) For any equilibrium q at price p, we have q(p) ≤ q ≤ q(p).
b) Given price p, for any vector q ≤ q(p), we have f

(∞)
p (0) = q(p) = f

(∞)
p (q).

c) Given price p1 ≤ p2, we have q(p1) ≥ q(p2) and q(p1) ≥ q(p2).
d) q(p) = limε→0+ q(p + ε) and q(p) = limε→0− q(p + ε).
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In this paper, we consider the problem that whether we can exactly calculate
the pessimistic (resp. optimistic) equilibrium, and whether we can maximize the
revenue. The latter is formally defined as follows:

Definition 2.7 (Revenue maximization problem)
Assume the value of agent i is sampled from U(ai, bi) and the influence matrix
T is given. The revenue maximization problem is to compute an optimal price
with respect to the pessimistic equilibrium (resp. optimistic equilibrium ):

arg max
p>0

∑
i∈[n]

p · [q(p)]i (resp. arg max
p>0

∑
i∈[n]

p · [q(p)]i ).

Notice that the optimal revenue with respect to the pessimistic equilibrium is
robust against equilibrium selection. By Lemma 2.6(a), no matter which equi-
librium the agents choose, this revenue is a minimal guarantee from the seller’s
perspective. The revenue guarantees for pessimistic and optimistic equilibria is
an important objective to study; see for instance the price of anarchy and the
price of stability in [14] for details.

3 The Main Algorithm

When all influences are non-negative, can we calculate q(p) and q(p) in poly-
nomial time? We answer this question positively in this section by providing
an efficient algorithm. Notice that it is possible to iteratively apply the transfer
function Eq.(3) to reach the equilibria, but this may take exponential time. See
the full version of this paper for a counter example.

3.1 Outline of Our Line Sweep Algorithm

We start to introduce our algorithm with the easy case where valuations of
agents are fixed. Consider the pessimistic decision vector as a function of p.
By monotonicity, there are at most O(n) different such vectors when p varies
from +∞ to 0. In particular, at each price p, if we decrease p gradually to some
threshold value, one more agent would change his decision to buy the product.
Such kind of process can be casted in the “line sweep algorithm” paradigm.

When the private valuations of the agents are sampled from uniform distribu-
tions, the line sweep algorithm is much more complicated. We now introduce the
algorithm to obtain the pessimistic equilibrium q(p), while the method to obtain
q(p) is similar.2 The essence of the line sweep algorithm is processing the events
corresponding to some structural changes. We define the possible structures of
a probability vector as follows.

Definition 3.1. Given q ∈ [0, 1]n, we define the structure function S : [0, 1]n →
{0, �, 1}n satisfying:

[S(q)]i =

⎧⎨⎩
0, qi = 0
�, qi ∈ (0, 1)
1, qi = 1.

(4)

2 We sweep the price from +∞ to 0 to compute the pessimistic equilibrium, but we
need to sweep from 0 to +∞ for the optimistic one.



Optimal Pricing in Social Networks with Incomplete Information 55

Our line sweep algorithm is based on the following fact: when p is sufficiently
large, obviously q(p) = 0; with the decreasing of p, at some point p = p1 the
pessimistic equilibrium q(p) becomes non-zero, and there exists some structural
change at this moment. Due to the monotonicity of q(p) in Lemma 2.6, such
structural changes can happen at most 2n times. (Each agent i can contribute
to at most two changes: 0 → � and � → 1.) Therefore, there exist threshold
prices p1 > p2 > · · · > pm for m ≤ 2n such that within two consecutive prices,
the structure of the pessimistic equilibrium remains unchanged and q(p) is a
linear function of p. This indicates that the total revenue, i.e., p ·

∑
i [q(p)]i, and

its maximum value is easy to obtain. If we can compute the threshold prices
and the corresponding pessimistic equilibrium q(p) as a function of p, it will be
straightforward to determine the optimal price p.

There are several difficulties to address in this line sweep algorithm.

– First, degeneracies, i.e., more than one structural changes in one event, are
intrinsic in our problem. Unlike geometric problems where degeneracies can
often be eliminated by perturbations, the degeneracies in our problem are
persistent to small perturbations.

– Second, to deal with degeneracies, we need to identify the next structural
change, which is related to the eigenvector corresponding to the largest eigen-
value of a linear operator. By a careful inspection, we avoid solving eigen
systems so that our algorithm can be implemented by pure algebraic com-
putations.

– Third, after the next change is identified, the usual method of pushing the
sweeping line further does not work directly in our case. Instead, we re-
cursively solve a subproblem and combine the solution of the subproblem
with the current one to a global solution. The polynomial complexity of our
algorithm is guaranteed by the monotonicity of the structures.

We first design a line sweep algorithm for the problem with a diagonal domi-
nant condition, which will not contain degenerate cases, in Section 3.2. Then we
describe techniques to deal with the unrestricted case in Section 3.3.

3.2 Diagonal Dominant Case

Definition 3.2 (Diagonal dominant condition)
Let Li,j = Tj,i/(bi−ai) and Li,i = Ti,i = 0. The matrix I−L is strictly diagonal
dominant, if

∑
j Li,j =

∑
j Tj,i/(bi − ai) < 1.

This condition has some natural interpretation on the buying behavior of the
agents. It means that the decision of any agent cannot be solely determined by
the decisions of her friends. In particular, the following two situations cannot
occur simultaneously for any agent i and price p: a) agent i will not buy the
product regardless of her own valuation when none of her friends bought the
product(p ≥ bi), and b) agent i will always buy the product regardless of her
own valuation when all her friends bought the product (

∑
j Tj,i + ai ≥ p).
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In our line sweep algorithm, we maintain a partition Z ∪ W ∪ O = V = [n],
and name Z the zero set, W the working set and O the one set. This corresponds
to the structure s ∈ {0, �, 1}n as follows:

si = 0 (∀i ∈ Z), si = � (∀i ∈ W ), si = 1 (∀i ∈ O).

We use xW to denote the restriction of vector x on set W , and for simplicity we
write 〈xZ ,xW ,xO〉 = x. Let LW×W be the projection of matrix L to W × W .

We start from the price p = +∞ where the structure of the pessimistic equi-
librium q(p) is s0 = 0, i.e., Z = [n] and W = O = ∅. The first event happens
when p drops to p1 = maxi bi and q(p) starts to become non-zero.

Assume now we have reached threshold price pt, the current pessimistic equi-
librium is qt = q(pt), and the structure in interval (pt, pt−1) (or (pt, +∞) if
t = 1) is st−1. We define

x =

(
b1 − pt

b1 − a1
,
b2 − pt

b2 − a2
, . . . ,

bn − pt

bn − an

)T

, and y =

(
1

b1 − a1
,

1

b2 − a2
, · · · ,

1

bn − an

)T

.

To analyze the pessimistic equilibrium in the next price interval, for price p =
pt − ε where ε > 0, we write function gp(·) (recall Eq.(3)) as:

gpt−ε(q) = x + εy + Lq.

For p ∈ (pt, pt−1), let partition Z ∪W ∪O = [n] be consistent with the structure
st−1. According to Def. 3.1 and the right continuity qt = limp→pt+ q(p) (see
Lemma 2.6d), we have

∀i ∈ Z, [gpt(qt)]i = [x + Lqt]i ≤ 0
∀i ∈ W, [gpt(qt)]i = [x + Lqt]i ∈ (0, 1]
∀i ∈ O, [gpt(qt)]i = [x + Lqt]i ≥ 1

(5)

Step 1: For any i ∈ Z, if [x + Lqt]i = 0, move i from zero set Z to working set
W ; for any i ∈ W , if [x + Lqt]i = 1, move i from working set W to one set O.

Notice that the structural changes we apply in Step 1 are exactly the changes
defining the threshold price pt. We will see in a moment that after the process
in Step 1, the new partition will be the next structure st for p ∈ (pt+1, pt). In
other words, there is no more structural change at price pt.

In the next two steps, we calculate the next threshold price pt+1. For notation
simplicity, we assume Z, W and O remain unchanged in these two steps. When
p decreases by ε, we show that the probability vector of agents in W , [q(p)]W ,
increases linearly with respect to ε. (See rW (ε) below.) However, this linearity
holds until we reach some point, where the next structural change takes place.

Step 2: Define the vector r(ε) ∈ R
n, and let:

rW (ε) = ε(I − LW×W )−1yW + qt
W

= ε(I − LW×W )−1yW + [x + Lqt]W
rZ(ε) = xZ + εyZ + LZ×W rW (ε) + LZ×O1O

= ε(yZ + LZ×W (I − LW×W )−1yW ) + [x + Lqt]Z
rO(ε) = xO + εyO + LO×W rW (ε) + LO×O1O

= ε(yO + LO×W (I − LW×W )−1yW ) + [x + Lqt]O

(6)
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Clearly, r(ε) is linear to ε and we write r(ε) = ε� + (x + Lqt) where � =
〈�1, �2, . . . , �n〉 ∈ R

n is the linear coefficient derived from Eq.(6). When I − L is
strictly diagonal dominant, the largest eigenvalue of LW×W is smaller than 1.
Using this property one can verify (see full version) that � is strictly positive.

Step 3
εmin = min

{
min
i∈Z

{
0 − [x + Lqt]i


i

}
, min

i∈W

{
1 − [x + Lqt]i


i

}}
(7)

Using the positiveness of vector � one can verify that εmin > 0. Also, the next
threshold price pt+1 = pt − εmin. (See full version for proofs.)

Lemma 3.3. ∀0 < ε ≤ εmin, q(pt − ε) = 〈0Z , rW (ε),1O〉.

We remark here that the above lemma has confirmed that our structural adjust-
ments in Step 1 are correct and complete. Now we let pt+1 = pt − εmin,qt+1 =
〈0Z , rW (εmin),1O〉. The next structural change will take place at p = pt+1. This
is because according to the definition of εmin (Eq.(7)), there must be some

i ∈ W ∧
[
x + εminy + Lqt+1

]
i
= 1, or i ∈ Z ∧

[
x + εminy + Lqt+1

]
i
= 0.

One can see that in the next iteration, this i will move to one set O or working
set W accordingly. Therefore, we can iteratively execute the above three steps
by sweeping the price further down.

The return value of our constrained line sweep method is a function q which
gives the pessimistic equilibrium for any price p ∈ R, and q(p) is a piecewise
linear function of p with no more than 2n + 1 pieces. All three steps in our
algorithm can be done in polynomial time. Since there are only O(n) threshold
prices, we have the following result.

Theorem 3.4. When the matrix I − L is strictly diagonal dominant, we can
calculate the pessimistic equilibrium q(p) (resp. q(p)) for any given price p in
polynomial time, together with the optimal revenue.

3.3 General Case

After relaxing the diagonal dominance condition, the algorithm becomes more
complicated. This can be seen from this simple scenario. There are 2 agents, with
[a1, b1] = [a2, b2] = [0, 1], and T1,2 = T2,1 = 2. One can verify that q(p) = (0, 0)T

when p ≥ 1; q(p) = (1, 1)T when p < 1.
In this example, there is an equilibrium jump at price p = 1, i.e., q(1) =

limp→1− q(p). Our previous algorithm essentially requires that both the left and
the right continuity of q(p). However, only the right continuity is unconditional
by Lemma 2.6d. More importantly, degeneracies may occur: the new structure
st when p = pt cannot be determined all in once in Step 1. When p goes from
pt +ε to pt−ε, there might take place even two-stage jumps: some index i might
leave Z for O, without being in the intermediate state.
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Let ρ(L) be the largest norm of the eigenvalues in matrix L. The ultimate
reason for such degeneracies, is ρ(LW×W ) ≥ 1 and (I−LW×W )−1 = limm→∞(I+
LW×W + · · · + Lm−1

W×W ). We will prove shortly in such cases, those structural
changes in Step 1 are incomplete, that is, as p sweeps across pt, at least one
more structural change will take place. We derive a method to identify one
pivot, i.e. an additional structural change, in polynomial time. Afterwards, we
recursively solve a subproblem with set O taken out, and combine the solution
from the subproblem with the current one. The follow lemma shows that whether
ρ(L) < 1 can be determined efficiently.

Lemma 3.5. Given non-negative matrix M , if I−M is reversible and (I−M)−1

is also non-negative, then ρ(M) < 1; on the contrary, if I − M is degenerate or
if (I − M)−1 contains negative entries, ρ(M) ≥ 1.

Finding the pivot. When ρ(LW×W ) < 1 for the new working set W , one can find
the next threshold price pt+1 following Step 2 and 3 in the previous subsection.
Now, we deal with the case that ρ(LW×W ) ≥ 1 by showing that there must
exists some additional agent i ∈ W such that [q(p)]i = 1 for any p smaller than
the current price. We call such agent a pivot.

Since ρ(LW×W ) ≥ 1, we can always find a non-empty set W1 ⊂ W and
W2 = W1 ∪ {w} ⊂ W , satisfying ρ(LW1×W1) < 1 but ρ(LW2×W2) ≥ 1. The pair
(W1, W2) can be found by ordering the elements in W and add them to W1 one
by one. We now show that there is a pivot in W2.

As LW2×W2 is a non-negative matrix, based on knowledge from spectral the-
ory, exists a non-zero eigenvector uW2 ≥ 0W2 such that LW2×W2uW2 = λuW2 and
λ = ρ(LW2×W2) ≥ 1. uW2 can be extended to [n] by defining u[n]\W2 = 0[n]\W2 .
Let

k = argmin
k∈W2,uk �=0

1 − qt
k

uk
= argmin

k∈[n],uk �=0

1 − qt
k

uk
(8)

Now we prove that k is a pivot. Intuitively, if we slightly increase the probability
vector qt

W2
by δuW2 , where δ is a small constant, by performing the transfer

function only on agents in W m times, their probability will increase by δ(1 +
λ + .. + λm)uW2 , while λ ≥ 1. Therefore, after performing the transfer function
sufficiently many times, agent k ∈ W2’s probability will hit 1 first.

Lemma 3.6. ∀W2 ⊂ W s.t. ρ(LW2×W2) ≥ 1, we have ∀ε > 0, [q(pt − ε)]k = 1.

We remark that if we can exactly estimate the eigenvector (which may be ir-
rational), then the above lemma has already determined that the k defined
in Eq.(8) is a pivot. To avoid the eigenvalue computation, we find a quasi-
eigenvector u in the following manner.

u =

⎧⎪⎨⎪⎩
uW1 = (I − LW1×W1)

−1LW1×{w};
uw = 1;
uZ∪O∪W\W2 = 0Z∪O∪W\W2 .

(9)

The meaning of the above vector is as follows. If we raise agent w’s probabil-
ity by δ, those probabilities of agents in W1 increase proportionally to LW1×{w}δ.
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Assuming that we ignore the probability changes outside W2 (which will even
increase the probabilities in W2), the probability of agents in W1 will eventually
converge to (I+LW1×W1 +L2

W1×W1
+ ...)LW1×{w}δ = (I−LW1×W1)−1LW1×{w}δ.

We will see that the real probability vector increases at least “as much as if
we increase in the direction of u”. In other words, we pick a pivot in the same
way as Eq.(8). The following is the critical lemma to support our result.

Lemma 3.7. For u in Eq.(9) and k in Eq.(8), we have ∀ε > 0, [q(pt −ε)]k = 1.

Recursion on the subproblem. Let W ′ = W \{k}, O′ = O∪{k}, and we consider
a subproblem with n′ = n−|O′| < n agents, where k is the pivot identified in the
previous section. This subproblem is a projection of the original one, assuming
that the agents in O′ always tend to buy the product.

∀i ∈ Z ∪ W ′, [a′
i, b

′
i] = [ai +

∑
j∈O′ Tj,i, bi +

∑
j∈O′ Tj,i]. (10)

By recursively solving this new instance, we can solve the pessimistic equilibrium
of the subproblem for any given price p. This recursive procedure will eventually
terminate because every invocation reduces the number of agents by at least 1.
The following lemma tells us that for any p < pt, the pessimistic equilibrium of
the original problem and the subproblem are one-to-one.

Lemma 3.8. Let q′(p) be the pessimistic equilibrium function in the subprob-
lem. We have:

∀p < pt,q(p) = 〈q′(p),1O′〉.

At this moment we have solved the pessimistic equilibrium q(p) for p < pt, and
thus solved the original problem. Again q(p) is a piecewise linear function of p
with no more than 2n + 1 pieces.

Theorem 3.9. For matrix T satisfying Ti,i = 0 and Ti,j ≥ 0, in polynomial
time we can calculate the pessimistic equilibrium q(p) (resp. q(p)) at any price
p, together with the optimal revenue.

4 Extensions

In the full version of this paper, we also prove the following theorems. When the
influence values can be negative, it is actually PPAD-hard to compute an ap-
proximate equilibrium. We define a probability vector q to be an ε-approximate
equilibrium for price p if:

qi ∈ (q′i − ε, q′i + ε),

where q′i = med
{
0, 1,

bi−p+
∑

j∈[n] Tj,iqj

bi−ai

}
. We have the following theorem:

Theorem 4.1. It is PPAD-hard to compute an n−c-approximate equilibrium of
our pricing system for any c > 1 when influences can be negative.

In discriminative pricing setting, we study the revenue maximization problem
in two natural models. We assume the agents are partitioned into k groups.
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The seller can offer different prices to different groups. The first model we con-
sider is the fixed partition model, i.e., the partition is predefined. In the second
model, we allow the seller to partition the agents into k groups and offer prices
to the groups respectively. We have the following two theorems:

Theorem 4.2. There is an FPTAS for the discriminative pricing problem in
the fixed partition case with constant k.

Theorem 4.3. It is NP-hard to compute the optimal pessimistic discriminative
pricing equilibrium in the choosing partition case.
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Abstract. We consider the problem of designing a profit-maximizing single-
item auction, where the valuations of bidders are correlated. We revisit the k-
lookahead auction introduced by Ronen [6] and recently further developed by
Dobzinski, Fu and Kleinberg [2]. By a more delicate analysis, we show that the

k-lookahead auction can guarantee at least e1−1/k

e1−1/k+1
of the optimal revenue,

improving the previous best results of 2k−1
3k−1

in [2]. The 2-lookahead auction
is of particular interest since it can be derandomized [2, 5]. Therefore, our re-
sult implies a polynomial time deterministic truthful mechanism with a ratio of√

e√
e+1

≈ 0.622 for any single-item correlated-bids auction, improving the previ-
ous best ratio of 0.6. Interestingly, we can show that our analysis for 2-lookahead
is tight. As a byproduct, a theoretical implication of our result is that the gap
between the revenues of the optimal deterministically truthful and truthful-in-
expectation mechanisms is at most a factor of 1+

√
e√

e
. This improves the previous

best factor of 5
3

in [2].

1 Introduction

Optimal auction design is an important subject that has been heavily studied in both
economics and theoretical computer science. Among the accomplished research in this
area, a solid part is focused on single-item auction, which serves as a basic that pro-
vides insight to other more complicated problems. In the seminal paper [4], Myerson
gave a complete characterization of the optimal single-item auction in the setting where
bidders’ valuations are drawn from independent distributions. However, the design of
optimal auction with correlated bidders was left open.

From the economics aspect, a natural attempt for solving this problem is to generalize
Myerson’s characterization. Unfortunately, most results obtained via this approach are
for restricted special cases, see [3] for a survey. One exception is [1] by Cremer and
McLean where they relax the individually rational constraint and obtain mechanisms
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intern students at Microsoft Research Asia.
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that extract the full social welfare. On the other hand, from a computer science aspect,
two research directions (see [2]) were suggested.

The first one is the introduction of approximation algorithms into optimal auction
design. In other word, instead of providing a characterization of the optimal auction,
which might not even exist, one would look for efficient algorithms that guarantee the
approximate optimality.

Along this direction, two computational models were considered-the explicit model
[5] and the oracle model [6]. In the explicit model, the running time of an algorithm has
to be polynomial in the support size of the distribution. However, in the oracle model,
the algorithm is only allowed to make polynomial in the number of bidders queries to
an oracle that returns the conditional distribution of a set of bidders given the values of
the remaining ones. Ronen [6] gave the first efficient mechanism in the oracle model
called 1-lookahead that 2-approximates the optimal revenue. In [7], Ronen and Saberi
further proved that no deterministic efficient ascending auction can do better than 3

4 . On
the other hand, in the explicit model, Papadimitriou and Pierrakos [5] showed that al-
though there is an optimal deterministic auction among optimal truthful-in-expectation
auctions for two bidders and this auction can be computed efficiently, it is NP-hard to
find the optimal deterministic one for more than three bidders. The understanding the
approximability of the optimal auction remains as a major challenge.

The second direction suggested is to relax the solution concept to truthfulness-in-
expectation. One advantage of such relaxation is that the optimal truthful-in-expectation
auction can be described as a linear program [2, 5] whose size is polynomial in the
support of the distribution, hence can be computed efficiently in the explicit model.

Based on this observation, Dobzinski et.al. [2] studied a class of truthful-in-
expectation mechanisms called k-lookahead. To be precise, for any fixed constant k, the
k-lookahead mechanism runs the linear program among the k bidders with the highest
bids, conditioning on the remaining bidders. Since k is a constant, the linear program
can be solved efficiently in the oracle model.

In [2], the authors showed that the k-lookahead mechanism has approximation ra-
tio 2k−1

3k−1 . As usual in computer science, improving this approximation ratio would be
an important issue in this direction. Furthermore, a question that is of theoretical in-
terest itself is the task of evaluating the gap between truthful-in-expectation and deter-
ministically truthful mechanisms. Obviously, one would expect truthful-in-expectation
mechanisms to achieve more revenue than the deterministic ones. Dobzinski et.al. [2]
showed the gap is existed by providing an example of truthful-in-expectation mecha-
nism that cannot be implemented as an universally truthful mechanism. At the same
time, Papadimitriou et.al. [5] and Dobzinski et.al. [2] showed that there is an elegant
derandomization of the 2-lookahead mechanism. In [2], Dobzinski showed that the gap
is at most a factor of 5/3 between truthful-in-expectation and the optimal determin-
istically truthful. Closing the gap further requires either better truthful-in-expectation
mechanisms that can be derandomized, or simply tighter analysis of the 2-lookahead
mechanism.

Our results. In this paper, we contribute to both research directions mentioned earlier by
providing more delicate analysis of the k-lookahead mechanisms in the oracle model.

We show that the approximation ratio of k-lookahead mechanism is at least e1−1/k

1+e1−1/k ,
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which improves the ratio given in [2]. In particular, our result implies that 2-lookahead
mechanism is at least

√
e

1+
√

e
-approximate and interestingly, we prove that our analysis

is tight by showing an example in which 2-lookahead mechanism obtains exactly
√

e
1+

√
e

fraction of the optimal revenue.
Our analysis is based on the clever idea from [2] of comparing the revenue obtained

by k-lookahead mechanism to the t-fixed-price and t-pivot auctions. The novelty of
our approach is that instead of picking only one threshold t, we consider a series of
thresholds t1, . . . , tm and choose the best series. Apparently, our analysis will lead to
better ratio but become more complicated. Therefore, new idea and technique will be
introduced for our analysis.

2 Preliminary

In this section, we formally define our problem and provide some useful facts that will
be needed in the future discussion.

In a single-item auction, a seller wishes to sell one item to a group of n self-interested
bidders. Each bidder has a private valuation vi ∈ R

+. We assume that there is a publicly
known distribution D on the valuation space of the bidders. In this paper, we make no
assumption on the distribution. In particular, bidders’ valuations could be correlated.
Since we only consider truthful mechanisms in this paper, we will equalize the notions
of bid and valuation.

An auction M is a mechanism that takes a bid vector v and then decides who wins
the item and for what price. We use (x, p) to denote the allocation and payment where
xi(v) is the probability that bidder i gets the item and pi(v) is her expected payment.
Here, the goal of each bidder i is to maximize her own utility defined as xivi − pi.

A mechanism is deterministically truthful if reporting the true valuation is a domi-
nant strategy for each agent and xi(v) ∈ {0, 1} for every bidder i and every bid vector
v, and we say that a randomized mechanism is universally truthful if the mechanism is
a probability distribution over deterministically truthful mechanisms. At last, truthful-
in-expectation is a weaker notion in which an agent maximizes her expected utility
by being truthful. It is easy to see that every deterministically truthful mechanism is
universally truthful and every universally truthful mechanism is truthful in expectation.

In this paper, we are interested in designing truthful-in-expectation mechanisms.
From now on, without particular specification, we will simply say a mechanism is
truthful if it is truthful-in-expectation and an optimal auction is referred to a truthful-
in-expectation mechanism that maximizes the seller’s expected profit ED[M ] =
Ev∼D(

∑n
i=1 pi(v)) on input distribution D.

An useful observation is that the optimal auction can be described as a linear program
[2, 5] that its size is polynomial in the support size of distribution. Therefore we can
obtain an optimal auction in polynomial time in the size of distribution, which implies
that the optimal auction can be computed efficiently in the explicit model. But the linear
program is not generally efficient in the oracle model unless the number of bidders is
a constant. This motivates the study of k-lookahead mechanisms [6, 2]. Due to the lack
of space, we omit this linear program.
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In a k-lookahead mechanism, we find the k bidders with the highest values. We
denote the set of these k bidders by K . Next we get the conditional distribution DK

on vi ≥ max{vj |j ∈ K} for i ∈ K and vj is fixed for all j /∈ K . Then we reject the
bidders not in K and use the mentioned linear program for distribution DK to get the
allocation vector xK and payment vector pK .

In this paper, we will investigate the approximation ratio of the k-lookahead mech-
anism. Here, we say an auction M is a c-approximation mechanism if ED[M ]

ED[OPT ] ≥ c

where OPT is the revenue-maximizing valid auction on distribution D.
Finally, the following theorem provides a characterization of deterministic mech-

anisms for single item auctions, which will be useful in the analysis of 2-lookahead
mechanism.

Theorem 1. [4] A deterministic mechanism, with allocation and payment rule q, p
respectively, is truthful if and only if for each bidder i and each v−i, the following
conditions hold:

1. Monotone Allocation: qi(vi, v−i) ≤ qi(v′i, v−i) for all vi ≤ v′i;
2. Threshold Payment: There exists a threshold ti(v−i) such that pi(vi, v−i) =

ti(v−i) · qi(vi, v−i).

3 The Approximation Ratio

In this section, we present our main result. From now on, we fix a constant k and let K
be the agents with the highest k bids. Let DK be the conditional distribution of bidders
in K conditioned on the remaining bidders. We show that the approximation ratio of
k-lookahead mechanism is at least e1−1/k

1+e1−1/k .
Our high-level idea is to partition the optimal revenue into different components.

Then we design several auctions that only sell the item in K and each of them approxi-
mately realizes part of the components. The revenues of these auctions provide a lower
bound on the revenue of k-lookahead since it is the optimal auction that only sells the
item to bidders in K . Without lose of generality, we assume K = {1, · · · , k} and vk+1

is the highest valuation not in K .
In the following, we always assume that the optimal revenue is 1. Now we consider

the expected revenue of the optimal auction. As we mentioned before, we first partition
the optimal revenue into four parts.

Definition 1. Fix the optimal auction, for any t > 1, we define L(t), L̃(t), M(t), H(t)
as follows:

1. L(t):the expected revenue from bidders in N\K for instances where no bidder in
K has value at least t · vk+1.

2. L̃(t):the expected revenue from bidders in N\K for instances where there are some
bidders in K whose valuations are at least t · vk+1.

3. M(t):the expected revenue from bidders in K for instances where no bidder in K
has value at least t · vk+1.

4. H(t):the expected revenue from bidders in K for instances where there are some
bidders in K whose valuations are at least t · vk+1.
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Let the expected revenue from K in the optimal auction be α(α ≤ 1). By our definition,
M(t) + H(t) = α and L(t) + L̃(t) = 1 − α for all t ≥ 1.

Lemma 1. The expected revenue of k-lookahead auction is at least α.

Proof. Consider the following auction: If the optimal auction sells the item to bidder i
in K with probability xi and pi, we still sell the item to i with probability xi and ask for
a payment pi. Otherwise no one gets the item. This mechanism might not be truthful
because it is possible that some bidders in N\K raises her bid so that she becomes a
bidder in K and has a chance to get the item. To make this mechanism truthful, we raise
the expected payment of each bidder i by max{0, (vk+1−pi(vk+1, v−i))· xi(vk+1,v−i)

xi(v) }.
This is then a truthful mechanism with expected revenue at least α. Furthermore, one
can see that the mechanism only sells the item to bidders in K , therefore, the expected
revenue of k-lookahead auction is at least α.

The above lemma provides a lower bound on the revenue of k-lookahead auction re-
lated to the components of M and H in the optimal auction. To get more such bounds,
we need the following auctions first introduced by Dobzinski, Fu and Kleinberg [2].
Suppose there is a threshold t ≥ 1:

t-Fixed Price Auction: Select a bidder j uniform from K at random. If any bidders in
K\{j} have valuations no less than t ·vk+1 then he gets the item with payment t ·vk+1.
If there are several bidders satisfy this condition, break ties arbitrary. Otherwise, bidder
j gets the item with payment vk+1.

t-Pivot Auction: Select a bidder j uniform from K at random. If any bidders in K\{j}
have valuations no less than t ·vk+1, we choose the bidder i with the smallest index. We
run the k-lookahead auction on the conditional distribution D′

k that fix the valuations
of bidders not in K , and require v′l ≥ vk+1(l ∈ K) and v′i ≥ t · vk+1. Otherwise, we
allocate the item to bidder j with a payment vk+1.

It is easy to verify that t-Fixed Price Auction is truthful. To check that t-Pivot Auction
is truthful, the only case we should be careful is that a bidder i raises her valuation and
let the mechanism run the k-lookahead auction. However, bidder i must be the only
bidder whose valuation is not less than t · vk+1 in this case. So k-lookahead auction
runs under the conditional distribution that vi ≥ t · vk+1. As a result, her payment must
be at least t · vk+1, which exceeds her actual valuation. Therefore, t-Pivot auction is
truthful.

In the following, we will choose a series of s threshold values t1 < t2 < · · · < ts
(whose values will be determined later) and relate the revenue of each ti-Fixed Price
Auction and ti-Pivot Auction to the four components of the optimal revenue defined
earlier.

To be precise, assume that t0 = 1 and we define Mi = M(ti) − M(ti−1) ≥ 0
which is the revenue from K in the optimal auction when the highest valuation is in
[ti−1 · vk+1, ti · vk+1).

Lemma 2. The expected revenue of ti-Fixed Price Auction is at least Pi = L(ti) +∑i
j=1

Mj

tj
+ (k−1

k ti + 1
k )(L̃(ti) +

∑s
j=i+1

Mj

tj
).
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Proof. We consider two cases. In the first case, there is no bidder in K whose valuation
is greater or equal than ti · vk+1. So the auction allocates the item to the selected bidder
j with payment vk+1. The corresponding expected revenue in the optimal auction is
L(ti) +

∑i
j=1 Mj . From the definition of Mi, the revenue of our auction is at least

L(ti) +
∑i

j=1
Mj

tj
.

In the second case, there are some bidders whose valuations are at least ti · vk+1. In
our auction, the auction will obtain ti · vk+1 with probability at least k−1

k . Otherwise
the auction will obtain at least vk+1. Therefore the expected revenue of this auction
is at least (k−1

k ti + 1
k )L̃(ti) when the optimal auction allocates the item to bidders

not in K . At the same time, the expected revenue of this auction is at least (k−1
k ti +

1
k )
∑s

j=i+1
Mj

tj
when the optimal auction allocates the item to K .

From all discussion above, the expected revenue of ti-Fixed Price Auction is at least
Pi = L(ti) +

∑i
j=1

Mj

tj
+ (k−1

k ti + 1
k )L̃(ti) + (k−1

k ti + 1
k )
∑s

j=i+1
Mj

tj
.

Similarly, we can prove the following:

Lemma 3. The expected revenue of ti-Pivot Auction is at least Qi = L(ti) +∑i
j=1

Mj

tj
+ k−1

k H(ti) + 1
k (L̃(ti) +

∑s
j=i+1

Mj

tj
).

Let Ri = max{Pi, Qi} and we can see that max1≤i≤s Ri is a lower bound on the
revenue of k-lookahead. From the above lemma, this lower bound is explicitly related
to the components M, H, L and L̃. In the following, we will choose s large enough and
t1, . . . , ts appropriately to obtain a lower bound on max1≤i≤s Ri that is only related to
α. Together with Lemma 1, we will get the desired approximation ratio. Now we prove
this lower bound:

Lemma 4. max1≤i≤s Ri ≥ 1 − e−(1−1/k)α.

Proof. To prove this lemma, we need to eliminate the explicit dependency of
max1≤i≤s Ri to the components of M, H, L and L̃.

First of all, for each ti, we can replace L̃(ti), H(ti) by 1−α−L(ti), α−M(ti) and
simplify Pi, Qi as:

Pi = (ti +
1
k

)(1−α)− (
k − 1

k
ti +

1
k
− 1)L(ti)+

i∑
j=1

Mj

tj
+

s∑
j=i+1

(
k − 1

k
ti +

1
k

)
Mj

tj

Qi = α +
1
k

(1 − α) +
k − 1

k
L(ti) +

i∑
j=1

(
1
tj

− k − 1
k

)Mj +
s∑

j=i+1

1
k

Mj

tj

Now we are ready to eliminate L(ti). Since Ri = max{Pi, Qi}, we have

Ri ≥
1
ti

Pi +
ti − 1

ti
Qi = 1 − (

k − 1
kti

+
1
k
)α +

s∑
j=1

Mj

tj
− k − 1

k
(1 − 1

ti
)

i∑
j=1

Mj.

At last, we will eliminate Mj for all j. Observe that max1≤i≤s Ri is lower bounded by
the average, we have the following:
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max
1≤i≤s

Ri ≥
s∑

i=1

Ri ≥ s −
s∑

i=1

(
k − 1
kti

+
1
k
)α +

s∑
j=1

[ s

tj
−

s∑
i=j

k − 1
k

(1 − 1
ti

)
]
Mj

Therefore, in order to eliminate Mj for all j, we only need to choose numbers t1, . . . , ts
such that

s

tj
−

s∑
i=j

k − 1
k

(1 − 1
ti

) = 0, for all 1 ≤ j ≤ s. (1)

As long as we can find such t1, . . . , ts, we have:

max
1≤i≤s

Ri ≥ 1 −
[k − 1

k
· 1
s

s∑
i=1

1
ti

+
1
k

]
α. (2)

At first, we use β to denote k−1
k and have s

ts
−β(1− 1

ts
) = 0 when j = s. So 1− 1

ts
=

s
s+β . Then, comparing the equations of j and j +1, we obtain (1− 1

tj
) = ( s

s+β )s−j+1.

Therefore
∑s

i=1
1
ti

= s −
∑s

i=1(
s

s+β )i = s − s
β (1 − ( s

s+β )s). At the same time, we

know lims→∞( s
s+β )s = e−β = e−

k−1
k

Together with (2), we have max1≤i≤s Ri ≥ 1 − e−(1−1/k)α.

Finally, we are ready to prove:

Theorem 2. The approximation ratio of k-lookahead mechanism is at least e1−1/k

1+e1−1/k .

Proof. Let revk be the revenue of the k-lookahead mechanism. From Lemma 4, we
know that revk ≥ 1 − e−(1−1/k)α. Together with Lemma 1, we have

revk ≥ max{α, 1 − e−(1−1/k)α}.

Simple calculation shows that for all positive value x, max{α, 1− xα} ≥ 1
1+x . There-

fore, we have revk ≥ e1−1/k

1+e1−1/k . This completes our proof.

4 Tightness of Analysis

In the previous section, we showed that the approximation ratio of k-lookahead is
e1−1/k

1+e1−1/k . In particular, the 2-lookahead mechanism, which is of special interest, has

an approximation ratio of at least
√

e
1+

√
e
. In this section, we design an example to show

that our analysis for 2-lookahead is tight.
First of all, we need some definitions. Because 2-lookahead auction can be made de-

terministically [2, 5], it either allocates the item, or does not allocate to anyone. So we
only consider the 2-lookahead mechanisms that are deterministic from now on. We will
consider the empty instances that a 2-lookahead mechanism doesn’t allocate the item.
We use empt(D) to denote the maximal empty probability over 2-lookahead mech-
anism that empty instances occur on a distribution D. In the following, we will use
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E2(D) to denote the 2-lookahead mechanism with the maximum empty probability for
distribution D.

In a setting where there are only three bidders, we say that a distribution D is valid, if
the third bidder always has valuation v3 = 1 and the valuations of the other two bidders
are at least 1.

We first prove a property of valid distributions. Let rev2(D) and opt(D) denote the
revenue of the 2-lookahead and the optimal auction for a distribution D respectively.

Lemma 5. Let D be a valid distribution on three bidders, then opt(D) ≥ rev2(D) +
empt(D).

Proof. Consider this auction A: run the 2-lookahead auction E2(D) and if it allocates
the item to bidder i in K = {1, 2} with payment p, we still allocate the item to i with
payment p. Otherwise we allocate the item to bidder 3 with payment 1. It is easy to
see that A is truthful, and its revenue is rev2(D) + empt(D). Therefore, opt(D) ≥
rev2(D) + empt(D).

The above lemma provides a lower bound of opt. In the following, we will explicitly
construct a valid distribution D such that empt(D) ≥ rev2(D)√

e
, hence prove our desired

ratio.
In our example, there are three bidders and the third bidder’s valuation is always 1.

Now we construct the distribution D2 for the first two bidders explicitly. We assume that
there are m possible valuations p0, p1, · · · , pm(m is an odd number). Then we define
x0 = 1 and xi = (1 + p)i − (1 + p)i−1 = p(1 + p)i−1 for 1 ≤ i ≤ m where p is a
parameter. We will set the value of p and choose p1, . . . , pm later. One can see that a
property of our construction is

∑
0≤i≤j xi = (1 + p)j for all j ≤ m.

Now we consider this following distribution D2 where D2(i, j) denotes the proba-
bility of v1 = pi, v2 = pj:

D2(i, j) =

⎧⎪⎪⎨⎪⎪⎩
xixj i + j < m
xi(
∑

j≤k≤m xk) (i + j = m) and (i < j)
(
∑

i≤k≤m xk)xj (i + j = m) and (i > j)
0 i + j > m

In fact, D2 should be normalized to become a distribution. However, since we only
care about the ratio between empt(D) and rev2(D), we will simply use D2 as the
distribution without normalizing. From now on, we will simply use E2, rev2 and empt
to denote E2(D), rev2(D) and empt(D).

Now we choose p0 = 1 and pi =
∑

0≤j≤m xj/
∑

i≤j≤m xj for all 1 ≤ i ≤ m.
Therefore, we have p0 ≤ p1 ≤ · · · ≤ pm. Furthermore,we obtain the following charac-
terization of the event that E2 allocates the item:

Lemma 6. Let pi, pj be the bid of bidder 1 and 2 respectively, then E2 allocates the
item if and only if i + j = m.

Proof. First of all, by our choice, it is easy to verify the following:

Property 1. If i < m/2, then: p0(
∑m−i

k=0 D2(i, k)) = · · · = pj(
∑m−i

k=j D2(i, k)) =
· · · = pm−iD2(i, m − i) = xi

∑
l xl.
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Basically, this property can be interpreted as follows: fix v1 = pi, the expected revenue
obtained by offering bidder 2 a threshold price pj is a constant when 0 ≤ j ≤ m− i. As
a result, recall that by Theorem 1, the winner in a single item auction pays the threshold
price, we have:

Corollary 1. In E2, t2(v1) ≥ pm−i when v1 = pi for all i < m/2. Similarly, t1(v2) ≥
pm−j when v2 = pj for all j < m/2.

The proof of the corollary is straightforward: Suppose v1 = pi for some i < m/2.
If t2(v1) < pm−i, then we can always increase the threshold price to pm−i without
decreasing the revenue. By doing this, we only increase the empty probability. This is a
contradiction to our assumption that E2 maximizes the empty probability.

Now we are ready to prove the lemma. If it is not true, suppose i + j < m but E2

allocates the item to either bidder 1 or 2. Consider the smallest sum of i+j that satisfies
the above. Without lose of generality, we may assume i < m/2. From Corollary 1, since
i + j < m, we know that bidder 2 can not get the item. Therefore, bidder 1 gets the
item when v1 = pi and v2 = pj . At the same time, j > m/2 otherwise we can get a
contradiction from Corollary 1. So bidder 1 still gets the item when v1 = pm−j > pi

and v2 = pj .
Now we show that we can modify the allocation of E2 when v2 = pj to get more

empty probability and the expected revenue of modified auction is not less than the
original one. Let E′

2 be an auction as follows: (1) it performs exactly the same as E2

when v2 = pj and (2) when v2 = pj , E′
2 allocates the item to bidder 2 only when

v1 = pm−j and otherwise allocates nothing.
Obviously, E′

2 has a larger empty probability than E2. To get a contradiction, we
only need to prove that its expected revenue is at least as large as E2. In other words,
we want to show:

pjDK(m − j, j) ≥ pi

m−j∑
k=i

DK(k, j) (3)

By our construction, simple calculation shows that (3) is equivalent to the following

p(1 + p)m−j−1
(
(1 + p)j−1 −

i−1∑
l=0

xl

)
≥ p(1 + p)j−1

(
(1 + p)m−j−1 −

i−1∑
l=0

xl

)
,

which always holds when j > m/2. This is a contradiction.

By the above characterization, we can easily calculate rev2 and empt. We will show
that by choosing the parameter p appropriately, rev2 ≤

√
e · empt, which implies:

Theorem 3. The approximation ratio of 2-lookahead auction is at most
√

e√
e+1

.

Proof. By Lemma 6 and our construction, we first estimate rev2 as follows:

rev2 ≤
∑

i,j:i+j=m

max{pi, pj}D2(i, j) = 2(
∑

0≤i<m/2

xi)(
m∑

l=0

xl) = 2(1 + p)3m/2.
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Now we compute the empty probability empt. Again, by Lemma 6, we have empt =∑
i,j:i+j<m xixj , which can be calculate as follows:

∑
i,j:i+j<m

xixj =
m−1∑
j=0

xj +
m−1∑
i=1

m−1−i∑
j=0

xixj

= (1 + p)m−1 + (m − 1)p(1 + p)m−2.

We set p = 1/m and let m → ∞, we have rev2 ≤ 2e3/2 and empt ≥ 2e. Therefore,
rev2 ≤

√
e · empt. Therefore, by our previous argument, the approximation ratio of

2-lookahead auction is at most
√

e√
e+1

.

5 Discussion and Open Questions

Perhaps the first question that every theoretical computer scientist would ask here is
whether the analysis of the k-lookahead mechanism can be improved in general. An
important open problem is whether the approximation ratio of k-lookahead mechanism
tends to 1 when k tends to positive infinity. A nature attempt for this question from
the negative aspect is to generalize our tight instance for 2-lookahead mechanism
in section 4 to the k-lookahead mechanism for general k. In particular, one might
consider the following distribution DK(i1, ..., ik) for the set K of the highest k bidders:

1.DK(i1, · · · , ik) = 0: there exists p, q ∈ [k] such that p = q and ip + iq > m.
2.DK(i1, · · · , ik) =

∏
j∈K xij : for all p, q ∈ [k](p = q), we have ip + iq < m.

3.DK(i1, · · · , ik) =
∏

j∈K\{l} xij ·
∑m

j=il
xj : maxp,q∈[k](p�=q){ip + iq} = m, where

il = max{i1, · · · , ik}.

Again, we assume that the highest bid outside K is vk+1 = 1. Similar to the analysis for
2-lookahead, we can prove that k-lookahead allocates to some bidder in K if and only if
i1, i2, · · · , ik is such that maxp,q∈[k](p�=q){ip + iq} = m. However, simple calculation
implies that the ratio between the empty probability and the revenue of the k-lookahead
is at most 2/k when k tends to infinity. This only implies a k

k+2 upper bound on the
approximation ratio of the k-lookahead mechanism. Therefore, to obtain better upper
bound, if possible, one might need new ideas and techniques.

From the positive aspect, one might improve the analysis via the following approach:
Instead comparing the revenue of k-lookahead to t-fixed price and t-pivot auctions, we
could compare to more delicate auctions such as a hybrid of t1-fixed price and t2-pivot
auctions for distinct values of t1, t2.

Another interesting open question is to further close the gap between the rev-
enues of the optimal deterministically truthful and truthful-in-expectation mechanisms.
Our analysis of 2-lookahead implies that the gap is at most a factor of 1+

√
e√

e
. As

we mentioned, our analysis is tight, hence closing the gap further requires better
truthful-in-expectation mechanisms which can be derandomized.
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Decision Markets with Good Incentives�
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Abstract. Decision markets both predict and decide the future.
They allow experts to predict the effects of each of a set of possible ac-
tions, and after reviewing these predictions a decision maker selects an
action to perform. When the future is independent of the market, strictly
proper scoring rules myopically incentivize experts to predict consistent
with their beliefs, but this is not generally true when a decision is to
be made. When deciding, only predictions for the chosen action can be
evaluated for their accuracy since the other predictions become coun-
terfactuals. This limitation can make some actions more valuable than
others for an expert, incentivizing the expert to mislead the decision
maker. We construct and characterize decision markets that are – like
prediction markets using strictly proper scoring rules – myopic incentive
compatible. These markets require the decision maker always risk tak-
ing every available action, and reducing this risk increases the decision
maker’s worst-case loss. We also show a correspondence between strictly
proper decision markets and strictly proper sets of prediction markets,
creating a formal connection between the incentives of prediction and
decision markets.

1 Introduction

To make an informed decision a decision maker must understand the likely conse-
quences of their actions. Hanson proposed a “decision market” to directly predict
these consequences [11]. His proposal consists of a set of conditional prediction
markets, one for each possible action. After the markets close the decision maker
could evaluate each action’s predicted effect on the set of possible outcomes,
and choose the most preferred action. Conditional markets for actions not taken
are voided.

Consider, for example, a project manager deciding between two developers,
A and B. The manager prefers to hire the candidate more likely to complete a
project on time, so it runs two conditional prediction markets. One determines
the likelihood A will finish on time, conditional on A being hired, and the latter
does the same for B. If the project manager has access to knowledgeable experts
and these markets reflect the experts’ information then the manager can make
an informed hiring decision.
� This material is based upon work supported by NSF Grant No. CCF-0915016. Any
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Using a prediction market to make a decision is natural and previous work has
demonstrated they can produce accurate forecasts [1,2,18,3,8]. However, while a
prediction market using a strictly proper scoring rule is myopic incentive compat-
ible, Hanson’s proposed decision market is not. That is, in a prediction market
an expert maximizes its score for a prediction by predicting consistent with its
beliefs, but the same is not true when a decision is to be made [16,6].

We return to our hypothetical project manager and the design of its two pre-
diction markets. The manager would like to reward experts for improving either
market’s accuracy, but only one market’s condition will ever be realized since only
one developer will be hired. The other market’s predictions will become unscored
counterfactuals. If an expert has improved one market’s prediction more than the
other’s, it has an incentive to convince the project manager to hire the associated
developer regardless of how poor an employee that developer may be!

More concretely, if the markets currently predict developer A has a 60% and
developer B a 80% chance of finishing the project on time, and an expert believes
the correct likelihoods are 70% and 80%, respectively, truthful reporting can
only improve the market’s accuracy for developer A. If developer B is hired this
expert will receive a score of zero, but if A is hired they expect to score for a
10% improvement. Instead of being honest, then, the expert can pretend B is
incompetent, lowering the market’s prediction for the likelihood B will finish on
time to less than 70%, cause A to be hired instead, and enjoy the profits.

We address this manipulation and construct and characterize decision mar-
kets that are myopic incentive compatible, like prediction markets. Instead of a
scoring rule, these markets use a decision scoring rule that can account for the
likelihood actions are taken when scoring predictions. When a decision maker
risks taking an action at random, these decision scoring rules allow the scores
of unlikely actions to be amplified while the scores of likely actions are com-
paratively reduced, making risk neutral experts indifferent to their affect on the
decision. We show this risk of taking an action at random is a requirement for
myopic incentive compatible decision markets, and reducing this risk increases
the decision maker’s worst-case loss. We also show that, for risk-neutral experts,
every myopic incentive compatible decision market describes a game equivalent
to that described by a myopic incentive compatible set of prediction markets,
creating a formal connection between decision and prediction markets.

The rest of the paper is organized as follows. Section 1.1 describes previous
work on prediction and decision markets. Section 2 provides a formal descrip-
tion of prediction markets in our notation, and Section 3 describes our decision
market model. Section 4 presents our construction and characterization results.
Section 5 extends these results, describing optimal behavior for a risk neutral de-
cision maker and connecting prediction and decision markets. Finally, Section 6
discusses further research challenges and concludes.

1.1 Related Work

Strictly proper scoring rules have long been understood to be able to truthfully
elicit a single risk-neutral expert’s beliefs over the outcome of an uncertain event
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[14,17,10]. Hanson [12,13] showed these same rules could be used to myopically
incentivize any number of experts to be honest in a prediction market, and
described an extension of scoring rules – market scoring rules – that prevent
the market maker’s worst-case loss from growing with the number of experts.
Importantly, all strictly proper scoring rules require the market maker correctly
observe the event’s outcome. We formally describe these rules in Section 2.

When making a decision, some outcomes are not observed, and strictly proper
scoring rules do not generally myopically incentivize an expert to be truthful.
Othman and Sandholm [16] first formalized this incentive problem. They consid-
ered a single expert predicting and a decision maker picking their most preferred
action based on the expert’s predictions, and they showed the expert can be in-
centivized to honestly reveal the decision maker’s most preferred action. They
describe this decision rule as max—simply picking the best action from what’s
available. Chen and Kash [6] also considered a single expert but allowed both de-
terministic and stochastic decision rules. Given a decision rule they characterized
all scoring rules incentivizing a single risk-neutral expert to predict truthfully.

But while strictly proper scoring rules can be used for a single expert and
extend to prediction markets, these scoring and decision pairs do not have a such
a natural extension . In a prediction market, an expert’s expected score for a
prediction is fixed once the prediction is made, and the same is true when a single
expert is informing a decision. In a decision market, however, a prediction’s score
may not be fixed until the market closes, creating new strategic complexities.
In fact, Othman and Sandholm showed that no scoring rule can myopically
incentivize experts to predict honestly in a decision market using their max
rule, and we extend this result in Section 4. We also describe myopic incentive
compatible decision markets for the first time.

Recently, manipulation in the presence of outside incentives has been studied
[9,5]. In this paper we do not consider outside payoffs. The decision maker’s
choice of action may affect an expert’s utility, but not because of any inherent
preferences over actions that expert may have.

2 Prediction Markets: Background and Notation

This section presents the standard market scoring rule model of a prediction
market, first described by Hanson [12,13], and defines our notation.

Let O be a finite, mutually exclusive, and exhaustive set of outcomes. A
prediction market is a sequential game played by any number of risk-neutral,
expected-value–maximizing experts predicting the likelihood of these outcomes.
The market opens at round zero with some initial prediction p0 ∈ Δ(O), where
Δ(O) is the set of probability distribution over outcomes. At each round after
the market opens, an arbitrarily chosen expert makes a prediction p ∈ Δ(O),
and we let pt be the prediction made in round t. The market closes at some
round t̄, after which an outcome o∗ is observed and experts are scored for each
prediction by a scoring rule,

s : O × Δ(O) → � ∪ {−∞},
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where � is the set of real numbers. We write so(p) ≡ s(o, p) as a shorthand, and
an expert’s payment for a prediction is the difference between the scores of its
and the immediately preceding prediction. Letting T be the set of rounds when
an expert made a prediction, its total payoff is∑

t∈T
so∗(pt) − so∗(pt−1).

Markets with this sequential difference payoff structure are described as market
scoring rule markets.

Scoring rules are regular when only predictions assigning zero likelihood to
the observed event are scored negative infinity, and proper when a risk-neutral
expert’s expected score for a prediction is maximized when predicting consistent
with its belief. Formally, a rule is proper if for all beliefs q ∈ Δ(O) over the
likelihood of outcomes and predictions p∑

o∈O
qoso(q) ≥

∑
o∈O

qoso(p),

where qo is the believed likelihood of outcome o. A rule is strictly proper when the
inequality is strict unless q = p, uniquely maximizing an expert’s score when they
predict consistent with their beliefs. An example of a strictly proper scoring rule
is so(p) = ao + b log po with ao ∈ � and b > 0. When experts uniquely maximize
their score for a prediction by predicting consistent with their beliefs we describe
the mechanism as myopically incentive compatible.

In aggregate, experts receive a payoff of Σ t̄
t=1so∗(pt) − so∗(pt−1) = so∗(pt̄) −

so∗(p0), so the market institution’s worst-case loss is

max
o∗,pt̄

so∗(p0) − so∗(pt̄).

Note that the market institution’s payment is bounded and independent of the
number of experts. In practice, a market institution’s budget must be at least
their worst-case loss.

Ideally, the final prediction is an accurate consensus of experts’ beliefs.
Bayesian experts, for example, update their beliefs as they observe other’s pre-
dictions. However, while a market using a strictly proper scoring rule is myopic
incentive compatible, it is not incentive compatible in general. An expert partic-
ipating in multiple rounds may provide a prediction inconsistent with its belief,
with the intention to mislead other experts and later capitalize on their mis-
takes [4]. Despite such possible manipulations by forward-looking Bayesian ex-
perts, previous work has shown that under certain conditions prediction markets
that are myopic incentive compatible can fully aggregate information in finite
rounds [4] or in the limit [15]. In this paper, however, we do not restrict experts
to be Bayesian but allow arbitrary – or free – beliefs, as is typical when working
with scoring rules.
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3 Decision Market Model

A prediction market is a special case of a decision market. Both use the same
sequential market structure, but a decision market uses a decision rule to pick
from a set of actions before the outcome is observed, and which action is chosen
may affect the likelihood an outcome occurs. Unlike previously proposed models
of decision markets, we score experts using a decision scoring rule instead of a
standard scoring rule. This more general function is necessary to recreate the
myopic incentive compatibility of a prediction market for the broadest possible
class of decision markets.

Let A be a finite set of actions, and O a set of outcomes as before. Without
loss of generality and for notational convenience we assume the outcomes for
every action are the same. As in a prediction market, a decision market opens
with an initial prediction, but instead of a single probability distribution it is
a set of conditional distributions, one for each action, denoted P 0 ∈ Δ(O)|A|.
Experts still report sequentially, and we let P t be the prediction made in round
t, P t

a that prediction’s distribution over outcomes given action a is chosen, and
P t

a,o be that conditional distribution’s likelihood for outcome o.
After the market closes, the decision maker selects an action using a decision

rule
D : Δ(O)|A| → Δ(A),

applied to the final report P t̄, drawing an action a∗ from A according to the
distribution D(P t̄). We say that a decision rule has full support if it only maps
to distributions with full support. As a shorthand we write d for a distribution
over actions and da the likelihood action a is drawn from the set.

Once the action is selected, an outcome o∗ is revealed, and experts are scored
for each prediction by a decision scoring rule

S : A×O × Δ(A) × Δ(O)|A| → � ∪ {−∞},

written Sa,o(d, P ) ≡ S(a, o, d, P ). Paralleling scoring rules, we describe decision
scoring rules as regular when only predictions assigning zero likelihood to the
observed event are scored negative infinity.

Letting T again be rounds where an expert made a prediction, its total
payoff is ∑

t∈T
Sa∗,o∗(d, P t) − Sa∗,o∗(d, P t−1),

so the market institution’s worst-case loss is

max
P t̄,a∈Ā,o∈O

Sa,o(d, P 0) − Sa,o(d, P t̄), (1)

where Ā is the support of D(P t̄). Previous work on decision markets used a
similar model, but with a conditional scoring rule

sc : A×O × Δ(O)|A| → � ∪ {−∞},
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instead of a decision scoring rule.
As we show in the next section, however, considering the likelihood an action

is selected is necessary to create the same myopic incentive compatibility as in
prediction markets.

4 Decision Market Incentives

In a prediction market, a strictly proper scoring rule uniquely maximizes an
expert’s score for a prediction when they predict consistent with their beliefs.
The same is not always true in a decision market. While both markets can reward
improvements over a prior prediction, a decision market only observes and scores
the improvement in the prediction for the chosen action. Since this action is a
function of the market’s final prediction, experts may have an incentive to change
this prediction (either directly or by manipulating other experts) to create a
distribution over actions more likely to score their greatest improvement.

In this section we extend the myopic incentives of prediction markets to de-
cision markets, demonstrating how to construct myopic incentive compatible
decision markets, and characterizing some of their properties. While myopic in-
centive compatibility does not guarantee that an expert who participates in
multiple rounds will predict consistent with its beliefs in every round, previous
work has shown that myopic incentives are sufficient to aggregate experts’ pri-
vate information at perfect Bayesian equilibria under certain conditions [4,15].

4.1 Myopic Incentive Compatibility

We first provide a formal treatment of myopic incentive compatibility for de-
cision markets. Recall, for a prediction market, myopic incentive compatibility
requires an expert always maximize their score for a prediction when they pre-
dict consistent with their beliefs. Assume a decision market uses decision rule D
and decision scoring rule S. Then an expert with beliefs Q over the conditional
outcomes who expects that d will be the final distribution over actions has an
expected score for a prediction P of∑

a∈A
da

∑
o∈O

Qa,oSa,o(d, P ).

And a myopic incentive compatible decision market must account not only for
an expert’s prediction, but also the likelihood each action is taken.

Definition 1. A decision market (D, S) with a regular decision scoring rule S
is proper if ∑

a∈A
da

∑
o∈O

Qa,oSa,o(d, Q) ≥
∑
a∈A

d′a
∑
o∈O

Qa,oSa,o(d′, P ),

for all beliefs Q, distributions d and d′ in the codomain of D and predictions P .
The market is strictly proper if the inequality is strict unless P = Q.
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If the market is strictly proper we also describe it as myopic incentive compatible,
analogous to our treatment of prediction markets. When a decision market is
not strictly proper there exist final predictions and beliefs such that experts
maximize their score for a prediction by misrepresenting their beliefs.

4.2 A Simple Construction for Strictly Proper Decision Markets

Given a decision rule with full support, a simple construction can extend any
strictly proper scoring rule into a decision scoring rule that makes the resulting
decision market strictly proper, too.

Theorem 1. Let D be a decision rule with full support. Then there exists a
decision scoring rule S such that (D, S) is strictly proper.

Proof. The proof is by construction. Let s be any strictly proper scoring rule.
Construct

Sa,o(d, P ) =
1
da

so(Pa). (2)

(D, S) is strictly proper: an expert’s expected score for a prediction is∑
a∈A

da

∑
o∈O

Qa,o
1
da

so(Pa) =
∑
a∈A

∑
o∈O

Qa,oso(Pa),

the sum of the expected scores of the same prediction in a set of prediction
markets, one for each action, using a strictly proper scoring rule. Since predicting
consistent with beliefs maximizes the expected score of the expert in each market,
it maximizes the sum of the expected scores. �

This constructive result positively answers Chen and Kash’s open question
whether it is possible to construct decision markets with good incentives [6].

4.3 Strictly Proper Decision Markets Have Full Support

The construction in Theorem 1 requires a decision rule have full support, and
makes experts’ expected scores independent of future reports while their actual
scores vary inversely with the likelihood an action is chosen. Surprisingly, every
strictly proper decision market with a differentiable decision scoring rule has
these properties. We prove the necessity of full support before characterizing all
strictly proper decision market with differentiable decision scoring rules.

Theorem 2. Let D be a decision rule. A decision scoring rule S that makes
(D, S) strictly proper exists if and only if D has full support.

Proof. First we prove that if a decision rule D does not have full support, there
is no decision scoring rule S such that (D, S) is strictly proper. We proceed by
contradiction. Let D be a decision rule without full support, choose a final report
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P so that d = D(P ) has dk = 0 for some k ∈ A, and let S be a decision scoring
rule such that (D, S) is strictly proper. Let Q, Q′ ∈ Δ(O)|A| be two beliefs
differing only on action k: for all a = k and all o, Qa,o = Q′

a,o; ∃o Qk,o = Q′
k,o.

Consider the expected utility of an expert with each of these beliefs reporting
truthfully, while the final report remains P . One of these utilities must be weakly
greater than the other. Without loss of generality, let∑

a∈A

∑
o∈O

daQa,oSa,o(d, Q) ≥
∑
a∈A

∑
o∈O

daQ′
a,oSa,o(d, Q′), (3)

Because Q and Q′ only differ on action k, and dk = 0,∑
a∈A

∑
o∈O

daQa,oSa,o(d, Q) =
∑
a∈A

∑
o∈O

daQ′
a,oSa,o(d, Q), (4)

Combining lines (3) and (4) contradicts strict properness with respect to Q′.
The other direction, which shows how to construct a strictly proper decision

market for any decision rule with full support, follows by the construction in the
proof of Theorem 1. �

This result extends Othman and Sandholm’s impossibility result for determin-
istic decision markets [16] to the more general class of decision markets without
full support. The theorem does not apply to non-strictly proper decision mar-
kets, however; for example, all constant decision scoring rules are proper for all
decision rules.

4.4 Decision Markets with Good Incentives

While Theorem 1 provided a simple construction to create a strictly proper
decision market, we now characterize all strictly proper decision and decision
scoring rule pairs. The proof of Theorem 3 parallels similar characterizations of
proper scoring rules given by Gneiting and Raftery [10] and of strictly proper
pairs for a single expert [6], and appears in the full version of the paper1.

Theorem 3. A decision market (D, S), where S is regular and D has full sup-
port, is (strictly) proper if

Sa,o(d, P ) =
1

da|A|
(
G(P ) − G′(P ) : P + |A|G′

a,o(P )
)

(5)

where G : Δ(O)|A| → � is a (strictly) convex function, G′(P ) is a subgradient
of G at P and : denotes the Frobenius inner product. Conversely, if S is differ-
entiable in P and (D, S) is (strictly) proper, then S can be written in the form
of (5) for some (strictly) convex G.

1 Available from the authors’ personal webpages.
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Like the construction of Theorem 1, the characterization shown in Theorem 3
requires an expert’s expected score to be independent of the final report, and
that the realized score vary inversely with the likelihood an action is taken. It
does, however, allow more complicated constructions than the normalized strictly
proper scoring rules used in Theorem 1. For example, given a decision rule D
with full support, defining

Sa,o(d, P ) =
1

da|A| (2|A|Pa,o −
∑
i,j

P 2
i,j), (6)

makes (D, S) a strictly proper decision market.
Theorem 3 also illustrates that our expansion of the payment rule in decision

markets from scoring rules to decision scoring rules is necessary to obtain myopic
incentive compatibility, because scoring rules do not allow a dependence on d.
Scoring rules function properly in the special case of a prediction market because
for any constant decision rule a strictly proper scoring rule is sufficient to create
myopic incentive compatibility.

5 Extensions

In this section we discuss how a decision maker can approximate a deterministic
rule, and what the optimal decision rule for a risk-neutral decision maker would
be. We also demonstrate a correspondence between any strictly proper decision
market and a set of strictly proper prediction markets, suggesting a framework
for applying previous prediction market results to decision markets.

5.1 Approximating Deterministic Decisions

Deterministic decision rules, like max, are natural. Unfortunately, no strictly
proper decision market can use a deterministic decision rule. It is possible, how-
ever, to approximate deterministic decision rules with stochastic ones, but bet-
ter approximations of a deterministic decision rule increase the decision maker’s
worst case loss.

Corollary 1. Every strictly proper decision market (D, S) where
infP∈Δ(O)|A| Da(P ) = 0 for some action a has unbounded worst-case loss.

We omit the proof as it follows directly from the inverse relationship between
scores and the likelihood of actions required by Theorem 3.

5.2 Expected Utility Maximizing Decision Rules

A natural question is how a decision maker should design a strictly proper deci-
sion market to maximize their expected utility. A decision maker’s utility is the
payoff they receive for the observed outcome minus the cost of paying experts.
Since the expected payment to experts is independent of the decision rule used,
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an expected utility maximizing decision rule maximizes the likelihood the most
preferred action is taken, subject to the decision maker’s budget constraint. We
call this decision rule approx-max, and since picking a decision scoring rule is
analogous to picking a scoring rule for a prediction market, we take it as given
when defining the decision rule.

Given a budget b and decision scoring rule S, and the final reports P t̄, we
compute a minimal feasible probability for each action a,

pa = max
o

Sa,o([1]|a|, P t̄) − Sa,o([1]|a|, P 0)
b

,

where [1]|a| is a vector of ones. This expression computes the decision maker’s
worst-case payment to experts for each action, unweighted, then divides that
value by the budget to find a feasible inverse multiplier for the decision scoring
rule, which is equal to the minimal feasible probability. If

∑
a∈A pa > 1 then no

decision rule fits the decision maker’s budget, but otherwise a “probability sur-
plus” of 1−

∑
a∈A pa can be assigned arbitrarily. approx-max adds this surplus

to the minimal feasible probability of the most preferred action to maximize the
decision maker’s expected utility.

5.3 A Correspondence between Decision Markets and Prediction
Markets

Strictly proper decision markets constructed using the technique in Theorem 1
have an expected score for a prediction P , given beliefs Q, of∑

a∈A

∑
o∈O

Qa,oso(Pa),

where s is a strictly proper scoring rule. This is also equal to an expert’s expected
score for a set of predictions in a set of independent prediction markets, one for
each action in A. This equivalence holds more generally: every strictly proper
decision market has a corresponding set of prediction markets. Theorem 4 states
this correspondence formally.

Theorem 4. Every strictly proper decision market (D, S), where S is differen-
tiable, has a corresponding strictly proper set of prediction markets. This corre-
spondence implies that when the previous prediction in both settings is the same,
the expected score for a new prediction, given any beliefs, is also the same.

Informally, this theorem implies risk-neutral experts are indifferent to partici-
pating in a strictly proper decision market or the corresponding set of strictly
proper prediction markets. Their available predictions and expected scores for
each prediction are the same in both settings. This correspondence suggests that
results applying to sets of prediction markets may also apply directly to decision
markets.
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6 Conclusion

We extended the myopic incentive compatibility of prediction markets to
decision markets. We proved that this extension requires the decision maker use
a decision rule with full support, and showed how to construct a strictly proper
decision market for any such decision rule, answering an open question posed
by Chen and Kash [6]. We characterized the set of myopic incentive compatible
decision markets, and show that it is possible to approximate any determinis-
tic decision rule with a stochastic decision rule, although better approximations
cause higher worst-case loss for the decision maker. We also showed a correspon-
dence between strictly proper decision and sets of prediction markets, suggesting
a unifying technique to apply results to both types of markets.

There remain many interesting research questions involving decision markets.
Requiring decision makers commit to a randomized decision rule poses an im-
portant practical challenge. Returning to our example from the introduction,
the project manager must be willing to risk hiring a slower developer for the
privilege of running a myopic incentive compatible decision market. This is sim-
ply not credible behavior—managers prefer to hire faster developers. Designing
a more credible mechanism is likely to be a prerequisite for the deployment of
decision markets in practice.

Another practical concern is extending our decision market results to a cost
function framework. Instead of requiring experts provide an entire probability
distribution, cost function based prediction markets allow traders to buy and
sell contracts associated with particular outcomes [7]. The price of each contract
is expected to represent the likelihood that outcome occurs. These interfaces are
similar to that provided by stock markets, and there is an equivalence between
scoring rule and cost function markets. The same equivalence holds for decision
markets, but our decision scoring rules require contracts with variable payouts or
large upfront costs, both undesirable features. Designing a more natural contract
structure for a decision may be of considerable practical value.
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Abstract. We study envy-free and truthful mechanisms for domains
with additive valuations, like the ones that arise in scheduling on un-
related machines. We investigate the allocation functions that are both
weakly monotone (truthful) and locally efficient (envy-free), in the case
of only two tasks, but many players. We show that the only allocation
functions that satisfy both conditions are affine minimizers, with strong
restrictions on the parameters of the affine minimizer. As a further re-
sult, we provide a common payment function, i.e., a single mechanism
that is both truthful and envy-free.

For additive combinatorial auctions our approach leads us (only) to
a non- affine maximizer similar to the counterexample of Lavi et al.
[26]. Thus our result demonstrates the inherent difference between the
scheduling and the auctions domain, and inspires new questions related
to the classic problem of characterizing truthfulness in additive domains.

1 Introduction

We are interested in characterizing the class of deterministic mechanisms that
are both incentive-compatible and envy-free for domains with additive valuations.
Such valuations arise naturally in many interesting problems, like for instance
scheduling on unrelated machines, and combinatorial auctions with additive bid-
ders. We describe the whole setting as a scheduling problem. There are n ma-
chines (agents) and m tasks, and the processing time needed for a task j to
run on machine i is tij , and is privately known only to the agent that owns
the machine. Incentive-compatibility assures that no player can gain by misre-
porting her true values, while envy-freeness that no individual is envious of the
combination of tasks and payments given to other players.

Incentive-compatibility. The scheduling setting was originally proposed by Nisan
and Ronen, in their seminal paper [32] that pioneered the field of Algorithmic
Mechanism Design, as a vehicle to explore the potentiality/limitations of truth-
ful mechanisms in optimization problems. It was demonstrated that not all ob-
jectives can be truthfully optimized, even by non polynomial-time algorithms.
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In particular, a standard performance criterion in the scheduling literature is
makespan minimization (i.e. minimizing the maximum completion time of a ma-
chine), which is radically different than the common, well-studied social welfare
maximization objective in economics. Nisan and Ronen showed that it is impos-
sible to design deterministic truthful mechanisms with approximation guarantee
better than 2, and they conjectured that VCG [36,12,20] (that achieves the rather
unattractive ratio of n) is optimal among truthful mechanisms. The conjecture
still remains open; the constant lower bound has been slightly improved to 2.41
for three machines [9], and later to 2.61 for n machines [25].

One of the reasons that make the problem particularly difficult, is the lack of a
useful characterization of the allocation functions used by incentive-compatible
mechanisms for restricted domains. There are two types of characterizations
that dominate the literature of Mechanism Design. Characterizations of the first
type, like Weak Monotonicity [30,26,35] or Cycle Monotonicity [34], describe the
implementable allocations in a local fashion. Roughly, these are properties that
describe the restrictions imposed on a single player’s possible allocations with
respect to his declarations. The second type characterizes the implementable
allocations in a more global fashion. The most important result of this type
is due to Roberts who showed that for unrestricted domains (where all possible
valuations over outcomes are allowed) the only implementable social choice rules
are a simple generalization of VCG mechanisms, namely affine maximizers [24].

Since we follow the scheduling notation, and the players are cost minimizers
instead of utility maximizers, it will be useful to define affine minimizers.

Definition 1 (Affine Minimizers). We say that an allocation function is an
affine minimizer if there exist nonnegative constants λi, one for each player i =
1, . . . , n, and γa one for each allocation a, such that the mechanism selects the
allocation a, that minimizes

n∑
i=1

m∑
j=1

λi · aij · tij + γa,

where aij is 1 if player i gets task j according to a, and 0 otherwise.

Both characterizations of the first type have been proved very useful in the de-
sign of truthful mechanisms, but only in domains that are very restricted; there
exist non-VCG deterministic monotone algorithms with optimal performance for
single-parameter1 valuation domains (e.g. scheduling on related machines [1,11],
single-minded combinatorial auctions [28,7]), and cycle-monotone algorithms for
multi-dimensional domains with only two possible values [27]. However, for more
general multi-dimensional domains such characterizations did not seem to be
informative so far. A global, Roberts-like characterization would be much more

1 We refer the reader to Chapters 9 and 12 of part II of [31] for basic definitions and
discussion about valuation domains.
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useful. Unfortunately, Roberts’ requirement of unrestricted valuations does not
apply to many realistic setups with richer structure, like combinatorial auctions
and scheduling where inherently, externalities2 make not much sense. Only for
the special cases of two players, when all items/tasks must be allocated3, is a
global characterization known [18,10].

Finally, since the problem has remained open for so long, there have been
efforts to impose extra conditions on top of incentive-compatibility, in order to
restrict further the class of possible mechanisms, and try to make the problem
easier to attack. Ashlagi et al. [2] consider the natural restriction of anonymity,
i.e. the allocation should not depend on the identities of the players. They suc-
ceeded in proving the Nisan-Ronen conjecture for that case.4 Lavi et al. [26]
showed that assuming a restriction analogous to the Arrowian Independence of
Irrelevant Alternatives, the only truthful mechanisms (in order based domains)
are so-called “almost-” affine maximizers.

Envy-Freeness. Envy-freeness has traditionally been considered a very impor-
tant fairness criterion in Economics and Political Science in settings without
money and with infinitely divisible goods [5,33]. While generally in settings with
indivisible goods, envy-free allocations do not always exist, if we allow payments,
in the standard quasilinear utility setting, envy-free outcomes do exist. Money is
used to compensate envious players. Formally, a mechanism is envy-free for the
scheduling setting, if for every player i ∈ [n], and for every other player h = i,

m∑
j=1

aijtij − pi ≤
m∑

j=1

ahjtij − ph,

where pi, and ph are the respective payments for the players.
Haake et al. [22] characterized the class of allocations that can be implemented

in an envy-free manner, in terms of a property that is called local efficiency
in [29]. This requires that the allocation must maximize the social welfare over
allocations permuting the same bundles, and is necessary and sufficient for envy-
free implementations. For our setting the definition is the following.

Definition 2 (Local Efficiency). We say that a mechanism is locally efficient
if the mechanism selects an allocation a, such that for all t = (t1, . . . , tn), and
all permutations π of [n], it satisfies

n∑
i=1

m∑
j=1

aij · tij ≤
n∑

i=1

m∑
j=1

aπ(i)j · tij .

2 The valuation of a player i in such settings is a function of the bundle of items (or
set of tasks) that i gets, and not of the other players’ bundles.

3 For settings that allow partial allocations, there exist positive results that escape
those characterizations [4,17].

4 The lower bound proof in [2] did not need a characterization of anonymous truthful
mechanisms, which still remains a major open problem.
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There have been many papers that considered envy-free pricing for revenue max-
imization problems [21,8,6,3,23], while hardness results have been shown in [16].
Mu’alem [29], and later Cohen et al. [13] considered bounding the performance
of (non-truthful) envy-free mechanisms for makespan minimization.

Our Contribution. We study envy-free and truthful mechanisms for domains
with additive valuations, like scheduling. It is known [15] that this class is non-
empty, as VCG with Clarke payments satisfy both conditions. Cohen et al. [14]
have characterized this class in terms of a Rochet-like cycle monotonicity. In
[15] the same authors studied a variation where each agent has a capacity that
determines the maximum number of items that she can be assigned. They focus
on VCG mechanisms, and they seek for payments that are both truthful and
envy-free. Very recently, Fleischer and Wang [19] showed that for the case of two
related machines, the only mechanism that is truthful, envy-free, scalable, anony-
mous, and individually rational is the VCG. Our domain is multi-dimensional
(unrelated machines), our results hold for many players (for two items), and we
require only envy-freeness on top of truthfulness.

• We investigate the allocation functions that are both weakly monotone (truth-
ful) and locally efficient, in the case of only two tasks, but many players. We
are interested in a global, Roberts-like characterization. For the sake of more
generality and simple exposition, in the technical part we allow that the tij
take arbitrary real values. We show that if equal bids for the same task are
excluded, then the only allocation functions in this class are affine minimiz-
ers with all λi = 1, and further strong restrictions on the parameters γa

(see Theorem 1). We complete the theorem by showing a simple non affine-
minimizer mechanism with singularities for three players, if equal bids of
different players for the same task are allowed in the input.

• Surprisingly, we found that our proof methods and results carry over to
the scheduling domain (i.e., when all tij are positive), while they do not
carry over to additive combinatorial auctions with two items (equivalent to
our model with every tij negative)! This fact is especially interesting, given
that so far the two problems have been treated as “almost” equivalent. For
combinatorial auctions, we present a new non affine-minimizer mechanism
for three or more players, that is continuous, truthful and envy-free.

• Since the affine minimizers of the characterization theorem are both mono-
tone, and locally efficient, they admit a truthful payment scheme, and a
(possibly different) envy-free payment scheme. We provide a common pay-
ment function, i.e., a single mechanism that is both truthful and envy-free.5

It should be emphasized that this is a genuinely multi-parameter setting. To
the best of our knowledge, this is the first time that a global characterization
has been proven for a scheduling-type multi-dimensional domain for more than
two players. Even for the simple case of three players and two tasks, no global
5 For results on payments see the full version at
http://www.csc.liv.ac.uk/~gchristo/

http://www.csc.liv.ac.uk/~gchristo/
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characterization of incentive-compatible (non-envy-free) mechanisms is known,
which is considered a very important open problem. Our primary goal has been
to purify the general problem with the envy-freeness constraints, so that a new,
structural approach to characterization becomes feasible.

Open Problems. The most important question here is, whether the non-envy-free
problem, or other problem variants can be tackled by generalizing our methods.
Similar results for two tasks in the non- envy-free case could possibly serve as
cornerstones for the general many-tasks problem [32], as has been the case in
the two-player setting [10].

Taking an opposite view, we ask the following: The counterexample of Sec-
tion 3.3 turns out to be of similar flavor as the non affine-maximizer auction of
Lavi et al. ([26] Example 4.). Note that this kind of example exists despite the
envy-freeness restriction, whereas no counterexample exists for scheduling. Are
there nontrivial6 counterexamples for scheduling, (or for the unbounded domain)
in the truthful, non envy-free case? Is the orientation of the domain crucial?

Notation and Basic Geometry of Truthfulness. The allocation of tasks to player
i is denoted by ai, and can take the values ai ∈ {11, 10, 01, 00}; the allocation
a to all the players is the vector a = (a1, a2, . . . , an). Further, we denote by aij

the allocation giving task 1 to player i and task 2 to player j.
In a truthful mechanism, the payment of player i depends on the bid matrix

t−i of the other players, and on the allocation ai of player i. Let pi
ai

(t−i) denote
this payment. We introduce the following functions:

fi(t−i) = pi
11(t−i) − pi

01(t−i)

f ′
i(t−i) = pi

10(t−i) − pi
00(t−i)

gi(t−i) = pi
11(t−i) − pi

10(t−i)

g′i(t−i) = pi
01(t−i) − pi

00(t−i)

Most of the time we will apply the short notation fi, f
′
i , gi, g

′
i, and for player

i = 1 we omit the subscript, using only f, f ′, g, g′, for the respective values. It is
well known [10] that in any truthful mechanism, for fixed t−i the allocation of
player i as a function of (ti1, ti2) has a geometrical representation of one of three
possible shapes – see Figure 2 –, where the two vertical boundaries are on the
lines ti1 = fi and ti1 = f ′

i , and the horizontal ones are on the lines ti2 = gi and
ti2 = g′i. Furthermore, f ′

i −fi = g′i−gi holds. We call the 45◦ boundary 10/01 or
11\00 the flipping boundary, since there the allocation of both tasks gets flipped
(the flipping boundary may happen to be a single point). Our proofs are based
on this type of representation.

Let tm be the point (in general not a single bid) with coordinates tm1 =
mink �=1,2 tk1 and tm2 = mink �=1,2 tk2. Furthermore, let M = mini�=1{ti1 + ti2}.

6 The known non affine-minimizers are ’practically’ task-independent mechanisms [10].
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Fig. 1. Envy-freeness constraints on the allocations, in case of minimum bids by a
single agent (a) and two different agents (b)

2 Constraints Due to Envy-Freeness

We start by investigating the (geometric) restrictions that envy-freeness imposes
on the possible allocations. Without loss of generality, we consider the allocation
figure of player 1. In the next propositions we deal with the cases, when in t−1 a
single player (assume wlog. player 2) bids minimum, respectively when different
players (say players 2, and 3) bid minimum for the two tasks.

Proposition 1. Assume that t22 < ti2, and t21 < ti1 for every player i = 1, 2.
The following restrictions are implied by local efficiency (see Figure 1 (a)). If
the allocation of player 1 is

(a) (11) then t11 + t12 ≤ t21 + t22;
(b) (10) then t11 + t22 ≤ t12 + t21, and t11 ≤ tm1 ;
(c) (01) then t11 + t22 ≥ t12 + t21, and t12 ≤ tm2 ;
(d) (00) then t11 + t12 ≥ t21 + t22.

Proposition 2. Assume that t21 ≤ ti1, and t32 ≤ ti2 for every player i = 1.
The following restrictions are implied by local efficiency (see Figure 1 (b)). If
the allocation of player 1 is

(a) (11) then t11 + t12 ≤ M ;
(b) (10) then t11 + t32 ≤ t12 + t21, and t11 ≤ t21;
(c) (01) then t11 + t32 ≥ t12 + t21, and t12 ≤ t32;
(d) (00) then t11 + t12 ≥ M, or (t11 ≥ t21 and t12 ≥ t32).

The geometric implications for envy-free allocations are summarized by Corol-
lary 1 below. They admit allocations of types shown in Figures 2 and 3.
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Fig. 2. Possible forms of allocations when a single player bids minimum for both tasks

Corollary 1. For the allocation of player 1 in a truthful and envy-free mecha-
nism the following hold. If t21 < tm1 , and t22 < tm2 , then the point t2 is on the
flipping boundary, furthermore f ′ ≤ tm1 and g′ ≤ tm2 . If in t−1 players 2 and 3
bid minimum for tasks 1 and 2 respectively, then either f ′ = t21 and g′ = t32,
OR f ′ ≤ t21 and g′ ≤ t32, and the flipping boundary (11\00) is on the line
t11 + t12 = M.

3 Characterization of Envy-Free Truthful Mechanisms

The characterization has two major steps. First, focusing on the case of minimum
bids by a single player (say, player 2), we prove that the distances f ′−t21, t21−f,
g′ − t22, and t22 − g are independent of t2, that is, by moving t2 the allocation
figure moves along with t2 while keeping its shape (cf. Figure 2). To be precise,
this holds as long as f ′ < tm1 , g′ < tm2 and t21+t22 is minimum, i.e., t21+t22 = M.
Therefore, the first two lemmas consider an extended domain for t2 (as compared
to (−∞, tm1 ) × (−∞, tm2 ), where player 2 bids minimum).

Second, by looking at the case of minimum bids by different players (Figure 3),
it becomes clear that many of these constant distances must be equal, further
implying that they are even independent of all other bids (e.g., f ′ − t21, is
independent not only of t2 but even of t−12, the input of all players other than
1 and 2). Therewith the allocation rule turns out to be identical to that of an
affine minimizer, given that all payment functions are continuous. If arbitrary
functions are allowed, then it is an affine minimizer over inputs with pairwise
different bids, with possible singularities when some bids are equal.

We start with the observation that whenever player 1 is sure to exchange
the first task with player 2, the functions f and f ′ are non-decreasing in t21
independently of t22.

7 Note that the conditions of the next Lemma ensure exactly
7 In a more special form, the same was observed in [10].
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Fig. 3. Possible forms of allocations when different players bid minimum for both tasks

that the task gets exchanged with player 2, and not with some other player.
Below we omit the fixed constant t−12 from the argument of these functions.

Lemma 1. (a) For any t2, t
′
2 s.t. t21 < t′21 < tm1 , it holds that f(t2) ≤ f(t′2).

(b) Let t2 be so that t22 < ti2 and t21 + t22 < ti1 + ti2 for i ≥ 3, and let the same
hold for t′2. If t21 < t′21, and g′(t′2) < tm2 , then f ′(t2) ≤ f ′(t′2).

Analogous statements hold for g and g′.

The next lemma completes the first main step of the characterization.

Lemma 2. In every truthful envy-free mechanism, for fixed t−12 there exist con-
stants Δ = Δ(t−12), and Ω = Ω(t−12) s.t. for every t2 such that t21 + t22 = M,

(a) f(t2) = t21 − Ω if t21 < tm1 and t22 ≤ max{tm2 , tm2 − Ω}, and
(b) f ′(t2) = min{t21 + Δ, tm1 } whenever t22 ≤ min{tm2 , tm2 − Δ}.

Furthermore, if Δ is positive (negative) then Ω is non-negative (non-positive).

Analogous statements hold for g and g′. In particular, given that t2 is on the
flipping boundary, we obtain that if Ω and Δ are non-negative, then g = t22−Ω,
and g′ = min{t22 + Δ, tm2 }; if they are non-positive, then g = t22 − Δ, and
g′ = min{t22 + Ω, tm2 } = t22 + Ω.

An intuitive proof of the lemma is the following. By Lemma 1, f(t21, t22) is a
monotone function of t21, and therefore it is continuous in almost all t21 (say, for
fixed t22). Moreover, since f is monotone in t21 regardless of t22, it is necessarily
independent of t22 (that is, f(t21, t22) = f(t21, t′22)), whenever it is continuous in
t21. Assume e.g., that f(t21, t22) < t21. Then the fact that t2 is on the flipping
boundary (cf. Corollary 1), and f(t21, t22) is independent of t22 implies that t22 −
g(t21, t22) = t21 − f(t21, t22) is a constant for fixed t21. We name this constant Ω,
and obtain that g(t21, t22) = t22 −Ω must hold for all t21, since g is monotone in
t22 regardless of t21.
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Notation. Let Δ1
2 = Δ1

2(t−12), and Ω1
2 = Ω1

2(t−12) denote the constants obtained
in Lemma 2. For arbitrary two players i = j we define Δi

j(t−ij), and Ωi
j(t−ij)

analogously. Note that Δi
j and Ωi

j appear in the allocation figure of player i,
when player j has minimum bids in t−i.

Observation 1. For any i = j, for fixed t−ij we have Δi
j = Ωj

i .

In the second part we prove that the Δi
j(t−ij) = Ωj

i (t−ij) values are indepen-
dent of (t−ij). We complete the characterization by showing that many of these
constants are equal, and either all Δ are non-negative, or all are non-positive.

Lemma 3. Let t−1 be fixed so that t21 < ti1 for all i = 1, 2, and t32 < ti2 for all
i = 1, 3 (see Figure 3). Then for the allocation of player 1 f = t21 − Δ2

1(t−12).
Furthermore, g = t32 − Δ3

1(t−13) if g < t32, and g = t32 − Ω3
1(t−13) if g > t32,

and one of these two holds if g = t32.

Lemma 4. Let t−12 = (t3, t4, . . . , tn), and t′−12 = (t′3, t4, . . . , tn) be such that
max{t32, t′32} < ti2 (resp. max{t31, t′31} < ti1) for i = 1, 3. Then Δ2

1(t−12) =
Δ2

1(t
′
−12).

Intuitively, the lemma implies that given the set of points {t3, t4, . . . , tn} in
the plane, we can move around the point in the lowermost (leftmost) position,
the Δ2

1(t−12) does not change as long as the point remains in the lowermost
(leftmost) position. Next we show that an arbitrary array of points (t3, t4, . . . , tn)
can be transformed to another arbitrary array (t′3, t′4, . . . , t′n) using only such
movements. Consequently, Δ2

1(t−12) is independent of t−12 (at least for t−12

where the points have pairwise different coordinates). This holds obviously for
arbitrary pair of players i = j.

Lemma 5. Let t−12 = (t3, t4, . . . , tn) and t′−12 = (t′3, t′4, . . . , t′n) be arbitrary
such that the first (or second) coordinates of the points are pairwise different in
t−12 and similarly in t′−12. Then Δ2

1(t−12) = Δ2
1(t

′
−12).

Having the Δi
j values constant, it is straightforward to verify that restricted to

inputs having pairwise different bids for each task, the allocation of the mech-
anism is identical to that of an affine minimizer, where Δj

i = γaii − γaij . As a
concluding step, we investigate the question, to what extent the constants Δi

j

determine each other.
If Δi

j = 0 for all i = j, then the allocation is trivially the VCG allocation.
Assume now that there exist two players h = k, such that Δh

k = 0. We have the
following corollaries of Lemmas 3 and 5.

Corollary 2. If Δh
k > 0, then Δi

k = Δh
k for every player i.

Corollary 3. If Δh
k < 0, then for each pair i, j of different players Δi

j = Ωj
i ≤ 0.

Furthermore, for n ≥ 3, all of the Δi
j = Ωj

i values are equal.
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It needs a straightforwardverification that the obtained types of allocations are, in
fact, locally efficient. We summarize our results in terms of affine minimizers. No-
tice that if we assume continuous payment functions, then all f and g functions are
also continuous, and therefore the characterization can be extended to the whole
domain. (Observe also that we require a rather weak form of continuity.)

Theorem 1. For domains with additive valuations with two tasks (items), and
any number of players, excluding equal bids of different players, the allocations
that admit both truthful and envy-free mechanisms are affine minimizers with
λi = 1, and of one of the following types:
(1) γaii ≥ 0, and γaij = 0 for i = j; or
(2) γaij ≥ 0, and γaii = 0. Furthermore, for n ≥ 3 all γaij (i = j) are equal.
Assuming that (fixing the rest of the input) the payments are continuous func-
tions of every bid tij , and equal bids are allowed, the allocation is an affine
minimizer over the whole domain.

3.1 Counterexample with Singularity

Some kind of restriction of the domain to pairwise different bids, or the continuity
requirement is really necessary for the theorem to hold. Here we show a simple
mechanism with singularity that is not an affine minimizer.

Consider the following simple allocation rule for n ≥ 3 players. Let A be the
allocation of an affine minimizer with γaii = 1 for all i, and γaij = 0 for i = j
(i.e., case Δ > 0), and define the allocation rule a() to be a(t) = A(t) if t1 = t2,
and a(t) be the VCG allocation if t1 = t2.

8 Moreover, if t1 and t2 have equal,
and minimum coordinates, then players 1 and 2 must both get a job. For players
i = 1, 2, for fixed t−i the allocation looks either like A or like VCG, and is
truthful and envy-free. For player 1 (and similarly for player 2), for fixed t−1,
the allocation figure is that of A. We only need to perform a straightforward
check – assuming different relative positions of t2 –, that in the single point
t1 = t2, the allocation of player 1 is consistent with this figure.

3.2 Task Scheduling

Our setting models the problem of (envy-free) unrelated scheduling mechanisms,
if we restrict the tij to positive values.9 The difficulty with allowing ti points
only in the positive orthant is that Lemma 4, and thus also Lemma 5 do not
necessarily hold if the t1 and t2 coordinates are bounded. In fact, for this rea-
son, the characterization result fails for tij ∈ R−. Rather surprisingly, for pos-
itive tij Lemmas 4 and 5 can be ’saved’ in some modified form, and we obtain
Theorem 2.10 Despite that the unrelated scheduling problem and the additive
8 We could have used any affine minimizer with γaii < 1 instead of VCG; however

γaii > 1 would not work.
9 For simplicity we exclude tij = 0, since our results hold for continuous mechanisms,

or for inputs with pairwise different coordinates.
10 Notice that on R2

+ our mechanisms are not decisive (i.e., a single player cannot force
any outcome for himself, by bidding properly), except for the VCG mechanism.
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combinatorial auctions problem look very similar, our results demonstrate that
they do not exhibit symmetric behaviour, and are by no means equivalent prob-
lems.

Theorem 2. Restrict the domain of bids to ti ∈ R2
+, and consider only inputs

where the ti1 are pairwise different, and similarly for the ti2, and for the ti1 +ti2.
The truthful and envy-free mechanisms m = 2 are exactly the same mechanisms
as in Theorem 1.

3.3 Additive Combinatorial Auctions

In additive combinatorial auctions each player i has a positive value vij for
every item j to be sold. As opposed to the cost model (scheduling), players
with higher vij tend to get the item j. By using tij = −vij , the problem becomes
equivalent to the setting used in the paper, with the tij restricted to take negative
values. The next example shows that Theorem 1 does not carry over to additive
combinatorial auctions. (In particular, Lemma 4 does not hold. We conjecture,
though, that all counterexamples for envy-free additive auctions are variants
of this one.) Assume that ti1 + ti2 ≤ tj1 + tj2 ≤ tk1 + tk2 ≤ . . . are the three
smallest sums of bids over all players (break ties by player indices). Then allocate
the two jobs to players i and j, according to an affine minimizer with (negative)
Δ = tk1+tk2. This mechanism is well-defined, and checking the allocation figures
shows that restricted to the negative orthant, it is also truthful and envy-free.11

Acknowledgements. We would like to thank Elias Koutsoupias, Amos Fiat,
and Angelina Vidali for fruitful discussions.
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Abstract. We give a non-trivial class of valuation functions for which we give
auctions that are efficient, truthful and envy-free.

We give interesting classes of valuations for which one can design such auc-
tions. Surprisingly, we also show that minor modifications to these valuations lead
to impossibility results, the most surprising of which is that for a natural class of
valuations, one cannot achieve efficiency, truthfulness, envy freeness, individual
rationality, and no positive transfers.

We also show that such auctions also imply a truthful mechanism for comput-
ing bundle prices (“shrink wrapped” bundles of items), that clear the market. This
extends the class of valuations for which truthful market clearing prices mecha-
nisms exist.

1 Introduction

In this paper we consider auctions that are

1. Efficient — the mechanism maximizes the sum of the valuations of the agents.
Alternately, efficient mechanisms are said to maximize social welfare.

2. Incentive compatible (IC) — it is a dominant strategy for agents to report their
private information [11].

3. Envy-free (EF) - no agent wishes to exchange her outcome with that of another
[6,7,22,15,16,24].

4. Make no positive transfers (NPT)— the payments of all agents are non-negative.
5. Individually rational (IR) — no agent gets negative utility.

We argue that such auctions are natural and interesting for a variety of reasons:

– It is not clear how to obtain efficiency without truthfullness.
– An auction that is not envy-free discriminates between bidders, moreover — it is

relatively easy for bidders to realize that they are being discriminated against. Ex-
periments suggest that human subjects prefer degraded performance over discrimi-
nation, e.g., ([21]).

– Posted prices that clear the market are inherently envy-free, but computing such
Walrasian pricing, even if it exists, is itself not necessarily truthful. Auctions that
are both truthful and envy-free can be interpreted as a mechanism for computing
market clearing prices where the posted price is associated with bundles of items
rather than individual items. We present a natural subset of gross substitute valua-
tions for which we show that

N. Chen, E. Elkind, and E. Koutsoupias (Eds.): WINE 2011, LNCS 7090, pp. 97–108, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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• There is no incentive compatible mechanism to compute Walrasian prices.
• We give a truthful mechanism for computing market clearing bundle prices.

– Auctions that are not individually rational or make positive transfers represent situ-
ations when one forces the bidders to participate against their will or subsidizes the
auction. That said, we show a class of valuation functions (capacitated valuations
with unequal capacities), for which Walrasian prices exist, but no auction exists that
is incentive compatible, envy-free, makes no positive transfers, and is individually
rational. Moreover, for a subset of this class, we give an efficient, incentive compat-
ible, envy-free and individually rational auction (albeit — with positive transfers).

We consider a specific class of additive valuations where agents have a limit on the num-
ber of goods they may receive. We refer to such valuations as capacitated valuations
and seek mechanisms that maximize social welfare and are simultaneously incentive
compatible, envy-free, individually rational, and have no positive transfers. Capacitated
valuations are a special case of gross substitute valuations (Kelso and Crawford [12])
and they are a natural generalization of the unit demand valuation. One may view the
capacity of an agent as the size of the market basket, an agent with capacity c may carry
no more than c items. If such a bidder gets more than c items, (say, in a shrink wrapped
bundle containing 2c goods, of various types), she can discard any excess items.

If capacities are infinite, then sequentially repeating the 2nd price Vickrey auction
meets these requirements. In 1983, Leonard showed that for unit capacities, VCG with
Clarke pivot payments is also envy-free1. In this paper we consider generalizations of
the setting considered by Leonard. For homogeneous capacities (all capacities equal)
we show that VCG with Clarke pivot payments is envy-free (VCG with Clarke pivot
payments is always efficient, incentive compatible, individually rational, and has no
positive transfers). Also, we show that there is no incentive compatible mechanism to
compute Walrasian prices for capacities > 1. For heterogeneous capacities, we show
that there is no mechanism with all 5 properties, but at least in some cases, one can
achieve both incentive compatibility and envy freeness.

Let [s] = {1, . . . , s} be the set of goods to be allocated amongst n agents with
private valuations. An agent’s valuation function is a mapping from every subset of the
goods into the non negative reals. A mechanism receives the valuations of the agents as
input, and determines an allocation ai and a payment pi for every agent. We assume that
agents have quasi-linear utilities; that is, the utility of agent i is the difference between
her valuation for the bundle allocated to her and her payment.

Given an efficient, incentive compatible, envy-free auction, with no positive transfers
and individually rational, we can convert the allocations ai and associated prices pi into
market clearing bundle prices. As the auction is efficient, we can assume that all items
are allocated. (In capacitated valuations, there may be goods later discarded simply
because the agents do not have the capacity to accept them). For every agent i we create
a bundle of all items in ai, and attach the price pi to this shrink-wrapped bundle of
goods. Of all these bundles, the bundle ai, and it’s associated price, pi, maximize the
utility for agent z, the bundle aj and it’s associated price, pj , maximize the utility for
agent j, etc.

1 Lehmann, Lehmann, and Nisam, [13], show that computing VCG in the case of gross substi-
tutes is poly time.
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Most of our results concern the class of capacitated valuations: every agent i has an
associated capacity ci, and her value is additive up to the capacity, i.e., for every set
S ⊆ [s],

vi(S) = max

⎧⎨⎩∑
j∈T

vi(j)
∣∣∣T ⊆ S, |T | = ci

⎫⎬⎭ ,

where vi(j) denotes the agent i’s valuation for good j.
Consider the following classes of valuation functions:

1. Gross substitutes: good x is said to be a gross substitute of good y if the demand
for x is monotonically non-decreasing with the price of y, i.e.,

∂(demand x)/∂(price y) ≥ 0 .

A valuation function is said to obey the gross substitutes condition if for every pair
of goods x and y, good x is a gross substitute of good y.

2. Subadditive valuations: A valuation v : 2[s] → R≥0 is said to be subadditive if for
every two disjoint subsets S, T ⊆ [s], v(S) + v(T ) ≥ v(S ∪ T ).

3. Superadditive valuations: A valuation v : 2[s] → R≥0 is said to be superadditive if
for every two disjoint subsets S, T ⊆ [s], v(S) + v(T ) ≤ v(S ∪ T ).

Capacitated valuations are a subset of gross substitutes, which are themselves a subset
of subadditive valuations.

In a Walrasian equilibrium (See [12,10]), prices are item prices, that is, prices are
assigned to individual goods so that every agent chooses a bundle that maximizes her
utility and the market clears. Thus, Walrasian prices automatically lead to an envy-free
allocation. Every Walrasian pricing gives a mechanism that is efficient and envy-free,
has no positive transfers, and is individually rational [13].

We remark that while Walrasian pricing ⇒ EF, NPT, IR, the converse is not true.
Even a mechanism that is EF, NPT, IR, and IC does not imply Walrasian prices. Note
that envy-free prices may be assigned to bundles of goods which cannot necessarily
be interpreted as item prices. It is well known that in many economic settings, bundle
prices are more powerful than item prices [1,19]. [12] showed that gross substitutes
imply the existence of Walrasian equilibrium, Gul and Stacchetti [10] show that this is
necessarily the case.

As capacitated valuations are also gross substitutes (see Theorem 2.4 in Section 2.2),
it follows that capacitated valuations always have a Walrasian equilibrium. Walrasian
prices, however, may not be incentive compatible. In fact, we show that even with 2
agents with capacities 2 and 3 goods, there is no incentive compatible mechanism that
produces Walrasian prices.

For superadditive valuations it is known that Walrasian equilibrium may not exist.
Pápai [18] has characterized the family of mechanisms that are simultaneously EF and
IC under superadditive valuations. In particular, VCG with Clarke pivot payments sat-
isfies these conditions. However, Pápai’s result for superadditive valuations does not
hold for subadditive valuations. Moreover, Clarke pivot payments do not satisfy envy
freeness even for the more restricted family of capacitated valuations, as demonstrated
in the following example:
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Example 1.1. Consider an allocation problem with two agents, {1, 2}, and two goods,
{a, b}. Agent 1 has capacity c1 = 1 and valuation v1(a) = v1(b) = 2, and agent 2
has capacity c2 = 2 and valuation v2(a) = 1, v2(b) = 2. According to VCG with
Clarke pivot payments, agent 1 is given a and pays 1, while agent 2 is given b and pays
nothing (as he imposes no externality on agent 1). Agent 1 would rather switch with
agent 2’s allocation and payment (in which case, her utility grows by 1), therefore, the
mechanism is not envy-free.

Two extremal cases of capacitated valuations are “no capacity constraints”, or, all capac-
ities are equal to one. If capacities are infinite, running a Vickrey 2nd price auction [23]
for every good, independently, meets all requirements (IC + Walrasian ⇒ efficient, IC,
EF, NPT, IR). If all agent capacities are one, [14] shows that VCG with Clarke pivot
payments is envy-free, and it is easy to see that it also meets the stronger notion of an
incentive compatible Walrasian equilibrium. For arbitrary capacities (not only all ∞ or
all ones), we distinguish between homogeneous capacities, where all agent capacities
are equal, and heterogeneous capacities, where agent capacities are arbitrary.

When considering incentive compatible and heterogeneous capacities, we distin-
guish between capacitated valuations with public or private capacities: being incen-
tive compatible with respect to private capacities and valuation is a more difficult task
than incentive compatible with respect to valuation, where capacities are public. In this
paper, we primarily consider public capacities.

The main technical results of this paper (which are also summarized in Figure 1) are
as follows:

– For arbitrary homogeneous capacities c, such that
(c ≡ c1 = c2 = · · · = cn):
• VCG with Clarke pivot payments is efficient, IC, NPT, IR, and EF.
• However, there is no incentive compatible mechanism that produces Walrasian

prices, even for c = 2.
– For arbitrary heterogeneous capacities

c = (c1, c2, . . . , cn):
• Under the VCG mechanism with Clarke pivot payments (public capacities), a

higher capacity agent will never envy a lower capacity agent.
• In the full version we also show that

∗ There is no mechanism that is IC, NPT, and EF (for public and hence also
for private capacities).

∗ 2 agents, public capacities - there exist mechanisms that are IC, IR, and
EF.

∗ 2 agents, 2 goods - there exist mechanisms that are IC, IR, and EF for every
subadditive valuation.

2 Model and Preliminaries

Let [s] = {1, . . . , s} be a set of goods to be allocated to a set [n] = {1, . . . , n} of
agents.
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Subadditive Gross substitutes
capacitated -
heterogeneous

capacitated -
homogeneous

Walras. NO [10] YES [10] (→) YES (→) YES
Walras.+IC NO (←) NO (←) NO (←) NO*

EF + IC
?

YES* for
m = 2, n = 2

?
(→) YES for
m = 2, n = 2

?
YES* for m = 2

YES
(↑)

EF + IC + NPT NO (←) NO (←) NO* YES*

Fig. 1. This table specifies the existence of a particular type of mechanism (rows) for various fam-
ilies of valuation functions (columns). Efficiency is required in all entries. The valuation families
satisfy capacitated homogeneous ⊂ capacitated heterogeneous ⊂ gross substitutes ⊂ subadditive.
Wherever results are implied from other table entries, this is specified with corresponding arrows.
We note that for the family of additive valuations (no capacities), all entries are positive, as the
Clarke pivot mechanism satisfies all properties. * Appears in the full version only.

An allocation a = (a1, a2, . . . , an) assigns agent i the bundle ai ⊆ [s] and is such
that

⋃
i ai ⊆ [s] and ai ∩ aj = ∅ for i = j. We use L to denote the set of all possible

allocations.
For S ⊆ [s], let vi(S) be the valuation of agent i for set S. Let v = (v1, v2, . . . , vn),

where vi is the valuation function for agent i.
Let Vi be the domain of all valuation functions for agent i ∈ [n], and let V =

V1 × V2 × · · · × Vn.
An allocation function a : V maps v ∈ V into an allocation

a(v) = (a1(v), a2(v), . . . , an(v)) .

A payment function p : V maps v ∈ V to R
n
≥0: p(v) = (p1(v), p2(v), . . . , pn(v)),

where pi(v) ∈ R≥0 is the payment of agent i. Payments are from the agent to the
mechanism (if the payment is negative then this means that the transfer is from the
mechanism to the agent).

A mechanism is a pair of functions, 〈a, p〉, where a is an allocation function, and p
is a payment function. For a valuation v, the utility to agent i in a mechanism 〈a, p〉 is
defined as vi(ai(v)) − pi(v). Such a utility function is known as quasi-linear.

For a valuation v, we define (v′i, v−i) to be the valuation obtained by substituting v′i
for vi, i.e.,

(v′i, v−i) = (v1, . . . , vi−1, v
′
i, vi+1, . . . , vn).

A mechanism is incentive compatible (IC) if for all i, v, and v′i:

vi(ai(v)) − pi(v) ≥ vi(ai(v′i, v−i)) − pi(v′i, v−i);

this holds if and only if

pi(v) ≤ pi(v′, v−i) +
(
vi(ai(v)) − vi(ai(v′i, v−i))

)
. (1)

A mechanism is envy-free (EF) if for all i, j ∈ [n] and all v:

vi(ai(v)) − pi(v) ≥ vi(aj(v)) − pj(v);
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this holds if and only if

pi(v) ≤ pj(v) +
(
vi(ai(v)) − vi(aj(v))

)
. (2)

Given valuation functions v = (v1, v2, . . . , vn), a social optimum Opt is an allocation
that maximizes the sum of valuations

Opt ∈ argmax
a∈L

n∑
i=1

vi(ai) .

Likewise, the social optimum when agent i is missing, Opt−i, is the allocation

Opt−i ∈ arg max
a∈L

∑
j∈[n]\{i}

vj(aj) .

2.1 VCG Mechanisms

A mechanism 〈a, p〉 is called a VCG mechanism [4,23] if:

• a(v) = Opt, and
• pi(v) = hi(v−i) −

∑
j �=i vj(aj(v)), where hi does not depend on vi, i ∈ [n].

For connected domains, the only efficient incentive compatible mechanism is VCG (See
Theorem 9.37 in [17]). Since capacitated valuations induce a connected domain, we get
the following proposition.

Proposition 2.1. With capacitated valuations, a mechanism is efficient and IC if and
only if it is VCG.

VCG with Clarke pivot payments has

hi(v−i) = max
a∈L

∑
j �=i

vj(a) (=
∑
j �=i

vj(Opt−i
j )).

Agent valuations for bundles of goods are non negative. The only mechanism that is
efficient, incentive compatible, individually rational, and with no positive transfers is
VCG with Clarke pivot payments.

The following proposition, which appears in [18], provides a criterion for the envy
freeness of a VCG mechanism.

Proposition 2.2. [18] Given a VCG mechanism, specified by functions {hi}i∈[n], agent
i does not envy agent j iff for every v,

hi(v−i) − hj(v−j) ≤ vj(Optj) − vi(Optj).
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2.2 Gross Substitutes and Capacitated Valuations

We define the notion of gross substitute valuations and show that every capacitated
valuation (i.e., additive up to the capacity) has the gross substitutes property. As this
discussion refers to a valuation function of a single agent, we omit the index of the
agent.

Fix an agent and let D(p) be the collection of all sets of goods that maximize the
utility of the agent under the price vector p, D(p) = arg maxS⊆[s]{v(S)−

∑
j∈S pj}.

Definition 2.3. [10] A valuation function v : 2[s] → R≥0 satisfies the gross substitutes
condition if the following holds: Let p = (p1, . . . , ps) and q = (q1, . . . , qs) be two price
vectors such that the price for good j is no less under q than under p: i.e., qj ≥ pj , for
all j. Consider the set of all items whose price is the same under p and q, E(p, q) =
{1 ≤ j ≤ s | pj = qj}, then for any Sp ∈ D(p) there exists some Sq ∈ D(q) such that
Sp ∩ E(p, q) ⊆ Sq ∩ E(p, q).

Theorem 2.4. Every capacitated valuation function (additive up to the capacity) obeys
the gross substitutes condition.

As a corollary, we get that capacitated valuations admit a Walrasian equilibrium. How-
ever, not necessarily within an IC mechanism.

3 Envy-Free and Incentive Compatible Assignments with
Capacities

The main result of this section is that Clarke pivot payments are envy-free when ca-
pacities are homogeneous. This follows from a stronger result, which we establish for
heterogeneous capacities, showing that with Clarke pivot payments, no agent envies a
lower-capacity agent.

In full version we show that one cannot aim for an incentive compatible mech-
anism with Walrasian prices (if this was possible then envy freeness would follow
immediately).

The following theorem establishes a general result for capacitated valuations: in a
VCG mechanism with Clarke pivot payments, no agent will ever envy a lower-capacity
agent.

Theorem 3.1. If we apply the VCG mechanism with Clarke pivot payments on the as-
signment problem with capacitated valuations, then

– The mechanism is incentive compatible, individually rational, and makes no posi-
tive transfers (follows from VCG with CPP).

– No agent of higher capacity envies an agent of lower or equal capacity.

The input to the VCG mechanism consists of capacities and valuations. The capacity
of agent i, ci ≥ 0, is publicly known. The number of units of good j, qj ≥ 0 is also a
public knowledge. The valuations vi(j) are private.
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The b-Matching Graph. Given capacities ci, qj , and a valuation matrix v, we construct
an edge-weighted bipartite graph G as follows:

– We associate a vertex with every agent i ∈ [n] on the left, let A be the set of these
vertices.

– We associate a vertex with every good j ∈ [s] on the right, let I be the set of these
vertices.

– Edge (i, j), i ∈ A, j ∈ I, has weight vi(j).
– Vertex i ∈ A (associated with agent i) has degree constraint ci.
– Vertex j ∈ I (associated with good j) has degree constraint qj .

We seek an allocation a (= a(v)) where aij is the number of units of good j allocated
to agent i. The value of the allocation is v(a) =

∑
ij aijvi(j). We seek an allocation

of maximal value that meets the degree constraints:
∑

j aij ≤ ci,
∑

i aij ≤ qj , this is
known as a b-matching problem and has an integral solution if all constraints are inte-
gral, see [20]. Let ai = (ai1, ai2, . . . , ain) denote the i’th row of a, which corresponds
to the bundle allocated to agent i.

Let vk(ai) =
∑

j∈[s] aijvk(j) denote the value to agent k of bundle ai. Let M denote
some allocation that attains the maximum social value, M ∈ argmaxa v(a). Finally,
let G−i be the graph derived from G by removing the vertex associated with agent i and
all its incident edges, and let M−i be a matching of maximum social value with agent
i removed.

Specializing the Clarke pivot rule to our setting, the payment of agent k is

pk = v(M−k) − v(M) + vk(Mk) . (3)

In the special case of permutation games (the number of agents and goods is equal, and
every agent can receive at most one good), the social optimum corresponds to a max-
imum weighted matching in G. Such “permutation games” were first studied by [14]
who showed that Clarke pivot payments are envy-free. However, the shadow variables
technique used in this proof does not seem to generalize for larger capacities.
Proof sketch of Theorem 3.1: Let agent 1 and agent 2 be two arbitrary agents such that
c1 ≥ c2. Agent 1 does not envy agent 2 if and only if

v1(M1) − p1 ≥ v1(M2) − p2

By substituting the Clarke pivot payments (3) and rearranging, this is true if and only if

v(M−2) ≥ v(M−1) + v1(M2) − v2(M2). (4)

Thus in order to prove the theorem we need to establish (4).
We construct a new allocation D−2 on G−2 (from the allocations M and M−1) such

that
v(D−2) ≥ v(M−1) + v1(M2) − v2(M2) . (5)

From the optimality of M−2, it must hold that v(M−2) ≥ v(D−2). Combining this
with (5) shall establish (4), as required.

In what follows we make several preparations for the construction of the allocation
D−2. Given M and M−1, we construct a directed bipartite graph Gf on A∪I coupled
with a flow f as follows. For every pair of vertices i ∈ A and j ∈ I,
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– If Mij − M−1
ij > 0, then Gf includes arc i → j with flow fi→j = Mij − M−1

ij .

– If Mij − M−1
ij < 0, then Gf includes arc j → i with flow fj→i = M−1

ij − Mij .

– If Mij = M−1
ij , then Gf contains neither arc i → j nor arc j → i.

We define a vertex to be a source vertex if the difference between the amount of flow
flowing out of the vertex and the amount of flow flowing into the vertex is positive, and
define vertex to be a target vertex otherwise.

Using the flow decomposition theorem, we can decompose the flow f into simple
paths and cycles, where each path connects a source to a target. Associated with each
path and cycle T is a positive flow value f(T ) > 0. Given an arc x → y, fx→y is
obtained by summing up the values f(T ) of all paths and cycles T that contain x → y.
Notice that M−1

1j = 0 for all j and therefore f1→j ≥ 0 for all j. It follows that there are
no arcs of the form j → 1 in Gf .

We define the value of a path or a cycle T = u1, u2, . . . , ut in Gf , to be

v(P ) =
∑

ui ∈ A,
ui+1 ∈ I

vui(ui+1) −
∑

ui ∈ I,
ui+1 ∈ A

vui+1(ui).

It is easy to verify that
∑

T f(T ) · v(T ) = v(M) − v(M−1), where we sum over all
paths and cycles T in our decomposition.

The proofs of the following Lemmata are omitted.

Lemma 3.2. Let T = u1, u2, . . . , ut be a cycle in Gf or a path in the flow decomposi-
tion of Gf , and let ε be the minimal flow along any arc of T . We construct an allocation

M̂ (= M̂(T )) from M by canceling the flow along T , start with M̂ = M and then for
each (ui, ui+1) ∈ T set:

M̂uiui+1 = Muiui+1 − ε ui ∈ A, ui+1 ∈ I
M̂ui+1ui = Mui+1ui + ε ui ∈ I, ui+1 ∈ A .

Alternatively, we construct M̂−1 (= M̂−1(T )) from M−1, starting from M̂−1 = M−1

and then for each (ui, ui+1) ∈ T set

M̂−1
uiui+1

= M−1
uiui+1

+ ε ui ∈ A, ui+1 ∈ I,

M̂−1
ui+1ui

= M−1
ui+1ui

− ε ui ∈ I, ui+1 ∈ A.

The allocations M̂ , M̂−1 are valid (do not violate capacity constraints).

Lemma 3.3. The graph Gf does not contain a cycle. The vertex that corresponds to
agent 1 is the unique source vertex.

In particular, Lemma 3.3 implies that there are no cycles in our flow decomposition.
and that all the paths in our flow decomposition originate at agent 1. We are now ready
to describe the construction of the allocation D−2:
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1. Stage I: initially, D−2 := M−1.
2. Stage II: for every good j, let x = min{M2j, M

−1
2j }, and set D−2

2j := M−1
2j − x

and D−2
1j := x.

3. Stage III: for every flow path P in the flow decomposition of Gf that contains agent
2, let P̂ be the prefix of P up to agent 2. For every agent to good arc (i → j) ∈ P̂
set D−2

ij := D−2
ij + f(P ), and for every good to agent arc (j → i) ∈ P̂ set

D−2
ij := D−2

ij − f(P ).

It is easy to verify that D−2 indeed does not allocate any good to agent 2. Also, the
allocation to agent 1 in D−2 is of the same size as the allocation to agent 2 in M−1.
Since c1 ≥ c2, D−2 is a valid allocation. To conclude the proof of Theorem 3.1 we
show that:

Lemma 3.4. Allocation D−2 satisfies (5).

Proof. Rearranging (5), we obtain

v(D−2) ≥ v(M−1) (6)

+
s∑

j=1

(v1(j) − v2(j)) · min(M2j , M
−1
2j ) (7)

+
∑

j:M2j>M−1
2j

(v1(j) − v2(j)) (M2j − M−1
2j ). (8)

At the end of stage I, we have D−2 = M−1 and so the inequality above at line (6) (ex-
cluding expressions (7) and (8)) holds trivially. It is also easy to verify that at the end
of stage II, the inequality above that spans expressions (6) and (7) (and excludes ex-
pression (8)) holds. What we show next is that at the end of stage III, the full inequality
above will hold.

Consider a good j such that M2j > M−1
2j . In Gf we have an arc 2 → j such

that f2→j = M2j − M−1
2j , therefore in the flow decomposition we must have paths

P1, . . . , P�, all containing the arc 2 → j, such that

�∑
k=1

f(Pk) = f2→j = M2j − M−1
2j . (9)

For every k = 1, . . . , �, let P̂k denote the prefix of Pk up to agent 2. Consider the cycle
C consisting of P̂k followed by arcs 2 → j and j → 1. We claim that the value of this
cycle is non-negative.

Consider the allocation M̂(C) which is a valid allocation from Lemma 3.2. Observe
that v(M̂) = v(M) − εv(C) > v(M). This now contradicts the assumption that M

maximizes v over all allocations. We obtain v(P̂k)+v2(j)−v1(j) ≥ 0. Rearranging and
multiplying by f(Pk), it follows that f(Pk)v(P̂k) ≥ f(Pk) (v1(j) − v2(j)). Summing
over all paths k = 1, . . . , �, we get

�∑
k=1

(
f(Pk)v(P̂k)

)
≥ (v1(j) − v2(j))

�∑
k=1

f(Pk).
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Substituting (9) in the last inequality establishes the following inequality:

�∑
k=1

(
f(Pk)v(P̂k)

)
≥
(
v1(j) − v2(j)

)(
M2j − M−1

2j

)
. (10)

The left hand side of (10) is exactly the gain in value of the allocation when applying
stage III to the paths P̂1, . . . , P̂� during the construction of D−2 above. The right hand
side is the term which we add in (8).

To conclude the proof of Lemma 3.4, we note that stage III may also deal with other
paths that start at agent 1 and terminate at agent 2. This part of the proof appears in the
full version.

The following is a direct corollary of Theorem 3.1.

Corollary 3.5. If all agent capacities are equal, then the VCG allocation with
Clarke pivot payments is EF.

4 Discussion and Open Problems

This work initiates the study of efficient, incentive compatible, and envy-free mecha-
nisms for capacitated valuations.

Our work suggests a host of problems for future research on heterogeneous capaci-
tated valuations and generalizations thereof.

We know that, generally, there may be no mechanism that is both IC and EF even if
we allow positive transfers (example in full version).

We conclude by posing the following open problems, from the very concrete to the
more general:

– Is there a mechanism for k agents, k > 2, with heterogenous capacitated alloca-
tions, that is efficient, IC, and EF ? We conjecture that such mechanisms do exist
for any combinatorial auction with subadditive valuations. We know they exist for
two agents and public capacities, and for subadditive valuations with two agents
and two goods.

– We have focused on efficient mechanisms; i.e., that maximize social welfare. A
natural question is how well the optimal social welfare can be approximated by a
mechanism that is IC, EF, and NPT.

– In [8], Fleischer and Wang consider lower bounds for envy-free and truthful mech-
anisms for makespan minimization on related machines. Ergo, one can ask these
questions not only in the context of efficiency but also in other contexts. This is yet
another step in the most general problem of all (see below).

– And, the most general problem of all: can one characterize the set of truthful and
envy-free mechanisms? There have been some attempts, including a characteriza-
tion due to the authors that generalizes Rochet’s cyclic monotonicity characteri-
zation for truthfulness to a full characterization for truthfulness and envy freeness
(See [5]). However, like cyclic monotonicity itself, this characterization is hardly
satisfactory.
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Abstract. We study the extent to which simple auctions can simul-
taneously achieve good revenue and efficiency guarantees in single-item
settings. Motivated by the optimality of the second price auction with
monopoly reserves when the bidders’ values are drawn i.i.d. from regular
distributions [12], and its approximate optimality when they are drawn
from independent regular distributions [11], we focus our attention to
the second price auction with general (not necessarily monopoly) reserve
prices, arguably one of the simplest and most intuitive auction formats.
As our main result, we show that for a carefully chosen set of reserve
prices this auction guarantees at least 20% of both the optimal welfare
and the optimal revenue, when the bidders’ values are distributed ac-
cording to independent, not necessarily identical, regular distributions.
We also prove a similar guarantee, when the values are drawn i.i.d. from
a—possibly irregular—distribution.

1 Introduction

Social welfare and revenue are without doubt the two most important objectives
in mechanism design. They are both well-studied, and extremely well-understood
when there is a single item for sale. Not only do the Vickrey and Myerson
auctions optimize these objectives in isolation, but there also exist (typically
randomized) mechanisms that simultaneously optimize for both objectives, in
the sense of maximizing revenue subject to a lower bound on social welfare, or
vice-versa [13]. Interestingly, when the bidders’ values are independently and
identically distributed according to some regular distribution,1 the Vickrey and
Myerson mechanisms behave very much alike: Myerson’s auction is just Vick-
rey’s auction with an additional reserve price. Motivated by this astonishing
similarity (and the somewhat peculiar format of Myerson’s auction in more gen-
eral settings), Hartline and Roughgarden [11] showed that a Vickrey auction
with appropriately chosen reserve prices can approximate the revenue of the op-
timal auction in more general settings. Inspired by their result, and the fact that
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the mechanism of [13] is at least as complicated as Myerson’s mechanism and
potentially randomized, in this paper we ask the question of whether one can
design simple and deterministic mechanisms that achieve approximately-optimal
guarantees for both objectives simultaneously.

At first glance it is not obvious why such simple auctions should even exist.
Indeed, despite the fact that Vickrey’s auction achieves at least half of the op-
timal revenue, when the values are drawn i.i.d. from regular distributions (see
e.g. [9]), this is no longer the case when the values are independent but drawn
from different regular distributions. In particular, it is easy to see that the rev-
enue of Vickrey’s auction can be arbitrarily far from the optimal revenue: just
consider n − 1 bidders distributed independently and uniformly in [0, 1], and
a single bidder distributed uniformly in [h, h + 1], for some large h > 1. The
situation does not become any better if we resort to the mechanism of [11],
i.e. running Vickrey with a different reserve price for every bidder, taken to be
Myerson’s monopoly reserve price for that bidder. The auction now can be arbi-
trarily inefficient even for a single bidder whose value is distributed according to
a regular distribution: consider the (almost) equal revenue distribution, where
the bidder’s value is supported on {1 − ε, 2 − ε, . . . , h − ε}, for some ε ∈ (0, 1)
and h > 1, and the probability that it is larger than or equal to i− ε is exactly
1/i, for i = 1 . . . h. In this paper, we show that by appropriately tweaking the
reserve price of each bidder, we can fix this inefficiency:

Main Result (Th. 1 of Sec. 3): In every single-item setting with n bidders
whose values are distributed according to independent (possibly non-identical)
regular distributions and for every p ∈ [0, 1], there exists a Vickrey auction
with (generally non-anonymous) reserve prices that simultaneously achieves a p-
fraction of the optimal social welfare and a

(
1−p
4

)
-fraction of the optimal revenue.

In particular, there exists a Vickrey auction with reserve prices that achieves at
least a 20% of the optimal social welfare and revenue.

We can use our techniques to prove a similar approximation guarantee for
non-identical distributions satisfying the monotone hazard rate condition (which
has already been obtained by [7]), and we also show that a Vickrey auction
with an anonymous reserve simultaneously approximates both objectives for
general (possibly non-regular) distributions, as long as all values are i.i.d (Th. 3).
We summarize our results together with already known welfare and revenue
guarantees for various settings in Table 1.

Table 1. (α, β) stands for α-approximation for welfare and β-approximation for rev-
enue. Notice that our result for regular distributions gets a handle on the whole Pareto
boundary achieved by the Vickrey auction with non-anonymous reserve prices.

i.i.d. independent

mhr
(
1, 1

e

)
and

(
1
e
, 1
)
[2]

(
1
e
, 1
2

)
[7]

regular
(
1, 1

2

)
[9]

(
1
5
, 1
5

)
and

(
p, 1−p

4

)
, for all p ∈ [0, 1] [this work]

non-regular
(
1
2
, 1
2

)
[this work] ?
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Two questions left open are whether one can extend our results to the setting
of n bidders distributed according to independent but not necessarily identical
and possibly irregular distributions, and to general single-dimensional settings.

1.1 Related Work

The work closer in spirit to ours is that of [11], where the authors show that
for a variety of single-dimensional settings, second price auctions with carefully
chosen reserve prices are approximately revenue-optimal. In particular, when
the bidders’ values are independently drawn from (possibly different) regular
distributions, they show that Vickrey’s auction with monopoly reserve prices (see
Sec. 2 for a definition) achieves at least half of the optimal revenue. Moreover
they show that Vickrey’s auction with an anonymous reserve achieves a factor
4 approximation to the optimal revenue.

In an unpublished manuscript [8], the authors study the problem of designing
deterministic mechanisms that optimize for both objectives, as a multi-objective
optimization problem. They show that, even though exactly optimizing the
trade-off curve is an NP-hard problem, there exists a polynomial-time deter-
ministic mechanism that approximates within arbitrary precision any point on
the trade-off curve of those two objectives, when there are 2 bidders with ar-
bitrarily correlated values. Their mechanism, despite being deterministic, is far
from simple; this work complements theirs by showing that, if one is willing to
settle for less than an arbitrarily small approximation factor, simple mechanisms
are possible, even when the number of bidders is large. Moreover, the existence
of an auction that simultaneously achieves a constant factor approximation to
both objectives, characterizes the “knee” of the Pareto curve, a structural result
which is of independent interest.

A different type of result relating the two objectives is that of Bulow and Klem-
perer [4], where it is shown that in a single-item setting the revenue benefits of
adding an extra bidder and running the efficiency-maximizing (Vickrey) auction
surpass those of running the revenue-maximizing (Myerson) auction without
adding the extra bidder, when the bidders’ values are i.i.d. according to a reg-
ular distribution. In [2] the authors show that for values drawn i.i.d. from a mono-
tone hazard rate distribution, an analogous theorem holds for efficiency: by adding
Θ(log n) extra bidders and running Myerson’s auction, one gets at least the effi-
ciency of Vickrey’s auction. Finally, [11] extends Bulow and Klemperer’s result to
more general single-dimensional settings, as follows: they show that by duplicating
all bidders (whose values are drawn independently from not necessarily identical,
regular distributions), and then running the VCG auction, one can guarantee at
least half of the optimal revenue (while being optimal with respect to welfare).
Our result shows that in single-item settings with independent (but not necessar-
ily i.i.d.) bidders, one can simultaneously achieve constant factor approximations
to both optimal revenue and welfare without adding any extra bidders via the use
of a Vickrey auction with appropriate (non-anonymous) reserve prices.

There has also been substantial work studying the revenue and welfare guar-
antees of welfare-optimizing and revenue-optimizing auctions respectively. In [2]
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the authors show that, for values drawn independently from the same mono-
tone hazard rate distribution, both the welfare and revenue ratios of Vickrey
and Myerson’s auctions are bounded by 1/e (see the top-left square of Table 1).
Similar kinds of revenue and welfare ratios are also studied in [9] for keyword
auctions, in [14] for single-item English auctions, and in [1], where the authors
present bounds on the efficiency loss of revenue-optimal mechanisms in single-
item settings with i.i.d. bidders of finite support. Moreover, in [9] and [7] the
authors present simple auctions that simultaneously achieve constant factor ap-
proximations to both objectives in single-item settings where bidders’ values are
i.i.d. from a regular distribution (see the middle-left square of Table 1), and
independently (but not necessarily identically) distributed according to a mono-
tone hazard rate distribution (see the top-right square of Table 1). Some of their
results also hold for more general single-dimensional settings, namely when the
feasibility constraints form a matroid.

Finally, despite our different motivation, methodologically our paper is some-
what related to [3]: in that paper the goal is to provide a general reduction
from the mechanism design problem for many bidders, to that of a single bidder,
while preserving the value of a separable objective (such as welfare or revenue)
within a constant factor. In Lem. 3 and 5 we establish analogous many-to-one
reductions; however, our goal is not only to preserve the approximation factor,
but also for the resulting auction to be of a specific simple format, in contrast
to the much more generic reduction of [3].

2 Preliminaries

Our auction setting is that of a single item for sale and n interested bidders,
each with a value vi for the item, which is distributed independently according
to some distribution Fi. The distributions {Fi}i are not necessarily identical.
For simplicity we assume that all Fi’s in this paper are differentiable. So we can
define the corresponding probability density functions as follows fi(x) = F ′

i (x).
A single-item auction A consists of an allocation rule x and a payment rule p;

an allocation rule is a function from bid vectors to [0, 1]n, encoding the probabil-
ity by which every bidder receives the item, while a payment rule is a function
from bid vectors to n-vectors of non-negative payments. We want from our auc-
tions to satisfy the two standard constraints of ex-post incentive compatibility
(IC) and individual rationality (IR) [12], so that the terms “bid” and “value”
can be used interchangeably. We are interested in the objectives of revenue and
welfare, defined as follows:

Rev[A] = E

[
n∑

i=1

pi(v1, . . . , vn)

]
and SW[A] = E

[
n∑

i=1

vi · xi(v1, . . . , vn)

]
,

where the above expectations are with respect to value vectors v = (v1, . . . , vn)
drawn from the product distribution ×iFi. For convenience, we sometimes write
RA =

∑n
i=1 pi(v1, . . . , vn), so that Rev[A] = E [RA].
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We say that an auction A is an α-approximation for welfare (resp. revenue)
if SW[A] ≥ α · SW[Vic] (resp. Rev[A] ≥ α · Rev[Mye]), where Vic denotes the
Vickrey auction and Mye denotes Myerson’s auction. We say that an auction is an
(α, β)-approximation if it is simultaneously an α-approximation for welfare and a
β-approximation for revenue. Also, given an auctionA, and a set B ⊆ {1, . . . , n},
we may write A(B) to denote the auction A run only on the subset B of bidders.
When we use this notation it will be clear from context how the “projected”
auction operates.

In [12] Myerson introduced the notion of a bidder’s virtual valuation function
φi, defined as follows:

φi(vi) = vi − 1− Fi(vi)

fi(vi)
.

In terms of this notion, we say a distribution Fi is regular if the virtual value
function φi is non-decreasing, and that it satisfies the monotone hazard rate

condition if the ratio 1−Fi(x)
fi(x)

is non-increasing. For distributions that are non-

regular, Myerson’s ironing technique can be used to get the corresponding ironed
virtual valuation function φ̂i(vi). The following result is central to Myerson’s
analysis, and we also use it in the present paper:

Proposition 1. [Myerson’s Lemma] For any truthful mechanism (x,p), where
all Fi are regular distributions, we can express the expected payment of bidder i
as follows, where the expectation is over the players’ values:

E [pi(v1, . . . , vn)] = E [φi(vi) · xi(v1, . . . , vn)] .

We are interested in the following (family) of auction(s):

Definition 1. The Vickrey auction with reserve prices r = (r1, . . . , rn), denoted
Vicr, is the following mechanism:

1. Reject all bidders whose values are vi < ri.
2. Allocate the item to the highest valued of the remaining bidders (or to none

if no one clears their reserve in Step 1).
3. Charge the winner the maximum of the second highest bidder (among those

who were not eliminated in Step 1) and her reserve price.

Tie-break lexicographically if there are multiple highest bidders in Step 2.

Two cases of particular interest are the Vickrey auction with an anonymous
reserve, where a common reserve r is used for all bidders, and the Vickrey auction
with monopoly reserves, denoted by Vicm, where mi = φ−1

i (0), the monopoly
reserve of bidder i.

3 The Regular, Independent Case

In this section we focus on the setting of n bidders whose values are distributed
according to regular, but not necessarily identical, distributions. We start with a
couple of probabilistic lemmas –not requiring regularity– whose easy proofs are
postponed to the full version of the paper.
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Lemma 1. Let X and Y be independent random variables and g : R → R a
(weakly) increasing function. Then, for any constant c ∈ R,

Pr [X ≥ Y | g(X) ≥ c] ≥ Pr [X ≥ Y | g(X) ≤ c] .

Lemma 2. Let X and Y be independent random variables and g : R → R a
(weakly) increasing function. Then

E [g(X)] ≤ E [g(X) | X ≥ Y ] .

Our next lemma shows that if we take the Vickrey auction and add a reserve price
for each bidder, such that the probability of any single bidder’s value exceeding
her reserve price is at least p, then the resulting welfare is at least a p fraction
of Vickrey’s (optimal) social welfare E [maxi{vi}]. The proof of this lemma is
relatively straightforward and is deferred to the full version of our paper as well.
In what follows we use I(·) to denote the indicator function.

Lemma 3. [Many-to-One Reduction—Welfare] Suppose that X1, . . . , Xn

are independent, non-negative random variables (possibly non-identically dis-
tributed), t1, . . . , tn are (possibly different) thresholds, and p ∈ [0, 1]. If it holds
that Pr [Xi ≥ ti] ≥ p, for all i = 1 . . . n, then:

E

[
max

i
{Xi · I(Xi≥ti)}

]
≥ p · E

[
max

i
{Xi}

]
.

Lemma 3 immediately implies the following corollary, already known from [7].

Corollary 1. [mhr, independent] In every single-item setting with n bidders
whose values are distributed according to independent (possibly non-identical)
distributions that satisfy the monotone hazard rate condition, the Vickrey auction
with monopoly reserves is a (1/e, 1/2)-approximation.

Proof. It is known from [11] that, if m is the vector of monopoly reserve prices,
then Vicm (the Vickrey auction with monopoly reserves) is a 1/2-approximation
to the optimal revenue. The welfare guarantee follows from Lem. 3 and the
following fact from [2]: if v is drawn from a monotone hazard rate distribution,
then Pr

[
v ≥ φ−1(0)

] ≥ 1/e. ��

Unfortunately, as discussed in Sec. 1, the Vickrey auction with monopoly reserve
prices may be arbitrarily inefficient when we allow for regular distributions; in
particular we cannot employ Lem. 3 directly as the probability of any single
bidder being above her monopoly reserve may be arbitrarily small. To fix this,
we recall a lemma for regular distributions from [5]. For a single bidder setting,
this lemma guarantees that there is always a reserve price r (which generally
needs to be smaller than the monopoly reserve) that achieves a constant factor
of the optimal revenue, while at the same time is smaller than the bidder’s value
with constant probability.
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Lemma 4 ([5]). Let F be a regular distribution, and let RF (x) = x·F−1(1−x),
for all x ∈ [0, 1],2 be the revenue curve in quantile space. Then, for all 0 < q̃ ≤
q ≤ p < 1,

RF (q̃) ≤ 1

1− p
RF (q).

If we try to use Lem. 4 to generalize Cor. 1 to regular distributions, we run
into an additional difficulty. Indeed, if we lower the bidders’ reserve prices to
some vector r ≤ m below their monopoly reserves and run Vicr, the bidders will
start contributing negative virtual values to the expected virtual welfare of the
auction (i.e. its expected revenue). So we need to control the absolute value of
the overall negative contribution to the expected virtual social welfare. This is
not straightforward and is established in the following lemma, which alongside
our main result is one of the main contributions of this paper.

Before providing its proof, it is worth noting that the obvious approach of de-
composing the auction’s virtual welfare into every bidder’s contribution, using
the law of total expectation, and then comparing each bidder’s contribution un-
der different reserve prices poses technical challenges. In particular, the terms of
the decomposition cannot be directly compared as each of these terms depends
on the probabilistic experiment that determines the winner of the auction, and
this experiment depends on the reserves in ways that makes it hard to find a
useful coupling that enables term-by-term comparisons. Our technique tries to
disentangle the contribution of each bidder to the virtual welfare of the auction
from the competition among the bidders, enabling us to first relate the revenue
of Vicr with the revenue of a hybrid auction, instead of Vicm (for which we have
good revenue guarantees from [11]). Our hybrid auction uses the tweaked re-
serves r to truncate the bidders’ values, but only gives the item to the winner of
Vicr if the winner also meets her monopoly reserve. Next we relate the revenue
of our hybrid auction to Vicm. This is quite more challenging and involves a
calculation that matches events where the hybrid auction makes no sale while
Vicm makes a sale to events where both auctions make a sale, establishing a fac-
tor 2 approximation. We expect our technique to find broader use in mechanism
design.

Lemma 5. [Many-to-One Reduction—Revenue] Consider a single-item
setting with n bidders whose values are distributed according to independent
(possibly non-identical) regular distributions. Let also r = (r1, . . . , rn) be a vec-
tor of reserve prices such that, for all i ∈ {1, . . . , n}, ri ≤ φ−1

i (0) (i.e. ri
is no larger than the monopoly reserve for bidder i) and Rev[Vicri({i})] ≥
(1−p)·Rev[Mye({i})], for some p ∈ (0, 1). (That is, if bidder i were considered in
isolation then the Vickrey auction with reserve price ri would achieve a (1− p)-
fraction of the optimal revenue.) Then it holds that Rev[Vicr] ≥ 1−p

4 ·Rev[Mye].

2 See the discussion in [5] for why F−1 is a well-defined function for a differentiable
regular distribution.
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Proof. Let Ei denote the event that i is the winner of the Vikrey auction with
reserves r, i.e. i = argmaxj{vj · I(vj≥rj)}3 and vi ≥ ri. Using Prop. 1 we can
write Rev[Vicr] in terms of the bidders’ virtual values as follows:

Rev[Vicr] =

n∑
i=1

E [φi(vi) | Ei, φi(vi) ∈ [φi(ri), 0]] Pr [Ei, φi(vi) ∈ [φi(ri), 0]]

+ E [φi(vi) | Ei, φi(vi) ≥ 0] Pr [Ei, φi(vi) ≥ 0] . (1)

In the course of the proof, we use the following inequalities:

E [φi(vi)|φi(vi) ∈ [φi(ri), 0]] ≤ E [φi(vi) | Ei, φi(vi) ∈ [φi(ri), 0]] (≤ 0) (2)

(0 ≤) E [φi(vi)|φi(vi) ≥ 0] ≤ E [φi(vi) | Ei, φi(vi) ≥ 0] (3)

|E [φi(vi) | φi(vi) ∈ [φi(ri), 0]] | · Pr [φi(vi) ∈ [φi(ri), 0]] ≤
p · E [φi(vi) | φi(vi) ≥ 0] · Pr [φi(vi) ≥ 0] (4)

Inequalities (2) and (3) follow from Lem. 2 when g is φi and Y = maxj �=i{vj ·
Ivj≥rj}. Inequality (4) involves a single bidder, and follows immediately from
our assumption Rev[Vicri({i})] ≥ (1 − p) · Rev[Mye({i})] and noting that

Rev[Vicri({i})] = E [φi(vi) | φi(vi) ∈ [φi(ri), 0]] · Pr [φi(vi) ∈ [φi(ri), 0]]

+ E [φi(vi) | φi(vi) ≥ 0] · Pr [φi(vi) ≥ 0] ;

Rev[Mye({i})] = E [φi(vi) | φi(vi) ≥ 0] · Pr [φi(vi) ≥ 0] .

Using (2), (3) and (4), we can bound the terms of the negative contribution to
the expected revenue (1) as follows:

|E [φi(vi) | Ei, φi(vi) ∈ [φi(ri), 0]] | · Pr [Ei, φi(vi) ∈ [φi(ri), 0]]

≤ |E [φi(vi) | φi(vi) ∈ [φi(ri), 0]] |Pr [φi(vi) ∈ [φi(ri), 0]]
︸ ︷︷ ︸

Pr [Ei | φi(vi) ∈ [φi(ri), 0]]
︸ ︷︷ ︸

≤
︷ ︸︸ ︷
p · E [φi(vi) | φi(vi) ≥ 0] · Pr [φi(vi) ≥ 0] ·

︷ ︸︸ ︷
Pr [Ei | φi(vi) ≥ 0]

≤ p · E [φi(vi) | Ei, φi(vi) ≥ 0] · Pr [Ei, φi(vi) ≥ 0]

where for the first inequality we used (2) (and the fact that both sides of the
inequality are non-positive), for the second inequality we used (4) and Lem. 1
taking g equal to φi, X = vi (conditioned on X ≥ ri), Y = maxj �=i{vj · Ivj≥rj}
and c = 0, and in the third inequality we used (3). We can now bound the
revenue as follows:

Rev[Vicr] ≥ (1− p) ·
n∑

i=1

E [φi(vi) | Ei, φi(vi) ≥ 0] · Pr [Ei, φi(vi) ≥ 0] . (5)

3 Throughout the proof we assume that all maximizations have a unique maximizer.
This is ok, since we consider continuous distributions so this happens with prob. 1.



Simple, Optimal and Efficient Auctions 117

To continue, we observe that the summation on the right-hand-side of (5) can be
interpreted as the revenue of the following hybrid auction, H, which lies between
Vicr and Vicm: H truncates all bidders at their respective reserve prices ri;
among the surviving bidders it identifies the larger bidder i∗ as a potential
winner, but only allocates the item to i∗ if she clears her monopoly reserve mi∗ ;
if this happens, i∗ pays the maximum of her reserve price mi∗ and maxj �=i∗{vj ·
I(vj≥rj)}. We can clearly lower bound the expected payment of bidder i in the
hybrid auction by the following expression:∫ mi

x=0

Pr

[
max
j �=i

{vj · I(vj≥rj)} = x

]
·mi · Pr [vi ≥ mi] dx.

Hence:

E [RH] ≥
n∑

i=1

∫ mi

x=0

Pr

[
max
j �=i

{vj · I(vj≥rj)} = x

]
·mi · Pr [vi ≥ mi] dx. (6)

Next we compare the revenue of H to that of the Vickrey auction with monopoly
reserves Vicm. Our first observation is that whenever (i.e. for any value vector for
which) H sells to some bidder i, Vicm also sells to the same bidder i; moreover,
the payment of bidder i in H is at least as large as her payment in Vicm.4 So the
contribution of bidder i to the revenue from the event where she gets the item
in both auctions is larger in the hybrid auction. This implies that the revenue
in the event that both H and Vicm sell the item is larger in H than Vicm. Let
us call this event the good event G. We have just argued that

E [RH | G] · Pr[G] ≥ E [RVicm | G] · Pr[G]. (7)

So it suffices to bound the revenue of Vicm under the event that Vicm sells to
some bidder, but the hybrid auction does not sell to any bidder. Let us call this
event the bad event, B. We claim that the bad event is contained in the union of
the following disjoint events:

Bi =

{
vi · I(vi≥ri) = max

j
vj · I(vj≥rj) and vi ≤ mi

}
, for all i.

Indeed, if the bad event happens it must be that the winner j∗ of Vicm does not
satisfy vj∗ · I(vj∗≥rj∗ ) = maxj{vj · I(vj≥rj)}. Suppose instead that vi · I(vi≥ri) =
maxj{vj · I(vj≥rj)}. For i not to be the winner in the hybrid auction it must be
that vi ≤ mi. Hence Bi is satisfied.

4 The reason for this is that H uses lower reserves to truncate the bidders’ values.
So if i wins in H her value is larger than her monopoly reserve as well as all other
bidders’ values truncated at the reserves r. So her value must also be larger than the
other bidders’ values truncated at the (higher) monopoly reserves m. By the same
token, the second highest truncated value will be higher if truncation happens at r
than if it happens at m.
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Now, in event Bi, the maximum possible revenue that any auction (and hence
Vicm) could be making is maxj �=i vj · I(vj≥rj). Hence, the revenue of Vicm from
the event Bi can be upper bounded as:

E [RVicm | Bi] · Pr[Bi] ≤
∫ mi

x=0

Pr

[
max
j �=i

{vj · I(vj≥rj)} = x

]
· x · Pr [x ≤ vi ≤ mi] dx

≤
∫ mi

x=0

Pr

[
max
j �=i

{vj · I(vj≥rj)} = x

]
· x · Pr [vi ≥ x] dx

≤
∫ mi

x=0

Pr

[
max
j �=i

{vj · I(vj≥rj)} = x

]
·mi · Pr [vi ≥ mi] dx (8)

where the last inequality follows from the definition of the monopoly reserve mi.
Hence, the revenue of Vicm from the bad event B can be upper bounded as:

E [RVicm | B] · Pr[B] ≤
n∑

i=1

E [RVicm | Bi] · Pr[Bi] ≤ E [RH] , (9)

where for the first inequality we used that B ⊆ ∪iBi, and for the second inequal-
ity we combined (8) and (6). Combining (9) and (7) we obtain:

Rev[H] ≥ 1

2
·Rev[Vicm]. (10)

The lemma follows by combining (5), (10) and noticing that the revenue of
Vicm is known by [11] to be a 1/2-approximation to the optimal revenue, i.e.
Rev[Vicm] ≥ 1

2 ·Rev[Mye]. ��
We are now ready to prove our main theorem:

Theorem 1 (Main). For every single-item setting with n bidders whose values
are distributed according to independent (possibly non-identical) regular distri-
butions, and any p ∈ [0, 1], there is a vector of reserve prices r = (r1, . . . , rn)
such that Vicr is a (p, (1− p)/4)-approximation.

Proof. We argue that, for all i, there exists a price ri such that the following are
satisfied:

Pr[vi ≥ ri] ≥ p; and

Rev[Vicri({i})] ≥ (1 − p) · Rev[Mye({i})].
Indeed, we distinguish two cases. If 1−F (φ−1

i (0)) ≥ p, we take ri = φ−1
i (0) and

the above are satisfied automatically. Otherwise, the existence of a reserve with
the above properties is implied by Lem. 4. Given reserves r1, . . . , rn as above,
the theorem follows immediately from Lem. 3 and 5. ��
Picking p = 1/5 we obtain a (1/5, 1/5)-approximate mechanism for regular
distributions.

Corollary 2. [regular, independent] For every single-item setting with n
bidders whose values are distributed according to independent (possibly non-
identical) regular distributions, there exist reserve prices r such that Vicr achieves
a (1/5, 1/5)-approximation.
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4 The Non-regular, i.i.d. Case

In this section we show that the Vickrey auction with an anonymous reserve price
achieves a constant factor approximation to both objectives for general distri-
butions, when the bidders’ values are distributed independently but identically.
We will follow the approach of [6], which makes use of prophet inequalities [15]
to show that this auction achieves a 1/2-approximation to the optimal revenue.

We first describe prophet inequalities. Imagine a gambler facing a series of n
games in a casino, one on each of n days. Game i has a prize associated with it,
whose value is distributed according to some distribution Fi. The distributions
of the prize values are known to the gambler in advance, but their exact real-
ization is not known in advance, and neither is the order of the games. On day
i a game is chosen by an adversary trying to minimize the gambler’s profit and
its prize value is drawn from the corresponding distribution; the gambler needs
to decide whether to pick the prize and leave the casino, or ignore it and keep
playing. Clearly the gambler’s optimal strategy can be computed using back-
wards induction; on the other hand, there exists a simple threshold strategy that
guarantees the gambler at least half of the expected value of the maximum prize.
A threshold strategy is a single value t, such that the gambler accepts the first
prize i with vi ≥ t; the proof of the following theorem can be found in [15,10].

Theorem 2. There exists a threshold t such that, independently of the order the
games are played, the expected prize of the gambler is at least half of the expected
value of the maximum prize, and the probability that the gambler receives a prize
is exactly 1/2.

In [6] they leverage this theorem to show that the Vickrey auction with an
anonymous reserve price achieves at least half of the optimal revenue. We can
easily extend this to show a guarantee for both social welfare and revenue.

Theorem 3. In every single-item setting with n bidders whose values are drawn
independently from the same (possibly non-regular) distribution, a Vickrey auc-
tion with an anonymous reserve price achieves a 1/2-approximation to both op-
timal revenue and welfare.

Proof. For the sake of completeness we first sketch the proof for revenue. (For
full details we refer the reader to [10].) Observe that the problem a revenue-
optimizing auctioneer faces is similar to the gambler’s problem described above,
if prizes are taken to be the bidders’ ironed virtual values (assuming that the
gambler’s strategy treats all values in every flat region of the ironed virtual
valuation functions the same). Indeed, let t be the threshold that is guaranteed

by Th. 2, and pick the reserve price to be p = φ̂−1(t), where φ̂ denotes the ironed

virtual valuation of the bidders. If there are multiple p’s mapped to t by φ̂ pick
the smallest such p. Given this tie-breaking, observe that the Vickrey auction
with reserve price p treats all flat regions in the ironed virtual valuation function
the same; hence its revenue is equal to the expected ironed virtual value of the
winner (prize picked), which by Th. 2 is at least 1/2 of the optimal expected
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ironed virtual surplus (expected maximum prize). Since the latter is an upper
bound to the optimal revenue, the revenue of the Vickrey auction with reserve p
is a 1/2-approximation to the optimal revenue. Moreover, Th. 2 guarantees that
a prize will be picked with probability at least 1/2, i.e.

Pr
[
max

i
{vi} ≥ p

]
≥ 1/2 ≥ Pr

[
max

i
{vi} ≤ p

]
. (11)

Note that the way we defined our tie-breaking rule is important for this to hold.
Next we show that this auction achieves at least half of the optimal social welfare:

E

[
max

i
{vi}

]
=

∫ p

0

x · Pr
[
max

i
{vi} = x

]
dx+

∫ ∞

p

x · Pr
[
max

i
{vi} = x

]
dx

≤ p ·
∫ p

0

Pr
[
max

i
{vi} = x

]
dx+

∫ ∞

p

x · Pr
[
max

i
{vi} = x

]
dx

(11)

≤ p ·
∫ ∞

p

Pr
[
max

i
{vi} = x

]
dx +

∫ ∞

p

x · Pr
[
max

i
{vi} = x

]
dx

≤
∫ ∞

p

x · Pr
[
max

i
{vi} = x

]
dx+

∫ ∞

p

x · Pr
[
max

i
{vi} = x

]
dx

= 2 · E
[
max

i
{vi · Ivi≥p}

]
��
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Abstract. In a unit-demand multi-unit multi-item auction, an auction-
eer is selling a collection of different items to a set of agents each inter-
ested in buying at most unit. Each agent has a different private value for
each of the items. We consider the problem of designing a truthful auc-
tion that maximizes the auctioneer’s profit in this setting. Previously,
there has been progress on this problem in the setting in which each
value is drawn from a known prior distribution. Specifically, it has been
shown how to design auctions tailored to these priors that achieve a
constant factor approximation ratio [2, 5]. In this paper, we present a
prior-independent auction for this setting. This auction is guaranteed to
achieve a constant fraction of the optimal expected profit for a large class
of, so called, “regular” distributions, without specific knowledge of the
distributions.

1 Introduction

In a unit-demand multi-unit multi-item auction (UMMA), there are n agents
and a seller selling a set of m items. The seller has a supply of mj units of each
item j. Each agent, say the i-th, has a private value vij for item j, and is only
interested in purchasing one unit. The seller runs an auction to determine whom
to sell to and at what prices. The auction (or mechanism) takes as input a bid
bij from each agent, and based on the collection of bids, determines a feasible1

allocation of items to agents and a price to charge each agent. The question we
consider here is how to design a truthful auction for this unit-demand setting
that maximizes the seller’s profit.

This is an example of a multi-parameter mechanism design problem. While
single parameter truthful mechanism design is reasonably well-understood, the
� Supported in part by NSF CAREER Award CCF-0846113.

�� Part of this work was done while the authors were visiting the IAS, Hebrew Univer-
sity, Israel.

1 An allocation is feasible if each agent is allocated at most one item and if no more
than mj items of type j are sold.

N. Chen, E. Elkind, and E. Koutsoupias (Eds.): WINE 2011, LNCS 7090, pp. 122–133, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Prior-Independent Multi-parameter Mechanism Design 123

understanding of truthful multi-parameter mechanism design is still very much
in its infancy. In particular, when the objective of the mechanism designer is
something other than maximizing social welfare, we know very little.

Among multi-parameter mechanism design problems, the problem of design-
ing profit maximizing mechanisms for UMMAs has received the most atten-
tion [2,5] and has yielded the greatest breakthroughs so far. The main results in
this area so far concern Bayesian mechanism design, in which each agent’s values
vij are drawn from known prior distributions Fij . In this setting, the goal is, given
knowledge of the priors, to design a truthful mechanism which maximizes the
seller’s expected profit, where the expectation is taken over the random draws
from the prior distributions. For example, Chawla, Hartline, Malec and Sivan [5],
and independently (in somewhat different settings) Bhattacharya, Goel, Golla-
pudi and Munagala [2] have shown how to design truthful mechanisms which
are guaranteed to obtain a constant fraction of the optimal expected profit. In
addition, Cai, Daskalakis and Weinberg [4] have recently shown how to design
PTASes for some special cases of the problem. For a large class of Bayesian
combinatorial auction settings, where the priors are known to the mechanism
designer, Alaei [1] gives a general framework for approximately reducing the
mechanism design problem for multiple buyers to single buyer subproblems,
which applies to revenue problems such as the one we consider here.

Inspired by [8], we present a “prior-independent” mechanisms for this problem.
By prior-independent, we mean two things: first, that there exist prior distribu-
tions from which the agents’ values are drawn, and, second, that the mechanism
designer has no knowledge of these priors. Thus, the mechanism has to work
well, that is, guarantee a constant fraction of the expected profit achieved by
the optimal mechanism tailored to the particular prior distributions, without any
knowledge of these priors, and no matter what they happen to be, as long as the
distributions satisfy a relevant “regularity” condition. In an independent and
and contemporaneous work, Roughgarden, Talgam-Cohen and Yan [12] shows
that, for settings that are very similar to ours, a simple “welfare maximization
with supply reduction” mechanism is also a prior-independent constant approx-
imation mechanism.

Our main theorem is the following:

Theorem. Consider a UMMA setting where for each item j, vij is drawn inde-
pendently from an arbitrary regular distribution Fj. There is an efficiently imple-
mentable, truthful mechanism M that, with no knowledge of the Fj’s, achieves

Ev [M(v)] ≥ 1
8 (Ev [OPT(v)]).

Here OPT is the optimal deterministic mechanism tailored to the priors Fj.2

2 In [6], Chawla, Malec and Sivan show that for UMMA, the profit of the optimal
randomized and deterministic mechanisms are within a constant factor of each other.
Therefore, our mechanism also obtain a constant factor of the profit of the optimal
randomized mechanism.
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To prove this theorem, we build on a number of of ideas from previous works.
First, we take advantage of a reduction from Chawla et al [5] that shows that the
optimal expected profit achievable in the unit-demand auction setting is upper
bounded by the optimal expected profit achievable in a certain single-parameter
variant of the problem. We then show how to design a prior-independent mech-
anism for this related single-parameter variant and, also, how to convert this
mechanism back to a multi-parameter mechanism. To design a prior-independent
mechanism for the single-parameter variant, we use three ideas. First, we take
advantage of our understanding of the optimal mechanism in single-parameter
settings, namely the Myerson mechanism [11]. Second, we relax the unit-demand
constraint and instead design a mechanism for a relaxed global supply constraint.
The effect of this relaxation is to convert the feasibility constraint on the subset of
simultaneously served agents from a matroid intersection constraint to the much
easier to handle matroid constraint. Finally, we use a Bulow-Klemperer [3] style
result due to Hartline and Roughgarden [10] that shows that in single-parameter
matroid settings, if each agent is duplicated, and only one of each pair of dupli-
cates is served in any allocation, then VCG is a 2-approximation to Myerson’s
optimal mechanism. Putting these ideas together, we are able to design a prior-
independent mechanism for the single-parameter variant of the problem. The
conversion back to a multi-parameter mechanism consists of an attempt to sim-
ulate the single-parameter mechanism by offering each agent a menu of prices
and letting the agent choose his favorite item. However, this simulation is not
(and cannot be) faithful because of the differences between the single parameter
and multi-parameter setting. Thus we need to show that in expectation not too
much revenue is lost, which we prove by taking advantage of the interchange-
ability of the random variables vij , 1 ≤ i ≤ n (that is a consequence of the fact
that they are independent draws from the same distribution).

Other Results. We present a simpler mechanism that obtain a constant factor
approximation to the optimal mechanism in the case where there is exactly one
unit of each item. Depends on the number of agents and items, the approximation
factor of this mechanism can be better than the mechanism in our main result.

We also obtain Bulow-Klemperer type result for some special cases of the
problem. In particular, we show that VCG with duplicates approximates the op-
timal mechanism when either there is no constraint on the supplies of the items,
or the distributions of the values satisfy the “monotone hazard rate condition”.
For these results, we allow each value vij to be drawn from a different distribu-
tion. However, due to the space limit, these results, as well as most proofs, are
deferred to the full paper.

2 Preliminaries

2.1 Settings and Definitions

We define UMMA environments. In such an environment, a seller has k items,
with mj units of item j. Each agent i has, as her private information, a valuation
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vij for obtaining each item j and would like to buy at most one unit. We will as-
sume that the values vij are drawn independently from underlying distributions
Fij . Formally,

Definition 1. A UMMA environment E is a tuple (N, M,S,F) where

– N = {1, 2, . . . n} is the set of bidders
– M = {1, 2, . . .m} is the set of items; there are mj units of item type j.
– S is the collection of possible allocations given the supply constraints and the

unit-demand constraint. Each S ∈ S is a set of pairs (i, j), which represents
the assignment of items to agents. Thus, for each bidder i, each set S con-
tains at most one pair containing i, and for each item j, each set S contains
at most mj pairs containing j.

– F =
∏

i∈N,j∈M Fij where Fij is the distribution of vij . Defining F to be a
product distribution is equivalent to assuming that all values are independent.

In this paper, we will assume that Fij = Fj for all i. For v that is a valuation
profile drawn from F, we call the tuple (N, M,S,v), sometimes abbreviated to
(E,v), an instance of E.

Similarly, a single-parameter environment is defined by a tuple (N,S,F) where
N is the set of agents, S is the feasible set system (i.e., the subsets of agents
N that can be simultaneously served) and F is the distribution of the valuation
profiles. This environment corresponds to the scenario where a seller is offering
a service (or goods), and the subsets in S are the sets of agents that can feasibly
be served simultaneously. (For example, if we are describing a t-unit auction,
then S consists of all subsets of agents of size at most t.) We will only consider
scenarios where the set system is downward-closed, that is, every subset of a
feasible set is also feasible. In this setting, each agent i ∈ N , has a value vi for
being served, where vi is drawn from prior distribution Fi.

A mechanism takes as input a set of bids from the agents, where in the UMMA
environment bij is agent i’s bid for item j, and in the single-parameter setting
bi is agent i’s bid for service. The mechanism then outputs an allocation and
payments. The outcome of a (deterministic) mechanism on a UMMA instance
consists of a set of (item, bidder) pairs represented by an 0/1 allocation vector
x and a payment vector p. Here xij = 1 if and only if item j is assigned to i and
pi represents the amount bidder i has to pay. Similarly for a single-parameter
mechanism, the outcome is a set of winning agents and a payment vector. Again
we will use the allocation vector x as an indicator for which agents are served:
xi = 1 if agent i ∈ N is served and, again, pi is agent i’s payment.

Given the outcome of a mechanism, the utility of a single-parameter agent i
is defined by ui = xivi − pi, while the utility of a unit-demand multi-parameter
agent i is ui =

∑
j xijvij − pi. We assume that agents act to maximize their

utility, and we will focus on the design of truthful mechanisms.

Definition 2. A mechanism is truthful if each bidder i maximizes her utility
by bidding her true values, no matter what other agents do.
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As we have already discussed, our goal will be to design truthful mechanisms
for the UMMA environment that maximize the expected profit of the auctioneer
without knowledge of the priors from which agent’s values are drawn. The fact
that a prior-independent mechanism does not use information about the priors
means that for any two environments E and E′ that differ only on the distribu-
tions from which the agents’ values are drawn, a prior-independent mechanism
does not distinguish between (E,v) and (E′,v) for any valuation profile v which
is in the support of both distributions.

In the rest of this section, we review a number of important prior results that
we will be using.

2.2 VCG

The VCG mechanism [7, 9, 13] is a truthful mechanism for maximizing social
welfare in the various environments we consider in this paper. (It also applies
much more generally.)

In the single-parameter environments we are discussing, the VCG mechanism
takes as input a vector of bids b and chooses as its output the feasible set S that
maximizes social welfare, i.e.

∑
i∈S bi. The payment of an agent is its threshold

bid, the minimum value it could have bid and still been part of the winning set.

2.3 Myerson’s Optimal Mechanism for Single-Parameter
Environments

We will rely heavily on Myerson’s optimal mechanism [11] for profit maximiza-
tion in single-parameter environments with known priors. This result assumes
that agent’s valuations are drawn from a product distribution F = F1×F2×· · ·×
Fn. Thus, the agents’ values are independently (but not identically) distributed.

Given a value vi drawn from the distribution Fi, the virtual value correspond-
ing to vi, denoted by φFi(vi) is defined by

φi(vi) = vi −
1− Fi(vi)

fi(vi)
.

Fi is regular if the function φi is monotone nondecreasing, and a product distri-
bution F =

∏
i Fi is regular if each Fi is regular. The class of regular distributions

is very large and includes many common distributions such as exponential and
normal distributions.

Myerson’s result is then the following.

Theorem 1 ([11]). Let (N,S,F) be a single-parameter environment, where F is
a regular product distribution. For any truthful mechanism for this environment,
characterized by an allocation and a payment rules x and p, we have

Ev

[∑
i
pi(v)

]
= Ev

[∑
i
φi(vi)xi(v)

]
.
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The Myerson mechanism Mye for regular distributions is a truthful mechanism
that optimizes the quantity inside the expectation on the right hand side point-
wise. In other words, given a set of bids b as input, Myerson selects as winners
the feasible subset S such that

∑
ı∈S φFi(bi) is maximized. This mechanism max-

imizes the expected profit among truthful mechanisms.

2.4 Reduction from UMMA Environments to Single-Parameter
Environments

Definition 3. Given a UMMA environment E = (N, M,S,F), the representa-
tive environment Rep (E) of E is a single-parameter environment represented by
the tuple (N ′,S′,F) where

– N ′ = {ij : i ∈ N, j ∈ M},
– Each set S′ ∈ S′ is constructed by taking a set S ∈ S and replacing each

pair (i, j) by the agent ij.

Each single-parameter agent ij is a representative of the unit-demand agent i.

Chawla et al [5] show that for UMMA, the optimal revenue in the representative
environment upper bounds the optimal revenue of the original environment.

Lemma 1 (Corollary of Lemma 5 in [5]). Let E = (N, M,S,F) be a UMMA
environment and let Rep (E) be its representative environment. Also, let OPT be
the optimal deterministic mechanism for E. We have

Ev∼F [OPT(E,v)] ≤ Ev∼F [Mye (Rep (E),v)]

2.5 Bulow-Klemperer Type Results

We first review the concept of duplicates.

Definition 4. Given a single parameter environment E, the environment with
duplicates Dup (E) is obtained by adding a new agent i′ for each agent i in E
such that:

– The value of i and i′ are drawn from the same distribution.
– A feasible set in Dup (E) is constructed by taking a feasible set in E and

replace some of the agents by their duplicates.

Hartline and Roughgarden [10] prove the following results:

Lemma 2 (Theorem 4.4 in [10]). Suppose E = (N,S,F) is a single-parameter
environment where S is a matroid set system (the feasible sets are independent
sets in a matroid on N) and F is a regular product distribution. Then the ex-
pected revenue of VCG on Dup (E) is at least 1/2 the expected revenue of Mye on
E, i.e.

Eu∼F×F [VCG (Dup (E),u)] ≥ 1
2Ev∼F [Mye (E,v)].
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3 Prior-Independent Mechanism for UMMA

We design a prior-independent mechanism that approximates, in expectation,
the revenue of the optimal mechanism for UMMA. Since there is no known
characterization of the optimal mechanism for UMMA, we will make use of
Lemma 1 and design a mechanism that approximates the revenue of Myerson’s
optimal auction on the representative environment, via a sequence of reductions
using a few intermediate environments. To introduce the elements of this process,
we start by considering a very simple special case.

3.1 Unit-Demand Multi-item Auction with Unit Supply

As a warm-up, we consider the case where there is exactly one unit of each item,
and m, the number of items, is at most the number of agents, n. Let E be the
original unit-demand environment, Rep (E) be the representative environment
of E. An important intermediate environment in our reduction is obtained by
relaxing the unit-demand constraint in Rep (E).

Definition 5. Let E be a single-parameter environment where the agents can
be partitioned into t groups such that at most one agent in each group can be
served. Then Global (E) is the environment where this constraint is replaced by
the constraint that overall, at most t agents can be served.

In particular, the environment Global (Rep (E)), or in short, G.R(E), is obtained
by replacing the unit-demand constraint in Rep (E) by the constraint that in
total, at most n representatives can be served.

In the special case where m < n, the global constraint that at most n rep-
resentatives can be served is subsumed by the supply constraint. Therefore,
G.R(E) is equivalent to a combination of m independent single-unit auctions.
For each single-unit auction, Bulow and Klemperer [3] show that the second-
price auction obtains at least n−1

n times the expected profit of Mye. This implies∑
j SPAj(G.R(E)) ≥ n−1

n Mye (G.R(E)), where SPAj is second price auction on
the representatives interested in item j. Hence, it suffices to design a mechanism
that simulates these second price auctions.

The straightforward approach is to offer to sell to each agent every item at a
price equal to the highest bid of other agents for that item and ask her to choose
her favorite one, as described in Fig. 1

Mechanism M1 for unit-demand multi-item auctions with unit supply

Offer each agent i a price menu pi where pij = maxi′ �=i vi′j , and ask her to choose
her favorite item.

Fig. 1. A mechanism for unit-demand multi-item auction where there is exactly one
unit of each item
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It is immediate that M1 is truthful and outputs a feasible allocation. To
analyze the the revenue of M1, let pj be the second highest bid for item j and
ij be the highest bidder for item j. Moreover, let ξj be the event that i� �= ij for
all � �= j. Then if ξj happens, M1 gets at least pj from item j. Therefore,

E [M1(E)] ≥
∑

j
pjPr [ξj ] =

∑
j
pj(n−1

n )m−1

= (n−1
n )m−1

∑
j
SPAj(G.R(E)) = (n−1

n )mMye (G.R(E))

≥ (n−1
n )mMye (Rep (E)) ≥ (n−1

n )mOPT (E)

While we start with the assumption that m ≤ n to motivate the decompose of
G.R(E) into m single-item auctions, the above analysis is independent of this
assumption. This yields the following theorem.

Theorem 2. For unit-supply unit-demand multi-item auction with m items and
n agents, M1 approximates the revenue of the optimal mechanism within a factor
of ( n

n−1 )m.

In particular, when m = O (n), M1 is a constant approximation to the optimal
mechanism. When m ≤ n, the approximation ratio is at most 4 for n ≥ 2, and
converges to e when n tends to ∞.

Remark 1. There is a mechanism, which is a combination of M1 and the mecha-
nism M described in the next section, which approximates the expected revenue
of the optimal mechanism for unit-supply unit-demand multi-item auction within
a factor of 2( n

n−1 )n+1, even when m is much larger than n. This approximation
ratio is worse than that of M when n is small. However, as n tends to ∞, it
approaches 2e.

3.2 Unit-Demand Multi-unit Multi-item Auction

We turn to the general case where there are more than one unit of each items.
For the ease of representation, we will assume that n, the number of agents, is
even. (If the number of agents is odd, we can simply discard one agent at a small
loss in revenue.)

We use the same approach as in the previous section: simulating a prior-
independent mechanism for the single-parameter environment by offering a price
menu to each agent. To this end, we have to construct a prior-independent single-
parameter mechanism for Rep (E). Lemma 2 gives us a starting point. To use this
result, we introduce duplicates. We restrict Rep (E) to half of the agents and use
the remaining agents as duplicates. Moreover, since the resulting environment is
not a matroid environment, we will relax the unit-demand constraint to a global
constraint, as discussed in the previous section, to transform it into a matroid
environment.

Formally, we make use of the following intermediate environments:

– H.R(E) (an abbreviation of Half (Rep (E))) is the environment obtained by
restricting Rep (E) to the set of representatives {ij : 1 ≤ i ≤ (i + n/2)}.
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– G.H.R(E) (an abbreviation of Global (Half (Rep (E))) is the environment ob-
tained by relaxing the unit-demand constraint in H.R(E) to the constraint
that, overall, at most n/2 representatives can be served.

– D.G.H.R(E) (an abbreviation of Dup (Global (Half (Rep (E))))) is the environ-
ment obtained by adding a duplicate for each representative in G.H.R(E). We
use the representatives discarded by Half as the duplicates, i.e., D.G.H.R(E)
contains the representatives of all agents in N , and for each i ∈ {1, 2, . . . , n/2}
and each j, ij and (i + n/2)j are duplicates of each other.

We will show that VCG (D.G.H.R(E)) is a good approximation of OPT (E) and
then design a multi-parameter mechanism M that approximates
VCG (D.G.H.R(E)). The chain of reductions is summarized as follows

E [OPT (E)] ≤ E [Mye (Rep (E))] ≤ 2E [Mye (H.R(E))] ≤ 2E [Mye (G.H.R(E))]
≤ 4E [VCG (D.G.H.R(E))] ≤ 8E [M(E)] (1)

This chain is the proof of our main theorem.
Lemma 1 already gives us the first inequality.
Intuitively, the revenue Mye gets from Rep (E) is at most the revenue it gets

from H.R(E) and the environment obtained by restricting Rep (E) to the other
half of the representatives. Since these two restricted environment are identical,
the optimal revenue in Rep (E) is at most twice the optimal revenue in H.R(E).
Hence the second inequality holds.

The third inequality follows from the fact that Mye (G.H.R(E)) optimizes the
virtual surplus over a relaxed set of constraints as compared to Mye (H.R(E)).

The fourth inequality follows from Lemma 2 and the fact that D.G.H.R(E) is
a matroid environment.

It remains to describeM and prove the last inequality. As discussed,M would
offer each agent i a price menu pi and ask her to choose her favorite item. The
question is how to determine pij for each i and j. Since we would like to simulate
VCG (D.G.H.R(E)), the straightforward answer is to set pij to the VCG price of
representative ij.

However, this straightforward approach does not work, as the VCG price of
ij may be determined by the value of another representative of i; hence the
menu offered to i is not independent of her bid. This complication stems from
the fact that the VCG price of ij is computed by comparing the welfare of
other representatives when (i) ij is included and (ii) ij is excluded from the
environment. The important observation is that if in (ii), instead of excluding
only ij, we excluded all representatives of i, the price menu would be independent
of i’s bids. In another word, pij should be the externality that i would impose
on other representatives of D.G.H.R(E) by taking item j. This leads to our
mechanism M, detailed in Fig. 2.
M is clearly truthful. The following two lemmas complete (1) and the proof

of our main theorem.

Lemma 3. M outputs a feasible allocation.
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Mechanism M for UMMA a

For each agent i, do the following

1. Compute a price menu pi, where pij is the externality i would impose on other
representatives in D.G.H.R(E) by taking item j. In another word, let E−i be
D.G.H.R(E) with all representatives of i removed, then pij is the maximum
of three quantities:
– the value of ij’s duplicate,
– the value of mj-th winner of item j in E−i, i.e. the smallest value among

the winners if we are to sell mj unit of item j and nothing else.
– the value of the n

2
-th winner in E−i.

2. Offer pi to agent i and ask her to choose her favorite item.

a This description of the mechanism assumes the absence of ties. When ties are
present, extra steps are required to make sure that M and VCG (D.G.H.R(E))
break ties in the same way. The detailed mechanism is deferred to the full paper.

Fig. 2. A prior-independent, truthful mechanism for UMMA

Proof. The unit-demand constraint is automatically satisfied because each agent
is asked to choose one item. On the other hand, M offers each item j to at most
mj agents at prices smaller than their bids for it. Therefore, at most mj agents
would buy j and the supply constraint is satisfied. ��
Lemma 4. The expected revenue of M is at least 1/2 the expected revenue of
VCG (D.G.H.R(E)).

To prove this lemma, we first give a condition so that M and VCG (D.G.H.R(E))
get the same revenue from an agent.

Lemma 5. Consider welfare maximization in environment D.G.H.R(E) with
and without representative ij. If representative ij is served in the former and
none of i’s representatives ij′ are served in the latter then the payment of rep-
resentative ij in VCG (D.G.H.R(E)) equals that of agent i in M.

Proof. First, in M, pij′ > vij′ for any j′ �= j. This is because surplus maximiza-
tion without ij failed to assign an item to ij′, so the externality from serving ij′

(thus, the payment i must make for item j) must be greater than vij′ . Hence, i
would not buy any item j′ �= j.

Second, the payment of i for item j in M is the externality when all of i’s rep-
resentatives are removed, whereas the payment in VCG for ij is the externality
when just ij is removed. By the assumption of the lemma, even when we just
remove ij, surplus maximization chooses not to serve another representative of
i, so these externalities are the same. ��
Based on this lemma, we can now prove Lemma 4.

Proof (of Lemma 4). Let us condition on the set of values drawn from each distri-
bution and the pairing of values given by the duplicates, i.e., from each distribu-
tion Fj draw n/2 pairs of values, but defer the decision of which representatives
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belong to which agents until later. Given this conditioning, VCG (D.G.H.R(E))
is deterministic, i.e., both the winning representatives and their payments are
fixed3.

We argue that M’s revenue from each item j is at least 1/2 of
VCG (D.G.H.R(E))’s revenue from it. To this end, fix the representatives that
win copies of item j and let representative ij be one of them. Now consider
(as in the statement of Lemma 5) finding the surplus maximizing allocation in
D.G.H.R(E) with ij removed. Since D.G.H.R(E) is a matroid environment, ij
will be replaced by some other representative i′j′ and all of VCG’s other winners
will remain winners. This process allocates at most n/2 units of items other
than item j to representatives of at most n/2 distinct agents. While we have
conditioned on the representatives that win units of item j, the agents whose
representatives win the other items have not yet been fixed. We now consider
realizing the assignment of these other representatives to agents. The probability
that agent i is assigned one of these (at most) n/2 representatives is at most 1/2.
Hence, the assumption of Lemma 5 holds for representative ij with probability
at least 1/2. Therefore, ij’s expected contribution to M’s revenue is at least half
its contribution to VCG’s revenue.

The lemma follows. ��
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Abstract. There are two kinds of bidders in sponsored search: most
keep their bids static for long periods of time, but some do actively
manage their bids. In this work we develop a model of bidder behavior
in sponsored search that applies to both active and inactive bidders.
Our observations on real keyword auction data show that advertisers see
substantial variation in rank, even if their bids are static. This motivates
a discrete choice approach that bypasses bids and directly models an
advertiser’s (perhaps passive) choice of rank. Our model’s value per click
estimates are consistent with basic theory which states that bids should
not exceed values, even though bids are not directly used to fit the model.
An empirical evaluation confirms that our model performs well in terms
of predicting realized ranks and clicks.

1 Introduction

A major portion of the revenue of search engines such as Google and Bing
comes from advertising next to search results. Advertisers bid for placement
on keywords relevant to their business, a practice known as sponsored search.
A central problem in empirical modeling of sponsored search is to infer bidder
values from their observed bidding behavior. Information on bidder values can
inform virtually all aspects of the keyword auction design, including changes to
the ranking rule to improve revenue [7]; reserve pricing policies [9]; and the
impact of improved click-through rate models on efficiency [6]. With bidder
values at hand, counterfactual experiments can be performed to evaluate the
effect of changes to auction parameters before live testing, and even to compare
the current design to more classical auctions such as VCG [1].

In this work we develop a model of bidder behavior in sponsored search that
applies to both active and inactive bidders. We observe that most advertisers
in Yahoo’s sponsored search market keep their bids essentially constant for long
periods of time (e.g., several weeks), as others have noticed independently in
Bing data [10]. On the other hand, some advertisers on competitive, high-volume
keywords do actively manage their bids [3]. We propose a discrete choice model
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of bidder decisions that can identify values under both kinds of behavior. Our
key insight is that even though an advertiser’s bids may show little variation, its
rank typically varies considerably because of exogenous changes in the auction’s
parameters, such as the weights (related to click-through rates) placed on bids
for ranking.

Our approach is to bypass bids and instead directly model an advertiser’s
(perhaps passive) choice of rank across auctions. Because there are only a small
number of ad slots—no more than twelve—available on a search results page,
an advertiser’s choice of rank lends itself well to discrete choice modeling [11].
Besides value per click, our model also provides a useful estimate of the ad-
vertiser’s regret variance, which captures how consistent its behavior is with a
single value per click. We evaluate our model in terms of its ability to predict
advertiser rank and realized clicks in future auctions, against both simple base-
lines assuming constant rank and click-through rates, and the recent stochastic
variability model of Pin and Key [10].

Related Work. The earliest empirical estimates of advertiser values in sponsored
search appear in the work of Varian [12]. His approach is to develop an equilib-
rium concept to model bidding, and jointly estimate bidder values on individual
auction instances (i.e., on single queries) by minimizing deviation from equilib-
rium. This method, however, does not extend easily to several auction instances
over time [1]. In another early work Borgers et al. [2] estimate values using a
revealed preference approach: an advertiser’s bid updates imply bounds on its
value, assuming best-response, and with enough observations the bounds can
pin down the value. However, this approach is ineffective if advertisers do not
update their bids often, which is very common as previously mentioned.

More recently, Athey and Nekipelov [1] have developed an approach tailored
to advertisers with static bids. By modeling the distribution over an advertiser’s
opponent bids, they derive a marginal cost, or “incremental cost per click” curve,
and obtain a value based on where the advertiser bids along the curve. (A ra-
tional agent sets marginal cost equal to marginal value.) Pin and Key [10] have
developed a simplified version of this approach that yields very similar predic-
tions but is much more scalable. For advertisers that update their bids often,
their method must estimate a separate value corresponding to each bid, which
may be problematic unless there is good reason to believe their value per click
indeed changes with each bid update.

2 The Model

In this section we provide the necessary background on sponsored search needed
to understand advertisers’ decision problems. We describe the basic model of
sponsored search introduced in [4,12]; for a survey of the literature see [8].
We then present our discrete choice logit model of bidder behavior; for a full
treatment of logit and other discrete choice models see the monograph [11].
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2.1 Sponsored Search

We first focus on a single search query for a given keyword. When the query
is issued, an auction is run to allocate the ad slots on the search results page
among advertisers bidding on the keyword. Let K be the number of slots and
N be the number of agents, where N > K. The core of the current auction
mechanism (ranking and pricing) used by major search engines is known as the
generalized second-price auction (GSP) [4]. Each agent i places a bid bi, and
the search engine assigns weights wi that depend on the ad’s past click-through
rates. The ads are then ranked in descending order of their score wibi. Without
loss of generality, we can re-index the agents so that w1b1 ≥ w2b2 ≥ . . . ≥ wNbN .

Agents are charged only when a click is received. In the GSP, payment follows
a second-price rule: an agent is charged the lowest bid it could have placed while
maintaining its position. In particular, to maintain its position, agent i must
bid so that wibi ≥ wi+1bi+1, and so its price per click (PPC) is wi+1bi+1/wi. In
practice search engines also set a reserve score s for each keyword, so that the
minimum PPC i can pay is ri = s/wi. If i bids below ri, its ad is not shown.

The click-through rate (CTR) of ad i in position j is denoted cij . We assume
that CTRs are separable into an advertiser effect ai and a position effect xj ,
meaning that they factor according to cij = aixj . Although separability is only
an approximation to actual CTR patterns [1], search engines still estimate ad-
specific and position-specific parameters because the ad effect ai is a key input
into the ad’s weight wi. We assume that each agent i has a value per click vi

and that its utility is quasi-linear, meaning that if it obtains slot j at a PPC of
pj then its (expected) utility is:

Vj = (vi − pj)cij . (1)

In practice the bid space is discretized into increments (e.g., 10 cents), but these
are fine enough relative to the range of allowed bids that the bid space can be
viewed as continuous. However, note that an agent’s utility only depends on
the particular position selected, holding the other agents’ bids fixed. In a single
auction scenario, we can therefore view an agent’s bidding decision as a discrete
choice problem of selecting which position to appear in. The bid confers no more
information about the agent’s value beyond the position selected.

2.2 Discrete Choice

From the perspective just developed, we can model an agent’s collective rank
decisions across the auctions it participates in by using methods of discrete
choice analysis from econometrics [11]. The basis of discrete choice analysis is the
random utility model. In our context, this model posits that an agent i’s utility
for slot j decomposes into Uj = Vj +εj , where εj is a random error, and Vj is the
representative utility given by (1), derived from observable features of the chosen
alternative—in our case, simply the position effect. Agents act rationally in that
they choose the slot j with highest utility Uj . Under the random utility model,
an agent’s choice of rank can change from auction to auction even if the others’
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bids are held fixed, as the error terms vary across auctions. In each auction, the
random utility induces a distribution over the agent’s choice of position.

We use a maximum likelihood approach to fit the representative utility’s pa-
rameters. In discrete choice modeling the observations take the form Uσ(t) ≥ Uj

for j = 1, . . . , K and t = 1, . . . , T , where t indexes the auctions and σ(t) is the
slot chosen at auction t. We emphasize that the observations, and therefore the
model, do not take into account the bids placed, only the ranks obtained at each
auction instance. The actual parametric model we fit is of the form:

Uj = βvxj + βpxjpj + εj . (2)

Because utility can be normalized to any scale, we have dropped the leading ai

term from the equations, and the error variance can also be normalized to some
convenient constant C. This follows from the fact that only differences in utility
matter when making a choice—we refer to [11] for the technical and conceptual
details. Once we fit the model to data, the coefficient −βp corresponds to the
marginal utility of money, and hence −βv/βp gives an estimate of vi. The error
variance, which was normalized to C, is proportional to β−2

p on the money scale.

Error Interpretation. A common interpretation of the error term is that it cap-
tures unobserved features of the alternatives that impact utility. However, under
our value-per-click model, nothing differentiates slots besides their position ef-
fects. Instead, we find it more appropriate to interpret the error terms as captur-
ing an agent’s regret, defined as the amount of foregone utility from choosing one
slot over another. If the agent chooses slot j over k, for instance, then Vk −Vj is
its regret and ρkj = εk− εj ≥ Vk−Vj is a bound on this regret (which is binding
when errors are minimized). The error distribution induces a distribution over
regret. Note that regret can be negative, in which case it indicates the amount
by which the chosen slot is preferred over the alternative.

As we will see in Section 3, agents typically hold their bids constant for long
periods of time. In this case, variation in rank across auctions comes from exoge-
nous changes such as updates to the advertiser effects, the number of opponents,
or the reserve score [10]. The distribution of an agent’s regret from keeping its
bid fixed is therefore induced by these exogenous changes. Nevertheless, we find
it fair to characterize an agent’s distribution over ranks and regret as its “behav-
ior”, even if it holds its bid fixed, because the distribution captures the extent to
which the agent manages its bid to maximize utility. Indeed, the regret (equiv-
alently, error) variance in discrete choice models is sometimes interpreted as a
measure of “bounded rationality” [5].

Error Distribution. To complete the model specification we need to detail the
error distribution. In this work we assume that errors are independently and
identically distributed according to an extreme value distribution with mean 0,
which implies that regrets are distributed according to a logistic distribution
with mean 0. This is known as the logit model, and with this specification there
is a closed-form formula for the choice probabilities of different slots given their
representative utilities [11]. Once we have fit vi = −βv/βp and therefore obtain
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V1, . . . , VK for agent i in a given auction, and the inverse estimated error vari-
ance is λ = β−2

p /C, then the choice probabilities are given by the familiar logit
formula:

Pr(i, j) =
eλVj∑K

k=1 eλVk

.

Observe that as λ increases (error variance decreases), the choice probabilities
put increasing mass on the slot with highest representative utility, and the agent
is utility maximizing in the limit. As λ decreases (error variance increases),
the choice probabilities become increasingly uniform over slots, and the agent’s
choices of ranks across auctions are less consistent with a fixed value per click.

3 Data Description

Our empirical analysis is based on Yahoo’s sponsored search logs for a one month
period in the first half of 2010. We randomly sampled 20 keywords from each
of the top 5 keyword deciles by volume. These 100 keywords together yield a
data set of nearly three million auctions that involve 15699 unique advertisers.
We used the first three weeks of data for training and the last week for testing.
As our study only examines advertisers present in both the training and testing
data sets, the number of included advertisers drops to 2603.

To estimate our logit model as specified in (2) we used the mlogit package
in R [13]. We fit a model to each advertiser separately. The construction of the
logit model entails computing the PPC pj of each position j that ad i sees as
an option, for every auction. Because ad i only occupied a certain position j,
yielding one pj value, we computed pk for every k �= j, by applying the second-
price rule described in Section 2.1 and using available data on its opponents’
weights and bids, as well as its reserve price.1

We needed to further filter the data in order to avoid regression problems
such as collinearity. Estimating the PPC of the last position requires informa-
tion about the ad immediately below the last ranked ad, which is unavailable in
our data—we only have records on ads that were shown. Therefore we discarded
the final slot in each auction as an alternative. We also filtered out advertisers
that were almost always charged their reserve price, and consequently appeared
mainly in the bottom positions, because such ads saw the same PPC for multiple
slots (i.e., the reserve price) which created singularity issues for the regression.
Although the amount of discarded data due to this latter issue accounts for more
than 20% of the remaining data, these advertisers’ rank decisions, which over-
whelmingly focus on getting the bottom slots, would provide little information
about bidders’ behavior in general. Moreover, as the inclusion of ads displayed

1 Yahoo maintains two different reserve scores: one for the mainline (ads shown at
the top) and the sidebar (ads shown on the right). The mainline reserve price was
not available for this analysis. However, we found that using the second-price rule
together with the sidebar reserve price alone was enough to reproduce observed
PPC’s to within 0.02% accuracy on average.
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infrequently would add significant noise to our analysis, while providing few in-
sights about bidding behavior, we further removed more than 1500 ads that were
shown less than once a day on average, leaving us with a dataset of 197 ads.
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Fig. 1. Variation in bid, rank, weight (closely related to ad effect), and cost (i.e., PPC)
for a representative set of 10 ads sampled uniformly at random from our dataset. The
center dot gives the median; the box gives the lower and upper quartiles; the whiskers
give the minimum and maximum; and any remaining dots indicate outliers. The ads’
bids, weights, and costs have been normalized by the mean bid, weight, and cost for
the ads’ respective keywords to enable variation comparisons across panels.

Preliminary Analysis. Figure 1 presents a simple summary of bidding behavior
for a representative sample of 10 ads from our dataset of 197. In this figure an
ad’s bids were normalized by the average bid (over opponents) of its associated
keyword; we also normalized weight and cost (i.e., PPC) in the same way. A
normalized bid of 1 means that it matches the average bid on the keyword.

We observe that six out of the ten ads barely vary their bid at all, and only
the fourth and fifth substantially vary their bid. Pin and Key [10] also found
that bids changed very little in Microsoft’s sponsored search market, so this is a
general feature of sponsored search and not just Yahoo’s market. On the other
hand, note that there is substantial variation in rank for all ads. In particular,
the first ad takes on positions between 3 and 10, and the sixth ad between 3
and 9, even though their bids stay constant. For the first ad, some of the rank
variation can be attributed to its changing weight (i.e., the estimate of its ad
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effect changes across auctions). There is less weight variation for the sixth ad, but
other factors can change the rank such as variation in the number of opponents.

The variation in rank and cost here makes it possible for our discrete choice
approach to identify values for the advertisers. Revealed preference approaches
based on bid changes, as in [2], would fare poorly because of the dearth of bid
update observations for most ads. On the other hand, for those ads whose bids
do vary a lot, such as the third and fourth, approaches based on static bids need
to estimate a different value for each bid, while our logit model also handles this
case and estimates a single value for each advertiser.

4 Regression Results

We first report on the regression coefficients of the fitted models for each ad to
confirm that they take on sensible values. Among the 197 ads we examine, 178
(or 90%) have nonzero βv and βp coefficients significant at the 5% level. All of
these 178 ads have positive βv coefficients and negative βp coefficients, implying
that utility is increasing in CTR and decreasing in PPC, as expected.
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Fig. 2. Regressions results (value and error variance) against average bid (over the
testing period) over 178 ads. Axes have been arbitrarily normalized for confidentiality
reasons. In the left panel we see that bids lie uniformly below values. The Loess curve
in the right panel confirms that inverse error variance λ decreases with bid in general.

Figure 2 provides a more detailed look at the estimated values per click vi and
inverse error variances λi, derived from the regression coefficients as explained in
Section 2.2. According to the theory on sponsored search [4,12], bidding above
one’s value is a dominated strategy, so we would expect estimated values to
exceed bids. This is corroborated in the figure, where values uniformly lie above
the agents’ average bids over the training period. We find this result striking
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because our model imposes no such constraints on agents’ values, and indeed with
little training data (one week rather than three) we do observe a few estimated
values falling below bids. In fact, recall that bids are not an input to our model:
we only rely on the observed position effects, PPC’s, and an agent’s rank at each
auction. According to these estimated values agents shade their bids 20% below
their value, on average (in terms of median and mean). The agents’ return on
investment (ROI), defined as profit per click over PPC, had a median of 48%
and a mean of 95%, indicating a skewed distribution.

In Figure 2 we also see how the inverse error variances λi correlate with average
bids. Recall that a high λi suggests that i is behaving more ‘rationally’, in the
sense that its choice of slots across auctions is almost consistent with a fixed
value per click, whereas a low λi indicates a more ‘irrational’ agent because its
choices imply a high regret variance no matter what value per click is ascribed.
According to the figure bid is negatively correlated with ‘rationality’, or stated
more formally, correlated with high regret variance. We see the following possible
reason. Low bidders tend to compete either on low-competition keywords or for
low-ranked slots, and in those cases the slots are similar in terms of both CTR
and PPC. Therefore even if the agent’s position varies among these bottom slots
(as it holds it bid fixed), its regret stays low and varies little. The situation is
the opposite for high bidders that appear on high-competition keywords, where
the top slots are highly differentiated in terms of CTR and PPC.

5 Model Evaluation

In this section we first describe the baseline models against which we compare
our logit model, and then proceed to evaluate their performance in predicting
future ranks and realized clicks.

5.1 Baseline Models

We first compare our logit model, denoted as Mlogit, against two simple baseline
models that provide predictions about bidders’ positions and number of clicks
using empirical distributions constructed directly from training data. The first
simple baseline model, the constant rank model (Mrank), specifically focuses on
rank predictions. In particular, Mrank assumes that each advertiser seeks to have
its ad i displayed at a targeted position j∗, and treats the most frequent observed
position for ad i in the training data as its targeted position j∗ by assigning a
probability value of 90% to j∗. In order to account for variation in agents’ posi-
tions, the model allows positions other than j∗ to appear with equal probabilities
that sum up to the remaining (100%− 90%) = 10%.

The second simple baseline model, called historical click (Mclick), is tailored
for click predictions, assuming that agents expect to receive a constant click
through rate for each auction. Given the training data, Mclick computes c̄i, the
average number of clicks per auction that ad i received during the training data’s
timespan, and uses c̄i to estimate the number of clicks i will receive in the future
by multiplying c̄i with the number of auctions in which i has a slot.
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We further evaluate the estimates produced by Mlogit against those obtained
from the stochastic model (Mstoch) of Pin and Key [10]. They model an agent
called Agent 0 with known value v0 and weight w0 submitting bid b0 against n
opponents, who submit random i.i.d bids. Note that in this context, each agent
is associated with an ad and a bid value, which diverges from the viewpoint
previously used in the other models, Mrank, Mclick, and Mlogit, that only view
each ad as a different agent, who may place multiple bids across time.

Mstoch assumes that the agents’ weighted bids wibi/w0, from the perspective
of Agent 0, are drawn from a known probability distribution, whose cumulative
distribution function (c.d.f) is denoted as F . As the number of opponents may
vary from one auction to another, Mstoch incorporates a discrete probability
distribution on the number of opponents, qn, where

∑N−1
n=0 qn = 1.

When Agent 0 bids b0 greater than the reserved price, the probability that it
gets the j-th position given that it faces n opponents is:

Pr(j; n) =
(

n

j

)
q(n)F (b0)n−j(1− F (b0))j . (3)

Let ψ(b0) be the CTR of the slot Agent 0 receives when it bids b0. The expected
number of clicks that Agent 0 receives per auction is computed as:

E[ψ(b0)] =
N−1∑
n=0

n∑
j=0

Pr(j; n)c0j . (4)

Given the training data set, we can construct the distribution of number of
opponents qn and the distribution of weighted bids F for each agent. These
distributions allow us to estimate their expected ranks and expected number of
clicks per auctions via (3) and (4) respectively.

Recall that an ad may appear in Mstoch as different agents, each of which
corresponds to a different bid value submitted for the same ad. In order to
compare the predictions of Mstoch with those of the other models, we apply Mstoch

to each pair of ad and bid value, and subsequently average over all same-ad pairs
to compute the estimates for each ad.

5.2 Estimation Results

We evaluate the models Mrank, Mclick, Mstoch, and Mlogit based on their predictions
of ads’ ranks and clicks they receive. Note that the Mrank baseline only applies
to rank prediction, and the Mclick baseline only applies to click prediction.

Rank Distribution. We measure the predictive power of Mrank, Mstoch, and Mlogit

with respect to ads’ ranks by the likelihood of the testing data induced by each
model. In particular, given a model M ∈ {Mrank, Mstoch, Mlogit} learned from the
training data for an ad i, we compute the log likelihood of the ad’s positions in
the testing data set D of m auctions in which i won a slot, as follows:

Li(D | M) =
m∑

t=1

log Pri(σ(t) | M), (5)
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Fig. 3. Rank prediction results, with ads divided into 5 bins according to average
volume. Volume increases exponentially towards the right.

where Pri(σ(t) | M) is the probability that i gets the slot σ(t) in auction t,
as specified by model M. In order to investigate these models’ robustness to
data availability, we also varied the training data set’s timespan. Due to space
constraints we only report in detail on the results from models trained on the
whole first three weeks of the data.

We divide the ads into 5 bins according to the volume of auctions in which
they are present. For each bin, we compute the average negative log likelihood
of ads’ ranks per auction and per ad. Figure 3 shows that the logit model Mlogit

consistently outperforms the simple baseline Mrank model in every bin, and also
provides better rank predictions than the stochastic model Mstoch in most bins.
As expected, prediction performance improves as the average volume (and hence
amount of training data) increases.

Realized Clicks. We next compare the models Mclick, Mstoch, and Mlogit, by eval-
uating the estimated number of clicks each ad would receive against the number
of realized clicks in the testing data. Given a model M’s estimated number of
clicks received by ad i per auction, ĉM

i , and the number of realized clicks per
auction over the testing data for ad i, c∗i , we can calculate the relative error2 for
model M as follows:

erri(D | M) =
| ĉM

i − c∗i |
c∗i

. (6)

We again split the ads into 5 bins, this time based on their average number of
clicks, and then compute each bin’s relative error as the average of erri(D | M)
over all ads i in the bin for each model M ∈ {Mclick, Mstoch, Mlogit}. Figure 4
demonstrates that the simple baseline Mclick model performs particularly well
for ads that attract fewer hits, beating both Mstoch and Mlogit in the least-clicked
ad bin. The logit model predicts clicks noticeably better than Mclick for ads that
2 We can only compute this relative error for the 51 ads in our dataset that received

at least one click.
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Fig. 4. CTR prediction results, with ads divided into 5 bins according to average
number of clicks. Clicks increase exponentially towards the right.

receive more clicks, and moreover, consistently outperforms Mstoch in all bins.
The predictive power of each model improves as the average number of realized
clicks increases, as observed in a different study [10]. That study examined only
ads that received at least as much actual clicks as the ads in our two most clicked
bins, namely the two right-most bins in Figure 4. They also incorporated results
from a baseline model similar to Mclick, but trained this baseline model on less
data than the baseline Mclick we employed.

Note that in order to make rank and click predictions Mstoch has to examine
the actual bids placed by agents in the testing data. In contrast, Mlogit examines
an agent’s opponents’ bids in the testing data to predict realized rank (or more
precisely, rank distribution) and clicks; it does not directly draw on the agent’s
behavior (i.e., bids) to predict. Despite this seeming disadvantage, Mlogit performs
very well against Mstoch.

6 Conclusion

We have introduced a novel discrete-choice approach to modeling the bidding
behavior of both active and inactive bidders in sponsored search. Our logit model
of advertisers’ rank decisions produces bidder value estimates that are consistent
with basic theory on how values relate to bids, even though these constraints are
not incorporated into the regressions. Our empirical evaluation showed that the
logit model predicts realized ranks and clicks well, against both simple baselines
and a more sophisticated baseline that even draws on agents’ actual bidding
behavior to make predictions, in contrast to our approach.

The parametric form of utility given in (2) is one of several potential options
that we hope to investigate in future work. For instance, we could add position-
specific intercepts to the utility specification in order to see whether advertisers
value higher slots more than lower slots, all else (i.e., click-through rate) held
equal, which would indicate utility for the “branding effect” of slots. We could use
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a nested logit model [11] that not only relaxes the i.i.d. assumption of the error
term, but can also incorporate the variation in the number of bidders competing
in an auction. Finally, as our data filtering process left us with a much smaller
sample than the original set, we would like to scale up our empirical analysis
and include more high-click rather than high-volume ads.
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Abstract. We study a model of learning on social networks in dynamic
environments, describing a group of agents who are each trying to es-
timate an underlying state that varies over time, given access to weak
signals and the estimates of their social network neighbors.

We study three models of agent behavior. In the fixed response model,
agents use a fixed linear combination to incorporate information from
their peers into their own estimate. This can be thought of as an exten-
sion of the DeGroot model to a dynamic setting. In the best response
model, players calculate minimum variance linear estimators of the un-
derlying state.

We show that regardless of the initial configuration, fixed response
dynamics converge to a steady state, and that the same holds for best
response on the complete graph. We show that best response dynamics
can, in the long term, lead to estimators with higher variance than is
achievable using well chosen fixed responses.

The penultimate prediction model is an elaboration of the best re-
sponse model. While this model only slightly complicates the compu-
tations required of the agents, we show that in some cases it greatly
increases the efficiency of learning, and on complete graphs is in fact
optimal, in a strong sense.

Keywords: social networks, Bayesian agents, social learning.

1 Introduction

The past three decades have witnessed an immense effort by the computer sci-
ence and economics communities to model and understand people’s behavior on
social networks [16]. A particular goal has been the study of how people share
information and learn from each other; learning from peers has been repeatedly
shown to be a driving force of many economic and social processes (cf. [9,7,19,8]).
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1.1 Classical Approaches and Results

Early work by DeGroot [10] considered a set of agents, connected by a social
network, that each have a prior belief: a distribution over the possible values
of an underlying state of the world - say the market value of some company.
The agents iteratively observe their neighbors’ beliefs and update their own
by averaging the distributions of their neighbors. Since DeGroot, a plethora of
models for social learning have been proposed and studied.

DeGroot’s simple averaging of neighbors’ beliefs may seem naive and arbi-
trary; economists often opt for rational models instead. In rational models the
agents update their belief not by a fixed rule, but in an attempt to maximize a
utility function. It is often assumed that agents are Bayesian: they assume some
prior distribution on the underlying state and on other agents’ behavior, have
access to some observations, and maximize the expected value of their utility,
using Bayes’ Law. Bayesian social learning has a wide literature, with noted
work by Aumann [4] and the related common knowledge work (cf. [14]), as well
as McKelvey and Page [20], Parikh and Krasucki [23], Bala and Goyal [6], Gale
and Kariv [13], and many others.

Aumann [4] and Geanakoplos [15] show that a group of Bayesian agents, who
each have an initial estimate of an underlying state, and repeatedly announce
their estimate (in particular, expected value) of this state, will eventually con-
verge to the same estimate. McKelvey and Page [20] extend this result to pro-
cesses in which “survey results”, rather than all the estimates, are repeatedly
shared. The social network in these models is the complete network; indeed, it
seems that non-trivial dynamics and results are achieved already for this (seem-
ingly simple) topology. Aaronson [1] studies the complexity of the computations
required of the agents, again with highly non-trivial results.

1.2 Rationality and Bounded Rationality

The term rational in economic theory refers to any behavior that maximizes
(or even attempts to maximize) some utility function. This is in contrast to,
for example, behavior that is heuristic or fixed. Bayesian rationality optimizes
in a probabilistic framework that includes a prior and observations, and is, as
mentioned above, a commonly used paradigm.

The disadvantage of fully rational, Bayesian models is that the calculations
required of the agents can very quickly become intractable, making their appli-
cability to real-world settings questionable; this tension between rationality and
tractability is an old recurring theme in behavioral economics models (cf. [24]).

A solution often advocated is bounded rationality. Agents still act optimally
in bounded rationality models, but only optimize with respect to a restricted
set of choices. This usually simplifies the optimization problem that needs to be
solved. For example, agents may be required to disregard some of their available
information or be restricted in the manner that they calculate their strategy. In
addition to serving the goal of more realistically modeling agents, a usual added
benefit of bounded rationality is that the analysis of the model becomes easier.
We too follow this course.
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A standard assumption in this literature is that “actions speak louder than
words” (cf. Smith and Sørensen [25]); agents do not participate in a commu-
nication protocol intended to optimize the exchange of information, but rather
make inferences about each others’ private information by observing actions. For
example, by observing the price at which a person bids for a stock one may learn
her estimate for the future price, but yet not learn all of the information which
she used to arrive at this estimate.

1.3 Informal Statement of the Model

We consider a model where the underlying state S is not a constant number -
as it is in all of the above mentioned models - but changes with time, as prices
and other economic quantities tend to do. In particular we assume that the state
S = S(t) performs a random walk; S(0) is picked from some distribution, and
at each iteration an i.i.d. random variable is added to it.

The process commences with each agent having some estimator of S(0). We
make only very weak assumptions about the joint distribution of these estima-
tors. Then, at each discrete time period t, each agent receives an independent
(and identical over time) measurement of S(t), and uses it to update its estima-
tor. Also available to it are the previous estimates of its neighbors on a social
network. Thus social network neighbors share their beliefs (or rather, observe
each others’ actions), and information propagates through the network.

While conceivably agents could optimally use all the information available
to them to estimate the underlying state, it appears that such calculations are
extremely complex. Instead, we explore bounded rationality dynamics, assuming
that agents are restricted to calculating linear combinations of their observations.
We note that if the random walk and the measurements are taken to be Gaus-
sian, then the minimum variance unbiased linear estimator (MVULE) is also the
maximum likelihood estimator. A Gaussian random walk is a good first-order
approximation for many Economic processes (cf. classical work by Bachelier [5]).

For the first part of the paper, we also require that these linear combinations
only involve the agents’ neighbors’ estimates from the previous time period (and
not earlier), as well as their new measurement. In the last model we slightly
relax this requirement.

We consider three models. In the fixed response model each agent, at each
time period, estimates the underlying state by a fixed linear combination of its
new measurement and the estimates of its neighbors in the previous period. This
is a straightforward extension of the DeGroot model to our setting.

In the best response model, at each iteration, each agent calculates the MVULE
of the underlying state, based on its peers’ estimate from the previous round,
together with its new measurement. We assume here that at each iteration the
agents know the covariance matrix of their estimators. While this may seem like
a strong assumption, we note that, under some elaboration of our model, this
covariance matrix may be estimated by observing the process for some number of
rounds before updating one’s estimator. Furthermore, it seems that assumptions
in this spirit - and often much stronger assumptions - are necessary in order
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for agents to perform any kind of optimization. For example, it is not rare in
the literature of social Bayesian learning to assume that the agents know the
structure of the entire social network graph (e.g., [13,23,2]).

Finally, we introduce the penultimate prediction model, which is a simple ex-
tension of the best response model, additionally allowing the agents to remember
exactly one value from one round to the next. While only slightly increasing the
computational requirements on the agents, this model exhibits a sharp increase
in learning efficiency.

1.4 Informal Statement of Results

While our long term goal is to understand this process on general social network
graphs, we focus in this paper on the complete network, which already exhibits
mathematical richness.

We consider the system to be in a steady state when the covariance matrix of
the agents’ estimators is constant. On general graphs we show that fixed response
dynamics converge to a steady state. On the complete graph we show that best
response dynamics also converge to a steady state. Both of these results hold
regardless of the initial conditions (i.e., the agents’ estimators at time t = 0).

We show that the steady state of best response dynamics is not necessarily
optimal; there exist fixed response dynamics in which the agents converge to
estimators which all have lower variance then the estimators of the steady state
of best response dynamics. This shows that every agent can do better than the
result of best response by following a socially optimal rule; thus a certain price
of anarchy is to be paid when agents choose the action that maximizes their
short term gain.

Finally, we show that in the penultimate prediction model, for the complete
graph, the agents learn estimators which are the optimal (in the minimum vari-
ance sense) amongst all linear estimators, and thus outperform those of fixed
and best response dynamics.

We define a notion of “socially asymptotic learning”: A model has this prop-
erty when the variance of the agents’ steady-state estimators tends towards the
information-theoretical optimum with the number of agents. We show that the
penultimate prediction model exhibits socially asymptotic learning on the com-
plete graph, while best response and fixed response dynamics fail to do the same.

Due to space constraints, the full proofs have been omitted. For this reason,
we direct the interested reader to the full version of the paper [12].

2 Previous Work

Our model is an elaboration of models studied by DeMarzo, Vayanos and Zwiebel
[11], as well as Mossel and Tamuz [22,21]. There, the state S is a fixed number
picked at time t = 0, and each agent receives a single measurement of it. The pro-
cess thereafter is deterministic, with each agent, at each iteration, recalculating
its estimate of S based on its observation of its neighbors’ estimates.
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In [21] it is shown that if the agents calculate the minimum variance unbiased
linear estimator (MVULE) at every turn (remembering all of their observations)
then all the agents converge to the optimal estimator of S, i.e. the average of the
original measurements. Furthermore, this happens in time that is at most n · d,
where d is the diameter of the graph.

When agents calculate estimates that are only based on their observations
from the previous round, then they do not necessarily converge to the optimal
estimator [22]. In fact, it is not known whether they converge at all.

A similar model is studied by Jadbabaie, Sandroni and Tahbaz-Salehi [17].
They explore a bounded rationality setting in which agents receive new signals
at each iteration. An agent’s private signals may be informative only when com-
bined with those of other agents, and yet their model achieves efficient learning.

Our model is a special case of a model studied by Acemoglu, Nedic, and
Ozdaglar [3]. They extend these models by allowing the state to change from
period to period. They don’t require the change in the state to be i.i.d, but only
to have zero mean and be independent in time. Their agents also receive a new,
independent measurement of the state at every period, which again need not be
identically distributed. They focus on a different regime than the one we study;
their main result is a proof of convergence in the case that the variations in the
state diminish with time, with variance tending to zero.

In our model the change in the underlying state has constant variance, as does
the agents’ measurement noise. This allows us to explore steady states, in which
the covariance matrix of the agents’ estimators does not change from iteration
to iteration.

Our model is non-trivial already for a single agent, although here a complete
solution is simple, and can be calculated using tools developed for the analysis
of Kalman filters [18].

3 Notation, Formal Models, and Results

Let [n] = {1, 2, . . . , n} be a set of agents. Let G = ([n], E) be a directed graph
representing the agents’ social network. We denote by ∂i = {j|(i, j) ∈ E} the
neighbors of i, and assume that always i ∈ ∂i.

We consider discrete time periods t ∈ {0, 1, . . .}. The underlying state of the
world at time t, S(t), is defined as follows. S(0) is a real random variable with
arbitrary distribution, and for t > 0

S(t) = S(t− 1) + X(t− 1), (1)

where E [X(t)] = 0, Var [X(t)] = σ2, and σ is a parameter of the model. The
random variables X(0), X(1), . . . are independent. Hence the underlying state
S(t) performs a random walk with zero mean and standard deviation σ.

At time t = 0 each agent i receives Yi(0), an estimator of S(0). The only
assumptions we make on their joint distribution is that E [Yi(0)|S(0)] = S(0),
i.e. the estimators are unbiased, and that Var [Yi(0)− S(0)] is finite for all i.
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At each subsequent period t > 0, each agent i receives Mi(t), an independent
measurement of S(t), defined by

Mi(t) = S(t) + Di(t), (2)

where E [Di(t)] = 0, Var [Di(t)] = τ2
i , and the τi’s are parameters of the model.

Hence Di(t) is the measurement error of agent i at time t. Again, the random
variables Di(t) are independent.

At each period t > 0, each agent i calculates Yi(t), agent i’s estimate of S(t),
using the information available to it. Precisely what information is available
varies by the model (and is defined below), but in all cases Yi(t) is a (determin-
istic) convex linear combination of agent i’s measurements up to and including
time t, {Mi(t′)|t′ ≤ t}, as well as the previous estimates of its social network
neighbors, {Yj(t′)|t′ < t, j ∈ ∂i}. Additionally, in the penultimate prediction
model, at each round t each agent computes a value Ri(t), and at round t + 1
uses this value to compute Ri(t + 1) and Yi(t + 1). Like Yi(t), Ri(t) is also a
convex linear combination of the same random variables.

In general, we shall assume that the agents are interested in minimizing
the expected squared error of their estimators, E

[
(Yi(t)− S(t))2

]
; assuming

Yi(t) is unbiased (i.e., E [Yi(t)|S(t)] = S(t)) this is equivalent to minimizing
Var [Yi(t)− S(t)], which we refer to as the “variance of the estimator Yi(t).”
We shall assume throughout that the estimators Yi(t) are indeed unbiased; we
elaborate on this in the definitions of the models below.

We shall (mostly) restrict ourselves to the case where the agents use only their
neighbors’ estimates from the previous iteration, and not from the ones before
it. In these cases we write

Yi(t) = Ai(t)Mi(t) +
∑

j

Pij(t)Yj(t− 1). (3)

for some Ai(t) and Pij(t) such that Pij = 0 whenever j �∈ ∂i.
We will find it convenient to express such quantities in matrix form. To that

end we let m(t),y(t),d(t) ∈ R
n be column vectors with entries Mi(t), Yi(t), Di(t),

and let P(t),A(t),T ∈ R
n×n be the weight matrices, with P = (Pij)ij , A(t) =

Diag(A1(t), . . . , An(t)), and T = Var [d(t)] = Diag(τ2
1 , . . . , τ2

n). Using this nota-
tion Eq. (3) becomes

y(t) = A(t)m(t) + P(t)y(t − 1). (4)

We will also make use of the covariance matrix

C(t) = Var [y(t) − 1S(t)] , (5)

where 1 ∈ R
n denotes the column vector of all ones. Hence, we have Cij(t) =

Cov [Yi(t)− S(t), Yj(t)− S(t)], which we refer to as the “covariance of the
estimators Yi(t) and Yj(t).”
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3.1 Dynamics Models

Best Response. The main model we study is the best response dynamics. Here
we assume that at round t, each agent i has access to Mi(t), y(t − 1) and the
covariance matrix for these values. At each iteration t, agent i picks Ai(t) and
{Pij(t)}j that minimize Cii(t) = Var [Yi(t)− S(t)], under the constraints that
(a) Pij(t) may be non-zero only if j ∈ ∂i, and (b) E [Yi(t)|S(t)] = S(t), i.e. Yi(t)
is an unbiased estimator of S(t). We show that these minimizing coefficients are
a deterministic function of C(t − 1), σ and {τi}. Hence we assume here that
the agents know these values. By this definition Yi(t) is the minimum variance
unbiased linear estimator (MVULE) of S(t), given Mi(t) and y(t − 1).

Note that it follows from our definitions that if the estimators {Yi(t− 1)} at
time t−1 are unbiased then, in order for the estimators at time t to be unbiased,
it must be the case that

Ai(t) +
∑

j

Pij(t) = 1. (6)

Since at time zero the estimators are unbiased then it follows by induction that
Eq. (6) hold for all t > 0.

Fixed Response. We shall also consider the case of estimators which are fixed
linear combinations of the agent’s new measurement Mi(t) and its neighbors’
estimators at time t− 1. These we call fixed response estimators. In this case we
would have, using our matrix notation:

y(t) = Am(t) + Py(t − 1). (7)

The matrices A and P are arbitrary matrices that satisfy the following condi-
tions: (a) Pij is positive and non-zero only if j ∈ ∂i, and (b) yi(t) is a convex
linear combination of Mi(t) and {Yj(t − 1)}j. Equivalently, Ai +

∑
j Pij = 1,

which is the same condition described in Equation (6).

Penultimate Prediction. Finally, we consider the penultimate prediction
model where each agent i can remember one value, which we denote Ri(t), from
one round t to the next round t+1. We assume that at round t, each agent i has
access to Mi(t), y(t − 1), Ri(t − 1) and the covariance matrix for these values.
We denote r(t) = (R1(t), . . . , Rn(t)).

We fix Ri(0) = 0, and let Ri(t) be agent i’s MVULE of S(t−1), given Ri(t−1)
and y(t−1) (note that this is in general not equal to Yi(t−1)). Yi(t) now becomes
the MVULE of S(t) given Ri(t) and Mi(t).

3.2 Steady States and Efficient Learning

We say that the system converges to a steady state C when

lim
t→∞

C(t) = C.
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Assuming that agents are constrained to calculating linear combinations of
their measurements and neighbors’ estimators, the variance of the estimators
Yi(t) of S(t) at time t can be bounded from below by the variance of Zi(t),
where we define Zi(t) to be the MVULE of S(t) given the initial estimators
y(0), all measurements up to time t − 1 {Mj(s)|j ∈ [n], s < t} and Mi(t). We
therefore define that a process achieves perfect learning when Var [Yi(t)− S(t)] =
Var [Zi(t)− S(t)]. Note that this definition is a natural one for the complete
graph and should be altered for general networks, where a tighter lower
bound exists.

If an agent were to know S(t − 1) exactly at time t, then, together with
Mi(t), its minimum variance unbiased linear estimator for S(t) would be a linear
combination of just S(t− 1) and Mi(t), because of the Markov property of S(t).
In this case it is easy to show that Cii(t) = Var [Yi(t)− S(t)] would equal
σ2τ2

i /(σ2 + τ2
i ). We say that a model achieves socially asymptotic learning if for

n sufficiently large, as the number of agents tends to infinity, the steady state
C exists and Cii tends to σ2τ2

i /(σ2 + τ2
i ) for all i. We stress that this definition

only makes sense in models where the number of agents n grows to infinity and
therefore is incomparable to perfect learning, which is defined for a particular
graph.

4 Statement of the Main Results

The following are our main results. Let β(t) = 1/(1	C(t)−11).

Theorem 1. When G is a complete graph, best-response dynamics converge to a
unique steady-state, for all starting estimators y(0) and all choices of parameters
{τi} and σ. Moreover, the convergence is fast, in the sense that − log |β(t)−β∗| =
O(t), where β∗ = limt→∞ β(t).

Theorem 2. In fixed response dynamics, if Ai > 0 for all i ∈ [n] then system
converges to a steady state C = limt→∞ C(t) such that

C = A2T + σ2P11	P	 + PCP	. (8)

In particular, C is independent of the starting estimators y(0).

Theorem 3. Let G be a graph with [n] vertices. Fix σ and {τi}i∈[n].
Consider best response dynamics for n agents on G with σ and {τi}i∈[n]. Let

Cbr denote the steady state the system converges to.
Consider fixed response dynamics with some P and A for n agents on G with

σ and {τi}i∈[n]. Let Cfr denote the steady state the system converges to.
Then there exists a choice of n, G, σ, {τi}, A and P such that Cbr

ii > Cfr
ii

for all i ∈ [n].

Theorem 4. If σ, τ > 0, no fixed response dynamics can achieve socially asymp-
totic learning.

Theorem 5. Penultimate prediction on the complete graph achieves perfect
learning.
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5 Preliminary Analysis

We commence by proving a preliminary proposition on the relation between the
coefficients matrices P(t) and A(t), and the covariance matrix C(t) in the best
response and fixed response models. This result does not depend on how P(t)
and A(t) are calculated, and therefore applies to both models.

First, let us calculate the covariance matrix directly. By the definition of C(t)
and by Eq. (4) we have that

C(t) = Var [y(t)− 1S(t)] = Var [A(t)m(t) + P(t)y(t − 1)− 1S(t)] .

Since S(t) = S(t− 1) + X(t− 1) then we can write

C(t) = Var
[
A(t)

(
m(t)− 1S(t)

)
+ P(t)y(t − 1)

− (I−A(t))1
(
S(t− 1) + X(t− 1)

)]
.

Since the estimators {Yi(t)} are unbiased then P(t)1 = (I − A(t))1; see the
definitions of the models in Section 3.1, and in particular Eq. (6). Hence

C(t) = A(t)TA(t)	 + Var [P(t)(y(t − 1)− 1S(t− 1))] + Var [P(t)1X(t− 1)] ,

since Var [m(t)− 1S(t)] = Var [d(t)] = T. Finally, since Var [y(t − 1)] = C(t−1)
we can write

C(t) = A(t)2T + P(t)C(t − 1)P(t)	 + σ2P(t)11	P(t)	. (9)

5.1 Understanding Best-Response Dynamics

The condition that estimators are unbiased, or Ai(t) +
∑

j Pij(t) = 1, means
that given {Pij(t)}j one can calculate Ai(t), or alternatively given P one can
calculate A. Hence, fixing σ and {τj}, P(t) is a deterministic function of C(t−1).
Since by Eq. (9) C(t) is a function of A(t), P(t) and C(t− 1), then under best
response dynamics, C(t) is in fact a function of C(t − 1). We will denote this
function by F , so that C(t) = F (C(t− 1)). Our goal is to understand this map
F , and in particular to determine its limiting behavior.

We next analyze in more detail the best response calculation for agent i. This
can conceptually be divided into two stages: calculating a best estimator for S(t)
from y(t− 1), and then combining that with Mi(t) for a new estimator of S(t).

Let the vector y∂i(t− 1) = {Yj(t− 1)|j ∈ ∂i} and let Ci(t− 1) = C∂i,∂i(t− 1)
be the covariance matrix of the estimators of the neighbors of agent i.

Denote by qi(t) the vector of coefficients for y∂i(t − 1) that make Zi =
qi(t)	y∂i(t − 1) a minimum variance unbiased linear estimator for S(t); note
that this is also the estimator for S(t− 1). Then we have

qi(t) = βi(t− 1)1	Ci(t− 1)−1,

where βi(t− 1) = 1/1	Ci(t− 1)−11. It is easy to see that Var [Zi − S(t− 1)] =
βi(t− 1) and thus Var [Zi − S(t)] = βi(t− 1) + σ2.
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Mi(t) is an independent estimator of S(t) with variance τ2
i . To combine it

optimally with Zi we set

Ai(t) =
βi(t− 1) + σ2

τ2
i + βi(t− 1) + σ2

≥ σ2

τ2
i + σ2

. (10)

The optimal weight vector pi(t) for agent i (i.e., {Pij}j∈∂i) is therefore pi(t) =
(1−Ai(t))qi(t).

5.2 Complete Graph Case

When G is the complete graph, the agents best-respond similarly, since they all
observe the same set of estimators from the previous iteration. We now have
Ci(t − 1) = C(t − 1), qi(t) = q(t), and βi(t − 1) = β(t − 1), for all i. For the
moment, we will suppress the t. Letting a be the vector with coefficients Ai, we
then have P = (1−a)q	 = β(1−a)1	C−1. Using this form for P, we can now
see that PCP	 = β(1−a)(1−a)	. Putting this all together, and adding back
the t, we have by Eq. (9) that

C(t) = A(t)2 T + (β(t− 1) + σ2)(1− a(t))(1− a(t))	. (11)

Since by equation (10), Ai(t) depends only on β(t − 1), τi, and σ, we see that
C(t) = F (C(t−1)) depends on C(t−1) only through β(t−1) = 1/1	C(t−1)−11.
Hence we can write C(t) = C(β(t − 1)). We now see that we can completely
describe the state of the system by a single parameter β, and our map F reduces
to the map f : β 	→ 1/1	C(β)−11. We wish to analyze this function f as a
single-parameter discrete dynamical system.

6 Proofs

Due to space restrictions we omit the full proofs of our results and merely provide
brief sketches here. The full proofs may be found in the full version of our
paper [12] and we encourage the interested reader to look there.

Theorem 1. The first insight is showing that the best-response dynamics are
captured by a single-parameter discrete dynamical system f(β), depending only
on the variance β of everyone’s estimate of S(t − 1) after y(t − 1) is revealed.
This we outline in Section 5.2. We then bound the derivative |f ′(β)| < 1 and
apply the Banach Fixed Point Theorem, giving us both the unique fixed point
and the convergence rate.

Theorem 2. We use equation (9), which simplifies to (8) in the fixed setting.
From there we note that ‖P‖∞ < 1 and use properties of matrix norms to show
that C(t) is like a geometric series, and thus converges.

Theorem 3. We examine two examples: the complete graph with 2 nodes and
the complete graph where the number of nodes tends towards infinity. In both
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examples σ = 1 = τi for all i. Calculations confirm that in each of these exam-
ples, the optimal symmetric fixed-response dynamics results in lower variance
estimators than the best response dynamics for every agent.

Theorem 4. We proceed by showing that, assuming some fixed response dy-
namics is socially optimal, Ai – the weight that agent i gives itself – must con-
verge to a particular fixed value that depends only on σ and τi. However if Ai

is fixed, it can be shown that two consecutive rounds cannot be optimal.

Theorem 5. We show that the updates of the agents in the penultimate pre-
diction model simulate the calculations of the Kalman Filter for the penultimate
round, which are known to be optimal.

7 Conclusion

This work can be seen as a study of natural extensions of the DeGroot model
to the setting where the value to be learned changes over time. The most direct
extension is the fixed response model. Here we show that while the estimate will
keep moving with the true values, its variance will converge to a fixed value.
However, in contrast to the DeGroot model, the agents are continually receiving
new independent signals, and so have a reference point from which to evaluate
the validity of their neighbors’ signals. This leads us to propose the best response
model. We show that in the case of the complete graph, best response dynamics
will always converge to a particular fixed response that is (myopically) optimal.
However, we also show that it is not necessarily Pareto optimal amongst all
fixed responses. Finally, we show that a simple strengthening of the model to
allow agents to remember one value can, in certain cases, lead to much improved
performance. This can be seen not only as a critique of fixed response dynamics
as being too weak to capture natural dynamics, but also as an interesting model
to be studied more in its own right.
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Abstract. Many scenarios where participants hold private information require
payments to encourage truthful revelation. Some of these scenarios have no nat-
ural residual claimant who would absorb the budget surplus or cover the deficit.
Faltings [7] proposed the idea of excluding one agent uniformly at random and
making him the residual claimant. Based on this idea, we propose two classes
of public good mechanisms and derive optimal ones within each class: Faltings’
mechanism is optimal in one of the classes. We then move on to general mecha-
nism design settings, where we prove guarantees on the social welfare achieved
by Faltings’ mechanism. Finally, we analyze a modification of the mechanism
where budget balance is achieved without designating any agent as the residual
claimant.

1 Introduction

Many scenarios where participants hold private information require payments to en-
courage truthful revelation. Some of these scenarios have no natural residual claimant
who would absorb the budget surplus or cover the deficit (e.g., a group of roommates
deciding who gets to use the living room for a weekend party or a company distribut-
ing free football tickets among employees). Mechanisms with budget deficit are not
very compelling as they require a subsidy. In more compelling surplus-generating (or,
weakly budget-balanced) mechanisms, the surplus represents a loss in social welfare
(i.e., the sum of the agents’ utilities), which can be viewed as the cost of truthfulness. A
number of recent papers have investigated what the minimum budget surplus is that still
supports truthful reporting and efficient outcomes [14,11,12,4,1,2]. While weak budget
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balance is a necessary assumption,1 efficiency is not. In fact, sacrificing efficiency leads
to a higher social welfare in certain cases (by having significantly lower net payments
than efficient mechanisms) [7,10,5].

The mechanisms we propose here are budget-balanced (i.e., no loss of social wel-
fare is due to the budget surplus) but not efficient. Our work starts with the idea behind
Faltings’ mechanism [7], which is that we exclude one agent uniformly at random and
make him the residual claimant of the payments collected by an efficient mechanism
(e.g., the VCG mechanism) in the market with only the remaining agents. Crucially,
in order to maintain truthfulness, the outcome must be chosen without considering the
private value of the excluded agent. Thus, the chosen outcome may not be the same
as the efficient outcome when all agents’ values are considered. This results in a so-
cial welfare below the value of the efficient outcome. Notice that the loss of social
welfare is due only to the non-efficiency of the outcome as mechanisms with a residual
claimant are budget-balanced. Since excluding one agent at random results in a random-
ized outcome function, we speak of expected social welfare. We say that a mechanism
is r-competitive if its expected social welfare is at least r of the value of the efficient
outcome for all types the agents may have: i.e., we are using a worst-case metric.

We apply the approach of excluding one agent to the public project scenario where
a group of agents needs to decide whether or not to build, say, a bridge that comes at a
publicly known cost. The public project scenario is fundamental to mechanism design:
unlike allocation scenarios, no agent can be excluded from enjoying the benefits of the
project if it is undertaken. While maximizing social welfare has been studied exten-
sively in allocation scenarios (see e.g., [14,11,9,10,5]), public good scenarios received
relatively less attention. [1] and [2] both studied the problem of designing welfare-
maximizing public good mechanisms. [1] studied one dominance relationship between
mechanisms, but did not propose any specific mechanisms. [2] studied sequential public
good mechanisms with a different notion of truthfulness. Then, there are several gen-
eral mechanisms that can be applied to public project [3,4,7]. The mechanism described
in [3] is not budget-balanced when applied to public project, while the mechanism [4]
has a zero competitive ratio. The paper by Faltings [7] is central to many of our results
as we discuss next.

First, we derive a competitive ratio for the mechanism proposed by Faltings and
prove its optimality within a class of mechanisms. Specifically, we define a class of
mechanisms based on the fraction of the cost of the project passed on to the excluded
agent. It turns out all mechanisms that assume the excluded agent would cover up to

1
n−1 of the cost are n−1

n -competitive (n is the number of agents). Faltings’ mechanism
corresponds to the excluded agent covering 1

n of the cost and is optimal within the
class. Mechanisms that assume the excluded agent covers more than 1

n−1 of the cost
are not n−1

n -competitive. A natural question is whether a better mechanism is possible.
To this end, we consider a larger mechanism class by taking the mixtures over the above
mechanisms. That is, we consider mechanisms that assume the excluded agent would
cover a randomized proportion of the cost. We characterize one optimal mechanism
within this larger class, which turns out to be n

n+1 -competitive.

1 An arbitrary social welfare can be achieved when unlimited subsidies are allowed.
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The mechanisms above make the excluded agent the recipient of the VCG payments
computed without him. The idea of computing VCG payments after excluding one
agent has also been used in general quasi-linear domains to design redistribution of
VCG payments computed with all agents present. Specifically, in a regular VCG mech-
anism, the rebate to agent i can be set to 1

n of the VCG payments collected in the market
without him [3]. The resulting mechanism is efficient but not budget-balanced, and may
run a deficit in the public good scenario.

We find that using this redistribution idea together with the inefficient allocation,
made after excluding one agent, leads to a budget-balanced mechanism that does not
designate any agent as the residual claimant. This results in a more fair treatment of all
agents, and we call the mechanism FaltingsFair. In more detail, we set each agent’s pay-
ment to be the expected VCG payment he would make after one of the other agents is
excluded uniformly at random. This payment is reduced by the rebate described above.
The sum of the rebates cancels out the sum of the payments, thus achieving budget
balance. Interestingly, this mechanism was already proposed by Faltings in extended
versions of his work [6,8], though without the redistribution interpretation. Our analysis
sheds new light on this mechanism establishing connections to a standard redistribution
function and providing novel proofs.

The rest of this paper is structured as follows. A general model of mechanism design
problems is stated in Section 2. Mechanisms with a residual claimant for the public good
scenario are studied in Section 3. There we propose two classes of mechanisms and
derive optimal ones within each class. In Section 4, we move on to general mechanism
design settings. One of the optimal public good mechanisms we derive in Section 3 turns
out to be a special case of Faltings’ mechanism. We modify this mechanism to remove
the residual claimant, which results in the budget-balanced FaltingsFair mechanism.
Discussion of the results appears in Section 5.

2 Model

The set of agents is denoted by N (|N | ≥ 3) and the private type of agent i ∈ N is given
by θi. The mechanism chooses an outcome k(θ′) from the set of possible outcomes
K , based on the profile of reported types θ′. The value of an agent for each outcome
depends on his type vi(k(θ′), θi), and the utility is quasi-linear. Given an outcome k ∈
K and a payment ti ∈ R, the utility is ui(k, ti, θi) = vi(k, θi) − ti. Let k∗(θ) denote
the efficient outcome k∗(θ) ∈ arg maxk′∈K

∑
i vi(k′, θi).

The VCG (also known as Clarke or pivotal) mechanism is defined by the efficient
outcome and the following payments from the agents: tvcg

i (θ) =
∑

j 
=i vj(k∗(θ−i), θj)−∑
j 
=i vj(k∗(θ), θj), where k∗(θ−i) ∈ argmaxk′∈K

∑
j 
=i vj(k′, θj).

3 Public Project

In a public project (equivalently, public good) problem, a group of agents needs to
decide whether or not to undertake a project such as building a bridge. The two possible
outcomes are: do not build the bridge and distribute C among the agents or build the
bridge spending C on its construction. Each agent has a private value θi for having the
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bridge built. We define the value of the efficient outcome as max(θN , C): the sum of
agents’ values is θN =

∑
i∈N θi when the bridge is built and C when it is not built.

The valuation function of agent i consistent with this definition of social welfare is

vi(k(θ), θi) =

{
θi if k(θ) = 1
C
n otherwise

(1)

Faltings’ mechanism [7] is defined as follows (we will call it Faltings from now on):

– We exclude one agent uniformly at random.
– The remaining agents use the VCG mechanism to come up with an optimal alloca-

tion for themselves.
– The excluded agent acts as the residual claimant. That is, the VCG payments are

redistributed to the excluded agent, to achieve budget balance.

Faltings is known to be (dominant-strategy) incentive compatible and budget-
balanced.2 Faltings can be generalized to the following class of mechanisms (also in-
centive compatible and budget-balanced):

– We pick one agent, denoted by a, uniformly at random, and we pretend agent a’s
reported type is C − x (ignoring what a actually reported).

– All agents, including a, participate in a VCG mechanism.
– a acts as the residual claimant. That is, everyone excluding a pays his VCG pay-

ment to a. (a does not have to make any payment. Note that incentive compatibility
for a is guaranteed because a’s report is ignored altogether.)

Mechanisms inside the above class are characterized by the parameter x, where x rep-
resents how much the non-excluded agents need to value the project in order for it to be
built. When there is no ambiguity, we will simply use mechanism x to refer to the mech-
anism inside the class that is characterized by x. Faltings corresponds to x = n−1

n C:
For this value of x, the decision is to build if and only if the remaining agents’ total
valuation is at least n−1

n C, which is efficient for the remaining agents.
The parameter x could take any value in (−∞,∞), but we only need to consider

x ∈ [0, C] (assuming non-negative types). We recall that x represents how much the
non-excluded agents need to value the project in order for it to be built. When x < 0,
mechanism x is equivalent to mechanism x = 0 in terms of social welfare, because both
mechanisms always build and they are both budget-balanced. It is never a good idea to
set x to be strictly higher than C: if the non-excluded agents’ total valuation is at least
C, regardless of the excluded agent’s type, the optimal decision is to build.

For any x ∈ [0, C], mechanism x is (ex post) individually rational. Consider an
arbitrary agent i. If agent i reports C/n, then he is never pivotal, so he does not pay any
VCG payment excluded or not. If the decision is to build, then his utility is θi plus the
redistribution he received from the others, which is at least 0. If the decision is not to
build, then his utility is C/n plus the redistribution he received from the others, which

2 Faltings is also (ex post) individually rational in all settings where the VCG mechanism is (ex
post) individually rational.
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is also at least 0. That is, every agent can guarantee a non-negative utility by reporting
C/n. Combining this with the fact that the mechanism is incentive compatible, we can
conclude that it is individually rational.

Since the mechanism is always budget-balanced, for the purpose of maximizing so-
cial welfare, we can ignore payments when optimizing over x. Thus, for this purpose,
we can simplify mechanism x to:

– We exclude one agent uniformly at random.
– If the non-excluded agents’ total valuation is at least x, then we build. Otherwise,

we do not build.

Theorem 1. For any x ∈ [0, C], mechanism x is at most n−1
n -competitive.

Proof. Mechanism 0 always builds. Consider the type profile (0, 0, . . . , 0). Under mech-
anism 0, the agents’ total utility is 0. The agents’ maximum possible total utility
max{C, θN} = max{C, 0} = C. Hence, mechanism 0 is at most 0-competitive.

Consider x > 0. Consider the type profile (U, 0, . . . , 0), where U is a number larger
than C. Under mechanism x, when the agent reporting U is excluded, the decision
is not to build (the agents’ total utility is C). Otherwise, the decision is to build (the
agents’ total utility is U ). The agents’ expected total utility is 1

nC + n−1
n U . The agents’

maximum possible total utility is U . limU→∞
1
n C+n−1

n U

U = n−1
n . Hence, mechanism x

is at most n−1
n -competitive. ��

Theorem 2. Mechanism C is exactly n−1
n -competitive.

Proof. Under mechanism C, if agent i is excluded, then the agents’ total utility is at
least max{C,

∑
j 
=i θj}. Averaging over all i, the agents’ expected total utility is then

at least
1
n

n∑
i=1

max{C,
∑
j 
=i

θj}.

The above expression is no less than

1
n

max{nC,

n∑
i=1

∑
j 
=i

θj} = max{C,
n− 1

n
θN}.

This is always greater than or equal to n−1
n times max{C, θN}. That is, mechanism C

is exactly n−1
n -competitive (Theorem 1 has shown that it is at most n−1

n -competitive).
��

Theorem 3. For any x ∈ [n−2
n−1C, C), mechanism x is also exactly n−1

n -competitive.

Proof. As a result of Theorem 1, we only need to prove that for any x ∈ [n−2
n−1C, C),

mechanism x is at least n−1
n -competitive.

For all type profiles with θN ≥ C, the correct (optimal) decision is to build. That is,
for these type profiles, mechanism x is no worse than mechanism C, as mechanism x
has a lower threshold for building.
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Thus, we only need to prove that mechanism x is n−1
n -competitive for all type pro-

files with θN < C. For these type profiles, the correct decision is not to build. That is,
if x1 ≤ x2, then for these type profiles, mechanism x2 is no worse than mechanism x1,
as mechanism x2 has a higher threshold for building.

Therefore, we only need to prove that mechanism n−2
n−1C is n−1

n -competitive for all
type profiles with θN < C. In other words, we only need to prove that under mechanism
n−2
n−1C, the agents’ expected total utility is at least n−1

n C for all type profiles with θN <
C.

There are three cases:

1. If under mechanism n−2
n−1C, the decision is to build with probability 1, then we have

for all i,
∑

j 
=i θj = θN − θi ≥ n−2
n−1C. That is,

∑n
i=1(θN − θi) ≥

∑n
i=1(

n−2
n−1C).

Rearranging, (n − 1)θN ≥ n(n−2)
n−1 C. Therefore, we have that the agents’ total

utility θN is at least n2−2n
n2−2n+1C ≥ n−1

n C (recall that n ≥ 3).
2. If under mechanism n−2

n−1C, the decision is to build with probability 1
n ≤ p ≤

n−1
n , then the agents’ expected total utility is pθN + (1 − p)C. This expression is

decreasing in p, and increasing in θN . It is minimized when p = n−1
n and θN =

n−2
n−1C (θN ≥ n−2

n−1C because there exists i such that θN −θi ≥ n−2
n−1C). That is, the

agents’ expected total utility is minimized under type profile (n−2
n−1C, 0, 0, . . . , 0).

For this type profile, the agents’ expected total utility is 1
nC + n−1

n
n−2
n−1C = n−1

n C.
3. If under mechanism n−2

n−1C, the decision is to build with probability 0, then this
mechanism is always making the correct decision. The agents’ total utility is C.

��

Theorem 4. For any x ∈ [0, n−2
n−1C), mechanism x is strictly less than n−1

n -competitive.

Proof. We have already shown that mechanism 0 is at most 0-competitive in the proof
of Theorem 1.

For x > 0, consider the type profile (x, 0, 0, . . . , 0). Under mechanism x, when the
agent reporting x is excluded, the decision is not to build, and the agents’ total utility
is C. When some other agent is excluded, the decision is to build, and the agents’ total
utility is x. The agents’ expected total utility is n−1

n x + 1
nC. The agents’ maximum

possible total utility is C. The ratio equals (n−1)x
nC + 1

n <
(n−1) n−2

n−1 C

nC + 1
n = n−1

n . ��

As a summary, we have shown that mechanism x is optimal if and only if x ∈ [n−2
n−1C, C].

Next we consider mixtures of mechanisms with different parameters.

Definition 1. Mechanism OptMix:

– With probability 1
n+1 , we run mechanism 0 (always build);

– With probability n
n+1 , we run mechanism C.

Theorem 5. OptMix is exactly n
n+1 -competitive.

We note that OptMix is more competitive than any individual (non-mixture)
mechanism x.
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Proof. If θN < C, then mechanism C never builds. That is, if θN < C, then the agents’
expected total utility under OptMix is 1

n+1θN + n
n+1C ≥ n

n+1C = n
n+1 max{C, θN}.

We have that mechanism C is n−1
n -competitive, so if θN ≥ C, then the agents’ ex-

pected total utility under mechanism C is at least n−1
n θN . Under OptMix, the agents’ ex-

pected total utility is then at least 1
n+1θN + n

n+1
n−1

n θN = n
n+1θN = n

n+1 max{C, θN}.
The above shows that OptMix is at least n

n+1 -competitive. Let us consider the type
profile (0, 0, . . . , 0). For this type profile, under OptMix, the agents’ expected total util-
ity is exactly n

n+1C = n
n+1 max{C, θN}. Hence, OptMix is exactly n

n+1 -competitive.
��

Let Mix be an arbitrary mixture of mechanisms with different parameters. Let I be an
interval that is a subset of [0, C]. We use P (Mix ∈ I) to denote the probability that a
mechanism with parameter x ∈ I is used. P (Mix ∈ [0, C]) = 1. For OptMix, we have
P (OptMix ∈ [0, 0]) = 1

n+1 and P (OptMix ∈ [C, C]) = n
n+1 . We will prove that Mix is

at most n
n+1 -competitive. That is, OptMix is the most competitive among all mixtures

of mechanisms with different parameters.3

Theorem 6. OptMix is the most competitive among all mixtures of mechanisms with
different parameters.

Proof. If P (Mix ∈ [0, 0]) < 1
n+1 , then let us consider the type profile (U, 0, . . . , 0),

where U is larger than C. When the agent reporting U is excluded (which happens
with probability 1

n ), the non-excluded agents’ types are all zeros, which means that
the probability to build (when the agent reporting U is excluded) is equal to P (Mix
∈ [0, 0]). That is, overall, for this type profile, the probability p̄ of not building is at
least 1

n (1 − P (Mix ∈ [0, 0])), which is strictly larger than 1
n (1 − 1

n+1 ) = 1
n+1 . The

agents’ expected total utility is (1 − p̄)U + p̄C. The agents’ maximum possible total
utility is U . We have limU→∞

(1−p̄)U+p̄C
U = 1− p̄. That is, if P (Mix ∈ [0, 0]) < 1

n+1 ,
then Mix is at most n

n+1 -competitive. Therefore, if Mix is to be no less competitive than
OptMix, then we must have P (Mix ∈ [0, 0]) ≥ 1

n+1 .
If P (Mix ∈ [0, 0]) ≥ 1

n+1 , then let us consider the type profile (0, 0, . . . , 0). The
probability p̄ of not building is most 1− P (Mix ∈ [0, 0]). It follows that p̄ ≤ n

n+1 . The
agents’ expected total utility is (1 − p̄)0 + p̄C. The agents’ maximum possible total
utility is C. The ratio equals p̄, which is at most n

n+1 , and it follows that Mix is at most
n

n+1 -competitive. ��

So far, we have identified many competitive randomized mechanisms. Another natu-
ral question to ask is whether there exist competitive deterministic mechanisms. The
answer is yes: the VCG mechanism is 1

n -competitive.

3 OptMix is not the unique optimum. Consider a modified version of OptMix under which we
run mechanism 0 with probability 1

n+1
and run mechanism C − ε with probability n

n+1
(ε is a

small positive number). When θN ≥ C, modified OptMix is no worse than OptMix, since the
optimal decision is to build, and modified OptMix has a lower threshold for building. When
θN < C − ε, modified OptMix is the same as OptMix. When θN ∈ [C − ε, C), the optimal
decision is not to build. The maximum efficiency is C. Under any budget-balanced mechanism
(including modified OptMix), the agents’ expected total utility is between C − ε and C, thus
at least C − ε. When ε is small enough, we have C−ε

C
≥ n

n+1
.
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Theorem 7 (Moulin, private communication). The VCG mechanism is exactly 1
n -

competitive for the public project problem.

To illustrate how poor of a ratio the 1/n achieved by VCG is, we now give a very simple
mechanism that also obtains this ratio.

Definition 2. Mechanism Vote-to-Build: Let every agent vote whether to build or not.
If there is at least one vote toward building, then we build. Otherwise, we do not build.

If an agent’s valuation is at least C/n, then his dominant strategy is to vote toward
building. If an agent’s valuation is less than C/n, then his dominant strategy is to vote
toward not building. Vote-to-Build is (ex post) individually rational and budget-balanced
(there are no payments involved).

Theorem 8. Vote-to-Build is exactly 1
n -competitive.

Proof. If the decision is to build, then there exists i with θi ≥ C/n. That is, we have
θN ≥ C/n. The ratio θN

max{C,θN} is at least 1
n , and it reaches 1

n when θN = C/n

(corresponding to the type profile (C/n, 0, 0, . . . , 0)).
If the decision is not to build, then there is no i with θi ≥ C/n. It follows that

θN ≤ C. The ratio is then C
max{C,θN} = C

C = 1. ��

4 General Domains

In Section 3, we showed that Faltings is at least n−1
n -competitive for the public project

problem. Here we show that it remains true for general mechanism design problems, as
long as the agents’ valuation functions satisfy the following assumption.4

Assumption 1. The valuations of agents are non-negative for all outcomes: vi(k, θi) ≥
0 for all θi, k.

Theorem 9. Faltings is at least n−1
n -competitive, as long as the agents’ valuations

satisfy Assumption 1.

Proof. We begin with observing a few relationships between the value of the efficient
outcome when all agents are present and when one agent is excluded. Under Assump-
tion 1, making agent i accept a decision made without him does not decrease the value
of that decision.5 In particular, this applies to the efficient outcome for agents j �= i:∑

j vj(k∗(θ−i), θj) ≥
∑

j 
=i vj(k∗(θ−i), θj).

On the other hand, the total value of agents j �= i under the outcome efficient for them
is at least as high as their total value under the outcome efficient when all agents are
present.

4 The assumption places restrictions only on the valuation function and is independent of the
mechanism. This is in contrast to the individual rationality property, which requires the utility
of each agent participating in the mechanism to be above his outside value.

5 The valuation function in Equation 1 satisfies this property.
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j 
=i vj(k∗(θ−i), θj) ≥

∑
j 
=i vj(k∗(θ), θj).

Combining the two inequalities and summing over all agents, we get∑
i

∑
j vj(k∗(θ−i), θj) ≥

∑
i

∑
j 
=i vj(k∗(θ−i), θj)

≥
∑

i

∑
j 
=i vj(k∗(θ), θj) = (n− 1)

∑
i vi(k∗(θ), θi).

Dividing by n and focusing on the first and last expressions, we have

1
n

∑
i

∑
j vj(k∗(θ−i), θj) ≥ n−1

n

∑
i vi(k∗(θ), θi).

The expression on the left-hand side is the expected value of the outcome when the
decision is made efficiently after one agent is excluded uniformly at random. The in-
equality implies that the expected value of the decision under Faltings is at least n−1

n
of the maximum efficiency. ��

Faltings results in a rather unequal treatment of the excluded agent relative to the other
agents. In settings where the VCG mechanism collects a lot of revenue, the agents
would be envious of the excluded agent.

We next study a more fair payment scheme where each agent pays his expected VCG
payment and receives part of his own residual claimant rebate. We call the resulting
mechanism FaltingsFair. This scheme had been proposed previously by Faltings [6,8].
We derived it independently with formal proofs. The result on the competitive ratio is
novel. We discuss this in more detail at the end of this section.

– Exclude an agent a uniformly at random and compute the efficient allocation.
– Collect from each agent i (including a) the payment

ti(θ) =
1
n

∑
j 
=i

tvcg
i (θ−j)−

1
n

∑
j 
=i

tvcg
j (θ−i) (2)

Expanding each term of the payment, we can rewrite it as follows.

tvcg
i (θ−j) =

∑
a
=i,j

va(k∗(θ−i,j), θa)−
∑

a
=i,j

va(k∗(θ−j), θa)

tvcg
j (θ−i) =

∑
a
=i,j

va(k∗(θ−i,j), θa)−
∑

a
=i,j

va(k∗(θ−i), θa)

tvcg
i (θ−j)− tvcg

j (θ−i) =
∑

a
=i,j

(va(k∗(θ−i), θa)− va(k∗(θ−j), θa))

ti(θ) =
1
n

∑
j 
=i

∑
a
=i,j

(va(k∗(θ−i), θa)− va(k∗(θ−j), θa))

Theorem 10. FaltingsFair is incentive compatible in expectation, budget-balanced, and
for valuations satisfying Assumption 1, n−1

n -competitive.

Proof. First we prove incentive compatibility. Denoting FaltingsFair’s allocation
function that chooses a residual claimant uniformly at random with krc, agent i’s utility
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ui(krc(θ), ti, θi) =
(

1
n

∑
j vi(k∗(θ−j), θi)

)
− ti(θ)

= 1
n

∑
j vi(k∗(θ−j), θi)− 1

n

∑
j 
=i

∑
a
=i,j (va(k∗(θ−i), θa)− va(k∗(θ−j), θa))

= 1
nvi(k∗(θ−i), θi) + 1

n

∑
j 
=i

(∑
a
=j va(k∗(θ−j , θa))−

∑
a
=i,j va(k∗(θ−i), θa)

)
.

Removing the terms that agent i does not control with his report, we are left with
1
n

∑
j 
=i

∑
a
=j va(k∗(θ−j), θa). This expression is maximized when agent i reports the

true value θi as by the definition of k∗(θ−j)∑
a
=j va(k∗(θ−j), θa) ≥

∑
a
=j va(k′, θa) ∀j, k′ ∈ K .

Therefore, incentive compatibility holds.
Next we show budget balance (

∑
i ti = 0).∑

i
1
n

(∑
j 
=i t

vcg
i (θ−j)−

∑
j 
=i t

vcg
j (θ−i)

)
= 0∑

i

∑
j 
=i tvcg

i (θ−j) =
∑

i

∑
j 
=i tvcg

j (θ−i)

The equality follows from the simple identity
∑

i

∑
j 
=i aij =

∑
i

∑
j 
=i aji.

Finally, the allocation function is the same as before, thus, FaltingsFair has the same
competitive ratio as Faltings. ��

Unlike Faltings, FaltingsFair is incentive compatible only in expectation with respect
to the random outcome function k(θ). This means that an agent has no incentive to
misreport his value before the outcome is chosen,6 but once the outcome is known, the
agent may regret not reporting a different value. Incentive compatibility in expectation
is a natural concept for randomized mechanisms as the reporting of values must occur
before the outcome is selected.

Our next theorem deals with individual rationality. [7] showed that Faltings is (ex
post) individually rational in settings where the VCG mechanism is (ex post) individu-
ally rational. This is actually the case for valuations satisfying Assumption 1. That is,
for valuations that satisfy Assumption 1, Faltings is (ex post) individually rational. Sim-
ilar to the case of incentive compatibility, unlike Faltings, FaltingsFair is individually
rational only in expectation with respect to the random outcome function k(θ).

Theorem 11. For valuations satisfying Assumption 1, FaltingsFair is individually ra-
tional in expectation.

We now take a closer look at the payment function in Equation 2. The first term is the
expected VCG payment in the market with one agent excluded uniformly at random.
The second term produces a rebate equal to 1

n of the total VCG payments realized
without the agent in the market. This rebate has been considered before with the goal
of redistributing the VCG surplus in [3,4].

hrc
i (θ−i) =

1
n

∑
j 
=i

tvcg
j (θ−i) (3)

6 Note that unlike the Bayesian incentive compatible “expected externality mechanism” (or
dAGVA), our mechanism is dominant-strategy incentive compatible and we have no prior over
agents’ types.
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This rebate, however, may exceed the total VCG revenue resulting in a deficit in some
models. In fact, as Cavallo argues in [4], the no-deficit property requires the redistri-
bution to sometimes be smaller than the amount above. Specifically, one can compute
the smallest total VCG payment collected from the agents over all values agent i might
have. It is this amount that should be used in the redistribution to agent i:

hmin
i (θ−i) =

1
n

min
θ′

i

∑
j

tvcg
j (θ′i, θ−i) (4)

It is easy to see that in the public good setting, the above rebate (Equation 4) is always
zero.7 Thus, rebates of this form are not helpful in efficient mechanisms in models like
those involving public goods. In contrast, in FaltingsFair, the rebate (3) results in full
budget balance in any model.

The payment rule in Equation 2 was previously proposed by Boi Faltings in a patent
[8] and an unpublished paper [6]. There Faltings provides an equivalent definition of
the payment rule: instead of considering the rebate function explicitly, the rule directs
each agent i to pay 1

n tvcg
i (θ−j) to each agent j. Notice that budget balance follows im-

mediately from this definition. To see that the definition in fact defines the payment rule
in Equation 2, notice that the first summation corresponds to the payments agents j �= i
make to agent i and the second summation corresponds to the payments agent i makes
to agents j �= i. These definitions provide different interpretations of the mechanism:
Faltings views it as the average of the budget-balanced Faltings mechanism, while we
make explicit the connections to a redistribution function previously considered in the
literature.

5 Discussion

We studied randomized mechanisms that are fully budget-balanced and aimed to max-
imize the expected efficiency, which under budget balance coincides with the expected
social welfare. The expected welfare loss of our generally applicable mechanism is only
1
n in the worst case leaving little room for improvement. However, whether or not this
loss can be reduced with a different randomized mechanism (budget-balanced, or not)
remains an open question.

Note that full efficiency is impossible in randomized mechanisms.8 Thus, the goal
of minimizing budget imbalance in an efficient mechanism is not meaningful in this
context. However, the question of minimizing budget imbalance in deterministic mech-
anisms for public good remains open.

Finally, we note that for public project problems, our definition of the value of the
efficient outcome adds C to the standard definition of max(θN−C, 0) = max(θN , C)−
C (see, e.g., [13]). Our results can be interpreted under the standard definition: being

7 If θN − θi < n−1
n

C, then when θi = 0, no agent is pivotal and the total VCG payment is 0;
If θN − θi ≥ n−1

n
C, then when θi = C, no agent is pivotal and the total VCG payment is

also 0.
8 At least, this is the case for significantly randomized mechanisms that do more than just break

ties randomly.
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r-competitive means we guarantee the welfare of r(C + max(θN − C, 0)). We cannot
guarantee the welfare of r max(θN − C, 0) as Assumption 1 does not hold for the
standard valuation function

vi(k(θ), θi) =

{
θi − C

n if k(θ) = 1
0 otherwise

We are indebted to Hervé Moulin for the idea of using the alternative metric.
The definition of valuations above ensures that the cost C is covered (each agent

contributes C
n ) as long as the sum of the agents’ payments is non-negative. The valua-

tion function that we use shifts the standard one by C
n . However, in both cases, the cost

C is covered: i.e., non-negative total payments result in weak budget balance.
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Abstract. Motivated by the display ad allocation problem on the Inter-
net, we study the online stochastic weighted matching problem. In this
problem, given an edge-weighted bipartite graph, nodes of one side arrive
online i.i.d. according to a known probability distribution. Recently, a se-
quence of results by Feldman et. al [14] and Manshadi et. al [20] result
in a 0.702-approximation algorithm for the unweighted version of this
problem, aka online stochastic matching, breaking the 1 − 1/e barrier.
Those results, however, do no hold for the more general online stochastic
weighted matching problem. Moreover, all of these results employ the
idea of power of two choices.

In this paper, we present the first approximation (0.667-competitive)
algorithm for the online stochastic weighted matching problem beating
the 1 − 1/e barrier. Moreover, we improve the approximation factor of
the online stochastic matching by analyzing the more general framework
of power of multiple choices. In particular, by computing a careful third
pseudo-matching along with the two offline solutions, and using it in
the online algorithm, we improve the approximation factor of the online
stochastic matching for any bipartite graph to 0.7036.

Keywords: online stochastic matching, approximation algorithm,
competitive analysis, ad allocation.

1 Introduction

Online bipartite matching is a fundamental problem with many applications in
online resource allocation, especially the online allocation of ads on the Inter-
net. In this problem, given a bipartite graph G(A, I, E) with advertisers A and
impressions I, and a set E of edges between them. Advertisers in A are fixed
and known. Impressions (or requests) in I (along with their incident edges) ar-
rive online. Upon the arrival of an impression i ∈ I, we must assign i to any
advertiser a ∈ A where (i, a) ∈ E(G). At all times, the set of assigned edges
must form a matching. The seminal result of Karp, Vazirani and Vazirani [17]
gives an optimal online 1 − 1/e-competitive algorithm to maximize the size of
the matching. This algorithm works in the adversarial model where the online
algorithm does not know anything about the I or E beforehand.

N. Chen, E. Elkind, and E. Koutsoupias (Eds.): WINE 2011, LNCS 7090, pp. 170–181, 2011.
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Motivated by applications in online advertising, a stochastic online model
has been proposed in which impressions i ∈ I arrive online according some
known probability distribution [14]. In this setting, in addition to G, we are
given a probability distribution D over the elements of I. Our goal is then to
compute a maximum matching on Ĝ = (A, Î, Ê), where Î is drawn from D. This
model is particularly well-motivated in the context of online ad allocation in
which one can predict the pattern or type of impressions or requests using a vast
amount of historical data [14]. A sequence of results give improved approximation
algorithms for this problem, beating the approximation factor of 1−1/e [14,4,20].
All these results employ the natural technique of the power of two choices [3,21]
which was initially used by Feldman, Mehta, Mirrokni, and Muthukrishnan [14]
in this context, i.e., they compute two offline matchings and using them to guide
the online solution. The best known result in this model is a 0.702-approximation
in expectation by Manshadi, Oveis Gharan and Saberi [20] which applies the
power of two choices paradigm in an adaptive online fashion.

All the above results hold only for unweighted bipartite graphs in which the
goal is to maximize the size of the matching. However, in many real world sce-
narios, the value received from matching a node may vary for different nodes. For
example, in the context of display online ads, different ads may have different
potential values for different impressions (as measured, e.g., by click-throughs).
In such settings, advertisers would like their ads to be assigned to well-targeted
impressions and the online ad serving algorithm has an important goal of maxi-
mizing the overall quality of impressions used for these ads. Moreover, advertisers
in some online display ad-campaigns may be willing to pay a different amount
every time their ad is shown on a website depending on the type of impression
(for example geographic information of users, etc). In such settings, advertisers
specify their targeting criteria for the set of impressions they are interested in
and may declare how much they are willing to pay for each targeted audience.
All such settings can be formalized as a maximum weighted matching problem
for an edge-weighted bipartite graph G, i.e., given an edge-weighted G(A, I, E)
with an edge weight ω(e) for each edge e ∈ E(G), the goal is to find a matching
of ads in A to impressions in I that maximize the total weight of the matching.

The online version of the maximum weighted matching problem as described
above has not been studied in this form. In fact, the only weighted online match-
ing problems studied so far are in the adversarial model, have 1−1/e-competitive
and hold either with the extra assumption of large degrees in the free disposal
model [13], or in the ad-weighted special case of this problem in which all edges
connected to the same ad a ∈ A has the same weight [1]. In this paper, we study
the unrestricted weighted problem in the stochastic arrival model, and present
the first approximation algorithms for it.

Our Results and Techniques. We present two main results under the i.i.d.
model, generalizing the known techniques in two directions.
1) We first observe a simple 1 − 1/e-approximation for the online stochas-
tic weighted matching problem, and then improve it to a 0.667-approximation
algorithm, breaking the 1− 1/e bottleneck. One significance of this result is in
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applying the idea of power of two choices in a problem more general than the on-
line stochastic matching problem [14,20]. Previously only 1−1/e-approximation
algorithm were known for other similar variants of this problem with small de-
grees (or small budgets) [10]. In order to beat the 1− 1/e approximation factor,
we need to consider a discounted version of the offline LP solution, and find the
offline solution of this discounted LP. The trick of solving the offline instance for
a discounted instance may prove useful elsewhere in solving more general stochas-
tic problems. We employ the ideas of power of two choices and sampling from an
optimum solution of the matching linear program that have been developed by
Feldman et al. [14] and Manshadi et al. [20]. We hope that our application of
these ideas paves the way for applying this technique to more general stochastic
optimization problems like online stochastic packing and other applications in
the OR literature [6,5,8,11].
2) We furthermore apply our discounted LP technique to give an improved com-
petitive algorithm for the online stochastic matching problem. We use the dual
of the tightened LP to obtain a new upper bound on the optimal solution. This
already leads to a competitive ratio of 0.684. We then even further tighten the
LP and sample an additional pseudo-matching from it. Via this pseudo match-
ing we obtain an algorithm with competitive ratio of 0.7036 which improves over
the best previously known approximation. Other than the slight improvement in
the approximation factor, the significance of this result is in demonstrating the
power of multiple choices and providing tightened LPs as a tool to both sample a
good subgraph of the expected graph and also obtain better and closely related
upper bound on the optimal solution via their dual.
3) Finally, we present simple adaptive online algorithms to solve the online
(weighted) stochastic matching problem optimally for a special class of graphs,
including the union of two matchings. This algorithm can be used as the final
allocation rule for any approximation algorithm that first computes two offline
matchings whose edges are then exclusively used in a solution. This improves
upon the heuristics used for allocation the algorithms of [14,4], the non-adaptive
algorithm of [20] and our algorithm for the weighted case.

Other Related Work. Another stochastic model studied in the context of
online stochastic matching is the random order model where we assume that
I is unknown, but impressions in I arrive in a random order. This has proved
to be an important analytical construct for other problems such as secretary-
type problems where worst cases are inherently difficult. It is known that in this
case even the greedy algorithm has a (tight) competitive ratio of 1 − 1/e [15].
Further, no deterministic algorithm can achieve approximation ratio better than
0.75 and no randomized algorithm better than 0.83 [15]. Very recently, improved
approximation algorithms have been proposed for this problem [16,18].

Online stochastic weighted matching problem is related to online ad alloca-
tion problems, including the Display Ads Allocation (DA) problem [13,12,2,22],
and the AdWords (AW) problem [19,7,9]. In both of these problems, the pub-
lisher must assign online impressions to an inventory of ads, optimizing efficiency
or revenue of the allocation while respecting pre-specified contracts. In the DA
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problem, given a set of m advertisers with a set Sj of eligible impressions and
demand of at most n(j) impressions, the publisher must allocate a set of n im-
pressions that arrive online. Each impression i has value wij ≥ 0 for advertiser j.
The goal of the publisher is to assign each impression to one advertiser maximiz-
ing the value of all the assigned impressions. The adversarial online DA problem
was considered in [13], which showed that the problem is inapproximable without
exploiting free disposal; using this property (that advertisers are at worst indif-
ferent to receiving more impressions than required by their contract), a simple
greedy algorithm is 1/2-competitive, which is optimal. When the demand of
each advertiser is large, a (1 − 1/e)-competitive algorithm exists [13], and it is
tight. The stochastic model of the DA problem is more related to our problem.
Following a training-based dual algorithm by Devanur and Hayes [9], training-
based (1 − ε)-competitive algorithms have been developed for the DA problem
and its generalization to various packing linear programs [12,22,2]. These papers
develop a (1 − ε)-competitive algorithm for online stochastic packing problems
in which OPT/wij ≥ O(m log n/ε3) (or OPT/wij ≥ O(m log n/ε2) applying the
technique of [2]) and the demand of each advertiser is large, in the random-order
and the i.i.d. model. All the above algorithms work only in the presence of extra
assumptions, and none of them apply to the online stochastic weighted matching
problem as discussed in this paper.

2 Preliminaries

Consider the following online stochastic weighted matching problem in the
i.i.d. model: We are given an edge-weighted bipartite graph G = (A, I, E) over
advertisers A and impression types I, along with an edge weight ω(e) for each
edge e ∈ E(G). Let k = |A| and m = |I|. We are also given, for each impression
type i ∈ I, an integer number ei of impressions we expect to see. Let n =

∑
i∈I ei.

We use D to denote the distribution over I defined by Pr[i] = pi = ei/n.
Throughout this paper, we assume without loss of generality that each impres-
sion occurs with frequency one, i.e., ei = 1 for each i ∈ I. Sometimes, it will
be convenient to think of G as the complete graph with ”non-available edges”
having weight zero.

An instance (G,D, n) of the online stochastic matching problem is as follows:
We are given offline access to G and the distributionD. Once online, n i.i.d. draws
of impressions i ∼ D arrive, and we must immediately assign an impression i to
some advertiser a where (a, i) ∈ E, or not assign i at all. Each advertiser a ∈ A
may only be assigned at most once1. Our goal is to assign arriving impressions
to advertisers and maximize the total weight of assigned impressions. In the
following, we will formally define the objective function of the algorithm.

1 All results in this paper hold for a more general case that each advertiser a has a
capacity ca and advertiser a can be assigned at most ca times. This more general
case can be reduced easily to the degree one case by repeating each node a ca number
of times in the instance.
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Let D(i) be the set of draws of impression type i that arrive during the run
of the algorithm. We let a scenario Î = ∪i∈ID(i) be the set of impressions. Let
Ĝ(Î) be the “realization” graph, i.e., with node sets A and Î, and edges Ê =
{(a, i′) : (a, i) ∈ E, i′ ∈ D(i)}. Given an instance (G,D, n) of the online match-
ing problem, we wish an algorithm ALG for which E[ALG(Î)]/E[OPT(Î)] ≥ α.
In this case, we say that the algorithm achieves approximation factor α in ex-
pectation. Note that one could also study the stronger notion of approximating
with high probability, but it is not hard to see that this notion is not applicable
to the weighted matching problem.

3 A 0.667-Competitive Algorithm for Weighted Graphs

In this section, we present a 0.667-competitive algorithm for the online stochas-
tic weighted matching problem. Our algorithm build on the simple 1 − 1/e-
approximation algorithm which we describe next. The algorithm uses the
following standard matching LP:

maxwT p subject to

∀a ∈ A :
∑

e∈Γ (a)

pe ≤ 1; ∀i ∈ I :
∑

e∈Γ (i)

pe ≤ 1

The algorithm computes an optimal solution vector p∗ for this linear program
and then whenever an impression i arrives, take an edge e(i, a) (incident to
impression i) with probability p∗e and if a is not taken it matches i to a. We note
that this algorithm works also if the arrival rates are non-integral and that it can
be made deterministic for integal-arrival rates by selecting an integral solution
vector p∗. To analyze the performance of this strategy we see that for each edge
e(i, a), the probability that we match i to a in total is at least:

n∑
t=1

p∗e
n

(1− 1/n)t−1 = p∗e
1
n

(1− 1/n)0 − (1 − 1/n)n

1− (1− 1/n)
≥ p∗e(1 − 1/e).

This is the probability that at some time t, impression i comes, and we pick
edge e, and ad a is not taken before time t. We conclude that from this that our
expected gain is at least (1− 1/e) times the optimal solution.
Improved Algorithm. In order to beat the 1 − 1/e approximation factor, we
consider a discounted version of the matching LP and use its solution to precom-
pute matchings that guide our online allocation rule. To develop the LP consider
the expected bipartite graph G = (I, A, E) with edge weights w(e) for e ∈ E(G).
For every sequence of impressions, the optimal solution uses a matching strat-
egy to match the incoming impressions to unmatched ads. As every sequence of
impressions happen with some probability, every edge e between an impression
i, and ad a is taken in the optimal solution with some probability pe which is
the sum of the probabilities of all sequences of impressions in which the optimal
solution matches i to a. Note that since every ad a is matched to at most one
impression in any situation, for any fixed a the sum

∑
e(i,a) pe is at most one.

Furthermore every impression i is coming with rate 1, so for any fixed i, the sum
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e(i,a) pe is at most 1 as well. Since every impression does not come at all with

probability (1 − 1/n)n ≈ 1/e, we can add the constraint that for each edge e,
the probability pe is at most 1 − 1/e. In fact, the optimal solution is a feasible
solution for the following restricted matching linear program:

maxwT p subject to

∀a ∈ A :
∑

e∈Γ (a)

pe ≤ 1; ∀i ∈ I :
∑

e∈Γ (i)

pe ≤ 1; ∀e ∈ E(G) : pe ≤ 1 − 1/e

Our algorithm is based on a optimal fractional solution p∗: First it computes p∗

and then it samples a matching Ms from the graph G such that for any edge e
the probability that e is in Ms is equal to p∗e. Let M1 be a maximum weighted
matching in graph G. Define M ′ to be the matching M1 \ Ms which is the
union of edges in M1 that are not in Ms. The algorithm uses Ms as the primary
matching, and M ′ as the auxiliary matching. More precisely this translates to
the following allocation rule: Upon arrival of an impression i for the first time,
assign i to its matched node in Ms if such a matching node exists and it is not
already taken. Upon arrival of an impression i for the second time, assign i to its
matched node in M ′ if such a matching node exists and it is not already taken.

Lemma 1. The expected value of the matching the algorithms outputs is at least
in (1−1/e)ω(Ms)+0.095(ω(M ′)) where ω(M ′) is the sum of the weights of edges
in M ′.

Proof. There are three types of edges the algorithm might take: edges in Ms∩M1,
Ms \M1, and M ′ = M1 \Ms. We first prove that every edge in Ms ∩M1 gets
taken with probability 1− (1− 1/n)n ≈ 1− 1/e. Consider an edge e(i, a) which
is in both Ms and M1. Note that ad a is not matched to any impression in the
auxiliary matching M ′, so impression i is not competing for ad a with any other
impression. Therefore impression i is matched to ad a, if it comes at least once.
So with probability 1− (1− 1/n)n ≈ 1− 1/e, we take this edge in Ms ∩M1.

Now, we prove that every edge in M ′ gets taken with probability at least
0.148. Consider an edge e′(i′, a′) ∈ M ′, in the worst case a′ is matched to some
impression is in matching Ms (otherwise the probability of taking e′ increases).
The only case we take e′ is when i′ comes for the second time, but impression is
has not arrived yet. Let 1 ≤ t1 < t2 ≤ n be the time slots in which i′ comes for
the first and second time. The probability of taking e′ can be formulated and
approximated (for large n) as follows:

n−1∑
t1=1

(1/n)
n∑

t2=t1+1

(1/n)(1− 2/n)t2−2 ≈ 1− 1/e2

4
− 1

2e2
> 0.148.

Finally we compute a lower bound for the probability of an edge in Ms\M1 being
taken by the algorithm. Consider an edge e′′(i′′, a′′) in Ms \ M1. In the worst
case, ad a′′ is matched to some impression i1 in matching M1 (and therefore in
matching M1). We compute the probability that i′′ comes before the second i1
comes. Let t be the time slot in which i′′ is arrived for the first time, and i1 has
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not come yet, or has come exactly once. This probability can be written and
approximated as follows:

n∑
t=1

1
n

[
(1 − 2/n)(t−1) +

t− 1
n

(1− 2/n)(t−2)
]
≈ (1− 1/e2)

2
+ 0.148 > 0.58.

Putting this together we get that the expected value of the output is at least

0.58ω(Ms \M1) + (1− 1/e)ω(Ms ∩M1) + 0.148ω(M ′)
≥ 0.58ω(Ms) + (1− 1/e− 0.58)w(Ms ∩M1) + 0.148(M1 \Ms)

≥ 0.58ω(Ms) + (1− 1/e− 0.58)ω(M1) + [0.148− (1 − 1/e− 0.58)]ω(M1 \Ms)
≥ (1− 1/e)ω(Ms) + 0.095ω(M ′)

where the last step follows since M1 is maximal and thus at least ω(Ms).

Theorem 1. The expected value of the output of the above algorithm is at least
0.667 times the optimal fractional LP solution, and therefore at least 0.667OPT.

Proof. Using Lemma 1 we know that the expected value of the output of our
algorithm is at least (1 − 1/e)E(ω(Ms)) + 0.095E(ω(M ′)). Since every edge is
present in Ms with probability p∗e, the expected value of ω(Ms) is equal to
the value of the LP solution. To upper bound the size of E(ω(M ′) we use the
additional LP constraint to note that every edge has probability at most 1−1/e to
be sampled into Ms which implies that each edge of M1 is in M ′ with probability
at least 1/e. Thus the expected value of ω(M ′) is at least ω(M1)/e. Since both
ω(M1) and ω(Ms) are larger than the expected solution of the optimal offline
algorithm we obtain that our algorithm has a competitive ratio of at least a
1− 1/e + 0.095/e = 0.667.

4 A 0.7036-Approximation for Unweighted Graphs

In this section, we show how to use the power of multiple choices to design an
improved 0.7036-approximation for the online stochastic matching problem in
unweighted bipartite graphs. To prove this bound we use the dual of a tightened
LP to obtain a better upper bound on the optimal offline solution. We first
demonstrate this technique on a simpler algorithm using two matchings and
then state our new algorithm.

Warm-Up: A 0.684-Approximation Algorithm. We describe a 0.6844-ap-
proximation algorithm which is based on computing two matchings and captures
the initial idea of using the dual of a tighter linear program to upper bound
the optimal value. The algorithm is extremely simple: It computes a maximum
weighted matching M1 in G and a maximum weighted matching M2 in G \M1

and solely use edges from these two matchings. When an impression comes it
first tries to match it along an M1 edge (if one exists) and then along an M2

edge. If the impression remains unmatched afterwards it is discarded.
To analyze the performance of this algorithm we classify every edge e =

(i, a) ∈ M2 to belong to one of three different classes:
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– class-B: e is adjacent to one edge (a, i′) ∈ M1

– class-C: e is adjacent to one edge (a′, i) ∈ M1

– class-D: e is adjacent to two edges (a′, i), (a, i′) ∈ M1

Lemma 2. The algorithm obtains in expectation a (1 − 2/e)1/e fraction of all
class-D edges in M2, a (1/e− 1/e2) fraction of all class-B edges and a (1− 2/e)
fraction of all class-C edges.

Proof. The probability that an impression comes not at all is (1− 1/n)n ≈ 1/e;
the probability that an impression comes exactly once is n(1/n)(1− 1/n)n−1 ≈
1/e and therefore the probability that an impression comes at least twice is
1 − (1 − 1/n)n − (1/n)n(1 − 1/n)n−1 ≈ 1 − 2/e. We will pretend that if an
impression i comes for the first time but the ad a at the M1 edge (i, a) of i is
already taken by an M2-edge we will delete the M2 edge and put in the M1

edge. This is only for the sake of analysis and since we are in the unweighted
case it does not change the value or later decisions of the algorithm. With this,
a class-D edge gets picked if impression i comes twice and impression i′ does not
come at all which happens with probability (1 − 2/e)1/e. A class-B edge gets
picked if impression i comes at least once and the impression i′ does not come
at all giving a probability of (1 − 1/e)1/e. Lastly a class-C edge gets taken if
impression i comes twice which happens with probability at least 1− 2/e.

A Simple Upper Bound. We will first argue that OPT ≤ ω(M1) and OPT ≤
(1− 1/e)ω(M1) + M2 are both valid upper bounds on the expected value of the
optimal offline solution:

For this we fix an algorithm that given the realization graph computes a
maximum weighted matching. This is the optimal offline algorithm we want to
compete against. Let pe be the probability that edge e is used in the solution of
the algorithm. It is easy to see that these probabilities form a maximum fractional
solution in the standard matching LP. As such it has the same value as our M1

and the first bound follows. For the second bound we observe that since each
impression does not come at all with probability 1/e the gain from edges in M1

for the optimal algorithm can be at most (1 − 1/e)ω(M1). In addition to that
the value from edges not in M1 also has to obey the matching LP restrictions
in G \M1 which is the graph M2 is a maximal matching in. The second bound
follows.

Using these upper bounds together with Lemma 2 results in a competitive-
ratio of 0.667. This competitive ratio is obtained for ω(M2) = ω(M1)/e and all
M2 edges being of class-D.

Improving the Upper Bound Using the Dual. The following stronger ob-
servation is the main tool in our analysis: The gain from edges not in M1 is not
just a solution to the matching LP in G\M1, but also have to obey the fact that
any ad can be used at most once in expectation between both M1 and M2. Thus
we can (significantly) strengthen the constrains in the LP bounding M2 to:
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max1T p subject to
∀a ∈ A :

∑
e∈ΓG\M1 (a)

pe ≤ 1−
∑

e∈Γ (a)∩M1

pe

In order to find out how much lower the value of this more restricted LP is
we switch to the dual. The dual for the weighted matching LP is the minimum
vertex cover LP which assigns each vertex a value trying to minimize the sum of
all these values subject to the constraint that for each edge e the sum of values
on its two endpoints has to be at least one. In the dual of the tightened LP only
the weight coefficients in the objective functions have decreased from 1 to 1−pe.
This means that the minimum vertex cover in G \M1 (lets call it C) remains a
feasible (but not necessarily minimum) solution generating a valid upper bound.
While the vertex cover C has a value of w(M2) using uniform weights, we will
prove that (on graphs with many class-D edges on which our algorithm does not
perform good) a tighter upper bound on OPT can be obtained by looking at the
reweighted value of C:

For this, we analyze the situation of a class-D edge as above. We have two
ads a′ and a that are matched by M1 to the impressions i and i′ but in M2 the
impression i is matched to a. Let the matching edges be: e1 = {i, a′}, e2 = {i′, a}
and e3 = {i, a} (edges e1 and e2 are in M1, and edge e3 is in M2). Let furthermore
p1, and p2 be the probabilities that edges e1 and e2 show up in the offline optimal
matching and let c1 and c2 be the value of the nodes i and a in the minimum
vertex cover on G \M1 corresponding to M2.

We want to improve upon the upper bound of OPT ≤ (1− 1
e )w(M1)+w(M2)

which results from the fact that p1, p2 ≤ (1−1/e) and c2+c1 = 1. For this simple
situation we can improve over this bound by accounting for the possibility of
p1, p2 being smaller than (1-1/e) and the new weights of (1 − p1) and (1 − p2)
in the vertex cover LP for M2. This improvement is:
(1− 1

e−p1)+(1− 1
e−p2)+p1c1+p2c2 ≥ (1− 1

e−min{p1, p2})+min{p1, p2}(c1+c2),
which is at least 1− 1/e. This implies that we get an improvement of (1− 1/e)
on the previous upper bound for any class-D edge in M2 that is part of a 3-path
in M1 ∪M2. Unfortunately paths can be longer and the improvements have to
be shared between “neighboring” class-D edges. In the general case it is easy to
see that one can at least attribute half of this improvement towards any class-D
edge e2. This leads to the improved upper bound of OPT < (1 − 1/e)ω(M1) +
ω(M2)−D(1−1/e)/2. As the next lemma shows this suffices to prove the 0.6844
competitive ratio:

Lemma 3. The above algorithm for the online stochastic matching problem has
a competitive ratio of at least 0.6844 in expectation.

Proof. We want to determine the worst ratio of ALG/OPT given the above
constraints. For this we first observe that in the worst case C = 0. We now
fix r = ω(M2)/ω(M1), k = D/ω(M2), scale by ω(M1)−1 and obtain: OPT ≤ 1;
OPT ≤ (1−1/e)+r−rk(1−1/e)/2 and ALG ≥ (1−1/e)−rk/e2+r(1/e−1/e2).
Observe that both upper bounds on OPT and the lower bound on ALG are linear
functions when restricted to r or k. The minimum of ALG/OPT is thus obtained
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for on a boundary value for r, i.e., k = 1 or k = 0, or at the point where the
tightness of the two upper bounds switches, i.e., when 1/e = r − rk(1− 1/e)/2.
The case of r = 0 results in a competitive ratio of 1 and the case r = 1 results in
a competitive ratio of at least (1− 1/e)− k/e2 + (1/e− 1/e2) ≥ 1− 2/e2 > 0.72.
The last case implies rk = 2(r− 1/e)/(1− 1/e) and gives a competitive ratio of

(1− 1/e)− (2/e(e− 1))(r − 1/e) + r(1/e− 1/e2) =
(1 − 1/e) + 2/e2(e− 1)− r(2/(e(e− 1))− 1/e + 1/e2)

We thus have r and k as large as possible, which leads to k = 1, r = 2/(e + 1)
and a competitive ratio of 0.6844.
A 0.7036-Competitive Algorithm for Online Stochastic Matching. Build-
ing on the algorithm above we give a 0.7036-competitive algorithm that employs
the power of multiple choices. The analysis crucially exploits the dual LP ideas
demonstrated above in a lengthy case analysis. Due to space limitations we omit
the analysis here and solely give the algorithm description:
LP Pseudo: max Σe∈E(G)pe s.t.
∀a ∈ A : Σe∈Γ (a)pe ≤ 1 ∀i ∈ I : Σe∈Γ (i)pe ≤ 1

∀e ∈ E(G) : pe ≤ 1 − 1

e
∀a ∈ A ∀e, e′ ∈ Γ (a) : pe + pe′ ≤ 1 − 1

e2

Our algorithm uses two matchings M1 and M2 as constructed before but employs
an additional pseudo-matching that is constructed based on the linear program
LP Pseudo. The last inequality of the LP results from the fact that any pair
of impressions (in this case, the impressions incident to edges e and e′) do not
come with probability (1− 2/n)n ≈ 1

e2 . The optimum solution, p∗ to this LP is
thus an upper bound on the expected value of the optimum solution.

For any edge e′ ∈ M1 ∪ M2 we set p∗e′ to be zero. We then multiply all
probabilities p∗ by 2. If the sum of probabilities of some ad a ∈ A is greater
than 1, we reduce the probabilities of some incident edges to a to make it equal
to 1. The sum of probabilities of each ad and each impression are at most 1
and 2 respectively. We can make an identical copy of each impression and split
the probabilities of the impressions adjacent edges between the edges to the
impression and its copy equally to have a fractional matching solution. We then
sample a pseudo matching based on this fractional solution. We call the sampled
edges a pseudo matching because each impression is adjacent to at most two
sampled edges, and each ad is adjacent to at most one. Our algorithm now uses
M1, M2 and the pseudo matching as follows. When an impression arrives, the
priority is to match it based on M1, if it is not possible we match it based on M2,
and if that is not possible neither, we match it based on the pseudo matching.
If the impression is matched to two ads in the pseudo matching, we match it to
the ad that has smaller probability of being matched in future (based on its M1

and M2 adjacent edges).
Classifying the ads according to what kind of edges they are adjacent to leads

to the following result:

Theorem 2. The expected size of the output of our algorithm is at least 0.7036
times the optimal solution.
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5 Optimal Online Algorithms for Simple Graphs

In this section we briefly discuss our results for solving the online stochastic
(weighted) matching problem optimally in a restricted class of graphs.

We define a graph G to have subgraph complexity k if there are at most k
subgraphs of G that are connected (and can be obtained by removing ads). Note
that, e.g., any cycle or line of length l has a subgraph complexity of at most
l2. Note also that subgraph complexity behaves additively with respect to the
vertex-disjoint union of two graphs. From this it follows that the union of two
matchings has a subgraph complexity of at most n2.

The following theorem can be obtained by using dynamic programming to
compute the expected matching value E(C, t) for any connected subgraph C
when there are exactly t steps left.

Theorem 3. There is a deterministic algorithm that solves the online stochas-
tic weighted matching problem with T rounds optimally. The algorithm takes
O(kTm) time in total for any graph with subgraph complexity k and m edges.

With this algorithm on hand one can then try to compete against the optimal
online or offline algorithm by first reducing the matching graph by throwing
away edges to obtain a graph with low subgraph-complexity and then run the
optimal online algorithm. This is essentially what is done in the algorithms of
[14,4], the non-adaptive algorithm of [20] and our algorithm for the weighted
case except that non-optimal heuristics are used to allocate the ads along the
edges of two matchings (which form a graph with low subgraph complexity).
We leave it as an interesting open question how much the use of this algorithm
improves the competitiveness of the above mentioned algorithms and whether it
can be useful as a building block for better algorithms.

The last thing to mention is that the above algorithm works in the stated
time bound in a much more general setting including edge weights, different
non-integral rates for ads and even generalizations to non-bipartite graphs. For
the unweighted case with equal frequencies and the union of two matchings (as
needed for the algorithms mentioned above) the optimal decision becomes much
simpler. Indeed, the following rules suffice: 1.) If the current impression occurs
on a path on which at least one side ends on an ad match the impression match
it to the ad on the side with the (shorter path to the) ad. 2.) If both sides
of the path end on an impression, match it to the side with the longer path.
3.) Otherwise match the impression arbitrarily whenever possible. This strategy
can easily be implemented using only an amortized expected O(log n) time per
sampling step.
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Abstract. In this paper we study the problem of allocating divisible
items to agents without payments. We assume no prior knowledge about
the agents. The utility of an agent is additive. The social welfare of a
mechanism is defined as the overall utility of all agents. This model is
first defined by Guo and Conitzer[7]. Here we are interested in strategy-
proof mechanisms that have a good competitive ratio, that is, those that
are able to achieve social welfare close to the maximal social welfare in all
cases. First, for the setting of n agents and m items, we prove that there
is no (1/m + ε)-competitive strategy-proof mechanism, for any ε > 0.
And, no mechanism can achieve a competitive ratio better than 4/

√
n,

when m ≥
√

n. Next we study the setting of two agents and m items,
which is also the focus of [7]. We prove that the competitive ratio of
any swap-dictatorial mechanism is no greater than 1/2 + 1/

√
[log m].

Then we give a characterization result: for the case of 2 items, if the
mechanism is strategy-proof, symmetric and second order continuously
differentiable, then it is always swap-dictatorial. In the end we consider
a setting where an agent’s valuation of each item is bounded by C/m,
where C is an arbitrary constant. We show a mechanism that is (1/2 +
ε(C))-competitive, where ε(C) > 0.

1 Introduction

The agenda of approximate mechanism design without money was first explicitly
framed by Procaccia and Tennenholtz in their seminal paper[14], and can be
traced back to the work on incentive compatible learning by Deckel et al. [4]. This
line of research tries to study how to design truthful mechanisms when payment
is not allowed. As noted by Schummer and Vohra[15], “there are many important
environments where money cannot be used as a medium of compensation. This
constraint can arise from ethical and/or institutional considerations.” To this
end, Procaccia and Tennenholtz suggests “approximation can be used to obtain
strategyproofness without resorting to payments.” The approximation ratio of a
mechanism will be measured on how close it approximates an optimal solution.
Following this idea, several models have been studied extensively, for instance,
facility game[14,9,1], classification[10,11,12].

In this paper, we consider the following allocation problem: there are n agents,
m heterogeneous, divisible items. Each agent has a private valuation over the
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items about which we assume no prior knowledge. Her utility function is linear.
A competitive allocation mechanism tries to maximize the society’s social wel-
fare, that is, the sum of each agent’s utility. The competitive ratio is measured
by comparing the mechanism’s performance to an optimal allocation. We are in-
terested in strategy-proof and at the same time competitive mechanisms. While
our model is very simple, it also sounds natural. When a central agency tries to
allocate various public resources to people efficiently, it faces a similar problem
as described in our model. Besides, some resources are divisible in nature, for
instance, water, bandwidth, etc. Also, when the items are indivisible and the
agents are risk-neutral, the expectation of a randomized mechanism in this case
corresponds to a deterministic mechanism in our model.

The problem of resource allocation has been studied in algorithmic game
theory on various aspects. R. Johari[8] discusses the problem of allocating an
infinitely divisible resource of a fixed capacity to various users, who have their
own utility functions and pay money to obtain resources. He gives a proportional
mechanism that is quite efficient. There’s also work on the allocation of indivis-
ible resources without payments. E. Budish [2] studies a similar combinatorial
assignment problem and surveys existing allocation mechanisms. S. Pápai [13]
shows that strategy-proof combined with conditions like onto, non-bossiness, etc,
can only lead to dictatorship.

Our Results. In the general setting, if we consider an even allocation, that
is, allocating each item equally between agents, or a biased plan to allocate all
the resources to a single designated agent, the competitive ratios are both 1/m.
In both mechanisms the ratio becomes very small as m grows. Thus the first
question arises as:

Question 1. Is there a c-competitive strategy-proof mechanism for any number
of agents and items, where c > 0?

As it turns out, the answer is negative. We give the following result: there does
not exist a (1/m + ε)-competitive strategy-proof mechanism, for any ε > 0. By
a similar technique we also show that the competitive ratio of a strategy-proof
mechanism is less than 4/

√
n, when m ≥ √

n. This result stands in contrast with
the VCG mechanism[16,3,6], which gives an optimal allocation if payments can
be used in our model.

Having dealt with the multi-agents setting, next we come to the setting of two
agents and any number of items, which is also the focus of Guo and Conitzer[7].
There they used swap-dictatorial(SD) as a basic tool to design strategy-proof
mechanisms. The idea of SD is, each agent has some chance to be the dictator,
choosing her preferred allocation from a predefined set. The final allocation will
be the weighted sum of each agent’s choice. We find two interesting results about
swap-dictatorial mechanisms. The first is a somewhat surprising link between SD
and strategy-proof: In the setting of 2 agents and 2 items, when a mechanism is
symmetric and second order continuously differentiable, then strategy-proof co-
incides with swap-dictatorial. Since items are divisible, the model we are dealing
with is inherently a continuous one. The tools from calculus provide us a way to
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interpret and characterize strategy-proof condition, making the problem much
simpler to handle. The second result is that the competitive ratio of an SD mech-
anism is less than 1/2 + 1/

√
[log m]. In particular this implies when there are

too many items, SD is not much better than an even allocation. We remark that
when the number of items is small, it is still possible to obtain competitive SD
mechanisms. The linear increasing-price[7] mechanism is just swap-dictatorial.
In that paper it is also proved that LIP is 0.828-competitive when there are 2
items, nearly matching their established upper bound of 0.841.

Given the negative result on swap-dictatorial mechanisms, it is natural to ask
the second question:

Question 2. Is there a c-competitive strategy-proof mechanism for 2 agents, any
number of items, where c > 1/2?

The question is still open. And the only result is that c is smaller than 0.841, as
we just mentioned above. Note that our characterization between strategy-proof
and SD, if generalized to the any number of items and any mechanism, will give
a negative answer to the above question.

Since it appears hard to design a strategy-proof mechanism that beats the 0.5
ratio, and it seems unreasonable to assume that agents’ valuations are completely
unrestricted, we come to a bounded-valuation setting when an agent’s valuation
cannot be strongly biased. Here we manage to demonstrate a swap-dictatorial
mechanism that is competitive as well, giving a positive answer to Question 2 in
a restricted domain.

2 Preliminaries and the Model

We briefly describe our model here, the reader may refer to [7] for more details
and discussions.

There are m items, each with capacity 1. These items are allocated to n
agents, who keep their valuations on the items in private. The valuation is a
vector v = (v1, . . . , vm) ∈ [0, 1]m, where

∑m
i=1 vi = 1. The normalization says

when an agent gets all the resources,r she gains one unit of utility. Let V be
the set of valuation vectors. A valuation matrix is an n × m matrix V where
each row is a valuation vector. We use vi to denote the i-th row of V , vij to
denote the j-th component of vi. Let U be the space of valuation matrices. An
allocation vector o = (o1, . . . , om) ∈ [0, 1]m. An allocation matrix is an n × m
matrix O = (oij)n×m where oij ∈ [0, 1] indicates the fraction of item j allocated
to agent i, for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. And

∑n
i=1 oij = 1, for 1 ≤ j ≤ m, i.e.,

all of the items are allocated. Let O be the space of allocation matrices.
A deterministic payment-free mechanism is a function M : U → O. Let

gi(x, O) be the i-th agent’s utility under allocation O when her valuation is x.
gi is additive, that is, gi(x, O) =

∑m
j=1 xj ·oij . Let V (i, x) be the matrix obtained

from substituting the i-th row vector of V by x.
M is called strategy-proof, if for any valuation matrix V , valuation vector x,

1 ≤ i ≤ n, gi(vi, M(V (i, vi))) ≥ gi(vi, M(V (i, x))). In other words, no agent
benefits by misreporting his valuation vector.
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When there are only two agents, for ease of notation, we define the mechanism
function as M : V2 → [0, 1]m, since it’s apparent that the other agent gets
1−M(v1, v2), where 1 denotes a vector whose components are all 1.1

The social welfare is defined as
∑n

i=1 gi(vi, O), that is, the sum of all agents’
utilities. The optimal social welfare γ(V ) is the social welfare under an optimal
allocation, which ideally allocates each item to an agent that values it highest.
We measure the competitiveness of a strategy-proof mechanism by comparing
its achieved social welfare to the optimal social welfare. More formally, define
the competitive ratio of a strategy-proof mechanism as

min
V ∈U

∑n
i=1 gi(vi, M(V ))

γ(V )

We say that a strategy-proof mechanism is α-competitive, if its competitive ratio
is at least α.

We point out here that randomness does not help provide a more competi-
tive mechanism in this model. For if there is an α-competitive strategy-proof
randomized mechanism M ′, then taking the expected outcome of M ′ gives us
a deterministic strategy-proof mechanism that is also α-competitive. However,
randomness is still useful for describing a mechanism, as we’ll see below.

Definition 1 (Guo, Conitzer[7]). A mechanism is symmetric if it satisfies:

1. Symmetric over the agents: if by swapping the valuations of two agents, their
allocations are also swapped correspondingly.

2. Symmetric over the items: if by swapping the valuations of two items by each
agent, the allocations for these two items are also swapped.

Let Pij be a permutation matrix that permutes row(or column) i, j. The follow-
ing proposition is a direct translation of the symmetry condition.

Proposition 1. A symmetric mechanism M satisfies:

1. M(PijV ) = Pij ·M(V ).
2. M(V Pij) = M(V ) · Pij.

An important property of symmetric mechanisms is the following:

Proposition 2 (Guo, Conitzer[7]). For any strategy-proof mechanism that is
α-competitive, there is a symmetric strategy-proof mechanism that is (at least)
α-competitive.

Next we introduce the family of swap-dictatorial [7]2 mechanisms for two agents.

Definition 2. Let D1, D2 be two sets of allocation vectors, v1, v2 be two val-
uation vectors. For i = 1, 2, let fi : V → Di be a function such that fi(v) ∈
argmaxo∈Di

v · o, for any v ∈ V. A swap-dictatorial mechanism M determined
by D1, D2 is defined as M(v1, v2) = (f1(v1) + 1− f2(v2))/2.
1 We will always use c to denote a constant vector whose components are all c.
2 We abbreviate swap-dictatorial by SD sometimes.
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There is another intuitive description of SD mechanism: with probability 0.5,
agent i becomes the dictator and chooses an allocation from Di to selfishly
maximize her own welfare, leaving the rest to the second agent. The expected
outcome will be the resulted allocation. While this description uses randomness,
note that SD is actually deterministic.

An SD mechanism is strategy-proof, which can be verified from definition.
Intuitively, an agent’s utility comes from two parts: one from being the dictator,
here there is no incentive to lie; the other from not being the dictator, here she
has no influence on the outcome, leaving no benefit from lying either.

A symmetric SD mechanism satisfies two extra conditions:

1. Symmetric over the items: if v = (v1, . . . , vm) ∈ Di, then (vσ(1), . . . , vσ(m)) ∈
Di, where σ is any permutation.

2. Symmetric over the agents: if agent i chooses u ∈ Di to maximize her utility
at some time, then u ∈ D−i, where −i stands for the other agent. So if
we ignore vectors in Di that are never chosen by agent i, then D1 and D2

becomes the same. Since we only care about vectors chosen by an agent for
some valuation, in the following we just use the fact that D1 = D2 for a
symmetric SD mechanism.

We have the following characterization for symmetric SD mechanisms.

Theorem 1. A symmetric strategy-proof mechanism M is SD if and only if for
any valuation vector u, v, α,

M(u, v) = M(u, α) + M(α, v)−
1

2
(1)

The proof is omitted here and left to the full version. We also prove:

Corollary 1. A symmetric strategy-proof mechanism M is SD if and only if for
any valuation vectors α, β, u, v,

M(u, α)−M(v, α) = M(u, β)−M(v, β) (2)

3 An Upper Bound for Multiple Agents

Theorem 2. Fix the number of items m. Let ε > 0. There is no (1/m + ε)-
competitive strategy-proof mechanisms, for some large enough n.

Proof. We prove by contradiction. Let n > m. By Proposition 2, we only need
to consider symmetric mechanisms. So assume there is a symmetric mechanism
M that is α-competitive on any number of agents, where α > 1/m.

Consider the following n by m valuation matrix

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0
0 1 . . . 0 0

. . .
0 . . . 1 0 0
ε
n

ε
n . . . ε

n 1− (m− 1) ∗ ε
n

ε
n

ε
n . . . ε

n 1− (m− 1) ∗ ε
n

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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For row 1 to m− 2, each has a 1 in diagonal. Row m− 1 to n are the same. ε is
2(m− 1)/(αm− 1). So it’s positive since α > 1/m. By Proposition 1, for agent
i where i > m− 2, their allocation vectors are the same. Thus for each item, an
agent gets at most 1/(n−m+2) fraction. And the overall valuations of an agent
is 1. This implies the welfare of agent (m− 1) is bounded by 1/(n−m + 2).

Now replace agent (m − 1)’s type vector by u = (0, . . . , 0, 1, 0), where the
(m− 1)-th component is 1. Let V ′ be the changed valuation matrix.

Let O = A(V ′). Again by Proposition 1, o11 = · · · = o(m−1)(m−1), denote it
x. This is obtained by first exchange row i, j, then column i, j.

Consider the ratio under V ′. The observation is, to achieve a good ratio, a
mechanism will allocate a relative portion of items to the diagonal 1’s. When
the amount is large enough then agent (m−1) has an incentive to lie from vm−1

to u.
For item 1 to (m− 1), the maximal utility M can achieve is x + (1− x) · ε/n.

For item m, the maximal utility M can achieve is 1. And, the optimal allocation
gives a utility of m− (m− 1) · ε/n. Thus we have:

(x + (1 − x) · ε
n ) · (m− 1) + 1

m− (m− 1) · ε
n

≥ α ⇒ x ≥
α(m−(m−1)· ε

n )−1

m−1 − ε
n

1− ε
n

(3)

Under allocation O, the welfare of agent (m−1) in valuation matrix V ′ is at least
xε/n. Meanwhile, in (3), the rightmost formula has limit (αm−1)/(m−1), as n
grows to infinity. Recall ε = 2(m− 1)/(αm− 1), so formula x · ε · (n−m + 2)/n
has limit at least 2 as n becomes infinite. This implies, in particular, for some
some large enough n, we have xε/n > 1/(n−m+2). So here when agent (m−1)
honestly reports his valuation vector in V , the maximal welfare that can be
achieved is 1/(n − m + 2). But when she lies as (0, . . . , 0, 1, 0), the welfare is
greater than xε/n > 1/(n−m + 2), which contradicts with that M is strategy-
proof. ��

Note that a 1/m-competitive mechanism trivially exists: just consider the mech-
anism that evenly divides each item to each agent. So efficiency really becomes
an issue here when there are too many people.

By a refined analysis of the above proof, we can obtain another result quite
different in taste.

Theorem 3. There does not exist a strategy-proof mechanism that achieves a
competitive ratio better than 4/

√
n, when m ≥ √

n.

This theorem also implies: as the number of agents and items approaches infinite,
the competitive ratio of any strategy-proof mechanism approaches 0.

4 Allocation between Two Agents

4.1 An Upper Bound for Swap-Dictatorial Mechanisms

Now we come to the setting of two agents. As mentioned above, SD is very
intuitive, so it becomes very helpful for designing strategy-proof mechanisms.
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However, the ratio of SD may not be very good, as shown by the following
theorem:

Theorem 4. The competitive ratio of any swap-dictatorial mechanism is less
than 1/2 + 1/

√
[log m].

Proof. Again by Proposition 2 it suffices to consider symmetric mechanisms. Let
M be a symmetric SD mechanism with a competitive ratio of 1/2+ δ. Let O be
dictator’s choice space. Let m1 = 2[log m], mi+1 = mi/2.

We define a series of variables for case i. First let the two agent’s valuation
vectors be:

ui = (x, . . . , x, y, . . . , y, 0, . . . , 0)
vi = (y, . . . , y, x, . . . , x, 0, . . . , 0)

where there are mi/2 consecutive x, y respectively and y/x = t = δ < 1. And
when agent 1 acts as the dictator, she chooses vector oi ∈ O. Vector oi is
associated with two parameters, ai, bi, indicating the average allocation on the
portions of x, y respectively. We will show that as i increases, ai increases by
a relative amount in order to keep up the competitive ratio. However ai cannot
be greater than 1, from this seemingly contradiction we derive a bound on the
competitive ratio.

By Proposition 1, when agent 2 becomes dictator, it picks oi ∈ O with some
permutation. So it also takes on average ai of the x part and bi of the y part.

Now we compute the ratio for such an allocation, by definition it is greater
than 1

2 + δ:

(x · ai + y · bi + y · (1− ai) + x · (1− bi)) ·
mi

2
· 1
2
· 2 ≥ (

1
2

+ δ) · x ·mi

Note that the optimal utility comes from allocating the first mi/2 items to agent
1 and the next mi/2 items to agent 2.

Rearrange the inequality, we get

ai − bi ≥
2δ − t

1− t
(4)

On the other hand, since agent 1 chooses oi from the dictator space to maximize
utility, it must be greater than that obtained from choosing oi−1, as has been
obtained from case i− 1. And, by symmetry there is a permutation of oi−1 in O
such that the average of the first mi/2 components is no less than the average
of the second mi/2 components. Denote it o. By comparing agent 1’s utility
between choosing oi and o, we obtain:

(x · ai + y · bi) ·mi/2 ≥ (x + y) · ai−1 ·mi/2

⇒ ai
1

t + 1
+ bi

t

t + 1
≥ ai−1
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Together with (4) we get ai ≥ ai−1 + t(2δ − t)/(1− t2). Since a1 ≥ 0, we obtain
ak ≥ (k − 1) · t(2δ − t)/(1− t2). Let k = [log m], then:

([log m]− 1)
t(2δ − t)
1− t2

≤ ak ≤ 1

Substitute t by δ, we have δ ≤ 1/
√

[log m]. ��

4.2 Relation between Swap-Dictatorial and Strategy-Proof
Mechanisms

The family of SD mechanism is one kind of strategy-proof mechanisms in our
model. Together with symmetry it becomes a useful tool for designing strategy-
proof mechanisms. However, it is the only family of strategy-proof mechanism
we have found yet, except under some variations like letting the non-dictator
choose from a set of allocations that all maximize the utility of the dictator, So,
could there be any relation between these concepts? In this subsection we will
give a partial result. Before discussing this question, we need to introduce some
notations first.

Let M : V2 → [0, 1]m be a mechanism. Let u, v be two valuation vectors.
Define

F : S2 → [0, 1]m (5)

where S = {(x1, . . . , xm−1) : 0 ≤
∑m−1

i=1 xi ≤ 1 and xi ≥ 0, ∀ 1 ≤ i ≤ m − 1}.
And F (u1, . . . , um−1, v1, . . . , vm−1) = M(u, v).

Basically this definition isolates variables upon which a mechanism is defined.
It is essential here since we are going to analyze a mechanism mathematically.

Let int(S) be the interior of S, i.e., when 0 <
∑m−1

i=1 xi < 1. For a slight
abuse of notation, we simply use F to stand for a mechanism and when we say
u is a valuation vector, it is a (m−1)-dimensional vector which can be extended
as an agent’s valuation. Each component of F can also be viewed as a function
on S, we use fi to denote the i-th component. These notations will be used for
the rest of this subsection.

Now we are ready to define continuously differentiable mechanisms.

Definition 3 (Continuously Differentiable Mechanism). We say a mech-
anism M is continuously differentiable if and only if fi is continuously differen-
tiable(or fi ∈ C) on T 2, for i = 1, . . . , m, where T = int(S).3

Similarly, M is second order continuously differentiable if and only if fi ∈ C2

when the domain is restricted to T 2, for i = 1, . . . , m.

Now we’ll analyze a symmetric strategy-proof mechanism M , which is also sec-
ond order continuously differentiable. Let F be defined as (5). First we give an-
other condition on whether a mechanism is SD based on differentiable
assumption.
3 We take the trouble to distinguish S from the interior of S, since a continuously

differentiable function can only be defined on an open set.



190 L. Han et al.

Lemma 1. If for any valuation vectors u, v ∈ int(S),

∂2F

∂ui∂vj
(u, v) = 0, ∀ 1 ≤ i, j ≤ m− 1 (6)

Then M is swap-dictatorial.

Proof. For any α, β ∈ int(S), we show that (2) can be inferred from (6). We
prove the equality for the first component of F , while others follow similarly. We
first do an integration to change the first parameter from u to v, followed by
another integration on the second parameter to change α to β.

(f1(u, α)− f1(v, α))− (f1(u, β)− f1(v, β)) (7)
=(f1(u, α)− f1(u, β))− (f1(v, α)− f1(v, β)) (8)

=
∫ 1

0

dy (β −α) ·
∫ 1

0

dx (u − v)∇x∇yf1((u − v)x + v, (β −α)y + α) (9)

=0 (10)

Here ∇x∇yf1 is a (m − 1) × (m − 1) matrix and (∇x∇yf1)i,j = ∂2f1
∂xi∂yj

(x, y).
Since f1 ∈ C2, (u−v)∇x∇yf1 is actually ‖u−v‖ times the directional derivative
of ∇yf1 along the direction of u− v.

So (7) holds in the interior of S. Since f1 is continuous, by taking a limit it
also holds in S. ��

Now we are about to give the main result of this subsection. Before that, we first
need Clairaut’s theorem[5].

Lemma 2 (Clairaut’s Theorem). If f : R
n → R has continuous second par-

tial derivatives at any given point in R
n, say, (a1, a2, . . . , an), then for 1 ≤ i, j ≤

n,
∂2f

∂xi∂xj
(a1, . . . , an) =

∂2f

∂xj∂xi
(a1, . . . , an)

In words, the partial derivations of this function are commutative at that point.

Lemma 3. For any valuation vectors u, v ∈ int(S), we have:

∂2F

∂ui∂vj
(u, v) = 0, ∀ 1 ≤ i, j ≤ m− 1 (11)

Proof. We merely prove for f1, the first component of F , without loss of gener-
ality. By the strategy-proof condition, the first agent can’t make more profits by
misreporting his valuation vector, so

∂f1

∂ui
(u, v) · u′ = 0
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where u′ extends u to an m-dimensional vector, the last component being 1 −∑m−1
i=1 ui. Taking a partial derivative on vj ,

∂

∂vj

∂f1

∂ui
(u, v) · u′ = 0

The derivative can be pushed inside the inner product because u is independent
of vj . Exchanging the role of u, v, similarly we get

∂

∂ui

∂f1

∂vj
(u, v) · v′ = 0

v′ is defined similarly to u′.
Since f1 has continuous second partial derivative at (u, v), by Clairaut’s

theorem
∂2f1

∂ui∂vj
(u, v) =

∂

∂vj

∂f1

∂ui
(u, v) =

∂

∂ui

∂f1

∂vj
(u, v)

In conclusion, ∂2f1
∂ui∂vj

is simultaneously perpendicular to u′, v′ ∈ R
2. When u �= v

(i.e. u′ �= v′) , it must be the case that ∂2f1
∂ui∂vj

(u, v) = 0. Since ∂2f1
∂ui∂vj

(u, v) is
continuous, it is 0 when u equals v too. ��

Combining the results of Lemma 1 and Lemma 3, we have

Theorem 5. In the case of allocating 2 items to 2 agents, if a mechanism M is
symmetric and second order continuously differentiable, then M is strategy-proof
if and only if M is swap-dictatorial.

We remark that the assumption of second order continuously differentiable can
be extended to the case when the function may have finitely many discontinuous
points, since integration can be done in that case too. To find a function beyond
this assumption, one may need to think about some quite unnatural functions.

We hope Theorem 5 helps to explain the difficulty we encountered in design-
ing strategy-proof mechanisms that are not SD. It will be interesting to see if
Theorem 5 still holds in more general cases, or if there exists other families of
strategy-proof mechanisms.

4.3 Bounded Valuation

Section 4.2 gives evidence that symmetric strategy-proof allocation may be, ac-
tually, swap-dictatorial. And from Theorem 4 SD can only achieve a competitive
ratio of 0.5 when the number of items approaches infinity, which is no better than
an even allocation. But can SD do better than even allocation, when we impose
some restrictions on the valuation vectors? In this subsection, we see that if an
agent’s valuation is not too biased, SD can do better than even allocation. To
put it formally, we define:

Definition 4 (Bounded Valuation). Let v = (v1, . . . , vm) be a valid valuation
vector, we say v is bounded by T, if vi ≤ T , for any i = 1, . . . , m. A valuation
space is bounded by T if each vector of the space is bounded by T.
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Let T be C/m. Note that if we allow C to grow arbitrarily large as m grows, then
a proof similar to Theorem 4’s shows that there is still no SD mechanism that
is (0.5 + ε)-competitive on a valuation space bounded by C/m, for any ε > 0.
However, when C is some fixed constant, the proof no longer holds, and we can
actually find an SD mechanism that does better than 0.5.

Definition 5 (Sphere Mechanism). Let f(u) = (u1·c
‖u‖ , u2·c

‖u‖ , . . . , um·c
‖u‖ ), where

c =
√

m/C and ‖·‖ denotes the L2-norm. Given two valuation vectors u, v,

M(u, v) =
f(u) + 1− f(v)

2
(12)

Here c is chosen such that each component of f(u) does not exceed 1.
Our SD has nice mathematical interpretations. The dictator’s choice space is:

D =
{

c

‖u‖u : u is a valuation vector bounded by C/m

}
So all the vectors in the choice space are in a sphere of radius c. To maximize
utility, the dictator will choose the vector of the same direction to its valuation
vector, i.e., a dictator with valuation vector u will choose cu/‖u‖, as M does in
(12). Since SD is always strategy-proof, the Sphere mechanism is strategy-proof
as well.

Next we analyze the competitive ratio.

Theorem 6. Let the valuation space V be bounded by C/m. Then Sphere mech-
anism is ( 1

2 + ε)-competitive, for some ε > 0.

Due to space limitation, we omit the proof and leave it to the full version.

5 Conclusions and Future Research

In this paper we studied allocation problem when there are no payments or
priors. While this model is only proposed recently, we hope the results and proof
techniques in this paper provide insight into the model. There are still several
problem unsettled for this problem. The first is whether there exists a strategy-
proof mechanism that beats the 0.5 ratio. There’s still a large gap here since
the only known result is a 0.841 upper bound. The second is to what extent are
strategy-proof equivalent to swap-dictatorial mechanisms in this model. Another
direction for future research is to consider other social optimal criterion such as
egalitarian criterion, or handle issues like fairness in the model.
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throughout our work. And we owe many thanks to the anonymous referees for
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Abstract. In this paper, we introduce a class of games which we term
demand allocation games that combines the characteristics of finite games
such as congestion games and continuous games such as Cournot oligo-
polies. In a strategy profile each player may choose both an action out
of a finite set and a non-negative demand out of a convex and compact
interval. The utility of each player is assumed to depend solely on the
action, the chosen demand, and the aggregated demand on the action
chosen. We show that this general class of games possess a pure Nash
equilibrium whenever the players’ utility functions satisfy the assump-
tions negative externality, decreasing marginal returns and homogeneity.
If one of the assumptions is violated, then a pure Nash equilibrium may
fail to exist. We demonstrate the applicability of our results by giving
several concrete examples of games that fit into our model.

1 Introduction

The problem of allocating scarce resources to satisfy demands is a central topic
in the operations research and optimization literature. While a central planer
may compute and implement an optimal allocation, in many applications this
may be impossible as the allocation of resources is determined by selfish players.
A prominent example for this scenario are congestion games. In a congestion
game, there is a set of resources and a pure strategy of a player consists of a
subset of resources. The profit of a resource depends only on the number of play-
ers choosing the resource, and the utility of a player is the sum of the profits of
the chosen resources. Under these assumptions, Rosenthal proved the existence
of a pure Nash equilibrium (PNE for short) [25]. Another well-known variant
of congestion games arises if players can fractionally demand the resources, see
Beckmann [2] and Haurie and Marcotte [10] for related models. For this con-
tinuous variant, the quite general result of Rosen [24] implies the existence of a
PNE provided the strategy space is convex and compact and utility functions are
concave. In the context of such discrete and continuous classes of games, there
are mainly two types of existence theorems for PNE. The first type applies to
discrete games (such as classical congestion games and many variants thereof)
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where each player has a finite strategy space. For this type, the existence of PNE
is proved by either potential function arguments (as in [1,4,5,6,9,22,25]), or by
using the combinatorial structure of the finite strategy space (as in [13,16,26]).
On the other hand, for continuous games, existence of PNE is usually established
via fixed-point theorems of Kakutani (as in [24] for general concave games) and
Brouwer (as in [19] for mixed extensions of finite games), or by a monotonicity
property of the best reply functions (as in [21,23] for Cournot oligopolies).

While existence of PNE for both extremes is well understood, much less is
known for strategic games that exhibit continuous and discrete elements at the
same time. To motivate this point we give an example. Consider the classical
Cournot oligopoly (cf. [3,30]). In a Cournot oligopoly game, there is a set of firms
each producing quantities so as to satisfy an elastic demand. The production cost
for every player is modeled by a cost function and the interaction of firms comes
from the market price function which is dependent on the total supply on the
market. In this form, a Cournot oligopoly game belongs to the class of continu-
ous games and under mild assumptions on the market aggregation function, the
existence of a pure Cournot equilibrium follows from Rosen [24]. The situation
changes, if there are several (parallel) markets, and each Cournot player can
select exactly one market to offer its quantity. The restriction of choosing only
one market arises if the market is regulated, e.g., if each firm may only purchase
one market license, see for instance Stähler and Upmann [29] for related models.
In this case, the strategy of a player is now discrete in the sense that exactly
one market can be chosen, and it is continuous in the sense that the production
quantity is still continuously variable on the chosen market. Yet, we give another
example related to models of population behavior in biology. Suppose there is a
set of exhaustible food patches distributed on an area shared by different pop-
ulations of animals (e.g., sticklebacks as in the experiment of Milinsky [18] or
herds of zebras and elephants sharing water locations). Analyzing the equilib-
rium behavior of such systems belongs to the field of population games, see the
book by Sandholm [27] and further references therein. Here, every population
is represented by a fixed-sized continuum of infinitesimal small individuals each
choosing a food patch. By definition (cf. [27, Chapter 2, condition (v)]) such
games are continuous in the sense that the individuals are sufficiently small and
may be assigned to different locations even if they belong to the same popula-
tion. If the populations of animals correspond to swarms or herds the continuity
assumption breaks down as swarms or herds move as a whole. Moreover, in re-
ality the size of every population is not fixed but it correlates with the available
amount of food supply. For systems having the above described characteristics,
a new model is needed that integrates continuous and discrete action spaces.

In this paper, we introduce a class of games which we term demand alloca-
tion games that comprises the characteristics of the examples above. Suppose
we are given a finite set A of actions and a finite set N of players. Each player
is associated with a subset Ai ⊆ A of actions allowable to her and a convex
and compact interval of non-negative demands. In a strategy profile, a player
chooses both a feasible action and a feasible demand for her. We additionally
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require the following assumptions on the player’s utility functions. We assume
that the utility of each player is not affected by the strategic choices of players
on other actions. This assumption is often referred to as “Independence of Irrele-
vant Choices”, see for instance Konishi et al. [13] and Voorneveld et al. [31] for a
similar model with fixed demands. Moreover, we require that the game is anony-
mous in the sense that the utility of each player depends solely on the aggregate
demand of all players playing the same action, which is a common assumption,
see e.g. Konishi et al. [13]. It is a useful observation that under these basic as-
sumptions the utility of each player i, when choosing action ai together with
demand di can be represented by an indirect utility function vai

i : R≥0 × R≥0

so that ui(a, d) = vai

i (di, �
ai

−i(a, d)), where �ai

−i(a, d) =
∑

j∈N\{i}:aj=a dj denotes
the aggregated demand (or load) of other players on action ai. Clearly, in this
general form nothing can be said about the existence of pure Nash equilibrium.
Therefore, we require more structure about the player’s utility functions. We de-
fine the following three assumptions on the player’s utility functions that capture
the properties of the above examples. The first assumption is called ”Negative
Externality” (EXT for short) and requires that the utility of a player using an
action ai decreases if the aggregate demand of other players playing the same ac-
tion increases. Informally, the second assumption ”Decreasing Marginal Returns”
(DMR for short) requires that for every player the marginal return function ex-
ists and decreases when both that player’s demand and the total demand of the
chosen action increase. The last assumption is called ”Homogeneity” (HOM for
short) and requires that for all i ∈ N , we have vai

i = vbi

i for all ai, bi ∈ Ai.
This last assumption is clearly the most restrictive and controversial one. We
will show, however, that if it is dropped, there are instances without PNE.

Our Results. As our main result, we prove that every demand allocation game
satisfying EXT, DMR and HOM possesses a PNE. This result is tight in the
sense that if one of the assumptions is dropped, there is a demand allocation
game without PNE. For proving this existence result we provide an algorithm
that computes a PNE. Our algorithm relies on iteratively computing a (partial)
equilibrium on every action separately using Rosen’s theorem. Here, a partial
equilibrium is a strategy profile that is resilient against unilateral demand devi-
ations. Given a partial equilibrium, the algorithm selects a player that can play
a better and best response. After such a best response it recomputes the partial
equilibrium and proceeds in the same fashion. We prove that a player-specific
load vector of the partial equilibria lexicographically decreases in every iteration
and thus, the algorithm terminates. A perhaps surprising property of our proof is
that even though we iteratively recompute a partial equilibrium by using Rosen’s
theorem as a black box, there is enough structure of such a partial equilibrium
to prove that the algorithm terminates. We also show that demand allocation
games do not have the finite improvement property even if EXT, DMR and HOM
are satisfied, thus, they are not potential games. For demand allocation games
with only two players, we prove that already EXTand DMR are enough to yield
a PNE. In the final section of the paper, we give a series of concrete examples
that fit into our model: Cournot games on parallel markets, singleton congestion
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games with player-specific payoff functions and variable demands, and games in
biology.

2 The Model

Let A be a finite set of actions and let N be a finite set of players. For each
player i ∈ N we are given a convex and closed interval Di = [αi, ωi] ⊆ R≥0

of allowable demands and a subset Ai ⊆ A of allowable actions. A strategy of
player i is a tuple (ai, di) where ai ∈ Ai is an allowable action and di ∈ Di is
an allowable demand for player i. A strategy profile of the game is a tuple (a, d)
where a = (ai)i∈N is the action vector and d = (di)i∈N is the demand vector.
We assume that the utility of player i under strategy profile (a, d) depends solely
on the action ai and the demand di chosen by player i, and the total demand
of other players with the same action �ai

−i(a, d) =
∑

j∈N\{i}:ai=aj
dj . To measure

this utility, we introduce for each player i and each of her allowable actions
ai ∈ Ai an indirect utility function vai

i : R≥0 ×R≥0 → R. The utility of player i
under strategy profile (a, d) is then defined as ui(a, d) = vai

i (di, �
ai

−i(a, d)). We are
interested in establishing conditions on the indirect utility functions that ensure
the existence of at least one pure Nash equilibrium. Formally, a strategy profile
(a, d) is a pure Nash equilibrium, PNE for short, if ui(a, d) ≥ ui(a′

i, a−i, d
′
i, d−i)

for all players i ∈ N and all strategies (a′
i, d

′
i) ∈ Ai×Di. We make the following

three assumptions on the indirect utility functions vai

i of player i and action
ai ∈ Ai. The first assumption is called “Negative Externality” and requires that
the utility of every player increases as the total demand of other players with
the same action decreases.

Assumption 1 (Negative Externality (EXT)). For all i ∈ N , ai ∈ Ai and
di ∈ Di, the indirect utility function vai

i (di, ·) is non-increasing in the second
entry, that is vai

i (di, �−i) ≥ vai

i (di, �
′
−i) for all �−i, �

′
−i ∈ R≥0 with �−i ≤ �′−i.

This assumption is natural when players compete over scare resources to sat-
isfy their demand and has been made explicitly or implicitly in various con-
texts ranging from traffic and communication networks (i.e. [2,10,12]) to biology
(i.e. [18]) and economics (i.e. in Cournot oligopolies [3,30] and Cournot oligop-
sonies [11,20]).

The second assumption is called “Decreasing marginal returns” and requires
that for players with a non-trivial interval of allowable demands, the marginal
utility function exists, is continuously differentiable, and decreases if the player’s
demand and the total demand of the chosen action increase.

Assumption 2 (Decreasing Marginal Returns (DMR)). For all i ∈ N
with αi < ωi, di ∈ Di, ai ∈ Ai, and �−i ∈ R≥0, the marginal return func-
tion ∂ vai

i (di, �−i) / ∂ di exists and is continuously differentiable in di. Moreover,
∂ vai

i (di, �−i) / ∂ di > ∂ vai

i (d′i, �
′
−i) / ∂ d′i for all di, d

′
i ∈ [α, ω] and �−i, �

′
−i ∈ R≥0

with di ≤ d′i and di + �−i ≤ d′i + �′−i, where at least one of these two inequalities
is strict.
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The assumption that the utility of player i is concave in her demand often
appears in the literature on Cournot oligopolies (cf. [21,23]) in order to get the
existence of an equilibrium. Also many works in telecommunications (cf. [12,28])
justify concavity of the utility function in the demand variable by application-
specific characteristics such as the rate-control algorithm used in the TCP pro-
tocol. Note that if for some i ∈ N it holds that αi = ωi, then DMR is trivially
satisfied.

The next assumption “Homogeneity” imposes that players have no a priori
preferences over actions, that is, each player’s utility is solely defined by her own
demand and the total demand of the chosen action and not by the identity of
the action itself.

Assumption 3 (Homogeneity (HOM)). For all i ∈ N , we have vai

i = vbi

i

for all ai, bi ∈ Ai.

In games that satisfy HOM, we may write vi = vai

i = vbi

i for all ai, bi ∈ Ai.
Note that HOM does not require symmetry among players, i.e., we still allow
vi �= vj for i �= j. We only require that every player is indifferent between any
two allowable actions as long as their own demand and the total demand on
these actions is equal. Clearly, HOM is the most restrictive and controversial
assumption. We show, however, that homogeneity is necessary in the sense that
if it is dropped, there are games without PNE.

3 Existence of Pure Nash Equilibria

In this section, we will give an existence result for demand allocation games.
Specifically, we will show that demand allocation games satisfying the assump-
tions Negative Externality (EXT), Decreasing Marginal Return (DMR) and Ho-
mogeneity (HOM) always possess a PNE. Our results are ”tight” in the sense
that if any of the three assumptions is dropped, then there are instances with-
out a PNE. To prove our main result, we first introduce the concept of a partial
equilibrium. Intuitively, a partial equilibrium is a strategy profile that is resilient
against unilateral demand deviations. Formally, a strategy profile (a, d) is a par-
tial equilibrium if ui(a, d) ≥ ui(a, d′i, d−i) for all i ∈ N and d′i ∈ Di. Using the
result of Rosen [24], we will prove that under assumption DMR for every strategy
profile (a, d), there is a partial equilibrium of the form (a, d̃). We say that (a, d̃)
is an associated partial equilibrium to (a, d).

Proposition 1. Let G be a demand allocation game. Under assumption DMR,
for every strategy profile (a, d), there is an associated partial equilibrium (a, d̃).

Proof. Pick an arbitrary strategy profile (a, d) of G. Consider the restricted
demand allocation game G̃ with Ãi = {ai}. In G̃ the strategy space of each
player reduces to the convex and closed interval Di ⊆ R. Using DMR, the utility
function of each player is continuous and concave in di. By Rosen’s existence
theorem [24, Theorem 1], a pure Nash equilibrium of G̃ exists. Hence, each PNE
of G̃ is an associated partial equilibrium to (a, d). ��
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The following lemma will be important throughout this paper. It expresses the
first-order optimality conditions of a partial equilibrium. The proof is straight-
forward and left to the reader.

Lemma 2. Let (a, d) be a partial equilibrium. Then, for all i ∈ N with αi < ωi

the following conditions hold: ∂ ui(a, d) / ∂ di ≤ 0 if di = αi, ∂ ui(a, d) / ∂ di = 0
if di ∈ (αi, ωi), and ∂ ui(a, d) / ∂ di ≥ 0 if di = ωi.

For an action b ∈ A, we define the active set on action b under strategy profile
(a, d) as N b(a, d) = {i ∈ N : ai = b}. We need the following lemma.

Lemma 3 (Uniqueness Lemma). Let (a, d) and (a′, d′) be two partial equi-
libria of a demand allocation game satisfying DMR. Then,

1. �b(a, d) = �b(a′, d′) for all b ∈ A with N b(a, d) = N b(a′, d′),
2. �b(a, d) ≤ �b(a′, d′) for all b ∈ A with N b(a, d) ⊆ N b(a′, d′).

Proof. Obviously, it suffices to prove 2. Assume by contradiction that there is b ∈
A with �b(a, d) > �b(a′, d′) and N b(a, d) ⊆ N b(a′, d′). This implies the existence
of a player i ∈ N b(a, d) with di > d′i. In particular, we have ωi ≥ di > d′i ≥ αi.
The conditions of Lemma 2 for a partial equilibrium give ∂ ui(a, d) / ∂ di ≥ 0
and ∂ ui(a′, d′) / ∂ d′i ≤ 0. We get

0 ≥ ∂ ui(a′, d′)
∂ d′i

=
∂ vb

i

(
d′i, �

b
−i(a

′, d′)
)

∂ d′i

DMR
>

∂ vb
i

(
di, �

b
−i(a, d)

)
∂ di

=
∂ ui(a, d)

∂ di
≥ 0,

a contradiction. ��

We are now ready to present a procedure for proving the existence of PNE. We
claim that the following iterative contraction-switching procedure converges to
a PNE.

1. Start with arbitrary strategy profile (a, d)
2. Contraction phase: Let (a, d̃) be an associated partial equilibrium
3. Switching phase: If there is a player i who can improve unilaterally, pick

a best reply (a′
i, d

′
i) ∈ arg max(a′′

i ,d′′
i )∈Ai×Di

ui(a′′
i , a−i, d

′′
i , d̃−i), set (a, d) =

(a′′
i , a−i, d

′′
i , d̃−i) and proceed with 2. Else, return (a, d̃).

Note that in Step 2, we actually call an oracle that gives us an associated partial
equilibrium. The oracle takes as input a restricted demand allocation game G̃
and outputs an associated partial equilibrium. By Proposition 1 this is always
possible.

In the following, we will show that this procedure ends after finitely many
steps (involving finitely many calls of the oracle) and outputs a PNE. The fol-
lowing properties are the key to prove that the contraction-switching procedure
terminates.

Lemma 4. Let G be a demand allocation game satisfying DMR, EXT and HOM,
let (a, d) be a partial equilibrium, let (a′

i, d
′
i) be a best and better reply of player i

and let (a′
i, a−i, d̃) be an associated partial equilibrium. Then, the following prop-

erties hold.
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1. �a′
i(a′

i, a−i, d
′
i, d−i) < �ai(a, d) (Switching Property)

2. �a′
i(a′

i, a−i, d̃) ≤ �a′
i(a′

i, a−i, d
′
i, d−i) (Contraction Property)

3. �ai(a′
i, a−i, d̃) ≤ �ai(a, d) (Monotonicity Property)

Proof. We begin proving the switching property. For the sake of a contradiction,
assume �a′

i(a′
i, a−i, d

′
i, d−i) ≥ �ai(a, d). We consider the following three cases:

First case d′i > di: As (a, d) is a partial equilibrium and di < d′i ≤ ωi, by
Lemma 2 we have 0 ≥ ∂ ui(a, d) / ∂ di. We calculate

0 ≥ ∂ ui(a, d)
∂ di

=
∂ vi(di, �

ai

−i(a, d))
∂ di

DMR
>

∂ vi(d′i, �
a′

i

−i(a
′
i, a−i, d

′
i, d−i))

∂ d′i
=

∂ ui(a′
i, a−i, d

′
i, d

′
−i)

∂ d′i
≥ 0,

a contradiction. The equalities use the assumption HOM. The last inequality
stem from the facts that (a′

i, d
′
i) is a best reply of player i and that d′i > di ≥ αi.

Second case d′i = di: Using �
a′

i

−i(a
′
i, a−i, d

′
i, d

′
−i) ≥ �ai

−i(a, d) and assumptions
EXT and HOM, we obtain

ui(a′
i, a−i, d

′
i, d−i) = vi

(
d′i, �

a′
i

−i(a
′
i, a−i, d

′
i, d−i)

)
≤ vi

(
di, �

ai

−i(a, d)
)

= ui(a, d).

We derive that player i does not improve, a contradiction to the fact that (a′
i, d

′
i)

is a better reply of player i.
Third case d′i < di: Consider the strategy (ai, d

′
i) of player i. Observe that

�ai

−i(a, d′i, d−i) < �ai

−i(a, d) as d′i < di. We obtain

ui(a, d′i, d−i) = vi

(
d′i, �

ai

−i(a, d′i, d−i)
)

EXT
≥ vi

(
d′i, �

a′
i

−i(a
′
i, a−i, d

′
i, d−i)

)
= ui(a′

i, a−i, d
′
i, d−i) > ui(a, d),

where the equalities use the assumption HOM and the first inequality uses the
assumption EXT. Thus, (a, d) is not a partial equilibrium, contradiction!

We proceed by proving the contraction property. For a contradiction, suppose
that �a′

i(a′
i, a−i, d̃) > �a′

i(a′
i, a−i, d

′
i, d

′
−i). Then, at least one of the following two

cases holds: Either d̃i > d′i or there is a player j ∈ Na′
i(a′

i, a−i, d̃) \ {i} with
d̃j > dj . If d̃i > d′i, we have ∂ ui(a′

i, a−i, d
′
i, d

′
−i) / ∂ d′i ≤ 0 using the fact that

(a′
i, d

′
i) was a best reply of player i and that d′i < d̃i ≤ ωi. By the assumptions

of decreasing marginal values, we obtain

0 ≥ ∂ ui(a′
i, a−i, d

′
i, d−i)

∂ d′i
=

∂ vi(d′i, �
a′

i

−i(a
′
i, a−i, d

′
i, d−i))

∂ d′i

DMR
>

∂ vi

(
d̃i, �

a′
i

−i(a
′
i, a−i, d̃)

)
∂ d̃i

=
∂ ui(a′

i, a−i, d̃)
∂ d̃i

≥ 0,

a contradiction.
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If there is on the other hand j ∈ Na′
i(a′

i, a−i, d̃) \ {i} with d̃j > dj , then we
have ∂ uj(a, d) / ∂ dj ≤ 0 as (a, d) was a partial equilibrium and dj < d̃j ≤ ωj .
We then get the same contradiction as for player i.

The monotonicity property follows directly from Lemma 3. ��

We are now ready to state and prove our main result.

Theorem 5. For demand allocation games, assumptions DMR, EXT, HOM yield
the existence of a PNE.

Proof. By using the previous lemmas, we show that the contraction-switching
procedure terminates for any given starting profile (a, d). First notice that there
are only finitely many action vectors a = (ai)i∈N as both the number of players
and the number of actions is finite. We will show that each possible action vector
is visited at most once in the contraction-switching procedure.

To this end, we consider for a strategy profile (a, d), the vector L(a, d) =
(�ai(a, d))i∈N . We shall prove that L(a, d) strictly decreases with respect to
the sorted lexicographical order ≺lex that is defined as follows. For two vec-
tors u, v ∈ R

n
≥0 we say that u is sorted lexicographically smaller than v, writ-

ten u ≺lex v, if there is an index k ∈ {1, . . . , n} such that uπ(i) = vψ(i) for
all i < k and uπ(k) < vψ(k) where π and ψ are permutations that sort the
vectors u and v non-increasingly, that is, uπ(1) ≥ uπ(2) ≥ · · · ≥ uπ(n) and
vψ(1) ≥ vψ(2) ≥ · · · ≥ vψ(n). To see that L(a, d) lexicographically decreases,
let (a, d) be a partial equilibrium and let (a′

i, d
′
i) be a best and better reply of

player i. Denote by (a′
i, a−i, d̃) the partial equilibrium associated with strategy

profile (a′
i, a−i, d

′
i, d−i). Clearly, for every player j ∈ N\

(
Nai(a, d)∪Na′

i(a, d)
)

we
have Lj(a, d) = Lj(a′

i, a−i, d
′
i, d−i). The switching property proven in Lemma 4

ensures that the load on the new action a′
i stays strictly below that of the

old action ai, that is, �a′
i(a′

i, a−i, d
′
i, d−i) < �ai(a, d). The contraction prop-

erty ensures that, after the new set of players on the new action a′
i settles

to an associated partial equilibrium, the total demand will not increase, that
is, �a′

i(a′
i, a−i, d̃) ≤ �a′

i(a′
i, a−i, d

′
i, d−i). It follows that �a′

i(a′
i, r−i, d̃) < �ai(a, d).

Also, by the monotonicity property we have �ai(a′
i, a−i, d̃) ≤ �ai(a, d). Thus, we

have shown that the entry Li(·) of player i strictly decreases and that none of
the changed entries becomes larger than Li(a, d), hence, the vector L(·) lexico-
graphically decreases after one iteration of the contraction-switching procedure.
This fact, together with the uniqueness of the load vector proven in Lemma 3,
implies that the algorithm never visits the same action vector twice and, thus,
terminates after finitely many steps. ��

Note that the existence result of Theorem 5 is tight; if one of the assumption three
assumptions DMR, EXT, and HOM is dropped then we can construct a game sat-
isfying the other two assumptions that does not have a PNE. We can also provide
an example of a game satisfying DMR, EXT, and HOM that has an improvement
cycle. Thus, demand allocation games are not potential games, in general. Formal
proofs of the above results appear in the full version of this paper.
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3.1 Two Player Demand Allocation Games

In this section, we turn to the case of two players. We will show that any two-
player demand allocation game that satisfies the assumptions EXT and DMR pos-
sesses a PNE.

Theorem 6. For two-player demand allocation games, assumptions EXT and
DMR yield the existence of a PNE.

Proof. We shall prove that the following procedure computes a PNE. Start
with the empty strategy profile and let player 1 choose a best reply (a1, d1).
Then, let player 2 choose a best reply (a2, d2) to (a1, d1). If a1 �= a2, we have
reached a PNE as EXT implies that player 1 has no interest in switching to
action a2. The only interesting case is a1 = a2. Let x̃ = (a1, a2, d̃1, d̃2) be
an associated partial equilibrium to x = (a1, a2, d1, d2). We first show that
d̃1 ≤ d1. For a contradiction, suppose d̃1 > d1. Because d1 < d̃1 ≤ ω1, we
have ∂va1

1 (d1, 0) / ∂d1 ≤ 0 as (a1, d1) was a best reply. On the other hand, we
have ∂va1

1 (d̃1, d̃2) / ∂d̃1 ≥ 0 as d̃1 > d1 ≥ α1 and x̃ is a partial equilibrium. We
obtain 0 ≤ ∂va1

1 (d̃1, d̃2) / ∂d̃1 < ∂va1
1 (d1, 0) / ∂d1 ≤ 0, by the assumption DMR,

a contraction.
Next, we show u2(x̃) ≥ u2(x). To see this, note that u2(x̃) = va1

2 (d̃2, d̃1) ≥
va1
2 (d2, d̃1) ≥ va1

2 (d2, d1) = u2(x), where the first inequality uses the fact that
x̃ is a partial equilibrium and the second inequality stems from the assumption
EXT and the fact that d̃1 ≤ d1.

Because u2(x̃) ≥ u2(x) and (a2, d2) was a best reply of player 2, there is no
improvement move of player 2 from x̃. If player 1 does not want to deviate as
well, x̃ is a PNE and we are done. If on the other hand (a′

1, d
′
1) is a best reply of

player 1, we let player 1 deviate and let player 2 play a best reply (a′
2, d

′
2). Note

that player 2 will only adapt her demand, that is a′
2 = a2 = a1. It is shown in

the proof of Lemma 3 that the equilibrium demand of a player does not increase
as the load increases, thus, d′2 ≥ d̃2. Then, player 1 will not want to switch again
to action a1. Also player 2 will not deviate as her payoff may only decrease when
adapting her demand. Hence, we have reached a PNE. ��

Note that the above result is tight in the sense that if either DMR or EXT are
dropped, then there exist two-player games without a PNE.

4 Examples

We now give several examples of games that fall into the class of demand allo-
cation games.

Cournot Competition on Parallel Markets. Cournot games (cf. Cournot [3],
Mas-Colell et al. [15] and Tirole [30]) are among the most fundamental models
of strategic interaction between firms. In a Cournot game, players correspond to
firms that produce a homogeneous product. In each strategy, each firm chooses
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its production quantity di out of a compact and convex interval [αi, ωi] of al-
lowable production quantities. The price for which these quantities are sold is
given by a non-increasing market reaction function P : R≥0 → R≥0 that maps
the total supply of the market � =

∑
i∈N di to the market price for selling the

produced quantity. Given a strategy profile d = (di)i∈N , the utility of firm i is
given as ui(d) = P (�) di − Ci(di), where Ci : [αi, ωi] → R is a non-decreasing
production cost function of player i.

Demand allocation games contain a natural generalization of Cournot games
that we term Cournot games on parallel markets. In such games, there is a
set A of markets each endowed with a non-increasing market reaction function
Pa, a ∈ A. The markets are called identical if Pa = Pb for all a, b ∈ A. In each
strategy profile, each player chooses both a market ai out of a player-specific
set Ai ⊆ A of allowable markets and a production quantity di ∈ [αi, ωi]. Given
a strategy profile (a, d), the utility of player i is then defined as ui(a, d) =
Pai

(
�ai(a, d)

)
di−Ci(di). Cournot games on identical parallel markets with con-

tinuously differentiable and strictly concave market reaction function and contin-
uously differentiable and convex production cost functions are demand allocation
games satisfying assumptions EXT, DMR, and HOM and thus possess a PNE.
For games with two players (originally studied by Cournot), a PNE exists even
if HOM is violated.

Singleton Congestion Games. The class of congestion games is a well-studied
class of games introduced by Rosenthal [25]. As congestion games with weighted
players and/or player-specific costs may fail to have a PNE (see the counterex-
amples given in [6,7,14] for weighted congestion games and [16,17] for games
with player-specific costs) many authors focused on singleton strategies. Here,
a PNE is guaranteed to exists, even when players are weighted (see [1,4,5,9,26])
or costs are player-specific (see [13,16]). However, games with weighted players
and player-specific costs need not possess a PNE [16].

In many situations, however, the assumption that the demand of each player
is fixed is unrealistic. In a previous work [8], we studied congestion games with
elastic demands. In that work, we show that affine or certain exponential cost
functions yield the existence of a PNE. We did not study, however, the case
of player-specific costs. Demand allocation games include singleton congestion
games with variable demands and player-specific costs as a special case. In such
games, the incentive of each player i to use higher demands is stimulated by a
reward function Ui : R≥0 → R that defines the reward received from the cho-
sen demand. Given a strategy profile (a, d), the utility of player i is defined as
ui(a, d) = Ui(di)− cai

i (�ai(a, d)), where �ai(a, d) =
∑

j∈N :aj=ai
dj is the load of

resource ai under strategy profile (a, d). Singleton congestion games with variable
demands and player-specific costs are demand allocation games. If reward func-
tions are continuously differentiable and strictly concave functions and for each
player all costs functions are equal, continuously differentiable, non-decreasing
and convex they satisfy assumptions EXT, DMR, and HOM and thus possess
a PNE. For two-player games, we can drop assumption HOM and still get the
existence of a PNE.
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Games in Biology. Consider population behavior in biology as described in
the introduction. The food patches correspond to the actions and the population-
specific costs ci

ai(�ai(a, d)) capture the rivalry for food supply. The size of pop-
ulation i is given by an inverse demand function, say fi : R≥0 → R≥0 that
is decreasing in the population specific costs. Thus, defining vi(di, �

ai(a, d)) =∫ di

0 fi(z)−ci
ai(�ai(a, d)−di +z) dz models the tradeoff between food supply and

population size, see also Milchtaich (cf. [16]) for a detailed discussion of conges-
tion games used in biology. His actual model, however, involves fixed demands
only.
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Abstract. In this paper we study the problem of controlling the spread
of undesirable things (viruses, epidemics, rumors, etc.) in a network. We
present a model called the mixed generalized network security model,
denoted by MGNS(d), which unifies and generalizes several well-studied
infection control model in the literature. Intuitively speaking, our goal
under this model is to secure a subset of nodes and links in a network so
as to minimize the expected total loss caused by a possible infection (with
a spreading limit of d-hops) plus the cost spent on the preventive actions.
Our model has wide applications since it incorporates both node-deletion
and edge-removal operations. Our main results are as follows:

1. For all 1 ≤ d < ∞, we present a polynomial time (d+1)-approximation
algorithm for computing the optimal solution of MGNS(d). This im-
proves the approximation factor of 2d obtained in [19] for a special
case of our model. We derive an O(log n)-approximation for the case
d = ∞. Moreover, we give a polynomial time 3

2
-approximation for

MGNS(1) on bipartite graphs.

2. We prove that for all d ∈ N ∪ {∞}, it is APX -hard to compute
the optimum cost of MGNS(d) even on 3-regular graphs. We also
show that, assuming the Unique Games Conjecture [13], we cannot
obtain a ( 3

2
− ε)-approximation for MGNS(d) in polynomial time.

Our hardness results hold for the special case GNS(d) in [19] as well.

3. We show that an optimal solution of MGNS(d) can be found in poly-
nomial time for every fixed d ∈ N ∪ {∞} if the underlying graph is
a tree, and the infection cost and attack probability are both uni-
form. Our algorithm also works for the case where there are budget
constraints on the number of secured nodes and edges in a solu-
tion. This in particular settles an open question from [21] that asks
whether there exists an efficient algorithm for the minimum average
contamination problem on trees.
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1 Introduction

During the recent years, much effort has been devoted to the study on the struc-
ture of various types of networks such as social networks, wireless sensor net-
works, computer networks, transportation networks, and the World Wide Web.
An important and active subject is to study the information diffusion process in
the situations where we want some news, topics, thoughts or products to spread
quickly in the network, such as viral marketing [8]. This idea is formalized by
Kempe, Kleinberg and Tardos [12] as a combinatorial problem called the influ-
ence maximization problem, which has since then been extensively studied under
various settings (see, e.g., [6,10,15,20]).

In contrast, another important line of research is to study how to prevent or
limit the spread of undesirable things through the network, such as the proga-
gation of computer viruses and worms over computer networks, the fast spread-
ing of malicious rumors through social networks, and the spread of infections or
epidemics (such as Swine Flu and H1N1) among groups of people. In all these cir-
cumstances we need to eliminate or at least control the evolution of the bad things
over the whole network, which is usually achieved by taking some preventive mea-
sures before the emergence of these undesirable things, and isolating or restricting
the behaviors of some individuals if the infection has already been spread through
the network. An important issue in real-world applications is the balance between
the cost spent on prevention and the expected loss caused by infection. For exam-
ple, installing anti-virus softwares on the computers is a natural response to the
possible virus attack, but it may cost a lot of money and bring inefficiency to the
protected computers due to high maintenance cost or memory requirement.

An elegant model that integrates both the security and infection costs has
been formalized by Aspnes, Chang and Yampolskiy [3]. In their model, we seek
for a subset of nodes on which we shall install the anti-virus softwares (call such
nodes secure). A virus-attack is initiated by choosing one node from the network
uniformly at random, and this node, if not secure, will infect all other nodes that
are reachable from it in the network with all secure nodes removed. The goal
is to minimize the cost for installing softwares (security cost) plus the expected
total loss caused by the virus (infection cost). They consider both centralized
(optimization) and game-theoretic settings. The model is substantially gener-
alized by Kumar et al. [19] by allowing individual security and infection costs
and arbitrary distribution of the virus-attack probability, and by introducing
a parameter d into the model that represents the distance within the network
that an infection can spread. This new model is called the generalized network
security model, denoted GNS(d). Thus, GNS(d) is able to capture networks with
less infection power or limited local information, such as ad hoc wireless net-
works. An issue with GNS(d) is that it lacks the power of modeling the action of
restricting the interconnections between individuals in the network (instead of
simply removing them from the network), which, in the graph language, corre-
sponds to blocking edges in the graph instead of deleting nodes. In spirit of such
consideration, the contamination minimization model where edges are supposed
to be blocked is raised by [16] and has been further studied in, e.g., [17,18,21].
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In this paper, we present a model for minimizing the spread of infection that
unifies and further generalizes the two aforementioned approaches, which we
call the mixed generalized network security model, denoted by MGNS(d). In our
model, each node has its own security cost and infection cost as in GNS(d), and
each edge has its own link-blocking cost that represents the lost caused by the
removal of the edge. The attack probability distribution can be arbitrary as in
GNS(d). The insecure node that is attacked initially will infect exactly those
nodes that are within distance at most d from it in the attack graph obtained
by removing all secure nodes and blocked edges from the original network. The
cost of a solution is equal to the total expected infection cost of the nodes plus
the cost for securing nodes and blocking edges in this solution. The goal is then
to find a solution with minimum cost. Our main results in this paper, some of
which improve on the previously best known results achieved for special cases of
our model, are given in the following.
1. For all 1 ≤ d < ∞, we present a polynomial time (d + 1)-approximation

algorithm for computing the optimal solution of MGNS(d) based on the
primal-dual method. This improves the approximation factor of 2d obtained
in [19] for GNS(d), which is a special case of MGNS(d). (We note that it is
possible to design a reduction from MGNS(d) to GNS(2d), which will give
us a 4d-approximation for MGNS(d) using the algorithm in [19]. However,
the reduction loses a lot of information about the topology of the underlying
network.) For the case d = ∞, we derive an O(log n)-approximation for
MGNS(∞) that matches the result of [19] for GNS(∞). Moreover, we give
a polynomial time 3

2 -approximation for MGNS(1) on bipartite graphs.
2. We prove that for all d ∈ N∪{∞}, it is APX -hard to compute the optimum

cost of GNS(d) even if the graph is 3-regular and all costs and probability
are uniform, thus ruling out the possibility of designing PTAS for the prob-
lem. We also show that, assuming the Unique Games Conjecture [13], we
cannot obtain a (3

2 − ε)-approximation for GNS(d) in polynomial time. To
our knowledge these are the first inapproximability results for GNS(d). Since
GNS(d) is a special case of MGNS(d), all the hardness results trivially apply
to MGNS(d).

3. We show that an optimal solution of MGNS(d) can be found in polynomial
time for every fixed d ≥ 1 or d = ∞ if the underlying graph is a tree, and the
infection cost and attack probability are both uniform. Our algorithm can
handle all d ≤ O(

√
log n) in polynomial time on bounded-degree trees. Our

algorithm also works for the case where budget constraints are put on the
number of nodes and edges that can be secured and blocked respectively in a
wanted solution. In particular, this settles an open question of [21] that asks
whether there exists an efficient algorithm for the minimum average con-
tamination problem on trees (which will be mentioned later in more detail).
We remark that the tree structure, despite being special, has applications in
hierarchically-organized networks such as company relationships.

Paper Organization. In the rest part of this section, we rigorously define our
model and compare it with some previous work. In Section 2 we present
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approximation algorithms for MGNS(d). Hardness of approximation results for
MGNS(d) are given in Section 3. Section 4 copes with tree instances of MGNS(d).
Finally, in Section 5 we conclude the whole paper and propose some open prob-
lems and future research directions.

1.1 Our Model for Infection Control

In this subsection we explain the mixed generalized network security model
MGNS(d) in more detail, where d ∈ N

+ ∪ {∞} is a parameter that, intuitively,
reflects the “degree of infectivity” within the network. Although we will de-
scribe our model in terms of preventing virus-spreading in computer networks,
one should keep in mind that the model is capable of many other situations
where we wish to minimize the propagation of undesirable things. Specifically,
our model MGNS(d) comprises the following ingredients:
Contact Graph, Costs and Strategy. The contact graph is an undirected
graph G = (V, E), where V = {1, 2, . . . , n} denotes the set of computers in a
connected network, and E ⊆ V 2 specifies the underlying topology of the network.
Thus, an edge {u, v} ∈ E indicates that nodes (computers) u and v are directly
connected, so that u can potentially affect v if it is infected by a computer virus
or worm, and vice versa. For each v ∈ V , let Cv denote the security cost of v
(for installing an anti-virus software on v), and Lv the infection cost of v (for
recovering it from a virus attack). For each e ∈ E, let C′

e denote the link-blocking
cost of e (for the lost caused by the removal of e). All the costs are non-negative.
In a strategy (solution), we need to decide on which nodes to install anti-virus
softwares and which edges to block. A node with anti-virus software installed
on it is called secure, and otherwise is called insecure. Similarly we have blocked
and unblocked edges. A solution S is also identified with VS ∪ES , where VS ⊆ V
is the set of secure nodes in S and ES ∈ E is the set of blocked edges in S. The
attack graph of a solution is the graph obtained from G by removing all secure
nodes and blocked edges.

Infection Model and Social Cost. We assume that the virus is initiated at
exactly one node chosen from V according to the attack probability distribution
{wv | v ∈ V }, where

∑
v∈V wv = 1. Write w(S) :=

∑
v∈S wv for S ⊆ V . A

secure node will neither suffer from the virus nor transmit the virus to other
nodes (although it can be chosen as the attacked node), whereas an insecure
node, if chosen as the attacked node, will infect exactly those nodes at distance
at most d from it in the attack graph (including itself). For a strategy S, let
V ≤d

S (v) denote the set of nodes at distance at most d from v in the attack graph
of S. Then the social cost of S (denoted by cost(S)) is defined as:

cost(S) =
∑

v∈VS

Cv

︸ ︷︷ ︸
cost for

installing softwares

+
∑

e∈ES

C′
e︸ ︷︷ ︸

cost for
blocking links

+
∑

v∈V \VS

Lv · w(V ≤d
S (v))︸ ︷︷ ︸

expected cost for
recovering v from infection

.

Goal. In the centralized setting of MGNS(d), the goal is to find a strategy with
minimum social cost, or social optimum. We can also define the decentralized
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(game-theoretic) model, in which the user needs to decide whether to install
the anti-virus software on his/her computer and whether to disconnect some of
the links with other users in the network. In this paper we concentrate on the
centralized setting of MGNS(d), while leaving explorations of the decentralized
model to future work.

1.2 Related Work

As stated before, our model MGNS(d) incorporates and generalizes several infec-
tion prevention models that have been studied recently. We list some problems
considered in the literature that are either special cases of or related to the
problem of computing the social optimum of MGNS(d).

• Consider the instances of MGNS(d) where d = ∞, C′
e = ∞ for all e ∈

E, all nodes have the same security cost C and infection cost L, and the
attack probability distribution is uniform over nodes. When restricted on such
instances, MGNS(d) coincides with the model proposed by Aspnes, Chang
and Yampolskiy [3], who gave an O(log1.5 n)-approximation for computing
the social optimum, based on the sparsest cut algorithm of Arora, Rao and
Vazirani [1]. The approximation ratio is subsequently improved to O(log n)
independently by [5] and [19], which is also the currently best known result
for this problem.

• Restricted on the instances where C′
e = ∞ for all e ∈ E (i.e., all the edges

should remain unblocked in any reasonable solution), our model is equivalent
to the generalized network security model GNS(d) introduced by Kumar et al.
[19]. They present a 2d-approximation for computing the social optimum of
GNS(d) for all d < ∞ by rounding a natural linear program for the problem.
This result is subsumed by our (d + 1)-approximation for MGNS(d). They
also give an O(log n)-approximation for GNS(∞) based on a reduction to
the minimum weighted vertex multicut problem [9], improving the O(log1.5 n)
factor of [3] and matching the result independently obtained in [5].

• Under the case where d = ∞, Cv = ∞ for all v ∈ V , wv = 1/n for all
v ∈ V , and both the infection costs and link-blocking costs are uniform,
the problem of computing the social optimum of MGNS(d) is similar to the
minimum average contamination problem studied by Li and Tang [21], which
originates from a (stochastic) link-blocking model initiated by Kimura, Saito
and Motoda [16]. The difference between our setting and theirs is that they
put a budget constraint K on the number of edges that can be removed from
the network. In [21], a (1 + ε, O( log n

ε ))-bicriteria approximation algorithm
and a (5

3 − ε)-inapproximability result are given for the minimum average
contamination problem. Note that their problem is harder than ours (with
an additional budge constraint) and thus their hardness factor is stronger
than ours. However, they only consider the case d = ∞, while our hardness
result applies to all d. Also, our polynomial-time algorithm for tree instances
of MGNS(d) holds for the budgeted case as well.
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• Another related problem that has mainly been studied in the operations
research forum is the critical node problem [2,4,7] defined as follows: given
a node-weighted graph G = (V, E), a connection cost c(u, v) for each pair
of nodes {u, v} ∈ V 2, and a parameter K, the goal is to find a subset of
nodes whose total weight does not exceed K such that the total connection
cost (counted for all connected pairs of nodes) is minimized. This problem is
similar to MGNS(∞) with C′

e = ∞ for all e ∈ E and wv = 1/n for all v ∈ V ,
but with additional budget constraints and more general cost functions. The
problem is NP-complete on general graphs with unit costs and unit weights
[2], and on trees with unit weights [7]. For the unit-cost case (which makes
the problem fit in our model with d = ∞) in a tree of size n, Di Summa et
al. [7] show that the problem is solvable in O(n7) time. Our polynomial-time
algorithm for (budgeted) MGNS(d) on trees substantially generalizes their
result to all fixed d.

2 Approximation Algorithm for MGNS(d)

In this section we concern with the computation of the social optimum of
MGNS(d). As the problem is NP-hard, we focus on the perspective of approxi-
mation, and obtain the following results.

Theorem 1. For any d ≥ 1, there is a polynomial time (d + 1)-approximation
algorithm for computing the social optimum of MGNS(d). (Here d need not be a
constant.)

Theorem 2. There is a polynomial time O(log n)-approximation for the social
optimum of MGNS(∞).

Theorem 3. There is a polynomial time 3
2 -approximation algorithm for com-

puting the social optimum of MGNS(1) with bipartite contact graphs.

We only prove Theorems 1 and 2 here. The proof of Theorem 3 will appear in
the full version of this paper.

First consider the case 1 ≤ d < ∞. Let I be an instance of MGNS(d) with
contact graph G = (V, E) where V = {1, 2, . . . , n}. If Ci < wiLi for some i ∈ V ,
then clearly i should be secured in any optimum solution. Thus, we assume in
what follows that Ci ≥ wiLi for all i ∈ V . We write an integer program to
formulate the social optimum of I. For each k ∈ V ∪ E, let xk be a binary
variable that is 1 if and only if k is secure (or blocked, depending on whether k
is a node or an edge). For a path p, let Vp and Ep denote the sets of nodes and
edges on p, respectively. For all 1 ≤ i < j ≤ n, let P d

i,j denote the collection of
all simple paths from i to j of length at most d (note that P d

i,j can be empty and
can also be of exponential size), and yi,j be a binary variable that is 1 if and only
if there exists at least one path p ∈ P d

i,j on which all nodes are insecure and all
edges are unblocked. Thus, yi,j = 1 iff i and j can infect each other in the attack
graph. Then the following integer program IP1 characterizes precisely the social
optimum of I:
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IP1: Min
∑
i∈V

Cixi +
∑

{i,j}∈E

C′
{i,j}x{i,j} +

∑
i∈V

Li

⎛
⎝wi(1 − xi) +

∑
j∈V \{i}

wjyi,j

⎞
⎠

subject to: yi,j +
∑

k∈Vp∪Ep

xk ≥ 1 ∀1 ≤ i < j ≤ n and p ∈ P d
i,j

yi,j = yj,i ∀1 ≤ i < j ≤ n

xk ∈ {0, 1} ∀k ∈ V ∪ E

yi,j ∈ {0, 1} ∀1 ≤ i, j ≤ n, i 	= j .

We write C′
i = Ci−wiLi for each i ∈ V (with a little abuse of notation since C′

is originally defined for edge costs), Li,j = wiLj + wjLi for all 1 ≤ i < j ≤ n,
and C =

∑
1≤i≤n wiLi. Note that C′

i ≥ 0 for all i ∈ V by our assumption
before. Rearranging terms, unifying the first two summations, and combining
the occurrences of yi,j and yj,i in the objective function of IP1, we get a simpler
yet equivalent formulation IP2 as follows:

IP2: Min
∑

k∈V ∪E

C′
kxk +

∑
1≤i<j≤n

Li,jyi,j + C subject to:

yi,j +
∑

k∈Vp∪Ep

xk ≥ 1 ∀1 ≤ i < j ≤ n and p ∈ P d
i,j

xk ∈ {0, 1} ∀k ∈ V ∪ E

yi,j ∈ {0, 1} ∀1 ≤ i < j ≤ n.

Observe that IP2, with the constant part C discarded, can be regarded as an
instance of the weighted set cover problem when treating the length-at-most-d
paths as the elements to be covered. When d is fixed, the instance of set cover is
constructible in polynomial time. Also, in this set cover instance, every element
appears in at most 2d + 2 sets, because each constraint in IP2 involves at most
2d + 2 variables (note that each p ∈ P d

i,j consists of at most d + 1 vertices and d
edges). Therefore, a polynomial time (2d + 2)-approximation exists for IP2 (see,
e.g., [11]) and thus also for MGNS(d). Notice that, by reducing the problem
to set cover, we can only handle constant d, and cannot hope for a poly-time
(2d + 2− ε)-approximation due to the (k− ε)-hardness of k-uniform hypergraph
vertex cover [14], assuming the Unique Games Conjecture [13].

We next show that we can obtain an approximation factor of d+1 for all d (not
necessarily fixed) by utilizing the special structure of IP2, thus saving a factor of
2 from the set cover approach. To achieve this, we relax the last two constraints
of IP2 to xk ≥ 0 and yi,j ≥ 0 respectively, and ignore the constant part C in
the objective function. This gives us a linear programming relaxation (which
might still have super-polynomial size) of the original instance, which we call
LP. (We do not state LP explicitly since it is very similar to IP2.) Obviously,
OPT (LP ) + C ≤ OPT (IP2) = OPT (IP1), where OPT (P ) is the optimum
objective value of the mathematical program P .

We now write the dual formulation of LP. Let P d = ∪1≤i<j≤nP d
i,j . For each

p ∈ P d, introduce a dual variable zp, which corresponds to the constraint
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yi,j +
∑

k∈Vp∪Ep
xk ≥ 1 in LP (where i and j are the endpoints of p). The

dual program DU can be written as follows:

DU: Max
∑

p∈P d

zp subject to:

∑
p∈P d

i,j

zp ≤ Li,j ∀1 ≤ i < j ≤ n

∑
p∈P d

k∈Vp∪Ep

zp ≤ C′
k ∀k ∈ V ∪ E

zp ≥ 0 ∀p ∈ P d.

By the strong duality theorem, OPT (DU) = OPT (LP ). We now find a solution
to IP2 by Algorithm 1, which basically consists of a primal-dual procedure and a
“pruning” phase. Since the number of variables in DU can be super-polynomial
in n for non-constant d, the näıve implementation of Algorithm 1 may not run
in polynomial time. Nevertheless, we will show later that the running time can
be reduced to nO(1) regardless of d; stating the algorithm in its current form
is just to simplify the analysis of its performance guarantee. Let S denote the
solution to IP2 returned by Algorithm 1, and Z = {zp | p ∈ P d} be the solution
to DU obtained in Algorithm 1 (which is not explicitly returned). Let value(S)
denote the objective value of the solution S.

Algorithm 1. Constructing a feasible solution for IP2
1: xk ← 0, ∀k ∈ V ∪ E; yi,j ← 0, ∀1 ≤ i < j ≤ n.
2: zp ← 0, ∀p ∈ P d; also, set all zp to be “unfrozen.”
3: while there are still unfrozen variables do
4: Choose any unfrozen variable, say zp, that appears in some constraint of DU.

Raise the value of zp until some constraint in DU, say c, becomes tight. (Pick
an arbitrary one if there are more than one tight constraints.)

5: if c is “
∑

p∈P d:k∈Vp∪Ep
zp ≤ C′

k” for some k ∈ V ∪ E then
6: xk ← 1
7: else if c is “

∑
p∈P d

i,j
zp ≤ Li,j” for some 1 ≤ i < j ≤ n then

8: yi,j ← 1
9: end if

10: Freeze all variables that occur in some (newly appeared) tight constraint.
11: end while
12: for all 1 ≤ i < j ≤ n do
13: if xi = 1 or xj = 1 then
14: yi,j ← 0; x{i,j} ← 0 if {i, j} ∈ E.
15: end if
16: end for
17: return {xk | k ∈ V ∪ E} ∪ {yi,j | 1 ≤ i < j ≤ n}.
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Lemma 1. Z is a feasible solution to DU, and S is a feasible solution to IP2.

The proof of Lemma 1 is easy and thus omitted.

Lemma 2. value(S) ≤ (d + 1)OPT (IP2) .

Proof. For each variable v of IP2, let c(v) denote the constraint in DU that corre-
sponds to v. Call a constraint c(v) active if v = 1 in the solution S. By Line 4 of
Algorithm 1, every active constraint c(v) (say) is tight, and hence the contribution
of this v to value(S) (which is the coefficient of v in the objective function of IP2)
equals to the sum of zp’s contained in c(v). Therefore, value(S) =

∑
p∈P d tpzp,

where tp is the number of active constraints containing zp.
Now fix an arbitrary p = (i0, i1, . . . , it) ∈ P d, t ≤ d. The set of constraints in

which zp appears is {c(yi0,it)}∪{c(xij ) | 0 ≤ j ≤ t}∪{c(x{ij ,ij+1}) | 0 ≤ j ≤ t−1},
which can be partitioned into the following t + 1 subsets:

{c(xi0), c(x{i0,i1})}, {c(xi1), c(x{i1,i2})}, . . . , {c(xit−1), c(x{it−1,it})}, {c(xit), c(yi0,it)}.

Due to the function of the FOR loop, at most one constraint from each subset
is active. Thus zp appears in at most t + 1 ≤ d + 1 active constraints. Recalling
that the objective function of IP2 embraces an additional part C, we have

value(S) ≤ C + (d + 1)
∑

p∈P d

zp ≤ C + (d + 1)OPT (DU)

= C + (d + 1)OPT (LP ) ≤ C + (d + 1)(OPT (IP2)− C)
≤ (d + 1)OPT (IP2),

completing the proof of Lemma 2. ��

Lemmas 1 and 2 ensure that S is a (d + 1)-approximate solution to IP2. We
next explain how to make Algorithm 1 run in poly-time for all d. Consider the
following two operations:

(1) Find an unfrozen variable of DU if there exists at least one.
(2) Given a variable zp, find all the constraints in DU that contain zp.

Lemma 3. If operations (1) and (2) can be done in polynomial time, then Al-
gorithm 1 can be implemented to run in polynomial time.

Proof. Suppose (1) and (2) can be done in polynomial time. Since DU has at
most

(
n
2

)
+n ≤ n2 constraints and each time only one variable raises its value, we

can keep the current LHS and RHS values of each constraint, and are thus able
to know which constraints are tight. Hence Line 10 can be realized implicitly
since a variable is frozen iff it appears in some tight constraint. To implement
Line 4, we first apply (1) to find an unfrozen variable (say zp) if there exists
one, and then use (2) to find a constraint containing zp that has the smallest
difference between RHS and LHS values; this difference is exactly the amount
that zp can be raised. The other steps in Algorithm 1 can clearly be implemented
to run in poly-time. The lemma is thus proved. ��
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Lemma 4. We can accomplish (1) and (2) in polynomial time.

Proof. We use c(v) to denote the constraint in DU that corresponds to the vari-
able v of IP2. First note that (2) is easy to implement: For each variable zp where
p has endpoints i and j, zp appears exactly in the constraints corresponding to
yi,j or xk for some k ∈ Vp ∪Ep. Thus we focus on (1). As shown in the proof of
Lemma 3, we know the set of tight constraints in DU, and a variable is unfrozen
if and only if it does not appear in any tight constraint. For p ∈ P d, the variable
zp does not appear in c(xk) (where k ∈ V ∪E) iff k �∈ Vp ∪ Ep, and zp does not
appear in c(yi,j) (where 1 ≤ i < j ≤ n) iff p is not a path between i and j. We
do the following: Construct a graph G′ from G by deleting all k ∈ V ∪ E from
G for which c(xk) is tight. Then, for every 1 ≤ i < j ≤ n such that c(yi,j) is not
tight, check whether there exists a path p from i to j in G′ of length at most d;
if so, then the corresponding variable zp must be unfrozen due to our previous
analysis. Also, by this procedure we will find an unfrozen variable if there exists
at least one. Clearly this process can be finished in polynomial time. ��

Now Theorem 1 follows directly from Lemmas 1, 2, 3 and 4.
We next turn to the case d = ∞ and prove Theorem 2. We reduce MGNS(∞)

to GNS(∞) as follows: Construct a graph G′ by subdividing each edge e ∈ E
with a new vertex ve. Let w(ve) = 0, Cve = C′

e and Lve = 0 for all e ∈ E.
It is easy to argue that the problem of finding the social optimum of GNS(∞)
on this new instance is equivalent to that of MGNS(∞) on the original one.
Now, applying the poly-time approximation algorithm for GNS(∞) given in
[19], we get a solution for MGNS(∞) with approximation ratio O(log |V (G′)|) =
O(log n). This finishes the proof of Theorem 2.

We remark that a similar reduction can reduce an instance of MGNS(d) to that
of GNS(2d). Using the approximation algorithm in [19], we obtain a solution for
MGNS(d) with approximation factor 4d, which is nearly four times larger than
the ratio guaranteed by Theorem 1. This is in part due to the fact that such a
reduction loses some information of the graph topology, which is important to
our algorithm.

3 Hardness of Approximation for GNS(d)

In this section we present inapproximability results for GNS(d), a special case of
our model MGNS(d). Thus, all the hardness results trivially apply to MGNS(d).
The proof of the following two theorems will appear in the full version of this
paper.

Theorem 4. For every d ∈ N∪{∞}, computing the social optimum of GNS(d)
is APX -hard, even if the contact graph is 3-regular and all types of costs as well
as the attack probability distribution are uniform.

Theorem 5. Assuming Unique Games Conjecture, for any d ∈ N ∪ {∞} and
any fixed ε > 0, we cannot approximate the social optimum of GNS(d) to a factor
of 3

2 − ε in polynomial time.
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4 Polynomial Algorithm for MGNS(d) on Trees

In this section we consider a special class of instances of MGNS(d), in which
the underlying contact graph of the instance is a tree, and the infection cost
and attack probability are both uniform. Our main results are as follows, whose
rigorous proofs will appear in the full version of this paper.

Theorem 6. For every fixed d ≥ 1 or d = ∞, we can find in polynomial time an
optimal solution of a tree-instance of MGNS(d) with uniform infection cost and
attack probability, even if there are budget constraints, i.e., given two integers K
and K ′, a solution can secure at most K nodes and block at most K ′ edges.

Theorem 7. For all d ≤ O(
√

log n), we can find in polynomial time an optimal
solution to (budgeted) MGNS(d) if the instance has uniform infection cost and
attack probability, and its contact graph is a tree of bounded degree.

Theorem 6 in particular settles an open problem from [21] that asks if there is
a polynomial time algorithm for the minimum average contamination problem,
which corresponds to the special case of budgeted MGNS(d) on trees where every
node has security cost ∞ and all other costs as well as the attack probability
distribution are uniform.

5 Conclusions and Future Research

We propose in this paper the mixed generalized network security model MGNS(d),
which generalizes several other models for infection control. We present approxi-
mation and inapproximability results for the problem of computing the optimum
solution of MGNS(d), and exact polynomial-time algorithms for tree instances
with uniform infection cost and attack probability distribution. Some of our re-
sults lead immediately to improvements upon the previously best known results
achieved for some special cases of our model.

There are many interesting questions left that deserve further explorations.
Regarding the optimization of social cost, a big open question is whether we
can break the O(log n) factor for MGNS(∞) or GNS(∞), or there is a matching
hardness of approximation result. Also for MGNS(d) where d < ∞, there remains
a large gap between the upper bound of d+1 and the lower bound of 3

2−ε on the
approximation ratio. Another research issue is the formulation and investigation
of the decentralized or game-theoretic counterpart of our model, where a user
can decide whether to install an anti-virus software, and might also be able to
block some of the links to other users. Finally, incorporating other propagation
models (e.g., the independent cascade model, or the linear threshold model) into
MGNS(d) may lead to more accurate modeling of some applications.
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Abstract. We analyze the problem of computing a correlated equilibrium that
optimizes some objective (e.g., social welfare). Papadimitriou and Roughgarden
[2008] gave a sufficient condition for the tractability of this problem; however,
this condition only applies to a subset of existing representations. We propose
a different algorithmic approach for the optimal CE problem that applies to all
compact representations, and give a sufficient condition that generalizes that of
Papadimitriou and Roughgarden [2008]. In particular, we reduce the optimal CE
problem to the deviation-adjusted social welfare problem, a combinatorial op-
timization problem closely related to the optimal social welfare problem. This
framework allows us to identify new classes of games for which the optimal CE
problem is tractable; we show that graphical polymatrix games on tree graphs
are one example. We also study the problem of computing the optimal coarse
correlated equilibrium, a solution concept closely related to CE. Using a similar
approach we derive a sufficient condition for this problem, and use it to prove that
the problem is tractable for singleton congestion games.

1 Introduction

A fundamental class of computational problems in game theory is the computation of
solution concepts of finite games. Much recent effort in the literature has concerned
the problem of computing a sample Nash equilibrium [Chen & Deng, 2006; Daskalakis
et al., 2006; Daskalakis & Papadimitriou, 2005; Goldberg & Papadimitriou, 2006]. First
proposed by Aumann [1974; 1987], correlated equilibrium (CE) is another important
solution concept. Whereas in a mixed strategy Nash equilibrium players randomize
independently, in a correlated equilibrium the players can coordinate their behavior
based on signals from an intermediary.

Correlated equilibria of a game can be formulated as probability distributions over
pure strategy profiles satisfying certain linear constraints. The resulting linear feasibility
program has size polynomial in the size of the normal form representation of the game.
However, the size of the normal form representation grows exponentially in the number

� All proofs are omitted in this extended abstract. A full version is available at
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of players. This is problematic when games involve large numbers of players. Fortu-
nately, most large games of practical interest have highly-structured payoff functions,
and thus it is possible to represent them compactly. A line of research thus exists to look
for compact game representations that are able to succinctly describe structured games,
including work on graphical games [Kearns et al., 2001] and action-graph games [Bhat
& Leyton-Brown, 2004; Jiang et al., 2011]. But now the size of the linear feasibility
program for CE can be exponential in the size of compact representation; furthermore
a CE can require exponential space to specify.

The problem of computing a sample CE was recently shown to be in polynomial
time for most existing compact representations [Papadimitriou & Roughgarden, 2008;
Jiang & Leyton-Brown, 2011]. However, since in general there can be an infinite num-
ber of CE in a game, finding an arbitrary one is of limited value. Instead, here we focus
on the problem of computing a correlated equilibrium that optimizes some objective.
In particular we consider optimizing linear functions of players’ expected utilities. For
example, computing the best (or worst) social welfare corresponds to maximizing (or
minimizing) the sum of players’ utilities, respectively. We are also interested in comput-
ing optimal coarse correlated equilibrium (CCE) [Hannan, 1957]. It is known that the
empirical distribution of any no-external-regret learning dynamic converges to the set
of CCE, while the empirical distribution of no-internal-regret learning dynamics con-
verges to the set of CE (see e.g. [Nisan et al., 2007]). Thus, optimal CE / CCE provide
useful bounds on the social welfare of the empirical distributions of these dynamics.

We are particularly interested in the relationship between the optimal CE / CCE prob-
lems and the problem of computing the optimal social welfare outcome (i.e. strategy
profile) of the game, which is exactly the optimal social welfare CE problem without
the incentive constraints. This is an instance of a line of questions that has received
much interest from the algorithmic game theory community: “How does adding in-
centive constraints to an optimization problem affect its complexity?” This question
in the mechanism design setting is perhaps one of the central questions of algorithmic
mechanism design [Nisan & Ronen, 2001]. Of course, a more constrained problem can
in general be computationally easier than the relaxed version of the problem. Never-
theless, results from complexity of Nash equilibria and algorithmic mechanism design
suggest that adding incentive constraints to a problem is unlikely to decrease its com-
putational difficulty. That is, when the optimal social welfare problem is hard, we tend
also to expect that the optimal CE problem will be hard as well. On the other hand, we
are interested in the other direction: when it is the case for a class of games that the
optimal social welfare problem can be efficiently computed, can the same structure be
exploited to efficiently compute the optimal CE?

The seminal work on the computation of optimal CE is [Papadimitriou & Rough-
garden, 2008]. This paper considered the optimal linear objective CE problem and
proved that the problem is NP-hard for many representations including graphical games,
polymatrix games, and congestion games. On the tractability side, Papadimitriou and
Roughgarden [2008] focused on so-called “reduced form” representations, meaning
representations for which there exist player-specific partitions of the strategy profile
space into payoff-equivalent outcomes. They showed that if a particular separation
problem is polynomial-time solvable, the optimal CE problem is polynomial-time



220 A.X. Jiang and K. Leyton-Brown

solvable as well. Finally, they showed that this separation problem is polynomial-time
solvable for bounded-treewidth graphical games, symmetric games and anonymous
games.

Perhaps most surprising and interesting is the form of Papadimitriou and Roughgar-
den’s sufficient condition for tractability: their separation problem for an instance of a
reduced-form-based representation is essentially equivalent to solving the optimal so-
cial welfare problem for an instance of that representation with the same reduced form
but possibly different payoffs. In other words, if we have a polynomial-time algorithm
for the optimal social welfare problem for a reduced-form-based representation, we can
turn that into a polynomial-time algorithm for the optimal social welfare CE problem.
However, Papadimitriou and Roughgarden’s sufficient condition for tractability only
applies to reduced-form-based representations. Their definition of reduced forms is un-
able to handle representations that exploit linearity of utility, and in which the structure
of player p’s utility function may depend on the action she chose. As a result, many rep-
resentations do not fall into this characterization, such as polymatrix games, congestion
games, and action-graph games. Although the optimal CE problems for these represen-
tations are NP-hard in general, we are interested in identifying tractable subclasses of
games, and a sufficient condition that applies to all representations would be helpful.

In this article, we propose a different algorithmic approach for the optimal CE prob-
lem that applies to all compact representations. By applying the ellipsoid method to
the dual of the LP for optimal CE, we show that the polynomial-time solvability of
what we call the deviation-adjusted social welfare problem is a sufficient condition
for the tractability of the optimal CE problem. We also give a sufficient condition for
tractability of the optimal CCE problem: the polynomial-time solvability of the coarse
deviation-adjusted social welfare problem. We show that for reduced-form-based rep-
resentations, the deviation-adjusted social welfare problem can be reduced to the sep-
aration problem of Papadimitriou and Roughgarden [2008]. Thus the class of reduced
forms for which our problem is polynomial-time solvable contains the class for which
the separation problem is polynomial-time solvable. More generally, we show that if a
representation can be characterized by “linear reduced forms”, i.e. player-specific lin-
ear functions over partitions, then for that representation, the deviation-adjusted social
welfare problem can be reduced to the optimal social welfare problem. As an example,
we show that for graphical polymatrix games on trees, optimal CE can be computed in
polynomial time. Such games are not captured by the reduced-form framework.1

On the other hand, representations like action-graph games and congestion games
have action-specific structure, and as a result the deviation-adjusted social welfare prob-
lems and coarse deviation-adjusted social welfare problems on these representations are
structured differently from the corresponding optimal social welfare problems. Never-
theless, we are able to show a polynomial-time algorithm for the optimal CCE problem
on singleton congestion games [Ieong et al., 2005], a subclass of congestion games.
We use a symmetrization argument to reduce the optimal CCE problem to the coarse

1 In a recent paper Kamisetty et al. [2011] has independently proposed an algorithm for optimal
CE in graphical polymatrix games on trees. They used a different approach that is specific to
graphical games and graphical polymatrix games, and it is not obvious whether their approach
can be extended to other classes of games.
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deviation-adjusted social welfare problem with player-symmetric deviations, which can
be solved using a dynamic-programming algorithm. This is an example where the op-
timal CCE problem is tractable while the complexity of the optimal CE problem is not
yet known.

2 Problem Formulation

Consider a simultaneous-move game G = (N , {Sp}p∈N , {up}p∈N ), where N =
{1, . . . , n} is the set of players. Denote a player p, and player p’s set of pure strategies
(i.e., actions) Sp. Let m = maxp |Sp|. Denote a pure strategy profile s = (s1, . . . , sn) ∈
S, with sp being player p’s pure strategy. Denote by S−p the set of partial pure strategy
profiles of the players other than p. Let up be the vector of player p’s utilities for each
pure profile, denoting player p’s utility under pure strategy profile s as up

s . Let w be the
vector of social welfare for each pure profile, that is w =

∑
p∈N up, with ws denoting

the social welfare for pure profile s.
Throughout the paper we assume that the game is given in a representation with

polynomial type [Papadimitriou, 2005; Papadimitriou & Roughgarden, 2008], i.e., that
the number of players and the number of actions for each player are bounded by poly-
nomials of the size of the representation.

2.1 Correlated Equilibrium

A correlated distribution is a probability distribution over pure strategy profiles, repre-
sented by a vector x ∈ �M , where M =

∏
p |Sp|. Then xs is the probability of pure

strategy profile s under the distribution x.

Definition 1. A correlated distribution x is a correlated equilibrium (CE) if it satis-
fies the following incentive constraints: for each player p and each pair of her actions
i, j ∈ Sp, we have

∑
s−p∈S−p

[up
is−p

− up
js−p

]xis−p ≥ 0, where the subscript “is−p”
(respectively “js−p”) denotes the pure strategy profile in which player p plays i (re-
spectively j) and the other players play according to the partial profile s−p ∈ S−p.

Intuitively, when a trusted intermediary draws a strategy profile s from this distribu-
tion, privately announcing to each player p her own component sp, p will have no in-
centive to choose another strategy, assuming others follow the suggestions. We write
these incentive constraints in matrix form as Ux ≥ 0. Thus U is an N × M matrix,
where N =

∑
p |Sp|2. The rows of U are indexed by (p, i, j), where p is a player

and i, j ∈ Sp are a pair of p’s actions. Denote by Us the column of U correspond-
ing to pure strategy profile s. These incentive constraints, together with the constraints
x ≥ 0,

∑
s∈S xs = 1, which ensure that x is a probability distribution, form a linear

feasibility program that defines the set of CE. The problem of computing a maximum
social welfare CE can be formulated as the LP

max wT x (P )

Ux ≥ 0, x ≥ 0,
∑
s∈S

xs = 1
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Another solution concept of interest is coarse correlated equilibrium (CCE). Whereas
CE requires that each player has no profitable deviation even if she takes into account
the signal she receives from the intermediary, CCE only requires that each player has
no profitable unconditional deviation.

Definition 2. A correlated distribution x is a coarse correlated equilibrium (CCE) if it
satisfies the following incentive constraints: for each player p and each of his actions
j ∈ Sp, we have

∑
(i,s−p)∈S[up

is−p
− up

js−p
]xis−p ≥ 0.

We write these incentive constraints in matrix form as Cx ≥ 0. Thus C is an (
∑

p |Sp|)×
M matrix. By definition, a CE is also a CCE.

The problem of computing a maximum social welfare CCE can be formulated as the
LP

max wT x (CP )

Cx ≥ 0, x ≥ 0,
∑
s∈S

xs = 1.

3 The Deviation-Adjusted Social Welfare Problem

Consider the dual of (P ),

min t (D)

UT y + w ≤ t1

y ≥ 0.

We label the (p, i, j)-th element of y ∈ �N (corresponding to row (p, i, j) of U ) as
yp

i,j . This is an LP with a polynomial number of variables and an exponential number
of constraints. Given a separation oracle, we can solve it in polynomial time using
the ellipsoid method. A separation oracle needs to determine whether a given (y, t) is
feasible, and if not output a hyperplane that separates (y, t) from the feasible set. We
focus on a restricted form of separation oracles, which outputs a violated constraint for
infeasible points.2 Such a separation oracle needs to solve the following problem:

Problem 1. Given (y, t) with y ≥ 0, determine if there exists an s such that (Us)T y +
ws > t; if so output such an s.

The left-hand-side expression (Us)T y + ws is the social welfare at s plus the term
(Us)T y. Observe that the (p, i, j)-th entry of Us is up

s−up
js−p

if sp = i and is zero other-

wise. Thus (Us)T y =
∑

p

∑
j∈Sp

yp
sp,j

(
up

s − up
js−p

)
. We now reexpress (Us)T y+ws

in terms of deviation-adjusted utilities and deviation-adjusted social welfare.

2 This is a restriction because in general there exist separating hyperplanes other than the vio-
lated constraints. For example Papadimitriou and Roughgarden [2008]’s algorithm for comput-
ing a sample CE uses a separation oracle that outputs a convex combination of the constraints
as a separating hyperplane.
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Definition 3. Given a game, and a vector y ∈ �N such that y ≥ 0, the deviation-
adjusted utility for player p under pure profile s is

ûp
s(y) = up

s +
∑
j∈Sp

yp
sp,j

(
up

s − up
js−p

)
.

The deviation-adjusted social welfare is ŵs(y) =
∑

p ûp
s(y).

By construction, the deviation-adjusted social welfare ŵs(y) =
∑

p up
s +∑

p

∑
j∈Sp

yp
sp,j

(
up

s − up
js−p

)
= (Us)T y + ws. Therefore, Problem 1 is equivalent

to the following deviation-adjusted social welfare problem.

Definition 4. For a game representation, the deviation-adjusted social welfare problem
is the following: given an instance of the representation and rational vector (y, t) ∈
�N+1 such that y ≥ 0, determine if there exists an s such that the deviation-adjusted
social welfare ŵs(y) > t; if so output such an s.

Proposition 1. If the deviation-adjusted social welfare problem can be solved in poly-
nomial time for a game representation, then so can the problem of computing the max-
imum social welfare CE.

Let us consider interpretations of the dual variables y and the deviation-adjusted social
welfare of a game. The dual (D) can be rewritten as miny≥0 maxs w̃s(y). By weak
duality, for a given y ≥ 0 the maximum deviation-adjusted social welfare maxs w̃s(y)
is an upper bound on the maximum social welfare CE. So the task of the dual (D) is
to find y such that the resulting maximum deviation-adjusted social welfare gives the
tightest bound.3 At optimum, y corresponds to the concept of “shadow prices” from
optimization theory; that is, yp

ij equals the rate of change in the social welfare objective
when the constraint (p, i, j) is relaxed infinitesimally. Compared to the maximum social
welfare CE problem, the maximum deviation-adjusted social welfare problem replaces
the incentive constraints with a set of additional penalties or rewards. Specifically, we
can interpret y as a set of nonnegative prices, one for each incentive constraint (p, i, j)
of (P ). At strategy profile s, for each incentive constraint (p, i, j) we impose a penalty
equal to yp

ij times the amount the constraint (p, i, j) is violated by s. Note that the
penalty can be negative, and is zero if sp �= i. Then w̃s(y) is equal to the social welfare
of the modified game.

Practical Computation. The problem of computing the expected utility (EU) given a
mixed strategy profile has been established as an important subproblem for both the
sample NASH problem and the sample CE problem, both in theory [Daskalakis et al.,
2006; Papadimitriou & Roughgarden, 2008] and in practice [Blum et al., 2006; Jiang
et al., 2011]. Our results suggest that the deviation-adjusted social welfare problem is
of similar importance to the optimal CE problem. This connection is more than theo-
retical: our algorithmic approach can be turned into a practical method for computing
optimal CE. In particular, although it makes use of the ellipsoid method, we can easily

3 An equivalent perspective is to view y as Lagrange multipliers, and the optimal deviation-
adjusted SW problem as the Lagrangian relaxation of (P ) given the multipliers y.
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substitute a more practical method, such as simplex with column generation. In con-
trast, Papadimitriou and Roughgarden [2008]’s algorithmic approach for reduced forms
makes two nested applications of the ellipsoid method, and is less likely to be practical.

3.1 The Coarse Deviation-Adjusted Social Welfare Problem

For the optimal social welfare CCE problem, we can form the dual of (CP )

min t (1)

CT y + w ≤ t1

y ≥ 0

Definition 5. We label the (p, j)-th element of y as yp
j . Given a game, and a vector

y ∈ �
∑

p |Sp| such that y ≥ 0, the coarse deviation-adjusted utility for player p under
pure profile s is ũp

s(y) = up
s +

∑
j∈Sp

yp
j (up

s − up
js−p

). The coarse deviation-adjusted
social welfare is w̃s(y) =

∑
p ũp

s(y).

Proposition 2. If the coarse deviation-adjusted social welfare problem can be solved in
polynomial time for a game representation, then the problem of computing the maximum
social welfare CCE is in polynomial time for this representation.

The coarse deviation-adjusted social welfare problem reduces to the deviation-adjusted
social welfare problem. To see this, given an input vector y for the coarse deviation-
adjusted social welfare problem, we can construct an input vector y′ ∈ �N for the
deviation-adjusted social welfare problem with y′p

ij = yp
j for all p ∈ N and i, j ∈ Sp.

4 The Deviation-Adjusted Social Welfare Problem for Specific
Representations

In this section we study the deviation-adjusted social welfare problem and its variants
on specific representations. Depending on the representation, the deviation-adjusted so-
cial welfare problem is not always solvable in polynomial time. Indeed, Papadimitriou
and Roughgarden [2008] showed that for many representations the problem of optimal
CE is NP-hard. Nevertheless, for such representations we can often identify tractable
subclasses of games. We will argue that the deviation-adjusted social welfare problem
is a more useful formulation for identifying tractable classes of games than the separa-
tion problem formulation of Papadimitriou and Roughgarden [2008], as the latter only
applies to reduced-form-based representations.

4.1 Reduced Forms

Papadimitriou and Roughgarden [2008] gave the following reduced form characteriza-
tion of representations.
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Definition 6 ([Papadimitriou & Roughgarden, 2008]). Consider a game G = (N ,
{Sp}p∈N , {up}p∈N ). For p = 1, . . . , n, let Pp = {C1

p . . . C
rp
p } be a partition of S−p

into rp classes. The set P = {P1, . . . , Pn} of partitions is a reduced form of G if
up

s = up
s′ whenever (1) sp = s′p and (2) both s−p and s′−p belong to the same class in

Pp. The size of a reduced form is the number of classes in the partitions plus the bits
required to specify a payoff value for each tuple (p, k, �) where 1 ≤ p ≤ n, 1 ≤ k ≤ rp

and � ∈ Sp.

Intuitively, the reduced form imposes the condition that p’s utility for choosing an ac-
tion sp depends only on which class in the partition Pp the profile of the others’ ac-
tions belongs to. Papadimitriou and Roughgarden [2008] showed that several compact
representations such as graphical games and anonymous games have natural reduced
forms whose sizes are (roughly) equal to the sizes of the representation. We say such
a compact representation has a concise reduced form. Intuitively, such a reduced form
describes the structure of the game’s utility functions.

Let Sp(k, �) denote the set of pure strategy profiles s such that sp = � and s−p is
in the k-th class Ck

p of Pp, and let up
(k,�) denote the utility of p for that set of strat-

egy profiles. Papadimitriou and Roughgarden [2008] defined the following Separation
Problem for a reduced form.

Definition 7 ([Papadimitriou & Roughgarden, 2008]). Let P be a reduced form for
game G. The Separation Problem forP is the following: Given rational numbers γp(k, �)
for all p ∈ {1, . . . , n}, k ∈ {1, . . . , rp}, and � ∈ Sp, is there a pure strategy profile s
such that

∑
p,k,�:s∈Sp(k,�) γp(k, �) < 0? If so, find such s.

Since s ∈ Sp(k, �) implies sp = �, the left-hand side of the above expression is equiv-
alent to

∑
p

∑
k:s∈Sp(k,sp) γp(k, sp). Furthermore, since s belongs to exactly one class

in Pp, the expression is a sum of exactly n summands.
Papadimitriou and Roughgarden [2008] proved that if the separation problem can

be solved in polynomial time, then a CE that maximizes a given linear objective in the
players’ utilities can be computed in time polynomial in the size of the reduced form.
How does Papadimitriou and Roughgarden [2008]’s sufficient condition relate to ours,
provided that the game has a concise reduced form? We show that the class of reduced
form games for which our deviation-adjusted social welfare problem is polynomial-
time solvable contains the class for which the separation problem is polynomial-time
solvable.

Proposition 3. Let P be a reduced form for game G. Suppose the separation problem
can be solved in polynomial time. Then the deviation-adjusted social welfare problem
can be solved in time polynomial in the size of the reduced form.

We now compare the the deviation-adjusted social welfare problem with the optimal so-
cial welfare problem for these representations. We observe that the deviation-adjusted
social welfare problem can be formulated as an instance of the optimal social welfare
problem on another game with the same reduced form but different payoffs. Can we
claim that the existence of a polynomial-time algorithm for the optimal social welfare
problem for a representation implies the existence of a polynomial-time algorithm for
the social welfare problem (and thus the optimal CE problem)? This is not necessarily
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the case, because the representation might impose certain structure on the utility func-
tions that are not captured by the reduced forms, and the polynomial-time algorithm
for the optimal social welfare problem could depend on the existence of such structure.
The deviation-adjusted social welfare problem might no longer exhibit such structure
and thus might not be solvable using the given algorithm.

Nevertheless, if we consider a game representation that is “completely characterized”
by its reduced forms, the deviation-adjusted social welfare problem is equivalent to the
decision version of the optimal social welfare outcome problem for that representation.
To make this more precise, we say a game representation is a reduced-form-based rep-
resentation if there exists a mapping from instances of the representation to reduced
forms such that it maps each instance to a concise reduced form of that instance, and
if we take such a reduced form and change its payoff values arbitrarily, the resulting
reduced form is a concise reduced form of another instance of the representation.

Corollary 1. For a reduced-form-based representation, if there exists a polynomial-
time algorithm for the optimal social welfare problem, then the optimal social welfare
CE problem and the max-min welfare CE problem can be solved in polynomial time.

Of course, this can be derived using the separation problem for reduced forms without
the deviation-adjusted social welfare formulation. On the other hand, the deviation-
adjusted social welfare formulation can be applied to representations without concise
reduced forms. In fact, we will use it to show below that the connection between the
optimal social welfare problem and the optimal CE problem applies to a wider classes
of representations than just reduced-form-based representations.

4.2 Linear Reduced Forms

One class of representations that does not have concise reduced forms are those that
represent utility functions as sums of other functions, such as polymatrix games and the
hypergraph games of Papadimitriou and Roughgarden [2008]. In this section we char-
acterize these representations using linear reduced forms, showing that linear-reduced-
form-based representations satisfy a property similar to Corollary 1.

Roughly speaking, a linear reduced form has multiple partitions for each agent, rather
than just one; an agent’s overall utility is a sum over utility functions defined on each of
that agent’s partitions.

Definition 8. Consider a game G = (N , {Sp}p∈N , {up}p∈N ). For p = 1, . . . , n, let
Pp = {Pp,1, . . . , Pp,tp}, where Pp,q = {C1

p,q . . . C
rpq
p,q } is a partition of S−p into rpq

classes. The set P = {P1, . . . , Pn} is a linear reduced form of G if for each p there
exist up,1, . . . , up,tp ∈ �M such that for all s, up

s =
∑

q up,q
s , and for each q ≤ tp,

up,q
s = up,q

s′ whenever (1) sp = s′p and (2) both s−p and s′−p belong to the same class
in Pp,q . The size of a reduced form is the number of classes in the partitions plus the bits
required to specify a number for each tuple (p, q, k, �) where 1 ≤ p ≤ n, 1 ≤ q ≤ tp,
1 ≤ k ≤ rpq and � ∈ Sp.

We write up,q
(k,�) for the value corresponding to tuple (p, q, k, �), and for k = (k1, . . . , ktp)

we write up
(k,�) ≡

∑
q up,q

(kq,�).
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Example 1 (polymatrix games). In a polymatrix game, each player’s utility is the sum
of utilities resulting from her bilateral interactions with each of the n − 1 other play-
ers: up

s =
∑

p′ 
=p eT
sp

App′
esp′ where App′ ∈ �|Sp|×|Sp′ | and esp ∈ �|Sp| is the

unit vector corresponding to sp. The utility functions of such a representation require
only

∑
p,p′∈N |Sp| × |Sp′ | values to specify. Polymatrix games do not have a concise

reduced-form encoding, but can easily be written as linear-reduced-form games. Es-
sentially, we create one partition for every matrix game that an agent plays, with each
class differing in the action played by the other agent who participates in that matrix
game, and containing all the strategy profiles that can be adopted by all of the other
players. Formally, given a polymatrix game, we construct its linear reduced form with
Pp = {Pp,q}q∈N\{p}, and Pp,q = {C�

p,q}�∈Sq with C�
p,q = {s−p|sq = �}. ��

Most of the results in Section 4.1 straightforwardly translate to linear reduced forms.

Corollary 2. For a linear-reduced-form-based representation, if there exists a
polynomial-time algorithm for the optimal social welfare problem, then the optimal
social welfare CE problem and the max-min welfare CE problem can be solved in poly-
nomial time.

Graphical Polymatrix Games. A polymatrix game may have graphical-game-like
structure: player p’s utility may depend only on a subset of the other player’s actions. In
terms of utility functions, this corresponds to App′

= 0 for certain pairs of players p, p′.
As with graphical games, we can construct the (undirected) graph G = (N , E) where
there is an edge {p, p′} ∈ E if App′ �= 0 orAp′p �= 0. We call such a game a graphical
polymatrix game. This can also be understood as a graphical game where each player
p’s utility is the sum of bilateral interactions with her neighbors.

A tree polymatrix game is a graphical polymatrix game whose corresponding graph
is a tree. Consider the optimal CE problem on tree polymatrix games. Since such a
game is also a tree graphical game, Papadimitriou and Roughgarden [2008]’s optimal
CE algorithm for tree graphical games can be applied. However, this algorithm does not
run in polynomial time, because the representation size of tree polymatrix games can
be exponentially smaller than that of the corresponding graphical game (which grows
exponentially in the degree of the graph). Nevertheless, we give an polynomial-time
algorithm for the deviation-adjusted social welfare problem for such games, which then
implies the following theorem.

Theorem 1. Optimal CE in tree polymatrix games can be computed in polynomial time.

4.3 Representations with Action-Specific Structure

The above results for reduced forms and linear reduced forms crucially depend on
the fact that the partitions (i.e., the structure of the utility functions) depend on p
but do not depend on the action chosen by player p. There are representations whose
utility functions have action-dependent structure, including congestion games [Rosen-
thal, 1973], local effect games [Leyton-Brown & Tennenholtz, 2003], and action-graph
games [Jiang et al., 2011]. For such representations, we can define a variant of the re-
duced form that has action-dependent partitions. However, unlike both the reduced form



228 A.X. Jiang and K. Leyton-Brown

and linear reduced form, the deviation-adjusted utilities no longer satisfy the same par-
tition structure as the utilities. Intuitively, the deviation-adjusted utility at s has con-
tributions from the utilities of the strategy profiles when player p deviates to different
actions. Whereas for linear reduced forms these deviated strategy profiles correspond to
the same class as s in the partition, we now consider different partitions for each action
to which p deviates. As a result the deviation-adjusted social welfare problem has a
more complex form that the optimal social welfare problem.

Singleton Congestion Games. Ieong et al. [2005] studies a class of games called
singleton congestion games and showed that the optimal PSNE can be computed in
polynomial time. Such a game can be formulated as an instance of congestion games
where each action contains a single resource, or an instance of symmetric AGGs where
the only edges are self edges.

Formally, a singleton congestion game is specified by (N ,A, {fα}α∈A) whereN =
1, . . . , n is the set of players,A the set of actions, and for each action α ∈ A, fα : [n] →
�. The game is symmetric; each player’s set of actions Sp ≡ A. Each strategy profile s
induces an action count c(α) = |{p|sp = α}| on each α: the number of players playing
action α. Then the utility of a player that chose α is fα(c(α)). The representation
requires O(|A|n) numbers to specify.

Before attacking the optimal social welfare CCE problem, we first note that the op-
timal social welfare problem can be solved in polynomial time by a relatively straight-
forward dynamic-programming algorithm which is a simplified version of Ieong et al.
[2005]’s algorithm for optimal PSNE in singleton congestion games. Can we lever-
age the algorithm for the optimal social welfare problem to solve the coarse deviation-
adjusted social welfare problem? Our task here is slightly more complicated: in general
the coarse deviation-adjusted social welfare problem no longer has the same symmetric
structure due to the fact that y can be asymmetric. However, when y is player-symmetric
(that is, yp

j = yp′
j for all pairs of players (p, p′)), then we recover symmetric structure.

Lemma 1. Given a singleton congestion game and player-symmetric input y, the
coarse deviation-adjusted social welfare problem can be solved in polynomial time.

Therefore if we can guarantee that during a run of ellipsoid method for (1) all input
queries y to the separation oracle are symmetric, then we can apply Lemma 1 to solve
the problem in polynomial time. We observe that for any symmetric game, there must
exist a symmetric CE that optimizes the social welfare. This is because given an optimal
CE we can create a mixture of permuted versions of this CE, which must itself be a CE
by convexity, and must also achieve the same social welfare by symmetry. However,
this argument in itself does not guarantee that the y we obtain by the method above
will be symmetric. Instead, we observe that if we solve (1) using a ellipsoid method
with a player-symmetric initial ball, and use a separation oracle that returns a player-
symmetric cutting plane, then the query points y will be player-symmetric. We are able
to construct such a separation oracle using a symmetrization argument.

Theorem 2. Given a singleton congestion game, the optimal social welfare CCE can
be computed in polynomial time.
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Abstract. In this paper we consider the problem of computing market equilib-
rium when utilties are homothetic concave functions. We use the Fisher market
model. The problem of finding a tâtonnement process for equilibrium in this case
has been the subject of recent papers and determining an approximation is of con-
siderable interest. Our buy-sell algorithm starts with an arbitrary price vector and
converges to an ε-equilibrium price vector in time proportional to O(1/ε2). This
process attempts to closely mimic the convergence process of real-life markets.

1 Introduction

This paper addresses the computation of market equilibrium, a topic that has been con-
sidered with vigor in the recent past. Given a market with n traders and m goods, where
the traders are endowed with money or/and goods and wish to optimize their utilities,
the problem aims to determine a price vector and an allocation such that no trader has
any incentive to trade and there is no excess demand of any good. The problem now
has a long history even in the computer science community. Historically, the problem
was first proposed in 1891 by Fisher. Independently, Leon Walras (1894) proposed the
notion of general equilibrium. Walras proposed that a general equilibrium could be
achieved by a price-adjustment process called Tâtonnement.The existence of equilib-
rium prices, under some conditions, was established by Arrow and Debreu [1] using a
non-constructive proof. In Fisher’s model, buyers (traders) initially have endowment of
money while the sellers initially have items. Moreover, the buyers do not have any value
for money and the sellers do not have any value for the items. In a more general model,
proposed by Walras, the traders have an initial endowment of goods (instead of money).
The amount of money available for use by the trader is dependent on the final price of
the goods. Starting with the work of [4], there has been considerable recent progress in
understanding the complexity of computing equilibrium prices in a market. Polynomial
time algorithms have been proposed for several special cases using primal-dual auction
algorithms and convex programming techniques [5, 8, 7, 2, 10]. One of the main recent
complexity results is that the problem is PPAD-Hard [3].

Of particular historical interest are algorithms that are tâtonnement process. Pioneer-
ing research by Scarf on iterative methods for computing market equilibria via the com-
putation of fixed points can be found in [11]. The typical real-life market mechanisms
are composed of buying and selling microsteps which can be modeled as a version of
combination of English and Dutch auctions. A good example is the stock market where
depending on the liquidity the price of individual stocks keeps rising or falling in small
steps. A stock sale is made when the asking and bidding price converges. The asks and

N. Chen, E. Elkind, and E. Koutsoupias (Eds.): WINE 2011, LNCS 7090, pp. 230–241, 2011.
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bids change depending on the valuation of the good. It is intriguing to model the market
processes and verify that the algorithm converges to a market equilibrium in polyno-
mial time. Given that in current trading environment, millions of trades are executed in
a short span of time it is conceivable that the markets actually achieve equilibrium in a
short time and the fluctuations that arise in the market is a result of changing valuations
based on a variety of factors, including general economic conditions.

Towards this end we consider the buy-sell bidding model, an extension of the natural
increasing bids auction mechanism. In this paper we describe a mechanism which con-
sists of buying and selling phases. A sell-phase occurs when a good is in excess supply
and a buy-phase occurs when traders have money and have demand for a good. This ap-
proach appears to more closely model the tâtonnement process of real life markets and
conceivably the process envisaged by Walras. Contrast this approach with functional
models of price change that dominates the tâtonnement literature and attempt to model
the rate of change of the price as a function of the excess demand.

We show that this bidding model can be interpreted as a primal-dual mechanism
which attempts to achieve the optimality conditions (KKT conditions) via a sequence
of price and allocation changes. Of further interest is the application of the method to
problems not easily addressed by the current polynomial time methods. In particular,
we consider the market equilibrium problem when the utilities are homothetic concave
functions. Results for equilibria in the case of homothetic utility functions can be found
in the work of Jain et al. [9] where they generalize the standard Eisenberg-Gale program
that characterizes the equilibrium for homogeneous concave functions. The ellipsoid
method is used for solving the mathematical program. For homogeneous functions an
approach using indirect utility funtions is also presented in [6]. We believe that devising
a tâtonnement process based on excess demand or supply will elucidate the workings
of real market processes.

In this paper we propose to analyse a new mechanism termed the Buy-Sell Auc-
tion mechanism, for the market equilibrium problem in the Fisher model. This mech-
anism corresponds to a primal-dual method, Previous techniques which were largely
applicable to utilities satisfying gross-substitutibility used the montonicity of price. The
buy-sell bidding model allows the price to both increase and decrease. The main result
of the paper is to show that the buy-sell bidding mechanism provides an approximation
scheme for concave homothetic utilities. The result also applies for an extended class of
utiltiies which satisfy a generalized version of Euler’s homogeneous function theorem.
We show that the complexity is proportional to O(1/ε2) where ε is an error parameter.

2 Market Model

We consider a generalized market model with non-differentiable, continuous concave
utilities (our algorithm will be specific to differentiable functions). The market consists
of a set of m goods (S) and a set of n traders (T ). Trader i has an initial endowment ei

of money. The total amount of good j available in the market is given by aj (Assume
w.l.o.g, via scaling, that minj aj ≥ 1). The utilities of the traders on these goods are
assumed to be defined by a function Fi(Xi), where Fi(Xi) is the utility function of the
ith trader and Xi is the vector of allocation of goods to the ith trader.



232 S. Kapoor

Given the prices p1, p2, . . . , pm of the m goods, a trader would like to buy goods
with high utility per unit money and sell goods with low utility per unit money. Thus, in
equilibrium, trader i will keep only those goods that maximize Fi(Xi). Let xij represent
the amount of good j obtained by trader i. Let P represent the m × 1 vector of prices
and X represent the n × m matrix of allocations, where the (i, j)th entry is xij . The
pair (X, P ) forms a market equilibrium iff (a) there is neither a surplus nor a deficiency
of any good (including money); (b) all the traders get goods that maximize their utility.
The prices P are called market clearing prices and X is called an equilibrium allocation.

As in [7], the conditions for market equilibrium can be mathematically represented
as:

∀j :
n∑

i=1

xij = aj (1)

∀i :
m∑

j=1

xijpj = ei (2)

∀i, ∃αi, ∀j : xij > 0 ⇒ αipj ∈ ∂j(Fi(Xi)) (3)

where xij ≥ 0, pj ≥ 0. Equation (1) implies that there is no deficiency or surplus of any
good. Equation (2) implies that there is no deficiency or surplus of money. Equation (3)
implies that every trader is allocated only those goods that maximize the trader’s utility,
F (Xi), subject to the budget constraint (2) of the trader. Our algorithm will show that
the following approximate optimality conditions are satisfied :

Goods− sold− out : ∀j :
n∑

i=1

xij = aj (4)

Trader− endowment : ∀i : ei(1− ε) ≤
m∑

j=1

xijpj ≤ (1 + ε)ei (5)

Trader−Optimality : ∀i, ∃α′
i, ∀j∃αij : xij > 0 ⇒ αijpj ∈ ∂j(Fi(Xi)) (6)

where ∀i, ∀j αij(1− ε) ≤ α′
i ≤ αij(1 + ε).

3 A Primal-Dual Framework

The Model and Properties Consider the exchange model. We look at equilibrium so-
lutions that maximize the social utiltity function

∑
i Ui(Xi). In this section we assume

that Ui(Xi) is a differentiable function that is concave and homothetic. Recall that
homogeneous functions are characterized by the property that f(αx) = αf(x) and ho-
mothetic functions are monotone transforms of homogeneous functions. Furthermore,
Vij(0) is bounded by a large number K . We define a primal-dual framework for dis-
covering the equilibrium. In fact we show that this mechanism is equivalent to opti-
mizing the social benefit. Previous research has shown a similar result for linear utility
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functions [7]. Consider the welfare program:

max
∑

i

Ui(Xi) (7)

∀j :
n∑

i=1

xij = aj (8)

∀i :
m∑

j=1

xijpj ≤
∑

j

aijpj (9)

where xij ≥ 0, pj ≥ 0. Further, consider the langrangean function:

min
α,β

max
X,p

∑
i

Ui(X) +
∑

i

αi(
∑

j

aijpj −
∑

j

xijpj) +
∑

j

βj(aj −
∑

i

xij)

where i ∈ [1 . . . n] and j ∈ [1 . . .m]. At fixed p, for achieving maximum over X , the
following conditions must hold:

∀i, j : xij > 0 → αipj + βj = Vij(X∗
i )

where X∗
i is the optimum solution, resulting in the function

min
∑

i

Ui(X∗) +
∑

i

αi

∑
j

aijpj +
∑

j

βjaj −
∑

i

∑
j

βjx
∗
ij −

∑
i

αi

∑
j

x∗
ijpj

or
min

∑
i

Ui(X∗) +
∑

j

βjaj +
∑

j

αiaijpj −
∑

i

∑
j

Vijx
∗
ij

Since, by Euler’s homegeneous function theorem, Ui(X∗) =
∑

ij Vijx
∗
ij for homoge-

neous functions, the following dual program can be derived for homogeneous functions:

min
∑
ij

αiaijpj +
∑

j

βjaj (10)

∀i, j : αipj + βj ≥ Vij (11)

αi ≥ 0; βj ≥ 0 (12)

where Vij = ∂Ui(Xi)
∂xij

. We can show that our approach is also applicable when an affine

version of the above condition holds, i.e: Ui(X∗) =
∑

ij Vijx
∗
ij +Y where Y is a func-

tion independent of Xi. Finding a p such that there is a dual solution with βj = 0, ∀j,
provides the market equilibrium. We next provide a primal-dual framework (Algorithm
1) to solve the problem in the Fisher model, when the dual problem corresponding to
the optimization of the i consumer with homogeneous utilities becomes

min αiei (13)

∀i, j : αipj ≥ Vij (14)

αi ≥ 0; (15)



234 S. Kapoor

Algorithm 1. Primal-Dual Mechanism
while Equilibrium conditions (4),(5) and (6) not met do

while ∃ Good j such that pj > 0 and
∑

i xij < aj do
Reduce price and reallocate goods /*Comment: SELL-PHASE */

end while
while ∃ Trader i such that ri > 0 (ri =

∑
j aijpj −

∑
j xijpj) do

Acquire good j s.t. j = argmax Vij/pj /* Comment: BUY-PHASE */
Raise price pj if necessary
∀ traders k: Balance α for trader k,

end while
end while

Note that for homothetic functions, represented by ui = gi(fi(Xi)), where fi is
homogeneous and gi a monotone transformation, the optimum of fi is at X∗

i iff the
optimum of ui is at at X∗

i . The optimality conditions for the above program (for fixed
p) are

pj · {
n∑

i=1

xij − aj} = 0 (16)

xij · {αipj − Vij} = 0 (17)

The first condition follows from Walras’s identity and the second from the optimality of
the trader’s demands. In this frame-work we consider algorithms where both these con-
ditions may be relaxed: we start with the condition that all goods are allocated initially.
This is easily ensured for the Fisher Model by starting with very low prices. During the
algorithm it is ensured that for all goods j, xkj · {αkpj − Vkj} = 0. In the remainder
of the paper we detail this frame-work to provide efficient algorithms. This frame-work
differs from previous auction algorithms in that prices are not assumed to be monotone.

4 Algorithmic Framework

Overview: In this section we design an auction based method for markets where utilities
are defined by functions that are homothetic concave functions. We note that unlike
previous previous auction methods, the price of goods does not monotonically increase.
The algorithm is iterative, with each iteration having two phases, the Sell-phase and the
Buy-phase. In the Sell-phase the price of goods that are over-supplied is reduced thus
allowing more goods to be purchased by traders. In the Buy-phase excess revenue with
traders is spent on purchasing goods, increasing their price , if necessary. At the end of
this phase, for every trader i, the bang-per-buck, or αi will be checked and it will be
ensured that all goods provide the maximum bang-per-buck. This is done in a process
that allows the trader to rebid on goods. Before we define the algorithm, we need some
definitions that would be useful to characterize the state of the system at any stage.

Definition 1. A trader i is said to have balanced bang/buck if ∀j, k s.t. xij , xik > 0,

(1− ε) ≤ Vij/pj

Vik/pk
≤ (1 + ε).
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At various stages within the algorithm we may have goods that are not completely sold
off. We need the following definition:

Definition 2. The set of goods that are oversupplied, i.e. goods which are not com-
pletely sold off, constitute the set O, defined as: O = {j|

∑
i xij < aj}.

We let Di be the demand set for every consumer, i..e Di = {j|j = argmaxj{αij}}
where αij = Vij

pj
and αi = maxj αij . Then we can define an approximate demand set:

Definition 3. The set of goods Dε
i = {j|αij ≥ αi(1 − ε)} is a set of goods that are

approximate maximum bang-per-buck goods for trader i.

For simplicity we will use Di instead of Dε
i .

We now describe the algorithm, details of which are in the accompanying psedo-
code. The main algorithm (Algorithm Main) is in two phases, the Sell-phase and the
Buy-phase. The goal of the algorithm is to spend the endowments of the traders while
maintaining the following invariants

(i) Condition 6 ( Trader-Optimality )
(ii) Condition 4 (Goods-Sold-Out )

Algorithm Main is as follows:

1. Assume an initial allocation of goods, i.e. xij = ε.
2. Initialize:Compute αi, Di∀i;
3. Compute O;
4. While ((∃ a trader i s.t. ri ≥ εei) OR (∃ a good j s.t. j ∈ O )

(a) Sell-Phase;
(b) Buy-Phase
End While

During the course of the algorithm, the endowment remaining unspent with each traders
will decrease and the algorithm ends when condition 5 (Trader-endowment) is also
satisfied. The Sell-phase considers goods that are not completely sold out, i.e. goods
in the set O. Each such good j is sold to a buyer i such that j ∈ Di and trader i has
residual money. If the good is still not sold out, then its price is reduced using Procedure
Reduce price. Note that, as in previous version of the auction algorithm [7], a good at
price pj has actually been sold to traders either at price, pj or at price pj/(1 + ε). We
let hij and yij be the amount of good j acquired by trader i at level pj and pj/(1 + ε),
respectively. The availability of goods at the lower price level is indicated by ykj > 0,
for some k, i.e. at least one trader has acquired the good at price pj .

In the Buy-phase, the pre-condition established is that all goods are sold out and if
there is a trader, i, with remaining money, she acquires a good, say j, in the demand
set Di. The acquisition of good j by a trader i is done in procedure OutbidN. The
Procedure OutbidN is a complicated form of an outbid procedure which allows a trader
i to acquire a good j from another trader, say k, who has acquired the good at price
pj/(1 + ε). There are two cases (i) Suppose such a trader k exists. Then when trader k
is outbid, j may still be in Dk, the demand set of trader k. The trader k then bids back for
good j withdrawing, possibly, money from another good, say j′. This process is termed
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Recover. The other good j′ is then added to the set of goods that are oversupplied. (ii)
If there is no trader k who has acquired good j at pj/(1 + ε) (i.e. such that ykj > 0),
then the price of good j is raised.

We will assume that there exists a polynomial time oracle G, with time complexity
denoted by G itself, that determines the optimal allocation, given concave utilities, a
set of prices and endowments. We now give a description of procedure Recover. Other
procedures are clear from the description in the algorithm details.

Procedure Recover: Suppose trader k gains M units of money since another trader, say
i, has outbid trader k on good j. If trader k prefers good j to other goods, we term that
condition as Change-Benefit and denote it by CB. The trader who is now unsatisfied, i.e
for whom optimality conditions are not met, belongs to a set U(j) defined as follows:

– U(j) = {k|CB(k, j) is true } where
CB(k, j) = True iff there exists a good j′, currently acquired by trader k, such
that Vkj/pj > Vkj′/pj′(1 + ε).
In this case it benefits k to acquire j instead of j′.

– The good j′ is termed a witness for CB(k, j).

Note that when a trader k tries to retain good j by acquiring good j at a higher price,
she funds this using available money and may withdraw money from other goods which
may have less utility. There are two cases:

1. The good j is not available at the lower price: then the price of the good may have
to be raised.

2. Good j is available at the lower price and is currently with another trader i′.
In the second case, the good is acquired from trader i′ who is then added to the set U(j)
if the condition CB(i′, j) is satisfied for trader i′. This process continues until condition
6 (Trader-Optimality) is true for all the traders.

4.1 Analysis

We will use the following properties about the value of the optimal solution to the
traders optimization problem:

U∗
i (p) = max{Ui(Xi)|XT

i · p ≤ ei, e
T · p = 1}

where Ui(Xi) is strictly concave and monotonically increasing: Let p1 and p2 be two
price vectors. We define p1 >d p2 iff p1 dominates p2 component-wise, with strict
dominance in at least one component.

Lemma 1. Let pa and pb be two price vectors in Rm, such that pa >d pb. Then
U∗

i (pa) < U∗
i (pb)

Proof. Consider the optimum solution, X∗
i (a) at price pa, giving utility U∗

i (pa) to
trader i. Let pb differ from pa in the kth component, i.e. pb

k < pa
k. Let Xi(b) be a

solution defined as follows:

xij(b) = x∗
ij(a), ∀j �= k, xik(b) = x∗

ik(a) + δ
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where δ = x∗
ik(a)(pa

k − pb
k)/pb

k > 0. The solution Xi(b) is feasible since the money
spent by trader i on good k is the same as the money spent in the solution Xi(a).
Furthermore xij(b) > x∗

ij(a). Thus U∗
i (pb) > U∗

i (pa). Note that for homogeneous
function U∗

i (p) = αiei(equation 13) where αi is the langrange variable representing
the bang-per-buck achieved by the allocation for trader i. Thus for these functions, αi

shows an increase. ��

Sell-Phase
1: while (∃ a good j s.t. j ∈ O) do
2: if ∃ a trader i s.t. ri ≥ εei and j ∈ Di then
3: Allocate good j to trader i s.t. ri ≥ 0 and Condition 6 ( Trader-Optimality ) is

satisfied, i.e. αijpj ≥ Vij(1− ε). The optimal strategy for trader i is evaluated
using oracle G (the process is termed Allocate(i, j));

4: else
5: Reduce price(j);
6: end if
7: end while

The following holds for the Sell-Phase:

Lemma 2. (i) Condition 6 ( Trader-Optimality ) is satisfied for every trader at the end
of the Sell-Phase.
(ii) Condition 4 (Goods-Sold-Out ) is satisfied for every good at the end of the Sell-
Phase.
(iii)Residual Money Property: ∀i, ri residual money does not increase at the end of the
Sell phase.

Proof. The Sell-Phase is invoked when there is a good that is oversupplied. Let j ∈ O
be such a good. There are two cases. In the first case, if there is a trader i such that good
j is demanded by trader i, i.e. j ∈ Di, and trader i has residual money, then good j is
allocated to trader i. Thus (i) and (iii) are clearly ensured. In the second case, there is
no such trader and Reduce price is invoked.

When Reduce price is invoked, first the price of good j is reduced by re-assigning
good j at price pj/(1 + ε) to traders that have acquired the good at price pj . A trader
i is considered for this operation if it satisfies the condition: hij > 0. Let eij be the
endowment spent on good j by trader i We proceed by considering each trader one by
one. Let the amount of goods acquired after this step by trader i be denoted by y′

ij . Note
that y′

ij = yij +hij ∗(1+ε). We term as zj the amount of good j that is oversupplied. In
the first case, if δij = y′

ij − xij ≤ zj then this re-assignment is complete and increases
the amount of good j bought by trader i.

Alternately y′
ij − xij > zj , where zj is the current surplus of good j. In this case

the amount re-assigned to trader i must satisfy (i) y′
ijpj/(1 + ε) + h′

ijpj = eij and (ii)
y′

ij + h′
ij = xij + zj . After this assignment, the price of the good remains unchanged,

the good is completely allocated (i.e. j /∈ O) and the procedure terminates.
Since the procedure considers traders one by one (while loop at line 1), at the end of

the while loop either the good is left oversupplied or is completely sold out.
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Suppose the good is still oversupplied. Note that at this step all traders have acquired
good j at price pj/(1 + ε). The price of good j is then reduced, the demand sets Di, ∀i
re-computed and the procedure invokes Release Acquire() to ensure that the optimal-
ity conditions are satisfied, since now it is possible that there exist a trader i such that
good j is preferred over some other good k, where xik > 0.

Release Acquire() considers all traders that may have the Trader-Optimality con-
dition violated and transfers endowment from the allocated good k to j using a re-
computation of the optimum allocation for the trader i.

Claim. Procedure Release Acquire ensures that for all traders, condition Trader-
Optimality is satisfied and

∑
i ri has not increased. (proof omitted)

Note that at the end of this procedure there may exist a good in the set O. The Sell-
Phase repeats if O is non-empty. It suffices to show that the phase ends. We note that
at each step of the phase, the goods decrease in price only. When the price of a good
j is reduced, consider the amount of good xij sold to trader i. xij increases and so
does

∑
i xij since in the procedure, traders acquire more of good j. A sequence of

price reductions ends since when the price is reduced to a sufficiently small amount, the
value of which will be detailed below, the traders have enough money to acquire all the
goods. ��

Buy-Phase
1: for ( i=1 to i=n) do
2: if trader i is s.t. ri ≥ εei then
3: while there is no reduction in ri by a factor of (1 + ε) do
4: if ∃ good j ∈ O ∩Di then
5: Allocate good j to trader i without violating approximate optimality via

Allocate(i, j);
6: Update O;
7: else
8: if ∃k s.t. ykj > 0 then
9: OutbidN(i, k, j);

10: else
11: Raise price(j);
12: ∀i, Update Di.
13: end if
14: end if
15: end while
16: end if
17: end for

We consider the complexity of the Sell-Phase. No price increase happens during
the Sell-Phase. We show that the total number of price reductions are bounded. We let
PmaxI be the maximum price of any good in any equilibrium solution and let E =∑

i ei. PmaxI is bounded by E/amin. Furthermore let amin = minj aj and amax =
maxj aj . W.l.o.g. assume amin ≥ 1. Note that G is the complexity of the Oracle that
computes the optimum allocation.
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Lemma 3. The Sell-Phase terminates in O(nmG log1+ε P ) steps where
P = max{PmaxI

P ′ , (PmaxI · (mamaxV
E ))} where V = maxi,j,k supxij ,xik

{Vij(xij)/Vik(xik)} and P ′ = minij ei/aj .

To analyze the Buy-Phase we consider the key procedure, OutbidN. We show below
that this procedure maintains the required invariance, Condition 6. We first consider the
sub-procedure, Recover, in OutbidN. The procedure Recover ensures that approximate
optimality is maintained. Suppose xkj > 0. The procedure first checks if the residual
money with trader k will ensure approximate optimality. If not, then let j′ ∈ J ′ be a
good such that xkj′ > 0 and αkj′ < αkj(1 − ε). The procedure reduces allocation of
goods in J ′ and increases allocation of good j until trader k has balanced bang/buck.
The optimal allocation is determined by the oracle G.

ProcedureReduce price(j);
while (∃ a trader i s.t. hij > 0 and Σlxlj < aj) do

Let zj = aj −
∑

k xkj .
Let eij be endowment spent by trader i on good j where eij = hijpj + yijpj/(1+
ε).
Reassign good j to trader i at price pj/(1 + ε): term the assignment y′

ij

If
∑

i xij = aj and endowment of trader i is not completely spent, then change the
assignment to acquire good j in amounts y′

ij and h′
ij , at prices pj and pj/(1 + ε),

respectively, to satisfy:
(i) endowment of trader i is spent (y′

ijpj/(1 + ε) + h′
ijpj = eij )

(ii) the good j is sold out, i.e y′
ij + h′

ij = xij + zj .
end while
if (Σihij = 0) then

pj ← pj/(1 + ε); ∀i : hij = yij ;
Recompute Di, ∀i;
Release Acquire(j);

end if

Lemma 4. Recover terminates with balanced bang/buck balanced for trader k.

We next analyze the OutbidN procedure.

Lemma 5. Assume that at the beginning of OutbidN, Condition 6 (Trader-Optimality )
is satisfied. Then OutbidN terminates with Condition 6 satisfied for all traders. Further
OutbidN requires O(nm(G + m)) steps and the total residual money

∑
i ri does not

increase during the procedure.

The invariances maintained by each phase have been discussed above. We concentrate
on the complexity. We call a Buy-Sell Phase of the algorithm, one iteration of the while
loop (line 4) in Algorithm Main2. In that phase goods that are not sold out completely
are first considered in the Sell-phase and then every trader is considered once for reduc-
tion of her residual endowment in the Buy-Phase .
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ProcedureRelease−Acquire(j);
1: while (∃ a trader i s.t. ri ≥ εei and good j ∈ Di, j ∈ O ) OR (∃ a trader i s.t. good

j ∈ Di, j ∈ O and ∃ a good k s.t. xik ≥ 0 and k /∈ Di) do
2: Compute optimum allocation for trader i;
3: Increase current allocation of good j to trader i by a factor of (1 + ε) so as to

ensure approximate optimal allocation.
4: Update the set O.
5: end while

ProcedureOutbidN(i, k, j);
1: outbid(i,j,k); (The outbid procedure acquires good j from trader k and assigns to

trader i at a higher price level limited by ri or ykj .)
2: if (CB(k, j)) then
3: Add k to U(j);
4: end if
5: while U(j) �= φ do
6: Pick k ∈ U(j);
7: Recover;
8: If CB(k, j) then add k to U(j)
9: end while

10: ∀j′ such that
∑

i xij′ < aj′ add j′ to O;

Procedure Recover

1: if rk > 0 then
2: outbid(k, j, k′) such that trader k acquires j to at most the level it had before

(say xp
kj units), where k′ is a trader that has acquired good at price pj/(1 + ε);

If not possible, raise price of good j and acquire good j (xp
kj units) from the

original trader i at price pj(1 + ε).
3: If CB(k′, j) then add k′ to U(j)
4: else
5: Let J ′ be the set of goods that are witness to CB(k, j);
6: Compute optimal allocation for trader k using his current endowment.
7: Allocate good j reducing allocation of goods in J ′

by transferring money from j′ to bid for good j and acquire good j back (at most
the amount, say xp

kj , that was reduced during the outbid procedure at price pj)
from trader i′ at price pj if possible.
If CB(i′, j) then add i′ to U(j)

8: If not possible raise price of good j and acquire good j (xj units) from the
original trader i at price pj(1 + ε).

9: end if
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Lemma 6. The Buy Phase ends with a reduction in
∑

i ri by a factor of at least (1+ε).

Finally, let P = max{PmaxI

P ′ , (PmaxI · (mamaxV
E ))} where V =

maxi,j,k supxij ,xik
{Vij(xij)/Vik(xik)}.

Theorem 1. The Buy-Sell algorithm finds the market equilibrium for homothetic con-
cave functions in O(f(n, m, log P )) steps where f(n, m, p) is a polynomial function.

5 Conclusions

In this paper we show how a realistic buy-sell mechanism converges to market equilir-
bium for homothetic functions. Helpful discussions with Rahul Garg and Vijay Vazirani
are acknowledged. Research supported in part by NSF CNS-0916743.
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Abstract. We report on a series of behavioral experiments in social
networks in which human subjects continuously choose to play either a
dominant role (called a King) or a submissive one (called a Pawn). Kings
receive a higher payoff rate, but only if all their network neighbors are
Pawns, and thus the maximum social welfare states correspond to maxi-
mum independent sets. We document that fairness is of vital importance
in driving interactions between players. First, we find that payoff dispar-
ities between network neighbors gives rise to conflict, and the specifics
depend on the network topology. However, allowing Kings to offer “tips”
or side payments to their neighbors substantially reduces conflict, and
consistently increases social welfare. Finally, we observe that tip reduc-
tions lead to increased conflict. We describe these and a broad set of
related findings.

1 Introduction

Reporting on a series of behavioral experiments involving a particular class of
coordination tasks on social networks, we demonstrate the central importance
of fairness and conflict in interactions between players which entail exclusively
financial consequences. The experiments were held in a single session with 36
human subjects, each controlling the state of a single node in an exogenously im-
posed social network. In our first set of experiments, each subject could choose to
be a King or a Pawn. A King is paid at a higher rate (twice as much as a Pawn),
but only if no network neighbor is in conflict with him or her by also having
chosen to be a King; a King in conflict receives no payments. Players can asyn-
chronously change their state at any time. Since only one of any two neighbors
can be a King for either to be paid, such a configuration is inherently “unfair”,
giving rise to considerable tensions between pure self-interest and fairness con-
siderations. Our second set of experiments thus involved an additional element:
Kings that had no conflicts were able to designate a tip (or side payment) which
was equally divided among their Pawn neighbors.

Networked King-Pawn games may broadly be seen as modeling economic in-
teractions in which each local neighborhood can support only one dominant
player. For example, in organized crime it is often the case that only one clan
or faction is permitted to rule a locality, and incursions against the incumbent
often result in violent clashes that are damaging to both sides. We may also
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consider geographic sovereignty as an example — governments oversee property,
and attempts by neighboring nations to overtake that property may result in
costly wars.

A game theoretic understanding of dynamic coordination games such as
these offers several approaches. One considers a stylized one-shot game modeling
a long-run outcome, which in our setting exhibits no conflict in a pure strategy
Nash equilibrium, and in which any positive tip level is strictly dominated. An-
other is a repeated game model, with a concomitant explosion of equilibria.
Our behavioral results contradict the predictions of a one-shot model: tipping
is marked when allowed, and persists even at the end of games. A repeated
game model, on the other hand, has too many equilibria to offer a meaning-
ful prediction, and does not suggest any fundamental difference between our
two settings. In our experiments, on the other hand, we document numerous
qualitative and quantitative differences between the first (no tips) and the second
(with tips) settings.

One of our most notable observations is that social welfare is uniformly higher
when tips are allowed. Even if we allow that such outcomes are consistent with
some equilibrium of a repeated-game model, we must still appreciate why this,
and not another, equilibrium is ultimately chosen by human subjects. We argue
that (the lack of) perceived fairness is primarily responsible for the observed
differences between the two experimental settings: inequality in payoffs creates
considerable conflict in the first setting, and tips ameliorate conflict by bridging
the payoff gaps in the second setting. This finding is robust to the network
topology and has broad implications, including the suggestion that reducing
income inequality may actually raise social welfare. While there has been well-
documented evidence of the importance of fairness considerations in ultimatum
games [7,4], we note that our setting involves global coordination on networks,
rather than bargaining, and it is not a priori clear that equity plays a role in
facilitating or hampering coordination.

A well-known theory in macroeconomics suggests that wages are resistant to
reduction, since people view reductions in their wages as inherently unfair even
if their real value is preserved [1]. Roughly mapping tips in our setting to wages,
we find behavioral evidence for this “downward rigidity”. Specifically, we observe
that for similar average tip levels, a tip reduction resulted in considerably more
conflict. Furthermore, we find that the amount of conflict in response to tip
reductions actually rises with average tip pay rate—higher earners appear to
respond more strongly to pay cuts.

The experiments described here are part of a broader and ongoing program
of behavioral experiments in strategic and economic interaction on social net-
works conducted at Penn [14,11,13], and are an effort to apply the methods of
behavioral game theory [6] to the study of social networks.

1.1 Related Literature

The games we study are networked generalizations of repeated or continuous ver-
sions of the game of Chicken or Hawk-Dove [9], 2-player instances and certain
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generalizations of which have been studied extensively in the lab [15,17,3]. The
subject of fairness in human interactions has a very long history as well. Sociol-
ogists and social psychologists view it as central to many social phenomena, and
have well-developed theories of fair exchange and reciprocity (exchange/equity
theory) [5]. The economic experiments of Fehr and Gächter [8] show that peo-
ple frequently punish non-altruistic behavior and derive pleasure from doing so.
Akerlof and Yellen develop a hypothesis of wage effort based on fairness con-
siderations [2] which allows them to offer an explanation of unemployment and
supports the general observation that wages tend to be downwardly rigid [1].
Rabin [18], Fehr and Schmidt [7], and Bolton and Ockenfels [4] offer alternative
theories that incorporates fairness into more traditional game theoretic models.

The term “social welfare” will be used here to mean the total payoff to all
players in a game. It is worth noting that maximizing the social welfare of our
game is isomorphic to the Maximum Independent Set problem, which is a canon-
ical NP-Complete problem [10]. In this study, we construct games in such a way
that a Pareto optimal pure strategy Nash equilibrium of its one-shot version
solves the maximum independent set problem. In that regard, this work is sim-
ilar to the experiments in which subjects were placed as nodes in a graph and
tasked with coordinating on a proper coloring—another canonical NP-Complete
problem [14,12].

2 Experimental Design

In our experiments players were mapped to nodes on exogenously specified net-
works. Each player was given one of two action (role) choices: to be a King or
a Pawn. As a King, the player would enjoy a high pay rate ($1/minute), but
payments only accrue if none of his neighbors are also Kings. A conflict is a situ-
ation in which there are two neighbors both selecting King — and both earn zero.
Being a Pawn, in contrast, is risk-free: no matter what their neighbors choose,
Pawns earn a steady income, albeit only half of a King’s ($0.50/minute). Pay-
ments accrued continuously for each player, pro-rated by the time spent in each
of the three possible local states (King without conflicts, King with conflicts,
and Pawn). Players could asynchronously update their choices at any time.

A conflict-free configuration of Kings forms an independent set. Since Kings
are paid only when all their neighbors are Pawns, social welfare is maximized
when Kings form a maximum independent set, though computing such a maxi-
mum is NP-Hard in general.

We ran two variants of this basic King-Pawn scenario. The first was precisely
as described above. In the second, we allowed players to offer tips to each other.
Tips are payable only while a King is non-conflicting (i.e., he is a King and all
of his neighbors are Pawns), and when payable they are divided equally among
neighbors. Tip offer values were an amount between 0 and 100% of a King’s pay
rate, but were restricted to quantum steps of 10% (i.e., 10 cents/min). We call
this second scenario the “tips” setting, in contrast to the former, which we call
the “no-tips” setting.



Behavioral Conflict and Fairness in Social Networks 245

A natural question to ask is whether allowing players to exchange tips is at all
consequential according to traditional game theory. Let us thus observe that in
the tips setting, non-conflicting Kings should never offer tips at Nash equilibrium
of a one-shot game corresponding to our setup. This observation also holds in
the last stage of finite repeated games. Since the experiments involve a known
time limit and our clock has a finite granularity, we can view them as finite-
period repeated games; in such a repeated game, positive tipping could indeed
occur even in a subgame perfect equilibrium (except in the last stage), since a
mixed strategy equilibrium of a stage game can offer a credible threat.

All experiments were held in a single session lasting multiple hours with 36
University of Pennsylvania students as participants. We ran two sets of 19 exper-
iments, one set for the no-tips and another for the tips setting. Each experiment
had a fixed network topology, and subjects were randomly assigned to nodes.
All experiments lasted exactly two minutes.

Fig. 1. A screenshot of a player’s GUI for the tips scenario. The central node represents
the player using the GUI. The numbers displayed near the circles indicate tip offers.
The slider designates a choice for the tip offer. The buttons at the bottom of the screen
allow a player to choose to be a king or a pawn. In the no-tips setting all allusions to
tips (including the slide bar and tip amounts near the nodes) are removed.

A screenshot of the tips GUI is shown in Figure 1; for the no-tips setting,
the tip rate bar was simply absent. Each player could see his neighbors and
relationships between them, as well as their role and tip choices, but could not
see relationships or actions of anyone else. All actions were asynchronous. Role
changes or tip adjustments could be made at any time during the game. The
session was closely proctored and physical partitions were erected to ensure no
communication between subjects.

In both the no-tips and the tips settings we ran three experiments each
on six network topologies (Bipartite, Preferential Attachment Tree, Dense
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Pairs Bipartite PA Tree Dense PA

Clique Chain Rewired Chain Erdős-Rényi

Fig. 2. Sample network topologies used in experiments

Preferential Attachment, Clique Chain, Rewired Chain, and Erdős-Rényi) and a
single experiment on a Pairs topology. Visualizations of typical candidates from
each topology class are provided in Figure 2. If a specific topology is a class with
a stochastic generative model (i.e., one of Bipartite, Preferential Attachment
Tree or Dense Graph, Rewired Chain, and Erdős-Rényi Graph), we generated a
different network in each of a set of three experiments on that topology, but used
the same graphs in both the no-tips and the tips settings. In the Preferential
Attachment (PA) Tree, each node that is added to the graph is connected to
exactly one existing node. In the Dense PA topology, a new node is connected
to three existing nodes. For Erdős-Rényi graphs, we set the probability p of
an edge between two nodes to 0.15. Each of 102 edges in the Bipartite graphs
paired players uniformly at random. Rewired Chain starts with a Clique Chain
as a baseline and rerouts each intra-clique edge with probability 0.2. More de-
tailed descriptions and motivation for these and similar generative models can
be found in [16].

The clustering coefficient of networks is relevant to our results. It is defined
as the number of closed triplets divided by the number of connected triplets of
vertices. Figure 3 (left) and later bar plots organize the networks in increasing
value of their clustering coefficient. In figures throughout, we mark a network
by *** if the reported result or difference is significant with P < 0.01, while **
indicates P < 0.05, and * corresponds to P < 0.1 significance level. When such
a result is attributed to both the no-tips and tips settings, we marked the pair
with the lowest significance level observed.

3 Results

3.1 Collective Wealth and Tipping

Game-theoretic solutions (applied most directly) do not predict a fundamen-
tal difference arising from allowing players to exchange tips. Figures 3 and 4,
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Fig. 3. Left: Achieved welfare (average payoff per player per minute) in the no-tips
(black) and tips (white) settings; networks ordered from left to right by clustering co-
efficient, which is also displayed above each set of bars. Right: Average rate of earnings
in each game. Each of the 19 networks is shown without averaging into its replication
group; all 19 of them fall above the gray triangle, indicating uniform improvement in
the tips setting. The + marks are located at the averages of the replication groups.
The shaded zones are where performance is below Pawn rate.

however, demonstrate a systematic improvement in welfare under the tips set-
ting. The impact of tips on welfare varies greatly, and is substantial for some
networks.

In Figure 3 (left) we report the relative social efficiencies (behaviorally realized
social welfare as a proportion of the theoretically optimal social welfare) for the
different network topologies (averaged over trials), under both the no-tips and
tips settings. Clique Chain, Rewired Chain, and Erdős-Rényi networks exhibit
the greatest payoff improvements under tips (around 15% of optimal welfare).
Note that these are also three of the four most clustered networks; more on
that later. The Pairs network — where there is no “network” per se but rather
18 separate one-on-one games — shows the least improvement, suggesting that
the social welfare benefits of tips increase with network complexity. Payoff im-
provements were significant (P < 0.05) in 5 of 7 network architectures (shown in
Figure 3, left), and overall improvement in welfare was significant with P < 0.01.
One may suggest that the reason for the improved outcomes in the tips setting
can be attributed to learning effects. To rule out this explanation, we correlated
the experiment sequence index with corresponding welfare outcome separately in
the no-tips and tips settings. The correlation coefficient was small in the no-tips
setting, somewhat larger when tips were allowed, but not statistically significant
in either case; it seems clear in any case that subjects had not learned to play
the game any better during the no-tips sequence.

Figure 3 (right) illustrates the absolute average rates of income for all 19
networks in each of the two settings. The PA trees stand out as being particu-
larly wealthy in both settings; the CliqueChains performed below Pawn level in
both settings. The ER graphs are all in the upper left quadrant; they all move
from sub-Pawn losers to relative winners when tips are allowed. This figure also
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Fig. 4. Left: The top two lines are the average pay rate (as a proportion of optimum)
over time in the two settings, averaged over all experiments. Their scale is on the left.
The bottom (thick) line is the tip rate, averaged over all tips experiments. Its scale is
on the right. Right: Distribution of tips, both offered and accepted.

demonstrates that not only the averages, but all 19 individual network topologies
yielded higher social welfare under tips.

Some of the aggregate dynamics (Figure 4, left) reveal the effects of tipping.
Average welfare improvement due to tips is persistent throughout the span of
experiment. Furthermore, we find that the use of tips, when allowed, is rather
substantial: tips accounted for 13% of all income in the tips setting. The lowest
curve in the figure shows the average tip rate offered by players over time (average
taken over all tips experiments). The tip rate is initialized to zero, but jumps
almost immediately after an experiment starts, and persists at around 20% for
the bulk of the experiment. It falls off gradually between 70 and 100 seconds and
then faster after the 100 second mark, but, even at the end of the experiments,
average tip rate persists at around 10%, well above equilibrium level.

We observe that welfare rises over the span of a game in both settings. Further-
more, social welfare increases over the last 90 seconds, even as tipping decreases.
This observation suggests an alternative hypothesis that tips serve as a coordi-
nation device, similar to cheap talk, to help select an equilibrium. While such
an explanation seems difficult since it would require players to first coordinate
on a global meaning of tips in order to use it as a communication device, and is
further undermined by the observed persistence of non-negligible tipping at the
ends of games, we cannot fully rule it out given our experimental design. We
found no significant correlation between tip rates and experiment index within
the session, suggesting no long-term adaptation of tipping behavior.

Figure 4 (right) shows the amount of time tip sliders spent in each of the 11
possible states (averaged over all players and games). In the case of one King
adjacent to a single Pawn, the tip amount that divides the income equally is
25%. One of the modes in this histogram is slightly below that, at 20%. In the
vaguely similar setting of the Ultimatum Game [6] there is a mode of 30 or 40%,
also slightly below equitable.
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Fig. 5. Left: The connection between income disparity and conflict. Both quantities
are reduced when tips are allowed. Right: The connection (linear regression coefficient)
between income disparity and conflict (after normalizing both quantities) by network
class for the no-tips and tips settings.

3.2 Conflict and Fairness

Thus far we have established the substantial use of tips when available, and
their consistent improvement of social welfare. But what behavioral processes
underly these phenomena? Here we propose and support the following hypoth-
esis: Subjects used conflict — which reduces the wealth of all players involved
— to express perceived unfairness or inequality. Tipping reduces unfairness and
consequently reduces conflict, thereby raising the average payoffs of all players
and facilitating coordination.

We begin this analysis by contrasting quantitative measures of income inequal-
ity between the no-tips and tips scenarios. Consider first just the horizontal axis
of Figure 5 (left), which measures average income disparity (defined as the av-
erage squared difference in payoffs between network neighbors). Since tip levels
persist well above zero, and that money is being routed to other players, it is
significant and unsurprising that income disparity falls when tipping is allowed.
What is more interesting is that tipping appears to roughly equalize payoff asym-
metries across networks, which were substantially more variable in the no-tips
case. For example, PA Tree networks that had shown large income inequality
in the no-tips setting are now much closer to other network types. We found
a significant correlation (0.49, P < 0.04) between income disparity under the
no-tips setting and tips exchanged when they are allowed. Our interpretation is
that the more a game is perceived as unfair, the greater the role that tips must
play in bridging income gaps between players.

The role of tipping in reducing income inequality is only one part of our hy-
pothesis. Additionally, we posit that conflict expresses a perception of unfairness.
Since tips reduce inequity, we propose that they alleviate the tension that leads
to conflict; thus, tips effectively replace or substitute for conflict when they bridge
inequality gaps. To support the idea that tips substitute for conflict, we expect to
see substantial reduction in conflict between players when tips are allowed. Fig-
ure 5 (left) shows this on its vertical axis: the amount of conflict between players
(specifically, the average proportion of the game that a player spent in conflict,
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with average taken over players and games) is systematically lower in the tips set-
ting. Nevertheless, it is difficult to establish a clear relationship between income
disparity and conflict. We conjecture that what matters is perceived, rather than
observed (or measured) unfairness, as suggested by equity theory [5]. For example,
it may seem fair that low degree nodes receive higher income due to the natural
advantage their network position offers. We can test this conjecture by consider-
ing the correlation between income inequality or conflict with average disparity
of degrees between network neighbors; however, we did not find such correlations
to be significant in our setting. Instead, we found that the clustering coefficient
exhibited significant correlation with time players spent in conflict in the no-tips
setting (0.62, P -value < 0.01); correlation between the same quantities is consid-
erably smaller and not significant in the tips setting.

As more direct support that conflict communicates perceived unfairness, we
looked at individual level correlations between the time that a player spends in
conflict that he initiates and ultimately terminates, and that player’s perceived
income disparity, defined as zero when his income is higher than a neighbor’s and
the squared payoff difference otherwise, and averaged over all of his neighbors.1

The correlation between these quantities is 0.345 (P < 0.001) in the no-tips
setting and 0.25 (P < 0.001) in the tips setting. These correlations suggest
that when players perceive unfairness in their predicament, they are much more
likely to engage in conflict with neighbors. On the other hand, the correlation is
markedly weaker in the tips setting, providing further evidence for substitution
between conflict and tips. One may hypothesize that conflict serves the purpose
of punishment to motivate coordinated, better outcomes, similar to Prisoner’s
Dilemma; below we refute this by showing that conflict decidedly does not pay.

We next consider again the correlation between perceived income inequality
and conflict, separated by individual network. However, rather than simply look-
ing at correlations between the two quantities, we regress time a player spends
in conflict on his perceived income disparity. In Figure 5 (right) we report the
regression coefficient. The figure does not appear to exhibit much systematic
difference in the linear relationship between conflict and perceived income dis-
parity across networks. While there does appear to be a slight negative trend
as the clustering coefficient increases in the no-tips setting, we did not find it
to be statistically significant. Nevertheless, the relationship is clearly positive—
significantly so in all graph classes except “Pairs”.

Conflict appears to also serve as a means of tip bargaining. Let C be the
time (in seconds) that a player spends in conflict that he both initiates and
terminates. Define T as tip income rate, that is, average tip income per minute
that a player spends as a Pawn. Let W be the wealth of a player for the entire
game. The correlation between C and T is 0.19 (P < 0.001), while the correlation
between C and W is −0.51 (P < 0.001). The positive correlation between C and
T generalizes across 5 of 7 network architectures (significant in all 5); the only
exceptions are Clique Chain and Rewired Chain. Thus, while conflict may show

1 This definition of fairness closely mirrors the notion introduced by Fehr and
Schmidt [7].
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some success in negotiating a higher tip income rate, it yields an unambiguous
loss in the long run.

To quantify the tradeoff between time spent in conflict and tip income rate,
as well as conflict and wealth, we fit linear regression models to both sets of
data pairs. We find (with coefficients having P < 0.001) that every second that
a player engages his neighbors in conflict earns him (on average) an additional
0.2 cents in tips. Regressing wealth against conflict, on the other hand, tells us
(with even higher significance for both regression coefficients) that every second
in conflict costs a player 1.2 cents on average. The struggle for a bigger tip yields
meager rewards and ultimately costs a player more than it is worth.

3.3 Downward Rigidity of Tips

One explanation of high unemployment offered in macroeconomic theory posits
that wages are downwardly rigid, as people view wage decreases as unfair, even
if these decreases maintain the real value of wages (e.g., when there is defla-
tion) [2,1]. As a result, employers prefer to offer above-market wages to ensure
that worker productivity remains high; what results is a shortage of jobs relative
to the number of people seeking work.

There is a suggestion in Figure 4 (left) that tip changes are downwardly rigid.
After being quickly established at the 20% level, they are very slow to head
toward equilibrium level and never fall even half way back to zero.

Figure 6 (left) supports the hypothesis that downward changes are viewed
as unfair more directly. The comparisons in the figure are between players who
made at least one tip reduction and those who made none. The players who
did make a tip reduction suffered more conflict than those who did not, even as
average tip income rates were roughly equal between the groups. Additionally, as
tip rates increase, tip reductions actually entail more, not less, conflict. To test
the significance of this, we looked at finer discretized tip income rate intervals
and correlated midpoints of these with average increases in conflict time. The
resulting correlation was 0.99 and highly significant (P < 0.001). This result
cannot be explained by suggesting that higher tippers also made greater tip
reductions: we found no significant correlation between tip pay rate and average
size of a tip cut.

3.4 Individual Nodes

The previous discussion pertains to the communal patterns of behavior, but
there were also interesting variations at the level of individual nodes.

One natural question to ask is whether a node’s degree had an impact on
its wealth and role choices. We found significant negative correlation between
a node’s degree and wealth in both settings (correlation of -0.33 in the no-
tips setting, -0.26 in the tips setting, both with P < 0.001). Thus, having a
high degree was, overall, a handicap. However, breaking this down by network
class (Figure 6, right) we find that the negative relationship between degree and
income is only significant in three networks (PA Tree, Erdos-Renyi, and Dense
PA) in the no-tips setting and in only the first two in the tips setting. This is
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Fig. 6. Left: Average time in conflict at similar average tip pay rates with (black) and
without (white) a negative tip change. Right: The connection (linear regression coeffi-
cient) between degree and income by network class for the no-tips and tips settings.

not too surprising: all the preferential attachment networks exhibit relatively
low degree variation, and in rewired and clique chain graphs it is even less.

Nodes with a high degree spent considerably less time as King (correlation
is -0.37 in the no-tips and -0.4 in the tips settings, both with P < 0.001). This
finding is consistent across network classes. In contrast, the total time spent as
King had significant positive correlation with wealth overall, 0.18 in the no-tips
setting and 0.31 in the tips experiments (P < 0.001 in both). However, this
conclusion is somewhat nuanced when dissected by network class: in 4 of the 7
network classes, the relationship between time spent as King and wealth is clearly
positive in at least one of the game settings (no-tips or tips), but it is highly
significant and negative in the two most highly clustered networks, rewired and
clique chain. Thus, while generally being a King carries an advantage, it is more
trouble than it’s worth in highly clustered networks (presumably, because Kings
face far too much conflict there from other neighbors vying for power).

While high degree nodes had a disadvantage, they were partially compensated
for their handicap when tipping was allowed: the correlation between degree and
tip income was 0.27 (P < 0.001); they naturally also dished out significantly less
in tips to their neighbors (correlation between degree and tips paid was -0.23
with P < 0.01). Both these findings are consistent across network topologies.

4 Conclusion

One of our key observations is that allowing players to exchange tips substan-
tially increases social welfare. Furthermore, we note that although conflict is
clearly damaging to all parties, players systematically engage in it, although
substantially less when tipping is allowed. We explain the impact of tipping on
the amount of conflict between players by noting that tips equalize incomes be-
tween network neighbors. When players view their neighbors’ income as unfairly
higher than theirs, they engage in conflict, perhaps to punish the high earners.
Greater equality in wealth therefore reduces the propensity to engage neighbors
in conflict.
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Since tip exchanges are pure transfers of wealth in our setting, classical eco-
nomic theory would not anticipate any impact of tips on average profits. It is
thus rather remarkable that tipping raises social welfare in our experiments. The
positive welfare impact of tipping (and greater equality of wealth distribution)
has considerable implications for policy, as it suggests that bridging income in-
equality may raise social welfare. Alternatively, our findings suggest that when
compensation, resources, or tasks are distributed unequally, transfers of money
or gifts may go a long way in alleviating interpersonal conflict.
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Abstract. In the standard model of sponsored search auctions, an ad is
ranked according to the product of its bid and its estimated click-through
rate (known as the quality score), where the estimates are taken as exact.
This paper re-examines the form of the efficient ranking rule when uncer-
tainty in click-through rates is taken into account. We provide a sufficient
condition under which applying an exponent—strictly less than one—to
the quality score improves expected efficiency. The condition holds for a
large class of distributions known as natural exponential families, and for
the lognormal distribution. An empirical analysis of Yahoo’s sponsored
search logs reveals that exponent settings substantially smaller than one
can be efficient for both high and low volume keywords, implying sub-
stantial deviations from the traditional ranking rule.

1 Introduction

Sponsored search is today considered one of the most effective marketing vehicles
available online. As the stakes have grown, the auction mechanism has seen
several revisions over the years to improve efficiency and revenue. When first
introduced by GoTo in 1998, ads were ranked purely by bid; later, in 2002,
Google adopted the mechanism and introduced a quality score to weigh bids in
proportion to clicks received [5], a practice now shared by every major search
engine. In the basic model of sponsored search auctions [10], the quality score
corresponds to an ad’s position-normalized click-through rate (CTR). Under the
assumption that CTRs are measured exactly, it is simple to verify that ranking
ads in order of quality score times bid is economically efficient.

In this paper we re-examine the form of the efficient ranking rule, taking
into account the inherent uncertainty in CTR estimates. Even for high-volume
keywords, CTRs are notoriously difficult to estimate because clicks are rare
events and new ads constantly enter the system. We consider a parametrized
family of ranking rules that order ads according to scores of the form cγb, where
c is the estimated position-normalized CTR, b is the bid, and γ ∈ [0, 1]. This
family was proposed by Lahaie and Pennock [9] in the context of sponsored
search; they showed that settings of γ strictly less than 1 can improve revenue.
Their model assumes that CTR estimates are exact. In this work we show that,
in the presence of CTR uncertainty, using γ less than 1 can be justified on
efficiency grounds.

Our main result identifies a sufficient condition under which setting γ strictly
less than 1 improves efficiency. The condition relates quality scores based on
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historical click data (e.g., taking c to be the empirical CTR, normalized for
position) to a Bayes estimator of the CTR. We show that the condition holds
for a wide class of distributions known as natural exponential families, which
includes the normal, Poisson, gamma, and binomial distributions among others.
We further show that it holds for the lognormal distribution, which we found
to be the best model of Yahoo’s CTR estimates. We observe that γ is linked to
the concept of shrinkage in Bayesian inference [4], and draw on this connection
to empirically estimate the efficient γ for several keywords in Yahoo’s sponsored
search market. Our empirical analysis reveals that settings of γ substantially
smaller than 1 can be efficient for both high and low volume keywords.

The remainder of the paper is organized as follows. Section 2 introduces the
model, including the manner in which we incorporate uncertainty in CTR esti-
mates. Section 3 identifies a condition under which using γ less than 1 improves
efficiency. Section 4 shows that the result holds for natural exponential families
as well as the lognormal distribution; it also provides concrete examples of the
efficient ranking rules for the beta and lognormal distributions. Section 5 reports
on our data analysis of Yahoo’s sponsored search logs to uncover the efficient
settings of γ in practice. Section 6 concludes.

2 The Model

In this paper we restrict our attention to a single keyword, with a fixed set of
agents competing for ad placement whenever a query on the keyword is per-
formed. There are K slots on the page to be allocated among N agents, where
N > K. In a sponsored search auction each agent i places a bid bi, and the ads
are ranked in decreasing order of wibi where wi is a weight, or quality score,
assigned by the search engine. When an ad is clicked, the corresponding agent
pays the lowest bid it could have placed while maintaining its position; this is
known as the second-price payment rule.

While the second-price rule amounts to the Vickrey payment with a single
slot, this is no longer the case with multiple slots, and it is well-known that for
K > 1 sponsored search auctions are not truthful [1]. In general an agent has
an incentive to shade its bid bi below its true value per click (i.e., willingness
to pay) vi. Nonetheless, under the widely accepted solution concept of envy-free
equilibrium [3,14], it is the case that agents bid in such a way that they are ranked
according to wivi, because wibi is an increasing function of wivi. Furthermore,
our adaptation of the click-through rate model in this paper does not affect the
agents’ incentives, because their ranking only depends on the weights wi and
not their own click-through estimates. Therefore, in what follows, our results
and statements in terms of bids will continue to hold if these are replaced with
values, assuming envy-free equilibrium, and we can set aside incentive concerns
to focus on the problem of efficient ranking.

The determine an efficient ranking the search engine develops an estimate of
the click-through rate (CTR) ρij that ad i would obtain if placed in slot j. We
assume that CTRs are separable, meaning they factor according to ρij = cixj



256 S. Lahaie and R.P. McAfee

into an advertiser effect ci and a position effect xj . Because clicks are stochastic,
the advertiser effect is treated as a random variable that follows a probability
model ci ∼ p(·|θi), parametrized by θi, with mean μi = E[ci | θi]. Position effects
could also be modeled as random variables in principle, but in this work we treat
them as known constants.

While separability is only an approximation to actual CTR patterns [2], it
is still relevant for the search engine to estimate position-normalized advertiser
effects because wi = μi is a natural choice for the quality score. If s : K → N
is an allocation of slots, where slot j goes to agent s(j), then under separability
the efficiency of the allocation is:

E

⎡
⎣ K∑

j=1

xjcs(j)bs(j)

∣∣∣∣∣∣ θ1, . . . , θN

⎤
⎦ =

K∑
j=1

xjμs(j)bs(j).

As it is (typically) the case that x1 > x2 > · · · > xK , it is then efficient to
take wi = μi and rank agents in decreasing order of μibi [8]. In this work, we
relax the assumption that the probability model for each ci is known exactly and
consider how this uncertainty can affect the form of the efficient ranking rule.
When discussing CTR modeling, we will often suppress the subscript i when not
referring to a specific advertiser, as we do until the end of this section.

To incorporate uncertainty in the probability model due to limited data, we
introduce a prior θ ∼ q(·) on the model parameter. Given a vector of m observa-
tions c = (c1, . . . , cm) for the advertiser effect, a generic approach to ranking is
to compute a statistic t(c) of the data, and set the weight w to be a function of
the statistic. For instance, one could compute the maximum likelihood estimate
θ̂(c) given the data and use the corresponding statistic

tM (c) = E[c | θ̂(c)] (1)

as a weight in order to rank the agents. We will refer to (1) as the maximum
likelihood statistic. This is often straightforward to compute (e.g., for distribu-
tions such as the Bernoulli, normal, and Poisson it is the empirical mean). The
maximum likelihood approach is unbiased as the amount of data grows, but in
practice click observations are limited. To properly incorporate uncertainty in the
presence of limited data, we can instead use a Bayesian approach. In this case the
parameter distribution is updated via Bayes rule which sets q(θ|c) ∝ p(c|θ)q(θ),
where p(c|θ) =

∏m
i=1 p(ci|θ), and the posterior mean is then

tB(c) = E[c | c] =
∫

Θ

E[c | θ] q(θ | c) dθ, (2)

where Θ is the domain of the parameter θ. We will refer to (2) as the Bayes statis-
tic. While this statistic leads to efficient ranking incorporating all uncertainty,
it can be more challenging to compute depending on the probability model for
advertiser effects and the prior used because of the integration. There is also the
issue of setting the initial prior.
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In the remainder of the paper we will focus our attention on ranking rules
that set w = t(c)γ for γ ∈ [0, 1]. With γ = 1, using statistic (2) is efficient, and
using statistic (1) is efficient in the limit as the amount of data grows. This is
the usual form of ranking rule used in sponsored search, taking the statistic as
a quality score. With γ = 0, on the other hand, we rank purely by bid, a rule
that was used in the very first sponsored search auctions [5]. As we will see, the
virtue of this class of ranking rules is that it allows one to use γ to incorporate
uncertainty into the ranking, increasing efficiency, while using simpler statistics
such as (1) rather than (2) and obviating the need to choose an initial prior.

Formally, assuming bids have been fixed, a ranking rule σ defines an allocation
of slots to agents for every set of observations c = (c1, . . . , cN ) of advertiser
effects, so that σ(· ; c) : K → N . The expected efficiency of a ranking rule is
defined as

E

⎡
⎣ K∑

j=1

xjtB(cσ(j;c))bσ(j;c)

⎤
⎦ ,

where the expectation is with respect to the distribution over sampled obser-
vations. In what follows, we use V (γ) to denote the expected efficiency of the
ranking rule that uses w = t(c)γ to weigh bids, for a given statistic t. We are
interested in the settings of γ that are most efficient.

3 Main Condition

Our main result1 provides a sufficient condition for the use of a γ < 1 exponent
on the chosen ranking statistic t(c) on efficiency grounds, rather than revenue
grounds as in Lahaie and Pennock [9]. In their approach, the purpose of the
exponent is to handicap stronger bidders (with higher advertiser effects), leading
to higher competition and increased revenue. In this work, the exponent reflects
the contribution of the prior in the Bayes statistic (2).

Theorem 1. Assume that agents are ranked according to the weights t(ci) for
i = 1, . . . , N . Then we have V ′(1) < 0 if the quantity

E [tB | t]
t

(3)

is decreasing in the statistic t ≡ t(c), where tB ≡ tB(c).

The conditions given in the theorem imply that efficiency is improved by using
γ = 1 − ε rather than γ = 1, for some ε > 0. The theorem does not claim that
using t(c)γ as a weight, with a properly chosen γ < 1, is exactly efficiency. When
using a statistic such as the empirical advertiser effect for ranking, the condition
that (3) be decreasing should hold, intuitively, because tB is a mixture of the
empirical effect and the prior. Therefore the expectation tB should not respond
strongly to a change in the observation t. This intuition is corroborated for a
large class of distributions in the next section.
1 Proofs are available from the authors as an appendix.
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4 Exponential Families

To usefully apply our main theorem, one needs the ability to evaluate the ex-
pectation of the Bayes statistic given the value of the ranking statistic used in
practice. As suggested in Section 2, a convenient choice for the latter is the
maximum likelihood statistic, which often evaluates to the empirical mean of
the observed advertiser effects. In this section we consider a rich collection of
distributions, known as exponential families, to which the theorem applies and
which cover most of the standard distributions one might use for CTR model-
ing. Exponential families have closed forms for the maximum likelihood statistic,
and have convenient conjugate priors which make the Bayes statistic tractable
to analyze. The properties of exponential families that we introduce here are
standard and can be found in [12,15].

An exponential family is a parametrized distribution with density that takes
the form

p(c|θ) = f(c) exp [θ · φ(c)− g(θ)] . (4)
Here f is a base density over advertiser effects, and θ is known as the natural
parameter. The term φ(c) is the sufficient statistic. We will restrict our attention
to families with scalar-valued sufficient statistics; this implies that the natural
parameter θ is also a scalar. The term g(θ) is a normalization constant, and the
domain of the natural parameter is those θ for which the normalizer is finite:
Θ = {θ : g(θ) < +∞}. It is known to be convex—for the case of a scalar natural
parameter, the domain is a (possibly unbounded) interval.

In general, the maximum likelihood estimate θ̂(c) for the natural parameter,
given a vector of m observations c = (c1, . . . , cm), cannot be evaluated analyti-
cally. However, the expectation of the sufficient statistic under this estimate is
simply

E[φ(c) | θ̂(c)] =
1
m

m∑
i=1

φ(ci), (5)

namely the empirical mean of the sufficient statistic. An exponential family has
a conjugate prior of the form

p(θ|ν, n) = exp [ν · θ − n · g(θ)− h(ν, n)] .

This is again an exponential family, but with a two-dimensional natural parame-
ter (ν, n), and here h(ν, n) is the normalizing constant. Given the m observations
(c1, . . . , cm), the parameters of the conjugate distribution are updated according
to the rule:

n ← n + m

ν ← ν +
m∑

i=1

φ(ci)

Note that the latter parameter is essentially updated according to the maximum
likelihood statistic (5). Therefore, exponential families provide a tractable form
for the maximum likelihood statistic, and define a clear relationship between
this statistic and the posterior distribution. This makes them amenable to the
application of Theorem 1.
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4.1 Natural Exponential Families

A natural exponential family is one where the sufficient statistic is simply φ(c) =
c. In this case, the maximum likelihood statistic coincides with the empirical
mean, because according to (5) we have

tM (c) = E[c | θ̂(c)] =
1
m

m∑
i=1

ci.

Many of the most prominent univariate distributions are natural exponential
families, such as the normal, Poisson, gamma, exponential, Weibull, binomial,
and Bernoulli distributions [12]. For all of these distributions, the condition (3)
in our main theorem applies when using the maximum likelihood statistic for
ranking, as the next result shows.

Proposition 1. Assume advertiser effects are distributed according to a natural
exponential family, and that advertisers are ranked according to weights tM (c)γ .
Then there is an ε > 0 such that using γ = 1 − ε improves expected efficiency
over γ = 1.

To gain some intuition for the result, it is helpful to consider a concrete in-
stance of a natural exponential family. In one interpretation of the separable
CTR model, the position effect is the probability that the user will look at a
slot, and the advertiser effect is the probability the ad is clicked given that it
is viewed [8]. As clicks are binary events, the Bernoulli distribution—a natural
exponential family—is then a straightforward choice of model for advertiser ef-
fects. Assume that c ∼ Bernoulli(p) and that p ∼ Beta(nμ, n(1 − μ))—the beta
distribution is the conjugate prior for the Bernoulli. The mean of the latter is
μ, while the empirical mean c̄ is both the maximum likelihood statistic and a
sufficient statistic for the Bayes update. After the update we have

p | c̄ ∼ Beta (nμ + mc̄, n(1− μ) + m(1 − c̄)) ,

which has a mean of γc̄+(1− γ)μ where γ = m
n+m . Because the parameter p for

the Bernoulli is its mean, the posterior mean of p is also the posterior mean of
e. The term (3) in our main theorem therefore evaluates to

γ + (1 − γ)
μ

c̄
,

which is decreasing in c̄, as expected. However, Theorem 1 only states that using
some γ < 1 as an exponent on c̄ improves efficiency here—it does not state that
ranking according to c̄γb is efficient. The closed form solution to the update
implies that to rank two bidders efficiently, we should make the comparison

b1 · [γc̄1 + (1− γ)μ]
?
> b2 · [γc̄2 + (1− γ)μ] , (6)

which takes a linear rather than exponential form. We see that when the prior
is uninformative (n = 0) or there is ample data (m → ∞), then γ → 1 and we
rank by c̄b. When there is no data, γ = 0 and we rank purely by bid. Note that
to rank efficiently according to (6), one needs an estimate of the prior mean μ.
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4.2 Lognormal Distribution

While the probability interpretation of the advertiser and position effects is intu-
itively appealing, in practice the search engine may use a different factorization
of CTRs that does not lead to effects in [0, 1]. However, it is clear that the effects
should be non-negative. The lognormal distribution has support on the positive
reals and so could prove a convenient choice to model advertiser effects—this
turned out to be the case in our empirical analysis, as we report in Section 5
later on. We will show in this section that Theorem 1 applies to this distribution
as well; in fact, using a certain γ ∈ (0, 1) exponent is exactly efficient for this
distribution.

The lognormal is an exponential family, but not a natural exponential family,
because it has sufficient statistic φ(c) = log c. Recall that an effect c is lognormal
if log c ∼ N (μ, σ2

c ). We assume the variance is known, and that μ ∼ N (ν, σ2
μ)—

the normal distribution is the conjugate prior for the normal. Given m observa-
tions, let �̄ = 1

m

∑n
i=1 log ci denote the empirical mean of the sufficient statistic.

Let ĉ = (
∏m

i=1 ci)
1/m denote the geometric mean of the observations, and ob-

serve that we have ĉ = exp(�̄). It is known that the expected value of exp(y) for
y ∼ N (μ, σ2) is exp(μ + σ2/2), so we have

tM (c) = exp(�̄ + σ2
c/2) = ĉ · exp(σ2

c/2). (7)

That is, the maximum likelihood statistic is proportional to the geometric mean,
so the latter is a natural ranking statistic in this context. On the other hand,
letting τc = σ−1

c and τμ = σ−1
μ , the Bayes update leads to the posterior

μ | �̄ ∼ N
(
(1− γ)ν + γ�̄,

(
τ2
μ + τ2

c

)−1
)

, (8)

where γ = mτ2
c /(τ2

μ + mτ2
c ). A straightforward evaluation of (2) therefore gives

tB(c) = exp[(1− γ)ν + γ�̄ + σ2
μ/2 + σ2

c/2]

= ĉγ · exp[(1 − γ)ν + σ2
μ/2 + σ2

c/2] (9)

The next result is now immediate, but because of its relevance in practice we
record it as a proposition.

Proposition 2. Assume advertiser effects follow a lognormal distribution. Then
ranking according to ĉγ , with γ = mτ2

c /(τ2
μ + mτ2

c ) ∈ (0, 1), maximizes expected
efficiency.

When there is ample data (m → +∞) or the prior is uninformative (τμ → 0),
it is efficient to rank according to ĉb. When there is no data (m = 0), we rank
purely by bid. Note that under the lognormal distribution the prior mean cancels
out when comparing weighted bids. This compares favorably to the linear form
of the efficient ranking rule we derived for the beta distribution in (6), where
it is necessary to estimate the prior mean; however, the prior variance is still
needed to determine the efficient γ.
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5 Empirical Data Analysis

In this section we report on an empirical analysis of Yahoo’s sponsored search
logs to get a sense of the settings of γ that are efficient in practice. The theory
so far has established that, under reasonable modeling assumptions, using an
exponent of γ = 1− ε on the empirical advertiser effect would improve efficiency,
for some ε > 0. However, if the ε need only be very small according to the data,
these results would have little bearing on real sponsored search auctions.

5.1 Data Description

We collected data by considering all the keywords in the month of June 2010
that had at least one advertisement. From these keywords we retained those
where, over the month, the total number of clicks on ads was at least 2, and
the average depth was at least 2. The depth of a query is the number of ads
shown, which can range from 0 to 12 on Yahoo. The keywords were stratified
into 10 deciles by search volume, and we randomly selected 20 from each decile
for a total of 200 keywords. While the sampling is not proportional, we are not
interested in aggregating statistics across deciles; proportional sampling would
lead to a dataset overwhelmed by tail keywords with sparse click data.

For each ad shown on a keyword, and every position the ad was placed in,
we have the total number of searches and clicks as well as the position effect.
A position here is defined not just by the rank of the ad, but also where it was
placed on the page (top, bottom, side), and how its competitors were laid out.
For instance, showing an ad at the third rank when there are two ads at the top
(i.e., first on the side) is not the same as showing the ad at that same rank when
no ads are at the top (i.e., third on the side): the different positioning leads to a
different position effect. There are a total of 60 distinct positions in our dataset.
For each position we have a position effect hard-coded by Yahoo; while these
were occasionally revised over the month, the changes were typically minimal.
The relative standard deviations of the position effects over the month had a
median of 0% and mean of 2% over the keywords and advertisers. We therefore
take these effects as constants, consistent with our earlier assumptions.

Our dataset has 117K records, one for each keyword-ad-position triplet, and
contains information on 19K distinct ads, for an average of 95 ads per keyword
over the month and 587 records per keyword (naturally the distribution is heavily
skewed). We define the observed advertiser effect for an ad at a certain position
on a given keyword as the position-normalized empirical click-through rate:

clicks
searches · position effect

The observed effects do not all lie in [0, 1]: they have a median of 0.002 and
mean of 8.12 in our data. Figure 1 indicates that the observed ad effects are
well modeled by a lognormal distribution, restricting our attention to ads that
received at least one click. For this probability model, the results of Section 4.2
show that there is a setting of γ for each keyword that is exactly efficient.
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Fig. 1. Lognormality of the observed advertiser effects (position-normalized CTRs).
The left panel shows the empirical distribution for ads that have at least one click over
the month, together with the best-fit normal distribution. The right panel gives the
theoretical quantile-quantile plot.

5.2 Hierarchical Model

To empirically estimate the optimal γ for different keywords we develop a hi-
erarchical Bayesian model of advertiser effects. We have seen through (8) that
with the lognormal distribution (among others), γ can be viewed as the weight
on the empirical advertiser effect in a convex combination between it and the
prior mean. In Bayesian inference this is known as the shrinkage factor [4,11],
and we can obtain shrinkage estimates as a by-product of a hierarchical model.

We fit a model to each individual keyword. Given a keyword, the units are
ad-position pairs i, and we denote the position-normalized empirical CTR for
this pair by yi. Let j[i] denote the ad in unit i. We fit the following basic one-way
hierarchical model [6]:

log yi ∼ N (αj[i], σ
2
y) (10)

αj ∼ N (μα, σ2
α) (11)

where i ranges over all the units and j over all the ads. (To avoid taking the log
of 0, we recoded empirical effects of 0 to 10−5, which is an order of magnitude
smaller than the smallest positive observed effect in our dataset.) We assign
uninformative uniform priors to σy, μα, and σα. The posterior distribution was
evaluated using the Gibbs sampler provided by the JAGS program [13], and 1000
draws from the posterior were taken to estimate model statistics, in particular
γ. For each draw γ was estimated using the following approach proposed by
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Fig. 2. Empirical distribution of estimated γ’s for keywords with small and large num-
bers of clicks over the month. The reference lines indicate the means. For keywords
with small numbers of clicks, the distribution is more uniform, whereas for keywords
that attract many clicks γ skews towards 1.

Gelman and Pardoe [7]. Letting εj = αj − μα for each advertiser j, we set

γ =
VjE[εj ]
E[Vjεj ]

, (12)

where V represents the finite-sample variance operator, Vjεj = 1
n−1

∑
j(εj−ε̄j)2,

and E in this context is the finite-sample mean. The denominator in (12) is the
unexplained component of the variance in the αj ’s, while the numerator is the
variance among the point estimates of the εj ’s. We will have γ close to 1 if
the latter is large relative to the former, meaning that αj ’s usually lie closer to
the empirical mean of the advertiser’s effect. On the other hand, if the latter is
small relative to the former, then the estimated αj cluster more closely to μα and
so the prior mean is given higher weight. Gelman and Pardoe [7] demonstrate
that (12) can be viewed as a Bayesian analog to the definition of γ we saw earlier:
γ = mτ2

c /(τ2
μ + mτ2

c ). We report on the γ evaluated according to (12) with the
expectations taken over the 1000 draws.

Figure 2 shows the distribution of the resulting γ’s over the 200 keywords.
We identified different patterns in the distribution depending on whether we
consider low or high click keywords; here high means greater than 180 clicks per
month, or 6 clicks per day on average. For low click keywords the distribution of
γ is more uniform, with mean and median both at 0.64. High click keywords see
γ more skewed towards 1, as one would intuitively expect, with a mean of 0.78
and a median of 0.82. Note that under both regimes the mean is substantially
below 1, which shows that using a rule of the form cγb could improve efficiency
for many keywords.
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Fig. 3. Estimated γ for keywords with small and large numbers of advertisers over the
month. The Loess curves show that under both regimes γ increases on average as the
keyword receives more clicks, but for keywords with small numbers of advertisers and
clicks there is substantial variability.

Figure 3 shows the empirical results from a different perspective. We again
have two different regimes: keywords with few and many ads. Here a keyword
has many ads if more than 70 distinct ads were shown over the month. For
keywords with many ads there is a clear relationship between the volume of clicks
and γ. This is intuitive since more clicks means more accurate CTR estimates.
For keywords with few ads there is still a general upward trend, but there is
substantial variability in the γ estimates, attributable to the dearth of data. In
both cases the most relevant range for tuning γ seems to be [0.6, 1].

6 Discussion

To conclude let us discuss a few limitations and extensions of this analysis.
A key assumption implicit in the use of (12), and throughout the paper, is
that each ad sees the same amount of observations m. In practice this is of
course not the case, especially as ads are constantly added to the system. With
uneven amounts of data among ads on a keyword, the estimate (12) amounts
to a weighted combination of the different shrinkage factors for the individual
ads. To rank efficiently, one would have to use ad-specific γ’s. This is not very
appealing because the contribution of the prior mean in (9) no longer cancels
out when comparing weighted means, leading to a more complicated ranking
rule. A better understanding of the efficiency trade-offs between keyword- and
ad-specific γ’s is in order.

In our analysis, we base our estimate of the shrinkage factor γ on the empirical
advertiser effects, but in practice the search engine uses machine-learned effects
to rank. While these correlate well with realized advertiser effects, it would be
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informative to understand exactly how γ should be set given the search engine’s
estimates. One possibility is to introduce them into (10) as a linear predictor for
realized effects. However, the resulting γ from such a model would not be the
recommended exponent for the machine-learned effects. In fact, because the pre-
dictor would reduce the errors in the numerator of (10), this would misleadingly
pull (12) towards 0. Developing sound ways to estimate γ with machine-learned
effects is an important next step in this line of research.
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case of positive delay functions to delays of arbitrary sign. Our results
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and it depends on the exact nature of the signs allowed. We first prove
that in symmetric games with increasing delay functions and with α-
bounded jump the ε-Nash dynamic converges in polynomial time when
all delays are negative, similarly to the case of positive delays. We are
able to extend this result to monotone delay functions. We then establish
a hardness result for symmetric games with increasing delay functions
and with α-bounded jump when the delays can be both positive and
negative: in that case computing an ε-approximate Nash equilibrium
becomes PLS-complete, even if each delay function is of constant sign or
of constant absolute value.
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Congestion games can describe several interesting routing and resource alloca-
tion scenarios in networks. More importantly from a game theoretic perspective,
they have some particularly attractive properties. Rosenthal has proven that
they belong to the class of potential games where, for each player, an improve-
ment (decrease) in his cost is reflected by an improvement in a global function,
the potential function. This implies, in particular, that congestion games al-
ways have a pure Nash equilibrium. More precisely, a Nash equilibrium can be
reached by the so called Nash dynamics, in which an unsatisfied player switches
his strategy to a better one, which decreases his cost function. Since the same
improvement is mirrored in the potential function, which can not be decreased
infinitely, this process indeed has to converge to an equilibrium in a finite number
of steps. In an exact potential game the changes in the individual cost functions
and the potential function are not only identical in sign, but also in the exact
value. Monderer and Shapley [17] have proved that congestion games and exact
potential games are equivalent.

The existence of a potential function for congestion games allows us to cast
searching for a Nash equilibrium as a local search problem. The states, that is
the strategy profiles of the players, are the feasible solutions, and the neigh-
borhood of a state consists of all authorized changes in the strategy of a single
player. Then local optima correspond to states where no player can improve in-
dividually his cost, that is exactly to Nash equilibria. The potential of a state
can be evaluated in polynomial time, and similarly a neighboring state of lower
potential can be exhibited, provided that there exists one. This means that the
problem of computing a Nash equilibrium in a congestion game belongs to the
complexity class PLS, Polynomial Local Search, defined in [13,18]. The class PLS
is a subclass of TFNP [16], the family of NP search problems for which a solution
is guaranteed to exist. While PLS is not harder than NP ∩ coNP, it is widely
believed to be computationally intractable. Fabrikant et al. [10] have shown that
computing a Nash equilibrium in congestion games is PLS-complete. In addition,
they have explicitly constructed games in which the Nash dynamics takes expo-
nential time to converge. It is worth to note that it is also highly unlikely that
computing a mixed Nash equilibrium in general games is feasible in polynomial
time, even when the number of players is restricted to two [9,4].

It is therefore natural to look for relaxed versions, and in particular approx-
imations, of Nash equilibria which might be computed in polynomial time. Ap-
proximate Nash equilibria of various games have been defined and studied both
in the additive [14,15,5,7,8,11,21] and in the multiplicative models of approxi-
mation [6,2]. Here we consider multiplicative ε-approximate Nash equilibria, for
0 < ε < 1, that is states where no single player can improve his cost by more than
a factor of ε by unilaterally changing his strategy. In this context, the analogous
concept of the Nash dynamics is the ε-Nash dynamics, where only ε-moves are
permitted, which improve the respective player’s cost at least by a factor of ε.
Rosenthal’s potential function arguments imply again that the ε-Nash dynamics
converges to an ε-approximate Nash equilibrium.
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In a very interesting positive result, Chien and Sinclair [6] proved that in
congestion games with four specific constraints the ε-Nash dynamics indeed does
converge fast, in polynomial time. The four constraints require the game to
be increasing, positive, symmetric, and with α-bounded jump. The first three
constraints are rather standard. A congestion game is increasing (respectively
positive) if of all delay functions are non-decreasing (respectively non-negative).
It is symmetric if all players have the same strategies. The last constraint puts a
limit on the speed of growth of the delay functions. They define an increasing and
positive congestion game to be with α-bounded jump, for some α ≥ 1, if the delay
functions can not grow more than a factor α when their argument is increased
by one. Their result states that in increasing, positive and symmetric congestion
games with α-bounded jump, the ε-Nash dynamics converges in polynomial time
in the input length, α and 1/ε.

Could it be that the ε-Nash dynamic converges fast in every congestion game?
Skopalik and Vöcking have found a very strong evidence for the contrary. In a
negative result [20], they proved that for every polynomial time computable
0 < ε < 1, computing an ε-approximate Nash equilibrium is PLS-complete, that
is as hard as computing a Nash equilibrium. In fact, they result is even stronger,
it shows the PLS-completeness of the problem for increasing positive games.

In this paper we extend these studies to the case when the delays can be also
negative, that is some resources might have the special status of improving the
cost of the players when they are chosen. We consider negative games where the
delay functions may be either increasing or decreasing. We first prove that in
negative symmetric games with α-bounded jump, when all delay functions are
increasing, the ε-Nash dynamics converges in polynomial time, just as in the case
of positive increasing games. We then extend this result to games where all delay
functions are monotone, that is either increasing or decreasing. We then prove
a hardness result: computing an ε-approximate Nash equilibrium in symmetric
and increasing games with α-bounded jump becomes PLS-complete when delay
functions of arbitrary sign are allowed. In fact, our result is somewhat stronger:
the PLS-completeness holds even when all delay functions are of constant sign
or when all the delays are of constant absolute value.

2 Preliminaries and Results

We recall the notions of congestion games, local search problems and approxi-
mate Nash equilibrium. We also give motivations and applications of this work.

Congestion games. For a natural number n, we denote by [n] the set {1, . . . , n}.
For an integer n ≥ 2, an n-player game in normal form is specified by a set of
(pure) strategies Si, and a cost function ci : S → Z, for each player i ∈ [n], where
S = S1 × · · · × Sn is the set of states. For s ∈ S, the value ci(s) is the cost of
player i for state s. A game is symmetric if S1 = . . . = Sn.

For a state s = (s1, . . . , sn) ∈ S, and for a pure strategy t ∈ Si, we let (s−i, t)
to be the state (s1, . . . , si−1, t, si+1, . . . , sn) ∈ S. A pure Nash equilibrium is a
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state s such that for all i, and for all pure strategies t ∈ Si, we have ci(s) ≤
ci(s−i, t). In general games do not necessarily have a pure Nash-equilibrium.

A specific class of games which always have a pure Nash equilibrium are
congestion games, where the cost functions are determined by the shared use
of resources. More precisely, an n-player congestion game is a 4-tuple G =
(n, E, (de)e∈E , (Si)i∈[n]), where E is a finite set of edges (the common resources),
de : [n] → Z is a delay function, for every e ∈ E, and Si ⊆ 2E is the set of pure
strategies of player i, for i ∈ [n]. Given a state s = (s1, . . . , si, . . . , sn), let the
congestion of e in s be fe(s) = |{i ∈ [n] : e ∈ si}|. The cost function of user i
is defined then as ci(s) =

∑
e∈si

de(fe(s)). Intuitively, each player uses some set
of resources, and the cost of each resource e depends on the number of players
using it, as described by the delay function. To simplify the notation, we will
specify a symmetric congestion game by a 4-tuple G = (n, E, (de)e∈E , Z), where
by definition the set of pure strategies of every player is Z ⊆ 2E . We will refer
to Z as the set of available strategies.

A delay function de is increasing if de(t) ≤ de(t+1), for all t ∈ [n−1], and it is
decreasing if −de is increasing. We say that de is monotone if it is increasing or
decreasing. A congestion game is increasing (respectively decreasing, monotone)
if all delay functions are increasing (respectively decreasing, monotone).

That congestion games have indeed a Nash equilibrium can be easily shown
by a potential function argument, due to Rosenthal [19], as follows. Let us de-
fine the potential function φ on the set of states as φ(s) =

∑
e∈E

∑fe(s)
t=1 de(t). If

s = (s1, . . . , si, . . . , sn) and s′ = (s−i, s
′
i) are two states differing only for player

i then φ(s) − φ(s′) = ci(s) − ci(s′) since both of these quantities are in fact
equal to

∑
e∈si\s′

i
de(fe(s)) −

∑
e∈s′

i\si
de(fe(s′)). Therefore, in any state which

is not a pure Nash equilibrium, there is always a player that can change uni-
laterally his strategy so that the induced new state has a smaller potential. In
fact the decrease in the cost function and in the potential are identical. This
means that a finite sequence of such individual changes, the so-called Nash dy-
namics, necessarily results in a pure Nash equilibrium since the integer valued
potential function can not decrease forever. Therefore congestion games can be
casted as local search problems, and the computing of a Nash equilibrium can
be interpreted as the search of a local optimum.

Local search problems. A local search problem is defined by a 4-tuple Π =
(I, F, (vI )I∈I , (NI)I∈I), where I the set of instances, F maps every instance I ∈
I to a finite set of feasible solutions F (I), the objective function vI : F (I) → Z

gives the value vI(S) of a feasible solution, and NI(S) ⊆ F (I) is the neighbor-
hood of S ∈ F (I). Given an instance I, the goal is to find a feasible solution
S ∈ F (I) such that is also local minimum, that is for all S′ ∈ NI(S), it satisfies
vI(S) ≤ vI(S′). A local search problem is in the class PLS [13,18] if there ex-
ist polynomial algorithms in the instance length to compute: an initial solution
S0; the membership in F (I); the objective value vI(S); and a feasible solution
S′ ∈ NI(S) such that vI(S′) < vI(S) whenever S is not a local minimum. Com-
puting a Nash equilibrium of congestion games is then indeed in PLS: Given an
instance G, the feasible solutions F (G) are the states S, the value vG(s) of a
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state s is its potential φ(s), and the neighborhood NG(s) consists of those states
which differ in one coordinate from s.

The notion of PLS-reducibility was introduced in [13]. A problem Π =
(I, F, (vI )I∈I , (NI)I∈I) is PLS-reducible to Π ′ = (I ′, F ′, (v′I)I∈I′ , (N ′

I)I∈I′) if
there exist polynomial time computable functions f : I → I′ and gI : F (f(I)) →
F (I), for I ∈ I, such that if S′ is a local optimum of f(I) then gI(S′) is local op-
timum of I. Complete problems in PLS are not believed to be solvable by efficient
procedures. Therefore, it is highly unlikely that there exists at all a polynomial
time algorithm for computing a pure equilibrium in congestion games. Indeed,
Fabrikant, Papadimitriou and Talwar [10] have shown that this problem is PLS-
complete, even for symmetric games.

Approximate Nash equilibrium. Several relaxations of the notion of equilibrium
have been considered in the form of approximations. Let 0 < ε < 1. In our
context ε will be a constant or some polynomial time computable function in
the input length. A ε-approximate Nash equilibrium is a state s such that for all
i ∈ [n], and for all strategies t ∈ Si, we have

ci(s)− ci(s−i, t) ≤ ε|ci(s)|.
Otherwise, we say that that (s−i, t) is an ε-move for player i if

ci(s)− ci(s−i, t) > ε|ci(s)|.
Clearly s is an ε-approximate Nash equilibrium if no player has an ε-move.

The ε-Nash dynamics is defined as a sequence of ε-moves, where a player with
the largest absolute gain makes the change in his strategy, when several players
with ε-move are available. Analogously to the exact case, the ε-Nash dynamics
converges to an ε-approximate Nash equilibrium. computing an ε-approximate
Nash equilibrium is also a problem in PLS. When casting this as a local search,
the only difference with the exact equilibrium case is that the neighborhoods are
restricted to states which are reachable by an ε-move.

Related results. In [6] Chien and Sinclair have considered the rate of convergence
of the ε-Nash dynamics in symmetric congestion games with three additional
restrictions on the delay functions. We say that a delay function de is positive if
the delays de(t) are non-negative integers for all 1 ≤ t ≤ n. A congestion game is
positive if all delay functions are positive. Let α ≥ 1. A positive and increasing
delay function is with α-bounded jump if the delays satisfy de(t + 1) ≤ αde(t),
for all t ≥ 1. We can think of α as being a constant, or a polynomial time
computable function in the input length of the game. Obviously, a positive delay
function with α-bounded jump can never take the value 0. A positive game is
with α-bounded jump if all delay functions are with α-bounded jump. Chien and
Sinclair have shown that in symmetric, positive, increasing games with bounded
jump the ε-Nash dynamics converges in polynomial time.

Theorem 1 (Chien and Sinclair [6]). For every α ≥ 1 and 0 < ε < 1, in n-
player symmetric, positive and increasing congestion games with α-bounded jump
the ε-Nash dynamics converges from any initial state in O(nαε−1 log(nmD))
steps, where m = |E|, and D = max{de(n) : e ∈ E} is an upper bound on the
delay functions.



The Complexity of Approximate Nash Equilibrium in Congestion Games 271

The hope that the ε-Nash dynamics converges fast in generic congestion games
was crushed by Skopalik and Vöcking [20], even for positive increasing games.

Theorem 2 (Skopalik and Vöcking [20]). For every polynomial time com-
putable 0 < ε < 1, computing an ε-approximate Nash equilibrium in a positive
and increasing congestion game is PLS-complete.

Motivations. In this paper we mainly study the complexity of computing an
ε-approximate Nash equilibrium in congestion games where the delay functions
can also have negative values. Negative delays are motivated by real scenarios
worth of investigations. Profit maximizing games are defined exactly as conges-
tion games, except that each player tries to maximize its cost. These games are
easily seen to be equivalent to congestion games when the delay functions are
multiplied by a -1 factor. Market sharing games [3,12], also studied in the con-
text of content distribution in service networks, are specific profit maximizing
games, where the delay functions are positive and decreasing as the value of a
resource is shared. They are equivalent to congestion games with negative and
increasing delay functions. Market social games, introduced in section 3.2, gen-
eralize market sharing games where the value of some resources, such as Web
pages, may increase with the number of players who selected them, whereas some
other resources are shared as in market sharing games. They are equivalent to
congestion games with negative increasing and decreasing delay functions, that
is negative monotone delay functions.

3 Negative Games

We start now the study of computing ε-approximate Nash equilibria in conges-
tion games where the delay functions can take negative values. In this section
we impose the restriction that the delay functions have only negative values.
We further suppose that the games are symmetric, monotone and α-bounded.
We show in a result analogous to Theorem 1 that for any polynomial time com-
putable α and ε, the ε-Nash dynamics converges in polynomial time. We then
point out that this result applies to symmetric market sharing and social games.

We say that a delay function de is negative if the delays de(t) are negative
integers for all 1 ≤ t ≤ n. A congestion game is negative if all delay functions
are negative. Let α ≥ 1. A negative and increasing delay function is with α-
bounded jump if the delays satisfy de(t + 1) ≤ de(t)/α, for all t ≥ 1. A negative
and decreasing delay function de is with α-bounded jump if −de is with α-
bounded jump. A negative and monotone game is with α-bounded jump if all
delay functions are with α-bounded jump.

We show our positive result first for increasing games, then we generalize it
to monotone games.

3.1 Increasing Delay Functions

Theorem 3. For every α ≥ 1 and every ε > 0, in an n-player symmetric,
negative, increasing congestion game with α-bounded jump the ε-Nash dynamics
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converges from any initial state in O((αn2 + nm)ε−1 log(nmD)) steps where
m = |E|, and D = max{−de(1) : e ∈ E} is an upper bound on magnitude of the
delay functions.

Proof. We will suppose without loss of generality that every edge appears in
some strategy, since otherwise the edge can be discarded from E. We first
define a positive potential function which will be appropriate to measure the
progress of the ε-Nash dynamics. Let ψ be defined over the states as ψ(s) =
−

∑
e∈E

∑n
t=fe(s)+1 de(t). The function ψ is clearly positive, and we claim that

it is a potential function, that is ψ(s)− ψ(s′) = ci(s)− ci(s′) if the states s and
s′ differ only in their ith coordinate. This follows immediately from the fact that
for every state s, we have ψ(s) = φ(s)−k, where φ(s) =

∑
e∈E

∑fe(s)
t=1 de(t) is the

Rosenthal potential function, and k is the constant
∑

e∈E

∑n
t=1 de(t). Observe

that ψ(s) is bounded from above by nmD, for every state s.
For an arbitrary initial state s(0), let s(k) be the kth state of the ε-Nash

dynamics process. We claim that ψ(s(k+1)) ≤ ψ(s(k))(1 − ε/4(αn2 + nm)), for
every k, which clearly implies the theorem. Suppose that s(k) = s = (s1, . . . , sn)
is not an ε-equilibrium, and let i be the player which can make the largest gain
ε-move. To prove our claim, we will show that there exists a strategy s′i for
player i such that ci(s)− ci(s−i, s

′
i) ≥ εψ(s)/4(αn2 + nm), and we observe that

an ε-move can only be better for player i than playing strategy s′i.
The first idea is to try to prove, analogously to the case of positive games, that

for some player j, the opposite of its cost −cj(s) is a polynomial fraction of ψ(s).
Unfortunately this is not necessarily true. The sum

∑n
j=1 cj(s) is not necessarily

a polynomial fraction of ψ(s) because edges whose congestion is 0 in s do not
contribute to the former, but do contribute the latter. Therefore we introduce
the function ψ′ as ψ restricted to the edges with nontrivial congestion, that is by
definition ψ′(s) = −

∑
e∈E|fe(s) 
=0

∑n
t=fe(s)+1 de(t). The following Lemma shows

that some of the −cj(s) is at least a polynomial fraction of ψ′(s).

Lemma 1. There exists a player j such that −cj(s) ≥ ψ′(s)/n2.

Proof. We claim that −n
∑n

j=1 cj(s) ≥ ψ′(s), from which the statement clearly
follows. To prove the claim we proceed by the following series of (in)equalities:

−n

n∑
j=1

cj(s) = −n
∑

e∈E|fe(s) 
=0

fe(s) de(fe(s)) ≥ −n
∑

e∈E|fe(s) 
=0

de(fe(s))

≥ −
∑

e∈E|fe(s) 
=0

n∑
t=fe(s)+1

de(t) = ψ′(s),

where the second inequality holds because the delay functions are non-
decreasing. ��

We fix a value j which satisfies Lemma 1 for the rest of the proof. To upper
bound ψ(s), we also have to consider the edges of congestion 0, besides the
edges which are accounted for in ψ′(s). We have



The Complexity of Approximate Nash Equilibrium in Congestion Games 273

ψ′(s)− n
∑

E∈E|fe(s)=0

de(1) ≥ ψ(s),

again because the delays are non-decreasing. This implies that either ψ′(s) ≥
ψ(s)/2 or −n

∑
e∈E|fe(s)=0 de(1) ≥ ψ(s)/2, and the proof proceeds by distin-

guishing these two cases.
Case 1: ψ′(s) ≥ ψ(s)/2. We then reason in two sub-cases by comparing the

value of ci(s) to ψ′(s)/2αn2. If −ci(s) ≥ ψ′(s)/2αn2, then let s′i be the strategy
which makes the biggest gain for player i. Then we have

ci(s)− ci(s−i, s
′
i)) ≥ −εci(s) ≥ εψ(s)/4αn2,

where first inequality holds since the move of player i is an ε-move, and the
second inequality is true because of the hypotheses. If −ci(s) < ψ′(s)/2αn2,
then let s′i = sj , the strategy of player j in state s. Observe that sj is an
available strategy for player i since the game is symmetric. Then
ci(s)− ci(s−i, s

′
i)) ≥ ci(s)− cj(s)/α ≥ ψ′(s)/αn2 − ψ′(s)/2αn2 ≥ ψ(s)/4αn2.

Here the first inequality is true because the game is with α-bounded jump. The
second inequality follows from the hypothesis and because −cj(s) ≥ ψ′(s)/n2.
Finally, the third inequality holds because ψ′(s) ≥ ψ(s)/2.

Case 2: −n
∑

e∈E|fe(s)=0 de(1) ≥ ψ(s)/2. Then for some edge with fe(s) = 0,
we have −de(1) ≥ ψ(s)/2nm. Let’s fix such an edge e. We distinguish two sub-
cases now by comparing the value of ci(s) to de(1)/2. If ci(s) ≤ de(1)/2 then let
s′i be the strategy which makes the biggest gain for player i. Then, similarly to
the first sub-case of Case 1, using the hypotheses and that player i’s move is an
ε-move, we have

ci(s)− ci(s−i, s
′
i)) ≥ −εci(s) ≥ εψ(s)/4nm.

If ci(s) > de(1)/2 then let s′i be some strategy that contains the edge e.
There exists such a strategy since useless edges were discarded from E. Then
fe(s−i, s

′
i)) = 1 since fe(s) = 0 and s and (s−i, s

′
i) differ only for the ith player.

This, in turn, implies that ci(s−i, s
′
i)) ≤ de(1), since the delays are negative.

Therefore
ci(s)− ci(s−i, s

′
i)) ≥ ci(s)− de(1) ≥ −de(1)/2 ≥ ψ(s)/4nm,

where the last two inequalities follow from the hypotheses. ��

Market Sharing Games. In market sharing games [3,12] n players sell their
goods on subsets of m markets E = {e1, . . . , em}, and they try to maximize their
gains. Each market e has a value v(e) > 0. If t sellers choose a market e, they
share its value and each earn v(e)/t. The gain of player i on a strategy profile
s = (s1, ..., sn), with si ⊆ E, is

∑
e∈si

v(e)/fe(s), where fe(s) is the number
of sellers on the market e. A symmetric market sharing game with markets
strategies Z ⊆ 2E is a congestion game (n, E, (de)e∈E , Z) with delay functions
de(t) = −v(e)/t, which are increasing, negative and with 2-bounded jump.

Corollary 1. In symmetric market sharing games the ε-Nash dynamics con-
verges in polynomial time.
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3.2 Monotone Delay Functions

We extend Theorem 3 to monotone congestion games where the resources can
be partitioned into two sets: E↑ with increasing delay functions and E↓ with
decreasing delay functions. Notice that if E↑ is empty, then the task of find-
ing a Nash equilibrium becomes trivial. Indeed, if the strategy s∗ minimizes∑

e∈s de(n) over all available strategies, then the state where all players select
s∗ is an equilibrium.

Theorem 4. For every α ≥ 1 and every ε > 0, in an n-player symmetric,
negative, monotone congestion game with α-bounded jump the ε-Nash dynamics
converges from any initial state in O((αn2 + nm)ε−1 log(nmD)) steps where
m = |E|, and D = max{−de(t) : e ∈ E, t ∈ [n]} is an upper bound on the
magnitude of the delay functions.

The proof is similar to the proof of theorem 3 using the potential function ψ(s) =
−

∑
e∈E↑

∑n
t=fe(s)+1 de(t) +

∑
e∈E↓

∑fe(s)
t=1 de(t).

Market Social Games. Let us call a symmetric market social game a con-
gestion game (n, E, (de)e∈E , Z) where the market E is partitioned into E↑, E↓.
Each market e ∈ E has a value v(e) > 0. The delay functions are defined as
de(t) = −v(e)/t when e ∈ E↑, and de(t) = −t.v(e) when e ∈ E↓. The delays
are clearly negative increasing on E↑ and negative decreasing on E↓. They are
also with 2-bounded jump. We interpret fe(s) as the number of sellers on the
market e. These games generalize the market sharing games as some resources
are shared between the players, whereas some other resources have a value which
increases with the number of players.

Corollary 2. In symmetric market social games the ε-Nash dynamics converges
in polynomial time.

4 Games without Sign Restriction

In this section we deal with congestion games with no restriction on the sign
of the delay functions. Our overall result is that in that case computing an ε-
approximate Nash equilibrium is PLS-hard, even when the remaining restrictions
of Chien and Sinclair are kept, that is when the game is symmetric, increasing
and with α-bounded jump, for α ≥ 1. Observe that the smaller α the stronger
is the hardness result, therefore we deal only with constant α. Our first step
is to observe that a simple consequence of Theorem 2 is that computing an
ε-approximate Nash equilibrium in positive and increasing games remains PLS-
complete even if we additionally suppose that the game is symmetric. Our reduc-
tions will use the hardness of this latter problem. The proof of this statement is
a PLS-reduction of the search of an ε-approximate Nash equilibrium in positive
and increasing games to the same problem in symmetric, positive, increasing
games. This reduction is basically identical to the analogous reduction for pure
Nash equilibria, due to Fabrikant, Papdimitriou and Talwar [10].
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Theorem 5. For every polynomial time computable 0 < ε < 1, computing an
ε-approximate Nash equilibrium in a symmetric, positive, increasing congestion
game is PLS-complete.

We need to discuss now the right notion of α-bounded jump when the jump
occurs from a negative to a positive value in the delay function. One possibility
could be to require de(t + 1) ≤ −αde(t) when de(t) < 0 and de(t + 1) ≥ 0, but
there are also other plausible definitions. In fact, we will avoid to give a general
definition because it turns out that this is not necessary for our hardness results.
Indeed, we will be able to establish a hardness result for congestion games where
there is no jump at all around 0, that is for delay functions of constant sign (still
some of the delay functions can be negative while some others positive). We say
that a congestion game is non-alternating, if every delay function is positive or
negative. Let α > 1 be a constant. A non-alternating congestion game is with
α-bounded jump if all delay functions are with α-bounded jump.

What happens when α = 1? If the delays are constant functions, a pure
Nash equilibrium can be determined trivially. Indeed, the cost functions of the
individual players are independent from the strategies of the other players, and
therefore any choice of a least expensive strategy, for each player, forms a Nash
equilibrium.

Nonetheless, if we authorize a jump around 0, then even if the jump changes
only the sign without changing the absolute value (which corresponds intuitively
to the case α = 1 in that situation), the game becomes already hard. We say
that a delay function de is a flip function, if there exists a positive integer c such
that for some 1 ≤ k ≤ n, the function satisfies:

de(t) =
{
−c if t < k,
c if t ≥ k.

Flip functions are either constant positive functions, or they are simple step
functions, which are constant negative up to some point, where an alternation
occurs which keeps the absolute value. After the alternation the function remains
constant positive. A congestion game is a flip game if all delay functions are flip
functions. The next two theorems state our hardness results respectively for
non-alternating games with α-bounded jump and for flip games.

Theorem 6. For every constant α > 1, and for every polynomial time com-
putable 0 < ε < 1, computing an ε-approximate Nash equilibrium in n-player
symmetric, non-alternating, increasing congestion games with α-bounded jump
is PLS-hard.

Proof. As stated in Theorem 5 computing an ε-approximate Nash equilibrium
in a symmetric, positive, increasing congestion game is PLS-complete [20]. We
present a PLS-reduction from this problem to the problem of computing an ε-
approximate Nash equilibrium in a symmetric, non-alternating, positive game
with α-bounded jump.

Let G = (n, E, (de)e∈E , Z) a symmetric, positive, increasing congestion game,
and let α > 1 be a constant. In our reduction we map G to the symmetric
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game G′ = (n, E′, (de′)e′∈E′ , Z ′) that we define now. For each e ∈ E, we set
Ee = {e1, e

+
2 , e−2 , . . . , e+

n , e−n }, and for every z ⊆ E, we define z′ =
⋃

e∈z Ee (and
therefore E′ =

⋃
e∈E Ee). The set of available strategies is defined as Z ′ = {z′ :

z ∈ Z}. Finally the delay functions are defined as follows. The delay de1 is simply
the constant function de(1). For k ≥ 2, we set

de+
k
(t) =

{
(de(k)− de(k − 1)) α

α2−1 if t < k,

(de(k)− de(k − 1)) α2

α2−1 if t ≥ k,

and

de−
k
(t) =

{
−(de(k)− de(k − 1)) α

α2−1 if t < k,

−(de(k)− de(k − 1)) 1
α2−1 if t ≥ k.

The game G′ is clearly non-alternating, increasing and with α-bounded jump.
Observe that there is a bijection between the states of G and G′. Indeed, the

states of G′ are of the form s′ = (s′1, . . . , s
′
n), where s = (s1, . . . , sn) ∈ Zn is a

state of G. For the reduction we will simply show that if s′ is an ε-approximate
Nash equilibrium in G′ then s is an ε-approximate Nash equilibrium in G (our
construction satisfies also the reverse implication). In fact, we show a stronger
statement about cost functions: for every state s, and for every player i, the cost
of player i for s in G is the same as the cost of player i for s′ in G′.

The edges e+
k and e−k are such that the sum of their delay functions emu-

lates the jump de(k) − de(k − 1) when t ≥ k. Therefore the sum of the delays
corresponding to edges in Ee is just de which is expressed in the following lemma.

Lemma 2. For every edge e ∈ E, and 1 ≤ t ≤ n,
∑

e′∈Ee
de′(t) = de(t).

We now claim the following strong relationship between the cost functions in
the two games.

Lemma 3. For all state s = (s1, . . . , sn) in G, and for every player i, we have
ci(s′) = ci(s), where s′ = (s′1, . . . , s

′
n).

By Lemma 3 we can deduce an ε-approximate Nash equilibrium for G, given an
ε-approximate Nash equilibrium for G′. This concludes the proof. ��

Theorem 7. For every polynomial time computable 0 < ε < 1, computing an
ε-approximate Nash equilibrium in n-player symmetric, flip congestion games is
PLS-hard.

Proof. The proof is very similar to the proof of the previous theorem. In the
reduction the delay functions, for 2 ≤ k ≤ n, are defined as

de+
k
(t) = (de(k)− de(k − 1))/2 for every t,

and

de−
k
(t) =

{
−(de(k)− de(k − 1))/2 if t < k,
(de(k)− de(k − 1))/2 if t ≥ k.

��
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20. Skopalik, E., Vöcking, B.: Inapproximability of pure Nash equilibria. In: Proc. of
ACM Symposium on Theory of Computing, pp. 355–364 (2008)

21. Tsaknakis, H., Spirakis, P.: An optimization approach for approximate Nash equi-
libria. In: Proc. of Workshop on Internet and Network Economics, pp. 42–56 (2007)



On Worst-Case Allocations in the Presence
of Indivisible Goods�

Evangelos Markakis and Christos-Alexandros Psomas

Athens University of Economics and Business
Department of Informatics

{markakis,alexpsomi}@gmail.com

Abstract. We study a fair division problem, where a set of indivisible goods
is to be allocated to a set of n agents. In the continuous case, where goods are
infinitely divisible, it is well known that proportional allocations always exist,
i.e., allocations where every agent receives a bundle of goods worth to him at
least 1

n
. With indivisible goods however, this is not the case and one would like

to find worst case guarantees on the value that every agent can have. We focus on
algorithmic and mechanism design aspects of this problem.

An explicit lower bound was identified by Hill [5], depending on n and the
maximum value of any agent for a single good, such that for any instance, there
exists an allocation that provides at least this guarantee to every agent. The proof
however did not imply an efficient algorithm for finding such allocations. Follow-
ing upon the work of [5], we first provide a slight strengthening of the guarantee
we can make for every agent, as well as a polynomial time algorithm for com-
puting such allocations. We then move to the design of truthful mechanisms. For
deterministic mechanisms, we obtain a negative result showing that a truthful
2
3

-approximation of these guarantees is impossible. We complement this by ex-
hibiting a simple truthful algorithm that can achieve a constant approximation
when the number of goods is bounded. Regarding randomized mechanisms, we
also provide a negative result, under the restrictions that they are Pareto-efficient
and satisfy certain symmetry requirements.

1 Introduction

Fair division problems have attracted the attention of various scientific disciplines, in-
cluding among others, mathematics, economics, and political science. Ever since the
first attempt for a formal treatment by Steinhaus, Banach, and Knaster [9], many chal-
lenging questions have emerged and a vast literature has developed, see e.g., [2,8]. In
the recent years, this area has also gained popularity in computer science, as most of
the questions that have been posed are algorithmic in nature.

The objective in fair division problems is to allocate a set of goods to a set of n
agents in a way that leaves every agent satisfied. In the continuous case, the available
resources are typically represented by the interval [0, 1], whereas in the discrete case,
we have a set of distinct, indivisible goods. Each agent has a valuation function, which
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is usually normalized to be a probability distribution on the set of goods. Given such a
setup, many solution concepts have been proposed as to what constitutes a fair solution,
including proportionality, envy-freeness, equitability and many variants of them. The
most related concept to our work is proportionality, meaning that every agent receives
a bundle of the goods that is worth at least 1

n , according to his valuation function.
In the continuous case, it has long been shown that proportional allocations always

exist [9]. In the presence of indivisible goods however, this is not the case. If, for ex-
ample, we have two agents who have a very high value for one of the goods, then any
allocation will leave one of the two people unhappy. In this work we are interested in
finding allocations with worst case guarantees in instances with indivisible goods. In
particular, we focus on algorithmic and mechanism design aspects of this problem.

1.1 Related Work and Contribution

Consider a set of indivisible items, and a set of n agents with additive valuations. Given
that proportional allocations do not always exist for indivisible goods, a natural ques-
tion is whether we can provide any lower bound as to the value that we can ensure to
every agent. This question was studied by Hill in [5], where an explicit such guarantee
was given. In particular, a certain function was identified, denoted by Vn(·) (defined in
Section 2), such that, when the maximum value of a good is at most α, then there al-
ways exists an allocation where every agent can receive a bundle that is worth to him at
least Vn(α). Clearly when α is large, Vn(α) may be 0. For smaller values of α however
this is a positive result, showing that we can ensure a relatively fair solution.

Regarding the complexity of finding such allocations, the result of [5] does not yield
an efficient algorithm. The proof is based on certain combinatorial arguments, which
however result in an exponential algorithm. Motivated by this fact, we start with study-
ing the question of efficiently producing allocations that respect the bound of Vn(α).
Our main result in Section 3 is that (i) we can have a slight strengthening of the guaran-
tee of [5] so that every agent can have a bundle worth at least Vn(αi), where αi is the
maximum value in the valuation of agent i (hence an agent is not penalized if someone
else has a much higher maximum value than him) (ii) we provide a simple polynomial
time algorithm for computing such an allocation.

In Section 4, we move to mechanism design aspects. We show that no deterministic
truthful mechanism can guarantee an allocation that is worth at least 2

3 · Vn(αi) for
every agent i, even for two agents. The proof of this statement is achieved in two steps:
first we argue about permutation-respecting mechanisms, i.e., mechanisms that when
faced with a permutation of a given input, return a permutation of the initial output. We
later use this to argue about general mechanisms. We then complement this negative
result by a simple algorithm showing that for two agents and a small number of goods,
we can have a truthful, constant approximation to Vn(αi). In Subsection 4.2, we turn
to randomized algorithms. The picture is far less clear there and in general, there have
been very few attempts for randomized algorithms in cake-cutting, such as [3,7]. We
focus on truthful in expectation mechanisms and present an impossibility result for
Pareto-efficient mechanisms under certain symmetry requirements.

Finally, in Section 5, we study a slightly different question. Since proportional allo-
cations do not always exist, can we at least decide when this is the case? In [4] it has
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already been proved that deciding the existence of proportional allocations, is NP-hard.
We strengthen this result by providing a different reduction showing that it is NP-hard
to decide even if there exists an allocation where every person gets a bundle worth at
least 1/cn for any constant c ≥ 1.

We should note here that a related problem is to compute a max-min fair alloca-
tion, where the objective is to maximize the value of the least happy person. This is an
NP-hard problem and several approximation algorithms have been proposed [1]. Our
problem is less demanding, since we do not want to compute a max-min fair alloca-
tion but simply an allocation that reaches the threshold of Vn(αi) for every agent i. An
approximate solution to max-min fairness problem does not necessarily achieve this.

2 Definitions and Preliminaries

Let N = {1, ..., n} be a set of n agents and M = {1, ..., m} be a set of m indivisible
goods. The input to our problem is a valuation matrix V so that vij is the utility derived
by agent i for obtaining good j. We assume the usual normalization in fair division that∑

j vij = 1. Let Sn,m be the set of n×m matrices satisfying this requirement.
An allocation of the goods is denoted by a tuple (S1, ..., Sn), where Si is the set

allocated to player i, such that
⋃

i Si = M and Si ∩ Sj = ∅, (implying that the al-
gorithm has to allocate the whole set M ). The total value of player i for an allocation
(S1, ..., Sn), is vi(Si) =

∑
j∈Si

vij . In [5], Hill defined the following function.

Definition 1. Given any integer n ≥ 2, let Vn : [0, 1] →
[
0, n−1

]
be the unique

nonincreasing function satisfying Vn(α) = 1
n for α = 0, and for α > 0:

Vn(α) =

{
1− k(n− 1)α if α ∈ I(n, k)
1− (k+1)(n−1)

(k+1)n−1 if α ∈ NI(n, k)

where for any integer k ≥ 1,

I(n, k) =

[
k + 1

k((k + 1)n − 1)
,

1

kn − 1

]
, NI(n, k) =

(
1

(k + 1)n − 1
,

k + 1

k((k + 1)n − 1)

)

Definition 2. For integers n, k ≥ 1, let r(n, k) = 1
kn−1 , i.e., the right endpoint of the

interval I(n, k). Similarly let l(n, k) = k+1
k((k+1)n−1) , the left endpoint of I(n, k).

Example 1. In Figure 1, one can see the function Vn(·) for n = 2 and n = 3. For
larger n, it has a similar form. The function alternates between decreasing and constant
segments. The intervals I(n, k) in Definition 1 correspond to the decreasing segments,
whereas the intervals NI(n, k) correspond to the constant segments. For example, for
n = 2, looking at the function from right to left, we can see that the rightmost decreas-
ing segment is I(2, 1) = [23 , 1], which is followed by NI(2, 1) = (1

3 , 2
3 ), followed by

I(2, 2) = [0.3, 1
3 ], then followed by NI(2, 2) = (1

5 , 0.3), and so on.
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Fig. 1. The function Vn(·) for n = 2 and n = 3

The function Vn(·) has a number of useful properties that will be needed in the
following sections:

Fact 1. The function Vn(·) satisfies:

1. Vn( 1
n−1 ) = Vn(r(n, 1)) = 0, and for any α ≥ 1

n−1 , Vn(α) = 0.
2. The equation α = Vn(α) has a unique solution at α = 1

2n−1 = r(n, 2). For
α < r(n, 2), Vn(α) > α and for α > r(n, 2), Vn(α) < α.

Theorem 2. [5] For any instance, with maxi,j vij ≤ α, there is an allocation where
the total value of every player is at least Vn(α).

The result of [5] actually holds in a more general model, where the valuations of the
agents are probability distributions on [0, 1] which are allowed to have atoms of size at
most α. This includes our setting.

3 The Algorithm

The proof of Theorem 2 does not imply an efficient algorithm for producing the desired
allocation, as part of the proof relies on existential arguments. Furthermore, in the tight
example provided in [5], all agents have the same maximum valuation, α. It could still
be feasible to provide better guarantees to agents whose maximum value is lower than
the maximum value over all agents, i.e., the fact that some agents have very high values
should penalize only themselves.

The main result of this Section is the following theorem, which provides (i) a slight
strengthening of [5] in terms of the guarantee that each agent can have, and (ii) a simple,
efficient algorithm for finding such allocations.

Theorem 3. There exists a polynomial time algorithm that for any instance, it produces
an allocation such that, each player i receives a bundle with total value at least Vn(αi),
where αi = maxj vij .
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The algorithm is achieved by obtaining a better understanding of the behavior of Vn(·).
Although the algorithm itself turns out to be quite simple, the analysis is more involved
and is based on a series of Lemmas. We start our analysis with proving some useful
properties of the function Vn(·). The next fact simply says that for α ∈ NI(n, k),
Vn(α) is the same as the value at the right endpoint of the decreasing segment to the
left of α, or as the value at the left endpoint of the segment to the right of α.

Fact 4. If α ∈ NI(n, k), for some k ≥ 1, then Vn(α) = Vn(r(n, k+1)) = Vn(l(n, k)).

The main ingredients that make our algorithm work are the properties stated in Lemma
1 and Lemma 2. Lemma 1 below provides a relation between Vn(·) and Vn−1(·), needed
for the inductive analysis of the algorithm later on. We omit its proof from this version.

Lemma 1. For fixed n ≥ 3 and k ≥ 1, and for α ∈ I(n, k) ∪NI(n, k),

(1− kα)Vn−1(
α

1− kα
) ≥ Vn(α) (1)

The next Lemma is crucial as it provides an upper bound on the left-over value of the
remaining items, according to the preferences of a given agent i, once we satisfy the
agent. Clearly the upper bound holds for any other agent that cannot be satisfied by the
bundle allocated to agent i.

Lemma 2. For n ≥ 2, let i be an agent with αi < Vn(αi). Suppose we start allocating
items to player i, starting from his most desirable item and proceeding in decreasing
order, as induced by his valuation, until the total value for i, say s, equals or exceeds
Vn(αi). Then,

s ≤
{

kαi

(
= 1−Vn(αi)

n−1

)
, if αi ∈ I(n, k), for some k ≥ 1

k · l(n, k), if αi ∈ NI(n, k), for some k ≥ 1

Proof. Case 1: αi ∈ I(n, k) for some k ≥ 1.
Suppose the statement of the lemma is not true, i.e., once we surpass Vn(αi) for

agent i, we have s > kαi. Then, before the final item is given to player i, the t first
items had total value c, where

Vn(αi) > c > (k − 1)αi (2)

Otherwise it would not be possible to exceed kαi with the last item. Note that we can
assume that t ≥ 1, since αi < Vn(αi). Let S be the set of these t items, and let w be
their average value, w =

∑
j∈S vij/t. We can write their total value as c = tw, and we

can easily see that αi ≥ w ≥ kαi − Vn(αi) = knαi − 1. The leftmost inequality is
trivial. As for the rightmost inequality, since we examine the goods in the decreasing
order of agent i’s valuation, the next good allocated to i after the first t goods would
have value at most w. But then if w < kαi − Vn(αi), it would be impossible to exceed
kαi. Given this range for the value of w, we now consider the possible values that t can
take. Even if all t items had value exactly αi (i.e., w = αi), we would still need more
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than k − 1 items to get to c, by (2). On the other hand, if all items had value exactly
knαi − 1, we would need strictly less than Vn(αi)

knαi−1 items, again by (2). Hence,

1− k(n− 1)αi

knαi − 1
> t > k − 1 (3)

Let x be the difference between the upper and the lower bounds of t:

x =
1− k(n− 1)αi

knαi − 1
− k + 1 =

kαi

knαi − 1
− k

We show that x ≤ 1. If x > 1, then we would get that: kαi

knαi−1 > k + 1 => kαi >

k2nαi + knαi − k − 1 => αi < k+1
k((k+1)n−1) = l(n, k), which is impossible, since

αi ∈ I(n, k).
Since x ≤ 1, the right hand side of (3) can be at most k. But this means that t, which

is an integer, is greater than k − 1 and strictly less than k, a contradiction.
Case 2: αi ∈ NI(n, k) for some k ≥ 1. The proof for this case is based on similar
arguments and is omitted.

Algorithm 1. ALLOCATE(V, N, M)
Input: V ∈ Sn,m, N (set of agents), M (set of goods)
Output: Allocation of items such that agent i receives a bundle worth at least Vn(αi), ∀i.

1: for i = 1 to n do
2: Set Si = ∅
3: end for
4: while 
 ∃ i with vi(Si) ≥ Vn(αi) do
5: for every player i do
6: Si = Si ∪ {next highest item in agent i’s order}
7: end for
8: end while
9: Pick an agent i with vi(Si) ≥ Vn(αi) //pick arbitrarily in case of ties

10: Allocate Si to agent i
11: if |N | = 2 then
12: Allocate all other items to remaining agent
13: else
14: for every row k 
= i do
15: row k = (row k) * 1/(1 − vk(Si)) //normalization before going to next round
16: end for
17: V ′ = new normalized matrix after also removing row i and columns corresponding to Si

18: run ALLOCATE(V ′, N \ {i}, M \ Si)

19: end if

Proof of Theorem 3
We are now ready to prove the main result of this Section. The previous lemmas give
rise to a simple algorithm seen above. In short, the algorithm satisfies first the player
i that needs the least number of items to achieve Vn(αi). This is done by maintaining
for each agent, a decreasing ordering of the goods, as induced by the agent’s valuation.
Once the algorithm finds such an agent i, the corresponding items are given to i, who is
then removed from this process. We then perform a normalization so that the remaining
items add to 1 for all the remaining players, and we start again, trying to find an agent
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j that needs the least number of items to achieve Vn−1(α̃j), where α̃j is the highest
value of j, after the normalization. The algorithm continues in the same fashion until
everybody is satisfied. The algorithm clearly terminates in a polynomial number of
steps. Regarding the implementation, one also needs to ensure that the value Vn(α) is
efficiently computable for rational inputs. This can be easily established and we omit
its proof.

Claim. For any rational number α ∈ [0, 1], Vn(α) can be computed in polynomial time.

The proof of correctness of the algorithm is by induction on the number of players.
• Induction Basis: n = 2. Without loss of generality we can assume that the first player
receives the first bundle allocated by the algorithm, and that it consists of t items. Then
we know that this bundle is worth at least V2(α1) for agent 1 and he is settled. We now
argue about the second agent.

Suppose α1 < V2(α1), which implies that t > 1 and α2 < V2(α2), otherwise the
algorithm would have allocated first to agent 2 his best item. Let s2 be the value of the t
items of agent 1, according to the valuation of agent 2. We know that even with his t−1
most desirable items, agent 2 cannot exceed V2(α2). Hence Lemma 2 can be applied.
Case 1: s2 ≥ V2(α2). s2 is at most as much as the value of the t most desirable items
of agent 2. If α2 ∈ I(n, k), for some k ≥ 1, then Lemma 2 gives s2 ≤ 1−V2(α2), i.e.,
1− s2 ≥ V2(α2). If α2 ∈ NI(n, k), for some k ≥ 1, then s2 ≤ k · l(n, k). Hence

1− s2 ≥ 1− k · l(n, k) =
(k + 1)(n− 1)− 1

(k + 1)n− 1

It is now an easy calculation to show that 1−s2 ≥ V2(α2). Thus, for all possible values
of α2 under this case, we have 1 − s2 ≥ V2(α2). Since the bundle allocated to agent 1
is worth s2 to agent 2, the remaining items are worth to him at least V2(α2).
Case 2: If s2 < V2(α2) ≤ 1

2 , the remaining items will surely be worth at least V2(α2).
The above take care of the case that α1 < V2(α1). Suppose now that α1 ≥ V2(α1).

Then t = 1, and it suffices to show that we can satisfy agent 2 with the remaining
items. If α2 ≥ V2(α2), this implies that α2 ≥ 1

3 , and V2(α2) ≤ 1
3 , since the equation

α2 = V2(α2) has a solution at 1
3 , by Fact 1. If α2 ∈ [13 , 2

3 ], all the remaining items are
worth to him at least 1−α2 ≥ 1

3 ≥ V2(α2). If α2 > 2
3 , then V2(α2) = 1−α2, because

α2 ∈ I(n, 1). Hence again all the remaining items are worth to him at least V2(α2).
Finally, if α2 < V2(α2) ≤ 1

n = 1
2 , the remaining items will surely be worth more than

V2(α2).
• Induction Step: Suppose the algorithm is correct for n − 1 agents and consider an
instance with n agents. Without loss of generality we can assume that player 1 gets the
first bundle of t items, which is worth to him at least Vn(α1).
Case 1: α1 < Vn(α1)

Since player 1 gets the items first, αi < Vn(αi) holds for all i. For the remaining
n − 1 players, the induction hypothesis guarantees that for i = 2, ..., n, agent i will
end up with an allocation worth at least Vn−1(α̃i), where α̃i is the new highest value
of agent i after the normalization (Line 15). Let si be the total value of agent i for the
t items that agent 1 received. It suffices to show that (1 − si)Vn−1(α̃i) ≥ Vn(αi). But
α̃i ≤ αi

1−si
, and since Vn is nonincreasing, we need to show that
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(1− si)Vn−1(
αi

1− si
) ≥ Vn(αi) (4)

The agents 2, ..., n may belong to one of the following two groups:
(i) Consider an agent i with αi ∈ I(n, k), for some k ≥ 1. Since at the end of the
(t−1)-th round, no player was selected by the algorithm, the t−1 most desirable goods
for agent i do not exceed Vn(αi). Hence Lemma 2 can be applied for the t highest items
of i, which in turn implies that si ≤ kαi. Substituting and by using Lemma 1, we see
that (4) holds.
(ii) Consider an agent i with αi ∈ NI(n, k), for some k ≥ 1. Then by Lemma 2, we
have si ≤ k · l(n, k). To show (4), it suffices to show

(1− k · l(n, k))Vn−1

( l(n, k)
1− k · l(n, k)

)
≥ Vn(αi)

Since l(n, k) ∈ I(n, k), by Lemma 1, and by Fact 4 we have

(1− k · l(n, k))Vn−1

( l(n, k)
1− k · l(n, k)

)
≥ Vn(l(n, k)) = Vn(αi)

Case 2: α1 ≥ Vn(α1). Then agent 1 receives only one good, his most desirable item.
Consider an agent i ∈ {2, ..., n}. Suppose αi ∈ I(n, k) ∪NI(n, k), for some k ≥ 1.

Since agent 1 receives only one good, si ≤ ai, where si is, as in Case 1, the value
of i for the item allocated to agent 1. Hence si ≤ kαi. The recursive call for the n− 1
players guarantees to i, Vn−1(α̃i), and α̃i ≤ αi

1−si
≤ αi

1−kαi
. By (4), all we need to

show is
(1− kαi)Vn−1(

αi

1− kαi
) ≥ Vn(αi)

But this holds because of Lemma 1.

Finally, the examples provided in [5] show that Theorem 3 is tight.

4 Mechanism Design

4.1 Deterministic Algorithms

Given an instance V , let A(V ) be the outcome of a deterministic algorithm A. Let also
Vi denote the i-th row of V , and V−i denote the remaining matrix, excluding Vi. Let
(V ′

i , V−i) be the matrix that is produced from V , when we replace Vi with V ′
i .

Definition 3. A mechanism is truthful if for any instance V , and any other possible
declaration V ′

i of i:
vi(A(V )) ≥ vi(A(V ′

i , V−i))

It is relatively easy to show that Algorithm 1 is not truthful (by constructing appropriate
examples). In fact, as we show below, even if we ask for a large enough
approximation to the value of Vn(αi), no truthful algorithm can satisfy this.
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Theorem 5. Even for two agents, there is no deterministic truthful algorithm that guar-
antees a total value that is strictly better than 2

3 · Vn(αi), for every player i.

We will first argue about the impossibility of truthfulness for a restricted class of al-
gorithms. Given an instance I , and a permutation π ∈ Sm, we denote by π(I) the
instance where every row of the matrix is permuted by π. We call a deterministic algo-
rithm permutation-respecting with regard to instance I , if, for every permutation π, the
allocation produced by the algorithm at π(I) is (π(S1), ..., π(Sn)), where (S1, ..., Sn)
is the allocation produced by the algorithm at I . Thus, such an algorithm does not de-
pend on the identities of the goods for the specific instance but only on their values. We
call an algorithm simply permutation-respecting if this holds for any instance I .

Lemma 3 below and more generally the approach of proving first the impossibility
result for permutation-respecting mechanisms, may be of independent interest in prov-
ing other impossibility results in fair division.

Lemma 3. If a permutation-respecting algorithm A guarantees a value that is strictly
better than 2

3 · Vn(αi) to each player i, then A cannot be truthful.

Proof. We will argue about instances with 2 players and 4 goods. Suppose there is a
permutation-respecting algorithm A that is truthful and always guarantees a value better
than 2

3 · Vn(αi), for every player i. Consider the following instances:

V ′ =

[
2
3

1
9

1
9

1
9

2
3

1
9

1
9

1
9

]
, V =

[
1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

]

In V ′, since V2(2
3 ) = 1

3 , and 2
3 · V2(2

3 ) = 2
9 , the only choices for algorithm A is to

give the first item to one player and all other items to the other player. Without loss of
generality, we can assume that A gives the set {1} to player 1 and {2, 3, 4} to player 2.

In V , V2(1
4 ) = 0.4, and 2

3 · V2(1
4 ) > 1

4 . Hence each player should receive exactly
two items, therefore the choices for A is to give player 1 one of the sets {1, 2}, {1, 3},
{1, 4}, {2, 3}, {2, 4}, {3, 4}. We will show that at least one player has an incentive to
lie in every case. We analyze all cases below. We will make use of the instances

W =

[
2
3

1
9

1
9

1
9

1
4

1
4

1
4

1
4

]
, W ′ =

[
1
9

2
3

1
9

1
9

1
4

1
4

1
4

1
4

]

• A gives one of {1, 2},{1, 3},{1, 4} to player 1 in instance V .
Then in W , since A must guarantee more than 2

3 · V2(1
4 ) > 0.25 to player 2, it

has to give at most two items to player 1. If the first item is not given to player 1,
then player 2 would have an incentive to lie when his valuation is as in V ′, and
report (1

4 , 1
4 , 1

4 , 1
4 ). Hence A has to give player 1 at least the first item. If A gives to

player 1 only the first item, he can get more if he reports (1
4 , 1

4 , 1
4 , 1

4 ) and switches
to V . If it gives him one of {1, 2},{1, 3},{1, 4}, then player 2 can raise his utility
by reporting (2

3 , 1
9 , 1

9 , 1
9 ), and switching to V ′. Hence there is always an incentive

for lying by one of the players.
• A gives {2, 3} or {2, 4} to player 1 in instance V . Consider instance W ′. In analogy

to the previous case, A can give to player 1 at most two items. Furthermore, player
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1 has to receive the second item, as otherwise he will not achieve more than 2
3 ·

Vn(2
3 ) = 2

9 . If A gives to player 1 only the second item, he has an incentive to lie,
and report (1

4 , 1
4 , 1

4 , 1
4 ) so as to switch to instance V . If A gives one of {2, 1}, {2, 3},

or {2, 4}, to player 1, then player 2 has an incentive to lie and report (1
9 , 2

3 , 1
9 , 1

9 ). In
this case, since A is permutation-respecting, player 2 would receive the set {1, 3, 4}
and would be better off.

• A gives {3, 4} to player 1. Similar arguments show that one of the two players has
an incentive to lie.

This shows that in all cases, regarding the possible allocations of A in instance V ,
someone has an incentive to lie. Hence algorithm A cannot be truthful.

The proof of Theorem 5 can now be completed by arguing about the general case.
Suppose the statement of the theorem is not true and let A be such a truthful algorithm.
We can then prove the following (proof omitted):

Lemma 4. A is permutation-respecting with regard to instance V ′.

The proof of Lemma 3 only required that an algorithm is permutation-respecting with
regard to instance V ′. Hence by Lemma 4 the proof of Theorem 5 is complete.

Below we state a very simple algorithm that shows that the bound of Theorem 5 is
almost tight when we have two agents and four goods. The same algorithm shows that
we cannot have the same lower bound for the case of two or three goods.

Algorithm 2
Given the reported input V , allocate to player 1 his most desirable good and allocate the re-
maining goods to player 2.

Theorem 6. For 2 agents and m goods, Algorithm 2 is truthful and always returns an
allocation worth at least ρV2(αi) for i = 1, 2, where ρ = min{1, 1

mV2(m)}.

In Table 1, we see the ratio ρ of Algorithm 2, as the number of goods increases. The
ratio equals 0.625 when m = 4, which is very close to the lower bound of 2

3 . The
worst case of Algorithm 2 when m = 4, is achieved when the valuation of player 1
is (1

4 , 1
4 , 1

4 , 1
4 ). In general, the worst case scenario for this mechanism happens when

player 1 values all items equally.

Table 1. The guarantee provided by Algorithm 2, for various values of m

Number of goods 2 3 4 5 ... m

ratio ρ 1 1 0.625 1
2

... 1
mV2(1/m)

It still remains an open problem to determine whether a constant factor approxima-
tion to Vn(αi) can be achieved when the number of goods is large, even for two agents.
The difficulties arise from the fact that we have a multi-parameter domain (each player
submits m numbers), which makes it more challenging to argue about truthfulness.
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4.2 Randomized Algorithms

Given the negative results of the previous subsection, we initiate the study of random-
ized algorithms. Once we allow randomization, we need to decide on the quality of the
solution that we want the algorithm to return as well as on the notion of truthfulness.

Given an instance V reported by the players, let F(V ) be the set of all allocations in
which every player receives a bundle worth at least Vn(αi), according to the reported
valuations. An allocation that belongs to F(V ) will be called feasible. We say that a
randomized algorithm A is universally feasible if it always outputs a feasible alloca-
tion. Similarly, we say that an algorithm is universally truthful if an agent never has an
incentive to lie, regardless of the randomness used by the algorithm. An algorithm that
is universally feasible and universally truthful cannot exist given the negative results of
Section 4.1. Furthermore, an algorithm that is universally truthful and produces alloca-
tions that give Vn(αi) only in expectation is trivial to construct: simply allocate all the
goods to a player i uniformly at random.

Given the above, the most appropriate setting is to insist on universally feasible
mechanisms but relax the notion of truthfulness. An algorithm is truthful in expecta-
tion if no agent can improve his expected payoff by misreporting. Hence, we want to
investigate the possibility of truthful in expectation algorithms, that are probability dis-
tributions on F(V ).

We exhibit that certain classes of algorithms cannot achieve the goals we want. The
family of algorithms we focus on, satisfy Pareto-efficiency and some symmetry require-
ments. In particular, we consider the following properties:

(P1) The algorithm outputs only Pareto-efficient outcomes.
(P2) Two feasible outcomes that give exactly the same utilities to all players have the

same probability.
(P3) Two feasible outcomes, where the utility vector of the first is a permutation of the

utility vector of the second, have the same probability.

An example of an algorithm with such properties is to find all feasible allocations, elim-
inate those that are Pareto-inefficient and select one of those left uniformly at random.
In general, any uniform distribution on a subset of Pareto-efficient allocations satis-
fies the above properties. It is however easy to construct examples showing that such
algorithms are not truthful in expectation. In fact, we have the following:

Theorem 7. Even for two agents, there is no truthful in expectation algorithm that
satisfies (P1)-(P3) and guarantees, for every instance, a value of Vn(αi), for every
player i.

5 On the Complexity of Finding Better Allocations

In this Section, we study a slightly different question. In instances where there is not
much conflict, one might be able to produce allocations that exceed the worst case guar-
antee of Vn(αi). The question that arises is whether we can compute such improved
allocations on instances that admit them or even decide when do they exist. A partic-
ularly interesting case is to determine which instances admit proportional allocations.
With this in mind, Demko and Hill [4] proved the following:
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Theorem 8. [4] It is NP-hard to decide if there exists a proportional allocation.

This is done via a reduction from the PARTITION problem, as for two identical agents,
any such allocation would imply a partitioning of the goods in two sets of equal value.
Clearly there must be some value β ∈ [Vn(α), 1

n ] (α = maxαi), for which we can
decide if an allocation where everybody receives at least β exists. So far, we only know
that β ≥ Vn(α). Below we exhibit that this value cannot be close to 1

n .

Theorem 9. For any constant c ≥ 1, it is NP-hard to decide if there exists an allocation
where every player receives a bundle worth at least 1/cn.

The proof is based on adjusting appropriately a reduction from 3-dimensional matching,
used in [6] for the inapproximability of makespan in job scheduling.

6 Future Work

There are many interesting open questions. The most important one is to obtain a better
understanding of truthful mechanisms. Surprisingly, even for two agents we are not yet
aware if there exists a deterministic truthful algorithm that provides a constant factor
approximation to Vn(αi), when the number of goods is not O(1). One of the main
challenges for resolving this, is the fact that we have a multi-parameter domain. As
is the case in other contexts, arguing about truthfulness is harder in multi-parameter
domains, as players have plenty of flexibility in finding possible ways of lying.
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Abstract. Evolutionary dynamics have been traditionally studied in
the context of homogeneous populations, mainly described by the Moran
process [15]. Recently, this approach has been generalized in [13] by
arranging individuals on the nodes of a network (in general, directed).
In this setting, the existence of directed arcs enables the simulation
of extreme phenomena, where the fixation probability of a randomly
placed mutant (i.e. the probability that the offsprings of the mutant
eventually spread over the whole population) is arbitrarily small or
large. On the other hand, undirected networks (i.e. undirected graphs)
seem to have a smoother behavior, and thus it is more challenging to find
suppressors/amplifiers of selection, that is, graphs with smaller/greater
fixation probability than the complete graph (i.e. the homogeneous
population). In this paper we focus on undirected graphs. We present
the first class of undirected graphs which act as suppressors of selection,
by achieving a fixation probability that is at most one half of that of
the complete graph, as the number of vertices increases. Moreover,
we provide some generic upper and lower bounds for the fixation
probability of general undirected graphs. As our main contribution,
we introduce the natural alternative of the model proposed in [13].
In our new evolutionary model, all individuals interact simultaneously
and the result is a compromise between aggressive and non-aggressive
individuals. That is, the behavior of the individuals in our new model
and in the model of [13] can be interpreted as an “aggregation” vs. an
“all-or-nothing” strategy, respectively. We prove that our new model
of mutual influences admits a potential function, which guarantees the
convergence of the system for any graph topology and any initial fitness
vector of the individuals. Furthermore, we prove fast convergence to the
stable state for the case of the complete graph, as well as we provide
almost tight bounds on the limit fitness of the individuals. Apart from
being important on its own, this new evolutionary model appears to
be useful also in the abstract modeling of control mechanisms over
invading populations in networks. We demonstrate this by introducing
and analyzing two alternative control approaches, for which we bound
the time needed to stabilize to the “healthy” state of the system.
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1 Introduction

Evolutionary dynamics have been well studied (see [1,6,7,19,21,22]), mainly in
the context of homogeneous populations, described by the Moran process [15,17].
In addition, population dynamics have been extensively studied also from the
perspective of the strategic interaction in evolutionary game theory, cf. for in-
stance [8,9,10,11,20]. One of the main targets of evolutionary game theory is
evolutionary dynamics (see [9,23]). Such dynamics usually examine the propa-
gation of intruders with a given fitness to a population, whose initial members
(resident individuals) have a different fitness. In fact, “evolutionary stability”
is the case where no dissident behaviour can invade and dominate the popula-
tion. The evolutionary models and the dynamics we consider here belong to this
framework. In addition, however, we consider structured populations (i.e. in the
form of an undirected graph) and we study how the underlying graph structure
affects the evolutionary dynamics. We study in this paper two kinds of evolu-
tionary dynamics. Namely, the “all or nothing” case (where either the intruder
overtakes the whole graph or die out) and the “aggregation” case (more simi-
lar in spirit to classical evolutionary game theory, where the intruder’s fitness
aggregates with the population fitness and generates eventually a homogeneous
crowd with a new fitness).

In a recent article, Lieberman, Hauert, and Nowak proposed a generaliza-
tion of the Moran process by arranging individuals on a connected network
(i.e. graph) [13] (see also [18]). In this model, vertices correspond to individuals of
the population and weighted edges represent the reproductive rates between the
adjacent vertices. That is, the population structure is translated into a network
(i.e. graph) structure. Furthermore, individuals (i.e. vertices) are partitioned into
two types: aggressive and non-aggressive. The degree of (relative) aggressiveness
of an individual is measured by its relative fitness ; in particular, non-aggressive
and aggressive individuals are assumed to have relative fitness 1 and r ≥ 1,
respectively. This modeling approach initiates an ambitious direction of inter-
disciplinary research, which combines classical aspects of computer science (such
as combinatorial structures and complex network topologies), probabilistic cal-
culus (discrete Markov chains), and fundamental aspects of evolutionary game
theory (such as evolutionary dynamics).

In the model of [13], one mutant (or invader) with relative fitness r ≥ 1 is
introduced into a given population of resident individuals, each of whom hav-
ing relative fitness 1. For simplicity, a vertex of the graph that is occupied by
a mutant will be referred to as black, while the rest of the vertices will be re-
ferred to as white. At each time step, an individual is chosen for reproduction
with a probability proportional to its fitness, while its offspring replaces a ran-
domly chosen neighboring individual in the population. Once u has been se-
lected for reproduction, the probability that vertex u places its offspring into
position v is given by the weight wuv of the directed arc 〈uv〉. This process stops
when either all vertices of the graph become black (resulting to a fixation of the
graph) or they all become white (resulting to extinction of the mutants). Several
similar models have been previously studied, describing for instance influence
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propagation in social networks (such as the decreasing cascade model [12,16]),
dynamic monopolies [2], particle interactions (such as the voter model, the an-
tivoter model, and the exclusion process), etc. However, the dynamics emerging
from these models do not consider different fitnesses for the individuals.

The fixation probability fG of a graph G = (V, E) is the probability that even-
tually fixation occurs, i.e. the probability that an initially introduced mutant,
placed uniformly at random on a vertex of G, eventually spreads over the whole
population V , replacing all resident individuals. One of the main characteristics
in this model is that at every iteration of the process, a “battle” takes place
between aggressive and non-aggressive individuals, while the process stabilizes
only when one of the two teams takes over the whole population. This kind of
behavior of the individuals can be interpreted as an all-or-nothing strategy.

Lieberman et al. [13] proved that the fixation probability for every symmetric
directed graph (i.e. when wuv = wvu for every u, v) is equal to that of the com-
plete graph (i.e. the homogeneous population of the Moran process), which tends
to 1− 1

r as the size n of the population grows. Moreover, exploiting vertices with
zero in-degree or zero out-degree (“upstream” and “downstream” populations,
respectively), they provided several examples of directed graphs with arbitrarily
small and arbitrarily large fixation probability [13]. Furthermore, the existence
of directions on the arcs leads to examples where neither fixation nor extinction
is possible (e.g. a graph with two sources).

In contrast, general undirected graphs (i.e. when 〈uv〉 ∈ E if and only if
〈vu〉 ∈ E for every u, v) appear to have a smoother behavior, as the above process
eventually reaches fixation or extinction with probability 1. Furthermore, the
coexistence of both directions at every edge in an undirected graph seems to make
it more difficult to find suppressors or amplifiers of selection (i.e. graphs with
smaller or greater fixation probability than the complete graph, respectively),
or even to derive non-trivial upper and lower bound for the fixation probability
on general undirected graphs. This is the main reason why only little progress
has been done so far in this direction and why most of the recent work focuses
mainly on the exact or numerical computation of the fixation probability for
very special cases of undirected graphs, e.g. the star and the path [3,4,5].

Our Contribution. In this paper we overcome this difficulty for undirected
graphs and we provide the first class of undirected graphs that act as suppres-
sors of selection in the model of [13], as the number of vertices increases. This is
a very simple class of graphs (called clique-wheels), where each member Gn has a
clique of size n ≥ 3 and an induced cycle of the same size n with a perfect matching
between them. We prove that, when the mutant is introduced to a clique vertex
of Gn, then the probability of fixation tends to zero as n grows. Furthermore, we
prove that, when the mutant is introduced to a cycle vertex of Gn, then the prob-
ability of fixation is at most 1 − 1

r as n grows (i.e. to the same value with the
homogeneous population of the Moran process). Therefore, since the clique and
the cycle have the same number n of vertices in Gn, the fixation probability fGn

of Gn is at most 1
2 (1− 1

r ) as n increases, i.e. Gn is a suppressor of selection. Fur-
thermore, we provide for the model of [13] the first non-trivial upper and lower
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bounds for the fixation probability in general undirected graphs. In particular, we
first provide a generic upper bound depending on the degrees of some local neigh-
borhood. Second, we present another upper and lower bound, depending on the
ratio between the minimum and the maximum degree of the vertices.

As our main contribution, we introduce in this paper the natural alternative
of the all-or-nothing approach of [13], which can be interpreted as an aggrega-
tion strategy. In this aggregation model, all individuals interact simultaneously
and the result is a compromise between the aggressive and non-aggressive indi-
viduals. Both these two alternative models for evolutionary dynamics coexist in
several domains of interaction between individuals, e.g. in society (dictatorship
vs. democracy, war vs. negotiation) and biology (natural selection vs. mutation of
species). In particular, another motivation for our models comes from biological
networks, in which the interacting individuals (vertices) correspond to cells of an
organ and advantageous mutants correspond to viral cells or cancer. Regarding
the proposed model of mutual influences, we first prove that it admits a potential
function. This potential function guarantees that for any graph topology and any
initial fitness vector, the system converges to a stable state, where all individuals
have the same fitness. Furthermore, we analyze the telescopic behavior of this
model for the complete graph. In particular, we prove fast convergence to the
stable state, as well as we provide almost tight bounds on the limit fitness of the
individuals.

Apart from being important on its own, this new evolutionary model enables
also the abstract modeling of new control mechanisms over invading populations
in networks. We demonstrate this by introducing and analyzing the behavior
of two alternative control approaches. In both scenarios we periodically modify
the fitness of a small fraction of individuals in the current population, which is
arranged on a complete graph with n vertices. In the first scenario, we proceed
in phases. Namely, after each modification, we let the system stabilize before
we perform the next modification. In the second scenario, we modify the fitness
of a small fraction of individuals at each step. In both alternatives, we stop
performing these modifications of the population whenever the fitness of every
individual becomes sufficiently close to 1 (which is considered to be the “healthy”
state of the system). For the first scenario, we prove that the number of phases
needed for the system to stabilize in the healthy state is logarithmic in r − 1
and independent of n. For the second scenario, we prove that the number of
iterations needed for the system to stabilize in the healthy state is linear in n
and proportional to r ln(r − 1). Due to space limitations we omit the proofs of
the results, which can be found in [14].

Notation. In an undirected graph G = (V, E), the edge between vertices u ∈ V
and v ∈ V is denoted by uv ∈ E, and in this case u and v are said to be
adjacent in G. If the graph G is directed, we denote by 〈uv〉 the arc from u to
v. For every vertex u ∈ V in an undirected graph G = (V, E), we denote by
N(u) = {v ∈ V | uv ∈ E} the set of neighbors of u in G and by deg(u) = |N(u)|.
Furthermore, for any k ≥ 1, we denote for simplicity [k] = {1, 2, . . . , k}.
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2 All-or-Nothing vs. Aggregation

In this section we formally define the model of [13] for undirected graphs and we
introduce our new model of mutual influences. Similarly to [13], we assume for
every edge uv of an undirected graph that wuv = 1

deg u and wvu = 1
deg v , i.e. once

a vertex u has been chosen for reproduction, it chooses one of its neighbors
uniformly at random.

2.1 The Model of Lieberman, Hauert, and Nowak (An
All-or-Nothing Approach)

Let G = (V, E) be a connected undirected graph with n vertices. Then, the
stochastic process defined in [13] can be described by a Markov chain with state
space S = 2V (i.e. the set of all subsets of V ) and transition probability matrix
P , where for any two states S1, S2 ⊆ V ,

PS1,S2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
|S1|r+n−|S1| ·

∑
u∈N(v)∩S1

r
deg(u) , if S2 = S1 ∪ {v} and v /∈ S1

1
|S1|r+n−|S1| ·

∑
u∈N(v)\S2

1
deg(u) , if S1 = S2 ∪ {v} and v /∈ S2

1
|S1|r+n−|S1|

( ∑
u∈S1

r·|N(u)∩S1|
deg(u) +

∑
u∈V \S1

|N(u)∩(V \S1)|
deg(u)

)
, if S2 = S1

0, otherwise

(1)

Notice that in the above Markov chain there are two absorbing states, namely
∅ and V , which describe the cases where the vertices of G are all white or all
black, respectively. Since G is connected, the above Markov chain will eventually
reach one of these two absorbing states with probability 1. If we denote by hv

the probability of absorption at state V , given that we start with a single mutant
placed on vertex v, then by definition fG =

∑
v hv

n . Generalizing this notation,
let hS be the probability of absorption at V given that we start at state S ⊆ V ,
and let h = [hS ]S⊆V . Then, it follows that vector h is the unique solution of the
linear system h = P · h with boundary conditions h∅ = 0 and hV = 1.

However, observe that the state space S = 2V of this Markov chain has size 2n,
i.e. the matrix P = [PS1,S2 ] in (1) has dimension 2n×2n. This indicates that the
problem of computing the fixation probability fG of a given graph G is hard, as
also mentioned in [13]. This is the main reason why, to the best of our knowledge,
all known results so far regarding the computation of the fixation probability of
undirected graphs are restricted to regular graphs, stars, and paths [3,4,5,13,18].
In particular, for the case of regular graphs, the above Markov chain is equivalent
to a birth-death process with n− 1 transient (non-absorbing) states, where the
forward bias at every state (i.e. the ratio of the forward probability over the
backward probability) is equal to r. In this case, the fixation probability is equal
to ρ = 1

1+
∑ n−1

i=1
1
ri

= 1− 1
r

1− 1
rn

. cf. [18], chapter 8. It is worth mentioning that, even

for the case of paths, there is no known exact or approximate formula for the
fixation probability [5].
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2.2 An Evolutionary Model of Mutual Influences (An Aggregation
Approach)

The evolutionary model of [13] constitutes a sequential process, in every step
of which only two individuals interact and the process eventually reaches one
of two extreme states. However, in many evolutionary processes, all individu-
als may interact simultaneously at each time step, while some individuals have
greater influence to the rest of the population than others. This observation leads
naturally to the following model for evolution on graphs, which can be thought
as a smooth version of the model presented in [13].

Consider a population of size n and a portion α ∈ [0, 1] of newly introduced
mutants with relative fitness r. The topology of the population is given in general
by a directed graph G = (V, E) with |V | = n vertices, where the directed arcs
of E describe the allowed interactions between the individuals. At each time step,
every individual u ∈ V of the population influences every individual v ∈ V , for
which 〈uv〉 ∈ E, while the degree of this influence is proportional to the fitness
of u and to the weight wuv of the arc 〈uv〉. Note that we can assume without loss
of generality that the weights wuv on the arcs are normalized, i.e. for every fixed
vertex u ∈ V it holds

∑
〈uv〉∈E wuv = 1 . Although this model can be defined in

general for directed graphs with arbitrary arc weights wuv, we will focus in the
following to the case where G is an undirected graph (i.e. 〈uiuj〉 ∈ E if and only
if 〈ujui〉 ∈ E, for every i, j) and wuv = 1

deg(u) for all edges uv ∈ E.
Formally, let V = {u1, u2, . . . , un} be the set of vertices and rui(k) be the

fitness of the vertex ui ∈ V at iteration k ≥ 0. Let Σ(k) denote the sum
of the fitnesses of all vertices at iteration k, i.e. Σ(k) =

∑n
i=1 rui(k). Then

the vector r(k + 1) with the fitnesses rui (k + 1) of the vertices ui ∈ V at
the next iteration k + 1 is given by [ru1(k + 1), ru2(k + 1), . . . , run(k + 1)]T =
P · [ru1(k), ru2 (k), . . . , run(k)]T , i.e.

r(k + 1) = P · r(k) (2)

In the latter equation, the elements of the square matrix P = [Pij ]ni,j=1 depend
on the iteration k and they are given as follows:

Pij =

⎧⎪⎪⎨
⎪⎪⎩

ruj
(k)

deg(uj)Σ(k) , if i �= j and uiuj ∈ E

0, if i �= j and uiuj /∈ E

1−
∑

j 
=i Pij , if i = j

(3)

Note by (2) and (3) that after the first iteration, the fitness of every individual
in our new evolutionary model of mutual influences equals the expected fitness
of this individual in the model of [13] (cf. Section 2.1). However, this correlation
of the two models is not maintained in the next iterations and the two models
behave differently as the processes evolve.

In particular, in the case where G is the complete graph, i.e. deg(ui) = n− 1
for every vertex ui, the matrix P becomes
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P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1− ru2(k)+...+run (k)

(n−1)Σ(k) · · · run (k)
(n−1)Σ(k)

ru1 (k)

(n−1)Σ(k) · · · run (k)
(n−1)Σ(k)

· · · · · · · · ·
ru1 (k)

(n−1)Σ(k) · · · 1− ru1(k)+...+run−1(k)

(n−1)Σ(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4)

The system given by (2) and (3) can be defined for every initial fitness vec-
tor r(0). However, in the case where there is initially a portion α ∈ [0, 1] of
newly introduced mutants with relative fitness r, the initial condition r(0) of the
system in (2) is a vector with αn entries equal to r and with (1 − α)n entries
equal to 1. Note that the recursive equation (2) is a non-linear equation on the
fitness values ruj (k) of the vertices at iteration k.

Since by (3) the sum of every row of the matrix P equals to one, the fitness
rui(k) of vertex ui after the (k + 1)-th iteration of the process is a convex combi-
nation of the fitnesses of the neighbors of ui after the k-th iteration. Therefore, in
particular, the fitness of every vertex ui at every iteration k ≥ 0 lies between the
smallest and the greatest initial fitness of the vertices. That is, if rmin and rmax

denote the smallest and the greatest initial fitness in r(0), respectively, then
rmin ≤ rui(k) ≤ rmax for every ui ∈ V and every k ≥ 0.

Degree of influence. Suppose that initially αn mutants (for some α ∈ [0, 1])
with relative fitness r ≥ 1 are introduced in graph G on a subset S ⊆ V of its
vertices. Then, as we prove in Theorem 4, after a certain number of iterations
the fitness vector r(k) converges to a vector [rS

0 , rS
0 , . . . , rS

0 ]T , for some value rS
0 .

This limit fitness rS
0 depends in general on the initial relative fitness r of the

mutants, on their initial number αn, as well as on their initial position on the
vertices of S ⊆ V . The relative fitness r of the initially introduced mutants can
be thought as having the “black” color, while the initial fitness of all the other
vertices can be thought as having the “white” color. Then, the limit fitness
rS
0 can be thought as the “degree of gray color” that all the vertices obtain

after sufficiently many iterations, given that the mutants are initially placed at
the vertices of S. In the case where the αn mutants are initially placed with
uniform probability to the vertices of G, we can define the limit fitness r0 of G
as r0 = 1

( n
αn)

·
∑

S⊆V, |S|=αn rS
0 . For a given initial value of r, the bigger is r0 the

stronger is the effect of natural selection in G.
Since rS

0 is a convex combination of r and 1, there exists a value fG,S(r) ∈
[0, 1], such that rS

0 = fG,S(r) · r + (1− fG,S(r)) · 1. Then, the value fG,S(r) is the
degree of influence of the graph G, given that the mutants are initially placed at
the vertices of S. In the case where the mutants are initially placed with uniform
probability at the vertices of G, we can define the degree of influence of G as
fG(r) = 1

( n
αn)

∑
S⊆V, |S|=αn fG,S(r).

Number of iterations to stability. For some graphs G, the fitness vector r(k)
reaches exactly the limit fitness vector [r0, r0, . . . , r0]T (for instance, the complete
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graph with two vertices and one mutant not only reaches this limit in exactly one
iteration, but also the degree of influence is exactly the fixation probability of
this simple graph). However, for other graphs G the fitness vector r(k) converges
to [r0, r0, . . . , r0]T (cf. Theorem 4 below), but it never becomes equal to it. In the
first case, one can compute (exactly or approximately) the number of iterations
needed to reach the limit fitness vector. In the second case, given an arbitrary
ε > 0, one can compute the number of iterations needed to come ε-close to the
limit fitness vector.

3 Analysis of the All-or-Nothing Model

In this section we present analytic results on the evolutionary model of [13],
which is based on the sequential interaction among the individuals. In particular,
we first present non-trivial upper and lower bounds for the fixation probability,
depending on the degrees of vertices. Then we present the first class of undirected
graphs that act as suppressors of selection in the model of [13], as the number
of vertices increases.

Recall by the preamble of Section 2.2 that, similarly to [13], we assumed
that wuv = 1

deg u and wvu = 1
deg v for every edge uv of an undirected graph

G = (V, E). It is easy to see that this formulation is equivalent to assigning to
every edge e = uv ∈ E the weight we = wuv = wvu = 1, since also in this case,
once a vertex u has been chosen for reproduction, it chooses one of its neighbors
uniformly at random. A natural generalization of this weight assignment is to
consider G as a complete graph, where every edge e in the clique is assigned
a non-negative weight we ≥ 0, and we is not necessarily an integer. Note that,
whenever we = 0, it is as if the edge e is not present in G. Then, once a vertex u
has been chosen for reproduction, u chooses any other vertex v with probability

wuv∑
x �=u wux

.
Note that, if we do not impose any additional constraint on the weights, we

can simulate multigraphs by just setting the weight of an edge to be equal to the
multiplicity of this edge. Furthermore, we can construct graphs with arbitrary
small fixation probability. For instance, consider an undirected star with n leaves,
where one of the edges has weight an arbitrary small ε > 0 and all the other
edges have weight 1. Then, the leaf that is incident to the edge with weight ε
acts as a source in the graph as ε → 0. Thus, the only chance to reach fixation
is when we initially place the mutant at the source, i.e. the fixation probability
of this graph tends to 1

n+1 as ε → 0. Therefore, it seems that the difficulty to
construct strong suppressors lies in the fact that unweighted undirected graphs
can not simulate sources. For this reason, we consider in the remainder of this
paper only unweighted undirected graphs.

3.1 A Generic Upper Bound Approach

In the next theorem we provide a generic upper bound of the fixation probability
of undirected graphs, depending on the degrees of the vertices in some local
neighborhood.
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Theorem 1. Let G = (V, E) be an undirected graph. For any uv ∈ E, let
Qu =

∑
x∈N(u)

1
deg x and Quv =

∑
x∈N(u)\{v}

1
deg x +

∑
x∈N(v)\{u}

1
deg x . Then

fG ≤ maxuv∈E

{
r2

r2+rQu+QuQuv

}
.

3.2 Upper and Lower Bounds Depending on Degrees

In the following theorem we provide upper and lower bounds of the fixation
probability of undirected graphs, depending on the minimum and the maximum
degree of the vertices.

Theorem 2. Let G = (V, E) be an undirected graph, where δ ≤ deg(u) ≤ Δ
for every u ∈ V . Then, the fixation probability fG of G, when the fitness of
the mutant is r, is upper (resp. lower) bounded by the fixation probability of the
clique for mutant fitness ru = rΔ

δ (resp. for mutant fitness rl = rδ
Δ ).

3.3 The Undirected Suppressor

In this section we provide the first class of undirected graphs (which we call
clique-wheels) that act as suppressors of selection as the number of vertices
increases. In particular, we prove that the fixation probability of the members
of this class is at most 1

2 (1 − 1
r ), i.e. the half of the fixation probability of the

complete graph, as n → ∞. The clique-wheel graph Gn consists of a clique of
size n ≥ 3 and an induced cycle of the same size n with a perfect matching
between them. We refer to the vertices of the inner clique as clique vertices and
to the vertices of the outer cycle as ring vertices. The proof of the main results
of this section (cf. Lemma 1 and Theorem 3) is technically involved. However,
due to space limitations, we omit here the proofs; for a full version see [14].

Denote by hclique (resp. hring) the probability that all the vertices of Gn

become black, given that we start with one black clique vertex (resp. with one
black ring vertex). We first provide in the next lemma an upper bound on hclique.

Lemma 1. For any r ∈
(
1, 4

3

)
, hclique ≤ 7

6n( 4
3r −1) + o

(
1
n

)
.

In the next theorem we provide also an upper bound on hring, thus bounding
the fixation probability fGn of Gn (cf. Theorem 3).

Theorem 3. For any r ∈
(
1, 4

3

)
, hring ≤ (1 + o(1))

(
1− 1

r

)
. Therefore, by

Lemma 1, the fixation probability of the clique-wheel graph Gn is fGn ≤
1
2

(
1− 1

r

)
+ o(1) as n →∞.

4 Analysis of the Aggregation Model

In this section, we provide analytic results on the new evolutionary model of
mutual influences. More specifically, in Section 4.1 we prove that this model
admits a potential function for arbitrary undirected graphs and arbitrary initial
fitness vector, which implies that the corresponding dynamic system converges
to a stable state. Furthermore, in Section 4.2 we prove fast convergence of the
dynamic system for the case of a complete graph, as well as we provide almost
tight upper and lower bounds on the limit fitness, to which the system converges.
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4.1 Potential and Convergence in General Undirected Graphs

In the following theorem we prove convergence of the new model of mutual
influences using a potential function.

Theorem 4. Let G = (V, E) be a connected undirected graph. Let r(0) be an
initial fitness vector of G, and let rmin and rmax be the smallest and the greatest
initial fitness in r(0), respectively. Then, in the model of mutual influences, the
fitness vector r(k) converges to a vector [r0, r0, . . . , r0]T as k → ∞, for some
value r0 ∈ [rmin, rmax].

4.2 Analysis of the Complete Graph

The next theorem provides an almost tight analysis for the limit fitness value r0

and the convergence time to this value, in the case of a complete graph (i.e. a
homogeneous population).

Theorem 5. Let G = (V, E) be the complete graph with n vertices and ε > 0.
Let α ∈ [0, 1] be the portion of initially introduced mutants with relative fitness
r ≥ 1 in G, and let r0 be the limit fitness of G. Then |ru(k) − rv(k)| < ε for
every u, v ∈ V , when k ≥ (n− 2) · ln( r−1

ε ). Furthermore, for the limit fitness r0,

1 + α(r − 1) ≤ r0 ≤ 1 + α(r − 1) +
α(1 − α)

1 + α(r − 1)
· (r − 1)2

2
(5)

Corollary 1. Let G = (V, E) be the complete graph with n vertices. Suppose
that initially exactly one mutant with relative fitness r ≥ 1 is placed in G and
let r0 be the limit fitness of G. Then 1 + r−1

n ≤ r0 ≤ 1 + r2−1
2n .

5 Invasion Control Mechanisms

As stated in the introduction of this paper, our new evolutionary model of mutual
influences can be used to model control mechanisms over invading populations
in networks. We demonstrate this by presenting two alternative scenarios in Sec-
tions 5.1 and 5.2. In both considered scenarios, we assume that αn individuals of
relative fitness r (the rest being of fitness 1) are introduced in the complete graph
with n vertices. Then, as the process evolves, we periodically choose (arbitrarily)
a small fraction β ∈ [0, 1] of individuals in the current population and we reduce
their current fitnesses to a value that is considered to correspond to the healthy
state of the system (without loss of generality, this value in our setting is 1). In
the remainder of this section, we call these modified individuals as “stabilizers”,
as they help the population resist to the invasion of the mutants.
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5.1 Control of Invasion in Phases

In the first scenario of controlling the invasion of advantageous mutants in net-
works, we insert stabilizers to the population in phases, as follows. In each phase
k ≥ 1, we let the process evolve until all fitnesses {rv | v ∈ V } become ε-
relatively-close to their fixed point r

(k)
0 (i.e. until they ε-approximate r

(k)
0 ). That

is, until |rv−r
(k)
0 |

r
(k)
0

< ε for every v ∈ V . Note by Theorem 4 that, at every phase,

the fitness values always ε-approximate such a limit fitness r
(k)
0 . After the end of

each phase, we introduce βn stabilizers, where β ∈ [0, 1]. That is, we replace βn
vertices (arbitrarily chosen) by individuals of fitness 1, i.e. by resident individ-
uals. Clearly, the more the number of phases, the closer the fixed point at the
end of each phase will be to 1. In the following theorem we bound the number
of phases needed until the system stabilizes, i.e. until the fitness of every vertex
becomes sufficiently close to 1.

Theorem 6. Let G = (V, E) be the complete graph with n vertices. Let α ∈ [0, 1]
be the portion of initially introduced mutants with relative fitness r ≥ 1 in G
and let β ∈ [0, 1] be the portion of the stabilizers introduced at every phase.
Let r

(k)
0 be the limit fitness after phase k and let ε, δ > 0, be such that β

2 >
√

ε
and δ > 4

3

√
ε. Finally, let each phase k run until the fitnesses ε-approximate

their fixed point r
(k)
0 . Then, after k ≥ 1 + ln ( ε+(1+ε) 1+α

2 (r−1)

δ− 4
3
√

ε
) / ln( 1

(1+ε)(1− β
2 )

)
phases, the relative fitness of every vertex u ∈ V is at most 1 + δ.

5.2 Continuous Control of Invasion

In this section we present another variation of controlling the invasion of ad-
vantageous mutants, using our new evolutionary model. In this variation, we do
not proceed in phases; we rather introduce at every single iteration of the pro-
cess βn stabilizers, where β ∈ [0, 1] is a small portion of the individuals of the
population. For simplicity of the presentation, we assume that at every iteration
the βn stabilizers with relative fitness 1 are the same.

Theorem 7. Let G = (V, E) be the complete graph with n vertices. Let α ∈ [0, 1]
be the portion of initially introduced mutants with relative fitness r ≥ 1 in G and
let β ∈ [0, 1] be the portion of the stabilizers introduced at every iteration. Then,
for every δ > 0, after k ≥ r

β (n − 1) · ln( r−1
δ ) iterations, the relative fitness of

every vertex u ∈ V is at most 1 + δ.

Observation 1. The bound in Theorem 7 of the number of iterations needed
to achieve everywhere a sufficiently small relative fitness is independent of the
portion α ∈ [0, 1] of initially placed mutants in the graph. Instead, it depends
only on the initial relative fitness r of the mutants and on the portion β ∈ [0, 1]
of the vertices, to which we introduce the stabilizers.

Acknowledgment. Paul G. Spirakis wishes to thank Josep Diaz, Leslie Ann
Goldberg, and Maria Serna, for many inspiring discussions on the model of [13].
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not extend non-trivially when relaxing the constraints. Our proof tech-
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1 Introduction

A famous jury paradox shows that aggregating complex decisions might be non-
trivial. Assume a jury is faced with a case in which a defendant is accused of
murder. The legal doctrine (known by all of them) is that the defendant should be
convicted if and only if they are convinced that a)The defendant indeed killed
the victim and b)The defendant is sane. We assume that each of the jurors
decides his opinion on the two issues independently and based on this decides
whether to convict. Then, the members cast their votes simultaneously and we
assume no strategic behavior on their behalf. Kornhauser and Sager[19] noticed
that it’s possible to have an opinion profile in which, when applying issue-wise
aggregation using majority, which seems natural, we get a discrepancy between
the majority vote on the conviction question and the conjunction of the majority
vote on the two basic questions(whether the defendant killed and whether he is
sane)1. This discrepancy is termed The Doctrinal Paradox. Lately, in [21], List
showed that the probability to get such a discrepancy is non-negligible under the
uniform distribution and also under other mild relaxations of it (still assuming
the voters are i.i.d.).

This insight, that is common to many aggregation problems (e.g., Condorcet
paradox for preference aggregation), started the field of ‘Judgement Aggregation’
and nowadays this field is the subject of a growing body of works in economics,
computer science, political science, philosophy, law, and other related disciplines.
We find this field highly applicable to agent systems, voting protocols in a net-
work and other frameworks in which one needs to aggregate a lot of opinions in a
systematic way without letting the voters deliberate. An aggregation problem in
our context concerns a given Agenda, which is a set of {0, 1} vectors of length m
(the number of issues), that defines the consistent (legal/rational/admissible)
opinions that an individual might hold. Given an agenda, Aggregation Theory
deals with exploring ways to aggregate opinions of (often many) experts/judges
while maintaining two main syntactical properties:

– Consistency - always returning an admissible opinion.
In our example, the aggregated opinion should be to convict iff the aggre-
gated opinion was that indeed the defendant killed and is sane.

– Independence - define the aggregated opinion on each issue independently
of the votes on other issues.
This criterion can be seen as respecting the structure of the agenda instead
of handling it as a set of several different opinions (in the example above,
four) disregarding the structure.

1 For instance, the following profile:
Killed Sane Guilty

25% of the jurors: � � �
33% of the jurors: � × ×
42% of the jurors: × � ×



304 I. Nehama

Most of these works(e.g., [28,9]) find the set of ‘acceptable’ aggregation mech-
anisms (i.e., that satisfy the two criteria) to be very small and undesired (e.g.,
dictatorships) and hence are considered as impossibility results. A survey of this
field can be found in [24,22]. Such impossibility results are quite strong, they
show the impossibility of finding any reasonable aggregation mechanism that
satisfies the two conditions and hence for (almost) every mechanism there will
always be some judgement profile that leads to a breakdown of the mechanism.

In this work we extend the question to ‘Approximate Judgement Aggregation’.
We relax the above two properties and search for an aggregation mechanism that
only approximately respects the structure of opinions and up to a small fraction
of the inputs returns a consistent opinion. More specifically, we are interested in
exploring the influence of relaxing the two properties on the set of ‘acceptable’
aggregation mechanisms.

We quantify being almost consistent by defining δ-consistency of an ag-
gregation mechanism F as having a consistent aggregation mechanism G that
disagrees with F on at most δ fraction of the inputs2. Similarly, we quantify being
almost independent by defining δ-independence of an aggregation mechanism
F as having an independent aggregation mechanism that disagrees with F on
at most δ fraction of the inputs. Both terms can be equivalently defined as the
failure probability of tests as we show in Section 2. Both definitions use the Ham-
ming distance between mechanisms dX(F, G) = Pr [F (X) �= G(X) | X ∈ X

n]. It
includes two assumptions: uniform distribution over the opinions for each voter
and assuming voters draw their opinions independently (Impartial Culture
Assumption). These assumptions, while certainly unrealistic, are the natural
choice in this kind of work and are discussed further in Section 2.

Lately there is a series of works coping with impossibility results in Social
Choice Theory using approximations (e.g., [5,14]). In some cases allowing approxi-
mation enables significantly better results, while in other cases, hardly anything is
gained by allowing it. For example, in [5] the authors deal with preference aggrega-
tion and show that when one approximates Dodgson’s scoring rule one can achieve
several desired properties (monotonicity, homogeneity, and low complexity) that
cannot be achieved without this relaxation. On the other hand, in [14] the authors
also deal with aggregation of preferences and show that relaxing the strategy-
proofness property does not extend the set of satisfying aggregation mechanisms
non-trivially and by that they strengthen the classic impossibility result of Gib-
bard & Satterthwaite. In this work we formalize (as far as we found for the first
time) this question of quantifying the influence of relaxing the constraints and
query whether one can use this in order to circumvent the impossibility results
(as in [5]) or whether we strengthen the impossibility results (as in [14]).

In this paper we study a family of agendas: truth-functional agendas in which
each conclusion is defined as conjunction or xor of several premises (up to input
& output negation). In a truth-functional agenda the issues are divided into two
types: premises and conclusions. Each conclusion j is characterized by a boolean
function Φj over the premises and an opinion is consistent if the answers to the
2 Formally, Pr [F (X) 	= G(X) | X ∈ X

n] � δ.
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conclusion issues are attained by applying the function Φj on the answers to the
premise issues.

X =
{

x ∈ {0, 1}m xj = Φj(premises) for every conclusion issue j.
}

For instance the (2-premises) conjunction agenda used in the example above is
a truth-functional agenda with two premises and one conclusion and we notate
the agenda by 〈A, B, A ∧B〉.

For all the agendas we examined, we show that relaxing the two constraints,
consistency and independence, does not extend the set of acceptable aggregation
mechanisms in a non-trivial way.

We concentrated on two basic agendas: Conjunction Agenda〈
A1, . . . , Am,∧m

j=1 Aj
〉

(i.e., m + 1 issues where the consistency means that
the last one should be a conjunction of the first m) and Xor Agenda〈
A1, . . . , Am,⊕m

j=1 Aj
〉

(i.e., m + 1 issues where the consistency means that
the last one should be a parity bit of the first m). For these agendas we prove.

Theorem

1. For any m � 2, ε > 0, and n � 2, there exists δ(ε, n, m) polynomial in n
and ε (but degrades exponentially in m) s.t. if an aggregation mechanism
F over n voters for the m-premises conjunction agenda is δ-independent3

and δ-consistent4, then it is ε-close to a consistent independent aggregation
mechanism G5.
Moreover, δ = C

n

(
ε

8m

)2m−1 (for some constant C >0),
2. For any m � 2, ε > 0, and n � 2, there exists δ(ε, m) linear in ε (and de-

grades quadratically in m) s.t. if an aggregation mechanism F over n voters
for the m-premises xor agenda is δ-independent3 and δ-consistent4, then it
is ε-close to a consistent independent aggregation mechanism G5.
Moreover, δ = ε

m(2m+3)

Hence, the above theorem can be seen as an impossibility result saying that it
is impossible even to find a mechanism that is almost consistent and almost
independent besides the trivial answers: independent consistent mechanism and
perturbations of them which is (still) a relatively small and undesired collection
of mechanisms.

Our results are invariant to negation of issues (which is merely
renaming), and hence we can easily generalize the results to other
agendas such as

〈
A1, A2, A3, A1 ∧A2 ∧A3

〉
,

〈
A1, A2, A1 ∨A2

〉
, and〈

A1, A2, A3, A1⊕A2⊕A3
〉
. Using induction we can generalize the result

3 I.e., there exists an independent (not necessarily consistent) aggregation mechanism
G that returns the same aggregated opinion as F for at least (1 − δ) fraction of the
profiles.

4 I.e., F returns a consistent result for at least (1 − δ) fraction of the profiles.
5 I.e., F returns the same aggregated opinion as G for at least (1 − ε) fraction of the

profiles.
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to more complex agendas that include several conclusion issues such as〈
A1,A2,A3, A1∨A2,A2⊕A3

〉
. The general formulation of the theorem can

be in the long version of this paper[33]. We notice that this generalize our result
to any agenda of the form

〈
A1, A2, Φ

(
A1, A2

)〉
for any function Φ6 and to

any affine agenda (I.e., the set of admissible opinions form an affine space).

1.1 Previous Works

There is a long line of works trying to circumvent impossibility results in Aggre-
gation Theory (i.e., results which state that the set of consistent independent ag-
gregation mechanisms is very small and undesired). Most of these works suggest
consistent aggregating mechanisms while still trying to stay ‘reasonably close’ to
independence (E.g., [19,18,29,23,7,4,20,8,30]). These classical works are heuristic,
sometimes uses the semantics of the agenda, and mainly do not prove bounds on
the compliance to the independence property. In [21], List studies the asymptotic
probability of getting an inconsistent result in the 2-premises conjunction agenda
〈A, B, A ∧B〉 for voter-independent distributions and common (majority-based
& supermajority-based) aggregation mechanisms. He mainly studies the condi-
tions for the probability to converge to zero and to one. As far as we found, this
is the only work that deals with quantifying, although only asymptotically, the
property compliance of an aggregation mechanism for agendas other than the
Arovian agenda (preference aggregation).

Another approach is Approximate Aggregation. This line of research started
with [15] and was extended in [26,16]. In these works the authors deal with
preference aggregation (although without stating the general framework of ap-
proximate aggregation) and show that relaxing the transitivity constraint (which
is equivalent to consistency for this agenda) does not extend the set of satisfying
aggregation mechanisms non-trivially.

Theorem ([16] Theorem 1.3). There exists an absolute constant C such that
the following holds: For any ε > 0 and k � 3, if f is an aggregation mecha-
nism for the preference agenda over k candidates that satisfies independence
and C ·

(
ε/k2

)3
-consistency, then there exists an aggregation mechanism G that

satisfies independence and consistency such that d(F, G) < ε.

This result is neither derived by our results nor derives them because the agendas
we deal with and the preference agenda are too different (For instance, the
preference agenda cannot be represented as a truth-functional agenda and in
some sense it is even far from it).

1.2 Connection to Property Testing

We think it might be useful to phrase the question of approximate aggregation
using terminology of property testing. In this field we query a function at a
6 The case of a function that ignores one of the two arguments (or both) is trivial.
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small number of (random) points, testing for a global property (in our case,
the property is being a consistent independent aggregation mechanism). For
example, a corollary of the results we present in this paper (in property testing
terms):

For any three binary functions f, g, h : {0, 1}n → {0, 1}, if the probabil-
ity Pr [f(x)⊕ g(y) = h(x⊕ y)] is larger than (1−ε) (when the addition
is in Z2 and Z

n
2 , respectively), then there exists three binary functions

f ′, g′, h′ : {0, 1}n→{0, 1} such that Pr[f(x) �=f ′(x)], Pr[g(x) �=g′(x)], and
Pr[h(x) �=h′(x)] are smaller than Cε for some constant C independent of n
and ∀x, y : f ′(x)⊕ g′(y) = h′(x⊕ y).

A special case of this result, f = g = h, is the classic result of Blum, Luby,
and Rubinfeld ([3,1]) for linear testing of boolean functions. We discuss this
connection further and its possible implications in in the long version of this
paper[33].

1.3 Techniques

We prove the main theorem by proving the specific case of independent aggrega-
tion mechanism for two basic agenda families: the conjunction agendas and the
xor agendas. Later we extend these theorems to the general theorem of relaxing
both constraints in a agenda-independent way.

We use two different techniques in the proofs. For the conjunction agendas
we study influence measures of voters on the issue-aggregating functions7. and
for the xor agendas we use Fourier analysis of the issue-aggregating functions.

An open question is whether one can find such bounds for any agenda or
whether there exists an agenda for which the class of aggregation mechanisms
that satisfy consistency and independence expands non trivially when we relax
the consistency and independence constraints.

We proceed to describe the structure of the paper. In Section 2 we describe
the formal model of aggregation mechanisms. In Section 3 we present the main
agendas we deal with, truth-functional agendas, and specifically conjunction
agendas and xor agendas. In Section 4 we state the motivation to deal with
approximate aggregation. Section 5 concludes.

2 The Model

We define the model similarly to [9,10] (which is Rubinstein and Fishburn’s
model [32] for the boolean case).

We consider a committee of n individuals that needs to decide on m boolean
issues8. An opinion is a vector x = (x1, x2, . . . , xm) ∈ {0, 1}m denoting an

7 Both the known influence (Banzhaf power index) and a new measure we define: The
ignorability of an individual and of a coalition of individuals.

8 There is some literature on aggregating non-boolean issues, e.g., [32,11], but this is
outside the scope of this paper.
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answer to each of the issues. An opinion profile is a matrix X ∈ ({0, 1}m)n

denoting the opinions of the committee members, so an entry Xj
i denotes the

vote of the ith voter for the jth issue. In addition we assume that an agenda
X ⊆ {0, 1}m of the consistent opinions is given.

The basic notion in this field is Aggregation Mechanism which is a func-
tion that returns an aggregated opinion (not necessarily consistent) for every
profile9 : F : ({0, 1}m)n → {0, 1}m.

An aggregation mechanism satisfies Independence (and we say that the
mechanism is independent) if for any two consistent profiles X and Y and
an issue j, if Xj = Y j (all individuals voted the same on the jth issue in
both profiles) then (F (X))j = (F (Y ))j (the aggregated opinion for the jth

issue is the same for both profiles). This means that F satisfies indepen-
dence if one can find m boolean functions f1, f2, . . . , fm : {0, 1}n → {0, 1}
s.t. F (X) ≡

(
f1(X1), f2(X2), . . . , fm(Xm)

)
10. An independent aggregation

mechanism satisfies systematicity if all issues are aggregated using the same
function, i.e., F (X) =

〈
f(X1), . . . , f(Xm)

〉
for some issue aggregating function

f . We will use the notation
〈
f1, f2, . . . , fm

〉
for the independent aggregation

mechanism that aggregates the jth issue using f j.
The main two measures we study in this paper are the inconsistency index

ICX(F ) and the dependency index DIX(F ) of a given aggregation mechanism
F and a given agenda X. These measures are relaxations of the consistency
and independence criterion that are usually assumed in current works11. We
define the measures in the following way:

Definition 1 (Inconsistency Index)
For an agenda X and an aggregation mechanism F for that agenda, the incon-
sistency index is defined to be the probability to get an inconsistent result.12

ICX(F ) = Pr [F (X) /∈ X | X ∈ X
n] .

Definition 2 (Dependency Index13)
For an agenda X and an aggregation mechanism F for that agenda, the depen-
dency vector DIj,X(F ) is defined as

DIj,X(F ) = E
X∈Xn

[
Pr

Y ∈Xn

[
(F (X))j �= (F (Y ))j |Xj = Y j

]]
.

9 We define the function for all profiles for simplicity but we are not interested in the
aggregated opinion in cases one of the voters voted an inconsistent opinion.

10 Notice this property is a generalization of the IIA property for social welfare func-
tions (aggregation mechanism for the preference agenda) so a social welfare function
satisfies IIA iff it satisfies independence as defined here (when the issues are the
pair-wise comparisons).

11 F satisfies consistency iff IC(F ) = 0 and independence iff DI(F ) = 0.
12 In [21] List presented this measure under the name ‘Probability of a collective in-

consistency’ and studies its asymptotical behavior for the conjunction agenda and
the issue-wise majority aggregation mechanism.

13 In [26] Mossel defines similar measure for preference aggregation mechanism called
η-IIA. Notice that our definition coincides with his definition for this agenda.
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The dependency index DIX(F ) is defined by: DIX(F ) = max
j=1,...,m

DIj,X(F )

In contexts where the agenda is clear we omit the agenda superscript and
notate these as IC(F ), DIj(F ), and DI(F ), respectively.

We define these two indices using local tests and prove that the more natural
definition of distance to the class of aggregation mechanisms that satisfy con-
sistency (or independence) is equivalent to the above (up to multiplication by a
constant). These definitions include two major assumptions on the opinion pro-
file distribution. First, we assume the voters pick their opinions independently
and from the same distribution. Second, we assume a uniform distribution over
the (consistent) opinions for each voter (Impartial Culture Assumption).
The uniform distribution assumption, while certainly unrealistic, is the natural
choice for proving ‘lower bounds’ on IC(F ). That is, proving results of the for-
mat ‘Every aggregation mechanism of a given class has inconsistency index of
at least γ(n)’. In particular, the lower bound, up to a factor δ, applies also to
any distribution that gives each preference profile at least a δ fraction of the
probability given by the uniform distribution14. Note that we cannot hope to
get a reasonable bound result for every distribution. For instance, since for every
aggregation mechanism we can take a distribution on profiles for which it returns
a consistent opinion.

2.1 Binary Functions

Throughout this paper we will identify True with 1 and False with 0 and use
logical operators on bits and bit vectors (using entry-wise semantics).

We define the following measures for the influence of an individual or a coali-
tion of individuals on a function f : {0, 1}n → {0, 1}. Both definitions use the
uniform distribution over {0, 1}n (which is consistent with the assumption we
have on the profile distribution).

– The Influence15 of a voter i on f is defined to be the probability that he
can change the result by changing his vote.

Ii(f) = Pr [f(x) �= f(x⊕ ei)]

(x⊕ei = adding to x, ei(the ith elementary vector)=flipping the ith bit 0 ↔ 1)
– The (zero-)Ignorability of a coalition S ⊆ {1, . . . , n} is is defined to be the

probability that f returns 1 when one of the members of S voted 0.

PS(f) = Pr [f(x) = 1 | ∃i ∈ S xi = 0]

14 In successive works we relax this assumption and prove similar results for more
general distributions.

15 In the simple cooperative games regime, this is also called the Banzhaf power index
of player i in the game f .
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In addition we define a distance function over the binary functions. The
distance between two functions f, g : {0, 1}n → {0, 1} is defined to be the
probability of getting a different result (normalized Hamming distance).
d(f, g) = Pr [f(x) �= g(x)]. From this measure we will derive a distance from a
function to a set of functions by d(f,G) = min

g∈G
d(f, g).

3 Agenda Examples

A lot of natural problems can be formulated in the framework of aggregation
mechanisms. It is natural to divide the agendas into two major classes Truth-
Functional Agendas and Non Truth-Functional Agendas.

3.1 Truth-Functional Agendas

A (k-premise) truth-functional agenda is defined by a conclusions function
(Φ : {0, 1}k → {0, 1}m−k) from the k premises to the (m− k) conclusions. An
opinion is consistent if the answers to the conclusion issues are attained by ap-
plying Φ on the answers to the premise issues.

X =
{

x ∈ {0, 1}m xj = Φj(x1, . . . , xk) j = k + 1, . . . , m
}

These agendas, due to their structure, seem to be a good point to start our work
on approximate aggregation and in this paper we prove results for two families
of truth-functional agendas. Later we derive results for a more general family of
truth-functional agendas.

Conjunction Agendas: In the m-premises conjunction agenda〈
A1, . . . , Am,∧m

j=1 Aj
〉

there are m + 1 issues to decide on and the consistency
criterion is defined to be that the last issue is a conjunction of the other issues.
For instance the Doctrinal Paradox agenda is the 2-premises conjunction agenda.

Xor Agendas: Similarly, in the m-premises xor agenda
〈
A1, . . . , Am,⊕m

j=1 Aj
〉

there are m + 1 issues to decide on and the consistency criterion is defined to be
that the last issue is True if the number of true-valued opinions for the first m
is even. An equivalent way to define this agenda is constraining the number of
True answers to be odd.

3.2 Non Truth-Functional Agendas

One can think on a lot of agendas that cannot be represented as a truth-
functional agenda. Among such interesting natural agendas that were studied
one can find the equivalence agenda[13], the membership agenda [31][25], and
the preference agenda described below.

Preference Aggregation: Aggregation of preferences is one of the oldest ag-
gregation frameworks studied. In this framework there are s candidates and each
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individual holds a full strict order over them. We are interested in Social Welfare
Functions which are functions that aggregate n such orders to an aggregated or-
der. As seen in [27,6], this problem can be stated naturally in the aggregation
framework we defined by defining

(
s
2

)
issues16.

4 Motivation

We find the motivation for dealing with the field of approximate judgement
aggregation in three different disciplines.

– The consistent characterization are often regarded as ‘impossibility results’
in the sense that they ‘permit’ a very restrictive set of aggregation mecha-
nisms. (e.g., Arrow’s theorem tells us that there is no ‘reasonable’ way to
aggregate preferences). Extending these theorems to approximate aggrega-
tion characterizations sheds light on these impossibility results by relaxing
the constraints.

– The questions of AggregationTheory have often roots in Philosophy, Law, and
Political Science. There is a long line of works suggesting consistent aggregat-
ing mechanisms while still trying to stay ‘reasonably close’ to independence.
The main general (not agenda-tailored) suggestions are premise-based mech-
anisms and conclusion-based aggregation for truth-functional agendas (see,
among others, [19,18,29,23,7,4]), and a generalization of them to non-truth-
functional agendas called sequential priority aggregation([20,8]). Another pro-
cedure in the literature is the distance-based aggregation([30]) which is well
known for preference aggregation (E.g., Kemeny voting rule[17], Dodgson vot-
ing rule[2], and lately a more systematic analysis in [12]). Our work contribute
to this discussion by pointing out where one should search for solutions while
not leaving the consistency and independence constraints entirely.

– Connections to the Property Testing field. Due to the space constraint it is
discussed in the in the long version of this paper[33].

5 Summary and Future Work

In this paper we defined the question of approximate aggregation which is a
generalization of the study of aggregation mechanisms that satisfy consistency
and independence. We defined measures for the relaxation of the consistency
constraint (inconsistency index IC) and for the relaxation of the independence
constraint (dependency index DI). To our knowledge, this is the first time this
question is stated in its general form.

We proved that relaxing these constraints does not extend the set of satisfying
aggregation mechanisms in a non-trivial way for any truth-functional agenda in
which every conclusion is either conjunction or xor up to negation of inputs or
output. We notice that every conclusion of two premises can be stated as such as
16 The issue 〈i, j〉 (for i<j) represents whether an individual prefers ci over cj .
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well as any affine agenda. Particulary we calculated the dependency between the
extension of this class (ε) and the inconsistency index (δ(ε)) (although probably
not strictly) for two families of truth-functional agendas with one conclusion.
The relation we proved includes dependency on the number of voters (n). In
similar works for preference agendas [15,26,16] the relation did not include such
a dependency. An interesting question is whether such a dependency is inherent
for conjunction agendas or whether it is possible to prove a relation that does
not include it.

A major assumption in this paper is the uniform distribution over the inputs
which is equivalent to assuming i.i.d uniform distribution over the premises.
We think that our results can be extended for other distributions (still assuming
voters’ opinions are distributed i.i.d) over the space over premises’ opinions which
seem more realistic.

Immediate extensions for this work can be to extend our result to more com-
plex truth-functional agendas and generalize our results to non-truth-functional
agendas to get a result unifying our work and Kalai, Mossel, and Keller’s works
for the preference agenda.

A major open question is whether one can find an agenda for which relaxing
the constraints of independence and consistency extends the class of satisfying
aggregation mechanisms in a non-trivial way.
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Abstract. Automated market makers are algorithmic agents that pro-
vide liquidity in electronic markets. A recent stream of research in au-
tomated market making is the design of liquidity-sensitive automated
market makers, which are able to adjust their price response to the level
of active interest in the market. In this paper, we introduce homogeneous
risk measures, the general class of liquidity-sensitive automated market
makers, and show that members of this class are (necessarily and suffi-
ciently) the convex conjugates of compact convex sets in the non-negative
orthant. We discuss the relation between features of this convex conju-
gate set and features of the corresponding automated market maker in
detail, and prove that it is the curvature of the convex conjugate set that
is responsible for implicitly regularizing the price response of the market
maker. We use our insights into the dual space to develop a new family of
liquidity-sensitive automated market makers with desirable properties.

1 Introduction

Automated market makers are algorithmic agents that provide liquidity in elec-
tronic markets. Markets with large event spaces or sparse interest from traders
might fail because buyers and sellers have trouble finding one another. Auto-
mated market makers can prevent this failure by stepping in and providing
a counterparty for prospective traders; instead of making bets with each other,
traders place bets with the automated market maker. Automated market makers
have been the object of theoretical study into market microstructure [Ostrovsky,
2009; Othman and Sandholm, 2010b] and successfully implemented in practice
in large electronic markets [Goel et al., 2008; Othman and Sandholm, 2010a]. A
broad introduction to the mechanics of automated market making can be found
in Pennock and Sami [2007].

Othman et al. [2010] introduce a liquidity-sensitive automated market maker.
This market maker is able to adapt its price response to increasing activity within
the market; with this market maker bets will not move prices very much when
there is lots of money already wagered with the market maker. This is in contrast
to traditional market-making agents that provide identical price responses re-
gardless of whether there are tens of dollars or tens of millions of dollars wagered
with the market maker.

N. Chen, E. Elkind, and E. Koutsoupias (Eds.): WINE 2011, LNCS 7090, pp. 314–325, 2011.
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Unfortunately, this liquidity-sensitive market maker does not generalize easily.
In Othman et al. [2010] it is referred to as a technique to “continuously channel
profits into liquidity”, a view echoed by Abernethy et al. [2011]. While this view
may be accurate, it is not prescriptive: it offers no insight about how to create
other liquidity-sensitive market makers, or of the relation between liquidity-
sensitive market makers and the other market makers of the literature.

In this paper, we solve the puzzle of how liquidity-sensitive market makers
work, and their relation to other market makers from the literature. We are able
to contextualize, generalize, and expand the idea of liquidity-sensitive market
makers. In order to do this, we first situate liquidity-sensitive market makers
within the same framework as their liquidity-insensitive counterparts. Using a
set of desiderata taken from the prediction market and finance literature we
introduce a new class of automated market makers, homogeneous risk measures,
which we argue correctly embody the notion of liquidity sensitivity, and we prove
that the market maker of Othman et al. [2010] is a member of this class.

Our principal result is a necessary and sufficient characterization of the com-
plete set of homogeneous risk measures: they are the support functions of com-
pact convex sets in the non-negative orthant. Most intriguingly, this dual view
allows us to achieve a synthesis between homogeneous risk measures and the
experts algorithm perspective of Chen and Vaughan [2010], another recent view
of automated market making. In this perspective, homgeneous risk measures are
unregularized follow-the-leader algorithms that (generally) put non-unit total
weight on the set of experts. We show it is the shape of the convex conjugate
set (particularly, that set’s curvature) that implicitly acts as a regularizer for
the homogeneous risk measure. Furthermore, the bulge of the convex set away
from the probability simplex defines notions like the maximum sum of prices.
We use these insights to create a new family of liquidity-sensitive automated
market makers, the unit ball market makers, that have desirable properties: de-
fined costs for any possible bet, defined bounds on sums of prices, and tightly
bounded loss.

2 Background

In this section we provide a brief introduction to automated market making,
with emphasis on the recent results that guide the remainder of the work.

2.1 Cost Functions and Risk Measures

We consider a general setting in which the future state of the world is exhaus-
tively partitioned into n events, {ω1, . . . , ωn}, so that exactly one of the ωi will
occur. This model applies to a wide variety of settings, including financial mod-
els on stock prices and interest rates, sports betting, and traditional prediction
markets.

In our notation, x is a vector and x is a scalar, 1 is the n-dimensional vector
of all ones, and ∇if represents the i-th element of the gradient of a function f .
The non-negative orthant is given by R

n
+ ≡ {x | mini xi ≥ 0}.
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Let U be a convex subset of R
n. Our work concerns functions C : U 	→ R

which map vector payouts over the events to scalar values. A state refers to
a vector of payouts. Traders make bets with the market maker by changing
the market maker’s state. To move the market maker from state x to state x′,
traders pay C(x′) − C(x). For instance, if the state is x1 = 5 and x2 = 3, then
the market maker needs to pay out five dollars if ω1 is realized and pay out 3
dollars if ω2 is realized. If a new trader wants a bet that pays out one dollar if
event ω1 occurs, then they change the market maker’s state to be {6, 3}, and pay
C({6, 3})− C({5, 3}). There are two broad research streams that explore these
functions. The prediction market literature, where they are called cost functions,
and the finance literature, where they are called risk measures. We use the terms
cost function and risk measure interchangeably.

The most popular cost function used in Internet prediction markets is Han-
son’s logarithmic market scoring rule (LMSR), an automated market maker with
particularly desirable properties, including bounded loss and a simple analytical
form [Hanson, 2003, 2007]. The LMSR is defined as

C(x) = b log

(∑
i

exp(xi/b)

)

for fixed b > 0. b is called the liquidity parameter, because it controls the mag-
nitude of the price response of the market maker to bets.1 For instance, if the
LMSR is used with b = 10 in our example above, C({6, 3}) − C({5, 3}) ≈ .56,
and so the market maker would quote a price of 56 cents to the agent for their
bet. If b = 1, the same bet would cost 92 cents.

The prices pi of a differentiable risk measure are given by the gradient of the
cost function—the marginal cost on each event: pi = exp(xi/b)∑

j exp(xj/b) . Observe that
the prices in the LMSR sum to one. The notion of sum of prices is crucial to our
work. The market maker’s profit cut (or vigorish in gambling contexts) can be
thought of as the difference between the sum of prices and unity [Othman et al.,
2010]. This profit cut serves to compensate the market maker for taking bets with
traders, and typical values for the vigorish in real applications are small, ranging
from one percent to 20 percent. Since the LMSR and many other cost functions
of the literature [Chen and Pennock, 2007; Peters et al., 2007; Agrawal et al.,
2009; Abernethy et al., 2011] do not have a profit cut, they can be expected to
run at a loss in practice [Pennock and Sami, 2007].

2.2 Link to Online Learning

One of the most intriguing recent developments in automated market mak-
ing is the link between cost functions and online learning algorithms, particu-
larly between cost functions and online follow-the-regularized-leader algorithms.

1 With b = 1, the LMSR is equivalent to the entropic risk measure of the finance
literature [Föllmer and Schied, 2002].
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This link first appeared in a supporting role in Chen et al. [2008], and was
significantly expanded in later work by those authors [Chen and Vaughan, 2010;
Abernethy et al., 2011]. Any loss-bounded convex risk measure
(Section 3 will make this precise) is equivalent to a no-regret follow-the-
regularized-leader online learning algorithm. These online learning algorithms
are conventionally expressed not as cost functions (or, in the machine learning lit-
erature, potential functions), but rather in dual space [Shalev-Shwartz and Singer,
2007]. The dual-space formulation is a powerful way of interpreting and con-
structing automated market makers.

Let Π be the probability simplex. Chen and Vaughan [2010] show that we can
write any convex risk measure in terms of a convex optimization over a follow-the-
leader term and a convex regularizer term. This optimization is in fact a conju-
gacy operation restricted to the probability simplex: C(x) = maxy∈Π x · y − f(y)
Here, x · y is the follow-the-leader term, and f is a regularizer.

2.3 The OPRS Cost Function

The Othman-Pennock-Reeves-Sandholm cost function (OPRS) was originally in-
troduced in Othman et al. [2010] as a liquidity-sensitive extension of the LMSR.
The OPRS is defined as C(x) = b(x) log (

∑
i exp(xi/b(x))), where b(x) = α

∑
i xi

for α > 0. The OPRS can be contrasted with the LMSR, for which b(x) ≡ b.
Unlike the LMSR, the OPRS is only defined over the non-negative orthant (for
continuity we can set C(0) = 0). Also unlike the LMSR, the sum of prices in the
OPRS is always greater than 1.

The OPRS has several desirable properties. These include a concise analyti-
cal closed form and outcome-independent profit, the ability to (for certain final
quantity vectors) book a profit regardless of the realized outcome. Perhaps the
most practical property of the OPRS is its scale-invariant liquidity sensitiv-
ity: its consistent price reaction over different scales of market activity. (This
scale-invariance is a consequence of the OPRS cost function being positive ho-
mogeneous.) For large liquid markets, say with millions of dollars, a one-dollar
bet will have a much smaller impact on prices than in a less-liquid market. This
is not the case for the LMSR, where a one dollar bet moves prices the same
amount in both heavily- and lightly-traded markets.

3 Desiderata, Dual Spaces, and an Impossibility Result

This section expands upon the dual-space approach to automated market mak-
ing [Agrawal et al., 2009; Chen and Vaughan, 2010; Abernethy et al., 2011], par-
ticularly as a vehicle for contextualizing and generalizing the OPRS.

3.1 Desiderata and Their Combinations

In this section we introduce five desiderata for cost functions. Each of these
properties has been acknowledged as desirable in the market making litera-
ture [Agrawal et al., 2009; Othman et al., 2010; Abernethy et al., 2011]. The
market makers from the literature satisfy various subsets of these desiderata.
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Monotonicity: For all x and y such that xi ≤ yi, C(x) ≤ C(y).
Monotonicity prevents simple arbitrages like a trader buying a zero-cost con-

tract that never results in losses but sometimes results in gains.

Convexity: For all x and y and λ ∈ [0, 1], C(λx+(1 − λ)y) ≤ λC(x)+(1 − λ)C(y).
Convexity can be thought of as a condition that encourages diversification.

The cost of the blend of two payout vectors is not greater than the sum of
the cost of each individually. Consequently, the market maker is incentivized to
diversify away its risk. The acknowledgment of diversification as desirable goes
back to the very beginning of the mathematical finance literature [Markowitz,
1952].

Bounded loss: supx [maxi (xi)− C(x)] < ∞.
A market maker using a cost function with bounded loss can only lose a finite

amount to interacting traders, regardless of the traders’ actions and the realized
outcome.

Translation invariance: For all x and scalar α, C(x + α1) = C(x) + α.
Translation invariance ensures that adding a dollar to the payout of every

state of the world will cost a dollar.

Positive homogeneity: For all x and scalar γ > 0, C(γx) = γC(x).
Positive homogeneity ensures a scale-invariant, currency-independent price

response, as in the OPRS. From a risk measurement perspective, positive homo-
geneity ensures that doubling a risk doubles its cost.

A cost function that satisfies all of these desiderata except bounded loss is
called a coherent risk measure. Coherent risk measures were first introduced
in Artzner et al. [1999].

Definition 1. A coherent risk measure is a cost function that satisfies mono-
tonicity, convexity, translation invariance, and positive homogeneity.

When we relax positive homogeneity from a coherent risk measure, we get a
convex risk measure. Convex risk measures were first introduced in Carr et al.
[2001] and feature prominently in the prediction market literature [Hanson,
2003; Ben-Tal and Teboulle, 2007; Hanson, 2007; Chen and Pennock, 2007;
Peters et al., 2007; Agrawal et al., 2009; Abernethy et al., 2011].

When we instead relax translation invariance from a coherent risk measure,
we get what we dub a homogeneous risk measure.

Definition 2. A homogeneous risk measure is a cost function satisfying mono-
tonicity, convexity, and positive homogeneity.

To our knowledge, the only homogeneous risk measure of the literature that is
not also a coherent risk measure is the OPRS.

Proposition 1. The OPRS is a homogeneous risk measure (for vectors in the
non-negative orthant).
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The desiderata are global properties that need to hold over the entire space the
cost function is defined over. It is often difficult to verify that a given cost func-
tion satisfies these desiderata directly, and inversely, it is difficult to construct
new cost functions that satisfy specific desiderata. Remarkably, each of these
desiderata have simple representations in Legendre-Fenchel dual space.

3.2 Dual Space Equivalences

The rest of the paper relies on the well-developed theory of convex conjugacy.

Definition 3. The Legendre-Fenchel dual (aka convex conjugate) of a convex
cost function C is a convex function f : Y 	→ R over a convex set Y ⊂ R

n such
that C(x) = maxy∈Y [x · y − f(y)]. We say that the cost function is “conjugate
to” the pair Y and f . Convex conjugates exist uniquely for convex cost functions
defined over R

n [Rockafellar, 1970; Boyd and Vandenberghe, 2004].

We will refer to the convex optimization in dual space as the “optimization” or
“optimization problem”, and the maximizing y as the “maximizing argument”.
One way of interpreting the dual is that it represents the “price space” of the
market maker, as opposed to a cost function which is defined over a “quantity
space” [Abernethy et al., 2011]. The only prices a market maker can assume are
those y ∈ Y, while the function f serves as a measure of market sensitivity
and a way to limit how quickly prices are adjusted in response to bets. As we
have discussed, in the prediction market literature “prices” denote the partial
derivatives of the cost function [Pennock and Sami, 2007; Othman et al., 2010].
When it is unique, the maximizing argument of the convex conjugate is the
gradient of the cost function, and when it is not unique, then the maximizing
arguments represent the subgradients of the cost function. A fuller discussion
of the relation between convex conjugates and derivatives is available in convex
analysis texts [Rockafellar, 1970; Boyd and Vandenberghe, 2004].

Another interpretation of the dual space is from online learning, specifically
online regularized follow-the-leader algorithms [Chen and Vaughan, 2010]. We
discussed the literature relating to this link in Section 2.2. Here, the set Y rep-
resents the allowable weights we can assign to experts, and the function f is a
regularizer that determines how quickly we adjust the weight between experts
in response to returns which are the same as payouts in this interpretation.
Generally speaking when the set Y exceeds the probability simplex Π , then the
weights placed on the experts will not be guaranteed to sum to unity.

With these interpretations in mind, we proceed to show the power of the
dual space: we can represent homogeneous risk measures with a compact convex
set in the non-negative orthant. The relations between convex and monotonic
cost functions, convex and positive homogeneous cost functions, and their re-
spective duals are a consequence of well-known results in the convex analysis
literature [Rockafellar, 1966, 1970].

Proposition 2. A risk measure is convex and monotonic if and only if the set
Y is exclusively within the non-negative orthant.
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Proposition 3. A risk measure is convex and positive homogeneous if and only
if its convex conjugate has compact Y and has f(y) = 0 for every y ∈ Y.

In the literature this latter result relates indicator sets (here, the set Y) to
support functions (here, the cost function). Since f(y) = 0 for all y ∈ Y, the
cost function conjugacy is defined only by the set Y. Consequently, we will
abuse terminology slightly and refer to the cost functions as conjugate to the
convex compact set alone. A necessary and sufficient condition on the set of
homogeneous risk measures follows.

Corollary 1. A cost function is a homogeneous risk measure if and only if it is
conjugate to a compact convex set in the non-negative orthant.

The following results can be derived from convex analysis and the work
of Abernethy et al. [2011].

Proposition 4. A risk measure is convex, monotonic, and translation invariant
if and only if the set Y lies exclusively on the probability simplex.

Proposition 5. A risk measure is convex and has bounded loss if and only if
the set Y includes the probability simplex.

The only market maker that satisfies all five of our desiderata is max.

Proposition 6. The only coherent risk measure with bounded loss is
C(x) = maxi xi.

The max market maker corresponds to an order-matching, risk-averse cost func-
tion that either charges agents nothing for their transactions, or exactly as much
as they could be expected to gain in the best case. For instance, a trader wishing
to move the max market maker from state {5, 3} to state {7, 3} would be charged
2 dollars, exactly as much as they would win if the first event happened—which
means taking the bet is a dominated action. On the other hand, a trader wishing
to move the market maker from state {5, 3} to state {5, 5} pays nothing! These
two small examples suggest that max is a poor risk measure in practice, and
therefore Proposition 6 should be viewed as an impossibility result.

Combining all of our dual-space equivalences, we have that the conjugate
of max is defined exclusively on the whole probability simplex, where it is
identically 0.2

There are now two ways to smooth out the price response of max: One way
is to use a regularizer, so that price estimates do not immediately jump to
the axes (i.e., zero or one). This corresponds to a regularized online follow-the-
leader algorithm, which is a convex risk measure [Chen and Vaughan, 2010]. We
introduce a different approach, to expand the shape of the valid price, so that the
shape of the space itself serves as an implicit regularizer over the price estimates.
This will generally result in prices that are not probability distributions, and as
we explore in the next section, this approach leads to homogeneous risk measures.
2 In dual price space, the maximizing argument to the max cost function can always

be represented as one of the axes. In the online learning view, max represents an
unregularized follow-the-leader algorithm, putting all of its probability weight on the
current best expert (i.e., the event with largest current payout).
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4 Shaping the Dual Space

Recall that only the convex conjugate set Y of a homogenenous risk measure is
responsible for determining the market maker’s behavior, because the conjugate
function f takes value zero everywhere in that set. In this section, we explore
two features of the conjugate set that produce desirable properties: its curvature
and its divergence from the probability simplex.

4.1 Curvature

We would like for our cost function to always be differentiable (outside of 0,
where a derivative of a positive homogeneous function will not generally exist).
The OPRS is differentiable in the non-negative orthant (again, excepting 0)
while max is differentiable only when the maximum is unique. In this section,
we show that only curved conjugate sets produce homogeneous risk measures
that are differentiable.3

Definition 4. A closed, convex set Y is strictly convex if its boundary does not
contain a non-degenerate line segment. Formally, let ∂Y denote the boundary of
the set. Let 0 ≤ λ ≤ 1 and x,x′ ∈ ∂Y. Then λx + (1− λ)x′ ∈ ∂Y holds only for
x = x′.

Since strictly convex sets are never linear on their boundary they can be thought
of as sets with curved boundaries.

Proposition 7. A homogeneous risk measure is differentiable on R
n\0 if and

only if its conjugate set is strictly convex.

4.2 Divergence from Probability Simplex

The amount of divergence from the probability simplex governs the market
maker’s divergence from translation-invariant prices (i.e., prices that sum to
unity). Recall that max is the homogeneous risk measure that is defined only
over the probability simplex.

Proposition 8. Let Y be the dual set of a differentiable homogeneous risk mea-
sure. Then the maximum sum of prices (the most a trader would ever need to
spend for a unit guaranteed payout) is given by maxy∈Y

∑
i yi, and the minimum

sum of prices (the most the market maker would ever pay for a unit guaranteed
payout) is given by miny∈Y

∑
i yi.

3 It might be argued that what we are really interested in, particularly if we claim that
curved sets act as a regularizer in the price response, is whether or not curved sets
also imply continuous differentiability of the cost function. Continuous differentia-
bility would mean that prices both exist and are continuous in the quantity vector.
These conditions are in fact the same for convex functions defined over an open in-
terval (such as R

n\0), because for such functions differentiability implies continuous
differentiability [Rockafellar, 1970].
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Given any (efficiently representable) convex set corresponding to a differentiable
homogeneous risk measure, the extreme price sums can be solved for in polyno-
mial time, since it is a convex optimization over a convex set.

It was shown in Othman et al. [2010] that the OPRS achieved its maximum
sum of prices for quantity vectors that are scalar multiples of 1. A corollary of
the above result is that this property holds for every homogeneous risk measure.
(Other vectors may also achieve the same sum of prices.)

Corollary 2. In a homogeneous risk measure every vector that is a positive
multiple of 1 achieves the maximum sum of prices.

In addition to maximum prices, the shape of the convex set also determines
the worst-case loss of the resulting market maker. The notion of worst-case loss
is closely related to our desideratum of bounded loss—a market maker with
unbounded worst-case loss does not have bounded loss, and a market maker
with finite worst-case loss has bounded loss.

Definition 5. The worst-case loss of a market maker is given by maxi xi −
C(x) + C(x0) where x0 ∈ R

n
+ is some initial quantity vector the market maker

selects.

In homogeneous risk measures, the amount of liquidity sensitivity is proportional
to the market’s state. Since in practice there is some latent level of interest in
trading on the event before the market’s initiation, it is desirable to seed the
market initially to reflect a certain level of liquidity. It is desirable to have a tight
bound on that worst-case loss, reflecting that in practice, market administrators
are likely to have bounds on how much the market maker could lose in the worst
case. Tight bounds on worst-case loss assure the administrator that that bound
will be satisfied with maximum liquidity injected at the market’s initiation.

Proposition 9. Let Y be a convex set conjugate to a homogeneous risk measure
that includes the unit axes but does not exceed the unit hypercube. Then the worst-
case loss of the risk measure is tightly bounded by the initial cost of the market’s
starting point.

By bringing x0 as close as desired to 0, we have the following corollary, which
is a generalization of a similar result for the OPRS.

Corollary 3. Let Y be a convex set conjugate to a homogeneous risk measure
that includes the unit axes. Then the worst-case loss of the risk measure can be
set arbitrarily small.

A bound on prices also emerges from this result.

Corollary 4. Let Y be a convex set conjugate to a homogeneous risk measure
that includes the unit axes but does not exceed the unit hypercube. Then the
maximum price on any event is 1.
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5 A New Family of Liquidity-Sensitive Market Makers

We proceed to use our theoretical results constructively, to create a family of
homogeneous risk measures with desirable properties that the OPRS, the only
prior homogeneous risk measure, lacks. These include tight bounds on minimum
sum of prices and worst-case losses, and definition over all of R

n. Our new family
of market makers is parameterized (in much the same way as the OPRS) by the
maximum sum of prices. The OPRS is not a member of this new family.

Our scheme is to take as our dual set the intersection of two unit balls in
different Lp norms, one ball at 0 and the other ball at 1. For 1 < p < ∞,
the intersection of the two balls is a strictly convex set that includes the unit
axes but does not exceed the unit hypercube. (At p = 1, we get the probability
simplex, which is not strictly convex. At p = ∞ we get the unit hypercube,
which is also not strictly convex.) Let || · ||p denote the Lp norm. Then we can
define the vectors in the intersections of the unit balls, U(p), as

U(p) ≡ {y | y ∈ R
n, ||y − 1||p ≤ 1, ||y||p ≤ 1}

This set gives us a cost function C(x) = maxy∈U(p) x · y. We dub this the unit
ball market maker. Since we can easily test whether a vector is within both unit
balls (i.e., within U(p)), the optimization problem for the cost function can be
solved in polynomial time.

This family of market makers is parameterized by the Lp norm that defines
which vectors in dual space are in the convex set. By choosing the value of p
correctly, we can engineer a market maker with the desired maximum sum of
prices. The outer boundary of the set is defined by the unit ball from 0 in Lp

space. Its boundary along 1 is given by the k that solves p
√

nkp = 1. Solving for
k we get k = n−1/p, and so the maximum sum of prices is nk = n

(
n−1/p

)
=

n1−1/p. For prices that are at most 1 + v, we can set 1 + v = n1−1/p. Solving
this equation for p yields p = log n

log n−log(1+v) . Given any target maximum level of
vigorish, this formula provides the exponent of the unit ball market maker to
use. Considering that only small divergences away from unity are natural to the
setting, the p we select for our Lp norm should be quite small. The norm increases
in the maximum sum of prices, and for larger n the same norm produces larger
sums of prices.

One of the advantages of the unit ball market maker is that it is defined over
all of R

n, as opposed to just the non-negative orthant. Its behavior in the positive
orthant is to charge agents more than a dollar for a dollar guaranteed payout,
because the outer boundary is diverges outwards from the probability simplex.
Its behavior in the negative orthant, where its points on the inner boundary are
selected in the maximization, is to pay less than a dollar for a dollar guaranteed
payout. Its behavior in all other orthants is equivalent to max, as the unit axes
are selected as maximizing arguments. Finally, if we restrict the unit ball market
maker to only the non-negative orthant (like the OPRS), the sum of prices is
tightly bounded between 1 and n1−1/p.
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6 Conclusions and Future Work

Using five desiderata that have appeared in the finance and prediction market
literature, we contextualized a new class of cost functions, which we dubbed ho-
mogeneous risk measures. We showed that the OPRS [Othman et al., 2010] is a
member of this class, because it is convex, monotonic, and positive homogeneous.
We proved only the max cost function satisfies all five of our desiderata, but it
does not have a differentiable price response. To produce a differentiable price
response, one can add a regularizer, leading to the regularized online learning
algorithms explored by Chen and Vaughan [2010]. Another approach is to curve
the conjugate dual space, relaxing it from the probability simplex. We discussed
how the properties of the convex set induce desirable properties in its conjugate
homogeneous risk measure. Finally, using our insights, we developed a new fam-
ily of homogeneous risk measures, the unit ball market makers, with desirable
properties.

Our work centered on cost functions that are positive homogeneous, because
these are the only cost functions that display identical relative price responses
at different levels of liquidity. However, another direction is to explore cost func-
tions that display some characteristics of liquidity sensitivity (more muted price
responses at high levels of liquidity) without necessarily being homogeneous.

Finally, we are attracted to the work of Agrawal et al. [2009] because it pro-
vides a framework to simply add functionality to handle limit orders (orders of
the form “I will pay no more than p for the payout vector x”) into a cost func-
tion market maker. That framework relies on convex optimization and so would
also be able to run in polynomial time, a significant gain over näıve implemen-
tations of limit orders within cost function market makers. However, that work
relied heavily on simplifications to the optimization that could be made because
of translation invariance, so it is unclear how to embed a market maker whose
convex conjugate is defined over more than the probability simplex into a limit
order framework.
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Abstract. We study the power of a tournament organizer in manipu-
lating the outcome of a balanced single-elimination tournament by fixing
the initial seeding. This problem is known as agenda control for balanced
voting trees. It is not known whether there is a polynomial time algorithm
that computes a seeding for which a given player can win the tourna-
ment, even if the match outcomes for all pairwise player match-ups are
known in advance. We approach the problem by giving a sufficient condi-
tion under which the organizer can always efficiently find a tournament
seeding for which the given player will win the tournament. We then use
this result to show that for most match outcomes generated by a nat-
ural random model attributed to Condorcet, the tournament organizer
can very efficiently make a large constant fraction of the players win, by
manipulating the initial seeding.

1 Introduction

The study of election manipulation is an integral part of social choice theory.
Results such as the Gibbard-Satterthwaite theorem [8,13] show that all voting
protocols that meet certain rationality criteria are manipulable. The seminal
work of Bartholdi, Tovey and Trick [1,2] proposes to judge the quality of voting
systems using computational complexity: a protocol may be manipulable, but it
may still be good if manipulation is computationally expensive. This idea is at
the heart of computational social choice.

The particular type of election manipulation that we study in this paper is
called agenda control and was introduced in [2]: there is an election organizer who
has power over some part of the protocol, say the order in which candidates are
considered. The organizer would like to exploit this power to fix the outcome of
the election by making their favorite candidate win. [2] focused on plurality and
Condorcet voting, agenda control by adding, deleting, or partitioning candidates
or voters. We study the balanced binary cup voting rule, also called balanced
voting tree, or a balanced single-elimination (SE) tournament: the number of
candidates is a power of 2 and at each stage the remaining candidates are paired
up and their votes are compared. The losers are eliminated and the winners move
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on to the next round until only one candidate remains. The power of the election
organizer is to pick the pairing of the players in each round. We assume that the
organizer knows all the votes in advance, i.e. for any two candidates, they know
which candidate is preferred. In this case, picking the pairings for each round is
equivalent to picking the initial tournament seeding.

Single-elimination is prevalent in sports tournaments such as Wimbledon or
March Madness. In this setting, a tournament organizer may have some informa-
tion, say from prior matches or betting experts, about the winner in any possible
match. The organizer creates a seeding of the players through which they are
distributed in the tournament bracket. The question is, can the tournament
organizer abuse this power to determine the winner of the tournament?

There is significant prior work on this problem. Lang et al. [10] showed that if
the tournament organizer only has probabilistic information about each match,
then the agenda control problem is NP-hard. Vu et al [17,18] showed that the
problem is NP-hard even when the probabilities are in {0, 1, 1/2} and that it
is NP-hard to obtain a tournament bracket that approximates the maximum
probability that a given player wins within any constant factor. Vassilevska
Williams [16] showed that the agenda control problem is NP-hard even when
the information is deterministic but some match-ups are disallowed. [16] also
gave conditions under which the organizer can always make their favorite player
win the tournament with advance knowledge of each match outcome. It is still an
open problem whether the agenda control problem in this deterministic setting
can be solved in polynomial time.

The binary cup is a complete binary voting tree. Other related work has stud-
ied more general voting trees [9,7], and manipulation by the players themselves
by throwing games to manipulate SE tournaments [12].

The match outcome information available to the tournament organizer can
be represented as a weighted or unweighted tournament graph, a graph such
that for every two nodes u, v exactly one of (u, v) or (v, u) is an edge. An edge
(u, v) signifies that u beats v, and a weight p on an edge (u, v) means that u will
beat v with probability p. With this representation, the agenda control problem
becomes a computational problem on tournament graphs.

The tournament graph structure which comes from real world sports tourna-
ments or from elections is not arbitrary. Although the graphs are not necessarily
transitive, stronger players typically beat weaker ones. Some generative models
have been proposed in order to study real-world tournaments. In this work, we
study a standard model in social choice theory attributed to Condorcet (see, e.g.,
Young [19]). The model was more recently studied by Braverman and Mossel [3].
We refer to this model as the Condorcet Random (CR) model1.

The CR model has an underlying total order of the players and the outcome
of every match is probabilistic. There is some global probability p < 1/2 with
which a weaker player beats a stronger player. This probability represents outside
factors which do not depend on the players’ abilities.

1 A previous version of this paper referred to the model as the Braverman-Mossel
model.
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Vassilevska Williams [16] has shown that when p ≥ 16
√

ln(n)/n, with high
probability, the model generates a tournament graph T such that there is always
a poly-time computable seeding for which any given player is a single-elimination
tournament winner, provided all match outcomes occur as T predicts.

This result was initially surprising as the CR model is often considered to
be a good model of the real world. Recent work by Russell [11] confirmed the
theoretical results of [16] by giving experimental evidence that in real world in-
stances (from tennis, basketball and hockey tournaments) one can either quickly
find a winning seeding for any player, or decide that it is not possible. Russell’s
work uses a variant of the generalized CR model that we will define later.

The result from [16], however, was meaningful only for large n. For instance,
when n = 512, the noise parameter p ≥ 16

√
ln(n)/n is close to 1/2, and the result

is not at all surprising since then all players are essentially indistinguishable. A
natural question emerges: can we still make almost all players win with a much
smaller noise value? A second question is, can we relax the CR model to allow
a different error probability for each pair of players, and what manipulation is
then possible? We address both questions.

Finally, the CR model has been previously considered in fault-tolerant and
parallel computing. For instance, Feige et al. [6] consider comparison circuits that
are incorrect with probability p and develop algorithms to sort this noisy data.
In particular, one of their results uses tournaments for finding the maximum in
parallel. In a sense, their algorithm provides a better mechanism for finding ‘the’
winner (the top player in the underlying total order) in the CR model, although
this mechanism may not satisfy the other nice properties of SE tournaments.

Contributions. We continue the study begun in [16] on whether one can compute
a winning SE tournament seeding for a king player when the match outcomes are
known in advance. A king is a player K such that for any other player a, either
K beats a, or K beats some other player who beats a. Kings are very strong
players, yet the agenda control problem for SE tournaments is not known to be
polynomial-time solvable even for kings. We show that in order for a winning
seeding to exist for a king, it is sufficient for the king to be among the top
third of the players when sorted by the number of potential matches they can
win. Before our work only much stricter conditions were known, e.g. that it is
sufficient if the king beats half of the players. Our more general result allows us
to obtain better results for the Condorcet random model as well.

There are log n rounds in an SE tournament over n players, so a necessary
condition for a player to be a winner is that it can beat at least log n play-
ers. We consider a generalization of the Condorcet random model in which the
error probabilities p(i, j) can vary but are all lower-bounded by a global param-
eter p. The expected outdegree of the weakest player i in such a tournament is∑

j p(i, j) ≥ p(n − 1), and it needs to be at least log n in order for i to win an
SE tournament. Thus, we focus on the case where p is Ω(log n/n), as this is a
necessary condition for all players to be winners.

We consider tournaments generated with noise p = Ω(log n/n). The ranking
obtained by sorting the players in nondecreasing order of the number of matches
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they can win is known to be a constant factor approximation to the Slater
ranking [14,4], and is hence a good notion of ranking in itself. We show that for
almost all tournaments generated by the CR model, one can efficiently compute
a seeding so that essentially the top half of the players can be made SE winners.
We also show that there is a trade-off between the amount of noise and the
number of players that can be made winners: as the level of noise increases,
the tournament can be fixed for a larger constant fraction and eventually for
all of the players. While this result does not answer the question of whether it
is computationally difficult to manipulate an SE tournament in general, it does
show that for tournaments we might expect to see in practice, manipulation can
be quite easy.

1.1 Condorcet Random Model – Formal Definition

The premise of the Condorcet random (CR) model is that there is an implicit
ranking π of the players by intrinsic abilities so that π(i) < π(j) means i has
strictly better abilities than j. For ease of notation, we will assume that π is the
identity permutation (if not, rename the players), so that π(i) is i. When i and j
play a match there may be outside influences so that even if i < j, j might beat
i. The CR model allows that weaker players can beat stronger players, but only
with probability p < 1/2. Here, p is a global parameter and if i < j, i beats j
with probability 1−p. A random tournament graph generated in the CR model,
a CR tournament, is defined as follows: for every i, j with i < j, add edge (i, j)
independently with probability 1− p and otherwise add (j, i). In other words, a
CR tournament is initially a completely transitive tournament where each edge
is independently reversed with probability p.

We generalize the CR model to the GCR model, in which j beats i with
probability p(j, i), where p ≤ p(j, i) ≤ 1/2 for all i, j with i < j, i.e. the er-
ror probabilities can differ but are all lower-bounded by a global p. A random
tournament graph generated in the GCR model (GCR tournament) is defined as
follows: for every i, j with i < j, add edge (i, j) independently with probability
1− p(j, i) and otherwise add (j, i).

Unless noted otherwise, all graphs in the paper are tournament graphs over
n vertices, where n is a power of 2, and all SE tournaments are balanced. In
Table 1, we define the notation used in the rest of this paper. For the definitions,
let a ∈ V be any node, X ⊂ V and Y ⊂ V such that X and Y are disjoint.
Given a player A, A denotes Nout(A) and B denotes N in(A).

The outcome of a round-robin tournament has a natural graph representation
as a tournament graph. The nodes of a tournament graph represent the players,
and a directed edge (a, b) represents a win of a over b.

We will use the concept of a king in a graph. Although the definition makes
sense for any graph, it is particularly useful for tournaments, as the highest
outdegree node is always a king. We also define a superking, as in [16].

Definition 1. A king in G = (V, E) is a node A such that for every other x ∈ V
either (A, x) ∈ E or there exists y ∈ V such that (A, y), (y, x) ∈ E.
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Table 1. A summary of the notation used in this paper

Notation

Nout(a) = {v|(a, v) ∈ E} Nout
X (a) = Nout(a) ∩ X

N in(a) = {v|(v, a) ∈ E} N in
X (a) = N in(a) ∩ X

out(a) = |Nout(a)| outX(a) = |Nout
X (a)|

in(a) = |N in(a)| inX(a) = |N in
X (a)|

Hin(a) = {v|v ∈ N in(a), out(v) > out(a)}
Hout(a) = {v|v ∈ Nout(a), out(v) > out(a)}

H(a) = Hin(a) ∪Hout(a)

E(X, Y ) = {(u, v)|(u, v) ∈ E, u ∈ X, v ∈ Y }

Definition 2. A superking in G = (V, E) is a node A such that for every other
x ∈ V either (A, x) ∈ E or there exist log n nodes y1, . . . , ylog n ∈ V such that
∀i, (A, yi), (yi, x) ∈ E.

2 Kings That Are also SE Winners

Being a king in the tournament graph is not a sufficient condition for a player to
also be able to win an SE tournament. For instance, a player may be a king by
beating only 1 player who, in turn, beats all the other players. This king beats
less than log n players, so it cannot win an SE tournament. [16] considered the
question of how strong a king player needs to be in order for there to always
exist a winning SE tournament seeding for which they win the SE tournament.

Theorem 1. [16] Let G = (V, E) be a tournament graph and let A ∈ V be
a king. One can efficiently construct a winning single-elimination tournament
seeding for A if either Hin(A) = ∅, or out(A) ≥ n/2.

We generalize the above result by giving a condition which completely subsumes
the one in Theorem 1.

Theorem 2 (Kings with High Outdegree). Let G be a tournament graph
on n nodes and A be a king. If out(A) ≥ |Hin(A)| + 1, then one can efficiently
compute a winning single-elimination seeding for A.

To see that the above theorem implies Theorem 1, note that if out(A) ≥ n/2,
then |Hin(a)| ≤ n/2 − 1 ≤ out(A) − 1. Also, if Hin(A) = ∅ and n ≥ 2, then
out(A) ≥ 1 ≥ 1 + |Hin(A)|.

Theorem 2 is more general than Theorem 1. In Figure 1 we have an example
of a tournament where node A satisfies the requirements of Theorem 2, but not
those of Theorem 1. Here, |Hin(A)| = n

4 and |Nout(A)| = n
4 + 1. The purpose

of node a is just to guarantee that A is a king. The example requires that
each node in N in(A) \ Hin(A) has lower outdegree than A; it suffices to use an
outdegree-balanced2 tournament for this set.
2 An outdegree-balanced tournament is a tournament in which every vertex has outde-

gree equal to half the graph; such a tournament can easily be constructed inductively.
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Hin(A)

n/4 nodes

Nin(A) \Hin(A)

n/2− 2 nodes

outdegree-balanced

A

n/4 + 1 nodes a n/4 nodes

Nout(A)

Fig. 1. An example for which Theorem 1 does not apply, but Theorem 2 does apply

The intuition behind the proof of Theorem 2 is partially inspired by our recent
results in [15]. There we show that a large fraction of highly ranked nodes can
be tournament winners, provided a matching exists from the lower ranked to
the higher ranked players. In this paper, we are working with a king node, and
are able to weaken the matching requirement. Instead, we carefully construct
matchings that maintain that A is a king over the graph, while eliminating the
elements of Hin(A) until we reduce the problem to the case of Theorem 1.

We will need a technical lemma from prior work relating the indegree and
outdegree of two nodes in order to prove Theorem 2. By definition, if a node
A is a king then for every other node b, Nout(A) ∩ N in(b) �= ∅. The following
lemma is useful for showing a node is a king.

Lemma 1 ([16]). Let a be a given node, A = Nout(a), B = N in(a), b ∈ B.
Then out(a) − out(b) = inA(b) − outB(b). In particular, out(a) ≥ out(b) if and
only if outB(b) ≤ inA(b).

Proof of Theorem 2: We will design the matching for each consecutive round
r of the tournament. In the induced graph before the rth round, let Hr be the
subset of Hin(A) that is still live, Ar be the current outneighborhood of A
and Br be the current inneighborhood of A. We will keep the invariant that if
Br \ Hr �= ∅, we have |Ar| ≥ |Hr|+ 1, A is a king and the subset of nodes from
the inneighborhood of A that have larger outdegree than A is contained in Hr.

We now assume that the invariant is true for round r−1. We will show how to
construct round r. If Hr = ∅ we are done by reducing the problem to Theorem 1,
so assume that |Hr| ≥ 1. We begin by taking a maximal matching Mr from Ar

to Hr. Since |Ar| ≥ |Hr|+ 1, Ar \Mr �= ∅ i.e. Mr cannot match all of Ar. Now,
let M ′

r be a maximal matching from Ar \Mr to Br \ Hr.
If Ar \(M ′

r∪Mr) �= ∅, there is some node a′ leftover to match A to. Otherwise,
pick any a′ ∈ M ′

r ∩ Ar. Remove the edge matched to a′ from M ′
r and match a′

with A. To complete the matching, create maximal matchings within Ār =
Ar \ (M ′

r ∪ Mr) \ {a′}, B̄r = Br \ Hr \ M ′
r and Hr \ Mr. Either 0 or 2 of

|Ār|, |B̄r|, |Hr \ Mr| can be odd and so there are at most 2 unmatched nodes
that can be matched against each other. Let M be the union of these matchings.
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We will now show that the invariants still hold. Notice that A is still a king on
the sources of the created matching M . Now, consider any node b from Br \Hr

which is a source in M . We have two choices. The first is that b survived by
beating another node of Br so it lost at least one outneighbor from Br. Since
M ′

r was maximal, b may have lost at most one of its inneighbors (a′). Hence,

outBr+1(b) + 1 ≤ (outBr (b)− 1 + 1) ≤ inAr(b)− 1 ≤ inAr+1(b).

By Lemma 1 this means that out(b) ≤ out(A). The second choice is if b survived
by beating a leftover node ā from Ar. This can only happen if Ar\(M ′

r∪Mr) �= ∅.
Thus, ā was in Ar \ (M ′

r ∪Mr). However, since M ′
r was maximal, ā must lose to

b, and so all inneighbors of b from Ar move on to the next round, and out(b) ≤
out(A). Thus A has outdegree at least as high as all nodes in Br+1 \ Hr+1.

Now we consider Ar+1 vs Hr+1. We have

|Ar+1| ≥ #(|Ar|+ |M ′
r|+ |Mr| − 1)/2$, and

|Hr+1| ≤ %(|Hr| − |Mr|)/2& = #(|Hr|+ 1− |Mr|)/2$.

Since |Hr| ≥ 1 we must have |Mr| ≥ 1. If either |Mr| ≥ 2, |Ar| ≥ |Hr| + 2, or
|M ′

r| ≥ 1 then it must be that |Ar+1| ≥ #(|Hr | + 2)/2$ ≥ |Hr+1| + 1. Also, if
|Hr| is even then |Ar+1| ≥ |Hr|/2 = 1 + #(|Hr | − 1)/2$ ≥ |Hr+1| + 1, and the
invariant is satisfied for round r + 1.

On the other hand, assume that |Mr| = 1, |M ′
r| = 0, |Ar| = |Hr|+ 1 and |Hr|

is odd. This necessarily implies that |Br \ Hr| ≤ 1. Since |Ar| = |Hr| + 1 is
even, |Br| must be odd and so |Br \ Hr| must be even. |Br \ Hr| can only be
0. This means |Hr| = nr/2 − 1 (where nr is the current number of nodes). We
can conclude that A is a king with outdegree at least half the graph and the
tournament can be efficiently fixed so that A wins by Theorem 1. ��
Theorem 2 implies the following corollaries.

Corollary 1. Let A be a king in a tournament graph. If |Hin(A)| ≤ (n− 3)/4,
then one can efficiently compute a winning SE tournament seeding for A.

Corollary 2. Let A be a king in a tournament graph. If |H(A)| ≤ n/3−1, then
one can efficiently compute a winning SE tournament seeding for A.

The proof of Corollary 1 follows by the fact that if |Hin(A)| = k, then out(A) ≥
(n − k)/3. Corollary 2 simply states that any player in the top third of the
bracket who is a king is also a tournament winner.

Proof of Corollary 2: Let K = |H(A)|. Then the outdegree of A is at least
(n−K − 1)/2. Let h = |Hin(A)|. By Theorem 2, a sufficient condition for A to
be able to win an SE tournament is that out(A) ≥ h + 1. Hence it is sufficient
that n − K − 1 ≥ 2h + 2, or that 2h + K ≤ n − 3. Since 2h + K ≤ 3K, it is
sufficient that 3K ≤ n− 3, and since K ≤ (n− 3)/3 we have our result. ��
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3 Condorcet Random Model

We can now apply our results to graphs generated by the CR Model. From prior
work we know that if p ≥ C

√
ln n/n for C > 4, then with probability at least

1 − 1/poly(n), any node in a tournament graph generated by the CR model
can win an SE tournament. However, since p must be less than 1/2, this result
only applies for n ≥ 512. Moreover, even for n = 8192 the relevant value of p is
> 13% which is a very high noise rate. We consider how many players can be
efficiently made winners when p is a slower growing function of n. We show that
even when p ≥ C ln n/n for a large enough constant C, a constant fraction of
the top players in a CR tournament can be efficiently made winners.

Theorem 3 (CR Model Winners for Lower p). For any given constant
C > 16, there exists a constant nC so that for all n > nC the following holds. Let
p ≥ C ln n/n, and G be a tournament graph generated by the CR model with error
p. With probability at least 1− 3/nC/8−2, any node v with v ≤ n/2− 5C

√
n ln n

can win an SE tournament.

This result applies for n ≥ 256 and also reduces the amount of noise needed. For
example, if C = 17 then when n = 8192, it is only necessary that p < 2%, as
opposed to > 13%. This is a significant improvement. The proof of Theorem 3
uses Theorem 2 and Chernoff-Hoeffding bounds.

Theorem 4 (Chernoff-Hoeffding). Let X1, . . . , Xn be random variables with
X =

∑
i Xi, E[X ] = μ. Then for 0 ≤ D < μ, Pr[X ≥ μ + D] ≤ exp(−D2/(4μ))

and Pr[X < μ−D] ≤ exp(−D2/(2μ)).

Proof of Theorem 3: Let C be given. Consider player j. The expectation of the
number nj of outneighbors of j in G is

E[nj ] = (1− p)(n− j) + (j − 1)p = n(1− p)− p− j(1 − 2p).

This is exactly where we use the CR model. Our result is not directly applicable
to the GCR model because this is only a lower bound on the expectation of nj

in that model. We will show that with high probability, all nj are concentrated
around their expectations and that all players j ≤ n/2 are kings.

Showing that each nj is concentrated around its expectation is a standard
application of the Chernoff bounds and a union bound. Therefore, for C > 16
and n > 2, we have 2/nC2/4 < 1/nC . Hence, with probability at least 1−1/nC−1

for every j, |E[nj ]− nj | ≤ C
√

n lnn.
We assume n is large enough so that n >>

√
n ln n and that p ≤ 1/4 so that

1 ≥ (1− 2p) ≥ 1/2. Now fix j ≤ n/2. By the concentration result, this implies

nj ≥ 3n/4− 1− j − C
√

n lnn ≥ n/4− 1− C
√

n ln n ≥ εn,

where ε = 1/8 works. The probability that j is a king is quite high: the proba-
bility that some node z has no inneighbor from Nout(j) is at most

n(1− p)nj ≤ n(1− C ln n/n)(n/(C ln n))·Cε ln n ≤ 1/nεC−1.
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By a union bound, the probability that some node j is not a king is at most
1/nεC−2. Therefore, we can conclude that the probability that all the nj are
concentrated around their expectations and all nodes j ≤ n/2 are kings is at
least 1− (1/nC−1 + 1/nεC−2).

We now need to upper bound |Hin(j)|. We are interested in how many nodes
with i < j +2C

√
n lnn/(1−2p) appear in N in(j): if we have an upper bound on

them, we can apply Theorem 2 to get a bound on j. First, consider how small
nj − ni can be for any i:

nj − ni ≥ (i− j)(1− 2p)− 2C
√

n ln n.

So for i ≥ j + 2C
√

n ln n/(1− 2p), nj ≥ ni with high probability. The expected
number of nodes i < j that appear in N in(j) is (1 − p)(j − 1). By the Chernoff
bound, the probability that at least (1− p)(j − 1) + C

√
j ln n of the j − 1 nodes

less than j are in N in(j) is ≤ exp(−C2j ln n/4j) = n−C2/4. Therefore, with
probability at least 1 − 1/nC2/4, the number of such i is at most (1 − p)(j −
1) + C

√
j ln n. By a union bound, this holds for all j with probability at least

1− 1/nC2/4−1. Now, we can say with high probability that |Hin(j)| is at most

(1 − p)(j − 1) + C
√

j ln n +
2C
√

n ln n

1− 2p
≤ (1 − p)(j − 1) + 5C

√
n lnn.

By Theorem 2, for there to be a winning seeding for j, it is sufficient that
Hin(j) < nj or that

(1− p)(j − 1) + 5C
√

n ln n < n(1 − p)− p− j(1 − 2p)− C
√

n ln n.

Rearranging the above equation, it is sufficient if

j < n/2 +
pn

(2(2− 3p))
+

(1− 2p)
(2− 3p)

− 24C
√

n lnn/5,

and so for all j ≤ n/2− 5C
√

n lnn, there is a winning seeding for j with proba-
bility at least

1− (2/nC−1 + 1/nεC−2) ≥ 1− 3/nC/8−2.

��
3.1 Improving the Result for the GCR Model through Perfect

Matchings

Next, we show that there is a trade-off between the constant in front of log n/n
and the fraction of nodes that can win an SE tournament. The proofs are based
on the following result of Erdős and Rényi [5]. Let B(n, p) denote a random
bipartite graph on n nodes in each partition such that every edge between the
two partitions appears with probability p.

Theorem 5 (Erdős and Rényi [5]). Let cn be any function of n, then consider
G = B(n, p) for p = (lnn + cn)/n. The probability that G contains a perfect
matching is at least 1− 2/ecn.
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For the particular case cn = Θ(ln n), G contains a perfect matching with prob-
ability at least 1− 1/poly(n).

Lemma 2. Let C ≥ 64 be a constant. Let n ≥ 16 and G be a GCR tournament
for p = C ln n/n. With probability at least 1−2/nC/32−1, G is such that one can
efficiently construct a winning SE tournament seeding for the node ranked 1.

Proof. We will call the top ranked node s. We will show that with high proba-
bility s has outdegree at least n/4 and that every node in N in(s) has at least
log n inneighbors in Nout(s). This makes s a superking, and by [16], s can win
an SE tournament.

The probability that s beats any node j is > 1/2, the expected outdegree of s
is > (n−1)/2. By a Chernoff bound, the probability that s has outdegree < n/4
is at most exp(−(n− 1)/16) << 1/nC/32−1. Given that the outdegree of s is at
least n/4, the expected number of inneighbors in Nout(s) of any particular node
y in N in(s) is at least (n/4) · (C ln n/n) = (C/4) lnn.

We can show that each node in N in(s) has at least log n inneighbors from
Nout(s) by using a Chernoff bound and union bound. By a Chernoff bound,
the probability that y has less than (C/8) ln n inneighbors from Nout(s) is at
most exp(−(C/32) lnn) = 1/nC/32. By a union bound, the probability that
some y ∈ N in(s) has less than (C/8) ln n inneighbors from Nout(s) is at most
1/nC/32−1. Therefore, s is a superking is with probability at least 1−2/nC/32−1

where n ≥ 16, n/4 ≥ log n, C > 64, and (C/8) lnn ≥ log n. ��

Lemma 2 concerned itself only with the player who is ranked highest in intrinsic
ability. The next theorem shows that as we increase the noise factor, we can
fix the tournament for an increasingly large set of players. As the noise level
increases, we can argue recursively that there exists a matching from n

2 + 1 . . . n
to 1 . . . n

2 , and from 3n
4 +1 . . . n to n

2 +1 . . . 3n
4 and so forth. These matchings form

each successive round of the tournament, eliminating all the stronger players.

Theorem 6. Let n ≥ 16, i ≥ 0 be a constant and p ≥ 64 · 2i ln n/n ∈ [0, 1].
With probability at least 1 − 1/poly(n), one can efficiently construct a winning
SE seeding for any of the top 1 + n(1− 1/2i) players in a GCR tournament.

Proof. Let G be a GCR tournament for p = C2i ln n/n, C ≥ 64. Let S be
the set of all n/2i−1 players j with j > n(1 − 1/2i−1). Let s be a node with
1 + n(1 − 1/2i−1) ≤ s ≤ 1 + n(1 − 1/2i). The probability that s wins an SE
tournament on the subtournament of G induced by S is high: there is a set X of
at least n/2i− 1 nodes that are after s. By Lemma 2, s wins an SE tournament
on X ∪ {s} with high probability 1− 2

(n/2i)C/32−1 .
In addition, by Theorem 5, with probability at least 1− 2

(n/2i)C−1 , there is a
perfect matching from X ∪{s} to S \ (X∪{s}). For every 1 ≤ k ≤ i−1, consider

Ak = {x | 1 + n(1 − 1/2k) ≤ x}, and

Bk = {x | 1 + n(1− 1/2k−1) ≤ x ≤ n(1− 1/2k)}.
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Then Ak−1 = Ak ∪ Bk, Ak ∩ Bk = ∅, and |Ak| = |Bk| = n/2k. Hence p ≥
C ln |Ak|/|Ak| for all k ≤ i− 1. By Theorem 5, the probability that there is no
perfect matching from Ak to Bk for a particular k is at most 2/(n/2k)C2i−k−1.
This value is maximized for k = i, and it is 2/(n/2i)C−1. Thus by a union bound,
with probability at least 1 − 2i/(n/2i)C−1 = 1 − 1/poly(n), there is a perfect
matching from Ak to Bk, for every k.

Thus, with probability at least 1− 1/poly(n), s wins an SE tournament in G
with high probability, and the full bracket seeding can be constructed by taking
the unions of the perfect matchings from Ak to Bk and the bracket from S. ��

For the CR model we can strengthen the bound from Theorem 3 by combining
the arguments from Theorems 3 and 6.

Theorem 7. There exists a constant n0 such that for all n > n0 the following
holds. Let i ≥ 0 be a constant, and p = 64 · 2i ln n/n ∈ [0, 1]. With probability
at least 1− 1/poly(n), one can efficiently construct a winning seeding for any of
the top n(1− 1/2i+1)− (80/2i/2)

√
n lnn players in a CR tournament.

As an example, for p = 256 lnn/n, Theorem 7 says that any of the top 7n/8−
40
√

n ln n players are winners while Theorem 6 only gives 3n/4+1 for this setting
of p in the GCR model.

Proof. As in Theorem 6, for every 1 ≤ k ≤ i, consider

Ak = {x | 1 + n(1 − 1/2k) ≤ x}, and

Bk = {x | 1 + n(1− 1/2k−1) ≤ x ≤ n(1− 1/2k)}.
Then Ak−1 = Ak ∪Bk, Ak ∩Bk = ∅, and |Ak| = |Bk| = n/2k. By the argument
from Theorem 6, w.h.p. there is a perfect matching from Ak to Bk, for all k.

Consider Ai. By Theorem 3, with probability 1−1/poly(n), we can efficiently
fix the tournament for any of the first n/2i+1− 80

√
(n/2i) ln(n/2i) nodes in Ai.

Combining the construction with the perfect matchings between Ak and Bk, we
can efficiently construct a winning tournament seeding for any of the top

n− n

2i
+

n

2i+1
− 80

√
n

2i
ln(

n

2i
) ≥ n(1− 1

2(i+1)
)− 80

2i/2

√
n lnn nodes.

��

4 Conclusions

In this paper, we have shown a tight bound (up to a constant factor) on the noise
needed to fix an SE tournament for a large fraction of players when the match
outcomes are generated by the CR model. As this model is believed to be a good
model for real-world tournaments, this result shows that many tournaments in
practice can be easily manipulated. In some sense, this sidesteps the question of
whether it is NP-hard to fix a tournament in general by showing that it is easy
on examples that we care about.
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Abstract. The support-enumeration method (SEM) for computation of Nash
equilibrium has been shown to achieve state-of-the-art empirical performance on
normal-form games. Action-graph games (AGGs) are exponentially smaller than
the normal form on many important classes of games. We show how SEM can
be extended to the AGG representation, yielding an exponential improvement in
worst-case runtime. Empirically, we demonstrate that our AGG-optimized SEM
algorithm substantially outperforms the original SEM, and also outperforms state-
of-the-art AGG-optimized algorithms on most problem distributions.

1 Introduction

The canonical representation of simultaneous-move, perfect information games is the
normal form. Because this representation grows exponentially in the number of players,
it is impractical for modeling interactions that involve more than a handful of players.
There is an extensive literature on compactly representing interesting games [19,9,12].
Action-graph games [8] (AGGs) unify these past representations and can furthermore
represent many additional families of games in polynomial space. Computing solution
concepts (e.g., Nash equilibrium) of compactly represented games is an active area of
research. Although in some cases novel algorithms have been proposed [4,20], a partic-
ularly fruitful approach has been to take existing, normal-form-based algorithms, and
modify them to operate efficiently with a compact representation [2,1]. Indeed, the state-
of-the-art Nash-equilibrium-finding algorithms for AGGs are normal-form algorithms
with AGG-optimized expected-utility calculations [8].

One algorithm that has not been modified to work with any compact representation
also has very strong empirical performance: the support enumeration method (SEM)
[18]. This algorithm also has other useful properties, such as returning the equilibrium
in which agents randomize as little as possible, and being able to find all equilibria. A
key reason that SEM has not been extended to work with compact game representations
is that it operates very differently from other equilibrium-finding algorithms, and hence
existing techniques cannot be applied to it directly. In this paper we show how SEM can
be extended to work with AGGs (and hence with other game families compactly encod-
able as AGGs, such as graphical games and congestion games). Specifically, we show
how three of SEM’s subroutines can be made exponentially faster. Experimentally, we
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Fig. 1. An action graph for the “ice cream game” [8]. In the ice cream game, each player has either
chocolate (C) or vanilla (V) ice cream to sell and must choose one of four possible locations to
set up his stand. The action-graph encodes that a player’s payoff depends only on his location,
and the type and number of competitors within one step of his location.

show that these optimizations dramatically improve SEM’s performance, rendering it
competitive with and often stronger than other state-of-the-art algorithms for computing
equilibria of AGGs.

2 Technical Background

In this section we summarize the two strands of related work that this paper brings
together: AGGs and SEM.

2.1 Action-Graph Games

Action-graph games [8] achieve compactness by exploiting several kinds of structure
in the payoffs. The first kind of structure is anonymity, which means that an agent’s
payoff depends only on his own action and the “configuration” induced by the other
agents–a tuple of counts of how many agents played each action. Anonymity means
that an agent’s payoff does not depend on who played which action. This yields repre-
sentational savings because, instead of storing a payoff for every pure-strategy profile,
AGGs only need to store one for every configuration. The second kind of structure is
context-specific independence, which means that a given agent only cares about the ac-
tions of others who take a specific subset of their actions. (This is a strengthening of
(strict) independence, as captured by Graphical Games [9], which says that the agent
never cares about certain others’ actions, regardless of which actions they choose.) The
context-specific aspect is that the actions (and hence agents) that can affect a given
agent’s payoff depend on which action that agent chooses. These independencies are
encoded in an action graph, a directed graph where each node corresponds to an action,
and payoff for playing an action only depends on the counts on its neighboring nodes.
Instead of storing an action’s payoff for every configuration, AGGs only need to store
one for every “projected configuration,” a tuple of counts on the neighbors of a vertex
(denoted C(v) for vertex v). See Figure 1 for an example.
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∑
a−i∈S−i

p(a−i)ui(ai, a−i) = vi ∀i ∈ N,∀ai ∈ Si (1)

∑
a−i∈S−i

p(a−i)ui(ai, a−i) ≤ vi ∀i ∈ N,∀ai ∈ Ai \ Si (2)

∑
ai∈Si

pi(ai) = 1 ∀i ∈ N (3)

pi(ai) ≥ 0 ∀i ∈ N,∀ai ∈ Si (4)

Fig. 2. The Test-Given-Support (TGS) feasibility program for n-player games. For any given
support profile S ∈

∏
i∈N 2Ai , we can construct a TGS feasibility program where any feasible

solution p, v is a Nash equilibrium with support S, where the players randomize according to the
probabilities in p and get the payoffs specified by v. The constraints on line (1) specify that each
player is indifferent between all the actions in his support. Those on line (2) specify that each
player weakly prefers the actions in his support. The remaining lines specify that each mixed
strategy is a probability distribution. (Note that this formulation allows for actions in the support
to be played with zero probability. This doesn’t adversely affect SEM’s behavior; if such a Nash
equilibrium existed, SEM would have found it already.)

Formally, an action-graph game is a 4-tuple (N, A, G, u) where N is the set of agents
(1, 2, ..., n); A = Πi∈NAi is the set of action profiles (where m = maxi∈N |Ai|);
G = (V, E) is a directed graph with vertices V (where V =

⋃
i∈N Ai) and edges E;

and u = (u1, u2, ..., u|V |) is a tuple of utility functions, where uv : C(v) �→ �.
Note that there is a more complicated family of AGGs, AGGs with function nodes

(described in detail in [8]). The algorithms described in this paper also work (and have
the same asymptotic performance) with function nodes, but we omit the description of
these games for notational clarity and simplicity.

The other advantage of AGGs, besides their ability to represent games compactly, is
that they can be reasoned about efficiently. In particular, given a mixed-strategy profile it
is possible in polynomial time to compute a given agent i’s expected utility for playing
action ai, using dynamic programming [8]. The dynamic program proceeds through
n iterations, where at the kth iteration, it computes the marginal distribution over the
projected configurations C(ai) given the strategies of the first k agents.

2.2 Support-Enumeration Method

The support-enumeration method (SEM) is a brute-force-search method of finding
Nash equilibria. However, rather than searching through all mixed strategy profiles,
it searches through support profiles (specifying which actions each agent plays with
positive probability) and tests whether there is a Nash equilibrium with that particular
support. This test can be performed using the polynomial feasibility program given in
Figure 2. Though several algorithms have been proposed for searching in the space of
supports to find Nash equilibria [14,5,13], we will focus on the most recent SEM vari-
ant, due to Porter, Nudelman and Shoham [18]. This variant introduces two important
features designed to improve empirical performance. First, it uses heuristics to order its
exploration of the space of supports, searching from smallest to largest, breaking ties
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Fig. 3. Porter et al’s [18] tree-search works by instantiating strategies from agents’ supports, one
agent at a time, and removing strategies that are strictly dominated conditional on the agents play-
ing within their given supports. The search backtracks whenever an agent has an empty support
or the TGS feasibility program is infeasible.

in favor of more balanced support profiles. This order can speed up equilibrium finding
for several reasons. First, there are fewer small support-size profiles to search through.
Second, the corresponding feasibility programs have fewer variables and smaller con-
straints. And third, in games of interest (see, e.g., [11]), Nash equilibria with small,
balanced supports are common [18]. Second, instead of simply iterating through the
complete set of support profiles of a given size, SEM explores this space by tree search
(see Figure 3 for an example). This search works by, at each level, selecting a support
for a single additional player. At the leaves of the tree, the support is specified for every
agent, and that support profile can be tested using TGS for the existence of a Nash equi-
librium. The advantage of using search comes from pruning: after an agent’s support
is selected, SEM performs iterative removal of strictly dominated strategies (IRSDS),
conditional on agents only playing actions in their supports. This has the effect of elim-
inating many support profiles from consideration. The search backtracks whenever an
agent has an empty support or the TGS feasibility program is infeasible.

There are several reasons to be interested in the SEM algorithm. One is that it is
the only known method for finding small-support equilibria. Another is that it has been
shown to achieve better empirical performance than the previous state-of-the-art algo-
rithms for the sample equilibrium problem, simplicial subdivision (SimpDiv) [10] and
the global Newton method (GNM) [7], on many game families of interest. Notably,
most of these games had pure-strategy Nash equilibria (PSNEs), which SEM finds in
polynomial time. However, even on games without PSNEs—where SEM has exponen-
tial worst-case running time—SEM is still often faster than SimpDiv and GNM.
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3 SEM for AGGs

Observe that we can trivially make a version of SEM that takes AGGs as input, simply
replacing the normal form game (NFG) utility lookups (ui(a)) with the AGG equiv-
alents (ui(a) = uai(c

(ai)), where c(ai) is the projected configuration given a). We
denote this algorithm NFG-SEM, because its behavior is exactly the same as that of
SEM for normal-form games. However, because AGGs can be exponentially smaller
than NFGs, we show below that NFG-SEM’s asymptotic worst-case performance, as
a function of the length of its input, can be exponentially worse than that of SEM for
the induced normal form of the same game. Specifically, we show that NFG-SEM’s
inner-loop operations—iterative removal of strictly dominated strategies and the TGS
feasibility program—are at least worst-case exponential in the AGG input length (de-
noted �). The outer-loop search over supports also requires exponential time, even for
games with PSNEs.

However, we can do better if we construct a version of SEM that explicitly takes
AGG structure into account. We present such an extension of SEM, denoted AGG-
SEM1, and its asymptotic analysis. Overall, we show that AGG-SEM’s worst-case per-
formance is exponentially faster than that of NFG-SEM.

3.1 Conditional Dominance

Because SEM makes extensive use of iterative removal of strictly dominated strate-
gies, efficiently identifying dominated strategies is critical. For normal-form games,
testing whether or not some pure strategy ai is dominated by some other a′

i is straight-
forward: one can exhaustively search through through the pure strategy profiles of the
other agents, looking for the existence of some a−i to which ai is a weakly better re-
sponse. This trivial algorithm only requires time linear in the size of a normal-form
game. However, it can require time exponential in the size of an action-graph game.

Lemma 1. NFG-SEM’s dominance check has a worst-case running time of Θ(2�).

Proof. Consider the family of action-graph games with two actions per player and no
edges. For this family, there are at most 2n nodes, the payoff table for each of which
contains only a single value. Thus, � is Θ(n), while |A−i| = 2n−1 and therefore is
Θ(2�). In the worst case, exhaustive search iterates over every a−i ∈ A−i to confirm
that ai is not a best response to any action profile. �

However, we can do better: a straightforward, polynomial-time algorithm for AGG dom-
inance checking can be derived from Jiang et al’s [8] dynamic-programming algorithm.
To determine whether or not ai is dominated by a′

i, we do not need to search through
the entirety of A−i; we only need to search over the set of possible projected configu-
rations on the joint neighborhoods of ai and a′

i. This adaptation guarantees polynomial
runtime. However, empirically we observed that it often gave rise to poor performance,
compared to exhaustive search over A−i. We attribute this to stopping conditions: the

1 Pseudo-code for AGG-SEM can be found in the extended version of this paper, which is avail-
able on the authors’ websites.
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exhaustive search can stop as soon as it finds any case where ai is a better response,
while the dynamic-programming algorithm must build up all configurations first before
it ever encounters a better response, effectively performing a breadth-first search. Based
on this insight, we created a depth-first-tree-search-based algorithm that combines the
best of both approaches: like exhaustive search, it can find a better response without
needing to compute the entire set of projected configurations; like our adaptation above,
it exploits AGG structure and so needs only to evaluate a polynomial number of pro-
jected configurations. It works as follows. At each level, the search fixes the action of
some agent, giving a search tree that potentially includes every A−i. However, we also
perform multiple-path pruning: a search refinement in which previously visited nodes
are recorded, and the search backtracks whenever it re-encounters a node along a dif-
ferent search path [17]. In our case, the algorithm backtracks whenever it encounters a
previously visited projected configuration, based on a lookup from a trie map.

Lemma 2. AGG-SEM’s dominance check has a worst-case running time of O(nm�3).

Proof. The search traverses a tree with a depth of n and a branching factor of m. How-
ever, at every level, at most ζ2 nodes are expanded (where ζ denotes the largest set
of possible projected configurations for any node), because there are at most ζ2 dis-
tinct projected configurations on the neighborhood of ai, a

′
i. In the worst case, when it

traverses the whole tree, the search must follow each of m arcs from O(ζ2) nodes at
each of n levels, or O(nmζ2) arcs. For each arc, the search may perform a trie-map
lookup and insert; these operations each require runtime that grows like the maximum
in-degree of the graph, ι, and so the total cost is O(nmζ2ι). Because � is Ω(ζ + ι),
nmζ2ι is O(nm�3). �

3.2 TGS Feasibility Program

SEM’s asymptotic performance is dominated by the Test-Given-Support feasibility pro-
gram. (Polynomial feasibility is NP-hard; e.g., polynomial constraints generalize 0–1
integrality constraints [22].) For NFG-SEM, this complexity obstacle is particularly se-
vere: directly representing the TGS feasibility program requires space exponential in
the size of the AGG. Thus, unless P = NP , TGS requires doubly exponential time.

Lemma 3. The NFG-SEM TGS feasibility program has worst-case size of Θ(nm2�).

Proof sketch, similar to Lemma 1’s proof. TGS can have |A−i| terms in each constraint,
and this quantity is Θ(2�) in the worst case. There are O(nm) such constraints. �
The essential challenge is in the expected utility constraints (lines 1 and 2 of Fig-
ure 2) which can be exponentially long. We already have Jiang et al’s [8] dynamic-
programming algorithm for computing expected utility given a specific mixed-strategy
profile. Now we want to compute expected utility symbolically, without specifying the
probabilities beforehand. This can be accomplished by “unrolling” the dynamic pro-
gram: every update in the dynamic program is expressed as a polynomial equality con-
straint in the TGS program. This set of new constraints is polynomial in the size of
the AGG.
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Lemma 4. The AGG-SEM TGS feasibility program has worst-case size of O(n2m2�2).

Proof. For each j ∈ {1, . . . , n}we introduce O(ζ) new constraints, each corresponding
to the probability of a projected configuration given the strategies of the first j agents.
This gives O(nζ) constraints. Each contains at most O(ζm) terms, corresponding to the
possible projected configurations and actions that could lead to some new projected con-
figuration when another agent is added. Since ζ is O(�), the output requires O(nm�2)
space. It must be run once for each agent i and for each action in Ai: O(nm) times in
total. Thus, the TGS feasibility program requires O(n2m2�2) space. �

Although this optimization speeds up the worst case exponentially, it is not guaranteed
to be helpful on average. This is because the symbolic representation of the TGS sys-
tem is made exponentially smaller by replacing each exponentially long expected-utility
constraint with multiple small constraints. How this change affects runtime in the aver-
age case depends on the (black-box) feasibility solver.

3.3 Asymptotic Analysis of SEM for AGGs

We are now ready to demonstrate that asymptotically, AGG-SEM is exponentially faster
than NFG-SEM. We assume that both algorithms make use of a polynomial feasibility
solver with worst-case runtime O(2x) where x is the length of the feasibility program.

Theorem 1. Assume that we have access to a polynomial feasibility solver with worst-
case runtime O(2x), where x is the length of the feasibility program. Then NFG-SEM
requires doubly exponential time time to find a sample Nash equilibrium in an AGG.

Proof sketch. In the worst case, AGGs can have Ω(2�) support profiles (as in Lemma 1),
even for symmetric games. Thus, the search must traverse a tree with O(2�) leaf nodes
where TGS is solved, and O(2�) interior nodes where iterative removal of strictly dom-
inated strategies (IRSDS) is performed. Solving TGS takes O(2nm2�

) runtime in the
worst case. This expression is O(2x) where x is O(nm2�) by Lemma 3, and so domi-
nates IRSDS. Thus the total runtime is O(2nm2�+�). �

Theorem 2. AGG-SEM requires (only) exponential time to find a sample Nash equilib-
rium in an AGG.

Proof sketch. AGG-SEM still searches O(2�) nodes, but TGS now requires O(2n2m2�2)
time (Lemma 4), which again dominates IRSDS. The total runtime is O(2n2m2�2+�). �
Given complexity results known in the literature, it is unsurprising that AGG-SEM re-
quires exponential time in the worst case. In particular, finding even PSNEs of AGGs
in polynomial time would imply P=NP: AGGs generalize graphical games, and finding
a PSNE of an arbitrary graphical game is NP-hard [6]. Further, finding a PSNE of a
symmetric AGG with unbounded m is also known to be NP-hard [4].

3.4 Further Speedups for k-Symmetric Games

We now show that the search over supports can be sped up in the case of AGGs with k-
symmetry, i.e., where the players can be partitioned into k classes such that all players in
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a class are identical. (We describe the algorithm for the case of k = 1, or full symmetry.
The generalization is straightforward.) We saw in the proof of Theorem 1 that symmetry
does not help for NFG-SEM. Here we strengthen that result, showing that NFG-SEM
can take exponential time even when PSNEs exist in k-symmetric AGGs with bounded
m and k.

Theorem 3. NFG-SEM requires exponential time time to find a sample PSNE in a k-
symmetric AGG with bounded m and k.

Proof sketch. For games with PSNEs, we never need to solve TGS: any support profile
that survives IRSDS is a Nash equilibrium. The tree search must still expand O(2�)
nodes to explore all O(2�) pure support profiles. At each interior node, IRSDS is called,
requiring O(n2m3) calls to the conditional dominance test, which requires O(2�) time
(by Lemma 1). For bounded m, the total runtime to find a PSNE is O(n222�). �
Next, we show that we can achieve an improvement on such games for AGG-SEM. This
optimization works by skipping any support profile that is a permutation of a previously
explored support profile. At every stage of the tree search, we explore a support Si iff
Si � Sj where j is any player with support selected higher in the tree, and where � is
the order in which supports are explored at each level of the tree.

Lemma 5. AGG-SEM’s search evaluates poly(n) support profiles in the worst case,
even for games without PSNEs, given a k-symmetric AGG with bounded k and m.

Proof. Every distinct support profile can be identified by a vector of O(k2m) integers
in the range [0, n], where each element indicates how many agents of a given class have
a given support. There are at most O(nk2m

) such vectors. For bounded k and m, this
quantity is poly(n). �

Theorem 4. AGG-SEM requires poly(�) time to find a sample PSNE in a k-symmetric
AGG with bounded m and k.

Proof sketch. For bounded m and k, AGG-SEM’s search expands polynomially many
nodes (by Lemma 5), each of which requires running IRSDS. IRSDS performs
O(n2m3) conditional dominance tests, requiring O(nm�3) time (by Lemma 2). Thus,
AGG-SEM has poly(�) runtime on such games. �

4 Experimental Evaluation

So far, our analysis has concentrated on the worst case. However, improvements to the
worst case do not necessarily imply improvements on instances of interest. As we are mo-
tivated by developing practical methods for computing Nash equilibria, we conducted
an experimental evaluation to compare the performance of NFG-SEM and AGG-SEM.

4.1 Experimental Setup

We sampled 50 instances from each of 11 different game distributions (see Table 1).
Nine distributions were from GAMUT [11]; each had n = 10 players, m = 10 actions
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Fig. 4. Scatterplot contrasting the runtimes of AGG-SEM and NFG-SEM. The left plot shows
runtimes for computing a sample Nash equilibria; the right plot shows runtimes for computing
all pure strategy Nash equilibria.

per player, and action graphs with in-degree at most five. The remaining two distri-
butions were over position auction games with n = 10 players and up to m = 11
actions per player (though weakly dominated actions, which occurred frequently, were
omitted by the generator) [21]. On each game, we compared AGG-SEM to three other
algorithms: NFG-SEM, and the two existing state-of-the-art Nash-equilibrium-finding
algorithms: GNM, the global Newton method [7], and SimpDiv, simplicial subdivision
[10], both using Gambit implementations [15] extended to work efficiently with AGGs
by [8]. All algorithms were given error tolerance of 10−10. For AGG-SEM and NFG-
SEM, we used minos [16] to solve the TGS feasibility problems.

We performed a blocking mean-of-means test [3] (with p ≤ 0.01) to compare mean
runtimes across game distributions. In three distributions (see Table 1), we were not able
to conclude that differences were significant because of high runtime variation. Such
problems can be overcome by obtaining additional data; thus, for these distributions
we generated an additional 150 instances (i.e., 200 total). In the end, we were able to
identify a significantly faster algorithm for every distribution.

Our experiments were performed on machines with dual Intel Xeon 3.2GHz CPUs,
2MB cache and 2GB RAM, running Suse Linux 11.1 (Linux kernel 2.6.27.48-0.3-pae).
Each run was limited to 12 CPU hours; we report runs that did not complete as having
taken 12 hours. In total, our experiments required about 420 CPU days.

4.2 Results

Overall, we found that AGG-SEM provided a substantial performance improvement
over NFG-SEM, outperforming it on the vast majority of instances; see Figure 4. As we
expected, AGG-SEM was not faster on absolutely every instance. Nevertheless, AGG-
SEM achieved significantly faster mean performance in every game distribution. Its
largest speedup over NFG-SEM was 280× (on D1), its smallest speedup was 1.45×
(on D4), and its median speedup was 10× (on D10). While the biggest speedups were
on games where AGG-SEM could leverage k-symmetry, ranging from 280× (on D1) to
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7× (on D2), we still achieved substantial speedups on asymmetric games (those with n
player classes), ranging from 10× (on D10) to 1.45× (on D4). AGG-SEM stochastically
dominated NFG-SEM overall (see Figure 5), but on a per-distribution basis, it only
stochastically dominated on four distributions (D3 and D9–11). AGG-SEM’s failure to
stochastically dominate on the remaining seven distributions was due to the fact that
all contained instances that both methods solved extremely quickly (in less than one
second), but that NFG-SEM finished more quickly. Considering runtimes over a second,
AGG-SEM stochastically dominated NFG-SEM on every distribution.

AGG-SEM outperformed SimpDiv and GNM on 9 of the 11 game distributions (see
Table 1), and furthermore stochastically dominated GNM overall (see Figure 5). Com-
paring the runtimes of AGG-SEM and SimpDiv, we found that the two were correlated:
they both solved many (338) of the same instances in under 600s, with SimpDiv having
better mean runtime on these instances (μ = 12.71s vs μ = 108.32s). On the remaining
instances, SEM finished far more often (87.74% vs 23.11%). Thus, SimpDiv was only
fastest on D2 (Ice-cream games), which contained almost exclusively instances that
were easy for both algorithms. AGG-SEM only stochastically dominated SimpDiv on
D10 and D11, which contained no instances that were easy for simpDiv. AGG-SEM’s
runtime was less correlated with that of GNM than it was with SimpDiv. For example,
GNM solved every instance in D4 (GFP position auctions), which contained instances
that were not solved by either SimpDiv or AGG-SEM. Overall, however, GNM had the
worst performance (and was stochastically dominated by AGG-SEM on every distri-
bution but D3 and D4). Although AGG-SEM had the fastest overall average runtime,
there were at least a few instances for which each of AGG-SEM, SimpDiv and GNM
was hundreds of times faster than the others. The best practical approach may thus be a
portfolio of all three algorithms, following e.g. [23].

Like Porter, et. al., [18], we found that in many (7 of 11) distributions, most games
(over 90%) had PSNEs. AGG-SEM finished on every such game. Thus the four distri-
butions (D4 and D9-11) in which PSNEs were least common were also those on which
AGG-SEM was mostly likely to time out. (We verified that AGG-SEM terminated on
every game with PSNEs by checking the support size AGG-SEM was considering when
it timed out. In every case, it ruled out all supports of size 1 for every agent before run-
ning out of time.)

One advantage of SEM over other Nash-equilibrium-finding algorithms is its ability
to find all Nash equilibria (or all equilibria with support sizes not more than some
constant). This is particularly useful when we want to understand the range of possible
outcomes. For example, in [21] one of the goals was to identify the minimum and
maximum revenue possible in equilibrium of position auction games. At the time, only
empirical bounds on revenue were possible, because there was no algorithm available
for finding all the PSNEs of an AGG. We have since tested equilibrium enumeration
by searching for all PSNEs on a representative subset of these games (20 from each
distribution). We found that AGG-SEM was significantly faster than NFG-SEM (see
Figure 4) at enumerating the set of all equilibria. Notably, for every position auction
game, AGG-SEM was able to find all PSNEs in under one CPU minute. (These games
each have ten bidders, eight positions and eleven bid increments per bidder.)
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Table 1. Mean runtimes. � denotes significantly slower than fastest solver, α = 0.01. Capped
runs count as 43200s. † denotes distributions where, due to high variance, more instances (200)
were necessary for statistical significance.

No. Game type Player Mean runtime (CPU s)
Classes AGG-SEM NFG-SEM GNM SimpDiv

D1 Coffee shop 1 18.00 5032.38� 3309.73� 362.63�†

D2 Ice cream 3 131.64� 957.42� 151.59� 0.39
D3 Job market 1 249.02 6070.61� 372.96�† 1536.45�†

Position Auctions:
D4 GFP n 7519.90� 10878.19� 75.73 10750.93�

D5 Weighted GSP n 45.10 96.78� 723.19� 734.56�†

Random AGGs:
D6 Random graph 1 68.02 7005.34� 10580.58� 5188.02�

D7 Road graph 1 441.11 32103.15� 41814.79� 9507.58�

D8 Small-world graph 1 596.75 31750.79� 28195.09� 4665.58�

Random Graphical Games:
D9 Random graph n 11953.48 20469.50� 24337.47� 27002.81�

D10 Road graph n 3244.50 32052.36� 43200.00� 43200.00�

D11 Small-world graph n 11356.47 29861.96� 43200.00� 40677.67�

Overall: 3244.28 16520.09� 18265.93� 13176.94�
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Fig. 5. Runtime CDFs for our four algorithms

5 Conclusion

We have showed that the support enumeration method can be extended to games com-
pactly represented as AGGs. Our approach outperforms the original SEM algorithm for
such games both asymptotically and in practice. Theoretically, we showed that SEM’s
worst-case runtime can be reduced exponentially. Our work in this vein may also be of
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independent interest, as it shows novel ways of exploiting AGG structure. In particu-
lar, the polynomial-time algorithm for removing dominated strategies could be useful,
e.g. as a preprocessing step for other equilibrium-finding algorithms. Empirically, we
observed that our new algorithm was substantially (often orders of magnitude) faster,
and that it almost always outperformed current state-of-the-art algorithms. Beyond this,
our algorithm offers substantial advantages over existing algorithms, such as the abil-
ity to enumerate equilibria and to identify pure-strategy Nash equilibria or prove their
non-existence.

We envision several extensions to AGG-SEM. One promising direction is to search
for specific types of (e.g., symmetric or social-welfare-maximizing) equilibria, for ex-
ample by replacing the depth-first search with branch-and-bound search. Performance
could also be improved by using good heuristics to choose the order in which supports
are instantiated, or even by exploring the space of supports using stochastic local search
rather than tree search.

References

1. Bhat, N., Leyton-Brown, K.: Computing Nash equilibria of Action-Graph Games. In: UAI
(2004)

2. Blum, B., Shelton, C., Kohler, D.: A continuation method for Nash equilibria in structured
games. JAIR 25, 457–502 (2006)

3. Chernick, M.R.: Bootstrap Methods, A practitioner’s guide. Wiley (1999)
4. Daskalakis, C., Schoenebeck, G., Valiant, G., Valiant, P.: On the complexity of Nash equilib-

ria of action-graph games. In: SODA (2009)
5. Dickhaut, J., Kaplan, T.: A program for finding Nash equilibria. Mathematica J. 1, 87–93

(1991)
6. Gottlob, G., Greco, G., Scarcello, F.: Pure nash equilibria: hard and easy games. In: TARK

(2003)
7. Govindan, S., Wilson, R.: A global Newton method to compute Nash equilibria. J. Economic

Theory 110, 65–86 (2003)
8. Jiang, A.X., Leyton-Brown, K., Bhat, N.A.R.: Action-graph games. GEB 71, 141–173 (2011)
9. Kearns, M.J., Littman, M.L., Singh, S.P.: Graphical models for game theory. In: UAI (2001)

10. van der Laan, G., Talman, A.J.J., van Der Heyden, L.: Simplicial variable dimension algo-
rithms for solving the nonlinear complementarity problem on a product of unit simplices
using a general labelling. Mathematics of Operations Research 12, 377–397 (1987)

11. Leyton-Brown, K., Nudelman, E., Wortman, J., Shoham, Y.: Run the GAMUT: A compre-
hensive approach to evaluating game-theoretic algorithms. In: AAMAS (2004)

12. Leyton-Brown, K., Tennenholtz, M.: Local-effect games. In: IJCAI (2003)
13. Lipton, R.J., Markakis, E.: Nash Equilibria Via Polynomial Equations. In: Farach-Colton, M.

(ed.) LATIN 2004. LNCS, vol. 2976, pp. 413–422. Springer, Heidelberg (2004)
14. Mangasarian, O.: Equilibrium points of bimatrix games. J. Society for Industrial and Applied

Mathematics 12, 778–780 (1964)
15. McKelvey, R.D., McLennan, A.M., Turocy, T.L.: Gambit: Software tools for game theory

(2006), http://econweb.tamu.edu/gambit
16. Murtagh, B., Saunders, M.: MINOS (2010), http://www.sbsi-sol-optimize.com
17. Poole, D.L., Mackworth, A.K.: Artificial Intelligence. Cambridge University Press (2011)
18. Porter, R.W., Nudelman, E., Shoham, Y.: Simple Search Methods for Finding a Nash Equi-

librium. GEB 63, 642–662 (2009)

http://econweb.tamu.edu/gambit
http://www.sbsi-sol-optimize.com


350 D.R.M. Thompson, S. Leung, and K. Leyton-Brown

19. Rosenthal, R.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game The-
ory 2, 65–67 (1973)

20. Roughgarden, T., Papadimitriou, C.: Computing correlated equilibria in multi-player games.
JACM 37, 49–56 (2008)

21. Thompson, D.R.M., Leyton-Brown, K.: Computational analysis of perfect-information posi-
tion auctions. In: ACM-EC (2009)

22. Vohra, R.V.: Advanced Mathematical Economics. Routledge (2005)
23. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selec-

tion for SAT. JAIR 32, 565–606 (2008)



Heavy Traffic Approximation of Equilibria
in Resource Sharing Games

Yu Wu, Loc Bui, and Ramesh Johari

MS&E, Stanford University
{yuwu,locbui,ramesh.johari}@stanford.edu

Abstract. We consider a model of priced resource sharing that combines both
queueing behavior and strategic behavior. We study a priority service model
where a single server allocates its capacity to agents in proportion to their pay-
ment to the system, and users from different classes act to minimize the sum of
their cost for processing delay and payment. As the exact processing time of this
system is hard to compute, we introduce the notion of heavy traffic equilibrium
as an approximation of the Nash equilibrium, derived by considering the asymp-
totic regime where the system load approaches capacity. We discuss efficiency
and revenue, and in particular provide a bound for the price of anarchy of the
heavy traffic equilibrium.

Keywords: resource sharing, discriminatory processor sharing, equilibrium,
heavy traffic approximation.

1 Introduction

A range of resource sharing systems, such as computing or communication services,
exhibit two distinct characteristics: queueing behavior and strategic behavior. Queue-
ing behavior arises because jobs or flows are served with the limited capacity of system
resources. Strategic behavior arises because these jobs or flows are typically generated
by self-interested, payoff-maximizing users. Analysis of strategic behavior in queue-
ing systems has a long history, dating to the seminal work of Naor [16]; see the book
by Hassin and Haviv [7] for a comprehensive survey. The interaction of queueing and
strategic behaviors has become especially important recently, with the rise of paid re-
source sharing systems such as cloud computing platform. For example, [1] and [4]
discussed systems with multiple service providers, modelled as first-come-first-serve
queues, that compete in both price and response time for potential buyers.

In this paper we consider a particular queueing model where a single server is shared
among multiple jobs, and the service capacity allocated to each job depends on its
priority level. The particular scheduling policy we consider is known in the litera-
ture as the discriminatory processor sharing (DPS) policy [12]. In the DPS model,
the server shares its capacity in proportion to the priority level of all jobs currently in
the system. This service allocation rule is a special case of a more general scheduling
policy for queueing networks known as proportionally fair resource sharing [10, 14];
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such scheduling policies have been studied extensively in the context of networked
resource sharing (see [9,19] and references therein). A survey of the DPS literature can
also be found in [2].

We consider a DPS system in steady state, and study a job level game where every
individual job is a single strategic user. This user chooses a payment β; which cor-
responds to the priority level of that user. The user also incurs a cost proportional to
total processing time. The users’ goal is to choose priority levels to minimize the sum
of expected processing cost and payment. (We also briefly discuss a class level game,
where every class is a single user.) A central difficulty in analysis of equilibria arises
because exact computation of the steady state processing time of a single job, given the
priority choices of other jobs, is intractable. Since the queueing behavior computation
itself involves numerical complexity, equilibrium characterization in closed form for
the strategic behavior is essentially impossible. Thus obtaining structural insight into
the games is a significant challenge.

In this paper, we propose an alternate approximate approach to equilibrium charac-
terization that is amenable to analysis, computable in closed form, and provably exact
in an appropriate asymptotic regime where the load on the system increases, known as
the heavy traffic regime [11, 18]. The heavy traffic asymptotic regime is widely used
in analysis of queueing systems and is especially valuable to study systems with many
users. Asymptotics yield two benefits. First, they significantly simplify stochastic anal-
ysis. The second key benefit of asymptotics is that we are also able to simplify our
game theoretic analysis. Informally, an important reason is that when the number of
users grows large, no single user has a large impact on the whole system; this effect
allows us to simplify calculation of equilibria.

Our main contributions are as follows.
(1) An approximate notion of equilibrium. Using an approximation to the processing

time derived via the heavy traffic asymptotic regime, we suggest a natural corresponding
notion of equilibrium that we call heavy traffic equilibrium (HTE). In an HTE, users
minimize the sum of their payment and heavy traffic processing time cost, rather than
their true expected processing time cost. We show that under mild conditions, HTE
exists and is unique, and that it can be computed in closed form in terms of system
parameters. It is thus both simple to compute, and asymptotically accurate when the
system approaches heavy traffic.

(2) Economic analysis: parameter sensitivity, efficiency, and revenue. A significant
benefit of our approach is that since we can compute the equilibrium in closed form, it is
straightforward to carry out analysis on efficiency and revenue. We study how the system
behavior changes when cost or arrival rate parameters are scaled, and more importantly,
we investigate social efficiency and system revenue of HTE under different system pa-
rameters, and give a bound for the price of anarchy of HTE. We obtain some intriguing
insights: in particular, we show that within a particular class of pricing schemes, and
for a wide range of parameter choices, the incentives of the revenue maximizing ser-
vice provider become aligned with minimization of total system processing cost.

We believe our work makes significant progress on two fronts. First, the DPS queue-
ing model is important in its own right as a benchmark model for analysis of priority
pricing for shared resource services. Our analysis provides extensive insight into this
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queueing system with strategic behavior. Second, and perhaps of greater longer term
interest, our approximation methodology suggests a broader research program for un-
derstanding strategic behavior in queueing systems: by exploiting large system asymp-
totics, we can simplify both the complexity of the stochastic system, as well as the
complexity of the economic system.

The reader is referred to the companion technical report for the proofs of all theorems
in this paper [20].

2 Resource Sharing Game

We consider a queueing game in which K classes of jobs share a single server of unit
capacity. Class i (i = 1, · · · , K) jobs arrive according to a Poisson process with arrival
rate λi and have i.i.d. exponentially distributed service requirements (measured in units
of service, e.g., processing cycles) with mean 1/μi. Throughout this paper, we assume
for simplicity that μi = μ for all classes. Let λ =

∑
k λk denote the total arrival rate

to the system. Also, let ρi = λi/μ be the load of class i, and define the system load as
ρ =

∑
k ρk =

∑
k λk/μ. To ensure stability, we assume ρ < 1. It is well known that

under this condition, the resulting queueing system is ergodic and possesses a unique
steady state distribution [13]. Waiting and being served in the system induce a cost ci per
unit time for users of class i. Without loss of generality we assume c1 > c2 > · · · > cK :
if two classes i and j have the same cost ci = cj , then they can be merged to one class
with arrival rate λi + λj .

We assume that the server allocates its capacity according to the discriminatory pro-
cessor sharing (DPS) policy. Under this policy, each job is associated with a priority
level. If there are currently N jobs in the system and job � has chosen priority level β�,
then the fraction of service capacity allocated to job k is β�/

∑N
m=1 βm.

Upon arrival, without observing the state of the system, each job chooses a priority
level β. Thoughout the paper, we assume β ≥ β, where β > 0 is a sufficiently small
minimum priority level required of any participant in the system. We consider a family
of pricing rules for priority that we refer to as α-fair pricing rules, where α > 0.
Formally, we assume that if a job chooses priority level β, then the system manager
charges that job a price βα, where α > 0. Varying α allows us to study a range of
pricing schemes. In particular, as α → 0, jobs face a strongly diminishing marginal
cost to higher choices of β; while as α → ∞, jobs face a strongly increasing marginal
cost with higher choices of β.

The pricing rules we consider are closely related to α-fair allocation rules studied
in the networking literature [15]. In an α-fair allocation system, one unit of resource
is allocated to N users, whose utility functions are characterized by α: U (α)(x) =
x1−α/(1 − α) if α 	= 1, and U (α)(x) = log(x) if α = 1. Users make payments for use
of the system; let w� be the payment of user �; the payments determine users’ weights
in the system. Formally, suppose the payment vector of users is w and the allocation
vector is x; then the resource manager solves the following optimization problem:

max
x

N∑
�=1

w�U
(α)(x�) s.t.

N∑
�=1

x� ≤ 1,
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The solution of this problem is x� = w
1/α
� /(

∑
w

1/α
m ). A well-known example of an α-

fair allocation rule is the proportionally fair allocation rule, obtained when α = 1 [10]:
resource is allocated proportional to payment. Now suppose that the α-fair pricing rule
is used in our model, so that w� = βα

� . Then the α-fair allocation rule reduces to
the discriminatory processor sharing policy described above—i.e., allocation of server
capacity in proportion to the priority levels β�.

In this paper we will generally be interested in scenarios where all jobs of the same
class i choose the same priority level. In an abuse of notation we denote by βi the prior-
ity level chosen by all class i jobs, and in this case we succinctly denote (β1, · · · , βK)
by β. We refer to β as the class priority vector.

Let V (β; β) be the expected processing time for a job with priority β that arrives
to the system in steady state, with the class priority vector given by β. Observe that
with this notation, a class i job with priority level βi has expected processing time
V (βi; β). For convenience we define Wi(β) = V (βi; β). The total cost of a user is
cV (β; β) + βα, where c is the user’s unit time cost and β is its priority level.

We frequently make use of Little’s law, which provides a relationship between steady
state expected processing times and steady state queue lengths [13]. In particular, let Ni

denote the steady state number of class i jobs in the system. In a system consisting of
K classes (λi, βi), i = 1, . . . , K , Little’s law establishes that in steady state, for every
class i we have E[Ni] = λiWi.

2.1 Nash Equilibrium

We consider two types of games for this system: the job level game and the class level
game. In the job level game, each job is an individual user, aiming to minimize its
expected total cost by choosing its own priority level β. Although jobs from the same
class are allowed to choose different priority levels, because jobs of the same class share
the same parameters ex ante, we restrict our attention only to symmetric equilibria of
the job level game; these are equilibria where jobs from the same class choose the
same priority levels. Such an equilibrium can be characterized by a class priority vector
(β1, · · · , βK).

Definition 1. A job level Nash equilibrium consists of a class priority vector β =
(β1, · · · , βK) such that for all i = 1, · · · , K ,

βi = arg min
β≥β

[ciV (β; β) + βα] , ∀ i = 1, · · · , K. (1)

In the class level game, each class is regarded as a single user and chooses a priority
level for all of its jobs, therefore the equilibrium is again characterized by a class priority
vector.

Definition 2. A class level Nash equilibrium consists of a class priority vector β =
(β1, · · · , βK) such that for all i = 1, · · · , K ,

βi = arg min
β≥β

[ciWi(β1, · · · , βi−1, β, βi+1, · · · , βK) + βα], ∀ i = 1, · · · , K. (2)
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We emphasize that, although jobs from the same class choose the same priority in both
the symmetric job level equilibrium and the class level equilibrium, these two equilibria
are not identical. The difference is that in the class level game, changing the priority
level of a whole class i causes an externality within the class itself, while by contrast,
in the job level game, a single job alters its priority level in isolation. In this paper, we
mainly study the job level game, but also briefly discuss how our study can be adapted
to the class level game.

2.2 Characterizing Processing Times

Nash equilibria of both the job level and class level games require characterization of
the processing times V and Wi, which is in general quite complex. For the K class
DPS model, Fayolle et al. [6] show that the expected steady state processing time Wi

for each class i can be determined by a linear system.

Theorem 1. [6] In a K-class DPS model with class priority vector β, (W1(β),
· · · , WK(β)) is the unique solution of the following system of equations:

μWk(β) −
K∑

i=1

λiβi

βi + βk
[Wk(β) + Wi(β)] = 1, k = 1, · · · , K. (3)

On the other hand, computing the job level processing time V (β; β) can be reduced to
computing the class level processing time Wi(β) as stated by the following theorem.

Theorem 2. Let Ni be the steady state number of class i jobs in a K-class DPS system
with class priority vector β. Then the steady state processing time of a job with priority
β is

V (β; β) = U0(β; β) +
K∑

i=1

Ui(β; β)E[Ni], (4)

and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ui(β; β) =

βi

βi + β
U0(β; β), i = 1, · · · , K;

U0(β; β) =

[
μ −

K∑
i=1

λiβi

βi + β

]−1

.

(5)

The values of E[Ni] can be obtained by applying Little’s law to the solution of the sys-
tem of linear equations (3). We conclude, therefore, that solving for V (β; β) in (4) can
be reduced to computing Wi(β). In general, explicitly solving (3) requires the inversion
of a nontrivial K×K matrix with complexity O(K3), thus in general there is no closed
form expression for either Wi or V .

Nevertheless, when K = 1 or K = 2, we are able to solve for Wi and V in closed
form. The solution of (4) with K = 1 is first established in [8, 7] and will be used
frequently later:

V (β; β̂) =
1

μ(1 − ρ)
· β(1 − ρ) + β̂

β̂(1 − ρ) + β
. (6)

When K = 2, the solution for Wi is given by [6], and the solution for V directly
follows. Both solutions are lengthy and omitted for brevity.
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2.3 Existence of NE

Existence of Nash equilibrium can be guaranteed when α ≥ 1, by exploiting convexity
of the job cost function in (1).

Theorem 3. There exists a Nash equilibrium for the job level game when α ≥ 1.

When α < 1, the payment term βα is strictly concave, therefore the convexity of the
objective function is not guaranteed; establishing existence of Nash equilibrium in this
regime remains an open question.

As usual, this existence result is nonconstructive, since it uses a fixed point theorem.
In general, given the implicit equations that define the processing times in (3), there
is no closed form characterization of the Nash equilibrium, and no tractable approach
for computation is available. Although we could resort to some heuristics (e.g., best
response dynamics) to approach NE, each step of such an algorithm requires computing
a range of processing times with fixed parameters, and as established above each such
computation has complexity O(K3). Further, there is no guarantee that such dynamics
will converge.

3 Heavy Traffic Approximation: Job Level

In the remainder of the paper we consider an alternate approach to the equilibrium
analysis, by approximating the processing time. We aim to overcome the complexity
of computing the processing times by exploiting a heavy traffic approximation, i.e.,
an approximation where the load approaches service capacity. Such an approximation
is relevant for large systems such as cloud computing services, where providers will
typically not want to provision significant excesses of capacity relative to demand.

Since Wi(β) = V (βi; β), our focus is the job level processing time V (β; β).

3.1 Approximating the Processing Time

In heavy traffic, a phenomenon known as state space collapse gives us a simplified solu-
tion for the steady state distribution of the system [18]; informally, state space collapse
refers to the fact that the numbers of jobs of each class in the system become perfectly
correlated when the system is heavily loaded.

In a slight abuse, whenever we write ρ → 1, we mean that we consider a sequence
of systems such that (ρ1, · · · , ρK) converges to some (ρ1, · · · , ρK) with

∑K
i=1 ρi =

1. Moreover, we emphasize that both V (β; β) and Wi(β) depend on ρ, though we
suppress this dependence for notational brevity. Let Ni denote the steady state number
of type i jobs in the system. Then we have the following result on the joint steady state
distribution of (N1, · · · , NK) for a DPS system in heavy traffic.

Theorem 4. [17] Let Ni be the steady state number of class i jobs in a K-class DPS
system with class priority vector β. Then as ρ → 1, we have

(1 − ρ)(N1, · · · , NK) d.→ Z · (ρ1

β1
, · · · ,

ρK

βK
), (7)
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where “
d.→” denotes convergence in distribution, and Z is an exponentially distributed

random variable with parameter γ(β) =
∑K

i=1 ρi/βi.

Convergence of the joint distribution directly implies convergence of marginal distribu-

tions, so (1−ρ)Ni
d.→ Zρi/βi for each i. Moreover, the second moment of Ni is shown

to be uniformly bounded [17], so the Ni’s are uniformly integrable. It follows from [3]
that in this case convergence in distribution implies convergence in mean, and hence,

(1 − ρ)E[Ni] → E[Z]
ρi

βi
=

ρi

βiγ(β)
as ρ → 1. (8)

Taking advantage of this approximation of E[Ni], we are now able to approximate
V (β; β). Substituting (5) and (8) into (4) yields

lim
ρ→1

(1 − ρ)V (β; β) = lim
ρ→1

U0(β; β)

[
K∑

i=1

ρi

γ(β)(βi + β)
+ (1 − ρ)

]

= lim
ρ→1

(1 − ρ)γ(β)
∏K

i=1(βi + β) +
∑K

i=1 ρi

∏
j �=i(βj + β)

μγ(β)[(1 − ρ)
∏K

i=1(βi + β) + β
∑K

i=1 ρi

∏
j �=i(βj + β)]

=
1

μβγ(β)
. (9)

In the light of the above approximation, we have the following definition.

Definition 3. The heavy traffic processing time for a job with priority level β in a
system with K classes with class priority vector β is defined as

V HT (β; β) =
1

(1 − ρ)
· 1
μβγ(β)

, where γ(β) =
1
ρ

K∑
i=1

ρi

βi
. (10)

We note that V HT (β; β) has a closed form, and is easy to compute. Moreover, it is
asymptotically exact in the heavy traffic regime: it is straightforward to show that as
ρ → 1, γ(β) → γ(β), and hence, (1 − ρ)[V HT (β; β) − V (β; β)] → 0. Next, we will
approximate the Nash equilibrium based on this approximation of processing time.

3.2 Heavy Traffic Equilibrium

Recall from Definition 1 that β = (β1, · · · , βK) is a job-level Nash equilibrium if (1)
holds, i.e.,

βi = arg min
β>β

ciV (β; β) + β, i = 1, · · · , K.

For general K it is quite hard to solve for pure Nash equilibrium because: (i) computing
V (β; β) requires matrix inversion to solve the linear system (3), which can only be
done numerically; and (ii) even if we are able to solve V (β; β) numerically and obtain
optimality conditions for each player (which cannot be done in closed form), we would
still need to solve a possibly nonlinear system with K equations and K unknowns to
compute the Nash equilibrium.

In this section, we propose a novel concept of equilibrium which can be used to ap-
proximate the Nash equilibrium, yet can be computed in closed form. We approximate
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V (β; β) by V HT (β; β) in the objective function, and based on this approximation we
define a concept of equilibrium that we call heavy traffic equilibrium (HTE) for job
level games, as follows.

Definition 4. A heavy traffic equilibrium of the job level game consists of a set of
priorities β = (β1, · · · , βK) such that

βi = arg min
β≥β

(
ciV

HT (β; β) + βα
)
, i = 1, · · · , K.

We can explicitly compute the heavy traffic equilibrium.

Theorem 5. A heavy-traffic equilibrium always exists, and it is unique. Moreover, it
can be calculated in closed form:

βi = c
1

α+1
i [α(1 − ρ)ρ−1S1]−

1
α , (11)

where S1 =
∑K

i=1 λic
− 1

α+1
i .

We have two remarks on this result. First, this closed form expression allows us to
carry out the analysis on sensitivity, efficiency, and revenue of the HTE (see Section 5).
Second, the HTE is easily computable with complexity O(K). In comparison, the com-
plexity for computing the exact processing time with fixed parameters is O(K3), and
as discussed computing exact NE is intractable.

We have observed above that the difference between the heavy traffic processing
time and the exact processing time approaches zero as ρ → 1, when scaled by a factor
1 − ρ. Using this approximation, we can also prove an approximation theorem for the
heavy traffic equilibrium: we show that deviating by any constant factor from the HTE
is not profitable as ρ → 1.

Theorem 6. Consider a sequence of systems indexed by n such that classes have the
same service capacity μ, and the loads of the systems ρ(n) → 1 as n → ∞. Let β(n) be
the unique HTE of the n-th system, then for any δ ≥ 0,

lim
n→∞

(1 − ρ(n))
[
ciV(n)(β

(n)
i ; β(n)) + (β

(n)
i )α − ciV(n)

(
δβ

(n)
i ; β(n)

)
−

(
δβ

(n)
i

)α]
≤ 0.

Here V is subscripted by (n) to indicate that the processing time is computed in system
n with load ρ(n).

In the theorem, we consider deviations by a multiplicative constant factor rather than by
an additive constant because (11) implies that, as ρ → 1, the heavy traffic equilibrium
increases without bound; as a result, it is straightforward to check that any additive
constant deviation has no beneficial effect as ρ approaches 1. Note that the waiting
time is only asymptotically exact up to a 1 − ρ scaling, thus the same is true for this
approximation theorem as well. Indeed, this is what we give up by studying heavy
traffic: while we gain analytical tractability, the “resolution” to which we can study
deviations is scaled by 1 − ρ. This tradeoff is systematic throughout the study of large
scale queueing models even without strategic behavior.
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4 Heavy Traffic Approximation: Class Level

Based on the heavy traffic processing time approximation results in Theorem 4, one can
also propose a similar heavy traffic equilibrium (HTE) concept for class level games.
However, although the processing time approximation allows us to greatly simplify
the computation of best response strategy, we are not able to obtain the closed form
expression for this class level HTE. The main reason is that, unlike job level games, a
class level game has an intra-class externality behavior: in a class level game, a class
chooses one priority level for all its jobs simultaneously; while in a job level game, a
job can choose any priority level regardless of other jobs belonging to its class.

Nevertheless, the intra-class externality effect will become negligible in a regime
where the number of classes is large; this is a particularly useful regime for computing
services where the number of users grows large. This observation motivates us to con-
sider a limiting model in which the number of classes approaches infinity and any single
class becomes infinitesimal. Thus, it can be connected to the job level game model. We
refer the reader to the companion technical report for an investigation of this limiting
class level game model in which we show that the heavy traffic equilibrium exists, is
unique, can be computed in closed form, and is the limit of the finite class equilibrium
as the number of class goes to infinity [20].

5 Sensitivity, Efficiency and Revenue

The tractability of heavy traffic equilibrium allows us to analytically study parameter
sensitivity, as well as efficiency and revenue at the HTE equilibrium. We only study the
job level HTE in this section; a similar investigation can be easily extended to the class
level HTE. Throughout this section, we let β∗ denote the job level HTE.

5.1 Sensitivity

In this subsection, we analyze the sensitivity of the HTE, i.e., how the equilibrium be-
haves with respect to changes in system parameters. These observations follow directly
from (11).

Sensitivity with respect to c. If all ci are scaled by a constant ζ > 0, then every
β∗

i is scaled by ζ
1
α . This is rather intuitive since the objective function is the sum of

expected processing cost and βα
i , and the expected processing cost does not change any

Vi. Therefore the equilibrium is the same up to a scaling factor.
Sensitivity with respect to ρ. The ratio β∗

i /β∗
j = (ci/cj)

1
α+1 is independent of ρ,

i.e., changing ρ will change each β∗
i but will not affect β∗

i /β∗
j for any i, j. Therefore

the ratio between service capacity allocated to any pair of jobs, as well as the ratio
between the heavy traffic processing times of a pair of jobs, are invariant to the load of
the system.

Sensitivity with respect to α. When α → 0, every β∗
i → ∞; when α → ∞, every

β∗
i → 1. This is due to the fact that as α → 0, jobs face a strongly diminishing marginal

cost to higher choices of β, and hence, prefer to choose higher β at the equilibrium;
while the effect is reversed as α → ∞.
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5.2 Efficiency

In HTE, efficiency is characterized by the expected total cost incurred to the system in
one unit of time:

C =
K∑

i=1

λiciV
HT (β∗

i ; β∗) =
(

ρ

1 − ρ

) (
K∑

i=1

λic
α

α+1
i

) (
K∑

i=1

λic
− 1

α+1
i

)−1

. (12)

We call C the system processing cost (a more efficient system has a lower value of C).
Given fixed λi and ci (i = 1, · · · , K), the efficiency depends on the system parameter
α and the load ρ as follows.

Dependence of C on ρ. We note that C is proportional to ρ/(1 − ρ), and hence is
increasing in ρ. This is because a larger load ρ implies a busier system, and there-
fore the processing time is longer. (Note that we fixed λ, so varying ρ is equivalent to
varying μ.)

Dependence of C on α. It is well known that the system optimal scheduling policy is
the c-μ rule [5]: classes are given strict priority in descending order of ciμi (or equiva-
lently in this paper, in descending order of ci, since we assume that all μi are the same).
That is, for any 1 ≤ i, j ≤ K , class j jobs are preempted by class i jobs if ciμi > cjμj .
Jobs with the same value of cμ are served in first-in-first-out (FIFO) scheme. Since
β∗

i /β∗
j = (ci/cj)

1
α+1 , for ci > cj , the ratio β∗

i /β∗
j is higher with smaller α, so we

expect higher α lead to less efficient equilibria. This intuition is analytically stated in
the following theorem.

Theorem 7. The HTE system processing cost C is increasing in α > 0.

We note that even when α approaches 0, the HTE does not approach social optimum.
In fact, for any i, j such that ci > cj , we have that β∗

i /β∗
j = (ci/cj)

1
α+1 , and hence

1 < β∗
i /β∗

j < ci/cj . On the other hand, with the c-μ rule, if ci > cj , then class
i jobs completely preempt class j jobs, which can be interpreted as the case where
β∗

i /β∗
j = ∞. Therefore, it is clear that the HTE can never be as efficient as the c-μ rule,

for any choice of α. However, we can upper bound the price of anarchy (PoA) of the
HTE, as stated in the following theorem. The PoA is the ratio C/Copt, where Copt is the
minimum expected system processing cost (achieved by the c-μ rule).

Theorem 8. The price of anarchy (PoA) of the HTE is upper-bounded by:

C
Copt

<

∑K−1
i=1 (λi/λK)(ci/cK)

α
α+1 + 1∑K−1

i=1 (λi/λK)(ci/cK)−
1

α+1 + 1
<

(
λ − λK

λK

) (
c1

cK

) α
α+1

+ 1.

Note that the upper bound can be made arbitrarily large through appropriate parameter
choices; further, this is tight, in the sense that there exist systems where the PoA of HTE
is in fact arbitrarily large. For example, let λi = λ for all i, and set cK = 1, ci = m
for i = 1, · · · , K − 1, and choose μ so that ρ = 1 − m−2. Then it can be shown that
C

Copt = Ω
(
(K − 1)m

α
α+1

)
as m → ∞ (see the proof of the theorem for details).

We also note that the PoA bound in increasing in α, which matches the intuition that
a scheme closer to strict priority in descending cost order yields higher social welfare.
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If we let α → 0, then the PoA is asymptotically bounded by λ/λK . In that case, if the
arrival rates of all classes are the same, then the PoA is bounded by K . We can also let
λ1, · · · , λK−1 → 0 to make the PoA approach 1, but this is not surprising since in this
case the system essentially consists of only one class.

5.3 Revenue

The revenue of the server is the sum of expected payments in one unit of time:

R =
K∑

i=1

λi(β∗
i )α =

(
ρ

α(1 − ρ)

) (
K∑

i=1

λic
α

α+1
i

)(
K∑

i=1

λic
− 1

α+1
i

)−1

. (13)

Given fixed λi and ci (i = 1, · · · , K), the revenue depends on the system parameter α
and the load ρ as follows.

Dependence of R on ρ. The revenue is proportional to ρ/(1 − ρ), therefore the rev-
enue is increasing in ρ. Heavier traffic will induce greater congestion, and hence, jobs
have to invest more in their purchase of priority in order to keep the same performance.

Dependence of R on α. The revenue depends on α in three terms, and it seems that
in general the effect of changing α in the last two terms is significantly smaller than that
of changing α in the first term ρ/(α(1 − ρ)). Hence we would expect that the revenue
is in general decreasing in α. The next result shows this intuition holds if c1/cK is not
too high.

Theorem 9. The revenue R is decreasing in α > 0 if c1/cK < e4.

On the other hand, R could be increasing in α in some cases. For instance, if K = 2
and c1/c2 is large enough, then ∂R/∂α is positive around α = 1 (see the proof of
theorem for details). To explain this special scenario where the monotonicity does not
hold, we first note that a smaller α in general induces a higher revenue because jobs
have incentive to purchase higher priority (as a response to the stronger diminishing
marginal cost effect). However, in the HTE, significant asymmetry in costs will result
in significant asymmetry in equilibrium priorities. Therefore when c1/cK is large, the
optimal priorities already exhibit significant differences even when α is not small, and
thus in equilibrium at small α, jobs have lower incentive to increase their priorities
compared to what they do with mutually comparable costs.

With both (12) and (13), it is quite surprising to see that in the HTE,

total cost of all jobs = C = αR = α · total revenue of the system.

Thus, we obtain an interesting insight: another interpretation of α is the users’ equilib-
rium cost per unit revenue. We have shown that the user’s total cost is increasing in α,
(i.e., the system efficiency is decreasing in α), and the system revenue is decreasing in
α under some mild conditions. Therefore, in a wide range of regimes, from the stand-
point of system manager, smaller α is more favorable in terms of both efficiency and
revenue. Note that smaller α is somewhat more “unfair,” however, as it approaches a
strict priority system.
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Abstract. Social choice theory and cooperative (coalitional) game theory have
become important foundations for the design and analysis of multiagent systems.
In this paper, we use cooperative game theory tools in order to explore the coali-
tion formation process in the coalitional manipulation problem. Unlike earlier
work on a cooperative-game-theoretic approach to the manipulation problem [2],
we consider a model where utilities are not transferable. We investigate the is-
sue of stability in coalitional manipulation voting games; we define two notions
of the core in these domains, the α-core and the β-core. For each type of core,
we investigate how hard it is to determine whether a given candidate is in the
core. We prove that for both types of core, this determination is at least as hard as
the coalitional manipulation problem. On the other hand, we show that for some
voting rules, the α- and the β-core problems are no harder than the coalitional
manipulation problem. We also show that some prominent voting rules, when ap-
plied to the truthful preferences of voters, may produce an outcome not in the
core, even when the core is not empty.

1 Introduction

Voting constitutes a natural methodology for a group of agents to make a joint decision
in spite of (possibly) conflicting preferences. Unfortunately, voting and elections are
not a universal, perfect solution to preference aggregation problems. For example, the
classic result of Gibbard and Satterthwaite [9,13] says that in sufficiently general set-
tings, any reasonable voting rule may lead to a situation where some voter(s) are better
off by casting votes different from their true preferences (this is called manipulation or
strategic voting). One of the most influential ideas regarding the computational study
of elections, due to Bartholdi, Orlin, Tovey, and Trick [4,3], was to study the compu-
tational complexity of computing manipulative votes. The rationale behind it was that
if planning a manipulation were computationally hard, then in practice voters would
not be able to vote strategically (see the surveys of Faliszewski, Hemaspaandra, and
Hemaspaandra [7] and of Faliszewski and Procaccia [8] for a detailed overview of this
approach and for two viewpoints regarding its applicability).

N. Chen, E. Elkind, and E. Koutsoupias (Eds.): WINE 2011, LNCS 7090, pp. 363–374, 2011.
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Formally, in the coalitional manipulation problem, introduced by Conitzer, Sand-
holm, and Lang [5], the voters are divided into two groups, the manipulators and the
nonmanipulators. The votes of the nonmanipulators are assumed to be known, and the
problem is to determine whether the manipulators can use their votes to achieve a given
goal. The goal is either to ensure that some preferred candidate wins (the construc-
tive variant) or to ensure that some despised candidate does not win (the destructive
variant). Further, we obtain different flavors of the problem depending on whether the
votes are weighted or not, which voting rule is used, etc. Some results on coalitional
manipulation can be found in [17,15,14,16]; see also surveys [8,7].

Let us focus on unweighted constructive coalitional manipulation. If all the manip-
ulators have identical preferences, this is exactly the problem that they want to be able
to solve—they would first try to ensure their most preferred candidate’s victory; then,
if that were impossible, they would try the second best one, third best one, and so on,
until they would either find a successful manipulation or determine that they cannot do
better than electing the truthful winner.

Nonetheless, generally manipulators do not have identical preferences. In this case,
the manipulators may still work together, but it is much less clear which candidate they
should try to promote (even ignoring computational considerations). While they may
all agree that they would prefer a different winner than the truthful one, deciding which
candidate to support is a whole new game that they need to play among themselves. (To
push our scenario to the limit, consider a situation where all the voters are manipulators.)

In this paper, we take the viewpoint of cooperative game theory to solve such games
among the manipulators, and study computational aspects of the relevant solution con-
cepts. As in most of the literature on voting, we assume that the agents do not have the
ability to make or receive payments, so that we are in the nontransferable utility (NTU)
case of cooperative game theory. (Recently, Bachrach, Elkind, and Faliszewski [2] stud-
ied a similar problem in the transferable utility setting, and obtained results linking
coalitional manipulation [5] and bribery [6] problems with their cooperative game-
theoretic model.) Moreover, in this setting, what one (sub)coalition of manipulators
can achieve depends on the actions (votes) of the manipulators outside the coalition.
We consider two different ways of addressing this—via the standard notions of the α-
and the β-core [12].

2 Preliminaries

Let us now define the basic notions of (computational) social choice theory and coali-
tional game theory, as used in this paper.

An election E is a triple (C, V,P), where C = {c1, . . . , cm} is the set of candidates,
V = {1, . . . , n} is the set of voters, and P = (P1, . . . , Pn) is a preference profile of
voters in V . That is, each voter i, 1 ≤ i ≤ n, is associated with preference order Pi

fromP . A preference order is a linear order over the candidates in C. We will sometimes
write �i instead of Pi. We write L(C) to denote the set of all linear orders over C. Let
U be some subset of V . By PU we mean (Pi)i∈U and by P−U we mean (Pi)i�∈U . Using
standard notational conventions, we have P = (PU ,P−U ).

A voting rule R is a function that, given election E as input, returns one of the can-
didates, denoted R(E), as the election’s winner. (We assume ties are resolved by some



An NTU Cooperative Game Theoretic View of Manipulating Elections 365

simple tie-breaking rule and that the manipulators, unwilling to rely on tie-breaking, al-
ways seek unique winners; we point the reader to the work of Obraztsova, Elkind, and
Hazon [11], and Obraztsova and Elkind [10] for a detailed discussion of tie-breaking in
voting manipulation.) We focus on the following (families of) voting rules:

Positional Scoring Rules. Let s = (s1, . . . , sm) be a vector of non-negative integers,
such that s1 ≥ s2 ≥ . . . ≥ sm. For each voter, a candidate receives s1 points if
it is ranked first by the voter, s2 points if it is ranked second, etc. The score of a
candidate is the total number of points the candidate receives. The winner is the
candidate with the maximum score. The scoring rules which we will consider here
are k-approval, where s = (1, . . . , 1, 0, . . . , 0) (s1 = . . . = sk = 1; sk+1 = . . . =
sm = 0), Plurality, where s = (1, 0, . . . , 0), and Borda, where s = (m − 1, m −
2, . . . , 0).

Plurality with Runoff. In this rule, a first round eliminates all candidates except the
two with the highest plurality scores. The second round determines the winner be-
tween these two by their pairwise election.

Simplified Bucklin. A candidate c’s Bucklin score is the smallest number k such that
more than half of the votes rank c among the top k candidates. The winner is the
candidate that has the smallest Bucklin score.1

We use the term (coalitional) manipulation to refer to a situation where a voter (a group
of voters) casts votes not according to his (their) true preferences, but rather to obtain
some goal. It is one of the best-studied forms of strategic behavior in elections (see the
surveys [8,7]). The definition below is taken from the paper of Bachrach, Elkind, and
Faliszewski [2], which itself is inspired by the definition of Conitzer, Sandholm, and
Lang [5].

Definition 1. For any voting rule R, an instance I = (E, S, c) of the R-COALITIONAL

MANIPULATION problem is given by an election E = (C, V,P), a set of manipulators
S, S ∩ V = ∅, and a distinguished candidate c ∈ C. It is a “yes”-instance if there is
a vector PS = (Pi)i∈S ∈ (L(C))|S| such that R(P ,PS) = c, and a “no”-instance
otherwise.

Note that in the traditional definition of coalitional manipulation the manipulators, un-
like honest voters, do not have preferences over the candidates; they simply want to get
a particular candidate elected. Thus, this definition eliminates the problem of deciding
which candidates the manipulators should support by making it external to the setting.

3 Manipulation Model

The goal of this paper is to study the unweighted constructive coalitional manipulation
problem in the setting in which not all manipulators have identical preferences. Specif-
ically, our focus is on the computational complexity of deciding which candidates the
manipulators may support in a stable way, without breaking the coalition.

1 The Nonsimplified Bucklin rule additionally breaks ties by the number of votes that rank a
candidate among the top k candidates. In computational social choice it is common to focus
on Simplified Bucklin instead of its full variant.
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Formally, we consider the following setting. We are given an election E = (C, V,P)
where some of the voters are truthful and some are willing to manipulate. We denote
the set of possible manipulators by M and we will refer to them as colluders. In our
model the remaining voters, those in H = V \M , are honest voters who vote truthfully.
We assume that the manipulators have a way of communicating with one another (this
is a standard assumption, though typically it is not mentioned explicitly). We ask which
candidate the colluders should support. Naturally, the answer to this question depends
strongly on the attitudes that the colluders have towards one another, and on the way
they expect one another to behave. We consider two settings, depending on how the
colluders react to the breaking out of the coalition by some subset M ′ of M : (a) the
pessimistic model, where players in M ′ want to succeed irrespective of the reaction of
players in M \M ′, and (b) the adaptive model, where players in M ′ can pick their votes
depending on the votes of players in M \ M ′.

Definition 2. Let R be a voting rule and let E = (C, V,P) be an election with colluder
set M . Fix a candidate c ∈ C and a coalition S ⊆ M .

1. We say that c is feasible for S if there is a profile P ′
S such that R(P ′

S ,P−S) = c.
2. We say that c is α-feasible for a coalition S if there is a preference profile P ′

S such
that for all preference profiles P ′′

M\S it holds that R(P ′
S ,P ′′

M\S ,P−M ) = c.
3. We say that c ∈ C is β-feasible for a coalition S ⊆ M if for all preference profiles

P ′
M\S there exists a preference profile P ′′

S such that R(P ′′
S ,P ′

M\S ,P−M ) = c.

We denote the set of all candidates that are feasible (respectively, α-feasible, β-feasible)
for S by F (S) (respectively, Fα(S), Fβ(S)).

As a side remark, it is easy to see that F (S) is never empty as it always contains R(E);
but Fα(S) and Fβ(S) may be empty.

Using our feasibility notions, we can adapt the notions of α- and β-core to our set-
ting [12].

Definition 3. Let E = (C, V,P) be an election, M be a subset of V , R be a voting
rule, and c be a candidate. We say that c belongs to the α-core (respectively, β-core) if
c ∈ F (M) and there is no candidate c′ ∈ C and non-empty coalition W ′ ⊆ M such
that (a) c′ ∈ Fα(W ′) (respectively, c′ ∈ Fβ(W ′)), and (b) each voter in W ′ prefers c′

to c.

One can see that these notions are related to the notion of strong Nash equilibrium
(SNE) in the game played by the colluders. Recall that an SNE is a Nash equilibrium
in which no coalition, taking the actions of its complements as given, can cooperatively
deviate in a way that benefits all of its members [1]. In the context of SNE, we have
the following scenario: the colluders have agreed upon some voting profile. The devi-
ating coalition can privately communicate; when a coalition coordinates a deviation,
the remaining players are unaware of it, so they stick to their agreed-upon strategies.
In this model, it is relatively easy for a sub-coalition to break off since the deviating
colluders know in advance how the rest of the colluders will vote. On the other hand,
the α-core and the β-core model an election in which it is non-trivial for a subgroup of
manipulators to break off from the coalition. (Consider, e.g., an election on choosing
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an acceptable debt level for a country and the manipulators being MPs from the ruling
party. Even if they personally disagreed with some particular proposed debt level, they
would need to obtain very strong support before breaking off from the coalition.) Here,
if a subcoalition breaks off then it has to be ready to face every possible reaction of the
colluders they abandon.

The difference between the α-core and the β-core is that in the case of the β-core
the splitting subcoalition knows that it will know the remaining colluders’ votes before
having to cast their own. (In the parliamentary example from the previous paragraph,
this means that MPs leaving the ruling party know they will be asked about their vote
on the debt issue only after the ruling party will be.)

The above intuitions are supported by the observation that, by definition, if P ′
M is

SNE then c = R(PH ,P ′
M ) ∈ β-core, and β-core ⊆ α-core. (To see this, note that if

for c′ ∈ C \ {c}, and W ′ ⊆ M such that everybody in W ′ prefers c′ to c, c′ ∈ Fβ(W ′)
then W ′ can deviate from P ′

M to make c′ a winner, and so P ′
M is not a SNE; and if for

some candidate c′ and set W ′ ⊆ M it holds that c′ ∈ Fα(W ′) then c′ ∈ Fβ(W ′).) That
is, settings where the α-core is an appropriate model are more stable than those where
colluders do not counteract deviations by other colluders.

It is interesting that there are prominent voting rules and preference profiles for which
the non-empty α-core/β-core does not contain the truthful winner.

Example 4. Consider a Borda election with candidate set C = {a, b, c, d, e, f}, and
the following preference profiles (the numbers in parentheses are the serial numbers
of the voters): (1) f � d � b � c � a � e, (2) a � f � b � c � d � e, (3)
b � f � d � c � a � e, and (4) d � b � f � a � e � c.

Here we have one honest voter (1), and the rest are the colluders. In the above elec-
tion, f wins. Now consider the set Wbf = {3, 4}. If (3) votes b � e � c � a � d � f ,
and (4) votes b � a � e � c � d � f , then no matter how voter (2) votes, b wins
the election. Hence b ∈ Fα(Wbf ) ⇒ f /∈ α-core. We claim that b ∈ β-core (and hence
b ∈ α-core). Indeed, b is the Condorcet winner among the colluders. Hence, if the two
colluders who prefer b to some candidate x ∈ {a, c, d, e, f}, vote b � e � c � a �
d � f and b � a � e � c � d � f , then no matter how the third colluder votes, b wins
the election. Hence, no other candidate is β-feasible for the coalition that prefers him,
which implies b is in the β-core.

We also have a similar example for Maximin, but we omit it due to space restrictions.2

To study our core notions computationally, we need to define an appropriate decision
problem.

Definition 5. For a voting rule R, an instance I = (E, M, c) of the R-α-CORE (re-
spectively, R-β-Core) problem, is given by an election E = (C, V,P), a set of colluders
M ⊆ V and a candidate c ∈ C. It is a “yes”-instance if c is in the α-core (respec-
tively, β-core) of the corresponding game among the manipulators, and a “no”-instance
otherwise.

2 See ftp://ftp.cs.huji.ac.il/users/jeff/wine11zuckermanfull.pdf
for a version of this paper containing the example.

ftp://ftp.cs.huji.ac.il/users/jeff/wine11zuckermanfull.pdf
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4 Main Results

In this section we present our main computational results. Namely, we provide a com-
putational analysis of the notions of the α- and β-cores. We first provide a connection
between our notions of the core and the standard problem of coalitional manipulation.

Theorem 6. Given an election E = (C, V,P), a set M ⊆ V , a voting rule R and a
candidate c ∈ C, the problem of determining whether c is in the α- or β-core is at least
as hard as the corresponding coalitional manipulation problem.

Proof. We show a reduction from the coalitional manipulation problem. Given a voting
rule R and an instance I = (E, S, c), where E = (C, V,P), of the R-Coalitional
Manipulation problem, we construct the core problem in the following way. We set
E′ = (C, V ′,P ′) where V ′ = V ∪ S, P ′ = P ∪ P ′

S , and P ′
S is a profile of voters in S

where c is ranked first in all the ballots, and the rest of the candidates are ranked in some
arbitrary order. We set M = S. There exists a manipulation by voters in S making c
win in the coalitional manipulation problem if and only if c is in the core (either α or β)
of the core problem (which is defined by the instance (E′, M, c)), since here c is in the
core if and only if c is feasible for the coalition M (as there is no non-empty coalition
W ′ where the voters in W ′ prefer c′ to c). ��

However, could it be that the α- or the β-core problems are strictly harder than the
coalitional manipulation problem? We will see that for many voting rules, the answer
is ”no”. Due to Theorem 6, we focus on those voting rules for which the coalitional
manipulation problem is polynomial-time solvable.

Theorem 7. Let R be a positional scoring rule with scoring vector s = (s1, . . . , sm)
such that the R-Coalitional Manipulation problem is polynomial-time solvable. Then
there exists a polynomial-time algorithm solving the R-α-Core problem.

Proof. Suppose we are given an instance I = (E, M, c) of the R-α-Core problem,
where E = (C, V,P). Suppose w.l.o.g. that sm = 0. The algorithm first checks whether
c ∈ F (M) by solving the R-Coalitional Manipulation problem. Then it goes over
all the other candidates. For each candidate x 	= c it checks what is the maximal set
Wxc ⊆ M of the colluders who prefer x to c. If Wxc 	= ∅, it builds a “profile”3 QM\Wxc

for M \ Wxc s.t. the score of x is s(QM\Wxc
, x) = 0, and the score of any other

candidate y 	= x is s(QM\Wxc
, y) = s1 · |M \Wxc|. Finally, it solves the R-Coalitional

Manipulation problem (C, V \Wxc,PH ∪QM\Wxc
), x, |Wxc| to see whether the votes

in Wxc can be cast in order to make x win the election. Next we prove that we manage
to make x win if and only if x is α-feasible for Wxc.

Claim. Let QWxc be a profile. x is the winner under PH ∪ QM\Wxc
∪ QWxc (where

QM\Wxc
is as defined above) if and only if for any (real) profile P ′

M\Wxc
x wins under

PH ∪ P ′
M\Wxc

∪ QWxc .

3 We used the double quotes for the word “profile” since it is not a real profile, but rather a score
specification. Nevertheless, we use the above notation for simplicity, as if it were a real profile.
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Proof. We first prove the “only if” part. Suppose that x wins under PH ∪ QM\Wxc
∪

QWxc . Let P ′
M\Wxc

be any profile. For all y, y 	= x, it holds that s(P ′
M\Wxc

, y) ≤
s1 · |M \ Wxc|. Also, s(P ′

M\Wxc
, x) ≥ 0. Therefore, for each y, y 	= x, s(PH ∪

P ′
M\Wxc

∪QWxc , x) ≥ s(PH ∪QM\Wxc
∪QWxc , x) > s(PH ∪QM\Wxc

∪QWxc , y) =
s(PH ∪ QWxc , y) + s1 · |M \ Wxc| ≥ s(PH ∪ P ′

M\Wxc
∪ QWxc , y).4 And so, x will

win under PH ∪ P ′
M\Wxc

∪ QWxc .
Now we prove the “if” part. Suppose that for any profile P ′

M\Wxc
, x is the winner

under PH ∪P ′
M\Wxc

∪QWxc . Let y, y 	= x be a candidate. By our assumption, x is the
winner under PH ∪ P ′

M\Wxc
∪ QWxc , where P ′

M\Wxc
is built as follows: y is ranked

on top of each preference in P ′
M\Wxc

, x is ranked at the bottom of each preference
in P ′

M\Wxc
, and the other candidates are ranked arbitrarily. From this construction we

get: s(PH ∪ QM\Wxc
∪ QWxc , x) = s(PH , x) + s(QWxc , x) = s(PH ∪ P ′

M\Wxc
∪

QWxc , x) > s(PH ∪P ′
M\Wxc

∪QWxc , y) = s(PH , y)+s1 · |M \Wxc|+s(QWxc , y) =
s(PH ∪ QM\Wxc

∪ QWxc , y). This is true for every y 	= x. Therefore, x is the winner
under PH ∪ QM\Wxc

∪ QWxc . (End of proof of claim.) ��

If we find a candidate x 	= c and a non-empty coalition Wxc such that x is α-feasible
for Wxc, then c is not in the α-core. Otherwise, c is in the α-core. ��

Theorem 8. Let k ∈ N, 1 ≤ k ≤ |C| − 1 = m − 1. There is a polynomial-time
algorithm solving the k-approval-β-Core problem.

Due to space limitations, the proof of Theorem 8 is omitted.5

Theorem 9. There exists a polynomial-time algorithm solving the Simplified-Bucklin-
α-Core problem.

Proof. Suppose we are given an instance I = (E, M, c) of the Bucklin-α-Core prob-
lem, where E = (C, V,P). The algorithm first checks whether c ∈ F (M) by solving
the Bucklin-Coalitional Manipulation problem (see [15] for the algorithm for this). It
then goes over all the other candidates; for each candidate x 	= c it computes the max-
imal set Wxc ⊆ M of colluders who prefer x to c. If Wxc 	= ∅, we need to check
whether x is α-feasible for Wxc. We first introduce some new notation. Let B(a, k,Q)
denote the number of votes in the profile Q that rank the candidate a in the k first
places. Let d be the minimal integer such that B(x, d,PH) + |Wxc| > 1

2 · |V |. Let
P ′′

M\Wxc
be a “profile” of M \Wxc such that B(x, d,P ′′

M\Wxc
) = 0; and for all y 	= x,

B(y, 1,P ′′
M\Wxc

) = |M \ Wxc|.6 In the following claim we prove that it is enough to
check whether x can win vs. P ′′

M\Wxc
to determine whether x is α-feasible for Wxc.

4 We use here a strong inequality as we prove our results for the unique winner model. However,
our results can be modified to work for the co-winner model as well.

5 Again, see ftp://ftp.cs.huji.ac.il/users/jeff/wine11zuckermanfull.
pdf for a version of this paper containing the proof.

6 Of course, if m > 2 then P ′′
M\Wxc

cannot be a real profile; rather it is just a score specification.
As before, we use the notation as if it were a real profile, for simplicity.

ftp://ftp.cs.huji.ac.il/users/jeff/wine11zuckermanfull.pdf
ftp://ftp.cs.huji.ac.il/users/jeff/wine11zuckermanfull.pdf
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Claim. x is the winner underPH∪P ′′
M\Wxc

∪Px
Wxc

where P ′′
M\Wxc

is as defined above,
andPx

Wxc
is some fixed (real) profile for Wxc which ranks x in the first position in all the

votes, if and only if for all profiles P ′
M\Wxc

x is the winner underPH∪P ′
M\Wxc

∪Px
Wxc

.

Proof. Suppose x is the winner under PH ∪ P ′′
M\Wxc

∪ Px
Wxc

. Let P ′
M\Wxc

be any
profile. Let d be as defined above. Since for all y 	= x, B(y, d,P ′

M\Wxc
) ≤ |M \Wxc|,

we have that g′y := � 1
2 |V |�−B(y, d,PH ∪P ′

M\Wxc
) ≥ � 1

2 |V |�−B(y, d,PH)− |M \
Wxc| = � 1

2 |V |� −B(y, d,PH ∪P ′′
M\Wxc

) =: g′′y . Therefore, k′
y := min{g′y, |Wxc|} ≥

min{g′′y , |Wxc|} =: k′′
y . Since x is the winner under PH ∪P ′′

M\Wxc
∪Px

Wxc
, we have for

all y 	= x, B(y, d,Px
Wxc

) ≤ k′′
y ≤ k′

y . So, by definition of k′
y , B(y, d,PH ∪ P ′

M\Wxc
∪

Px
Wxc

) ≤ � 1
2 |V |�. On the other hand, B(x, d,PH ∪P ′

M\Wxc
∪Px

Wxc
) ≥ B(x, d,PH ∪

Px
Wxc

) = B(x, d,PH) + |Wxc| > 1
2 |V | (where the last inequality follows from the

definition of d). And so, x wins under PH ∪ P ′
M\Wxc

∪ Px
Wxc

.
For the opposite direction, suppose that for every profile P ′

M\Wxc
, x is the winner

under PH ∪ P ′
M\Wxc

∪ Px
Wxc

, where Px
Wxc

is some fixed profile of Wxc with x ranked
at the top of each vote. Let y, y 	= x, be any candidate. Px

Wxc
makes x win also vs. the

profile Py,x
M\Wxc

where y is ranked first and x is ranked last in all the preferences. Since

the score of x underPH∪Py,x
M\Wxc

∪Px
Wxc

is d, it follows that the score of y underPH∪
Py,x

M\Wxc
∪ Px

Wxc
is greater than d. Therefore, B(y, d,Px

Wxc
) ≤ min{|Wxc|, � 1

2 |V |� −
B(y, d,PH)− |M \Wxc|}. Hence, the score of y under PH ∪P ′′

M\Wxc
∪Px

Wxc
is > d.

On the other hand, by definition of d and Px
Wxc

, B(x, d,PH ∪ P ′′
M\Wxc

∪ Px
Wxc

) =
B(x, d,PH ∪ Px

Wxc
) = B(x, d,PH) + |Wxc| > 1

2 · |V |. So, the score of x under
PH ∪P ′′

M\Wxc
∪Px

Wxc
is d. Hence, x is the winner under PH ∪P ′′

M\Wxc
∪Px

Wxc
. (End

of proof of claim.) ��

We now resume the proof of Theorem 9. With the above claim in hand, we can com-
pute in polynomial time whether x is α-feasible for the coalition Wxc, in the following
way. First compute d as the minimal integer such that B(x, d,PH) + |Wxc| > 1

2 |V |.
Then define for each y 	= x, g′′y = � 1

2 |V |� − B(y, d,PH) − |M \ Wxc|, and k′′
y =

min{g′′y , |Wxc|}. If
∑

y �=x k′′
y < (d − 1)|Wxc|, then there does not exist a profile P ′′′

Wxc

making x win under PH ∪ P ′′
M\Wxc

∪ P ′′′
Wxc

(see [15] for details of the algorithm).
Otherwise, we build the profile Px

Wxc
as follows. We first put x on top of all the prefer-

ences of Px
Wxc

. Then for all i = 1, . . . , m − 1 we put the candidate ci in the next k′′
ci

available places in the votes of Px
Wxc

, such that B(ci, d,Px
Wxc

) ≤ k′′
ci

, until we fill all
the critical places. By Claim 4, if we have found a manipulation, then it works for all
profiles P ′

M\Wxc
, and if we have not found a manipulation, then there does not exist a

manipulation that works for all the profiles P ′
M\Wxc

. That is, we have found a manip-
ulation if and only if x ∈ Fα(Wxc). If we have found some x 	= c such that Wxc 	= ∅
and x ∈ Fα(Wxc), then c is not in the α-core. Otherwise, c is in the α-core. ��

Theorem 10. There exists a polynomial-time algorithm solving the Simplified-Bucklin-
β-Core problem.
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The proof of Theorem 10 is omitted due to space limitations.7

Theorem 11. Let R be the Plurality with Runoff voting rule. There exists a polynomial-
time algorithm solving the R-β-Core problem.

Proof. Suppose we are given an instance I = (E, M, c) of the R-β-Core problem,
where R is the Plurality with Runoff voting rule, and E = (C, V,P). The algorithm
first checks whether c ∈ F (M) by solving the R-Coalitional Manipulation problem
(see [17] for the algorithm for this). Then it goes over all the other candidates. For each
candidate x 	= c it computes the maximal set Wxc ⊆ M of the colluders who prefer x
to c. If Wxc 	= ∅, we need to check whether x is β-feasible for Wxc. To do so, we iterate
over all candidates a 	= x, and for each a, we check whether Wxc can make x win vs.
the profile Pa,x

M\Wxc
where everybody ranks a first, x last, and the other candidates in

some arbitrary order. Then we iterate over all pairs of candidates (a, b), and for each
pair (a, b) and for all i = 1, . . . , |M \ Wxc| − 1, we check whether Wxc can make x

win vs. the profile P i,a,b,x
M\Wxc

where i voters in M \ Wxc rank a first, the |M \ Wxc| − i

remaining voters rank b first, all these voters rank x last, and the other candidates are
ranked in some arbitrary order. In the next claim we prove that it is enough to check
these profiles to determine whether x is β-feasible for Wxc.

Claim. If:

1. for each a 	= x, there exists a profile P ′′
Wxc

such that x is the winner under PH ∪
Pa,x

M\Wxc
∪ P ′′

Wxc
, and

2. for each pair (a, b) (where x /∈ {a, b}) and for each i, 1 ≤ i ≤ |M \Wxc|−1, there
exists a profile P ′′′

Wxc
such that x is the winner under PH ∪ P i,a,b,x

M\Wxc
∪ P ′′′

Wxc
,

then x is β-feasible. Otherwise x is not β-feasible.

Proof. It is clear that if (1) there is a candidate a 	= x, such that for each profile P ′
Wxc

x is not a winner under PH ∪ Pa,x
M\Wxc

∪ P ′
Wxc

, or (2) there is a pair of candidates
(a, b) and i, 1 ≤ i ≤ |M \ Wxc| − 1, such that for each profile P ′

Wxc
x is not a winner

under PH ∪ P i,a,b,x
M\Wxc

∪ P ′
Wxc

, then by definition, x is not β-feasible for Wxc. For the
other direction, suppose that for each a 	= x, there exists a profile P ′′

Wxc
such that x is

the winner under PH ∪Pa,x
M\Wxc

∪P ′′
Wxc

, and for each (a, b) and i there exists a profile

P ′′′
Wxc

such that x is the winner underPH∪P i,a,b,x
M\Wxc

∪P ′′′
Wxc

. Let P ′
M\Wxc

be any profile
for M \ Wxc. We will show that there exists a profile P ′

Wxc
such that x is the winner

of the election under PH ∪ P ′
M\Wxc

∪ P ′
Wxc

. Let y, z ∈ C be the winners of the first
round under the partial profile PH ∪P ′

M\Wxc
. Denote by γ(P , b) the plurality score of

candidate b under the profile P . Suppose w.l.o.g. that

γ(PH ∪ P ′
M\Wxc

, y) ≥ γ(PH ∪ P ′
M\Wxc

, z). (1)

Denote by N(P , a, b) the number of votes in the profile P who prefer a over b. We
divide the proof into 3 cases:

7 See ftp://ftp.cs.huji.ac.il/users/jeff/wine11zuckermanfull.pdf
for a version of this paper containing the proof.

ftp://ftp.cs.huji.ac.il/users/jeff/wine11zuckermanfull.pdf
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Case 1. x /∈ {y, z}. Let us consider the profile P i,y,z,x
M\Wxc

, where i = |M \ Wxc| −
γ(P ′

M\Wxc
, z). That is, we choose i such that γ(P i,y,z,x

M\Wxc
, z) = γ(P ′

M\Wxc
, z). Let

P ′′′
Wxc

be the profile such that x is the winner under PH ∪P i,y,z,x
M\Wxc

∪P ′′′
Wxc

. Let x and b

be the two candidates who proceed to the second round under PH ∪ P i,y,z,x
M\Wxc

∪ P ′′′
Wxc

.
Here we have 3 cases:

Case 1.a. b = y. We may assume that P ′′′
Wxc

has in the first places only x’s and
y’s (if it does not, then we can change it appropriately, and the winners in the first
and the second round will not change). Then under PH ∪ P ′

M\Wxc
∪ P ′′′

Wxc
the only

possible winners of the first round are y, z and x. Denote for brevity, Q1 = PH ∪
P ′

M\Wxc
∪ P ′′′

Wxc
, and Q2 = PH ∪ P i,y,z,x

M\Wxc
∪ P ′′′

Wxc
. Since x is ranked last by all the

voters in P i,y,z,x
M\Wxc

, we have γ(Q1, x) ≥ γ(Q2, x). Also, by the definition of P i,y,z,x
M\Wxc

,

we have γ(Q1, y) ≤ γ(Q2, y) and γ(Q1, z) = γ(Q2, z). As mentioned before, x is
one of the winners of the first round under Q2. It follows that also under the profile
Q1 x will be one of the winners of the first round. By assumption (1), and by the
inequality γ(P ′′′

Wxc
, y) ≥ γ(P ′′′

Wxc
, z), we have γ(Q1, y) ≥ γ(Q1, z), and so the second

winner of the first round is y. Now, N(P ′
M\Wxc

, x, y) ≥ 0 = N(P i,y,z,x
M\Wxc

, x, y). So,

since x beats y in the second round under the profile Q2, x also beats y in the second
round under Q1. So, we found a profile (P ′′′

Wxc
), such that x is the winner under Q1 =

PH ∪ P ′
M\Wxc

∪ P ′′′
Wxc

.
Case 1.b. b = z. Here we may assume that P ′′′

Wxc
contains in the first places only

x’s and z’s. Here we also have that the only possible winners of the first round under
Q1 are x, y and z. Again, we have γ(Q1, x) ≥ γ(Q2, x), γ(Q1, y) ≤ γ(Q2, y) and
γ(Q1, z) = γ(Q2, z). So, since under Q2 the winners of the first round are x and z, we
have that under Q1 the winners are also x and z. x beats z in the second round under
Q2, and N(P ′

M\Wxc
, x, z) ≥ 0 = N(P i,y,z,x

M\Wxc
, x, z). Hence, x beats z in the second

round under Q1 as well.
Case 1.c. b /∈ {y, z}. We may assume that P ′′′

Wxc
contains in the first places only x’s

and b’s. The only possible winners of the first round underQ1 are y, z, x and b. We have
the following inequalities: γ(P ′

M\Wxc
, x) ≥ 0 = γ(P i,y,z,x

M\Wxc
, x), γ(P ′

M\Wxc
, b) ≥ 0 =

γ(P i,y,z,x
M\Wxc

, b), γ(P ′
M\Wxc

, y) ≤ γ(P i,y,z,x
M\Wxc

, y), and γ(P ′
M\Wxc

, z) = γ(P i,y,z,x
M\Wxc

, z).
And so, since x and b are the winners of the first round under Q2, they are also the
winners of the first round under Q1. In the second round, x beats b under the profile
Q2, and N(P ′

M\Wxc
, x, b) ≥ 0 = N(P i,y,z,x

M\Wxc
, x, b). It follows that x beats b in the

second round under the profile Q1 as well.
Case 2. x = y. So x and z are the two winners of the first round under the partial

profile PH ∪ P ′
M\Wxc

. Recall that Pz,x
M\Wxc

is a profile where everybody in M \ Wxc

ranks z first, x last, and the other candidates in some arbitrary order. Let P ′′
Wxc

be the
profile such that x is the winner under PH ∪ Pz,x

M\Wxc
∪ P ′′

Wxc
. Denote, for shortness,

Q3 = PH ∪ P ′
M\Wxc

∪ P ′′
Wxc

and Q4 = PH ∪ Pz,x
M\Wxc

∪ P ′′
Wxc

. Let x and d be the

two candidates who are the winners of the first round under Q4.
Case 2.a. d = z. Here we can assume that P ′′

Wxc
contains only x’s and z’s in the first

places. Hence, under Q3, x and z = d are the winners of the first round.
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Case 2.b. d 	= z. We can assume that P ′′
Wxc

contains only x’s and d’s in the first
places. Therefore, under Q3 the only possible winners of the first round are x, z and d.
Since under Q4 x and d proceed to the second round, and due to the fact that in Pz,x

M\Wxc

z is ranked on top of all the preferences, we have γ(Q3, d) ≥ γ(Q4, d) > γ(Q4, z) ≥
γ(Q3, z), and γ(Q3, x) ≥ γ(Q4, x) > γ(Q4, z) ≥ γ(Q3, z). Therefore, under Q3, x
and d are the winners of the first round.

Case 2 (continued). Now, as x is the winner of the second round underQ4, and since
N(P ′

M\Wxc
, x, d) ≥ 0 = N(Pz,x

M\Wxc
, x, d), we have N(Q3, x, d) ≥ N(Q4, x, d) >

N(Q4, d, x) ≥ N(Q3, d, x). Hence, x beats d in the second round under Q3, and so x
wins the election.

Case 3. x = z. This case is handled similarly to Case 2. (End of proof of claim.)
��

If we found x 	= c such that Wxc 	= ∅ and x ∈ Fβ(Wxc), then by definition c /∈ β-core.
Otherwise, c ∈ β-core. ��

5 Conclusions and Future Work

In this paper we have provided a computational analysis of the following question: given
a coalition of manipulative voters, which candidate should they manipulate in favor of,
given that they might not have identical preferences. To perform our analysis we have
used the notions of α- and β-core, which—under various assumptions—describe the
sets of candidates that the manipulators can support in a stable manner (i.e., without
running the risk of breaking the coalition).

Our main results are the following. The complexity of determining membership in
the α- and β-cores is at least as high as the complexity of the constructive coalitional
manipulation problem for the same rule. On the other hand, for the several prominent
voting rules for which coalitional manipulation is easy, we have also provided polyno-
mial time algorithms for determining membership in the α- and β-cores. One direction
for future work is to extend the above research to other voting rules. Another interest-
ing direction is to try to find voting rules that produce an outcome in the core, if the
core is non-empty, when applied to the truthful preferences of the voters. Yet another
direction is to investigate the computational complexity of finding a voting profile of
the colluders which is a strong Nash equilibrium, if one exists.
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Abstract. Most work in algorithmic game theory assumes that players
ignore costs incurred by their fellow players. In this paper, we consider
superimposing a social network over a game, where players are concerned
with minimizing not only their own costs, but also the costs of their
neighbors in the network. We aim to understand how properties of the
underlying game are affected by this alteration to the standard model.
The new social game has its own equilibria, and the price of civil society
denotes the ratio of the social cost of the worst such equilibrium relative
to the worst Nash equilibrium under standard selfish play. We initiate
the study of the price of civil society in the context of a simple class
of games. Counterintuitively, we show that when players become less
selfish (optimizing over both themselves and their friends), the resulting
outcomes may be worse than they would have been in the base game. We
give tight bounds on this phenomenon in a simple class of load-balancing
games, over arbitrary social networks, and present some extensions.

1 Introduction

The world of traditional game-theoretic analysis is a cold one. Each individual
cares only about himself; he pays no heed to his neighbor’s happiness. He makes
strategic decisions with exclusive regard for his own direct preferences about
the state of the world. He is not a good friend. Over the past decade, research
on the price of anarchy—beginning with the seminal work of Koutsoupias and
Papadimitriou [11], and progressing through landmark results like Roughgarden
and Tardos’s work on selfish routing [17], among many others—has flourished in
the algorithmic game theory community. The price of anarchy measures the cost
of this cold world: relative to a centrally planned optimum, how much worse are
the outcomes that arise from purely selfish decision-makers?

But this picture of human decision-makers is unrealistically bleak. Humans
maintain long-term dyadic relationships with nonrelatives; in other words, we
have friends. The presence of this “friend” relationship is unusual among species,
and it is a long-standing matter of research in the social sciences to explain its
� This work was supported by NSF grant CCF-0728779 and was underwritten in part
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origins. (See Silk [18], for example.) Our daily lives are influenced deeply by what
is called civil society by political scientists: that is, everything about society that
is not “the state” or “the market.” Civil society is the church, the book club, the
Association for Computing Machinery, the knitting circle. It is clear that our
bonds with others affect our decisions; our relationships formed through civil
society change our preferences relative to the solipsistic baseline. And, generally
speaking, this effect is positive. (See Putnam’s Bowling Alone [15], for example.)

Our goal in this paper is to understand the way in which superimposing a so-
cial network on a strategic situation affects the quality of the resulting equilibria.
To this end, we consider augmenting a “base game” with a social network. Each
individual cares about both her own happiness and that of her neighbors in the
social network. When the social network has no edges, we have “the market” and
the classic Nash equilibrium. When the social network is the complete graph, we
have “the state,” or at least individual agents myopically striving to optimize
the welfare of society as a whole. Our interest lies in exploring the middle ground
between selfishness and altruism. Specifically, we wish to analyze the following
question: How much better are the equilibria when, rather than acting in a purely
selfish manner, players act on behalf of their friends as well as themselves? That
is, what benefits accrue from the presence of civil society?

Perhaps surprisingly, we observe that, by becoming more socially concerned,
players can often end up at worse outcomes than standard Nash equilibria. This
phenomenon has been observed in multiple related settings (e.g. [4, 9]), but our
observation adds to the collection of such examples, suggesting that this effect
is ubiquitous rather than pathological. Thus we are forced to address a different
question: How much worse are the equilibria when, rather than acting in a purely
selfish manner, players act on behalf of their friends as well as themselves?

We take a particular class of load-balancing game as our base games, and
we examine the effect of varying the social network structure. We present tight
constant bounds on the degradation of equilibrium quality in these games. Thus,
in these games, we show that caring about friends can make the world worse,
but only to a limited degree.

The price of civil society. Let Γ denote an n-player game, and let G denote an
undirected graph on the players, where an edge reflects friendship between its
endpoints. The social game ΓG has the same n players and the same actual cost
functions, but each player seeks to optimize the sum of her own cost and the
costs of her neighbors in G. We are interested in the relative cost of the worst
Nash equilibrium in the social game ΓG compared to the cost of the worst Nash
equilibrium in the base game Γ . We call this ratio the price of civil society.

The complexity of this model lies in the structure of the social network. To
isolate the effects of this structure, we limit our attention to load-balancing games
with identical linear machines. Even in this simplistic setting, our model exhibits
interesting and nontrivial behavior. Our main result is that, while the price of
civil society can exceed 1, it does not exceed 5/4, and furthermore this bound is
tight. The extremal example is a small game, and so we may wonder if this de-
terioration is merely a symptom of the discrete nature of atomic load-balancing.
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We prove that it is not. As the number of players tends to infinity, and the game
converges to its nonatomic version, the price of civil society becomes 9/8: smaller
than in the atomic case, but still greater than 1. We also consider generalizations
of this game and restrictions to particular classes of social networks.

Related work. Chen and Kempe [4] consider a routing game in which players
optimize a linear combination of their own latency and the average latency of all
players. The authors study the change in equilibria as a function of the weight
given to the “altruistic” term, allowing for interpolation between totally selfish
and totally altruistic behavior. Our model similarly interpolates between these
extremes, but our “middle ground” reflects a player who cares about a select
group of other players, rather than caring to a limited degree about all players.

Meier, Oswald, Schmid, and Wattenhofer [13] study a virus inoculation game
in which players care about their neighbors’ costs in addition to their own. Unlike
our model, however, their game is intrinsically linked to the social network:
changing the graph also changes the game. The primary goal of the present
work is to study varied network topologies for a fixed game, thereby allowing us
to isolate the impact of social structure on competitive play.

Ashlagi, Krysta, and Tennenholtz [1] introduce “social context games” which
consider players who optimize general functions of their friends’ utilities (rather
than just the sum). Their work focuses on the existence of equilibria for a variety
of functions, whereas we are concerned with the quality of these outcomes.

Hayrapetyan, Tardos, and Wexler [9] consider games in which players form
coalitions, each modeled as a single player. Their model is closely related to the
special case of our game in which the social network is a collection of cliques.

The price of anarchy was introduced by Koutsoupias and Papadimitriou [11]
in the context of load-balancing games. Subsequent work has explored numer-
ous variations of these games, including restricted classes of latency functions;
symmetric or asymmetric access; unit or weighted jobs; mixed or pure equilibria;
worst or best Nash equilibria; and sum or makespan objective functions. See, for
example, [2, 3, 5–8, 10, 12, 19] and the references therein.

2 Model and Notation

For a game with player set N , a social network is given by an undirected graph
with vertices N and edges representing (symmetric) friendships between players.
The perceived cost to player i under a strategy profile s is the cost i incurs plus
the total costs incurred by all of i’s neighbors. The social cost sc(s) of profile s
is the sum of the actual (not perceived) costs experienced by each player.

We define opt as a socially optimal strategy profile, that is, one with mini-
mum social cost. An outcome is a pure Nash equilibrium (ne) when no individual
player can decrease her actual cost by unilaterally switching to a different strat-
egy; it is a civil society Nash equilibrium (csne) when no player can decrease
her perceived cost by switching. Let wne and wcsne, respectively, denote the
worst among the ne and the worst among the csne, measured by social cost.
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The price of anarchy (poa) measures the extent to which the cost of any Nash
equilibrium can exceed that of the optimal solution: it is sc(wne)/sc(opt). The
price of civil society (pocs) measures the extent to which the cost of a civil
society Nash equilibrium can exceed that of the worst pure Nash equilibrium.
That is, the pocs is sc(wcsne)/sc(wne). Note that we are comparing worst
social-game equilibria to worst base-game equilibria; it could also be interesting
to consider best equilibria in one or both games.

In this paper, we consider a simple base game in which each player has access
to a common set M of resources. Each player selects a single resource, and
incurs a cost equal to the total number of players who pick that resource. Given
an outcome s, the load �j = �j(s) on a resource j is the number of players who
choose j. The social cost, given by

∑
j �2

j , is completely determined by the load
vector L = (�1, . . . , �m). This game is equivalent to load balancing with identical
linear latencies. Such games are known to have pure Nash equilibria [14, 16].
Furthermore, it can be shown that for any social network G, these games also
have civil society equilibria. In particular, a potential function for this game is
Φ(s) =

∑
j∈M

[(
�j+1

2

)
+ ej

]
, where ej is the number of edges with both endpoints

choosing j under s: one can check that if a player switches to a new resource, the
improvement in her perceived cost is exactly the decrease in Φ, and so repeated
best-response moves must eventually terminate at a csne.

We also consider the nonatomic version of this game. Informally, we picture a
continuum of infinitesimally small players. More formally, let pocs(n, m) denote
the maximum pocs over all n-player, m-resource atomic games, and then define
the nonatomic pocs to be supm

(
lim supn→∞ pocs(n, m)

)
.

3 Main Results

Consider an n-player, m-resource instance of our game. By convexity, the socially
optimal solution assigns players to resources as evenly as possible. Furthermore,
the only pure Nash equilibria are of the same form. Therefore wne = opt and
thus poa = 1. Likewise, in the nonatomic version of this game, all resources have
exactly the same load in both the optimal solution and the unique equilibrium.
However, superimposing certain social networks on these games may cause the
pocs to exceed 1; that is, some networks lead to social games with worse stable
outcomes than without the network. We consider both the atomic and nonatomic
settings, and prove that the pocs in these settings is 5/4 and 9/8, respectively.

We begin with some useful lemmas. Let δ be the size of a player in a game;
that is, let δ = 1 for atomic games and let δ → 0 for nonatomic games.

Lemma 1. For any csne and any two resources 1 and 2, �1 ≤ 2�2 + δ.

Proof. Consider a player i using resource 1 in the csne. Suppose that she is
friends with all players using resource 2 and with no one using resource 1: this
arrangement is the case in which she will be most averse to switching to re-
source 2. As it stands, her cost is �1, each of her �2/δ friends’ costs are �2, and
so her total perceived cost is �1 + �2

2/δ. If she were to switch to resource 2, her
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cost would be �2 + δ, each of her �2/δ friends’ costs would be �2 + δ, and so her
total perceived cost would be �2 + δ + �2

2/δ + �2. Because she does not want to
switch in a csne, we have that �1 + �2

2/δ ≤ �2 + δ + �2
2/δ + �2. Simplifying, we

get the desired �1 ≤ 2�2 + δ. This inequality holds for any social network. ��

Given load vector L = (�1, · · · , �m), define Φm(L) = (
∑

i �2
i )/

[
(
∑

i �i)2/m
]
. This

quantity is the ratio of the social cost of L to that of a “fractional” Nash equi-
librium (all loads are identical, even if that amount is not an integer), and thus
is an upper bound on the pocs of this instance.

Lemma 2. For a given machine i and given bounds a and b with 0 ≤ a ≤ b,
suppose that we maximize Φm(L) over all �i such that a ≤ �i ≤ b. Then this
maximum will be achieved at either �i = a or �i = b.

Proof. We note that Φm(L) is not generally a convex function of �i. However,
it is continuously differentiable for �i ≥ 0, the derivative is zero at the unique
point xi = (

∑
j �=i �2

j) / (
∑

j �=i �j), and the derivative is negative for 0 ≤ �i < xi

and positive for �i > xi. Thus the maximum occurs at either �i = a or �i = b. ��

3.1 Atomic Games

We begin with an example illustrating a nontrivial price of civil society. Consider
four players, two resources, and social network K1,3, the complete bipartite graph
on 1 and 3 vertices. Assigning the three leaf players to resource 1 and the root
player to resource 2 yields a csne of cost 10. All ne have a cost of 8; thus, the
pocs of this instance is 5/4. We will show that this example is in fact the worst
possible, and therefore that the pocs for atomic games is 5/4. We first prove
this result for any csne in which the load on each resource is at least 2:

Lemma 3. Let L be the load vector for a csne with minimum load at least 2.
Then Φm(L) ≤ 49/40 < 5/4.

Proof. Combining Lemmas 1 and 2, Φm(L) is maximized when all resources
have load either � or 2� + 1 for some � ≥ 2. Let p and γ · p denote the number of
resources with loads � and 2� + 1, respectively. Then Φm(L) is maximized when
γ = �/(2� + 1) and � = 2, giving an upper bound of 49/40 < 5/4, as desired. ��

Unfortunately, if some resources have a load of 0 or 1 in a csne with load vector
L, then Φm(L) may exceed 5/4: the pocs is still bounded by 5/4, but Φm(L)
uses a fractional Nash equilibrium, and more careful analysis is needed.

Theorem 1. The price of civil society of the atomic game is 5/4.

Proof. We have shown that that the pocs can be as large as 5/4. We must finish
showing that 5/4 is an upper bound. Let L be the load vector of a wcsne. By
Lemma 3, it only remains to consider the case in which the minimum load of L
is either 0 or 1. If the minimum load in L is 0, then, by Lemma 1, every resource
has load either 0 or 1. Such a configuration is a ne, and thus the pocs is 1.
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If the minimum load in L is 1, Lemma 1 implies that the max load is 3. Let p, q,
and r denote the number of resources with loads 1, 2, and 3, respectively. The
social cost of this outcome is p+4q+9r; to determine the pocs of this instance,
it remains to determine sc(wne) and optimize over p, q, and r.

Note that a Nash equilibrium cannot have both load-1 and load-3 resources:
players will move from a load-3 to a load-1 resource until either the load-1 or
load-3 resources are exhausted. Thus a Nash equilibrium either has no load-1
resources (if p ≤ r) or no load-3 resources (if r ≥ p). Suppose that p ≤ r,
so at ne, there are (q + 2p) load-2 and (r − p) load-3 resources. The social
cost of this configuration is thus 4(q + 2p) + 9(r − p) = −p + 4q + 9r, and so
pocs = (p + 4q + 9r)/(−p + 4q + 9r). This expression is maximized when p = r
and q = 0, and evaluates to 5/4. Similar analysis shows that if r ≤ p, the same
bound holds. ��

3.2 Nonatomic Games

In the atomic case, the worst instance for pocs had only a few players. We
now consider nonatomic games, with an infinite number of infinitesimally small
players. We show that while the price of civil society generally decreases as the
number of players grows, it does not improve below 9/8. Thus, while a portion of
our atomic pocs = 5/4 example can be attributed to an integrality issue (which
tends to zero as the number of players grows) the remainder is due purely to
the presence of socially conscious agents (the effects of which persist even in the
nonatomic case).

We start with a nonatomic example whose pocs is 9/8. Let there be three
resources and n → ∞ players, with social network a complete tripartite graph
with parts of size n/4, n/4, and n/2. The unique Nash equilibrium places n/3
players on each resource, for a social cost of 3(n/3)2 = n2/3. There is a csne
that places the n/2-player part on resource 1 and the other parts on resources 2
and 3, for a social cost of 3n2/8, yielding a pocs of 9/8.

Theorem 2. The price of civil society of the nonatomic game is 9/8.

Proof. In light of the previous example, we need only prove an upper bound. It
suffices to show Φm(L) ≤ 9/8 for a wcsne with load vector L. Lemmas 1 and 2
together imply that the maximum Φm(L) occurs when each �i is either � or 2�,
for some � > 0. Let p and q denote the number of resources with loads � and 2�,
respectively. Then Φm(L) is maximized at q = p/2, where the ratio is 9/8. ��

4 Extensions and Future Work

The pocs of 5/4 for the discrete game was only achievable on a complete bipartite
graph. These graphs have no triadic closure: friends of friends are never friends.
But real social networks exhibit a high degree of triadic closure [20]. What
happens if we force the graph to be more like a friendship-based social network?
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We first look at a graph with complete triadic closure (i.e., all connected com-
ponents are cliques). Here, loads in a csne must be as balanced as possible (or
else at least one clique would have more people using some overloaded resource
than some underloaded one). Therefore every csne is a ne, and the pocs is 1:
there is no degradation because of the social network.

What happens with graphs between these extremes? What “intermediate”
social structures should we examine? Here is one option. Precisely define the
triadic closure of a graph to be the probability Δ that a path of length two, chosen
uniformly at random, is part of a triangle in the graph [20]. What happens as
we vary Δ in our social network? Unfortunately, graphs with Δ approaching 1
can have the worst possible pocs of 5/4 (using many copies of the original
worst-case example). However, for a fixed number of resources, restricting the
allowable triadic closure can provide improved bounds on the worst possible
pocs. We have seen that with no constraints on Δ, the pocs can be as large as
5/4, while if Δ is 1, the pocs is 1. Many intermediate results are possible: e.g.,
with two resources, we can show that if Δ > 7/11, the pocs is at most 10/9.

Another way to generalize our results is to change our base game beyond a
load-balancing game with unit-weight jobs and machines with identical linear
latencies. We have proven several such results that we simply state here without
proof. (The proof methods are substantially similar to those in Section 3.)

First we consider related machines, where machine j has latency function aj�
under load �. For two machines with atomic players, we can show that the price
of civil society is 14/11 ≈ 1.27, a mild worsening over our earlier bound of 5/4 =
1.25 for identical machines. The extremal example has two jobs on a machine of
latency 3� and one job on a machine of latency 2�. For nonatomic players, the
pocs remains 9/8 = 1.125, the same as for identical machines. Unsurprisingly, for
broader classes of latency functions, the pocs increases substantially: for general
convex and increasing latencies, the pocs reaches n, the number of players.

Another generalization is weighted load balancing, where jobs may have differ-
ent sizes. For two identical linear machines, the pocs increases to 34/25 = 1.36.
The extremal example has one machine with two jobs of weight 4 and one ma-
chine with two jobs of weight 1. For more than two identical linear machines, we
can prove that the pocs lies in a narrow range slightly greater than 1.5.

More generally, similar analysis can be applied to arbitrary base games. We
suspect that for some classes of games, social networks may cause substantially
greater degradation in the resulting equilibria, while in others, social structure
may only improve outcomes. In what games are social networks most harmful?
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Abstract. We study the inefficiency of equilibria for several classes of
games when players are (partially) altruistic. We model altruistic behav-
ior by assuming that player i’s perceived cost is a convex combination of
1−αi times his direct cost and αi times the social cost. Tuning the param-
eters αi allows smooth interpolation between purely selfish and purely
altruistic behavior. Within this framework, we study altruistic extensions
of cost-sharing games, utility games, and linear congestion games. Our
main contribution is an adaptation of Roughgarden’s smoothness notion
to altruistic extensions of games. We show that this extension captures
the essential properties to determine the robust price of anarchy of these
games, and use it to derive mostly tight bounds.

1 Introduction

Many large-scale decentralized systems involve the interactions of large numbers
of individuals acting to benefit themselves. Thus, such systems are naturally
studied from the viewpoint of game theory, with an eye on the social efficiency
of stable outcomes. Traditionally, “stable outcomes” have been associated with
pure Nash equilibria of the corresponding game. The notions of price of anarchy
[9] and price of stability [2] provide natural measures of the system degradation,
by capturing the degradation of the worst and best Nash equilibria, respectively,
compared to the socially optimal outcome. However, the predictive power of
such bounds has been questioned on (at least) two grounds: First, the adop-
tion of Nash equilibria as a prescriptive solution concept implicitly assumes that
players are able to reach such equilibria, a very suspect assumption for compu-
tationally bounded players. In response, recent work has begun analyzing the
outcomes of natural response dynamics [3,15], as well as more permissive so-
lution concepts such as mixed, correlated or coarse correlated equilibria. (This
general direction of inquiry has become known as “robust price of anarchy”.)
Second, the assumption that players seek only to maximize their own utility
is at odds with altruistic behavior routinely observed in the real world. While
modeling human incentives and behavior accurately is a formidable task, several
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papers have proposed natural models of altruism and analyzed its impact on the
outcomes of games [4,5,6,10].

The goal of this paper is to begin a thorough investigation of the effects
of relaxing both of the standard assumptions simultaneously, i.e., considering
the combination of weaker solution concepts and notions of partially altruistic
behavior by players. We formally define the altruistic extension of an n-player
game in the spirit of past work on altruism (see [10, p. 154] and [4,5,8]): player
i has an associated altruism parameter αi, and his cost (or payoff) is a convex
combination of (1− αi) times his direct cost (or payoff) and αi times the social
cost (or social welfare). By tuning the parameters αi, this model allows smooth
interpolation between pure selfishness (αi = 0) and pure altruism (αi = 1). To
analyze the degradation of system performance in light of partially altruistic
behavior, we extend the notion of robust price of anarchy [15] to games with
altruistic players, and show that a suitably adapted notion of smoothness [15]
captures the properties of a system that determine its robust price of anarchy. We
use our framework to analyze the robust price of anarchy of three fundamental
classes of games.

1. In a cost-sharing game [2], players choose subsets of resources, and all
players choosing the same resource share its cost evenly. Using our framework,
we derive a bound of n/(1 − α̂) on the robust price of anarchy of these games,
where α̂ is the maximum altruism level of a player. This bound is tight for
uniformly altruistic players.

2. We apply our framework to utility games [16], in which players choose
subsets of resources and derive utility of the chosen set. The total welfare is
determined by a submodular function of the union of all chosen sets. We derive
a bound of 2 on the robust price of anarchy of these games. In particular, the
bound remains at 2 regardless of the (possibly different) altruism levels of the
players. This bound is tight.

3. We revisit and extend the analysis of atomic congestion games [14], in
which players choose subsets of resources whose costs increase (linearly) with
the number of players using them. Caragiannis et al. [4] recently derived a tight
bound of (5+4α)/(2+α) on the pure price of anarchy when all players have the
same altruism level α.1 Our framework makes it an easy observation that their
proof in fact bounds the robust price of anarchy. We generalize their bound to the
case when different players have different altruism levels, obtaining a bound in
terms of the maximum and minimum altruism levels. This partially answers an
open question from [4]. For the special case of symmetric singleton congestion
games (which corresponds to selfish scheduling on machines), we extend our
study of non-uniform altruism and obtain an improved bound of (4−2α)/(3−α)
on the price of anarchy when an α-fraction of the players are entirely altruistic
and the remaining players are entirely selfish.
Notice that many of these bounds on the robust price of anarchy reveal a counter-
intuitive trend: at best, for utility games, the bound is independent of the level of
1 The altruism model of [4] differs from ours in a slight technicality discussed in Section

2 (Remark 1). Therefore, various bounds we cite here are stated differently in [4].
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altruism, and for congestion games and cost-sharing games, it actually increases
in the altruism level, unboundedly so for cost-sharing games. Intuitively, this
phenomenon is explained by the fact that a change of strategy by player i may
affect many players. An altruistic player will care more about these other players
than a selfish player; hence, an altruistic player accepts more states as “stable”.
This suggests that the best stable solution can also be chosen from a larger set,
and the price of stability should thus decrease. Our results on the price of stability
lend support to this intuition: for congestion games, we derive an upper bound
on the price of stability which decreases as 2/(1 + α); similarly, for cost-sharing
games, we establish an upper bound which decreases as (1 − α)Hn + α.

The increase in the price of anarchy is not a universal phenomenon, demon-
strated by symmetric singleton congestion games. Caragiannis et al. [4] showed
a bound of 4/(3 + α) for pure Nash equilibria with uniformly altruistic players,
which decreases with the altruism level α. Our bound of (4 − 2α)/(3 − α) for
mixtures of entirely altruistic and selfish players is also decreasing in the fraction
of entirely altruistic players. We also extend an example of Lücking et al. [11]
to show that symmetric singleton congestion games may have a mixed price of
anarchy arbitrarily close to 2 for arbitrary altruism levels. In light of the above
bounds, this establishes that pure Nash equilibria can result in strictly lower
price of anarchy than weaker solution concepts.

Proofs are omitted from this short paper; they are available in the full version.

2 Altruistic Games and the Robust Price of Anarchy

Let G = (N, {Σi}i∈N , {Ci}i∈N ) be a finite strategic game, where N = [n] is
the set of players, Σi the strategy space of player i, and Ci : Σ → R the cost
function of player i, mapping every joint strategy s ∈ Σ = Σ1 × · · · × Σn to
the player’s direct cost. Unless stated otherwise, we assume that every player
i wants to minimize his individual cost function Ci. We also call such games
cost-minimization games. A social cost function C : Σ → R maps strategies
to social costs. We require that C is sum-bounded, that is, C(s) ≤

∑n
i=1 Ci(s)

for all s ∈ Σ. We study altruistic extensions of strategic games equipped with
sum-bounded social cost functions. Our definition is based on one used (among
others) in [5], and similar to ones given in [4,6,10].

Definition 1. Let α ∈ [0, 1]n. The α-altruistic extension of G (or simply α-
altruistic game) is defined as the strategic game Gα = (N, {Σi}i∈N , {Cα

i }i∈N ),
where for every i ∈ N and s ∈ Σ, Cα

i (s) = (1 − αi)Ci(s) + αiC(s).

Thus, the perceived cost that player i experiences is a convex combination of
his direct (selfish) cost and the social cost; we call such a player αi-altruistic.
When αi = 0, player i is entirely selfish; thus, α = 0 recovers the original game.
A player with αi = 1 is entirely altruistic. Given an altruism vector α ∈ [0, 1]n,
we let α̂ = maxi∈N αi and α̌ = mini∈N αi denote the maximum and minimum
altruism levels, respectively. When αi = α (a scalar) for all i, we call such games
uniformly α-altruistic games.
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Remark 1. In a recent paper, Caragiannis et al. [4] model uniformly altruistic
players by defining the perceived cost of player i as (1−ξ)Ci(s)+ξ(C(s)−Ci(s)),
where ξ ∈ [0, 1]. It is not hard to see that in the range ξ ∈ [0, 1

2 ] this definition
is equivalent to ours by setting α = ξ/(1 − ξ) or ξ = α/(1 + α).

The most general equilibrium concept we consider is coarse (correlated) equilib-
ria.

Definition 2 (Coarse equilibrium). A coarse (correlated) equilibrium of a
game G is a probability distribution σ over Σ = Σ1×· · ·×Σn with the following
property: if s is a random variable with distribution σ, then for each player i,
and all s∗i ∈ Σi:

Es∼σ [Ci(s)] ≤ Es−i∼σ−i [Ci(s∗i , s−i)] , (1)

where σ−i is the projection of σ on Σ−i = Σ1 × · · · × Σi−1 × Σi+1 × · · · × Σn.

It includes several other solution concepts, such as correlated equilibria, mixed
Nash equilibria and pure Nash equilibria.

The price of anarchy (PoA) [9] and price of stability (PoS) [2] quantify the in-
efficiency of equilibria for classes of games: Let S ⊆ Σ be a set of strategy profiles
for a cost-minimization game G with social cost function C, and let s∗ be a strat-
egy profile that minimizes C. We define PoA(S, G) = sup {C(s)/C(s∗) : s ∈ S}
and PoS(S, G) = inf {C(s)/C(s∗) : s ∈ S}. The coarse (or correlated, mixed,
pure) PoA (or PoS ) of a class of games G is the supremum over all games in G
and all strategy profiles in the respective set of equilibrium outcomes. Notice
that the PoA and PoS are defined with respect to the original social cost func-
tion C, not accounting for the altruistic components. This reflects our desire to
understand the overall performance of the system (or strategic game), which is
not affected by different perceptions of costs by individuals.2

Roughgarden [15] introduced the notion of (λ, μ)-smoothness of strategic
games with sum-bounded social cost functions and showed that it provides a
generic template for proving bounds on the PoA as well as the outcomes of
no-regret sequences [3].

The smoothness approach cannot be applied directly to our altruistic games
because the social cost function C that we consider here is in general not
sum-bounded in terms of Cα

i (which is a crucial prerequisite in [15]). How-
ever, we are able to generalize the (λ, μ)-smoothness notion to altruistic games,
thereby preserving many of its applications. For notational convenience, we de-
fine C−i(s) = C(s) − Ci(s).

2 If all players have a uniform altruism level αi = α ∈ [0, 1] and the social cost function
C is equal to the sum of all players’ direct costs, then for every strategy profile s ∈ Σ,
the sum of the perceived costs of all players is equal to (1−α+αn)C(s). In particular,
bounding the PoA (or PoS) with respect to C is equivalent to bounding the PoA (or
PoS) with respect to total perceived cost in this case.
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Definition 3. Gα is (λ, μ, α)-smooth iff for any two strategy profiles s, s∗ ∈ Σ,
n∑

i=1

Ci(s∗i , s−i) + αi(C−i(s∗i , s−i) − C−i(s)) ≤ λC(s∗) + μC(s).

Most of the results in [15] following from (λ, μ)-smoothness carry over to our
altruistic setting using the generalized (λ, μ, α)-smoothness notion. The following
result allows a calculation of the PoA.3

Proposition 1. Let Gα be an α-altruistic game that is (λ, μ, α)-smooth with
μ < 1. Then, the coarse (and thus also correlated, mixed, and pure) price of
anarchy of Gα is at most λ

1−μ .

For many important classes of games, the bounds obtained by (λ, μ, α)-
smoothness arguments are actually tight, even for pure Nash equilibria. This
motivates defining the robust PoA as the best bound that can be proved using
the smoothness technique.

Definition 4. Let Gα be an α-altruistic game. Its robust PoA is defined as
RPoAG(α) = inf{ λ

1−μ : Gα is (λ, μ, α)-smooth with μ < 1}. For a class G of
games, we define RPoAG(α) = sup{RPoAG(α) : G ∈ G}.
We study the robust PoA of three classes of games: they are all described by a
set E of resources (or facilities), and strategy sets Σi ⊆ 2E for each player, from
which the player can choose a subset si ∈ Σi of resources. Given a joint strategy
s, we define xe(s) = |{i ∈ N : e ∈ si}| as the number of players that use
resource e ∈ E under s. We also use U(s) to refer to the union of all resources
used under s, i.e., U(s) =

⋃
i∈N si.

3 Cost-Sharing Games

A cost-sharing game is given by G = (N, E, {Σi}i∈N , {ce}e∈E), where ce ≥ 0 is
the cost of facility e ∈ E. The cost of each facility is shared evenly among all
players using it, i.e., the direct cost of player i is Ci(s) =

∑
e∈si

ce/xe(s). The
social cost function is C(s) =

∑n
i=1 Ci(s) =

∑
e∈U(s) ce.

It is well-known that the pure PoA of cost-sharing games is n [13]. We show
that it can get significantly worse when there is altruism. Also we provide an
upper bound on the pure PoS when altruism is uniform.

Theorem 1. For α-altruistic cost-sharing games, the robust PoA is n
1−α̂ (where

n/0 = ∞).

While Theorem 1 shows that the PoA gets worse with increasing altruism, this
does not happen for the price of stability.

Proposition 2. The pure PoS of uniformly α-altruistic cost-sharing games is
at most (1 − α)Hn + α.
3 All results in this section continue to hold for altruistic extensions of payoff-

maximization games G: One needs only replace C by Π and μ by −μ in Definition
3, and replace λ

1−μ
by 1+μ

λ
and μ < 1 by μ > −1 in Definition 4.
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4 Utility Games

A utility game [16] G = (N, E, {Σi}i∈N , {Πi}i∈N , V ) is a payoff maximization
game, in which Πi is the payoff function of player i, and V is a submodular4

and non-negative function on E. Every player i strives to maximize his pay-
off function Πi. The social welfare function Π : Σ → R to be maximized is
Π(s) = V (U(s)), and thus depends on the union of the players’ chosen re-
sources, evaluated by V . The payoff function of every player i is assumed to
satisfy Πi(s) ≥ Π(s)− V (U(s) \ si) for every strategy profile s ∈ Σ. Intuitively,
this means that the payoff of a player is at least his contribution to the social
welfare. Moreover, it is assumed that Π(s) ≥

∑n
i=1 Πi(s) for every s ∈ Σ; see

[16] for a justification of these assumptions. Vetta [16] proved a bound of 2 on
the pure PoA for utility games with non-decreasing V ; Roughgarden [15] showed
that this bound is achieved via a (λ, μ)-smoothness argument. We extend it to
altruistic extensions of these games.

Theorem 2. The robust PoA of α-altruistic utility games is 2.

5 Congestion Games

In an atomic congestion game G = (N, E, {Σi}i∈N , {de}e∈E), we have a delay
function de : N → R associated with each facility e ∈ E. Player i’s cost is
Ci(s) =

∑
e∈si

de(xe(s)), and the social cost is C(s) =
∑n

i=1 Ci(s). We focus on
linear congestion games, i.e., the delay functions are of the form de(x) = aex+be,
where ae, be are non-negative rational numbers. Pure Nash equilibria of altruistic
extensions of linear congestion games always exist [8]; this may not be the case
for arbitrary (non-linear) congestion games.5

The PoA of linear congestion games is known to be 5
2 [7]. Recently, Caragiannis

et al. [4] extended this result to linear congestion games with uniformly altruistic
players. Applying the transformation outlined in Remark 1, their result can be
stated as follows:

Theorem 3 ([4]). The pure PoA of uniformly α-altruistic linear congestion
games is at most 5+4α

2+α .

The proof in [4] implicitly uses a smoothness argument in the framework we de-
fine here for altruistic games. Thus, without any additional work, our framework
allows the extension of Theorem 3 to the robust PoA. Caragiannis et al. [4] also
showed that the bound of Theorem 3 is asymptotically tight. A simpler example
(deferred to the full version of this paper) proves tightness of this bound (not

4 A function f : 2E → R is called submodular iff f(A∪{x})−f(A) ≥ f(B∪{x})−f(B)
for any A ⊆ B ⊆ E, x ∈ E.

5 Hoefer and Skopalik [8] established the existence of Nash Equilibria for several sub-
classes of atomic congestion games. For the generalization of arbitrary player-specific
cost functions, Milchtaich [12] showed existence for (symmetric) singleton congestion
games and Ackermann et al. [1] for matroid congestion games.
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only asymptotically). Thus, the robust PoA is exactly 5+4α
2+α . We give a refine-

ment of Theorem 3 to non-uniform altruism distributions, obtaining a bound in
terms of the maximum and minimum altruism levels.

Theorem 4. The robust PoA of α-altruistic linear congestion games is at most
5+2α̂+2α̌
2−α̂+2α̌ .

We turn to the pure price of stability of α-altruistic congestion games. Clearly,
an upper bound on the pure price of stability extends to the mixed, correlated
and coarse price of stability.

Proposition 3. The pure PoS of uniformly α-altruistic linear congestion games
is at most 2

1+α .

Symmetric Singleton Congestion Games. Symmetric singleton congestion
games are an important special case of congestion games. They are defined
as G = (N, E, {Σi}i∈N , {de}e∈E): every player chooses one facility (also called
edge) from E = [m], and all strategy sets are identical, i.e., Σi = E for every
i. In singleton linear congestion games, the focus here, delay functions are also
assumed to be linear, of the form de(x) = aex + be.

Caragiannis et al. [4] prove the following theorem (stated using the transfor-
mation from Remark 1). It shows that the pure PoA does not always increase
with the altruism level; the relationship between α and the PoA is thus rather
subtle.

Theorem 5 (Caragiannis et al. [4]). The pure PoA of uniformly α-altruistic
singleton linear congestion games is 4

3+α .

We show that even the mixed PoA (and thus also the robust PoA) will be at
least 2 regardless of the altruism levels of the players, by generalizing a result of
Lücking et al. [11, Theorem 5.4]. This implies that the benefits of higher altruism
in singleton congestion games are only reaped in pure Nash equilibria, and the
gap between the pure and mixed PoA increases in α.

Proposition 4. For every α ∈ [0, 1]n, the mixed PoA for α-altruistic singleton
linear congestion games is at least 2.

As a first step to extend the analysis to non-uniform altruism, we analyze the
case when all altruism levels are in {0, 1}, i.e., each player is either completely
altruistic or completely selfish.6 Then, the system is entirely characterized by
the fraction α of altruistic players (which coincides with the average altruism
level). The next theorem shows that in this case, too, the pure PoA improves
with the overall altruism level.

Theorem 6. Assume that an α fraction of the players are completely altruistic,
and the remaining (1 − α) fraction are completely selfish. Then, the pure PoA
of the altruistic singleton linear congestion game is at most 4−2α

3−α .

6 This model relates naturally to Stackelberg scheduling games (see, e.g., [6]).
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13. Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V.: Algorithmic Game Theory.
Cambridge University Press (2007)

14. Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press (2005)
15. Roughgarden, T.: Intrinsic robustness of the price of anarchy. In: Proc. 41st Annual

ACM Symposium on Theory of Computing, pp. 513–522 (2009)
16. Vetta, A.: Nash equilibria in competitive societies, with applications to facility

location, traffic routing and auctions. In: Proc. 43rd Symposium on Foundations
of Computer Science (2002)



Revenue Enhancement in Ad Auctions

Michal Feldman1,4,	, Reshef Meir1,2, and Moshe Tennenholtz2,3

1 Hebrew University of Jerusalem
mfeldman@huji.ac.il, reshef.meir@mail.huji.ac.il

2 Microsoft Research Herzlia
moshet@microsoft.com

3 Technion-Israel Institute of Technology
4 Microsoft Research New England

Abstract. We consider the revenue of the Generalized Second Price (GSP) auc-
tion, which is one of the most widely used mechanisms for ad auctions. While the
standard model of ad auctions implies that the revenue of GSP in equilibrium is
at least as high as the revenue of VCG, the literature suggests that it is not strictly
higher due to the selection of a natural equilibrium that coincides with the VCG
outcome. We propose a randomized modification of the GSP mechanism, which
eliminates the low-revenue equilibria of the GSP mechanism under some natural
restrictions. The proposed mechanism leads to a higher revenue to the seller.

1 Introduction

Ad auctions are perhaps the most widely studied economic setup in the literature on
on-line markets. As ad auctions generate revenues of billions of dollars per year to
publishers, every subtle feature of their design may have tremendous effect. One of the
two most widely discussed mechanisms in the study of ad auctions is the Generalized
Second Price (GSP) auction, versions of which are those typically used in practice.
The other is the classical Vickrey-Clarke-Groves (VCG) auction, which is known to
be incentive compatible. That is, in VCG bidders are incentivized to report their true
evaluations. We consider the original ad auctions model introduced in the seminal work
of Varian [12] and Edelman et al. [3], where bidders’ valuations per click are fixed and
independent of the ad slot. Previous work characterized a special family of equilibria
of GSP auctions in that setting, termed envy free or Symmetric Nash Equilibria (SNE),
and showed that the SNE leading to the lowest revenue for the seller, termed Lower
Equilibrium (LE), coincides with the truth-revealing equilibrium of VCG.

While the above results suggest that GSP may lead to higher revenue than VCG,
other arguments for revenue comparison between these mechanisms have been dis-
cussed. Kuminov and Tennenholtz model user behavior explicitly as glancing through
the ads in a sequence [7]. Interestingly, in this setting the VCG outcome coincides
with the GSP equilibrium that leads to the highest revenue. Closer to the study of the
standard ad auctions setting, Edelman and Schwarz consider equilibrium selection in
GSP by comparing the revenue in the standard static game to a dynamic variant of the
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game [4]. They suggest that the GSP equilibrium that leads to the highest revenue is
less natural than the one that coincides with the VCG outcome since it generates too
high revenue compared to the revenue obtained in the dynamic model. Recently, Lucier
et al. [8] performed a detailed analysis of the revenue in the GSP auction, under both
complete and incomplete information, using the VCG revenue as a baseline. In partic-
ular, they outlined the conditions under which the revenue in non-envy-free equilibria
can be lower or higher than the revenue in SNE.

Thompson and Leyton-Brown [11] computed the revenue of GSP in equilibrium
using several models from the literature. They found that while the expected revenue of
GSP in Varian’s model was slightly higher than the VCG baseline, in most models the
revenue was profoundly affected by equilibrium selection.

The above suggests that GSP has attracted much attention from both researchers
and practitioners, but it is unclear whether it has revenue advantage over VCG. Hence,
one may wish to consider natural modifications for GSP that increase the auction-
eer/publisher revenue. Notice that GSP is by now a standard practice and modifications
to it should conform to having a relatively similar structure in the way bidders are as-
signed to ad slots and the way they are assigned payments; i.e., an advertiser’s payment
should be bounded by his bids and have some intuitive relations with other (less suc-
cessful) bids. This is not a “mathematical” requirement, but a practical one, given the
way advertisers perceive ad auctions.

Several modifications to the GSP mechanism have already been suggested in the
literature. The most common one is the addition of reserve prices. Indeed, field exper-
iments (and to some extent also theory) suggest that reserve prices can substantially
increase the revenue in GSP auctions [10]. A different modification deals with alloca-
tion efficiency. When some assumptions in Varian’s model are violated, the GSP mech-
anism may not have efficient equilibria. Blumrosen et al. modify the GSP mechanism
to guarantee the existence of an efficient equilibrium in a more general model [1].

Revenue of other incentive compatible and envy-free mechanisms has also been stud-
ied. Hartline and Yan [6] analyzed the maximal revenue attainable under envy-freeness
constraints, which are perceived as a relaxation of incentive compatibility (IC), in a
wide variety of single-parameter domains (including ad auctions). They show that opti-
mal envy-free revenue is a good proxy of the optimal IC revenue, and use it as a baseline
to evaluate the revenue of other IC mechanisms. These results highlight another angle of
the roles of truthfulness and envy-freeness in revenue analysis, but lie outside the scope
of our model. This is mainly since Hartline and Yan assume truthful bidding (even with
non-IC pricing) whereas the envy-free outcomes of the GSP auction are the result of
strategic bidding. Thus GSP and its variations have multiple equilibria with different
revenues, as discussed above.

Our contribution. In this paper we take the study of the GSP revenue to the next stage,
by suggesting natural modifications to the GSP mechanism which result in revenue
boosting for many natural click-through rates. Recall that in the GSP mechanism ev-
ery winning agent pays the second price, i.e., the bid of the bidder directly below her
bid. Our revised mechanism selects randomly between GSP and a variant of it, in which
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an agent pays the third price, i.e., the bid that follows the bid below her bid.1. We
show conditions under which the combined mechanism admits an ex-post envy-free
equilibrium that achieves revenue that is arbitrarily close to the revenue obtained in
the highest revenue equilibrium of GSP, while eliminating the low revenue equilibria
outcomes. More generally, we introduce the family of m-price auctions by generalizing
the GSP auctions as well as the random selection among them, study their ex-post envy-
free equilibria, and prove that by random selection between a pair of such mechanisms
we can boost the revenue of GSP. Proofs are omitted due to space constraints, they
appear in the full version of this paper [5].

2 Model and Preliminaries

2.1 Ad Auctions

In an ad auction there are s slots to allocate, and n bidders, each with valuation vi per
click, for i ∈ {1, . . . , n}. Every slot 1 ≤ j ≤ s is associated with a click-through rate
(CTR) xj > 0, where xj ≥ xj+1. For mathematical convenience, we define xj = 0 for
every j > s. Throughout the paper we make the simplifying assumption that CTRs are
strictly decreasing, i.e., xj > xj+1.

The mechanism receives as input a bid bi from every bidder and determines an al-
location of the slots to the bidders and a payment per click, pi, for every bidder. We
denote the slot allocated to bidder i by π(i). A bidder i that has been allocated slot π(i)
gains vi per click (regardless of the slot), and is charged pi per click. Thus, his total
utility is given by ui = (vi − pi)xπ(i). A mechanism that assigns better slots to higher
bids is called efficient. A mechanism that never assigns lower payments to higher bids
is called monotone. We restrict our attention to efficient and monotone mechanisms.

Nash equilibria. Let v1 > . . . > vn and b = (b1, . . . , bn), where vi and bi are the
private valuation and the submitted bid of bidder i, respectively. Let f be an efficient
and monotone auction mechanism, and let p1, . . . , pn be the payments assigned by f
according to the bids. We say that the bids are in Nash equilibrium (NE), if no bidder
wants to deviate by changing her bid. Let pf

i (b′) be the payment assigned by f to bidder
i if she changes her bid to b′ (and all other bidders keep their current bids). From the
efficiency of f , in order to get slot j < π(i), bidder i must bid like the bidder currently
occupying the slot, i.e., b′ = bj . Similarly, in order to get slot j > π(i), bidder i must
bid below bidder j, i.e., b′ = bj+1. The stability requirements of NE can be divided into
three parts. For every bidder i the following should hold:

bid neutral. Bidder i has no incentive to change her bid if this deviation does not
change the slot assigned to i.

up-Nash. Bidder i does not want to get a better slot:

∀j < π(i), (vi − pi)xπ(i) ≥ (vi − pf
i (bπ−1(j)))xj . (1)

1 k-price auctions have been shown to lead to some intriguing results in the more classical single-
items setting; see [9]
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down-Nash. Bidder i does not want to get a worse slot:

∀j > π(i), (vi − pi)xπ(i) ≥ (vi − pf
i (bπ−1(j+1)))xj . (2)

The first requirement is usually handled by mechanisms that ignore bi when setting the
payment pi (i.e., bi is only used to decide on the allocation and on pj for j 	= i).

Efficiency. We say that an equilibrium outcome is efficient, if bi ≥ bi+1 for all i. Note
that if both the mechanism f and the outcome b are efficient, then every bidder i gets
slot i, i.e., π(i) = i. Efficient equilibria guarantee that the social welfare (i.e. the sum
of utilities of all bidders and the auctioneer) is maximized.

Envy freeness. A different notion of stability than Nash is captured by the envy-freeness
requirement. An outcome is envy free if no bidder is interested in swapping slots (and
payments) with any other bidder. Formally, it takes the following form:

∀j 	= π(i), (vi − pi)xπ(i) ≥ (vi − pf
i (bπ−1(j+1)))xj . (3)

It is easy to verify that (3) entails requirements (1) and (2). Thus, any envy-free outcome
in a bid-neutral mechanism is also a NE. In fact, envy freeness is more restricting than
(1), and thus we are left with a subset of the original set of NE.

Envy-free equilibria have been thoroughly studied in the literature of games in gen-
eral, and ad auctions in particular. They are also known as symmetric Nash equilibria
(SNE), due to the symmetry of up-Nash and down-Nash constraints. Varian [12] and
Lucier et al. [8] further studied properties of SNEs in the GSP mechanism. For exam-
ple, it is shown that every SNE is efficient, which is not true for arbitrary NE.

When a randomized mechanism is in use, we must distinguish between outcomes
that are envy free in expectation from outcomes that are envy free ex-post. The latter
definition means no bidder wants to change slots, even after the randomization has taken
place and the outcome is known. We will be interested in this stronger interpretation of
envy freeness.

The revenue interval. Suppose we are using some auction mechanism f . If f has mul-
tiple NE outcomes, then the auctioneer might end up with different revenues for the
different equilibria. We define RU

f (resp. RL
f ) as the highest (resp. lowest) revenue gen-

erated by mechanism f in some NE. We use a similar notation to denote the highest and
lowest revenues in restricted subsets of NE, replacing R with ER (for efficient NE) or
with SR (for symmetric NE). Clearly [SRL

f , SRU
f ], [ERL

f , ERU
f ] ⊆ [RL

f , RU
f ].

The revenue interval raises the natural question of equilibrium selection. Clearly, the
auctioneer would like the bidders to end up playing an equilibrium with high revenue.
However, the auctioneer is not a player in this game. The players are the bidders, and
given an efficient allocation their joint incentive is basically the opposite - to end up
paying the lowest possible amount.

2.2 VCG and GSP

The VCG mechanism sorts the bidders by their bids, and allocates the j’th slot, j =
1, . . . , s, to the j’th highest bidder. Each bidder j is charged pj =

∑
k≥j+1 bk(xk−1 −

xk) per click (we define bi = 0 for all i > n). Note that VCG is efficient and monotone.
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It is well known that under the VCG mechanism, reporting the true values (i.e., bi = vi)
is a dominant strategy, and in particular it is a Nash equilibrium. We denote the revenue
in the truthful equilibrium of VCG by RT

V CG.
The allocation of the GSP mechanism is efficient, i.e., identical to that of VCG. The

charge of bidder j = 1, . . . , s equals the bid of the next bidder; i.e., pj = bj+1. For
mathematical convenience, we define bj+1 = 0 for j ≥ n. GSP is clearly efficient and
monotone. Varian [12] focuses on the analysis of envy-free equilibria (i.e., SNEs) in the
GSP auction, due to their many attractive properties. For example, Varian shows that
every SNE is efficient. The SNE requirement (3) in GSP takes the following form:

∀j 	= i, (vi − bi+1)xi ≥ (vi − bj+1)xj . (4)

2.3 Known Properties of GSP

Before presenting some known properties of the VCG and GSP mechanisms, we put
forward the following basic definitions. Let g1, . . . , gm ∈ R+ be the elements of a
monotonically nonincreasing series. We sometimes refer to such series as functions (of
the form g : {1, . . . , m} → R). We say that g is convex if it has a decreasing marginal
loss, i.e., gi−gi+1 ≥ gj−gj+1 for every i < j. Similarly, if g has an increasing marginal
loss then it is concave. Notice that linear functions are both convex and concave.

A special case of convexity is when the marginal loss decreases exponentially fast.
We say that g is β-separated (for some 0 < β < 1) if gi+1 ≤ βgi for every i. If the
above holds with equality (rather than inequality), g is said to be exponential. Lastly, a
series/function g is said to be log-concave, if for every i < j ≤ m, gi

gi−1
≥ gj

gj−1
.

Distinguished equilibria. Of particular interest are the two equilibria of GSP that reside
on the boundaries of the SNE set, referred to as Lower Equilibrium (LE) and Upper
Equilibrium (UE). We denote the LE and UE profiles by bL = {bL

i }i∈N and bU =
{bU

i }i∈N , respectively. The bids in the LE, for every 2 ≤ i ≤ s, are given by

bL
i xi−1 = vi(xi−1 − xi) + bL

i+1xi =
∑

s+1≥t≥i

vt(xt−1 − xt).

A similar recursive formula is derived for the UE. Note that since xi−1 > xi, no two
bidders submit the same bid in LE (or in UE). Interestingly, the LE outcome coincides
with that of VCG in terms of the revenue (although bids may be different).

Proposition 1 (Varian [12]). The payments of all bidders in the LE of GSP are the
same as under the truthful bidding in VCG. In particular, it follows that SRL

GSP =
RT

V CG.

The revenue interval of GSP. Since SNE is always efficient, we have that

[SRL
GSP , SRU

GSP ] ⊆ [ERL
GSP , ERU

GSP ] ⊆ [RL
GSP , RU

GSP ],

where in the most general case, these inclusions may be strict.
Lucier et al. [8] study the conditions on the CTR function under which the boundaries

of these sets become close or equal. They show that if xi > xi+1 for all i (as we assume
here), then the first inclusion becomes an equality.
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Algorithm 1. THE RANDOM NEXT-PRICE MECHANISM (M(q))
Collect bids from all agents. Allocate slots according to bids in decreasing order.

w.p. q, each bidder i pays bi+1. // GSP is applied
w.p. 1 − q, each bidder i pays bi+2. // GTP is applied

Justifying the Lower equilibrium. We argue that when faced with the equilibrium selec-
tion problem of GSP, bidders are likely to play the lower envy-free equilibrium bL. The
concept of envy freeness itself is well justified in various settings. In addition, in our ad
auction setting, bidders have a particular interest in an efficient allocation, which makes
the set of SNEs even more prominent. Within this set, there are two natural focal points,
introduced in the previous paragraph. However, observe that if all bidders change their
bids from bi to bL

i , then the allocation remains the same, and every bidder i pays the
same, or strictly less (if bL

i+1 < bi+1). Thus every SNE is Pareto dominated by bL.
in conclusion: if bidders try to influence the outcome equilibrium, they are most

likely to play the lowest envy-free equilibrium (LE in the GSP case),and the revenue of
the auctioneer will be SRL

GSP = ERL
GSP .

3 Generalized Next Price Auctions

Consider a modified GSP mechanism, termed m-price auction (or just m-price), in
which pi = bi+m−1. For example, the 2-Price auction is GSP, as pi = bi+1. We argue
that the SNE outcomes of the auction are essentially the same for all m ≥ 2.

Lemma 1. Let b be a (sorted) bid vector, and let k, m s.t. 2 ≤ k < m ≤ n + 1 − s. b
is an SNE of m-price if and only if b′ is an SNE of k-price, where b′i = bi+k−m.2

This is simply since the bid vectors in both mechanisms induce exactly the same allo-
cation (in decreasing order of valuations), and exactly the same payments. In particular,
from the perspective of the bidders the outcome is the same whether GSP or any other
m-price auction is used (although they will submit different bids). Clearly the revenue
of the auctioneer is the same as well.

We can now easily derive the lower and upper bounds on SNE bids in m-price auc-
tions, which we denote by bL

i (m), bU
i (m). For every m ≥ 2, bL

i (m) = bL
i+2−m, and

bU
i (m) = bU

i+2−m. We will focus on 2-price (i.e., GSP) and 3-price auctions; we refer
to the latter as the generalized third-price auction (GTP).

3.1 Boosting Revenue via Randomization

Due to Lemma 1, it seems that there is no benefit in using the m-price auction rather
than the original GSP. Quite surprisingly, it turns out that combining these mechanisms
enables us to improve the revenue interval. In particular, we introduce a randomized
mechanism that boosts the auctioneer’s revenue. This mechanism, denoted M(q), runs
GSP w.p. q (where q ∈ [0, 1]) and otherwise runs GTP (see Algorithm 1).

2 If i + k − m < 1 then b′i can be completed arbitrarily, as long as b′i > b′i+1.
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We identify natural conditions under which the expected revenue of the M(q) mech-
anism exceeds that of GSP and VCG, or even approaches the highest possible revenue
of the GSP auction (in any Nash equilibrium).

Theorem 2. Suppose that the CTR function is convex and log-concave, and that for
every 2 ≥ i ≥ s it holds that vi

vi−1
≤ xi

xi−1
. For any 0 < q < 1 it holds that SRL

M(q) >

SRL
GSP (and thus SRL

M(q) > RT
V CG).

Theorem 3. When the CTR function is exponential, SRL
M(q) > RT

V CG. Further,

lim
q→1

SRL
M(q) = SRU

GSP = ERU
GSP .

In the remainder of this section, we sketch the proof of both theorems. The crucial part
lies in showing that under the conditions we required (in either theorem), the upper-
revenue bidding profile of the GSP auction is also an SNE in GTP, and in particular
bU
i ≥ bL

i (3) for all i. On the other hand, the lower-revenue profile (bL) is not envy-free
if GTP is applied. The expected payment of bidder i is therefore

E[pi] ≥ qbL
i+1(3) + (1 − q)bL

i+2(3) (Lemma 1)= qbL
i + (1 − q)bL

i+1 > bL
i+1 = pL

i .

That is, every bidder is paying (in expectation) strictly more in the M(q) mechanism
than in GSP. When the CTRs are exponential, we show that bU and bL(3) coincide
(i.e. this is the unique ex-post envy free bidding profile). Thus

E[pi] = qbL
i+1(3) + (1 − q)bL

i+2(3) = qbU
i+1 + (1 − q)bU

i+2 = qpU
i + (1 − q)pU

i+1,

and as q gets closer to 1, the revenue gets arbitrarily close to SRU
GSP , i.e., to the highest

revenue possible in the GSP mechanism in envy-free equilibrium.
Finally, since exponential CTR is in particular strictly decreasing, it follows (accord-

ing to Lucier et al. [8]) that SRU
GSP = ERU

GSP , as required.

4 Discussion
We propose a randomized modification to the GSP auction, and analyze the set of ex-
post envy-free equilibria in this new mechanism. We show natural conditions under
which the revenue to the auctioneer strictly increases compared to the revenue in the
“natural” envy-free equilibrium of the original GSP auction (which equals to the rev-
enue in VCG under truthful bidding). When the CTRs are exponentially decreasing,
our mechanism eliminates all ex-post envy-free equilibria, except the one leading to
the maximal possible equilibrium revenue of the GSP auction. We note that convex and
even exponential CTRs are common in the real world, as shown in Figure 1.3

Future research directions include the extension of our analysis to generalizations
of the basic model (e.g., by considering the “ad’s quality,” as in [12]), and a study of
the randomized mechanism in a model with incomplete information. Field experiments
with the randomized mechanism (in the spirit of Ostrovsky and Schwarz [10]) will help
to determine the practical value of our approach.

3 Stats taken from Atlas Institutes rank report [2]. We present the data on the “click potential”
attribute, which corresponds to the actual CTR in our model.
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(a) Average CTR (linear scale) (b) Average CTR (log scale)

Fig. 1. The average click-through rate for ads positioned in any of the first ten slots are shown in
Fig. 1(a) (numbers are normalized so that the CTR of slot 1 is 100). We can see that the shape of
the CTR function is convex in both Google and Overture. In Fig. 1(b) we see the same data in log
scale. Interestingly, the Overture CTR function is very close to exponential (with β ∼= 1.3).
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Abstract. Motivated by the sequence form formulation of Koller et al. [16], this
paper considers bilinear games, represented by two payoff matrices (A,B) and
compact polytopal strategy sets. Bilinear games are very general and capture
many interesting classes of games including bimatrix games, two player Bayesian
games, polymatrix games, and two-player extensive form games with perfect re-
call as special cases, and hence are hard to solve in general. For a bilinear game,
we define its best response polytopes (BRPs) and characterize its Nash equilib-
ria as the fully-labeled pairs of the BRPs. Rank of a game (A,B) is defined as
rank(A + B). In this paper, we give polynomial-time algorithms for computing
Nash equilibria of (i) rank-1 games, (ii) FPTAS for constant-rank games, and
(iii) when rank(A) or rank(B) is constant.

1 Introduction

One fundamental class of computational problems in game theory is the computation
of Nash equilibria (NE) of finite games. The recent results [4,6] established that the
problem is PPAD-complete, even for games with only two players. In light of these
negative results, one direction is to identify tractable subclasses of games.

A two-player normal form game can be represented by two payoff matrices, say
A and B, one for each player, and hence is also known as bimatrix game. For bima-
trix games, polynomial time NE computation algorithms are known for many sub-
classes, including zero-sum games [5], (quasi-) concave games [17], and games with
low rank payoff matrices [18]. A line of work focuses on games of small rank, defined
as rank(A + B) by Kannan and Theobald [14]. They gave a fully polynomial time
approximation scheme (FPTAS) for fixed rank games. Such a rank-based approach has
wide applicability: even when the game does not have small rank, one can solve a small-
rank approximation of the game (using e.g. singular-value decomposition) to compute
an approximate Nash equilibrium of the original game. Recently, Adsul et al. [1] gave a
polynomial time algorithm for computing an exact Nash equilibrium for rank-1 games.

Specifying the two payoff matrices of a bimatrix game requires a polynomial num-
ber of entries in the numbers of pure strategies available to the players. This is adequate
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when the set of pure strategies are explicitly given. However, there are cases where the
natural description gives the set of pure strategies implicitly. For example, the normal
form representation of a two player extensive-form game may have exponentially many
strategies in the size of the extensive-form description [8]. In such a case, even if the re-
sulting bimatrix game has a fixed rank, the above results may not be applied for efficient
computation. Koller, Megiddo and von Stengel [16] converted an arbitrary two-player,
perfect-recall, extensive form game into a payoff-equivalent two-player game with con-
tinuous strategy sets. In this derived formulation, which they call the sequence form,
there is a pair of payoff matrices A and B, one for each player. Further, their strategy
sets turn out to be compact polytopes in Euclidean space of polynomial dimension.
Given a pair of strategies (x, y), utilities of the players are xT Ay and xT By respec-
tively. The sequence form requires only a polynomial number of bits to specify.

Motivated by the sequence form of Koller et al., we define bilinear games, which
are two-player, non-cooperative, single shot games represented by two payoff matrices,
say A and B, of dimension M ×N and two polytopal compact strategy sets X = {x ∈
�

M | Ex = e, x ≥ 0} and Y = {y ∈ �N | Fy = f, y ≥ 0}. If (x, y) ∈ X × Y is the
played strategy, then xT Ay and xT By are the utilities derived by player one and player
two respectively. In other words, the payoffs are bilinear functions of strategies, hence
the name bilinear games. The scope of bilinear games is large enough to capture many
interesting classes of games (see Section 2.1 of [9]) besides bimatrix and two-player
extensive form games with perfect recall, like for two-player Bayesian games [12,19],
polymatrix games [11], and various classes of optimization duels [13], the proposed
polynomial-sized payoff-equivalent formulations turn out to be bilinear games.

Since, the hardness results of bimatrix games apply to bilinear games, the only hope
is to design efficient algorithms or FPTAS for special subclasses. A natural approach is
to try to adapt algorithms for bimatrix games to bilinear games. However, a technical
challenge is that the polytopal strategy sets of bilinear games are much more complex
than the bimatrix case; in particular the number of vertices may be exponential, while
the set of mixed strategies is just a simplex. Recently, we were pointed to Constrained
games [3], similar to bilinear games. The linear programming approach of [3] also
works to solve zero-sum bilinear games (see also [7,13,15,19]).

Our Contribution. We extend Kannan and Theobald’s [14] rank-based hierarchy for
bimatrix games to bilinear games, by defining the rank of a bilinear game with payoff
matrices (A, B) as the rank of (A + B). In Section 3, we show that in spite of a very
general structure of the strategy sets in bilinear games, the basic approach given by
Adsul et al. [1] to compute a NE of a rank-1 bimatrix game can be generalized to com-
pute a NE of a rank-1 bilinear game. In Section 4, we discuss two FPTAS algorithms
for the fixed rank bilinear games, which are generalization of the algorithms by Kannan
and Theobald [14] for the bimatrix games. Finally, in Section 5, we obtain a polynomial
time algorithm for the case when the rank of either A or B is a constant, and the rank of
E and F are also constant. Since a bimatrix game can be thought of as a bilinear game
with E and F being a single row of 1s, this algorithm improves upon a result by Lipton
et al. [18] and Kannan et al. [14] for bimatrix games, where they require both A and
B of constant rank. This algorithm can also enumerate extreme equilibria of a bilinear
game, in time polynomial under the above assumptions and exponential in general.
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2 Bilinear Games and Nash Equilibria

Notations. We consider a vector x as a column vector by default and for the row vector,
we use transpose (i.e., xT ). Let x ∈ �

n be a vector and c ∈ � be a scalar, x ≤ c
denotes ∀i ≤ n, xi ≤ c. For a given matrix A, it’s ith-row and jth-column are denoted
by Ai and Aj respectively, and let |A| = maxij |Aij |.

Bilinear games are two-player non-cooperative, single shot games, represented by
two M×N dimensional payoff matrices A and B, one for each player, and two compact
polytopal strategy sets. Let S1 = {1, . . . , M} be the set of rows and S2 = {1, . . . , N}
be the set of columns of the matrices. Let E ∈ �k1×M and F ∈ �k2×N be the matrices,
and e ∈ �k1 and f ∈ �k2 be the vectors. The strategy set of the first-player is X =
{x ∈ �M | Ex = e, x ≥ 0} and the second-player is Y = {y ∈ �N | Fy = f, y ≥ 0}.
Sets X and Y are assumed to be compact. From a strategy profile (x, y) ∈ X × Y , the
payoffs obtained by the first and the second player are xT Ay and xT By respectively.

Definition 1. An (x, y) ∈ X×Y is a NE of the game (A, B) iff xT Ay ≥ x′T Ay, ∀x′ ∈
X and xT By ≥ xT By′, ∀y′ ∈ Y , i.e., no player gains by unilateral deviation.

As a corollary of Glicksberg’s [10] result that there always exists a Nash equilibrium in
a game if strategy spaces are convex and compact, and utility function for each player i
is continuous in all players’ strategies and quasi-concave in i’s strategy, we have

Proposition 1. Every bilinear game has at least one Nash equilibrium.

A bilinear game is completely represented by a six-tuple (A, B, E, F, e, f) in general.
However, for ease of notation we represent it by (A, B) fixing (E, F, e, f). Given a
strategy y ∈ Y of the second-player, the objective of the first player is to play x ∈ X
such that xT (Ay) is maximized, i.e., solve the following LP [16].

max : xT (Ay)
s.t. Ex = e

x ≥ 0
Dual−−→

min : eT p
s.t. ET p ≥ Ay

(1)

At the optimal point (x, p) of (1), we get xi > 0 ⇒ Aiy = pT Ei, ∀i ∈ S1. This with a
similar condition for the second-player, characterize the NE as follows: A strategy pair
(x, y) ∈ X × Y is a Nash equilibrium of the game (A, B) iff,

∃p ∈ �k1 s.t. Ay ≤ ET p and ∀i ∈ S1, xi > 0 ⇒ Aiy = pT Ei

∃q ∈ �k2 s.t. xT B ≤ qT F and ∀j ∈ S2, yj > 0 ⇒ xT Bj = qT F j (2)

At a NE, a player plays a strategy with positive weight only if it gives the maximum
payoff with respect to (w.r.t.) the opponent’s strategy in some sense. Such strategies are
called the best response strategies. Using this fact, we define best response polytopes
(BRPs) (similar to bimatrix game [20]), where x, y, p and q are vector variables.

P = {(y, p) ∈ �N+k1 |Aiy − pT Ei ≤ 0, ∀i ∈ S1; yj ≥ 0, ∀j ∈ S2; Fy = f}
Q = {(x, q) ∈ �M+k2 |xi ≥ 0, ∀i ∈ S1; xT Bj − qT F j ≤ 0, ∀j ∈ S2; Ex = e} (3)

The polytopes P and Q are called BRPs of the first and the second player respectively.
Since |S1| = M and |S2| = N , number the inequalities from 1 to M , and M + 1 to
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M +N in both the polytopes. Let the label L(v) of a point v be the set of indices of the
tight inequalities at v. If for a pair (v, w) ∈ P × Q, L(v) ∪ L(w) = {1, . . . , M + N},
then it is called a fully-labeled pair. The next lemma follows directly using (2).

Lemma 1. A strategy profile (x, y) is a NE of the game (A, B) iff ((y, p), (x, q)) ∈
P × Q is a fully-labeled pair, for some p and q.

A game is called non-degenerate if both the polytopes are non-degenerate. Note that a
fully-labeled pair of a non-degenerate game has to be a vertex-pair. Lemma 1 implies
that a ((y, p), (x, q)) ∈ P×Q corresponds to a NE if and only if it satisfies the following
linear complementarity conditions (LCP).

xT (Ay − ET p) = 0 and (xT B − qT F )y = 0 (4)

Clearly, xT (Ay−ET p) ≤ 0 and (xT B− qT F )y ≤ 0 over P ×Q and hence xT (Ay−
ET p) + (xT B − qT F )y ≤ 0 ⇒ xT (A + B)y − eT p− fT q ≤ 0 and equality holds iff
(x, y) is a NE (using (4)). This gives the following QP formulation which captures all
the NE of game (A, B) at its optimal points.

max: xT (A + B)y − eT p − fT q
s.t. ((y, p), (x, q)) ∈ P × Q

(5)

Some proofs, a section on examples, and symmetric bilinear games are omitted due to
space constraints. Interested readers are referred to [9] for details.

3 Rank-1 Games and Polynomial Time Algorithm

The approach used in this section is motivated by the paper [1]. Given a rank-1 game
(A, B), ∃α ∈ �M , ∃β ∈ �N such that A+B = α ·βT . In that case B = −A+α ·βT .
Let G(α) = (A,−A + α · βT ) be a parametrized game for a fixed A ∈ �M×N and
β ∈ �N . For any game G(α) the BRP P (α) of the first-player is fixed to P (of (3)),
since A is fixed. However, the BRP of second-player Q(α) changes with the parameter.
Consider the following polytope with x, q as vector variables and λ as a scalar variable:

Q′ = {(x, λ, q) ∈ �M+1+k2 | xi ≥ 0, ∀i ∈ S1;
xT (−Aj) + λβj − qT F j ≤ 0, ∀j ∈ S2; Ex = e} (6)

It is easy to see that Q(α) is the projection of {(x, λ, q) ∈ Q′ | λ = xT α} on (x, q)-
space, and hence Q′ covers Q(α), ∀α ∈ �M . Number the equations of Q′ in a similar
way as the equations of Q. Let N be the set of fully-labeled pairs of P × Q′, i.e.,
N = {(v, w) ∈ P × Q′ | L(v) ∪ L(w) = {1, . . . , M + N}}.

((y, p), (x, λ, q)) ∈ N ⇔ xT (Ay − ET p) = 0, (xT (−A) + λβT − qT F )y = 0 (7)

Lemma 2. Let (v, w) ∈ N , v = (y, p) and w = (x, λ, q).

– For all α such that λ = xT α, (x, y) is a NE of G(α).
– For every NE (x, y) of a game G(α), ∃(v, w) ∈ N , where λ = xT α.
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Next we discuss the structure of N . The polytopes P and Q′ are assumed to be non-
degenerate, and let k1 = k2 = k for simplicity. Therefore, ∀(v, w) ∈ N , |L(v)| ≤ N
and |L(w)| ≤ M +1, and N ⊂ 1-skeleton of P ×Q′. Further, if (v, w) ∈ N is a vertex
pair then |L(v) ∩ L(w)| = 1. Let the label in the intersection be called the duplicate
label of (v, w). Relaxing the inequality corresponding to the duplicate label at (v, w) in
P and Q′ respectively gives its two adjacent edges in N . Therefore, every vertex of N
has degree two. This implies that N is a set of cycles and infinite paths. We show that
N forms a single infinite path. The next lemma follows directly from Equations (3,6,7).

Lemma 3. For all (v, w) = ((y, p), (x, λ, q)) ∈ P × Q′, we have λ(βT y) − eT p −
fT q ≤ 0, and the equality holds iff (v, w) ∈ N .

LP (δ) − max: δ(βT y) − eT p − fT q
s.t. ((y, p), (x, λ, q)) ∈ P × Q′; λ = δ

For an a ∈ �, let OPT (a) be the set of optimal solutions of LP (a) and N (a) =
{(v, w) ∈ N | w = (x, λ, q) and λ = a}.

Lemma 4. For an a ∈ �, N (a) 	= ∅ and OPT (a) = N (a)

Proof. Clearly, N (a) 	= ∅ as points on N corresponding to NE of G([a, . . . , a]) are in
N (a) (Lemma 2). And, OPT (a) = N (a) follows directly from Lemma 3. ��

Lemma 5. The set N forms an infinite path, with λ being monotonic on it.

Proof. Let C be a cycle in N . Clearly, ∃a ∈ �, s.t. either λ = a contains C or cuts
it exactly at two points. Contradiction to N (a) being convex. Since, ∀a ∈ R,N (a) is
convex, if there are two paths in N , then λ should be monotonic on both and its range
on the paths should be mutually disjoint. Therefore if the range of λ covered by one is
(−∞, a], then the other covers (a, inf), which contradicts closeness of the paths. ��

3.1 Algorithm

Let (A, B) be a given rank-1 game s.t. A + B = γ · βT , γmin = minx∈X

∑
i∈S1

γixi

and γmax = maxx∈X

∑
i∈S1

γixi. Let Hγ : λ −
∑

i∈S1
γixi = 0 and H−

γ , H+
γ be

its half-spaces. The γmin and γmax exists since X is a bounded polytope. Clearly,
N ∩Hγ = NE of (A, B) (Lemma 2), and corresponding λ ∈ [γmin, γmax]. Therefore,
all the points in N ∩ Hγ lies between N (γmin) ∈ H−

γ and N (γmax) ∈ H+
γ . As λ is

monotonic on N (Lemma 5), the following algorithm does binary search on N between
N (γmin) and N (γmax) to find a point in the intersection (similar to BinSearch of [1]).

S1 Initialize a1 = γmin and a2 = γmax. If the edge containing N (a1) or N (a2)
intersects Hγ , then output the intersection and exit.

S2 Let a = a1+a2
2 . Let u, v be the edge containing N (a).

S3 If u, v intersects Hγ , then output the intersection and exit.
S4 Else if u, v ∈ H−

γ , then set a1 = a else set a2 = a and continue from step S2.

Let Z = max{|A|, |E|, |F |, |e|, |f |, |γ|, |β|}, l = M + N + k1 + k2, and Δ = l!Z l.
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Theorem 1. The above algorithm finds a NE of (A, B) in polynomial time.

Proof. Clearly, if λ is not constant on an edge of N , then it changes by at least 1
Δ2 on

the edge. Therefore, if a2 − a1 < 1
Δ2 the algorithm terminates. The proof follows. ��

4 FPTAS for Rank-k Games

The approximation notion in bilinear games may be defined in a similar way to that
of bimatrix games given by Kannan et al. [14]. Let xmax = maxx∈X

∑
i xi, ymax =

maxy∈Y

∑
j yj and D = |A + B|. Clearly the total payoff derived from a strategy

profile (x, y) ∈ X × Y is at most xmaxDymax.

Definition 2. For a strategy profile (x, y) ∈ X × Y , let u = maxx′∈X x′T Ay and
v = maxy′∈Y xT By′. Then (x, y) is an ε-approximate NE of the game (A, B) if u +
v − xT (A + B)y ≤ ε(xmaxDymax).

Next we define a stronger notion of approximate NE, called relative ε-approximate NE.

Definition 3. For a strategy profile (x, y) ∈ X × Y , let u = maxx′∈X x′T Ay and
v = maxy′∈Y xT By′. Then (x, y) is a relative ε-approximate NE of (A, B) if u + v −
xT (A + B)y ≤ ε(u + v), i.e., the total error is relatively small.

Since the value of u + v is at most xmaxDymax, if (x, y) is relative ε-approximate NE,
then it is also ε-approximate NE. As scaling A, B, E, F, e and f by a positive value
does not change the set of (relative) ε-approximate NE, we assume them to be integer
matrices. Next we discuss two FPTAS to solve QP of (5), one for each definition of
approximation. The approaches used in these algorithms are generalization of [14].

4.1 FPTAS for Approximate NE

We show that the result by Vavasis [21] can be applied to get an ε-approximate NE.

Proposition 2. [21] Let f(x) = 1
2xT Qx + qT x, and min{f(x) : Ax ≤ b} be a

quadratic optimization problem with compact polytope {x ∈ �
n : Ax ≤ b}, and

let the rank of Q be a constant. If x∗ and x# minimizes and maximizes f(x) in the
feasible region, respectively, then one can find in time poly(L, 1

ε ) a point x� satisfying
f(x�) − f(x∗) ≤ ε(f(x#) − f(x∗)).

Consider the QP formulation of (5) to capture all NE of a rank-k game (A, B).

Theorem 2. For every ε > 0, an ε-approximate NE of the game (A, B), can be com-
puted in time poly(L, 1

ε ), where L is the bit length of the game.

Proof. The objective function of (5) can be transformed to the form min : 1
2xT Qx +

qT x, where rank(Q) = 2k. To apply Proposition 2 on this QP, we need to bound its
feasible set. The only variables to bound are ps and qs. Since, maximum absolute value
of a co-ordinate of any vertex in the polytope is at most l!Zl, impose −l!Z l ≤ p ≤
l!Zl and −l!Z l ≤ q ≤ l!Zl (with polynomial increase in L). The minimum and the
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maximum objective values of this QP are zero (Lemma 3) and at most 2xmaxDymax.
Let ((y�, p�), (x�, q�)) be the solution given by Vavasis algorithm for ε

2 , then from
Proposition 2 we get,

eT p� + fT q� − x�T (A + B)y� ≤ ε(xmaxDymax)

From the primal-dual formulation of (1) it is clear that maxx′∈X x′T Ay� ≤ eT p� and
maxy′∈Y x�T By′ ≤ fT q�. Therefore, we get maxx′∈X x′T Ay�+maxy′∈Y x�T By′−
x�T (A + B)y� ≤ ε(xmaxDymax). ��

4.2 FPTAS for Relative Approximate NE

Let the rank of a game (A, B) be k, then A + B =
∑k

i=1 α(i)β(i)T , where ∀i, α(i) ∈
�

M and β(i) ∈ �N . We assume that the game is such that α(i)s and β(i)s are positive
vectors. For all i ≤ k, let wi = minx∈X xT α(i) and w′

i = maxx∈X xT α(i), similarly
let zi = miny∈Y β(i)T y and z′i = maxy∈Y β(i)T y. Note that wi, w

′
i, zi and z′i can

be represented by poly(L, M, N) bits, since X and Y are compact. Given an ε >
0, consider the sub-intervals [wi, (1 + ε)wi], [(1 + ε)wi, (1 + ε)2wi], and so on of
[wi, w

′
i] and similarly of [zi, z

′
i]. All combinations of these intervals form a grid in 2k-

dimensional box B = ×i[wi, w
′
i]×i [zi, z

′
i]. For a fixed hyper-cube×i[ui, (1+ ε)ui]×i

[vi, (1 + ε)vi] of the grid, consider the following LP based on the QP of (5),

min: eT p + fT q
s.t. Ay ≤ ET p, Fy = f, y ≥ 0; ∀i, vi ≤ β(i)T y ≤ (1 + ε)vi;

xT B ≤ qT F ; Ex = e; x ≥ 0; ∀i, ui ≤ xT α(i) ≤ (1 + ε)ui;

Algorithm. Run the above LP for each hyper-cube of the grid, and output an optimal
point of the one giving the best approximation. As the number of hyper-cubes in the
grid is poly(L, 1/ log(1 + ε)), the running time is poly(M, N,L, 1/ log(1 + ε)).

Theorem 3. Let (A, B) be a rank-k game, and A + B =
∑k

i=1 α(i)β(i)T , s.t. α(i)s
and β(j)s are positive. Then given an ε > 0, a relative (1 − 1/(1 + ε)2)-approximate
NE can be computed in time poly(L, 1/ log(1 + ε)), where L is the input bit length.

Proof. Clearly, for a (x, y) ∈ X×Y such that ∀i, xT α(i) ∈ [ui, (1+ε)ui] and β(i)T y ∈
[vi, (1+ε)vi], we have

∑k
i=1 uivi ≤ xT (A+B)y ≤ (1+ε)2

∑k
i=1 uivi. Using this we

can show that the optimal of LP, for the hyper-cube containing the point corresponding
to a NE, is a relative (1 − 1/(1 + ε)2)-approximate NE. The proof follows. ��

5 Games with a Low Rank Matrix

In this section we show that if rank of even one payoff matrix (A or B) is constant, then
Nash equilibrium computation can be done in polynomial time. Recall the best response
polytopes P and Q (3) for the bilinear game (A, B).

Lemma 6. Given a bilinear game (A, B), there exists a vertex pair ((y, p), (x, q)) ∈
P × Q such that (x, y) is a NE of (A, B).
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Lemma 7. Let k1 = k2 = k and rank(A) = l. P has at most O(N l+k) vertices.

Proof. As Fy = f gives k linearly independent (l.i.) equalities, P is of dimension N .
Note that, ∃!S ⊂ S1, |S| = rank([A -E]) ≤ l+k such that ∀i ∈ S1\S, Aiy−pTEi ≤
0 are not needed in defining the polytope P . At a vertex, if d inequalities of S are tight
then rest N − d must be of type yj = 0. Therefore, the total number of vertices are at
most

∑l+k
i=0

(
l+k

i

)(
N
i

)
≤ 2l+kN l+k. ��

Theorem 4. If rank of either A or B is constant then a NE of a bilinear game (A, B)
can be computed in polynomial time, assuming k to be a constant.

Proof. The proof follows from the fact that, whether a vertex of P or Q corresponds to
a NE of (A, B), can be checked in polynomial time. ��

As the set of bimatrix games is the bilinear games with k1 = k2 = 1, Theorem 4
strengthens the results by Lipton et al. [18] (Corollary 4), and Kannan et al. [14] (The-
orem 3.2), where they require both A and B of constant rank.

In fact Theorem 4 gives a polynomial time algorithm to enumerate all the extreme
equilibria of a bilinear game with a fixed rank matrix, and an exponential time enumer-
ation algorithm for any bilinear game. A similar (exponential time) algorithm was given
by Avis et al. [2] to enumerate all NE of a bimatrix game.
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Abstract. The already extended literature in Combinatorial Auctions,
Public Projects and Scheduling demands a more systematic classification
of the domains and a clear comparison of the results known. Connecting
characterization results for different settings and providing a characteri-
zation proof using another characterization result as a black box without
having to repeat a tediously similar proof is not only elegant and desir-
able, but also greatly enhances our intuition and provides a classification
of different results and a unified and deeper understanding. We consider
whether one can extend a characterization of a subdomain to a domain
in a black-box manner. We show that this is possible for n-player sta-
ble mechanisms if the only truthful mechanisms for the subdomain are
the affine maximizers. We further show that if the characterization of
the subdomain involves a combination of affine maximizers and thresh-
old mechanisms, the threshold mechanisms for the subdomain cannot be
extended to truthful mechanisms for the union of the subdomain with
a (very slight) affine transformation of it. We also show that for every
truthful mechanism in a domain there exists a corresponding truthful
mechanism for any affine transformation of the domain. We finally plug
in as a black box to our theorems the characterization of additive 2-player
combinatorial auctions that are decisive and allocate all items (which
essentially is the domain for scheduling unrelated machines) and show
that the 2-player truthful mechanisms of any domain, which is strictly
a superdomain of it are only the affine maximizers. This gives a unique
characterization proof of the decisive 2-player mechanisms for: Combina-
torial Public Projects, Unrestricted domains, as well as for Submodular
and Subadditive Combinatorial Auctions that allocate all items.

1 Introduction

Our Results and Motivation. Suppose that you are in a conference com-
mittee and need to choose only one of the following two papers for acceptance:
Both give a characterization for n-player stable (/2-player that allocate all items)
Combinatorial Auctions, the first for the case when the players have additive
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valuations and the second for the case when the players have sub-modular val-
uations. Which one will you accept? Is one of the results stronger, in the sense
that the two papers can be merged and the weaker result can be derived as a
corollary?

In this paper we address and only partially answer the following questions:
Which domains have the same characterization? Can we classify different do-
mains in terms of how difficult it is to characterize them or how rich are the
mechanisms allowed? Does a characterization for a “more difficult” domain au-
tomatically imply a proof for domains that are lower in this hierarchy? Can we
establish a bijection between the mechanisms involved in the characterization of
different domains? This work gives some explanations we would have liked to
find, back when we started working on characterization results and wondered
what do the results about other slightly different domains tell us about the
domain we were primarily interested in.

Roberts [11](1979) gives an elegant proof, which shows that the only truthful
mechanisms for the Unrestricted domain are the affine maximizers. He also gets
the Gibbard-Sattherwhaite Theorem (1973) for voting systems as a corollary.
For more “restricted” multi-parameter domains, there exist truthful mechanisms
other than affine maximizers (see e.g. [15,10,4]). An important question, posed
in [18,14], is to determine how much we need to restrict the domain in order to
admit truthful mechanisms different than the affine maximizers. Here we show
that for the case of 2 players, this transition domain is the additive combinatorial
auctions domain: We show that if we slightly enrich the possible valuations, the
Threshold mechanisms involved in the characterization [4] seize to be truthful
and the only truthful mechanisms that remain are the affine maximizers.

A crucial observation is: the more “unrestricted” the domain of valuations, the
fewer the possible truthful mechanisms. An intuitive explanation for this is that
in larger domains there are more inputs that need to satisfy the conditions for
truthfulness. On the other hand, this intuition may be misleading: Given that
a sub-domain admits as truthful mechanisms only the affine maximizers does
not immediately imply that the domain also admits the same mechanisms; there
may be other mechanisms which when restricted to sub-domain are exactly the
affine maximizers. In particular, we do not know whether this is possible for non-
stable mechanisms. We also do not know if this is possible for domains where the
possible truthful mechanisms are richer than combinations of affine maximizers
and threshold mechanisms.

Related Work. The starting point of characterization attempts goes back to
Robert’s [11] result. Many papers tried to extend this very elegant proof [16,10,19],
while others tried different proof techniques [15,4,8,16]. (As the literature in
combinatorial auctions is vast we refer the reader to [18] Chapter 11 and the
references within and mention here only some recent results.) Computational
complexity impossibility results for maximal in range mechanisms (mechanisms
obtained by restricting the possible allocations among which an affine maxi-
mizer chooses its allocation) where shown in [2,7]. Dobzinski [6] shows that
every universally truthful randomized mechanism for combinatorial auctions
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with submodular valuations that provides an approximation ratio of m
1
2−ε must

use exponentially many value queries. Krysta and Ventre show that if verifica-
tion is introduced sub-modular combinatorial auctions become tractable [13].
Nisan and Ronen introduced the truthful scheduling unrelated machines prob-
lem [17,4,12,10,20]. A characterization of decisive truthful 2-player mechanisms
in terms of affine minimizers and threshold mechanisms was given in [4] and
it also implies a characterization for additive combinatorial auctions, which we
will use here as a black box. We will alternatively use as a black box the char-
acterization of n-player stable (/2-player that allocate all items) subadditive
combinatorial auctions by Dobzinski and Sundararajan [10].

1.1 Definitions and Preliminaries

A mechanism is decisive when (for fixed values of the other players) a player
can enforce any outcome (allocation), by declaring very high or very low val-
ues. A mechanism is called stable if the following holds: For fixed valuations
v−i, the allocation ai of player i determines uniquely the allocation a−i of the
other players. (In other words: Fix v−i, then for all vi for which player i has
allocation ai the allocation a−i is the same.) Stability can be assumed with-
out loss of generality for n-player unrestricted domains, combinatorial public
projects and 2-player auctions where all items are allocated. It is too restrictive
for combinatorial auctions with n ≥ 3 players (see [15] Example 4), however all
known characterization results [11,15,19,10,4,16,10] heavily rely on stability, or
characterize domains where stability can be assumed essentially without loss of
generality. Stability is implied by S-MON or IIA (see [15,1,10] for a discussion
on these conditions and proofs).

We will denote any finite domain of valuations D as a set of matrices [3].
We have one matrix for each valuation function v = (v1, . . . , vn) : A → R

n

that belongs to the domain. This matrix has one column for each alternative
a ∈ A and one row for each player. The valuation vi of player i is a vector
of numbers with one coordinate for each possible alternative. Let Vi set of all
possible such vectors for player i. (The domain is the set of all possible inputs of
the mechanism.) Under this notation the domain of unrestricted valuations [11]
contains all possible matrices with real values. We will say that Si is a subdomain
of Vi if Si ⊆ Vi. We will say that D is a subdomain of D′ if D ⊆ D′.

2 Our Results

Derivation of the Characterization of a Domain from the Characteri-
zation of one of Its Sub-Domains. Suppose we know which mechanisms are
truthful for a given domain, does this tell us which mechanisms are truthful for
any super-domain of it? The first reaction may be: we can read the proofs and
produce (tediously) similar ones. But then the mechanism for the bigger domain
has to satisfy truthfulness for a superset of the input space. Are then the mech-
anisms for the bigger domain a subset of the mechanisms for the sub-domain?
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We have to be careful: it is true that if a mechanism is truthful for the bigger
domain, then its restriction to the smaller domain is a truthful mechanism for
the smaller domain (for which we assumed that we know a characterization).
However it then remains to describe the mechanism for the additional inputs we
allowed by enlarging the domain.

We need Lemma 1 in order to avoid assuming decisiveness in Theorem 1. It
shows that shows that by truthfulness the range of the mechanism for the bigger
domain is the same as the range of it’s restriction to the subdomain. In other
words if the characterization that you plug in Theorem 1 or 4 as a black box does
not require decisiveness then the characterization you obtain for the superdomain
does not require decisiveness either. Lemma 2 is the core argument for proving
Theorem 1.

Lemma 1. Let Si be the domain of additive valuations, or any super-domain
of it, and Si ⊆ Vi. For for fixed v−i, consider a truthful social choice function
f(·, v−i) : S1 × . . . × Vi × . . . × Sn → A, and restrict it to the sub-domain S1 ×
. . .×Sn. If the range of the restricted function is a set of alternatives A, then A
is also the range of f(·, v−i).

Lemma 2. Start with an affine maximizer M defined for the domain of valua-
tions S1 × . . .×Sn and then consider the bigger domain S1 × . . .×Vi × . . .×Sn,
where Si ⊆ Vi. There is a unique way to extend M (preserving truthfulness) to
an n-player stable (/2-player that allocates all items) mechanism for the bigger
domain, namely an affine maximizer defined by the same λ, γ as M.

Note that if we did not require the mechanism to be truthful, then there would
have been many possibilities to extend the mechanism to a mechanism that
would not be an affine maximizer for the whole domain.

Theorem 1. Let V be a sub-domain of the domain of unrestricted valuations
and superdomain of the domain of additive valuations. If the only possible truthful
n-player stable mechanisms for V are affine maximizers, then the same holds for
every super-domain of V .1

Plugging in as a black box the characterization of n-player stable scalable (if
you multiply all entries of the input matrix by the same number the allocation
remains the same) mechanisms for subadditive combinatorial auctions [10] we
get:

Corollary 1. The only truthful n-player stable (/2-player that allocate all items)
mechanisms with at least 3 outcomes for any superdomain of Subadditive Combi-
natorial Auctions that satisfy scalability are affine maximizers. This proves that
the only truthful scalable mechanisms for (a) Unrestricted domains as well as
for (b) stable Combinatorial Auctions (with general valuations) are affine max-
imizers.
1 The proof of Theorem 1 for the 2-player case, goes along exactly the same lines as

the proof of Lemma 3.1 [5] by Dobzinski. (The statement of that Lemma involves
a different setting, with which we don’t deal with in this paper, that of two-player
multi-unit auctions.)
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Affine Transformations of Domains. Note that the next theorem holds for
any choice of the domain D, and not only for the domain of additive valuations. It
implies that if we characterize all possible mechanisms for a domain of valuations
D then the same characterization holds for all domains we get by translating D.

If D is the matrix representation of a domain we denote by λD + c the fol-
lowing affine transformation of D: Multiply the valuations of each player i by a
positive constant λi and add a matrix of constants c, with one row ci for each
player and one column for each possible allocation. For example the following is
an affine transformation of 2-player combinatorial auctions:

(
c1
∅ λ1v1({1}) + c1

{1} λ1v1({2}) + c1
{2} λ1v1({1, 2}) + c1

{1,2}
λ2v2({1, 2}) + c2

{1,2} λ2v2({2}) + c2
{2} λ2v2({1}) + c2

{1} c2
∅

)
.

Theorem 2. There is a bijection between the mechanisms for D and the mech-
anisms of λD+c. That is the mechanism with the same allocation and payments
p′ = λ · p+ c is also truthful for λD + c. This holds for any number of players n.

Threshold Mechanisms and Their Payments. The characterization in [4]
reveals the class of threshold mechanisms, which are truthful, very simple in
their description, and not (necessarily) affine maximizers. The immediate ques-
tion is whether there exist other domains for which threshold mechanisms are
truthful. We describe here the truthful threshold mechanisms for the translated
domain λD + c. A threshold mechanism for the additive combinatorial auctions
(/scheduling) domain is one for which there are threshold functions hij such that
the mechanism allocates item j to player i if and only if vi({j}) ≥ hij(v−i).

Theorem 3. If D is the domain of additive valuations and ai is the set of items
allocated to player i, then a mechanism for the domain λD + c is a threshold
mechanism if and only if it satisfies pi(ai, v−i)−ci

ai
=

∑
j∈ai

(
pi({j}, v−i)−ci

{j}
)
.

How to Vanish Threshold Mechanisms. Here we show how starting from
the additive domain and slightly enriching the domain of possible valuations we
obtain a domain that does not admit any truthful threshold mechanisms. This
shows that truthful threshold mechanisms are specific for the domain of additive
valuations and its affine transformations and that they cannot be generalized for
richer domains.

Let Si be the set of all valuation functions vi that are additive. We define the
set of valuation functions Si +δ as follows: Si +δ contains all valuation functions
v′i with v′i(ai) =

∑m
j∈ai

vi({j}) + (|ai| − 1) · δ where δ 	= 0 is some tiny constant.
That is vi ∈ Si and v′i ∈ Si + δ agree only on the valuation for getting singletons
and the emptyset and differ by δ× (size of the bundle −1) for bigger bundles.
There exist many choices of valuations for which our proofs hold. Of course if
you would like to obtain the characterization, say, of sub-modular auctions, you
should mind to make a choice of valuations that are submodular.

We start with two domains, that differ slightly in the valuations one of the
players. Each one separately admits truthful threshold mechanisms, but their
union does not:
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Lemma 3. Consider a truthful mechanism for the domain
(
S1∪(S1+δ)

)
×S2×

. . .×S2. If it is a threshold mechanism when restricted to S1×S2× . . .×Sn, then
it is non-threshold when restricted to (S1 + δ) × S2 × . . .× S2. Consequently for
the domain

(
S1∪(S1 +δ)

)
×S2× . . .×S2 threshold mechanisms are non-truthful.

Theorem 4. If the only truthful mechanisms for the domain S1×S2×. . .×S2 are
either affine maximizers or threshold mechanisms, then the only truthful stable
mechanisms, for the domain

(
S1∪(S1 +δ)

)
×S2× . . .×S2, or any super-domain

of it, are affine maximizers.

Applying our Tools for the Known Characterization. The machinery
we just developed opts for a characterization of stable truthful mechanisms for
additive combinatorial auctions/scheduling for n players, but this is an important
open problem. We only have one [4] for 2-player mechanisms, that are decisive
and allocate all items.

The characterization in [4] is only for additive valuations, applying Theorem 2
it also applies to any affine transformation of the domain of additive valuations.
We can now state our main Theorem:

Theorem 5. The only possible truthful mechanisms, for S1 ∪ (S1 + δ) × S2 or
any super-domain of it, that have at least 3 outcomes, are decisive and allo-
cate all items are the affine maximizers. Consequently the only truthful 2-player
mechanisms that are decisive and have at least 3 outcomes for: (a) Combinato-
rial Auctions with Submodular or Subadditive or Superadditive valuations that
allocate all items, as well as for (b) the Unrestricted domain and Combinatorial
Public Projects, are the affine maximizers.

3 Conclusion and Future Directions

Submodular combinatorial auctions is an important domain [6,9,18], whose char-
acterization (assuming decisiveness and that all items are allocated) we obtain
in this work for the first time almost for free. Although we characterize at once
the very rich class of superdomains of additive combinatorial auctions, the most
important aspect of our work is not in characterizing new domains, but in classi-
fying them in terms of which domain’s characterization we can use as a black box
in order to obtain the characterization of all of it’s super-domains and obtaining
unified proofs and a unified understanding. An important reason why we used
this specific characterization [4] as a black box is that it is the only one that
involves truthful mechanisms that are not affine maximizers. We enrich the do-
main very slightly and these mechanisms seize to be truthful, thus the domain of
additive combinatorial auctions is the transition domain [18,14] where the affine
maximizers are not any more the only truthful mechanisms.

Of course the big open question still remains to obtain characterizations of
domains that admit non-stable mechanisms. However the approach of classifying
domains in the way we propose provides a more thorough understanding of the
existing techniques and results and adds rigor to an intuition that was on the
same time helpful and misleading.
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sponding optimization problem is non-convex, we provide a polynomial-
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should discourage subdividing IP address blocks more than necessary.
Yet IP address transfer rules also need to facilitate purchase by the net-
works that need the addresses most, from the networks who value them
least. We propose a market rule that avoids excessive fragmentation while
almost achieving social efficiency, and we argue that implementation of
this rule is feasible despite the limited powers of central authorities. We
also offer a framework for the price trajectory of IPv4 addresses. In a
world without uncertainty, the unit price of IPv4 is constant before the
first time when all blocks of IPv4 addresses are in use and decreasing after
that time. With uncertainty, the price before that time is a martingale,
and the price trajectory afterwards is a supermartingale.
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Lahaie, Sébastien 134, 254
Lavi, Ron 417
Leung, Samantha 338
Leyton-Brown, Kevin 218, 338
Liang, Hongyu 206
Liben-Nowell, David 375
Lobel, Ilan 415
Lu, Pinyan 49, 61

Magniez, Frédéric 266
Markakis, Evangelos 278
May, Marina 417
McAfee, R. Preston 254
Mehta, Ruta 399
Meir, Reshef 391
Mertzios, George B. 290
Mirrokni, Vahab S. 170
Munagala, Kamesh 13, 25

Naroditskiy, Victor 158
Nazerzadeh, Hamid 415
Nehama, Ilan 302
Nguyen, Thach 122
Nikoletseas, Sotiris 290

Olonetsky, Svetlana 97
Othman, Abraham 314

Pei, Yuechao 375
Pierrakos, George 109



420 Author Index

Procaccia, Ariel D. 37
Psomas, Christos-Alexandros 278

Quadri, Jamie 375

Raptopoulos, Christoforos 290
Rosenschein, Jeffrey S. 363
Ruberry, Mike 72

Sandholm, Tuomas 314
Santha, Miklos 266
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