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Abstract. Generic decoding of linear codes is the best known attack
against most code-based cryptosystems. Understanding and measuring
the complexity of the best decoding techniques is thus necessary to select
secure parameters. We consider here the possibility that an attacker has
access to many cryptograms and is satisfied by decrypting (i.e. decoding)
only one of them. We show that, for the parameter range corresponding
to the McEliece encryption scheme, a variant of Stern’s collision decoding
can be adapted to gain a factor almost

√
N when N instances are given.

If the attacker has access to an unlimited number of instances, we show
that the attack complexity is significantly lower, in fact the number of
security bits is divided by a number slightly smaller than 3/2 (but larger
than 1). Finally we give indications on how to counter those attacks.

1 Introduction

Code-based cryptography has attracted a lot of interest in the past few years,
accompanying the rise of post-quantum cryptography. It allows public-key en-
cryption scheme [21,22], zero-knowledge protocols [28,29,16], digital signature
[11], hash functions [1,7], stream ciphers [15,17] to mention only the most classi-
cal primitives. The common point of all code-based cryptographic primitives is
the fact that they rely on the hardness of decoding a linear code with no appar-
ent algebraic structure. This problem is NP-hard [4], and in fact, the parameter
selection for those systems is based on the best knows decoding techniques, usu-
ally the collision decoding [27] and its variants, and sometimes the generalized
birthday algorithm (GBA) [8,30].

In this work, we consider the case where the attacker is given many instances
of the decoding problem for the same linear code and wishes to solve only one
of them. Bleichenbacher’s attack against [11] (unpublished but described for
instance in [23]) is a variant of GBA which offers a theoretical speedup of

√
N

when the attacker tries to sign one out of N messages. The cost of the attack
will drop from T initially to max(T/

√
N,N) whose minimal value is T 2/3 (when

N = T 2/3). A variant of ISD for multiple instances has been proposed [18], but
its cost analysis does not allow an easy measure of the gain.

We consider in this paper a modification of ISD (similar to [18]) with a com-
plete cost analysis. We will show that, when the number of errors to decode is
smaller than the Gilbert-Varshamov distance1 (corresponding to McEliece’s or

1 The (binary) Gilbert-Varshamov distance is the largest integer d0 such that
(
n
d0

)
≤ 2r.
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Niederreiter’s encryption schemes), collision decoding can be adapted to save a
factor N0.5−c (for some small positive c) when decoding one out of N instances.
Also, if the number of instances is unlimited, we show that the cost of the decod-
ing is raised to the power 2/3 + c′ (for some small positive c′). In other words,
the number of security bits (i.e. the log in base 2 of the cost of the best attack)
is divided by some number close (but smaller to) 1.5.

We will first analyze an abstract variant of ISD, similar to the one of [14]. We
will then show how this algorithm and its analysis can be extended to the case
of many instances and provide some estimates of what this modified algorithm
can gain. This new attack constitutes a threat which must be considered. We
briefly explain in the conclusion how to completely avoid it. The countermeasures
are simple but it is a new feature to consider when implementing code-based
cryptography.

Notation:

– Sn(0, w) denotes the sphere of radius w centered in 0 in the Hamming space
{0, 1}n, more generally Sn(x,w) denotes the same sphere centered in x.

– |X | denotes the cardinality of the set X .

2 The Decoding Problem in Cryptology

The security of code-based cryptography heavily relies on the hardness of de-
coding in a random linear code. The computational syndrome decoding problem
is NP-hard and is conjectured difficult in the average case.

Problem 1 (Computational Syndrome Decoding - CSD). Given a matrix
H ∈ {0, 1}r×n, a word s ∈ {0, 1}r, and an integer w > 0, find e ∈ {0, 1}n of
Hamming weight ≤ w such that eHT = s.

We will denote CSD(H, s, w) the above problem and the set of its solutions.
Decoding is one of the prominent algorithmic problems in coding theory for more
than fifty years. So far, no subexponential algorithm is known which correct a
constant proportion of errors in a linear code. Code-based cryptography has been
developed on that ground and for many code-based cryptosystems, public-key
encryption [21,22] and digital signature [11], zero-knowledge protocols based on
codes [28,29,16], hash-function [1], PRNG and stream ciphers [15,17] and many
others, decoding is the most threatening attack and therefore is a key point in
the parameter selection.

2.1 Generic Decoding Algorithms

The most ancient technique for addressing CSD in cryptology is Information
Set Decoding (ISD). It can be traced back to Prange [25]. The variants useful
today in cryptology all derive more or less from Stern’s algorithm [27], which we
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will call collision decoding, following [6,24]. It was implemented (with various
improvements) in [9] then in [5] which reports the first successful attack on
the original parameter set. General lower bounds were proposed [14]. The last
published variant is ball-collision decoding [6] which features a better decoding
exponent than collision decoding.

The other main technique is the Generalized Birthday Algorithm (GBA) [30]
(order 2 GBA was previously published in [8]). The first use of GBA for decoding
was proposed in [10] for attacking an early version of FSB [2]. It is sometimes
faster than ISD.

The security of the various code-based cryptographic primitives corresponds
to a wide range of parameters for the CSD problem. To determine which attack
is the most efficient, one should compare the error weight w with the Gilbert-
Varshamov distance d0 (which is a function of the code length and size). For a
single instance, the situation is the following: (1) when w < d0 (for encryption
schemes) ISD is always better, (2) when w ≈ d0 (for ZK-protocols, digital sig-
nature, stream cipher), the best attack is also ISD, and (3) when w > d0 (for
hashing) the best attack is either ISD or GBA (with no easy rule to predict which
is the best). Let us also mention that w > r/4 is insecure because Saarinen’s
attack [26].

For multiple instances the situation is not known precisely, but in one case at
least (namely Bleichenbacher’s attack against CFS signature scheme) GBA with
multiple instances has become the most efficient attack. This was a motivation
to consider whether a similar improvement was possible with ISD.

2.2 Decoding One Out of Many Instances

In this work we will consider the scenario where the attacker has many instances
(H, s, w) at disposal where the parity check matrix H and the error weight w
are identical, but the syndrome s runs over some large set.

Problem 2 (Computational Syndrome Decoding - Multi). Given a ma-
trix H ∈ {0, 1}r×n, a set S ⊂ {0, 1}r, and an integer w > 0, find a word
e ∈ {0, 1}n of Hamming weight ≤ w such that eHT ∈ S.

For convenience, we will also denote CSD(H,S, w) this problem and the set of
its solutions. It has been addressed already using GBA by Bleichenbacher (un-
published, reported in [23]) for attacking the digital signature CFS. In practice,
the attacker builds a large number N of instances of a decoding problem (cor-
responding to N favorable messages) solves one of them with an order 2 GBA
with a speedup of

√
N compared with the decoding of a single instance with a

birthday attack. This reduces the order of magnitude of the cost for forging a
signature from O(2r/2) to O(2r/3). A variant of CFS resistant to this attack was
recently published [13].

An attempt at using ISD with multiple instances was already made in [18].
We revisit here that work in a more general setting and with a more thorough
complexity analysis.
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3 A Generalized Information Set Decoding Algorithm

Following other works [19,20], J. Stern describes in [27] an algorithm to solve
CSD. We present in Algorithm 1 a generalized version, similar to the one pre-
sented in [14], which acts on the parity check matrix H0 of the code (instead
of the generator matrix). The partial Gaussian elimination of H0P consists in

Algorithm 1. Generalized ISD algorithm

For any fixed values of n, r and w, the following algorithm uses four pa-
rameters: two integers p > 0 and � > 0 and two sets W1 ⊂ Sk+�(0, p1) and
W2 ⊂ Sk+�(0, p2) where p1 and p2 are positive integers such that p1 + p2 = p.

procedure main isd
input: H0 ∈ {0, 1}r×n, s0 ∈ {0, 1}r

repeat

P ← random n× n permutation matrix
(isd 0)

{

(H ′,H ′′, U)← PartialGaussElim(H0P ) // as in (1)
s← s0U

T

e← isd loop(H ′,H ′′, s)
while e = fail
return (P, e)

procedure isd loop

input: H ′ ∈ {0, 1}�×(k+�), H ′′ ∈ {0, 1}(r−�)×(k+�), s ∈ {0, 1}r
for all e1 ∈ W1

(isd 1)
{

i← e1H
′T , s′′1 ← e1H

′′T

write(e1, s
′′
1 , i) // stores (e1, s

′′
1 ) at index i

for all e2 ∈ W2

(isd 2)
{

i← s′ + e2H
′T , s′′2 ← s′′ + e2H

′′T

Elts← read(i) // extracts the elements stored at index i
for all (e1, s

′′
1 ) ∈ Elts

(isd 3)
{

if wt (s′′1 + s′′2 ) = w − p
return e1 + e2 (success)

return fail (fail)

finding U and H (and H ′, H ′′) such that2

r − � k + �
1

. . . H ′′ s′′T

UH0P = H = 1 , sT = UsT0 =

� 0 H ′ s′T

(1)

2 If the first r − � columns are dependent, we change P .
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where U is a non-singular r × r matrix. We have e ∈ CSD(H, s, w) if and only
if ePT ∈ CSD(H0, s0, w). Let (P, e′) be the output of the algorithm and e′′ =
s′′ + e′H ′′T the word e = (e′′, e′) is in CSD(H, s, w).

Definition 1. For any fixed value of n, r and w, we denote WFISD(n, r, w)
the minimal work factor (average cost in elementary operations) of Algorithm 1
to produce a solution to CSD (provided there is a solution), for any choices of
parameters �, p, W1 and W2.

In the literature, elementary operations are often binary instructions. Our pur-
pose here is to obtain a quantity allowing us to compare algorithms and to mea-
sure the impact of decoding one out of many. Any reasonably fixed polynomial
time (in n) “elementary operation” will serve that purpose.

3.1 A Preview of the Analysis

When there is a single solution to CSD (“small” w, corresponding to encryption)
we can provide some intuition on the significance of the parameters.

Significance of W1 and W2. Given p and �, we would like W1 + W2 = {e1 +
e2 | (e1, e2) ∈ W1 ×W2} to contain as many distinct elements of Sk+�(0, p) as
possible, but no (or not too many) duplicate sums3. Typically the elements of
W1 and those of W2 are chosen with distinct supports, for instance in [12]

W1 =
{
(e, 0) | e ∈ S k+�

2
(0, p

2 )
}

and W2 =
{
(0, e) | e ∈ S k+�

2
(0, p

2 )
}

(assuming p and k+ � are even). A proper choice of W1 and W2 will allow us to
find most solutions e′ ∈ CSD(H ′, s′, p) (see (1) for the notations) for a relatively
moderate cost (exploring W1 × W2 uses the birthday paradox and essentially
consists in exploring W1 then W2).

Significance of p and �. The optimal size of W1 and W2 depends on p and �.
Given p, the best value for � keeps a balance between the costs of the various
steps of the algorithm and it is best to choose 2� ≈ |W1| = |W2|. There is no easy
interpretation of the optimal p, but an easy analysis shows that the extremal
cases p = 0 or w (either H ′ or H ′′ vanishes in (1)) are not optimal. So there has
to be an optimal value for p between 0 and w.

3.2 Links With the Other Variants of Collision Decoding

Information set decoding is an old decoding technique [25], the variants of in-
terest today for cryptanalysis derive from Stern’s collision decoding [27]. The
algorithm we present here is closer to the “Punctured Split Syndrome Decod-
ing” of Dumer [12,3]. Depending on how the sets W1 and W2 are chosen, we

3 That is (e1, e2) �= (e′1, e
′
2) in W1 ×W2 such that e1 + e2 = e′1 + e′2.
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may obtain any known variant, including the recent ball-collision decoding [6].
Of course the Algorithm 1 is an abstraction. An effective algorithm, not to speak
of its implementation must include a description of how the parameters p and
� are chosen (something we will do) and how the sets W1 and W2 are selected
(something we will not do completely). Our main purpose in this work is to es-
timate the impact of having multiple instances. This requires some flexibility in
the choice of the sizes of W1 and W2 which is relatively natural in our abstract
model, but not straightforward, though probably possible, in the above men-
tioned variants. We believe that the evolution of the complexity given in (10)
and (11) between the single and multiple instances scenarios can be obtained for
most variants of collision decoding after proper adjustments.

4 Cost Estimation

We will neglect all control instructions and assume that counting only the in-
structions in blocks (isd i) will give an accurate estimation of the algorithm
cost. For i = 0, 1, 2, 3 we will denote Ki the average cost in elementary opera-
tions (whatever that means) for executing the block of instructions (isd i).

We are given all the algorithm parameters n, r, w, p, �, W1, and W2. For
computing probabilities (and thus cost estimates) we will make the usual ran-
dom coding assumption (pseudo-randomness of syndromes) and also assume
that Algorithm 1 runs on instances which have a solution (this makes sense for
a cryptanalysis). We also admit the following.

Assumptions and approximations:

1. K0, K1, K2, and K3 are independent of p, �, W1 and W2.
2. All sums e1 + e2 for (e1, e2) ∈ W1 ×W2 are distinct and |W1||W2| ≤

(
k+�
p

)
.

3. Up to a (small) constant factor we have for any x � 1 and any integer N

1− (1− x)N ≈ min(1, xN)

Those assumptions and approximations will not cost more than a small constant
factor on the cost estimations we will compute later in this paper.

All the formulas we will give in the rest of the paper will depend of one
fundamental quantity denoted ε(p, �). It is equal to the probability for some
e′ ∈ Sk+�(0, p) to be a valid output of a particular execution of isd loop. The
following estimates helps to understand how it varies with p and �

ε(p, �) ≈
(
r−�
w−p

)

min
(
2r,
(
n
w

)) . (2)

Proof. (of equation (2), sketch) We consider one particular execution of isd loop
and use all the notations of the algorithm. Given H ′ and H ′′, for any e′ ∈
Sk+�(0, p) we count how many s = (s′, s′′) are such that e′ is a valid output
of isd loop(H ′, H ′′, s). We must have s′ = e′H ′T and s′′ ∈ Sr−�(e

′H ′′T , w − p),
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that is
(
r−�
w−p

)
“good” values of s (1 for s′ multiplied by

(
r−�
w−p

)
for s′′). Because

Algorithm 1 is executed on an instance having solutions, we must have s ∈
U = {eHT | e ∈ Sn(0, w)}. It follows that ε(p, �) =

(
r−�
w−p

)
/|U|. Within our

assumptions, the set U can viewed as a set of
(
n
w

)
randomly chosen elements of

{0, 1}r and thus on average

|U| = 2r

(
1−

(
1− 1

2r

)(nw))
≈ min

(
2r,

(
n

w

))

from which we deduce the expression (2) of ε(p, �). �	
Let W1 +W2 = {e1 + e2 | (e1, e2) ∈ W1 ×W2}, we also introduce

P(p, �) = 1− (1− ε(p, �))
|W1+W2| , (3)

the probability of one particular execution of isd loop succeed. Note that within
our assumptions |W1 +W2| = |W1 ×W2| = |W1||W2|.
Proposition 1. For an input (H0, s0) such that CSD(Ho, s0, w) 
= ∅, the Algo-
rithm 1 will stop after executing

≈ T (p, �) =
K0

P(p, �)
+

K1|W1|
P(p, �)

+
K2

|W1|ε(p, �)
+

K3

2�ε(p, �)
(4)

elementary operations on average.

Proof. The two leftmost terms are straightforward as the average number of
calls to isd loop is equal 1/P(p, �). One particular execution of (isd 2) will
inspect |W1| different sums e1 + e2 and thus succeeds with probability π2 = 1−
(1− ε(p, �))

|W1| . When the parameters are optimal we have ε(p, �)|W1| � 1 and
thus π2 ≈ ε(p, �)|W1| which accounts for the third term in (4). Finally, if the call
to isd loop fails, the block (isd 3) will be called on average |W1||W2|/2� times.
Thus if π3 is its probability of success, we have (remember |W1+W2| = |W1||W2|)

1− P(p, �) = (1− π3)
|W1||W2|

2� and thus π3 = 1− (1− ε(p, �))2
�

.

As ε(p, �)2� � 1, we have π3 = ε(p, �)2� and thus the rightmost term of (4). �	

A consequence of this proposition is that the minimal cost for Algorithm 1
is obtained when |W2| is maximal (everything else being fixed), that is when
|W1||W2| =

(
k+�
p

)
. At this point, P(p, �) is independent ofW1 and the complexity

is minimal when the two middle terms of (4) are equal, that is when

|W1| = L(p, �) =

√
K2P(p, �)

K1ε(p, �)
=

√
K2

K1
min

(√
1

ε(p, �)
,

√(
k + �

p

))
(5)

which is consistent with the results of [14]. We have

WFISD(n, r, w) ≈ min
p,�

T (p, �)
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where

T (p, �) =
K0

P(p, �)
+

2K2

L(p, �)ε(p, �) +
K3

2�ε(p, �)
. (6)

Note that when ε(p, �)
(
k+�
p

)
< 1, the “min” in (5) is obtained for rightmost term

and W1 and W2 have (approximatively) the same size. Else P(p, �) = 1 (which
happens only when w is large) and the optimal choice consists in choosing W1

smaller than W2.

4.1 Lower Bound

Assuming that K0 = 0 (we neglect the cost for the Gaussian elimination step),
the cost estimate becomes

T (p, �) =
2K2

L(p, �)ε(p, �) +
K3

2�ε(p, �)
(7)

and because the first term is increasing and the second is decreasing with � (for
parameters of cryptologic interest), for all p we have T (p, �1)/2 ≤ min� T (p, �) ≤
T (p, �1) where �1(p), or �1 for short, is the unique integer in [0, r[ such that the
two terms in T (p, �) are equal, that is

�1 = log2

(
K3

2K2
L(p, �1)

)
= log2

(
K3

2
√
K1K2

√
P(p, �1)

ε(p, �1)

)
. (8)

The lower bound is WFISD(n, r, w) ≥ minp T (p, �1)/2 and the various forms of
T (p, �1) give various interpretations of the complexity

T (p, �1) =
2K1L(p, �1)
P(p, �1)

=
2K3

2�1ε(p, �1)
=

2K2

L(p, �)ε(p, �1)
=

2
√
K1K2√

P(p, �)ε(p, �1)

This bound is very tight if the Gaussian elimination cost is negligible (which is
often the case in practice, see Table 2). Numbers in Table 2 may seem different
from other estimates [5,14]. This difference comes from the fact that we consider
column operations rather than binary operations. In fact they are very close.

4.2 Some Numbers

For Table 3 we will assume that K0 = nr, K1 = K2 = 1, and K3 = 2. The
elementary operation being a “column operation”: a column addition or the
computation of a Hamming weight, possibly accompanied by a memory access.
The cost for (isd 1) and (isd 2) can be reduced to 1 by “reusing additions”,
as explained in [5]. The “column” has size r bits (r − � for (isd 3)), however
we need in practice � bits for computing the index in (isd 1) and (isd 2), and
for (isd 3) we only need on average 2(w − p) additional bits [5] for deciding
whether or not we reach the target weight. This sets the “practical column size”
to � + 2(w − p) instead of r. We claim that up to a small constant factor, this
measure will give a realistic account for the cost of a software implementation.
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Table 2. Workfactor estimates and lower bounds for generalized ISD. The code pa-
rameters of the first block of numbers corresponds to encryption, the second to the
CFS digital signature scheme and the third to collision search in the (non-regular)
FSB hash function.

(n, r, w) log2(WFISD) min
p

log2

T (p, �1)
2

(2048, 352, 32) 81.0 80.5
(2048, 781, 71) 100.7 100.1
(4096, 252, 21) 80.4 80.0
(4096, 540, 45) 128.3 127.9
(8192, 416, 32) 128.8 128.4

(216, 144, 11) 70.2 70.1
(216, 160, 12) 79.4 79.3
(218, 162, 11) 78.9 78.8
(220, 180, 11) 87.8 87.7

(5 · 218, 640, 160) 91.8 90.9
(7 · 218, 896, 224) 126.6 125.7
(221, 1024, 256) 144.0 143.1
(23 · 216, 1472, 368) 205.9 205.0
(31 · 216, 1984, 496) 275.4 274.6

4.3 Variations with the Parameter p

With (8), we have an expression for the optimal, or nearly optimal value �1(p)
of � for a given n, r, w, and p. Even though it defines �1(p) implicitly, it gives an
intuition of the significance and variations of �1. Finding something similar for p
given n, r, and w (with � = �1(p) of course) seems to be more challenging. How-
ever, we observe that, when w is much smaller than the Gilbert-Varshamov dis-
tance (typically for encryption), the value of T (p, �1(p)) varies relatively slowly
with p when p is close to the optimal.

As an illustration, we give in Table 3 values of T (p, �) (computed with (6))
for various optimal pairs (p, �) and code parameters.

5 Decoding One Out of Many

We assume now that we have to solve CSD(H0,S0, w) for a set of S0 of N inde-
pendent syndromes which all have a solution. We describe a procedure for that
in Algorithm 4. This algorithm is very similar to Algorithm 1. The differences
are related to the set of syndromes S0. In the block (doom 0) we compute
S = {s0UT | s0 ∈ S0} instead of just s = s0U

T and in the procedure doom loop,
the second loop we run through W2×S instead of W2. It is still optimal to have
W1 + W2 close to Sk+�(0, p), but instead of |W1| = |W2| in Algorithm 1, it is
better now to choose |W1| = |W2 × S| = N |W2|.
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Table 3. Cost estimate for various optimal (p, �) the first (top) table corresponds to
encryption, the second to digital signature and the third to hashing

(n, r, w) = (4096, 540, 45)

p 6 7 8 9 10 11 12 13 14 15 16 17

� 34 38 43 47 51 56 60 64 68 72 76 80

log2 T (p, �) 129.4 129.0 128.7 128.5 128.4 128.3 128.3 128.4 128.6 128.9 129.2 129.6

(n, r,w) = (220, 180, 11)

p 4 5 6 7 8 9 10

� 41 50 59 68 77 86 94

log2 T (p, �) 106.1 102.1 98.2 94.6 91.2 88.1 87.7

(n, r, w) = (221, 1024, 256)

p 11 12 13 14 15 16 17 18 19 20 21 22

� 103 112 121 129 138 144 145 146 147 148 148 149

log2 T (p, �) 158.4 155.1 151.8 148.5 145.3 144.0 144.9 145.8 146.7 147.7 148.6 149.5

We keep the same notations and use the same assumptions and approxima-
tions as in §4. We denote

PN (p, �) = 1− (1− ε(p, �))
N |W1||W2| ≈ min (1, ε(p, �)N |W1||W2|)

the probability for one execution of doom loop to succeed. We have a statement
very similar to Proposition 1.

Proposition 2. For an input (H0,S0) such that CSD(Ho, s0, w) 
= ∅ for all
s0 ∈ S0 the Algorithm 4 will stop after executing

≈ TN (p, �) =
K0

PN(p, �)
+

K1|W1|
PN(p, �)

+
K2

|W1|ε(p, �)
+

K3

2�ε(p, �)
(9)

elementary operations on average.

We omit the proof which is similar to the proof of Proposition 1 with an identical
expression for the complexity except for PN(p, �) (which grows with N).

5.1 Cost of Linear Algebra

The constant K0 will include, in addition to the Gaussian elimination, the com-
putation of all the soU

T for s0 ∈ S0. This multiplies the cost, at most, by a
factor N = |S0|. On the other hand, as long as N ≤ 1/ε(p, �)

(
k+�
p

)
(with larger

N just reading the instances would be the bottleneck, so we discard that possi-
bility) the probability PN (p, �) is N times larger than before and thus the ratio
K0/PN(p, �) do not increase. The total cost TN (p, �) is smaller than T (p, �), so
the relative contribution of the linear algebra will increase, but the simplification
K0 = 0 remains reasonable as long as PN(p, �) � 1.

When N is close or equal to 1/ε(p, �)
(
k+�
p

)
, as in §5.3, the situation is not

so simple. With fast binary linear algebra computing all the soU
T will require
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Algorithm 4. DOOM ISD algorithm

For any fixed values of n, r and w, the following algorithm uses four parameters:
two integers p > 0 and � > 0 and two sets W1 ⊂ Sk+�(0, p1) and W2 ⊂ Sk+�(0, p2)
where p1 and p2 are positive integers such that p1 + p2 = p.

procedure main doom
input: H0 ∈ {0, 1}r×n, S0 ⊂ {0, 1}r

repeat

P ← random n× n permutation matrix
(doom 0)

{

(H ′,H ′′, U)← PartialGaussElim(H0P ) // as in (1)

S ← {s0UT | s0 ∈ S0}
e← doom loop(H ′,H ′′,S)

while e = fail
return (P, e)

procedure doom loop

input: H ′ ∈ {0, 1}�×(k+�), H ′′ ∈ {0, 1}(r−�)×(k+�), S ⊂ {0, 1}r
for all e1 ∈ W1

(doom 1)
{
i← e1H

′T , s′′1 ← e1H
′′T

write(e1, s
′′
1 , i) // stores (e1, s

′′
1 ) at index i

for all e2 ∈ W2

for all s = (s′, s′′) ∈ S

(doom 2)
{
i← s′ + e2H

′T , s′′2 ← s′′ + e2H
′′T

Elts← read(i) // extracts the elements stored at index i
for all (e1, s

′′
1 ) ∈ Elts

(doom 3)
{
if wt (s′′1 + s′′2 ) = w − p

return e1 + e2 (success)
return fail (fail)

about Nr/ log2 N column operations. For the extremal values of N of §5.3 (the
case most favorable to the attacker), assuming K1 = K2 = K3/2 = 1, we have
Pn(p, �) = 1 and a complexity ≈ Nr/log2 N + 2�+2 with N = 22�/

(
k+�
p

)
≤ 2�.

Unless we precisely use the optimal value of p, for which N ≈
(
k+�
p

)
≈ 2�, the

ratio N/2� will be significantly smaller than 1 and K0 = 0 provides an accurate
estimate. Finally when p minimizes the formula for the cost (this value, by
the way, is not necessarily an integer and does not correspond to a practical
implementation) we have a complexity of the form 2�(r/� + 4) and we cannot
neglect r/� compared with 4. For the sake of simplicity, we do it nevertheless.

5.2 Complexity Gain from Multiple Instances

We will denote

WF
(N)
ISD(n, r, w) = min

p,�
TN (p, �)
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and the gain we wish to estimate is the ratio

γ = logN
WFISD(n, r, w)

WF
(N)
ISD(n, r, w)

which we expect to be close to 1/2. First, we must have

N ≤ 1

ε(p, �)
(
k+�
p

) =
min

(
2r,
(
n
w

))
(
r−�
w−p

)(
k+�
p

)

else there is nothing to gain. Within this bound, we have

PN(p, �) = Nε(p, �)
(
k+�
p

)
and LN (p, �) =

√
K2

K1

√
N
(
k+�
p

)

and (assuming K0 = 0)

TN (p, �) =
2
√
K1K2√

N
(
k+�
p

)
ε(p, �)

+
K3

2�ε(p, �)
.

The same analysis as in §4.1 will tell us that the above sum is minimal (up to a
factor at most two) when its two terms are equal, that is when � = �N(p), or �N
for short, where

�N = log2

⎛
⎝K3

√
N
(
k+�N

p

)

2
√
K1K2

⎞
⎠ .

Proposition 3. For a given p, we have

logN
T (p, �1)

TN (p, �N )
=

1

2
− c(p) where c(p) ≈ 1

2 ln 2

w − p

r − �1 − w−p−1
2

.

Proof. We have

�N = log2

⎛
⎝K3

√
N
(
k+�N

p

)

2
√
K1K2

⎞
⎠ and �1 = log2

⎛
⎝K3

√(
k+�1
p

)

2
√
K1K2

⎞
⎠

and if we consider only the first order variations, we have �N ≈ �1 +
1
2 log2 N .

Because we have

d

da

(
a

b

)
=

(
a

b

)
Δ(a, b) where Δ(a, b) =

b−1∑
i=0

1

a− i
≈ b

a− b−1
2

it follows that, keeping only the first order variations, we have

ε(p, �N ) = ε(p, �1) exp(−c(p) logN)

where c(p) ≈ Δ(r − �1, w − p)/2 ln(2). Finally

T (p, �1)

TN (p, �N )
=

2�N ε(p, �N)

2�1ε(p, �1)
=

√
N exp(−c(p) logN).

�	
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Impact of the Variations of p. The optimal value of p for large N might not be
the same as for N = 1. In practice when T (p, �1) vary slowly with p (parameters
corresponding to encryption) the behavior of Proposition 3 can be extended to
the workfactor and, as long as N is not too large, we have

WF
(N)
ISD(n, r, w) =

WFISD(n, r, w)

Nγ
where γ ≈ 1

2
− 0.721

w − p

r− �1 − w−p−1
2

(10)

where p and �1 are the optimal parameters of the algorithm when N = 1. For
parameters corresponding to digital signature and hash function, the algorithm
does not seem to take full benefit of multiple instances.

Table 5. Decoding N instances

(n, r, w) log2 N p � WF
(N)
ISD observed γ expected γ

(4096, 540, 45) 0 12 60 128.4 − −
(4096, 540, 45) 40 12 80 110.5 0.4486 0.4487
(4096, 540, 45) 83.7 10 94 91.6 0.4398 0.4487

(2048, 352, 32) 0 6 30 81.0 − −
(2048, 352, 32) 40 7 54 63.4 0.4403 0.4394
(2048, 352, 32) 51.4 7 60 58.8 0.4324 0.4394

(220, 180, 11) 0 10 94 87.8 − −
(220, 180, 11) 40 6 79 79.6 0.2038 0.4856
(220, 180, 11) 70.3 4 76 74.6 0.1875 0.4856

(221, 1024, 256) 0 16 144 144.0 − −
(221, 1024, 256) 40 6 79 141.5 0.0640 0.2724
(221, 1024, 256) 117.6 4 76 137.1 0.0597 0.2724

5.3 Unlimited Number of Instances

We assume that the attacker can let N grow indefinitely. Because any algorithm
must at least read its input there is a limit to the growth of N . By “unlimited”
we mean that the attacker has reached this limit (whatever it is). We will denote

WF
(∞)
ISD (n, r, w) = min

N,p,�
TN (p, �)

and we wish to compare this cost with WFISD(n, r, w). The best strategy for the
attacker is to take a number of instances equal to

N =
1

ε(p, �)
(
k+�
p

) =
min

(
2r,
(
n
w

))
(
r−�
w−p

)(
k+�
p

)

in which case (assuming K0 = 0, see the discussion in §5.1) the complexity is

T∞(p, �) =
2
√
K1K2√
ε(p, �)

+
K3

2�ε(p, �)
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The minimal value is reached, up to a constant factor, when � = �∞(p) such that

�∞(p) = log2

(
K3

2
√
K1K2ε(p, �∞(p))

)
.

Interestingly �∞(p) is increasing with p and so is the complexity T (p, �∞(p)).
We thus want to choose p as small as possible. On the other hand, we have
|W1||W2| =

(
k+�
p

)
and |W2| must be a positive integer which limits the decrease

of p. We must have

|W1| ≤
(
k + �

p

)
⇒
√

K2

K1ε(p, �)
≤
(
k + �

p

)
,

with equality for the optimal p. Finally the optimal pair (p, �) is the unique one
such that we have simultaneously

� = log2

⎛
⎝ K3

2
√
K1K2

√√√√min
(
2r,
(
n
w

))
(
r−�
w−p

)
⎞
⎠ = log2

(
K3

2K2

(
k + �

p

))
.

An Estimate of the Improvement. Let p is the optimal value obtained
above with an unlimited number of instances. In that case (we take K0 = 0,
K1 = K2 = 1, K3 = 2)

�1 = log2

√(
k + �1

p

)
and �∞ = log2

(
k + �∞

p

)
.

Keeping the first order variations we have �∞ ≈ 2�1. From Proposition 3 we have

logN
T (p, �1)

T∞(p, �∞)
=

1

2
− c(p) where c(p) ≈ 0.721

w − p

r− �1

where N ≈ T∞(p, �∞) ≈ 2�∞ . Thus T (p, �1) ≈ T∞(p, �∞)
3
2−c(p)

Proposition 4. For a given p, we have

log T (p, �1)

log T∞(p, �∞)
=

2

3
+

4

9
c(p) where c(p) ≈ 1

2 ln 2

w − p

r − �1 − w−p−1
2

.

Coming back to the single instance case, and assuming that T (p, �1) varies very
slowly with p, we may assume that WFISD(n, r, w) ≈ T (p, �1). This means that
when an attacker has access to an unlimited number of instances and needs to
decode one of them only, the decoding exponent is multiplied by a quantity,
slightly larger than 2/3, close to the one given in the above proposition.

WF
(∞)
ISD (n, r, w) = WFISD(n, r, w)

β where β ≈ 2

3
+ 0.321

w − p

r− �1 − w−p−1
2

(11)

where p and �1 are the optimal parameters of the algorithm when N = 1.
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We can observe that in Table 6, as for formula (10) and Table 5, the behavior
is close to what we expect when encryption is concerned (when w is significantly
smaller than the Gilbert-Varshamov distance). For parameters for code-based
signature schemes there is a gain but not as high as expected. For parameters for
code-based hashing, multiple instances does not seem to provide a big advantage.
The values of p and � given in the fifth and sixth columns are real numbers

which minimize the formula for log2(WF
(∞)
ISD ). In an implementation they must

be integers and the real cost will be (marginally) different.

Table 6. Workfactor with unlimited number of instances with the same code param-
eters as in Table 2

log2(WFISD) log2(WF
(∞)
ISD ) observed expected

(n, r, w) p � p = � β β

(2048, 352, 32) 6 30 81.0 6.01 55.2 .682 .694
(2048, 781, 71) 6 29 100.7 8.20 69.2 .688 .696
(4096, 252, 21) 10 52 80.4 5.27 55.3 .688 .685
(4096, 540, 45) 12 60 128.4 9.00 88.0 .685 .689
(8192, 416, 32) 15 81 128.8 8.10 89.2 .693 .683

(216, 144, 11) 10 75 70.2 3.69 55.1 .785 .671
(216, 160, 12) 11 81 79.4 4.16 61.7 .777 .671
(218, 162, 11) 10 85 78.9 3.77 63.7 .808 .671
(220, 180, 11) 10 94 87.8 3.83 72.3 .824 .670

(5 · 218, 640, 160) 10 91 91.8 4.45 84.8 .924 .768
(7 · 218, 896, 224) 14 126 126.6 6.12 117.6 .929 .768
(221, 1024, 256) 16 144 144.0 6.96 134.0 .930 .768
(23 · 216, 1472, 368) 24 206 205.9 10.48 191.7 .931 .768
(31 · 216, 1984, 496) 32 275 275.4 14.01 257.2 .934 .767

6 Conclusion

Decoding one out of many with collision decoding provides a significant advan-
tage to an attacker. For the digital signature scheme, the threat is real because
the attacker can create many syndromes by hashing many messages (favorable to
him), however what we gain with ISD is less than what Bleichenbacher obtained
with GBA. Anyway it is possible to completely avoid those attacks by signing
several syndromes (see [13]).

For very large values of w (used for instance in hashing) we have seen that the
attack is not so worrying, moreover the actual FSB [1] or RFSB [7] use regular
words and using ISD threatens an idealized version used for the security proofs.
Decoding regular words is harder, and the question of how to decode one out of
many and how to use it for an attack is still open.

Finally, when w is significantly smaller than the Gilbert-Varshamov distance
(for public-key encryption) there is a gain. If the attacker has access to many
cryptograms and is satisfied by decoding only one of them, the present work must
be taken into account. We consider two scenarios: (1) the encryption scheme is
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used to exchange session keys, and (2) the encryption scheme is used to encrypt
a long stream of data. In the first scenario the number of session keys in a public
key lifetime must be used to select the security parameters according to the
result of the present study. The second scenario is plausible because code-based
encryption is very fast, but in that case, it is enough to introduce some kind of
chaining between encrypted blocks to counter the attack. Decrypting a single
block will then be of no use to the attacker.
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