
Implementation of McEliece

Based on Quasi-dyadic Goppa Codes
for Embedded Devices

Stefan Heyse

Horst Görtz Institute for IT Security
Ruhr University Bochum
44780 Bochum, Germany
heyse@crypto.rub.de

Abstract. Most public-key cryptosystems frequently implemented have
been proven secure on the basis of the presumed hardness of two math-
ematical problems: factoring the product of two large primes (FP) and
computing discrete logarithms (DLP). At present, both problems are
believed to be computationally infeasible with an ordinary computer.
However, a quantum-computer having the ability to perform computa-
tions on a few thousand qbits could solve both problems using Shor’s
algorithm [23]. Although a quantum computer of this dimension has
not been reported, development and cryptanalysis of alternative public-
key cryptosystems seem suitable. To achieve acceptance and attention in
practice, they have to be implemented efficiently. Furthermore, the imple-
mentations have to perform fast while keeping memory requirements low
for security levels comparable to conventional schemes. The McEliece en-
cryption and decryption do not require computationally expensive mul-
tiple precision arithmetic. Hence, it is predestined for an implementation
on embedded devices. The major disadvantage of the McEliece public-
key cryptosystem(PKC) is its very large public key of several hundred
thousands bits. For this reason, the McEliece PKC has achieved little
attention in the practice. Another disadvantage of the McEliece scheme,
like many other schemes, is that it is not semantically secure. The quasi-
dyadic McEliece variant proposed by Barreto and Misoczki addresses
both problems. In this work we provide an implementation of this alter-
native public-key cryptosystem, which is semantically secure and uses a
40 times smaller public key and a five times smaller secret key compared
to a previously published implementation [6].

Keywords: McEliece, Goppa Code, Quasi-Dyadic, Embedded Device,
Post-Quantum.

1 Introduction

Only few implementations of the original McEliece public-key cryptosystem have
been reported. For instance, there exist two software implementations for 32-bit

B.-Y. Yang (Ed.): PQCrypto 2011, LNCS 7071, pp. 143–162, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

144 S. Heyse

architectures: an i386 assembler implementation [20] and a C-implementation
[21]. Two implementations of the McEliece PKC on an 8-bits AVR microcon-
troller and an FPGA have been provided by [6]. The microcontroller implemen-
tation encrypts with 3,889bits/second and decrypts with 2,835bits/second at a
clock frequency of 32MHz clock frequency. The main disadvantage of this imple-
mentation is the use of external memory for encryption. As explained above, the
public-key of the McEliece PKC in [6] is 437.75Kbytes in size such that external
memory has to be used to store the key. The quasi-dyadic variant should solve
the problem of large public keys, increasing the practicability of the McEliece
public-key cryptosystem. To the best of our knowledge, no implementations of
the quasi-dyadic McEliece variant have been proposed targeting an embedded
device.

The remainder of this work is organized as follows. Section 2 introduces the
classical McEliece public key scheme. In further progress we describe how binary
dyadic and quasi-dyadic Goppa codes are constructed. Section 3 gives the scheme
definition of the quasi-dyadic McEliece variant and describes the Kobara-Imai’s
specific conversion γ. In Section 4, our implementation of the McEliece PKC with
quasi-dyadic Goppa codes on an 8-bits AVR microcontroller is explained. We
provide the results of our implementation with respect to memory requirements
and performance in Section 5 and conclude in Section 6.

2 Background on the McEliece Cryptosystem

The McEliece cryptosystem [15] was developed by Robert McEliece in 1978 and
was the first proposed public-key cryptosystem (PKC) based on error-correcting
codes.

The idea behind this scheme is to pick randomly a code from a family of codes
with an existing efficient decoding algorithm and to use the description of this
code as private key. To obtain the public key the private key is disguised as a
general linear code by means of several secret transformations. The decoding
of general linear codes is known to be NP-hard. Hence, the purpose of these
transformations is to hide any visible structure of the private key which might
be used to identify the underlying code.

The common system parameters for the McEliece PKC are parameters of
the underlying [n, k, d] binary Goppa code defined by an (irreducible) polyno-
mial of degree t over GF (2m) called Goppa polynomial. Corresponding to each
such polynomial there exist a binary Goppa code of length n = 2m, dimension
k ≥ n − mt and minimum distance d = 2t + 1 where t is the number of errors
correctable by an efficient decoding algorithm. The public key is Kpub = (Ĝ,
t), where Ĝ = S · G · P . The private key is Kpr = (S, G, P), where G is a
k × n generator matrix for the code C, S is a k × k scrambling matrix and P
is a n× n permutation matrix. The McEliece encryption is done by multiplying
a k-bit message vector by the recipient’s public generator matrix Ĝ and adding
a random error vector e with Hamming weight at most t. The decoding problem
is the problem of decoding a linear code Ĉ equivalent to a binary Goppa code C.

Implementation of McEliece Based on Quasi-dyadic Goppa Codes 145

The knowledge of the permutation P is necessary to solve this problem. After
reversing the permutation transformation, the decoder for C can be used to de-
code the permuted ciphertext ĉ to a message m̂ = S · m. The original message
m is then obtained from m̂ by m = m̂S−1.

2.1 Recommended Parameters and Key Sizes

The parameters influencing the security of the McEliece PKC are the code length
n, the code dimension k, and the number of added errors t. In his original paper
[15] McEliece suggests using [n = 2m, k = n − mt, d = 2t + 1] = [1024, 524, 101]
Goppa codes over GF (2m) where m = 10 and t = 50. In [4] the authors
present an improved attack on the McEliece scheme. This new attack reduces the
number of operations needed to break the McEliece scheme with original pa-
rameters to about 260 instead of 280 which was assumed before. To achieve 80-
bit, 128-bit, and 256-bit security level the authors suggest using [2048,1751,55],
[2960,2288,113], and [6624,5129,231] binary Goppa codes, respectively.

Table 1 summarizes all suggested parameters as well as the resulting key
sizes for specific security levels. It is very common to give the public key in
systematic form as a (n − k) × k matrix. But all published implementations
targeting embedded devices choose to store the full (n × k) public key. This
has the advantage of a smaller secret key, which cannot be stored in external
memory. If the public key is non systematic, the matrix S in the secret key is
completely random and can be generated at runtime form a small seed. For this
reason column four gives the size of non-systematic public keys.

Table 1. Recommended parameters and key sizes for the original McEliece PKC

Security [n,k,d]-Code Added Size of Kpub Size of Kpr = (G(x), P, S)
Level errors in Kbits in Kbits

hardly 80-bit [1632,1269,67] 34 2022 (0.34,15.94,1573)
80-bit [2048,1751,55] 27 3502 (0.30,22,2994)
128-bit [2960,2288,113] 56 6614 (0.61,31.80,5112)
256-bit [6624,5129,231] 117 33178 (1.38,77.63,25690)

The major disadvantage of the McEliece public-key cryptosystem is its very
large public key of several hundred thousand bits. The complete public generator
matrix Ĝ of an (n, k) linear code occupies n·k bits storage space. For this reason,
the McEliece PKC has achieved little attention in the practice. Particularly with
regard to bounded memory capabilities of embedded devices, it is essential to
improve the McEliece cryptosystem by finding a way to reduce the public key
size.

2.2 Goppa Codes

Goppa codes were introduces by V. D. Goppa in 1970 [9]. Binary Goppa
codes form a family of binary linear codes generated by a Goppa polynomial

146 S. Heyse

G(x) =
∑t

i=0 gix
i of degree t with coefficients taken in a finite field Fq where

q = 2m and a subset L = (L0, . . . , Ln−1) ∈ F
n
q , whose elements Li are not roots

of G(x). Lower bounds on their dimension and minimum distance are known, as
well as an efficient polynomial-time decoding algorithm.

Theorem 1. Let L be a sequence L = (L0, . . . , Ln−1) ∈ F
n
q of distinct elements

and G(x) a Goppa polynomial of degree t where G(Li) �= 0, ∀ 0 ≤ i ≤ n− 1. For
any vector c = (c0, . . . , cn−1) ∈ F

n
p we define the syndrome of c by

Sc(x) = −
n−1∑

i=0

ci

G(Li)
G(x) − G(Li)

x − Li
mod G(x) ≡

n−1∑

i=0

ci

x − Li
mod G(x).

The binary Goppa code Γ (L, G(x)) is defined as the following subspace of F
n
p .

Γ (L, G(x)) = {c ∈ F
n
p | Sc(x) ≡ 0 mod G(x)}

An alternative way to define Goppa codes is to treat them as subfield subcodes
of Generalized Reed-Solomon codes. In that special case Goppa codes are also
called alternant codes.

Definition 1. Given a sequence L = (L0, . . . , Ln−1) ∈ F
n
q of distinct elements

and a sequence D = (D0, . . . , Dn−1) ∈ F
n
q of nonzero elements, the Generalized

Reed-Solomon code GRSt(L, D) is the [n,k,t+1] linear error-correcting code de-
fined by the parity-check matrix HL,D = vdm(t, L) · Diag(D) where vdm(t, L)
denotes the t × n Vandermonde matrix with elements vdmij = Li

j.

HL,D :=

⎛

⎜
⎜
⎜
⎝

D0 D1 · · · Dn−1

D0L0 D1L1 · · · Dn−1Ln−1

...
...

. . .
...

D0L
t−1
0 D1L

t−1
1 · · · Dn−1L

t−1
n−1

⎞

⎟
⎟
⎟
⎠

In the original McEliece cryptosystem binary irreducible Goppa codes are
used. A Goppa code is irreducible if the used Goppa polynomial G(x) is irre-
ducible over Fq. In this case the Goppa code can correct up to t errors.

If G(x) =
∏t−1

i=0(x − zi) is a monic polynomial with t distinct roots all in Fq

then it is called separable over Fq. In case of q = 2m the Goppa code can also
correct t errors. A Goppa code generated by a separable polynomial over Fq

admits a parity-check matrix in Cauchy form [14].

Definition 2. Given two disjoint sequences z = (z0, . . . , zt−1) ∈ F
t
q and L =

(L0, . . . , Ln−1) ∈ F
n
q of distinct elements, the Cauchy matrix C(z, L) is the t×n

matrix with elements Cij = 1/(zi − Lj).

Theorem 2. The Goppa code generated by a monic polynomial G(x) = (x −
z0) · · · (x− zt−1) without multiple zeros admits a parity-check matrix of the form
H = C(z, L), i.e. Hij = 1/(zi − Lj), 0 ≤ i < t, 0 ≤ j < n.

Implementation of McEliece Based on Quasi-dyadic Goppa Codes 147

2.3 Dyadic Goppa Codes

In [16] Barreto and Misoczki show how to build binary Goppa codes which admit
a parity-check matrix in dyadic form. The family of dyadic Goppa codes offers
the advantage of having a compact and simple description. In their proposal the
authors make extensive use of the fact that using Goppa polynomials separable
over Fq the resulting Goppa code admits a parity-check matrix in Cauchy form
by Theorem 2. Hence, it is possible to construct parity-check matrices which are
in Cauchy and dyadic form, simultaneously.

Definition 3. Let Fq denote a finite field and h = (h0, h1, . . . , hn−1) ∈ Fq a
sequence of Fq elements. The dyadic matrix Δ(h) ∈ F

n
q is the symmetric matrix

with elements Δij = hi⊕j, where ⊕ is the bitwise exclusive-or. The sequence h is
called signature of Δ(h) and coincides with the first row of Δ(h). Given t > 0,
Δ(h, t) denotes Δ(h) truncated to its first t rows.

When n is a power of 2 every 1× 1 matrix is a dyadic matrix, and for k > 0 any

2k × 2k matrix Δ(h) is of the form Δ(h) :=
(

A B
B A

)

where A and B are dyadic

2k−1 × 2k−1 matrices.

Theorem 3. Let H ∈ F
n×n
q with n > 1 be a dyadic matrix H = Δ(h) for some

signature h ∈ F
n
q and a Cauchy matrix C(z, L) for two disjoint sequences z ∈ F

n
q

and L ∈ F
n
q of distinct elements, simultaneously. It follows that

– Fq is a field of characteristic 2
– h satisfies 1

hi⊕j
= 1

hi
+ 1

hj
+ 1

h0

– the elements of z are defined as zi = 1
hi

+ ω, and
– the elements of L are defined as Li = 1

hj
+ 1

h0
+ ω for some ω ∈ Fq

It is obvious that a signature h describing such a dyadic Cauchy matrix cannot be
chosen completely at random. Hence, the authors suggest only choosing nonzero
distinct h0 and hi at random, where i scans all powers of two smaller than n,
and to compute all other values for h by hi⊕j = 1

1
hi

+ 1
hj

+ 1
h0

for 0 < j < i.

Algorithm 1 in [16] shows how binary dyadic Goppa codes are constructed. It
takes as input three integers: q, N , and t. The first integer q = pd = 2m where
m = s · d defines the finite field Fq as degree d extension of Fp = F2s . The code
length N is a power of two such that N ≤ q/2. The integer t denotes the number
of errors correctable by the Goppa code. The algorithm outputs the support L,
a separable polynomial G(x), as well as the dyadic parity-check matrix H ∈
F

t×N
q for the binary Goppa code Γ (L, G(x)) of length N and designed minimum

distance 2t + 1.
Furthermore, Algorithm 1 in [16] generates the essence η of the signature h

of H where ηr = 1
h2r

+ 1
h0

for r = 0, . . . , 	lg N
 − 1 with η�lg N� = 1
h0

, so that,

for i =
∑�lg N�−1

k=0 ik2k, 1
hi

= η�lg N� +
∑�lg N�−1

k=0 ikηk. The first 	lg t
 elements
of η together with 	lg N
 completely specify the roots of the Goppa polynomial
G(x), namely, zi = η�lg N� +

∑�lg t�−1
k=0 ikηk.

148 S. Heyse

The number of possible dyadic Goppa codes which can be produced by these
algorithm is the same as the number of distinct essences of dyadic signatures
corresponding to Cauchy matrices. This is about

∏�lg N�
i=0 (q − 2i). The algo-

rithm also produces equivalent essences where the elements corresponding to
the roots of the Goppa polynomial are only permuted. That leads to simple re-
ordering of those roots. As the Goppa polynomial itself is defined by its roots
regardless of their order, the actual number of possible Goppa polynomials is(∏�lg N�

i=0 (q − 2i)
)

/(lg N
!).

2.4 Quasi-Dyadic Goppa Codes

A cryptosystem cannot be securely defined using completely dyadic Goppa codes
which admit a parity-check matrix in Cauchy form. By solving the overdefined
linear system 1

Hij
= zi + Lj with nt equations and n + t unknowns the Goppa

polynomial G(x) would be revealed immediately. Hence, Barreto and Misoczki
propose using binary Goppa codes in quasi-dyadic form for cryptographic appli-
cations.

Definition 4. A quasi-dyadic matrix is a possibly non-dyadic block matrix whose
component blocks are dyadic submatrices.

A quasi-dyadic Goppa code over Fp = F2s for some s is obtained by constructing
a dyadic parity-check matrix Hdyad ∈ F

t×n
q over Fq = Fpd = F2m of length n = lt

where n is a multiple of the desired number of errors t, and then computing the
co-trace matrix H ′

Tr = Tr′(Hdyad) ∈ F
dt×n
p . The resulting parity-check matrix

for the quasi-dyadic Goppa code is a non-dyadic matrix composed of blocks of
dyadic submatrices [16].

3 Scheme Definition of QD-McEliece

The main difference between the original McEliece scheme and the quasi-dyadic
variant is the key generation algorithm 1 shown below. It takes as input the
system parameters t, n, and k and outputs a binary Goppa code in quasi-dyadic
form over a subfield Fp of Fq, where p = 2s for some s, q = pd = 2m for some
d with m = ds. The code length n must be a multiple of t such that n = lt for
some l > d.

The key generation algorithm proceeds as follows. It first runs Algorithm
1 in [16] to produce a dyadic code Cdyad of length N >> n, where N is a
multiple of t not exceeding the largest possible length q/2. The resulting code
admits a t × N parity-check matrix Hdyad =

[
B0| · · · |BN/t−1

]
which can be

viewed as a composition of N/t dyadic blocks Bi of size t × t each. In the next
step the key generation algorithm uniformly selects l dyadic blocks of Hdyad

of size t × t each. This procedure leads to the same result as puncturing the
code Cdyad on a random set of block coordinates Tt of size (N − n)/t first,
and then permuting the remaining l blocks by changing their order. The block

Implementation of McEliece Based on Quasi-dyadic Goppa Codes 149

Algorithm 1. QD-McEliece: Key generation algorithm
Input: Fixed common system parameters: t, n = l · t, k = n− dt
Output: private key Kpr, public key Kpub

1: (Ldyad, G(x) Hdyad, η) ← Algorithm 1 in [16] (2m, N, t), where N >> n,
N = l′ · t < q/2

2: Select uniformly at random l distinct blocks
[
Bi0 | · · · |Bil−1

]
in any order from

Hdyad

3: Select l dyadic permutations Πj0 , · · · , Πjl−1 of size t× t each
4: Select l nonzero scale factors σ0, . . . , σl−1 ∈ Fp. If p = 2, then all scale factors are

equal to 1.
5: Compute H =

[
Bi0Πj0 | · · · |Bil−1Πjl−1

] ∈ (Ft×t
q)l

6: Compute Σ = Diag(σ0It, . . . , σl−1It) ∈ (Ft×t
p)l×l

7: Compute the co-trace matrix H ′
Tr = Tr′(HΣ) = Tr′(H)Σ ∈ (Ft×t

p)l×l

8: Bring H ′
Tr in systematic form Ĥ = [Q|In−k], e.g. by means of Gaussian elimination

9: Compute the public generator matrix Ĝ = [Ik|QT]
10: return Kpub = (Ĝ, t), Kpr = (Hdyad, Ldyad, η, G(x), (i0, . . . , il−1), (j0, . . . , jl−1),

(σ0, . . . , σl−1))

permutation sequence (i0, . . . , il) is the first part of the trapdoor information. It
can also be described as an N×n permutation matrix PB. Then the selection and
permutation of t× t blocks can be done by right-side multiplication Hdyad ×PB.
Further transformations performed to disguise the structure of the private code
are dyadic inner block permutations.

Definition 5. A dyadic permutation Πj is a dyadic matrix whose signature is
the j-th row of the identity matrix. A dyadic permutation is an involution, i.e.
(Πj)2 = I. The j-th row (or equivalently the j-th column) of the dyadic matrix
defined by a signature h can be written as Δ(h)j = hΠj.

The key generation algorithm first chooses a sequence of integers (j0, . . . , jl−1)
defining the positions of ones in the signatures of the l dyadic permutations.
Then each block Bi is multiplied by a corresponding dyadic permutation Πj

to obtain a matrix H which defines a permutation equivalent code CH to the
punctured code CTt

dyad. Since the dyadic inner-block permutations can be com-
bined to an n×n permutation matrix Pdp = Diag(Πj0 , · · · , Πjl−1) we can write
H = Hdyad·PB·Pdp. The last transformation is scaling. Therefore, first a sequence
(σ0, . . . , σl−1) ∈ Fp is chosen, and then each dyadic block of H is multiplied by
a diagonal matrix σiIt such that H ′ = H ·Σ = Hdyad · PB · Pdp ·Σ. Finally, the
co-trace construction derives from H ′ the parity-check matrix H ′

Tr for a binary
quasi-dyadic permuted subfield subcode over Fp. Bringing H ′

Tr in systematic
form, e.g. by means of Gaussian elimination, we obtain a systematic parity-
check matrix Ĥ for the public code. Ĥ is still a quasi-dyadic matrix composed
of dyadic submatrices which can be represented by a signature of length t each
and which are no longer associated to a Cauchy matrix. The generator matrix Ĝ
obtained from Ĥ defines the public code Cpub of length n and dimension k over
Fp, while Ĥ defines a dual code C⊥

pub of length n and dimension k = n− dt. The

150 S. Heyse

trapdoor information consisting of the essence η of the signature hdyad, the se-
quence (i0, . . . , il−1) of blocks, the sequence (j0, . . . , jl−1) of dyadic permutation
identifiers, and the sequence of scale factors (σ0, . . . , σl−1) relates the public code
defined by Ĥ with the private code defined by Hdyad. The public code defined by
Ĝ admits a further parity-check matrix VL∗,G = vdm(L∗, G(x)) · Diag(G(L∗

i)
−1)

where L∗ is the permuted support obtained from Ldyad by L∗ = Ldyad ·PB ·Pdb.
Bringing VL∗,G in systematic form leads to the same quasi-dyadic parity-check
matrix Ĥ for the code Cpub. The matrix VL∗,G is permutation equivalent to the
parity-check matrix VL,G = vdm(L, G(x)) · Diag(G(Li)−1) for the shortened pri-
vate code Cpr = CTt

dyad obtained by puncturing the large private code Cdyad on
the set of block coordinates Tt. The support L for the code Cpr is obtained by
deleting all components of Ldyad at the positions indexed by Tt. Classical irre-
ducible Goppa codes use support sets containing all elements of Fq. Thus, the
support corresponding to such a Goppa code can be published while only the
Goppa polynomial and the (support) permutation are parts of the secret key. In
contrast, the support sets L and L∗ for Cpr and Cpub, respectively, are not full
but just subsets of Fq where L∗ is a permuted version of L. Hence, the support
sets contain additional information and have to be kept secret.

The encryption algorithm of the QD-McEliece variant is the same as that of
the original McEliece cryptosystem. First a message vector is multiplied by the
systematic generator matrix Ĝ for the quasi-dyadic public code Cpub to obtain the
corresponding codeword. Then a random error vector of length n and hamming
weight at most t is added to the codeword to obtain a ciphertext.

The decryption algorithm of the QD-McEliece version is essentially the same
as that of the classical McEliece cryptosystem. The following decryption strate-
gies are conceivable.

Permute the ciphertext and undo the inner block dyadic permutation as well
as the block permutation to obtain an extended permuted ciphertext of length
N such that ctperm = ct ·PB ·Pdp. Then use the decoding algorithm of the large
private code Cdyad to obtain the corresponding codeword. Multiplying ctperm

by the parity-check matrix for Cdyad yields the same syndrome as reversing the
dyadic permutation and the block permutation without extending the length of
the ciphertext and using a parity-check matrix for the shortened private code Cpr.
A better method is to decrypt the ciphertext directly using the equivalent parity-
check matrix VL∗,G for syndrome computation. Patterson’s decoding algorithm
can be used to detect the error and to obtain the corresponding codeword. Since
Ĝ is in systematic form, the first k bits of the resulting codeword correspond to
the encrypted message.

3.1 Parameter Choice and Key Sizes

For an implementation on an embedded microcontroller the best choice is to use
Goppa codes over the base field F2. In this case the matrix vector multiplication
can be performed most efficiently. Hence, the subfield Fp = F2s should be chosen
to be the base field itself where s = 1 and p = 2. Furthermore, as the register size

Implementation of McEliece Based on Quasi-dyadic Goppa Codes 151

of embedded microcontrollers is restricted to 8 bits it is advisable to construct
subfield subcodes of codes over F28 or F216 . But the extension field F28 is too
small to derive secure subfield subcodes from codes defined over it.

Over the base subfield F2 of F216 [16] suggests using the parameters summa-
rized in Table 2.

Table 2. Suggested parameters for McEliece variants based on quasi-dyadic Goppa
codes over F2

level t n = l·t k = n - m·t key size
(m · k bits)

80 26 36 · 26 = 2304 20 · 26 = 1280 20 · 210 bits = 20 Kbits
112 27 28 · 27 = 3584 12 · 27 = 1536 12 · 211 bits = 24 Kbits
128 27 32 · 27 = 4096 16 · 27 = 2048 16 · 211 bits = 32 Kbits
192 28 28 · 28 = 7168 12 · 28 = 3072 12 · 212 bits = 48 Kbits
256 28 32 · 28 = 8192 16 · 28 = 4096 16 · 212 bits = 64 Kbits

As the public generator matrix Ĝ is in systematic form, only its non-trivial
part Q of length n − k = m · t has to be stored. This part consists of m(l − m)
dyadic submatrices of size t × t each. Storing only the t-length signatures of Q,
the resulting public key size is m(l − m)t = m · k bits in size. Hence, the public
key size is a factor of t smaller compared to the generic McEliece version where
the key even in systematic form is (n − k) · k bits in size.

3.2 Security of QD-McEliece

A recent work [7] presents an efficient attack recovering the private key in spe-
cific instances of the quasi-dyadic McEliece variant. Due to the structure of a
quasi-dyadic Goppa code additional linear equations can be constructed. These
equations reduce the algebraic complexity of solving a multidimensional system
of equations using Groebner bases [1]. In the case of the quasi-dyadic McEliece
variant there are l−m linear equations and l−1 unknowns Yi. The dimension of
the vector space solution for the Y ′

i s is m− 1. Once the unknowns Yi are found
all other unknowns Xi can be obtained by solving a system of linear equations.
In our case there are 35 unknowns Yi, 20 linear equations, and the dimension of
the vector space solution for the Y ′

i s is 15. The authors remark that the solution
space is manageable in practice as long as m < 16. The attack was not successful
with m = 16. Hence, up to now the McEliece variant using subfield subcodes
over the base field of large codes over F216 is still secure.

3.3 Conversions for CCA2-Secure McEliece Variants

In [13] Kobara and Imai considered conversions for achieving CCA2-security
in a restricted class of public-key cryptosystems. The authors reviewed these
conversions for applicability to the McEliece public key cryptosystem and showed

152 S. Heyse

two of them to be convenient. These are Pointcheval’s generic conversion [19]
and Fujisaki-Okamoto’s generic conversion [8]. Both convert partially trapdoor
one-way functions (PTOWF)1 to public key cryptosystems fulfilling the CCA2
indistinguishability.

The main disadvantage of both conversions is their high redundancy of data.
Hence, Kobara and Imai developed three further specific conversions (α, β, γ)
decreasing data overhead of the generic conversions even below the values of
the original McEliece PKCs for large parameters. Their work shows clearly that
the Kobara-Imai’s specific conversion γ (KIC-γ) provides the lowest data redun-
dancy for large parameters n and k. In particular, for parameters n = 2304 and
k = 1280 used in this work for the construction of the quasi-dyadic McEliece-
type PKC the data redundancy of the converted variant is even below that of
the original scheme without conversion.

4 Implementational Aspects

In this section we discuss aspects of our implementation of the McEliece variant
based on quasi-dyadic Goppa codes of length n = 2304, dimension k = 1280,
and correctable number of errors t = 64 over the subfield F2 of F216 providing a
security level of 80 bit. Target platform is the ATxmega256A1, a RISC micro-
controller frequently used in embedded systems. This microcontroller operates
at a clock frequency of up to 32MHz, provides 16Kbytes SRAM and 256Kbytes
Flash memory.

4.1 Field Arithmetic

To implement the field arithmetic on an embedded microcontroller most effi-
ciently both representations of the field elements of Fq, polynomial and expo-
nential, should be precomputed and stored as log- and antilog table, respectively.
Each table occupies m · 2m bits of storage. Unfortunately, we cannot store the
whole log- and antilog tables for F216 because each table is 128Kbytes in size.
Neither the SRAM memory of the ATXmega256A1 (16 Kbytes) nor the Flash
memory (256Kbytes) would be enough to implement the McEliece PKC when
completely storing both tables. Hence, we make use of tower field arithmetic. Effi-
cient algorithms for arithmetic over tower fields are proposed in [2], [17], and [18].
It is possible to view the field F22k as a field extension of degree 2 over F2k . Thus,
we can consider the finite field F216 = F(28)2 as a tower of F28 constructed by an
irreducible polynomial p(x) = x2 + x + p0 where p0 ∈ F28 . If β is a root of p(x)
in F216 then F216 can be represented as a two dimensional vector space over F28

and an element A ∈ F216 can be written as A = a1β + a0 where a1, a0 ∈ F28 . To
perform field arithmetic over F216 we store the log- and antilog tables for F28 and
use them for fast mapping between exponential and polynomial representations
1 A PTOWF is a function F (x, y)→ z for which no polynomial time algorithm exists

recovering x or y from their image z alone, but the knowledge of a secret enables a
partial inversion, i.e., finding x from z.

Implementation of McEliece Based on Quasi-dyadic Goppa Codes 153

of elements of F28 . Each table occupies only 256bytes, therefore both tables
can smoothly be copied into the fast SRAM memory of the microcontroller at
startup time. The next question is how to realize the mapping ϕ : A → (a1, a0)
of an element A ∈ F216 to two elements (a1, a0) ∈ F28 , and the inverse mapping
ϕ−1 : a1, a0 → A such that A = a1β + a0. Both mappings can be implemented
by means of a special transformation matrix and its inverse, respectively [18].
As the input and output for the McEliece scheme are binary vectors, field ele-
ments are only used in the scheme internally. Hence, we made an informed choice
against the implementation of both mappings. Instead, we represent each field
element A of F216 as a structure of two uint8 t values describing the elements of
F28 and perform all operations on these elements directly.

4.2 Implementation of the QD-McEliece Variant

Encryption. The first step of the McEliece encryption is codeword computa-
tion. This is performed through multiplication of a plaintext p by the public
generator matrix Ĝ which serves as public key. In our case the public generator
matrix Ĝ = [Ik|M] is systematic. Hence, the first k bits of the codeword are the
plaintext itself, and only the submatrix M of Ĝ is used for the computation of
the parity-check bits. M ∈ (Ft×t

2)d×(l−d) can be considered as a composition of
d · (l−d) dyadic submatrices Δ(hxy) of size t× t each, represented by a signature
hxy of length t each. It also can be seen as a composition of l−d dyadic matrices
Δ(hx, t) of size dt× t each, represented by a signature of length dt = n− k each.

M :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m0,0 · · · m0,n-k-1

...
. . .

...
mt−1,0 · · · mt−1,n−k−1

mt,0 · · · mt,n-k-1

...
. . .

...
m2t−1,0 · · · m2t−1,n−k−1

...
. . .

...
m(l-d-1)t,0 · · · m(l-d-1)t,n-k-1

...
. . .

...
m(l−d)t−1,0 · · · m(l−d)t−1,n−k−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫
⎬

⎭
Δ(h0, t)

⎫
⎬

⎭
Δ(h1, t)

⎫
⎬

⎭
Δ(hl−d, t)

In both cases the compressed representation of M serving as public key Kpub

for the McEliece encryption is

Kpub = [(m0,0, · · · , m0,n−k−1), · · · , (m(l−d−1)t,0, · · · , m(l−d)t−1,n−k−1)].

The public key is 2.5 KBytes in size and can be copied into the SRAM of
the microcontroller at startup time for faster encryption. The plaintext p =
(p0, · · · , pt−1, pt, · · · , p2t−1, · · · , p(l−d−1)t, · · · , p(l−d)t−1) is a binary vector of
length k = 1280 = 20 · 64 = (l − d)t. Hence, the codeword computation is

154 S. Heyse

done by adding the rows of M corresponding to the non-zero bits of p. As we
do not store M but just its compressed representation, only the bits pit for all
0 ≤ i ≤ (l − d − 1) can be encrypted directly by adding the corresponding sig-
natures. To encrypt all other bits of p the corresponding rows of M have to be
reconstructed from Kpub first. The components hi,j of a dyadic matrix Δ(h, t)
are normally computed as hi,j = hi⊕j which is a simple reordering of the ele-
ments of the signature h. Unfortunately, we cannot use this equation directly
because the public key is stored as an array of (n− k)(l − d)/8 elements of type
uint8_t. Furthermore, for every t = 64bits long substring of the plaintext a
different length-(n − k) signature has to be used for encryption.

Decryption. For decryption we use the equivalent shortened Goppa code Γ (L∗,
G(x)) defined by the Goppa polynomial G(x) and a (permuted) support se-
quence L∗ ⊂ F216 . The support sequence consists of n = 2304 elements of
F216 and is 4.5 KBytes in size. We store the support sequence in an array of
type gf16_t and size 2304. The Goppa polynomial is a monic separable poly-
nomial of degree t = 64. As t is a power of 2, the Goppa polynomial is sparse
and of the form G(x) = G0 +

∑6
i=0 G2ix2i

. Hence, it occupies just 8 · 16 bits
storage space. We can store both the support sequence and the Goppa polyno-
mial in the SRAM of the microcontroller. Furthermore, we precompute the se-
quence Diag(G(L∗

0)
−1, . . . , G(L∗

n−1)
−1) for the parity-check matrix Vt,n(L∗, D).

Due to the construction of the Goppa polynomial G(x) =
∏t−1

i=0(x − zi) where
zi = 1/hi + ω with a random offset ω, the following holds for all G(L∗

jt+i)
−1.

G(L∗
jt+i)

−1 =
t−1∏

r=0

(L∗
jt+i+zr)

−1 =
t−1∏

r=0

(1/h∗
jt+i+1/hr+1/h0)

−1 =
t−1∏

r=0

h∗
jt+r =

jt+t−1∏

r=jt

h∗
r

h∗ denotes a signature obtained by puncturing and permuting the signature h
for the large code Cdyad such that h∗ = h ·P where P is the secret permutation
matrix. Hence, the evaluation of the Goppa polynomial on any element of the
support block (L∗

jt, . . . , L
∗
jt+t−1) where j ∈ {0, . . . , l−1}, i ∈ {0, . . . , t−1} leads

to the same result. For this reason, only n/t = l = 36 values of type gf16_t need
to be stored. Another polynomial we need for Patterson’s decoding algorithm is
W (x) satisfying W (x)2 ≡ x mod G(x). As the Goppa polynomial G(x) is sparse,
the polynomial W (x) is also sparse and of the form W (x) = W0 +

∑5
i=0 W2ix2i

.
W (x) occupies 7 · 16 bits storage space.

Syndrome Computation. The first step of the decoding algorithm is the syn-
drome computation. Normally, the syndrome computation is performed through

solving the equation Sc(x) = Se(x) ≡
∑

i∈E

1
x − L∗

i

mod G(x) where E denotes a

set of error positions. The polynomial 1
x−L∗

i
satisfies the equation

1
x − L∗

i

≡ 1
G(L∗

i)

t∑

j=s+1

GjL
∗
i
j−s−1 mod G(x), ∀0 ≤ s ≤ t − 1 (1)

Implementation of McEliece Based on Quasi-dyadic Goppa Codes 155

The coefficients of this polynomial are components of the i − th column of the
Vandermonde parity-check matrix for the Goppa code Γ (G(x), L∗). Hence, to
compute the syndrome of a ciphertext c we perform the on-the-fly computation
of the rows of the parity-check matrix. As the Goppa polynomial is a sparse
monic polynomial of the form G(x) = G0 +

∑6
i=0 G2ix2i

with G64 = 1, we can
simplify the Equation 1, and thus, reduce the number of operations needed for
the syndrome computation. The main advantage of this computation method is
that it is performed on-the-fly such that no additional storage space is required.
To speed-up the syndrome computation the parity-check matrix can be precom-
puted at the expense of additional n(n − k) = 288KBytes memory. As the size
of the Flash memory of ATxmega256A1 is restricted to 256Kbytes, we cannot
store the whole parity-check matrix. It is just possible to store 52 coefficients of
each syndrome polynomial at most, and to compute the remaining coefficients
on-the-fly. A better possibility is to work with the systematic quasi-dyadic pub-
lic parity-check matrix Ĥ = [QT |In−k] from which the public generator matrix
Ĝ = [Ik|Q] is obtained. To compute a syndrome the vector matrix multipli-
cation Ĥ · cT = c · ĤT is performed. For the transpose parity-check matrix
ĤT = [QT |In−k]T holds, where Q is the quasi-dyadic part composed of dyadic
submatrices. Hence, to compute a syndrome we proceed as follows. The first k
bits of the ciphertext are multiplied by the part Q which can be represented
by the signatures of the dyadic submatrices. The storage space occupied by this
part is 2.5KBytes. The multiplication is performed in the same way as encryp-
tion of a plaintext (see Section 4.2) and results in a binary vector s′ of length
n− k. The last n− k bits of the ciphertext are multiplied by the identity matrix
In−k. Hence, we can omit the multiplication and just add the last n − k bits
of c to s′. To obtain a syndrome for the efficiently decodable code the vector s′

first has to be multiplied by a scrambling matrix S. We stress that this matrix
brings the Vandermonde parity-check matrix for the private code Γ (G(x), L∗)
in systematic form which is the same as the public parity-check matrix. Hence,
S has to be kept secret. We generate S over F2 and afterwards represent it over
F216 . Thus, the multiplication of a binary vector s′ by S results in a polynomial
Sc(x) ∈ F216 [x] which is a valid syndrome. The matrix S is 128KBytes in size and
can be stored in the Flash memory of the microcontroller. The next step, which
is computing the error locator polynomial σ(x), is implemented straightforward
using Patterson’s algorithm.

Searching for roots of σ(x). The last and the most computationally expen-
sive step of the decoding algorithm is the search for roots of the error locator
polynomial σ(x). For this purpose, we first planed to implement the Berlekamp
trace algorithm [3] which is known to be one of the best algorithm for finding
roots of polynomials over finite fields with small characteristic. Considering the
complexity of this algorithm we found out that it is absolutely unsuitable for
punctured codes over a large field, because of the required computation of traces
and gcds. The next root finding method we analyzed is the Chien search [5]
which has a theoretical complexity of O(n · t) if n = 2m. The Chien search scans
automatically all 2m−1 field elements, in a more sophisticated manner than the

156 S. Heyse

simple polynomial evaluation method. Unfortunately, in our case n << 2m such
that the complexity of the Chien search becomes O(216 · t) which is enormous
compared to the complexity of the simple polynomial evaluation method. An-
other disadvantage of both the Berlekamp trace algorithm and the Chien search
is that after root extraction the found roots have to be located within the sup-
port sequence to identify error positions. That is not the case when evaluating
the error locator polynomial on the support set directly. In this case we know the
positions of the elements L∗

i and can correct errors directly by flipping the cor-
responding bits in the ciphertext. The only algorithm which actually decreases
the computation costs of the simple evaluation method in the case of punctured
codes is the Horner scheme [12]. The complexity of the Horner scheme does not
depend on the extension degree of the field but on the number of possible root
candidates, which is n. In addition, as the Horner scheme evaluates the error lo-
cator polynomial on the support set L∗, the root positions within L∗ are known
such that errors can be corrected more efficiently. Hence, we have implemented
this root finding algorithm. After a root L∗

i of σ(x) has been found we perform
the polynomial division of σ(x) by (x − L∗

i). We observed that the polynomial
division by (x − L∗

i) can be performed sequentially reusing values computed in
previous iteration steps. In the first step we compute the coefficient yt−2 of the
searched polynomial y(x). In every iteration step j we use the previous coefficient
yt−j+1 to compute yt−j = yt−j+1L

∗
i + σt−j . The whole procedure requires t − 3

multiplications and t − 2 additions to divide a degree-t polynomial by x − L∗
i .

The main advantage of performing polynomial division each time a root has
been found is that the degree of the error locator polynomial decreases. Hence,
the next evaluation steps require less operations.

4.3 Implementation of the KIC-γ

For the implementation of Kobara-Imai’s specific conversion γ [13] two param-
eters have to be chosen: the length of the random value r and the length of the
public constant Const. The length of r should be equal to the output length of
the used hash function. Here we choose the Blue Midnight Wish (BMW) hash
function, because of the availability of a fast assembly implementation. As we
have |r| = 256 and |Const| = 160, the message to be encrypted should be of the
length |m| ≥ ⌊

log2

(
n
t

)⌋
+k+|r|−|Const| = 1281bits. Hence, we encrypt messages

of length 1288bits = 161 bytes. In this case the data redundancy is even below
of that of the McEliece scheme without conversion: 1288/2304 ≤ 1280/2304.

The first steps of the KIC-γ encryption function are the generation of a ran-
dom seed r for the function Gen(r), as well as the one-time-pad encryption of the
message m padded with the public constant Const and the output of Gen(r).
The result is a 1288 + 160 = 1448bits = 181bytes value y1. In the next step
the hash value of y1 is added to the random seed r by the xor operation to
obtain the value y2. k = 1280 bits from (y2||Y1) are used as input for McEliece
and from the remaining 424 bits the error vector is constructed by the constant
weight encoding function Conv[22,11].

Implementation of McEliece Based on Quasi-dyadic Goppa Codes 157

To decrypt a ciphertext the KIC-γ first stores the first two bytes of the
ciphertext in y5. Then it calls the McEliece decryption function which returns
the encrypted plaintext y3 and the error vector δj = ij − ij−1 − 1 where ir de-
note the error positions. To obtain part y4 from the error vector constant weight
decoding function is used. Now (y2||y1) = (y5||y4||y3) is known and the message
m can be obtained.

5 Results

This section presents the results of our implementation of the McEliece variant
based on [2304, 1280, 129] quasi-dyadic Goppa codes providing an 80-bit security
level for the 8-bits AVR microcontroller. As we use a systematic generator matrix
for the Goppa code, we also implemented Kobara-Imai’s specific conversion γ
developed for CCA2-secure McEliece variants. Due to the parameters chosen for
KIC-γ the actual length of the message to be encrypted increases to 1288bytes
while the ciphertext length increases to 2312bytes. Table 3 summarizes the sizes
of all parameters being precomputed and used for the encryption and decryption
algorithms.

Table 3. Sizes of tables and values in memory

Parameter Size

QD-McEliece en-
cryption

Kpub 2560 bytes

QD-McEliece
decryption

log table for F28 256 bytes
antilog table for F28 256 bytes
Goppa polynomial G(x) 16 bytes
Polynomial W (x) 14 bytes
Support sequence L∗ 4608 bytes
Array with elements 1/G(L∗

i) 72 bytes
Matrix S 131072 bytse

KIC-γ Public constant Const 20 bytes

Except for the matrix S which is used only within the syndrome computation
method with precomputation, all precomputed values can be copied into the
faster SRAM of the microcontroller at startup time resulting in faster encryption
and decryption. The performance results of our implementation were obtained
from AVR Studio in version 4.18. Table 4 summarizes the clock cycles needed
for specific operations and sub-operations for the conversion and encryption of
a message. Note that we used fixed random values for the implementation of
KIC-γ. The encryption of a 1288bits message requires 6,358,952 cycles. Hence,
when running at 32MHz, the encryption takes about 0.1987 seconds while the
throughput is 6482bits/second.

158 S. Heyse

Table 4. Performance of the QD-McEliece encryption including KIC-γ on the AVR
μC ATxmega256@32 MHz

Operation Sub-operation Clock cycles

Hash 15,083
CWencoding 50,667
Other 8,927

QD-McEliece
encryption

Vector-matrix multiplication 6,279,662
Add error vector 4,613

Table 5. Performance of the QD-McEliece decryption on the AVR μC ATxmega256@
32MHz

Operation Sub-operation Clock cycles

QD-
McEliece
decryption

Syndrome computation on-the-fly 25,745,284
Syndrome computation with S 9,118,828
Syndrome inversion 3,460,823
Computing σ(x) 1,625,090
Error correction (HS) 31,943,688
Error correction (HS with PD) 19,234,171

CWdecoding 61,479
Hash 15,111
Other 19,785

Table 5 presents the results of the operations and sub-operations of the QD-
McEliece decryption function including KIC-γ.

Table 5 shows clearly that the error correction using the Horner scheme with
polynomial division (PD) is about 40% faster then the Horner scheme with-
out polynomial division. Considering the fact that the error correction is one
of the most computationally expensive functions within the decryption algo-
rithm the polynomial division provides a significant speed gain for this opera-
tion. In the case that the syndrome is computed using the precomputed matrix
S and the error correction is performed using the Horner scheme with poly-
nomial division decoding of a 2312bits ciphertext requires 33,535,287 cycles.
Running at 32MHz the decryption takes 1.0480 seconds while the ciphertext
rate is 2206bits/second2. Decryption with the on-the-fly syndrome computa-
tion method takes 50,161,743 cycles. Hence, running at 32MHz the decryption
of a ciphertext takes 1.5676 seconds in this case while the ciphertext rate is
1475bits/second. Although the on-the-fly decryption is about 1.5 times slower,
no additional Flash memory is required so that a migration to cheaper devices
is possible.

2 Chiphertext rate denotes number of ciphertext bits processed per second.

Implementation of McEliece Based on Quasi-dyadic Goppa Codes 159

Table 6 summarizes the resource requirements of our implementation. The
third column of the table refers to the decryption method with precomputed
matrix S, the fourth to the on-the-fly syndrome decoding method. For a com-
parison we also provide the resource requirements for the McEliece version based
on [2048,1751,55]-Goppa codes [6].

Table 6. Resource requirements of QD-McEliece on the AVR μC ATxmega256@
32MHz

Operation Flash memory External memory

QD-McEliece
with KIC-γ

Encryption 11Kbyte –
Decryption (with S) 156 Kbyte –
Decryption (on-the-fly) 21Kbyte –

McEliece[6]
Encryption 684 byte 438 Kbyte
Decryption 130.4 Kbyte –

As we can see, the memory requirements of the quasi-dyadic encryption rou-
tine including KIC-γ are minimal because of the compact representation of
the public key. Hence, much cheaper microcontrollers such as ATxmega32 with
only 4 Kbytes SRAM and 32Kbytes Flash ROM could be used for encryption.
In contrast, the implementation of the original McEliece version even requires
438Kbyte external memory. The implementation of the decryption method with
on-the-fly syndrome computation could also be migrated to a slightly cheaper
microcontroller such as ATxmega128 with 8Kbyte SRAM and 128Kbyte Flash
memory.

Table 7 gives a comparison of our implementation of the quasi-dyadic McEliece
variant including KIC-γ with the implementation of the original McEliece PKC
and the implementations of other public-key cryptosystems providing an 80-
bit security level. RSA-1024 and ECC-160 [10] were implemented on a Atmel
ATmega128 microcontroller at 8 MHz while the original McEliece version was
implemented on a Atmel ATxmega192 microcontroller at 32MHz. For a fair
comparison with our implementation running at 32MHz, we scale timings at
lower frequencies accordingly.

Although we additionally include KIC-γ in the quasi-dyadic McEliece encryp-
tion, we were able to out perform both, the original McEliece version and ECC-
160, in terms of number of operations per second. In particular, the throughput
of our implementation significantly exceeds that of ECC-160.

Unfortunately, we could not out perform the original McEliece scheme nei-
ther in throughput nor in number of operations per second for the decryption.
The reason is that the original McEliece version is based on Goppa codes with
much smaller number of errors t = 27. Due to this fact, this McEliece version
works with polynomials of smaller degree such that most operations within the
decoding algorithm can be performed more efficiently. Another disadvantage of
our implementation is that all parameters are defined over the large field F216 .

160 S. Heyse

Table 7. Comparison of the quasi-dyadic McEliece variant including KIC-γ (n’=2312,
k’=1288, t=64) with original McEliece PKC (n=2048, k=1751, t=27), ECC-P160, and
RSA-1024

Method Time Throughput
sec bits/sec

QD-McEliece encryption 0.1987 6482
QD-McEliece decryption (with S) 1.0480 1229
QD-McEliece decryption (on-the-fly) 1.5676 822

McEliece encryption [6] 0.4501 3889
McEliece decryption [6] 0.6172 2835

ECC-160 [10] 0.2025 790

RSA-1024 216 + 1 [10] 0.1075 9525
RSA-1024 w. CRT [10] 2.7475 373

As we could not store the log- and antilog tables for this field in the Flash mem-
ory, we had to implement the tower field arithmetic which significantly reduces
performance. For instance, one multiplication over a tower F(28)2 involves 5 mul-
tiplications over the subfield F28 . Hence, much more arithmetic operations have
to be performed to decrypt a ciphertext.

Nevertheless, the decryption function is still faster than the RSA-1024 private
key operation and exceeds the throughput of ECC-160. Furthermore, although
slower, the on-the-fly decoding algorithm requires 81% less memory compared to
the original McEliece version such that migration to cheaper devices is possible.

6 Conclusion and Further Research

In this work we have implemented a McEliece variant based on quasi-dyadic
Goppa codes on a 8-bits AVR microcontroller. The family of quasi-dyadic Goppa
codes offers the advantage of having a compact and simple description. Using
quasi-dyadic Goppa codes the public key for the McEliece encryption is signifi-
cantly reduced. Furthermore, we used a generator matrix for the public code in
systematic form resulting in an additional key reduction. As a result, the public
key size is a factor t less compared to generic Goppa codes used in the original
McEliece PKC. Moreover, the public key can be kept in this compact size not
only for storing but for processing as well. However, the systematic coding neces-
sitates further conversion to protect the message. Without any conversions the
encrypted message would be revealed immediately from the ciphertext. Hence,
we have implemented Kobara-Imai’s specific conversion γ: a conversion scheme
developed specially for CCA2 secure McEliece variants.

Our implementation out performs the implementations of the original McEliece
PKC and ECC-160 in encryption. In particular, the quasi-dyadic McEliece en-
cryption is 2.3 times faster than the original McEliece PKC and exceeds the
throughput of both, the original McEliece PKC and ECC-160, by 1.7 and 8.2

Implementation of McEliece Based on Quasi-dyadic Goppa Codes 161

times, respectively. In addition, our encryption algorithm requires 96,7% less
memory compared to the original McEliece version and can be migrated to much
cheaper devices.

The performance of the McEliece decryption algorithm is closely related to
the number of errors added within the encryption. In our case the number of
errors is 64 which is 2.4 times greater compared to the original McEliece PKC.
Hence, the polynomials used are huge and the parity-check matrix is too large
to be completely precomputed and stored in the Flash memory. In addition, the
error correction requires more time because a polynomial of degree 64 has to
be evaluated. We showed in Section 4.2 that none of the frequently used error
correction algorithms, such as the Berlekamp trace algorithm and the Chien
search, are suitable for punctured and shortened codes obtained from codes over
very large fields. Furthermore, the tower field arithmetic significantly reduces the
performance of the decoding algorithm. Nevertheless, the decryption algorithms
with precomputation and on-the-fly computation are 2.6 and 1.8 times faster
than the RSA-1024 private key operation and exceed the throughput of ECC-
160. Furthermore, although slower, the on-the-fly decoding algorithm requires
81% less memory compared to the original McEliece version such that migration
to cheaper devices is possible.

Acknowledgement. I would like to thank Olga Paustjan and Paulo Barreto
for fruitful discussions. Special thanks to an anonymous reviewer for many useful
comments.

References

1. Adams, W., Loustaunau, P.: An Introduction to Gröbner Bases, vol. 3 (1994)
2. Afanasyev, V.B.: On the complexity of finite field arithmetic. In: Fifth Joint Soviet-

Swedish Intern. Workshop Information Theory, pp. 9–12 (January 1991)
3. Berlekamp, E.R.: Factoring polynomials over large finite fields. Mathematics of

Computation 24(111), 713–715 (1970)
4. Bernstein, D.J., Lange, T., Peters, C.: Attacking and Defending the McEliece Cryp-

tosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
31–46. Springer, Heidelberg (2008)

5. Chien, R.: Cyclic decoding procedure for the bose-chaudhuri-hocquenghem codes.
IEEE Transactions on Information Theory IT-10(10), 357–363 (1964)

6. Eisenbarth, T., Güneysu, T., Heyse, S., Paar, C.: MicroEliece: McEliece for Em-
bedded Devices. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp.
49–64. Springer, Heidelberg (2009)

7. Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic Cryptanalysis of
McEliece Variants with Compact Keys. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010)

8. Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric En-
cryption Schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–
554. Springer, Heidelberg (1999)

9. Goppa, V.D.: A New Class of Linear Correcting Codes. Probl. Pered. Info. 6(3),
24–30 (1970)

162 S. Heyse

10. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing Elliptic Curve
Cryptography and RSA on 8-Bit CPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)

11. Heyse, S.: Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcon-
trollers. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 165–181.
Springer, Heidelberg (2010)

12. Horner, W.G.: A new method of solving numerical equations of all orders, by con-
tinuous approximation. Philosophical Transactions of the Royal Society of Lon-
don 109, 308–335 (1981)

13. Kobara, K., Imai, H.: Semantically Secure McEliece Public-key Cryptosystems-
conversions for McEliece PKC. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 19–35. Springer, Heidelberg (2001)

14. MacWilliams, F.J., Sloane, N.: The Theory of Error-Correcting Codes. North-
Holland Mathematical Library, vol. 16 (1997)

15. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN
Progress Report 42-44, Jet Propulsion Laboratory (January-February 1978)

16. Misoczki, R., Barreto, P.S.: Compact McEliece Keys from Goppa Codes. In: Ja-
cobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867,
pp. 376–392. Springer, Heidelberg (2009)

17. Morii, M., Kasahara, M.: Efficient construction of gate circuit for computing mul-
tiplicative inverses over gf(2m). Transactions of the IEICE E72, 37–42 (1989)

18. Paar, C.: Efficient VLSI Architectures for Bit-Parallel Computation in Galois
Fields. Dissertation, Institute for Experimental Mathematics, Universität Essen
(1994)

19. Pointcheval, D.: Chosen-Ciphertext Security for Any One-Way Cryptosystem. In:
Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 129–146. Springer,
Heidelberg (2000)

20. Preneel, B., Bosselaers, A., Govaerts, R., Vandewalle, J.: A software implementa-
tion of the McEliece public-key cryptosystem. In: Proceedings of the 13th Sympo-
sium on Information Theory in the Benelux, Werkgemeenschap voor Informatieen
Communicatietheorie, pp. 119–126. Springer, Heidelberg (1992)

21. Prometheus. Implementation of McEliece cryptosystem for 32-bit microprocessors
(c-source), http://www.eccpage.com/

22. Sendrier, N.: Encoding information into constant weight words. In: IEEE Confer-
ence, ISIT 2005, pp. 435–438 (September 2005)

23. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

http://www.eccpage.com/

	Implementation of McEliece
Based on Quasi-dyadic Goppa Codes for Embedded Devices
	Introduction
	Background on the McEliece Cryptosystem
	Recommended Parameters and Key Sizes
	Goppa Codes
	Dyadic Goppa Codes
	Quasi-Dyadic Goppa Codes

	Scheme Definition of QD-McEliece
	Parameter Choice and Key Sizes
	Security of QD-McEliece
	Conversions for CCA2-Secure McEliece Variants

	Implementational Aspects
	Field Arithmetic
	Implementation of the QD-McEliece Variant
	Implementation of the KIC-

	Results
	Conclusion and Further Research
	References

