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Preface

ASIACRYPT 2011, the 17th International Conference on Theory and Appli-
cation of Cryptology and Information Security, was held during December 4–8
in the Silla Hotel, Seoul, Republic of Korea. The conference was sponsored by
the International Association for Cryptologic Research (IACR) in cooperation
with Korea Institute of Information Security and Cryptology (KIISC), Digital
Contents Society (DCS), Korea Internet Security Agency (KISA), and National
Security Research Institute (NSRI). It was also co-sponsored by the Center for
Information Security Technologies of Korea University (CIST), the Korean Fed-
eration of Science and Technology Societies (KOFST), Seoul National Univer-
sity, Electronics and Telecommunications Research Institute (ETRI), and Seoul
Metropolitan Government.

We received 266 valid submissions, of which 42 were accepted for publication.
With two pairs of papers merged, these proceedings contain the revised versions
of 40 papers. The Program Committee (PC) was aided by 243 external reviewers.
Every paper received at least three independent reviews, and papers with PC
contributions got five or more. Several questions from PC members to authors
were relayed in order to increase the quality of submissions. ASIACRYPT 2011
used a rolling Co-chair model and we made all decisions by consensus by sharing
a great deal of e-mails.

For the Best Paper Award, the PC selected “A Framework for Practical Uni-
versally Composable Zero-Knowledge Protocols” by Jan Camenisch, Stephan
Krenn, and Victor Shoup and “Counting Points on Genus 2 Curves with Real
Multiplication” by Pierrick Gaudry, David Kohel, and Benjamin Smith. There
were two invited talks; Joan Daemen delivered “15 Years of Rijndael” on De-
cember 6 and Úlfar Erlingsson spoke on “Securing Cloud Computing Services”
on December 7.

We would like to thank the authors of all submissions regardless of whether
their papers were accepted or not. Their work made this conference possible.
We are extremely grateful to the PC members for their enormous investment of
time and effort in the difficult and delicate process of review and selection. A
list of PC members and external reviewers can be found on succeeding pages of
this volume. We would like to thank Hyoung Joong Kim, who was the General
Chair in charge of the local organization and finances. Special thanks go to Shai
Halevi for providing and setting up the splendid review software. We are most
grateful to Kwangsu Lee and Jong Hwan Park, who provided support for the
entire ASIACRYPT 2011 process. We are also grateful to Masayuki Abe, the
ASIACRYPT 2010 Program Chair, for his timely information and replies to the
host of questions we posed during the process.

September 2011 Dong Hoon Lee
Xiaoyun Wang
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Véronique Cortier
Joan Daemen
Ivan Damg̊ard
M. Prem Laxman Das
Yi Deng
Yvo Desmedt
Claus Diem
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BKZ 2.0: Better Lattice Security Estimates

Yuanmi Chen1 and Phong Q. Nguyen2

1 ENS, Dept. Informatique, 45 rue d’Ulm, 75005 Paris, France
http://www.eleves.ens.fr/home/ychen/

2 INRIA and ENS, Dept. Informatique, 45 rue d’Ulm, 75005 Paris, France
http://www.di.ens.fr/~pnguyen/

Abstract. The best lattice reduction algorithm known in practice for
high dimension is Schnorr-Euchner’s BKZ: all security estimates of lattice
cryptosystems are based on NTL’s old implementation of BKZ. However,
recent progress on lattice enumeration suggests that BKZ and its NTL
implementation are no longer optimal, but the precise impact on secu-
rity estimates was unclear. We assess this impact thanks to extensive
experiments with BKZ 2.0, the first state-of-the-art implementation of
BKZ incorporating recent improvements, such as Gama-Nguyen-Regev
pruning. We propose an efficient simulation algorithm to model the be-
haviour of BKZ in high dimension with high blocksize ≥ 50, which can
predict approximately both the output quality and the running time,
thereby revising lattice security estimates. For instance, our simulation
suggests that the smallest NTRUSign parameter set, which was claimed
to provide at least 93-bit security against key-recovery lattice attacks,
actually offers at most 65-bit security.

1 Introduction

Lattices are discrete subgroups of Rm. A lattice L is represented by a basis, i.e.
a set of linearly independent vectors b1, . . . ,bn in Rm such that L is equal to
the set L(b1, . . . ,bn) = {∑n

i=1 xibi, xi ∈ Z} of all integer linear combinations
of the bi’s. The integer n is the dimension of L. The goal of lattice reduction
is to find bases consisting of reasonably short and nearly orthogonal vectors.
Lattice reduction algorithms have many applications (see [35]), notably public-
key cryptanalysis where they have been used to break special cases of RSA and
DSA, among others (see [32] and references therein). There are roughly two types
of lattice reduction algorithms:

– Approximation algorithms like the celebrated LLL algorithm [22,35], and its
blockwise generalizations [41,42,7,8]. Such algorithms find relatively short
vectors, but usually not shortest vectors in high dimension.

– Exact algorithms to output shortest or nearly shortest vectors. There are
space-efficient enumeration algorithms [38,20,6,42,43,10] and exponential-
space algorithms [3,36,30,29], the latter being outperformed in practice by
the former despite their better asymptotic running time 2O(n).

D.H. Lee and X. Wang (Eds.): ASIACRYPT 2011, LNCS 7073, pp. 1–20, 2011.
c© International Association for Cryptologic Research 2011



2 Y. Chen and P.Q. Nguyen

In high dimension, only approximation algorithms can be run, but both types are
complementary: approximation algorithms use exact algorithms as subroutines,
and exact algorithms use approximation algorithms as preprocessing. In theory,
the best approximation algorithm is Gama-Nguyen’s reduction [8]. But experi-
ments (such as that of [9], or the cryptanalyses [31,21] of GGH challenges [12])
suggest that the best approximation algorithm known in practice for high dimen-
sion is BKZ, published by Schnorr and Euchner in 1994 [42], and implemented
in NTL [44]. Like all blockwise algorithms [41,7,8], BKZ has an additional input
parameter – the blocksize β – which impacts both the running time and the
output quality: BKZ calls many times an enumeration subroutine [38,20,6,42],
which looks for nearly-shortest vectors in projected lattices of dimension ≤ β.
As β increases, the output basis becomes more and more reduced, but the cost
increases significantly: the cost of the enumeration subroutine is typically super-
exponential in β, namely 2O(β2) polynomial-time operations (see [10]); and ex-
periments [9] show that the number of calls increases sharply with both β and the
lattice dimension n: for fixed β ≥ 30, the number of calls looks superpolynomial
if not exponential in n. This leads to two typical uses of BKZ:

1. A small blocksize β around 20 in any dimension n, or a medium blocksize β
around 30-40 in medium dimension n (say, around 100 at most). Here, BKZ
terminates in a reasonable time, and is routinely used to improve the quality
of an LLL-reduced basis.

2. A high blocksize β ≥ 40 in high dimension n, to find shorter and shorter
lattice vectors. Here, BKZ does not terminate in a reasonable time, and the
computation is typically aborted after say, a few hours or days, with the
hope that the current basis is good enough for the application: we note that
Hanrot et al. [14] recently proved worst-case bounds for the output quality of
aborted-BKZ, which are only slightly worse than full-BKZ. And one usually
speeds up the enumeration subroutine by a pruning technique [42,43,10]:
for instance, the implementation of BKZ in NTL proposes Schnorr-Hörner
(SH) pruning [43], which adds another input parameter p, whose impact was
only clarified in [10]. The largest GGH cryptographic challenges [12] were
solved [31,21] using an aborted BKZ of blocksize β = 60 and SH factor
p = 14.

One major issue is to assess the output quality of BKZ, especially since lattice al-
gorithms tend to perform better than theoretically expected. The quality is mea-
sured by the so-called Hermite factor, as popularized by Gama and Nguyen [9].
In practice, the Hermite factor of all lattice algorithms known is typically expo-
nential in the dimension, namely cn where c depends on the parameters of the
algorithm. The experiments of [9] show that in practice, the Hermite factor of
BKZ is typically c(β, n)n where c(β, n) quickly converges as n grows to infinity
for fixed β. However, the limit values of c(β, n) are only known for small values of
β (roughly ≤ 30), and theoretical upper bounds [9,14] on c(β, n) are significantly
higher than experimental values.
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All security estimates and proposed parameters (such as recent ones [28,39,23]
and NTRU’s [18]) of lattice cryptosystems are based on benchmarks of NTL’s
old implementation of BKZ, but the significance of these estimates is rather
debatable. First, these benchmarks were all computed with only usage 1: NTRU
[18] “never observed a noticeable improvement from the pruning procedure, so the
pruning procedure was not called” and used β ≤ 25, while [39,23] use β ≤ 30. This
means that such security estimates either assume that BKZ cannot be run with
β ≥ 30, or they extrapolate c(β, n) for high values of β from low values β ≤ 30.
Second, recent progress [10] in enumeration shows that enumeration can now be
performed in much higher dimension (e.g. β ≈ 110) than previously imagined,
but no approximate value of c(β, n) is known for large β ≥ 50. And NTL’s
implementation does not include these recent improvements, and is therefore
suboptimal.

Our results. We report the first extensive experiments with high-blocksize BKZ
(β ≥ 40) in high dimension. This is made possible by implementing BKZ 2.0, an
updated version of BKZ taking into account recent algorithmic improvements.
The main modification is the incorporation of the sound pruning technique devel-
oped by Gama, Nguyen and Regev [10] at EUROCRYPT ’10. The modifications
significantly decrease the running time of the enumeration subroutine, without
degrading its output quality for appropriate parameters, which allow much big-
ger blocksizes. BKZ 2.0 outperforms NTL’s implementation of BKZ, even with
SH pruning [43], which we checked by breaking lattice records such as Darm-
stadt’s lattice challenges [24] or the SVP-challenges [40]: for instance, we find the
shortest vector in NTRU [18]’s historical 214-dimensional lattices within 242.62

clock cycles, at least 70 times less computation than previously reported [25].
More importantly, our experiments allow us to propose an efficient simulation

algorithm to model the execution of BKZ with (arbitrarily) high blocksize ≥ 50,
to guess the approximate length of the output vector and the time required: in
particular, this algorithm provides the first ever predictions for c(β, n) for arbi-
trarily high values of β ≥ 50. For a given target length, the simulation predicts
what is the approximate blocksize β required to obtain such short lattice vec-
tors, and how many enumeration calls will be required approximately. This can
be converted into an approximate running time, once we know a good approxi-
mation of the cost of enumeration. And we provide such approximations for the
best enumeration subroutines known.

Our simulation refines the Gama-Nguyen security estimates [9] on the con-
crete hardness of lattice problems, which did not take into account pruning,
like the security estimates of NTRU [19,16] and those of [23,39]. We illus-
trate the usefulness of our simulation by revising security estimates. For in-
stance, our simulation suggests that the smallest NTRUSign parameter set,
which was claimed to provide at least 93-bit security against key-recovery lattice
attacks, actually offers at most 65-bit security. And we use our simulation to pro-
vide the first concrete security assessment of the fully-homomorphic encryption
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challenges [11] recently proposed by Gentry and Halevi. It seems that none of
these challenges offers a very high security level, except the largest one, which
seems to offer at most a 100-bit security level.

Roadmap. We start in Sect. 2 with background and notation on lattices. In
Sect. 3, we recall the BKZ algorithm. In Sect. 4, we present BKZ 2.0 by de-
scribing our modifications to BKZ. In Sect. 5, we briefly report on new lattice
records obtained. We present in Sect. 6 a simulation algorithm to predict the
performances of BKZ 2.0 with (arbitrarily) high blocksize, which we apply to
revise security estimates in Sect. 7. More information can be found in the full
version.

2 Preliminaries

We use row representations of matrices (to match lattice software), and use bold
fonts to denote vectors: if B = (b1, . . . ,bn) is a matrix, its row vectors are the
bi’s. The Euclidean norm of a vector v ∈ Rm is ‖v‖. We denote by Balln(R)
the n-dim Euclidean ball of radius R, and by Vn(R) = Rn · πn/2

Γ (n/2+1) its volume.
The n-dim unit sphere is denoted by Sn−1. Let L be an n-dim lattice in Rm. Its
volume vol(L) is the n-dim volume of the parallelepiped generated by any basis
of L.

Orthogonalization. An n×m basis B = (b1, . . . ,bn) can be written uniquely as
B = μ ·D · Q where μ = (μi,j) is n × n lower-triangular with unit diagonal, D
is n× n positive diagonal, and Q is n×m with orthonormal row vectors. Then
μD is a lower triangular representation of B (with respect to Q), B∗ = DQ =
(b∗

1, . . . ,b
∗
n) is the Gram-Schmidt orthogonalization of the basis, and D is the

diagonal matrix formed by the ‖b∗
i ‖’s. For 1 ≤ i ≤ n + 1, we denote by πi the

orthogonal projection over (b1, . . . ,bi−1)⊥. For 1 ≤ j ≤ k ≤ n, we denote by
B[j,k] the local projected block (πj(bj), πj(bj+1), . . . , πj(bk)), and by L[j,k] the
lattice spanned by B[j,k], whose dimension is k − j + 1.

Random Lattices. There is a natural notion of random (real) lattices of given
volume, based on Haar measures of classical groups (see [1]). And there is a
simple notion of random integer lattices, used in recent experiments: For any
integer V , a random n-dim integer lattice of volume V is one chosen uniformly
at random among the finitely many n-dim integer lattices of volume V . It was
shown in [13] that, as V grows to infinity, the uniform distribution over integer
lattices of volume V converges towards the distribution of random (real) lattices
of unit volume, once the integer lattice is scaled by V 1/n. In experiments with
random lattices, we mean an n-dim integer lattice chosen uniformly at random
with volume a random prime number of bit-length 10n: for prime volumes, it is
trivial to sample from the uniform distribution, using the Hermite normal form.
A bit-length Θ(n2) would be preferable in theory (in order to apply the result
of [13]), but it significantly increases running times, without affecting noticeably
experimental results.
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Gaussian Heuristic. Given a lattice L and a “nice” set S, the Gaussian Heuristic
predicts that the number of points in S ∩ L is ≈ vol(S)/vol(L). In some cases,
this heuristic can be proved [1] or refuted [27].

Shortest vector. A shortest vector of L has norm λ1(L) = minv∈L,v �=0 ‖v‖, the
first minimum of L. If the Gaussian heuristic was true for any ball S, we would
expect λ1(L) ≈ GH(L) where GH(L) = vol(L)1/n · Vn(1)−1/n. Minkowski’s
theorem shows that λ1(L) ≤ 2GH(L) for any lattice L. For random real lattices,
λ1(L) is asymptotically equivalent to GH(L) with overwhelming probability
(see [1]).

Reduced bases. We recall a few classical reductions. A basis B = (b1, . . . ,bn) is:

– size-reduced if its Gram-Schmidt matrix μ satisfies |μi,j | ≤ 1/2 for 1 ≤ j <
i ≤ n.

– LLL-reduced [22] with factor ε such that 0 < ε < 1 if it is size-reduced and its
Gram-Schmidt orthogonalization satisfies ‖b∗

i+1 +μi+1,ib∗
i ‖2 ≥ (1− ε)‖b∗

i ‖2
for 1 ≤ i < n. If we omit the factor ε, we mean the factor ε = 0.01, which is
the usual choice in practice.

– BKZ-reduced [41] with blocksize β ≥ 2 and factor ε such that 0 < ε < 1 if
it is LLL-reduced with factor ε and for each 1 ≤ j ≤ n: ‖b∗

j‖ = λ1(L[j,k])
where k = min(j + β − 1, n).

One is usually interested in minimizing the Hermite factor ‖b1‖/vol(L)1/n (see
[9]), which is completely determined by the sequence ‖b∗

1‖, . . . , ‖b∗
n‖. This is

because the Hermite factor dictates the performance of the algorithm at solving
the most useful lattice problems: see [9] for approx-SVP and unique-SVP, and
[28,39,23] for SIS and LWE. It turns out that the Gram-Schmidt coefficients of
bases produced by the main reduction algorithms (such as LLL or BKZ) have
a certain “typical shape” [9,34], provided that the input basis is sufficiently
randomized. To give an idea, the shape is roughly such that ‖b∗

i ‖/‖b∗
i+1‖ ≈ q

where q depends on the reduction algorithm, except for the first indexes i. This
means that the Hermite factor will typically be of the form cn where c ≈ √q.

3 The Blockwise Korkine-Zolotarev (BKZ) Algorithm

3.1 Description

The Blockwise-Korkine-Zolotarev (BKZ) algorithm [42] outputs a BKZ-reduced
basis with blocksize β ≥ 2 and reduction factor ε > 0, from an input basis
B = (b1, . . . ,bn) of a lattice L. It starts by LLL-reducing the basis B, then
iteratively reduces each local block B[j,min(j+β−1,n)] for j = 1 to n, to make sure
that the first vector of each such block is the shortest in the projected lattice.
This gives rise to Algorithm 1, which proceeds in such a way that each block
is already LLL-reduced before being enumerated: there is an index j, initially
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set to 1. At each iteration, BKZ performs an enumeration of the local projected
lattice L[j,k] where k = min(j+β− 1, n) to find v = (v1, . . . , vn) ∈ Zn such that
‖πj(

∑k
i=j vibi)‖ = λ1(L[j,k]). We let h = min(k + 1, n) be the ending index of

the new block in the next iteration:

– If ‖b∗
j‖ > λ1(L[j,k]), then bnew =

∑k
i=j vibi is inserted between bj−1 and bj .

This means that we no longer have a basis, so LLL is called on the generating
set (b1, . . . ,bj−1,bnew,bj , . . . ,bh), to give rise to a new LLL-reduced basis
(b1, . . . ,bh).

– Otherwise, LLL is called on the truncated basis (b1, . . . ,bh).

Thus, at the end of each iteration, the basis B = (b1, . . . ,bn) is such that
(b1, . . . ,bh) is LLL-reduced. When j reaches n, it is reset to 1, unless no enu-
meration was successful, in which case the algorithm terminates: the goal of z
in Alg. 1 is to count the number of consecutive failed enumerations, to check
termination.

Algorithm 1. The Block Korkin-Zolotarev (BKZ) algorithm
Input: A basis B = (b1, . . . ,bn), a blocksize β ∈ {2, . . . , n}, the Gram-Schmidt tri-

angular matrix μ and ‖b∗
1‖2, . . . , ‖b∗

n‖2.
Output: The basis (b1, . . . ,bn) is BKZ-β reduced
1. z ← 0; j ← 0; LLL(b1, . . . ,bn, μ);// LLL-reduce the basis, and update μ
2. while z < n− 1 do
3. j ← (j mod (n− 1)) + 1; k ← min(j + β − 1, n); h ← min(k + 1, n); // define

the local block
4. v ←Enum(μ[j,k], ‖b∗

j‖2, . . . , ‖b∗
k‖2); // find v = (vj , . . . , vk) ∈ Zk−j+1 − 0 s.t.

‖πj(
∑k

i=j vibi)‖ = λ1(L[j,k])
5. if v �= (1, 0, . . . , 0) then
6. z ← 0; LLL(b1, . . . ,

∑k
i=j vibi,bj , . . . ,bh, μ) at stage j; //insert the new vec-

tor in the lattice at the start of the current block, then remove the dependency
in the current block, update μ.

7. else
8. z ← z + 1; LLL(b1, . . . ,bh, μ) at stage h − 1; // LLL-reduce the next block

before enumeration.
9. end if

10. end while

3.2 Enumeration Subroutine

BKZ requires a subroutine to find a shortest vector in a local projected lattice
L[j,k]: given as input two integers j and k such that 1 ≤ j ≤ k ≤ n, output
v = (vj , . . . , vk) ∈ Zk−j+1 such that ‖πj(

∑k
i=j vibi)‖ = λ1(L[j,k]). In prac-

tice, as well as in the BKZ article [42], this is implemented by enumeration.
One sets R = ‖b∗

j‖ as an initial upper bound of λ1(L[j,k]). Enumeration goes
through the enumeration tree formed by ”half” of the vectors in the local pro-
jected lattices L[k,k], L[k−1,k], . . . , L[j,k] of norm at most R. The tree has depth
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k − j + 1, and for each d ∈ {0, . . . , k − j + 1}, the nodes at depth d are 0 and
all πk−d+1(u) ∈ L[k−d+1,k] where u =

∑k′

i=j uibi with j ≤ k′ ≤ k, uk′ > 0 and
‖πk−d+1(u)‖ ≤ R. The parent of a node u ∈ L[k−d+1,k] at depth d is πk+2−d(u)
at depth d − 1. Child nodes are ordered by increasing Euclidean norm. The
Schnorr-Euchner algorithm [42] performs a Depth First Search of the tree to
output a nonzero leaf of minimal norm, with the following modification: ev-
erytime a new (nonzero) leaf is found, one updates the enumeration radius R
as the norm of the leaf. The more reduced the basis is, the less nodes in the
tree, and the cheaper the enumeration. The running time of the enumeration
algorithm is N polynomial-time operations where N is the total number of tree
nodes. If the algorithm did not update R, Hanrot and Stehlé [15] noticed that
the number of nodes at depth d could be estimated from the Gaussian heuristic
as:

Hd(R) =
1
2
· Vd(R)∏k

i=k−d+1 ‖b∗
i ‖

=
1
2
· RdVd(1)∏k

i=k−d+1 ‖b∗
i ‖
. (1)

Gama et al. [10] showed that this heuristic estimate is experimentally very ac-
curate, at least for sufficiently large k − j + 1 and typical reduced bases. We
can therefore heuristically bound the number of nodes at depth d in the actual
Schnorr-Euchner algorithm (with update of R) by setting R = λ1(L[j,k]) and
R = ‖b∗

j‖ in Eq. (1). It is shown in [10] that for typical reduced bases, Hd(R)
is maximal around the middle depth d ≈ (k − j)/2, and the remaining Hd(R)’s
are significantly smaller.

3.3 Analysis

No good upper bound on the complexity of BKZ is known. The best upper bound
known for the number of calls (to the enumeration subroutine) is exponential
(see [14]). In practice (see [9]), BKZ with β = 20 is very practical, but the running
time significantly increases for β ≥ 25, making any β ≥ 40 too expensive for high-
dimensional lattices. In practice, the quality of bases output by BKZ is better
than the best theoretical worst-case bounds: according to [9], the Hermite factor
for high-dimensional lattices is typically c(β, n)n where c(β, n) seems to quickly
converge as n grows to infinity, whereas theoretical upper bounds are c′(β)n with
c′(β) significantly larger than c(β, n). For instance, c(20, n) ≈ 1.0128 for large
n. Furthermore, [14] recently showed that if one aborts BKZ after a suitable
polynomial number of calls, one can obtain theoretical upper bounds which are
only slightly worse than c′(β)n.

4 BKZ 2.0

When the blocksize is sufficiently high, namely ≥ 30, it is known [9] that the
overall running time of BKZ is dominated by the enumeration subroutine, which
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finds a shortest vector in the m-dimensional local projected lattice L[j,k], using
a radius R initially set to ‖b∗

j‖, where 1 ≤ j ≤ k ≤ n and m = k − j + 1.
In this section, we describe BKZ 2.0, an updated version of BKZ with four

improvements, which we implemented by modifying NTL [44]’s implementation
of BKZ [42]. The first improvement is simply an early-abort, which is common
practice in cryptanalysis, and is partially supported by the recent theoretical
result of [14]: we add a parameter that specifies how many iterations should be
performed, i.e. we choose the number of oracle calls; this already provides an
exponential speedup over BKZ, because the number of calls seems to grow ex-
ponentially for fixed β ≥ 30 according to the experiments of [9]. The other three
improvements aim at decreasing the running time of the enumeration subrou-
tine: sound pruning [10], preprocessing of local bases, and shorter enumeration
radius. Though these improvements may be considered as folklore, we stress that
none had been incorporated in BKZ (except that a weaker form of pruning had
been designed by Schnorr and Hörner [43], and implemented in NTL [44]), and
that implementing them is not trivial.

4.1 Sound Pruning

Pruning speedups enumeration by discarding certain branches, but may not re-
turn any vector, or maybe not the shortest one. The idea of pruned enumeration
goes back to Schnorr and Euchner [42], and was first analyzed by Schnorr and
Hörner [43] in 1995. It was recently revisited by Gama et al. [10], who noticed
that the analysis of [43] was flawed and that the pruning was not optimal. They
showed that a well-chosen high-probability pruning leads to an asymptotical
speedup of 2m/4 over full enumeration, and introduced an extreme pruning tech-
nique which gives an asymptotical speedup of 2m/2 over full enumeration. We
incorporated both pruning with non-negligible probability, and extreme pruning
using randomization. Formally, pruning replaces each of the k − j + 1 inequal-
ities ‖πk+1−d(u)‖ ≤ R for 1 ≤ d ≤ k − j + 1 by ‖πk+1−d(u)‖ ≤ Rd · R where
0 ≤ R1 ≤ · · · ≤ Rk−j+1 = 1 are k − j + 1 real numbers defined by the prun-
ing strategy. For any bounding function (R1, . . . , Rk−j+1), [10] consider the
quantities N ′ and psucc defined by:

– N ′ =
∑k−j+1

d=1 H ′
d is a heuristic estimate of the total number of nodes in the

pruned enumeration tree, where H ′
d = 1

2

RdVR1,...,Rd∏k
i=k+1−d‖b∗

i ‖ and VR1,...,Rd
denotes

the volume of CR1,...,Rd
=
{
(x1, . . . , xd) ∈ Rd, ∀1 ≤ i ≤ d,

∑i
l=1 x

2
l ≤ R2

i

}
.

– psucc = psucc(R1, . . . , Rm) = Pr
u∼Sm−1

(
∀i ∈ [1,m],

∑i
l=1 u

2
l ≤ R2

i

)
. Let t ∈

L[j,k] be a target vector such that ‖πj(t)‖ = R. If the local basis B[j,k]

is assumed to be randomized, then psucc is the probability that πj(t) is a
leaf of the pruned enumeration tree, under the (idealized) assumption that
the distribution of the coordinates of πj(t), when written in the normalized
Gram-Schmidt basis (b∗

j/‖b∗
j‖, . . . ,b∗

k/‖b∗
k‖) of the local basis B[j,k], look

like those of a uniformly distributed vector of norm ‖πj(t)‖.
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We stress that the assumption is only an idealization: in practice, when m is
small, for a non-negligible fraction of the local blocks B[j,k], one of the vectors of
B[j,k] is a shortest vector of L[j,k], which should have had zero probability. For
the application to BKZ, it makes sense to consider various bounding functions
of various psucc, say ranging from 1% to 95%, but with a cost N ′ as small as
possible. Based on the methodology of [10], we performed an automated search
to generate such bounding functions, for blocksizes β ranging from 35 to 90 by
steps of 5, and psucc ranging from 1% to 95%.

It should be noted that BKZ calls the enumeration subroutine on lattices
L[j,k] whose dimension m = k − j + 1 is not necessarily equal to β. When
j ≤ n− β + 1, the dimension m of the block is equal to β, but when j ≥ n− β,
the dimensionm of the block is strictly less than β. To avoid generating bounding
functions for every dimension, we decided in this case to interpolate the bounding
function found for β, and checked that interpolating does not affect much psucc.
Finally, in order to boost psucc, we added an optional parameter ν, so that
BKZ actually performs ν pruned enumerations, each starting with a different
random basis of the same local block. This corresponds to the extreme pruning
of [10].

4.2 Preprocessing of Local Blocks

The cost of enumeration is strongly influenced by the quality of the local basis,
especially as the blocksize increases: the more reduced the local basis, the bigger
the volumes of the local projected lattices L[k−d+1,k], and therefore the less nodes
in the most populated depths of the enumeration tree. This is folklore, but since
BKZ improves regularly the quality of the basis, one might think there is no
need to change the local basis before enumeration. However:

– For each enumeration, the local basis is only guaranteed to be LLL
-reduced, even though the whole basis may be more than LLL-reduced.

– In high blocksizes, most enumerations are successful: they find a shorter
vector than the first block vector. This implies that a local LLL-reduction
will be performed to get a basis from a generating set: see Line 1 in Alg. 1. At
the next iteration, the enumeration will proceed on a typical LLL-reduced
basis, and not something likely to be better reduced.

This suggests that for most enumerations, the local basis is only LLL-reduced,
and nothing more, even though other local bases may be better reduced: this
was confirmed by experiments.

Hence, we implemented a simple speedup: ensure that the local basis is signif-
icantly more reduced than LLL-reduced before each enumeration, but without
spending too much time. We used a recursive aborted-BKZ preprocessing to
the local basis before enumeration: we performed an automated search to find
good parameters depending on β.
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4.3 Optimizing the Enumeration Radius

It is folklore that the enumeration cost is also influenced by the choice of the
initial radius R, even though this radius is updated during enumeration. Ini-
tially, the radius is R = ‖b∗

j‖, but if we knew before hand how short would be
the output vector, we would choose a lower initial radius R, decreasing the enu-
meration time. Indeed, the number of nodes at depth d of the enumeration tree
(pruned or not) is proportional to Rd. Unfortunately, not much is known (from
a theoretical point of view) on how small should be λ1(L[j,k]), except general
bounds. So we performed experiments to see what was the final norm found by
enumeration in practice: Fig. 1 compares the final norm (found by enumeration)
to GH(L[j,k]), depending on the starting index j of the local block, for one round
of BKZ. For the lowest indices j, one sees that the final norm is significantly lower
than GH(L[j,k]), whereas for the largest indices, it is significantly larger. In the
middle, which accounts for most of the enumerations, the ratio between the fi-
nal norm and the Gaussian heuristic prediction is mostly within 0.95 and 1.05,
whereas the ratio between the norm of the first local basis vector and GH(L[j,k])
is typically slightly below 1.1. We therefore used the following optimization: for
all indexes j except the last 30 ones, we let R = min(

√
γGH(L[j,k]), ‖b∗

j‖) in-
stead of R = ‖b∗

j‖, where γ is a radius parameter. In practice, we selected√
γ =
√

1.1 ≈ 1.05.

Fig. 1. Comparing ‖b∗
j‖, λ1(L[j,k]) and GH(L[j,k]), for each local block B[j,k]

5 New Lattice Records

Here, we briefly report on experiments using 64-bit Xeon processors to break
some lattice records, which suggest that BKZ 2.0 is currently the best lattice
reduction algorithm in practice.

5.1 Darmstadt’s Lattice Challenge

Darmstadt’s lattice challenge [24] started in 2008. For each dimension, the chal-
lenge is to find a vector of norm < q in an Ajtai lattice [2], where q depends
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on the dimension; and try to minimize the norm. Until now, the highest chal-
lenge solved was 725: the first solutions to all challenges in dimension 575 to 725
were found by Gama and Nguyen in 2008, using NTL’s implementation of BKZ
with SH pruning. Shorter solutions have been found since (see the full list [24]),
but no challenge of higher dimension had been solved. All solutions were found
by reducing appropriate sublattices of much smaller dimension (typically around
150-200), whose existence follows from the structure of Ajtai lattices: we followed
the same strategy.

BKZ 2.0 with blocksize 90 (18 pruned-enumerations at 5%) found the first
ever solution to challenges 750, 775 and 800, and significantly shorter vectors
in all challenges 525 to 725, using in total about 3 core-years, as summarized
in Table 1: the first column is the dimension of the challenge, the second one
is the dimension of the sublattice we used to find the solution, the third one
is the best norm found by BKZ 2.0, the fourth one is the previous best norm
found by former algorithms, the fifth one is the ratio between norms, and the
sixth one is the Hermite factor of the reduced basis of the sublattice, which
turns out to be slightly below 1.01dim. The factor 1.01dim was considered to be
the state-of-the-art limit in 2008 by Gama and Nguyen [9], which shows the
improvement.

Table 1. New Solutions for Darmstadt’s lattice challenge [24]

Dim(lattice) Dim(sublattice) New norm Previous norm Ratio Hermite factor

800 230 120.054 Unsolved 1.00978230

775 230 112.539 Unsolved 1.00994230

750 220 95.995 Unsolved 1.0976220

725 210 85.726 100.90 0.85 1.00978210

700 200 78.537 86.02 0.91 1.00993200

675 190 72.243 74.78 0.97 1.00997190

650 190 61.935 66.72 0.93 1.00993190

625 180 53.953 59.41 0.91 1.00987180

600 180 45.420 52.01 0.87 1.00976180

575 180 39.153 42.71 0.92 1.00977180

550 180 32.481 38.29 0.85 1.00955180

525 180 29.866 30.74 0.97 1.00990180

5.2 SVP Challenges

The SVP challenge [40] opened in May 2010. The lattices L are random integer
lattices of large volume, so that λ1(L) ≈ GH(L) with high probability. The
challenge is to find a nearly-shortest vector, namely a nonzero lattice vector of
norm ≤ 1.05GH(L). Using BKZ 2.0 with blocksize 75, 20%-pruning, we were
able to solve all challenges from dimension 90 to 112.

6 Predicting BKZ 2.0 by Simulation

We now present an efficient simulation algorithm to predict the performances of
BKZ 2.0 with high blocksize β ≥ 50 in high dimension, in terms of running time
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and output quality. Our simulation is fairly consistent with experiments using
several core-years on 64-bit Xeon processors, on random lattices and Darmstadt’s
lattice challenges. Accordingly, we believe that our simulation can be used to
predict approximately what can be achieved using much larger computational
power than used in our experiments, thereby leading to more convincing security
estimates.

6.1 Description

The goal of our simulation algorithm is to predict the Gram-Schmidt sequence
(‖b∗

1‖, ‖b∗
2‖, . . . , ‖b∗

n‖) during the execution of BKZ, more precisely at the be-
ginning of every round: a round occurs whenever j = 0 in Step 1 of Alg. 1, so
one round of BKZ costs essentially n− 1 enumeration calls. We assume that the
input basis is a “random” reduced basis, without special property.

The starting point of our simulation is the intuition, based on Sect. 4.3, that
the first minimum of most local blocks looks like that of a random lattice of
dimension the blocksize: this phenomenon does not hold in small blocksize ≤ 30
(as noted by Gama and Nguyen [9]), but it becomes more and more true as
the blocksize increases, as shown in Fig. 2, where we see that the expectation
and the standard deviation of λ1(L)

GH(L) seem to converge to that of a random
lattice. Intuitively, this may be explained by a concentration phenomenon: as

1/
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Average value for local block during BKZ 
Standard deviation
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Standard deviation for random lattices

Fig. 2. Comparing λ1(L)
GH(L)

for a non-extreme local block during BKZ-β reduction, with
a random lattice of dimension β. Expectations with and without standard deviation
are given.

the dimension increases, random lattices dominate in the set of lattices, so unless
there is a strong reason why a given lattice cannot be random, we may assume
that it behaves like a random lattice.

Once we can predict the value of λ1(L[j,k]) for each local block, we know that
this will be the new value of ‖b∗

j‖ by definition of the enumeration subroutine,
which allows to deduce the volume of the next local block, and therefore iterate
the process until the end of the round. This gives rise to our simulation algorithm
(see Alg. 2).
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Algorithm 2. Simulation of BKZ reduction
Input: The Gram-Schmidt norms, given as �i = log(‖b∗

i ‖), for i = 1, . . . , n,
a blocksize β ∈ {45, . . . , n}, and a number N of rounds.

Output: A prediction for the Gram-Schmidt norms �′i = log(‖b∗
i ‖), i = 1, . . . , n, after

N rounds of BKZ reduction.
1. for k = 1, . . . , 45 do
2. rk ← average log(‖b∗

k‖) of an HKZ-reduced random unit-volume 45-dim lattice
3. end for
4. for d = 46, . . . , β, do cd ← log(GH(Zd)) = log(Γ (d/2+1)1/d

π1/2 ) end for
5. for j = 1, . . . , N do
6. φ← true //flag to store whether L[k,n] has changed
7. for k = 1 to n− 45 do
8. d← min(β, n− k + 1) // Dimension of local block
9. f ← min(k + β, n) //End index of local block

10. log V ←
∑f

i=1 �i −
∑k−1

i=1 �
′
i

11. if φ = true then
12. if log V/d+ cd < �k then
13. �′k ← log V/d+ cd;
14. φ← false
15. end if
16. else
17. �′k ← log V/d+ cd
18. end if
19. end for
20. log V ←

∑n
i=1 �i −

∑n−45
i=1 �′i

21. for k = n− 44 to n do
22. �′k ← log V

45
+ rk+45−n

23. end for
24. �1,...,n ← �′1,...,n

25. end for

We predict this first minimum λ1(L[j,k]) as follows:

– For most indexes j, we choose GH(L[j,k]), unless ‖b∗
j‖ was already better.

– However, for the last indexes j, namely those inside the last β-dimensional
block L[n−β+1,n], we do something different: since this last block will be HKZ-
reduced at the end of the round, we assume that it behaves like an HKZ-
reduced basis of a random lattice of the same volume. Since these averages
may be expensive to compute for large β, we apply a simplified rule: we
determine the last 45 Gram-Schmidt norms from the average Gram-Schmidt
norms (computed experimentally) of an HKZ-reduced basis of a random 45-
dim lattice of unit volume, and we compute the first β − 45 Gram-Schmidt
norms using the Gaussian heuristic. But this model may not work with bases
of special structure such as partial reductions of the NTRU Hermite normal
form, which is why we only consider random reduced bases as input.
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This simulation algorithms allows us to guess the approximate Hermite factor
achieved by BKZ 2.0, given an arbitrary blocksize, as summarized in Table 2:
for a given dimension n, one should run the simulation algorithm, because the
actual blocksize also depends on the dimension. As mentioned in Sect. 2, the

Table 2. Approximate required blocksize for high-dimensional BKZ, as predicted by
the simulation

Target Hermite Factor 1.01n 1.009n 1.008n 1.007n 1.006n 1.005n

Approximate Blocksize 85 106 133 168 216 286

Hermite factor dictates the performances at solving lattice problems relevant to
cryptography: see [9] for approx-SVP and unique-SVP, and [28,39,23] for SIS
and LWE. Obviously, we can only hope for an approximation, since there are
well-known variations in the Hermite factor when the input basis is randomized.

The simulation algorithm also gives us an approximate running time, using the
number of rounds, provided that we know the cost of the enumeration subroutine:
we will discuss these points more precisely later on.

6.2 Consistency with Experiments

It turns out that our simulation matches well with experiments using random
lattices and Darmstadt’s lattice challenges. First, the prediction of the Gram-
Schmidt sequence (‖b∗

1‖, ‖b∗
2‖, . . . , ‖b∗

n‖) by our simulation algorithm is fairly
accurate for random reduced bases, as shown in Fig. 3 This implies that our
simulation algorithm can give a good prediction of the Hermite factor of BKZ at
any given number of rounds, which is confirmed by Fig. 4. Furthermore, Fig. 4
suggests that a polynomial number of calls seems sufficient to obtain a Hermite
factor not very far from that of a full reduction: the main progress seems to
occur in the early rounds of BKZ, which justifies the use of aborted-BKZ, which
complements the theoretical results of [14].

Fig. 3. Predicted vs. actual values of Gram-Schmidt norms during BKZ-50 reduction
of a 200-dim random lattice
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6.3 Enumeration Subroutine

It remains to estimate the cost of the enumeration subroutine, with a radius
equal to the Gaussian heuristic. First, we computed upper bounds, by applying
extreme pruning on bases reduced with BKZ 2.0, following the search method
of [10]: Table 3 gives the approximate cost (in terms of logarithmic number of
nodes) of extreme pruning for blocksizes 100-250, using BKZ-75-20% as pre-
processing, and radius equal to the Gaussian heuristic. Numbers of nodes can

Table 3. Upper bound on the cost of the enumeration subroutine, using extreme
pruning with aborted-BKZ preprocessing. Cost is given as log2(number of nodes).

Blocksize 100 110 120 130 140 150 160 170 180 190 200 250
BKZ-75-20% 41.4 47.1 53.1 59.8 66.8 75.2 84.7 94.7 105.8 117.6 129.4 204.1

Simulation of BKZ-90/100/110/120 40.8 45.3 50.3 56.3 63.3 69.4 79.9 89.1 99.1 103.3 111.1 175.2

be approximately converted into clock cycles as follows: in the implementation
of [10], one node requires about 200 clock cycles for double-precision enumera-
tion, but this figure depends on the dimension, and for high blocksize, we may
need higher precision than double precision. For instance, Table 3 says that ap-
plying extreme pruning in blocksize 120 would cost at most approximately 253

nodes, which is less than 30 core-years on a 1.86-GHz Xeon, assuming double
precision. This is useful to determine parameters for feasible attacks. However,
these upper bounds should not be considered as tight: the performances of enu-
meration techniques depend on preprocessing, and it is likely that better figures
(than Table 3) can be obtained with better preprocessing, including BKZ 2.0
with different parameters. In fact, Table 3 also provides a better upper bound,
based on our simulation of BKZ with higher blocksizes 90–120 as a preprocess-
ing. In order to provide security estimates with a good security margin, we need
to estimate how much progress can be made. Interestingly, there are limits to
enumeration techniques. Nguyen [33] established a lower bound on the number
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of nodes at each depth of the enumeration tree, assuming that the Gaussian
heuristic estimates well the number of nodes (as is usual in analyzing the com-
plexity of enumeration techniques). The lower bounds are based on the Rankin
invariants γn,m(L) of a lattice:

γn,m(L) = min
S sublattice of L

dimS = m

(
vol(S)

vol(L)m/n

)2

.

In particular, [33] shows that the number of nodes in the middle depth
of a full enumeration of a d-dim lattice L with radius GH(L) is ≥ Vd/2(1)√
γd,d/2(L)/Vd(1). For typical lattices L, the Rankin invariant γn,m(L) is heuris-

tically close to the following lower bound on Rankin’s constant γn,m (see [7]):

γn,m ≥
(
n

∏n
j=n−m+1 Z(j)∏m

j=2 Z(j)

) 2
n

(2)

where Z(j) = ζ(j)Γ ( j
2 )/π

j
2 and ζ is Riemann’s zeta function: ζ(j) =

∑∞
p=1 p

−j .
These lower bounds are for full enumeration, but they can be adapted to pruning
by taking into account the actual speedup of pruning (as analyzed in [10]), which
is asymptotically 2n/4 for high-probability pruning and 2n/2 for extreme pruning.
Table 4 gives the figures obtained with respectively the actual speedup of the
so-called linear pruning, and the asymptotical speedup 2n/2 of extreme pruning.
Compared to the upper bounds of Table 3, there is a significant gap: the lower

Table 4. Lower bounds on the cost (in log-nodes) of the enumeration subroutine using
linear pruning or extreme pruning, following [33,10]

Blocksize 100 120 140 160 180 200 220 240 280 380
Linear pruning 33.6 44.5 56.1 68.2 80.7 93.7 107.0 120.6 148.8 223.5

Extreme pruning 9 15 21.7 28.8 36.4 44.4 52.8 61.5 79.8 129.9

bound of linear pruning tells us how much progress could be made if a stronger
preprocessing was found for enumeration.

Finally, we note that asymptotically, heuristic variants [36,30,45] of sieve al-
gorithms [3] are faster than pruned enumeration. However, it is unclear how
meaningful it is for security estimates, since these variants require exponential
space and are outperformed in practice. And more experiments than [36,30]
would be required to evaluate precisely their practical running time. But our
model can easily adapt to new progress in the enumeration subroutine, due to
Table 2.

7 Revising Security Estimates

Here, we illustrate how our simulation algorithm can be used to obtain arguably
better security estimates than previously known.
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7.1 NTRU Lattices

In the NTRU cryptosystem [18], recovering the secret key from the public key
amounts to finding a shortest vector in high-dimensional lattices of special struc-
ture. Because NTRU security estimates are based on benchmarks with BKZ, it
is interesting to see the limits of this methodology.

In the original article [18], the smallest parameter set NTRU-107 corresponds
to lattices of dimension 214, and it was estimated that key recovery would cost
at least 250 elementary operations. The best experimental result to recover the
secret key for NTRU-107 by direct lattice reduction (without ad-hoc techniques
like [25,26,9] which exploit the special structure of NTRU lattices) is due to
May in 1999 [25], who reported one successful experiment using BKZ with SH
pruning [43], after 663 hours on a 200-MHz processor, that is 248.76 clock cycles.
We performed experiments with BKZ 2.0 on 10 random NTRU-107 lattices: We
applied LLL and BKZ-20, which takes a few minutes at most; We applied BKZ
-65 with 5%-pruning, and checked every 5 minutes if the first basis vector was
the shortest vector corresponding to the secret key, in which case we aborted.
BKZ 2.0 was successful for each lattice, and the aborted BKZ-65 reduction took
less than 2000s on the average, on a 2.83Mhz single core. So the overall running
time is less than 40 minutes, that is 242.62 clock cycles, which gives a speedup of
at least 70, compared to May’s experiment, and is significantly lower than 250

elementary operations. Hence, there is an order of magnitude between the initial
security estimate of 250 and the actual security level, which is approximately at
most 40-bit.

Now, we revisit recent parameters for NTRUSign. In the recent article by
Hoffstein et al. [17], a summary of the latest parameters for NTRU encryption
and signature is given. In particular, the smallest parameter for NTRUsign is
(N, q) = (157, 256), which is claimed to provide 80-bit security against all at-
tacks knowns, and 93-bit security against key-recovery lattice attacks. Similarly
to [9], we estimate that finding the secret key is essentially as hard as recovering
a vector of norm < q in a lattice of dimension 2N = 314 and volume qN , which
corresponds to a Hermite factor of 1.008862N . We ran our simulation algorithm
for these parameters to guess how many rounds would be required, depending
on the blocksize, starting from a BKZ-20 reduced basis (whose cost is negligible
here): about six rounds of BKZ-110 should be sufficient to break NTRUSign-
157, which corresponds to roughly 211 enumerations. And according to Table 3,
extreme pruning enumeration in blocksize 110 can be done by searching through
at most 247 nodes, which corresponds to roughly 254 clock cycles on a typical
processor. This suggests that the security level of the smallest NTRUSign pa-
rameter against state-of-the-art lattice attacks is at most 65-bit, rather than
93-bit, which is a significant gap.

7.2 Gentry-Halevi’s Fully-Homomorphic Encryption Challenges

We now turn to Gentry-Halevi’s main Fully-Homomorphic Encryption Chal-
lenges [11], for which no concrete security estimate was given. Decrypting a
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ciphertext amounts to solve a BDD instance, which can be done up to the dis-
tance mini ‖bi‖∗/2 using Babai’s nearest plane algorithm. Targetting a given
value of mini ‖bi‖∗ can be transformed into a target Hermite factor in the dual
lattice. This allows us to estimate the required Hermite factor to solve the BDD
instance, based on the approximate distance of the BDD instance and the lattice
volume, which is summarized in Table 5.

Table 5. Security Assessment of Gentry-Halevi’s main challenges [11]

Dimension n 512 2048 8192 32768
Name Toy Small Medium Large

Target Hermite factor [9] 1.67n 1.14n 1.03n 1.0081n

Algorithm expected LLL LLL LLL BKZ with blocksize ≈ 130
to decrypt a fresh ciphertext

Time estimate 30 core-days ≤ 45 core-years ≤ 68582 core-years ≈ 2100 clock-cycles

Accordingly, we speculate that decryption for the toy, small and medium
challenge can be solved by LLL reduction, which is not straightforward due to
the lattice dimension and the gigantic bit-size of the basis (note that there is
new theoretical progress [37] on LLL-reduction for large entries). We checked
that this was indeed the case for the toy challenge, by performing an actual
reduction using a modification of fplll [4]. For the small and medium challenges,
we extrapolated running times from truncated challenges, using the fact that our
modification of fplll has heuristic running time O(n3d2) where d is the bit-size of
the lattice volume, where the O constant depends on the floating-point precision
(which increases with the dimension). According to our simulation, breaking the
large challenge would require a blocksize ≈ 130 and approximately 60000 rounds
(starting from an LLL basis), that is, 231 enumeration calls. Based on Table 3,
this enumeration routine would cost at most 260 nodes, so the security offered
by the large challenge is at most roughly 100-bit. On the other hand, if ever
a stronger preprocessing for enumeration is found, Table 4 suggests that the
security level could potentially drop by a factor in the range 210 − 240.

Acknowledgements. Part of this work is supported by the Commission of the
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Abstract. We propose a lattice-based functional encryption scheme for inner
product predicates whose security follows from the difficulty of the learning with
errors (LWE) problem. This construction allows us to achieve applications such
as range and subset queries, polynomial evaluation, and CNF/DNF formulas on
encrypted data. Our scheme supports inner products over small fields, in contrast
to earlier works based on bilinear maps.

Our construction is the first functional encryption scheme based on lattice
techniques that goes beyond basic identity-based encryption. The main technique
in our scheme is a novel twist to the identity-based encryption scheme of Agrawal,
Boneh and Boyen (Eurocrypt 2010). Our scheme is weakly attribute hiding in the
standard model.

Keywords: Functional encryption, predicate encryption, lattices, learning with
errors.

1 Introduction

Traditional public-key encryption is “coarse,” in the sense that any user in the system
can decrypt only messages encrypted with that user’s public key. In a line of research
beginning with the work of Sahai and Waters [39], a number of researchers have
asked how to make encryption more fine-grained. The result is the notion of functional
encryption [16], in which secret keys allow users to learn functions of encrypted
data. Two important examples of functional encryption are attribute-based encryption
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(ABE) [39, 27] and predicate encryption (PE) [17, 29]. In (key-policy) ABE and PE
systems, each ciphertext c is associated with an attribute a and each secret key s is
associated with a predicate f . A user holding the key s can decrypt c if and only
if f(a) = 1. The difference between the two types of systems is in the amount
of information revealed: an ABE system reveals the attribute associated with each
ciphertext, while a PE system keeps the attribute hidden. (Formal definitions of these
properties appear in Section 2.)

This hiding requirement has made predicate encryption systems much more difficult
to construct than attribute-based encryption systems: while there exist ABE schemes
that allow any access formula over attributes [35, 46], the most expressive PE scheme
is that of Katz, Sahai, and Waters [29], who construct a PE scheme for inner product
predicates. In such a scheme, attributes a and predicates f are expressed as vectors
�va and �wf respectively, and we say f(a) = 1 if and only if 〈�va, �wf 〉 = 0. Despite
this apparently restrictive structure, inner product predicates can support conjunction,
subset and range queries on encrypted data [17] as well as disjunctions, polynomial
evaluation, and CNF and DNF formulas [29].

All known constructions of attribute-based encryption [39,27,10,21,35,26,46,8,30,
34, 9] and predicate encryption [15, 1, 41, 17, 29, 42, 40, 33, 11, 30] make use of groups
with bilinear maps, and the security of these schemes is based on many different, and
often complex, assumptions. In particular, there is at present no known construction of
predicate encryption for inner products based on a “standard” assumption in bilinear
groups.1 As an example of a “nonstandard” assumption used in previous constructions,
Katz, Sahai, and Waters present an assumption [29, Assumption 1] where the challenge
consists of ten elements chosen in a specified way from a group whose order is the
product of three large primes p, q, r, and the problem is to determine whether one of
these elements has an order-q component. While assumptions such as this one can often
be shown to hold in a suitable “generic group model” (e.g., [29, Appendix A]), to obtain
more confidence in security we would like to build ABE and PE schemes based on
computational problems whose complexity is better understood.

Our Contribution. In this work we construct a lattice-based predicate encryption
scheme for inner product predicates whose security follows from the difficulty of
the learning with errors (LWE) problem. The LWE problem, in turn, is at least as
hard as approximating the standard lattice problems GapSVP and SIVP in the worst
case [38, 36] and is also conjectured to be difficult even for quantum adversaries.
Our construction is the first functional encryption scheme based on lattice techniques
that goes beyond basic identity-based encryption (which can be viewed as predicate
encryption that tests equality on strings). Our construction is capable of instantiating
all of the applications of predicate encryption proposed by Boneh and Waters [17] and
Katz, Sahai, and Waters [29].2 While our construction does not satisfy the strong notion
of privacy defined by Katz, Sahai, and Waters [29], it does satisfy the slightly weaker
notion considered by Okamoto and Takashima [33, 34] and Lewko et al. [30].

1 Okamoto and Takashima [34] claim a PE construction from the decision linear assumption,
but their paper only indicates how this is achieved for ABE.

2 A detailed discussion of these applications can be found in the full version of this paper [2, §5].
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1.1 Overview of the Construction

Our Approach. Just as functional encryption in bilinear groups builds on the ideas and
techniques introduced in constructions of identity-based encryption (IBE) in bilinear
groups [14, 25, 12, 13, 44, 22], our construction builds on the ideas and techniques used
to achieve identity-based encryption from the LWE assumption [24,5,20,3,4]. However,
there is a key difference between lattice IBE constructions (without random oracles)
and bilinear-group constructions that makes this kind of generalization more difficult in
the lattice setting. Namely, in the bilinear-group IBE constructions the groups remain
fixed, while the ciphertexts and keys are manipulated so that group elements “cancel
out” when a ciphertext matches a key. In the lattice IBE constructions, each key and
ciphertext is constructed using a different lattice, and decryption only works when the
key lattice and ciphertext lattice match. This structure does not easily generalize to the
functional encryption setting, where each key may match many ciphertexts and each
ciphertext may match many keys.

We solve this “lattice matching” problem using a new algebraic technique that builds
on the IBE scheme of Agrawal, Boneh, and Boyen [3]. In our construction, we generate
keys using a latticeΛf that depends only on the predicate f , and we generate ciphertexts
c using a lattice Λa that depends only on the attribute a. Given a ciphertext c generated
in this way and predicate f , we apply a suitable linear transformation that moves c into
the lattice Λf if and only if f(a) = 1. Once this transformation is applied, we can
decrypt using a key associated with Λf .

The details of our scheme and security proof are in Section 4. To prove security,
we use a simulation technique that draws on ideas introduced in [3]. In particular,
we construct our simulation using a “punctured” trapdoor that allows the simulator to
generate secret keys for any predicate f such that f(a) = 0, where a is the “challenge”
attribute. In the simulation we can use an LWE challenge to construct a ciphertext that
either decrypts correctly or decrypts to a random message. While this technique suffices
to prove that the system hides the message contents (“payload hiding”), it only allows us
to prove a weak form of anonymity (“attribute hiding”). Specifically, given a ciphertext
c and a number of keys that do not decrypt c, the user cannot determine the attribute
associated with c. In the strong form of attribute hiding, the user cannot determine the
attribute associated with c even when given keys that do decrypt c. (Formal definitions
of these concepts appear in Section 2.) The weakened form of attribute hiding we do
achieve is nonetheless more than is required for ABE and should be sufficient for many
applications of PE.

Key Technical Ideas. Our encryption scheme is at its core based on the LWE scheme
of Gentry, Peikert, and Vaikuntanathan [24, §7], which is itself a “dual” of the original
Regev LWE scheme [38, §5]. From a geometric perspective, the public key in the GPV
scheme describes a lattice Λ used to construct ciphertexts, and the secret key is derived
from the dual lattice Λ⊥. Existing constructions of lattice-based IBE in the standard
model [5, 20, 3, 4] use the GPV encryption scheme but replace the fixed lattice Λ with
a lattice Λid that depends on the user’s identity id. Decryption only works when the
ciphertext lattice Λid and secret key lattice Λid′ are duals of each other, and there are
several methods of ensuring that this is the case if and only if id = id′.
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In trying to adapt these constructions to the predicate encryption setting, we run
into the problem that each ciphertext can be decrypted by many secret keys and each
secret key can decrypt many ciphertexts. Thus we cannot require that key lattices match
ciphertext lattices in the same way as above.

Before explaining our solution to this problem, let us recall the IBE scheme of
Agrawal, Boneh, and Boyen [3]. In the ABB IBE scheme, the encryption lattice is
constructed as

Λid = Λq(A0 ‖A1 +H(id)B),

where A0,A1,B are n × m matrices over Zq and H(id) is a “full-rank difference”
hash function. One can generate secret keys for Λ⊥

id using a short basis of Λ⊥
q (A0)

and the basis extension technique of [5, 20]. In the (selective-)security proof, the LWE
challenge is embedded as the matrix A0, and the matrix A1 +H(id)B is equipped with
a “punctured” trapdoor that allows the simulator to respond to secret key queries for all
identities id not equal to the challenge identity id∗.

The algebraic structure of the ABB IBE scheme gives us the tools we need to
solve the “lattice matching” problem described above. Specifically, in our predicate
encryption scheme we encode an attribute vector �w = (w1, . . . , w�) ∈ Z�

q as the n×m
matrix

B�w := (w1B‖ · · · ‖w�B).

where B ∈ Zn×m
q is a uniformly random matrix chosen by the encryptor. We generate

the ciphertext as a GPV encryption relative to the matrix

Λ�w := Λq(A0‖A1 + w1B‖ · · · ‖A� + w�B)

where the Ai are all n×m matrices. We view the ciphertext component that is close to
Λ�w as a tuple (c0, . . . , c�) ∈ (Zm

q )�+1.
Since the recipient of a ciphertext does not know a priori which lattice was used

to encrypt (indeed, this is exactly the anonymity property of predicate encryption), we
cannot expect the recipient to possess a secret key derived from the dual of the ciphertext
lattice as in the IBE case. Instead, we derive the key for a predicate vector �v from
the dual of a certain lattice Λ�v and apply a linear transformation T�v that moves the
ciphertext into Λ�v exactly when 〈�v, �w〉 = 0. If this linear transformation is “short” (in
the sense of not increasing the length of vectors too much), then a GPV secret key
derived from Λ�v

⊥ can decrypt the ciphertext T�v(c).
Concretely, this transformation works as follows. For a predicate vector �v =

(v1, . . . , v�) ∈ Z�
q , we define the linear transformation T�v : (Zm

q )�+1 → Z2m
q by

T�v(c0, . . . , c�) = (c0,
∑�

i=1 vici).

Some algebraic manipulation (detailed in Section 4) shows that applying this transfor-
mation to a ciphertext encrypted using Λ�w is equivalent to computing a GPV ciphertext
using the lattice

Λ�v, �w := Λq

(
A0

∥∥ �∑
i=1

viAi + 〈�v, �w〉B
)
,
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Letting the secret key for �v be the GPV secret key associated to Λ⊥
q (A0 ‖

∑�
i=1 viAi)

allows the holder of a key for predicate �v to decrypt a ciphertext associated with attribute
�w exactly when 〈�v, �w〉 = 0. In this aspect our construction is inspired by that of Katz,
Sahai, and Waters [29]: the matrix B corresponds to the “masking terms” in a KSW
ciphertext that “cancel out” exactly when 〈�v, �w〉 = 0.

The reader may have observed that in the above formulation, the requirement that
the transformation T�v be “short” implies that we cannot use all vectors �v ∈ Z�

q as
predicates, but only ones whose entries have small absolute value (when viewed as
integers in (−q/2, q/2]). In Section 4 we will show that decomposing the vector �v into
its binary representation enables our construction to use arbitrary vectors in Z�

q , at the
expense of expanding the ciphertext by a factor of lg q.

2 Predicate Encryption

We use the definition of predicate encryption proposed by Katz, Sahai, and Waters [29],
which is based on the definition of searchable encryption proposed by Boneh and
Waters [17]. We will let n denote the security parameter throughout this paper.

Definition 2.1 ( [29, Definition 2.1]). A (key-policy) predicate encryption scheme for
the class of predicates F over the set of attributes Σ consists of four probabilistic
polynomial-time algorithms Setup, KeyGen, Enc, Dec such that:

– Setup takes as input a security parameter n and outputs a set of public parameters
PP and a master secret key MK.

– KeyGen takes as input the master secret key MK and a (description of a) predicate
f ∈ F . It outputs a key skf .

– Enc takes as input the public parameters PP, an attribute I ∈ Σ, and a message M
in some associated message spaceM. It returns a ciphertext C.

– Dec takes as input a secret key skf and a ciphertext C. It outputs either a message
M or the distinguished symbol⊥.

For correctness, we require that for all n, all (PP,MK) generated by Setup(1n), all
f ∈ F , any key skf ← KeyGen(MK, f), all I ∈ Σ, and any ciphertext C ←
Enc(PP, I,M):

– If f(I) = 1, then Dec(skf , C) = M .
– If f(I) = 0, then Dec(skf , C) = ⊥ with all but negligible probability.

In a ciphertext-policy scheme keys are associated with attributes and ciphertexts are
associated with predicates; the syntax is otherwise the same.

Our construction in Section 4 satisfies a different correctness condition: If f(I) = 1
and C = Enc(PP, I,M), then Dec(skf , C) = M , but if f(I) = 0 then Dec(skf , C)
is computationally indistinguishable from a uniformly random element in the message
spaceM. However, ifM is exponentially large then we can easily transform our system
into one satisfying Definition 2.1 by restricting the message space to some subsetM′ ⊂
M with |M′|/|M| = negl(n).
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2.1 Security

There are several notions of security for predicate encryption schemes. The most basic is
payload hiding, which guarantees that no efficient adversary can obtain any information
about the encrypted message, but allows information about attributes to be revealed.
A stronger notion is attribute hiding, which guarantees in addition that no efficient
adversary can obtain any information about the attribute associated with a ciphertext.
Following Lewko et al. [30, Definition 17], we also define an intermediate notion, weak
attribute hiding, which makes the same guarantee only in the case that the adversary
cannot decrypt the ciphertext. Our definition of security is “selective,” in the sense that
the adversary must commit to its challenge attributes before seeing any secret keys.

Definition 2.2 ( [29, Definition 2.2]). A predicate encryption scheme with respect to
F and Σ is attribute hiding if for all probabilistic polynomial-time adversaries A, the
advantage of A in the following experiment is negligible in the security parameter n:

1. A(1n) outputs I0, I1 ∈ Σ.
2. Setup(1n) is run to generate PP and MK, and the adversary is given PP.
3. A may adaptively request keys for any predicates f1, . . . , f� ∈ F subject to the

restriction that fi(I0) = fi(I1) for all i. In response, A is given the corresponding
keys skfi ← KeyGen(MK, fi).

4. A outputs two equal-length messages M0,M1. If there is an i for which fi(I0) =
fi(I1) = 1, then it is required that M0 = M1. A random bit b is chosen, and A is
given the ciphertext C ← Enc(PP, Ib,Mb).

5. The adversary may continue to request keys for additional predicates, subject to the
same restrictions as before.

6. A outputs a bit b′, and succeeds if b′ = b. The advantage ofA is the absolute value
of the difference between its success probability and 1/2.

We say the scheme is weakly attribute hiding if the same condition holds for
adversaries A that are only allowed to request keys for predicates fi with fi(I0) =
fi(I1) = 0. We say the scheme is payload hiding if we require I0 = I1.

We observe that any scheme that is attribute hiding is weakly attribute hiding, and any
scheme that is weakly attribute hiding is payload hiding. (In the payload hiding game no
adversary can achieve nonzero advantage when requesting a key for a predicate f with
f(I0) = f(I1) = 1, so we may assume without loss of generality that the adversary
does not request such a key.)

Remark 2.3. In our construction the spacesF of predicates and Σ of attributes depend
on the public parameters PP output by Setup. We thus modify the security game so as
to give the adversary descriptions of F and Σ before Step 1 and run the remainder of
the game (including any remaining steps in the Setup algorithm) as described.

3 Lattice Preliminaries

In this section we collect the results from the literature that we will need for our
construction and the proof of security.



Functional Encryption for Inner Product Predicates from Learning with Errors 27

Notation. For any integer q ≥ 2, we let Zq denote the ring of integers modulo q and
we represent Zq as integers in (−q/2, q/2]. We let Zn×m

q denote the set of n × m
matrices with entries in Zq . We use bold capital letters (e.g. A) to denote matrices,
bold lowercase letters (e.g. x) to denote vectors that are components of our encryption
scheme, and arrows (e.g. �v) to denote vectors that represent attributes or predicates. The
notation AT denotes the transpose of the matrix A. When we say a matrix defined over
Zq has full rank, we mean that it has full rank modulo each prime factor of q. The
notation �x� denotes the nearest integer to x, rounding towards 0 for half-integers.

3.1 Lattices

An m-dimensional lattice Λ is a full-rank discrete subgroup of Rm. A basis of Λ is a
linearly independent set of vectors whose span is Λ. We will usually be concerned with
integer lattices, i.e., those whose points have coordinates in Zm. Among these lattices
are the “q-ary” lattices defined as follows: for any integer q ≥ 2 and any A ∈ Zn×m

q ,
we define

Λ⊥
q (A) :=

{
e ∈ Zm : A · e = 0 mod q

}
Λu

q (A) :=
{
e ∈ Zm : A · e = u mod q

}
.

The lattice Λu
q (A) is a coset of Λ⊥

q (A); namely, Λu
q (A) = Λ⊥

q (A) + t for any t such
that A · t = u mod q.

The Gram-Schmidt norm of a basis. Let S = {s1, . . . , sk} be a set of vectors in Rm.
We use the following standard notation:

– ‖S‖ denotes the length of the longest vector in S, i.e., max1≤i≤k ‖si‖.
– S̃ := {s̃1, . . . , s̃k} ⊂ Rm denotes the Gram-Schmidt orthogonalization of the

vectors s1, . . . , sk.

We refer to ‖S̃‖ as the Gram-Schmidt norm of S.
Ajtai [6] and later Alwen and Peikert [7] showed how to sample an almost uniform

matrix A ∈ Zn×m
q along with a basis S of Λ⊥

q (A) with low Gram-Schmidt norm.

Theorem 3.1 ( [7, Theorem 3.2] with δ = 1/3). Let q, n,m be positive integers
with q ≥ 2 and m ≥ 6n lg q. There is a probabilistic polynomial-time algorithm
TrapGen(q, n,m) that with overwhelming probability (in n) outputs a pair (A ∈
Zn×m

q , S ∈ Zm×m) such that A is statistically close to uniform in Zn×m
q and S is

a basis for Λ⊥
q (A) satisfying

‖S̃‖ ≤ O(
√
n log q ) and ‖S‖ ≤ O(n log q).

Gaussian Distributions. Let L be a discrete subset of Zn. For any vector c ∈ Rn

and any positive parameter σ ∈ R>0, let ρσ,c(x) := exp
(−π‖x− c‖2/σ2

)
be the

Gaussian function on Rn with center c and parameter σ. Let ρσ,c(L) :=
∑

x∈L ρσ,c(x)
be the discrete integral of ρσ,c over L (which always converges), and let DL,σ,c be the
discrete Gaussian distribution over L with center c and parameter σ. Specifically, for
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all y ∈ L, we have DL,σ,c(y) = ρσ,c(y)
ρσ,c(L) . For notational convenience, ρσ,0 and DL,σ,0

are abbreviated as ρσ and DL,σ, respectively.
The following lemma gives a bound on the length of vectors sampled from a discrete

Gaussian. The result follows from [32, Lemma 4.4], using [24, Lemma 5.3] to bound
the smoothing parameter.

Lemma 3.2. Let Λ be an n-dimensional lattice, let T be a basis for Λ, and suppose
σ ≥ ‖T̃‖ · ω(

√
logn). Then for any c ∈ Rn we have

Pr
[‖x− c‖ > σ

√
n : x R← DΛ,σ,c

] ≤ negl(n)

3.2 Sampling Algorithms

We will use the following algorithms to sample short vectors from specific lattices.
Looking ahead, the algorithm SampleLeft [3, 20] will be used to sample keys in the
real system, while the algorithm SampleRight [3] will be used to sample keys in the
simulation.

Algorithm SampleLeft(A,B,TA,u, σ):

Inputs: a full rank matrix A in Zn×m
q , a “short” basis TA of Λ⊥

q (A), a
matrix B in Zn×m1

q , a vector u ∈ Zn
q , and a Gaussian parameter σ. (3.1)

Output: Let F := (A ‖ B). The algorithm outputs a vector e ∈ Zm+m1 in
the coset Λu

q (F).

Theorem 3.3 ( [3, Theorem 17], [20, Lemma 3.2]). Let q > 2, m > n and σ >

‖T̃A‖·ω(
√

log(m +m1)). Then SampleLeft(A,B,TA,u, σ) taking inputs as in (3.1)
outputs a vector e ∈ Zm+m1 distributed statistically close to DΛu

q (F),σ, where F :=
(A ‖ B).

Algorithm SampleRight(A,B,R,TB,u, σ):

Inputs: matrices A in Zn×k
q and R in Zk×m, a full rank matrix B in Zn×m

q ,
a “short” basis TB of Λ⊥

q (B), a vector u ∈ Zn
q , and a Gaussian parameter

σ.

(3.2)

Output: Let F := (A ‖AR+B). The algorithm outputs a vector e ∈ Zm+k

in the coset Λu
q (F).

Often the matrix R given to the algorithm as input will be a random matrix in
{1,−1}m×m. Let Sm be them-sphere {x ∈ Rm+1 : ‖x‖ = 1}. We define sR := ‖R‖
:= supx∈Sm−1‖R · x‖.

Theorem 3.4 ( [3, Theorem 19]). Let q > 2,m > n and σ > ‖T̃B‖ · sR · ω(
√

logm).
Then SampleRight(A,B,R,TB,u, σ) taking inputs as in (3.2) outputs a vector e ∈
Zm+k distributed statistically close to DΛu

q (F),σ , where F := (A ‖AR + B).
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3.3 The LWE Problem

The learning with errors problem, or LWE, is the problem of determining a secret vector
over Zq given an arbitrary number of “noisy” inner products. The decision variant is to
distinguish such samples from random. More formally, we define the (average-case)
problem as follows:

Definition 3.5 ( [38]). Let n ≥ 1 and q ≥ 2 be integers, and let χ be a probability
distribution on Zq . For s ∈ Zn

q , let As,χ be the probability distribution on Zn
q × Zq

obtained by choosing a vector a ∈ Zn
q uniformly at random, choosing e ∈ Zq according

to χ, and outputting (a, 〈a, s〉 + e).

(a) The search-LWEq,n,χ problem is: for uniformly random s ∈ Zn
q , given a poly(n)

number of samples from As,χ, output s.
(b) The decision-LWEq,n,χ problem is: for uniformly random s ∈ Zn

q , given a poly(n)
number of samples that are either (all) from As,χ or (all) uniformly random in
Zn

q × Zq , output 0 if the former holds and 1 if the latter holds.

We say the decision-LWEq,n,χ problem is infeasible if for all polynomial-time algo-
rithms A, the probability that A solves the decision-LWE problem (over s and A’s
random coins) is negligibly close to 1/2 as a function of n.

The power of the LWE problem comes from the fact that for certain noise distribu-
tions χ, solving the search-LWE problem is as hard as finding approximate solutions to
the shortest independent vectors problem (SIVP) and the decision version of the shortest
vector problem (GapSVP) in the worst case. For polynomial size q there is a quantum
reduction due to Regev, while for exponential size q there is a classical reduction due
to Peikert. Furthermore, the search and decision versions of the problem are equivalent
whenever q is a product of small primes. These results are summarized in the following:

Definition 3.6. For α ∈ (0, 1) and an integer q > 2, let Ψα denote the probability
distribution over Zq obtained by choosing x ∈ R according to the normal distribution
with mean 0 and standard deviation α/

√
2π and outputting �qx�.

Theorem 3.7 ( [38]). Let n, q be integers and α ∈ (0, 1) such that q = poly(n) and
αq > 2

√
n. If there exists an efficient (possibly quantum) algorithm that solves decision-

LWEq,n,Ψα
, then there exists an efficient quantum algorithm that approximates SIVP

and GapSVP to within Õ(n/α) in the worst case.

Theorem 3.8 ( [36]). Let n, q be integers and α ∈ (0, 1), and q =
∏

i qi ≥ 2n/2,
where the qi are distinct primes satisfying ω(

√
logn)/α ≤ qi ≤ poly(n). If there exists

an efficient (classical) algorithm that solves decision-LWEq,n,Ψα
, then there exists an

efficient (classical) algorithm that approximates GapSVP to within Õ(n/α) in the worst
case.

The following lemma will be used to show correctness of decryption.

Lemma 3.9 ( [3, Lemma 12]). Let e be some vector in Zm and let y ← Ψ
m

α . Then the
quantity |〈e,y〉| when treated as an integer in (−q/2, q/2] satisfies

|〈e,y〉| ≤ ‖e‖qα · ω(
√

logm) + ‖e‖√m/2

with overwhelming probability (in m).
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4 A Functional Encryption Scheme for Inner Product Predicates

In our system, each secret key will be associated with a predicate vector �v ∈ Z�
q (for

some fixed  ≥ 2) and each ciphertext will be associated with an attribute vector �w ∈ Z�
q .

Decryption should succeed if and only if 〈�v, �w〉 = 0 (mod q). Hence the predicate
associated with the secret key is defined as f�v(�w) = 1 if 〈�v, �w〉 = 0 (mod q), and
f�v(�w) = 0 otherwise.

4.1 The Construction

Let n ∈ Z+ be a security parameter and  be the dimension of predicate and attribute
vectors. Let q = q(n, ) and m = m(n, ) be positive integers. Let σ = σ(n, ) and
α = α(n, ) be positive real Gaussian parameters. Define k = k(n, ) := �lg q�.
The encryption scheme described below encrypts a single bit; we show how to encrypt
multiple bits in the full version of this paper [2, §4.5].

LinFE.Setup(1n, 1�): On input a security parameter n and a parameter  denoting the
dimension of predicate and attribute vectors, do:
1. Use the algorithm TrapGen(q, n,m) (from Theorem 3.1) to select a matrix

A ∈ Zn×m
q together with a full-rank set of vectors TA ⊆ Λ⊥

q (A) such that

‖T̃A‖ ≤ m · ω(
√

logm).
2. Choose  · (1 + k) uniformly random matrices Ai,γ ∈ Zn×m

q for i = 1, . . . , 
and γ = 0, . . . , k.

3. Select a uniformly random vector u ∈ Zn
q .

Output PP = (A, {Ai,γ}i∈{1,...,�},γ∈{0,...,k},u) and MK = TA.

LinFE.KeyGen(PP,MK, �v): On input public parameters PP, a master secret key MK,
and a predicate vector �v = (v1, . . . , v�) ∈ Z�

q , do:
1. For i = 1, . . . , , let v̂i be the integer in [0, q−1] congruent to vi mod q. Write

the binary decomposition of v̂i as

v̂i =
k∑

γ=0

vi,γ · 2γ , (4.1)

where vi,γ are in {0, 1}.
2. Define the matrices

C�v :=
�∑

i=1

k∑
γ=0

vi,γAi,γ ∈ Zn×m
q ,

A�v := [A ‖C�v] ∈ Zn×2m
q .

3. Using the master secret key MK=(TA, σ), compute e← SampleLeft(A,C�v,
TA,u, σ).
Then e is a vector in Z2m satisfying A�v · e = u mod q.

Output the secret key sk�v = e.
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LinFE.Enc(PP, �w,M): On input public parameters PP, an attribute vector �w, and a
message M ∈ {0, 1}, do:

1. Choose a uniformly random matrix B R← Zn×m
q .

2. Choose a uniformly random s R← Zn
q .

3. Choose a noise vector x← Ψ
m

α and a noise term x← Ψα.
4. Compute c0 ← ATs + x ∈ Zm

q .
5. For i = 1, . . . ,  and γ = 0, . . . , k, do the following:

(a) Pick a random matrix Ri,γ ∈ {−1, 1}m×m.
(b) Compute ci,γ ← (Ai,γ + 2γwiB)Ts + RT

i,γx ∈ Zm
q .

6. Compute c′ ← uT s + x+M · �q/2� ∈ Zq .
Output the ciphertext CT := (c0, {ci,γ}i∈{1,...,�},γ∈{0,...,k}, c′).

LinFE.Dec(PP, sk�v,CT): On input public parameters PP, a secret key sk�v for
predicate vector �v, and a ciphertext CT = (c0, {ci,γ}i∈{1,...,�},γ∈{0,...,k}, c′), do:
1. Define the binary expansion of the vector �v as in (4.1) and compute

c�v :=
�∑

i=1

k∑
γ=0

vi,γci,γ .

2. Let c := [c0|c�v].
3. Compute z ← c′ − eTc (mod q).

Output 0 if |z| < q/4 (when interpreted as in integer in (−q/2, q/2]) and 1
otherwise.

For consistency with prior work, we choose the noise in Step 3 of Enc from the rounded
continuous Gaussian Ψα. It was pointed out to us by a referee that one can instead use
the discrete GaussianDZ,αq and obtain a system with the same security guarantee (up to
a factor of

√
2); this result follows from [28, Lemma 2], using the work of Peikert [37].

4.2 Correctness

We now show that for certain parameter choices, if a bit M is encrypted to the attribute
vector �w, the secret key s�v corresponds to a predicate vector �v, and 〈�v, �w〉 = 0 (mod q),
then the LinFE.Dec algorithm recovers M .

Lemma 4.1. Suppose the parameters q and α are such that

q/lg q = Ω
(
σ ·  ·m3/2

)
and α ≤

(
log q · σ ·  ·m · ω

√
logm

)−1

.

Let e ← KeyGen(PP,MK, �v), CT ← Enc(PP, �w,M), and M̃ ← Dec(PP, e,CT). If
〈�v, �w〉 = 0 (mod q), then with overwhelming probability we have M ′ = M .

Proof. During the first step of LinFE.Dec we compute c�v , which is by definition:

c�v =
�∑

i=1

k∑
γ=0

vi,γci,γ .
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This can be expanded as

c�v =
�∑

i=1

k∑
γ=0

vi,γ

[
(Ai,γ + 2γwiB)Ts + RT

i,γx
]

(4.2)

=

(
�∑

i=1

k∑
γ=0

vi,γAi,γ

)T

s +

(
�∑

i=1

k∑
γ=0

2γvi,γwi

)
︸ ︷︷ ︸

〈�v, �w〉 (mod q)

BTs +
�∑

i=1

k∑
γ=0

vi,γRT

i,γx.

If 〈�v, �w〉 = 0 (mod q), then the middle term of (4.2) disappears, leaving

c�v =

(
�∑

i=1

k∑
γ=0

vi,γAi,γ

)T

s +
�∑

i=1

k∑
γ=0

vi,γRT

i,γx (mod q).

In the second step of LinFE.Dec we have:

c = [c0|c�v] =

[
A
∥∥∥∥ �∑

i=1

k∑
γ=0

vi,γAi,γ

]T

s +
[
x
∣∣∣∣ �∑

i=1

k∑
γ=0

vi,γRT

i,γx
]

(mod q)

= AT

�v · s +
[
x
∣∣∣∣ �∑

i=1

k∑
γ=0

vi,γRT

i,γx
]

(mod q)

In the third step of LinFE.Dec we multiply c with the key e. Recall that by Theorem 3.3
we have A�v · e = u (mod q). It follows that

eTc = uT s + eT

[
x
∣∣∣∣ �∑

i=1

k∑
γ=0

vi,γRT

i,γx
]

(mod q).

Finally, we compute:

z = c′ − eTc (mod q)

= (uT s + x+M · �q/2�)− uT s− eT

[
x
∣∣∣∣ �∑

i=1

k∑
γ=0

vi,γRT

i,γx
]

(mod q)

= M · �q/2�+
(
x− eT

[
x
∣∣∣∣ �∑

i=1

k∑
γ=0

vi,γRT

i,γx
])

︸ ︷︷ ︸
low-norm noise

(mod q)

To obtain M̃ = M , it suffices to set the parameters so that with overwhelming
probability, ∣∣∣∣x− eT

[
x
∣∣∣∣ �∑

i=1

k∑
γ=0

vi,γRT

i,γx
]∣∣∣∣ < q/4. (4.3)
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Writing e = [e1|e2] with ei ∈ Zm allows us to rewrite this “noise” term as

x−
(
e1 +

�∑
i=1

k∑
γ=0

vi,γRi,γe2

)T

x.

By Theorem 3.3 and Lemma 3.2, we have ‖e‖ < σ
√

2m with overwhelming
probability. By [3, Lemma 15], we have ‖Ri,γ ·e2‖ ≤ 12

√
2m·‖e2‖with overwhelming

probability. Since vi,γ ∈ {0, 1} it follows that∥∥∥∥e1 +
�∑

i=1

k∑
γ=0

vi,γRi,γe2

∥∥∥∥ < (1 + 12 ·  · (1 + k) ·
√

2m
)
·σ
√

2m = O( ·k ·σ ·m).

It now follows from Lemma 3.9 that the error term (4.2) has absolute value at most(
qα · ω(

√
logm) +

√
m/2

)
·O ( · σ ·m · lg q) . (4.4)

(Recall that k = �lg q�.) For the quantity (4.4) to have absolute value less than q/4, it
suffices to choose q and α as in the statement of the Lemma. ��

4.3 Security

We use the simulation technique of Agrawal, Boneh, and Boyen [3] to reduce the
security of our system to the hardness of the decision-LWE problem.

Theorem 4.2. Suppose m ≥ 6n log q. If the decision-LWEq,α problem is infeasible,
then the predicate encryption scheme described above is weakly attribute hiding.

To prove the theorem we define a series of three games against an adversaryA that plays
the weak attribute hiding game (subject to the modification described in Remark 2.3).
The adversary A outputs two attribute vectors �w0 and �w1 at the beginning of each
game, and at some point outputs two messages M0 and M1. Each game comes in two
variants, reflecting the choice of attribute/message pair used to create the challenge
ciphertext. The first game corresponds to the real security game. In the other two games
we use “alternative” setup, key generation, and encryption algorithms Sim.Setup,
Sim.KeyGen, and Sim.Enc. The algorithm Sim.Setup takes as additional input an
attribute vector �w∗, and Sim.Enc takes as additional input the master key output by
Sim.Setup. Recall that during the course of the game the adversary can only request
keys for predicate vectors �v such that 〈�v, �w0〉 �= 0 and 〈�v, �w1〉 �= 0.

Game0,b: For b ∈ {0, 1}, the challenger runs the LinFE.Setup algorithm, answers the
adversary’s secret key queries using the LinFE.KeyGen algorithm, and generates
the challenge ciphertext using the LinFE.Enc algorithm with attribute �wb and
message Mb.
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Game1,b: For b ∈ {0, 1}, the challenger runs the Sim.Setup algorithm with �w∗ = �wb

and answers the adversary’s secret key queries using the Sim.KeyGen algorithm.
The challenger generates the challenge ciphertext using the Sim.Enc algorithm
with attribute �wb and message Mb.

Game2,b: This game is the same as Game1,b, except the challenger generates the
challenge ciphertext by choosing a uniformly random element of the ciphertext
space.

We now define the alternative setup, key generation, and encryption algorithms.

Sim.Setup(1n, 1�, �w∗): On input a security parameter n, a parameter  denoting the
dimension of predicate and attribute vectors, and an attribute vector �w∗ ∈ Z�

q , do the
following:

1. Choose a random matrix A R← Zn×m
q and a random vector u R← Zn

q .
2. Use TrapGen(q, n,m) to generate a matrix B∗ ∈ Zn×m

q along with a basis TB∗

of Λ⊥
q (B∗).

3. For i = 1, . . . ,  and γ = 0, . . . , k, pick random matrices R∗
i,γ

R← {−1, 1}m×m

and set
Ai,γ ← AR∗

i,γ − 2γw∗
i B∗.

Output the public parameters and master key

PP=
(
A, {Ai,γ}i∈{1,...,�},γ∈{0,...,k},u

)
, MK=

(
�w∗, {R∗

i,γ}i∈{1,...,�},γ∈{0,...,k},B
∗,TB∗

)

Sim.KeyGen(PP,MK, �v): On input public parameters PP, a master key MK, and a
vector �v ∈ Z�

q , do the following:

1. If 〈�v, �w∗〉 = 0, output⊥.
2. Define the binary decomposition of vi as in (4.1).
3. Define the matrices

C�v :=
�∑

i=1

k∑
γ=0

vi,γAi,γ ∈ Zn×m
q , A�v := [A ‖ C�v] ∈ Zn×2m

q .

Observe that

A�v =

[
A
∥∥∥A
( �∑

i=1

k∑
γ=0

vi,γR∗
i,γ

)
−
( �∑

i=1

k∑
γ=0

2γvi,γw
∗
i

)
︸ ︷︷ ︸

〈�v, �w∗〉 (mod q)

B∗
]
.

4. Let e← SampleRight
(
A, −〈�v, �w∗〉B∗,

∑�
i=1

∑k
γ=0 vi,γR∗

i,γ , TB∗ , u, σ
)
∈

Z2m
q .

Output the secret key sk�v = e.
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Sim.Enc(PP, �w,M,MK): This algorithm is the same as the LinFE.Enc algorithm,
except:

1. In Step 1, matrix B∗ ∈ MK is used instead of a random matrix B.
2. In Step 5a, the matrices R∗

i,γ ∈ MK for are used instead of random matrices Ri,γ

for i = 1, . . . ,  and γ = 0, . . . , k.

To prove security of our system, we show that the two games in each of the
pairs (Game0,b,Game1,b), (Game1,b,Game2,b) and (Game2,0,Game2,1) are either
statistically or computationally indistinguishable (under the decision-LWE assumption)
from the point of view of the adversary. Theorem 4.2 then follows from a simple hybrid
argument; details are in the full version of this paper [2].

Lemma 4.3. For a given b ∈ {0, 1}, the view of the adversary A in Game0,b is
statistically close to the view of A in Game1,b.

The proof of Lemma 4.3 can be found in the full version of this paper [2].

Lemma 4.4. For a given b ∈ {0, 1}, if the decision-LWE assumption holds, then the
view of the adversary A in Game1,b is computationally indistinguishable from the view
of A in Game2,b.

Proof. Suppose we are given m + 1 LWE challenges (ai, yi) ∈ Zn
q × Zq for j =

0, . . . ,m, where either yj = 〈aj , s〉 + xj for some (fixed) random secret s R← Zn
q and

Gaussian noise xj ← Ψα, or yj is uniformly random in Zq (and this choice is the same
for each challenge). We define the following variables:

A :=

⎛⎝ | |
a1 · · · am

| |

⎞⎠ ∈ Zn×m
q u := a0

c0 := (y1, . . . , ym) ∈ Zm
q c′ := y0 +Mb · � q

2�
(4.5)

We simulate the challenger as follows:

– Setup: Run Sim.Setup with �w∗ = �wb, and let A and u be as in (4.5).
– Private key queries: Run the Sim.KeyGen algorithm.
– Challenge ciphertext: For i = 1, . . . ,  and γ = 0, . . . , k, let ci,γ = R∗

i,γ
Tc0

(using R∗
i,γ ∈ MK). Output (c0, {ci,γ}i∈{1,...,�},γ∈{0,...,k}, c′).

Now observe that for i = 1, . . . ,  and γ = 0, . . . , k, the Sim.Enc algorithm sets

ci,γ =
(
ARi,γ − 2γw∗

i B
∗ + 2γw∗

i B
∗)T

s + R∗
i,γ

Tx = R∗
i,γ

T(ATs + x).

It follows that if yj = 〈aj , s〉 + xj , then ci,γ = R∗
i,γ

Tc0 and the simulator described
above is identical to the challenger in Game1,b.

On the other hand, if yj is random in Zq , then the simulated ciphertext is
(c0,R∗T

c0, c
′), where R∗ is the concatenation of the matrices R∗

i,γ . By the standard

leftover hash lemma (e.g. [43, Theorem 8.37]), the quantities AR∗ and R∗T

c0 are
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independent uniformly random samples. Thus in this case the ciphertext is uniformly
random and the simulator described above is identical the challenger in Game2,b.

We conclude that any efficient adversary that can distinguish Game1,b from Game2,b

can solve the decision-LWE problem. ��
Lemma 4.5. The view of the adversary A in Game2,0 is statistically indistinguishable
from the view of A in Game2,1.

Proof. Note that the only place where �w∗ appears in Game2,b is in the public parameter

Ai,γ := AR∗
i,γ − 2γw∗

i B
∗. Let A ∈ Z

n×m�(k+1)
q and R∗ ∈ Z

m×m�(k+1)
q be the

concatenations of the Ai,γ and the R∗
i,γ , respectively. Then we have A = AR∗. By [3,

Lemma 13] the pair (A,AR
∗
) is statistically indistinguishable from (A,C) where C

is uniformly random. Since for any fixed value of X and uniformly random C, the
variable C−X is also uniformly random, it follows that the distributions of Ai,γ in the
two games are statistically indistinguishable.

4.4 Parameter Selection

We can extract from the above description the parameters required for correctness and
security of the system. For correctness of decryption, by Lemma 4.1 we require

q/lg q = Ω
(
σ ·  ·m3/2

)
and α ≤

(
log q · σ ·  ·m · ω

√
logm

)−1

.(4.6)

In our security theorem (Theorem 4.2), we requirem > 6n lg q in order for the output of
TrapGen to be statistically random. The additional constraints imposed by our security
reduction are the following:

– From the description of LinFE.Setup and LinFE.KeyGen, we have ‖T̃A‖ =
O(
√
n log q) (by Theorem 3.1) and e ← DΛu

q (A�v),σ (by Theorem 3.3), subject
to the requirement that

σ ≥ ‖T̃A‖ · ω(
√

logm) = O(
√
n log q) · ω(

√
logm).

– From the description of Sim.Setup and Sim.KeyGen, we have ‖T̃B∗‖ =
O(
√
n log q) (by Theorem 3.1), and e ← DΛu

q (A�v),σ (by Theorem 3.4), subject
to the requirement that

σ ≥ ‖T̃B∗‖ · sR · ω(
√

logm) (4.7)

Since R is a sum of  · (lg q + 1) random matrices with {1,−1} entries, it follows
from [3, Lemma 15] that sR = sup{x:‖x‖=1} ‖Rx‖ = O( · (lg q + 1) · √m) with
overwhelming probability. Plugging this value into (4.7), we see that it suffices to
choose

σ ≥ O(
√
n log q) ·O( · (lg q + 1) · √m) · ω(

√
logm).
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Thus to satisfy the more stringent of the above two conditions (i.e., the latter), we set

σ = ω(m ·  · log q ·
√

logm), (4.8)

using the fact (noted above) that m ≥ 6n log q.
In order to reduce decision-LWE to approximating worst-case lattice problems to

within poly(n) factors we have two options: for polynomial-size q we can use Regev’s
quantum reduction (Theorem 3.7) with qα > 2

√
n and α ≥ 1/ poly(n), while for

exponential-size q we can use Peikert’s classical reduction (Theorem 3.8) with each
prime factor qi of q satisfying ω(

√
logn)/α < qi < poly(n). (Note that a large value

of q may be required for certain applications; see the full version of this paper [2, §5]
for details.)

The following selection of parameters satisfies all of these constraints. For a given ,
pick a small constant δ > 0, and set

m = �n1+δ�, to satisfy m > 6n lg q
σ = �n2+2δ · �, to satisfy (4.8)
qi = the ith prime larger than ( log )2 · n7/2+5δ

α = Ω
(
( log )2 · n3+5δ

)−1
to satisfy (4.6)

Observe that the above setting of parameters satisfies the conditions for applying
Theorems 3.7 and 3.8. To obtain polynomial size q we use q = q1, while to obtain
exponential size q we use q =

∏τ
i=1 qi, where τ is chosen so that q > 2n/2. In

either case we can choose δ large enough so that n1+δ > 6n lg q. In the former
case, the security of the scheme can be based on the hardness of approximating SIVP
and GapSVP to within a factor of Õ(n/α) = Õ(( log )2 · n4+5δ) in the worst
case (by quantum algorithms). In the latter case, security is based on the hardness of
approximating GapSVP to within a factor of Õ(n/α) = Õ(( log )2 · n4+5δ) in the
worst case (by classical algorithms).

Note that since m > n lg q and qi > n, the matrices A and B have full rank modulo
each prime divisor of q with overwhelming probability, as required for successful
execution of the SampleLeft and SampleRight algorithms.

Finally, we note that these parameter choices are not necessarily optimal, and one
might be able to set the parameters to have somewhat smaller values while maintaining
correctness and security. In particular, one might be able to reduce the ciphertext size by
using the r-ary expansion of the vector �v for some r > 2 instead of the binary expansion
as described above.

5 Conclusion and Open Questions

We have presented a lattice-based predicate encryption scheme for inner product
predicates whose security follows from the difficulty of the learning with errors
problem. Our construction can instantiate applications such as range and subset queries,
polynomial evaluation, and CNF/DNF formulas on encrypted data. (A more detailed
discussion of these applications appears in the full version of this paper [2].) Our
construction is the first functional encryption scheme based on lattice techniques that
goes beyond basic identity-based encryption.
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Many open questions still remain in this field. One direction of research is to improve
the security of our construction. Our scheme is weakly attribute hiding in the selective
security model, but for stronger security guarantees we would like to construct a scheme
that is fully secure and/or fully attribute hiding. Achieving either task will require
new simulation techniques; a natural question is whether the “dual-system” approach
introduced by Waters [45] and used to prove full security of attribute-based encryption
and predicate encryption constructions using bilinear groups [30, 9, 34] can be adapted
to lattice-based constructions.

Another direction of research is to improve the efficiency of our scheme. If
q = 2O(n) is exponential size, as is needed for several of our applications, then
setting the parameters as recommended in Section 4.4 gives public parameters of size
Θ(nm lg2(q)) = Ω(n5) and ciphertexts of size Θ(m lg2(q)) = Ω(n4), which may
be too large for practical purposes. A construction that achieved the same functionality
with polynomial-size q would be a significant step forward. The ring-LWE problem
introduced by Lyubashevsky, Peikert, and Regev [31] seems to be a natural candidate
for such a construction.

Finally, it is a open question to construct predicate encryption schemes (via any
technique) that support a greater range of functionality than inner product predicates.
Ideally we would like a system that could support any polynomial-size predicate
on encrypted data. Now that predicate encryption has moved into the world of
lattices, perhaps techniques used to construct fully homomorphic encryption from
lattices [23, 19, 18] could be used to help us move towards this goal.

Acknowledgments. The authors thank Dan Boneh, Brent Waters, Hoeteck Wee, and
the anonymous referees for helpful discussions and comments.
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Abstract. The interest in post-quantum cryptography — classical sys-
tems that remain secure in the presence of a quantum adversary — has
generated elegant proposals for new cryptosystems. Some of these sys-
tems are set in the random oracle model and are proven secure relative
to adversaries that have classical access to the random oracle. We argue
that to prove post-quantum security one needs to prove security in the
quantum-accessible random oracle model where the adversary can query
the random oracle with quantum state.

We begin by separating the classical and quantum-accessible ran-
dom oracle models by presenting a scheme that is secure when the ad-
versary is given classical access to the random oracle, but is insecure
when the adversary can make quantum oracle queries. We then set out
to develop generic conditions under which a classical random oracle proof
implies security in the quantum-accessible random oracle model. We in-
troduce the concept of a history-free reduction which is a category of clas-
sical random oracle reductions that basically determine oracle answers
independently of the history of previous queries, and we prove that such
reductions imply security in the quantum model. We then show that
certain post-quantum proposals, including ones based on lattices, can
be proven secure using history-free reductions and are therefore post-
quantum secure. We conclude with a rich set of open problems in this
area.

Keywords: Quantum, Random Oracle, Signatures, Encryption.

1 Introduction

The threat to existing public-key systems posed by quantum computation [Sho97]
has generated considerable interest in post-quantum cryptosystems, namely sys-
tems that remain secure in the presence of a quantum adversary. A promising
direction is lattice-based cryptography, where the underlying problems are re-
lated to finding short vectors in high dimensional lattices. These problems have
so far remained immune to quantum attacks and some evidence suggests that
they may be hard for quantum computers [Reg02].

As it is often the case, the most efficient constructions in lattice-based cryp-
tography are set in the random oracle (RO) model [BR93]. For example, Gentry,
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Peikert, and Vaikuntanathan [GPV08] give elegant random oracle model con-
structions for existentially unforgeable signatures and for identity-based encryp-
tion. Gordon, Katz, and Vaikuntanathan [GKV10] construct a random oracle
model group signature scheme. Boneh and Freeman [BF11] give a random or-
acle homomorphic signature scheme and Cayrel et al. [CLRS10] give a lattice-
based signature scheme using the Fiat-Shamir random oracle heuristic. Some of
these lattice constructions can now be realized without random oracles, but at
a significant cost in performance [CHKP10,ABB10a,Boy10].

Modeling Random Oracles for Quantum Attackers. While quantum re-
sistance is good motivation for lattice-based constructions, most random oracle
systems to date are only proven secure relative to an adversary with classical
access to the random oracle. In this model the adversary is given oracle access
to a random hash function O : {0, 1}∗ → {0, 1}∗ and it can only “learn” a value
O(x) by querying the oracle O at the classical state x. However, to obtain a
concrete system, the random oracle is eventually replaced by a concrete hash
function thereby enabling a quantum attacker to evaluate this hash function on
quantum states. To capture this issue in the model, we allow the adversary to
evaluate the random oracle “in superposition”, that is, the adversary can submit
quantum states |ϕ〉 =

∑
αx |x〉 to the oracle O and receives back the evaluated

state
∑

αx |O(x)〉 (appropriately encoded to make the transformation unitary).
We call this the quantum(-accessible) random oracle model. It complies with
similar efforts from learning theory [BJ99,SG04] and computational complex-
ity [BBBV97] where oracles are quantum-accessible, and from lower bounds for
quantum collision finders [AS04]. Still, since we are only interested in classical
cryptosystems, honest parties and the scheme’s algorithms can access O only
via classical bit strings.

Proving security in the quantum-accessible RO model is considerably harder
than in the classical model. As a simple example, consider the case of digital
signatures. A standard proof strategy in the classical settings is to choose ran-
domly one of the adversary’s RO queries and embed in the response a given
instance of a challenge problem. One then hopes that the adversary uses this re-
sponse in his signature forgery. If the adversary makes q random oracle queries,
then this happens with probability 1/q and since q is polynomial this success
probability is sufficiently high for the proof of security in the classical setting.
Unfortunately, this strategy fails completely in the quantum-accessible random
oracle model since every random oracle query potentially evaluates the random
oracle at exponentially many points. Therefore, embedding the challenge in one
response will be of no use to the reduction algorithm. This simple example shows
that proving security in the classical RO model does not necessarily prove post-
quantum security.

More abstractly, the following common classical proof techniques are not
known to carry over to the quantum settings offhand:

– Adaptive Programmability: The classical random oracle model allows a sim-
ulator to program the answers of the random oracle for an adversary, often
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adaptively. Since the quantum adversary can query the random oracle with
a state in superposition, the adversary may get some information about all
exponentially many values right at the beginning, thereby making it difficult
to program the oracle adaptively.

– Extractability/Preimage Awareness: Another application of the random ora-
cle model for classical adversaries is that the simulator learns the pre-images
the adversary is interested in. This is, for example, crucial to simulate de-
cryption queries in the security proof for OAEP [FOPS01]. For quantum-
accessible oracles the actual query may be hidden in a superposition of ex-
ponentially many states, and it is unclear how to extract the right query.

– Efficient Simulation: In the classical world, we can simulate an exponential-
size random oracle efficiently via lazy sampling: simply pick random but
consistent answers “on the fly”. With quantum-accessible random oracles
the adversary can evaluate the random oracle on all inputs simultaneously,
making it harder to apply the on-demand strategy for classical oracles.

– Rewinding/Partial Consistency: Certain random oracle proofs [PS00] require
rewinding the adversary, replaying some hash values but changing at least a
single value. Beyond the usual problems of rewinding quantum adversaries,
we again encounter the fact that we may not be able to change hash values
unnoticed. We note that some form of rewinding is possible for quantum
zero-knowledge [Wat09].

We do not claim that these problems are insurmountable. In fact, we show how
to resolve the issue of efficient simulation by using (quantum-accessible) pseudo-
random functions. These are pseudorandom functions where the quantum dis-
tinguisher can submit quantum states to the pseudorandom or random oracle.
By this technique, we can efficiently simulate the quantum-accessible random or-
acle through the (efficient) pseudorandom function. While pseudorandom func-
tions where the distinguisher may use quantum power but only gets classical ac-
cess to the function can be derived from quantum-immune pseudorandom gener-
ators [GGM86], it is an open problem if the stronger quantum-accessible pseudo-
random functions exist.

Note, too, that we do not seek to solve the problems related to the random
oracle model which appear already in the classical settings [CGH98]. Instead we
show that for post-quantum security one should allow for quantum access to
the random oracle in order to capture attacks that are available when the hash
function is eventually instantiated.

1.1 Our Contributions

Separation. We begin with a separation between the classical and quantum-
accessible RO models by presenting a two-party protocol which is:

– secure in the classical random oracle model,
– secure against quantum attackers with classical access to the random oracle

model, but insecure under any implementation of the hash function, and
– insecure in the quantum-accessible random oracle model.
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The protocol itself assumes that (asymptotically) quantum computers are faster
than classical (parallel) machines and uses the quadratic gap due to Grover’s
algorithms and its application to collision search [BHT98] to separate secure
from insecure executions.

Constructions. Next, we set out to give general conditions under which a
classical RO proof implies security for a quantum RO. Our goal is to provide
generic tools by which authors can simply state that their classical proof has the
“right” structure and therefore their proof implies quantum security. We give
two flavors of results:

– For signatures, we define a proof structure we call a history-free reduction
which roughly says that the reduction answers oracle queries independently
of the history of queries. We prove that any classical proof that happens
to be a history-free reduction implies quantum existential unforgeability for
the signature scheme. We then show that the GPV random oracle signature
scheme [GPV08] has a history-free reduction and is therefore secure in the
quantum settings.
Next, we consider signature schemes built from claw-free permutations. The
first is the Full Domain Hash (FDH) signature system of Bellare and Rog-
away [BR93], for which we show that the classical proof technique due to
Coron [Cor00] is history-free. We also prove the quantum security of a variant
of FDH due to Katz and Wang [KW03] which has a tight security reduction.
Lastly, we note that, as observed in [GPV08], claw-free permutations give rise
to preimage sampleable trapdoor functions, which gives another FDH-like
signature scheme with a tight security reduction. In all three cases the re-
ductions in the quantum-accessible random oracle model achieve essentially
the same tightness as their classical analogs.
Interestingly, we do not know of a history-free reduction for the generic Full
Domain Hash of Bellare and Rogaway [BR93]. One reason is that proofs
for generic FDH must somehow program the random oracle, as shown in
[FLR+10]. We leave the quantum security of generic FDH as an interest-
ing open problem. It is worth noting that at this time the quantum secu-
rity of FDH is somewhat theoretical since we have no candidate quantum-
secure trapdoor permutation to instantiate the FDH scheme, though this
may change once a candidate is proposed.

– For encryption we prove the quantum CPA security of an encryption scheme
due to Bellare and Rogaway [BR93] and the quantum CCA security of a
hybrid encryption variant of [BR93].

Many open problems remain in this space. For signatures, it is still open to prove
the quantum security of signatures that result from applying the Fiat-Shamir
heuristic to a Σ identification protocol, for example, as suggested in [CLRS10].
Similarly, proving security of generic FDH is still open. For CCA-secure encryp-
tion, it is unknown if generic CPA to CCA transformations, such as [FO99],
are secure in the quantum settings. Similarly, it is not known if lattice-based
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identity-based encryption systems secure in the classical RO model (e.g. as
in [GPV08,ABB10b]) are also secure in the quantum random oracle model.

Related Work. The quantum random oracle model has been used in a few
previous constructions. Aaronson [Aar09] uses quantum random oracles to con-
struct unclonable public-key quantum money. Brassard and Salvail [BS08] give a
modified version of Merkle’s Puzzles, and show that any quantum attacker must
query the random (permutation) oracle asymptotically more times than honest
parties. Recently, a modified version was proposed that restores some level of se-
curity even in the presence of a quantum adversary [BHK+11]. Quantum random
oracles have also been used to prove impossibility results for quantum compu-
tation. For example, Bennett et al. [BBBV97] show that relative to a random
oracle, a quantum computer cannot solve all of NP.

Some progress toward identifying sufficient conditions under which classical
protocols are also quantum immune has been made by Unruh [Unr10] and Hall-
gren et al. [HSS11]. These results show that, if a cryptographic protocol can
be shown to be (computationally [HSS11] resp. statistically [Unr10]) secure in
Canetti’s universal composition (UC) framework [Can01] against classical ad-
versaries, then the protocol is also resistant against (computationally bounded
resp. unbounded) quantum adversaries. This, however, means that the underly-
ing protocol must already provide strong security guarantees in the first place,
namely, universal composition security, which is typically more than the afore-
mentioned schemes in the literature satisfy. This also applies to similar results
by Hallgren et al. [HSS11] for so-called simulation-based security notions for the
starting protocol. Furthermore, all these results do not seem to be applicable
immediately to the random oracle model where the quantum adversary now has
quantum access to the random function (but where the ideal functionality for the
random oracle in the UC framework would have only been defined for classical
access according to the classical protocol specification), and where the question
of instantiation is an integral step which needs to be considered.

2 Preliminaries

A non-negative function ε = ε(n) is negligible if, for all polynomials p(n) we have
that ε(n) < p(n)−1 for all sufficiently large n. The variational distance between
two distributions D1 and D2 over Ω is given by

|D1 −D2| =
∑
x∈Ω

|Pr[x|D1]− Pr[x|D2]|.

If the distance between two output distributions is ε, the difference in probability
of the output satisfying a certain property is at most ε.

A classical randomized algorithm A can be thought of in two ways. In the first,
A is given an input x, A makes some coin tosses during its computation, and
ultimately outputs some value y. We denote this action by A(x) where A(x) is a
random variable. Alternatively, we can give A both its input x and randomness r
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in which case we denote this action as A(x; r). For a classical algorithm, A(x; r)
is deterministic. An algorithm A runs is probabilistic polynomial-time (PPT) if
it runs in polynomial time in the security parameter (which we often omit from
the input for sake of simplicity).

2.1 Quantum Computation

We briefly give some background on quantum computation and refer to [NC00]
for a more complete discussion. A quantum system A is associated to a (finite-
dimensional) complex Hilbert space HA with an inner product 〈·|·〉. The state
of the system is described by a vector |ϕ〉 ∈ HA such that the Euclidean norm
‖ |ϕ〉 ‖ =

√〈ϕ|ϕ〉 is 1. Given quantum systems A and B over spaces HA and
HB, respectively, we define the joint or composite quantum system through the
tensor product HA ⊗ HB. The product state of |ϕA〉 ∈ HA and |ϕB〉 ∈ HB

is denoted by |ϕA〉 ⊗ |ϕB〉 or simply |ϕA〉 |ϕB〉. An n-qubit system lives in the
joint quantum system of n two-dimensional Hilbert spaces. The standard or-
thonormal computational basis |x〉 for such a system is given by |x1〉⊗ · · ·⊗ |xn〉
for x = x1 . . . xn. Any (classical) bit string x is encoded into a quantum state
as |x〉. An arbitrary pure n-qubit state |ϕ〉 can be expressed in the computa-
tional basis as |ϕ〉 =

∑
x∈{0,1}n αx |x〉 where αx are complex amplitudes obeying∑

x∈{0,1}n |αx|2 = 1.

Transformations. Evolutions of quantum systems are described by unitary trans-
formations with IA being the identity transformation on register A. Given a joint
quantum system over HA ⊗HB and a transformation UA acting only on HA, it
is understood that UA |ϕA〉 |ϕB〉 refers to (UA ⊗ IB) |ϕA〉 |ϕB〉.

Information can be extracted from a quantum state |ϕ〉 by performing a
positive-operator valued measurement (POVM) M = {Mi} with positive semi-
definite measurement operators Mi that sum to the identity

∑
i Mi = I. Out-

come i is obtained with probability pi = 〈ϕ|Mi |ϕ〉. A special case are projective
measurements such as the measurement in the computational basis of the state
|ϕ〉 =

∑
x αx |x〉 which yields outcome x with probability |αx|2. We can also do a

partial measurement on some of the qubits. The probability of the partial mea-
surement resulting in a string x is the same as if we measured the whole state, and
ignored the rest of the qubits. In this case, the resulting state will be the same as
|φ〉, except that all the strings inconsistent with x are removed. This new state
will not have a norm of 1, so the actual superposition is obtained by dividing by
the norm. For example, if we measure the first n bits of |φ〉 =

∑
x,y αx,y|x, y〉,

we will obtain the measurement x with probability
∑

y′ |αx,y′ |2, and in this case
the resulting state will be

|x〉
∑

y

αx,y√∑
y′ |αx,y′ |2

|y〉.
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Following [BBC+98], we model a quantum attacker AQ with access to (pos-
sibly identical) oracles O1, O2, . . . by a sequence of unitary transformations
U1, O1, U2, . . . ,
OT−1, UT over k = poly(n) qubits. Here, oracle Oi : {0, 1}n → {0, 1}m maps
the first n + m qubits from basis state |x〉 |y〉 to basis state |x〉 |y ⊕Oi(x)〉 for
x ∈ {0, 1}n and y ∈ {0, 1}m. If we require the access to Oi to be classical instead
of quantum, the first n bits of the state are measured before applying the uni-
tary transformation corresponding to Oi. Notice that any quantum-accessible
oracle can also be used as a classical oracle. Note that the algorithm AQ may
also receive some input |ψ〉. Given an algorithm AQ as above, with access to
oracles Oi, we sometimes write A|O1(·)〉,|O2(·)〉,...

Q to indicate that the oracle is
quantum-accessible (contrary to oracles which can only process classical bits).

To introduce asymptotics we assume that AQ is actually a sequence of such
transformation sequences, indexed by parameter n, and that each transformation
sequence is composed out of quantum systems for input, output, oracle calls, and
work space (of sufficiently many qubits). To measure polynomial running time,
we assume that each Ui is approximated (to sufficient precision) by members
of a set of universal gates (say, Hadamard, phase, CNOT and π/8; for sake of
concreteness [NC00]), where at most polynomially many gates are used. Fur-
thermore, T = T (n) is assumed to be polynomial, too. Note that T also bounds
the number of oracle queries.

We define the Euclidean distance ||φ〉+ |ψ〉| between two states as the value(∑
x |αx − βx|2

) 1
2 where |φ〉 =

∑
x αx|x〉 and |ψ〉 =

∑
x βx|x〉.

Define qr(|φt〉) to be the magnitude squared of r in the superposition of query
t. We call this the query probability of r in query t. If we sum over all t, we get
the total query probability of r.

We will be using the following lemmas:

Lemma 1 ([BBBV97] Theorem 3.1). Let |ϕ〉 and |ψ〉 be quantum states with
Euclidean distance at most ε. Then, performing the same measurement on |ϕ〉
and |ψ〉 yields distributions with statistical distance at most 4ε.

Lemma 2 ([BBBV97] Theorem 3.3). Let AQ be a quantum algorithm run-
ning in time T with oracle access to O. Let ε > 0 and let S ⊆ [1, T ]× {0, 1}n be
a set of time-string pairs such that

∑
(t,r)∈S qr(|φt〉) ≤ ε. If we modify O into an

oracle O′ which answers each query r at time t by providing the same string R
(which has been independently sampled at random), then the Euclidean distance
between the final states of AQ when invoking O and O′ is at most

√
T ε.

2.2 Quantum-Accessible Random Oracles

In the classical random oracle model [BR93] all algorithms used in the system are
given access to the same random oracle. In the proof of security, the reduction
algorithm answers the adversary’s queries with consistent random answers.

In the quantum settings, a quantum attacker issues a random oracle query
which is itself a superposition of exponentially many states. The reduction al-
gorithm must evaluate the random oracle at all points in the superposition. To
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ensure that random oracle queries are answered consistently across queries, it
is convenient to assume that quantum-resistant pseudorandom functions exist,
and to implement this auxiliary random oracle with such a PRF.

Definition 1 (Pseudorandom Function). A quantum-accessible pseudoran-
dom function is an efficiently computable function PRF where, for all efficient
quantum algorithms D,∣∣∣Pr[DPRF(k,·)(1n) = 1]− Pr[DO(·)(1n) = 1]

∣∣∣ < ε

where ε = ε(n) is negligible in n, and where O is a random oracle, the first
probability is over the keys k of length n, and the second probability is over all
random oracles and the sampling of the result of D.

We note that, following Watrous [Wat09], indistinguishability as above should
still hold for any auxiliary quantum state σ given as additional input to D (akin
to non-uniformity for classical algorithms). We do not include such auxiliary
information in our definition in order to simplify.

We say that an oracle O′ is computationally indistinguishable from a random
oracle if, for all polynomial time quantum algorithms with oracle access, the
variational distance of the output distributions when the oracle is O′ and when
the oracle is a truly random oracle O is negligible. Thus, simulating a random
oracle with a quantum-accessible pseudorandom function is computationally in-
distinguishable from a true random oracle.

We remark that, instead of assuming that quantum-accessible PRFs exist,
we can often carry out security reductions relative to a random oracle. Con-
sider, for example, a signature scheme (in the quantum-accessible random oracle
model) which we prove to be unforgeable for quantum adversaries, via a reduc-
tion to the one-wayness of a trapdoor permutation against quantum inverters.
We can then formally first claim that the scheme is unforgeable as long as in-
verting the trapdoor permutation is infeasible even when having the additional
power of a quantum-accessible random oracle; only in the next step we can
then conclude that this remains true in the standard model, if we assume that
quantum-accessible pseudorandom functions exist and let the inverter simulate
the random oracle with such a PRF. We thus still get a potentially reasonable
security claim even if such PRFs do not exist. This technique works whenever
we can determine the success of the adversary (as in case of inverting a one-way
function).

2.3 Hard Problems for Quantum Computers

We will use the following general notion of a hard problem.

Definition 2 (Problem). A problem is a pair P = (GameP , αP ) where GameP

specifies a game that a (possibly quantum) adversary plays with a classical chal-
lenger. The game works as follows:
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• On input 1n, the challenger computes a value x, which it sends to the ad-
versary as its input

• The adversary is then run on x, and is allowed to make classical queries to
the challenger.

• The adversary then outputs a value y, which it sends to the challenger.

• The challenger then looks at x, y, and the classical queries made by the
adversary, and outputs 1 or 0.

The value αP is a real number between 0 (inclusive) and 1 (exclusive). It may
also be a function of n, but for this paper, we only need constant αP , specifically
αP is always 0 or 1

2 .

We say that an adversary A wins the game GameP if the challenger outputs
1. We define the advantage AdvA,P of A in problem P as

AdvA,P = |Pr[A wins in GameP ]− αP |

Definition 3 (Hard Problem). A problem P = (GameP , αP ) is hard for
quantum computers if, for all polynomial time quantum adversaries A, AdvA,P

is negligible.

2.4 Cryptographic Primitives

For this paper, we define the security of standard cryptographic primitives in
terms of certain problems being hard for quantum computers. We give a brief
sketch here and refer to the full version [BDF+10]for supplementary details.

A trapdoor function F is secure if Inv(F) = (GameINV(F), 0) is a hard prob-
lem for quantum computers, where in GameINV, an adversary is given a random
element y and public key, and succeeds if it can output an inverse for y rela-
tive to the public key. A preimage sampleable trapdoor function, F , is secure
if Inv(F) as described above is hard, and if Col(F) = (GameCol(F), 0) is hard
for quantum computers, where in GameCol, an adversary is given a public key,
succeeds if it can output a collision relative to that public key. A signature
scheme S is secure if the game Sig-Forge(S) = (GameSig(S), 0) is hard, where
GameSig is the standard existential unforgeability under a chosen message at-
tack game. Lastly, a private (resp. public) key encryption scheme E is secure if
Sym-CCA(E) = (GameSym(E), 1

2 ) (resp. Asym-CCA(E) = (GameAsym(E), 1
2 )),

where GameSym is the standard private key CCA attack game, and GameAsym

is the standard public key attack game.

3 Separation Result

In this section, we discuss a two-party protocol that is provably secure in the ran-
dom oracle model against both classical and quantum adversaries with classical
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access to the random oracle (and when using quantum-immune primitives). We
then use the polynomial gap between the birthday attack and a collision finder
based on Grover’s algorithm to show that the protocol remains secure for cer-
tain hash functions when only classical adversaries are considered, but becomes
insecure for any hash function if quantum adversaries are allowed. Analyzing
the protocol in the stronger quantum random oracle model, where we grant the
adversary quantum access to the random oracle, yields the same negative result.

Note that, due to the page limit, we discuss only the high-level idea of our
protocol, for the full description and the formal security analysis we refer to the
full version [BDF+10]. We start by briefly presenting the necessary definitions
and assumptions for our construction.

Building Blocks. For sake of simplicity, we start with a quantum-immune iden-
tification scheme to derive our protocol; any other primitive or protocol can be
used in a similar fashion. An identification scheme IS consists of three efficient
algorithms (IS.KGen,P ,V) where IS.KGen on input 1n returns a key pair (sk, pk).
The joint execution of P(sk, pk) and V(pk) then defines an interactive protocol
between the prover P and the verifier V . At the end of the protocol V outputs
a decision bit b ∈ {0, 1}, indicating whether he accepts the identification of P
or not. We say that IS is secure if an adversary after interacting with an honest
prover P cannot impersonate P such that a verifier accepts the interaction.

A hash function H = (H.KGen,H.Eval) is a pair of efficient algorithms such
that H.KGen for input 1n returns a key k (which contains 1n), and H.Eval for
input k and M ∈ {0, 1}∗ deterministically outputs a digest H.Eval(k,M). For a
random oracle H we use k as a “salt” and consider the random function H(k, ·).
The hash function is called near-collision-resistant if for any efficient algorithm
A the probability that for k ← H.KGen(1n), some constant 1 ≤  ≤ n and
(M,M ′) ← A(k, ) we have M �= M ′ but H.Eval(k,M)|� = H.Eval(k,M ′)|�, is
negligible (as a function of n). Here we denote by x|� the leading  bits of the
string x. Note that for  = n the above definition yields the standard notion of
collision-resistance.

Classical vs. Quantum Collision-Resistance. In the classical setting, (near-)
collision-resistance for any hash function is upper bounded by the birthday at-
tack. This generic attack states that for any hash function with n bits output, an
attacker can find a collision with probability roughly 1/2 by probing 2n/2 distinct
and random inputs. For (classical) random oracles this attack is optimal.

In the quantum setting, one can gain a polynomial speed-up on the collision
search by using Grover’s algorithm [Gro96,Gro98], which performs a search on
an unstructured database with N elements in time O(

√
N). Roughly, this is

achieved by using superpositions to examine all entries “at the same time”.
Brassard et al. [BHT98] use Grover’s algorithm to obtain an algorithm for solving
the collision problem for a hash function H : {0, 1}∗ → {0, 1}n with probability
at least 1/2, using only O( 3

√
2n) evaluations of H .
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Computational and Timing Assumptions. To allow reasonable statements about
the security of our protocol we need to formalize assumptions concerning the
computational power of the adversary and the time that elapses on quantum
and classical computers. In particular, we assume the following:

1. The speed-up one can gain by using a parallel machine with many processors,
is bounded by a fixed term.

2. The time that is required to evaluate a hash function is independent of the
input and the computational environment.

3. Any computation or action that does not require the evaluation of a hash
function, costs zero time.

The first assumption basically resembles the fact that in the real world there is
only a concrete and finite amount of equipment available that can contribute to
a performance gain of a parallel system. Assumptions (2)+(3) are regarding the
time that is needed to evaluate a hash function or to send a message between two
parties and are merely for the sake of convenience, as one could patch the idea
by relating the timings more rigorously. The latter assumption implicitly states
that the computational overhead that quantum algorithms may create to obtain
a speed-up is negligible when compared to the costs of a hash evaluation. This
might be too optimistic in the near future, as indicated by Bernstein [Ber09].
That is, Bernstein discussed that the overall costs of a quantum computation
can be higher than of massive parallel computation. However, as our work ad-
dresses conceptional issues that arise when efficient quantum computers exist,
this assumption is somewhat inherent in our scenario.

3.1 Construction

We now present our identification scheme between a prover P and a verifier V .
The main idea is to augment a secure identification scheme IS by a collision-
finding stage for some hash function H. In this first stage, the verifier checks
if the prover is able to produce collisions on a hash function in a particular
time. More precisely, the verifier starts for timekeeping to evaluate the hash
function H.Eval(k, ·) on the messages 〈c〉 for c = 1, 2, . . . ,

⌈
3
√

2�
⌉

for a key k

chosen by the verifier and where 〈c〉 stands for the binary representation of c with
log
⌈

3
√

2�
⌉

bits. The prover has now to respond with a near-collision M �= M ′

such that H.Eval(k,M) = H.Eval(k,M ′) holds for the first  bits. One round of
the collision-stage ends if the verifier either receives such a collision or finishes
its 3
√

2� hash evaluations. The verifier and the receiver then repeat such a round
r = poly(n) times, sending a fresh key k in each round.

Subsequently, both parties run the standard identification scheme. At the end,
the verifier accepts if the prover was able to find enough collisions in the first
stage or identifies correctly in the second stage. Thus, as long as the prover is not
able to produce collisions in the required time, the protocol mainly resembles
the IS protocol.
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Verifier V∗ Prover P∗

pk, � ≤ log(n), collCount = 0 (sk, pk)← IS.KGen(1n), �

collision stage (repeat for i = 1, 2, . . . , r):
ki ← H.KGen(1n)

compute H.Eval(〈1〉) ki−−−−−−−−−−−−−−→ search for �-near
compute H.Eval(〈2〉) collision on H(ki, ·)

...
Mi,M

′
i←−−−−−−−−−−−−−−

compute H.Eval(〈c〉)

stop if c >
⌈

3
√

2�
⌉

or

H.Eval(ki,Mi)|� = H.Eval(ki,M
′
i)|�

if collision was found set
collCount := collCount + 1

identification stage:
−−−−−−−−−−−−−−→

decision bit b
〈P(sk, pk),V(pk)〉
←−−−−−−−−−−−−−−

accept if b = 1
or collCount > r/4

Fig. 1. The IS
∗-Identification Protocol

Completeness of the IS
∗ protocol follows easily from the completeness of the

underlying IS scheme.

Security against Classical and Quantum Adversaries. To prove security of our
protocol, we need to show that an adversary A after interacting with an honest
prover P∗, can subsequently not impersonate P∗ such that V∗ will accept the
identification. Let  be such that  > 6 log(α) where α is the constant reflecting
the bounded speed-up in parallel computing from Assumption (1). By assuming
that IS = (IS.KGen,P ,V) is a quantum-immune identification scheme, we can
show that IS

∗ is secure in the standard random oracle model against classical
and quantum adversaries.

The main idea is that for the standard random oracle model, the ability of
finding collisions is bounded by the birthday attack. Due to the constraint of
granting only time O( 3

√
2�) for the collision search and setting  > 6 log(α), even

an adversary with quantum or parallel power is not able to make at least
√

2�

random oracle queries. Thus, A has only negligible probability to respond in
more than 1/4 of r rounds with a collision.
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When considering only classical adversaries, we can also securely instantiate
the random oracle by a hash function H that provides near-collision-resistance
close to the birthday bound. Note that this property is particularly required
from the SHA-3 candidates [NIS07].

However, for adversaries AQ with quantum power, such an instantiation is
not possible for any hash function. This stems from the fact that AQ can locally
evaluate a hash function on quantum states which in turns allows it to apply
Grover’s search algorithm. Then an adversary will find a collision in time 3

√
2�

with probability at least 1/2, and thus will be able to provide r/4 collisions with
noticeable probability. The same result holds in the quantum-accessible random
oracle model, since Grover’s algorithm only requires (quantum) black-box access
to the hash function.

4 Signature Schemes in the Quantum-Accessible Random
Oracle Model

We now turn to proving security in the quantum-accessible random oracle model.
We present general conditions for when a proof of security in the classical random
oracle model implies security in the quantum-accessible random oracle model.
The result in this section applies to signatures whose classical proof of security
is a history-free reduction as defined next. Roughly speaking, history-freeness
means that the classical proof of security simulates the random oracle and sig-
nature oracle in a history-free fashion. That is, its responses to queries do not
depend on responses to previous queries or the query number. We then show that
a number of classical signature schemes have a history-free reduction thereby
proving their security in the quantum-accessible random oracle model.

Definition 4 (History-free Reduction). A random oracle model signature
scheme S = (G,SO, V O) has a history-free reduction from a hard problem P =
(GameP , 0) if there is a proof of security that uses a classical PPT adversary A
for S to construct a classical PPT algorithm B for problem P such that:

• Algorithm B for P contains four explicit classical algorithms: START,
RAND

Oc , SIGN
Oc , and FINISH

Oc . The latter three algorithms have ac-
cess to a shared classical random oracle Oc. These algorithms, except for
RAND

Oc , may also make queries to the challenger for problem P . The al-
gorithms are used as follows:
(1) Given an instance x for problem P as input, algorithm B first runs

START(x) to obtain (pk, z) where pk is a signature public key and z is
private state to be used by B. Algorithm B sends pk to A and plays the
role of challenger to A.

(2) When A makes a classical random oracle query to O(r), algorithm B re-
sponds with RAND

Oc(r, z). Note that RAND is given the current query
as input, but is unaware of previous queries and responses.

(3) When A makes a classical signature query S(sk,m), algorithm B re-
sponds with SIGN

Oc(m, z).
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(4) When A outputs a signature forgery candidate (m,σ), algorithm B out-
puts FINISH

Oc(m,σ, z).

• There is an efficiently computable function INSTANCE(pk) which pro-
duces an instance x of problem P such that START(x) = (pk, z) for some z.
Consider the process of first generating (sk, pk) from G(1n), and then com-
puting x = INSTANCE(pk). The distribution of x generated in this way is
negligibly close to the distribution of x generated in GameP .

• For fixed z, consider the classical random oracle O(r) = RAND
Oc(r, z).

Define a quantum oracle Oquant, which transforms a basis element |x, y〉
into |x, y ⊕O(x)〉. We require that Oquant is quantum computationally in-
distinguishable from a random oracle.

• SIGN
Oc either aborts (and hence B aborts) or it generates a valid signa-

ture relative to the oracle O(r) = RAND
Oc(r, z) with a distribution negli-

gibly close to the correct signing algorithm. The probability that none of the
signature queries abort is non-negligible.

• If (m,σ) is a valid signature forgery relative to the public key pk and oracle
O(r) = RAND

Oc(r, z) then the output of B (i.e. FINISH
Oc(m,σ, z)) causes

the challenger for problem P to output 1 with non-negligible probability. ��
We now show that history-free reductions imply security in the quantum settings.

Theorem 1. Let S = (G,S, V ) be a signature scheme. Suppose that there is
a history-free reduction that uses a classical PPT adversary A for S to con-
struct a PPT algorithm B for a problem P . Further, assume that P is hard for
polynomial-time quantum computers, and that quantum-accessible pseudorandom
functions exist. Then S is secure in the quantum-accessible random oracle model.

Proof. The history-free reduction includes five (classical) algorithms START,
RAND, SIGN, FINISH, and INSTANCE, as in Definition 4. We prove the
quantum security of S using a sequence of games, where the first game is the
standard quantum signature game with respect to S.

Game 0. Define Game0 as the game a quantum adversary AQ plays for prob-
lem Sig-Forge(S). Assume towards contradiction that AQ has a non-negligible
advantage.

Game 1. Define Game1 as the following modification to Game0: after the
challenger generates (sk, pk), it computes x ← INSTANCE(pk) as well as
(pk, z) ← START(x). Further, instead of answering AQ’s quantum random
oracle queries with a truly random oracle, the challenger simulates for AQ a
quantum-accessible random oracle Oquant as an oracle that maps a basis ele-
ment |x, y〉 into the element

∣∣x, y ⊕RAND
Oq(x, z)

〉
, where Oq is a truly random

quantum-accessible oracle. The history-free guarantee on RAND ensures that
Oquant is computationally indistinguishable from random for quantum adver-
saries. Therefore, the success probability of AQ in Game1 is negligibly close to
its success probability in Game0, and hence is non-negligible.
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Game 2. Modify the challenger from Game1 as follows: instead of generating
(sk, pk) and computing x = INSTANCE(pk), start off by running the challenger
for problem P . When that challenger sends x, then start the challenger from
Game1 using this x. Also, when AQ asks for a signature on m, answer with
SIGN

Oq(m, z). First, since INSTANCE is part of a history-free reduction, this
change in how we compute x only negligibly affects the distribution of x, and
hence the behavior of AQ. Second, as long as all signing algorithms succeed,
changing how we answer signing queries only negligibly affects the behavior of
AQ. Thus, the probability that AQ succeeds is the product of the following two
probabilities:

• The probability that all of the signing queries are answered without abort-
ing.

• The probability that AQ produces a valid forgery given that the signing
queries were answered successfully.

The first probability is non-negligible by assumption, and the second is negligibly
close to the success probability of AQ in Game1, which is also non-negligible.
This means that the success probability of AQ in Game3 is non-negligible.

Game 3. Define Game3 as in Game2, except that for two modifications to the
challenger: First, it generates a key k for the quantum-accessible PRF. Then,
to answer a random oracle query Oq(|φ〉), the challenger applies the unitary
transformation that takes a basis element |x, y〉 into |x, y ⊕ PRF(k, x)〉. If the
success probability in Game3 was non-negligibly different from that of Game2,
we could construct a distinguisher for PRF which plays both the role of AQ and
the challenger. Hence, the success probability in Game3 is negligibly close to
that of Game2, and hence is also non-negligible.

Given a quantum adversary that has non-negligible advantage in Game 3 we
construct a quantum algorithm BQ that breaks problem P . When BQ receives
instance x from the challenger for problem P , it computes (pk, z)← START(x)
and generates a key k for PRF. Then, it simulates AQ on pk. BQ answers random
oracle queries using a quantum-accessible function built from RAND

PRF(k,·)(·, z)
as in Game 1. It answers signing queries using SIGN

PRF(k,·)(·, z). Then, when
AQ outputs a forgery candidate (m,σ), BQ computes FINISH

PRF(k,·)(m,σ, z),
and returns the result to the challenger for problem P .

Observe that the behavior of AQ in Game3 is identical to that as a subroutine
of BQ. Hence, AQ as a subroutine of BQ will output a valid forgery (m,σ) with
non-negligible probability. If (m,σ) is a valid forgery, then since FINISH is part
of a history-free reduction, FINISH

PRF(k,·)(m,σ, z) will cause the challenger for
problem P to accept with non-negligible probability. Thus, the probability that
P accepts is also non-negligible, contradicting our assumption that P is hard for
quantum computers.

Hence we have shown that any polynomial quantum algorithm has negligible
advantage against problem Sig-Forge(S) which completes the proof. ��
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We note that, in every step of the algorithm, the adversary AQ remains in a
pure state. This is because, in each game, AQ’s state is initially pure (since it is
classical), and every step of the game either involves a unitary transformation, a
partial measurement, or classical communication. In all three cases, if the state
is pure before, it is also pure after.

We also note that we could have stopped at Game2 and assumed that the cryp-
tographic problem P is hard relative to a (quantum-accessible) random oracle.
Assuming the existence of quantum-accessible pseudorandom functions allows
us to draw the same conclusion in the standard (i.e., non-relativized) model at
the expense of an extra assumption.

4.1 Secure Signatures from Preimage Sampleable Trapdoor
Functions (PSF)

We now use Theorem 1 to prove the security of the Full Domain Hash signature
scheme when instantiated with a preimage sampleable trapdoor function (PSF),
such as the one proposed in [GPV08]. Loosely speaking, a PSF F is a tuple
of PPT algorithms (G, Sample, f, f−1) where G(·) generates a key pair (pk, sk),
f(pk, ·) defines an efficiently computable function, f−1(sk, y) samples from the
set of pre-images of y, and Sample(pk) samples x from the domain of f(pk, ·)
such that f(pk, x) is statistically close to uniform in the range of f(pk, ·). The
PSF of [GPV08] is not only one-way, but is also collision resistant.

Recall that the full domain hash (FDH) signature scheme [BR93] is defined
as follows:

Definition 5 (Full Domain Hash). Let F = (G, f, f−1) be a trapdoor permu-
tation, and O a hash function whose range is the same as the range of f . The
full domain hash signature scheme is S = (G, T, V ) where:

• G = G0

• SO(sk,m) = f−1(sk, O(m))

• V O(pk,m, σ) =

{
1 if O(m) = f(pk, σ)
0 otherwise

Gentry et al. [GPV08] show that the FDH signature scheme can be instan-
tiated with a PSF F = (G, Sample, f, f−1) instead of a trapdoor permutation.
Call the resulting system FDH-PSF. They prove that FDH-PSF is secure against
classical adversaries, provided that the pre-image sampling algorithm used dur-
ing signing is derandomized (e.g. by using a classical PRF to generate its random
bits). Their reduction is not quite history-free, but we show that it can be made
history-free.

Consider the following reduction from a classical adversary A for the FDH-
PSF scheme S to a classical collision finder B for F :

• On input pk, B computes START(pk) := (pk, pk), and simulates A on pk.

• When A queries O(r), B responds with
RAND

Oc(r, pk) := f(pk, Sample(1n;Oc(r))).
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• When A queries S(sk,m), B responds with
SIGN

Oc(m, pk) := Sample(1n;Oc(m)).

• When A outputs (m,σ), B outputs
FINISH

Oc(m,σ, pk) :=
(
Sample

(
1n;Oc(m)

)
, σ
)
.

In addition, we define INSTANCE(pk) := pk. Algorithms INSTANCE and
START trivially satisfy the requirements of history-freeness (Definition 4). Be-
fore showing that the above reduction is in history-free form, we need the fol-
lowing technical lemma whose proof is given in the full version [BDF+10].

Lemma 3. Say A is a quantum algorithm that makes q quantum oracle queries.
Suppose further that we draw the oracle O from two distributions. The first is the
random oracle distribution. The second is the distribution of oracles where the
value of the oracle at each input x is identically and independently distributed by
some distribution D whose variational distance is within ε from uniform. Then
the variational distance between the distributions of outputs of A with each oracle
is at most 4q2

√
ε.

Proof Sketch. We show that there is a way of moving from O to OD such
that the oracle is only changed on inputs in a set K where the sum of the
amplitudes squared of all k ∈ K, over all queries made by A, is small. Thus, we
can use Lemma 2 to show that the expected behavior of any algorithm making
polynomially many quantum queries to O is only changed by a small amount.

��
Lemma 3 shows that we can replace a truly random oracle O with an oracle

OD distributed according to distribution D without impacting A, provided D is
close to uniform. Note, however, that while this change only affects the output
of A negligibly, the effects are larger than in the classical setting. If A only made
classical queries to O, a simple hybrid argument shows that changing to OD

affects the distribution of the output of A by at most qε, as opposed to 4q2
√
ε

in the quantum case. Thus, quantum security reductions that use Lemma 3 will
not be as tight as their classical counterparts.

We now show that the reduction above is history-free.

Theorem 2. The reduction above applied to FDH-PSF is history-free.

Proof. The definition of a PSF implies that the distribution of f(pk, Sample(1n))
is within εsample of uniform, for some negligible εsample. Now, since O(r) =
RAND

Oc(r, pk) = f(pk, Sample(1n;Oc(r))) and Oc is a true random oracle,
the quantity O(r) is distributed independently according to a distribution that
is εsample away from uniform. Define a quantum oracle Oquant which transforms
the basis state |x, y〉 into |x, y ⊕O(x)〉. Using Lemma 3, for any algorithm B
making q random oracle queries, the variational distance between the proba-
bility distributions of the outputs of B using a truly random oracle and the
“not-quite” random oracle Oquant is at most 4q2√εsample, which is still negligi-
ble. Hence, Oq is computationally indistinguishable from random.
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Gentry et al. [GPV08] also show that SIGN
Oc(m, pk) is consistent with

RAND
Oc(·, pk) for all queries, and that if A outputs a valid forgery (m,σ),

FINISH
Oc(m,σ, pk) produces a collision for F with probability 1− 2−E , where

E is the minimum over all y in the range of f(pk, ·) of the min-entropy of the
distribution on σ given f(pk, σ) = y. The PSF of Gentry et al. [GPV08] has
super-logarithmic min-entropy, so 1 − 2−E is negligibly close to 1, though any
constant non-zero min-entropy will suffice to make the quantity a non-negligible
fraction of 1. ��
We note that the security proof of Gentry et al. [GPV08] is a tight reduction in
the following sense: if the advantage of an adversary A for S is ε, the reduction
gives a collision finding adversary B for F with advantage negligibly close to ε,
provided that the lower bound over y in the range of f(pk, ·) of the min-entropy
of σ given f(pk, σ) = y is super-logarithmic. If the PSF has a min-entropy of 1,
the advantage of B is still ε/2.
The following corollary, which is the main result of this section, follows from
Theorems (1) and (2).

Corollary 1. If quantum-accessible pseudorandom functions exist, and F is a
secure PSF against quantum adversaries, then the FDH-PSF signature scheme
is secure in the quantum-accessible random oracle model.

4.2 Secure Signatures from Claw-Free Permutations

In this section, we show how to use claw-free permutations to construct three sig-
nature schemes that have history-free reductions and are therefore secure in the
quantum-accessible random oracle model. The first is the standard FDH from
Definition 5, but when the underlying permutation is a claw-free permutation.
We adapt the proof of Coron [Cor00] to give a history-free reduction. The second
is the Katz and Wang [KW03] signature scheme, and we also modify their proof
to get a history-free reduction. Lastly, following Gentry et al. [GPV08], we note
that claw-free permutations give rise to a pre-image sampleable trapdoor func-
tion (PSF), which can then be used in FDH to get a secure signature scheme as
in Section 4.1. The Katz-Wang and FDH-PSF schemes from claw-free permuta-
tions give a tight reduction, whereas the Coron-based proof loses a factor of qs

in the security reduction, where qs is the number of signing queries.
Recall that a claw-free pair of permutations [GMR88] is a pair of trapdoor

permutations (F1,F2), where Fi = (Gi, fi, f
−1
i ), with the following properties:

• G1 = G2. Define G = G1 = G2.

• For any key pk, f1(pk, ·) and f2(pk, ·) have the same domain and range.

• Given only pk, the probability that any PPT adversary can find a pair
(x1, x2) such that f1(pk, x1) = f2(pk, x2) is negligible. Such a pair is called
a claw.

Dodis and Reyzin [DR03] note that claw-free permutations are a generalization
of trapdoor permutations with a random self-reduction. A random self-reduction
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is a way of taking a worst-case instance x of a problem, and converting it into
a random instance y of the same problem, such that a solution to y gives a
solution to x. Dodis and Reyzin [DR03] show that any trapdoor permutation
with a random self reduction (e.g. RSA) gives a claw-free pair of permutations.

We note that currently there are no candidate pairs of claw-free permutations
that are secure against quantum adversaries, but this may change in time.

FDH Signatures from Claw-Free Permutations. Coron [Cor00] shows that
the Full Domain Hash signature scheme, when instantiated with the RSA trap-
door permutation, has a tighter security reduction than the general Full Domain
Hash scheme, in the classical world. That is, Coron’s reduction loses a factor
of approximately qs, the number of signing queries, as apposed to qh, the num-
ber of hash queries. Of course, the RSA trapdoor permutation is not secure
against quantum adversaries, but his reduction can be applied to any claw-free
permutation and is equivalent to a history-free reduction with similar tightness.

To construct a FDH signature scheme from a pair of claw-free permutations
(F1,F2), we simply instantiate FDH with F1, and ignore the second permutation
F2, to yield the following signature scheme

• G is the generator for the pair of claw-free permutations.

• SO(sk,m) = f−1
1 (sk, O(m))

• V O(pk,m, σ) = 1 if and only if f1(pk, σ) = O(m).

We now present a history-free reduction for this scheme. The random oracle for
this reduction, Oc(r), returns a random pair (a, b), where a is a random element
from the domain of F1 and F2, and b is a random element from {1, ..., p} for
some p to be chosen later.

We construct history-free reduction from a classical adversary A for S to a
classical adversary B for (F1,F2). Algorithm B, on input pk, works as follows:

• Compute START(pk, y) = (pk, pk), and simulate A on pk. Notice that z =
pk is the state saved by B.

• When A queries O(r), compute RAND
Oc(r, pk). For each string r, RAND

works as follows: compute (a, b) ← Oc(r). If b = 1, return f2(pk, a). Other-
wise, return f1(pk, a)

• When A queries S(sk,m), compute SIGN
Oc(m, pk). SIGN works as follows:

compute (a, b)← Oc(m) and return a if b �= 1. Otherwise, fail.

• When A returns (m,σ), compute FINISH
Oc(m,σ, pk). FINISH works as

follows: compute (a, b)← Oc(m) and output (σ, a).

In addition, we have INSTANCE(pk) = pk and START(INSTANCE(pk)) =
(pk, pk), so INSTANCE and START satisfy the required properties.

Theorem 3. The reduction above is in history-free form.

Proof. RAND
Oc(r, pk) is completely random and independently distributed, as

f1(pk, a) and f2(pk, a) are both random (fb(pk, ·) is a permutation and a is truly
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random). As long as b �= 1, where (a, b) = Oc(m), SIGN
Oc(m, pk) will be consis-

tent with RAND. This is because because V RAND
Oc (·,pk)(pk,m,SIGN

Oc(m, pk))
outputs 1 if RAND

Oc(m, pk) = f1(pk,SIGN
Oc(m, pk)). But RAND

Oc(m, pk) =
f1(pk, a) (since b �= 1), and SIGN

Oc(m, pk)) = a. Thus, the equality holds. The
probability over all signature queries of no failure is (1 − 1/p)qSIGN . If we chose
p = qSIGN, this quantity is at least e−1 − o(1), which is non-negligible.

Suppose A returns a valid forgery (m,σ), meaning A never asked for a forgery
on m and f1(sk, σ) = RAND

Oc(m, pk). If b = 1 (where (a, b) = Oc(m)), then
we have f1(sk, σ) = RAND

Oc(m, pk) = f2(pk, a), meaning that (σ, a) is a claw.
Since A never asked for a signature on m, there is no way A could have figured
out a, so the case where b = 1 and a is the preimage of O(m) under f2, and the
case where b �= 1 and a is the preimage of O(m) under f1 are indistinguishable.
Thus, b = 1 with probability 1/p. Thus, B converts a valid signature into a claw
with non-negligible probability. ��

Corollary 2. If quantum-accessible pseudorandom functions exists, and(F1,F2)
is a pair claw-free trapdoor permutations, then the FDH scheme instantiated with
F1 is secure against quantum adversaries.

Note that in this reduction, our simulated random oracle is truly random,
so we do not need to rely on Lemma 3. Hence, the tightness of the reduction
will be the same as the classical setting. Namely, if the quantum adversary A
has advantage ε when making qSIGN signature queries, B will have advantage
approximately ε/qSIGN.

The Katz-Wang Signature Scheme In this section, we consider a variant
of FDH due to Katz and Wang [KW03]. This scheme admits an almost tight
security reduction in the classical world. That is, if an adversary has advantage
ε, the reduction gives a claw finder with advantage ε/2. Their proof of security is
not in history-free form, but it can be modified so that it is in history-free form.
Given a pair of trapdoor permutation (F1,F2), the construction is as follows:

• G is the key generator for F .

• SO(sk,m) = f−1
1 (sk, O(b,m)) for a random bit b.

• V O(pk,m, σ) is 1 if either f1(pk, σ) = O(0,m) or f1(pk, σ) = O(1,m)

We construct a history-free reduction from an adversary A for S to an adversary
B for (F1,F2). The random oracle for this reduction, Oc(r), generates a random
pair (a, b), where a is a random element from the domain of F1 and F2, and b
is a random bit. On input pk, B works as follows:

• Compute START(pk, y) = (pk, pk), and simulate A on pk. Notice that z =
pk is the state saved by B.

• When A queries O(b, r), compute RAND
Oc(b, r, pk). For each string (b, r),

RAND works as follows: compute (a, b′) = Oc(r). If b = b′, return f1(pk, a).
Otherwise, return f2(pk, a).
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• When A queries S(sk,m), compute SIGN
Oc(m, pk). SIGN works as follows:

compute (a, b) = Oc(m) and return a.

• When A returns (m,σ), compute FINISH
Oc(m,σ, pk). FINISH works as

follows: compute (a, b) = Oc(m). If σ = a, abort. Otherwise, output (σ, a).

In addition, we have INSTANCE(pk) = pk and START(INSTANCE(pk)) =
(pk, pk), so INSTANCE and START satisfy the required properties.

Theorem 4. The reduction above is in history-free form.

Proof. RAND
Oc(b, r, pk) is completely random and independently distributed,

as f1(pk, a) and f2(pk, a) are both random (fb is a permutation and a is truly
random). Observe that f1(pk,SIGN

Oc(m, pk)) = f1(pk, a) = O(b,m) where
(a, b) = Oc(m). Thus, signing queries are always answered with a valid signa-
ture, and the distribution of signatures is identical to that of the correct signing
algorithm since b is chosen uniformly.

Suppose A returns a valid forgery (m,σ). Let (a, b) = Oc(m). There are two
cases, corresponding to whether σ corresponds to a signature using b or 1 − b.
In the first case, we have f1(pk, σ) = O(b,m) = f1(pk, a), meaning σ = a, so
we abort. Otherwise, f1(pk, σ) = O(1 − b,m) = f2(pk, a), so (σ, a) form a claw.
Since the adversary never asked for a signing query on m, these two cases are
indistinguishable by the same logic as the proof for FDH. Thus, the probability
of failure is at most a half, which is non-negligible. ��
Corollary 3. If quantum-accessible pseudorandom functions exists, and (F1,F2)
is a pair claw-free trapdoor permutations, then the Katz-Wang signature scheme
instantiated with F1 is secure against quantum adversaries.

As in the case of FDH, our simulated quantum-accessible random oracle is truly
random, so we do not need to rely on Lemma 3. Thus, the tightness of our
reduction is the same as the classical case. In particular, if the quantum adversary
AQ has advantage ε then B will have advantage ε/2.

PSF Signatures from Claw-Free Permutations. Gentry et al. [GPV08]
note that Claw-Free Permutations give rise to pre-image sampleable trapdoor
functions (PSFs). These PSFs can then be used to construct an FDH signature
scheme as in Section 4.1.

Given a pair of claw-free permutations (F1,F2), define the following PSF: G is
just the generator for the pair of permutations. Sample(pk) generates a random
bit b and random x in the domain of fb, and returns (x, b). f(pk, x, b) = fb(pk, x),
and f−1(sk, y) = (f−1

b (sk, y), b) for a random b. Suppose we have a collision
((x1, b1), (x2, b2)) for this PSF. Then

fb1(pk, x1) = f(pk, x1, b1) = f(pk, x2, b2) = fb2(pk, x2)

If b1 = b2, then x1 = x2 since fb1 is a permutation. But this is impossible since
(x1, b1) �= (x2, b2). Thus, b1 �= b2, so one of (x1, x2) or (x2, x1) is a claw for
(F1,F2).
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Hence, we can instantiate FDH with this PSF to get the following signature
scheme:

• G is the generator for the permutations.

• SO(sk,m) = (f−1
b (sk, O(m)), b) for a random bit b.

• V O(pk,m, (σ, b)) = 1 if and only if fb(pk, σ) = O(m).

The security of this scheme follows from Corollary 1, with a similar tightness
guarantee (this PSF has only a pre-image min-entropy of 1, which results in a
loss of a factor of two in the tightness of the reduction). In particular, if we have
a quantum adversary AQ for E with advantage ε, we get a quantum algorithm
BQ for the PSF with advantage ε/2, which gives us a quantum algorithm CQ

that finds claws of (F1,F2) with probability ε/2.

5 Encryption Schemes in the Quantum-Accessible
Random Oracle Model

In this section, we prove the security of two encryption schemes. The first is the
BR encryption scheme due to Bellare and Rogaway [BR93], which we show is
CPA secure. The second is a hybrid generalization of the BR scheme, which we
show is CCA secure.

Ideally, we could define a general type of classical reduction like we did for
signatures, and show that such a reduction implies quantum security. Unfor-
tunately, defining a history-free reduction for encryption is considerably more
complicated than for signatures. We therefore directly prove the security of two
random oracle schemes in the quantum setting.

5.1 CPA Security of BR Encryption

In this section, we prove the security of the BR encryption scheme [BR93] against
quantum adversaries:

Definition 6 (BR Encryption Scheme). Let F = (G0, f, f
−1) be an injective

trapdoor function, and O a hash function with the same domain as f(pk, ·). We
define the following encryption scheme, E = (G,E,D) where:

• G = G0

• EO(pk,m) = (f(pk, r), O(r) ⊕m) for a randomly chosen r.

• DO(sk, (y, c)) = c⊕ f−1(sk, y)

A candidate quantum-immune injective trapdoor function can be built from hard
problems on lattices [PW08].

Theorem 5. If quantum-accessible pseudorandom functions exists and F is a
quantum-immune injective trapdoor function, then E is quantum CPA secure.

We omit the proof of Theorem 5 because the CPA security of the BR encryption
scheme is a special case of the CCA security of the hybrid encryption scheme in
the next section.
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5.2 CCA Security of Hybrid Encryption

We now prove the CCA security of the following standard hybrid encryption,
a generalization of the BR encryption scheme scheme [BR93], built from an
injective trapdoor function and symmetric key encryption scheme.

Definition 7 (Hybrid Encryption Scheme). Let F = (G0, f, f
−1) be an

injective trapdoor function, and ES = (ES , DS) be a CCA secure symmetric key
encryption scheme, and O a hash function. We define the following encryption
scheme, E = (G,E,D) where:

• G = G0

• EO(pk,m) = (f(pk, r), ES(O(r),m)) for a randomly chosen r.

• DO(sk, (y, c)) = DS(O(r′), c) where r′ = f−1(sk, y)

We note that the BR encryption scheme from the previous section is a special
case of this hybrid encryption scheme where ES is the one-time pad. That is,
ES(k,m) = k ⊕m and DS(k, c) = k ⊕ c.

Theorem 6. If quantum-accessible pseudorandom functions exists, F is a
quantum-immune injective trapdoor function, and ES is a quantum CCA secure
symmetric key encryption scheme, then E is quantum CCA secure.

Proof. Suppose we have an adversary AQ that breaks E . We start with the
standard security game for CCA secure encryption:

Game 0. Define Game0 as the game a quantum adversary AQ plays for problem
Asym-CCA(E).

Game 1. Define Game1 as the following game: the challenger generates(sk, pk)←
G(1n), a random r in the domain of F , a random k in the key space of ES ,
and computes y = f(pk, r). The challenger has access to a quantum-accessible
random oracle Oq whose range is the key space of ES . It then sends pk to AQ.
The challenger answers queries as follows:

• Random oracle queries are answered with the random oracle Oquant, which
takes a basis element |x, y〉 into |x, y ⊕Oq(f(pk, x))〉.
• Decryption queries on (y′, c′) are answered as follows:

Case 1: If y = y′, respond with DS(k, c′).

Case 2: If y �= y′, respond with DS(Oq(y′), c′).

• The challenge query on (m0,m1) is answered as follows: choose a random
b. Then, respond with (y,ES(k,mb)).

When AQ responds with b′, we say that AQ won if b = b′.
Observe that, because f is injective and Oq is random, the oracle Oquant is a

truly random oracle with the same range as Oq. The challenge ciphertext (y, c)
seen by AQ is distributed identically to that of Game0. Further, it is a valid
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encryption of mb relative to the random oracle being Oquant if Oq(y) = k. For
y′ �= y, the decryption of (y′, c′) is

DS(Oq(y′), c′) = DS(Oquant(f−1(sk, y′)), c′) = DOquant(sk, (y′, c′))

Which is correct. Likewise, if Oq(y) = k, the decryption of (y, c′) is also correct.
Thus, the view of AQ in Game1 is identical to that in Game0 if Oq(y) = k. We
now make the following observations:

• The challenge query and decryption query answering algorithms never query
Oq on y.

• Each quantum random oracle query from the adversary to Oquant leads
to a quantum random oracle query from the challenger to Oq. The query
magnitude of y in the challenger’s query to Oq is the same as the query
magnitude of r in the adversary’s query Oquant.

Let ε be the sum of the square magnitudes of y over all queries made to Oq (i.e.
the total query probability of y). This is identical to the total query probability
of r over all queries AQ makes to Oquant.

We now construct a quantum algorithm B
Oq

F that uses a quantum-accessible
random oracle Oq, and inverts f with probability ε/q, where q is the number of
random oracle queries made by AQ. BOq

F takes as input (pk, y), and its goal is
to output r = f−1(sk, y). BOq

F works as follows:

• Generate a random k in the key space of ES . Also, generate a random
i ∈ {1, ..., q}. Now, send pk to AQ and play the role of challenger to AQ.

• Answer random oracle queries with the random oracle Oquant, which takes
a basis element |x, y〉 into |x, y ⊕Oq(f(pk, x))〉.
• Answer decryption queries on (y′, c′) as follows:
Case 1: If y = y′, respond with DS(k, c′).

Case 2: If y �= y′, respond with DS(Oq(y′), c′).

• Answer the challenge query on (m0,m1) as follows: choose a random b.
Then, respond with (y,ES(k,mb)).

• At the ith random oracle query, sample the query to get r′, and output r′

and terminate.

Comparing our definition of BOq

F to Game1, we can conclude that the view seen
by AQ in both cases is identical. Thus, the total query probability that AQ makes
to Oquant at the point r is ε. Hence, the probability that BOq

F outputs r is ε/q.
If we assume that F is secure against quantum adversaries that use a quantum-
accessible random oracle, then this quantity, and hence ε, must be negligible. As
in the case of signatures (Section 4), we can replace this assumption with the
assumption that F is secure against quantum adversaries (i.e. with no access to
a quantum random oracle) and that pseudorandom functions exists to reach the
same conclusion.

Since ε is negligible, we can change Oq(y) = k in Game1, thus getting a game
identical to Game0 from the adversary’s point of view. Notice that in Game0
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and Game1, AQ is in a pure state because we are only applying unitary transfor-
mations, performing measurements, or performing classical communication. We
are only changing the oracle at a point with negligible total query probability,
so Lemma 2 tells us that making this change only affects the distribution of
the outcome of Game1 negligibly. This allows us to conclude that the success
probability of AQ in Game1 is negligibly close to that in Game0.

Now, assume that the success probability of AQ in Game1 is non-negligible.
We now define a quantum algorithmB

Oq

ES that uses a quantum-accessible random
oracle Oq to break the CCA security of ES . BOq

ES works as follows:

• On input 1n, generate (sk, pk) ← G(1n). Also, generate a random r, and
compute y = f(pk, r). Now send pk to AQ and play the role of challenger to
AQ.

• Answer random oracle queries with the random oracle Oquant, which takes
a basis element |x, y〉 into |x, y ⊕Oq(f(pk, x))〉.
• Answer decryption queries on (y′, c′) as follows:

Case 1: If y = y′, ask the ES challenger for a decryption DS(k, c′) to obtain
m′. Return m′ to AQ.

Case 2: If y �= y′, respond with DS(Oq(y′), c′).

• Answer the challenge query on (m0,m1) by forwarding the pair ES . When
the challenger responds with c (which equals ES(k,mb) for some b), return
(y, c) to AQ.

• When AQ outputs b′, output b′ and halt.

Comparing our definition of BOq

ES to that of Game1, we can conclude that the
view of AQ in both cases is identical. Thus, AQ succeeds with non-negligible
probability. If AQ succeeds, it means it returned b, meaning BOq

ES also succeeded.
Thus, we have an algorithm with a quantum random oracle that breaks ES .
This is a contradiction if ES is CCA secure against quantum adversaries with
access to a quantum random oracle, which holds since ES is CCA secure against
quantum adversaries and quantum-accessible pseudorandom functions exist, by
assumption.

Thus, the success probability of AQ in Game1 is negligible, so the success
probability of AQ in Game0 is also negligible. Hence, we have shown that all
polynomial time quantum adversaries have negligible advantage in breaking in
breaking the CCA security of E , so E is CCA secure. ��

We briefly explain why Theorem 5 is a special case of Theorem 6. Notice
that, in the above proof, BES only queries its decryption oracle when answering
decryption queries made by AQ, and that it never makes encryption queries.
Hence, if AQ makes no decryption queries, BES makes no queries at all except
the challenge query. If we are only concerned with the CPA security of E , we
then only need ES to be secure against adversaries that can only make the
challenge query. Further, if we only let AQ make a challenge query with messages
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of length n, then ES only has to be secure against adversaries making challenges
of a specific length. But this is exactly the model in which the one-time pad is
unconditionally secure. Hence, the BR encryption scheme is secure, and we have
proved Theorem 5.

6 Conclusion

We have shown that great care must be taken if using the random oracle model
when arguing security against quantum attackers. Proofs in the classical case
should be reconsidered, especially in case the quantum adversary can access the
random oracle with quantum states. We also developed conditions for translating
security proofs in the classical random oracle model to the quantum random
oracle model. We applied these tools to certain signature and encryption schemes.

The foremost question raised by our results is in how far techniques for “clas-
sical random oracles” can be applied in the quantum case. This stems from
the fact that manipulating or even observing the interaction with the quantum-
accessible random oracle would require measurements of the quantum states.
That, however, prevents further processing of the query in a quantum manner.
We gave several examples of schemes that remain secure in the quantum setting,
provided quantum-accessible pseudorandom functions exist. The latter primi-
tive seems to be fundamental to simulate random oracles in the quantum world.
Showing or disproving the existence of such pseudorandom functions is thus an
important step.

Many classical random oracle results remain open in the quantum random
oracle settings. It is not known how to prove security of generic FDH signatures
as well as signatures derived from the Fiat-Shamir heuristic in the quantum
random oracle model. Similarly, a secure generic transformation from CPA to
CCA security in the quantum RO model is still open.
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Abstract. Lossy encryption was originally studied as a means of achiev-
ing efficient and composable oblivious transfer. Bellare, Hofheinz and
Yilek showed that lossy encryption is also selective opening secure. We
present new and general constructions of lossy encryption schemes and
of cryptosystems secure against selective opening adversaries.

We show that every re-randomizable encryption scheme gives rise to
efficient encryptions secure against a selective opening adversary. We
show that statistically-hiding 2-round Oblivious Transfer implies Lossy
Encryption and so do smooth hash proof systems. This shows that pri-
vate information retrieval and homomorphic encryption both imply Lossy
Encryption, and thus Selective Opening Secure Public Key Encryption.

Applying our constructions to well-known cryptosystems, we obtain
selective opening secure commitments and encryptions from the Deci-
sional Diffie-Hellman, Decisional Composite Residuosity and Quadratic
Residuosity assumptions.

In an indistinguishability-based model of chosen-ciphertext selective
opening security, we obtain secure schemes featuring short ciphertexts
under standard number theoretic assumptions. In a simulation-based
definition of chosen-ciphertext selective opening security, we also han-
dle non-adaptive adversaries by adapting the Naor-Yung paradigm and
using the perfect zero-knowledge proofs of Groth, Ostrovsky and Sahai.

Keywords: Public key encryption, commitment, lossy encryption, ho-
momorphic encryption, selective opening, chosen-ciphertext security.

1 Introduction

In Byzantine agreement, and more generally in secure multiparty computation,
it is often assumed that all parties are connected to each other via private chan-
nels. In practice, these private channels are implemented using a public-key cryp-
tosystem. An adaptive adversary in a MPC setting, however, has very different
powers than an adversary in an IND-CPA or IND-CCA game. In particular, an
adaptive MPC adversary may view all the encryptions sent in a given round,
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and then choose to corrupt a certain fraction of the players, thus revealing the
decryptions of those players’ messages and the randomness used to encrypt them.
A natural question is whether the messages sent from the uncorrupted players
remain secure. If the messages (and randomness) of all the players are chosen
independently, then security in this setting follows from the IND-CPA security
of the underlying encryption. If, however, the messages are not independent, the
security does not immediately follow from the IND-CPA (or even IND-CCA)
security of the underlying scheme. Although this problem was first investigated
over twenty years ago, it remains an open question whether IND-CPA security
implies this selective opening security.

Previous Work. There have been many attempts to design encryption proto-
cols that can be used to implement secure multiparty computation against an
adaptive adversary. The first protocols by Beaver and Haber [4] required interac-
tion between the sender and receiver, required erasure and were fairly inefficient.
The first non-interactive protocol was given by Canetti, Feige, Goldreich and
Naor in [10]. In [10] the authors defined a new primitive called Non-Committing
Encryption, and gave an example of such a scheme based on the RSA assump-
tion. In [2], Beaver extended the work of [10], and created adaptively secure key
exchange under the Diffie-Hellman assumption. In subsequent work, Damg̊ard
and Nielsen improved the efficiency of the schemes of Canetti et al. and Beaver,
they were also able to obtain Non-Committing Encryption based on one-way
trapdoor functions with invertible sampling. In [12], Canetti, Halevi and Katz
presented a Non-Committing encryption protocols with evolving keys.

In [9], Canetti, Dwork, Naor and Ostrovsky extended the notion of Non-
Committing Encryption to a new protocol which they called Deniable Encryp-
tion. In Non-Committing Encryption schemes there is a simulator, which can
generate non-committing ciphertexts, and later open them to any desired mes-
sage, while in Deniable Encryption, valid encryptions generated by the sender
and receiver can later be opened to any desired message. The power of this prim-
itive made it relatively difficult to realize, and Canetti et al. were only able to
obtain modest examples of Deniable Encryption and left it as an open question
whether fully deniable schemes could be created.

The notions of security against an adaptive adversary can also be applied to
commitments. According to [21], the necessity of adaptively-secure commitments
was realized by 1985. Despite its utility, until recently, relatively few papers di-
rectly addressed the question of commitments secure against a selective opening
adversary (SOA). The work of Dwork, Naor, Reingold and Stockmeyer [21] was
the first to explicitly address the problem. In [21], Dwork et al. showed that
non-interactive SOA-secure commitments can be used to create a 3-round zero-
knowledge proof systems for NP with negligible soundness error, and they gave
constructions of a weak form of SOA-secure commitments, but left as an open
question the existence of whether general SOA-secure commitments.

The question of SOA-secure commitments was put on firm foundations by
Hofheinz [27] and Bellare, Hofheinz and Yilek in [5]. In [5], Bellare et al. provided
simulation-based and indistinguishability-based definitions of security (these will
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be given the prefixes IND and SEM respectively) and gave a number of con-
structions and strong black-box separations, which indicated the difficulty of
constructing selective opening secure commitments. Our results in the selective
opening setting build on the breakthrough results of [5].

The independent work of Fehr, Hofheinz and Kiltz and Wee [23] also ex-
amines the case of CCA2 cryptosystems that are selective opening secure. In
their work, they show how to adapt the universal hash proof systems of [17], to
provide CCA2 security in the selective opening setting. Their constructions are
general, and offer the first SEM-SO-CCA secure cryptosystem whose parame-
ters are completely independent of n, the number of messages. Their work also
considers selective opening security against chosen-plaintext attacks, and using
techniques from Non-Committing Encryption [10] they construct SEM-SO-CPA
secure systems from enhanced one-way trapdoor permutations.

Bellare, Waters and Yilek [7] show how to construct Identity-Based Encryp-
tion (IBE) schemes secure under selective-opening attacks. Our results are
orthogonal to theirs. Their work constructs IBE schemes secure under selective-
opening attacks, while our work starts with a tag-based encryption scheme,
and uses it to construct encryption schemes that are secure against a selective-
opening chosen-ciphertext attack, but are not identity-based.

Our Contributions. We primarily consider encryptions secure against a selec-
tive opening adversary. First we consider a selective-opening adversary who can
mount a chosen-plaintext attack, and a the second part, we consider a selective-
opening adversary who can mount a chosen-ciphertext attack.

Selective Opening Security Against Chosen-Plaintext Attacks. We formalize the
notion of re-randomizable Public-Key Encryption and show that it implies Lossy
Encryption [41,32,5]. Combining this with the observation (due to Bellare et
al. [5]) that Lossy Encryption is IND-SO-CPA secure, we obtain an efficient
construction of IND-SO-CPA secure encryption from any re-randomizable en-
cryption (which generalizes and extends previous results). Moreover, these con-
structions retain the efficiency of the underlying re-randomizable cryptosystem.

Applying our results to the Paillier cryptosystem [39], we obtain an encryp-
tion scheme attaining a strong, simulation-based form of semantic security under
selective openings (SEM-SO-CPA security). This is the first such construction
from the Composite Residuosity (DCR) assumption. As far as bandwidth goes,
it is also the most efficient SEM-SO-CPA secure encryption scheme to date. The
possible use of Paillier as a lossy encryption scheme implicitly appears in [45]. To
the best of our knowledge, its SEM-SO-CPA security was not reported earlier.

Next, we show that Lossy Encryption is also implied by (honest-receiver)
statistically-hiding

(
2
1

)
-Oblivious Transfer and hash proof systems [17]. Com-

bining this with the results of [42,41], we recognize that the relatively new
Lossy Encryption primitive is essentially a different way to view the well-known
statistically-hiding

(
2
1

)
-OT primitive. Applying the reductions in [5] to this re-

sult, yields constructions of SOA secure encryption from both private
information retrieval (PIR) and homomorphic encryption.
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These results show that the Lossy and Selective Opening Secure Encryption
primitives (at least according to the latter’s indistinguishability-based security
definition), which have not been extensively studied until recently, are actually
implied by several well-known primitives: i.e., re-randomizable encryption, PIR,
homomorphic encryption, hash proof systems and statistically-hiding

(
2
1

)
-OT.

So far, the only known general constructions of lossy encryption were from lossy
trapdoor functions. Our results show that they can be obtained from many
seemingly weaker primitives (see figure 1).

Lossy
Encryption

IND-SO-CPA

Homomorphic
Encryption

PIR

Stat.
(
1
2

)
-OT

UHP

LTDFs

Re-Randomizable
Encryption

[42,41]
[15]

[35]

[41]

[26]

[5]

Shown in this paper
Shown in previous work

Fig. 1. Constructing Lossy Encryption

Selective Opening Security Against Chosen-Ciphertext Attacks: Continuing the
study of selective-opening security, we present definitions chosen-ciphertext se-
curity (CCA2) in the selective opening setting (in both the indistinguishability
and simulation-based models) and describe encryption schemes that provably
satisfy these enhanced forms of security. Despite recent progress, relatively few
methods are known for constructing IND-CCA2 cryptosystems in the standard
model. The problem is even more complex with selective openings, where some
known approaches for CCA2 security do not seem to apply. We note how the
Naor-Yung paradigm, even when applied with statistical zero knowledge proofs
fails to prove CCA2 security in the selective opening setting. Essentially, this is
because the selective opening adversary learns the randomness used in the sig-
nature scheme, which allows him to forge signatures, and thus create ciphertexts
that cannot be handled by the simulated decryption oracle.

The results of Fehr, Hofheinz, Kiltz and Wee [23] show how to modify univer-
sal hash proof systems [17] to achieve security under selective openings. We
take a different approach and follow (a variant of) the Canetti-Halevi-Katz
paradigm [11]. This too encounters many obstacles in the selective opening set-
ting. Nevertheless, under standard assumptions (such as DDH or the Composite
Residuosity assumption), we construct schemes featuring compact ciphertexts
while resisting adaptive (i.e., CCA2) chosen-ciphertext attacks according to our
indistinguishability-based definition. When comparing our schemes to those of
[23], we note that our public key size depends on n, the number of senders that
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can be possibly corrupted, while the systems of [23] are independent of n. On the
other hand, to encrypt m-bit messages with security parameter λ, our cipher-
texts are of length O(λ+m), while theirs are of length O(λm). Our public-keys
are longer than in [23] because our construction relies on All-But-N Lossy Trap-
door Functions (defined below), which have long description. The recent com-
plementary work of Hofheinz [28] shows how to create All-But-Many Trapdoor
Functions with short keys. Using his results in our construction eliminates the
dependence of the public-key size on n. Regarding security definitions, our
constructions satisfy an indistinguishability-based definition (IND-SO-CCA),
whereas theirs fit a simulation-based definition (SEM-SO-CCA) which avoids
the restriction on the efficient conditional re-sampleability of the message distri-
bution.

The scheme of [23] is very different from ours and we found it interesting to
investigate the extent to which well-known paradigms like [11] can be applied in
the present context. Moreover, by adapting the Naor-Yung paradigm [38], under
more general assumptions, we give a CCA1 construction that also satisfies a
strong simulation-based notion of adaptive selective opening security.

One advantage of our IND-SO-CCA scheme is the ability to natively encrypt
multi-bit messages. It is natural to consider whether our approach applies to
the scheme of Bellare, Waters and Yilek [7] to achieve multi-bit IND-SO-CCA
encryption. The scheme of [7], like [23], encrypts multi-bit messages in a bitwise
manner. Applying a Canetti-Halevi-Katz-like transformation to the construction
of [7] does not immediately yield IND-SO-CCA encryption schemes for multi-bit
messages: the reason is that it is not clear how to prevent the adversary from
reordering the bit encryptions without employing a one-time signature scheme.

2 Background

If f : X → Y is a function, for any subset Z ⊂ X , we let f(Z) = {f(x) : x ∈ Z}.
If A is a PPT machine, then a

$← A denotes the action of running A and ob-
taining an output a, which is distributed according to the internal randomness
of A. Also, coins(A) denotes the distribution of A’s internal randomness, so that

the distribution {a $← A} is actually {r $← coins(A) : a = A(r)}. If R is a set, we

use r $← R to denote sampling uniformly from R.
When λ is a security parameter, negl(λ) denotes the set of negligible functions

(i.e., which decrease faster than the inverse of any polynomial in λ). If X and
Y are families of distributions indexed by λ, their statistical indistinguishability
is written as X ≈s Y . We write X ≈c Y to express that X and Y are computa-
tionally indistinguishable, i.e., for all PPT adversaries A, for all polynomials p,
then for all sufficiently large λ, we have |Pr[AX = 1]− Pr[AY = 1]| ∈ negl(λ).

2.1 Selective Opening Secure Encryption

We recall the indistinguishability-based definition of encryption secure against
a selective opening adversary, originally formalized in [5]. We define a real game
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and an ideal game which should be indistinguishable to any efficient adversary.
The adversary receives both the messages and the randomness for his selection.
This mirrors the fact that an adaptive MPC adversary learns the entire history
of corrupted players (i.e., there are no secure erasures). If the adversary receives
only the messages this would reduce to standard CPA security.

As in the notations of [5], M denotes an n-message sampler outputting a
n-vector m = (m1, . . . ,mn) of messages whereas M|I,m[I] denotes an algorithm
that conditionally resamples another random n-vector m′ = (m′

1, . . . ,m
′
n) such

that m′
i = mi for each i ∈ I ⊂ {1, . . . , n}. If such a resampling can be done

efficiently for all I,m, thenM is said to support efficient conditional resampling.

Definition 1. (Indistinguishability under selective openings). A public key cryp-
tosystem (G,E,D) is indistinguishable under selective openings (or IND-SO-
CPA secure) if, for any message sampler M supporting efficient conditional
resampling and any PPT adversary A = (A1,A2), we have∣∣∣Pr

[
Aind-so-real = 1

]
− Pr

[
Aind-so-ideal = 1

]∣∣∣ ∈ negl(λ)

where the games ind-so-real and ind-so-ideal are defined as follows.

IND-SO-CPA (Real) IND-SO-CPA (Ideal)

m = (m1, . . . ,mn)
$←M m = (m1, . . . ,mn)

$←M
r1, . . . , rn

$← coins(E) r1, . . . , rn
$← coins(E)

(I, st)
$← A1

(
pk,E(m1, ri), . . . (I, st)

$← A1

(
pk,E(m1, ri), . . . , E(mn, rn)

)
. . . , E(mn, rn)

)
m′ = (m′

1, . . . ,m
′
n)

$←M|I,m[I]

b
$← A2

(
st, (mi, ri)i∈I ,m

)
b

$← A2

(
st, (mi, ri)i∈I ,m

′)
In the real game, the challenger samples m = (m1, . . . ,mn) $← M, chooses

r1, . . . , rn
$← coins(E) and sends (E(m1, r1), . . . , E(mn, rn)) to A who responds

with a subset I ⊂ {1, . . . , n} and obtains {ri}i∈I as well as the entire vector
m = (m1, . . . ,mn). Finally, A outputs a bit b ∈ {0, 1}.

In the ideal game, the challenger also samples m = (m1, . . . ,mn) $← M,

chooses r1, . . . , rn
$← coins(E) and sends (E(m1, r1), . . . , E(mn, rn)) to A. The

latter chooses a subset I ⊂ {1, . . . , n} and obtains {ri}i∈I . The only difference
w.r.t. the real game is that, instead of revealing m, the challenger samples a new
vector m′ $←M|I,m[I] and sends m′ to A. Eventually, A outputs a bit b ∈ {0, 1}.
This definition of IND-SO-CPA security (taken from [5]) does not allow the
message distribution M to depend on the public key. However, all our proofs
(as well as the proof that Lossy Encryption is IND-SO-CPA secure in [5]) go
through essentially unchanged if M is allowed to depend on the public-key of
the scheme. For consistency, we continue to use the definition of [5].
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2.2 Lossy Encryption

Bellare et al. [5] define Lossy Encryption, expanding on the definitions of Dual-
Mode Encryption [41] and Meaningful/Meaningless Encryption [32]. A ‘lossy’
(or ‘messy’ in the terminology of [41]) cryptosystem has two types of public keys
which specify two different modes of operation. In the normal mode, encryption
is injective, while in the lossy (or ‘messy’) mode, the ciphertexts generated by
the encryption algorithm are independent of the plaintext. We also require that
no efficient adversary can distinguish normal keys from lossy keys. Bellare et
al. [5] introduce a property called openability, which allows a possibly inefficient
algorithm to open a ciphertext generated under a lossy key to any plaintext.

Definition 2. A lossy public-key cryptosystem is a tuple (G,E,D) such that

• G(1λ, inj) outputs keys (pk, sk) which are called injective keys.
• G(1λ, lossy) outputs keys (pklossy, sklossy) which are called lossy keys.

Additionally, (G,E,D) are efficient algorithms satisfying these properties:

1. We have Pr[(pk, sk) $← G(1λ, inj); r $← coins(E) : D(sk,E(pk, x, r)) = x] = 1
for all plaintexts x ∈ X. This property is called correctness on injective keys.

2. Indistinguishability of keys. In lossy mode, public keys are computationally
indistinguishable from those in the injective mode. If proj : (pk, sk) �→ pk is
the projection map, then {proj(G(1λ), inj)} ≈c {proj(G(1λ, lossy))}.

3. Lossiness of lossy keys. If (pklossy, sklossy)
$← G(1λ, lossy), for all x0, x1 ∈ X,

the distributions E(pklossy, x0, R) and E(pklossy, x1, R) are statistically close.

4. Openability. If (pklossy, sklossy)
$← G(1λ, lossy), and r $← coins(E), then for all

x0, x1 ∈ X with overwhelming probability, there exists r′ ∈ coins(E) such that
E(pklossy, x0, r) = E(pklossy, x1, r

′). Hence, there is an unbounded algorithm
opener that can open a lossy ciphertext to any plaintext.

Although openability is implied by property (3), it is convenient to state it ex-
plicitly in terms of an algorithm. In [5], it was shown that, if the algorithm opener
is efficient, then the encryption scheme is actually SEM-SO-CPA secure. We do
not explicitly require schemes to be IND-CPA secure since semantic security fol-
lows from the indistinguishability of keys and lossiness of the lossy keys. In [5],
it was shown that the IND-CPA secure cryptosystem based on Lossy Trapdoor
Functions given in [42], is in fact a Lossy Encryption. Next, they proved that any
Lossy Encryption scheme where the plaintext space admits a n-message sampler
with efficient resampling is IND-SO-CPA secure.

3 Constructing Lossy Encryption Schemes

3.1 Re-Randomizable Encryption Implies Lossy Encryption

In many cryptosystems, given a ciphertext c and a public-key, it is possible to re-
randomize c to a new ciphertext c′ such that c and c′ encrypt the same plaintext
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but are statistically independent. We call a public key cryptosystem given by
algorithms (G,E,D) statistically re-randomizable1 if

• (G,E,D) is semantically-secure in the standard sense (IND-CPA).
• There is negligible function ν, and an efficient function ReRand such that for

all λ, pk,m, r1 we haveΔ({r0 $← coins(E) :E(pk,m, r0)},{r′ $← coins(ReRand) :
ReRand(E(pk,m, r1), r′)}) < ν(λ).

Since re-randomization does not require any kind of group structure on the plain-
text space or any method for combining ciphertexts, re-randomizable encryption
appears to be a weaker primitive than homomorphic encryption, and all known
homomorphic cryptosystems are re-randomizable.

Our first result is a simple lossy encryption system (Ḡinj, Ḡlossy, Ē, D̄) obtained
from a statistically re-randomizable public-key cryptosystem (G,E,D).

• Key Generation: first, Ḡ(1λ, inj) generates (pk, sk)← G(1λ). Then, it picks

r0, r1
$← coins(E), computes e0 = E(pk, 0, r0), e1 = E(pk, 1, r1) and returns

(p̄k, s̄k) = ((pk, e0, e1), sk). Algorithm Ḡ(1λ, lossy) runs G(1λ), generating a

pair (pk, sk). Then, it picks r0, r1
$← coins(E) and generates e0 = E(pk, 0, r0),

e1 = E(pk, 0, r1). It returns (p̄k, s̄k) = ((pk, e0, e1), sk).
• Encryption: Ē(p̄k, b, r′) = ReRand(pk, eb, r

′) for b ∈ {0, 1}.
• Decryption D̄(s̄k, c), simply outputs D(sk, c).

It is not hard to show that this construction is a lossy encryption scheme,
as formally proved in the full version of the paper. Although it only allows
encrypting single bits, it can be easily modified to encrypt longer messages
if the underlying cryptosystem is homomorphic and if the set of encryptions
of zero can be almost uniformly sampled (the details are available in the full
paper).

We also note that specific homomorphic cryptosystems such as Paillier [39]
or Damg̊ard-Jurik [20] provide more efficient constructions where multi-bit mes-
sages can be encrypted. In addition, as shown in the full version of the paper, the
factorization of the modulus N provides a means for efficiently opening a lossy
ciphertext to any plaintext. Thus this scheme is actually SEM-SO-CPA secure
when instantiated with these cryptosystems. This provides the most efficient
known examples of SEM-SO-CPA secure cryptosystems. Previously, the most
efficient known SEM-SO-CPA secure construction was the Goldwasser-Micali
cryptosystem [5] which can only encrypt single bits.

1 This definition of re-randomizable encryption requires statistical re-randomization.
It is possible to define re-randomizable encryption which satisfies perfect re-
randomization (stronger) or computational re-randomization (weaker). Such defini-
tions already exist in the literature (see for example [40,25,29,14]). Our constructions
require statistical re-randomization, and do not go through under a computational
re-randomization assumption.
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3.2 Statistically-Hiding
(2
1

)
-OT Implies Lossy Encryption

Honest-receiver two-round statistically-hiding
(
2
1

)
-oblivious transfer is a protocol

between a sender Sen and a receiver Rec = (Recq,Recr). The former has two
strings s0, s1 and the latter has a bit b. The receiver Recq generates a query q,
which is sent to Sen, along with some state information sk. The sender evaluates
q(s0, s1) and sends the result rsp = Sen(q, s0, s1) to Recr who uses sk to get sb.

• Correctness: For all s0, s1 ∈ {0, 1}k, b ∈ {0, 1}, there exists ν ∈ negl(λ) s.t.

Pr[(q, sk) $← Recq(1λ, b); rsp
$← Sen(q, s0, s1) : Recr(sk, rsp) = sb] ≥ 1−ν(λ).

• Receiver Privacy: b remains computationally hidden from Sen’s view. That
is, we must have {(q, sk) $← Recq(1λ, 0) : q} ≈c {(q, sk) $← Recq(1λ, 1) : q},
where the distributions are taken over the internal randomness of Recq.

• Sender Privacy: for any b ∈ {0, 1}, for any strings s0, s1, s′0, s
′
1 such that

sb = s′b and any honest receiver’s query q = Recq(1λ, b), it must hold that

{(q, sk) $← Recq(1λ, b); rsp $← Sen(q, s0, s1) : rsp}
≈s {(q, sk) $← Recq(1λ, b); rsp $← Sen(q, s′0, s

′
1) : rsp},

the distributions being taken over the internal randomness of Recq and Sen.
A two-round honest-receiver statistically-hiding

(
2
1

)
-OT (Sen,Rec) gives a

lossy encryption as follows:
• Key Generation: Define G(1λ, inj) = Recq(1λ, 0). Set pk = q, and sk = sk.

Define G(1λ, lossy) = Recq(1λ, 1). Set pk = q, and sk = ⊥.
• Encryption: Define E(pk,m, (r, r∗)) = Sen(q,m, r; r∗), where r∗ is the ran-

domness used in Sen(q,m, r) and r
$← {0, 1}|m| is a random string.

• Decryption: given c= rsp in injective mode, defineD(sk, rsp)=Recr(sk, rsp).

Lemma 1. The scheme (G,E,D) forms a lossy encryption scheme.

The (straightforward) proof of Lemma 1 can be found in the full version
of this paper. Since single-server Private Information Retrieval (PIR) implies
statistically-hiding OT [15], we find the following corollary.

Corollary 1. One-round Single-Server PIR implies Lossy Encryption.

Since homomorphic encryption implies PIR [33,35], the following result follows.

Corollary 2. Homomorphic encryption implies Lossy Encryption.

In the half simulation model, statistically hiding
(
2
1

)
-OT can rely [30,26] on

smooth hash proof systems that fit a slight modification of the original defini-
tion [17] with suitable verifiability properties. In the honest-but-curious receiver
setting (which suffices here), it was already noted in [26][Section 1.3] that ordi-
nary hash proof systems are sufficient to realize

(
2
1

)
-OT. In the full version of

the paper, we describe a simplification of the construction of lossy encryption
from hash proof systems and obtain the next result.
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Corollary 3. Smooth projective hash functions imply Lossy Encryption.

To summarize this section, since lossy encryption is selective-opening secure, we
obtain the following theorem.

Theorem 1. Statistically-hiding 2-round honest-receiver
(
2
1

)
-OT, single server

PIR, smooth projective hash proof systems and homomorphic encryption all im-
ply IND-SO-CPA secure encryption.

4 Chosen-Ciphertext Security

When an adversary has access to a decryption oracle, many cryptosystems be-
come insecure. The notion of chosen-ciphertext security [38,43,19] was created
to address this issue and, since then, many schemes have achieved this security
level. The attacks of Bleichenbacher on RSA PKCS#1 [6] emphasized the im-
portance of security against chosen-ciphertext attacks (CCA).

The need for selective opening security was first recognized in the context
of Multi-Party Computation (MPC), where an active MPC adversary can view
all ciphertexts sent in a current round and then choose a subset of senders to
corrupt. It is natural to imagine an adversary who, in addition to corrupting a
subset of senders, can also mount a chosen-ciphertext attack against the receiver.
Schemes proposed so far (based on re-randomizable encryption or described in
[5]) are obviously insecure in this scenario.

In this section, we extend the notion of chosen-ciphertext security to the selec-
tive opening setting. As in the standard selective-opening setting, we can define
security either by indistinguishability, or by simulatability. We will give defini-
tions of security as well as constructions for both settings.

Classical techniques to acquire chosen-ciphertext security are delicate to use
here. Handling decryption queries using the Naor-Yung paradigm [38] and non-
interactive zero-knowledge proofs [44] is not straightforward as, when the adver-
sary makes her corruption query, it should obtain the random coins that were
used to produce NIZK proofs. Fehr, Hofheinz, Kiltz and Wee [23] showed how
to use non-committing encryption [10] along with a modified hash proof sys-
tem [17] to achieve chosen-ciphertext security in the selective opening setting
in the simulation-based model (SEM-SO-CCA). Our work takes a different ap-
proach and seeks to apply the Canetti-Halevi-Katz paradigm [11]. As we shall
see, adapting this methodology to the selective opening setting encounters a
number of technical obstacles that need to be overcome.

4.1 Chosen-Ciphertext Security: Indistinguishability

We begin with the indistinguishability-based definition. We define a real game
(ind-cca2-real) and an ideal game (ind-cca2-ideal). In both games, the challenger
generates a key pair (sk, pk)← G(1λ) and sends pk to A. The adversary is then
allowed to adaptively make the following types of queries.
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• Challenge Query: let M be a message sampler. The latter samples a vec-
tor m = (m1, . . . ,mn) $← M and returns a vector containing n “target”
ciphertexts C = (C[1], . . . ,C[n])← (E(pk,m1, r1), . . . , E(pk,mn, rn)).

• Corrupt Query: A chooses I ⊂ {1, . . . , n} and receives {(mi, ri)}i∈I .

• In ind-cca2-real, the challenger then sends {mj}j /∈I to the adversary.

• In ind-cca2-ideal, the challenger re-samples m′ = (m′
1, . . . ,m

′
n) $←M|I,m[I]

(i.e., so that m′
j = mj for each j ∈ I) and sends {m′

j}j /∈I to A.

• Decryption Queries: A chooses a ciphertext C such that C �= C[i] for each
i ∈ {1, . . . , n} and sends C to the challenger which responds with D(sk, C).

After polynomially-many queries, one of which is a challenge query and precedes
the corrupt query (which is unique as well), the adversary outputs b ∈ {0, 1}.
Definition 3. A public key cryptosystem is IND-SO-CCA2 secure if, for any
polynomial n and any n-message sampler M supporting efficient conditional re-
sampling, any PPT adversary A has negligibly different outputs in the real game
and in the ideal game: for some negligible function ν, we must have∣∣∣Pr[Aind-cca2-real = 1]− Pr[Aind-cca2-ideal = 1]

∣∣∣ < ν.

4.2 Chameleon Hash Functions

A chameleon hash function [34] CMH = (CMKg,CMhash,CMswitch) consists
of an algorithm CMKg that, given a security parameter λ, outputs a key pair
(hk, tk) $← G(λ). The hashing algorithm outputs y = CMhash(hk,m, r) given the
public key hk, a message m and random coins r ∈ Rhash. On input of m, r,m′

and the trapdoor key tk, the switching algorithm r′ ← CMswitch(tk,m, r,m′)
outputs r′ ∈ Rhash such that CMhash(hk,m, r) = CMhash(hk,m′, r′). Collision-
resistance mandates that it be infeasible to find pairs (m′, r′) �= (m, r) such that
CMhash(hk,m, r) = CMhash(hk,m′, r′) without knowing tk. Uniformity guaran-
tees that the distribution of hashes is independent of the message m, in particu-
lar, for all hk, and m,m′, the distributions {r←Rhash : CMHash(hk,m, r)} and
{r←Rhash : CMHash(hk,m′, r)} are identical. It is well-known that chameleon
hashing can be based on standard number theoretic assumptions.

4.3 A Special Use of the Canetti-Halevi-Katz Paradigm

The Canetti-Halevi-Katz technique [11] allows building chosen-ciphertext se-
cure cryptosystems from weakly secure identity-based or tag-based encryption
scheme. A tag-based encryption scheme (TBE) [36,31] is a cryptosystem where
the encryption and decryption algorithms take an additional input, named the
tag, which is a binary string of appropriate length with no particular structure.
A TBE scheme consists of a triple TBE = (TBEKg,TBEEnc,TBEDec) of efficient
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algorithms where, on input of a security parameter λ, TBEKg outputs a pri-
vate/public key pair (pk, sk); TBEEnc is a randomized algorithm that outputs
a ciphertext C on input of a public key pk, a string θ – called tag – and a mes-
sage m ∈ MsgSp(λ); TBEDec(sk, θ, C) is the decryption algorithm that takes as
input a secret key sk, a tag θ and a ciphertext C and returns a plaintext m or
⊥. Associated with TBE is a plaintext space MsgSp. Correctness requires that
for all λ ∈ N, all key pairs (pk, sk) ← TBEKg(1λ), all tags θ and any plaintext
m ∈ MsgSp(λ), it holds that TBEDec(sk, θ,TBEEnc(pk, θ,M)) = m.

Selective Opening Security for TBE Schemes. In the selective opening
setting, the weak CCA2 security definition of [31] can be extended as follows.

Definition 4. A TBE scheme TBE = (TBEKg,TBEEnc,TBEDec) is selective-
tag weakly IND-SO-CCA2 secure (or IND-SO-stag-wCCA2 secure) if, for any
polynomial n and any n-message sampler M supporting efficient conditional re-
sampling, any PPT adversary A produces negligibly different outputs in the real
and ideal games, which are defined as follows.
1. The adversary A chooses n tags θ�

1 , . . . , θ
�
n and sends them to the challenger.

2. The challenger generates a key pair (sk, pk) ← TKEKg(1λ) and hands pk to
A. The latter then adaptively makes the following kinds of queries:

• Challenge Query: let M be a message sampler for MsgSp(λ). The chal-

lenger samples (m1, . . . ,mn) $← M and returns C = (C[1], . . . ,C[n]),
where C[i] = TBEEnc(pk, θ�

i ,mi, ri)
• Corrupt Query: A chooses I ⊂ {1, . . . , n} and obtains {(mi, ri)}i∈I .

- In the real game, the challenger then sends {mj}j /∈I to the adversary.

- In the ideal game, the challenger re-samples (m′
1, . . . ,m

′
n) $←M|I,m[I]

and reveals {m′
j}j /∈I .

• Decryption Queries: A sends a pair (C, θ) such that θ �∈ {θ�
1 , . . . , θ

�
n}.

The challenger replies with TBEDec(sk, θ, C) ∈ MsgSp(λ) ∪ {⊥}.
After polynomially-many queries, one of which is a challenge query, A outputs
b ∈ {0, 1}. Its advantage AdvIND-SO-stag-wCCA2

A (λ) is defined as in definition 3.

At first, one may hope to obtain IND-SO-CCA2 security by applying the CHK
method [11] to any IBE/TBE scheme satisfying some weaker level of selective
opening security. Let TBE = (TBEKg,TBEEnc,TBEDec) be a secure TBE scheme
in the sense of definition 4 and let Σ = (G,S,V) be a strong one-time signature.
The CHK technique turns TBE into a cryptosystem PKE = (G,E,D) which is
obtained by letting G(1λ) output (sk′, (Σ, pk′)) where (sk′, pk′) ← TBEKg(1λ).
To encrypt a message m, E generates a one-time signature key pair (SK,VK) ←
G(1λ), computes Ctbe = TBEEnc(pk,VK,m) under the tag VK and sets the PKE
ciphertext as (VK, Ctbe, σ), where σ = S(SK, Ctbe).

In the selective opening setting, when the adversary makes its corruption
query in the reduction, it must obtain the random coins that were used to gen-
erate one-time signature keys appearing target ciphertexts. Then, it is able to
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re-compute the corresponding private keys and make decryption queries for ci-
phertexts involving the same verification keys as target ciphertexts, which causes
the reduction to fail. Although schemes using one-time signatures do not appear
to become trivially insecure, the reduction of [11,31] ceases to go through.

It was showed in [46] that chameleon hash functions [34] can be used to
turn certain TBE schemes, termed separable, into full-fledged IND-CCA2 cryp-
tosytems and supersede one-time signatures in the CHK transform. A TBE
scheme is said separable if, on input of pk, m, θ, algorithm TBEEnc(pk, t,m) uses
randomness r ∈ Rtbe and returns Ctbe = (f1(pk,m, r), f2(pk, r), f3(pk, θ, r)),
where functions f1, f2 and f3 are computed independently of each other and are
all deterministic (so that they give the same outputs when queried twice on the
same (m, r), r and (θ, r)). In addition, f2 must be injective.

The construction of [46]2 uses chameleon hashing instead of one-time sig-
natures. Key generation requires to create a TBE key pair (pk′, sk′) and a
chameleon hashing public key hk. The private key of PKE is the TBE private
key sk′. Encryption and decryption procedures are depicted hereafter.

E(m,pk) D(sk, C)
Parse pk as (pk′, hk) Parse C as (u, v, w, r2) and sk as sk′

r1 ←Rtbe; r2 ←Rhash θ = CMhash(hk, u||v, r2)
u = f1(pk

′,m, r1); v = f2(pk
′, r1) Return m← TBEDec(sk′, θ, (u, v, w))

θ = CMhash(hk, u||v, r2)
w = f3(pk

′, θ, r1)
Return C = (u, v, w, r2)

Unlike the CHK transform, this construction computes C without using any
other secret random coins than those of the underlying TBE ciphertext. The tag
is derived from a ciphertext component u and some independent randomness r2
that publicly appears in C. For this reason, we can hope to avoid the difficulty
that appears with the CHK transform. Indeed, we prove that any separable TBE
that satisfies definition 4 yields an IND-SO-CCA2 cryptosystem.

Theorem 2. If TBE = (TBEKg,TBEEnc,TBEDec) is a separable TBE scheme
with IND-SO-stag-wCCA2 security, the transformation of figure ?? gives an
IND-SO-CCA2 PKE scheme. (The proof is given in the full version of the paper).

4.4 Lossy and All-But-n Trapdoor Functions

A tuple (Sltdf, Fltdf , F
−1
ltdf) of PPT algorithms is called a family of (d, k)-lossy

trapdoor functions [42] if the following properties hold:

2 As described in [46], the construction uses a single function F instead of f1 and f2
(i.e., we are re-writing it in the particular case F (m,r) = (f1(pk,m, r), f2(pk, r))).
The security proof of [46] implicitly requires F to be such that no two pairs (m, r) �=
(m′, r′) give F (m, r) = F (m′, r′). Using functions f1, f2 is a way to enforce this.
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Sampling injective functions: Sltdf(1λ, 1) outputs (s, t), where s is a function
index and t its trapdoor. It is required that Fltdf(s, ·) be injective on {0, 1}d

and F−1
ltdf(t, Fltdf(s, x)) = x for all x.

Sampling lossy functions: Sltdf(1λ, 0) outputs (s,⊥) where s is a function
index and Fltdf(s, ·) is a function on {0, 1}d with image size at most 2d−k.

Indistinguishability: {(s, t) $← Sltdf(1λ, 1) : s} ≈c {(s,⊥) $← Sltdf(1λ, 0) : s}.
Along with lossy trapdoor functions, Peikert and Waters [42] defined all-but-one
(ABO) functions. These are lossy trapdoor functions, except instead of having
two branches (a lossy branch and an injective branch) they have many branches
coming from a branch set B, all but one of which are injective.

The Peikert-Waters system only requires ABO functions to have one lossy
branch because the IND-CCA2 game involves a single challenge ciphertext and
a single ABO function must be evaluated on a lossy branch. Since the IND-
SO-CCA security game involves n > 1 challenge ciphertexts, we need to gen-
eralize ABO functions into all-but-n (ABN) functions that have multiple lossy
branches and where all branches except the specified ones are injective. A tuple
(Sabn, Gabn, G

−1
abn) is a family of ABN functions if these conditions are satisfied.

• Sampling with a given lossy set: For any n-subset I ⊂ B, Sabn(1λ, I)
outputs s, t where s is a function index, and t its trapdoor. We require that
for any b ∈ B\I, Gabn(s, b, ·) is an injective deterministic function on {0, 1}d,
and G−1

abn(t, b, Gabn(s, b, x)) = x for all x. Additionally, for each b ∈ I, the
image Gabn(s, b, ·) has size at most 2d−k.

• Hidden lossy sets: For any distinct n-subsets I�
0 , I

�
1 ⊂ B, the first outputs

of Sabn(1λ, I�
0 ) and Sabn(1λ, I�

1 ) are computationally indistinguishable.

Just as ABO functions can be obtained from lossy trapdoor functions [42], ABN
functions can also be constructed from LTDFs and a general construction is
provided in the full version of the paper. The recent results of Hofheinz [28],
show how to create All-But-Many Lossy Functions, which are Lossy Trapdoor
Functions with a super-polynomial number of lossy branches. The advantage
of his construction is that the description of the function is independent of N .
Hofheinz’s All-But-Many functions can be plugged into our constructions to
shrink the size of the public-key in our constructions (see [28] for details).

4.5 An IND-SO-stag-wCCA2 TBE Construction

We construct IND-SO-stag-wCCA2 tag-based cryptosystems from lossy trap-
door functions. Let (CMKg,CMhash,CMswitch) be a chameleon hash function
where CMhash ranges over the set of branches B of the ABN family. We even-
tually obtain an IND-SO-CCA2 public key encryption scheme as a LTDF-based
construction that mimics the one [42] (in its IND-CCA1 variant).

Let (Sltdf, Fltdf , F
−1
ltdf) be a family of (d, k)-lossy-trapdoor functions, and let

(Sabn, Gabn, G
−1
abn) be a family of (d, k′) all-but-n functions with branch set

{0, 1}v where v is the length of a verification key for a one-time signature. We
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require that 2d − k − k′ ≤ t − κ, for κ = κ(t) = ω(log t). Let H be a pairwise
independent hash family from {0, 1}d → {0, 1}�, with 0 <  < κ− 2 log(1/ν), for
some negligible ν = ν(λ). The message space will be MsgSp = {0, 1}�.

• TBEKg(1λ): choose h
$← H in the pairwise independent hash family and

generate (s, t) ← Sltdf(1λ, inj), (s′, t′) ← Sabn(1λ, {0, 1, . . . , n − 1}). The
public key will be pk = (s, s′, h) and the secret key will be sk = (t, t′).

• TBEEnc(m, pk, θ): to encrypt m ∈ {0, 1}� under the tag θ ∈ B, choose x $←
{0, 1}d. Compute c0 = h(x) ⊕m, c1 = Fltdf(s, x) and c2 = Gabn(s, θ, x) and
the TBE ciphertext is C =

(
c0, c1, c2

)
=
(
h(x)⊕m, Fltdf(s, x), Gabn(s′, θ, x)

)
.

• TBEDec(C, sk, θ): given C =
(
c0, c1, c2

)
and sk = t, compute x = F−1

ltdf(t, c1)
and m = c0 ⊕ h(x) if Gabn(s, θ, x) = c2. Otherwise, output ⊥.

The scheme is separable since C is obtained as c0 = f1(pk,m, x) = m ⊕ h(x),
c1 = f2(pk, x) = Fltdf(s, x) and c2 = f3(pk, θ, x) = Gabn(s′, θ, x).

Theorem 3. The algorithms described above form an IND-SO-stag-wCCA2 se-
cure tag-based cryptosystem assuming the security of the lossy and all-but-n
families. (The proof is given in the full version of the paper).

4.6 An All-But-n Function with Short Outputs

While generic, the all-but-n function described in the full version of the paper
has the disadvantage of long outputs, the size of which is proportional to nk.
Efficient all-but-one functions can be based on the Composite Residuosity as-
sumption [22,3]. We show that the all-but-one function of [22,3] extends into an
ABN function that retains short (i.e., independent of n or k) outputs. Multi-
ple lossy branches can be obtained using a technique that traces back to the
work of Chatterjee and Sarkar [18] who used it in the context of identity-based
encryption.

• Sampling with a given lossy set: given a security parameter λ ∈ N

and the desired lossy set I = {θ�
1 , . . . , θ

�
n}, where θ�

i ∈ {0, 1}λ for each i ∈
{1, . . . , n}, let γ ≥ 4 be a polynomial in λ.

1. Choose random primes p, q s.t. N = pq > 2λ.
2. Generate a vector �U ∈ (Z∗

Nγ+1)n+1 as follows. Let αn−1, . . . , α0 ∈ ZNγ be
coefficients of P [T ] =

∏n
i=1(T −θ�

i ) = T n +αn−1T
n−1 + · · ·+α1T +α0 in

ZNγ [T ] (note that P [T ] is expanded in ZNγ but its roots are all in Z∗
N ).

Then, for each i ∈ {0, . . . , n}, set Ui = (1 + N)αiaNγ

i mod Nγ+1, where

(a0, . . . , an) $← (Z∗
N )n+1 and with αn = 1.

3. The evaluation key is s′ = {N, �U = (U0, . . . , Un)} and the domain of the
function is {0, . . . , 2γλ/2 − 1}. The trapdoor is t′ = lcm(p− 1, q − 1).

• Evaluation: to evaluate Gabn(s′, θ, x), where x ∈ {0, . . . , 2γλ/2 − 1} and
θ ∈ {0, 1}λ, compute c =

(∏n
j=0 U

(θi mod Nγ)
i

)x
mod Nγ+1.
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• Inversion: for a branch θ, c = Gabn(s′, θ, x) is a Damg̊ard-Jurik encryption
of y = P (θ)x mod Nγ . Using t′ = lcm(p− 1, q − 1), we apply the decryption
algorithm of [20] to obtain y ∈ ZNγ and return x = yP (θ)−1 mod Nγ .

As in [22,3], Gabn(s′, θ, ·) has image size smaller than N when θ ∈ I and it can
be shown that H̃∞

(
x|(Gabn(s′, θ, x), N, �U )

) ≥ γλ/2− log(N).
We note that the ABN function Gabn(s′, θ, ·) is not injective for each branch

θ �∈ I, but only for those such that gcd(P (θ), Nγ) = 1. However, the fraction of
branches θ ∈ {0, 1}λ such that gcd(P (θ), Nγ) �= 1 is bounded by 2/min(p, q),
which is negligible. Moreover, the proof of theorem 3 is not affected if the TBE
scheme is instantiated with this ABN function and the LTDF of [22,3]. As ex-
plained in the full version of the paper, as long as factoring is hard (which is
implied by the Composite Residuosity assumption), the adversary has negligible
chance of making decryption queries w.r.t. to such a problematic tag θ.

Lemma 2. The above ABN function is lossy set hiding under the Composite
Residuosity assumption. (The proof is given in the full version of the paper).

The above ABN function yields an IND-SO-CCA2 secure encryption scheme
with ciphertexts of constant (i.e., independent of n) size but a public key of size
O(n). Encryption and decryption require O(n) exponentiations as they entail an
ABN evaluation. On the other hand, the private key has O(1) size, which keeps
the private storage very cheap. At the expense of sacrificing the short private key
size, we can optimize the decryption algorithm by computing x = G−1

abn(t′, θ, c2)
(instead of x = F−1

ltdf(t, c1)) so as to avoid computing Gabn(s′, θ, x) in the forward
direction to check the validity of ciphertexts. In this case, the receiver has to store
α0, . . . , αn−1 to evaluate P (θ) when inverting Gabn.

It is also possible to extend the DDH-based ABO function described in [42]
into an ABN function. However, in the full version of the paper, we describe a
more efficient lossy TBE scheme based on the DDH assumption.
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Abstract. In this paper we present the first CCA-secure public key en-
cryption scheme that is structure preserving, i.e., our encryption scheme
uses only algebraic operations. In particular, it does not use hash-
functions or interpret group elements as bit-strings. This makes our
scheme a perfect building block for cryptographic protocols where parties
for instance want to prove properties about ciphertexts to each other or
to jointly compute ciphertexts. Our scheme is very efficient and is secure
against adaptive chosen ciphertext attacks.

We also provide a few example protocols for which our scheme is use-
ful. For instance, we present an efficient protocol for two parties, Alice
and Bob, that allows them to jointly encrypt a given function of their
respective secret inputs such that only Bob learns the resulting cipher-
text, yet they are both ensured of the computation’s correctness. This
protocol serves as a building block for our second contribution which is a
set of protocols that implement the concept of so-called oblivious trusted
third parties. This concept has been proposed before, but no concrete re-
alization was known.

Keywords: public-key encryption, structure preserving, oblivious trusted
third party.

1 Introduction

Public key encryption and signature schemes have become indispensable build-
ing blocks for cryptographic protocols such as anonymous credential schemes,
group signatures, anonymous voting schemes, and e-cash systems. In the design
of such protocols, it is often necessary that one party be able to prove to an-
other that it has correctly signed or encrypted a message without revealing the
message and its signature or encryption. An efficient implementation of such
proofs is possible if the signature and encryption schemes allows one to employ
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generalized Schnorr [12] or Groth-Sahai proofs [21]. In the design of suitable
signature and encryption schemes one should therefore stay within the realm of
algebraic groups and not break the algebraic structures, for instance, by using
hash-functions in an essential way.

When it comes to signature schemes, a designer can pick from a number of
schemes that are suitable (e.g., [15,5,1]). For encryption schemes secure against
adaptive chosen ciphertext attack (CCA) the situation is quite different. Two
schemes that are somewhat suitable are the Camenisch-Shoup and the Cramer-
Shoup encryption schemes [7,18], allowing for the verifiable encryption (and
decryption) of discrete logarithms and group elements, respectively. Both these
schemes make use of a cryptographic hash function to achieve security against
chosen ciphertext attacks. These hash functions, unfortunately, prevent one from
efficiently proving relations between the input and output of the encryption
procedure. Such proofs, however, are an important feature in many advanced
protocols. They are for instance required when two parties are to jointly encrypt
(a function of) their respective inputs without revealing them or when a user is
to prove knowledge of a ciphertext, e.g., as a part of a proof of knowledge of a
leakage-resilient signature [22,20] (proving knowledge of a signature is a central
tool in privacy-preserving protocols which so far is not possible for leakage-
resilient signatures).

In this paper we present the first efficient structure preserving CCA secure
encryption scheme. The term “structure-preserving” is borrowed from the notion
of structure-preserving digital signatures [1]. An encryption scheme is called
structure-preserving if its public keys, messages (plaintexts), and ciphertexts
are group elements and the encryption and decryption algorithm consists only
of group and pairing operations. We achieve structure preserving encryption by
a novel implementation of the consistency check that ensures security against
chosen ciphertext attacks. More precisely, we implement the consistency checks
using a bilinear map between algebraic groups and embed all other ciphertext
components in the pre-image group of that map. Our ciphertext consistency
element(s) could be either one element in the target group or several group
elements in the pre-image group. The former gives better efficiency, whereas
the latter can be used in more scenarios, in particular those making use of
Groth-Sahai proofs [21]. We prove our encryption scheme secure against chosen
ciphertext attacks under the decisional linear assumption [6]. Our encryption
scheme and protocols also support so-called labels [7] which are public messages
attached to a ciphertext and are important in the scenario we consider in this
paper to bind a decryption policy to the ciphertext.

Our new encryption scheme is well suited to build a variety of protocols.
For instance, with our scheme the following protocol problems can be addressed
which are common stumbling stones when designing advanced cryptographic
protocols:

– Our scheme can be used in the construction of leakage-resilient signatures [20]
which will then enable, for the first time, a user to efficiently prove knowledge
of a leakage-resilient signature.



Structure Preserving CCA Secure Encryption and Applications 91

– A user, who is given a ciphertext and a Groth-Sahai proof that the cipher-
text was correctly computed, is able to prove to a third party that it is in
possession of such a ciphertext without revealing it.

– Two users can jointly compute a ciphertext (of a function) of two plaintexts
such that neither party learns the plain text of the other party and only one
of the parties learns the ciphertext.

The last problem typically appears in protocols that do some kind of conflict
resolution via a trusted third party. Examples include anonymity lifting (re-
vocation) in group signatures and in anonymous credential systems [14] and
optimistic fair exchange [3]. In these scenarios, there are typically two parties,
say Alice and Bob, who run a protocol with each other and then provide each
other with ciphertexts that can in case of a mishap (such as abuse of anonymity,
conflict, unfair abortion of the protocol, etc.) be presented to a third party for
resolution by decryption. Hereby, it is of course important that (1) the trusted
third party be involved in case of mishap only and (2) the parties can con-
vince each other that the ciphertexts indeed contain the right information. Note
that CCA security is crucial here, as the trusted third party effectively acts as
a decryption oracle. So far, protocol designers have used verifiable encryption,
which unfortunately has the disadvantage that both parties learn the ciphertext
of the other party. Hence, Alice could for instance take Bob’s ciphertext and
bribe the TTP so that it would act normally for all decryption requests except
when Bob’s ciphertext is presented in which case the TTP would just ignore the
request.

To address this problem Camenisch, Gross, and Heydt-Benjamin [10] propose
the concept of oblivious trusted third parties (OTP): here, such conflict resolution
protocols are designed in such a way that the trusted third party is kept oblivious
of the concrete instance of the conflict resolution protocol. This means if Bob
goes to the TTP for resolution, he cannot possibly be discriminated as the TTP
cannot tell whether it is contacted by Bob or some other person. Therefore, if the
TTP would deny such requests too often, that would be known and so there is
no reason for Bob to believe that the TTP will not resolve the conflict for him if
need be. Unfortunately, Camenisch et al. only provide a high-level construction
for such a protocol but do not present a concrete instantiation. Based on our
new encryption scheme, we present the first concrete protocols that implement
OTP.

We prove all our protocols secure under composable simulation-based security
definitions [16,4,23].

Related Work. There is of course a lot of related work on encryption schemes,
but our scheme is the first one that is structure preserving. Considering our
second contribution, the protocols for oblivious trusted parties, the only related
work is by Camenisch, Gross, and Heydt-Benjamin [10]. They introduced the
concept of oblivious trusted third parties but, as we mentioned, do not provide
any concrete protocol.
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2 Structure Preserving Encryption

In this section, we define the notion of structure-preserving encryption and
present the first instantiation of such a scheme. The term “structure-preserving”
is borrowed from the notion of structure-preserving digital signatures [1], and,
for encryption, represents the idea that ciphertexts are constructed purely using
(bilinear) group operations.

Note that the well known Cramer-Shoup [17,18] and Camenisch-Shoup [7]
encryption schemes are not structure preserving as they make use of a crypto-
graphic hash function. Even the hash-free variant of Cramer-Shoup is not struc-
ture preserving; that is because its consistency check requires group elements
to be interpreted as exponents, which is not a group operation. The details of
a proof of knowledge of a hash-free ciphertext would depend on the group’s in-
ternal structure, e.g., it might be based on so called double-discrete logarithm
proofs [8], which are bit-wise and thus much less efficient than standard discrete
logarithm representation proofs.

Definition 1. Structure Preserving Encryption. An encryption scheme is said
to be structure-preserving if (1) its public keys, messages, and ciphertexts con-
sist entirely of elements of a bilinear group, (2) its encryption and decryption
algorithm perform only group and bilinear map operations, and (3) it is provably
secure against chosen-ciphertext attacks.

2.1 Basic Notation

We work in a group G of prime order q generated by g and equipped with a
non-degenerate efficiently computable bilinear map ê : G × G → GT . Also,
recall the well-known DLIN assumption [6]:

Definition 2. Decisional Linear Assumption (DLIN). Let G be a group of prime
order q. For randomly chosen g1, g2, g3 ← G and r, s, t ← Zq, the following two
distributions are computationally indistinguishable:

(G, g1, g2, g3, gr
1, g

s
2, g

t
3) ≈ (G, g1, g2, g3, gr

1, g
s
2, g

r+s
3 ) .

2.2 Construction

We construct a structure-preserving encryption scheme secure under DLIN. The
scheme shares some similarities with the Cramer-Shoup encryption and with the
Linear Cramer-Shoup encryption described by Shacham [24], neither of which is
structure-preserving (even for their hash-free variants).

For simplicity, we describe the scheme when encrypting a message that is a
single group element in G, but it is easily extended to encrypt vectors of group
elements. The extension is presented in the full version of the paper. Also, our
scheme supports labels. We consider the case when a label L is a single group
element, but the scheme extends trivially for the case of a label which is a vector
of group elements. Labels from the space {0, 1}∗ could be hashed to one or several
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group elements, though in such cases they have to be part of the statement rather
than the witness for any NIZK proof.

– KeyGen(1λ): Choose random group generators g1, g2, g3 ← G∗. For ran-
domly chosen α ← Z3

q , set h1 = gα1
1 gα3

3 and h2 = gα2
2 gα3

3 . Then, select
β0, . . . ,β5 ← Z3

q, and compute fi,1 = g
βi,1
1 g

βi,3
3 , fi,2 = g

βi,2
2 g

βi,3
3 , for i =

0, . . . , 5. Output pk = (g1, g2, g3, h1, h2, {fi,1, fi,2}5i=0) and sk = (α, {βi}5i=0).
– Enc(pk, L,m): To encrypt a message m with a label L, choose random r, s←

Zq and set

u1 = gr
1 , u2 = gs

2, u3 = gr+s
3 , c = m · hr

1h
s
2,

v =
3∏

i=0

ê(f r
i,1f

s
i,2, ui) · ê(f r

4,1f
s
4,2, c) · ê(f r

5,1f
s
5,2, L),

where u0 = g. Output c = (u1, u2, u3, c, v).
– Dec(sk, L, c): Parse c as (u1, u2, u3, c, v). Then check whether

v
?=

3∏
i=0

ê(uβi,1
1 u

βi,2
2 u

βi,3
3 , ui) · ê(uβ4,1

1 u
β4,2
2 u

β4,3
3 , c) · ê(uβ5,1

1 u
β5,2
2 u

β5,3
3 , L),

where u0 = g. If the latter is unsuccessful, reject the ciphertext as invalid.
Otherwise, output m = c · (uα1

1 uα2
2 uα3

3 )−1.

Note that the ciphertext c ∈ G4 ×GT . Using the pairing randomization tech-
niques of [2], v ∈ GT can be replaced by six random group elements v0, . . . , v5 ∈
G for which the following equation holds: v =

∏3
i=0 ê(vi, ui) · ê(v4, c) · ê(v5, L).

This way, the ciphertext would consist only of elements in G. The modification
is straightforward and is described in the full version of this paper [11].

2.3 Correctness and Security

To observe the correctness of the decryption, note that

c · (uα1
1 uα2

2 uα3
3 )−1 = m · hr

1h
s
2 ·
(
(gr

1)
α1(gs

2)
α2(gr+s

3 )α3
)−1

= m · (gα1
1 gα3

3 )r(gα2
2 gα3

3 )s · ((gr
1)

α1(gs
2)

α2(gr+s
3 )α3

)−1
= m.

The correctness of the validity element v can be verified similarly.
Next, we show the CCA security of the encryption scheme. Our security proof

follows the high level idea of the Hash Proof System (HPS) paradigm [19]. Es-
sentially, Lemma 1 says the “proof” π, which is used as a one-time pad for
the encryption of the message, has a corresponding HPS which is 1-universal,
whereas Lemma 2 shows that the “proof” ϕ, which constitutes the consistency
check element, has a corresponding HPS that is 2-universal. To make the proof
below more accessible to readers unfamiliar with the HPS paradigm, we opt for
a self-contained proof which can be easily translated into the HPS framework.
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Theorem 1. If DLIN holds, the above public key encryption scheme is secure
against chosen-ciphertext attacks (CCA).

Proof sketch of Theorem 1: We proceed in a sequence of games. We start with a
game where the challenger behaves like in the standard IND-CCA game (i.e., the
challenge ciphertext is an encryption of mb, for a randomly chosen bit b, where
m0,m1 are messages given by the adversary), and end up with a game where the
challenge ciphertext is an encryption of a message chosen uniformly at random
from the message space. Then we show that all those games are computationally
indistinguishable. Let Wi denote the event that the adversary A outputs b′ such
that b = b′ in Game i.

Game 0. This is the standard IND-CCA game. Pr[W0] = 1
2 + AdvA(λ).

Game 1. For (m0,m1, L) chosen by the adversary, the challenge ciphertext
c = (u, c, v) is computed using the “decryption procedure”, i.e., u1 = gr

1 ,
u2 = gs

2, u3 = gr+s
3 , c = mb · uα1

1 uα2
2 uα3

3 and v =
∏3

i=0 ê(u
βi,1
1 u

βi,2
2 u

βi,3
3 , ui) ·

ê(uβ4,1
1 u

β4,2
2 u

β4,3
3 , c) · ê(uβ5,1

1 u
β5,2
2 u

β5,3
3 , L). The change is only syntactical, so the

two games produce the same distributions. Pr[W1] = Pr[W0].

Game 2. The randomness vector u = (u1, u2, u3) of the challenge ciphertext is
computed as non-DLIN tuple, i.e., u1 = gr

1, u2 = gs
2, u3 = gt

3 where r, s, t← Zq

and r + s �= t. Game 1 and Game 2 are indistinguishable by DLIN. Therefore,
| Pr[W2]− Pr[W1] | = negl(λ).

Game 3. First note that in the previous game, as well as in this one, any
decryption query with “correct” ciphertext, i.e., which has a randomness vector
a DLIN tuple, yields a unique plaintext. That is, regardless of the concrete choice
of sk which matches pk seen by the adversary, such queries do not reveal any
information about the secret key.

In this game, unlike the previous one, any decryption query with “malformed”
ciphertext, i.e, which has a non-DLIN randomness vector û, is rejected. Let’s
consider two cases:

– (û, ĉ, L̂) = (u, c, L). Such decryption query is rejected because it is either the
challenge ciphertext (when v̂ = v) or the verification predicate fails trivially
(when v̂ �= v). So, this case is the same in Game 2 and Game 3.

– (û, ĉ, L̂) �= (u, c, L). By Lemma 2, such decryption query is rejected in Game
2 with overwhelming probability, whereas in Game 3 it is always rejected.

As the number of decryption queries is polynomial, | Pr[W3] − Pr[W2] | =
negl(λ).

Game 4. The challenge ciphertext encrypts a random message from the message
space. Game 3 and Game 4 are (information theoretically) indistinguishable by
Lemma 1. Pr[W4] = Pr[W3].

In the last game, the challenger’s choice b is independent from the cipher-
text, so Pr[W4] = 1

2 . Then, by the indistinguishability of the consecutive games
Pr[W0] = 1

2 + negl(λ), hence AdvA(λ) = negl(λ). ��
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Lemma 1 which we used in the above proof says that the one-time pad of the
message, when computing the challenge ciphertext in Game 4, can be replaced
by a random element. Whereas Lemma 2 shows that any decryption query with
“malformed” ciphertext ĉ is rejected with overwhelming probability because the
adversary A can hardly do better than guess the correct validity element.

For the formulation and proof of the lemmas, let g1, g2, g3 ← G∗ and u1 = gr
1 ,

u2 = gs
2, u3 = gt

3, where r, s, t are randomly chosen from Zq and r + s �= t. And
for convenience, denote z1 = dlogg(g1), z2 = dlogg(g2), and z3 = dlogg(g3).

Lemma 1. For randomly chosen α ← Z3
q, let h1 = gα1

1 gα3
3 , h2 = gα2

2 gα3
3 , and

π = uα1
1 uα2

2 uα3
3 . Then, for a randomly chosen ψ ← G it is true that the following

distributions are equivalent: (h1, h2, π) ≡ (h1, h2, ψ).

Proof sketch of Lemma 1: Note that h1 = gα1z1+α3z3 and h2 = gα2z2+α3z3 .
Then, for the tuple (h1, h2, π) the following equation holds:

⎛⎝ z1 0 z3
0 z2 z3
rz1 sz2 tz3

⎞⎠ ·
⎛⎝α1

α2

α3

⎞⎠ =

⎛⎝dlogg(h1)
dlogg(h2)
dlogg(π)

⎞⎠
Denote the matrix with M . It has a determinant det(M) = z1z2z3(t − r − s)
which is not equal to 0 due to the choice of the parameters. Therefore the matrix
is invertible, and for any π ∈ G, and fixed h1, h2, there exists a unique x which
yields the tuple (h1, h2, π). ��

Lemma 2. Let û = (û1, û2, û3) be any tuple such that û1 = gr̂
1, û2 = gŝ

2, and
û3 = gt̂

3, for r̂ + ŝ �= t̂. And for randomly chosen β0,β1, . . . ,β5 ← Z3
q, let

fi,1 = g
βi,1
1 g

βi,3
3 , fi,2 = g

βi,2
2 g

βi,3
3 , for i = 0, . . . , 5. For any m and m̂ in G5, let

ϕ =
5∏

i=0

ê(uβi,1
1 u

βi,2
2 u

βi,3
3 ,mi) and ϕ̂ =

5∏
i=0

ê((û1)βi,1(û2)βi,2(û3)βi,3 , m̂i),

where m0 = m̂0 = g. Then, for any m and m̂, m �= m̂, it is true that the follow-
ing two distributions are equivalent: ({fi,1fi,2}5i=0, ϕ, ϕ̂) ≡ ({fi,1fi,2}5i=0, ϕ, ψ),
where ψ ← GT is randomly chosen.

Proof sketch of Lemma 2: Similarly to the proof of the previous lemma, let’s
define all variables which depend on {βi}5i=0 as the result of a constant matrix
M multiplied by the vector (β�

0 ||β�
1 || . . . ||β�

5 )�. For convenience, denote with
wi = dlogg(mi) and ŵi = dlogg(m̂i), for i = 1, . . . , 5. Then, we have:
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1 0 z3 − − − . . . − − −
0 z2 z3 − − − . . . − − −
− − − z1 0 z3 . . . − − −
− − − 0 z2 z3 . . . − − −
...

...
...

...
...

...
. . .

...
...

...
− − − − − − . . . z1 0 z3
− − − − − − . . . 0 z2 z3
rz1 sz2 tz3 w1rz1 w1sz2 w1tz3 . . . w5rz1 w5sz2 w5tz3
r̂z1 ŝz2 t̂z3 ŵ1r̂z1 ŵ1ŝz2 ŵ1t̂z3 . . . ŵ5r̂z1 ŵ5ŝz2 ŵ5 t̂z3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|
β0

|
...
|

β5

|

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dlogg(f0,1)
dlogg(f0,2)
dlogg(f1,1)
dlogg(f2,2)

...
dlogg(f5,1)
dlogg(f5,2)
dlog(ϕ)
dlog(ϕ̂)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We would like to argue that the rows of the matrix M are linearly independent.
As there exists i, i ≥ 1, such that mi �= m̂i, if we choose the sub-matrix M ′

consisting of the intersection of the last two rows and rows 1, 2, 2i + 1, 2i+ 2
with columns 1, 2, 3, 3i+ 1, 3i+ 2, 3i+ 3, we get:

M ′ =

⎛⎜⎜⎜⎜⎜⎜⎝
z1 0 z3 0 0 0
0 z2 z3 0 0 0
0 0 0 z1 0 z3
0 0 0 0 z2 z3
rz1 sz2 tz3 wirz1 wisz2 witz3
r̂z1 ŝz2 t̂z3 ŵir̂z1 ŵiŝz2 ŵi t̂z3

⎞⎟⎟⎟⎟⎟⎟⎠ .

If the rows of M are not linearly independent, so are the rows of M ′. However,
M ′ has a determinant det(M ′) = ±z2

1z
2
2z

2
3(wi − ŵi)(t− r − s)(t̂ − r̂ − ŝ) which

is not equal to 0 due to choice of the parameters. Therefore, the rows of M are
linearly independent. ��

3 Secure Joint Ciphertext Computation

The CCA secure structure preserving encryptions scheme is well suited to build
a variety of protocols. More specifically, it facilitates the construction of proto-
cols that make use of practical ZK protocols to prove properties about partial
ciphertexts. We consider a two-party protocol for the joint computation of a
ciphertext under a third-party public key pk. The encrypted value is a function
of two secrets, each of which remains secret from the other protocol participant.
Moreover, only one participant gets to know the ciphertext. We study the case
where only the first party learns the ciphertext whereas the second one has no
output.

3.1 Preliminaries

Simulatability Model. We use strong simulation-based definitions that guar-
antee security under composition in the flavor of [16,4,23]. In particular we base
our exposition on [23]. In [23] both ideal systems I and their realizations as
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cryptographic protocols P are configurations of multi-tape interactive Turing
machines (ITMs). An ITM is triggered by another ITM if the latter writes a
message on an output tape that corresponds to an input tape of the former.
As a convention we bundle communication tapes into interfaces inf where an
interface consists of named input/output tape pairs. An input/output tape pair
is named inf.R after a combination of the interface name inf and a role name R.
We refer to the set of all roles of an interface as inf.R.

For simulation-based security definitions, the ideal system I and the protocol
P that emulates this ideal system, have to present the same interface inf towards
their environment, i.e., they must be environment compatible. We refer to an
ideal system and a protocol that is environment compatible with respect to
interface inf as Iinf and Pinf , respectively. In addition Iinf and Pinf expose different
network interfaces, the simulator interface infSim and the adversary interface
infAdv, respectively.

Strong simulatability. A proof that Pinf emulates Iinf , short Pinf ≤SS Iinf will
need to prove existence of a simulator Sim that translates between the interfaces
infSim and infAdv such that for all p.p.t. Env: Env|Pinf ≈ Env|Sim|Iinf . This is for-
malized as strong simulatability which implies other simulatability notions such
as universal composability with dummy adversaries and blackbox simulatability.

Corruption. We consider only static corruption. A corrupted role in the ideal
and in the real world is controlled through infSim.R and infAdv.R respectively, and
acts as a proxy that allows the simulator, respectively, the environment to send
messages to any of its other connected tapes. We consider ideal systems Iinf that
are fully described by a virtual incorruptible party Finf . As the functionality Finf

implements the security critical parts of an ideal system, the ITM’s represent-
ing the different roles of the interface only need to implement forwarding and
corruption. We refer to the dummy party of role R as DR. When operating over
an adversarially controlled network, even an ideal cryptographic system cannot
prevent denial of service attacks. We therefor give the adversary the possibility
to delay messages from the ideal functionality to dummies.

Practical Zero-Knowledge Proof of Knowledge Protocols. For the types
of relations required in our protocols, there exist practical ZK protocols. We refer
to Camenisch et al. [9,13] for details. We will be proving statements of the form

Kw1, . . . , wn : φ(w1, . . . , wn, bases) where wi are exponents and φ is a predicate
defining discrete logarithm representations. For a more detailed description, we
refer to the full version of this paper.

We use a zero-knowledge ideal functionality as defined by Listing 1 that is a
simplification of the FR,R′

ZK functionality of [9] for which we consider only static
corruption. This allows us to reuse their ZK protocol compiler to obtain effi-
cient multi-session instantiations Pzk of Izk(R) in the hybrid secure channel and
joint-state common reference string model.
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Listing 1: Functionality Fzk(R):

Fzk receives input from DPv over Fzk.Pv and provides output to DVf through the
delayed communication tape Fzk.Vf. Variable state is initialized to “ready”.
On (Prove, inst ,wit) from Fzk.Pv where state = “ready” and (inst ,wit) ∈ R

− let state = “final”; send (Prove, inst) to Fzk.Vf

Two-party computation. In conformance with the simulatability model dis-
cussed above, Listing 2 defines the ideal functionality for the joint computation
of any function f on verifiable inputs inp1 and inp2. When performing such
a two-party computation, party P1+i is guaranteed that P2−i knows a witness
wit2−i for its input inp2−i such that (inst , (wit2−i, inp2−i)) ∈ R2−i. We restrict
ourselves to tractable relations Ri for which we can give efficient universally
composable proofs of knowledge as described in the full paper.

Listing 2: Functionality Ftpc(f,R1,R2)

Ftpc communicates with DP1 and DP2 through delayed communication tapes
Ftpc.P1 and Ftpc.P2. Variables inst, pub, inp1 store the input of the first party;
variable state is initialized to “ready”.
On (Input1, inst ′, pub ′,wit ′1, inp′

1) from Ftpc.P1 where state = “ready” and (inst ′,
(wit ′1, inp′

1)) ∈ R1

− let inp1 = inp′
1, inst = inst ′, pub = pub ′, and state = “input1”; send

(Input1, inst , pub) to Ftpc.P2

On (Input2,wit2, inp2) from Ftpc.P2 where state = “input1” and (inst , (wit2,
inp2)) ∈ R2

− let state = “final”; send (Result, f(pub, inp1, inp2)) to Ftpc.P1

We model an ideal secure two-party computation system Itpc(f,R1,R2) with
interface tpc as the combination of two dummy Parties DP1 and DP2 and an
ideal two party computation functionality Ftpc.

3.2 Construction

Model. The model of our joint ciphertext computation, is fully described by a
secure two party computation as in Listing 2, where inpi = (li,xi), pub = pk,
and f is fJC(pk, (l1,x1), (l2,x2) ) = Enc(pk, gl1+l2 , (gx1,1+x1,2 , . . . , gxn,1+xn,2)) .

Implementation. We present the protocol for the special case where the jointly
computed ciphertext encrypts a single message (i.e., n = 1). This extends triv-
ially in the multi-message case.

The idea of the protocol is as follows. The first party computes a partial and
blinded encryption of her secret, she proves that the computation is carried out
correctly, and sends the partial encryption to the other party. The second party
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takes the values from the first flow of the protocol and, using its secret and
some randomness, computes a blinded full encryption of the agreed function of
the two plaintext contributions. Then, the second party sends these values and
proves that they are computed correctly. Finally, the first party unblinds the
ciphertext and updates the consistency element to obtain a valid encryption of
the function of the two secrets under jointly chosen randomness. The function can
be a constant to the power of any polynomial of the two secrets; for simplicity,
we consider the function gx1+x2 where g is a fixed group element and x1, x2 are
the two secrets.

Listing 3: Protocol Pjcc(R1,R2)

Party P1 and P2 receive input from jcc.P1 and jcc.P2 respectively and communi-
cate over Izk1 and Izk2 .

On (Input1, inst , pk,wit1, (l1, x1)) from jcc.P1

− if (inst , (wit1, l1, x1)) /∈ R1, P1 aborts

− P1 computes (msg1, aux1) ← BlindEnc1(pk, l1, x1) and proves ((msg1, pk, inst),
(wit1, l1, x1, aux1)) ∈ RP1(R1) to P2 using Izk1(RP1(R1))

− P2 learns (msg1, pk, inst) from Izk1 and outputs (Input1, inst , pk) to jcc.P2

On (Input2,wit2, (l2, x2)) from jcc.P2

− if (inst , (wit2, l2, x2)) /∈ R2, P2 aborts

− P2 runs (msg2, aux2)← BlindEnc2(pk, l2, x2,msg1)

− P2 proves ((msg2, pk, inst), (wit2, l2, x2, aux2)) ∈ RP2(R2) to P1 using Izk2

(RP2(R2))

− P1 learns (msg2, pk, inst) from Izk2 , computes c← UnblindEnc(pk,msg2, aux 1),
and outputs (Result, c) to jcc.P1

Where abstractly, relations RP1(R1) and RP2(R2) are defined as

RP1(R1) = {(msg1, pk, inst), (wit1, l1, x1, aux1)) |
∃r : (msg1, aux 1) = BlindEnc1(pk, l1, x1; r) ∧ (inst , (wit1, l1, x1)) ∈ R1}

RP2(R2) = {((msg2, pk, inst), (wit2, l2, x2, aux 2)) |
∃r : (msg2, aux 2) = BlindEnc2(pk, l2, x2,msg1; r) ∧ (wit2, l2, x2)) ∈ R2} .

In the full paper, we show how to efficiently prove the relations RP1(R1)) and
RP2(R2)) by giving a Klanguage statement.

We now give the details for the BlindEnc1, BlindEnc2, and UnblindEnc
algorithms.
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Listing 4: Algorithms of Pjcc

(msg1, aux1) ← BlindEnc1(pk, l1, x1)
– parse pk as (g1, g2, g3, h1, h2, {fi,1, fi,2}5i=0).
– pick {γi}5i=1, {δi}2i=1, r1, and s1 at random and compute

ū′1 = gγ1 · gr1
1 , ū′2 = gγ2 · gs1

2 , ū′3 = gγ3 · gr1+s1
3 ,

ū′4 = gγ4 · gx1 · hr1
1 hs1

2 , ū′5 = gγ5 · gl1 ,
v̄′1 = ê(g1, g

δ1) · ∏i=1 ê(fi,1, g
γi), v̄′2 = ê(g2, g

δ2) · ∏i=1 ê(fi,2, g
γi).

– output msg1 = (ū′1, ū
′
2, ū

′
3, ū

′
4, ū

′
5, v̄

′
1, v̄

′
2)

and aux 1 = ({γi}5i=1, {δi}2i=1, r1, s1).

(msg2, aux2) ← BlindEnc2(pk, l2, x2,msg1)
– parse pk as (g1, g2, g3, h1, h2, {fi,1, fi,2}5i=0) and msg1 as (ū′1, ū

′
2, ū

′
3, ū

′
4,

ū′5, v̄′1, v̄′2).
– pick r2 and s2 at random and compute

ū1 = ū′1 · gr2
1 , ū2 = ū′2 · gs2

2 , ū3 = ū′3 · gr2+s2
3 ,

ū4 = ū′4 · gx2 · hr2
1 hs2

2 , ū5 = ū′5 · gl2 ,
v̄ = (

∏
i=0 ê(fi,1, ūi)/v̄′1)

r2 · (∏i=0 ê(fi,2, ūi)/v̄′2)
s2 ,

where ū0 = g.
– output msg2 = (ū1, ū2, ū3, ū4, ū5, v̄) and aux2 = (r2, s2).

c← UnblindEnc(pk,msg2, aux 1)
– parse pk as (g1, g2, g3, h1, h2, {fi,1, fi,2}5i=0), msg2 as (ū1, ū2, ū3, ū4, ū5,
v̄) and aux1 = ({γi}5i=1, {δi}2i=1, r1, s1).

– compute

u1 = ū1/g
γ1 = gr

1, u2 = ū2/g
γ2 = gs

2, u3 = ū3/g
γ3 = gr+s

3 ,
u4 = ū4/g

γ4 = gx1+x2 · hr
1h

s
2, u5 = ū5/g

γ5 = gl1+l2 ,
v = v̄ · ê(u1g

−r1
1 , gδ1) · ê(u2g

−s1
2 , gδ2) ·∏i=0 ê(f

r1
i,1f

s1
i,2, ui),

where u0 = g.
– output c = (u1, u2, u3, u4, v) encrypted with label u5.

Correctness. Recall the structure of the ciphertext of the public-key
encryption scheme described in Section 2: for a public key pk =
(g1, g2, g3, h1, h2, {fi,1, fi,2}i=0), label u5, and randomly chosen r, s ← Zq, the
ciphertext is computed as

(u1, u2, u3, u4, v) =

(
gr
1 , g

s
2, g

r+s
3 , m · hr

1h
s
2,

5∏
i=0

ê(fr
i,1f

s
i,2, ui)

)
,where u0 = g.
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Note that the protocol in Listing 3 computes a valid ciphertext because u1 = gr
1

for r = r1 + r2, u2 = gs
2 for s = s1 + s2, u3 = gr+s

3 , u4 = m·hr
1h

s
2 for m = gx1+x2 ,

and v =
∏

i=0 ê(f
r
i,1f

s
i,2, ui). To see v is indeed computed this way, note that:

v̄ =

(∏
i=0

ê(fi,1, ūi)/v̄′1

)r2

·
(∏

i=0

ê(fi,2, ūi)/v̄′2

)s2

=

∏
i=0 ê(f

r2
i,1f

s2
i,2, ui)

ê(g1, gδ1)r2 · ê(g2, gδ2)s2

and

v̄ · ê
(
u1

gr1
1

, gδ1

)
· ê
(
u2

gs1
2

, gδ2

)
= v̄ · ê(gr2

1 , gδ1) · ê(gs2
2 , gδ2) =

∏
i=0

ê(f r2
i,1f

s2
i,2, ui).

Theorem 2. The joint ciphertext computation protocol (Listing 3) strongly em-
ulates the ideal two-party computation protocol (Listing 2) for function fJC:
Pjcc(R1,R2) ≤SS Itpc(fJC,R1,R2). We refer to the full paper for details.

4 Oblivious Third Parties

Modeling oblivious third parties. Transactions in the real world can be in-
tricately related. They may depend on many conditions, of which the verification
can be deferred to a number of (as oblivious as possible) third parties. For the
sake of concreteness, we now formally model a system that involves two oblivious
third parties: a satisfaction authority and a revocation authority. In our example
scenario, after a service enrollment between a user U and a service provider SP,
the user ought to make a payment for the service before tdue. Upon request, the
satisfaction authority SA checks that the user indeed made the payment and
provides the user with a blinded transaction token. The user unblinds the token
and publishes it to prove the satisfaction of the payment. Finally, the revocation
authority RA reveals the user’s identity to the service provider if no payment
has been made before the payment deadline (i.e. no token corresponding to the
enrollment was published).

We model the security and privacy requirements of such a system with the help
of an ideal functionality Fotp. As usual, corruption is modeled via dummies DU,
DSP, DSA, DRA that allow to access the functionality both over the environment
interface (before corruption) and the network interface (after corruption).

The ideal system Iotp is depicted in Figure 1(a) and consists of the ideal
functionality connected to the dummy parties over delayed communication tapes.
Listing 5 specifies the reactive behavior of Fotp. A user that can prove his identity
with the help of a witness such that (inst , (id ,wit)) ∈ R, is allowed to enroll. In
particular, this interface supports the case where wit and inst are the secrets and
the public key of a CL-signature [15] on the user’s identity, i.e., an anonymous
credential [14,5], or the opening and a commitment to the user’s identity, i.e., a
pseudonym [14]. For all these cases, the relation R is tractable.

Enrollment consists of three rounds. The first round commits the user to her
identity. The second round provides the user with a random satisfaction label
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DU

DSP

DSA

DRA

otpSim .U

otpSim .SP

otpSim .SA

otpSim .RA

otp.U

otp.SP

otp.RA

otp.SA

Fotp.SPFotp.U

Fotp.SA Fotp.RA

Fotp
otpSim .F

(a) Ideal system

U

SP

SA

RA

otp.U

otp.SP

otp.RA

otp.SA

Isc1

Isc2

otpAdv.SA

otpAdv.U

otpAdv.SP

otpAdv.RA

Itpc1

Isc3

IzkSA

IzkRA

Ireg

(b) Real system

Fig. 1. The ideal OTP system Iotp and its realization as a protocol Potp: The realization
makes use of ideal resources Isci , IzkR , Ireg, Ijcci

for secure communication, proofs of
knowledge, key registration, and joint ciphertext computation respectively.

with respect to which she can satisfy the condition, e.g., make the necessary
payment. In this round the user is also made aware of the due date tdue for the
payment. Note that the user has to check that tdue fulfills reasonable uniformity
constraints to protect her privacy. The last round gives the service provider the
possibility to ask the identity revocation authority for the user’s identity. As a
common limitation with other escrow mechanisms for anonymous credentials,
we cannot extract the identity itself, but only the image of a bijection of it. We
model this by giving the simulator the possibility to choose the bijection. As the
identity space of realistic systems is small enough to allow for exhaustive search,
this is not a serious limitation.

The client interface towards the ideal oblivious parties, i.e., the interface of the
user and the service provider respectively, consists of two messages ReqAction
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and TestAction, with Action ∈ {Satisfy, Open}. The obliviousness require-
ment guarantees that oblivious parties do not learn anything about the trans-
actions of their clients. Indeed the decision of an oblivious party cannot be
influenced in a transaction specific way, even if the other transaction participant
colludes with the oblivious party. This is modeled with the help of test requests
that are not related to any transaction. As these requests are indistinguishable
from real requests, they allow the user to check whether the oblivious party
indeed operates as required.1

Consequently, the decision of an oblivious party can only depend on explicit
and relevant information. For satisfaction, this is the user known satisfaction
label L with respect to which she makes her payment. For the opening, it is the
transaction token T that is secret until after satisfaction, when it is learned by
the user. We abstract from the way through which users make T available to
the revocation authority, but envision some kind of anonymous publicly available
bulletin board. It is in the responsibility of the user to make the token, learned
during satisfaction, available to RA, and in the responsibility of RA to check its
existence. All the protocol guarantees is that RA learns the same T value during
opening as the user learned during satisfaction.

Listing 5: Functionality Fotp

Upon initialization, let state =“ready”,L = T = id = T̂ = îd = F = T= L = ε.
On (SetF, F ′,T′,L′) from otpSim.F where state = “ready”:

− abort if F ′ is not an efficient bijection or T′ or L′ are not of sufficient size;
set F = F ′, T = T′, and L = L′.

On (EnrollU, inst , (id ′, wit′)) from Fotp.U where state = “ready”:

− if (inst , (id ′, wit′)) /∈ R) abort;
− set state = “enrollu”; set id = id ′; send (EnrollU, inst) to FT.SP.

On (DeliverEnrollU, tdue
′) from FT.SP where state = “enrollu”:

− set tdue = tdue
′; set T ,L to random values from T and L respectively;

− set state = “deliverenrollu”; send (DeliverEnrollU,L, tdue) to Fotp.U.

On (DeliverEnrollSP) from Fotp.U where state = “deliverenrollu”:

− set state = “enrolled”; send (DeliverEnrollSP) to Fotp.SP.

On (ReqSatisfy) from Fotp.U where L �= ε and T̂ = ε:

− set T̂ = T; send (ReqSatisfy,L) to Fotp.SA.

On (TestSatisfy,L′,T ′) from Fotp.U where T̂ = ε:

− set T̂ = T ′; send (ReqSatisfy,L′) to Fotp.SA.

On (Satisfy, satisfied) from Fotp.SA where T̂ �= ε:
1 An extension that allows not only the requester, but arbitrary external parties, e.g.

an auditor, to make test requests is a useful and cryptographically straightforward
extension to this interface.
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− if satisfied, set m = (Satisfy, T̂ ), otherwise set m = (Satisfy,⊥); set
T̂ = ε; send m to Fotp.U.

On (ReqOpen) from Fotp.SP where state = “enrolled” and îd = ε:
− set îd = id; send (ReqOpen,T , tdue) to Fotp.RA.

On (TestOpen,T ′, id ′, tdue
′) from Fotp.SP where îd = ε:

− set îd = id ′; send (ReqOpen,T ′, tdue
′) to Fotp.RA.

On (Open, open) from Fotp.RA where îd �= ε:
− if open, set m = (Open, F (îd)), otherwise set m = (Open,⊥); set îd = ε;

send m to Fotp.SP.

Implementing oblivious third parties. To construct a protocol that securely
emulates the above functionality we make essential use of (adaptive chosen-
ciphertext attack secure) encryption. As depicted in Figure 1(b) the protocol
makes use of several cryptographic building blocks. But at the core of the pro-
tocol are two joint-ciphertext computations that, as described in Section 3, can
be efficiently realized thanks to structure preserving encryption.

The enrollment protocol has a few more communication rounds, because of the
zero-knowledge proofs, but otherwise closely follows the three phases of the ideal
system. In the first phase the user commits to and proves her identity. Both the
user and the service provider commit to randomness that they will use to jointly
compute the transaction token T . The user proves knowledge of the opening of
her commitment as part of the joint computation of the satisfaction ciphertext
c1 = Enc(pkSA, L, T · gr). In the second phase, the service provider transfers
tdue, completes the joint ciphertext computation, and starts the computation
of the revocation ciphertext c2 = Enc(pkRA, g

tdue , (gid+r′
, T )). In both cases,

he proves knowledge of the opening to his commitment to guarantee that the
transaction token is embedded correctly into both ciphertexts. The user outputs
the label of c1 as the random satisfaction label L. In the last phase the user again
proves knowledge of openings for her commitments in the computation of c2 to
guarantee that it contains the transaction token T and a blinded user identity
gid under label gtdue .

To satisfy her financial obligations, the user makes a payment with respect to
label L and then asks the satisfaction authority to decrypt c1. The user receives
the blinded transaction token, that she unblinds using her locally stored ran-
domness to learn T . She makes T available to the revocation authority, through
some out-of-band anonymous bulletin board mechanism. Test satisfaction re-
quests are just encryptions of blinded T ′ under label L′. To request the opening
of a user identity, the service provider sends the ciphertext c2 to the revocation
authority, which checks the label tdue, decrypts the ciphertext to learn T and
verifies whether T was posted by the user. If not, the revocation authority re-
turns the blinded identity gid+r′

to the service provider, which can unblind the
identity. Test opening requests are just encryptions of T ′ and blinded gid

′
under

label tdue
′.
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The Real System Potp. We omit the details of the protocol and refer to the
full version for the description of Potp and the proof that it securely emulates
Fotp.

5 Conclusion

We propose the first public key encryption scheme that is structure preserving
and secure against adaptive chosen ciphertext attacks. We demonstrate the use-
fulness of this new primitive by the joint ciphertext computation protocol and
our proposal for instantiating oblivious third parties. We conjecture, however,
that the combination of the structure preserving encryption scheme and efficient
zero-knowledge proofs facilitate a much larger set of efficient protocol construc-
tions. All protocols are proven secure in the universal composability model.
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Abstract. Decoding random linear codes is a fundamental problem in
complexity theory and lies at the heart of almost all code-based cryptog-
raphy. The best attacks on the most prominent code-based cryptosystems
such as McEliece directly use decoding algorithms for linear codes. The
asymptotically best decoding algorithm for random linear codes of length
n was for a long time Stern’s variant of information-set decoding running
in time Õ

(
20.05563n

)
. Recently, Bernstein, Lange and Peters proposed a

new technique called Ball-collision decoding which offers a speed-up over
Stern’s algorithm by improving the running time to Õ

(
20.05558n

)
.

In this paper, we present a new algorithm for decoding linear codes
that is inspired by a representation technique due to Howgrave-Graham
and Joux in the context of subset sum algorithms. Our decoding algo-
rithm offers a rigorous complexity analysis for random linear codes and
brings the time complexity down to Õ

(
20.05363n

)
.

Keywords: Information set decoding, representation technique.

1 Introduction

Linear codes have various applications in information theory and in cryptog-
raphy. Many problems for random linear codes such as the so-called syndrome
decoding are known to be NP-hard [2] and thus coding-based cryptography hopes
to transfer this hardness to an average case hardness for cryptographic construc-
tions. Since it is unlikely that hard coding problems are efficiently solvable on
quantum computers, coding-based constructions are also one of the most promi-
nent candidates for quantum-resistant cryptography.

Even many of today’s lattice-based constructions like Regev’s cryptosystem
[12] or the HB protocol [7] inherently rely on the hardness of syndrome decod-
ing via a variant called Learning Parity with Noise (LPN) problem. Given the
importance of the syndrome decoding problem, it is a major task to understand
its complexity in order to properly define cryptographic parameters that offer a
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sufficient security level. Let us introduce some notion that helps to investigate
the syndrome decoding problem for linear codes.

A binary linear [n, k , d ]-code C of length n is a linear subspace of the vector
space Fn

2 . The dimension k of C is the dimension of the subspace. The distance
d of C is defined as the minimal Hamming distance between two codewords.

An [n, k , d ]-code C can be defined via some basis matrix G ∈ F
k×n
2 for the sub-

space, called a generator matrix, i.e. C = {xG : x ∈ Fk
2}. Alternatively, we can

define C via a parity check matrix H ∈ F
(n−k)×n
2 whose kernel equals C, i.e. we

have C = {x ∈ F
n
2 : Hxt = 0}. Moreover, let C have distance d and let c ∈ C be a

codeword. Assume that we transmitx = c+e for some error vectorwith Hamming
weight w := wt(e) ≤ �d−1

2 �. Then c is the unique closest codeword in C to x.
The term s(x) := Hxt = H(ct + et) = Het is called the syndrome of x.

Notice that e defines the unique linear combination of exactly w columns of H
that sum to Het over F

n
2 . Finding this linear combination allows to recover the

closest codeword c = x + e. Hence, the so-called syndrome decoding of linear
codes amounts to finding a subset I of ω out of n vectors from F

n−k
2 such that

the vectors in I sum to a fixed target value s(x).
A naive linear decoding algorithm is thus to search over all

(
n
w

)
linear com-

binations of columns in H. Obviously w < n
2 , therefore the search space

(
n
w

)
is

maximal for w as large as possible. Thus, in coding based cryptosystems like
McEliece [11] one usually fixes the weight of the error vector e to w := �d−1

2 �.
Throughout the paper, we assume for simplicity that we know w . We would like
to stress that our decoding algorithm also works with the same asymptotical run-
ning time for unknown w , if we incorporate a loop over all possible values of w
within the interval (0, �d−1

2 �], since our asymptotical running time is dominated
by the largest value of w .

The running time of a decoding algorithm is a function of the three code
parameters [n, k , d ]. A random [n, k , d ]-code is defined via a random parity check
matrix H ∈R F

(n−k)×n
2 . It is well-known that for sufficiently large n random

linear codes reach the so-called Gilbert-Varshamov bound (see [6], Chapter 2
for an introduction). More precisely, the code rate k

n of a random linear code
asymptotically reaches 1−H ( d

n ), where H is the binary entropy function. Solving
for d allows us to express the asymptotical running time for random linear codes
as a function of [n, k ] only. We obtain a worst case running time as a function
of n if we take the maximum over all values of 0 ≤ k ≤ n. For all decoding
algorithms in this work the worst case appears for codes of rate k

n ≈ 0.47.

Related Work. Let s(x) = Hxt be the syndrome of some erroneous codeword
x = c + e with c ∈ C and weight-w error e. We briefly show how to extract
e from s(x) by an algorithm called information set decoding, that was already
mentioned in the initial security analysis of McEliece [11] and further explored
by Lee and Brickell [9].

The idea of information set decoding is to reduce the search space by lin-
ear algebra. The first step is to randomly permute the columns of H, which
basically permutes the coordinates of the error vector e. Then, one transforms
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the permuted H ∈ F
(n−k)×n
2 into systematic form (Q|In−k ) with Q ∈ F

(n−k)×k
2

and In−k the (n − k)-dimensional identity matrix. Next, one fixes a weight p
and computes for all linear combinations of p columns in Q the sum with the
given syndrome s(x). If this sum has Hamming weight exactly w − p, then we
can simply choose another w−p columns from the identity matrix In−k in order
to obtain a weight-w linear combination of columns that sum to s(x).

Obviously, information set decoding succeeds if we permute e such that ex-
actly p out of its w 1-entries are in the first k coordinates, and the remaining
(w − p) 1-entries fall into the last n − k coordinates. Optimization of p yields a
running time of Õ (20.05751n

)
.

In 1988, Leon [10] and Stern [13] further improved information set decoding
by enforcing a window of 0-entries of size  in the last n− k entries of e. Assume
that this length- window is e.g. in positions k + 1, . . . , k +  of e. Then the
weight-p linear combination of Q has to exactly match the syndrome s(x) in the
 positions 1, . . . , , since we are no longer allowed to use the first  columns from
In−k . Stern [13] proposed to compute those weight-p linear combinations of Q
by a birthday technique via the sum of two disjoint weight-p2 sums of columns
in Q. This algorithm lowers the time complexity to Õ (20.05563n

)
by increasing

the memory complexity to Õ (20.013n
)
.

In this work, we study a variant of Stern’s information set decoding algorithm
which is an instantiation of an algorithm by Finiasz and Sendrier from 2009 [5].
We call this instantiation FS-ISD. In FS-ISD, the 0-window is removed by simply
removing the corresponding  columns, i.e., by adjusting the systematic form to(
Q | 0

In−k−�

)
with Q ∈ F

(n−k)×(k+�)
2 .

A different approach for removing the length- 0-window restriction in Stern’s
algorithm was recently proposed by Bernstein, Lange and Peters [4], called Ball-
collision decoding by the authors. In Ball-collision decoding, one allows to have
a small non-zero weight q in the length- window. Both algorithms, FS-ISD
and Ball-collision decoding, share the same time complexity Õ (20.05558n

)
and

memory complexity Õ (20.014n
)
.

As a sideline of our work we show that any parameter choice (p, q, ) for
Ball-collision decoding can be transformed into parameters (p′, ′) for the FS-
ISD algorithm with the same asymptotic time complexity. That is, FS-ISD is
asymptotically at least as efficient as Ball-collision decoding. We conjecture that
both algorithms actually behave asymptotically equivalent. Since FS-ISD offers a
simpler description than Ball-collision, we focus on improving the FS-ISD variant
in this work.

Our Contribution. We provide a new information set decoding algorithm
based on FS-ISD. The major subproblem in FS-ISD is to find exactly p columns
of an -row submatrix Q′ of the (n − k) × (k + ) matrix Q that sum to the
corresponding  coordinates of the syndrome s(x).

More precisely, let Q′ = [q′
1 . . .q

′
k+�] and s′(x) be the projections of Q

and s(x) on the desired  coordinates. Then we have to find an index set
I ⊆ {1, . . . , k + } with |I | = p and

∑
i∈I q′

i = s′(x). We call this problem



110 A. May, A. Meurer, and E. Thomae

the submatrix matching problem. Our improvement of information set decoding
comes from a more efficient algorithm for the submatrix matching problem than
the birthday algorithm of Stern. Our algorithm for the submatrix matching prob-
lem might be of independent interest as this problem is again a parametrized
version of syndrome decoding.

In FS-ISD, the submatrix matching problem is solved by splitting the interval
[1, k + ] into the two disjoint intervals [1, k+�

2 ] and [ k+�
2 + 1, k + ]. Then one

searches in a birthday-type manner for two index sets I1 ⊂ [1, k+�
2 ] and I2 ⊂

[ k+�
2 + 1, k + ] of cardinality p

2 each, such that
∑

i∈I1
q′

i =
∑

i∈I2
q′

i + s′(x).
Our approach is inspired by a clever representation technique used in a recent

subset sum algorithm of Howgrave-Graham and Joux from Eurocrypt 2010 [8].
We choose I1 and I2 in the submatrix matching problem both from the whole
interval [1, k + ] instead of taking two disjoint intervals of size k+�

2 . Let I be a
solution with

∑
i∈I q′

i = s′(x) and |I | = p.
Then the major observation is that I has

(
p

p/2

)
different representations of

the form I = I1 ∪ I2 with |I1| = |I2| = p
2 . Thus, we also have

(
p

p/2

)
identities of

the form ∑
i∈I1

q′
i =

∑
i∈I2

q′
i + s′(x), (1)

instead of just one unique representation as in FS-ISD.
Interestingly, Finiasz and Sendrier also allow for non-disjoint splittings in [5].

However, their framework does not make use of different representations. It
is precisely the representation technique that allow us to bypass their lower
bound argument and to asymptotically beat the lower bound for information set
decoding given in [5]. Our algorithms achieves an asymptotic running time of
Õ (20.05363n

)
using memory Õ (20.021n

)
.

The correctness of our algorithm is rigorously proven under the assumption
that H is a uniformly random {0, 1}-matrix. This assumption is plausible in the
cryptographic setting, since it is actually the goal of crypto designers to hide
the structure of the underlying code, e.g. the Goppa code in McEliece, by linear
transformations.

Table 1. Comparison of exponents in the asymptotic worst-case complexities

time space

Lee-Brickell 0.05751n -
Stern 0.05563n 0.013n
FS-ISD / Ball-collision 0.05558n 0.014n
Lower bound from [5] 0.05556n 0.014n
Our algorithm with FS-ISD space 0.05402n 0.014n
Our algorithm 0.05363n 0.021n

Table 1 summarizes the worst-case complexity of decoding algorithms. No-
tice that Stern’s algorithm, FS-ISD and Ball-collision are typical time-memory
tradeoffs that decrease the running time complexity at the cost of an increased
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memory complexity. In contrast, our algorithm does not only benefit from a
mere time-memory tradeoff. For example, if we restrict our memory complexity
to Õ (20.014n

)
as in FS-ISD we still obtain an improved running time.

Roadmap. Our paper is organized as follows. We first introduce some useful
notation in Section 2. In Section 3, we briefly recall the state of the art in
information set decoding, including Stern’s algorithm, FS-ISD and Ball-Collision
decoding. In Section 4, we provide an algorithm for the submatrix matching
problem. This leads to our new information set decoding algorithm in Section 5,
for which we provide some experimental results in Section 6.

2 Notation

By [k ] we define the set of natural numbers between 1 and k , i.e. [k ] = {1, . . . , k}.
The cardinality of a finite set I is denoted by |I |. For a better readability we
represent matrices Q and vectors e by bold letters. For index sets I ⊂ [n],
J ⊂ [k ] and an n × k matrix Q = (qi,j )i∈[n],j∈[k ] ∈ Fn×k

2 , we denote by QI
J :=

(qi,j )i∈I ,j∈J the submatrix containing the |I | rows and |J | columns defined by I
and J , respectively. When we consider submatrices of Q where either columns or
rows are chosen, we simply write QJ or QI meaning QJ = Q[n]

J and QI = QI
[k ].

We extend this notion to vectors s ∈ F
n
2 and write sL ∈ F

|L|
2 for the projection of

s onto the coordinates defined by L. Further, for a matrix Q = (qi,j )i∈[n],k∈[k ] ∈
Fn×k

2 and index sets L ⊆ [n] with |L| = , we define a mapping πL : Fn×k
2 → F�

2

where

πL(Q) :=
∑k

i=1 QL
{i} ∈ F�

2

is the projection of the sum of Q′s columns onto the  rows defined by L.
As before, we sometimes omit the index set L which means that we consider
the sum of Q’s columns without projecting it to a certain number of rows, i.e.
π(Q) = π[n](Q) ∈ F

n
2 .

By wt(x) we denote the Hamming weight of a vector x ∈ Fn
2 , i.e., wt(x)

counts the number of non-zero entries of x. By supp(x) := {i ∈ [n] : xi = 1} we
denote the support of a vector x, i.e., the set of indices corresponding to non-zero
coordinates of x ∈ Fn

2 . We represent the n-dimensional identity matrix by In and
the i-th unit vector by ui . Observe that

∑
i∈supp(x) ui = x for every x ∈ F

n
2 . For

a set of natural number I ⊂ N, we introduce the shifted set k+I := {k+i : i ∈ I }
for arbitrary k ∈ N.

Throughout the asymptotic complexity analysis of our exponential algorithms
we make use of the soft Landau notation Õ which suppresses arbitrary polynomial
factors, i.e., p(n)2n = Õ(2n) for every polynomial p(n). We often need to estimate
binomial coefficients of the form

(
αn
βn

)
asymptotically. Stirling’s formula yields(

αn
βn

)
= Õ(2αH (β/α)n), (2)

where H (x ) = −x log2(x )− (1− x ) log2(1 − x ) is the binary entropy function.
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3 Information Set Decoding Algorithms

3.1 Information Set Decoding

Let C be an [n, k , d ]-code with parity check matrix H. Furthermore, let x = c+e,
c ∈ C be an erroneous codeword with error e, wt(e) = �d−1

2 �. In order to find
e, information set decoding proceeds as follows.

Initially, we apply a random permutation to the columns of H, resulting in a
permutedmatrix H̃. Thenwe applyGaussianElimination on the right-hand square
submatrix H̃I , I = {k + 1, . . . ,n}. If H̃I is invertible, Gaussian Elimination will
succeed and we obtain a systematic form1 (Q|In−k) of H̃, see Figure 1.

After the first step all the work can be done within the k columns of submatrix
Q. In the Lee-Brickell algorithm [9] one checks for every I ⊆ [k ] with cardinality
|I | = p whether wt(π(QI ) + s(x)) = ω − p. If so, we can easily choose ω − p
columns in the In−k part of H̃ indexed by J = k + supp(π(QI ) + s(x)) ⊆
[k + + 1,n] which eliminate the remaining 1-entries. This in turn implies that∑

i∈I Q{i} +
∑

j∈J uj−k = s(x).
Therefore, I and J determine the support of the permuted error vector ẽ =

eUP , i.e., we can set supp(ẽ) := I ∪ J which finally reveals the error e.

·
t

= s(x)tQ In−k

︷ ︸︸ ︷k ︷ ︸︸ ︷n − k

QI1 QI2

︷︸︸︷�

︸︷︷︸
p
2

︸︷︷︸
p
2

0 0 01 1 0 ︸ ︷︷ ︸
weight ω−p

Fig. 1. Collision Decoding by Stern - Het = s(x)t . The error vector e contains two
blocks each of p

2
1’s in its upper half corresponding to the columns of QI1 and QI2 . Since

QI1 and QI2 sum up to s(x) on the rows defined by [�] we have to fix a corresponding
zero-block in coordinates {k + 1, . . . , k + �} of e. The remaining (ω − p) 1’s are then
distributed over the remaining coordinates {k + �+ 1, . . . , n} of e.

3.2 Stern’s Algorithm

In the late 80s, Leon and Stern [13] introduced the idea of forcing the first
 coordinates of π(QI ) already to the coordinates of s(x). Let s[�](x) be the
projection of s(x) onto the coordinates in [].

We enumerate for all I1 ⊆ [1, k
2 ], I2 ⊆ [ k2 +1, k ] the projected vectors π[�](QI1)

and π[�](QI2) + s[�](x) in two lists. Then we search for collisions in these lists,

1 In more detail, we transform H by multiplying it by two invertible matrices UP ∈
Fn×n

2 , UG ∈ Fn−k×n−k
2 corresponding to the initial column permutation and the

Gaussian Elimination, respectively. Then (Q|I) = UG(HUP ). Notice, that the trans-
formation UG also needs to be applied to the syndrome s(x), which we omit for sim-
plicity of exposition.
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meaning that we look for two weight-p
2 sums of columns that are equal to the

syndrome s(x) within the coordinates of [].
If wt(π(QI1) + π(QI2) + s(x)) = ω − p holds for one of these collisions, we

again set the corresponding ω−p coordinates in the second half of the permuted
error vector ẽ to 1, see Fig. 1 for an illustration.

To analyze Stern’s algorithm we have to consider both the complexity of
each iteration and the probability of success. The complexity of each iteration
is dominated by the collision finding step in two lists. This can be done by a
simple sort-and-match technique. Neglecting log factors, we obtain complexity

CStern(p, ) := max

⎧⎨⎩
(

k/2
p/2

)
,

(k/2
p/2

)2
2�

⎫⎬⎭ . (3)

In order to analyze the success probability, we need to compute the probability
that a random permutation of the error e ∈ Fn

2 of weight wt (e) = ω has a good
weight distribution, i.e., ẽ needs to have weight p/2 both on its coordinates in
[1, k/2] and [k/2 + 1, k ] and zero-weight on all coordinates with indices in the
set {k +1, . . . , k + } as illustrated in Fig. 1. Thus, we obtain success probability

PStern(p, ) :=

(k/2
p/2

)2(n−k−�
ω−p

)(
n
ω

) . (4)

The overall running time of Stern’s algorithm is hence given by CStern · P−1
Stern.

Optimizing this expression for p and  under the natural constraints 0 ≤ p ≤ ω
and 0 ≤  ≤ n − k − ω + p we obtain time complexity Õ (20.05563n

)
and space

complexity Õ (20.013n
)
. The optimal parameter choice is given by p = 0.003n

and  = 0.013n.

3.3 The Finiasz-Sendrier ISD Algorithm

The idea of the FS-ISD algorithm is to increase the success probability for having
a permuted error vector ẽ of the desired form by allowing ẽ to spread it’s 1’s over
all coordinates, instead of fixing a certain -width 0-window. This is realized by
changing the systematic form during the Gaussian Elimination process.

As before, we first randomly permute the columns of H, which results in a
permuted matrix H̃ = HUP . Then we carry out a partial Gaussian Elimination
on the right-hand lower square submatrix H̃I

J ∈ F
(n−k−�)×(n−k−�)
2 with index

sets I = {+ 1, . . . ,n − k} and J = {k + + 1, . . . ,n}.
Next, we force an  × (n − k − ) zero block in the remaining  rows of the

submatrix H̃J by adding rows of the identity matrix. Mathematically, we repre-
sent the partial Gaussian Elimination plus row elimination by a multiplication
with an (n − k) × (n − k) invertible matrix UG . Therefore, the initial step in
FS-ISD, which we denote Init(H), yields a modified systematic form(

Q
0

In−k−�

)
= UGHUP .
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In Fig. 2, we illustrate the Birthday collision step of FS-ISD which is the same
as in Stern’s algorithm but for a submatrix Q[�] which now has k +  columns
instead of k columns.

0

︷ ︸︸ ︷k + � ︷ ︸︸ ︷n − k − �

︷︸︸︷�
︷︸

︸︷n − k − �

︸︷︷︸
p
2

︸︷︷︸
p
2

Q[�]

In−k−�Q

Fig. 2. Birthday collision search in FS-ISD

A straight-forward modification of the analysis of Stern’s algorithm from
Section 3 yields a complexity of

TFS-ISD(p, ) := max
{

SFS-ISD(p, ),
SFS-ISD(p, )2

2�

}
(5)

per iteration, where SFS-ISD(p, ) =
((k+�)/2

p/2

)
denotes the size of the initial lists

and thus represents also the space complexity. Furthermore, the success proba-
bility of getting an error vector e of the desired form is now given by

PFS-ISD(p, ) :=

((k+�)/2
p/2

)2(n−k−�
ω−p

)(
n
ω

) . (6)

Thus, we obtain a total complexity of CFS-ISD(p, ) = TFS-ISD(p, ) ·
PFS-ISD(p, )−1. Optimizing this expression yields a worst-case running time of
Õ (20.05558n

)
within space complexity Õ (20.014n

)
. The optimal parameter choice

is given by p = 0.003n and  = 0.014n.

3.4 Ball-collision Decoding

In 2011, Bernstein, Lange and Peters [4] presented another information set de-
coding algorithm, which they called Ball-collision decoding (BCD for shorthand).
The general idea of BCD is very similar to the idea of the FS-ISD algorithm,
namely the authors increase the success probability of one iteration in Stern’s
algorithm by allowing an additional number of ones within the fixed width-
0-window.

Therefore, BCD allows for q additional 1’s within the 0-window, or in other
words for a Hamming ball of radius q within the 0-window. More precisely, let I
be an index set with |I | = p

2 chosen from the intervals [1, k/2] or [k/2+1, k ]. Each
entry (I , π[�](QI )) in the initial lists of Stern’s algorithm has to be expanded by
all possible projected weight-q/2 column sums π[�](IJ ) of the identity matrix
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I – for index sets J of size |J | = q/2 contained either in [k + 1, k + /2] or
[k + /2 + 1, k + ].

Analogously to the analysis of Stern’s algorithm in Sect. 3, we obtain an
asymptotic time complexity for one iteration of BCD of

TBCD(p, , q) := max
{

SBCD(p, , q),
SBCD(p, , q)2

2�

}
. (7)

The space consumption is SBCD(p, , q) =
(k/2
p/2

)(�/2
q/2

)
. Similarly one obtains a

success probability of

PBCD(p, , q) :=

((k/2
p/2

)(�/2
q/2

))2 (
n−k−�
ω−p−q

)(
n
ω

) . (8)

Eventually, the overall complexity of BCD is given by CBCD(p, , q) =
TBCD(p, , q) · PBCD(p, , q)−1.

Intuitively, FS-ISD and BCD proceed in a similar fashion by allowing ẽ to
spread its 1’s in a more flexible way at the cost of slightly increasing the workload
and space complexity per iteration. Indeed, the following theorem shows that
FS-ISD is asymptotically at least as efficient as BCD.

Theorem 1. Let (p, q, ) be a parameter set for the BCD algorithm. Then (p +
q, ) is a parameter set for FS-ISD satisfying

CFS-ISD(p + q, ) ≤ CBCD(p, , q) .

Proof. See full version, available from the authors.

Due to Theorem 1, we take the FS-ISD algorithm as a starting point for our new
construction, in which we improve on the birthday-collision step.

4 How to Solve the Submatrix Problem

Recall that in each iteration of the FS-ISD algorithm one has to find in a pro-
jected × (k + ) - submatrix a weight-p sum of columns that sums to a target
syndrome. We call this problem the submatrix matching problem.

Definition 1. The submatrix matching problem with parameters , k and p ≤
k + is defined as follows. Given a random matrix Q = [q1 . . .qk+�] ∈R F

�×(k+�)
2

and a target vector s ∈ F�
2, find an index set I of size at most p such that the

corresponding columns of Q sum to s, i.e., find I ⊂ [k + ], |I | ≤ p with

π(QI ) =
∑

i∈I qi = s ∈ F
�
2 .

The submatrix matching problem is a vectorial variant of the well-known subset
sum problem. In the following, we propose an algorithm ColumnMatch for the
problem, based on a recently introduced representation technique for the subset
sum problem by Howgrave-Graham and Joux [8].

When we use ColumnMatch in information set decoding, the input param-
eters p,  are optimization parameters that guarantee that some solution I exists
with a certain probability P(p, ), compare e.g. with Eq.(6).
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4.1 The ColumnMatch Algorithm

Let us briefly explain our ColumnMatch algorithm. We recommend the reader
to follow our algorithm’s description via the illustration given in Fig. 3 and the
pseudocode description in Algorithm 1.

Let Q = [q1 . . .qk+�] ∈R F
�×(k+�)
2 and s ∈ F

�
2 be an instance of the submatrix

matching problem. Assume that I is a solution to the problem of size exactly p.
Similar to FS-ISD we construct I from two sets I1, I2 of size p

2 each.
As opposed to FS-ISD, we do not choose I1 and I2 from disjoint sets of size k+�

2 .
Rather we choose both I1, I2 from the full set [k +]. This choice of the index sets
is similar to what we call the representation technique due to Howgrave-Graham
and Joux [8]. The effect of the choice is that we obtain

(
p

p/2

) ≈ 2p different
partitions I = I1∪̇I2 and therefore the same number of identities∑

i∈I1

qi =
∑
i∈I2

qi + s in F
�
2 . (9)

Our goal is to find one of these identities with constant success probability,
where the probability is taken over the random choice of Q. Therefore we do
not construct all possible sums of elements in I1, I2 but only those that satisfy
additional constraints. To establish the constraints, we introduce shortening pa-
rameters 1, 2 with 1 + 2 =  that correspond to disjoint subsets L1,L2 ⊂ [l ]
of size 1, 2, respectively.

Our construction now proceeds in two steps. In the first step, we construct
partial solutions that already sum to the target value s on the 2 positions of
L2. More precisely, we construct two lists

L1 :=
{

(I1, πL1(QI1)) : I1 ⊂ [k + ], |I1| = p
2 and πL2(QI1) = 0 ∈ F

�2
2

}
and

L2 :=
{

(I2, πL1(QI2) + sL1) : I2 ⊂ [k + ], |I2| = p
2 and πL2(QI2) = sL2 ∈ F

�2
2

}
.

Notice that out of the 2p possible identities that satisfy Eq. (9), we consider
only those identities where

∑
i∈I1

qi is equal to 0 ∈ F
l2
2 on the bits of L2. Thus

we expect that we already remove a 2−�2-fraction of all solutions, which lets an
expected number of 2p−�2 solutions survive.

Once we have constructed the lists L1, L2 in the first step, we sortL2 according
to the labels πL1(QI2) + sL1 and search for all elements πL1(QI1) in L1 for a
matching element in L2. Notice that every matching (I1, I2) fulfills Eq. (9) and
hence is a solution to the submatrix matching problem.

Since we constructed I1, I2 in a non-disjoint way, their intersection J = I1∩ I2
might be non-empty. In this case, all vectors in J appear on both sides of Eq. (9)
and thus cancel out when we compute

∑
i∈I1

qi +
∑

i∈I2
qi over F

�
2. This means

that we have found a solution I ′ = I1ΔI2 = (I1 ∪ I2) \ (I1 ∩ I2) to the submatrix
matching problem with size |I ′| = p − 2|I1 ∩ I2|.

How to construct L1 and L2. The initial lists L1 and L2 can be easily
constructed by a classical sort-and-match step. Let us show how to construct
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Fig. 3. Illustration of the ColumnMatch algorithm. The flat rectangles above, beside
or below the lists represent the structure of the index sets Ii,j contained in distinct
lists, e.g., the level-2 list L1,1 contains index sets I1,1 whose p

4
ones are spread over the

first half of [k + �] (as illustrated by the gray region).

L1, the construction of L2 is analogous. We partition I1 = I1,1∪̇I1,2 with |I1,1| =
|I1,2| = p

4 where I1,1 ⊂ [1, k+�
2 ] and I1,2 ⊂ [ k+�

2 + 1, k + ]. More precisely, we
compute two lists

L1,1 :=
{(

I1,1, πL2(QI1,1)
)

: I1,1 ⊂ [1, k+�
2 ], |I1,1| = p

4

}
and

L1,2 :=
{(

I1,2, πL2(QI1,2)
)

: I1,2 ⊂ [ k+�
2 + 1, k + ], |I1,2| = p

4

}
.

We then sort L1,2 with respect to the second component and search for all second
components in L1,1 for matching elements in L1,2.

Remark 1. Notice that the construction of L1 and L2 via disjoint splittings I1 =
I1,1∪̇I1,2 and I2 = I2,1∪̇I2,2 lowers the number of representationsR(p). Instead of
considering every subset I1 ⊂ I of size p

2 we take every I1 with an equal number
of p

4 indices coming from [1, (k + )/2] and [(k + )/2 + 1, k + ], respectively.

Hence, we only have
(p/2
p/4

)2
instead of

(
p

p/2

)
many different representations per

solution in Eq. (9). Asymptotically, this can be neglected since both terms equal
2p(1−o(1)).
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Algorithm 1. ColumnMatch

Input: Q ∈ F
�×(k+�)
2 , s ∈ F�

2, p ≤ k + �
Output: I with π(QI ) = s or ⊥ if no solution is found
Parameters: L1,L2 with [l ] = L1∪̇L2 and |Li | = �i for i = 1, 2.

01 Construct L1,1,L1,2,L2,1,L2,2.
02 Sort L1,2,L2,2 according to their labels πL2(QI1,2), πL2(QI2,2) + sL2 .
03 Join L1,1 and L1,2 to L1, i.e., for all (I1,1, πL2(QI1,1)) ∈ L1,1 do
04 for all (I1,2, πL2(QI1,2)) ∈ L1,2 with πL2(QI1,1) = πL2(QI1,2) do
05 I1 = I1,1 ∪ I1,2. Insert (I1, πL1(QI1)) into L1.
06 Join L2,1 and L2,2 to L2, i.e., for all (I2,1, πL2(QI2,1)) ∈ L2,1 do
07 for all (I2,2, πL2(QI2,2)+ sL2) ∈ L2,2 with πL2(QI2,1) = πL2(QI2,2)+ sL2 do
08 I2 = I2,1 ∪ I2,2. Insert (I2, πL1(QI2) + sL1) into L2.
09 Sort L2 according to the label πL1(QI2) + sL1 .
10 Join L1 and L2 to L, i.e., for all (I1, πL1(QI1)) ∈ L1 do
11 for all (I2, πL1(QI2) + sL1) ∈ L2 with πL1(QI1) = πL1(QI2) + sL1 do
12 Output I1ΔI2 = (I1 ∪ I2) \ (I1 ∩ I2).
13 Output ⊥.

Time and space complexity. Throughout the analysis, we will again ignore
low-order terms that are polynomial in the parameters p, . The space complexity
of constructing the four level-2 lists L1,1,L1,2,L2,1,L2,2 is bounded by the length((k+�)/2

p/4

)
of these lists. The sort-and-match step of these lists can be done in time

max

{(
(k + )/2

p/4

)
,

(
(k + )/2

p/4

)2

· 2−�2

}
.

Joining lists L1,1 and L1,2 to list L1 produces a list of expected size

E[| L1 |] =
(

(k + )/2
p/4

)2

· 2−�2 = Õ(2(k+�)H ( p
2(k+�) )−�2).

The final sort-and-match step of L1 and L2 on level 1 then takes expected time

max

{
E[| L1 |], E[| L1 |] · E[| L2 |]

2�1

}
= max

{((k + �)/2

p/4

)2

· 2−�2 ,
((k + �)/2

p/4

)4

· 2−2�2−�1

}
.

The following table summarizes the exponents in the complexities for both levels
of our algorithm ColumnMatch. This means that e.g. on level 2, we have space
complexity Õ(2S2(k ,p,�)). All binomial coefficients are estimated via Eq.(2).

The total time and space complexity for ColumnMatch is hence given by

S (k , p, , 2) = max{S2(k , p, ),S1(k , p, , 2)} and

T (k , p, , 1, 2) = max{S2(k , p, ),S1(k , p, , 2), 2S1(k , p, , 2)− 1} .
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Table 2. Exponents of time and space complexities

level space time

2 S2(k , p, �) := k+�
2

H ( p
2(k+�)

) max{S2(k , p, �), 2S2(k , p, �)− �2}
1 S1(k , p, �, �2) := 2S2(k , p, �)− �2 max{S1(k , p, �, �2), 2S1(k , p, �, �2)− �1}

Theorem 2. Let Q ∈R F
�×(k+�)
2 , s ∈ F

�
2 and p ≤ k + . Let Î be a solution

of the submatrix matching problem for Q, s. For sufficiently large p Column-

Match finds Î with probability at least 1
2 in time Õ(2T(k ,p,�,�1,�2)) and space

Õ(2S(k ,p,�,�2)) as long as 2 ≤ p − 2.

Proof. We already proved the claim about the time and space complexity. It
remains to show that ColumnMatch succeeds with probability at least 1

2 .
To analyze the success probability of ColumnMatch we introduce a random

variable X that counts the number of representations I = I1 ∪̇ I2 of the solution
Î in lists L1 and L2. Our goal is to show that at least one representation survives
in our algorithm with probability at least 1

2 .

Notice that we have a total number of R(p) :=
(p/2
p/4

)2
representations on level

1. To analyze X we introduce R(p) indicator variables XI where XI = 1 iff
representation I = I1 ∪̇ I2 of Î is contained in L1, i.e.,

XI =

{
1 if πL2(QI1) = 0
0 otherwise

.

Note that X =
∑

XI . The Second Moment Method [1] now lower bounds the
success probability Pr [X ≥ 1] by upper bounding Pr [X = 0] = 1−Pr [X ≥ 1]
using Chebyshev’s inequality

Pr [X = 0] ≤ Var[X ]
E[X ]2

=

∑
I Var[XI ] +

∑
I �=J Cov[XI ,XJ ]

E[X ]2
. (10)

Here the covariance has to be computed over all different representations I �= J
of the solution Î . Essentially, for every representation I there is exactly one
different representation J for which XI and XJ are dependent, otherwise they
are pairwise independent and hence Cov[XI ,XJ ] = 0.

We write I = I1 ∪̇ I2 with |I1|, |I2| = p
2 and analogously J = J1 ∪̇ J2. Notice

that for all choices J1 �= I \ I1, the random variables XI and XJ are pairwise
independent because Q contains randomly distributed columns.

Let J1 = I \ I1. Since π(QI ) = s, we have

πL2(QI1) = πL2(QJ1) + sL2 .

If sL2 �= 0 then πL2(QI1) �= πL2(QJ1) which implies that XIXJ = 0. Therefore
Cov[XI ,XJ ] = E[XIXJ ] − E[XI ] E[XJ ] = −E[XI ] E[XJ ] < 0. Hence we can
bound Eq.(10) as Pr [X = 0] ≤

∑
I Var[XI ]

E[X ]2 .
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If sL2 = 0 then πL2(QI1) = πL2(QJ1) which implies XI = XJ . This means that
for every I there is exactly one J �= I such that Cov[XI ,XJ ] = Cov[XI ,XI ] =
Var[XI ]. In this case, we can bound Eq.(10) as

Pr [X = 0] ≤ 2
∑

I Var[XI ]

E[X ]2 .

Example 1. Consider the case k = 8 and p = 4 with Q = (q1, . . . ,q8),
s = 0 and Î = {1, 2, 5, 6}. The representations I = I1 ∪̇ I2 = {1, 5} ∪̇{2, 6}
and J = J1 ∪̇ J2 = {2, 6} ∪̇{1, 5} have identical indicator variables XI ,XJ .
However I and K = {2, 5} ∪̇{1, 6} have independent indicator variables since
Pr [XK = 1|XI = 1] = Pr [q2 + q5 = 0|q1 + q5 = 0] = Pr [q2 = q1] = 2−�2 =
Pr [XK = 1].

We further observe that

Var[XI ] = E[X 2
I ]− (E[XI ])2 = E[XI ]− (E[XI ])2 ≤ E[XI ].

Therefore, we obtain

Pr [X = 0] ≤ 2
∑

I Var[XI ]
E[X ]2

≤ 2
∑

I E[XI ]
E[X ]2

≤ 2 E[
∑

I XI ]
E[X ]2

=
2 E[X ]
E[X ]2

=
2

E[X ]
.

Since E[X ] = R(p)2−�2 ≥ 2p(1−o(1))−�2 , putting the restriction 2 ≤ p − 2 on
the choice of the parameter 2 yields for large enough p

Pr [X = 0] ≤ 21−p(1−o(1))+�2 → 2�2−(p−1) ≤ 1
2
.

This in turn implies that our algorithm ColumnMatch succeeds in construct-
ing at least one representation of the solution with probability at least 1

2 . �

5 Our New Decoding Algorithm

Let us start by giving a high-level description of our new information set decoding
algorithm which we call Decode. Let H ∈ F

(n−k)×n
2 be a parity check matrix

of an [n, k , d ]-code C. Assume that we want to decode x = c + e with c ∈ C,
ω := wt(e) = �d−1

2 �. That means we want to find ω columns in H that sum to
the syndrome s(x) = Hxt . As described in Sect. 3.3, we start with the initial
transformation on the parity check matrix H and obtain the modified systematic
form

H̃ = Init(H) = UGHUP =
(

Q
0

In−k−�

)
.

This process also permutes e to ẽ = UPe. Let p ≤ ω be an optimization param-
eter. We need that the ω ones in ẽ are distributed as p

2 ,
p
2 , ω−p in the coordinate

intervals [1, (k + )/2], [(k + )/2 + 1, k + ], [k + + 1,n] of ẽ, respectively.
Recall from Section 3.3 that ẽ happens to have the correct form with

probability
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PColumnMatch(p, ) :=

((k+�)/2
p/2

)2(n−k−�
ω−p

)(
n
ω

) . (11)

We now look within the submatrix Q[�] of Q for a weight-p sum of the columns
that exactly matches the projection of the syndrome to the first  rows.

In the Decode algorithm, we now apply our ColumnMatch algorithm to
Q[�] ∈ F

�×(k+�)
2 with the projected syndrome as target vector and a solution

weight of p.
In each iteration of Decode, our ColumnMatch algorithm yields with prob-

ability at least 1
2 · PColumnMatch(p, ) at least one index set I , |I | ≤ p such that

π[�](QI ) exactly matches the projected syndrome. Thus we already match the
syndrome on  coordinates using a weight-|I | linear combination of columns
from Q. If the remaining coordinates of π(QI ) differ from the syndrome only by
w−|I | 1-entries, then we can correct these entries by choosing w−|I | unit vectors
from In−k−�. Let us summarize our decoding algorithm by giving a pseudo-code
description in Algorithm 2.

Algorithm 2. Decode

Input: Parity check matrix H ∈ F
(n−k)×n
2 , syndrome s(x) = Het with wt(e) = ω.

Output: Error e ∈ Fn
2

Parameters: p, �, �1, �2 with � = �1 + �2

00 Repeat
01 Compute H̃← Init(H) where H̃ = UGHUP .
02 For all (solutions I found by ColumnMatch(Q[�], (UGst (x))[�], p, �1, �2)) do
03 If wt(π(QI ) + UGst (x)) = ω − |I | then
04 Compute ẽ ∈ Fn

2 by setting
05 ẽi = 1 ∀i ∈ I
06 ẽk+�+j = 1 ∀j ∈ supp(π[n−k]\[�](QI + UGst(x)))
07 Output e = ẽUt

P .

The correctness of Decode is implied by correctness of the ColumnMatch

algorithm as we show in the following lemma.

Lemma 1. Decode is correct, i.e., if Decode outputs error e then Het = s(x)
and wt (e) = ω.

Proof. Let I be an output of ColumnMatch, i.e., π[�](QI ) = (UGst(x))[�] and
0 < |I | ≤ p. Furthermore, we have

UGHet = UGHUP ẽt = H̃ẽt =

(
Q

0
In−k−�

)
ẽt = Qẽt

[k+�] +

(
0
I

)
ẽt
[n]\[k+�]

= π(QI ) +

(
0

π[n−k]\[�](QI + UGst (x))

)
=

(
UGst

[�](x)

UGst
[n−k]\[�](x)

)
= UGst(x) .
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Since UG is invertible, it follows that Het = s(x). Moreover, from line 03 of
Decode we obtain that

wt (e) = wt(ẽ) = |I |+ wt(π(QI ) + UGst(x)) = |I |+ ω − |I | = ω. ��
In the remaining part of this section we explain how to derive optimal parameter
choices for the Decode algorithm. We parametrize our code by k = ckn, ω =
cωn. We also parametrize the algorithm’s optimization parameters as 1 = c�1n,
2 = c�2n and p = cpn.

Optimal parameters for the Decode algorithm. Recall that a randomly
permuted error ẽ ∈ Fn

2 of weight wt (ẽ) = ω has the desired weight dis-
tribution of 1-entries with probability PColumnMatch(p, ) from Eq. (11) as in
the FS-ISD algorithm. Thus the inverse success probability is asymptotically
P−1

ColumnMatch(p, ) = Õ(2αn) with

α(cp , c�) = H (cω)−
(

(ck + c�)H
(

cp
ck + c�

)
+ (1 − ck − c�)H

(
cω − cp

1− ck − c�

))
.

For a fixed choice of the parameters 1, 2 and p, the asymptotic time and
space complexities of one iteration of Decode are given by 2T(k ,p,�,�1,�2)n and
2S(k ,p,�,�2)n from Theorem 2. In order to apply Theorem 2 we need to further
ensure that 2 ≤ p − 2, which asymptotically simplifies to c�2 ≤ cp + 2

n → cp .
In total, we have to solve the following optimization problem

min{T (ck , cp , c�, c�1 , c�2) + α(cp , c�1 + c�2)} (OPT)
s.t. 0 ≤ cp ≤ cω

0 ≤ c�1 + c�2 ≤ 1− ck − cω + cp
0 ≤ c�2 ≤ cp
0 ≤ c�1 .

We solve (OPT) numerically for various code rates 0 ≤ ck ≤ 1. Since random
linear codes attain the Gilbert-Varshamov bound [6], we related the value cw for
the maximal error-correction capability to ck by the identity ck = 1− H (2cω).

For every code rate 0 ≤ ck ≤ 1 on the x-axis we plotted the complexity of De-

code in comparison with the FS-ISD algorithm, see Fig. 4 and Fig. 5. This shows
that our Decode algorithm yields for all rates ck an exponential improvement
over the best-known decoding algorithms FS-ISD and Ball-collision decoding. If
we additionally plot the lower bound curve from [5] in its asymptotical form,
then this curve lies strictly below the FS-ISD curve and strictly above our new
curve. This shows that the representation technique in our Decode algorithm
allows to bypass the lower bound framework from [5].

We obtained the worst-case complexity for ck ≈ 0.47n with the parameter
choice as stated in the following main result.

Theorem 3. Decode recovers e in time Õ(20.05363n) and space Õ(20.021n),
where the optimal parameter choice is cp = c�2 = 0.006 and c�1 = 0.028.
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Our formulation as an optimization problem (OPT) easily allows to specify ad-
ditional space constraints. E.g. adding the restriction S (ck , cp , c�, c�2) ≤ 0.014
gives us a running time of Õ (20.05402n

)
using the same space Õ (20.014n

)
as in

FS-ISD/Ball-collision decoding.
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Fig. 4. Run time comparison with FS-ISD
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0.0020
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Fig. 5. Improvement over FS-ISD

6 Experiments

We implemented our Decode and ColumnMatch algorithms in C++ and
tested them on three small McEliece instances with underlying [n, k , ω]-Goppa
codes. For each instance we computed optimal parameters p, 1, 2 (see second
column of Table 3) using the exact formulas for the time and space complexities
from Sect. 4 as well as for the respective probabilities from Eq. (11). We then
carried out 10.000 experiments per McEliece instance with varying Q. We com-
puted the target syndrome s = Qet for an error vector e fulfilling the required
weight distribution, i.e., we fixed p/2 coordinates to 1 in both intervals [1, k+�

2 ]
and [ k+l

2 + 1, k + ].
Recall that our sole heuristic assumption was that Q behaves as a uniformly

random matrix, implying that the projected partial sums πLj (QI ) are distributed
uniformly at random as well. To verify this assumption experimentally, we deter-
mined the average list size of L1 on level 1 and compared it to the theoretically
expected size (see columns three and four of Table 3).

Furthermore, we counted the number of successful iterations where the error
vector e was found (see column five of table 3). The results approximately match
the theoretically predicted success probability of at least 1

2 for ColumnMatch.
The slight discrepancy is due to the small value of p.

For the sake of completeness, we also give the time per iteration as well as
the number of repetitions P−1 that would be needed for the complete Decode

algorithm (see columns six and seven).
We would like to stress that the main goal of our implementation was to test

the validity of the heuristic assumption, that Q behaves as a random matrix.
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Table 3. Experimental results for the ColumnMatch algorithm

[n, k , ω] [p, �1, �2] | L1 | theo. | L1 | exp. success prob. time (ms) P−1

[255, 135, 15] [4, 11, 2] 1369 1369.1 43.6% 11 28.12

[511, 259, 28] [4, 13, 2] 4692.25 4692.08 44.2% 44 217.96

[1024, 524, 50] [4, 16, 2] 18360 18360.4 43.3% 207 238.74

We did not put effort in optimizing our code for speed by e.g. using clever data
structures or hash tables as it was done in [3]. We leave it has an open problem
to implement an efficient version of our algorithm for determining the cut-off
point with other variants of information set decoding, such as Stern, FS-ISD or
Ball-collision decoding.
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Abstract. A deniable cryptosystem allows a sender and a receiver to
communicate over an insecure channel in such a way that the communi-
cation is still secure even if the adversary can threaten the parties into
revealing their internal states after the execution of the protocol. This
is done by allowing the parties to change their internal state to make it
look like a given ciphertext decrypts to a message different from what
it really decrypts to. Deniable encryption was in this way introduced to
allow to deny a message exchange and hence combat coercion.

Depending on which parties can be coerced, the security level, the
flavor and the number of rounds of the cryptosystem, it is possible to
define a number of notions of deniable encryption.

In this paper we prove that there does not exist any non-interactive
receiver-deniable cryptosystem with better than polynomial security. This
also shows that it is impossible to construct a non-interactive bi-deniable
public-key encryption scheme with better than polynomial security.
Specifically, we give an explicit bound relating the security of the scheme
to how efficient the scheme is in terms of key size. Our impossibility result
establishes a lower bound on the security.

As a final contribution we give constructions of deniable public-key
encryption schemes which establishes upper bounds on the security in
terms of key length. There is a gap between our lower and upper bounds,
which leaves the interesting open problem of finding the tight bounds.

1 Introduction

Alice and Bob live in a country ruled by an evil dictator, Eve. If Alice wants
to communicate with Bob, standard public-key cryptography can be used by
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Alice if she wants to keep Eve from learning the subject of her communication
with Bob. However, if Eve controls the network she will be able to observe that
a ciphertext is traveling from Alice to Bob. Once the evil Eve knows that a
conversation took place, she might get suspicious and force Bob to reveal the
content of the conversation. Can cryptography offer any help to Alice and Bob
against such a powerful adversary? To solve this problem Canetti, Dwork, Naor
and Ostrovsky [CDNO97] introduced the notion of deniable encryption as a tool
to combat coercion.

Using a deniable cryptosystem Alice and Bob can communicate over an in-
secure channel in a way such that even if Eve records the transcript of the
communication and later coerces Alice (resp. Bob, or both) to reveal their inter-
nal state (secret keys, randomness, . . . ), then Alice (resp. Bob, or both) has an
efficient strategy to produce an alternative internal state that is consistent with
the transcript and with a message different than the original one.

Threat model: First note that deniable encryption does not help if Eve has
physical access to Alice and Bob’s computers. In this case nothing can prevent
Eve from seeing everything that Bob sees and therefore learn the encrypted
message—since we want Alice and Bob to actually communicate information
between them, this is unavoidable. On the other hand, if Alice and Bob can
erase their secret information, they could simply lie about the content of a
ciphertext: the standard indistinguishability security requirement implies that
Eve cannot check whether the ciphertext is really an encryption of the message
that Alice and Bob claim it to be. Therefore, as in [CDNO97], we consider the
case where the parties hand their private keys and randomness to Eve, who can
then check that the revealed message is in fact consistent with the ciphertext
she observed earlier. If the parties are able to produce a reasonable explanation
for the ciphertext that Eve observes, this is enough to fight this kind of coercion.

Sender/Receiver/Bi-Deniability: We distinguish between three kinds of denia-
bility, according to which parties can be coerced by Eve. Note that, up to the
number of rounds required by the protocol, sender and receiver deniability are
equivalent: Bob can use a sender-deniable scheme to send a random key K to
Alice, who can use it to encrypt the message M using a one-time pad and send
back C = M⊕K. Now if Bob is coerced he can claim to have received a different
message M ′ by using the sender-deniable property and explain the transcript as
if it contained a different K ′.

When we consider bi-deniability, the case where Eve can coerce both Alice
and Bob, the only coordination that we allow between Alice and Bob is to agree
on which message to fake the ciphertext to. In particular this means that the
parties cannot communicate to each other their internal states, when they have
to produce a fake explanation. This seems to be the only meaningful definition:
if Alice and Bob could communicate this information through a channel not
controlled by Eve, why would they not use this channel to communicate the
original message in the first place?
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Fully-Deniable vs. Multi-Distributional: In a multi-distributional deniable cryp-
tosystem a ciphertext produced with a “fake” encryption algorithm EF can be
later explained as an encryption of any message under the “standard” encryp-
tion algorithm E. In other words, for any m,m′ it is possible to find appropriate
randomness for E,EF such that E(m′) = EF(m). Note however, that Eve might
not believe that the ciphertext was produced using E and ask to see the internal
state for EF and in this case the parties have no efficient strategy to lie about
the content of the ciphertext. A fully-deniable scheme is a scheme where E = EF

and therefore does not present this issue.

Public-key vs. Interactive Cryptosystems: A (receiver/sender/bi)-deniable pub-
lic-key cryptosystem is a public-key cryptosystem that is (receiver/sender/bi)-
deniable. I.e., the cryptosystem consist of a public key known by the sender and
the communication protocol consists of sending a ciphertext to the receiver. A
generic, or interactive, cryptosystem might involve arbitrary interaction.

Security Level: All notions of deniability can be quantified by ε : N → R+ which
measures how indistinguishable the faked states are from the honest states. As
an example, an ε-receiver-deniable public-key cryptosystem is one in which the
faked secret key is ε-indistinguishable from the honest secret key to a computa-
tionally bounded distinguisher. We will distinguish between schemes where ε is
a negligible function and where ε is of the form 1/p, for some polynomial p. We
will idiosyncratically say that the former kind has negligible security and the
latter polynomial security.

Prior Work, Our Contributions and Open Questions: Deniable encryption was
first introduced and defined in [CDNO97]. They constructed a sender-deniable
public-key cryptosystem with polynomial security, and therefore a receiver-
deniable interactive cryptosystem. In [OPW11] O’Neill, Peikert and Waters
showed how to construct multi-distributional bi-deniable public-key encryption
with negligible security. This is the first scheme that achieves any kind of de-
niability when both parties are corrupted. Recently, Dürmuth and Freeman
announced a fully-deniable (receiver/sender)-deniable interactive cryptosystem
with negligible security [DF11]. However their result was later showed to be
incorrect by Peikert and Waters.

Our contribution to the state of the art on deniable-encryption is to derive
upper and lower bounds on how secure a deniable public-key encryption scheme
can be as a function of the key-size.

Lower bounds: As for lower bounds, we have the following results.
Receiver: We show that any public-key cryptosystem with σ-bit keys can

be at most 1
2 (σ + 1)−1-receiver-deniable.

Sender: We do not know of a non-trivial lower bound for sender-deniable
public-key encryption.

Bi: Since bi-deniable public-key encryption with σ-bit keys implies receiver-
deniable public-key encryption with σ-bit keys, any public-key cryptosys-
tem with σ-bit keys can be at most 1

2 (σ + 1)−1-bi-deniable.
Upper bounds: We show three upper bounds.
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Receiver: If we let κ denote the length of the secret key of the best multi-
distributional receiver-deniable public-key encryption scheme, then there
exists a 1/n-receiver-deniable public-key encryption scheme with key
length σ = O(n2κ).

Sender: If we let κ denote the length of the sender randomness in the best
multi-distributional sender-deniable public-key encryption scheme, then
there exists a 1/n-sender-deniable public-key encryption scheme where
the sender randomness has length σ = O(nκ).

Bi: If we let κ denote the length of the secret key of the best multi-
distributional bi-deniable public-key encryption scheme, then there ex-
ists a 1/n-bi-deniable public-key encryption scheme with key length
σ = O(n4κ).

We phrase the upper bounds in terms of the upper bounds for multi-distributional
schemes. The reason for this is that we do not know of any assumption which al-
lows to construct deniable public-key encryption with polynomial security, which
does not also allow to construct multi-distributional deniable encryption. And,
we do not know of any direct construction of deniable public-key encryption with
polynomial security which is more efficient than going via a multi-distributional
scheme. It therefore seems that multi-distributional schemes are the natural
building block for deniable public-key encryption with polynomial security.

Our upper bounds for receiver-deniability and sender-deniability are similar to
bounds which can be derived from constructions in [OPW11]. Our upper bound
for bi-deniability is new. In [OPW11] a construction of a bi-deniable public-key
encryption scheme is hinted, but no explicit construction is given which makes
it impossible to estimate the complexity. The hinted construction is, however,
different from the one we give here.

Our lower bound for receiver-deniability is a generalization of a result
in [CDNO97], where a similar bound was proven for any so-called separable
public-key encryption scheme. An encryption scheme being separable is, however,
a very strong structural requirement, so it was unclear if the bound in [CDNO97]
should hold for any scheme. In fact, we have not been able to find even a conjec-
ture in the more than a decade of literature between [CDNO97] and the present
result that polynomial security should be optimal in general. Our proof tech-
nique is completely different from the one in [CDNO97], as we cannot make any
structural assumption about the encryption scheme in question.

Our work leaves a number of interesting open problems.

1. Our proof of the upper bounds are via black-box constructions of deniable
public-key encryption with polynomial security from multi-distributional
deniable public-key encryption. This shows that multi-distributional deni-
able public-key encryption is stronger than deniable public-key encryption
with polynomial security. Is it strictly stronger, or does there exist a black-
box construction of multi-distributional deniable public-key encryption from
deniable public-key encryption with polynomial security?
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Table 1. The current state of the art for deniable encryption. The first column dis-
tinguishes between fully-deniable schemes and schemes with multi-distributional deni-
ability. The Sender/Receiver/Bi columns contains “�” if any construction is known; a
“ ✗” indicates an impossibility result; a “?” marks a question that is still open.

Notion Security Interaction Sender Receiver Bi

Full-Deniability Negligible Interactive ? ?
Public-key ? ✗ ✗

Polynomial Public-key � � �
Multi-Distributional Negligible Public-key � � �

2. Our lower bounds do not apply to sender-deniable public-key encryption.
Is it possible to construct sender-deniable public-key encryption with better
than polynomial security?

3. Our lower bounds do not apply to interactive encryption schemes. Is it pos-
sible to construct deniable encryption schemes with better than polynomial
security when arbitrary interaction is allowed?

4. There is a gap between our upper and lower bounds of at least a factor
κ. Since κ itself is typically, for practical purposes, a rather large number
(multi-distributional schemes are not simple objects on themselves), this
gap is important in practice. What are the tight bounds on the security of
a deniable public-key encryption scheme? We conjecture that the bound is
in the order of σ−1.

Non-committing encryption: Canetti, Feige, Goldreich and Naor introduced the
notion of a non-committing cryptosystem, which is similar to the notion of a
bi-deniable cryptosystem, but it is only required that the faking can be done
by a simulator. This simulator is allowed to use public keys with a different
distribution than those in the protocol. This is needed when showing adaptive
security in simulation-based models. It is known [CFGN96] how to implement
non-committing encryption with negligible security. Several improvements over
the original scheme (both in terms of efficiency and assumptions) have been
published in [Bea97, DN00, KO04, GWZ09, CDSMW09].

In [Nie02] it was shown that non-interactive non-committing encryption is im-
possible. This does not imply the negative result we are proving here, as receiver-
deniable public-key encryption does not imply non-committing encryption. In
non-committing encryption both sides have to be faked. In receiver-deniable
encryption, only the receiver has to be faked. In this sense non-committing en-
cryption is a stronger notion than receiver-deniable encryption. But, in fact,
the notions are incomparable, as receiver-deniable encryption on other axes is
stronger than non-committing encryption. As an example, it can be shown that
if a public-key encryption scheme is receiver-deniable, then the parallel composi-
tion of the scheme where the same public key is used to encrypt many massages
is also receiver-deniable. This is a property which non-committing encryption
provably does not have. And, in fact, this self composition property is crucial in
the proof of our lower bound. Also, the result in [Nie02] addresses the case of
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perfect non-committing encryption (the real-world and the simulated world must
be indistinguishable). We are interested in the exact level of security which can
be obtained i.e., given a public-key encryption scheme with a certain secret-key
length, how deniable can the scheme be?

Structure: In Section 2 we formally define the different flavors of deniable public-
key encryption. In Section 3 we show that receiver-deniability is maintained un-
der parallel self-composition with at most a linear security loss. We use that fact
to derive our lower bounds giving us the impossibility result of fully-receiver
deniable encryption. Finally, section 4 contains our results on poly-deniable
encryption schemes.

2 Deniable Public-Key Encryption

In this section we define three different notions of deniable public-key encryption
schemes. These notions correspond respectively to an adversary with the ability
to coerce the receiver, the sender or both parties simultaneously. We model
coercion by letting the adversary request the secret information used in the
encryption scheme by the coerceable parties. Deniability is obtained by letting
the coerceable parties supply fake secret information.

Basic Scheme. All schemes are defined based on the following definition
of a standard public-key encryption scheme consisting of three probabilistic
polynomial-time algorithms (G,E,D):

– G(1κ) generates a key-pair (pk, sk), where pk is the public key, sk is the
secret key and κ is the security parameter. Note that we consider sk to be
the randomness used in G(1κ).

– Epk(m; r) generates a ciphertext c which is an encryption under the public
key pk of message m ∈ {0, 1}� using randomness r. We sometimes write
Epk(m) to make the randomness be implicit.

– Dsk(c) outputs the message m ∈ {0, 1}� contained in the ciphertext c.

Let negl : N → R+ be a negligible function. For all notions defined below we
require correctness, i.e., we require that Pr[Dsk(Epk(m)) = m] > 1−negl(κ), and
IND-CPA security i.e., we require that ∀ PPT (A1, A2), ∃negl(·):

Pr[(pk, sk)← G(1κ), (m0,m1, st)← A1(pk),
c = Epk(mb), b′ ← A2(c, st) : b = b′] < 1/2 + negl(κ) .

Multi-distributional Encryption. We define a general form of deniable
public-key encryption called multi-distributional deniable public-key encryption.
Such a scheme essentially consists of two standard public-key schemes sharing a
common decryption algorithm.
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– The honest scheme (G,E,D) does not provide deniability in itself.
– The fakeable scheme (GF,EF,D) provides deniability in the sense that, for

a ciphertext c fake secret information can be generated. The faked secret
information will make c appear as an encryption of any chosen message m′

in the honest scheme. How this is done depends on the notion of deniability
as defined below.

For a multi-distributional deniable public-key encryption scheme to be correct
we require standard correctness of all public-key schemes (G′,E′,D) where G′ ∈
{G,GF} and E′ ∈ {E,EF}.

The idea behind having two different schemes is to use the fakeable scheme to
encrypt a message m on which the parties would like to have deniability. When
coerced the parties simply claim that they used the honest scheme to encrypt the
fake message m′. This approach has two disadvantages. First, the parties must
decide beforehand whether they later want to deny. Secondly, is the question
of why a coercer should believe the parties, when they claim to have used the
honest scheme. Note that we cannot guarantee deniability, if the coercer insists
on getting the secret information used in the faking process.

Fully-deniable Encryption. An important special case of multi-distributional
deniable public-key encryption is fully-deniable public-key encryption (or just de-
niable public-key encryption). This notion addresses the disadvantages of multi-
distributional encryption mentioned above. For a fully-deniable public-key en-
cryption scheme we have that (G,E,D) = (GF,EF,D), that is there are no special
faking key generation and encryption algorithms. We will often omit the prefix
‘fully’ for simplicity.

Receiver-Deniability. A multi-distributional receiver-deniable public-key en-
cryption scheme consists of five probabilistic polynomial-time algorithms
(G,GF,E,D,FR). Here (G,E,D) is the honest scheme and (GF,E,D) is the fake-
able scheme. Notice that the honest and fakeable encryption algorithm are the
same since faking is only done on the receiver’s side. The faking algorithm FR is
defined as follows:

– For (pk, sk)← GF(1κ) and c← Epk(m), FR(sk, c,m′) generates an alternative
secret key sk′ such that Dsk′ (c) = m′.

Sender-Deniability. A multi-distributional sender-deniable public-key en-
cryption scheme consists of five probabilistic polynomial-time algorithms
(G,E,EF,D,FS). Here (G,E,D) is the honest scheme and (G,EF,D) is the fakeable
scheme. The faking algorithm FS is defined as follows:

– FS(pk,m, r,m′) generates alternative randomness r′ such that EFpk(m; r) =
Epk(m′; r′).
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Bi-Deniability. We assume here to be in a setting where receiver and sender
have individual faking algorithms. This models the fact that, after an initial
stage where the parties can agree on which message to fake to, the sender and
the receiver cannot communicate over a channel that is not controlled by the
adversary—otherwise they could be using this channel to communicate the mes-
sage m in the first place.

A multi-distributional bi-deniable public-key encryption scheme consists of seven
probabilistic polynomial-time algorithms (G,GF,E,EF,D,FR,FS). The faking al-
gorithms FR and FS are defined similar to the receiver-deniable and sender-
deniable notions respectively, that is:

– For (pk, sk)← GF(1κ) and c← EFpk(m), FR(sk, c,m′) generates an alterna-
tive secret key sk′ such that Dsk′(c) = m′.

– FS(pk,m, r,m′) generates alternative randomness r′ such that EFpk(m; r) =
Epk(m′; r′).

2.1 Security Notions

The security notions of the three schemes above, are defined in terms of the
following experiments performed with an adversaryA = (A1, A2), where m,m′ ∈
{0, 1}�.

Honest Game (Receiver) Faking Game (Receiver)
(pk, sk)← G(1κ) (pk, sk)← GF(1κ)
(m,m′, st)← A1(pk) (m,m′, st)← A1(pk)
c← Epk(m′; r) c← Epk(m; r)

sk′ ← FR(sk, c,m′)
b← A2(st, c, sk) b← A2(st, c, sk′)

Honest Game (Sender) Faking Game (Sender)
(pk, sk)← G(1κ) (pk, sk)← G(1κ)
(m,m′, st)← A1(pk) (m,m′, st)← A1(pk)
c← Epk(m′; r) c← EFpk(m; r)

r′ ← FS(pk,m, r,m′)
b← A2(st, c, r) b← A2(st, c, r′)

Honest Game (Bi) Faking Game (Bi)
(pk, sk)← G(1κ) (pk, sk)← GF(1κ)
(m,m′, st)← A1(pk) (m,m′, st)← A1(pk)
c← Epk(m′; r) c← EFpk(m; r)

sk′ ← FR(sk, c,m′)
r′ ← FS(pk,m, r,m′)

b← A2(st, c, sk, r) b← A2(st, c, sk′, r′)

Let hA(κ) and fA(κ) be the random variables describing b when running
the honest game and faking game respectively with security parameter κ. The
advantage of A is
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AdvA(κ) = |hA(κ)− fA(κ)| .

We say that a scheme is (receiver/sender/bi)-deniable if AdvA is negligible in κ for
any efficient A. Let ε : N → R+. We say that a scheme is ε-(receiver/sender/bi)-
deniable if AdvA(κ) ≤ ε(κ) + negl(κ).

2.2 Full Bi-deniablity Implies Full Sender/Receiver-Deniability

Any fully bi-deniable scheme can trivially be turned into both a receiver-deniable
and a sender-deniable scheme. On the surface this seems obvious, if both parties
can fake then they should be able to fake individually as well. Surprisingly,
however, this conclusion cannot be drawn in the multi-distributional setting—in
[OPW11] the authors show that in this setting bi-deniability does imply sender
deniability but not receiver deniability. As stated in Lemma 1 similar subtleties
do not arise in the fully-deniable case. A proof of this can be found in the full
version.

Lemma 1. If (G,E,D,FR,FS) is a fully ε-bi-deniable encryption scheme, then
(G,E,D,FS) is a fully ε-sender-deniable encryption scheme and (G,E,D,FR) is
a fully ε-receiver-deniable encryption scheme.

3 Impossibility of Fully Receiver/Bi-deniable Encryption

In this section we prove the impossibility of fully receiver-deniable and fully
bi-deniable public-key encryption with better than inverse polynomial security.
Since, by Lemma 1, any fully bi-deniable public-key encryption scheme is also
a fully receiver-deniable public-key encryption scheme, it is sufficient to prove
impossibility of fully receiver-deniable public-key encryption. It turns out that
the impossibility follows readily from the fact that full receiver-deniability is
preserved under parallel self-composition with only a linear security loss.

We will use a slightly modified definition of receiver-deniability. Recall that in
the definition from section 2 the faking algorithm FR is invoked as FR(sk, c,m′),
especially it is not given the sender’s randomness r. In this section we will allow
FR to have access to r, that is FR is invoked as FR(sk,m, r,m′). Since we are
proving an impossibility result, this does not weaken the result.

3.1 Security of Parallel Self-composition

Let (G,E,D,FR) be any receiver-deniable public-key cryptosystem. Let n : N →
N be a polynomial in the security parameter κ. We define the parallel self-
composition (Gn,En,Dn,FR

n) as follows:
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Gn(1κ) = G(1κ)

En
pk(m1, . . . ,mn; r1, . . . , rn) = (Epk(m1; r1), . . . ,Epk(mn; rn))

Dn
sk(c1, . . . , cn) = (Dsk(c1), . . . ,Dsk(cn))

FR
n(sk, (m1, . . . ,mn), (r1, . . . , rn), (m′

1, . . . ,m
′
n)) = sk′ ,

where sk0 = sk, ski ← FR(ski−1,mi, ri,m
′
i) for i = 1, . . . , n and skn = sk′.

Lemma 2. If (G,E,D,FR) is ε-receiver-deniable, then (Gn,En,Dn,FR
n) is nε-

receiver-deniable.

Proof. Let An = (An
1 ,A

n
2 ) be any probabilistic polynomial-time attacker against

(Gn,En,Dn,FR
n). For h = 1, . . . , n we construct from An a probabilistic

polynomial-time attacker Ah = (Ah,1,Ah,2) against (G,E,D,FR). We can then
describe the advantage of An in terms of the advantages of Ah for h = 1, . . . , n.
Since, by assumption on (G,E,D,FR), we have a bound on the advantage of each
Ah, this gives us the bound on the advantage of An. The attacker Ah runs as
follows:

1. Ah,1: Receives pk.
2. Ah,1: Input pk to An

1 and run An
1 to obtain (m1, . . . ,mn), (m′

1, . . . ,m
′
n) and

state stAn .
3. Ah,1: For i = 1, . . . , h− 1, sample ci ← Epk(m′

i).
4. Ah,1: Output (mh,m

′
h, stAh

) where stAh
= ((m1, . . . ,mn), (m′

1, . . . ,m
′
n),

stAn ,(c1, . . . , ch−1)).
5. Ah,2: Receive (stAh

, c, sk). Let ch = c and skh = sk.
6. Ah,2: For i = h+1, . . . , n, sample ci ← Epk(mi; ri) and ski ← FR(ski−1,mi, ri,

m′
i).

7. Ah,2: Input (stAn , (c1, . . . , cn), skn) to An and run it to obtain a bit b ∈ {0, 1}.
8. Ah,2: Output b.

Let b0h be the distribution of the bit b output by Ah when run in the honest
game and let b1h be the distribution of the bit b output by Ah when run in the
faking game.

When Ah is run in the honest game, then skn is computed from an honest
secret key skh as ski ← FR(ski−1,mi, ri,m

′
i) for i = h + 1, . . . , n. When Ah is

run in the faking game, then skn is computed from an honest secret key skh−1

as ski ← FR(ski−1,mi, ri,m
′
i) for i = h, . . . , n, where the first computation

skh ← FR(skh−1,mh, rh,m
′
h) is performed by the faking game before skh is

input to Ah. It follows that when Ah is run in the honest game and Ah+1 is run
in the faking game, the values input to An have identical distributions, so b1h =
b0h−1. Let AdvAh

denote the advantage of Ah against (G,E,D,FR) and AdvAn

be the advantage of An against (Gn,En,Dn,FR
n). We then have by definition

AdvAh
(κ) = |b0h − b1h| and by construction AdvAn(κ) = |b0n − b11|, where κ is the

security parameter. It then follows using telescoping and the triangle inequality
that AdvAn(κ) ≤ nε(κ)+

∑n
h=1 neglh(κ), where all neglh are negligible in κ. The

lemma then follows from the fact that the sum of polynomially many negligible
functions is negligible. ��
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Notice that Lemma 2 means that a faked secret key skn, resulting from FR
n,

must somehow remember the faking of each ciphertext involved in the process.
In other words skn must not only fake a single ciphertext, it must ensure that
every ciphertext ci decrypts to the faked message m′

i with high probability. To
see why consider the efficient adversary A of the receiver-deniable game against
(Gn,En,Dn,FR

n) that simply outputs b = 1 if m′
i = Dsk(ci) for all i = 1, . . . , n

and b = 0 otherwise. By correctness of the encryption scheme and by Lemma 2
the above property of skn becomes clear.

Let s be a bit string of length n. In the proof of the following theorem we
use this property to show how to associate each bit of s with a faking of a
ciphertext and thus how to store s in the memory of the faked secret key skn.
The impossibility result arises from the fact that this can be done even for
random s longer than skn.

3.2 Lower Bound

We here show a lower bound on ε in an ε-receiver-deniable encryption scheme.
This bound immediately gives that one cannot obtain better than polynomial
security. The bound is stated formally in the following theorem:

Theorem 1. Let (G,E,D,FR) be ε-receiver deniable, and let σ be an upper bound
on the length of the secret keys of (G,E,D,FR), including the faked ones. Then
ε ≥ 1

2 (σ + 1)−1 − negl(κ).

Proof. We reach our bound via impossibility of compressing uniformly random
data. Let n = σ+1. We can assume that (G,E,D,FR) can encrypt at least one bit,
so (Gn,En,Dn,FR

n) can encrypt n-bit messages. Furthermore (Gn,En,Dn,FR
n)

is nε-receiver-deniable.
Consider the following communication protocol parametrized by κ. Here is

how the sender works:

1. Sample (pk, sk)← Gn(1κ).
2. Sample uniformly random m′ ← {0, 1}n and let m = 0n.
3. Sample c← En

pk(m; r).
4. Let sk′ ← FR

n(sk,m, r,m′).
5. Send (c, sk′).

On receiving (c, sk′) the receiver outputs m′′ = Dn
sk′ (c).

To bound the probability that this protocol fails i.e., that m′′ �= m′, consider
the following adversary A = (A1,A2) for the receiver-deniable security games
against (Gn,En,Dn,FR

n). On input pk A1 outputs (m,m′, st), where the mes-
sages m and m′ are sampled as in step 2 of the sender algorithm above. The
state st is set to be m′. On input (st, c, sk′) A2 computes Dn

sk′ (c) = m′′ and
outputs 1 if m′′ = m′ = st and 0 otherwise. Now notice that steps 1-4 of the
sender algorithm above correspond to the first four steps of the receiver-deniable
faking game against A. That is the probability that the communication protocol
fails i.e., that m′′ �= m′, is exactly the same as A2 outputting 0 in the faking
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game. In the honest game we have by correctness of (Gn,En,Dn,FR
n) that A2

only outputs 0 with negligible probability. Thus by nε-receiver deniability we
have Pr [m′′ �= m′] ≤ nε(κ)+negl(κ). We later use this bound on the correctness
of the communication protocol to derive our bound, but first we transform the
protocol a bit.

For each κ, let rκ be the value which minimizes the probability that m′′ �= m′

when cκ = Epk(0n; rκ). Consider then the following non-uniform communication
protocol parametrized by κ. Here is how the sender works:

1. Sample (pk, sk)← G(1κ).
2. Sample m′ ← {0, 1}n.
3. Let sk′ ← FR(sk, 0n, rκ,m

′).
4. Send sk′.

The receiver outputs m′′ = Dsk′ (cκ), where cκ = Epk(0; rκ). Note that rκ and cκ
are hardwired into the protocol and is therefore not communicated as part of the
protocol. We still have that Pr [m′′ �= m′] ≤ nε(κ)+negl(κ). Using that n = σ+1
we get that (σ + 1)ε(κ) ≥ 1 − Pr [m′′ = m′] − negl(κ). From incompressibility
of uniformly random data it follows that Pr [m′′ = m′] ≤ 2σ−n = 2−1, as the
protocol sends only sk′, which is at most σ bits long and because m′ is uniformly
random and n = σ + 1 bits long. Combining these bounds we get that ε(κ) ≥
1
2 (σ + 1)−1 − negl(κ). ��
In words, this bound says that any public-key cryptosystem with σ-bit keys
can be be at most 1

2 (σ + 1)−1-receiver-deniable. Thus to get negligible receiver-
deniability keys must be superpolynomial in size. This however would contradict
the key generation algorithm being polynomial-time as required by our definition
of a public-key cryptosystem.

4 From Multi-distributional to Poly Deniability

We now give explicit constructions of poly-(sender/receiver/bi)-deniable public-
key encryption schemes from any multi-distributional (sender/reciever/bi)-
deniable public-key encryption scheme respectively. As in [CDNO97, OPW11],
the basic idea in all these constructions is to encrypt a message bit b by first
writing it as b =

⊕n
i=1 bi for random bi’s, and then encrypting each bi indepen-

dently using randomly either the honest or the fakeable encryption scheme. To
fake we just have to identify an index j where the fakeable scheme was used
and use the corresponding faking algorithm. This is no problem for sender and
receiver deniablility since in those cases whoever is running the faking algorithm
knows exactly on which indices the fakeable scheme was used. The bi-deniable
case however is more challenging because sender and receiver must agree on an
index j where they both used the fakeable scheme. As discussed in the intro-
duction, a different solution for this problem was hinted in [OPW11]. All the
constructions are for bit encryption: for longer plaintext space one can simply
run the scheme in parallel.
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In the following subsections we will need two technical lemmas which we
state here. Let a randomized encoding E be a randomized function from {0, 1}
to {0, 1}n. Consider the following game �(A,E) between a randomized encoding
E and an adversary A (an interactive Turing machine):

1. Run A to make it output a bit b ∈ {0, 1}.
2. Sample (b1, . . . , bn)← E(b).
3. Input (b1, . . . , bn) to A and run it to produce a guess g ∈ {0, 1}.
4. Output g.

We define the advantage of A in distinguishing two randomized encodings E0

and E1 to be AdvA(E0, E1) = |Pr [�(A,E0) = 0] − Pr [�(A,E1) = 0] |. Notice
that if we fix b, then E0(b) and E1(b) are random variables, making the statis-
tical distance between them well-defined. Let σb denote the statistical distance
between E0(b) and E1(b) and let σ(E0, E1) = max(σ0, σ1).

Lemma 3. It holds for all adversaries A and all randomized encodings E0 and
E1 that AdvA(E0, E1) ≤ σ(E0, E1).

Lemma 4. Let s = 1, 2, . . . be a parameter. Let N : N → N, where Ns = N(s)
is the number of samples at setting s. For each s, let

Ds =

⎧⎪⎨⎪⎩
−p with probability q

q with probability p

0 with probability 1− p− q

,

where p and q might be functions of s. Let Xs,1, . . . , Xs,Ns be Ns i.i.d. variables,
distributed according to Ds. Let Xs =

∑Ns

i=1 Xs,i and let Ss = Pr [Xs ∈ [0, 1
2 )].

Then

Ss ≤ 1√
pq(p+ q)Ns

(
p2 + q2

p+ q
+

1
2
√

2π

)
.

The first lemma is trivial to prove, and the second follows directly from the
Berry-Esseen inequality [KS10]. Full proofs can be found in the full version.

4.1 Poly-Sender-Deniability

As a warm up we show that a multi-distributional sender-deniable scheme implies
a poly-sender-deniable scheme. From a scheme (G,E,EF,D,FS) we produce a
scheme (G′,E′,D′,FS

′) which encrypts a single bit b. The produced scheme is
basically the Parity Scheme of [CDNO97] only whereas our scheme is based on
a multi-distributional sender-deniable scheme, the scheme in [CDNO97] is based
on a so-called translucent set.

Key Generation G′(1κ): Output (pk, sk)← G(1κ).
Encryption E′

pk(b): Sample a uniformly random index j ∈ {0, . . . , n} so that j
is even for b = 0 and odd for b = 1. For i = 1, . . . n do the following.
1. For i ≤ j sample ci ← EFpk(1; ri).
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2. For i > j sample ci ← Epk(0; ri).

Output C = (ci)n
i=1.

Decryption D′
sk(C): Parse C as (ci)n

i=1. Compute bi = Dsk(ci) for i = 1, . . . , n
and output b =

⊕n
i=1 bi.

Fake FS
′(pk, b, (j, (ri)n

i=1), b
′): If b = b′ output (j, (ri)n

i=1). Otherwise let r′j =
FS(pk, 1, rj, 0) and j′ = j−1. Let all r′i = ri for i �= j and output (j′, (r′i)

n
i=1).

Theorem 2. If (G,E,EF,D,FS) is multi-distributional sender-deniable, then
(G′,E′,D′,FS

′) is 4/n-sender-deniable.

Proof. Correctness and semantic security is obvious. To prove poly-sender-
deniability we first consider the following hybrid game H1.
H1 proceeds exactly as the faking game for sender-deniability only it modifies

the faking algorithm FS
′ by simply sampling r′j as randomness for the honest

encryption algorithm E, and replaces the ciphertext C = (ci)n
i=1 with C′ =

(c′i)
n
i=1 where c′j = Epk(0; r′j) and c′i = ci for all i �= j. Notice that the H1 only

changes the distribution of r′j and c′j , the distribution of all other inputs to the
adversary remains the same. In other words distinguishing the two games comes
down to distinguishing an honest encryption of 0 from an encryption faked to
an honest encryption of 0. Thus by the multi-distributional sender-deniability of
(G,E,EF,D,FS) the advantage of any adversary in distinguishing the two games
will be negligible in κ.

Now consider another hybrid game H2. H2 proceeds exactly as the honest
game for sender-deniability except that it modifies the encryption algorithm
E′ by picking j in the following way: first it picks a uniformly random index
i ∈ {0, . . . , n} such that i is odd for b = 0 and even for b = 1 (i.e., the opposite
of how E′ picks j) and then sets j = i−1. Notice now that H2 outputs exactly the
same as H1 to the adversary only the output is generated in a slightly different
order. I.e., H1 and H2 are perfectly indistinguishable. However since H2 proceeds
exactly as the honest game, except that it picks j from a different distribution,
distinguishing H2 from the honest game comes down to distinguishing the two
different distributions of j.

In order to utilize Lemma 3 we can view these distributions as randomized
encodings. Let us denote by E0 and E1 the encodings that encodes a bit b as j
1’s followed by n− j 0’s. For E0 j is sampled as in the honest game where the
adversary outputs b and for E1 j is sampled as in the hybrid game H2 where
the adversary outputs b. If j = −1 in the hybrid game E1 will encode this as
a special string, say a 0 followed by n − 1 1’s. First notice that for b = 0 both
games sample j uniformly random in {0, 2, 4, . . . , n−1}, i.e., σ0 = 0. However for
b = 1 the honest game samples j uniformly random in {1, 3, 5, . . . , n} whereas
H2 samples uniformly random in {−1, 1, 3, . . . , n− 2}. Thus clearly σ1 = 4/n.

Now by Lemma 3 we have that any adversary has advantage at most 4/n
in distinguishing the honest game from H2. By the above hybrid argument it
follows that any adversary has advantage at most 4/n+negl(κ) in distinguishing
the honest game from the faking game. I.e., (G,E,EF,D,FS) is 4/n-deniable. ��
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4.2 Poly-Receiver-Deniability

We show that a multi-distributional receiver-deniable scheme implies a poly-
receiver-deniable scheme. From a scheme (G,GF,E,D,FR) we produce a scheme
(G′,E′,D′,FR

′) which encrypts a single bit b.

Key generation G′(1κ): For i = 1, . . . , n sample uniformly random bits ai ∈
{0, 1} and then sample (pki, ski)← Gai , where G0 = G and G1 = GF. Output
(PK,SK) = ((pki)n

i=1, (ski, ai)n
i=1).

Encryption E′
PK(b): Parse PK as (pki)n

i=1. For i = 1, . . . , n − 1, sample bi
uniformly at random and let bn = b ⊕⊕n−1

i bi, compute ci ← Epki(bi) and
output C = (ci)n

i=1.
Decryption D′

SK(C): Parse SK as (ski, ai)n
i=1 and C as (ci)n

i=1. Compute bi =
Dski(ci) for i = 1, . . . , n and output b =

⊕n
i=1 bi.

Fake FR
′(SK,C, b′): If b′ = D′

SK(C) output SK. Otherwise parse SK as
(ski, ai)n

i=1 and C as (ci)n
i=1. Pick a uniformly random index i for which

ai = 1, compute bi = Dski(ci) and let sk′i = FR(ski, ci, 1 − bi) and a′i = 0.
For all j �= i, let sk′j = skj and a′j = aj . Output SK ′ = (sk′j , a

′
j)

n
j=1.

If κ is they key length of the underlying scheme then the above scheme has keys
of length nκ. The following result then implies that one can build a 1/n-receiver
deniable scheme with keys of size σ = O(n2κ).

Theorem 3. If (G,GF,E,D,FR) is multi-distributional receiver-deniable, then
(G′,E′,D′,FR

′) is (n− 1)−1/2-receiver-deniable.

Proof. In the following we assume for simplicity that n is odd, a similar analysis
can be made in the case of n even. Correctness and semantic security is obvi-
ous. Using a hybrid argument, the distinguishing probability of any poly-time
adversary against the above scheme is negligible close to the best distinguishing
advantage between the two randomized encoding E0 and E1 defined as follows:

1. E0(b) = (b1, . . . , bn), where the bi ∈ {0, 1} are uniformly random and inde-
pendent except that b =

⊕n
i=1 bi.

2. E1(b) = (b1, . . . , bn) is sampled as follows. First sample b′i ∈ {0, 1} as in
E0(b⊕ 1). Then, if

∑
i b

′
i = 0, let (b1, . . . , bn) = (b′1, . . . , b′n). Otherwise, pick

a uniformly random j ∈ {1, . . . , n} for which b′j = 1 and then let bj = 0 and
let bi = b′i for i �= j.

The event
∑

i b
′
i = 0 happens with negligible probability, so we can analyze

under the assumption that this does not happen. In that case the bits bn and
b′n can be computed as bn = b ⊕⊕n−1

i=1 bi respectively b′n = b ⊕⊕n−1
i=1 b′i. So,

one can distinguish D0(b) = (b1, . . . , bn−1) and D1(b) = (b′1, . . . , b
′
n−1) with the

same advantage as one can distinguish E0(b) and E1(b). The distribution D0(b)
consists of n−1 uniformly random bits. The distribution D1(b) consists of n−1
uniformly random bits, where we flipped a random occurence of 1 to 0. For
b ∈ {0, 1}n−1, let #1(b) =

∑n−1
i=1 bi be the number of 1’s in the vector and let

#0(b) = n−1−#1(b) be the number of 0’s. By the symmetry of the distributions,
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it is easy to see that one can distinguish #1(D0(b)) and #1(D1(b)) with the
same advantage as one can distinguish D0(b) and D1(b). Since #1(D0(b)) is
binomially distributed with expectation n−1

2 and #1(D1(b)) = #1(D0(b)) − 1,
it follows that an optimal distinguisher for #1(D0(b)) and #1(D1(b)) is to guess
0 if #1(D) ≥ n−2

2 and guess 1 otherwise, as this is a maximum likelyhood
distinguisher. The advantage of this distinguisher is

Adv =
1
2

∣∣∣∣Pr
[
#1(D0(b)) ≥ n− 2

2

]
− Pr

[
#1(D1(b)) ≥ n− 2

2

]∣∣∣∣
=

1
2

∣∣∣∣Pr
[
#1(D0(b)) ≥ n− 2

2

]
− Pr

[
#1(D0(b)) ≥ n− 2

2
+ 1
]∣∣∣∣

=
1
2

Pr
[
#1(D0(b)) ∈

[
n− 2

2
,
n− 2

2
+ 1
)]

.

From #1(D0(b)) = (n− 1)−#0(D0(b)), we get that 2#1(D0(b)) = #1(D0(b))+
(n− 1)−#0(D0(b)), so #1(D0(b)) = n−1

2 + 1
2 (#1(D0(b)) −#0(D0(b))), and it

follows that

Adv =
1
2

Pr
[
1
2
(#1(D0(b))−#0(D0(b))) ∈

[
−1

2
,
1
2

)]
=

1
2

Pr
[
1
2
#1(D0(b))− 1

2
#0(D0(b)) ∈

[
0,

1
2

)]
.

The last equality follows from n being odd. Consider then Lemma 4, with p =
q = 1

2 and Ns = s−1. The variable Xs in the premise then has exactly the same
distribution as 1

2#1(D0(b))− 1
2#0(D0(b)) when s = n. Plugging p = q = 1

2 and
Ns = n− 1 into Lemma 4 we get that Pr [12#1(D0(b))− 1

2#0(D0(b)) ∈ [0, 1
2 )] ≤

2√
s−1

. ��

4.3 Poly-Bi-Deniability

We show that a multi-distributional bi-deniable scheme implies a poly-bi-
deniable scheme. From a scheme (G,GF,E,EF,D,FS,FR) we produce a scheme
(G′,E′,D′,FS

′,FR
′) which encrypts a single bit.

Key generation G′(1κ): For i = 1, . . . , n2 sample random bits ai ∈ {0, 1}
and then sample (pki, ski) ← Gai(1κ), where G0 = G and G1 = GF. Sam-
ple the ai’s independently with Pr [ai = 0] = 1/n. Output (PK,SK) =
((pki)n2

i=1, (ski, ai)n2

i=1).
Encryption E′

PK(b): Parse PK as (pki)n2

i=1. For i = 1, . . . , n2

1. Sample uniformly random bi ∈R {0, 1} and mi ∈R {0, 1}κ such that
b =

⊕n2

i=1 bi.
2. Compute ci ← Ebi

pki
(m′

i, ri), where m′
i = bimi (0mi = 0κ and 1mi = mi),

E0 = E and E1 = EF.
Output C = (ci)n2

i=1.
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Decryption D′
SK(C): Parse SK as (ski, ai)n2

i=1 and C as (ci)n2

i=1. For i =
1, . . . , n2, compute m′

i = Dsk(ci) and let b′i = 1 if m′
i �= 0 and b′i = 0 if

m′
i = 0. Output b =

⊕n2

i=1 b
′
i.

Fake (sender) FS
′(PK, b, (ri,mi, bi)n2

i=1, b
′): If b = b′ output (ri,mi, bi)n2

i=1.
Otherwise parse PK as (pki)n2

i=1. Let m′ = min{m′
i = bimi|i ∈ {1, . . . , n2}∧

m′
i �= 0κ} and pick the unique (ewnp.) index k for which m′

k = bkmk = m′

(notice this implies bk = 1). I.e., k is the index of the ci containing the small-
est non-zero plaintext. The minimum is taken according to lexicographic or-
der. Then let r′k = FS(pkk,m

′
k, rk, 0κ), m′

k = mk and b′k = 0. For all j �= k,
let r′j = rj , m′

j = mj and b′j = bj . Output (rj ,mj , bj)n2

j=1.
Fake (receiver) FR

′(SK,C, b′): If D′
SK(C) = b′ output SK. Otherwise parse

SK as (ski, ai)n2

i=1 and C as (ci)n2

i=1 and compute m′
i = Dsk(ci). Let m′ =

min{m′
i|i ∈ {1, . . . , n2} ∧m′

i �= 0κ} and pick the unique (ewnp.) index k for
which m′

k = m′. I.e., k is the index of the ci containing the smallest non-zero
plaintext. The minimum is taken according to lexicographic order. If ak = 0,
then give up. If ak = 1, then let sk′k = FR(skk, ck, 0κ) and a′k = 0. For all
j �= k, let sk′j = skj and a′j = aj . Output SK ′ = (sk′j , a

′
j)

n2

j=1.

Theorem 4. If (G,GF,E,EF,D,FS,FR) is multi-distributional bi-deniable, then
(G′,E′,D′,FS

′,FR
′) is O(n−1/2)-bi-deniable.

Proof. Correctness follows by observing that b′i = bi unless one of the uniformly
random κ-bit messagesmi happens to be 0κ, which is a negligible event. Semantic
security is obvious. As for bi-deniability, by a hybrid argument similar to that
in the proofs of Thm. 2 and Thm. 3, distinguishing the honest and faking game
comes down to distinguishing the following two random encodings of a bit b.
1. E0(b) = (b1, . . . , bn2 , a1, . . . , an2), where the bi ∈ {0, 1} are sampled uni-

formly at random except that
⊕n2

i=1 bi = b and the ai ∈ {0, 1} are sampled
such that Pr[ai = 0] = 1/n.

2. E1(b) = (b1, . . . , bn2 , a1, . . . , an2) is sampled as follows. First sample b′i, a′i ∈
{0, 1} as in E0(b ⊕ 1). Then, if

∑
i b

′
i = 0, let (b1, . . . , bn2) = (b′1, . . . , b

′
n2).

Otherwise, pick a uniformly random k ∈ {1, . . . , n2} for which b′k = 1 and then
let bk = 0 and let bk = b′k for i �= k. If a′k = 1 let ak = 0 and let ai = a′i for
i �= k.

It happens that a′k = 0 with probability 1/n, so by adding 1/n to the bound in
the end, we can analyse under the assumption that a′k = 1. In that case we can
describe E1(b) as above, except that we pick k uniformly at random among the
i’s for which b′i = 1 and a′i = 1. Then we set bk = 0 and ak = 0 and set bi�=k = b′i
and ai�=k = a′i.

Given a vector v = (b1, . . . , bn2 , a1, . . . , an2), we let #00(v) be the number
of i’s for which bi = ai = 0 and we let #11(v) be the number of i’s for which
bi = ai = 1. For simplicity we assume that b is uniformly random, such that
b1, . . . , bn2 is uniform in {0, 1}n2

. Deriving the same bound for fixed b = 0
and b = 1 is straight-forward. Let p = 1

2n be the probability that ai = 0
and bi = 0. Let q = n−1

2n be the probability that ai = 1 and bi = 1. The
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expected value of #00(E0(b)) is pn2. The expected value of #11(E0(b)) is qn2,
and #00(E1(b)) = #00(E0(b)) + 1 and #11(E1(b)) = #11(E0(b))− 1. From this
it can be derived as in the proof of Thm. 3 that the maximum likelihood distin-
guisher for E0(b) and E1(b) guesses 0 if q#00− p#11 > 0 and that its advantage
is 1

2 Pr [q#00(E0(b))− p#11(E1(b)) ∈ [0, 1
2 )]. Using Lemma 4 as in the proof of

Thm. 3, with s = n, Ns = s2 and the p and q defined above, it follows that

Pr [q#00(E0(b))− p#11(E1(b)) ∈ [0,
1
2
)] ≤ 1√

s

(√
2 +

1√
π

)
.

The theorem then follows from
√

2 + 1√
π
≤ 2. ��
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Abstract. Broadcast encryption (BE) schemes allow a sender to se-
curely broadcast to any subset of members but requires a trusted party
to distribute decryption keys. Group key agreement (GKA) protocols en-
able a group of members to negotiate a common encryption key via open
networks so that only the members can decrypt the ciphertexts encrypted
under the shared encryption key, but a sender cannot exclude any partic-
ular member from decrypting the ciphertexts. In this paper, we bridge
these two notions with a hybrid primitive referred to as contributory
broadcast encryption (CBE). In this new primitive, a group of members
negotiate a common public encryption key while each member holds a
decryption key. A sender seeing the public group encryption key can
limit the decryption to a subset of members of his choice. Following this
model, we propose a CBE scheme with short ciphertexts. The scheme is
proven to be fully collusion-resistant under the decision n-Bilinear Diffie-
Hellman Exponentiation (BDHE) assumption in the standard model. We
also illustrate a variant in which the communication and computation
complexity is sub-linear with the group size. Of independent interest,
we present a new BE scheme that is aggregatable. The aggregatability
property is shown to be useful to construct advanced protocols.

Keywords: Broadcast encryption; Group key agreement; Contributory
broadcast encryption; Provable Security.

1 Introduction

With the fast advance and pervasive deployment of the communication tech-
nologies, there is an increasing demand of versatile cryptographic primitives
to protect modern communication and computation platforms. These new plat-
forms, including instant-messaging tools, collaborative computing, mobile ad hoc
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networks and social networks, allow exchanging data within any subset of their
users. These new information technologies provide potential opportunities for or-
ganizations and individuals. For instance, the users of a social network may wish
to share their private photos/videos with their friends; scientists from different
places may want to collaborate in a research project by means of an insecure
third-party platform.

These new applications call for cryptographic primitives allowing a sender to
securely encrypt to any subset of the users of the services without relying on a
fully trusted dealer. Broadcast encryption (BE) [15] is a well-studied primitive
intended for secure group-oriented communications. It allows a sender to securely
broadcast to any subset of the group members. Nevertheless, its security heavily
relies on a trusted key server to generate and distribute secret decryption keys
for the members; both the sender and the receivers must fully trust the key
server who can read all communications to any subset of the group members.

Group key agreement (GKA) [20] is another well-established primitive to se-
cure group-oriented communications. A conventional GKA protocol allows a
group of members to establish a common secret key via open networks. How-
ever, whenever a sender wants to broadcast to a group, he must first join the
group and run a GKA protocol to share a secret key with the intended members.
To overcome this limitation, Wu et al. recently introduced asymmetric GKA [32]
in which only a common group public key is negotiated and each group mem-
ber holds a different decryption key. However, neither conventional symmetric
GKA nor newly-introduced asymmetric GKA allows the sender to exclude any
particular member on demand1. Hence, it is essential to find more flexible cryp-
tographic primitives allowing dynamic broadcasts without a fully trusted dealer.

1.1 Our Contributions

In this paper we present the Contributory Broadcast Encryption (CBE) prim-
itive, which is a hybrid of GKA and BE. The new cryptographic primitive is
motivated by the emerging communication and computation platforms. In CBE,
a group of members contribute to the public group encryption key, and a sender
can securely broadcast to any subset of the group members chosen in an ad hoc
way. Specifically, our main contributions can be summarized as follows.

First, we present a model of CBE and formalize its security definitions. CBE
incorporates the underlying ideas of GKA and BE. In the set-up stage of a CBE
scheme, a group of members interact via open networks to negotiate a common
encryption key while each member holds a different secret decryption key. Using
the common encryption key, anyone can encrypt any message to any subset of
the group members and only the intended receivers can decrypt. Unlike GKA,
CBE allows the sender to exclude some members from reading the ciphertexts.

1 Dynamic GKA equipped with a leave sub-protocol allows a sender to exclude some
members from decrypting ciphertexts. In this case, the sender has to negotiate with
the remaining members for their agreement to run the leave sub-protocol. The sender
cannot exclude any member on his own demand.
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Compared to BE, CBE does not need a fully trusted third party to set up
the system. We formalize collusion resistance by defining an attacker who can
adaptively corrupt some members during the set-up stage and can also query
the decryption keys of the group members after the system is set up. Even if the
attacker fully controls all members outside the intended receivers, she cannot
extract useful information from the ciphertext. A trivial CBE scheme can be
constructed by concurrently encrypting to each member with her/his regular
public key. Unfortunately, the trivial solution incurs a heavy encryption cost
and produces linear-size ciphertexts. The challenge is to design CBE schemes
with efficient encryption and short ciphertexts.

Second, we present the notion of aggregatable broadcast encryption (ABE)
and construct a concrete ABE scheme. The construction is based on the newly
introduced aggregatable signature-based broadcast (ASBB) primitive [32]. Our
ABE construction is tightly proven to be fully collusion-resistant under the
decision BDHE assumption, and offers short ciphertexts and efficient encryp-
tion. Further, the proposed ABE scheme is equipped with aggregatability, which
means that different instances of the ABE scheme can be aggregated into a new
instance. We observe that the BE schemes in the literature are not aggregat-
able. However, the aggregatability of ABE schemes seems very useful to design
advanced protocols, as illustrated in the construction of our CBE scheme.

Finally, we construct an efficient CBE scheme with our ABE scheme as a
building block. The CBE construction is proven to be semi-adaptively secure
under the decision BDHE assumption in the standard model. Only one round is
required to establish the public group encryption key and set up the CBE system.
After the system set-up, the storage cost of both the sender and the group
members is O(n), where n is the number of group members participating in the
set-up stage. However, the online complexity (which dominates the practicality of
a CBE scheme) is very low. Indeed, at the sender’s side, the encryption needs only
O(1) exponentiations and generates O(1)-size ciphertexts; and at the receivers’
side, the decryption requires only O(1) exponentiations and O(1) bilinear map
operations. We also illustrate a trade-off between the set-up complexity and
the online performance. After the trade-off, the variant has O(n2/3) complexity
in communication, computation and storage. This is comparable to up-to-date
regular BE schemes which have O(n1/2) complexity in the same performance
metrics, but our scheme does not require a trusted key dealer. As a versatile
GKA scheme, our CBE does not require additional rounds to enable a new
sender to broadcast to the group members or to let a sender revoke any subset
of group members. These features are desirable for applications in which the
sender and the group members may change frequently.

1.2 Related Work

Considerable efforts have been devoted to protect group communications. Among
them, the most prominent notions are key agreement and broadcast encryption.
Since the inception of the Diffie-Hellman protocol [14] in 1976, a number of pro-
posals have addressed key agreement protocols for multiple parties. The schemes
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due to Ingemarsson et al. [20] and Steiner et al. [29] are designed for n parties
and require O(n) rounds. Tree key structures have been further proposed and
reduced the number of rounds to O(log n) [23, 24, 27]. A multi-round GKA pro-
tocol poses a synchronism requirement on group members and it needs all group
members to simultaneously stay online to complete the protocol. Several propos-
als (e.g., [8, 18, 30]) have been motivated to optimize round complexity in GKA
protocols. Burmester and Desmedt [12] proposed a two-round n-party GKA pro-
tocol for n parties. The Joux protocol [21] is one-round and only applicable to
three parties. The work of Boneh and Silverberg [5] shows that a one-round
(n+1)-party GKA protocol can be constructed from n-linear pairings. However,
it remains unknown whether there exist n-linear pairings for n > 2.

Dynamic GKA protocols provide extra mechanisms to cope with member
changes. Bresson et al. [9, 10] extended the protocol in [11] to dynamic GKA
protocols which allow members to leave and join the group. The number of
rounds in set-up/join algorithms of their protocols [9, 10] is linear with the
group size, but the number of rounds in the leave algorithm is constant. The
theoretical analysis [28] proves that, for any tree-based group key agreement
scheme, the lower bound of the worst-case cost is O(log n) rounds for a member to
join or leave. Without relying on a tree-based structure, Kim et al. [22] proposed
a two-round dynamic GKA protocol. Recently, Abdalla et al. [1] presented a two-
round dynamic GKA protocol in which only one round is required to cope with
the change of members if they are in the initial group. Observing that existing
GKA protocols cannot handle sender changes efficiently, Wu et al. presented the
notion of asymmetric GKA [32] to support sender changes and their instantiated
protocol allows anyone to securely broadcast to the group members.

BE is another well-established cryptographic primitive developed for secure
group communications. BE schemes in the literature can be classified into two
categories, i.e., symmetric-key BE and public-key BE. In the symmetric-key
setting, only the trusted center generates all the secret keys and broadcasts
messages to users. Hence, only the key generation center can be the broadcaster
or the sender. Fiat and Naor [15] first formalized broadcast encryption in the
symmetric-key setting and proposed a systematic BE method. Similarly to the
GKA setting, tree-based key structures were subsequently proposed to improve
efficiency in symmetric-key BE systems [19, 31]. The state of the art along this
research line is presented in [13].

Public-key BE schemes are more flexible in practice. In this setting, in addition
to the secret keys for each user, the trusted center also generates a public key
for all the users so that any one can play the role of a broadcaster or sender.
Naor and Pinkas presented in [25] the first public-key BE scheme in which up
to a threshold of users can be revoked. If more than this threshold of users
are revoked, the scheme will be insecure and hence not fully collusion-resistant.
Subsequently, by exploiting newly developed bilinear pairing technologies, a fully
collusion-resistant public-key BE scheme was presented in [3] which has O(

√
n)

complexity in key size, ciphertext size and computation cost. A recent scheme [26]
slightly reduces the size of the key and the ciphertexts, although it still has sub-
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linear complexity. The schemes presented in [4, 6, 17] strengthen the security
concept of public-key BE schemes. However, as to performance, the sub-linear
barrier O(

√
n) has not yet been broken.

Although both GKA and BE are used to secure group communications, they
have very different features as they were initially developed for different types of
group-oriented applications. First, GKA can be applied to ad hoc groups where
there is no fully trusted party while BE is usually deployed to secure group
communications where a fully trusted third party is available. Second, the en-
cryption key in GKA protocols is usually established by group members in a con-
tributory way, regardless of conventional symmetric GKAs or newly-introduced
asymmetric GKAs. On the contrary, the encryption key in BE schemes is usually
generated by a centralized key server. Third, the secret decryption key in GKA
protocols is computed by each member with public inputs from other members
and his/her own private inputs. Contrary to GKA protocols, the decryption key
of each member in BE schemes is assigned by the dealer, which implies that the
dealer can read all communications to any subset of the group members and n
secure unicast channels have to be established before a BE scheme is set up.
Finally, in a GKA protocol group members need to interact to update their keys
if the membership changes, which implies that a sender cannot exclude some
members from reading the ciphertexts. Unlike GKA, BE supports a much more
flexible revocation mechanism. It allows a sender to choose the intended receivers
on demand to read the ciphertexts. This revocation mechanism does not require
cooperation among group members or extra interactions between the dealer and
the group members. For the newly-emerging applications, the contributory fea-
ture of GKA protocols is desirable but GKA protocols do not allow a sender
to exclude receivers from reading specific ciphertexts on demand; the flexible
revocation mechanism of BE schemes is desirable but BE schemes heavily relies
on a fully trusted authority that is hard to implement in the motivated sce-
narios. These observations inspire us to investigate more versatile cryptographic
primitives to bridge the gap.

1.3 Paper Organization

The rest of the paper is organized as follows. In Section 2, we model CBE and
define its security. In Section 3, we present a collusion-resistant regular public-key
BE scheme with aggregatability. Efficient CBE schemes are realized in Section 4,
and Section 5 concludes the paper.

2 Modeling Contributory Broadcast Encryption

We begin by formalizing the CBE notion bridging the GKA and BE primitives.
In CBE, a group of members first jointly establish a public encryption key, then
a sender can freely select which subset of the group members can decrypt the
ciphertext. Our definition incorporates the up-to-date definitions of GKA [32]
protocols and BE [3] schemes. Since the negotiated public key is usually employed
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to transmit session keys, we define a CBE scheme as a key encapsulation mecha-
nism (KEM). Knowing this public encryption key, anyone can send a session key
ξ to any subset of the initial group members. Only the intended receivers can
extract ξ. Even if all the outsiders including group members not in the intended
subset collude, they receive no information about ξ.

2.1 Syntax

We first define the algorithms that compose a CBE scheme. Let λ ∈ N denote
the security parameter. Suppose that a group of members {U1, · · · ,Un} wants to
jointly establish a CBE system, where n is a positive integer and each member
Ui is indexed by i for 1 ≤ i ≤ n. We focus on bridging BE and GKA and we
assume that the communications between members are authenticated, but we
do not further elaborate on the authentication of the group members. Formally,
a CBE scheme is a tuple CBE =(ParaGen, CBSetup, CBEncrypt, CBDecrypt) of
polynomial-time algorithms defined as follows.

ParaGen(1λ). This algorithm is used to generate global parameters. It takes as
input a security parameter λ and it outputs the system parameters, including
the group size n.

CBSetup(U1(x1), · · · ,Un(xn)). This interactive algorithm is jointly run by
members U1, · · · , Un to set up a BE scheme. Each member Ui takes pri-
vate input xi (and her/his random coins representing the member’s ran-
dom inner state information). The communications between members go
through public but authenticated channels. The algorithm will either abort
or successfully terminate. If it terminates successfully, each user Ui outputs
a decryption key dki securely kept by the user and a common group en-
cryption key gek shared by all group members. The group encryption gek
is publicly accessible. If the algorithm aborts, it outputs NULL. Here, we
leave the input system parameters implicitly. We denote this procedure by
(U1(dk1), · · · ,Un(dkn); gek)←CBSetup(U1(x1), · · · ,Un(xn)).

CBEncrypt(R, gek). This group encryption algorithm is run by a sender who
is assumed to know the public group encryption key. The sender may or
may not be a group member. The algorithm takes as inputs a receiver set
R ⊆ {1, · · · , n} and the public group encryption key gek, and it outputs a
pair 〈c, ξ〉, where c is the ciphertext and ξ is the secret session key in a key
space K. Then (c,R) is sent to the receivers.

CBDecrypt(R, j, dkj , c). This decryption algorithm is run by each intended
receiver. It takes as inputs the receiver set R, an index j ∈ R, the receiver’s
decryption key dkj , a ciphertext c, and it outputs the secret session key ξ.

2.2 Security Definitions

The correctness of a CBE scheme means that if all members and the sender follow
the scheme honestly, then the members in the receiver set can always correctly
decrypt. Formally, the correctness of a CBE scheme is defined as follows.
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Definition 1 (Correctness). A CBE scheme is correct if for any parameter
λ ∈ N and any element ξ in the session key space, (U1(dk1), · · · ,Un(dkn); gek)
← CBSetup(U1(x1), · · · ,Un(xn)), and (c, ξ) ←CBEncrypt(R, gek), it holds that
CBDecrypt(R, j, dkj , c) = ξ for any j ∈ R.

We next define the secrecy of a CBE scheme. In the above, to achieve better
practicality, a CBE scheme is modeled as a KEM in which a sender sends a
(short) secret session key to the intended receivers and simultaneously, (long)
messages can be encrypted using a secure symmetric encryption algorithm with
the session key. Hence, we define the secrecy of a CBE scheme by the indistin-
guishability of the encrypted session key from a random element in the session
key space. Since there exist standard conversions (e.g., [16]) from secure KEM
against chosen-plaintext attacks (CPA) to secure encryption against adaptively
chosen-ciphertext attacks (CCA2), it is sufficient to only define the CPA se-
crecy of CBE schemes. However, noting that CBE is designed for distributed
applications where the users are likely to be corrupted, we include full collusion
resistance into our secrecy definition.

The fully collusion-resistant secrecy of a CBE scheme is defined by the fol-
lowing secrecy game between a challenger CH and an attacker A. The secrecy
game is defined as follows.

Initial. The challenger CH runs ParaGen with a security parameter λ and ob-
tains the system parameters. The system parameters are given to the at-
tacker A.

Queries. The attacker A can make the following queries to challenger CH.
Execute. The attacker A uses the identities of n members U1, · · · ,Un to

query the challenger CH. The challenger runs CBSetup(U1(x1), · · · ,
Un(xn)) on behalf of the n members, and responds with the group en-
cryption key gek and the transcripts of CBSetup to the attacker A.

Corrupt. The attacker A sends i to the Corrupt oracle maintained by the
challenger CH, where i ∈ {1, · · · , n}. The challenger CH returns the pri-
vate input and inner random coins of Ui during the execution of CBSetup.

Reveal. The attacker A sends i to the Reveal oracle maintained by the
challenger CH, where i ∈ {1, · · · , n}. The challenger CH responds with
dki, which is the decryption key of Ui after execution of CBSetup.

Challenge. At any point, the attackerA can choose a target set R∗ ⊆ {1, · · · , n}
to attack, with a constraint that the indices in R∗ have never been queried
to the Corrupt oracle or the Reveal oracle. Receiving R∗, the challenger CH
randomly selects ρ ∈ {0, 1} and responds with a challenge ciphertext c∗,
where c∗ is obtained from (c∗, ξ)←CBEncrypt(R, gek) if ρ = 1, else if ρ = 0,
c∗ is randomly sampled from the image space of CBEncrypt.

Output. Finally, A outputs a bit ρ′, its guess of ρ. The adversary wins if ρ′ = ρ.

We define A’s advantage Advsecrecy−fc
CBE,A in winning the above fully collusion-

resistant secrecy game as

Advsecrecy−fc
CBE,A = |Pr[ρ = ρ′]− 1/2|.
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Definition 2. An n-party CBE scheme has adaptive (τ, n, ε)-secrecy against a
full-collusion attack if there is no adversary A which runs in time at most τ and
has advantage Advsecrecy−fc

CBE,A at least ε in the above secrecy game. An n-party
CBE scheme has semi-adaptive (τ, n, ε)-secrecy against a full-collusion attack if,
for any attacker A′ running in time τ , A′’s advantage Advsecrecy−fc

CBE,A′ is less than
ε in the above secrecy game, with extra constraints that A′ (1) must commit
to a set of indices R̃ ⊆ {1, · · · , n} before the Queries stage, (2) can only query
Corrupt and Reveal with i /∈ R̃ and (3) can only choose R∗ ⊆ R̃ to query CH in
the Challenge stage.

The above definition captures the full collusion resistance since the attacker is
allowed to access the Corrupt and Reveal oracles. The Corrupt oracle is used
to model an attacker who compromises some members during the set-up stage
to establish the group encryption key. The Corrupt oracle is used to capture
the decryption key leakage after the CBE system has been established. This
difference can be used to differentiate the secrecy against attacks during the
set-up stage from the secrecy against attacks after a CBE system is deployed.

2.3 Remarks on Complexity Bounds of CBE and BE Schemes

Before concrete CBE schemes are constructed, it is meaningful to examine the
complexity bound of a CBE scheme for the purpose of guiding the design of
CBE schemes.

A CBE scheme consists of an offline stage (consisting of ParaGen and CBSetup)
to establish the group encryption key and an online stage enabling a sender to
securely encrypt to intended receivers. Since CBE allows to revoke members,
the members do not need to reassemble for a new run of the CBSetup procedure
until some new members join. This implies that the practicality of a CBE scheme
critically depends on the overheads of the CBEncrypt and CBDecrypt procedures
for online encryption of session keys and decryption of ciphertexts. Hence, special
efforts should be devoted to improve this online performance.

It is easy to see that there exists a trivial construction of CBE schemes. A
group of n members independently generate public/secret key pairs in a standard
public-key cryptosystem. The public group encryption key is a concatenation of
each member’s public key, and each member’s decryption key is his/her secret
key. To broadcast to a subset of the members, a sender first encrypts the session
key using each member’s public key and obtains the CBE ciphertext by concate-
nating the generated n ciphertexts in the underlying public-key cryptosytems.
This trivial CBE has nτPKE online encryption cost, nPKC-size ciphertext, where
PKC is the binary length of the ciphertext in the standard public-key cryptosys-
tem, and τPKE is the time to perform a standard public-key encryption operation.
Hence, the upper bound of online complexity of a CBE scheme is O(n).

We next analyze whether there exist CBE schemes with online complexity less
than O(n). From the definition of CBEncrypt, a sender has to read the indices in
R ⊆ {1, · · · , n} and perform some operations involving each index. This implies
that the CBEncrypt procedure has a cost |R|τCEO, where |R| = n in the worst
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case and τCEO is the time to perform a basic cryptographic encryption operation
involving each index. Also, the sender needs to send (c,R) to the receivers. This
requires c + n bits, where c is the binary size of the CBE ciphertext. The
analysis shows that the lower bound of the online complexity of a CBE scheme
is also O(n).

From the above analysis, it would seem that no better than a trivial CBE
can be done. However, a closer look shows this is not the case. First, a well-
designed CBE can be more efficient than a trivial CBE if τCEO � τPKE and the
performance difference can be further amplified by the factor n. Second, PKC is
usually hundreds to thousands, thus a trivial CBE may consume hundreds to
thousands times more bits than an elegantly-developed CBE if c is independent
of the group size n. Hence, the efforts to achieve non-trivial CBE schemes are
meaningful in practice.

To highlight this point, we further look at regular public-key BE schemes.
The definitions of encryption and decryption in our CBE are exactly the same as
those of standard public-key BE schemes [3]. Hence, the above online complexity
bounds also apply to regular BE systems. Furthermore, by slightly modifying the
above trivial CBE, one can also obtain a trivial public-key BE scheme. To strictly
follow the public-key BE definition, one just needs to let a trusted key dealer
generate the public/secret key pairs for all members. The rest is the same as the
trivial CBE. This implies that a trivial public-key BE scheme has exactly the
same asymptotical complexity as the trivial one. However, as discussed above, it
is still meaningful to construct non-trivial public-key BE schemes. Indeed, this
work has attracted a lot of attention and numerous efforts (e.g., [3, 4, 6, 26, 17])
have been devoted to reduce the c size and the τCEO complexity. We do a parallel
work in the CBE setting.

3 An Aggregatable BE Scheme

Previously, aggregatability was mainly considered in the signature setting [7]
and exploited to reduce the signature verification time and the storage overhead
when numerous signatures need to be verified and stored. In [32], Wu et al.
first presented the ASBB notion and considered aggregatability in the static BE
setting. In this section, we integrate aggregatability into dynamic BE schemes
and instantiate an aggregatable BE (ABE) scheme.

3.1 Review of Aggregatable Signature-Based Broadcast

Our ABE scheme is based on the ASBB primitive [32]. An ASBB scheme con-
sists of the algorithms ParaGen, KeyGen, Sign, Verify, Encrypt and Decrypt.
ParaGen takes as input a security parameter λ and outputs the public parame-
ters π. KeyGen takes input π and outputs a public/secret key pair (pk, sk). Sign
takes as input the key pair (pk, sk) and a string s, and outputs a signature σ(s).
Verify takes as input the public key pk and the signature σ(s) of the string s,
and outputs 0 or 1. Encrypt takes as input a public key pk and a plaintext m,
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and outputs a ciphertext c. Decrypt takes as input the public key pk, a valid
string-signature (s, σ(s)) and a ciphertext c, and outputs the plaintext m.

An ASBB scheme has a key-homomorphic property. This property states that,
for any two public/secret key pairs (pk1, sk1) and (pk2, sk2) generated by run-
ning KeyGen(π), two signatures σ1 = Sign(pk1, sk1, s), σ2 = Sign(pk2, sk2, s)
on any message string s with respect to the two public keys, it holds that
Verify(pk1 ⊗ pk2, s, σ1  σ2) = 1, where ⊗ : Γ × Γ → Γ and  : Ω × Ω →
Ω are two efficient operations in the public key space Γ and the signature
space Ω, respectively. Clearly, from the key-homomorphic property, we have that
Decrypt(pk1 ⊗ pk2, s, σ1  σ2, c) = m for any plaintext m and the corresponding
ciphertext c = Encrypt(pk1 ⊗ pk2,m).

Furthermore, an ASBB scheme has an interesting property referred to as
aggregatability. Assume that an adversary A knows (π, pk1, · · · , pkn), where π is
the system parameters, and pk1, · · · , pkn are n different public keys generated by
independently invoking KeyGen of the ASBB scheme. For n public binary strings
s1, · · · , sn ∈ {0, 1}∗, the adversary A is provided with valid signatures σi(sj)
under pki for 1 ≤ i, j ≤ n and i �= j. Due to the key-homomorphic property,
pk = pk1 ⊗ · · · ⊗ pkn forms the public key of the aggregated ASBB instance.
Aggregatability states that the new ASBB instance related to the aggregated
public key pk is secure against any polynomial-time adversary A. Wu et al.’s
ASBB scheme [32] is briefly reviewed next.

– ParaGen(π). Let PairGen be an algorithm that, on input a security param-
eter 1λ, outputs a tuple Υ = (p,G,GT , e), where G and GT have the same
prime order p, and e : G × G → GT is an efficient non-degenerate bilinear
map such that e(g, g) �= 1 for any generator g of G, and for all u, v ∈ Z, it
holds that e(gu, gv) = e(g, g)uv. Let Υ = (p,G,GT , e)← PairGen(1λ), and g
be a generator of G, and H : {0, 1}∗ → G be a cryptographic hash function.
The system parameters are π = (Υ, g,H).

– KeyGen(π). Select at random r ∈ Z∗
p, X ∈ G\ {1}. Compute R = g−r, A =

e(X, g). Output a public key pk = (R,A) and its associating secret key
sk = (r,X).

– Sign(pk, sk, s). Take as inputs public key pk = (R,A), secret key sk = (r,X)
and a string s ∈ {0, 1}∗, and output a signature σ = XH(s)r on s.

– Verify(pk, s, σ). Take as inputs public key pk = (R,A), a message-signature
pair (s, σ), and output 1 if e(σ, g)e(H(s), R) = A holds; else output 0.

– Encryption(pk, ξ). Given public key pk = (R,A), for a plaintext ξ ∈ GT ,
randomly select t ∈ Z∗

p and compute c1 = gt, c2 = Rt, c3 = ξAt. Output
c = (c1, c2, c3).

– Decryption(pk, s, σ, c). Given public key pk = (R,A) and ciphertext c =
(c1, c2, c3), anyone with a valid message-signature pair (s, σ) can extract
ξ = c3

e(σ,c1)e(H(s),c2) .

In the ASBB scheme, every signature under the public key can be used as a
decryption key to decrypt ciphertexts generated with the same public key. This
feature allows ASBB to be used as static broadcast schemes.
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3.2 An Aggregatable BE Scheme Based on ASBB

We construct a BE scheme from the the ASBB scheme [32] and show the resulting
BE scheme preserves aggregatability as that of the underlying ASBB scheme.
The construction is conceptually simple. Assume that the j-th user holds de-
cryption keys2 corresponding to the indices {0, ..., n} \ {j}. An encrypter knows
which public key he should use. For instance, if the encrypter doesn’t want to
revoke anybody, he encrypts using pk0. If he wants to exclude i from decrypting,
he encrypts using pki. If he wants to exclude i and j from decrypting, he en-
crypts by using an aggregated public key pki⊗ pkj . In the same way, more users
can be excluded from decrypting. With the parameters in the above setting, the
proposal is realized as follows.

– BSetup(n,N): The dealer randomly chooses Xi ∈ G, ri ∈ Z∗
p and com-

putes Ri = g−ri , Ai = e(Xi, g). The BE public key is PK = ((R0, A0), · · · ,
(Rn, An)) and the BE secret key is sk = ((r0, X0), · · · , (rn, Xn)).

– BKeyGen(j, SK): For j = 1, · · · , n, the private key of the user j is dj =
(σ0,j , · · · , σj−1,j , σj+1,j , · · · , σn,j) : σi,j = XiH(IDj)ri .

– BEncryption(R, PK): Set R = {0, 1, · · · , n} \ R. Randomly pick t in Zp and
compute c = (c1, c2) : c1 = gt, c2 = (

∏
i∈R

Ri)t. Set the session key ξ =
(
∏

i∈R
Ai)t. Output (c, ξ) and send (R, c) to receivers.

– BDecryption(R, j, dj , c, PK): If j ∈ R, the receiver j extracts ξ from c with
private key dj by computing e(

∏
i∈R

σi,j , c1)e(H(IDj), c2) = ξ.

The correctness of the BE scheme above follows from direct verification of the
following equations
e(
∏

i∈R
σi,j , c1)e(H(IDj), c2) = e(

∏
i∈R

XiH(IDj)ri , gt)e(H(IDj),
∏

i∈R
g−rit)

= e(
∏

i∈R
Xi, g)t = (

∏
i∈R

Ai)t = ξ.
The security of our BE scheme relies on the decision n-BDHE assumption

which was shown to be sound by Boneh et al. [2] in the generic group model.

Definition 3 (Decision n-BDHE Assumption). Let G be a bilinear group
of prime order p as defined above, g a generator of G, and h = gt for some
unknown t ∈ Zp. Denote −→y g,α,n = (g1, · · · , gn, gn+2, · · · , g2n) ∈ G2n−1, where
gi = gαi

for some unknown α ∈ Zp. We say that an algorithm B that out-
puts b ∈ {0, 1} has advantage ε in solving the decision n-BDHE assumption if
|Pr[B(g, h,−→y g,α,n, e(gn+1, h)) = 0]− Pr[B(g, h,−→y g,α,n, Z) = 0)]| ≥ ε, where the
probability is over the random choice of g in G, the random choice t, α ∈ Zp,
the random choice of Z ∈ GT , and the random bits consumed by B. We say that
the decision (τ, ε, n)-BDHE assumption holds in G if no τ-time algorithm has
advantage at least ε in solving the decision n-BDHE assumption.

According to the BE security definition in [17], our scheme is fully collusion-
resistant under the Decision BDHE assumption. The proof is given in the full

2 Here, user j’s i-th decryption key corresponding to index i ∈ {0, ..., n} \ {j} is a
signature σi,j = σi(IDj) on user j’s identity IDj verifiable under the public key pki.
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version of the paper [33]. One can further apply the generic Gentry-Waters trans-
formation [17] to convert our semi-adaptive BE schemes into an adaptively secure
one. The cost is to double the size of the public keys and the ciphertexts.

Theorem 1. The proposed BE scheme for dynamic groups has full collusion
resistance against semi-adaptive attacks in the random oracle model if the deci-
sion n-BDHE assumption holds. More formally, if there exists a semi-adaptive
attacker A breaking our scheme with advantage ε in time τ , then there exists
an algorithm B breaking the n-BDHE assumption with advantage ε in time
τ ′ = τ + O((qH + n2)τExp), where qH is the number of queries to the random
oracle from A, and τExp is the time to compute an exponentiation in G or GT .

One may observe that, in the above BE scheme, if we replace H(IDj) with
a random element hj in G, we obtain a semi-adaptive BE scheme with short
ciphertexts in the standard model. In this case, to simulate hj in the security
proof, we just need to set hj = gαj

gvj for a randomly chosen value vj ∈ Zp,
where gαj

is obtained from the decision n-BDHE assumption.

3.3 Useful Properties

Our BE scheme inherits the key-homomorphic property of the underlying ASBB
scheme. Consider the system parameters defined above. Let PK1 = (R0,1, A0,1),
· · · , (Rn,1, An,1)) and PK2 = ((R0,2, A0,2), · · · , (Rn,2, An,2)) be the respective
public keys of two random instances of the above BE scheme, and for j =
1, · · · , n, let dj,1 = (σ0,j,1, · · · , σj−1,j,1, σj+1,j,1, · · · , σn,i,1) ∈ Gn and dj,2 =
(σ0,j,2, · · · , σj−1,j,2, σj+1,j,2, · · · , σn,j,2) ∈ Gn be the respective decryption keys
corresponding to index j under PK1 and PK2. Define PK = PK1 � PK2 =
((R0,1R0,2, A0,1A0,2), · · · , (Rn,1Rn,2, An,1An,2)) and define dkj = dj,1 � dj,2 =
(σ0,j,1σ0,j,2, · · · , σj−1,j,1σj−1,j,2, σj+1,j,1σj+1,j,2, · · · , σn,j,1σn,j,2). Then PK is
the public key of a new instance of the above BE scheme and dkj is the new
decryption key corresponding to the index j. This fact can be directly verified.

Our BE scheme also preserves the aggregatability of the underlying ASBB
scheme. Roughly speaking, a BE scheme is aggregatable if n instances of the
BE scheme can be aggregated into a new BE instance secure against an at-
tacker accessing some decryption keys of each instance, provided that the i-th
decryption key corresponding to the i-th instance is unknown to the attacker for
i = 1, · · · , n. More formally, this property can be defined as follows.

Definition 4 (Aggregatability). Consider the following game between an ad-
versary A and a challenger CH:

– Setup: A initializes the game with an integer n. CH replies with (π, PK1, · · · ,
PKn) which are the system parameters and the n independent public keys of
the BE scheme.

– Corruption: For 1 ≤ i, j ≤ n, where i �= j, the adversary A is allowed to
know the decryption keys dkj,i corresponding to index j with respect to the
public key PKi.
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– Challenge: CH and A run a standard Ind-CPA game under the aggregated
public key PK = PK1 � · · ·�PKn. A wins if A outputs a correct guess bit.
Denote A’s advantage by AdvA = |Pr[win]− 1

2 |.
A BE scheme is said to be (τ, ε, n)-aggregatable if no τ-time algorithm A has
advantage AdvA ≥ ε in the above aggregatability game.

Theorem 2. If there exists an attacker A who wins the aggregatability game
with advantage ε in time τ , then there exists an algorithm B breaking the n-
BDHE assumption with advantage ε in time τ ′ = τ +O((n3)τExp).

For the proof of the previous theorem, we refer to Theorem 3 where we prove
a stronger property in the sense that the attacker is additionally allowed to
know the internal randomness used to compute dkj,i corresponding some PKi

for 1 ≤ i, j ≤ n where i �= j.

4 Proposed CBE Scheme

In this section, we propose a CBE based on the above aggregatable BE scheme.
The basic construction has short ciphertexts and long protocol transcripts. Then
we show an efficient trade-off between ciphertexts and protocol transcripts.

4.1 High-Level Description

Our basic idea is to introduce the revocation mechanism of a regular BE scheme
into the asymmetric GKA scheme [32]. To this end, each member acts as the
dealer of the aggregatable BE scheme above. The k-th user publishes PKk and
dj,k, where dj,k is the decryption key of PKk corresponding to the index j ∈
{1, · · · , n} \ {k}. Then the negotiated public key is PK = PK0 � · · · � PKn.
Each member j can compute the decryption key dkj = dkj,j �n

k=1,k �=j dkj,k.
Observe that dkj,j has never been published. Due to the key homomorphism
of the BE scheme above, dkj is a valid decryption key corresponding to PK.
Hence, anyone knowing PK can encrypt to any subset of the members and the
intended receivers can decrypt.

To guarantee the security of the resulting CBE scheme, we also need to show
that only the intended receivers can decrypt. This is ensured by the fact that the
underlying BE scheme is aggregatable. Indeed, although the Gentry-Waters BE
scheme [17] is key-homomorphic, an analog of our CBE scheme using the Gentry-
Waters BE scheme as a building block is shown to be insecure in [33], because
the Gentry-Waters BE scheme is not aggregatable. We note that a static PKBE
scheme without a dealer can be trivially obtained from the ASGKA protocol
in [32]. This is realized by letting each member to register his/her published
string as her public key. Then anyone knowing the public keys of all members
can send encrypted messages to the group and only the group members can
decrypt the message. However, no revocation mechanism is provided. To exclude
some members, one may be motivated to modify the above trivial construction
by using the aggregation of the public keys of the intended receivers as the
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sub-group public key. Clearly, this will allow the intended receivers to decrypt
ciphertexts generated with this sub-group public key. Unfortunately, anyone (not
necessary to be a revoked member) knowing the receivers’ public keys can also
decrypt, as shown in [33].

4.2 The Proposal

Based on our aggregatable BE scheme, we implement a CBE scheme with short
ciphertexts. Assume that the group size is at most n. Let Υ = (p,G,GT , e) ←
PairGen(1λ), and g, h1, · · · , hn be independent generators of G. The system
parameters are π = (λ, n, Υ, g, h1, · · · , hn).

– Setup. The set-up of a CBE system consists of the following three proce-
dures:
• Group Key Agreement Execution: For 1 ≤ k ≤ n, member k does the

following:
Randomly choose Xi,k ∈ G, ri,k ∈ Z∗

p;
Compute Ri,k = g−ri,k , Ai,k = e(Xi,k, g);
Set PKk = ((R0,k, A0,k), · · · , (Rn,k, An,k));
For 1 ≤ j ≤ n, j �= k, compute σi,j,k = Xi,kh

ri,k

j for 0 ≤ i ≤ n, i �= j;
Set dj,k = (σ0,j,k, · · · , σj−1,j,k, σj+1,j,k, · · · , σn,j,k);
Publish (PKk, d1,k, · · · , dk−1,k, dk+1,k, · · · , dn,k) and keep dk,k secret.

• Group Encryption Key Derivation: The group encryption key is PK =
PK0 � · · · � PKn = ((R0, A0), · · · , (Rn, An)), where Ri =

∏n
k=1 Ri,k,

Ai =
∏n

k=1 Ai,k for i = 0, · · · , n. The group encryption key PK is pub-
licly computable.

• Member Decryption Key Derivation: For 0 ≤ i ≤ n, 1 ≤ j ≤ n and i �= j,
member j can compute decryption key dj = (σ0,j , · · · , σj−1,j , σj+1,j , · · · ,
σn,j), where σi,j = σi,j,j

∏n
k=1,k �=j σi,j,k =

∏n
k=1 σi,j,k =

∏n
k=1 Xi,kh

ri,k

j .
– CBEncrypt. Assume that a sender (not necessarily a group member) wants

to send to receivers in R ⊆ {1, · · · , n} a session key ξ. Set R = {0, 1, · · · , n}\
R. Randomly pick t in Zp and compute the ciphertext c = (c1, c2) where
c1 = gt, c2 = (

∏
i∈R

Ri)t. Output (c, ξ) where ξ = (
∏

i∈R
Ai)t. Send (R, c) to

the receivers.
– CBDecrypt. If j ∈ R, receiver j can extract ξ from the ciphertext c with

decryption key dj by computing e(
∏

i∈R
σi,j , c1)e(hj , c2) = ξ.

The correctness of the proposed CBE scheme is correct directly follows from
the fact that the underlying BE scheme is correct and key-homomorphic. As to
security, we have the following theorem, whose proof is given in [33].

Theorem 3. The proposed CBE scheme has fully collusion-resistant secrecy
against semi-adaptive attacks in the standard model if the decision n-BDHE as-
sumption holds. More formally, if there exists a semi-adaptive attacker A break-
ing our scheme with advantage ε in time τ , then there exists an algorithm B
breaking the n-BDHE assumption with advantage ε in time τ ′ = τ+O((n3)τExp).
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4.3 Discussion

We first examine the online complexity our scheme which is critical for the
practicality of a CBE scheme. We use the widely-adopted metrics [3, 4, 6, 26, 17]
for regular BE schemes. After the CBSetup procedure, a sender needs to retrieve
and store the group public key PK consisting of n elements in G and n elements
in GT . This requires about 150n bytes to achieve the security level of an RSA-
1024 cryptosystem. Note that in the motivated applications, the group size is
usually not very large. Consider an initial group of 100 users. The group public
key is about 15K bytes long and acceptable in practice. Moreover, for encryption,
the sender needs only two exponentiations and the ciphertext merely contains
two elements in G. This is about n times more efficient than the trivial solution.
At the receiver’s side, in addition to the description of the bilinear pair which
may be shared by many other security applications, a receiver needs to store n
elements in G for decryption. The storage cost of a receiver is about 22n bytes.
For decryption, a receiver needs to compute two single-base bilinear pairings (or
one two-base bilinear pairing). The online costs on the sides of both the sender
and the receivers are really low.

We next discuss the complexity of the CBSetup procedure to set up a CBE sys-
tem. The overhead incurred by this procedure is O(n2). However, in most cases,
this procedure needs to be run only once and this can be done offline before
online transmission of secret session keys. For instance, in the social networks
example, a number of friends exchange their CBSetup transcripts and establish a
CBE system to secure their subsequent sharing of private picture/videos. Since
CBE allows revoking members, the members do not need to reassemble for a
new run of the CBSetup procedure until some new friends join. From our per-
sonal experience, the group lifetime usually lasts from weeks to months. These
observations imply that our protocol is practical in the real world.

Furthermore, if the initial group is too large, an efficient trade-off can be
employed [3] to balance the online and offline costs. Suppose that n is a cube,
i.e., n = n3

1, and the initial group has n members. We divide the full group
into n2

1 subgroups, each of which has n1 members. By applying our basic CBE
to each subgroup, we obtain a CBE scheme with O(n2

1)-size transcripts per
member during the offline stage of group key establishment; a sender needs to
do O(n2

1) encryption operations of the basic CBE scheme, which produces O(n2
1)-

size ciphertexts. Consequently, we obtain a CBE scheme with O(n
2
3 ) complexity.

This is comparable to up-to-date public-key BE systems whose complexity is
O(n

1
2 ). For a group of 1000 users, our dealer-free BE scheme is about 10 times

more efficient than the trivial solution. It is about 3 times less efficient than a
public-key BE scheme, but our CBE does not require a trusted key dealer. The
cost of versatileness is acceptable.

One may notice a subtlety in the above trade-off. When the basic CBE scheme
is applied to each subgroup, members in each subgroup will extract the same
session key, but members in different subgroups will have different session keys.
This is inconsistent with the CBE definition in which all members should extract
the same session key, even if the members are in different subgroups. This can
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be trivially addressed as follows. The sender additionally selects a string from
the session key space and encrypts it for each subgroup with the session keys
shared by each subgroup. Then all members can extract the same resulting
session key. This introduces an additional O(n

2
3 )-size ciphertext if there are

O(n
2
3 ) subgroups, but it does not affect the asymptotical complexity of the

scheme after a trade-off.
Finally, we assume that the communication channels between members are

authenticated during the CBSetup stage to establish the group encryption key.
In practice, these authenticated channels can be the pre-existing ones between
members (e.g., in instant-messaging system and cooperative scientific compu-
tation) or be established by personal interaction (e.g., some ad hoc network
applications). This is plausible since CBE is usually deployed for cooperative
members who may be friends. Note that the CBSetup sub-protocol requires only
one round. An alternative option to achieve authentication is to let a partially
trusted third party certify each member’s protocol transcript. The third party
plays a role similar to a certification authority in the popular PKI setting, and
cannot read the plaintexts encrypted to the members. This is different from regu-
lar BE systems where the fully trusted dealer can decrypt all communications to
the members. For instance, in a social network application, the service provider
can serve as the partially trusted third party. This is also plausible since this
kind of applications usually require users to register for service. In this case, the
CBSetup transcript of each member can be viewed as her public key.

5 Conclusions

In this paper, we formalized the CBE primitive, which bridges the GKA and BE
notions. In CBE, anyone can send secret messages to any subset of the group
members, and the system does not require a trusted key server. Neither the
change of the sender nor the dynamic choice of the intended receivers require
extra rounds to negotiate group encryption/decryption keys. Following the CBE
model, we instantiated an efficient CBE scheme that is secure in the standard
model. As a versatile cryptographic primitive, our novel CBE notion opens a
new avenue to establish secure broadcast channels and can be expected to secure
numerous emerging distributed computation applications.
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Abstract. We revisit the topic of joint security for combined public key
schemes, wherein a single keypair is used for both encryption and sig-
nature primitives in a secure manner. While breaking the principle of
key separation, such schemes have attractive properties and are some-
times used in practice. We give a general construction for a combined
public key scheme having joint security that uses IBE as a component
and that works in the standard model. We provide a more efficient direct
construction, also in the standard model.

1 Introduction

Key separation versus key reuse: The folklore principle of key separation dic-
tates using different keys for different cryptographic operations. While this is
well-motivated by real-world, security engineering concerns, there are still situ-
ations where it is desirable to use the same key for multiple operations [15]. In
the context of public key cryptography, using the same keypair for both encryp-
tion and signature primitives can reduce storage requirements (for certificates
as well as keys), reduce the cost of key certification and the time taken to ver-
ify certificates, and reduce the footprint of cryptographic code. These savings
may be critical in embedded systems and low-end smart card applications. As
a prime example, the globally-deployed EMV standard for authenticating credit
and debit card transactions allows the same keypair to be reused for encryption
and signatures for precisely these reasons [11].

However, this approach of reusing keys is not without its problems. For exam-
ple, there is the issue that encryption and signature keypairs may have different
lifetimes, or that the private keys may require different levels of protection [15].
Most importantly of all, there is the question of whether it is secure to use the
same keypair in two (or more) different primitives – perhaps the two uses will
interact with one another badly, in such a way as to undermine the security of
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one or both of the primitives. In the case of textbook RSA, it is obvious that
using the same keypair for decryption and signing is dangerous, since the signing
and decryption functions are so closely related in this case. Security issues may
still arise even if some standardized padding is used prior to encryption and
signing [20]. In Section 3 we will provide another example in the context of en-
cryption and signature primitives, where the individual components are secure
(according to the usual notions of security for encryption and signature) but
become completely insecure as soon as they are used in combination with one
another. At the protocol level, Kelsey, Schneier and Wagner [18] gave examples
of protocols that are individually secure, but that interact badly when a keypair
is shared between them.

The formal study of the security of key reuse was initiated by Haber and
Pinkas [15]. They introduced the concept of a combined public key scheme. Here,
an encryption scheme and signature scheme are combined: the existing algo-
rithms to encrypt, decrypt, sign and verify are preserved, but the two key gen-
eration algorithms are modified to produce a single algorithm. This algorithm
outputs two keypairs, one for the encryption scheme and one for the signature
scheme, with the keypairs no longer necessarily being independent. Indeed, under
certain conditions, the two keypairs may be identical, in which case the savings
described above may be realised. In other cases, the keypairs are not identi-
cal but can have some shared components, leading to more modest savings.
Haber and Pinkas also introduced the natural security model for combined pub-
lic key schemes, where the adversary against the encryption part of the scheme
is equipped with a signature oracle in addition to the usual decryption oracle,
and where the adversary against the signature part of the scheme is given a
decryption oracle in addition to the usual signature oracle. In this setting, we
talk about the joint security of the combined scheme.

Setting a benchmark: As we shall see in Section 3, there is a trivial “Cartesian
product” construction for a combined public key scheme with joint security. The
construction uses arbitrary encryption and signature schemes as components,
and the combined scheme’s keypair is just a pair of vectors whose components are
the public/private keys of the component schemes. Thus the Cartesian product
construction merely formalises the principle of key separation. This construction,
while extremely simple, provides a benchmark by which other constructions can
be judged. For example, if the objective is to minimise the public key size in a
combined scheme, then any construction should aim to have shorter keys than
can be obtained by instantiating the Cartesian product construction with the
best available encryption and signature schemes.

Re-evaluating Haber-Pinkas: In this respect, we note that, while Haber and
Pinkas considered various well-known concrete schemes and conditions under
which their keys could be partially shared, none of their examples having prov-
able security in the standard model lead to identical keypairs for both signature
and encryption. Indeed, while the approach of Haber and Pinkas can be made
to work in the random oracle model by careful oracle programming and domain
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separation, their approach does not naturally extend to the standard model.
More specifically, in their approach, to be able to simulate the signing oracle in
the IND-CCA security game, the public key of the combined scheme cannot be
exactly the same as the public key of the underlying encryption scheme (oth-
erwise, successful simulation would lead to a signature forgery). This makes
it hard to achieve full effective overlap between the public keys for signing
and encryption. For the (standard model) schemes considered by Haber and
Pinkas this results in the requirements that part of the public key be specific
to the encryption scheme and that another part of it be specific to the sig-
nature scheme. Furthermore, at the time of publication of [15] only a few se-
cure (IND-CCA2, resp. EUF-CMA) and efficient standard-model schemes were
known. Consequently, no “compatible” signature and encryption schemes were
identified in [15] for the standard model.

Combined schemes from trapdoor permutations: The special case of combined
schemes built from trapdoor permutations was considered in [8, 21]. Here, both
sets of authors considered the use of various message padding schemes in con-
junction with an arbitrary trapdoor permutation to build combined public key
schemes having joint security. Specifically, Coron et al. [8] considered the case of
PSS-R encoding, while Komano and Ohta [21] considered the cases of OAEP+
and REACT encodings. All of the results in these two papers are in the random
oracle model. In further related, but distinct, work, Dodis et al. [10] (see also [9])
considered the use of message padding schemes and trapdoor permutations to
build signcryption schemes. Dodis et al. showed, again in the random oracle
model, how to build efficient, secure signcryption schemes in which each user’s
keypair, specifying a permutation and its trapdoor, is used for both signing and
encryption purposes.

1.1 Our Contribution

We focus on the problem of how to construct combined public key schemes
which are jointly secure in the standard model, a problem for which, as we have
explained above, there currently exist no fully satisfactory solutions. Naturally,
for reasons of practical efficiency, we are interested in minimising the size of
keys (both public and private), ciphertexts, and signatures in such schemes. The
complexity of the various algorithms needed to implement the schemes will also
be an important consideration.

As a warm-up, in Section 3, we give the simple Cartesian product construction,
as well as a construction showing that the general problem is not vacuous (i.e.
that there exist insecure combined schemes whose component schemes are secure
when used in isolation).

We then present in Section 4 a construction for a combined public key scheme
using an IBE scheme as a component. The trick here is to use the IBE scheme
in the Naor transform and the CHK transform simultaneously to create a com-
bined public key scheme that is jointly secure, under rather weak requirements on
the starting IBE scheme (specifically, the IBE scheme needs to be OW-ID-CPA
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and IND-sID-CPA secure). This construction extends easily to the (hierarchi-
cal) identity-based setting. Instantiating this construction using standard model
secure IBE schemes from the literature already yields rather efficient combined
schemes. For example, using an asymmetric pairing version of Gentry’s IBE
scheme [14], we can achieve a combined scheme in which, at the 128-bit secu-
rity level, the public key size is 1536 bits, the signature size is 768 bits and the
ciphertext size is 2304 bits (plus the size of a signature and a verification key
for a one-time signature scheme), with joint security being based on a q-type as-
sumption. This is already competitive with schemes arising from the Cartesian
product construction.

We then provide a more efficient direct construction for a combined scheme
with joint security in Section 5. This construction is based on the signature
scheme of Boneh and Boyen [4] and a KEM obtained by applying the techniques
by Boyen, Mei and Waters [7] to the second IBE scheme of Boneh and Boyen
in [3]. At the 128-bit security level, it enjoys public keys that consist of 1280
bits, signatures that are 768 bits and a ciphertext overhead of just 512 bits. The
signatures can be shrunk at the cost of increasing the public key size.

The ideas of this paper also have applications for signcryption. We show in
the full version [24] that a (tag-based) combined public key scheme can be used
to construct a signcryption scheme, using the “sign-then-encrypt” construction
of [23], that is secure in the strongest security model for signcryption (achiev-
ing insider confidentiality and insider unforgeability in the multi-user setting).
Instantiating this construction with our concrete combined public key scheme
effectively solves the challenge implicitly laid down by Dodis et al. in [9], to con-
struct an efficient standard model signcryption scheme in which a single short
keypair can securely be used for both sender and receiver functions. Further-
more, we are able to show that the signcryption scheme we obtain is jointly
secure when used in combination with both its signature and encryption com-
ponents. Thus we are able to obtain a triple of functionalities (signcryption,
signature, encryption) which are jointly secure using only a single keypair.

1.2 Further Related Work

Further work on combined public key schemes in the random oracle model, for
both the normal public key setting and the identity-based setting can be found
in [27]. In particular, it is proved that the identity-based signature scheme of
Hess [16] and Boneh and Franklin’s identity-based encryption scheme [6] can be
used safely together.

The topic of joint security of combined public key schemes is somewhat linked
to the topic of cryptographic agility [1], which considers security when the same
key (or key pair) is used simultaneously in multiple instantiations of the same
cryptographic primitive. This contrasts with joint security, where we are con-
cerned with security when the same key pair is used simultaneously in instan-
tiations of different cryptographic primitives. The connections between these
different but evidently related topics remain to be explored.
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2 Preliminaries

In our constructions, we will make use of a number of standard primitives, in-
cluding digital signatures, (tag-based) public key encryption, identity-based en-
cryption (IBE), a data encapsulation mechanism (DEM), and an always second-
preimage resistant hash function. We refer the reader to the full version [24]
for the standard definitions and security notions for these primitives. In the fol-
lowing, we briefly recall the properties of bilinear pairings as well as define the
computational assumptions which we will make use of to prove the security of
our concrete constructions.

Bilinear pairings: Let G1 = 〈g1〉, G2 = 〈g2〉, GT be groups of prime order p. A
pairing is a map e : G1 ×G2 → GT that satisfies the following properties:

1. Bilinear: For all a, b ∈ Z, e(ga
1 , g

b
2) = e(g1, g2)

ab.
2. Non-degenerate: e(g1, g2) �= 1.
3. Computable: There is an efficient algorithm to compute the map e.

Note that we work exclusively in the setting of asymmetric pairings, whereas
schemes are often presented in the naive setting of symmetric pairings e : G ×
G → GT . At higher security levels (128 bits and above), asymmetric pairings are
far more efficient both in terms of computation and in terms of the size of group
elements [13]. As a concrete example, using BN curves [2] and sextic twists,
we can attain the 128-bit security level with elements of G1 being represented
by 256 bits and elements of G2 needing 512 bits. By exploiting compression
techniques [26], elements of GT in this case can be represented using 1024 bits.
For further details on parameter selection for pairings, see [12].

Strong Diffie-Hellman (SDH) assumption [4]: Let G1 and G2 be two cyclic
groups of prime order p, respectively generated by g1 and g2. In the bilinear
group pair (G1,G2), the q-SDH problem is stated as follows:

Given as input a (q + 3)-tuple of elements(
g1, g

x
1 , g2, g

x
2 , g

(x2)
2 , . . . , g

(xq)
2

)
∈ G2

1 ×G
q+1
2

output a pair
(
c, g

1/(x+c)
2

)
∈ Zp×G2 for a freely chosen value c ∈ Zp\{−x}.

An algorithm A solves the q-SDH problem in the bilinear group pair (G1,G2)
with advantage ε if

Pr
[
A
(
g1, g

x
1 , g2, g

x
2 , g

(x2)
2 , . . . , g

(xq)
2

)
=
(
c, g

1/(x+c)
2

)]
≥ ε,

where the probability is over the random choice of generators g1 ∈ G1 and
g2 ∈ G2, the random choice of x ∈ Z∗

p, and the random bits consumed by A. We
say that the (t, q, ε)-SDH assumption holds in (G1,G2) if no t-time algorithm
has advantage at least ε in solving the q-SDH problem in (G1,G2).
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Decisional Bilinear Diffie-Hellman Inversion (DBDHI) assumption [3]: Let G1

and G2 be two cyclic groups of prime order p, respectively generated by g1 and
g2. In the bilinear group pair (G1,G2), the q-DBDHI problem is stated as follows:

Given as input a (q + 4)-tuple of elements(
g1, g

x
1 , g2, g

x
2 , g

(x2)
2 , . . . , g

(xq)
2 , T

)
∈ G2

1 ×G
q+1
2 ×GT

output 0 if T = e(g1, g2)1/x or 1 if T is a random element in GT .

An algorithm A solves the q-DBDHI problem in the bilinear group pair (G1,G2)
with advantage ε if∣∣∣∣Pr

[
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x
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2 , . . . , g
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2 , e(g1, g2)1/x
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= 0
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− Pr
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1 , g2, g
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2 , g

(x2)
2 , . . . , g

(xq)
2 , T

)
= 0
] ∣∣∣∣ ≥ ε,

where the probability is over the random choice of generators g1 ∈ G1 and
g2 ∈ G2, the random choice of x ∈ Z∗

p, the random choice of T ∈ GT , and
the random bits consumed by A. We say that the (t, q, ε)-DBDHI assumption
holds in (G1,G2) if no t-time algorithm has advantage at least ε in solving the
q-DBDHI problem in (G1,G2).

3 Combined Signature and Encryption Schemes

A combined signature and encryption scheme is a combination of a signature
scheme and a public key encryption scheme that share a key generation algorithm
and hence a keypair (pk, sk). It comprises a tuple of algorithms (KeyGen, Sign,
Verify, Encrypt, Decrypt) such that (KeyGen, Sign, Verify) form a signature scheme
and (KeyGen, Encrypt, Decrypt) form a PKE scheme. Since the signature and
PKE schemes share a keypair the standard notions of EUF-CMA and IND-
CCA security need to be extended to reflect an adversary’s ability to request
both signatures and decryptions under the challenge public key. When defining
a security game against a component of the scheme the nature of any additional
oracles depends on the required security of the other components. For example,
if EUF-CMA security of the signature component of a combined signature and
encryption scheme is required, then it is necessary to provide the adversary with
unrestricted access to a signature oracle when proving IND-CCA security of the
encryption component of the scheme. The security definitions given implicitly
in [8], considering IND-CCA security of the encryption component and EUF-
CMA security of the signature component, are stated formally here.

EUF-CMA security in the presence of a decryption oracle: Let (KeyGen, Sign,
Verify,Encrypt,Decrypt) be a combined signature and encryption scheme. Ex-
istential unforgeability of the signature component under an adaptive chosen
message attack in the presence of an additional decryption oracle is defined
through the following game between a challenger and an adversary A.
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Setup: The challenger generates a keypair (pk, sk) ← KeyGen(1k) and gives A
the challenge public key pk.

Query phase: A requests signatures on messages mi of its choice. The chal-
lenger responds to each signature query with a signature σi ← Sign(sk,mi).
A also requests decryptions of ciphertexts ci of its choice. The challenger
responds to each decryption query with a message m← Decrypt(sk, ci) or a
failure symbol ⊥.

Forgery: A outputs a message signature pair (σ,m) such that m was not sub-
mitted to the signing oracle, and wins the game if Verify(pk, σ,m) = 1.

The advantage of an adversary A is the probability it wins the above game.
A forger A (t, qd, qs, ε)-breaks the signature component of a combined sig-

nature and encryption scheme if A runs in time at most t, makes at most qd

decryption queries and qs signature queries and has advantage at least ε. The
signature component of a combined signature and encryption scheme is said to
be (t, qd, qs, ε)-EUF-CMA secure in the presence of a decryption oracle if no
forger (t, qd, qs, ε)-breaks it.

IND-CCA security in the presence of a signing oracle: Let (KeyGen, Sign,Verify,
Encrypt,Decrypt) be a combined signature and encryption scheme. Indistinguisha-
bility of the encryption component under an adaptive chosen ciphertext attack
in the presence of an additional signing oracle is defined through the following
game between a challenger and an adversary A.

Setup: The challenger generates a keypair (pk, sk) ← Keyen(1k) and gives A
the challenge public key pk.

Phase 1: A requests decryptions of ciphertexts ci of its choice. The challenger
responds to each decryption query with a message m ← Decrypt(sk, ci) or
a failure symbol ⊥. A also requests signatures on messages mi of its choice.
The challenger responds to each signature query with a signature σi ←
Sign(sk,mi).

Challenge: A chooses two equal length messages m0,m1. The challenger
chooses a random bit b, computes c∗ ← Encrypt(pk,mb), and passes c∗ to
the adversary.

Phase 2: As Phase 1 but with the restriction that A must not request the
decryption of the challenge ciphertext c∗.

Guess: A outputs a guess b′ for b.

The advantage of A is
∣∣Pr[b′ = b]− 1

2

∣∣.
An adversary A (t, qd, qs, ε)-breaks the encryption component of a combined

signature and encryption scheme if A runs in time at most t, makes at most qd

decryption queries and qs signature queries and has advantage at least ε. The
encryption component of a combined signature and encryption scheme is said to
be (t, qd, qs, ε)-IND-CCA secure in the presence of a signing oracle if no adver-
sary (t, qd, qs, ε)-breaks it.
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Informally, we say that a combined scheme is jointly secure if it is both EUF-
CMA secure in the presence of a decryption oracle and IND-CCA secure in the
presence of a signing oracle.

3.1 A Cartesian Product Construction

A trivial way of obtaining a system satisfying the above security properties is to
concatenate the keys of an encryption scheme and signature scheme, then use
the appropriate component of the compound key for each operation. This gives a
combined signature and encryption scheme where the signature and encryption
operations are essentially independent. Consequently their respective security
properties are retained in the presence of the additional oracle. This simple con-
struction sets a benchmark in terms of key size and other performance measures
that any bespoke construction should best in one or more metrics.

Formally, let S = (S.KeyGen,S.Sign,S.Verify) be a signature scheme, and
let E = (E .KeyGen, E .Encrypt, E .Decrypt) be an encryption scheme. Then the
Cartesian product combined signature and encryption scheme CartCSE(E ,S) is
constructed as follows:

CartCSE(E ,S).KeyGen(1k): Run S.KeyGen(1k) to get (pks, sks). Run E .KeyGen
(1k) to get (pke, ske). Output the public key pk = (pks, pke) and the private
key sk = (sks, ske).

CartCSE(E ,S).Sign(sk,m): Output S.Sign(sks,m).
CartCSE(E ,S).Verify(pk, σ,m): Output S.Verify(pks, σ,m).
CartCSE(E ,S).Encrypt(pk,m): Output E .Encrypt(pke,m).
CartCSE(E ,S).Decrypt(sk, c): Output E .Decrypt(ske, c).

We omit the straightforward proof that this scheme is jointly secure if S is
EUF-CMA secure and E is IND-CCA secure.

3.2 An Insecure CSE Scheme whose Components are Secure

To show that the definitions are not trivially satisfied, we give a pathologi-
cal example to show that a PKE scheme and a signature scheme that are
individually secure may not be secure when used in combination. Let S =
(S.KeyGen,S.Sign,S.Verify) be an EUF-CMA secure signature scheme, and let
E = (E .KeyGen, E .Encrypt, E .Decrypt) be an IND-CCA secure encryption scheme.
A combined signature and encryption scheme BadCSE(E ,S) can be constructed
as follows.

BadCSE(E ,S).KeyGen(1k): Run S.KeyGen(1k) to get (pks, sks). Run E .KeyGen
(1k) to get (pke, ske). Output the public key pk = (pks, pke) and the private
key sk = (sks, ske).

BadCSE(E ,S).Sign(sk,m): Compute σ′ = S.Sign(sks,m). Output σ = σ′||ske.
BadCSE(E ,S).Verify(pk, σ,m): Parse σ as σ′||ske. Run S.Verify(pks, σ

′,m) and
output the result.
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BadCSE(E ,S).Encrypt(pk,m): Output c = E .Encrypt(pke,m).
BadCSE(E ,S).Decrypt(sk, c): Run E .Decrypt(ske, c). If this decryption is suc-

cessful, output the decrypted message. Otherwise (if ⊥ was returned), output
sks.

From the security of the base schemes it is easy to see that the signa-
ture scheme given by the algorithms BadCSE(E ,S).KeyGen, BadCSE(E ,S).Sign,
BadCSE(E ,S).Verify is EUF-CMA secure, and the PKE scheme with algo-
rithms BadCSE(E ,S).KeyGen, BadCSE(E ,S).Encrypt, BadCSE(E ,S).Decrypt is
IND-CCA secure. However when key generation is shared a single signature
reveals the PKE scheme’s private key, and the decryption of a badly formed
ciphertext reveals the private key of the signature scheme. Thus BadCSE(E ,S)
is totally insecure, even though its component schemes are secure.

4 A Generic Construction from IBE

We show how to build a combined signature and encryption scheme from an IBE
scheme I with algorithms I.Setup, I.Extract, I.Encrypt, I.Decrypt. We make use
of a one time strongly secure signature scheme OT with algorithms OT .KeyGen,
OT .Sign(sk,m), OT .Verify(pk, σ,m). The construction is particularly simple:
the signature scheme component is constructed through the Naor transform
[6] and the PKE scheme component through the CHK transform [5]. Since in
the Naor construction signatures are just private keys from the IBE scheme,
and these private keys can be used to decrypt ciphertexts in the PKE scheme
resulting from the CHK transform, we use a bit prefix in the identity space to
provide domain separation between the signatures and private keys.

We assume I has message space M, ciphertext space C and identity space
{0, 1}n+1, and that OT has public key space {0, 1}n. Then the signature scheme
component of CSE(I) has message space {0, 1}n but can be extended to messages
of arbitrary length through the use of a collision resistant hash function H :
{0, 1}∗ → {0, 1}n. The PKE component of CSE(I) has message space M. The
algorithms of CSE(I) are shown in Figure 1. In the full version [24] we show how
the construction can be extended to support a tag-based encryption component.

Theorem 1. Let I be a (t′, q, ε)-OW-ID-CPA secure IBE scheme. Then the
signature component of CSE(I) is (t, qd, qs, ε)-EUF-CMA secure in the presence
of a decryption oracle provided that

qs + qd ≤ q and t ≤ t′ − qd(Tv + Td)− Td,

where Tv is the maximum time for a verification in OT and Td is the maximum
time for a decryption in I.
Proof of Theorem 1. Suppose there exists a forger F that (t, qd, qs, ε) breaks the
EUF-CMA security of the signature component of CSE(I) in the presence of a
decryption oracle. We construct an algorithm A that interacts with the forger
F to (t′, q, ε)-OW-ID-CPA break the IBE scheme I.



170 K.G. Paterson et al.

CSE(I).KeyGen(1k):

(mpk,msk)← I.Setup(1k)
(pk, sk) = (mpk,msk)
return (pk, sk)

CSE(I).Sign(sk,m):
ID = 0||m
σ ← I.Extract(sk, ID)
return σ

CSE(I).Verify(pk, σ,m):
ID = 0||m
x←R M
c← I.Encrypt(pk, ID, x)
if I.Decrypt(pk, σ, c) = x
then return 1
else return 0

CSE(I).Encrypt(pk,m):
(vk, sk′)← OT .KeyGen
ID = 1||vk
c′ ← I.Encrypt(pk, ID,m)
σ ← OT .Sign(sk′, c′)
return (vk, σ, c′)

CSE(I).Decrypt(sk, c):
Parse c as (vk, σ, c′)
if OT .Verify(vk, σ, c′) = 1
then ID = 1||vk

skID ← I.Extract(sk, ID)
return I.Decrypt(pk, skID, c

′)
else return ⊥

Fig. 1. Generic construction from IBE

Setup: A is given a master public key mpk which it gives to F as the public
key.

Signing queries: In response to a request for a signature on message m, A
queries its extraction oracle for the identity ID = 0||m to obtain skID which
it returns to F as the signature.

Decryption queries: In response to a decryption query for a ciphertext c =
(vk, σ, c′), A verifies that σ is a valid signature on c′ with verification key vk.
If it is not a valid signature, A returns ⊥. If the signature is valid, A queries
its extraction oracle for the identity ID = 1||vk to obtain skID which it uses
to decrypt c′, returning the output of the decryption operation as the result
of the decryption query.

Forgery: Eventually F will return a forgery (σ∗,m∗) on a message m∗ for which
a signing query was not made. At this point A outputs ID∗ = 0||m∗ as the
target identity. This is a valid choice; since a signing query was not made for
message m∗ an extraction query was not made for ID = 0||m∗.

Challenge: A receives a ciphertext c∗, which is the encryption of a random
message m for identity ID∗. If σ∗ is a valid signature for message m∗ then
σ∗ is a valid decryption key for identity ID∗. This allows A to decrypt c∗

using skID∗ = σ∗ to retrieve the message m which it subsequently outputs.

A succeeds precisely when F succeeds, so if F outputs a valid forgery with prob-
ability ε in time t then algorithm A succeeds in time at most t+qd(Tv +T d)+Td

with the same probability ε.
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Theorem 2. Let I be an (ti, qi, εi)-IND-sID-CPA secure IBE scheme and let
OT be a (ts, εs)-strongly unforgeable one time signature scheme. Then the en-
cryption component of CSE(I) is (t, qd, qs, ε)-IND-CCA secure in the presence
of a signing oracle provided that

ε >
1
2
εs + εi, qs + qd < qi, and t < ti − Tkg − Tsig − qd(Tv + Td),

where Tkg, Tsig and Tv are the maximum times for key generation, signing and
verifying respectively in OT , and Td is the maximum decryption time in I.
Proof of Theorem 2. The proof follows closely that of Theorem 1 in [5]. Let D
be an adversary against the IND-CCA security of the encryption component of
CSE(I) in the presence of a signing oracle running in time at most t and making
at most qs signature queries and qd decryption queries. We use D to build an
IND-sID-CPA adversary B against I as follows.

Setup: B runs OT .KeyGen to obtain a keypair (vk∗, sk∗) then submits ID∗ =
1||vk∗ as the target identity. B is then given master public key mpk which
it gives to D as the challenge public key.

Decryption queries: We partition the decryption queries into three possible
cases and show how B responds to each case. Suppose the query is for ci-
phertext (vk, σ, c′), and let OT .Verify(vk, σ, c′) = validity.

Case 1: vk = vk∗

If validity = 0 then B responds to the decryption query with ⊥. If
validity = 1 then a forgery has been made against OT , call this event
Forge. If Forge occurs, B aborts and outputs a random bit b′.

Case 2: vk �= vk∗ and validity = 0
B responds to the decryption query with ⊥.

Case 3: vk �= vk∗ and validity = 1
B queries the extraction oracle for identity ID = 1||vk to obtain skID,
then uses skID to decrypt c′, responding to the decryption query with
the output of the decryption operation.

Signature queries: In response to a signature query for message m, B queries
its extraction oracle for identity ID = 0||m to obtain skID which it returns
as the signature.

Challenge: Eventually D will output a pair of messages m0,m1. B forwards
these messages and receives a challenge ciphertext c∗. B callsOT .Sign(sk∗,c∗)
to obtain σ∗ and sends C =(vk∗, σ∗, c∗) to D. D may make more signature
and decryption queries under the restriction that it must not submit to the
decryption oracle its challenge ciphertext C. D then submits a guess b′ which
B outputs as its guess.

B represents a legal strategy for attacking I, in particular B never requests
the private key corresponding to the target identity ID∗. Provided Forge does
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not occur, B provides a perfect simulation for D so B succeeds with the same
probability as D. If Forge does occur then B outputs a random bit and succeeds
with probability 1

2 . Letting PrBIBE[Succ] denote the probability of B outputting
the correct bit in the IBE security game and PrDPKE[Succ] denote the probability
of D outputting the correct bit in the PKE security game, it can be seen that∣∣∣∣PrDPKE[Succ ∧ Forge] +

1
2
PrDPKE[Forge]− 1

2

∣∣∣∣ = ∣∣∣∣PrBIBE[Succ]− 1
2

∣∣∣∣ .
Since I is an (ti, qi, εi)-IND-sID-CPA secure IBE scheme,

∣∣PrBIBE[Succ]− 1
2

∣∣ <
εi. The event Forge represents a signature forgery againstOT , so PrDPKE[Forge] <
εs. It follows that

ε =
∣∣∣∣PrDPKE[Succ]− 1

2

∣∣∣∣
≤
∣∣∣∣PrDPKE[Succ ∧ Forge]− 1

2
PrDPKE[Forge]

∣∣∣∣+∣∣∣∣PrDPKE[Succ ∧ Forge] +
1
2
PrDPKE[Forge]− 1

2

∣∣∣∣
≤ 1

2
PrDPKE[Forge] +

∣∣∣∣PrDPKE[Succ ∧ Forge] +
1
2
PrDPKE[Forge]− 1

2

∣∣∣∣
=

1
2
PrDPKE[Forge] +

∣∣∣∣PrBIBE[Succ]− 1
2

∣∣∣∣
≤ 1

2
εs + εi.

The running time of B is at most t + Tkg + qd(Tv + Td) + Tsig, and it asks at
most qs + qd private key extraction queries, so the theorem holds.

IBE schemes meeting the standard model security requirements include those
of Gentry [14] and Waters [28]. The latter results in a large public key (n+3 group
elements), though this could be reduced in practice by generating most of the
elements from a seed in a pseudo-random manner. We focus on the instantiation
of our construction using Gentry’s scheme. This scheme was originally presented
in the setting of symmetric pairings. When we translate it to the asymmetric
setting (see the full version for details) and apply our construction at the 128-bit
security level using BN curves with sextic twists, we obtain a combined public key
scheme in which the public key consists of two elements of G1 and two elements
of G2, giving a public key size of 1536 bits. Ciphertexts encrypt elements of GT

and consist of an element of G1, two elements of GT , and a verification key and
signature from OT , so are 2304 bits plus the bit length of a verification key
and signature in OT . Signatures consist of an element of Zp and an element
of G2, so are 768 bits in size. Here we assume that descriptions of groups and
pairings are domain parameters that are omitted from our key size calculations.
The security of this scheme depends on an assumption closely related to the
decisional q-augmented bilinear Diffie-Hellman exponent assumption.
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This construction could be improved further using the Boneh-Katz [5] alter-
native to the CHK transform. We omit the details in favour of our next scheme.

5 A More Efficient Construction

The following scheme is based on the signature scheme by Boneh and Boyen [4]
and a KEM obtained by applying the techniques by Boyen, Mei and Waters [7]
to the second IBE scheme by Boneh and Boyen in [3]. The schemes make use of a
bilinear pairing e : G1×G2 → GT , where the groups are of order p, and the KEM
furthermore makes use of an always second-preimage resistant (aSec-secure) hash
function H : G1 → {0, 1}n−1 where 2n < p. To obtain a full encryption scheme,
the KEM is combined with a DEM, and we assume for simplicity that the key
space of the DEM is K = GT . Where a binary string is treated as a member of Zp

it is implicitly converted in the natural manner. The signature scheme supports
messages in {0, 1}n−1, but can be extended to support message in {0, 1}∗ by
using a collision resistant hash function, while the encryption scheme supports
messages of arbitrary length due to the use of a DEM. Note that to minimize the
public key size and ciphertext overhead in the scheme, the elements of the public
key are placed in the group G1. However, this implies that signatures contain an
element of the group G2, having larger bit representations of elements.

KeyGen(1k): Choose random generators g1 ∈ G1, g2 ∈ G2 and random integers
x, y ∈ Z∗

p, and compute X = gx
1 and Y = gy

1 . The public key is (g1, g2, X, Y )
and the private key is (x, y).

Sign(sk,m): To sign a message m ∈ {0, 1}n−1 first prepend a zero to m to give
m′ = 0||m ∈ {0, 1}n. Choose random r ∈ Zp. If x + ry + m′ ≡ 0 mod p

then select another r ∈ Zp. Compute σ = g
1

x+m′+yr

2 ∈ G2. The signature is
(σ, r) ∈ G2 × Zp.

Verify(pk, σ,m): If e(X · gm′
1 · Y r, σ) = e(g1, g2), where m′ = 0||m, then return

1, otherwise return 0.
Encrypt(pk,m): To encrypt a message m ∈ {0, 1}∗, choose random s ∈ Z∗

p and
compute c1 = Y s and h = H(c1). Prepend a 1 to h to give h′ = 1||h ∈ {0, 1}n,
and compute c2 = Xs · gs·h′

1 . Lastly, compute the key K = e(g1, g2)s ∈ GT

and encrypt the message m using the DEM i.e. c3 = DEnc(K,m). The
ciphertext is c = (c1, c2, c3).

Decrypt(sk, c): To decrypt a ciphertext c = (c1, c2, c3), first compute h = H(c1)
and prepend a 1 to h to get h′ = 1||h. If c(x+h′)/y

1 �= c2, output ⊥. Oth-
erwise, compute the key K = e(c1, g

1/y
2 ) ∈ GT , and output the message

m = DDec(K, c3).

We note that the computational cost of encryption and signature verification
can be reduced by adding the redundant element v = e(g1, g2) to the public key,
but that this will significantly increase the public key size.
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Theorem 3. Suppose the (t′, q, ε′)-SDH assumption holds in (G1,G2). Then the
above combined public key scheme is (t, qd, qs, ε)-EUF-CMA secure in the pres-
ence of a decryption oracle given that

qs ≤ q, ε ≥ 2ε′ + qs/p ≈ 2ε′ and t ≤ t′ −Θ(qdTp + (qd + q2)Te),

where Tp is the maximum time for evaluating a pairing and Te is the maximum
time for computing an exponentiation in G1, G2 and Zp.

Theorem 4. Suppose that the hash function H is (th, εh)-aSec secure, that the
(tdhi, qdhi, εdhi)-DBDHI assumption holds in the groups G1,G2, and that the
DEM is (tdem, qdem, εdem)-IND-CCA secure. Then the combined public key
scheme above is (t, qd, qs, ε, )-IND-CCA secure in the presence of a signing oracle
given that

qs ≤ qdhi, qd ≤ qdem, ε ≥ εh + εdhi + εdem + qs/p, and
t ≤ tmin −Θ(qdTp + (qdhi + qd)Te),

where tmin = min(th, tdhi, tdem), Tp is the maximum time for evaluating a pair-
ing, and Te is the maximum time for computing an exponentiation in G1,G2.

The proofs of Theorems 3 and 4 can be found in the full version [24].
The above scheme provides public keys consisting of three group elements

of G1 and one group element of G2. If the scheme is instantiated using BN
curves with sextic twists mentioned above, this translates into a public key size
of 1280 bits for a 128 bit security level. Furthermore, assuming that the DEM is
redundancy-free (which can be achieved if the DEM is a strong pseudorandom
permutation [25]), the total ciphertext overhead is just two group elements of G1

which translates into 512 bits. Signatures consist of a single group element of G2

and an element of Zp, and will be 768 bits. Again, we assume that descriptions
of groups and pairings are ignored in these calculations.

In the full version, we show how the construction can be extended to support
tag-based encryption. This property is required to allow us to use the scheme
to instantiate our combined signcryption, signature and encryption scheme (see
the full version for details).

6 Comparison of Schemes

In this section, we provide a comparison of the schemes arising from our IBE-
based construction, our more efficient construction in Section 5 and the Cartesian
product construction. In our comparison we will limit ourselves to other discrete-
log/pairing-based schemes since provably secure (standard model) lattice-based
schemes with short public keys are still unavailable and factoring-based schemes
do not scale very well (for 128-bit security, the modulus would need to be > 3000
bits which is not competitive). We will include group generators in public key
size calculations as the required number depends on the scheme, but we allow
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sharing of generators between signature and encryption component in Cartesian
product instantiations to improve these constructions. Note that it is possible to
reduce the private key of any scheme to a single short random seed by making the
following simple modification to the scheme: to generate a public/private keypair,
pick a random seed, generate the randomness required by the key generation
algorithm by applying a pseudorandom generator to the seed, and generate the
public/private keypair using this randomness, but store only the seed as the
private key. Whenever the original private key is needed, re-compute this by
applying the pseudorandom generator to the seed and re-run the key generation
algorithm with the resulting randomness. This observation essentially makes the
difference in private key sizes irrelevant, and we will not include this aspect
in our comparison. We consider several instantiations of the Cartesian product
construction with standard model secure encryption and signature schemes and
give the results in Figure 2.

We will focus on Cartesian product instantiations using the scheme by Boneh
and Boyen [4] as a signature component. This scheme is among the most effi-
cient signature schemes and additionally has a short public key. To reduce the
public key size even further, we can remove the redundant element v = e(g1, g2)
and place as many elements as possible in the group G1 of the pairing. The
latter implies that signatures will be elements of G2 × Zp which results in an
increase in signature size. However, since the Cartesian product constructions
should compete with the combined public key schemes in terms of public key
size, this tradeoff is desirable. While other signature schemes could be consid-
ered, we were not able to find a scheme providing shorter public keys without a
significant disadvantage elsewhere. For instance, hash-based signature schemes
give extremely short public keys (the hash function description plus the root
digest), but result in signatures with length logarithmic in the number of mes-
sages to be signed. The signature scheme by Hofheinz and Kiltz [17] has shorter
signatures than the Boneh-Boyen scheme and a public key consisting of a few
group elements plus a hash key, but here the hash key will be long to achieve
provable programmability.

For the encryption component, a relevant option is a DEM combined with
the KEM obtained by applying the techniques by Boyen, Mei and Waters [7]
to the second IBE scheme of Boneh and Boyen in [3], which also forms the
basis of our concrete scheme. Combined with the Boneh-Boyen signature scheme,
and assuming the group generators in the two schemes are shared, this yields
a very efficient instantiation of the Cartesian product construction in which
public keys consist of five group elements of G1, one group element of G2 (and
a key defining a target collision resistant hash function). This is larger by two
elements of G1 than the public key in our concrete construction from Section 5,
which translates to a difference of 512 bits. Note that signature size, ciphertext
overhead and computation costs are the same for the Cartesian product scheme
and our construction.

Another encryption scheme to consider is that of Kurosawa and Desmedt
[22]. Instantiating the Cartesian product construction with this scheme and the
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Signature PKE Public Key Signature Ciphertext
Scheme Scheme Size Size Overhead

BB [4] BB [3] + BMW [7] 1792 768 512
BB [4] KD [22] 2048 768 640
BB [4] Kiltz [19] 1792 768 512

CSE(Gentry) 1536 768 1280 + |vkOT | + |σOT |
Scheme from Sec. 5 1280 768 512

Fig. 2. Comparison of schemes at the 128-bit security level

Boneh-Boyen signature scheme yields a scheme with a public key consisting of
six elements of G1, one element of G2 (and a key defining a target collision resis-
tant hash), assuming that the Kurosawa-Desmedt scheme is implemented in G1.
Hence, the public key will be larger by three group elements of G1 compared
to our concrete construction, which equates to a difference of 768 bits at the
128-bit security level. Signature size and signing and verification costs will be
the same as in our construction, whereas the ciphertext overhead will be slightly
larger (an extra 128 bits) due to the requirement that the symmetric encryp-
tion scheme used in the Kurosawa-Desmedt scheme is authenticated. However,
decryption costs will be lower since no pairing computations are required.

Lastly, the encryption scheme of Kiltz [19] might be considered. Again, com-
bining this with the Boneh-Boyen signature scheme, and assuming group genera-
tors are shared, will yield a Cartesian product scheme with public keys consisting
of five elements of G1 and one element of G2. This is two group elements of G1

larger than the public key of our concrete construction, which equates to an
increase of 512 bits at the 128-bit security level. Signature size and ciphertext
overhead will be the same while decryption in the Cartesian product scheme will
be more efficient, since no pairing computations are required.

In summary, our concrete construction of a combined public key scheme ad-
mits shorter public keys than any instantiation of the Cartesian product con-
struction of Section 3.1 with known standard model secure encryption and sig-
nature schemes, and furthermore enjoys compact ciphertexts and signatures.

7 Conclusions and Future Research

We have revisited the topic of joint security for combined public key schemes,
focussing on the construction of schemes in the standard model, an issue not
fully addressed in prior work. We gave a general construction for combined pub-
lic key schemes from weakly secure IBE, as well as a more efficient concrete
construction based on pairings. Using BN curves, these can be efficiently instan-
tiated at high security levels and have performance that is competitive with the
best schemes arising from the Cartesian product construction. Our results fill
the gap left open in the original work of Haber and Pinkas [15], of constructing
standard-model-secure combined public key schemes in which the signature and
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encryption components share an identical keypair. An interesting open problem
is to construct efficient combined public key schemes in the standard model not
using pairings. For example, is it possible to obtain joint security in the discrete
log or in the RSA setting, in the standard model?

Our work points the way to an interesting new research area in cryptography,
which closely relates to and generalises the topic of cryptographic agility [1]. The
general question can be posed as follows: under what conditions is it safe to use
the same key (or key pair) across multiple instantiations of the same or different
cryptographic primitives?
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Abstract. We initiate the formal treatment of cryptographic construc-
tions (“Polly Cracker”) based on the hardness of computing remainders
modulo an ideal over multivariate polynomial rings. We start by formal-
ising the relation between the ideal remainder problem and the prob-
lem of computing a Gröbner basis. We show both positive and negative
results. On the negative side, we define a symmetric Polly Cracker en-
cryption scheme and prove that this scheme only achieves bounded CPA
security. Furthermore, we show that a large class of algebraic transfor-
mations cannot convert this scheme to a fully secure Polly-Cracker-style
scheme. On the positive side, we formalise noisy variants of the ideal
membership, ideal remainder, and Gröbner basis problems. These prob-
lems can be seen as natural generalisations of the LWE problem and the
approximate GCD problem over polynomial rings. We then show that
noisy encoding of messages results in a fully IND-CPA-secure somewhat
homomorphic encryption scheme. Our results provide a new family of
somewhat homomorphic encryption schemes based on new, but natural,
hard problems. Our results also imply that Regev’s LWE-based public-
key encryption scheme is (somewhat) multiplicatively homomorphic for
appropriate choices of parameters.

Keywords: Polly Cracker, Gröbner bases, LWE, Noisy encoding,
Homomorphic encryption, Public-key encryption, Provable security.

1 Introduction
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� The work described in this paper has been supported by the Royal Society grant

JP090728 and by the Commission of the European Communities through the ICT
program under contract ICT-2007-216676 (ECRYPT-II). M. Albrecht, J-C. Faugère,
and L. Perret were also supported by the french ANR under the Computer Alge-
bra and Cryptography (CAC) project (ANR-09-JCJCJ-0064-01) and the EXACTA
project (ANR-09-BLAN-0371-01). P. Farshim was funded in part by the US Army
Research laboratory, the UK Ministry of Defense and was accomplished under Agree-
ment Number W911NF-06-3-0001. Due to space limitations this work is only an
extended abstract of the full work available in [1].

D.H. Lee and X. Wang (Eds.): ASIACRYPT 2011, LNCS 7073, pp. 179–196, 2011.
c© International Association for Cryptologic Research 2011



180 M.R. Albrecht et al.

algebraic perspective, this homomorphic feature can be seen as the ability to
evaluate multivariate polynomials over ciphertexts. Hence, an instantiation of
homomorphic encryption over multivariate polynomials is perhaps the most nat-
ural strategy.

Indeed, let I ⊂ P = F[x0, . . . , xn−1] be some ideal. We can encrypt a message
m ∈ P/I as c = f + m for f randomly chosen in I. Decryption is performed
by computing remainders modulo I. From the definition of an ideal the homo-
morphic features of this scheme follow. The problem of computing remainders
modulo an ideal was solved by Buchberger in [8], where he introduced the notion
of Gröbner bases, and gave an algorithm for computing such bases.

In fact, all known doubly homomorphic schemes are based on variants of the
ideal remainder problem over various rings. For example in [13] the ring 〈p〉 ∈ Z

for p an odd integer is considered. In [19] ideals in a number field play the
same role (cf. [29]). One can even view Regev’s LWE-based public-key encryption
scheme [25] in this framework. Finally, we note that the construction displayed
above is essentially Polly Cracker (PC) [17]. However, despite their simplicity,
our confidence in PC-style schemes has been shaken as almost all such proposals
have been broken [15]. In fact, it is a long standing open research challenge to
propose a secure PC-style encryption scheme [5].

Contributions & Organisation. Our contributions can be summarised as
follows: 1) we initiate the formal treatment of PC-style schemes and characterise
their security; 2) we show the impossibility of converting such schemes to fully
IND-CPA-secure schemes through a large class of transformations; 3) we intro-
duce natural noisy variants of classical problems related to Gröbner bases which
also generalise previously considered noisy problems; and 4) we present a new
somewhat (and doubly) homomorphic encryption scheme based on a new class
of computationally hard problems.

In more detail, after settling notation in Section 2, we formalise various prob-
lems from commutative algebra in the language of game-based security defini-
tions in Section 3. In particular, we show that computing remainders modulo an
ideal with overwhelming probability is equivalent to computing a Gröbner basis
for zero-dimensional ideals. We then show that deciding ideal membership and
computing ideal remainders are equivalent for certain choices of parameters. We
then introduce a symmetric variant of Polly Cracker and characterise its security
guarantees. We show that this scheme achieves bounded IND-CPA security, and
that this level of security is the best that one can hope for: we give an attacker
which breaks the cryptosystem once enough ciphertexts are obtained.

In Section 5, we show the security limitations of the constructed scheme are in
some sense intrinsic. More precisely, we show that a large class of algebraic trans-
formation cannot turn this scheme into a (fully) IND-CPA secure and additively
homomorphic PC-style scheme.

To go beyond this limitation, we consider a constructions where the encod-
ing of messages is randomised. To prove security for such schemes, we consider
noisy variants of the ideal membership and related problems. These can be seen
as natural generalisations of the (decisional) LWE and the approximate GCD
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problems over polynomial rings (Section 6). After formalising and justifying the
hardness of the noisy assumptions in Section 7, we show that noisy encoding of
messages can indeed be used to construct a fully IND-CPA-secure somewhat ho-
momorphic scheme. This result also implies that Regev’s LWE-based public-key
scheme is multiplicatively homomorphic under appropriate choices of parame-
ters. Our result, together with a standard symmetric-to-asymmetric conversion
for homomorphic schemes, provides a positive answer to the long standing open
problem proposed by Barkee et al. [5]. In addition, we provide a new family of
somewhat homomorphic schemes which are based on new natural variants of
well-studied hard problems. Due to space limitations, we discuss concrete pa-
rameter choices and include a reference implementation in the full version of
the paper [1]. There, we also show how our scheme allows proxy re-encryption of
ciphertexts. This re-encryption procedure can be seen as trading noise for degree
in ciphertexts. That is, we can control the growth of the ciphertext size due to
multiplication by tolerating more noise. We note that this technique was recently
and independently developed in [7]. In [1], we also show that our scheme achieves
a limited form of key-dependent message (KDM) security in the standard model,
where the least significant bit of the constant term of the key is encrypted. We
leave it as an open problem to adapt the techniques of [2] to achieve full KDM
security for the Polly Cracker with noise scheme.

1.1 Related Work

Polly Cracker. In 1993, Barkee et al. wrote a paper [5] whose aim was to dispel
the urban legend that “Gröbner bases are hard to compute”. Another goal of
this paper was to direct research towards sparse systems of multivariate equa-
tions. To do so, the authors proposed the most obvious dense Gröbner-based
cryptosystem, namely an instantiation of the construction mentioned at the be-
ginning of the introduction. In their scheme, the public key is a set of polynomials
{f0, . . . , fm−1} ⊂ I which is used to construct an element f ∈ I. Encryption of
messages m ∈ P/I are computed as c =

∑
hifi + m = f + m for f ∈ I. The

private key is a Gröbner basis G which allows to compute m = c mod I = c
mod G. As highlighted in [5] this scheme can be broken using results from [12]
(cf. Theorem 2). At about the same time, and independently from the work
of Barkee et al., Fellows and Koblitz [17] proposed a framework for the design
of public-key cryptosystems. The ideas in [17] were similar to Barkee et al.’s,
but differed in some details. However, the main instantiation of such a system
was the Polly Cracker cryptosystem. Subsequently, a variety of sparse PC-style
schemes were proposed. The focus on sparse polynomials aimed to prevent the
attack based on Theorem 2, yet almost all of these schemes were broken. We
point the reader to [15] for a good survey of various constructions and attacks.
Currently, the only PC-style scheme which is not broken is the scheme in [9]. This
scheme is based on binomial ideals (which in turn are closely related to lattices).
Not only can our constructions be seen as instantiations of Polly Cracker (with
and without noisy encoding of messages), they also allow security proofs based on
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the hardness of computational problems related to (multivariate) polynomial
ideals with respect to random systems.

Homomorphic Encryption. With respect to doubly (i.e., additively and multi-
plicatively) homomorphic schemes, a number of different hardness assumptions
and constructions appeared in the literature. These include the Ideal Coset Prob-
lem of Gentry [19], the approximate GCD problem over the Integers of van Dijk
et al. [13], the Polynomial Coset Problem as proposed by Smart and Vercauteren
in [29], the Approximate Unique Shortest Vector Problem, the Subgroup Deci-
sion Problem, and the Differential Knapsack Vector Problem which appear in
[23]. The main difference between our work and previous work is that we base
the security of our somewhat homomorphic scheme on new computational prob-
lems related to ideals over multivariate polynomial rings. Furthermore, due to
the versatility of Gröbner basis theory, our work can be seen as a generalisation
of a number of known schemes and their underlying hardness assumptions. How-
ever, while our construction is doubly homomorphic and reasonably efficient for
low multiplicative circuit depths, it is currently an open problem how to make
it bootstrappable and hence turn it into a fully homomorphic scheme.
MQ Cryptography. Our work bears some connection with public-key cryp-

tosystems based on the hardness of solving multivariate quadratic equations
(MQ). The difference is that our cryptographic constructions enjoy strong re-
ductions to the known and hard problem of solving a random system of equa-
tions, whereas the bulk of work in MQ cryptography relies on heuristic security
arguments [14]. In contrast, our work is more in the direction of research initiated
by Berbain et al. [6] who proposed a stream cipher whose security was reduced
to the difficulty of solving a system of random multivariate quadratic equations
over F2. Note also that the concept of adding noise to a system of multivariate
equations has been also proposed by Gouget and Patarin in [21] for the design
of an authentication scheme. Our work, however, presents a more general and
complete treatment of problems related to ideals over multivariate polynomials
– both with and without noise – and aims to provide a formal basis to assess
the security of cryptosystems based on such problems.

2 Preliminaries

Notation. We write x ← y for assigning value y to a variable x, and x←$ X for
sampling x from a set X uniformly at random. If A is a probabilistic algorithm we
write y ←$ A(x1, . . . , xn) for the action of running A on inputs x1, . . . , xn with
uniformly chosen random coins, and assigning the result to y. For a random
variable X we denote by [X] the support of X, i.e., the set of all values that X
takes with non-zero probability. We use ppt for probabilistic polynomial-time.
We call η(λ) negligible if |η(λ)| ∈ λ−ω(1).

Commutative Algebra Notation. In [1] we recall some basic definitions
related to Gröbner bases. For a more detailed treatment we refer to, for in-
stance, [10]. We consider a polynomial ring P = F[x0, . . . , xn−1] over some finite
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field (typically Fq), some monomial ordering on elements of P , and a set of
polynomials f0, . . . , fm−1. We denote by M(f) the set of all monomials appearing
in f ∈ P . By LM(f) we denote the leading monomial appearing in f ∈ P
according to the chosen term ordering. We denote by LC(f) the coefficient ∈ F

corresponding to LM(f) in f and set LT(f) = LC(f) · LM(f). We denote by
P<d the set of polynomials of degree < d (and analogously for the >,≤,≥, and
= relations). We define P=0 as the underling field including 0 ∈ F. We define
P<0 as zero. Finally, we denote by M<m the set of all monomials < m for some
monomial m (and analogously for the >,≤,≥, and = relations). We assume the
usual power product representation for elements of P .

3 Gröbner Basis and Ideal Membership Problems

Following [11], we define a computational polynomial ring scheme. This is a gen-
eral framework allowing to discuss in a concrete way the different families of rings
that may be used in cryptographic applications. More formally, a computational
polynomial ring scheme P is a sequence of probability distribution of polynomial
ring descriptions (Pλ)λ∈N. A polynomial ring description P specifies various
algorithms associated with P such as computing ring operations, sampling el-
ements, testing membership, encoding of elements, ordering of monomials, etc.
We assume each polynomial ring distribution is over n = n(λ) variables, for
some polynomial n(λ), and is over a finite prime field of size q(λ).

In this work we denote by GBGen(1λ, P, d) an arbitrary ppt algorithm which
outputs a reduced Gröbner basis G for some zero-dimensional ideal I ⊂ P such
that every element of G is of degree at most d. Of particular interest to this
paper is the Gröbner basis generation algorithm shown in Algorithm 1 called
GBGendense(·). (Algorithm ReduceGB(·) is given in [1].) We show in [1] that
GBGendense(·) returns a Gröbner basis. Throughout the paper we assume an
implicit dependency of various parameters associated with P on the security
parameter. Thus, we drop λ to ease notation.

Algorithm 1: Algorithm GBGendense(1
λ, P, d)

begin1

if d = 0 then return {0};2

for 0 ≤ i < n do3

for mj ∈M<xd
i

do4

cij ←$ Fq; gi ← gi + cijmj ;5

return ReduceGB({xd
0 + g0, . . . , x

d
n−1 + gn−1}) ;6

end7

We can now formally define the problem of computing a Gröbner basis.

Definition 1. The Gröbner basis problem is defined through the game denoted
GBP,GBGen(·),d,b,m as shown in Figure 1. The advantage of a ppt algorithm A in
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solving the GB problem is defined as the probability of winning the game (i.e., the
game returning T). An adversary is legitimate if it calls the Sample procedure
at most m = m(λ) times.

Initialize(1λ,P, d):

begin
P ←$ Pλ;

G ←$ GBGen(1λ, P, d);

return (1λ, P );
end

Sample():

begin
f ←$ P≤b;
f ← f − (f mod G);
return f ;
end

Finalize():

begin
return (G = G′);
end

Fig. 1. Game GBP,GBGen(·),d,b,m

We show in [1] that Sample returns elements of degree b which are uniformly
distributed in 〈G〉. We recall that given a Gröbner basis G of an ideal I, r = f
mod I = f mod G is the normal form of f with respect to the ideal I. We
sometimes drop the explicit reference to I when it is clear from the context
which ideal we are referring to, and simply refer to r as the normal form of
f . Computing normal forms is the ideal remainder problem which we formalise
below.

Definition 2. The ideal remainder problem is defined through the game shown
in Figure 2: IRP,GBGen(·),d,b,m. The advantage of a ppt algorithm A in solv-
ing the IR problem is defined as the probability of winning the game minus
1/qdimFq (P/〈G〉). An adversary is legitimate if it calls the Sample procedure at
most m = m(λ) times.

Initialize(1λ,P, d):

begin
P ←$ Pλ;

G ←$ GBGen(1λ, P, d);

return (1λ, P );
end

Sample():

begin
f ←$ P≤b;
f ′ ← (f mod G);
return f − f ′;
end

Challenge():

begin
f ←$ P≤b;
return f ;
end

Finalize(r′):
begin
r ← f mod G;
return r = r′;
end

Fig. 2. Game IRP,GBGen(·),d,b,m

In Lemma 1 below we prove a weak form of equivalence between the above
problems. That is, we require that the IR adversary returns the correct answer
with an overwhelming probability. This is due to the restriction that Sample
can only be called a bounded number of times, and thus one cannot amplify the
success probability of the IR adversary through repetition. The weak statement
is sufficient in our context.

Lemma 1. If the GB problem is hard, then the IR problem is weakly hard (i.e.,
cannot be solved with overwhelming probability). Furthermore, if the IR problem
is hard then so is the GB problem.
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The precise theorem statement and a proof is given in [1]. Informally, the reduc-
tion of the GB problem to the IR problem works as follows. Consider an arbitrary
element gi in the Gröbner basis G. We can write gi as mi + g̃i for some g̃i < gi

and mi = LM(gi). Now, assume the normal form of mi is ri and suppose that
ri < mi. This implies that mi =

∑n−1
j=0 hjgj +ri for some hi ∈ P . Hence, we have

mi − ri ∈ 〈G〉, an element ∈ 〈G〉 with leading monomial mi. Repeat this pro-
cess for all monomials up to and including degree d and accumulate the results
mi− ri in a list G̃. The list G̃ is a list of elements ∈ 〈G〉 with LM(G̃) ⊇ LM(G)
which implies G̃ is a Gröbner basis. We note that this is the core idea behind
the FGLM algorithm [16].

The decisional variant of the IR problem is to decide whether the normal form
of some element modulo an ideal is zero or not, i.e., whether this element is in
the ideal or not. This is the ideal membership problem formalised below.

Definition 3. The ideal membership problem is defined through the the game
denoted IMP,GBGen(·),d,b,m as shown in Figure 3. The advantage of a ppt algorithm
A in solving IM is defined as twice the probability of winning the game minus 1.
An adversary is legitimate if it calls the Sample procedure at most m = m(λ)
times.

Initialize(1λ,P, d):

begin
P ←$ Pλ;

G ←$ GBGen(1λ, P, d);
c ←$ {0, 1};
return (1λ, P );
end

Sample():

begin
f ←$ P≤b;
f ′ ← f mod G;
return f − f ′;
end

Challenge():

begin
f ←$ P≤b;
if c = 1 then
f ← f − (f mod G);
return f ;
end

proc. Finalize(c′):
begin
return (c = c′);
end

Fig. 3. Game IMP,GBGen(·),d,b,m

Clearly any adversary which can solve the IR problem can also solve the IM
problem. However, if the search space of reminders modulo 〈G〉 is sufficiently
small, i.e., when qdimFq (P/〈G〉) = poly(λ), and under similar assumptions as for
Lemma 1, one can also perform the converse reduction. That is, one can solve
the IR problem using an oracle for the IM problem. Lemma 2 below proves this
equivalence for the special case of GBGendense(·). Once again, this is sufficient in
our context. As before, for Lemma 2 to be meaningful we require that the IM
adversary returns the correct answer with overwhelming probability.

Lemma 2. If the IR problem is hard, then the IM problem is weakly hard for
poly-sized qdimFq (P/〈G〉). Furthermore, if the IM problem is hard, then the IR
problem is also hard.

Informally, the construction of an IR adversary from an IM adversary proceeds
as follows. Let f̃ be the challenge polynomial. The attacker simply exhaustively
searches all elements of the Fq vector space P/〈G〉 until the right remainder
r is found. This occurs if f − r ∈ 〈G〉 and can be then detected using an IM
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adversary. However, there is a technical difficulty here. In general, the attacker
does not necessarily know the support of P/〈G〉 and hence cannot know how
to construct r. However, in our case we assume that GBGen(·) = GBGendense(·)
and this difficulty does not arise. In a more general setting, we would have to
discover P/〈G〉 as well (cf. proof of Lemma 4). See [1] for the proof.

Complexity estimation about Gröbner basis computations [1], together with
the above results, lead to the following hardness assumptions.

Definition 4. Let P be such that n(λ) = Ω(λ). Assume b − d > 0, b > 1,
and that m(λ) = c · n(λ) for a constant c ≥ 1. Then the advantage of any ppt
algorithm in solving the GB/IR/IM problem is negligible as function of λ.

4 Symmetric Polly Cracker: Noise-Free Version

4.1 Homomorphic Symmetric Encryption

Syntax. A homomorphic symmetric-key encryption scheme (HSKE) is spec-
ified by four ppt algorithms: 1) Gen(1λ) is the key generation algorithm and
returns a key pair (SK,PK), a message space MsgSp(PK) and a function space
FunSp(PK). 2) Enc(m, SK) is the encryption algorithm and returns a ciphertext
c. 3) Eval(c0, . . . , ct−1, C,PK) is the evaluation algorithm and outputs a cipher-
text cevl. 4) Dec(cevl, SK) is the deterministic decryption algorithm and returns
either a message m or a special failure symbol ⊥.

Correctness. An HSKE scheme is correct if for any λ ∈ N, any (SK,PK) ∈
[Gen(1λ)], any t messages mi ∈ MsgSp(PK), any c ∈ [Enc(m, SK)], any circuit C ∈
FunSp(PK), any t ciphertexts ci ∈ [Enc(mi,PK)], and any evaluated ciphertext
cevl ∈ [Eval(c0, . . . , ct−1, C,PK)], we have that Dec(cevl, SK) = C(m0, . . . ,mt−1).
We do not necessarily require correctness over freshly created ciphertexts.

Compactness. An HSKE scheme is compact if there exists a fixed polyno-
mial bound B(·) so that for any key pair (SK,PK) ∈ [Gen(1λ)], any circuit
C ∈ FunSp(PK), any set of t messages mi ∈ MsgSp(PK), any ciphertext ci ∈
[Enc(mi, SK)], and any evaluated ciphertext cevl ∈ [Eval(c0, . . . , ct−1, C,PK)], the
size of cevl is at most B(λ+ |C(m0, . . . ,mt−1)|) (independently of the size of C).

The syntax, correctness, and compactness of a homomorphic public-key en-
cryption scheme is defined similarly.

4.2 The Scheme

In this section we formally define the (noise-free) symmetric Polly Cracker en-
cryption scheme. We present a family of schemes parameterised not only by the
underlying computational polynomial ring scheme P , but also by a Gröbner ba-
sis generation algorithm, which itself depends on a degree bound d, and a second
degree bound b. Our parameterised scheme, which we write as SPCP,GBGen(·),d,b,
is presented in Figure 4. The message space is P/I.

Correctness of evaluation can be verified by a straight-forward calculation.
This scheme is not compact since multiplications square the size of the cipher-
text.
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GenP,GBGen(·),d,b(1
λ):

begin
P ←$ Pλ;

G ←$ GBGen(1λ, P, d);
SK ← (G, P, b);
PK ← (P, b);
return (SK, PK);
end

Enc(m, SK):

begin
f ←$ P≤b;
f ′ ← f mod G;
f ← f − f ′;
c ← m + f ;
return c;
end

Dec(c, SK):

begin
m ← c mod G;
return m;
end

Eval(c0, . . . , ct−1, C, PK):

begin
apply the Add and Mult

gates of C over P ;
return the result;
end

Fig. 4. The (noise-free) Symmetric Polly Cracker scheme SPCP,GBGen(·),d,b

4.3 Security
We will show that the above scheme only achieves a weak version of chosen-
plaintext security, which allows access to a limited number of ciphertexts.

Definition 5. The m-time IND-BCPA security of a (homomorphic) symmetric-
key encryption scheme SKE is defined though a game IND-BCPAm,SKE , which is
similar to IND-CPA except that the adversary can query its encryption and left-
or-right oracles a total of at most m = m(λ) times. We say SKE is m-IND-BCPA
secure if the advantage of any ppt adversary A, defined as twice the probability
of wining the game minus 1 is negligible.

Theorem 1. The scheme in Figure 4 is m-IND-BCPA secure iff the IM problem
is hard.

See [1] for the proof. As a corollary, observe that when m(λ) = O(λb
)

one can
construct an adversary which breaks the IND-BCPAm,SKE security of SPC in
polynomial time. Thus we can only hope to achieve security in the bounded
model for this scheme.

5 Symmetric-to-Asymmetric Conversion

Our goal for the rest of the paper is to convert the above scheme to one which is
both fully IND-CPA secure and somewhat homomorphic. Once we achieve this, it
is possible to construct a public-key scheme using the homomorphic features of
the symmetric scheme by applying various generic conversions. In the literature
there are two prominent such conversions:

(A) Publish a set of encryptions of zero F0 as part of the public key. To encrypt
m ∈ {0, 1} compute c =

∑
fi∈S fi +m where S is a sparse subset of F0 [13].

(B) Publish two sets F0 and F1 of encryptions of zero and one as part of the
public key. To encrypt m ∈ {0, 1} compute c =

∑
fi∈S0

fi +
∑

fj∈S1
fj ,

with S0 and S1 being sparse subsets of F0 and F1 respectively such that
the parity of |S1| is m. Decryption checks whether Dec(c, SK) is even or
odd [27].

The security of the above transformations rests upon the (computational) in-
distinguishability of asymmetric ciphertexts from those produced directly using
the symmetric encryption algorithm. As noted above, since SPC is not IND-CPA
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secure the above transformations cannot be used. However, one could envisage
a larger class of transformations which might lead to a fully secure additively
homomorphic SKE (or equivalently an additively homomorphic PKE) scheme.
In this section we rule out a large class of such transformations. To this end, we
consider PKE schemes which lie within the following design methodology.

1. The secret key is the Gröbner basis G of a zero-dimensional ideal I ⊂ P .
The decryption algorithm computes c mod I = c mod G (perhaps together
with some post-processing such as a mod 2 operation). Thus, the message
space is (essentially) P/I. We assume that P/I is known.

2. The public key consists of elements fi ∈ P . We assume that the remainder
of these elements modulo the ideal I, i.e., ri := fi mod I, are known.

3. A ciphertext is computed using ring operations. In other words, it can be
expressed as f =

∑N−1
i=0 hifi+r. Here fi are as in the public key, hi are some

polynomials (possibility depending on fi), and r is an encoding in P/I of
the message.

4. The construction of the ciphertext does not encode knowledge of I beyond
fi. That is, we have

(∑N−1
i=0 hifi + r

)
mod I =

∑N−1
i=0 hiri + r. Hence we

have that
(∑N−1

i=0 hiri + r
)
∈ P/I as an element of P .

5. The security of the scheme relies on the fact that elements f produced at
step (3) are computationally indistinguishable from random elements in P≤b.

Condition 4 imposes some real restrictions on the set of allowed transformation,
but strikes a reasonable balance between allowing a general statement without
ruling out too large a class of conversions. It requires that the ri and r do not
encode any information about the secret key. We currently require this restric-
tion on the “expressive power” of ri and r so as to make a general impossibility
statement. If ri and r produce a non-zero element in I using some arbitrary
algorithm A, we are unable to prove anything about the transformation. Fur-
thermore, it is plausible that for any given A a similar impossibility result can
be obtained if the remaining conditions hold.

Note that the two transformations above are special linear cases of this
methodology. For transformation (A) we have that fi ∈ I (hence ri = 0),
hi ∈ {0, 1} and r = m. For transformation (B) we have ri = 0 if fi ∈ F0,
ri = 1 if fi ∈ F1, hi ∈ {0, 1}, and r = 0.

To show that any conversion of the above form cannot lead to an IND-CPA-
secure public-key scheme, we will use the following theorem which was also used
in [5] to discourage the use of Gröbner bases for public-key schemes.

Theorem 2 ([12]). Let I = 〈f0, . . . , fm−1〉 be an ideal in the polynomial ring
P = F[x0, . . . , xn−1], h be such that deg(h) ≤ D, and

h− (h mod I) =
m−1∑
i=0

hifi, where hi ∈ P and deg(hifi) ≤ D.

Let G be the output of some Gröbner basis computation algorithm up to degree
D. Then h mod I can be computed by polynomial reduction of h via G.
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The main result of this section is a consequence of the above theorem. It essen-
tially states that uniformly sampling elements of the ideal up to some degree is
equivalent to compute a Gröbner basis for the ideal. Note that in itself Theorem 2
does not provide this result, since there is no assumption about the “quality” of
h. Hence, to prove this result we first show that the above methodology implies
sampling as in Theorem 2 but with uniformly random output. Theorem 2 then
allows us to compute normal forms which (because of the randomness of h) al-
lows the computation of a Gröbner basis by Lemma 1. The proof of Theorem 3
is given in [1].

Theorem 3. Let G = {g0, . . . , gs−1} be the reduced Gröbner basis of the zero-
dimensional ideal I in the polynomial ring P = F[x0, . . . , xn−1] where each
deg(gi) ≤ d. Assume that P/I is known. Furthermore, let F = {f0, . . . , fN−1}
be a set of polynomials with known ri := fi mod I. Let A be a ppt algorithm
which given F produces elements f =

∑
hifi + r with deg(f) ≤ b, hi ∈ P ,

b ≤ B, deg(hifi) ≤ B, and (f mod I) =
∑

hiri + r. Suppose further that
the outputs of A are computationally indistinguishable from random elements in
P≤b. Then there exists an algorithm which computes a Gröbner basis for I from
F in O(n3B

)
field operations.

Therefore, if for some degree b ≥ d computationally uniform elements of P≤b

can be produced using the public key f0, . . . , fN−1, there is an attacker which
recovers the secret key g0, . . . , gs−1 in essentially the same complexity. Hence,
while conceptually simple and provably secure up to some bound, our symmetric
Polly Cracker scheme SPCP,GBGen(·),d,b does not provide a valid building block
for constructing a fully homomorphic public-key encryption scheme.

Remark. Although the above impossibility result is presented for public-key en-
cryption schemes, due to the equivalence result of [27], it also rules out the exis-
tence of additively homomorphic symmetric PC-style schemes with full IND-CPA
security.

6 Gröbner Bases with Noise

In this section, we introduce noisy variants of the problems presented in Sec-
tion 3. The goal is to lift the restriction on the number of samples that the ad-
versary can obtain, and following a similar design methodology to Polly Cracker,
construct an IND-CPA-secure scheme. That is, we consider problems which natu-
rally arise if we consider noisy encoding of messages in SPC. Similarly to [13,26]
we expect a problem which is efficiently solvable in the noise-free setting to be
hard in the noisy setting. We will justify this assumption in Section 6.1 by argu-
ing that our construction can be seen as a generalisation of [13,26]. The games
below will be parameterised by a noise distribution. The discrete Gaussian dis-
tribution – denoted for χα,q for standard deviation αq and modulus q – is of
particular interest to us (cf. [25]).

We now define a noisy variant of the Gröbner basis problem. The task here
is still to compute a Gröbner basis for some ideal I. However, we are now only
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given access to a noisy sample oracle which provides polynomials which are not
necessarily in I but rather are “close” approximations to elements of I. Here
the term “close” is made precise using a noise distribution χ on P/I.

Definition 6. The Gröbner basis with noise problem is defined through the game
GBNP,GBGen(·),d,b,χ as shown in Figure 5. The advantage of a ppt algorithm A in
solving the GBN problem is the probability of winning the game.

Initialize(1λ,P, d):

begin
P ←$ Pλ;

G ←$ GBGen(1λ, P, d);

return (1λ, P );
end

Sample():

begin
f ←$ P≤b;
e ←$ χ;
f ← f − (f mod G) + e;
return f ;
end

Finalize(G′):
begin
return (G = G′);
end

Fig. 5. Game GBNP,GBGen(·),d,b,χ

The essential difference between the noisy and noise-free versions of the GB prob-
lem is that by adding noise we have eliminated the restriction on the adversary
to call the Sample oracle a bounded number of times. The choice of χ greatly
influences the hardness of the GBN problem.

As in the noise-free setting, we can ask various questions about the ideal I
spanned by G. One such example is solving the ideal remainder problem with
access to noisy samples from I.

Definition 7. The ideal remainder with noise problem is defined through the
game IRNP,GBGen(·),d,b,χ as shown in Figure 6. The advantage of a ppt algorithm
A is defined as the probability of winning the game minus 1/q(λ)dimF(P/〈G〉).

Initialize(1λ,P, d):

begin
P ←$ Pλ;

G ←$ GBGen(1λ, P, d);

return (1λ, P );
end

Sample():

begin
f ←$ P≤b;
e ←$ χ;
f ← f − (f mod G) + e;
return f ;
end

Challenge():

begin
f ←$ P≤b;
return f ;
end

Finalize(r′):
begin
r” = f mod G;
return r′ = r”;
end

Fig. 6. Game IRNP,GBGen(·),d,b,χ

In fact, the above two problems are equivalent as shown in the lemma below.
Compared to the noise-free version, we no longer need the IM adversary to be
overwhelmingly successful, as there are no restrictions on the number of calls
that can be made to the Sample procedure. The proof is given in [1].

Lemma 3. The IRN problem is hard iff the GBN problem is hard.

Similarly to the noise-free setting, the ideal membership with noise (IMN) prob-
lem is the decisional variant of the IRN (and hence the GBN) problem. However,
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in the noisy setting we have the choice between a noisy and noise-free challenge
polynomial. In the definition below noisy challenges are provided and the ad-
versary wins the game if he can distinguish whether an element was sampled
uniformly from P≤b or from I + χ.

Definition 8. The ideal membership with noise problem is defined through the
game IMNP,GBGen(·),d,b,χ as shown in Figure 7. The advantage of a ppt algorithm
A in solving the IMN problem is as twice the probability of winning the game
minus 1.

Initialize(1λ,P, d):

begin
P ←$ Pλ;

G ←$ GBGen(1λ, P, d);
c ←$ {0, 1};
return (1λ, P );
end

Sample():

begin
f ←$ P≤b;
e ←$ χ;
f ′ ← f mod G;
f ← f − f ′ + e;
return f ;
end

Challenge():

begin
f ←$ P≤b;
if c = 1 then
e ←$ χ;
f ← f − (f mod G) + e;
return f ;
end

Finalize(c′):
begin
return (c′ = c);
end

Fig. 7. Game IMNP,GBGen(·),d,b,χ

Our definition of the IMN problem can be seen as an instantiation of Gentry’s
ideal coset problem [18] since both problems require distinguishing uniformly
chosen elements in P≤b from those in I + χ. Our problem, however, assumes
noisy samples since it is clear from Section 3 that otherwise the problem is easy.

Again, we would like to have a decision-to-search reduction; that is, we would
like to have an equivalence between the IRN and IMN problems. This equivalence
holds when the search space of remainders is polynomial in λ, namely when
q(λ)dimFq (P(λ)/GBGen(·)) = poly(λ). The intuition behind this reduction is that
the adversary can exhaustively search the quotient ring and use the IMN oracle
to verify his guess. Once again, a technical difficulty arises as the adversary
does not know the search space P/I and thus has to discover it during the
attack. Again, the IMN adversary provides an oracle to accomplish this. This is
formalised in the lemma below whose proof is in [1].

Lemma 4. The IMN problem is hard iff the IRN problem is hard for poly-sized
qdimFq (P/〈G〉).

Hence GBN is equivalent to IRN and IRN is equivalent to IMN under some addi-
tional assumptions about the size P/I. Finally, for d = 1 (but arbitrarily b) we
show that if we can solve the GBN problem on average, then we can also solve
it for worst-case instances. This is turn increases our confidence in hardness of
the GBN problem. The proof of the follow lemma is given in [1].

Lemma 5. If the GBN problem is worst-case hard, then it is also average-case
hard.

6.1 Hardness Assumptions and Justifications
Let us now investigate the hardness of the GBN, IRN, and IMN problems.



192 M.R. Albrecht et al.

Relation to LWE. It is easy to see that GBN can be considered as a non-
linear generalisation of LWE if q = poly(n) is a prime. In other words, we have
equivalence between these problems when b = d = 1 in GBN. This is formalised
below (proof is in [1]).

Lemma 6. If the LWE problem is hard then the GBN problem is also hard for
b = d = 1.

In the noise-free setting we assume that solving systems of equations of degree
greater than 1 is harder than solving those of degree 1. More generally, we
assume that equations of degree b > b′ are harder to solve than those of degree
b′. Intuitively, equations of degree b′ can be seen as those of degree b where
the coefficients of higher degree monomials are set to zero. However, formalising
this intuition for an adversary which expects uniformly distributed equations of
degree b seems futile since producing such equations is equivalent to solving the
system by Theorem 3.

In the noisy setting this equivalence (i.e., Theorem 3) between sampling and
solving no longer holds. However, we still need to deal with the distribution of
noise. One strategy to show that difficulty increases with the degree parameter
b is to allow for an increase of the noise level in the samples. We formalise this
below (a proof is given in [1]) .

Lemma 7. If the GBN problem is hard for degree 2b with noise χ√
Nα2q,q, N =(

n+b
b

)
, then it is also hard for degree b with noise χα,q.

Relation to the Approximate GCD Problem. The GBN problem for n = 1
is the approximate GCD problem over Fq[x]. Contrary to the approximate GCD
problem over the integers (cf. [13]), this problem has not yet received much atten-
tion, and hence it is unclear under which parameters it is hard. However, as we
discuss in [1], the notion of a Gröbner basis can be extended to Z[x0, . . . , xn−1],
which in turn implies a version of the GBN problem over Z. This can be seen as
a direct generalisation of the approximate GCD problem in Z.

The Case q = 2. Recall that if b = d = 1 we have an equivalence with the LWE
problem (or the well-known problem of learning parity with noise (LPN) if q = 2).
More generally, for d = 1 we can reduce Max-3SAT instances to GBN instances by
translating each clause individually to a Boolean polynomial. However, in Max-
3SAT the number of samples is bounded and hence this reduction only shows
the hardness of GBN with a bounded number of samples. Still, the Gröbner basis
returned by an arbitrary algorithm A solving GBN using a bounded number of
samples will provide a solution to the Max-3SAT problem. Vice versa, we may
convert a GBN instance for d = 1 to a Max-SAT instance (more precisely Partial
Max-Sat) by running an ANF to CNF conversion algorithm [4].

Known Attacks. Finally, we consider known attacks to understand the dif-
ficulty of the GBN problem. Recall that if b = 1 Lemma 6 states that we can
solve the LWE problem if we can solve the GBN problem. The converse also
applies. Indeed, for any b ≥ d and d = 1 the best known attack against the
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GBN problem for d = 1 is to reduce it to the LWE problem, similarly to the
linearisation technique used for solving non-linear systems of equations in the
noise-free setting. Let N =

(
n+b

b

)
be the number of monomials up to degree b.

Let M : P → FN
q be a function which maps polynomials in P to vectors in FN

q

by assigning the i-th component of the image vector the coefficient of the i-th
monomial ∈ M≤b. Then, in order to reduce GBN with n variables and degree
b to LWE with N variables, reply to each LWE Sample query by calling the
GBN Sample oracle to retrieve f , compute v = M(f) and return (a, b) with
a = (vN−1, . . . , v1) and b = −v0. When the LWE adversary queries Finalize on
s, query the GBN Finalize on [x0 − s0, . . . , xn−1 − sn−1]. Correctness follows
from the correctness of linearisation in the noise-free setting [3]. Furthermore,
the LWE problem in N variables and with respect to the discrete Gaussian noise
distribution χα,q is considered to be hard if α ≥ 3/2 · max(1

q , 2
−2

√
N log q log d)

for an appropriate choice of δ which is the quality of the approximation for the
shortest vector problem. With current lattice algorithms δ = 1.01 is hard and
1.005 infeasible [24].

Perhaps the most interesting attack on LWE from the perspective of this work
is that due to Arora and Ge [3] which reduces the problem of solving linear
systems with noise to the problem of solving (structured) non-linear noise-free
systems. We may apply this technique directly to GBN, i.e., without going to
LWE first, and reduce it to GB with large b. However, it seems this approach does
not improve the asymptotic complexity of the attack. Finally, certain conditions
to rule out exhaustive search must be imposed.

Definition 9. Let b, d ∈ N with b ≥ d ≥ 1. Let P be a polynomial ring distri-
bution and χα,q be the discrete Gaussian distribution. Suppose the parameters
n, α, and q (all being a function of λ) satisfy the following set of conditions:
1) n ≥ b

√
λ; 2) (αq)ndn ≈ 2λ so exhaustive search over the noise or the secret key

space is ruled out; 3) αq ≥ 8 as suggested in [22]; and 4) for N :=
(
n+b

b

)
, and

δ := 1.005 we have α ≥ 3/2 ·max{ 1
q , 2

−2
√

N log q log δ}, and hence the best known
attacks against the LWE problem are ruled out [24,28]. Then the advantage of
any ppt algorithm in solving the GBN, IRN, and IMN problems is negligible.

7 Polly Cracker with Noise

In this section we present a fully IND-CPA-secure PC-style symmetric encryption
scheme. Our parameterised scheme, SPCNP,GBGen(·),d,b,χ, is shown in Figure 8.
Here we represent elements in Fq as integers in the interval (−� q

2�, � q
2�]. This

representation is also used in the definition of noise. All the computations are
performed in the ring P as generated by Gen. Furthermore we assume that
gcd(2, q) = 1. This condition is needed for the correctness and the security of
our scheme. The message space is F2 (although we remark that this can be
generalised to other small fields). Correctness of evaluation up to overflows can
be established by a straight-forward calculation.

Permitted Circuits. Circuits composed of Add and Mul gates can be seen
as multivariate Boolean polynomials in t variables over F2. We can consider the
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GenP,GBGen(·),d,b,χ(1λ):

begin
P ←$ Pλ;

G ←$ GBGen(1λ, P, d);
SK ← (G, P, b, χ);
PK ← (P, b, χ);
return (SK, PK);
end

Enc(m, SK):

begin
f ←$ P=b;
f ′ ← f mod G;
f ← f − f ′;
e ←$ χ;
c ← f + 2e + m;
return c;
end

Dec(c, SK):

begin
m′ ← c mod G;
m ← m′ mod 2;
end

Eval(c0, . . . , ct−1, C, PK):

begin
apply Add and Mul gates
of C over P ;
return the result;
end

Fig. 8. The Symmetric Polly Cracker with Noise scheme SPCNP,GBGen(·),d,b,χ

generalisation of this set of polynomials to Fq (i.e., the coefficients are in Fq).
In order to define the set of permitted circuits (which will be parameterised by
α > 0) we first embed the Boolean polynomials into the ring of polynomials
over Z. For χα,q we have that the probability of the noise being larger than
kαq is < exp(−k2/2). We now say that a circuit is valid if for any (s0, . . . , st−1)
with si ≤ tαq we have that the outputs are less than q for some parameter t.
This restriction ensures that no overflows occur when polynomials are evaluated
over Fq. In [1] we discuss how to set α and q in order to allow for evaluation of
polynomials of some fixed degree μ and provide a Sage implementation [30].

Compactness. Additions do not increase the size of the ciphertext, but they do
increase the size of the error by at most one bit. Multiplications square the size
of the ciphertext and the bit-size of the the noise by approximately log(5e0e1)
bits. In [1] we also provide a discussion on how to trade ciphertext size with
noise, an avenue which is investigated independently in [7]. The theorem below,
which is proven in [1], states the security properties of the above scheme.

Theorem 4. If the IMN problem is hard, then the scheme in Figure 8 is secure.

The above theorem together with the recent results in [27] which establish
the equivalence of symmetric and asymmetric homomorphic encryption schemes
leads to the first provably secure public-key encryption scheme from assumptions
related to Gröbner bases for random systems. This provides a positive answer
to the challenges raised by Barkee et al. [5] (and later also by Gentry [18]). We
note here that the transformation – as briefly described in Section 5 – only use
the additive features of the scheme and does not require full homomorphicity.
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Abstract. Oblivious RAM is a useful primitive that allows a client to hide its
data access patterns from an untrusted server in storage outsourcing applications.
Until recently, most prior works on Oblivious RAM aim to optimize its amortized
cost, while suffering from linear or even higher worst-case cost. Such poor worst-
case behavior renders these schemes impractical in realistic settings, since a data
access request can occasionally be blocked waiting for an unreasonably large
number of operations to complete.

This paper proposes novel Oblivious RAM constructions that achieves poly-
logarithmic worst-case cost, while consuming constant client-side storage. To
achieve the desired worst-case asymptotic performance, we propose a novel tech-
nique in which we organize the O-RAM storage into a binary tree over data buck-
ets, while moving data blocks obliviously along tree edges.

1 Introduction

Oblivious RAM (or O-RAM for short) [5–7, 11, 12, 16] is a useful primitive for en-
abling privacy-preserving outsourced storage, where a client stores its data at a remote
untrusted server. While standard encryption techniques allow the client to hide the con-
tents of the data from the server, they do not guard the access patterns. As a result, the
server can still learn sensitive information by examining the access patterns. For exam-
ple, Pinkas and Reinman [12] gave an example in which a sequence of data access oper-
ations to specific locations (u1, u2, u3) can indicate a certain stock trading transaction,
and such financial information is often considered highly sensitive by organizations and
individuals alike.

Oblivious RAM allows the client to completely hide its data access patterns from
the untrusted server. It can be used in conjunction with encryption, to enable stronger
privacy guarantees in outsourced storage applications. Not surprisingly, the client has
to pay a certain cost in order to hide its access patterns from the server. Among all
prior work in this space, the seminal constructions recently proposed by Goodrich and
Mitzenmacher [7] achieve the best asymptotic performance in terms of amortized cost.
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Table 1. Our contributions. The Õ notation hides poly log logN terms. The bounds for this paper
hold with high probability 1 − 1

poly(N)
, assuming that the total number of data access requests

M = poly(N), and that the block size B ≥ c logN bits, for any constant c > 1. For a more
precise statement of our bounds, please refer to Section 4. The BST bucket construction is due to
an O-RAM construction by Damgård, Meldgaard, and Nielsen [4].

Scheme Amortized Cost Worst-case Cost Client Storage Server Storage

GO [6] O((logN)3) O(N(logN)2) O(1) O(N logN)

WS [16] O((logN)2) O(N logN) O(
√
N) O(N logN)

WSC [17] O(logN log logN) O(N log logN) O(
√
N) O(N)

PR [12] O((logN)2) O(N logN) O(1) O(N)

GM [7]
O((logN)2) O(N logN) O(1) O(N)

O(logN) O(N) O(
√
N) O(N)

BMP [3] O(
√
N) O(

√
N) O(

√
N) O(N)

SSS [15] O((logN)2) O(
√
N) O(

√
N) O(N)

This paper

Trivial Bucket O((logN)3) O((logN)3) O(1) O(N logN)
Square-Root Bucket ˜O((logN)2.5) ˜O((logN)3) O(1) O(N logN)

BST Bucket ˜O((logN)2) ˜O((logN)3) O(1) ˜O(N logN)

Specifically, let N denote the maximum capacity of the O-RAM. Goodrich and Mitzen-
macher show that with O(1) client-side storage, one can achieve O((logN)2) amor-
tized cost, i.e., each oblivious data request translates into O((logN)2) non-oblivious
data access operations on average. Goodrich and Mitzenmacher also show that with
O(
√
N) client-side storage, one can achieve O(logN) amortized cost [7].

O-RAM with sublinear worst-case cost. Until recently, most prior work on O-RAM
optimizes for the amortized cost [6, 7, 12, 16], while not giving much consideration to
the worst-case cost. Specifically, while achieving logarithmic or poly-logarithmic amor-
tized cost, these constructions [6, 7, 12, 16] have a worst-case cost of Ω(N), due to the
occasional reshuffling operations which can take up to Ω(N) time. Such Ω(N) worst-
case behavior renders these schemes impractical in real-world applications; since every
now and then, a data request can be blocked waiting for Ω(N) operations to complete.
When this happens, the perceived waiting time for the user would be unacceptable.

The research community has only recently started to investigate O-RAMs with sub-
linear worst-case cost [3, 15]. Boneh, Mazieres, and Popa [3] proposed an O-RAM
with O(

√
N) worst-case cost, however, at the expense of O(

√
N) (rather than poly-

log) amortized cost. Stefanov, Shi, and Song [15] recently proposed an O-RAM with
O(
√
N) worst-case cost ,O((logN)2) amortized cost, andO(

√
N) client-side storage.

1.1 Our Contributions

O-RAM with poly-log worst-case cost, and constant client-side storage. This pa-
per proposes novel O-RAM constructions that achieve both poly-log amortized and
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worst-case cost, while consuming O(1) client-side storage, and O(N logN) server-
side storage. We offer two variants of our construction. The simpler variant (instantiated
with the trivial bucket O-RAM) achievesO((logN)3) amortized and worst-case cost. A
slightly more sophisticated variant (instantiated with the Square-Root bucket O-RAM)
achieves Õ((logN)2.5) amortized cost, and Õ((logN)3) worst-case cost. We use the
Õ notation to hide poly log log terms from the asymptotic bounds.

These afore-mentioned bounds hold with very high probability (i.e., at least 1 −
1

poly(N) ), under realistic assumptions that the number of data requests M = poly(N),
and that the block size B ≥ c logN bits for any constant c > 1.

Novel binary-tree based technique. Most existing constructions [6, 7, 12, 16] are
based on hierarchical solution initially proposed by Goldreich and Ostrovsky [6], and
they suffer from Ω(N) worst-case cost due to the occasional reshuffling operation that
can take up to Ω(N) time. Therefore, to reduce the worst-case cost, we wish to some-
how spread the cost of reshuffling over time, so the worst-case cost can be amortized
towards each O-RAM operation.

Unfortunately, due to certain technical constraints imposed by these constructions [6,
7, 12, 16], it does not seem possible to directly spread the cost of reshuffling over time.
As a result, we propose a novel technique called the binary-tree based construction
(Section 3). Basically, the server-side O-RAM storage is organized into a binary tree
over small data buckets. Data blocks are evicted in an oblivious fashion along tree
edges from the root bucket to the leaf buckets. While in spirit, the binary-tree based
construction is trying to spread the reshuffling cost over time; in reality, its operational
mechanisms bear little resemblance to prior schemes [7, 12, 16] based on Goldreich
and Ostrovsky’s original hierarchical solution [6]. Therefore, this represents an entirely
new technique which has not been previously studied in the O-RAM literature.

While the basic binary-tree based construction achieves poly-logarithmic amortized
and worst-case cost, it requires N

c blocks of client-side storage for some constant c >
1. To reduce the client-side storage, we recursively apply our O-RAM construction
over the index structure. Instead of storing the index structure on the client side, we
store it in a separate and smaller O-RAM on the server side. We achieve O(1) client-
side storage through recursive application of our O-RAM construction over the index
structure (Section 4).

Conceptual simplicity. Another notable characteristic of our constructions is their rel-
ative conceptual simplicity in comparison with most other existing constructions [6, 7,
12, 16]. In particular, the simpler variant of our construction (based on the trivial bucket
O-RAM as described in Section 3) achievesO((logN)3) amortized and worst-case cost
while requiring no oblivious sorting or reshuffling, no hashing or Cuckoo hashing (or
its oblivious simulation such as in the Goodrich-Mitzenmacher construction [7]). All
O-RAM read and write operation behave uniformly in this simpler variant, and cost the
same asymptotically.

1.2 Related Work

Oblivious RAM was first investigated by Goldreich and Ostrovsky [5, 6, 11] in the
context of protecting software from piracy, and efficient simulation of programs on
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oblivious RAMs. Apart from proposing a seminal hierarchical solution withO((logN)3)
amortized cost, Goldreich and Ostrovsky [6] also demonstrate the following lower-
bound: for an O-RAM of capacity N , the client has to pay an amortized cost of at
least Ω(logN). Recently, Beame and Machmouchi [2] improved the lower bound to
Ω(logN log logN).

Since the first investigation of Oblivious RAM by Goldreich and Ostrovsky [5, 6,
11], several constructions have been proposed subsequently [3, 7, 12, 15, 16]. Among
these, the seminal constructions recently proposed by Goodrich and Mitzenmacher [7]
achieve the best asymptotic performance in terms of amortized cost: with O(1) client-
side storage, their construction achievesO((logN)2) amortized cost; and with O(

√
N)

client-side storage, their construction achieves O(logN) amortized cost [7]. Pinkas
and Reinman [12] also showed a similar result for the O(1) client-side storage case;
however, some researchers have pointed out a security flaw in their construction [7],
which the authors of [12] have promised to fix in a future journal version.

For a fairly long time, almost all research in this space aimed to optimize the amor-
tized cost, while neglecting the worst-case cost. Only very recently did the research
community start to investigate O-RAM constructions with sublinear worst-case cost. As
mentioned earlier, there have been two recent works [3, 15] aimed at achieving sublinear
worst-case cost and making O-RAM practical. Boneh,Mazieres, and Popa [3] achieve
O(
√
N) worst-case cost, however, at the expense of O(

√
N) amortized cost. Stefanov,

Shi, and Song [15] recently proposed a novel O-RAM construction with O(
√
N) worst-

case cost, O((logN)2) amortized cost, and O(
√
N) client-side storage. Apart from

this, Stefanov, Shi, and Song also offered another construction geared towards practi-
cal performance rather than asymptotics. This practical construction uses linear amount
of client storage (with a very small constant), and achieves O(logN) amortized cost
and O(

√
N) worst-case cost. Under realistic settings, it achieves 20 − 30X amortized

cost, while storing 0.01%− 0.3% amount of total data at the client. To the best of our
knowledge, this is the most practical scheme known to date.

We note that the hierarchical aspect of our binary-tree technique is partially inspired
by the hierarchical solution originally proposed by Goldreich and Ostrovsky [6], and
later adopted in many constructions [7, 12, 16]; while the eviction aspect is partially
inspired by the background eviction idea originally proposed by Stefanov, Shi, and
Song [15].

Our binary tree technique may also be superficially reminiscent of a construction by
Damgård, Meldgaar, and Nielsen [4]. However, apart from that fact that both schemes
rely on a binary tree, the internal mechanisms of our construction and the Damgård-
Meldgaar-Nielsen construction are fundamentally different. Specifically, Damgård et
al. primarily aim to avoid the need of random oracle or pseudo-random function, rather
than improve worst-case cost. Their construction uses a binary search tree, and requires
periodic reshuffling operations that can take O(N logN) time. In contrast, we use a bi-
nary tree (instead of a binary search tree), and we use a background eviction mechanism
to circumvent the need for reshuffling.

Table 1 illustrates the asymptotic performance characteristics of various existing
schemes, and positions our work in perspective of related work.
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Concurrent/subsequent work. In concurrent/subsequent work, Goodrich et al. [8] and
Kushilevitz et al. [10] also came up novel O-RAM constructions with poly-logarithmic
overhead. Specifically, the construction by Goodrich et al. achievesO((logN)2) worst-

case cost with O(1) memory; and and Kushilevitz et al. achieve O( (log N)2

log log N ). Due to a
larger constant in their asymptotic notations, in realistic scenarios, our scheme with the
trivial bucket O-RAM is likely the most practical when the client-side storage is O(1).

2 Preliminaries

Let N denote the O-RAM capacity, i.e., the maximum number of data blocks that an
O-RAM can store. We assume that data is fetched and stored in atomic units called
blocks. Let B denote the block size in terms of the number of bits. We assume that the
block size B ≥ c logN , for some c > 1. Notice that this is true in almost all practical
scenarios. We assume that each block has a global identifier u ∈ U , where U denotes
the universe of identifiers.

Throughout the paper, we use the asymptotic notation Õ(f(N)) meaning
O(f(N)poly log logN) as a short-hand for hiding poly log logN terms.

2.1 Defining O-RAM with Enriched Operations

The standard O-RAM adopted in prior work [5, 7, 12, 16] exports a Read and a Write
interfaces. To hide whether the operation is a read or a write, either operation will
generate both a read and a write to the O-RAM.

In this paper, we consider O-RAMs that support a few enriched operations. There-
fore, we propose a modified O-RAM definition, exporting a ReadAndRemove primi-
tive, and an Add primitive. We later show that given these two primitives, we can easily
implement the standard O-RAM Read and Write operations. Moreover, given these two
primitives, we can also support an enriched operation called Pop, which will be later
needed in our constructions. Therefore, our modified O-RAM definition is more general
than the standard O-RAM notion. The same modified O-RAM notion was adopted in
the work by Stefanov, Shi, and Song [15].

Definition 1. An Oblivious RAM (with enriched operations) is a suite of interactive
protocols between a client and a server, comprising the following:

ReadAndRemove(u): Given a private input u ∈ U which is a block identifier, the client
performs an interactive protocol with the server to retrieve a block identified by u,
and then remove it from the O-RAM. If u exists in the O-RAM, the content of the
block data is returned to the client. Otherwise,⊥ is returned.

Add(u, data): The client is given private inputs u ∈ U and data ∈ {0, 1}B, represent-
ing a block identifier and some data content respectively. This operation must be
immediately preceded by ReadAndRemove(u) such that block u no longer resides
in the O-RAM. The client then performs an interactive protocol with the server to
write content data to the block identified by u, which is added to the O-RAM.
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Definition 2 (Security definition). Let y := ((op1, arg1), (op2, arg2), . . . , (opM , argM ))

denote a data request sequence of length M . Each opi denotes a ReadAndRemove or
an Add operation. Moreover, if opi is a ReadAndRemove operation, then argi = ui,
else if opi is an Add operation, then argi = (ui, datai), where ui denotes the identifier
of the block being read or added, and datai denotes the data content being written in
the second case. Recall that if opi is an Add operation with argument (ui, datai), then
opi−1 must be a ReadAndRemove operation with argument ui−1 = ui.

We use the notation ops(y) to denote the sequence of operations associated with y,
i.e., ops(y) := (op1, op2, . . . , opM ).

Let A(y) denote the (possibly randomized) sequence of accesses to the remote stor-
age given the sequence of data requests y. An O-RAM construction is said to be secure if
for any two data request sequences y and z such that |y| = |z|, and ops(y) = ops(z),
their access patterns A(y) and A(z) are computationally indistinguishable by anyone
but the client.

2.2 Relationship with the Standard O-RAM Definition

As mentioned earlier, our modified O-RAM notion is more general than the standard
O-RAM notion, in the sense that given a modified O-RAM exporting ReadAndRemove
and Add primitives, we can easily implement a standard O-RAM supporting Read and
Write operations, as stated in the following observation.

Observation 1. Given a modified O-RAM as defined above, we can construct a stan-
dard O-RAM, where a standard Read(u) operation is implemented by the operation
data← ReadAndRemove(u) followed by Add(u, data), and a standard Write(u, data)
operation is implemented by the operation data0 ← ReadAndRemove(u) followed by
Add(u, data) operation.

Most existing constructions [6, 7, 16] based on Goldreich and Ostrovsky’s hierar-
chical solution [6] can be easily modified to support the ReadAndRemove and Add
primitives.

2.3 Implementing Enriched Semantics

Implementing the Pop operation from the ReadAndRemove and Add primitives.
As mentioned earlier, our O-RAM storage is organized into a binary tree over buckets,
where each bucket is a fully functional O-RAM by itself, referred to as a bucket O-RAM.
For technical reasons which will become clear in Section 3, each bucket O-RAM needs
to support not only the ReadAndRemove and Add operations (and hence the standard
O-RAM Read and Write operations), but also a special-purpose operation called Pop().

The Pop() operation looks up a real data block and removes it from the O-RAM if
one exists. Otherwise, it returns a dummy block ⊥.

In our online full technical report [14], we present a constructive proof demonstrating
that any O-RAM supporting the ReadAndRemove and Add primitives can be modified
to support the Pop primitive as well; and the Pop operation costs asymptotically the
same as the basic ReadAndRemove and Add primitives. We state this fact in the fol-
lowing lemma.
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Lemma 1 (Additional Pop() operation). Given any O-RAM construction of capacity
3N satisfying Definition 1, one can construct a new O-RAM of capacity N that not
only provides a ReadAndRemove(u) and an Add(u, data) primitives (and hence, the
standard Read(u) and Write(u, data) operations), but also provides a Pop() opera-
tion, where all operation preserve the asymptotic performance of the original O-RAM.
Specifically, the Pop() operation selects an arbitrary block that currently exists in the
O-RAM, reads it back and removes it from the O-RAM. If the O-RAM does not contain
any real blocks, the Pop operation returns ⊥.

2.4 Encryption and Authentication

Similar to prior work in O-RAM [6, 7, 12, 16], we assume that all data blocks are
encrypted using a semantically secure encryption scheme, so that two encryptions of
the same plaintext cannot be linked. Furthermore, every time a data block is written
back it is encrypted again using fresh randomness.

We also assume that the server does not tamper with or modify the data, since au-
thentication and freshness can be achieved using standard techniques such as Message
Authentication Codes (MAC), digital signatures, or authenticated data structures.

2.5 Two Simple O-RAM Constructions with Deterministic Guarantees

As mentioned earlier, our O-RAM storage is organized into a binary tree over small
data buckets, where each bucket is a fully functional O-RAM by itself, referred to as a
bucket O-RAM.

For technical reasons which will become clear in Section 3, we would like each
bucket O-RAM to provide deterministic (as opposed to high probability) guarantees.
Moreover, each bucket O-RAM needs to support non-contiguous block identifier space.
We consider each block identifier u ∈ {0, 1}≤B, i.e., u can be an arbitrary string, as
long as u can be described within one block. Furthermore, the set of block identifiers is
unknown in advanced, but rather, determined dynamically during live operations of the
bucket O-RAM. As long as the load of the bucket O-RAM never exceeds its capacity,
the correct functioning of the bucket O-RAM should be guaranteed.

Below, we present the two candidate bucket O-RAMs constructions, called the trivial
O-RAM and the Square-Root O-RAM respectively. They are modifications of the trivial
O-RAM and the Square-Root O-RAM constructions originally proposed by Goldreich
and Ostrovsky [6].

Trivial O-RAM. We can build a trivial O-RAM supporting non-contiguous block iden-
tifier space in the following way. Let N denote the O-RAM capacity. In the trivial
O-RAM, the server side has a buffer storing N blocks, where each block is either a real
block denoted (u, data), or a dummy block denoted ⊥.

To perform a ReadAndRemove(u) operation, a client sequentially scans positions 0
through N − 1 in the server array: if the current block matches identifier u, the client
remembers its content, and overwrites it with ⊥; if the current block does not match
identifier u, the client writes back the original block read.
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Fig. 1. Server-side storage hierarchy. The server-side O-RAM storage is organized into a binary
tree over data buckets, where each bucket can hold up to O(logN) data blocks. A data block
enters from the root bucket when written to the O-RAM, and then obliviously percolates down
towards a random leaf over time, until the same block is accessed again.

To perform an Add(u, data) operation, a client sequentially scans positions 0 through
N − 1 in the server buffer: the first time the client sees a dummy block, the client
overwrites it with (u, data); otherwise, the client writes back the original block read.

As mentioned earlier, whenever blocks are written back to the server, they are re-
encrypted in order to hide its contents from the server.

Clearly, the trivial O-RAM is secure, requires O(N) amortized and worst-case cost,
O(N) server-side storage, and O(1) client-side storage (since the client never down-
loads the entire array all at once, but performs the reads and updates in a streaming
fashion).

Square-Root O-RAM [6]. Goldreich and Ostrovsky present a Square-Root O-RAM [6]
which achieves O(

√
N logN) amortized cost, O(N logN) worst-case cost, O(N)

server-side storage, and O(1) client-side storage. When using the deterministic AKS
sorting network [1] to implement the reshuffling operation, the Square-Root O-RAM
achieves deterministic (as opposed to high probability) guarantees. Although the origi-
nal Square-Root O-RAM construction supports only contiguous block identifier space,
it is not too difficult to modify it to support non-contiguous block identifier space, while
preserving the same asymptotic performance. We defer the detailed description of this
modified Square-Root O-RAM construction to our online full version [14].

3 Basic Construction

3.1 Overview of the Binary Tree Construction

We first describe a binary-tree based construction, which has two variants. The first
variant makes use of the trivial bucket O-RAM and has amortized and worst case cost
O((logN)2); the second variant makes use of the Square-Root bucket O-RAM and has
Õ((logN)1.5) amortized cost, and Õ((logN)2) worst-case cost. Both variants require
N
c client-side storage, where c > 1 and we assume that the failure probability is 1

poly(N)

and the number of operations is M = poly(N), which is reasonable in practice (for
instance N = 106 and M = N3 = 1018). Later, in Section 4, we describe how to apply
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our O-RAM construction recursively for the client-side storage, to achieveO(1) client-
side memory, while incurring a multiplicative factor of O(logN) to the amortized and
worst-case costs.

As mentioned in Section 1, the motivation for the binary tree construction is to “in
spirit” spread across time the reshuffling operations that commonly appear in existing
constructions [5, 7, 12, 16]. However, since there is no trivial way to modify existing
schemes to spread the reshuffling operation, we introduce a completely new technique
based on the binary tree idea.

Server-side storage organization. In our construction, the server-side storage is orga-
nized into a binary tree of depth D := �log2 N�. For ease of explanation, let us assume
that N is a power of 2 for the time being. In this way, there are exactly N leaf nodes in
the tree.

Each node in the tree is a data bucket, which is a self-contained O-RAM of ca-
pacity O(logN), henceforth referred to as a bucket O-RAM. For technical reasons de-
scribed later, each bucket O-RAM must have the following properties: (a) support non-
contiguous identifier space, (b) support ReadAndRemove and Add primitives – from
which we can also implement Read, Write, and Pop primitives as mentioned in Sec-
tion 2, (c) has zero failure probability.1

There are two possible candidates for the bucket O-RAM, both of which are mod-
ifications of simple O-RAM constructions initially proposed by Goldreich and Ostro-
vsky [6], and described in more detail in Section 2.5.

1. Trivial O-RAM. Every operation is implemented by a sequential scan of all blocks
in the server-side storage. For capacity L, the server-side storage is O(L) and the
cost of each operation (both amortized and worst-case) is O(L).

2. Square-Root O-RAM [6]. For capacityL, the Square-Root O-RAM achievesO(L)
server-side storage, O(1) client-side storage, O(

√
L logL) amortized cost, and

O(L logL) worst-case cost.

O-RAM operations. When data blocks are being written to the O-RAM, they are first
added to the bucket at the root of the tree. As more data blocks are being added to a
bucket, the bucket’s load will increase. To avoid overflowing the capacity of a bucket O-
RAM, data blocks residing in any non-leaf bucket are periodically evicted to its children
buckets. More specifically, eviction is an oblivious protocol between the client and the
server in which the client reads data blocks from selected buckets and writes each block
to a child bucket.

Over time, each block will gradually percolate down a path in the tree towards a
leaf bucket, until the block is read or written again. Whenever a block is being added
to the root bucket, it will be logically assigned to a random leaf bucket, indexed by a
string in {0, 1}D. Henceforth, this data block will gradually percolate down towards the
designated leaf bucket, until the same data block is read or written again.

Suppose that at some point, a data block is currently logically assigned to leaf node
 ∈ {0, 1}D. This means that a fresh copy of the data block exists somewhere along
the path from the leaf node  to the root. To find that data block, it suffices to search

1 It would also be acceptable if a failure probability δ per operation would only incur a multi-
plicative factor of O(log log 1

δ
) in the cost.



206 E. Shi et al.

Fig. 2. Searching for a data block. A block u is logically associated with a leaf node � at a given
point time. To look up the block u, it suffices to search every bucket on the path from the leaf
bucket � to the root bucket (denoted by the shaded buckets in this figure). Every time a block is
accessed, it will be logically assigned to a fresh random leaf node.

Fig. 3. Background evictions with eviction rate ν = 2. Upon every data access operation, for each
depth in the hierarchy, ν number of buckets are chosen randomly for eviction during which one
data block (real or dummy) will be evicted to each of its children. If the bucket is loaded, then
one real block and one dummy block are evicted. If the bucket is not loaded, two dummy blocks
are evicted. In this figure, D denotes the eviction of a dummy block, and R denotes the eviction
of a real block.

the data block in all buckets on the path from the designated leaf node to the root. We
assume that when the data block is stored in a bucket, we store the tag  along as well
and we denote the block’s contents by (data||).
Ensuring security. For security reasons, it is important to ensure the following:

• Every time a block is accessed, its designated leaf node must be chosen indepen-
dently at random. This is necessary to ensure that two operations on the same data
block are completely unlinkable.

• The bucket sequence accessed during eviction process must reveal no information
about the load of each bucket, or the data access sequence. In our construction,
the choice of which buckets to evict from is randomly selected, and independent
from the load of the bucket, or the data access sequence. Furthermore, whenever a
bucket is selected for eviction, we always write to both of its children – depending
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on whether there are real blocks to evict, we would write a real or a dummy block
to each of its children.

Client-side index. As each data block will be logically assigned to a random leaf node
every time it is operated on, we need some data structure to remember where each block
might be at any point of time. For this reason, the client stores a data structure of size
N log N

B blocks, in which it records which leaf node is currently associated with each
block. When B ≥ c logN , this index structure’s size is a linear fraction of the capacity
of the O-RAM. Therefore, in the basic scheme, we require N

c client-side storage, where
c > 1.

However, later in the recursive construction described in Section 4, we show how
to apply our O-RAM construction recursively over the index structure to achieve O(1)
client-side storage.

A note about dummy blocks and dummy operations. To ensure the security of the
O-RAM, in our construction, we often rely on dummy blocks and dummy operations to
hide certain information from the untrusted server, such as whether a bucket is loaded,
and where in the tree a block is headed.

For the purpose of this section, we adopt the following notion of dummy blocks
and dummy operations. We will think of the dummy block as a regular but useless
data block. We can dedicate a certain block identifier, e.g., u = 0 to serve as the dummy
block. In this way, we simply deduct 1 from the O-RAM capacity, which does not affect
the asymptotics. In our construction, every bucket may have a dummy block; while each
real data block exists in at most one bucket.

Given the above notion of the dummy block, we can define a dummy O-RAM op-
eration as a regular operation on the dedicated dummy block with u = 0. A dummy
O-RAM operation serves no purpose other than ensuring the security of the O-RAM.
Henceforth, with a slight abuse of notation, we use the symbol ⊥ to denote a dummy
data block or its identifier. We use the notations ReadAndRemove(⊥),Add(⊥),
Read(⊥) and Write(⊥) to denote dummy O-RAM operations.

3.2 Detailed Construction

We define some notations in Table 2 which will be useful in the formal algorithm de-
scriptions.

ReadAndRemove operation. The algorithm for performing a ReadAndRemove(u) op-
eration is described in Figure 4. First, the client looks up its local index structure index
to find out which leaf node  the requested block u is associated with. We then generate
a fresh random ∗ from {0, 1}D and overwrite index[u]← ∗, i.e., block u is henceforth
associated with a fresh random leaf node ∗. Notice that this ensures no linkability be-
tween two operations on the same data block. In order to avoid extra index lookup for
any following Add operation, ∗ is also stored in a global variable state.

Now, given that u is currently associated with leaf node , it means that a fresh copy
of block u must reside in some bucket along the along the path from leaf  to the root,
denoted by P(). If u is found in some bucket, we remove u from that bucket, and
remember its the data content. Regardless of whether u has been found, we always
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Table 2. Notations

D �log2N�
u ∈ {0, 1, . . . , N − 1} global identifier of a block

index client’s index structure
index[u] ∈ {0, 1}D id of leaf node associated with block u, initially random

state global variable to avoid unnecessary index lookup
root root bucket of the binary tree
P(�) path from the leaf node � to the root

Childb(bucket), for b ∈ {0, 1} the left or right child of a bucket
ν eviction rate

UniformRandom(S) Samples an element uniformly at random from the set S
UniformRandomν(S) Samples a subset of size ν uniformly at random from the set S

⊥ a dummy block or the identifier of a dummy block

continue our search all the way to the root. Note that to ensure obliviousness, it is
important that the search does not abort prematurely even after finding block u. Finally,
if the requested block u has been found, the ReadAndRemove algorithm returns its data
contents; otherwise, the ReadAndRemove algorithm returns⊥.

Add operation. Also shown in Figure 4, the Add(u, data) operation reads the tag  from
state, which was just generated by the preceding ReadAndRemove(u) operation. The
client writes the intended block (u, data||) to the root bucket.

Notice that here the client tags the data with , i.e., the id of the leaf node that block
u would be logically associated with until the next operation on block u. The designated
leaf node tag will become important when we recursively apply our O-RAM over the
client’s index structure, as described in Section 4. Specifically, the eviction algorithm
will examine this designated leaf node tag to determine to which child node to evict this
block. Observe that to preserve the desired asymptotics in the recursive construction,
the eviction algorithm cannot afford to (recursively) look up the index structure to find
the designated leaf node for a block. By tagging the data with its designated leaf, the
eviction algorithm need not perform recursive lookups to the index structure.

Finally, at the end of every Add operation, the client invokes the background eviction
process once. We now describe the background eviction algorithm.

Background evictions. Let ν denote the eviction rate. For the purpose of our asymp-
totic analysis, it suffices to let ν = 2.

Whenever the background eviction algorithm is invoked, the client randomly selects
ν buckets to evict at every depth of the tree.

If a bucket is selected for eviction, the client pops a block from the bucket O-RAM
by calling the Pop operation (see Section 2.3 for how to implement the Pop operation
given an O-RAM that supports ReadAndRemove and Write operations). If the bucket
selected for eviction is loaded, then the Pop operation returns a real block and removes
that block from the bucket O-RAM; otherwise, if the bucket is not loaded, the Pop
operation returns a dummy block ⊥.

Regardless of whether a real block or a dummy block is returned by the Pop opera-
tion, the client always performs a write to both children of the selected bucket:
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ReadAndRemove(u):

1: �∗ ← UniformRandom({0, 1}D)
2: �← index[u], index[u]← �∗

3: state← �∗ //If an Add operation follows, �∗ will be used by Add
4: data← ⊥
5: for each bucket on P(�) do //path from leaf � to root
6: if ((data0||�0)← bucket.ReadAndRemove(u)) �= ⊥ then
7: data← data0 //Notice that � = �0
8: end if
9: end for

10: return data

Add(u, data):

1: �← state
2: root.Write(u, data||�) // Root bucket’s O-RAM Write operation
3: Call Evict(ν)
4: return data

Fig. 4. Algorithms for data access

1. If a dummy block is returned by Pop, the client simply performs a dummy write to
both children buckets.

2. If a real block is returned, the client examines its designated leaf node tag to figure
out the correct child node to evict this block to. Recall that this designated leaf node
tag is added when the block is first written to the root bucket. (Note that although
in the basic construction, the client can alternatively find out this information by
looking up its local index structure; later in the recursive construction, the client
will have to obtain this information through the designated leaf node tag.)
Now, suppose that the block should be evicted to child b ∈ {0, 1} of the selected
bucket, the client then writes the block to child b, and writes a dummy block to
child 1− b.

Regardless of which case, to ensure obliviousness, the two writes to the children nodes
must proceed in a predetermined order, e.g., first write a real or dummy block to child
0, and then write a real or dummy block to child 1.

3.3 Security Analysis

Theorem 1 (Security of Basic Construction). Our Basic O-RAM Construction is se-
cure in the sense of Definition 2, assuming that each bucket O-RAM is also secure.

Proof. Observe that each bucket is itself a secure O-RAM. Hence, it suffices to show
that each type of operation induces independently the same distribution on the access
patterns of the buckets in the binary tree, regardless of the arguments.

For the ReadAndRemove(u) operation, the buckets along the path P() from the
root to the leaf indexed by  = index(u) are accessed. Observe that  is generated
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Evict(ν):

1: for d = 0 to D − 1 do
2: Let S denote the set of all buckets at depth d.
3: A← UniformRandomν(S)
4: for each bucket ∈ A do
5: (u, data||�)← bucket.Pop()
6: b← (d+1)-st bit of �
7: blockb ← (u, data||�), block1−b ← ⊥
8: ∀b ∈ {0, 1} : Childb(bucket).Write(blockb)
9: end for

10: end for

Fig. 5. Background eviction algorithm with eviction rate ν

uniformly at random from {0, 1}D. Hence, the distribution of buckets accessed is the
buckets along the path to a random leaf. Moreover, each time ReadAndRemove(u) is
called, a fresh random ∗ is generated to be stored in index(u) so that the next invocation
of ReadAndRemove(u) will induce an independent random path of buckets.

For the Add(u, data) operation, the root bucket is always accessed. More buckets are
accessed in the Evict subroutine. However, observe that the access pattern of the buckets
are independent of the configuration of the data structure, namely two random buckets
at each depth (other than the leaves) are chosen for eviction, followed by accesses to
both child buckets.

3.4 Asymptotic Performance of the Basic Construction

We next analyze the server-side storage and the cost of each operation. If the capacity
of each bucket is L, the server-side storage is O(NL), because there are O(N) buckets.
If we use the trivial bucket O-RAM, each operation has cost O(L logN). If we use the
Square-Root bucket O-RAM, each operation has amortized cost O(

√
L logL logN)

and worst case cost O(L logL logN).
We prove the following lemma in Appendix A.

Lemma 2 (Each Bucket Has Small Load). Let 0 < δ < 1
22e . For a fixed time and a

fixed bucket, the probability that the bucket has load more than log2
1
δ is at most δ.

Applying Union Bound on Lemma 2 over all buckets and over all time steps, we
have the following result.

Lemma 3 (Bucket Overflow). Suppose 0 < δ < 1 and N,M ≥ 10. Then, one can
use bucket O-RAM with capacity O(log MN

δ ) such that with probability at least 1 − δ,
the Basic O-RAM Construction can supportM operations without any bucket overflow.

Lemma 3 gives an upper bound on the capacity of each bucket and from the above
discussion, we have the following result.

Corollary 1. The Basic O-RAM Construction can support M operations with failure
probability at most δ using O(N log MN

δ ) server-side storage and O(N log N
B ) client-

side storage. The cost of each operation is as follows:
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Bucket O-RAM Amortized Worst-case

Trivial O(logN log MN
δ ) O(logN log MN

δ )

Square-Root O(logN
√

log MN
δ log log MN

δ ) O(logN log MN
δ log log MN

δ )

Specifically, if the number of data access requestsM = poly(N), then the basic con-
struction with the trivial bucket O-RAM achieves O((logN)2) amortized and worst-
case cost; and the basic construction with the Square-Root bucket O-RAM achieves
Õ((logN))1.5 amortized cost, and Õ((logN)2) worst-case cost. Furthermore, no buck-
ets will overflow with probability 1− 1

poly(N) .

4 Recursive Construction and How to Achieve the Desired
Asymptotics

The basic construction described in Section 3 achieves poly-logarithmic amortized and
worst-case cost, but requires N

c client-side storage, where c = B
log N > 1.

In this section, we demonstrate how to recursively apply our O-RAM construction
to the client’s index structure to achieve O(1) client-side storage, while incurring an
O(logN) multiplicative factor in terms of the amortized and worst-case cost.

4.1 Recursive O-RAM Construction: O(1) Client-Side Storage

Storing the index through recursion. In the basic construction, the client’s index
structure takes up at most N log N

B ≤ N
c space, where B ≥ c logN . To achieve O(1)

client-side storage, we recursively apply our O-RAM over the index structure. Instead
of storing the index structure on the client, we store the index structure in a separate
O-RAM on the server side. At each step of the recursion, we effectively compress the
O-RAM capacity by a factor of c > 1. Therefore, after logc N levels of recursion, the
index structure will be reduced to constant size.

To see how the recursion can be achieved, notice that Line 2 of the ReadAndRemove
algorithm in Figure 4 can be replaced with a recursive O-RAM operation:

O-RAM.Write(block id(index[u]), ∗)

Here we have a slight abuse of notation, because in reality, the entry index[u] (stored
sequentially according to u) resides in a larger block identified by block id(index[u]),
and one would have to first read that block, update the corresponding entry with ∗, and
then write the updated block back.

Theorem 2 (Recursive O-RAM Construction). The Recursive O-RAM Construction
can supportM operations with failure probability at most δ usingO(N log MN

δ ) server-
side storage and O(1) client-side storage, and the cost of each operation is as follows:
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Bucket ORAM Amortized Worst-case

Trivial O(logc N logN log MN
δ ) O(logc N logN log MN

δ )

Square-Root O(logc N logN
√

log MN
δ

log log MN
δ

) O(logcN logN log MN
δ

log log MN
δ

)

Specifically, if the number of data access requests M = poly(N), then the recur-
sive construction with the trivial bucket O-RAM achieves O((logN)3) amortized and
worst-case cost; and the recursive construction with the Square-Root bucket O-RAM
achieves Õ((logN))2.5 amortized cost, and Õ((logN)3) worst-case cost. Further-
more, no buckets will overflow with probability 1− 1

poly(N) .

Proof. The O(1) client-side storage is immediate, due to the fact that all client-side
storage (including the state variable in Figure 4, and the shuffling buffer for the Square-
Root bucket O-RAM) is transient state rather than persistent state, and therefore, all
levels of recursion can share the same O(1) client-side storage.

Observe that for each j = 0, 1, . . . , �logc N�, the jth recursion produces a binary
tree with O(N

cj ) buckets. Hence, there are totally O(
∑

j≥0
N
cj ) = O(N) buckets.

Recall that by Theorem 3, for each bucket and at the end of each operation, with
probability at least η, the load of the bucket is at most log2

1
η . Since there are O(N)

buckets and M operations, we need to set η = Θ( δ
NM ) to apply the Union Bound such

that the overall failure probability (due to bucket overflow) is at most δ. It follows that
the capacity of each bucket is L = O(log MN

δ ). and hence the server-side storage is
O(NL) = O(N log MN

δ ).
Moreover, each operation on the Recursive O-RAM inducesO(log N

cj ) operations on
the bucket O-RAMs in the jth binary tree. Hence, the total number of bucket O-RAM
accesses is Z = O(

∑
j≥0 log N

cj ) = O(logc N logN).
If we use the trivial bucket O-RAM, each operation has cost O(ZL).
If we use the Square-Root bucket O-RAM, the amortized cost is O(Z

√
L logL) and

the worst-case cost is O(ZL logL), as required.

Remark 1. Observe that the BST O-RAM construction by Damgård, Meldgaard, and
Nielsen [4] for capacityL has client storageO(1), server storageO(L logL), amortized
cost O((logL)a) and worst-case cost O((logL)b), where a and b are small integers.
Hence, if we use the BST construction for out bucket O-RAM, the amortized cost of
our binary scheme can be improved toO(logc N logN(log MN

δ )a) = Õ((logN)2) and

the worst-case cost to O(logc N logN log MN
δ (log log MN

δ )b) = Õ((logN)3), where

M = poly(N) and δ = 1
poly(N) , while the server storage cost is Õ(N logN).
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1. Ajtai, M., Komlós, J., Szemerédi, E.: Sorting in c log n parallel steps. Combinatorica 3, 1–19

(1983)
2. Beame, P., Machmouchi, W.: Making rams oblivious requires superlogarithmic overhead.

Electronic Colloquium on Computational Complexity (ECCC) 17, 104 (2010)
3. Boneh, D., Mazieres, D., Popa, R.A.: Remote oblivious storage: Making oblivious ram prac-

tical (2011) (manuscript),
http://dspace.mit.edu/bitstream/handle/1721.1/
62006/MIT-CSAIL-TR-2011-018.pdf

http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf


Oblivious RAM with O((logN)3) Worst-Case Cost 213
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Appendices

A Bounding the Load of Each Bucket

In this section, we prove the following high probability statement for bounding the load
in each bucket.

Theorem 3 (Each Bucket Has Small Load). Let 0 < δ < 1
22e . For a fixed time and a

fixed bucket, the probability that the bucket has load more than log2
1
δ is at most δ.

Recall that the number of levels is L := �log2 N�. We analyze the load according to
the depth i of the bucket.

A.1 Bounding the Load for Levels 0 to L − 1 with Markov Process

Observe that in our scheme, when a block inside some bucket is accessed, the block is
removed from the bucket. However, for the purpose of analysis, we assume that a block
stays inside its bucket when it is accessed, i.e., a block can leave a bucket only when the
bucket is chosen for eviction; moreover, since we are only concerned about the load of a
bucket, for simplicity we also assume that the blocks arriving at a bucket are all distinct.

http://eprint.iacr.org/2011/327.pdf
http://eprint.iacr.org/2011/407.pdf
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The load of a bucket in our scheme is always bounded above by the corresponding load
in the modified process, which we analyze using a Markov process. If we assume that
a bucket is initially empty, then its load will be stochastically dominated by the load
under the stationary distribution.

Defining Markov ProcessQ(α, β). Given 0 < α ≤ β ≤ 1, we describe a Markov pro-
cess Q(α, β) with non-negative integral states as follows. In order to illustrate the rela-
tionship between the Markov process and the load of a bucket, we defineQ(α, β) using
the terminology related to the bucket. The state of the Markov process corresponds to
the current load of a bucket. At any time step, the following happens independently of
any past events in the specified order:
(a) With probability α, a block arrives at the bucket.
(b) If the load of the bucket is non-zero (maybe because a block has just arrived), then

with probability β a block departs from the bucket.
Recall that when a block departs from a depth-i bucket, it arrives at one of the two

depth-(i+ 1) child buckets uniformly at random.

Example. We immediately see that the root bucket is modeled by Q(1, 1) and a depth-
1 bucket is modeled by Q(1

2 , 1). Both cases are trivial because the load at the end of
every time step is zero. One can see that at every time step a block arrives at one of the
four depth-2 buckets uniformly at random and two out of the four buckets are chosen
for eviction every step. Hence, each of the depth-2 buckets can be modeled byQ(1

4 ,
1
2 ).

Using a classic queuing theory result by Hsu and Burke [9] we can show that at further
depths, a block leaves a bucket with some fixed probability at every time step, so that
independent arrivals are satisfied at the child buckets.

Corollary 2 (Load of an Internal Bucket). For 2 ≤ i < L, under the stationary
distribution, the probability that a depth-i bucket has load at least s is at most ρs

i ≤ 1
2s ;

in particular, for 0 < δ < 1, with probability at least 1− δ, its load is at most log2
1
δ .

Proof. The proof builds on top of a classic queuing theory result by Hsu and Burke [9].
Full proof is provide in our online technical report [14].

A.2 Bounding the Load of Level L with “Balls into Bins”

Observe that a block residing at a depth-L bucket traversed a random path from the root
bucket to a random leaf bucket. Hence, given that a block is at depth L, the block is
in one of the leaf buckets uniformly at random. Hence, to give an upper bound on the
load of a leaf bucket at any single time step, we can imagine that each of the N blocks
is placed independently in one of the leaf buckets uniformly at random. This can be
analyzed by the well-known “Balls into Bins” process.

Corollary 3 (Load of a Leaf Bucket). For each time step, for 0 < δ < 1
22e , with

probability at least 1− δ, a leaf bucket has load at most log2
1
δ .

Proof. Using standard balls and bins analysis [13]. Full proof will be supplied in online
technical report [14].



Noiseless Database Privacy

Raghav Bhaskar1, Abhishek Bhowmick2, Vipul Goyal1,
Srivatsan Laxman1, and Abhradeep Thakurta3

1 Microsoft Research India
{rbhaskar,vipul,slaxman}@microsoft.com

2 University of Texas, Austin
bhowmick@cs.utexas.edu

3 Pennsylvania State University
azg161@cse.psu.edu

Abstract. Differential Privacy (DP) has emerged as a formal, flexible
framework for privacy protection, with a guarantee that is agnostic to
auxiliary information and that admits simple rules for composition. Ben-
efits notwithstanding, a major drawback of DP is that it provides noisy1

responses to queries, making it unsuitable for many applications. We pro-
pose a new notion called Noiseless Privacy that provides exact answers
to queries, without adding any noise whatsoever. While the form of our
guarantee is similar to DP, where the privacy comes from is very differ-
ent, based on statistical assumptions on the data and on restrictions to
the auxiliary information available to the adversary. We present a first
set of results for Noiseless Privacy of arbitrary Boolean-function queries
and of linear Real-function queries, when data are drawn independently,
from nearly-uniform and Gaussian distributions respectively. We also de-
rive simple rules for composition under models of dynamically changing
data.

1 Introduction

Developing a mathematically sound notion of privacy is a difficult problem. Sev-
eral definitions for database privacy have been proposed over the years, many of
which were subsequently broken. For example, methods like k-anonymity [Swe02]
and -diversity [MGKV06] are vulnerable to simple, practical attacks that can
breach privacy of individual records [GKS08]. In 2006, Dwork et al. [DMNS06]
made significant strides toward formal specification of privacy guarantees by in-
troducing an information-theoretic notion called Differential Privacy (DP). For
a detailed survey on DP see [Dwo08].

Definition 1 (ε-Differential Privacy [DMNS06]). A randomized algorithm
A is ε-differentially private if for all databases T, T ′ ∈ Dn differing in at most
one record and all events O ⊆ Range(A), Pr[A(T ) ∈ O] ≤ eε Pr[A(T ′) ∈ O] .

1 By noise we broadly refer to any external randomization introduced in the output
by the privacy mechanism.

D.H. Lee and X. Wang (Eds.): ASIACRYPT 2011, LNCS 7073, pp. 215–232, 2011.
c© International Association for Cryptologic Research 2011
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DP provides a flexible framework for privacy protection based on mechanisms
that provide noisy responses to the database queries. The amount of noise in-
troduced in the query-response is: 1) Independent of the actual data entries, 2)
Based on the sensitivity of the query to “arbitrary” change of a small number
of entries in the data, and 3) Agnostic to the auxiliary information available to
the adversary. Their benefits notwithstanding, these properties of DP also result
in high levels of noise in the DP output, oftentimes leading to unusable query
responses [MKA+08]. Several applications, in fact, completely breakdown when
even the slightest amount of noise is added to the output (For example, dur-
ing a financial audit, noisy query-responses may reveal inconsistencies that may
be wrongly interpreted as fraud). Besides, when transitioning from a noise-free
regime, to incorporate privacy guarantees, the query-response mechanism must
be re-programmed (to inject a calibrated amount of noise) and the mechanism
consuming the DP output must be re-analyzed for its utility/effectiveness (since
it must now operate on noisy, rather than exact, query-responses). Hence, the
addition of noise to query-responses in the DP framework can be a major barrier
to the adoption of DP in practice. Moreover, it is unclear if the DP guarantee
(or for that matter, if any privacy guarantee) can provide meaningful privacy
protection when the adversary has access to arbitrary auxiliary information. On
the positive side, however, the structure of the DP guarantee makes it easy to
derive simple rules of composition under multiple queries.

Noiseless Privacy: In this paper, we propose a new, also information-
theoretic, notion of privacy called Noiseless Privacy that provides exact answers
to database queries, without adding any noise whatsoever. While the form of
our guarantee is similar to DP, where the privacy comes from is very different,
and is based on: 1) A statistical (generative) model assumption for the database,
2) Restrictions on the kinds of auxiliary information available to the adversary.
Both these assumptions are reasonable in many real-world settings; the former
is, e.g., commonly used in machine learning, while the latter is natural when
data is collected from a diverse network/collection of sources (e.g., from users of
the world-wide web).

Consider an entry ti in the database and two possible values a and b which it
can take. Noiseless Privacy simply requires that the probability of the output (or
the vector of outputs in-case of multiple queries) lying in a certain measurable set
remains similar whether ti takes value a or b. Here, the probability is taken over
the choice of the database (coming from a certain distribution) and is conditioned
on the auxiliary information (present with the adversary) about the database.
See Definition 2 for formal details.

While the DP framework makes no assumptions about the data distribution
or the auxiliary information available to the adversary, it requires the addition
of external noise to query-responses. By contrast, in Noiseless Privacy, we study
the privacy implications of providing noise-free responses to queries, but under
assumptions governing the data distribution and limited auxiliary information.

At this point, we do not know how widely our privacy framework will be
applicable in real systems. However, whenever privacy can be obtained in our
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framework (and our work shows there are significant non-trivial cases where
Noiseless Privacy can be achieved) it comes for “free.” Another practical benefit
is that no changes are needed in the query-response or response-consumption
mechanisms, only an analysis to “okay the system” to establish the necessary
privacy guarantees is required. Moving forward, we believe that checking the
feasibility of Noiseless Privacy is a useful first-step when designing privacy-
preserving systems. Only when sufficient intrinsic entropy in the data cannot
be established, do we need external noise-injection in the query-responses. This
way, we would pay for privacy only when strictly necessary.

Our Results: In this work, we study certain types of boolean and real queries
and show natural (and well understood) conditions under which Noiseless Pri-
vacy can be obtained with good parameters. We first focus on the (single)
boolean query setting; i.e., the entries of the database as well as the query
output have one bit of information each, with no auxiliary information avail-
able to the adversary. Our starting assumption is that each bit of the database
is independently drawn from the uniform distribution (this assumption can be
partially relaxed; see Section 3). We show that functions which are sufficiently
“far” away from both 0-junta and 1-junta functions2 satisfy Noiseless Privacy
with “good” parameters. Note that functions which are close to either 0-junta or
1-junta do not represent an “aggregate statistic” of the database (which should
depend on a large number of database entries). Hence, in real systems releasing
some aggregate information about the database, we do expect such a condition
to be naturally satisfied. Our proof of this theorem is rather intuitive and inter-
estingly shows that these two (well understood) characteristics of the boolean
functions are the only ones on which the privacy parameter depends. We extend
our result to the case when the adversary has auxiliary information about some
records in the database.

For functions over the reals with real outputs, we study two types of func-
tions: (a) linear functions (i.e., where the output is a linear combination of the
rows of the database), and, (b) sum of arbitrary functions of the database rows.
These functions together cover a large class of aggregation functions that can
support various data mining and machine learning tasks in the real-world. We
show natural conditions on the database distribution for which Noiseless Privacy
can be obtained with good parameters, even when the adversary has auxiliary
information about some constant fraction of the dataset. We refer the reader to
section 4.1 for more details.

Multiple Queries: The above results are for the case where the adversary
is allowed to ask a single query, except for the case of linear real queries, where
we have a result for multiple queries. In general, achieving composition in the
Noiseless Privacy framework is tricky and privacy can completely breakdown
even given a response to two different (carefully crafted) queries. The reason why
such a composition is difficult to obtain in our setting is the lack of independence
between the responses to the queries; the queries operate on the same database

2 Roughly, an i-junta function is one which depends only upon i of the total input
variables.
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and might have complex interdependence on each other to enable an entry of
the database to be deduced fully given the responses.

To break such interdependence in our setting, we introduce what we call the
changing database model; we assume that between any two queries, a nontrivial
fraction of the database has been “refreshed”. The newly added entries (which
may either replace some existing entries or be in addition to the existing entries)
are independent of the old entries already present in the database. This helps
us maintain some weak independence between different queries. We note that
the setting of the changing database model is not unrealistic. Consider an or-
ganization that participates in a yearly industry-wide salary survey, where each
organization submits relevant statistics about the salaries of its employees to
some market research firms. A key requirement in such surveys is to maintain
anonymity of its employees (and only give salary statistics based on the depart-
ment, years of experience, etc.). A reasonable assumption in this setting is that
a constant fraction of the employees will change every year (i.e., if the attrition
rate of a firm is five percent, then roughly five percent of the entries can be
expected to be refreshed every year). Apart from the above example, there are
various other scenarios where the changing database model is realistic (i.e., when
one is dealing with streaming data, data with a time window, etc.). Under such
changing database model, we provide generalizations of our boolean as well as
real query theorems to the case of multiple queries.

We also present other interesting results like obtaining Noiseless Privacy for
symmetric boolean functions, “decomposable” functions, etc. In some cases, we
in fact show positive results for Noiseless Privacy under multiple queries even in
the static database model.

Future Work: Our works opens up an interesting direction for research in
the area of database privacy. An obvious line to pursue is to expand the classes of
functions and data distributions for which Noiseless Privacy can be achieved. Re-
laxing the independence assumption that our current results make on database
records is another important topic. There is also scope to explore alternative
ways of specifying the auxiliary information available to the adversary. In gen-
eral, we believe that developing new techniques for analyzing statistical queries
for Noiseless Privacy is an important direction of privacy research, that must
go hand-in-hand with efforts toward new, more clever ways of adding smaller
amounts of noise to achieve Differential Privacy.

Related Works: The line of works most related to ours is that of query au-
diting (see [KMN05] and [NMK+06]) where, given a database T = 〈t1, · · · , tn〉
with real entries, a query auditor makes a decision as to whether or not a par-
ticular query can be answered. If the auditor decides to answer the query, then
the answer is output without adding any noise. Since the decision of whether
to answer a query can itself leak information about the database, the decision
is randomized. This randomization can be viewed as injection of some form of
noise into the query response. However, on the positive side, if a decision is made
to answer the query, the answer never contains any noise, which is in harmony
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with the motivation of our present work. See our full version [BBG+11] for a
more detailed comparison of our work to this and other related works.

2 Our Privacy Notion

In our present work, we investigate the possibility of guaranteeing privacy with-
out adding any external noise. The main idea is to look for (and systematically
categorize) query functions which under certain assumptions on the data gener-
ating distribution are inherently private (under our formal notion of privacy that
we define shortly). Since, the output of the function itself is inherently private,
there is no need to inject external noise. As a result the output of the function
has no utility degradation. Formally, we define our new notion of privacy (called
Noiseless Privacy) as follows:

Definition 2 (ε-Noiseless Privacy). Let D be the domain from which the
entries of the database are drawn. A deterministic query function f : Dn → Y is
ε-noiseless private under a distribution D on Dn and some auxiliary information
Aux (which the adversary might have), if for all measurable sets O ⊆ Y, for all
 ∈ [n] and for all a, a′ ∈ D,

Pr
T∼D

[f(T ) ∈ O|t� = a,Aux] ≤ eε Pr
T∼D

[f(T ) ∈ O|t� = a′,Aux]

where t� is the -th entry of the database T .

In comparison to Definition 1, the present definition differs at least in the
following aspects, namely:

– unlike in Definition 1, it is possible for a non-trivial deterministic function f
to satisfy Definition 2 with reasonable ε. For e.g., XOR of all the bits of a
boolean database (where each entry of the database is an unbiased random
bit) satisfies Definition 2 with ε = 0 where as Definition 1 is not satisfied for
any finite ε.

– the privacy guarantee of Definition 2 is under a specific distribution D, where
as Definition 1 is agnostic to any distributional assumption on the database.

– the privacy guarantee of Definition 2 is w.r.t. an auxiliary information Aux
whereas differential privacy is oblivious to auxiliary information.

Intuitively, the above definition captures the change in adversary’s belief about
a particular output in the range of f in the presence or absence of a particular
entry in the database. A comparable (and seemingly more direct) notion is to
capture the change in adversary’s belief about a particular entry before and after
seeing the output. Formally,

Definition 3 (ε-Aposteriori Noiseless Privacy). A deterministic query fun-
ction f : Dn → Y is ε-Aposteriori Noiseless Private under a distribution D on
Dn and some auxiliary information Aux, if for all measurable sets O ⊆ Y, for
all  ∈ [n] and for all a ∈ D,

e−ε ≤ PrT∼D [t�=a|f(T )∈O,Aux]
PrT∼D [t�=a|Aux] ≤ eε

where t� is the -th entry of the database T .
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The following fact shows that Definition 3 implies Definition 2 and vice versa
with at most two times degradation in the privacy parameter ε. See the full
version [BBG+11] for the proof.

Fact 1. A query function f satisfies Definition 3 under a database generating
distribution D and auxiliary information Aux, if and only if it satisfies Defi-
nition 2 under the same distribution D and same auxiliary information Aux.
There is a possible deterioration of the privacy parameter ε by at most a factor
of two in either direction.

Hereafter, we will use Definition 2 as our defintion of Noiseless Privacy. We also
introduce a relaxed notion of Noiseless Privacy called (ε, δ)-Noiseless Privacy,
where with a small probability δ the ε-Noiseless Privacy does not hold. Here, the
probability is taken over the choice of the database and the two possible values for
the database entry in question. While for a strong privacy guarantee a negligible
δ is desirable, a non-negligible δ may be tolerable in certain applications. The
following definition captures this notion formally.

Definition 4 ((ε, δ)-Noiseless Privacy). Let f : Dn → Y be a deterministic
query function on a database of length n drawn from domain D. Let D be a
distribution on Dn. Let S1 ⊆ Y and S2 ⊆ D be two sets such that for all j ∈ [n],
PrT∼D[f(T ) ∈ S1] + PrT∼D[tj ∈ S2] ≤ δ, where tj is the j-th entry of T .

The function f is said to be (ε, δ)-Noiseless Private under distribution D and
some auxiliary information Aux, if there exists S1, S2 as defined above such that,
for all measurable sets O ⊆ Y −S1, for all a, a′ ∈ D−S2, and for all  ∈ [n] the
following holds:

Pr
T∼D

[f(T ) ∈ O|t� = a,Aux] ≤ eε Pr
T∼D

[f(T ) ∈ O|t� = a′,Aux]

One kind of auxiliary information (Aux) that we will consider is partial in-
formation about some subset of entries of the database (i.e. partial disclosure).
But often, it is easier to analyze the privacy when Aux corresponds to a full
disclosure (complete revelation) of a subset of entries rather than partial dis-
closure because it may be difficult to characterize the corresponding conditional
probabilities. The following result shows that the privacy degradation when Aux
corresponds to a partial disclosure of information about a subset of entries can
never be worse than the privacy degradation under full disclosure of the same
set of entries.

Theorem 1 (Auxiliary Information) . Consider a database T and a query
function f(·) over T . Let Ap denote some partial information regarding some
fixed (but typically unknown to the mechanism) subset T ′ ⊂ T . Let Af denote the
corresponding full information about the entries of T ′. If f(T ) is (ε, δ)-Noiseless
Private under (every possible value of) the auxiliary information Af (full dis-
closure) provided to the adversary, then it is also (ε, δ)-Noiseless Private under
auxiliary information Ap (partial disclosure).
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Sketch of the proof:
The partial information Ap induces a distribution over the space of possible

full disclosures Af . Using the law of total probability, we can write

Pr
T∼D

[f(T ) ∈ O|t� = a,Ap] =
∫
Af

Pr
T∼D

[f(T ) ∈ O|t� = a,Af ] dF (Af |Ap, t� = a)

(1)
where F (Af |Ap, t� = a) denotes the conditional distribution forAf givenAp and
[t� = a]. Since f(T ) is (ε, δ)-Noiseless Private given Af , there exist appropriate
sets S1 and S2 (see Definition 4) with PrT∼D[f(T ) ∈ S1] + PrT∼D[tj ∈ S2] ≤ δ
such that, for all measurable sets O ⊆ Y − S1, for all a, a′ ∈ D − S2, and for all
 ∈ [n] we have

Pr
T∼D

[f(T ) ∈ O|t� = a,Af ] ≤ eε Pr
T∼D

[f(T ) ∈ O|t� = a′,Af ] (2)

The conditional distribution on F given Ap and t� in (1) is in fact independent
of t� (since we can only argue about the privacy of the th entry of T if it
has not been already disclosed fully in Af ). Now, since F (Af |Ap, t� = a) =
F (Af |Ap, t� = a′), we can integrate both sides of (2) with respect to the same
distribution and obtain, for the same sets S1 and S2 as in (2):

Pr
T∼D

[f(T ) ∈ O|t� = a,Ap] ≤ eε Pr
T∼D

[f(T ) ∈ O|t� = a′,Ap] (3)

This completes the proof.

Composability. In many applications, privacy has to be achieved under multi-
ple (partial) disclosures of the database. For instance, in database applications,
several thousand user queries about the database entries are answered in a day.
Thus, a general result which tells how the privacy guarantee changes (typically
degrades) as more and more queries are answered is very useful and is referred
to as composability of privacy under multiple queries. While in some scenarios
(eg. streaming applications) the database can change in between queries (dy-
namic database), in other scenarios it remains the same (static database). Also,
the queries can be of different types or multiple instances of the same type.
As mentioned earlier, in Differential Privacy, the privacy guarantees degrade
exponentially with the number of queries on a static database. The notion of
Noiseless Privacy often fails to compose in the presence of multiple queries on a
static database (an exception to this is given in Section 4.2). But we do present
several composability results for multiple queries under dynamic databases.

Dynamic databases may arise in practical scenarios in several ways: (a) Grow-
ing database model: Here the database keeps growing with time, e.g. database
of all registered cars. Thus, in-between subsequent releases of information, the
database grows by some number k, (b) Streaming model: This is the more com-
monly encountered scenario, where the availability of limited memory/storage
causes the replacement of some old data with new one. Thus, at the time of each
query the database has some k new entries out of the total (fixed) n , and (c)
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Random replacement model: A good generalization of the above two models, it
replaces randomly chosen k entries from the database of size n with the new
incoming entries.

In all the above models of dynamic databases, we assume that the number
of new elements form a constant fraction of the database. In particular, if n
is the current database size, then some ρn, (0 ≤ ρ ≤ 1) number of entries are
old and the remaining k = (1 − ρ)n entries are new. Our main result about
composability of Noiseless Privacy holds for any query which has (ε, δ)-Noiseless
Privacy under any auxiliary information about at most ρn, (0 ≤ ρ ≤ 1) elements
of the database. Note that in the growing database model, the size of the largest
database on which the query is made is assumed to be n and the maximum
fraction of old entries is ρ.

Theorem 2 (Composition). Consider a sequence of m queries, fi(·), i ∈ [m],
over dynamically changing data, such that, the ith query operates on the subset
Ti of data elements. For each i ≥ 2, let Ti share no more than a constant fraction
ρ, (0 ≤ ρ ≤ 1) of elements with ∪i′<iTi′ (i.e., all except ρ fraction of the elements
in the database are new). If every query fi(Ti), individually, is (εi, δi)-Noiseless
Private under the release of auxiliary information about a constant fraction ρ
of elements in Ti, then the sequence of queries is (

∑m
i=1 εi,

∑m
i=1 δi)-Noiseless

Private over the entire data.

Sketch of the proof:
To assess the privacy of the th element t�, we write down the following prob-

ability:

Pr
T∼D

[f1(T1) ∈ O1, . . . , fm(Tm) ∈ Om | t� = a] = Pr
T∼D

[f1(T1) ∈ O1 | t� = a]

×
m∏

i=2

Pr
T∼D

[fi(Ti) ∈ Oi | f1(T1) ∈ O1, . . . , fi−1(Ti−1) ∈ Oi−1, t� = a] (4)

Since Ti shares at most a constant fraction ρ of elements with ∪i′<iTi′ , the
sequence of query responses 〈f1(T1), . . . , fi−1(Ti−1)〉, can be thought of as re-
vealing auxiliary (possibly partial) information about at most ρ fraction of el-
ements in Ti. Under such auxiliary leakage, we are given that fi(Ti) is (εi, δi)-
Noiseless Private, i.e., there exist appropriate sets Si

1 and Si
2 (see Definition 4)

with PrT∼D[f(T ) ∈ Si
1] + PrT∼D[tj ∈ Si

2] ≤ δi such that, for all measurable sets
O ⊆ Y − Si

1, for all a, a′ ∈ D − Si
2, we have

Pr
T∼D

[fi(Ti) ∈ Oi | f1(T1) ∈ O1, . . . , fi−1(Ti−1) ∈ Oi−1, t� = a]

≤ eεi Pr
T∼D

[fi(Ti) ∈ Oi | f1(T1) ∈ O1, . . . , fi−1(Ti−1) ∈ Oi−1, t� = a′] (5)

Setting S1 = ∪iS
i
1 and S2 = ∪iS

i
2, we have PrT∼D[f(T ) ∈ S1]+PrT∼D[tj ∈ S2]≤∑m

i=1 δi and using (5) for each of the m terms in the RHS of (4) we get, for all
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measurable sets Oi ⊆ Y − S1, for all a, a′ ∈ D − S2,

Pr
T∼D

[f1(T1) ∈ O1, . . . , fm(Tm) ∈ Om | t� = a]

≤ e
∑m

i=1 εi Pr
T∼D

[f1(T1) ∈ O1, . . . , fm(Tm) ∈ Om | t� = a′] (6)

This completes the proof. See the full version [BBG+11] for other results under
multiple queries.

3 Boolean Queries

In this section we study queries of the form f : T → {0, 1}, i.e., the query
function f acts on a database T ∈ Dn, where D is the domain from which the
data entries are drawn.

3.1 The No Auxiliary Information Setting

We first study a simple and clean setting: the database entries are all drawn
independently and the adversary has no auxiliary information about them. We
discuss generalizations later on. Before we get into the details of privacy friendly
functions under our setting, we need some of the terminologies from analysis of
boolean functions literature.

Definition 5 (k-junta [KLM+09]). A function f : {0, 1}n → {0, 1} is said to
be k-junta if it depends only on some subset of the n coordinates of size k .

Definition 6 ((1−τ)-far from k-junta). Let F be the class of all k-junta fun-
ctions f ′ : {0, 1}n → {0, 1} and let D be a distribution on {0, 1}n. A function
f : {0, 1}n → {0, 1} is (1− τ)-far from k-junta under D if

max
f ′∈F

| Pr
T∼D

[f(T ) = f ′(T )]− Pr
T∼D

[f(T ) �= f ′(T )]| = τ

It is easy to see that when D is a uniform distribution over n-bits, a k-junta is
0-far from the class of k-juntas and the parity function is 1-far from the class of
all 1-juntas.

The theorem below is for the setting where the adversary has no auxiliary
information about the database. Later on in this section, we show how to handle
the case when the adversary may have a subset of the database entries.

Theorem 3. Let D be an arbitrary distribution over {0, 1}n such that the marg-
inal probability of the i − th bit equaling 1 is pi. Let f : {0, 1}n → {0, 1} be a
boolean function which is (1− τ1)-far from 0-junta and (1− τ2)-far from 1-junta
under D. If τ1+τ2

2 ≤ mini∈[n] pi and maxi∈[n] pi ≤ 1− τ1+τ2
2 , then f is(

maxi∈[n] max
{

ln 1+(τ1+τ2)/(2(1−pi))
1−(τ1+τ2)/(2pi)

, ln 1+(τ1+τ2)/(2pi)
1−(τ1+τ2)/(2(1−pi))

})
-Noiseless Private.

Proof. Please refer to [BBG+11] for the proof.
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Note that in the above theorem we do not assume independence among the
entries in T . As a result we can handle databases with correlated entries. It is
also worth mentioning here that all the other results in this section assume the
entries in the database to be uncorrelated.

To get some more insight into the result let us consider f(T ) to be the XOR
of all the bits of T . Let T be drawn from the uniform distribution. Then f is 1-far
from both a 0-junta and a 1-junta. Hence, f is 0-Noiseless Private. Instead of the
XOR, if we let f be the AND function, then we see that it is just 1− 1

2n−1 -far
from a 0-junta. The ratio in this case becomes∞, which showsAND is not a very
good function for providing ε-Noiseless Privacy for small ε. This is indeed the case
because PrT [f(T ) = 1|ti = 0] = 0 for all i. However, we can capture functions
like AND if we try to guarantee (ε, δ)-Noiseless Privacy. If we fix δ = 1

2n (which
is basically the probability of the AND function yielding 1), we get (0, 1

2n )-
Noiseless Privacy for AND. This property is in fact not specific to AND. In
fact one can easily guarantee (ε, δ)-Noiseless Privacy for any symmetric boolean
functions (i.e., the functions whose output does not change on any permutation
of the input bits). We will discuss this result in a more general setting later.

3.2 Handling Auxiliary Information

We now study the setting where the adversary may have auxiliary information
about a subset of the entries in the database. We study the privacy of the entries
about whom the adversary has no auxiliary information.

Theorem 4. Let D be the distribution over {0, 1}n where the i−th bit is chosen
to be 1 independently with probability pi. Let f : {0, 1}n → {0, 1} be a boolean
function which is (1− 2B)-far away from d+1 junta, that is, for any function g
that depends only on a subset S of U = [n] of size d+1, |Pr[f(U) = g(S)]−1/2| <
B. Let T be a database drawn from D and let Γ be any adversarially chosen
subset of variables that has been leaked with |Γ | = d. If B

δ < mini∈[n] pi and

if maxi∈[n] pi ≤ 1 − B
δ , then function f is (maxi∈[n]−Γ

(
max

{
ln
(

1+ B
δ(1−pi)

1− B
δpi

)
,

ln
(

1+ B
δpi

1− B
δ(1−pi)

)})
, 2δ)-Noiseless Private with respect to the bit ti ∈ T , where

i ∈ [n]− Γ .

Proof. We analyze the ratio given that Γ = t is such that |PrR[f(R||t) = 0] −
1/2| < B/δ and |PrR[f(R||t) = ti]− 1/2| < B/δ. This happens with probability
at least 1− δ− δ = 1− 2δ. The proof is as follows. Here the notation R||t refers
to a database formed by combining R and t.

Lemma 1. Let the underlying distribution be an arbitrary D where each bit is
1 independently with probability pi. Under D, let f be far away from d junta,
that is for any function g that depends only on a subset S ( with |S| = d) of
U = [n], |PrD[f(U) = g(S)] − 1/2| < A. Let T be a database drawn from D
and let Γ (with |Γ | = d) be any adversarial subset of entries of T that has been
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leaked. Then, with probability at least 1 − δ over the choice of assignments t to
Γ , |PrR[f(R||t) = 0]− 1/2| < A/δ.

Proof. Let Γ ⊂ U = [n], |Γ | = d, be the set of indices leaked. Note that we
use Γ to represent both the indices and the variables itself. Let R = [n] − Γ .
We prove the lemma by contradiction. Suppose the claim is wrong. That is,
with probability at least δ over Γ , |PrR[f(R||t) = 0] − 1/2| > A/δ. Construct
g : {0, 1}d → {0, 1} as follows.

g(t) =
{

0 if PrR[f(R||t) = 0] ≥ 1/2
1 otherwise

Observe that g just depends on d variables. We shall now show predictability
of f using g which contradicts farness from d junta. Let us evaluate Pr[f(U) =
g(Γ )]. To that end, we partition the assignments t to T into three sets, S1, S2

and S3. S1 is the set of t such that PrR[f(R||t) = 0] ≥ 1/2 + A/δ, S2 is the
set of t such that PrR[f(R||t) = 0] ≤ 1/2− A/δ and S3 is the set of remaining
assignments. Now, from our assumption, we are given that Pr[T ∈ S1 ∪ S2] > δ.
Also, it is easy to observe that for any t, PrR[f(R||t) = g(t)] ≥ 1/2 by the choice
of g. Now, we lower bound Pr[f(U) = g(Γ )].

Pr[f(U) = g(Γ )] = EΓPrR[f(R||Γ ) = g(Γ )]
≥ Pr[Γ ∈ S1](1/2 +A/δ)

+Pr[Γ ∈ S2](1/2 +A/δ) + Pr[Γ ∈ S3](1/2)
≥ 1/2 + (A/δ) Pr[Γ ∈ S1 ∪ S2]
≥ 1/2 +A

This leads to a contradiction.

Lemma 2. Let D be a distribution over {0, 1}n where each bit is 1 indepen-
dently with probability pi. Under D, let f be far away from d junta, that is for
any function g that depends only on a subset S ( with |S| = d) of U = [n],
|PrD[f(U) = g(S)] − 1/2| < B. Let T be a database drawn from D and let Γ
(with |Γ | = d) be any adversarial subset of entries of T that has been leaked.
Then, with probability at least 1 − δ over the choice of assignments t to Γ ,
|PrR[f(R||t) = ti]− 1/2| < B/δ, where ti is the i-th entry of the database T .

Proof. The proof of this lemma is identical to the previous proof. Please see
[BBG+11] for the complete proof.

Following the proof structure of Theorem 3, let N = Pr[f = 0|Γ = t, ti = 0]
and D = Pr[f = 0|Γ = t, ti = 1]. Now,

(1− pi)N + pi(1−D) = 1/2 +Bi, where |Bi| ≤ B/δ

(1 − pi)N + piD = A, where |A− 1/2| ≤ B/δ

We now use the argument from the proof of Theorem 3 to upper (lower) bound
N/D. Since the bound holds with probability 1−2δ, we get maxi∈[n] pi ≤ 1− B

δ ;
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hence f is (maxi∈[n]−Γ

(
max

{
ln
(

1+ B
δ(1−pi)

1− B
δpi

)
, ln
(

1+ B
δpi

1− B
δ(1−pi)

)})
, 2δ)-Noiseless

Private which again makes sense as long as B
δ < mini∈[n] pi and maxi∈[n] pi ≤

1− B
δ .

3.3 Handling Multiple Queries in Adversarial Refreshment Model

Unlike the static model, in this model we assume that every query is run on
a database where some significant part of it is new. We focus on the following
adversarial replacement model.

Definition 7 (d-Adversarial Refreshment Model). Except for d adversar-
ially chosen bits of the database T , the remaining bits are refreshed under the
data generating distribution D before every query fi.

We demonstrate the composability of boolean to boolean queries ( i.e., f :
{0, 1}n → {0, 1}) under this model.

By the reduction shown in Theorem 2, privacy under multiple queries follows
from the privacy in single query under auxiliary information. We use Theorems
2 and 4 to obtain the following composition theorem for boolean functions.

Corollary 1. Let f be far away from d+1 junta ( with d = O(n)), that is for any
function g that depends only on a subset S of U = [n] of size d+ 1, |Pr[f(U) =
g(S)]−1/2| < B. Let the database T be changed as per the d-Adversarial Refresh-
ment Model and let T̂ be the database formed by concatenating the new entries (in
the d-Adversarial Refreshment Model) with the existing entries. Let the number
of times that f has been queried is m. Under the conditions of Theorem 4, f is

(mmaxi∈[n]

(
max

{
ln
(

1+ B
δ(1−pi)

1− B
δpi

)
, ln
(

1+ B
δpi

1− B
δ(1−pi)

)})
, 2mδ)-Noiseless Private,

where n is the size of the database T̂ and pi is the probability of the i-th bit of T̂
being one.

Please refer to the full version of the paper [BBG+11] for results on the privacy
of symmetric functions.

4 Real Queries

In this section, we study the privacy of functions which operate on databases
with real entries and compute a real value as output. We view the database
T as a collection of n random variables 〈t1, t2, . . . , tn〉 with the ith random
variable representing the ith database item. First we analyze the privacy of a
query that outputs the sum of functions of database rows, that is, fn(T ) =
1
sn

∑
i∈[n] gi(ti), sn =

∑
i∈[n] E[g2

i (ti)] in Section 4.1. We provide a set of as-
sumptions about gi, under which the response of a single such query can be
provided with ( ln n

6√n
, 1√

n
)-Noiseless Privacy guarantees in Theorem 5. While The-

orem 5 is for an adversary that has no auxiliary information about the database,
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Theorem 6 is for an adversary that may have auxiliary information about some
constant fraction of the database. We note that this query function is important
as many learning algorithms, including principal component analysis, k-means
clustering and any algorithm in the statistical query framework can be captured
by this type of query (see [BDMN05]). Next, in section 4.2, we study the case of
simple linear queries of the form fn(T ) =

∑
i∈[n] aiti, ai ∈ R when ti are drawn

i.i.d. from a normal distribution. We show that we can allow upto 5
√
n query-

responses (on a static database) while still providing (ε, δ)-Noiseless Privacy for
any arbitrary ε and for δ negligible in n. Again, we give a theorem each for an
adversary with no auxiliary information as well as for an adversary who may
have auxiliary information about some constant fraction of the database. We
present several results about the privacy of these two queries under the various
changing databases models in section 4.3.

4.1 Sums of Functions of Database Rows

Let T = 〈t1, · · · , tn〉 be a database where each ti ∈ R is independently chosen
and let gi : R → R, ∀i ∈ [n] be a set of one-to-one real valued functions with
the following properties: (i) ∀i ∈ [n],E[gi(ti)] = 0, (ii) ∀i ∈ [n],E[g2

i (ti)] = O(1),
(iii) ∀i ∈ [n],E[|gi(ti)|3] = O(1), and (iv) The density function for gi(ti), ∀i ∈ [n]
exists and has a bounded derivative. We study the privacy of the following func-
tion on the database T : Yn = 1

sn

∑n
i=1 gi(ti) where s2n =

∑n
i=1 E[g2

i (ti)]. Using
Hertz Theorem [Her69] (see [BBG+11]) we can derive the following uniform
convergence result for the cdf of Yn to the cdf of the standard normal.

Corollary 2 (Uniform Convergence of Fn to Φ). Let Fn be the cdf of
Yn = 1

sn

∑n
i=1 gi(ti) where s2n =

∑n
i=1 E[g2

i (ti)] and let Φ denote the standard
normal cdf. If E[gi(ti)] = 0 and if E[g2

i (ti)], E[|gi(ti)|3] ∼ O(1) ∀i ∈ [n], then Yn

converges in distribution uniformly to the standard normal random variable as
follows: |Fn(x)− Φ(x)| ∼ O

(
1√
n

)
If the pdf fn of Yn exists and has a bounded derivative, we can further derive
the convergence rate of the pdf fn to the pdf φ of the standard normal random
variable. This result about pdf convergence is required because we will need to
calculate the conditional probabilities in our privacy definitions over all measur-
able sets O in the range of the query output (see Definitions 2 & 4). The result
is presented in the following Lemma (Please refer to [BBG+11] for the proof).

Lemma 3 (Uniform Convergence of fn to φ). Let fn(·) be the pdf of Yn =
1
sn

∑n
i=1 gi(ti) where s2n =

∑n
i=1 E[g2

i (ti)] and let φ(·) denote the standard normal
pdf. If E[gi(ti)] = 0, E[g2

i (ti)], E[|gi(ti)|3] ∼ O(1) ∀i ∈ [n], and if ∀i, the densities
of gi(ti) exist and have bounded derivative then fn converges uniformly to the
standard normal pdf as follows: |fn(x)− φ(x)| ∼ O

(
1
4√n

)
Theorem 5 (Privacy). Let T = 〈t1, · · · , tn〉 be a database where each ti ∈ D is
independently chosen. Let gi : R → R, ∀i ∈ [n] be a set of one-to-one real valued
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functions and let Yn = 1
sn

∑n
i=1 gi(ti), where s2n = ·∑n

i=1 E[g2
i (ti)] and ∀i ∈ [n],

E[gi(ti)] = 0, E[g2
i (ti)], E[|gi(ti)|3] ∼ O(1) and ∀i ∈ [n] the density functions for

gi(ti) exist and have bounded derivative. Let the auxiliary information Aux be
empty. Then, Yn is

(
O
(

ln n
6√n

)
, O

(
1√
n

))
-Noiseless Private.

Sketch of the proof: Please see [BBG+11] for the full proof. To analyze the
privacy of the th entry in the database T , we consider the ratio R = pdf(Yn =
a|t� = α)/pdf(Yn = a|t� = β). Setting Z = 1

sz

∑n
i=1,i�=� gi(ti), where s2z =∑n

i=1,i�=� E[g2
i (ti)], we can rewrite this ratio as R = pdf(Z = asn−g�(α)

sz
)/pdf(Z =

asn−g�(β)
sz

). Applying Lemma 3 to the convergence of the pdf of Z to φ, we can
upper-bound R using a ratio of appropriate standard normal pdf evaluations.
For suitable choice of parameters, this leads to lnR ∼ O( ln n

6√n
). Using Corollary

2, we can show that the probability of data corresponding to the unsuitable
parameters is O( 1√

n
).

Theorem 6 (Privacy with auxiliary information). Let T = 〈t1, · · · , tn〉 be
a database where each ti ∈ R is independently chosen. Let gi : R → R, ∀i ∈ [n]
be a set of one-to-one real valued functions and let Yn = 1

sn

∑n
i=1 gi(ti), where

s2n = ·∑n
i=1 E[g2

i (ti)] and ∀i ∈ [n], E[gi(ti)] = 0, E[g2
i (ti)], E[|gi(ti)|3] ∼ O(1)

and ∀i ∈ [n] the density functions for gi(ti) exist and have bounded derivative.
Let the auxiliary information Aux be any subset of T of size ρn. Then, Yn is(
O

(
ln(n(1−ρ))
6
√

n(1−ρ)

)
, O

(
1√

n(1−ρ)

))
-Noiseless Private.

Sketch of the proof: Please see [BBG+11] for the full proof. To analyze the
privacy of the th entry in the database T , we consider the ratio R = pdf(Yn =
a|t� = α,Aux)/pdf(Yn = a|t� = β,Aux). Setting Z = 1

sz

∑
i∈[n]\I(Aux),i�=� gi(ti),

where s2z =
∑n

i∈[n]\I(Aux),i�=� E[g2
i (ti)], we can rewrite this ratio as R = pdf(Z =

z0−g�(α)
sz

)/pdf(Z = z0−g�(β)
sz

), where I(Aux) is the index set of Aux and z0 =
asn−

∑
j∈I(Aux) gj(tj). Thereafter, the proof is similar to the proof of Theorem

5 except that Z is now a sum of n(1− ρ) random variables instead of n− 1.
The above theorem and Theorem 1 together imply privacy of Yn= 1

sn

∑n
i=1

gi(ti) under any auxiliary information about a constant fraction of the database.

4.2 Privacy Analysis of f i
n(T ) =

∑
j∈[n] aijtj

We consider a sequence of linear queries f i
n(T ), i = 1, 2, . . . with constant and

bounded coefficients for a static database T . For each m = 1, 2, . . ., we ask if the
set {f i

n(T ) : i = 1, . . . ,m} of queries can have Noiseless Privacy guarantees.

Theorem 7 (Privacy). Consider a database T = 〈t1, . . . , tn〉 where each tj is
drawn i.i.d from N (0, 1). Let f i

n(T ) =
∑

i∈[n] aijtj, i = 1, 2, . . ., be a sequence of
linear queries (over T ) with constant coefficients aij, |aij | ≤ 1 and at least two
non-zero coefficients in each query. Assume the adversary does not have access



Noiseless Database Privacy 229

to any auxiliary information. For every m, 1 ≤ m ≤ 5
√
n, the set of queries

{f1
n(T ), . . . , fm

n (T )} is (ε, negl(n))-Noiseless Private for any constant ε, provided
the following conditions hold: For all i ∈ [m],  ∈ [n], R(, i) ≤ 0.99

∑n
j=1,j �=� a

2
ij,

where R(, i) =
∑m

k=1,k �=i |
∑n

j=1,j �=� aijakj |.
Sketch of the proof: Please refer to [BBG+11] for the complete proof. One can
represent the sequence of queries and their corresponding answers via a system
of linear equations Y = AT , where Y is the output vector and A (called the
the design matrix ) is a m × n matrix. Each row Ai of the matrix A represents
the coefficients of the i-th query. Note that we cannot hope to allow more than
n linearly independent linear queries. Because in that case the adversary can
extract the entire database T from the query responses.

We will prove the privacy of the th data item, t� for some  ∈ [n]. Let
Yi =

∑n
j=1 aijtj , where tj are sampled i.i.d. from N (0, 1). For any α, β ∈ R

and any v = (y1, · · · , ym) ∈ Rm the following ratio r needs to be bounded
by eε to guarantee Noiseless Privacy: r = pdf(Y1=y1,··· ,Ym=ym|t�=α)

pdf(Y1=y1,··· ,Ym=ym|t�=β) . If we define

Zi =
∑n

j=1,j �=� aijtj for i ∈ [m], r = pdf(Z1=y1−a1�α,··· ,Zm=ym−am�α)
pdf(Z1=y1−a1�β,··· ,Zm=ym−am�β) .

Let Ã denote the m × (n − 1) matrix obtained by dropping th column of
A. We have Zi ∼ N (0,

∑n
j=1,j �=� a

2
ij) and the vector Z = (Z1, · · · , Zm) fol-

lows the distribution N (0, Σ), where Σ = ÃÃT . The entries of Σ look like
Σik =

∑n
j=1,j �=� aijakj and dim(Σ) = m×m. The sum of absolute values of non-

diagonal entries in the ith row ofΣ is given by R(, i) and the ith diagonal entry is∑n
j=1,j �=� a

2
ij (denoted Σii). By Gershgorin Circle Theorem (see [BBG+11]), the

eigenvalues of Σ are lower-bounded by Σii−R(, i) for some i ∈ [m]. The condi-
tion R(, i) ≤ 0.99Σii implies that every eigenvalue is at least 0.01×∑n

j=1,j �=� a
2
ij .

Since at least two aij ’s per query are strictly non-zero, Σ will have strictly
positive eigenvalues, and since Σ is also real and symmetric, we know Σ is
invertible. Hence, for a given vector z ∈ Rm, we can write pdf(Z = z) =

1
(2π)m/2|Σ|1/2 exp(− 1

2zTΣ−1z). Then, for zα = y−αA� and zβ = y−βA� where
A� denotes the th column of A, r = exp

(− 1
2

(
zα

TΣ−1zα − zβ
TΣ−1zβ

))
Let

Σ−1 = QΛQT be the eigen decomposition and let z′
α = QT zα and z′

β = QT zβ

under the eigen basis. Then, r = exp
(
− 1

2

∑m
i=1 λi

(
(z′α,i)

2 − (z′β,i)
2
))

, where
z′α,i is the i-th entry of z′

α, z′β,i is the i-th entry of z′
β and λi is the i-th eigen

value of Σ−1. Further it can be shown that,

r ≤ exp

⎛⎝mλmax|α− β|
2

√√√√ m∑
i=1

(2yi − ai�(α+ β))2

√√√√ m∑
i=1

a2
i�

⎞⎠
where λmax = arg maxi λi and we have used the fact that L1 norm ≤ √m L2

norm and that L2 norms of z′
α and z′

β are equal to L2 norms of zα and zβ

respectively. Thus, this ratio will be less than eε if:√∑m
i=1(2yi − ai�(α+ β))2 ≤ 2ε

m|(α−β)|λmax‖A�‖ (7)



230 R. Bhaskar et al.

For i ∈ [m] let Gi denote the event [|2yi − ai�(α + β)| ≤ 2ε
m3/2|(α−β)|λmax‖A�‖

]
.

The conjunction of events represented by G = ∧iGi implies the inequality in (7).
Then, in the last step of the proof, we show (see [BBG+11]) that the probability
of the event Gc (compliment of G) is negligible in n for any ε and m ≤ n

1
5 .

The above theorem is also true if the expected value of the database entries is a
non-zero constant. This is our next claim (see [BBG+11] for the proof).

Claim 1. If Y =
∑n

i=1 aiti is (ε, δ)-Noiseless Private for a database
T = 〈t1, · · · , tn〉 such that ∀i,E[ti] = 0, then Y ∗ =

∑n
i=1 ait

∗
i , where t∗i = ti +μi,

is also (ε, δ)-Noiseless Private.

The results of Theorem 7 can be extended to the case when adversary has
access to some auxiliary information, Aux, provided that Aux only contains in-
formation about a constant fraction of entries, albeit with a stricter requirement
on the coefficients of the queries (0 < aij ≤ 1 instead of |aij | ≤ 1).

Theorem 8 (Privacy with auxiliary information). Consider a database T
= 〈t1, . . ., tn〉 where each tj is drawn i.i.d from N (0, 1). Let f i

n(T ) =
∑

i∈[n] aijtj,
i = 1, 2, . . ., be a sequence of linear queries (over T ) with constant coeficients
aij, 0 < aij ≤ 1 and at least two non-zero coefficients in each query. Let Aux
denote the auxiliary information that the adversary can access. If Aux only
contains information about a constant fraction, ρ, of data entries in T , then, for
every m, 1 ≤ m ≤ 5

√
n, the set of queries {f1

n(T ), . . . , fm
n (T )} is (ε, negl(n))-

Noiseless Private for any constant ε, provided the following conditions hold: For
all i ∈ [m],  ∈ [n] and (n− ρn) ≤ r ≤ n

min
Sr

∑
j∈Sr

⎛⎝0.99a2
ij −

m∑
k=1,k �=l

aijakj

⎞⎠ ≥ 0 (8)

where Sr is the collection of all possible (r− 1)-size subsets of [n] \ {}. The test
in (8) can be performed efficiently in O(n log n) time.

Sketch of the proof: We first give a proof for the case when the auxiliary
information Aux is full disclosure of any r entries of the database. Thereafter,
we use Theorem 1 to get privacy for the case when Aux is any partial information
about at most r entries of the database. Fix a set Î of indices (out of [n]) that
correspond to the elements in Aux (This set is known to the adversary, but not
to the mechanism). Let |Î| = r. The response Yi to the ith query can be written
as Yi = Ŷi +

∑
j∈Î aijtj , where Ŷi =

∑
j∈[n]\Î aijtj. Since the second term in the

above summation is known to the adversary, the ratio R that we need to bound
for Noiseless Privacy is given by

R =
pdf(Y1 = y1, . . . , Ym = ym | t� = α,Aux)
pdf(Y1 = y1, . . . , Ym = ym | t� = β,Aux)

(9)

=
pdf(Ŷi = yi −

∑
j∈Î aijtj , i = 1, . . .m | t� = α)

pdf(Ŷi = yi −
∑

j∈Î aijtj , i = 1, . . . ,m | t� = β)
(10)
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Applying Theorem 7 to Ŷi’s we get (ε, negl(n))-Noiseless Privacy for any m ≤
5
√
n, if ∀i ∈ [m],  ∈ [n]:

∑
j∈[n]\Î,j �=�

0.99a2
ij −

m∑
k=1,k �=i

∣∣∣∣∣∣
n∑

j∈[n]\Î,j �=�

aijakj

∣∣∣∣∣∣ ≥ 0 (11)

Theorem 8 uses the stronger condition of 0 < aij ≤ 1 (compared to |aij | ≤ 1 in
Theorem 7). Hence, we can remove the mod signs and change order of summation
to get the following equivalent test: For all i ∈ [m],  ∈ [n],

∑
j∈[n]\Î,j �=�

⎛⎝0.99a2
ij −

m∑
k=1,k �=i

aijakj

⎞⎠ ≥ 0 (12)

Since Î is not known to the mechanism, we need to perform this check for all Î
and ensure that even the Î that minimizes the LHS above must be non-negative.
This gives us the test of (8). We can first compute all entries inside the round
braces of (12), and then sort and picking the first (n − r) entries. This takes
O(n log n) time. This completes the proof.

Finally, we point out that although Theorem 8 requires 0 < aij ≤ 1, we can
obtain a very similar result for the |aij | ≤ 1 case as well. This is because (11)
is true even for |aij | ≤ 1. However, unlike for 0 < aij ≤ 1 (when (12) could be
derived), testing (11) for all Î becomes combinatorial and inefficient.

4.3 Privacy under Multiple Queries on Changing Databases

Theorems 6 & 8 provide (ε, δ)-privacy guarantees under leakage of constant
fraction of data as auxiliary information. From Theorem 2, this implies com-
position results under dynamically changing databases (e.g., if each query is
(ε, δ)-Noiseless Private, composition of m such queries will be (mε,mδ)-Noiseless
Private). As discussed in Sec. 2, we get composition under growing, streaming
and random replacement models. In addition, both the queries considered in this
section are extendibile (see full version [BBG+11] for details) and thus, one can
answer multiple repeat queries on a dynamic database (under growing data and
streaming models) without degradation in privacy guarantee.

Acknowledgements. We thank Cynthia Dwork for suggesting the changing
data model direction, among other useful comments. We also thank Adam Smith
and Piyush Srivastava for many useful discussions and suggestions.
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Abstract. We present new techniques for deriving preimage resistance
bounds for block cipher based double-block-length, double-call hash func-
tions. We give improved bounds on the preimage security of the three
“classical” double-block-length, double-call, block cipher-based compres-
sion functions, these being Abreast-DM, Tandem-DM and Hirose’s
scheme. For Hirose’s scheme, we show that an adversary must make at
least 22n−5 block cipher queries to achieve chance 0.5 of inverting a ran-
domly chosen point in the range. For Abreast-DM and Tandem-DM we
show that at least 22n−10 queries are necessary. These bounds improve
upon the previous best bounds of Ω(2n) queries, and are optimal up to
a constant factor since the compression functions in question have range
of size 22n.
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Hirose’s scheme
Abreast-DM / Tandem-DM
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Fig. 1. Preimage bounds for the classical constructions

than the block cipher’s block size. Consequently, many proposals of double-block-
length, or more generally multi-block-length, hash functions have appeared in
the literature. In this article we focus on a subclass of double-block-length con-
structions, where a 3n-bit to 2n-bit compression function makes two calls to a
block cipher of 2n-bit key and n-bit block.

Recently, for all three well-known members of this class—those being Tandem-
DM [5], Abreast-DM [5] and Hirose’s construction [4]—collision resistance has
been successfully resolved [2,4,6,7]: for Abreast-DM and Hirose’s scheme, Ω(2n)
queries to the underlying block cipher are needed to obtain a non-vanishing
advantage in finding a collision. For Tandem-DM, Ω(2n−log n) queries are needed,
which is almost optimal ignoring log factors.

On the other hand, the corresponding situation for preimage resistance is far
less satisfactory. Up to now, it has been an open problem to prove preimage
resistance for values of q higher than 2n for either Abreast-DM, Tandem-DM
or Hirose. This is not to say that no dedicated preimage security proofs have
appeared in the literature. For instance, Lee, Stam and Steinberger [7] provide
a preimage resistance bound for Tandem-DM that is a lot closer to 2n than a
straightforward implication [10] of their collision bound would give. However,
a “natural barrier” occurs once 2n queries are reached: namely, a block cipher
“loses randomness” after being queried Ω(2n) times on the same key (for exam-
ple, when 2n−1 queries have been made to a block cipher under a given key, the
answer to the last query under that key is deterministic). Going beyond the 2n

barrier seemed to require either a very technical probabilistic analysis, or some
brand new idea. In this paper, we show a new idea which delivers tight bounds
in a quite pain-free and non-technical fashion.

Our contribution. In this paper, we prove that various compression functions
that turn a block cipher of 2n-bit key into a double-block-length hash function,
have preimage resistance close to the optimal 22n in the ideal cipher model. Our
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analysis covers many practically relevant proposals, such as Abreast-DM, Hirose-
DM and Tandem-DM. Bounds for the case n = 128 are depicted in Figure 1. At
the heart of our result are so-called “super queries”, a new technique to restrict
the advantage of an adaptive preimage-finding adversary.

To build some intuition for our result, let us first consider the much easier
problem of constructing a 3n-bit to 2n-bit compression function H based on two
3n-bit to n-bit smaller underlying primitives f and f ′. An obvious approach is
simply to concatenate the outputs of f and f ′, that is let H(B) = f(B)‖f ′(B) for
B ∈ {0, 1}3n. If f and f ′ are modeled as independent, ideal random functions,
then it is not hard to see that H behaves ideally as well. In particular, it is
preimage resistant up to 22n queries (to f and f ′).

When switching to a block cipher-based scenario, it is natural to replace f and
f ′ in the construction above by E, resp. E′, both run in Davies–Meyer mode. In
other words, for block ciphers E and E′ both with 2n-bit keys and operating on
n-bit blocks, define H(A‖B) = (EB(A)⊕A)‖(E′

B(A)⊕A) where A ∈ {0, 1}n and
B ∈ {0, 1}2n. While there is every reason to believe this construction maintains
preimage resistance up to 22n queries, the standard proof technique against
adaptive adversaries falls short significantly. Indeed, the usual argument goes
that the i-th query an adversary makes to E using key K will return an answer
uniform from a set of size at least 2n− (i−1) and thus the probability of hitting
a prespecified value is at most 1/(2n− (i−1)) < 1/(2n− q). Unfortunately, once
q approaches 2n, the denominator tends to zero (rendering the bound useless).
As a result, one cannot hope to prove anything beyond 2n queries using this
method. This restriction holds even for a “typical” bound of type q/(2n − q)2.

When considering non-adaptive adversaries only, the situation is far less grim.
Such adversaries need to commit to all queries in advance, which allows bounding
the probability of each individual query hitting a prespecified value by 2−n.
While obviously there are dependencies (in the answers), these can safely be
ignored when a union bound is later used to combine the various individual
queries. Since the q offset has disappeared from the denominator, the typical
bound q/(2n)2 would give the desired security.

Our solution, then, is to force an adaptive adversary to behave non-adaptively.
As this might sound a bit cryptic, let us be more precise. Consider an adversary
adaptively making queries to the block cipher, using the same key throughout.
As soon as the number of queries to this key passes a certain threshold, we give
the remaining queries to the block cipher using this very key for free. We will
refer to this event as a super query. Since these free queries are all asked in
one go, they can be dealt with non-adaptively, preempting the problems that
occur (in standard proofs) due to adaptive queries. Nonetheless, for every super
query we need to hand out a very large number of free queries, which can aid
the adversary. Thus we need to limit the amount of super queries an adversary
can make by setting the threshold that triggers a super query sufficiently high.
In fact, we set the threshold at exactly half1 the total number of queries that

1 The “optimized” threshold turns out to be very near one half, but a bit less; we set
the threshold at a half for simplicity in our proofs.
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can be made under a given key (i.e., it is set at 2n/2 queries). This effectively
doubles the adversary’s query budget, since for every query the adversary makes
it can get another one later “for free” (if it keeps on making queries under the
same key), but such a doubling of the number of queries does not lead to an
unacceptable deterioration of the security bound.

With this new technique in hand, we can prove in Section 3 that the construc-
tion H given above has indeed an asymptotically optimal preimage resistance
bound. Afterwards, we revisit the proofs of preimage resistance of the three main
double-block-length, double-call constructions: Hirose (Section 4), Abreast-DM
(Section 5) and Tandem-DM (Section 6). An additional technical problem is that
these compression functions each make two calls to the same block cipher, as
opposed to using two calls to independent block ciphers. Ideally, to get a good
bound, one would like to query the two calls necessary for a single compression
function evaluation in conjunction (this would allow using the randomness of
both calls simultaneously, potentially leading to a denominator 22n as desired
for preimage resistance). For instance, in the context of collision resistance for
Hirose-DM and Abreast-DM corresponding queries are grouped in cycles (of
length 2 and 6, respectively) and all queries in a cycle are made simultaneously:
if the adversary makes one query in a cycle, the remaining queries are handed
out for free. Care has to be taken that these free queries and the free queries
due to super queries do not reinforce each other to untenable levels.

For Hirose’s scheme, there are no problems as the free queries introduced by
a super query necessarily consist of full cycles only. The corresponding (upper)
bound on the preimage finding advantage is 16q/22n which is as desired, up to
a small factor. For Abreast-DM, however, the cyclic nature can no longer be
exploited: any super query introduces many partial cycles, yet freely completing
these might well trigger a new super query, etc.! Luckily, the original preimage
proof for Tandem-DM [7] (which does not involve cycles) provides a way out of
this conundrum. The downside however is that our preimage bound for Abreast-
DM and Tandem-DM is slightly less tight than that for Hirose’s scheme. Ignoring
negligible terms, it grows roughly as 16

√
q/2n. Although this is faster than one

might wish for (as can be seen in Figure 1), it does imply that Ω(22n) queries
are required to find a preimage with constant probability.

2 The Model

A block cipher is a function E : {0, 1}m × {0, 1}n → {0, 1}n such that E(K, ·)
is a permutation of {0, 1}n for each K ∈ {0, 1}m. We call m the key size and n
the block length of the block cipher. It is customary to write EK(X) instead of
E(K,X) for K ∈ {0, 1}m, X ∈ {0, 1}n. The function E−1

K (·) denotes the inverse
of EK(·) (as EK(·) is a permutation). Henceforth, we will restrict to the case
m = 2n and we define N = 2n.

A compression function H is block cipher-based if, in its execution, it has
access to a block cipher. In this paper, we only discuss double-block-length,
double-call constructions, meaning that H is a function from 3n-bits to 2n-bits
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making two calls to some underlying block cipher E. (This definition will become
more concrete in the next sections.)

As our preimage security notion for H , we adopt everywhere preimage re-
sistance in the information theoretic setting [10]. In this preimage resistance
experiment, a computationally unbounded adversary with oracle access to a
uniformly sampled block cipher E : {0, 1}2n × {0, 1}n → {0, 1}n selects and
announces a point C ∈ {0, 1}2n, before making queries to E. We allow the ad-
versary to query both E and E−1. After q queries to E, the query history of the
attacker is the set of triples Q = {(Xi,Ki, Yi)}q

i=1 such that EKi(Xi) = Yi and
the attacker’s i-th query is either EKi(Xi) or E−1

Ki
(Yi) for 1 ≤ i ≤ q. We say the

attacker succeeds or finds a preimage if its query history Q contains the means
of computing a preimage of C, in the sense that there exist values B ∈ {0, 1}3n,
K1,K2 ∈ {0, 1}2n and X1, X2, Y1, Y2 ∈ {0, 1}n such that both (X1,K1, Y1) and
(X2,K2, Y2) are in the query history Q, H(B) = C and the two queries used
to evaluate H(B) are precisely EK1(X1) and EK2(X2). In this case, we also say
Q contains a preimage of C. We let Preim(Q) be the predicate that is true if
and only if Q contains a preimage of C, where C is an elided-but-understood
parameter of the predicate. We define

Advepre
H (q) = max

A
Pr[Preim(Q)]

where the maximum is taken over all adversaries making at most q queries, and
where the probability is taken over the randomness of E as well as over the
adversary’s coins, if any.

For Tandem-DM, it turns out that the everywhere preimage resistance notion
is slightly too strong, as there is one weak point (namely 02n) in the range, for
which finding preimages is a bit easier. A simple adaptation of the everywhere
preimage resistance definition is to disallow the adversary to choose C = 02n as
the target point [7]; we denote the corresponding advantage as

Advepre�=0
H (q) .

(We will still use the same predicate Preim(Q) though.)
A standard assumption made in ideal cipher proofs is that “the adversary

never makes a query to which it already knows the answer”. By this it is meant,
for example, that one can assume the adversary never makes a query EK(X),
obtaining an anwer Y , and then makes the query E−1

K (Y ) (which will necessarily
be answered by X). In the current context, where we consider adversaries making
2n queries or more, this assumption should be more precisely restated as “the
adversary never makes a query that will result in a triple (X,K, Y ) which is
already present in the query history”. (This latter assumption can be made
without loss of generality using the fact that EK(·) is a permutation.) Indeed, if
an adversary has made 2n−1 queries under a key K, the result of the last query
under that key is predetermined, and thus the adversary “already knows” the
answer to this query. However, one should not forbid the adversary from making
this query, since the query may be necessary to complete a preimage.
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Our security proofs also use the notion of “free” queries. Formally, these can
be modelled as queries which the adversary is “forced” to query (under certain
conditions), but for which the adversary is not charged: they do not count to-
wards the maximum of q queries which the adversary is allowed. However, these
queries become part of the adversary’s query history, just like other queries.
In particular, the adversary is not allowed, later, to remake these queries “on
its own” (due to the previously discussed assumption that the adversary never
makes a query which it already owns). Observe that “free” queries are a common
tool for analyzing the security of hash functions, e.g., see [2,3,6].

3 An Example Case

Before we apply the new technique of super queries to the analysis of three
well-known constructions that compress 3n bits to 2n bits and that each call
the same block cipher twice, we demonstrate our technique on the following
simplest possible example. We consider the construction H1, compressing 3n−1
bits to 2n bits that makes two block cipher calls. Given a block cipher E of key
length m = 2n and block length n, an input block X ∈ {0, 1}n and a key prefix
K ∈ {0, 1}2n−1 we define

H1(K,X) = (EK‖0(X)⊕X,EK‖1(X)⊕X)

where ‖ denotes concatenation. If we consider the ideal cipher model, the two
block cipher calls are independent. H1 can be seen as a simple special case
of a scenario where two different block ciphers are called and which is closely
connected with the more general framework introduced by Özen and Stam [8,11]
(with slightly different notation though).

Theorem 1. Let H1 : {0, 1}3n−1 → {0, 1}2n be the block cipher-based compres-
sion function defined as above. Then

Advepre
H1

(q) ≤ 8q/N2.

In particular, to achieve an advantage of 1/2 the adversary has to make at least
22n−4 queries.

Proof. Let U‖V ∈ {0, 1}2n be the point to invert (chosen by the adversary before
it makes any queries to E). We upper bound the probability that, in q queries,
the adversary finds a point A ∈ {0, 1}n and a key prefix K ∈ {0, 1}2n−1 such
that H1(K‖A) = U‖V . On top of the q queries the adversary wants to make,
we give it several queries for free, to ensure that the elements (X,K‖0, Y ) and
(X,K‖1, Y ′) are always added to the query history as a pair. We call such a pair
an “adjacent query pair” with respect to the key prefix K ∈ {0, 1}2n−1. The
involved free queries are as follows.

Normal forward query. If the adversary queries EK‖0(X) (resp. EK‖1(X))
for some key prefix K ∈ {0, 1}2n−1 and X ∈ {0, 1}n, we also give it for free
EK‖1(X) (resp. EK‖0(X)).
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Normal inverse query. If the adversary queries E−1
K‖0(Y ) (resp. EK‖1(Y ′)) for

some key prefix K ∈ {0, 1}2n−1 and receives answer X , we also give it for
free EK‖1(X) (resp. EK‖0(X)).

We now give further free queries to the adversary, in the fashion described next.
After each adjacent query pair has been completed (namely, after the adversary
has received the response to both its query and its associated free query, and
after these have been placed in the query history), we check whether the key
prefix used for the latest query is such that the (current) query history contains
exactly N/2 adjacent query pairs with this key prefix. If so, we give all remaining
adjacent query pairs under this key prefix for free to the adversary. There will
be exactly N/2 such query pairs. We insert these N/2 free query pairs into
the query history pair-by-pair (to maintain, mostly for conceptual simplicity,
the adjacent pair structure of the query history). We note that, after these free
queries have been inserted into the query history, the adversary cannot make
any more queries under this key prefix, since the adversary is assumed never
to make a query to which it knows the answer. When N/2 free query pairs are
given to the adversary in the fashion just described, we say that a super query
occurs. This can be summed up as follows:

Super query. When the query history contains N/2 adjacent query pairs all
using the same key prefix K ∈ {0, 1}2n−1, all the remaining queries of the
form EK||0(·) and EK||1(·) are given for free.

We say that an adjacent query pair (X,K‖0, Y ), (X,K‖1, Y ′) is “winning”, or
“successful”, if X ⊕ Y = U and X ⊕ Y ′ = V . Thus the adversary obtains a
preimage of U‖V precisely if it obtains a winning adjacent query pair. This can
occur in one of two ways: either the winning query pair is part of a super query,
or not. We let SuperQueryWin(Q) denote the event that the adversary obtains
a winning query pair that is part of a super query, and NormalQueryWin(Q) the
event that the adversary obtains a winning query pair of normal queries. It thus
suffices to upper bound

Pr[SuperQueryWin(Q)] + Pr[NormalQueryWin(Q)].

Here probabilities are taken (as usual) over the adversary’s randomness (if any)
and over the randomness of the ideal cipher.

We first upper bound Pr[NormalQueryWin(Q)]. Note that when the adversary
makes, say, a forward query EK‖0(X), at most N/2− 1 queries have been previ-
ously answered to the key K‖0 and at most N/2−1 queries have been previously
answered to the key K‖1, since otherwise a super query for the key prefix K
would have occurred. Thus the values Y = EK‖0(X) and Y ′ = EK‖1(X) come
uniformly and independently at random from a set of size at leastN/2+1 ≥ N/2,
and there is chance at most (1/(N/2))2 = 4/N2 that we obtain a winning pair
of adjacent queries. The same is true if the adversary makes a forward query
EK‖1(X), or an inverse query E−1

K‖0(Y ), or an inverse query E−1
K‖1(Y

′). Since the
adversary makes q queries in total, we therefore have

Pr[NormalQueryWin(Q)] ≤ 4q/N2. (1)
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We now bound Pr[SuperQueryWin(Q)]. Say a super query is about to occur on
key prefix K ∈ {0, 1}2n−1, meaning that the value of EK‖0(·) and EK‖1(·) is
already known on exactly N/2 points. Let us denote this set of points by X , and
let Y = EK‖0(X ) and Y ′ = EK‖1(X ). Further letA = {0, 1}n\X , B = {0, 1}n\Y,
and B′ = {0, 1}n \ Y ′. Note that |X | = |Y| = |Y ′| = |A| = |B| = |B′| = N/2.

Now let a point A ∈ A in the domain of the super query be arbitrarily fixed,
and let us estimate the probability that point A induces a winning pair under
E. If A ⊕ U ∈ Y or if A⊕ V ∈ Y ′, this probability is zero. Consequently, let us
suppose that A⊕ U ∈ B and A⊕ V ∈ B′.

The probability (taken w.r.t. E) that EK‖0(A) = A⊕U and EK‖1(A) = A⊕V
equals

(
(N/2−1)!
(N/2)!

)2

=
(

1
N/2

)2

. Thus, by union bounding over A, we find that
the probability of the super query producing a winning pair of adjacent queries

is at most N/2 ·
(

1
N/2

)2

= 1
N/2 . We now observe that at most q/(N/2) super

queries can ever occur, since each super query requires a “setup” cost of N/2
queries. Thus

Pr[SuperQueryWin(Q)] ≤ 4q/N2. (2)

Summing (1) and (2) completes the proof. ��

4 Preimage Security Results for Hirose’s Scheme

Hirose [4] introduced his 3n-bit to 2n-bit compression function making two calls
to a block cipher of 2n-bit key over 10 years after Abreast-DM and Tandem-
DM (see the next Sections). Hirose’s construction (Figure 2) is simpler than
either of its predecessors and it uses a single keying schedule for the top and
bottom block ciphers. Moreover, Hirose himself already proved birthday-type
collision resistance for his construction in the ideal cipher model, thereby pre-
dating similar collision resistance analyses for Abreast-DM and Tandem-DM.
Previously, Lee and Kwon [6] have shown that Advepre

Hir (q) ≤ 2q/(N − 2q)2,
which becomes void once q > N/2. We improve upon this bound considerably.

Theorem 2. Let Hir : {0, 1}3n → {0, 1}2n be the block cipher-based compression
function depicted in Figure 2. Then

Advepre
Hir (q) ≤ 8q/N2 + 8q/N(N − 2).

In particular, Advepre
Hir (q) is upper bounded by approximately 16q/N2.

Proof. Let U‖V ∈ {0, 1}2n be the point to invert (chosen by the adversary before
it makes any queries to E). We upper bound the probability that, in q queries,
the adversary finds a point A‖L‖M ∈ {0, 1}3n such that Hir(A‖L‖M) = U‖V .

When the adversary makes a forward query EL‖M (A) we give it for free, also,
the answer to the query EL‖M (A ⊕ c). Moreover when the adversary makes
a backward query E−1

L‖M (R), resulting in an answer A = E−1
L‖M (R), we give it
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c

A

S

R

A⊕ c⊕S

A⊕R

ML

Fig. 2. Hirose’s compression function. All wires carry n-bit values. The top and bottom
block ciphers, which are the same block cipher, have 2n-bit key and n-bit input/output.
The wires A,L,M are the inputs to the compression function. The bottom left-hand
wire is not an input; it carries an arbitrary nonzero constant c.

for free the answer to the forward query EL‖M (A ⊕ c). Also, we assume that
the adversary never makes a query to which it knows the answer (in the sense
discussed in Section 2). Thus the elements of the adversary’s query history Q
can be paired into adjacent pairs of the form (A,L‖M,R), (A⊕ c, L‖M,S). We
call such a pair an “adjacent query pair”. Furthermore, we define super queries
analogously to the definition used in the proof of Theorem 1. More precisely, as
soon as the (current) query history contains exactly N/2 queries with the same
key, all remaining queries under this key are given for free to the adversary. (A
minor difference with Theorem 1 is that it only takes N/4 queries to trigger a
super query under a given key, instead of N/2.)

We say that an adjacent query pair (A,L‖M,R), (A⊕c, L‖M,S) is “winning”,
or “successful”, if A⊕R = U and A⊕c⊕S = V , or if A⊕R = V and A⊕c⊕S = U .
Thus the adversary obtains a preimage of U‖V precisely if it obtains a winning
adjacent query pair. This can occur in one of two ways: either the winning query
pair is part of a super query, or not. We let SuperQueryWin(Q) denote the event
that the adversary obtains a winning query pair that is part of a super query,
and NormalQueryWin(Q) the event that the adversary obtains a winning query
pair of normal queries. It thus suffices to upper bound

Pr[SuperQueryWin(Q)] + Pr[NormalQueryWin(Q)].

Here probabilities are taken (as usual) over the adversary’s randomness (if any)
and over the randomness of the ideal cipher.

We first upper bound Pr[NormalQueryWin(Q)]. Note that when the adversary
makes, say, a forward query EL‖M (A), at most N/2 − 2 queries (counting free
queries) have been previously answered with the key L‖M , since otherwise a
super query for the key L‖M would have occured. Thus the value R = EL‖M (A)
comes uniformly at random from a set of size at least N/2+2 ≥ N/2, and there
is chance at most 2/(N/2) = 4/N that either A ⊕ R = U or A ⊕ R = V (this
is also true if U = V ). If, say, A ⊕ R = U , there is further chance at most
1/(N/2) = 2/N that the free query EL‖M (A ⊕ c) returns A ⊕ c ⊕ V , since the
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answer to the free query comes uniformly at random from a set of size at least
N/2+1 ≤ N/2. Other cases (e.g. when A⊕R = V , and when the adversary makes
a backward query E−1

L‖M (R)) are similarly analyzed, showing that the adversary’s
chance of triggering the event NormalQueryWin(Q) at any given query is at most
(4/N)(2/N) = 8/N2. Since the adversary makes q queries total, we have

Pr[NormalQueryWin(Q)] ≤ 8q/N2. (3)

We now bound Pr[SuperQueryWin(Q)]. Say a super query is about to occur on
key L‖M , meaning that the value of EL‖M (·) is already known on exactly N/2
points paired into N/4 query pairs. Let A,A⊕ c be in the domain of the super
query. (We say that a point B ∈ {0, 1}n is “in the domain of the super query” if
EL‖M (B) is not yet known, and will be queried as part of the super query; note
that a point A ∈ {0, 1}n is in the domain of the super query if and only if A⊕ c
is in the domain of the super query.) Then the probability that EL‖M (A) = U
is either 0 if U is not in the range of the super query (meaning there is a normal
query EL‖M (B) = U already present in the query history when the super query
is made), or else is exactly 2/N , since the value of EL‖M (A) returned by the super
query is uniform at random in a set of size N/2. Thus, by a similar argument
on V , the probability that EL‖M (A) ∈ {U, V } is at most 4/N . Conditioning on
the event EL‖M (A) ∈ {U, V }, the probability that EL‖M (A ⊕ c) ∈ {U, V } is at
most 1/(N/2 − 1), since EL‖M (A ⊕ c) is sampled uniformly at random from a
set of size N/2−1, once the value EL‖M (A) is known. Thus the probability that
the super query returns values such that the adjacent query pair (A,L‖M, ·),
(A ⊕ c, L‖M, ·) is winning is at most 4/N(N/2 − 1). But A,A ⊕ c were two
arbitrary paired domain points; taking a union bound over the N/4 such pairs
in the domain of the super query, we find that the probability of the super query
producing a winning pair of adjacent queries is at most

(N/4) · (4/N(N/2− 1)) = 1/(N/2− 1).

We now observe that at most q/(N/4) super queries can ever occur, since each
super query requires a “setup” cost of N/4 queries. Thus

Pr[SuperQueryWin(Q)] ≤ 4q/N(N/2− 1). (4)

Summing (3) and (4) completes the proof. ��

5 Preimage Security Results for Abreast-DM

Abreast-DM, pictured in Figure 3, is one of the classical schemes for turning
a 2n-bit key block cipher into a 3n-bit to 2n-bit compression function. It was
proposed by Lai and Massey in the same paper as Tandem-DM [5]. The collision
resistance of Abreast-DM was independently resolved by Fleischmann, Gorski
and Lucks [2] and Lee and Kwon [6], who both showed birthday-type collision
resistance for Abreast-DM. Previously, Hirose [3] had given a collision resistance
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A
B

B

L

A R

S B⊕S

A⊕R

Fig. 3. The Abreast-DM compression function. The wires A,B,L are the inputs to
the compression function. The empty circle at the left side of the bottom block cipher
denotes bit complementation.

analysis for a general class of compression functions that included Abreast-DM
as a special case, but under the assumption that the top and bottom block
ciphers of the diagram be distinct. This assumption considerably simplifies the
analysis (see also the later generalization by Özen and Stam [8]).

Previously, Lee and Kwon [6] have shown that Advepre
Abr (q) ≤ 6q/(2n − 6q)2.

Although our bound for Abreast-DM (Theorem 3) is not as tight as our bound
for Hirose’s scheme (Theorem 2), it is clear from Corollary 1 below that our
result significantly improves this bound.

Theorem 3. Let Abr : {0, 1}3n → {0, 1}2n be the block cipher-based compres-
sion function depicted in Figure 3. Let α > 0 be an integer. Then

Advepre
Abr (q) ≤

16α
N

+
8q

N2(N − 2)
+ 2 ·

(
2eq
αN

)α

+
4q
αN

.

Proof. Let U‖V be the point to invert, chosen by the adversary before any
queries are made to E.

Unlike in the proof for Hirose’s scheme, we do not give the adversary a free
query after each query it makes. However, we still give the adversary “super
queries” for free. More precisely, whenever the adversary has made N/2 queries
under a given key K‖L, and after the (N/2)-th such query has been answered
and placed in the query history, we give the remaining N/2 queries under the
key K‖L for free to the adversary, in any order. In this case, we say that a super
query occurs; every query in the query history is either part of a super query,
or not; in the latter case we call the query a “normal query”. (Thus, in this
theorem, normal queries are exactly the non-free queries.) Unlike in the proof
of Theorem 2, there is no notion of an adjacent query pair. However, like in the
proof of Theorem 2, we alert the reader to the fact that a “super query” consists
of a set of N/2 queries, whereas a “normal query” is a single query.

We define an event Lucky(Q) on the query history; Lucky(Q) occurs if

|{(X,K‖L, Y ) ∈ Q : X ⊕ Y = U}| > 2α,
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or if
|{(X,K‖L, Y ) ∈ Q : X ⊕ Y = V }| > 2α.

The adversary obtains a preimage of U‖V precisely if it obtains queries of the
form (A,B‖L,R), (B,L‖A,S) such that A ⊕ R = U and B ⊕ S = V , where B
is bitwise complementation of B. It is easy to check that these two queries must
be distinct, otherwise one obtains the contradiction B = A = L = B. We call
two such queries a “winning pair” of queries. Note, of course, that the queries
in a winning pair need not be adjacent in the query history. We speak of the
“first” and “second” query in a winning pair referring to the order in which they
appear in the query history.

Let WinNormal(Q) be the event that the adversary obtains a winning pair in
which the second query is a normal query. Let WinSuper1(Q) be the event that
the adversary obtains a winning pair in which the second query is part of a super
query and the first is either normal or part of a super query, but is not part of
the same super query as the second. Finally let WinSuper2(Q) be the event that
the adversary obtains a winning pair in which both queries of the pair are part
of the same super query. It is then clear that if the adversary wins, one of the
events

WinNormal(Q),WinSuper1(Q) or WinSuper2(Q)

occurs. In particular, thus, one of the four events

Lucky(Q),WinNormal(Q) ∧ ¬Lucky(Q),WinSuper1(Q) ∧ ¬Lucky(Q),

WinSuper2(Q) ∧ ¬Lucky(Q)

must occur if the adversary wins. We upper bound the probability of each of
these four events and sum the upper bounds in order to obtain an upper bound
on the adversary’s advantage.

We start by upper bounding Pr[Lucky(Q)]. For this we introduce two new
events. Let Qn be the restriction of Q to normal queries, and let Qs be the
restriction of Q to queries that are part of super queries. Let Luckyn(Q) be the
event that either

|{(X,K‖L, Y ) ∈ Qn : X ⊕ Y = U}| > α,

or
|{(X,K‖L, Y ) ∈ Qn : X ⊕ Y = V }| > α.

The event Luckys(Q) is likewise defined with respect to Qs. Obviously,
Lucky(Q) =⇒ Luckyn(Q) ∨ Luckys(Q), so it suffices to upper bound Luckyn(Q)
and Luckys(Q) and to sum these upper bounds.

Since every answer to a normal query, forward or backward, comes at random
from a set of size at least N/2, and since at most q normal queries are made, we
have that

Pr[Luckyn(Q)] ≤ 2 ·
(
q

α

)(
2
N

)α

≤ 2 ·
(

2eq
αN

)α

.
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To upper bound Pr[Luckys(Q)], note that when a super query is made on key
K‖L, the expected number of points X ∈ {0, 1}n in the domain of the super
query such that X ⊕ EK‖L(X) = U is at most (N/2) · (2/N) = 1, since for
each individual such point the probability that X⊕EK‖L(X) = U is either 0 (if
X ⊕ U is not in the range of the super query) or 2/N . Moreover there occur at
most q/(N/2) = 2q/N super queries, since it costs N/2 queries to setup a super
query for a given key. Thus, the expectation of the random variable

|{(X,K‖L, Y ) ∈ Qs : X ⊕ Y = U}|,
taken over the coin tosses of the adversary and the randomness of E, is at most
2q/N · 1 = 2q/N . It then follows by Markov’s inequality that the probability
that

|{(X,K‖L, Y ) ∈ Qs : X ⊕ Y = U}| > α

is at most 2q/αN . Then by a union bound and a symmetric argument (for
X ⊕ Y = V ) , we obtain that Pr[Luckys(Q)] ≤ 4q/αN . Summing the upper
bounds for Pr[Luckyn(Q)] and Pr[Luckys(Q)], we thus obtain that

Pr[Lucky(Q)] ≤ 2 ·
(

2eq
αN

)α

+
4q
αN

. (5)

We now upper bound Pr[WinNormal(Q) ∧ ¬Lucky(Q)]. For this we use a “wish
list” argument similar to that of [7]. As the adversary makes queries, we maintain
two sequences WT and WB called wish lists. These are initially empty. For each
query (X,K‖L, Y ) added to the query history (whether normal or part of a
super query) we update the wish lists as follows:

1. If X ⊕ Y = U then (K,L‖X,K ⊕ V ) is added to WB.
2. If X ⊕ Y = V then (L,X‖K,L⊕ U) is added to WT.

We emphasize thatWB andWT are sequences, not sets. The following properties
are easy to check: (i) a query never “adds itself” to a wish list (namely, the
queries inserted into the wish lists—if any—as a result of query (X,K‖L, Y )
being added to the query history, are distinct from (X,K‖L, Y ) itself); (ii) the
elements of WT are all distinct from one another, and the elements of WB are
all distinct from one another—namely, the same triple is never added twice to
a wish list; (iii) the adversary obtains a winning pair precisely if a query is ever
added to its query history that is already a member of one of its wish lists before
the updating of the wish lists for that query (by property (i), however, we could
equally well say “after the updating of the wish lists for that query”). Moreover,
as long as ¬Lucky(Q) holds, the wish lists never exceed length 2α.

Let EK‖L(X) be a query made to E during the adversary’s attack (either a
normal query, or as part of a super query). If, at the moment when the query
is being made, there is an element of the form (X,K‖L, Y ) in (at least) one of
the wish lists for some Y ∈ {0, 1}n, then we say this wish list element is being
“wished for” when the query EK‖L(X) is made. We similarly say the wish list
element (X,K‖L, Y ) is being “wished for” if the query E−1

K‖L(Y ) is made (note
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that in this case, the query E−1
K‖L(Y ) is necessarily normal, since a super query

is, by default, implemented by forward queries). We note, importantly, that any
wish list element can only be wished for once, since EK‖L(·) is a permutation.

Let NormalWishGrantedT,i be the event that a normal query (X,K‖L, Y ),
when added to the query list, is equal to the i-th element of WT (presum-
ing WT has length at least i when the query is added). Likewise define
NormalWishGrantedB,i with respect to the list WB. Then by the above remarks

WinNormal(Q) ∧ ¬Lucky(Q) =⇒
2α∨
i=1

NormalWishGrantedT,i ∨

2α∨
i=1

NormalWishGrantedB,i

so by a union bound

Pr[WinNormal(Q) ∧ ¬Lucky(Q)] ≤
2α∑
i=1

Pr[NormalWishGrantedT,i] +

2α∑
i=1

Pr[NormalWishGrantedB,i].

Because each wish list element can only be wished for once and because a normal
query is answered at random uniformly from a set of size at least N/2, we have

Pr[NormalWishGrantedT,i] ≤ 2/N, Pr[NormalWishGrantedB,i] ≤ 2/N

and therefore

Pr[WinNormal(Q) ∧ ¬Lucky(Q)] ≤ 2 · (4α/N) = 8α/N. (6)

We now upper bound Pr[WinSuper1(Q) ∧ ¬Lucky(Q)]. We keep the same defi-
nition of the wish lists WT, WB as above. We let SuperWishGranted1

T,i be the
event that a query (X,K‖L, Y ) that is part of a super query is equal to the i-th
element of WT, where WT has length ≥ i before any of the super queries under
key K‖L have been made. The event SuperWishGranted1

B,i is similarly defined.
By the definition of WinSuper1(Q) we have that

Pr[WinSuper1(Q) ∧ ¬Lucky(Q)] ≤
2α∑
i=1

Pr[SuperWishGranted1
T,i] +

2α∑
i=1

Pr[SuperWishGranted1
B,i].

Assume, for a given i, that the i-th element of WT (say) is (X,K‖L, Y ), and
that a super query is about to be made for the key K‖L, and that X is in the
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domain of the super query. Then the probability that EK‖L(X) = Y is at most
2/N (more precisely, it is exactly 2/N unless Y is not in the super query’s range,
in which case it is 0). Thus, arguing similarly for the list WB, we obtain that

Pr[SuperWishGranted1
T,i] ≤ 2/N, Pr[SuperWishGranted1

B,i] ≤ 2/N.

Therefore

Pr[WinSuper1(Q) ∧ ¬Lucky(Q)] ≤ 8α/N. (7)

We finally bound Pr[WinSuper2(Q) ∧ ¬Lucky(Q)]. In fact we upper bound the
value Pr[WinSuper2(Q)], and we do not use a wish list argument. Note the event
WinSuper2(Q) can only occur when a super query is made on a key of the form
L‖L, and then occurs only if both L and L are in the domain of the super query
and if EL‖L(L) ⊕ L = U , EL‖L(L) ⊕ L = V . It is easy to see that probability
(when the super query is made) that these latter equalities hold is at most
(2/N)·(1/(N/2−1)). Since at most q/(N/2) super queries are made, we therefore
have

Pr[WinSuper2(Q) ∧ ¬Lucky(Q)] ≤ Pr[WinSuper2(Q)] ≤ 4q/N2(N/2− 1). (8)

Finally, we obtain the theorem by summing (5), (6), (7) and (8). ��
Corollary 1. We have

Advepre
Abr (2

2n−10) ≤ 1/2 + o(1)

where the o(1) term tends to 0 as n→∞.

Proof. By setting α = q1/2/2 (note that α is allowed to depend on q), the bound
from Theorem 3 simplifies to

16q1/2

N
+

8q
N2(N − 2)

+ 2 ·
(

4eq1/2

N

)q1/2/2

Suppose that q = (cN)2 for some 0 < c < 1, then this bound can be rewritten
as

16c+
8c2

N − 2
+ 2 · (4ec)cN/2

.

For 4ec < 1 this tends 16c, so setting c = 1/32 gives us the claimed result. ��

6 Preimage Security Results for Tandem-DM

The Tandem-DM compression function, proposed by Lai and Massey in 1992 [5],
is a 3n-bit to 2n-bit compression function based on two applications of a block
cipher of 2n-bit key and n-bit word length (Figure 4). The first (flawed) proof
of collision security for Tandem-DM (by Fleischmann, Gorski and Lucks [1])
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B

B L

A R

R

S B⊕S

A⊕R

Fig. 4. The Tandem-DM compression function. The wires A,B,L are the inputs to the
compression function.

did not appear until 2009. Later, Lee, Stam and Steinberger [7] gave a correct
collision resistance analysis of Tandem-DM showing that indeed it has birthday-
type collision security in the ideal cipher model (necessitating at least 2120.8

queries to break when the output length is 2n = 256 bits). They also showed
preimage resistance up to essentially 2128 queries (for n = 128), once 0n‖0n is
excluded as challenge digest. Our new bound is identical to the bound we gave
for Abreast-DM, so in particular 22n−10 queries are needed to obtain a preimage
with probability ∼0.5 (Corollary 2).

Theorem 4. Let Tan : {0, 1}3n → {0, 1}2n be the block cipher-based compres-
sion function depicted in Figure 4. Let α > 0 be an integer. Then

Advepre�=0
Tan (q) ≤ 16α

N
+

8q
N2(N − 2)

+ 2 ·
(

2eq
αN

)α

+
4q
αN

.

Proof. Let U‖V �= 0n‖0n be the point to invert, chosen by the adversary before
making any queries to E.

We manage free queries exactly as for Abreast-DM; more precisely, when N/2
queries are made to E under a given key, we give the remaining N/2 queries
under that key for free to the adversary, and this constitutes a “super query”.
No other free queries are given.

In the case of Tandem-DM, the adversary obtains a preimage of U‖V precisely
if it obtains queries of the form (A,B‖L,R), (B,L‖R,S) such that A⊕R = U ,
B ⊕ S = V . It is easy to see these two queries must be distinct, otherwise
we would have A = B = L = R = S and therefore U‖V = 0n‖0n. We call two
queries as above a “winning pair” of queries, where the two elements of a winning
pair need not be adjacent in the query history (and could be in any order). We
speak again of the “first” and “second” query in a winning pair referring to the
order in which they appear in the query history.

We define the events Lucky(Q), WinNormal(Q), WinSuper1(Q) and
WinSuper2(Q) as in the proof of Theorem 3 (but with respect, of course, to
the new definition of “winning pair”). If the adversary wins, one of the events
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Lucky(Q), WinNormal(Q) ∧ ¬Lucky(Q), WinSuper1(Q) ∧ ¬Lucky(Q),

WinSuper2(Q) ∧ ¬Lucky(Q)

must occur. We upper bound the probability of each of these events separately.
As in the case of Theorem 3, we have

Pr[Lucky(Q)] ≤ 2 ·
(

2eq
αN

)α

+
4q
αN

. (9)

To upper bound Pr[WinNormal(Q) ∧¬Lucky(Q)], we again use wish lists. There
are two wish lists,WT andWB, which are initially empty and which are updated
after each new query (X,K‖L, Y ) placed into the query history, according to
the following rules:

1. If X ⊕ Y = U then (K,L‖Y,K ⊕ V ) is added to WB.
2. If X ⊕ Y = V then (L⊕ U,X‖K,L) is added to WT.

The same four properties from Theorem 3 are easy to check: (i) a query never
“adds itself” to a wish list (this uses U‖V �= 0n‖0n); (ii) the elements within
each wish list are all distinct from one another; (iii) the adversary obtains a
winning pair precisely if it obtains a query that is already in one of its wish
lists (at the moment of insertion of that query into the query history). And by
definition of Lucky(Q), the wish lists never exceed length 2α as long ¬Lucky(Q)
holds.

Let NormalWishGrantedT,i, NormalWishGrantedB,i be defined as in (the proof
of) Theorem 3. Then, using exactly the same analysis as in the proof of Theorem
3, we have that

Pr[NormalWishGrantedT,i] ≤ 2/N, Pr[NormalWishGrantedB,i] ≤ 2/N

and that

Pr[WinNormal(Q) ∧ ¬Lucky(Q)] ≤ 8α/N. (10)

Then also arguing word for word as in the proof of Theorem 3, we find that

Pr[WinSuper1(Q) ∧ ¬Lucky(Q)] ≤ 8α/N. (11)

We finally bound Pr[WinSuper2(Q)∧¬Lucky(Q)]. Note the event WinSuper2(Q)
can only occur when a super query occurs for a key of the form L‖L, and when
that super query results in the triples (U ⊕ L,L‖L,L), (L,L‖L,L ⊕ V ) being
added to the query history. The probability that EL‖L(U ⊕ L) = L is at most
2/N , and, conditioned on the event that EL‖L(U ⊕L) = L, the probability that
EL‖L(L) = L ⊕ V is at most 1/(N/2 − 1). Since at most 2q/N super queries
occur, we thus find that

Pr[WinSuper2(Q) ∧ ¬Lucky(Q)] ≤ Pr[WinSuper2(Q)] ≤ 4q/N2(N/2− 1).(12)

The theorem follows by summing (9), (10), (11) and (12). ��
As for Abreast-DM, we have the following corollary (with the same proof):
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Corollary 2. We have

Advepre
Tan (22n−10) ≤ 1/2 + o(1)

where the o(1) term tends to 0 as n→∞.

7 Conclusion

In this work, we developed and applied new techniques for determining lower
bounds with respect to preimage resistance. As opposed to existing techniques,
statements on the security beyond the birthday bound are possible. We ap-
plied successfully these techniques to the three popular double-block-length,
double-call, block cipher-based compression functions, these being Abreast-DM,
Tandem-DM and Hirose’s scheme.

Although these techniques allow for proving asymptotically optimal bounds,
these bounds differ by constant factors from the best possible bound. This raises
the question whether more accurate bounds can be derived, possibly revealing
differences in the preimage resistance between the three constructions. A related
question is the estimation of non-trivial upper bounds on the preimage resistance.
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Abstract. The hash function JH [20] is one of the five finalists of the
NIST SHA-3 hash competition. It has been recently tweaked for the final
by increasing its number of rounds from 35.5 to 42. The previously best
known results on JH were semi-free-start near-collisions up to 22 rounds
using multi-inbound rebound attacks. In this paper we provide a new dif-
ferential path on 32 rounds. Using this path, we are able to build various
semi-free-start internal-state near-collisions and the maximum number
of rounds that we achieved is up to 37 rounds on 986 bits. Moreover, we
build distinguishers in the full 42-round internal permutation. These are,
to our knowledge, the first results faster than generic attack on the full
internal permutation of JH42, the finalist version. These distinguishers
also apply to the compression function.
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1 Introduction

A cryptographic hash function is a one way mathematical function that takes
a message of arbitrary length as input and produces an output of fixed length,
which is commonly called a fingerprint or message digest. Hash functions are
fundamental components of many cryptographic applications such as digital sig-
natures, authentication, key derivation, random number generation, etc. So, in
terms of security any hash function should be preimage, second-preimage and
collision resistant.

Most of the recent hash functions use either compression functions or internal
permutations as building blocks in their design. In addition to the main prop-
erties mentioned above, some ideal properties should also be satisfied for the
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building blocks. This means that the algorithm should not have any structural
weaknesses and should not be distinguishable from a random oracle. The ab-
sence of these properties on building blocks may not impact the security claims
of the hash function immediately but it helps to point out the potential flaws in
the design.

Since many of the hash standards [16,19] have been broken in recent years,
the National Institute of Standards and Technology (NIST) announced a com-
petition to replace the current standard SHA-2 with a new algorithm SHA-3.
The hash function JH [20], designed by Hongjun Wu, is one of the five finalists
of this competition. It is a very simple design and efficient in both software and
hardware. JH supports four different hash sizes: 224, 256, 384 and 512-bit. It has
been tweaked from the second round to the final round by increasing its number
of rounds from 35.5 to 42. The new version is called JH42.

Related Work. We recall here the previously best known results on JH. A
marginal preimage attack on the 512-bits hash function with a complexity in
time and memory of 2507 was presented in [1]. Several multi-inbound rebound
attacks were presented in [15], providing in particular a semi-free-start collision
for 16 rounds with a complexity of 2190 in time and 2104 in memory and a semi-
free-start near-collision for 22 rounds of compression function with a complexity
of 2168 in time and 2143 in memory. In [12, Sec.4.1], improved complexities for
these rebound attacks were provided: 297 in time and memory for the 16 round
semi-free-start collision and 296 in time and memory for the 22 rounds semi-free-
start near-collision for compression function.

Our Contributions. In this paper we apply, as in [15], a multi-inbound re-
bound attack, using 6 inbounds that cover rounds from 0 to 32. We first find
partial solutions for the differential part of the path by using the ideas from [13].
Due to increased number of rounds compared with the previous attacks, the
differential path will have several highly active peaks, instead of one as in [15].
This means that, while in the previous attacks finding the whole solution for the
path could be easily done without contradicting any of the already fixed values
from the inbounds, now finding the complete solution is the most expensive part.
We propose here an algorithm that allows us to find whole solutions for rounds
from 4 to 26 with an average complexity of 264. By repeating the algorithm, the
attack can be started from round 0 and extended up to 37 rounds for building
semi-free-start near-collisions on the internal state, since we have enough degrees
of freedom. Based on the same differential characteristic, we also present distin-
guishers for 42 rounds of the internal permutation which is the first distinguisher
on internal permutation faster than generic attack to the best of our knowledge.
We summarize our main results in Table 1.

This paper is organized as follows: In Section 2, we give a brief description of
the JH hash function, its properties and an overview of the rebound attack. In
Section 3, we first describe the main idea of our attack and then give the semi-
free internal near-collision results on the tweaked version JH42. Based on this
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Table 1. Comparison of best attack results on JH (sfs: semi-free-start)

target rounds time
comp.

memory
comp.

attack type generic
comp.

sect.

hash function 16 2190 2104 sfs collision 2256 [15]
hash function 16 296.1 296.1 sfs collision 2256 [12]

comp. function 19− 22 2168 2143.7 sfs near-collision 2236 [15]
comp. function 19− 22 295.6 295.6 sfs near-collision 2236 [12]
comp. function 26 2112 257.6 sfs near-collision 2341.45 §3
comp. function 32 2304 257.6 sfs near-collision 2437.13 §3
comp. function 36 2352 257.6 sfs near-collision 2437.13 §3
comp. function 37 2352 257.6 sfs near-collision 2396.7 §3
internal perm. 42 2304 257.6 distinguisher 2705 §4
internal perm. 42 2352 257.6 distinguisher 2762 §4

results, we describe a distinguisher in Section 4 for the full internal permutation,
that also applies to the full compression function. Finally, we conclude the paper
and summarize our results in Section 5.

2 Preliminaries

2.1 The JH42 Hash Function

The hash function JH is an iterative hash function that accepts message blocks
of 512 bits and produces a hash value of 224, 256, 384 and 512 bits. The message
is padded to be a multiple of 512 bits. The bit ‘1’ is appended to the end of the
message, followed by 384−1+(−l mod 512) zero bits. Finally, a 128-bit block is
appended which is the length of the message, l, represented in big endian form.
Note that this scheme guarantees that at least 512 additional bits are padded.

In each iteration, the compression function Fd, given in Figure 1, is used to
update the 2d+2 bits of the state Hi−1 as follows:

Hi = Fd(Hi−1,Mi)

where Hi−1 is the previous chaining value and Mi is the current message block.
The compression function Fd is defined as follows:

Fd(Hi−1,Mi) = Ed(Hi−1 ⊕ (Mi||02d+1
))⊕ (02d+1 ||Mi)

Here, Ed is a permutation and is composed of an initial grouping of bits followed
by 6(d − 1) rounds, plus a final degrouping of bits. The grouping operation
arranges bits in a way that the input to each S-Box has two bits from the
message part and two bits from the chaining value. In each round, the input is
divided into 2d words and then each word passes through an S-Box. JH uses
two 4-bit-to-4-bit S-Boxes (S0 and S1) and every round constant bit selects
which S-Boxes are used. Then two consecutive words pass through the linear
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Fig. 1. The compression function Fd that transforms 2d+2 bits treated as 2d words of
four bits

transformation L, which is based on a [4, 2, 3] Maximum Distance Separable
(MDS) code over GF (24). Finally all words are permuted by the permutation
Pd. After the degrouping operation each bit returns to its original position.

The initial hash value H0 is set depending on the message digest size. The
first two bytes of H−1 are set as the message digest size, and the rest of the bytes
of H−1 are set as zero. Then, H0 = Fd(H−1, 0). Finally, the message digest is
generated by truncating HN where N is the number of blocks in the padded
message, i.e, the last X bits of HN are given as the message digest of JH-X
where X = 224, 256, 384 and 512.

The official submitted version of JH42 has d = 8 and so the number of rounds
is 42 and the size of the internal state is 1024 bits. Then, from now on, we will
only consider E8. For a more detailed information we refer to the specification
of JH [20].

2.2 Properties of the Linear Transformation L

Since the linear transformation L implements a [4, 2, 3] MDS code, any difference
in one of the words of the input (output) will result in a difference in two words
of the output (input). For a fixed L transformation, if one tries all possible 216

pairs, the number of pairs satisfying the condition 2 → 1 or 1 → 2 is 3840,
which gives a probability of 3840/65536 ≈ 2−4.09. Note that, if the words are
arranged in a way that they will be both active this probability increases to
3840/57600 ≈ 2−3.91. For the latter case, if both words remain active (2 → 2),
the probability is 49920/57600≈ 2−0.21.

2.3 Observations on the Compression Function

The grouping of bits at the beginning of the compression function assures that
the input of every first layer S-Box is xor-ed with two message bits. Similarly,
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the output of each S-Box is xor-ed with two message bits. Therefore, for a ran-
dom non-zero 4-bit difference, the probability that this difference is related to a
message is 3/15 ≈ 2−2.32.

The bit-slice implementation of Fd uses d − 1 different round functions. The
main difference between these round functions is the permutation function. In
each round permutation, the odd bits are swapped by 2r mod (d − 1) where r
is the round number. Therefore, for the same input passing through multiple
rounds, the output is identical to the output of the original round function for
the α · (d− 1)-th round where α is any integer.

2.4 The Rebound Attack

The rebound attack was introduced by Mendel et al. [10]. The two main steps
of the attack are called inbound phase and outbound phase. In the inbound
phase, the available degrees of freedom are used to connect the middle rounds by
using the match-in-the-middle technique and in the outbound phase connected
truncated differentials are computed in both forward and backward direction.

This attack has been first used for the cryptanalysis of reduced versions of
Whirlpool and Grøstl, and then extended to obtain distinguishers for the full
Whirlpool compression function [6]. Later, linearized match-in-the-middle and
start-from-the-middle techniques are introduced by Mendel et al. [9] to improve
the rebound attack. Moreover, a sparse truncated differential path and state
is used in the attack on LANE by Matusiewicz et al. [8] rather than using
a full active state in the matching part of the attack. Then, these techniques
were used to improve the results on AES-based algorithms in the following pa-
pers: [2,3,5,11,14,17,18].

3 Semi-free-start Internal Near-Collisions

In this section, we first present an outline for the rebound attack on reduced
round versions of JH for all hash sizes. We use a differential characteristic that
covers 32 rounds, and apply the start-from-the-middle technique by using six
inbound phases with partially active states. We first describe how to solve the
multi-inbound phase for the active bytes. Contrary to previous attacks on JH,
we now have more fixed values from the inbound phases. So, in order to find a
complete solution, we need to merge these fixed values without contradicting any
of them. Therefore, we describe next how to match the passive bytes. Finally,
we analyze the outbound part.

3.1 Matching the Active Bytes

Multi-inbound Phase. The multi-inbound phase of the attack covers 32
rounds and is composed of two parts. In the first part, we apply the start-from-
the-middle-technique six times for rounds 0− 4, 4− 10, 10− 16, 16− 20, 20− 26
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Fig. 2. Differential characteristic for 32 rounds of JH Compression Function (bit-slice
representation)

and 26 − 32. In the second part, we connect the resulting active bytes (hence
the corresponding state values) by a match-in-the-middle step. The number of
active S-Boxes in each of the sets is:

4 ← 8← 16→ 8→ 4 (1)
4 ← 8← 16← 32← 64→ 32→ 16 (2)

16 ← 32← 64→ 32→ 16→ 8→ 4 (3)
4 ← 8← 16→ 8→ 4 (4)
4 ← 8← 16← 32← 64→ 32→ 16 (5)

16 ← 32← 64→ 32→ 16→ 8→ 4 (6)

Here, the arrows represent the direction of the computations for the inbound
phases and for a detailed sketch we refer to Figure 2. We start from the middle
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and then propagate outwards by computing the cross-product1 of the sets and
using the filtering conditions. For each inbound we try all possible 216 pairs in
Step 0. The number of sets, the bit length of the middle values (size) of each list,
and the number of filtering conditions on words followed by the number of pairs
in each set are given in Table 2. The complexities given in the Table 2 are not
optimized yet, we will describe the improved complexities later in Section 3.1.

Merging Inbound Phases. The remaining pairs at inbound i are stored on
list Li. Connecting the six lists is performed in three steps as follows:

1. Whenever a pair is obtained from set 2, we check whether it exists in L3 or
not. If it does, another check is done for L1. Since we have 223.44 and 283.96

elements in lists 1 and 3 respectively, 283.96 pairs passing the second inbound
phase, and 32-bit and 128-bit conditions for the matches, the expected num-
ber of remaining pairs is 223.44 · 2−32 · (283.96 · 2−128 · 283.96) = 231.36. We
store these these pairs in list A.

2. Similarly, whenever a pair is obtained from set 5, we check whether it exists
in L6 or not. If it does, another check is done for L4. Since we have 232.72

and 283.96 elements in lists 4 and 6 respectively, 280 pairs passing the fifth in-
bound phase, and 32-bit and 128-bit conditions for the matches, the expected
number of remaining pairs is 232.72 · 2−32 · (283.96 · 2−128 · 283.96) = 240.64. We
store these pairs in list B.

3. Last step is merging these sets A and B. We have 231.36 elements in A and
240.64 elements in B and 32 bits of condition. Therefore the total expected
number of remaining pairs is 231.36 · 2−32 · 240.64 = 240.

Improving the complexity of finding a solution for the differential part.
We have described how to obtain the existing 240 solutions for the differential
part. We are going to describe here a better way of doing the inbounds, as
proposed in [12, Sec.4.1]. This new technique allows us to reduce the previous
complexity from 299.70 in time and 283.96 in memory to 269.6 in time and 267.6

in memory. As in our further analysis we will just use one solution (and not 240)
for the differential part, we will adapt the values being able to finally reduce the
complexity of this part of the attack to 259.6 in time and 257.6 in memory. This
memory is the memory bottleneck of all the analysis presented in this paper.

1. We consider the six inbounds as described in the previous section, with the
difference that, for inbounds 2, 3, 5 and 6 we will not perform the last step,
but instead we obtain for each inbound i ∈ {2, 3, 5, 6} two lists LA,i and LB,i

as a result, each of size 249.80 associated to half of the corresponding differ-
ential path. As mentioned before, we are only looking to find one solution

1 cross-product is an operation on two arrays that results in another array whose
elements are obtained by combining each element in the first array with every element
in the second array.
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Table 2. Overview of inbound phases of the attack on 32 rounds of JH

Step Size Sets Filtering Pairs Complexity
Conditions Remaining Backwards Forwards

In
b
o
u
n
d

1 0 8 8 1 211.91 − 216

1 16 4 2 216 223.91 −
2 32 2 2 224.18 232.09 −
3 64 1 4 232.72 248.46 −
4 64 1 4a 223.44

In
b
o
u
n
d

2

0 8 32 1 211.91 − 216

1 16 16 2 216 223.91 −
2 32 8 2 224.18 − 232.09

3 64 4 4 232.72 248.46 −
4 128 2 4 249.80 265.54 −
5 256 1 4 283.96 299.70 −

In
b
o
u
n
d

3

0 8 32 1 211.91 − 216

1 16 16 2 216 223.91 −
2 32 8 2 224.18 232.09 −
3 64 4 4 232.72 − 248.46

4 128 2 4 249.80 − 265.54

5 256 1 4 283.96 − 299.70

In
b
o
u
n
d

4 0 8 8 1 211.91 − 216

1 16 4 2 216 223.91 −
2 32 2 2 224.18 232.09 −
3 64 1 4 232.72 248.46 −

In
b
o
u
n
d

5

0 8 32 1 211.91 − 216

1 16 16 2 216 223.91 −
2 32 8 2 224.18 − 232.09

3 64 4 4 232.72 248.26 −
4 128 2 4 249.80 265.54 −
5 256 1 4 283.96 299.70 −

In
b
o
u
n
d

6

0 8 32 1 211.91 − 216

1 16 16 2 216 223.91 −
2 32 8 2 224.18 232.0 −
3 64 4 4 232.72 − 248.46

4 128 2 4 249.80 − 265.54

5 256 1 4 283.96 − 299.70

a Check whether the pairs satisfy the desired input difference

for the whole differential path. Then, instead of the 249.80 existing solutions
for each list, we can consider 244.8 elements on each list.

2. First, we merge lists LA,2 and LA,3. We have 16-bit conditions on values
and 16-bit conditions on differences. We obtain a new list LA,23 of size
244.8+44.8−32 = 257.6. We do the same with LB,2 and LB,3 to obtain LB,23.
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Note that this list does not need to be stored, as we can perform the following
step whenever an element is found.

3. In order to find a whole solution for the differential part of inbounds 2 and
3, one pair of elements from LA,23 and from LB,23 still needs to satisfy the
following conditions: 32 bits from the parts LA,2 and LB,3, 32 bits from
LB,2 and LA,3, 3.91 × 4 from the step 5 of inbound 2 that we have not
yet verified and 3.91 × 4 from step 5 of inbound 3 that is not yet verified
either. Therefore, we have 95.28-bit conditions in total to merge LA,23 and
LB,23. For each element in LB,23 we can check with constant cost if the
corresponding element appears in LA,23 (it can be done by a lookup in a
table, representing the differential transitions of L and next by a lookup in
the list LA,23 to see if the wanted elements appear. See [13,12] and Figure 3
for more details). When we find a good pair, we store it in the list L23

that has a size of about 219.92 elements satisfying the differential part of
rounds from 4 to 16. The cost of this step is then 257.6+1 in time and 259.6

in memory.
4. Do the same with inbounds 5 and 6, to obtain list L56 of size 219.92, with a

cost of 257.6+1 in time and 257.6 in memory.
5. Merge the solutions obtained in the first inbound with the ones in L23, ob-

taining a new set L123 of size 219.92+23.44−32 = 211.36.
6. Merge the solutions obtained from step 4 with list L56 obtaining a new one,

L456 of size 219.92+32.72−32 = 220.64.
7. Finally, merging L123 and L456 gives 211.36+20.64−32 = 1 partial solution for

the differential part of the path from round 0 to round 32.

The complexity of obtaining one partial solution for rounds from 0 to 32 is dom-
inated by Steps 2− 4 of the algorithm. As a result, the complexity of matching
the active bytes becomes 259.6 in time and 257.6 in memory.

3.2 Matching the Passive Bytes

In Figure 4, colored boxes denote the S-boxes whose values have already been
fixed from the inbound phases. Note that, we have not treated the passive bits
yet (i.e., found the remaining values that would complete the path). We will
propose a way of finding 232 solutions that verify the path from rounds 4 to 26
with time complexity 296 and memory complexity 251.58. This can be done in
three steps as follows:

1. (Rounds 10 to 14): The sets of groups of 8 bits denoted by a, b, c, d, e, f in
round 14 are independent of each other in this part of the path. In round
10, 32 bits are already fixed for each of these sets (groups of 4 bits denoted
by A,B,C,D,E, F ). By using all possible values of the remaining 96 passive
bits (32 bits not fixed from A,B,C,D,E, F plus 64 from the remaining state
at round 10), we can easily compute a list of 296 elements with cost 296 that
satisfy the 32 bit conditions for each of the groups.
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2. (Rounds 14 to 20): In round 20, we have 256 bits (green S-boxes ) whose
values are fixed from the solutions of the second inbound phase. We can
divide the state in round 19 (until the state in round 14) in 4 independent
parts (m,n, o, p). In Figure 4, the fixed bits coming from round 20 are de-
noted by green lines and the ones of the first inbound phase are denoted
in blue “ ”. Note that the three parts m,n, o are identical, while p is dif-
ferent since there are some differences and some additional fixed values in
it.

We fix the parts m and n to some values that satisfy all the conditions
of the fixed bits in rounds 19 and 14. This can be done as follows: Similar
to what we have done in step 1, we can divide the state of rounds 16 − 19
(for each part separately) into four groups (x, y, z, u) such that they are
independent of each other when computing forwards.

In round 16, each group has 16 bits whose values have already been fixed
and 48 bits of freedom. We see that each group affects only one fourth of the
green lines (16 bits in total) in round 19. Therefore, there exist 248−16 = 232

possibilities for each group x, y, z, u but we just need one. This one can then
be found with a cost of about 216.

3. (Merging): Each of the sets La, . . . , Lf has 296 possible values from step 1,
and fixing m and n fixes 64 bits for each of them in round 14. This gives us
in average 296−64 = 232 possible values for each set in the half of the state
associated to o and p in round 14.

For the part p we use the same idea explained in step 2. Group x is
completely fixed due to the differential characteristic, and only the groups
y, z, u have freedom, so there exists (232)3 = 296 possibilities. For each pos-
sibility, we compute the part of state in round 14 associated to p. We have
32 bits of condition for each of lists, and in average 232 values are associated
to each list. Thus, for each of the computed values, we will have only one
remaining element that will determine the values at positions a − f in the
part o.

Now, we have 296 possible o values. The probability that a fixed value
verifies the conditions of o in round 19 is (2−4)16 = 2−64. Therefore, we
obtain 296−64 = 232 solutions that verify the whole path from round 4 to
round 26 with a complexity in time of 296.

Note that we do not need to store the lists La, . . . , Lf of elements from round
14 each of size 296 but we can instead store for each of them two lists of size
248 corresponding to the upper and down halves of the corresponding groups
in state 13. Then, when fixing a value of m and n we can check with a cost of
232 which will be the list of 232 values for o and p that we obtained in step 3.
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Finally, we have obtained 232 complete solutions for the path from 4 to 26 with
a cost of 296 in time, and 6 · 2 · 248 ≈ 251.58 in memory.

Semi-free-start near-collisions up to 32 rounds: Up to now, we have found
solutions for the passive bytes from rounds 4− 26. If we want a solution for the
path from round 0 to round 26, we will have to repeat the previous procedure of
matching the passive bytes 216 times (as the probability of passing from round
0 to 4 is 2−48 and we have 232 pairs). Then, we can find a solution for rounds
0− 26 with complexity 2112 in time. In order to extend this result to 32 rounds,
we have to repeat the previous procedure 2192 times (since we have 64 and 128
bits of condition from rounds 26 and 27 respectively). Therefore, the complexity
for finding a complete solutions for rounds from 0 to 32 is 2112 · 2192 = 2304 in
time.

Note that, we still have enough degrees of freedom. In step 1, we started with
768 bits (128×6 from the groups a−f) in round 14 and matched 192 bits (32×6
for A− F ) in round 10. In Step 2, we have 48 bits in round 16 coming from the
fourth inbound phase and we matched another 240 bits from the fifth inbound
phase in round 19. So in total we have 768−192−48−240 = 288 bits of degrees
of freedom remaining.

3.3 Outbound Phase

The outbound phase of the attack is composed of 5 rounds in the forward direc-
tion. A detailed schema of this trail is shown in Figure 5 in appendix, and for the
pairs that satisfy the inbound phase, we expect to see the following differential
trail in the outbound phase:

Inbound Phase → 4 → 8 → 16→ 8→ 4→ 8

Semi-free-start near-collisions up to 37 rounds. For 32 rounds of the JH
compression function, we obtain a semi-free-start near-collision for 1002 bits. We
can simply increase the number of rounds by proceeding forwards in the out-
bound phase. Note that, we have an additional probability of 2−32×2−16 coming
from the eight filtering conditions in round 34 and the four filtering conditions
in round 35. Thus, the complexity of the active part of the attack remains the
same: 259.6 in time and 257.6 in memory. This is the case as one solution for the
differential part is enough for the attack, as it will have different values at the
bits with conditions in the outbound part when the passive part is modified.
The complexity of the passive part becomes 2304 · 248 = 2352 in time and 251.58

in memory.
The details can be seen in Table 3. We also take into account the colliding

bits that we obtain at the output of the compression function after the final
degrouping with the differences from the message.
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Table 3. Comparison of complexity of the generic attack for near-collisions and our
results

#Rounds # Colliding Generic Attack Our Results
bits Complexity

23 892 2230.51 259.6

24− 26 762 299.18 259.6 a

26 960 2341.45 2112

27 896 2236.06 2112

32 1002 2437.12 2304

33 986 2396.77 2304

34 954 2329.97 2304

35 986 2396.77 2336

36 1002 2437.12 2352

37 986 2396.77 2352

38 928 2284.45 2352

a Obtained directly from the solutions of the active part, without need of matching
the passive bits

4 Distinguishers on JH

Indifferentiability is considered to be a desirable property of any secure hash
function design. Moreover, for many of the designs, the indifferentiability proofs
for the mode of operation are based on the assumption that the underlying
permutation (function) is ideal (i.e., random permutation). This is the case
of the indifferentiability proof of JH [1], that supposes that Ed is a random
permutation.

In this section, we present a distinguisher for E8 showing that it is distinguish-
able form a random permutation. Using the differential path that we presented
in the previous section, we can build the distinguishers on the full 42 rounds of
the internal permutation E8 with no additional complexity. As a result of our
distinguisher, the proof from [1] does not apply to JH as the assumption of E8

behaving like random does not hold. Next, we explain how these distinguish-
ers on the internal permutation can be easily extended to distinguishers on the
compression function.

There exists also a known trivial distinguisher on the construction of the
compression function of JH: If the chaining value has a difference that can
be cancelled by the message block, then the output will have a difference di-
rectly related to the one coming from the message block. This implies that both
the message and the chaining values have differences. Contrary to the trivial
one, our compression function distinguisher exploits the properties of the inter-
nal permutation and only needs differences in the message or in the chaining
value.
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4.1 Distinguishers on the Reduced Round Internal Permutation

Let us remark here briefly that if we find solutions for rounds 4 to 20, and then
let them spread freely backward (difference in 64 bits) and forward (difference
in 256 bits), we can obtain a distinguisher for 26 rounds with a much lower
complexity: 259.6 in time and 257.6 in memory (the cost of the differential part).
As in this paper the aim is reaching a higher number of rounds, we do not go
further into the details.

4.2 Distinguishers on the Full Internal Permutation

In the previous sections we showed that a solution for 37 rounds can be obtained
with a time complexity of 2352 in time and 257.6 in memory. In Figure 5 from the
appendix, we see how these active words diffuse to the state after 42 rounds with
probability one. Therefore, before the degrouping operation we have 64 active
and 192 passive words in the state. The number of active and passive bits still
remain the same after the degrouping operation. It is important to remark that
the positions of the active bits are fixed, also after the degrouping operation.

We can then build a distinguisher that will distinguish the 42-round permuta-
tion E8 from a random permutation using this path. This distinguisher aims at
finding a pair of input states (A,A′) such that E8(A)⊕E8(A′) collide in the 768
bits mentioned above. Let A⊕A′ = Δ1 correspond to the input difference of the
differential path, then |Δ1| = 8 bits. Similarly, let B = E8(A) and B′ = E8(A′),
then the output difference is B ⊕B′ = Δ2 where |Δ2| = 256.

In the case of a random function, we calculate the complexity of such a dis-
tinguisher as follows: We fix the values of the passive bits in the input; but not
the ones of the active bits. Then, we have 2|Δ1| possibilities for the values from
the active bits. We compute the output of E8 for each one of these values and
store them in a list. From this list we can obtain

(
2|Δ1|

2

)
pairs with the given

input difference pattern. The probability of satisfying the desired output differ-
ence pattern is 2|Δ2|−1024 for each pair, so we repeat the procedure with a new
value for the input passive bits until we find a solution. The time complexity of
finding such an input pair will be:

2|Δ1|

2(|Δ1|−1) · (2|Δ1| − 1) · 2|Δ2|−1024
= 2761.

Instead, in our case the complexity of finding such an input pair is the complexity
of finding a solution for the path, that is 2352 in time and 257.6 in memory.

Another distinguisher of E8 can be built if we consider the scenario where the
differential path for rounds 0 − 4 does not need to be verified, i.e., |Δ1| = 64.
In this case, we consider that from round 4 to 0 we obtain the differences that
propagate with probability one. Therefore, the matching of the passive part does
not need to be repeated 2208 times but only 2160 (as we do not need 248 extra
repetitions for verifying rounds 0 to 4). The complexity of this distinguisher will
then be 2304, and provides a pair of inputs A and A′ that produce an output
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with 768 colliding bits as the ones represented in Figure 5 from appendix. The
complexity of such a generic distinguisher would be 264

(264−1)·263−768 = 2705, while
in our case is 2304 in time and 257.6 in memory.

4.3 Distinguishers on the Full Compression Function

We should emphasize that our distinguishers on E8 can be easily converted to a
distinguisher on the full compression function of JH42. We only need to xor this
message difference to the output of E8 as specified.

For our first distinguisher, the input difference is already arranged such that
we only have difference in the message. These active bits coming from the mes-
sage coincide with the active bits in the output at the xor operation. As a result,
we have the same 768 passive bits. The same applies for our second distinguisher
when we have differences only in the chaining value.

5 Conclusion

In this paper, we have presented semi-free-start internal near-collisions up to 37
rounds by using rebound attack techniques. We first obtained a 960-bit semi-
free-start near-collision for 26 rounds of the JH compression function with a time
complexity of 2112 and a memory complexity of 257.6. We then extended this to
986-bit semi-free-start near-collision for 37 rounds by repeating the algorithm.
Time complexity of the attack is increased to 2352 and the memory complexity
remains the same. We also presented semi-free-start near-collision results for
intermediate rounds 26−37 in Table 3. Our findings are summarized in Table 1.

Even more, we have presented distinguishers on the full 42 rounds of the in-
ternal permutation E8 of the tweaked SHA-3 finalist JH. The best distinguisher
has a time complexity of 2304 in time and 257.6 in memory and provides solutions
for the differential path on the 42 rounds. Obtaining such a pair of inputs pro-
ducing a same truncated differential in the output for a random function would
cost 2705 in time. Our internal permutation distinguishers can easily be extended
to compression function distinguishers with the same complexity.

Although our results do not present a threat to the security of the JH hash
function, they invalidate the JH indifferentiability proof presented in [1].
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vol. 6531. Springer, Heidelberg (2011)

3. Gilbert, H., Peyrin, T.: Super-sbox cryptanalysis: Improved attacks for aes-like
permutations. In: Hong and Iwata [4], pp. 365–383

4. Hong, S., Iwata, T. (eds.): FSE 2010. LNCS, vol. 6147. Springer, Heidelberg (2010)



268 M. Naya-Plasencia, D. Toz, and K. Varıcı

5. Ideguchi, K., Tischhauser, E., Preneel, B.: Improved collision attacks on the
reduced-round grøstl hash function. In: Burmester, et al. (eds.) [2], pp. 1–16 (2010)

6. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound
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Abstract. In this work, we introduce a new non-random property for
hash/compression functions using the theory of higher order differen-
tials. Based on this, we show a second-order differential collision for the
compression function of SHA-256 reduced to 47 out of 64 steps with
practical complexity. We have implemented the attack and provide an
example. Our results suggest that the security margin of SHA-256 is
much lower than the security margin of most of the SHA-3 finalists in
this setting. The techniques employed in this attack are based on a rect-
angle/boomerang approach and cover advanced search algorithms for
good characteristics and message modification techniques. Our analysis
also exposes flaws in all of the previously published related-key rectangle
attacks on the SHACAL-2 block cipher, which is based on SHA-256. We
provide valid rectangles for 48 steps of SHACAL-2.

Keywords: Hash functions, higher-order differentials, non-randomness,
SHA-256, SHACAL-2.

1 Introduction

The significant advances in the field of hash function research that have been
made in the recent years, had a formative influence on the landscape of hash func-
tions. The analysis of MD5 and SHA-1 has convinced many cryptographers that
these widely deployed hash functions can no longer be considered secure [39,40].
As a consequence, people are evaluating alternative hash functions in the SHA-3
initiative organized by NIST [29]. During this ongoing evaluation, not only the
three classical security requirements (preimage resistance, 2nd preimage resis-
tance and collision resistance) are considered. Researchers look at (semi-) free-
start collisions, near-collisions, etc. Whenever a behavior different from the one
expected of a ’random oracle’ can be demonstrated for a new hash function, it is
considered suspect, and so are the weaknesses that are demonstrated only for the
compression function. In light of this, for four out of the five third round SHA-3
candidates the best attacks are in the framework of distinguishers: boomerang
distinguisher for BLAKE [6], differential distinguisher for Grøstl [32], zero-sum
distinguisher on Keccak [8] and rotational rebound distinguisher for Skein [17].

With the cryptographic community joining forces in the SHA-3 competition,
the SHA-2 family gets considerably less attention. Apart from being marked

D.H. Lee and X. Wang (Eds.): ASIACRYPT 2011, LNCS 7073, pp. 270–287, 2011.
c© International Association for Cryptologic Research 2011
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as ‘relying on the same design principle as SHA-1 and MD5’, the best attack
to date on SHA-256 is a collision attack for 24 out of 64 steps with practical
complexity [13,33] and a preimage attack on 45 steps [18] having a complexity
of 2255.5.

Higher-order differentials have been introduced by Lai in [21] and first applied
to block ciphers by Knudsen in [20]. The application to stream ciphers was pro-
posed by Dinur and Shamir in [10] and Vielhaber in [35]. First attempts to apply
these strategies to hash functions were published in [2]. Recently, higher-order
differential attacks have been applied to several hash functions submitted to the
SHA-3 initiative organized by NIST such as BLAKE [6], Hamsi [7], Keccak [8],
and Luffa [42].

In this work, we present a second-order differential collision for the SHA-256
compression function on 47 out of 64 steps having practical complexity. The
attack is an application of higher-order differentials on hash functions. Table 3
shows the resulting example.

Since our attack technique resembles boomerang/rectangle attacks, known
from the cryptanalysis of block ciphers, we use a strict criterion for checking
that the switch in the middle does not contain any contradictions that can
appear due to the independency assumption of the characteristics used in the
rectangle. We show that all the previous related-key rectangle distinguishers for
SHACAL-2 have a common flaw in the switch due to these assumptions and
present a rectangle distinguisher for 48 steps that passes our check.

Our analysis shows that the compression functions exhibit non-random prop-
erties, though they do not lead to collision/preimage attacks on the hash func-
tions. Nevertheless, the attacks give a clear indication that if we compare the
security of SHA-256 to the security of the third round SHA-3 candidates, in the
this setting, then SHA-256 has one of the lowest security margins.

2 Higher-Order Differential Collisions for Compression
Functions

In this section, we give a high-level description of the attack. It is an application
of higher-order differential cryptanalysis on hash functions. While a standard
differential attack exploits the propagation of the difference between a pair of
inputs to the corresponding output differences, a higher-order differential attack
exploits the propagation of the difference between differences.

Higher-order differential cryptanalysis was introduced by Lai in [21] and sub-
sequently applied by Knudsen in [20]. We recall the basic definitions that we will
use in the subsequent sections.

Definition 1. Let (S,+) and (T,+) be abelian groups. For a function f : S →
T , the derivative at a point a1 ∈ S is defined as

Δ(a1)f(y) = f(y + a1)− f(y) . (1)

The i-th derivative of f at (a1, a2, . . . , ai) is then recursively defined as

Δ(a1,...,ai)f(y) = Δ(ai)(Δ(a1,...,ai−1)f(y)) . (2)
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Definition 2. A one round differential of order i for a function f : S → T is
an (i+ 1)-tuple (a1, a2, . . . , ai; b) such that

Δ(a1,...,ai)f(y) = b . (3)

When applying differential cryptanalysis to a hash function, a collision for the
hash function corresponds to a pair of inputs with output difference zero. Sim-
ilarly, when using higher-order differentials we define a higher-order differential
collision for a function as follows.

Definition 3. An i-th-order differential collision for f : S → T is an i-tuple
(a1, a2, . . . , ai) together with a value y such that

Δ(a1,...,ai)f(y) = 0 . (4)

Note that the common definition of a collision for hash functions corresponds to
a higher-order differential collision of order i = 1.

In this work, we concentrate on second-order differential collisions, i.e. i = 2:

f(y)− f(y + a2) + f(y + a1 + a2)− f(y + a1) = 0 (5)

Further we assume that we have oracle access to a function f : S → T and
measure the complexity in the number of queries to f , i.e. query complexity,
while ignoring all other computations, memory accesses, etc. Additionally, we
will restrict ourselves to functions f mapping to groups (T,+) with |T | = 2n

which are endowed with an additive operation.

Definition 4. Let f : S → T be as above. A solution (y, a1, a2) ∈ S3 to (5)
is called trivial if the complexity of producing it is O(1), otherwise it is called
non-trivial.

Lemma 1. Let f : S → T be as above. Then, a trivial solution to (5) can be
found if

1. f is linear, or
2. at least one of a1, a2 is zero, or
3. a1 = a2 and the group (T,+) is of the form

(T,+) & (Z2,+)n−� ⊕ (Z2� ,+), (6)

for small .

Proof. If f is a linear function, then (5) collapses and any choice of (y, a1, a2)
is a valid solution. Under the assumption that f is drawn uniformly at random
from all functions f : S → T , and T is not as in (6), then the only trivial
solution to equation (5) is when the inputs coincide, i.e. either y = y + a2 and
y + a1 + a2 = y + a1 leading to the case where a2 = 0, or y = y + a1 and
y + a1 + a2 = y + a2 leading to a1 = 0.

In the third case, equation (5) boils down to 2f(y) = 2f(y + a). In general
this is a classical meet-in-the-middle problem, however if (T,+) is as in (6), this
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equation holds with a probability 2−2(�−1) for a random function f which leads
to trivial solutions for small values of .

For all the other cases, the problem of finding a solution is an instance of the
generalized birthday problem proposed by Wagner [37] and therefore the number
of queries depends on n. �

We now want to lower bound the query complexity of producing a non-trivial
differential collision of order 2.

Theorem 1. For a function f : S → T with |T | = 2n, the query complexity for
producing a non-trivial differential collision of order 2 is Ω(2n/3).

Proof. To find an input (y, a1, a2) such that (5) holds, one has to try around
2n different tuples – otherwise the required value 0, may not appear. We can
freely choose three input parameters, i.e. y, a1, a2, which then fix the remaining
one. Therefore, (5) can be split into three parts (but not more!), and solved by
generating three independent lists of values. Obviously, the number of queries is
the lowest when these lists have equal size. Hence, to have a solution for (5), one
has to choose 2n/3 values for each of y, a1, a2, and therefore the query complexity
of a differential collision of order 2 for f is Ω(2n/3). �

Remark 1. We want to note that the actual complexity might be much higher
in practice than this bound for the query complexity. We are not aware of any
algorithm faster than 2n/2, since dividing (5) into three independent parts is not
possible (one of the terms has all the inputs, and any substitution of variables
leads to a similar case).

2.1 Second-Order Differential Collision for Block-Cipher-Based
Compression Functions

In all of the following, we consider block ciphers E : {0, 1}k ×{0, 1}n → {0, 1}n

where n denotes the block length and k is the key length. For our purposes, we
will also need to endow {0, 1}n with an additive group operation. It is however
not important, in which way this is done. A natural way would be to simply use
the XOR operation on {0, 1}n or the identification {0, 1}n ↔ Z2n and define the
addition of a, b ∈ {0, 1}n by a + b mod 2n. Alternatively, if we have an integer
w dividing n, that is n =  · w, we can use the bijection of {0, 1}n and Z�

2w and
define the addition as the word-wise modular addition, that is,

({0, 1}n,+) := (Z2w ,+)× · · · × (Z2w ,+)︸ ︷︷ ︸
� times

. (7)

The latter definition clearly aims very specifically at the SHA-2 design. However,
the particular choice of the group law has no influence on our attack.

A well known construction to turn a block cipher into a compression function
is the Davies-Meyer construction. The compression function call to produce the
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i-th chaining value xi from the i-th message block and the previous chaining
value xi−1 has the form:

xi = E(mi, xi−1) + xi−1 (8)

When attacking block-cipher-based hash functions, the key is not a secret param-
eter so for the sake of readability, we will slightly restate the compression function
computation (8) where we consider an input variable y = (k||x) ∈ {0, 1}k+n so
that a call to the block cipher can be written as E(y). Then, the Davis-Meyer
compression function looks like:

f(y) = E(y) + τn(y), (9)

where τn(y) represents the n least significant bits of y.
In an analogous manner, we can also write down the compression functions for

the Matyas-Meyer-Oseas and the Miyaguchi-Preneel mode which are all covered
by the following proposition.

Proposition 1. For any block-cipher-based compression function which can be
written in the form

f(y) = E(y) + L(y), (10)

where L is a linear function with respect to +, an i-th-order differential colli-
sion for the block cipher transfers to an i-th-order collision for the compression
function for i ≥ 2.

For the proof of Proposition 1, we will need following property of Δ(a1,...,ai)f(y):

Proposition 2 (Lai [21]). If deg(f) denotes the non-linear degree of a multi-
variate polynomial function f , then

deg(Δ(a)f(y)) ≤ deg(f(y))− 1 . (11)

Proof (of Proposition 1). Let Δ(a1,...,ai)E(y) = 0 be an i-th-order differential
collision for E(y). Both the higher-order differential and the mode of opera-
tion for the compression function are defined with respect to the same additive
operation on {0, 1}n. Thus, from (10) we get

Δ(a1,...,ai)(E(y) + L(y)) = Δ(a1,...,ai)E(y) +Δ(a1,...,ai)L(y),

so we see that all the terms vanish because the linear function L(y) has degree
one and so for i ≥ 2 we end up with an i-th-order differential collision for the
compression function because of Proposition 2. �

Hence, if we want to construct a second order collision for the compression
function f it is sufficient to construct a second-order collision for the block cipher.
The main idea of the attack is now to use two independent high probability
differential characteristics – one in forward and one in backward direction – to
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construct a second-order differential collision for the block cipher E and hence
due to Proposition 1, for the compression function.

Therefore, the underlying block cipher E is split into two subparts, E =
E1◦E0. Furthermore, assume we are given two differentials for the two subparts,
where one holds in the forward direction and one in the backward direction and
we assume that both have high probability. This part of the strategy has been
already applied in other cryptanalytic attacks, we refer to Section 2.2 for related
work. We also want to stress, that due to our definition above, the following
differentials are actually related-key differentials. We have

E−1
0 (y + β)− E−1

0 (y) = α (12)

and
E1(y + γ)− E1(y) = δ (13)

where the differential in E−1
0 holds with probability p0 and in E1 holds with

probability p1. Using these two differentials, we can now construct a second-
order differential collision for the block cipher E. This can be summarized as
follows (see also Figure 1).

1. Choose a random value for X and compute X∗ = X + β, Y = X + γ, and
Y ∗ = X∗ + γ.

2. Compute backward from X,X∗, Y, Y ∗ using E−1
0 to obtain P, P ∗, Q,Q∗.

3. Compute forward from X,X∗, Y, Y ∗ using E1 to obtain C,C∗, D,D∗.
4. Check if P ∗ − P = Q∗ −Q and D − C = D∗ − C∗ is fulfilled.

Due to (12) and (13),

P ∗ − P = Q∗ −Q = α, resp. D − C = D∗ − C∗ = δ, (14)

will hold with probability at least p2
0 in the backward direction, resp. p2

1 in
the forward direction. Hence, assuming that the differentials are independent
the attack succeeds with a probability of p2

0 · p2
1. It has to be noted that this

independence assumption is quite strong, cf. [28]. However, if this assumption
holds, the expected number of solutions to (14) is 1, if we repeat the attack
about 1/(p2

0 · p2
1) times. As mentioned before, in our case, there is no secret key

involved, so message modification techniques (cf. [40]) can be used to improve
this complexity.

The crucial point now is that such a solution constitutes a second-order dif-
ferential collision for the block cipher E. We can restate (14) as

Q∗ −Q− P ∗ + P = 0 (15)
E(Q∗)− E(P ∗)− E(Q) + E(P ) = 0 (16)

If we set α := a1 and the difference Q− P := a2 we can rewrite (16) as

E(P + a1 + a2)− E(P + a1)− E(P + a2) + E(P ) = 0, (17)

that is, we have found a second-order differential collision for the block cipher
E. Because of Proposition 1 the same statement is true for the compression
function.
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Fig. 1. Schematic view of the attack

2.2 Related Work

The attack presented in this paper stands in relation to previous results in the
field of block cipher and hash function cryptanalysis. Figure 1 suggests that it
stands between the boomerang attack and the inside-out attack which were both
introduced by Wagner in [36] and also the rectangle attack by Biham et al. [3].
For the related-key setting, we refer to [4] (among others). We also want to refer
to the amplified boomerang attack [16]. A previous application of the boomerang
attack to block-cipher-based hash functions is due to Joux and Peyrin [15], who
used the boomerang attack as a neutral bits tool. Another similar attack strat-
egy for hash functions is the rebound attack introduced in [27]. Furthermore, the
second-order differential related-key collisions for the block cipher used in Sec-
tion 2.1 are called differential q-multi-collisions introduced by Biryukov et al.
in [5] with q = 2. Recently, an attack framework similar to this was proposed
in [6,22] and applied to HAVAL in [34].

3 Application to SHA-256

In the light of the breakthrough results of Wang et al. on the hash functions
MD5 and SHA-1, the analysis of SHA-256 is of great interest. Moreover, SHA-2
is a reference point in terms of speed but also security for the SHA-3 candidates.

In the last few years several cryptanalytic results have been published for
SHA-256. The security of SHA-256 against preimage attacks was first studied
by Isobe and Shibutani in [14]. They presented a preimage attack on 24 steps.
This was improved by Aoki et al. to 43 steps in [1] and later extended to 45
steps by Khovratovich et al. in [18]. All attacks are only slightly faster than the
generic attack, which has a complexity of about 2256. In [25], Mendel et al. stud-
ied the security of SHA-256 with respect to collision attacks. They presented
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the collision attack on SHA-256 reduced to 18 steps. After that these results
have been improved by several researchers. In particular, Nikolić and Biryukov
improved in [31] the collision techniques, leading to a collision attack for 23 steps
of SHA-256. The best collision attacks so far are extensions of [31]. Indesteege
et al. [13] and Sanadhya and Sarkar[33], both presented collision attacks for 24
steps. We want to note that in contrast to the preimage attacks all these attacks
are of practical complexity. Furthermore, Indesteege et al. showed non-random
properties for SHA-2 for up to 31 steps. At the rump session of Eurocrypt 2008,
Yu and Wang announced that they had shown non-randomness for SHA-256
reduced to 39 steps [41]. In the same presentation they also provided a practical
example for 33 steps. However, no details have been published to date. We are
not aware of any attack on SHA-256 with practical complexity for more than
33 steps. In this section, we show how to construct a second-order differential
collision for SHA-256 reduced to 47 (out of 64) steps, following the attack strat-
egy described in the previous section. Since the complexity of the attack is quite
low, only 246 compression function evaluations, we implemented the attack. An
example of a second-order differential collision for SHA-256 reduced to 47 steps
is shown in Table 3.

3.1 Description of SHA-256

SHA-256 is an iterated hash function that processes 512-bit input message blocks
and produces a 256-bit hash value. In the following, we briefly describe the
hash function. It basically consists of two parts: the message expansion and the
state update transformation. A detailed description of the hash function is given
in [30].

Message Expansion. The message expansion of SHA-256 splits the 512-bit
message block into 16 words Mi, i = 0, . . . , 15, and expands them into 64 ex-
panded message words Wi as follows:

Wi =
{
Mi 0 ≤ i < 16
σ1(Wi−2) +Wi−7 + σ0(Wi−15) +Wi−16 16 ≤ i < 64 . (18)

The functions σ0(X) and σ1(X) are given by

σ0(X) = (X ≫ 7)⊕ (X ≫ 18)⊕ (X ) 3)
σ1(X) = (X ≫ 17)⊕ (X ≫ 19)⊕ (X ) 10) (19)

State Update Transformation. The state update transformation starts from
a (fixed) initial value IV of eight 32-bit words and updates them in 64 steps. In
each step one 32-bit word Wi is used to update the state variables Ai, Bi, . . . , Hi

as follows:

T1 = Hi +Σ1(Ei) + f1(Ei, Fi, Gi) +Ki +Wi ,
T2 = Σ0(Ai) + f0(Ai, Bi, Ci) ,

Ai+1 = T1 + T2 , Bi+1 = Ai , Ci+1 = Bi , Di+1 = Ci ,
Ei+1 = Di + T1 , Fi+1 = Ei , Gi+1 = Fi , Hi+1 = Gi .

(20)
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For the definition of the step constants Ki we refer to [30]. The bitwise Boolean
functions f1 and f0 used in each step are defined as follows:

f0(X,Y, Z) = X ∧ Y ⊕ Y ∧ Z ⊕X ∧ Z
f1(X,Y, Z) = X ∧ Y ⊕ ¬X ∧ Z (21)

The linear functions Σ0 and Σ1 are defined as follows:

Σ0(X) = (X ≫ 2)⊕ (X ≫ 13)⊕ (X ≫ 22)
Σ1(X) = (X ≫ 6)⊕ (X ≫ 11)⊕ (X ≫ 25) (22)

After the last step of the state update transformation, the initial values are
added to the output values of the last step (Davies-Meyer construction). The
result is the final hash value or the initial value for the next message block.

3.2 Differential Characteristics

Finding the differential characteristics for both backward and forward direction
is the most important and difficult part of the attack. Not only the differential
characteristics need to be independent, but also they need to have high proba-
bility in order to result in a low attack complexity. As noted before, in general,
the assumption on independent characteristics is quite strong, cf. [28].

We apply a particular approach to construct differential characteristics that
are used to construct second-order differential collisions for reduced SHA-256. We
run a full search for sub-optimal differential characteristics, i.e. characteristics
with the following properties:

– use a linearized approximation of the attacked hash function, i.e. approxi-
mate all modular additions by the xor operation;

– approximate the Boolean functions f0 and f1 by the 0-function, except in the
bits j, where either ΔA[j] = ΔB[j] = ΔCi[j] = 1 or ΔF [j] = ΔG[j] = 1 –
in these bits approximate with 1. This requirement comes from the fact that
if all three inputs to f0 have a difference, then the output has a difference
(with probability 1); a similar property holds for f1. Note that it is possible
to approximate some bits with either 0 or 1, however, this introduces a high
branching leading to an infeasible search;

– the characteristic has a single bit difference in the message word at some step
i (i ≤ 16), followed by 15 message words without difference. When using such
characteristic, 16 steps (the ones that follow i) can be passed with probability
1 – arguably, any characteristic that does not follow this strategy will have
a low probability due to the fast diffusion of the difference coming from the
message words. This type of characteristics was used to construct various
related-key rectangle distinguishers for SHACAL-2 [11,19,23,24,38].

Once we have the set of sub-optimal characteristics, we try to combine them
for the second-order differential collision scenario, i.e. try to check if the switch
in the middle is possible. This is a very important requirement, as some of the
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characteristics cannot be combined, i.e. their combination leads to contradic-
tions. Some of the conditions for the switch can be checked only by examining
the differences in the characteristics, while other are checked by confirming ex-
perimentally the absence of contradictions in the switch.

Table 1. Differential characteristic for steps 1-22 using signed-bit-differences

i chaining value message prob

0

B: -3

2−10E: +10 +24 +29

H: -12 -17 +23

1
C: -3

2−4

F: +10 +24 +29

2
D: -3

2−4

G: +10 +24 +29

3
E: -3

2−7

H: +10 +24 +29

4 F: -3 2−1

5 G: -3 2−1

6 H: -3 +3 2−1

7 1
...

...
...

...

20 1
21 +17 +28 1

22
A: +17 +28

E: +17 +28

b
a
ck
w
ar
d

In Table 1 and Table 2 the differential characteristics for both forward and
backward direction are shown. Furthermore, the probabilities for each step of
the differential characteristics are given. Note that for start we assume that the
differential characteristic in the message expansion will hold with probability 1.
To describe the differential characteristic we use signed-bit differences introduced
by Wang et al. in the cryptanalysis of MD5 [40]. The advantage of using signed-
bit differences is that there exists a unique mapping to both xor and modular
differences. Another advantage is that the feedforward in SHA-256 is modular,
hence no additional probability will be introduced for this operation.

3.3 Complexity of the Attack

Using the differential characteristics given in the previous section, we can con-
struct a second-order differential collision for SHA-256 reduced to 47 out of 64
steps. The differential characteristic used in backward direction holds with prob-
ability 2−28 and the differential characteristic used in forward direction holds
with probability 2−72. Hence, assuming that the two differential characteristics
are independent and using the most naive method, i.e. random trials, to fulfill
all the conditions imposed by the differential characteristics would result in an
attack complexity of 22·(72+28) = 2200. This is too high for a practical attack
on reduced SHA-256. However, the complexity can be significantly reduced by
using message modification techniques. Moreover, some conditions at the end
of the differential characteristics can be ignored which also improves the attack
complexity.
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Table 2. Differential characteristic for steps 23-47 using signed-bit-differences. Note
that conditions imposed by the characteristic in steps 23-30 are fulfilled in a determin-
istic way using message modification techniques.

i chaining value message prob

22

B: +3 +12 +14 +19 +23 +32

-25 2−22

C: +25

E: -3 -7 -13

F: -12 -23

G: -25

H: -1 +3 +7 +14 +15 +24 +26 +28 -30

23

C: +3 +12 +14 +19 +23 +32

2−13
D: +25

F: -3 -7 -13

G: -12 -23

H: -25

24

A: -25
2−10

D: +3 +12 +14 +19 +23 +32

G: -3 -7 -13

H: -12 -23

25

B: -25

2−7E: +14 +19 +32

H: -3 -7 -13

26
C: -25

2−4

F: +14 +19 +32

27
D: -25

2−4

G: +14 +19 +32

28
E: -25

2−4

H: +14 +19 +32

29 F: -25 2−1

30 G: -25 2−1

31 H: -25 +25 1
32 1
...

...
...

...

45 1
46 -7 -18 -22 2−6

47
A: -7 -18 -22

E: -7 -18 -22

fo
rw

a
rd

m
es
sa
g
e
m
o
d
ifi
ca
ti
o
n

Ignoring conditions at the end. As was already observed in the cryptanalysis
of SHA-1, conditions resulting from the modular addition in the last steps of the
differential characteristic can be ignored [9,39]. The reason is that we do not care
about carries in the last steps, since the modular difference will be the same. In
the attack on SHA-256, we can ignore 6 conditions in step 46 in the characteristic
used in forward direction and 3 conditions in step 1 in the characteristic used in
backward direction. This improves the complexity of the attack by a factor of
22·(3+6) = 218 resulting in a complexity of 2182.

Impact of additional less probable characteristics. Even if all the message
conditions for the two characteristics are already in place, there exist a number
of differential characteristics which hold with the same or a slightly lower prob-
ability. Hence, it is advantageous to consider differentials. A similar effect has
been exploited by Kelsey et al. in the amplified boomerang attack on block ci-
phers [16]. For hash functions, this has been systematically studied for SHA-1
in [26]. We achieve a significant speedup in the attack on SHA-256 by allowing
these additional characteristics. For instance by changing the signs of the differ-
ences in chaining variable H0, we get 23 additional differential characteristics for
the backward direction which all hold with the same probability as the original
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differential characteristic given in Table 1. Similarly, we also get 23 additional
differential characteristic by changing the signs of the differences in chaining
variable H3. This already improves the complexity of the attack by a factor of
26. Furthermore, if we do not block the input differences of f1 and f0 in step 1,
we get 24 additional characteristics which again holds with the same probability.
Thus, by allowing additional differential characteristics the complexity of the
attack can be improved by a factor of 210, resulting in an attack complexity
of 2172. We want to stress, that in practice there exist many more additional
differential characteristics that can be used and hence the attack complexity is
much lower in practice.

Message modification. As already indicated in Section 2 message modification
techniques can be used to significantly improve the complexity of the attack.
The notion of message modification has been introduced by Wang et al. in the
cryptanalysis of MD5 and other hash functions [40]. The main idea is to choose
the message words and internal chaining variables in an attack on the hash
function to fulfill the conditions imposed by the differential characteristic in a
deterministic way.

Luckily, by using message modification techniques, we can fulfill all conditions
imposed by the differential characteristic in steps 22-30 by choosing the expanded
message words W22, . . . ,W30 accordingly. This improves the complexity of the
attack by a factor of 22·66 = 2132 resulting in an attack complexity of 240.

Additional costs coming from the message expansion. So far we assumed
that the differential characteristic in the message expansion of SHA-256 will hold
with probability 1. However, since the message expansion of SHA-256 is not lin-
ear, this is not the case in practice. Indeed most of the conditions that have
to be fulfilled to guaranty that the characteristic holds in the message expan-
sion can be fulfilled by choosing the expanded message words and differences
in steps 21-30 accordingly. Only the conditions for step 5 and step 6 imposed
by the differential characteristic used in backward direction cannot be fulfilled
deterministically (see Table 1). In step 6 we need that:

W ∗
6 −W6 = 3 (23)

Furthermore, to ensure that there will be no difference in W5 we need that:

W ∗
21 − σ0(W ∗

6 )− (W21 − σ0(W6)) = 0 (24)

Since (23) will hold with a probability of 2−1 and (24) will hold with probability
2−2, this adds an additional factor of 22·3 = 26 to the attack complexity. Hence,
the final complexity of the attack is 246. By Theorem 1, the complexity in the
generic case is around 285.

Implementation. Even though the complexity of the attack was estimated to
be about 246, we expected that the complexity will be lower in practice due to
the impact of additional differential characteristics. This was confirmed by our
implementation. In Table 3, an example of a second-order differential collision
for 47 steps of SHA-256 is shown.
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Table 3. Example of a second-order differential collision f(y + a1 + a2)− f(y + a1)−
f(y + a2) + f(y) = 0 for 47 steps of the SHA-256 compression function

y
89456784 4ef9daf6 0ab509f5 3fdf6c93 fe7afc67 b03ad81a fd306df9 1d14cadd

daea3041 70f45fd7 4a03bf20 c13c961c 6a12c686 fc7be50c 7b060fc2 0ee1e276

630c3c7e 734246a4 88401eb0 9aac88c1 4b6bca45 b777c1e6 5537cdb1 9b5bc93b

a1

00000000 00000000 00000000 00000000 00000000 00000000 00000004 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 fffffffc 00000000 fffffffc 10800200 00000000 ff800000 803ef414

a2

2335e851 20f48326 69151911 f5cb76c2 b9d69e31 32685b9c 90cceff7 081ebbf7

967c8864 a43138d1 7e9a3eec c39cf7d3 5914e008 8d0d3b73 e077c63f d29db1b0

742b8c01 92248811 a119f182 dd829be5 e3e1802e 21130e9f 1dacd7d3 8acf11fe

4 Applications to Related Primitives

The results presented in the previous section have a direct impact on the anal-
ysis of primitives similar to SHA-256. First of all, due to the similar design of
SHA-256 and SHA-512 the attack extends in straight forward way to SHA-512.
Second, our search for sub-optimal characteristics in SHA-256, can be used to
find suitable characteristics for a related-key rectangle attack on the SHACAL-2
block cipher [12]. which is based on SHA-256. The block cipher proposed by
Handschuh and Naccache in 2000 and was evaluated by NESSIE.

4.1 Application to SHA-512

The structure of SHA-512 is very similar to SHA-256 – only the size of the
words is increased from 32 to 64 bits and the linear functions Σ0, Σ1, σ0, σ1 are
redefined. Also the number of steps is increased from 64 to 80. Since the design
of SHA-512 is very similar to SHA-256 the attack presented for SHA-256 extends
in a straight forward way to SHA-512. Furthermore, due to the larger hash size
of SHA-512 compared to SHA-256 also the complexity of the generic attack
increases, i.e. it becomes around 2170. Hence, the attack can be extended to
more steps than it was the case for SHA-256 by adding steps at the beginning.
Also, due to the larger word size and hence worse diffusion within the words
adding steps in the middle becomes easier. Thus, we expect that several steps
can be added in the middle as well. This is work in progress.

4.2 Application to SHACAL-2

In the past several related-key rectangle attacks have been published for the
SHACAL-2 block cipher [11,19,23,24,38]. It is interesting to note that all of
the published rectangles on SHACAL-2 contain a flaw in the analysis. This
flaw is in the switch of the rectangle, since the used characteristics are not
independent and the conditions cannot be satisfied simultaneously in both of the
characteristics. In the rectangles in [24,38,11], in the the switch in the middle
the following differences in bit 13 are defined: at the output of the backward



Second-Order Differential Collisions for Reduced SHA-256 283

characteristic ΔE[13] = 1, ΔF [13] = ΔG[13] = 0; at the input of the forward
characteristic ΔE[13] = 0, ΔF [13] = 1, ΔG[13] = 0. At the first step of the
forward characteristics it is assumed that the output difference of f1 is zero.
However, this is not possible for both of the characteristics. Since ΔF [13] = 1,
the value of E[13] has to be 0. Then, in the second characteristic (on the other
side of the rectangle), since the output difference ΔE[13] is 1, then this E[13]
will be 1, and therefore the output of f1 in bit 13 will produce difference. A
similar contradiction can be seen in [23]. First, since there is a difference in bit
13 in E25 coming from the upper trail, one needs the differences in F25 and G25

in bit 13 to be the same (have the same sign) in the lower trail (see Table 3),
otherwise there will be a contradiction. In the next step we have G26 = F25 and
H26 = G25 and hence the difference in bit 13 of G26 and H26 have the same sign.
This leads now to a contradiction, since in the characteristic it is required that
these two differences cancel out. However, since they have the same sign this is
not possible and we get a contradiction. In [19], in the lower trail (Table 6) there
are conditions on E24 in bits (2,14,15,24,25) to guarantee that the differences in
G24 behave correctly, in particular the bit 24 of E24 has to be 1. But from the
upper trail we get difference in W23 in bits 13,24, and 28, and hence E24 will
have difference in bits 13,24,28. Therefore, E24 cannot take the value 1 (in these
three bits) in both of the bottom characteristics. This can be fixed by allowing
a carry from bit 13 to 24 to cancel the difference in bit 24, but then there will
always be a difference in bit 14 and 15 which again leads to a contradiction.

Each of the published rectangle attack works for the whole key space. Further,
we relax this requirement, i.e. we examine the security of the cipher in a weak-key
class. These types of attacks are inline with the recent attacks on AES-256 [5].
We analyze a secret-key primitive, hence the message modification techniques
presented in the previous section are not applicable and therefore the complexity
of the attack is fully determined by the probability of the characteristics used
in the rectangle. The probability of the characteristic in the key schedule not
necessarily has to be 1 (it is a weak-key class), however this adds to the total
complexity of the attack.

Our search for sub-optimal characteristics in SHA-256, can be used as well
to find characteristics suitable for a related-key rectangle attack on SHACAL-2.
Note that the search avoids using the above mentioned characteristics (with
flaws), since it checks experimentally, that all the conditions on the switch can
be satisfied.

We found a 48-step related-key rectangle distinguisher with two different char-
acteristics, the first on 24 steps with 2−52, and the second on 24 steps with 2−52

(see Table 4). The probability of the key schedule (message expansion) is 2−8.5.
Therefore, the total probability of the rectangle is 2−216.5. Using some available
techniques, e.g. the one presented in [24], we can add one step at the beginning,
and two steps at the end of the rectangle, to obtain a key recovery attack on 51
steps of SHACAL-2.
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Table 4. Differential characteristic using xor-differences for the rectangle distinguisher
on 48 steps of SHACAL-2

i chaining value message prob

0

C: 32 28 23 21 12 9

2−15
D: 2

F: 22 16 12

G: 32 21 12

H: 12 2

1

A: 2

2−11D: 32 28 23 21 12 9

G: 22 16 12

H: 32 21 12

2

B: 2

2−7E: 28 23 9

H: 22 16 12

3
C: 2

2−4

F: 28 23 9

4
D: 2

2−4

G: 28 23 9

5
E: 2

2−4

H: 28 23 9

6 F: 2 2−1

7 G: 2 2−1

8 H: 2 2 2−1

9 1
...
...

...
...

22 1

23 27 16 2−4

24
A: 27 16

E: 27 16

i chaining value message prob

24

C: 30 26 21 19 10 7

2−13
D: 32

F: 20 14 10

G: 30 19 10

H: 32 10

25

A: 32

2−13D: 30 26 21 19 10 7

G: 20 14 10

H: 30 19 10

26

B: 32

2−7E: 26 21 7

H: 20 14 10

27
C: 32

2−4

F: 26 21 7

28
D: 32

2−3

G: 26 21 7

29
E: 32

2−4

H: 26 21 7

30 F: 32 2−1

31 G: 32 2−1

32 H: 32 32 1

33 1
...
...

...
...

46 1

47 29 25 14 2−6

48
A: 29 25 14

E: 29 25 14

5 Conclusions

In this work, we have shown an application of higher-order differential crypt-
analysis on block-cipher-based hash functions. In our attack, we adapted several
techniques known from block cipher cryptanalysis to hash functions. Applying
these techniques to SHA-256 led to an attack for 47 (out of 64) steps of the
compression function with practical complexity. The best known attack so far
with practical complexity was for 33 steps. Since the structure of SHA-512 and
SHA-256 is very similar, the attack transfers to SHA-512 in a straight forward
way. Furthermore, due to the larger word size and output size, attacks for more
steps may be expected. We also want to note that the attacks cannot be extended
to the hash function to construct collisions or (second) preimages.

However, based on our results, a few conclusions can be deduced. First,
SHA-256 has a low security margin against practical distinguishers. Its compres-
sion function seems to be weaker than those of the third round SHA-3 candidates,
as none of them has practical distinguishers covering such a high percentage of
the total number of steps.

Second, when applying boomerang/rectangle attacks to word oriented prim-
itives, the switch in the middle has to be checked carefully – the flaws we have
presented as well as our experiments indicate that only a very small percentage
of characteristics (even with sparse input-output differences) can be combined.
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Finally, the basic strategy described in this paper, i.e. linearize the com-
pression function, search for sub-optimal characteristics and combine them in a
boomerang/rectangle attack, can be used as a preliminary security analysis for
hash functions in general.
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6. Biryukov, A., Nikolić, I., Roy, A.: Boomerang Attacks on BLAKE-32. In: Joux, A.
(ed.) FSE 2011. LNCS, vol. 6733, pp. 218–237. Springer, Heidelberg (2011)

7. Boura, C., Canteaut, A.: Zero-Sum Distinguishers for Iterated Permutations and
Application to Keccak-f and Hamsi-256. In: Biryukov, A., Gong, G., Stinson, D.R.
(eds.) SAC 2010. LNCS, vol. 6544, pp. 1–17. Springer, Heidelberg (2011)

8. Boura, C., Canteaut, A., De Cannière, C.: Higher-Order Differential Properties of
Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269.
Springer, Heidelberg (2011)

9. De Cannière, C., Mendel, F., Rechberger, C.: Collisions for 70-Step SHA-1: On the
Full Cost of Collision Search. In: Adams, C.M., Miri, A., Wiener, M.J. (eds.) SAC
2007. LNCS, vol. 4876, pp. 56–73. Springer, Heidelberg (2007)

10. Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009)

11. Fleischmann, E., Gorski, M., Lucks, S.: Memoryless Related-Key Boomerang At-
tack on 39-Round SHACAL-2. In: Bao, F., Li, H., Wang, G. (eds.) ISPEC 2009.
LNCS, vol. 5451, pp. 310–323. Springer, Heidelberg (2009)

12. Handschuh, H., Naccache, D.: SHACAL. Submitted as an NESSIE Candidate Al-
gorithm (2000), http://www.cryptonessie.org

13. Indesteege, S., Mendel, F., Preneel, B., Rechberger, C.: Collisions and Other Non-
random Properties for Step-Reduced SHA-256. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 276–293. Springer, Heidelberg (2009)

http://www.cryptonessie.org


286 A. Biryukov et al.

14. Isobe, T., Shibutani, K.: Preimage Attacks on Reduced Tiger and SHA-2. In:
Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 139–155. Springer, Heidelberg
(2009)

15. Joux, A., Peyrin, T.: Hash Functions and the (Amplified) Boomerang Attack. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 244–263. Springer, Heidel-
berg (2007)

16. Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks Against
Reduced-Round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 75–93. Springer, Heidelberg (2001)
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Abstract. In this paper, we analyze the collision resistance of SHA-2
and provide the first results since the beginning of the NIST SHA-3 com-
petition. We extend the previously best known semi-free-start collisions
on SHA-256 from 24 to 32 (out of 64) steps and show a collision at-
tack for 27 steps. All our attacks are practical and verified by colliding
message pairs. We present the first automated tool for finding complex
differential characteristics in SHA-2 and show that the techniques on
SHA-1 cannot directly be applied to SHA-2. Due to the more complex
structure of SHA-2 several new problems arise. Most importantly, a large
amount of contradicting conditions occur which render most differential
characteristics impossible. We show how to overcome these difficulties
by including the search for conforming message pairs in the search for
differential characteristics.

Keywords: hash functions, SHA-2, collision attack, differential char-
acteristic, generalized conditions.

1 Introduction

Since the breakthrough results of Wang et al. [20,19], hash functions have been
the target in many cryptanalytic attacks. These attack have especially shown
that several well-known and commonly used algorithms such as MD5 and SHA-1
can no longer be considered to be secure. In fact, practical collisions have been
shown for MD5 and collisions for SHA-1 can be constructed with a complexity of
about 263 [18]. For this reason, NIST has proposed the transition from SHA-1 to
the SHA-2 family as a first solution. As a consequence, more and more companies
and organizations are migrating to SHA-2. Hence, a detailed analysis of this hash
function family is needed to get a good view on its security.

Although the design principles of SHA-2 are very similar to SHA-1, it is still
unknown whether or how the attacks on MD5 and SHA-1 can be extended to
SHA-2. Since 2008, no collision attacks have been published on SHA-2. One
reason might be that the SHA-3 competition [9] initiated by NIST has attracted
more attention by the cryptographic community. However, a more likely reason
is the increased difficulty of extending previous collision attacks to more steps of
SHA-2. In this work, we show that apart from a good attack strategy, advanced
automated tools are essential to construct differential characteristics and to find
confirming message pairs.

D.H. Lee and X. Wang (Eds.): ASIACRYPT 2011, LNCS 7073, pp. 288–307, 2011.
c© International Association for Cryptologic Research 2011
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Related Work. In the past, several attempts have been made to apply the
techniques known from the analysis of SHA-1 to SHA-2. The first known crypt-
analysis of the SHA-2 family was published by Gilbert and Handschuh [3]. They
have shown 9-step local collisions which hold with a probability of 2−66. Hawkes
et al. [6] have improved these results to get local collisions with a probability of
2−39 by considering modular differences.

In [8], Mendel et al. have analyzed how collision attacks can be applied to step
reduced SHA-256. They have shown that the properties of the message expansion
of SHA-256 prevent an efficient extension of the techniques of Chabaud and
Joux [1] and Wang et al. [19]. Nevertheless, they presented a collision for 18
steps of SHA-256. In [12], Sanadhya and Sarkar have revisited the problem of
obtaining a local collision for the SHA-2 family, and in [13] they have shown
how to use one of these local collisions to construct another 18-step collision for
SHA-256.

Finally, Nikolić and Biryukov [11] found a 9-step differential using modular
differences which can be used to construct a practical collision for 21 steps and
a semi-free-start collision for 23 steps of SHA-256. This was later extended to
22, 23 and 24 steps by Sanadhya and Sarkar in a series of papers [16,14,15]. The
best known collision attack on SHA-256 so far was for 24 steps and has been
found by Sanadhya and Sarkar [15], and Indesteege et al. [7].

All these results use rather simple differential characteristics which are con-
structed mostly manually or using basic cryptanalytic tools. However, the most
efficient collision attacks on SHA-1 use more complex characteristics, especially
in the first few steps of the attack. Constructing such complex characteristics is
in general a difficult task. First, Wang et al. [19] have constructed such a char-
acteristic for SHA-1 manually. Later, De Cannière and Rechberger [2] proposed
a method to efficiently find such complex characteristics for SHA-1 in an auto-
mated way. Furthermore, also the best practical collision attack on SHA-1 (with
the highest number of steps) is based on this approach [4].

Our Contribution. Currently, all collision attacks on SHA-2 are of practical
complexity and based on the same basic idea: extending a local collision over 9
steps to more steps. As already mentioned in [7], this kind of attack is unlikely to
be extended beyond 24 steps. In this work, we investigate new ideas to progress
in the cryptanalysis of SHA-2. First, we extend the idea of finding local collisions
to more than 9 steps by exploiting the nonlinearity of both the state update and
message expansion.

To find such local collisions an automated tool to search for complex dif-
ferential characteristics is needed. We start with the approach of De Cannière
and Rechberger [2] on SHA-1. Unfortunately, their techniques cannot directly
be applied to SHA-2. We have observed several problems in finding valid differ-
ential characteristics for SHA-2. In this work, we have identified these problems
and show how to solve them efficiently. Most importantly, a very high number
of contradicting conditions occurs which render most differential characteristics
impossible.
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To summarize, we present the first automatic tool to construct complex differ-
ential characteristics for reduced SHA-2. Applying our tool to SHA-256 results
in practical examples of semi-free-start collisions for 32 and collisions for 27 out
of 64 steps of SHA-256. The best semi-free-start collision and collision attack so
far was on 24 steps of SHA-256.

Outline. The paper is structured as follows. In Section 2 we give a short de-
scription of SHA-256. In Section 3, we provide an overview of the general attack
strategy and briefly mention which problems arise in the search for differential
characteristics in SHA-2. In Section 4, we show how to efficiently propagate
differences and conditions in SHA-2. Furthermore, we discuss why most differ-
ential characteristics are invalid and describe how to detect inconsistencies. In
Section 5 we present our automated tool to construct complex differential char-
acteristics and to find conforming message pairs in SHA-2. Finally, we conclude
on our results in Section 6.

2 Description of SHA-256

SHA-256 is one of four hash functions defined in the Federal Information Pro-
cessing Standard (FIPS-180-3) [10]. All four hash functions were designed by the
National Security Agency (NSA) and issued by NIST in 2002. SHA-256 is an
iterated cryptographic hash function with a hash output size of 256 bits, a mes-
sage block size of 512 bits and using a word size of 32 bits. In the compression
function of SHA-2, a state of eight chaining variables A,. . . ,H is updated using
16 message words M0,. . . ,M15.

T0 T1

Ai

Ai−1

Bi

Bi−1

Ci

Ci−1

Di

Di−1

Ei

Ei−1

Fi

Fi−1

Gi

Gi−1

Hi

Hi−1

Σ1

f1

Ki

Wi

Σ0

f0

Fig. 1. The SHA-2 step update function

The compression function of SHA-256 consists of 64 identical step update func-
tions which are illustrated in Fig.1 and given as follows:

T0 = Σ0(Ai−1) + f0(Ai−1, Bi−1, Ci−1)
T1 = Σ1(Ei−1) + f1(Ei−1, Fi−1, Gi−1) + Hi−1 + Ki + Wi

Ai = T0 + T1 , Bi = Ai−1 , Ci = Bi−1 , Di = Ci−1

Ei = Di−1 + T1 Fi = Ei−1 , Gi = Fi−1 , Hi = Gi−1

(1)
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The Boolean functions f0 (MAJ) and f1 (IF) are given by

f0(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z) ,

f1(x, y, z) = (x ∧ y)⊕ (¬x ∧ z) .

The two GF (2)-linear functions Σ0 and Σ1 are defined as follows:

Σ0(x) = x ≫ 2⊕ x ≫ 13⊕ x ≫ 22 ,

Σ1(x) = x ≫ 6⊕ x ≫ 11⊕ x ≫ 25 .

In the i-th step of the update function, a fixed constant Ki and the i-th word Wi

of the expanded message are added to the state. The message expansion takes
the 16 message words Mi as input and outputs 64 expanded message words Wi

as follows:

Wi =

{
Mi for 0 ≤ i < 16
σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 for 16 ≤ i < 64

where the functions σ0(x) and σ1(x) are defined as follows:

σ0(x) = x ≫ 7⊕ x ≫ 18⊕ x) 3 ,

σ1(x) = x ≫ 17⊕ x ≫ 19⊕ x ) 10 .

3 Basic Attack Strategy

In this section, we give a brief overview of our attack strategy. We first describe
how we generalize the approach of Nikolić and Biryukov [11] to find semi-free-
start collisions on a higher number of steps. Due to this extension, differen-
tial characteristics cannot be constructed manually or semi-automatic anymore.
Hence, we provide a fully automated tool to construct complex differential char-
acteristics in SHA-2. Furthermore, we discuss why it is extremely difficult to find
valid differential characteristics in SHA-2. In fact, we were not able to find a valid
differential characteristic without including the search for a confirming message
pair in the process. Therefore, the approach of first finding a valid differential
characteristic and then, independently search for a conforming message pair does
not apply very well to SHA-2. Hence, our attack strategy can be summarized as
follows:

1. Determine a starting point for the search which results in an attack on a
large number of steps. The resulting start characteristic should span over
few steps and only some message words should contain differences.

2. Use an automated search tool to find a differential characteristic for the
unrestricted intermediate steps including the message expansion.

3. Continue the search to find a conforming message pair. If no message pair
can be found, adjust the differential characteristic accordingly.

Note that after step 2 it is not ensured that the differential characteristic is valid.
If we cannot find a conforming message pair after a certain amount of time we
go back to step 2 to adjust the differential characteristic.
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3.1 Determining a Starting Point

By exploiting the nonlinearity of the step update function, Nikolić and Biryukov
[11] found a 9-step differential characteristic for which it is not necessary to ap-
ply corrections (differences in the message words) in each step of the differential
characteristic. The fact that not all (only 5 out of 9) message words contain
differences helped to overcome several steps of the message expansion resulting
in a collision and semi-free-start collision attack for 21 and 23 steps, respec-
tively. Later this approach was extended to a collision attack on 24 steps [7,15].
However, as pointed out in [7] it is unlikely that this approach can be extended
beyond 24 steps.

In our attack, we are using differential characteristics which span over t ≥
9 steps, which allows us to attack more steps of SHA-256. As in the attack
of Nikolić and Biryukov we are interested in differential characteristics with
differences in only a few message words. Then, large parts of the expanded
message have no difference which in turn, results in an attack on more than
24 steps. Already by using a differential characteristic spanning over t = 10
steps (with differences in only 3 message words) we can construct a semi-free-
start collision for 27 steps of SHA-256. This can be extended to 32 steps using
a differential characteristic spanning over t = 16 steps with differences in 8
message words.

To construct these starting points, we first fix the value of t and consider only
differential characteristics which may result in collisions on more than 24 steps.
Then, we identify those message words which need to have differences such that
the differential characteristic holds for the whole message expansion. Table 2
in Appendix A shows the used starting point for the attack on 32 steps. Note
that we have further optimized the message difference slightly to keep it sparse,
which reduces the search space for the automated tool.

3.2 Searching for Valid Differential Characteristics and Conforming
Message Pairs in SHA-2

Once we have determined a good starting point we continue by constructing a
valid differential characteristic for both the state update transformation and the
message expansion. We have implemented an automated search tool for SHA-2
which is similar to the one proposed in [2] to construct complex characteristics
for SHA-1. However, the increased complexity of SHA-2 compared to SHA-1
complicates a direct application of their approach. In the following, we briefly
outline which problems occurred and how we have resolved them.

First of all, the larger state size, the combined update of two state variables,
and the higher diffusion due to the Σi functions increases the complexity signif-
icantly. To limit these issues, we use an alternative description of SHA-2 where
only two state variables are updated separately (see Section 4.1). Furthermore,
we split up one SHA-2 step (including the nonlinear message expansion) into 9
less complex sub steps. This way, the propagation of differences can be imple-
mented much more efficiently while losing only a small amount of information
(see Section 4.3).
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However, the main problem in SHA-2 is that it is difficult to determine
whether a differential characteristic is valid, i.e. whether a conforming mes-
sage pair exists. For example, a lot more conditions on two bits of the form
Ai,j = Ai−1,j occur in SHA-2, compared to SHA-1 for example. Furthermore,
the orthogonal applications of the Σi and fi functions results in cyclic conditions
which contradict with a high probability (see Section 4.4). Additionally, more
complex conditions on more bits occur. One reason for these additional con-
ditions is that two state variables (Ai, Ei) are updated using a single message
word (Wi). Unfortunately, it is not possible to determine all these conditions
in general. However, we have implemented different tests to efficiently check for
many contradictions (for more details, see Section 4.5).

Despite all these tests, we were not able to find a valid differential character-
istic. At the end, even brute-forcing a single critical message word (a message
word where most bits are already set) did not lead to a solution. Therefore, we
have combined the search for differential characteristics with the search for a
conforming message pair (see Section 5). During the message search, we first
determine critical bits and backtrack if needed. This way complex hidden con-
ditions are resolved at an earlier stage in the search. Furthermore, we correct
impossible characteristics once they are detected.

4 Difference and Condition Propagation in SHA-2

We use generalized conditions to nonlinearly propagate differences and condi-
tions in both the state update and message expansion of SHA-2. Generalized
conditions are propagated in a bit sliced manner. Note that in the case of the
SHA-2, one bit of A and E is updated using 15 input bits. Hence, to simplify
the bit sliced step update, we use an alternative description of SHA-2.

4.1 Alternative Description of SHA-2

In the state update transformation of SHA-2, only two state variables are up-
dated in each step, namely Ai and Ei. Therefore, we can redefine the state
update such that only these two variables are involved. In this case, we get the
following mapping between the original and new state variables:

Ai Bi Ci Di Ei Fi Gi Hi

Ai Ai−1 Ai−2 Ai−3 Ei Ei−1 Ei−2 Ei−3

Note that Ai is updated using an intermediate result of the step update of Ei

(see Equation 1). Since this complicates the efficient bit sliced representation
of the SHA-2 step update transformation we propose the following alternative
description:

Ei = Ei−4 + Σ1(Ei−1) + f1(Ei−1, Ei−2, Ei−3) + Ai−4 + Ki + Wi

Ai = −Ai−4 + Σ0(Ai−1) + f0(Ai−1, Ai−2, Ai−3) + Ei

(2)
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In this case we get two SHA-1 like state update transformations, one for the left
(Ai) and one for the right (Ei) side of the SHA-2 state update transformation.
Note that in this description, the state variables A−4, . . . , A−1 and E−4, . . . , E−1

represent the chaining input or initial value of the compression function. The
alternative description is also illustrated in Fig.2.

Ai

Ai−1

Ai−1

Ai−2

Ai−2

Ai−3

Ai−3

Ai−4

Ei

Ei−1

Ei−1

Ei−2

Ei−2

Ei−3

Ei−3

Ei−4

Σ1

f1

Ki

Wi

−
+

Σ0

f0

Fig. 2. Alternative description of the SHA-2 state update transformation

4.2 Generalized Conditions

Inspired by signed-bit differences [19], De Cannière and Rechberger introduced
generalized conditions for differences, where all 16 possible conditions on a pair
of bits are taken into account [2]. Table 1 lists all these possible conditions and
introduces notations for the various cases.

Table 1. Notation for possible generalized conditions on a pair of bits [2]

(Xi,Xi
∗) (0, 0) (1, 0) (0, 1) (1, 1)

? � � � �
- � - - �
x - � � -
0 � - - -
u - � - -
n - - � -
1 - - - �
# - - - -

(Xi,X
∗
i ) (0, 0) (1, 0) (0, 1) (1, 1)

3 � � - -
5 � - � -
7 � � � -
A - � - �
B � � - �
C - - � �
D � - � �
E - � � �

Definition 1 (Generalized Conditions for Differences [2]). Let X ∈ {0, 1}n

and X∗ ∈ {0, 1}n, then the notation

∇X = [cn−1, . . . , c0],

where ci denotes one of the conditions of Table 1 for the i-th bit, defines a subset
of pairs (X, X∗) ∈ {0, 1}n × {0, 1}n that conforms to the specified conditions.
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For example, all pairs of 8-bit words X and X∗ that satisfy

{(X, X∗) ∈ {0, 1}8 × {0, 1}8 |X7 ·X∗
7 = 0, Xi = X∗

i for 1 ≤ i ≤ 5, X0 �= X∗
0},

can be conveniently written in the form

∇X = [7?-----x].

4.3 Efficiently Implementing the Propagation of Generalized
Conditions

We propagate generalized conditions similar as in the attack on SHA-1. How-
ever, the complexity of propagating generalized conditions increases exponen-
tially with the number of input bits and additions. While there are only 6 input
bits in the case of SHA-1 (excluding the carry), we have 9 input bits in the
update of Ei and 8 input bits in the update of each of Ai and Wi in SHA-2.

To reduce the computational complexity of the propagation in SHA-2, we have
further split the update of Wi, Ei and Ai into 3 sub steps. In more detail, we
independently compute each output bit of the σi, Σi and fi functions and then,
compute the modular additions. This way, the number of input bits reduces to
3 for σi, Σi and fi and we get at most 5 input bits for the modular additions.
This split of functions reduces the computation complexity by a factor of about
100.

Furthermore, for the sub steps without modular addition we have precom-
puted the propagation of all generalized input conditions. For the modular addi-
tions we use a hash map to store already computed bit sliced results. In this case,
the bit slice update of each sub step reduces to simple table or hash map lookups.
Our experiments have shown a speedup of another factor 100 by caching already
computed results. The drawback of this method is that we lose the relation be-
tween the sub steps compared to a combined propagation. Furthermore, due to
memory restrictions we are not able to precompute or keep all possibilities for
the modular additions.

4.4 Two-Bit Conditions

Apart from generalized conditions, additional conditions on more than a single
bit are present in a differential characteristic. Especially, conditions on two bits
are needed such that a differential path is valid. These two-bit conditions have
already been used by Wang et al. in their attacks on the members of the MD4
family [17]. Such two-bit conditions occur mostly in the propagation of differ-
ences through the Boolean function. For example, if an input difference in Ai−1

at bit position j should result in a zero output difference of f0(Ai−1, Ai−2, Ai−3),
the remaining two input bits should be equal. In this case, we get the two-bit
condition Ai−2,j = Ai−3,j . Similar conditions occur not only in the fi, σi and
Σi functions but also in the modular additions.
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Two-bit conditions are not covered by generalized conditions and thus, not
shown in the characteristics given in [2]. However, two-bit conditions may lead
to additional inconsistencies. For example, in two subsequent f0 functions the
following two contradicting conditions may occur:

(Ai−2,j = Ai−3,j) ∧ (Ai−2,j �= Ai−3,j).

Since such contradicting conditions occur only rarely in SHA-1, simple additional
checks are sufficient to verify whether a given differential characteristic is valid
at the end of the search.

∇A0 = [------------------n----------n--]

∇A1 = [---------n----------------------]

∇A2 = [---------n-n----------n--------n]

∇A3 = [---n-----n-n-n----n--nn--------n]

=

=

�= =

Fig. 3. Example of four cyclic and contradicting two-bit conditions. Such cases com-
monly occur in SHA-2 and are not covered by generalized conditions. For the two
Σ0 functions (XOR) we have twice Σ0(n, -, -) = n which results in the two equalities
A1,2 = A1,13 and A2,2 = A2,13. For the f0 function (MAJ) at bit position 2 we get
f0(-, -, n) = n if and only if A2,2 = A1,2, while for bit position 13 we get f0(-, -, n) = -

if and only if A2,13 �= A1,13. Note that in this example, all involved bits of Ei do not
contain any difference.

This is not the case in SHA-2. Note that the nonlinear Boolean functions f0

and f1 update the same bit position of different words, while the linear Σi func-
tions update different bit positions within the same word. Hence, more complex
cyclic two-bit relations occur. A still simple example is given in Fig.3. In this
case, 4 bits of two Σi and two Boolean functions are related in a cyclic form
which results in a contradiction. We have observed that for a given differen-
tial characteristic even more complex relations with cycle lengths larger than
10 commonly occur. Of course already a single contradicting cycle results in an
impossible differential characteristic.

4.5 Inconsistency Checks

To avoid inconsistent differential characteristics, we have evaluated a number
of checks to detect contradictions as early and efficiently as possible. Note that
a test which is able to detect many contradictions is usually also less efficient.
However, also a simple test may detect a contradiction at a later point in the
search. Due to the high number of complex conditions in SHA-2 and the difficulty
to detect them we need to make a trade-off here.
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Two-Bit Condition Check. Two-bit conditions are linear conditions in GF (2)
since such conditions can only be either equal (Ai,j = Ai−1,j) or non-equal
(Ai,j �= Ai−1,j). Contradictions in two-bit condition cycles can be efficiently
detected by determining all two-bit conditions, setting up a linear system of
equations and checking if the system can be solved using Gaussian elimination.
Although a large number of contradictions are detected this way, most charac-
teristics are still invalid after this check.

Complete Condition Check. A quite expensive test is to check for every bit
restricted to ’-’ or ’x’ whether both possible cases (’0’ and ’1’, or ’n’ and
’u’) are indeed still valid. If both choices for a single bit are invalid we know that
the whole characteristic is impossible. Of course these tests can be extended to
other generalized conditions as well. However, it turned out to be more efficient
to apply this check only rarely and only to specific conditions during the search.
Furthermore, we have improved the speed of this complete test by applying it
only to bits which are restricted by two-bit conditions.

Complete Condition Check on a Set of Bits. Since even the complete
condition check is not able to detect many contradictions, we have analyzed
different variants of setting all possibilities for all or selected combinations of 2,
3 or 4 bits. Such tests indeed detect more impossible characteristics but are very
inefficient to compute and thus, cannot be used during the search for differential
characteristics in SHA-2.

5 Searching for Differential Characteristics

In general, our search techniques can be divided into three parts: decision, de-
duction and backtracking. Note that the same separation is done in many other
fields, like SAT solvers [5]. The first aspect of our search strategy is the decision,
where we decide which bit is chosen and which condition is imposed at its posi-
tion. In the deduction part we compute the propagation of the imposed condition
and check for contradictions. If a contradiction occurs we need to backtrack and
undo decisions, which is the third part of the search strategy. A basic search
strategy to find differential characteristics has been described in [2] and works
as follows.

Let U be the set of all ’?’ and ’x’, then repeat the following until U is empty.
Decision

1. Pick randomly a bit in U .
2. Impose a ’-’ for a ’?’ or randomly a sign (’u’ or ’n’) for ’x’.

Deduction
3. Compute the propagation.
4. If a contradiction is detected start backtracking, else go to step 1.

Backtracking
5. Jump back to an earlier state of the search and go to step 1.
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We have applied this strategy to SHA-2 but could not find a valid differential
characteristics. In any case at least one of the checks described in Section 4.5
failed. The reason for this is that conditions which are not covered by generalized
or two-bit conditions appear much more often in SHA-2 than in SHA-1. Since
more advanced checks are too expensive, we have developed a more sophisticated
search strategy to find valid differential characteristics for SHA-2 as described
in the next section.

5.1 Search Strategy

In our approach we already determine some message bits during the search for
a differential characteristic. Generally speaking, we are combining the search
for a conforming message pair with the search for a differential characteristic. In
doing so we consider those bits much earlier, which are involved in many relations
with other bits. This way, we can detect invalid characteristics at an early stage
of the search. However, this should not be done too early to not restrict the
message freedom too much. In addition, we are remembering critical bits during
the search to improve the backtracking and speed-up the search process. In the
following we describe the used search strategy in more detail.

In general we have two phases in our search strategy where different bits are
chosen (guessed) and we switch between these two dynamically. In the following,
we describe both phases in detail. Phase 1 can be described as follows.

Let U be the set of all ’?’ and ’x’. Repeat the following until U is empty:
Decision

1. Pick randomly a bit in U .
2. Impose a ’-’ for a ’?’ or randomly a sign (’u’ or ’n’) for ’x’.

Deduction
3. Compute the propagation as described in Section 4.3.
4. If a contradiction is detected start backtracking, else apply the additional

checks of Section 4.5.
5. Continue with step 1 if all checks passed, if not start backtracking.

Backtracking
6. If the decision bit is ’x’ try the second choice for the sign or if the

decision bit is ’?’ impose a ’x’.
7. If still a contradiction occurs mark bit as critical.
8. Jump back until the critical bit ca be resolved.
9. Continue with step 1.

Note that, the additional checks in step 4 are optional and a trade-off between
number of checks and speed has to be done. The additional steps in the back-
tracking process improve the search speed significantly and prevent that critical
bits result in a contradiction again.

Once phase 1 is finished (U is empty) we continue with phase 2 which can be
summarized as follows.



Finding SHA-2 Characteristics 299

Let U ′ be the set of all ’-’ with many two-bit conditions.
Repeat the following until U ′ is empty:
Decision

1. Pick randomly a bit in U ′.
2. Impose randomly a ’0’ or ’1’.

Deduction
3. Compute the propagation as described in Section 4.3.
4. If a contradiction is detected start backtracking, else apply additional

checks from Section 4.5.
5. Continue with step 1 if all checks passed, if not start backtracking.

Backtracking
6. Try the second choice of the decision bit.
7. If still a contradiction occurs mark bit as critical.
8. Jump back until the critical bit can be resolved.
9. If necessary jump back to phase 1, otherwise continue with step 1.

Choosing a decision bit with many two-bit conditions ensures that bits which
influence a lot of other bits are chosen first. Therefore, many other bits propa-
gate by defining the value of a single bit. Furthermore, in step 7 and 8 of the
backtracking we can also mark more than one bit as critical. We want to note
that due to step 9, we actually switch quite often between both phases in our
search.

Additionally, we restart the search from scratch after a certain amount of
contradictions or iterations to terminate branches which appear to be stuck
because of exploring a search space far from a solution.

5.2 Results

Using the start characteristic given in Table 2 and the search strategy described
above, we can find a valid characteristic and confirming inputs which result in
semi-free-collisions for 32 out of 64 steps of SHA-256. An example of a semi-free-
start for 32 steps is shown in Table 4. The according differential characteristic
and the set of conditions is given in Table 3 and Table 5. The find this example
for 32 steps our tool was running a few days on a cluster with 32 nodes.

So far we have only considered semi-free-start collision attacks in which an
attacker is allowed to choose the chaining value. However, in a collision attack
on the hash function the chaining value is fixed, which makes an attack much
more difficult. In order to construct a collision for step-reduced SHA-256, we
are interested in differential characteristics with no differences in the first few
message words. Then, the additional freedom in the first message words can be
used to transform a semi-free-start collision into a real collision. Similar char-
acteristics have also been used in the collision attacks on 24 steps of SHA-256
in [7].

By using a differential characteristic spanning over t = 11 steps with differ-
ences in only 5 expanded message words and with no differences in the first 7
message words (see Table 6) we are able to construct a collision for 27 steps of
SHA-256. The colliding message pair is shown in Table 8 and the differential
characteristic and the set of conditions is given in Table 7 and Table 9.
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6 Conclusions and Future Work

In this paper, we have presented a collision for 27 and a semi-free-start collision
for 32 steps of SHA-256 with practical complexity. This significantly improves
upon the best previously published (semi-free-start) collision attacks on SHA-256
for up to 24 steps. We have extended and generalized existing approaches and
developed a fully automatic tool to construct complex differential characteristics
for SHA-2.

Our tool extends the techniques proposed by De Cannière and Rechberger to
construct complex characteristics for SHA-1 using generalized conditions. The
more complex structure of SHA-256 complicates a direct application of their
approach. We have identified several problems and have shown how to overcome
them. Most importantly, a high amount of found differential characteristics are
invalid due to many contradicting conditions in SHA-2. We have resolved this
problem by by identifying critical bits during the whole search process, and
by combining the search for differential characteristics with the computation of
conforming message pairs.

To summarize, the search for valid differential characteristics and conforming
message pairs in SHA-2 is increasingly difficult and unpredictable, compared
to more simple designs like MD5 and SHA-1. Nevertheless, we were able to
construct a powerful tool to find practical examples for (semi-free-start) collisions
in SHA-256 which can also be applied to other ARX based hash functions.
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A Differential Characteristics and Conditions

Table 2. Starting point for a semi-free-start collision for 32 steps. Using the alter-
native description of SHA-2 (Section 4.1) and the notion of generalized conditions
(Section 4.2).

i ∇Ai ∇Ei ∇Wi

-4 -------------------------------- --------------------------------

-3 -------------------------------- --------------------------------

-2 -------------------------------- --------------------------------

-1 -------------------------------- --------------------------------

0 -------------------------------- -------------------------------- --------------------------------

1 -------------------------------- -------------------------------- --------------------------------

2 -----------------------------x-- -----------------------------x-- -----------------------------x--

3 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

4 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

5 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

6 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

7 ????????????????---------------- ???????????????????????????????? ????????????????????????????????

8 ????????????????---------------- ???????????????????????????????? ???????????????x----------------

9 ???????????????x---------------- ???????????????????????????????? --------------------------------

10 -------------------------------- ???????????????????????????????? --------------------------------

11 -------------------------------- ????????????????---------------- --------------------------------

12 -------------------------------- ????????????????---------------- --------------------------------

13 -------------------------------- ???????????????x---------------- --------------------------------

14 -------------------------------- -------------------------------- --------------------------------

15 -------------------------------- -------------------------------- --------------------------------

16 -------------------------------- -------------------------------- --------------------------------

17 -------------------------------- -------------------------------- ----x----------x----------------

18 -------------------------------- -------------------------------- --------------------------------

19 -------------------------------- -------------------------------- --------------------------------

... ... ...

30 -------------------------------- -------------------------------- --------------------------------

31 -------------------------------- -------------------------------- --------------------------------
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Table 3. Characteristic for a semi-free-start collision for 32 steps of SHA-256

i ∇Ai ∇Ei ∇Wi

-4 -------------------------------- --------------------------------

-3 -------------------------------- --------------------------------

-2 -------------------------------- --------------------------------

-1 -------------------------------- --------------------------------

0 -------------------------------- -----------------------------0-- --------------------------------

1 --------------------------1----- --0-0---1--1----1-0-0-------011- --------------------------------

2 --------------------------0--u-- --1-1-1000-1--11101101---1--1u0- -----------------------------u--

3 10n10nnn1n0n-11n1u01u11000uu0n0n -1n1n10un0un101-n1n1n0110un0u0n0 uu-un-----un---n-u-uu-n---u--un-

4 -----n----------0---------0-1--- -0n0n1nuuun0-1u1unnnuu011n000nn1 1n---1u--uu1u-uu------nn--0n----

5 ----------------n---------1----- 0u1nn1n-1010-00001u0101-11101110 01-1-un0-1-1n-nn1u1n0-0un-0-n--n

6 -------------n--u--------u---n-- 00u01un0000000n111u00100101uu11u n----nnuu-n-nu---n--n-----------

7 -------------------------------- -n10u000u1un0101nn10n00001n000u1 1n0001un10u0nnn-01n01u10000unnnn

8 -------------------------------- -10-1n0-0--1-01-0-1-0----n011-10 ----u-------unnn----------0-----

9 ----u----------u---------------- -0--u00-1-01-1--1---1----n1---0- --------------------------------

10 -------------------------------- ---nunn------n--n--------u-u-u-- --------------------------------

11 -------------------------------- ---0-10----100--0--------1-0-0-- --------------------------------

12 -------------------------------- ---0011----011--1--------0-1-1-- --------------------------------

13 -------------------------------- ---un------unnnn---------------- --------------------------------

14 -------------------------------- ---00------00000---------------- --------------------------------

15 -------------------------------- ---11------11111---------------- --------------------------------

16 -------------------------------- -------------------------------- --------------------------------

17 -------------------------------- -------------------------------- ----n----------n----------------

18 -------------------------------- -------------------------------- --------------------------------

19 -------------------------------- -------------------------------- --------------------------------

20 -------------------------------- -------------------------------- --------------------------------

21 -------------------------------- -------------------------------- --------------------------------

22 -------------------------------- -------------------------------- --------------------------------

23 -------------------------------- -------------------------------- --------------------------------

24 -------------------------------- -------------------------------- --------------------------------

25 -------------------------------- -------------------------------- --------------------------------

26 -------------------------------- -------------------------------- --------------------------------

27 -------------------------------- -------------------------------- --------------------------------

28 -------------------------------- -------------------------------- --------------------------------

29 -------------------------------- -------------------------------- --------------------------------

30 -------------------------------- -------------------------------- --------------------------------

31 -------------------------------- -------------------------------- --------------------------------

Table 4. Semi-free-start collision for 32 steps of SHA-256

h0 764d264f 268a3366 285fecb1 4c389b22 75cd568d f5c8f99b 6e7a3cc3 1b4ea134

h∗
0 764d264f 268a3366 285fecb1 4c389b22 75cd568d f5c8f99b 6e7a3cc3 1b4ea134

Δh0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

m
52a600a8 2c3b8434 ea92dfcf d4eaf9ad b77fe08d 7c50e542 69c783a6 86a14e10

baf88b0b 12665efb ce7c3a31 3030f09d 9bd52eb8 7549997e fa976e0d 86ebacbc

m∗ 52a600a8 2c3b8434 ea92dfcb 0cdba38b f514e39d 7a5bb4cb ee6bcba6 c58f6a0f

b2f78b0b 12665efb ce7c3a31 3030f09d 9bd52eb8 7549997e fa976e0d 86ebacbc

Δm
00000000 00000000 00000004 d8315a26 426b0310 060b5189 87ac4800 432e241f

080f0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

h1 d0b41ffa e1f519a2 e3cad2ed a19d5795 906ac05f c995f6c8 cf309f95 9fb9ca57

h∗
1 d0b41ffa e1f519a2 e3cad2ed a19d5795 906ac05f c995f6c8 cf309f95 9fb9ca57

Δh1 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
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Table 5. Set of conditions for the semi-free-start collision for 32 steps

i set of conditions

0 E0,2 = 0 1

1 A1,5 = 1, A1,2 �= A0,2, A1,0 = E1,0, E1,1 = 1, E1,2 = 1, E1,3 = 0, E1,11 = 0, E1,13 = 0, E1,15 = 1, E1,20 = 1, E1,23 = 1,
E1,27 = 0, E1,29 = 0

13

2 A2,2 = 1, A2,5 = 0, A2,0 = A1,0, A2,4 �= A1,4, A2,11 = A1,11, A2,14 �= A1,14, A2,16 = A1,16, A2,20 = A1,20, A2,22 = A1,22,
A2,24 �= A1,24, A2,25 �= A1,25, A2,26 �= A1,26, A2,29 �= A1,29, A2,23 = A2,11, A2,22 = A2,13, A2,25 �= A2,14, E2,1 = 0, E2,2 = 1,
E2,3 = 1, E2,6 = 1, E2,10 = 1, E2,11 = 0, E2,12 = 1, E2,13 = 1, E2,14 = 0, E2,15 = 1, E2,16 = 1, E2,17 = 1, E2,20 = 1, E2,22 = 0,
E2,23 = 0, E2,24 = 0, E2,25 = 1, E2,27 = 1, E2,29 = 1, E2,5 �= E1,5, E2,21 = E2,7

40

W2,2 = 1, W2,30 �= W2,13, W2,23 �= W2,19

3 A3,0 = 0, A3,1 = 0, A3,2 = 0, A3,3 = 0, A3,4 = 1, A3,5 = 1, A3,6 = 0, A3,7 = 0, A3,8 = 0, A3,9 = 1, A3,10 = 1, A3,11 = 1,
A3,12 = 1, A3,13 = 0, A3,14 = 1, A3,15 = 1, A3,16 = 0, A3,17 = 1, A3,18 = 1, A3,20 = 0, A3,21 = 0, A3,22 = 0, A3,23 = 1,
A3,24 = 0, A3,25 = 0, A3,26 = 0, A3,27 = 0, A3,28 = 1, A3,29 = 0, A3,30 = 0, A3,31 = 1, E3,0 = 0, E3,1 = 0, E3,2 = 0, E3,3 = 1,
E3,4 = 0, E3,5 = 0, E3,6 = 1, E3,7 = 0, E3,8 = 1, E3,9 = 1, E3,10 = 0, E3,11 = 0, E3,12 = 1, E3,13 = 0, E3,14 = 1, E3,15 = 0,
E3,17 = 1, E3,18 = 0, E3,19 = 1, E3,20 = 0, E3,21 = 1, E3,22 = 0, E3,23 = 0, E3,24 = 1, E3,25 = 0, E3,26 = 1, E3,27 = 0, E3,28 = 1,
E3,29 = 0, E3,30 = 1

92

W3,1 = 0, W3,2 = 1, W3,5 = 1, W3,9 = 0, W3,11 = 1, W3,12 = 1, W3,14 = 1, W3,16 = 0, W3,20 = 0, W3,21 = 1, W3,27 = 0,
W3,28 = 1, W3,30 = 1, W3,31 = 1, W3,17 = W3,0, W3,24 �= W3,3, W3,25 = W3,4, W3,10 = W3,6, W3,23 �= W3,6, W3,22 = W3,7,
W3,24 �= W3,7, W3,23 = W3,8, W3,25 = W3,10, W3,17 = W3,13, W3,24 �= W3,13, W3,19 = W3,15, W3,26 = W3,15, W3,22 �= W3,18,
W3,29 = W3,18, W3,23 = W3,19, W3,26 = W3,22

4 A4,3 = 1, A4,5 = 0, A4,15 = 0, A4,26 = 0, A4,0 = A2,0, A4,4 �= A2,4, A4,11 = A2,11, A4,14 �= A2,14, A4,16 �= A2,16, A4,20 = A2,20,
A4,22 = A2,22, A4,24 �= A2,24, A4,29 �= A2,29, A4,17 = A4,6, E4,0 = 1, E4,1 = 0, E4,2 = 0, E4,3 = 0, E4,4 = 0, E4,5 = 0, E4,6 = 0,
E4,7 = 1, E4,8 = 1, E4,9 = 0, E4,10 = 1, E4,11 = 1, E4,12 = 0, E4,13 = 0, E4,14 = 0, E4,15 = 1, E4,16 = 1, E4,17 = 1, E4,18 = 1,
E4,20 = 0, E4,21 = 0, E4,22 = 1, E4,23 = 1, E4,24 = 1, E4,25 = 0, E4,26 = 1, E4,27 = 0, E4,28 = 0, E4,29 = 0, E4,30 = 0,
E4,19 �= A3,19

67

W4,4 = 0, W4,5 = 0, W4,8 = 0, W4,9 = 0, W4,16 = 1, W4,17 = 1, W4,19 = 1, W4,20 = 1, W4,21 = 1, W4,22 = 1, W4,25 = 1,
W4,26 = 1, W4,30 = 0, W4,31 = 1, W4,18 �= W4,1, W4,13 = W4,2, W4,23 �= W4,2, W4,10 = W4,6, W4,11 �= W4,7, W4,23 = W4,12,
W4,27 = W4,12, W4,28 = W4,13

5 A5,5 = 1, A5,15 = 0, A5,0 �= A4,0, A5,2 �= A4,2, A5,4 �= A4,4, A5,6 �= A4,6, A5,11 = A4,11, A5,14 = A4,14, A5,16 �= A4,16,
A5,18 = A4,18, A5,20 = A4,20, A5,22 = A4,22, A5,24 = A4,24, A5,25 = A4,25, A5,29 �= A4,29, A5,26 = A5,3, A5,24 = A5,4,
A5,27 �= A5,6, E5,0 = 0, E5,1 = 1, E5,2 = 1, E5,3 = 1, E5,4 = 0, E5,5 = 1, E5,6 = 1, E5,7 = 1, E5,9 = 1, E5,10 = 0, E5,11 = 1,
E5,12 = 0, E5,13 = 1, E5,14 = 1, E5,15 = 0, E5,16 = 0, E5,17 = 0, E5,18 = 0, E5,20 = 0, E5,21 = 1, E5,22 = 0, E5,23 = 1, E5,25 = 0,
E5,26 = 1, E5,27 = 0, E5,28 = 0, E5,29 = 1, E5,30 = 1, E5,31 = 0, E1,0 = A1,0

74

W5,0 = 0, W5,3 = 0, W5,5 = 0, W5,7 = 0, W5,8 = 1, W5,9 = 0, W5,11 = 0, W5,12 = 0, W5,13 = 1, W5,14 = 1, W5,15 = 1,
W5,16 = 0, W5,17 = 0, W5,19 = 0, W5,20 = 1, W5,22 = 1, W5,24 = 0, W5,25 = 0, W5,26 = 1, W5,28 = 1, W5,30 = 1, W5,31 = 0,
W5,29 = W5,1, W5,23 = W5,2, W5,21 = W5,4, W5,29 �= W5,18

6 A6,2 = 0, A6,6 = 1, A6,15 = 1, A6,18 = 0, A6,26 = A5,26, A6,26 = A6,3, A6,24 �= A6,4, A6,27 �= A6,7, A6,30 �= A6,9, A6,23 �= A6,11,
A6,22 �= A6,13, A6,25 = A6,14, A6,26 �= A6,17, E6,0 = 1, E6,1 = 1, E6,2 = 1, E6,3 = 1, E6,4 = 1, E6,5 = 1, E6,6 = 0, E6,7 = 1,
E6,8 = 0, E6,9 = 0, E6,10 = 1, E6,11 = 0, E6,12 = 0, E6,13 = 1, E6,14 = 1, E6,15 = 1, E6,16 = 1, E6,17 = 0, E6,18 = 0, E6,19 = 0,
E6,20 = 0, E6,21 = 0, E6,22 = 0, E6,23 = 0, E6,24 = 0, E6,25 = 0, E6,26 = 1, E6,27 = 1, E6,28 = 0, E6,29 = 1, E6,30 = 0, E6,31 = 0,

73

W6,11 = 0, W6,14 = 0, W6,18 = 1, W6,19 = 0, W6,21 = 0, W6,23 = 1, W6,24 = 1, W6,25 = 0, W6,26 = 0, W6,31 = 0, W6,17 �= W6,0,
W6,28 = W6,0, W6,22 = W6,1, W6,7 �= W6,3, W6,20 = W6,3, W6,8 �= W6,4, W6,22 = W6,5, W6,10 = W6,6, W6,27 �= W6,6,
W6,22 = W6,7, W6,28 �= W6,7, W6,12 �= W6,8, W6,29 = W6,8, W6,13 �= W6,9, W6,30 = W6,9, W6,27 �= W6,10, W6,30 = W6,15,
W6,20 �= W6,16

7 A7,2 = A5,2, A7,6 �= A5,6, A7,18 = A5,18, E7,0 = 1, E7,1 = 1, E7,2 = 0, E7,3 = 0, E7,4 = 0, E7,5 = 0, E7,6 = 1, E7,7 = 0,
E7,8 = 0, E7,9 = 0, E7,10 = 0, E7,11 = 0, E7,12 = 0, E7,13 = 1, E7,14 = 0, E7,15 = 0, E7,16 = 1, E7,17 = 0, E7,18 = 1, E7,19 = 0,
E7,20 = 0, E7,21 = 1, E7,22 = 1, E7,23 = 1, E7,24 = 0, E7,25 = 0, E7,26 = 0, E7,27 = 1, E7,28 = 0, E7,29 = 1, E7,30 = 0

66

W7,0 = 0, W7,1 = 0, W7,2 = 0, W7,3 = 0, W7,4 = 1, W7,5 = 0, W7,6 = 0, W7,7 = 0, W7,8 = 0, W7,9 = 1, W7,10 = 1, W7,11 = 1,
W7,12 = 0, W7,13 = 0, W7,14 = 1, W7,15 = 0, W7,17 = 0, W7,18 = 0, W7,19 = 0, W7,20 = 0, W7,21 = 1, W7,22 = 0, W7,23 = 1,
W7,24 = 0, W7,25 = 1, W7,26 = 1, W7,27 = 0, W7,28 = 0, W7,29 = 0, W7,30 = 0, W7,31 = 1, W7,16 �= E3,16

8 A8,2 = A7,2, A8,6 �= A7,6, A8,15 �= A7,15, A8,16 �= A7,16, A8,18 = A7,18, A8,27 �= A7,27, E8,0 = 0, E8,1 = 1, E8,3 = 1, E8,4 = 1,
E8,5 = 0, E8,6 = 0, E8,11 = 0, E8,13 = 1, E8,15 = 0, E8,17 = 1, E8,18 = 0, E8,20 = 1, E8,23 = 0, E8,25 = 0, E8,26 = 0, E8,27 = 1,
E8,29 = 0, E8,30 = 1, E8,12 = E8,7, E8,21 �= E8,8,

46

W8,5 = 0, W8,16 = 0, W8,17 = 0, W8,18 = 0, W8,19 = 1, W8,27 = 1, W8,0 �= A4,0, W8,1 = A4,1, W8,4 �= A4,4, W8,21 = W8,0,
W8,22 = W8,1, W8,23 �= W8,2, W8,7 �= W8,3, W8,8 �= W8,4, W8,23 �= W8,6, W8,31 �= W8,10, W8,28 �= W8,13, W8,29 �= W8,14,
W8,30 �= W8,15, W8,31 = W8,20

9 A9,16 = 1, A9,27 = 1, A9,25 = A9,5, A9,15 = A9,6, A9,18 �= A9,7, A9,28 = A9,7, E9,1 = 0, E9,5 = 1, E9,6 = 0, E9,11 = 1, E9,15 = 1,
E9,18 = 1, E9,20 = 1, E9,21 = 0, E9,23 = 1, E9,25 = 0, E9,26 = 0, E9,27 = 1, E9,30 = 0, E9,14 �= E9,0, E9,13 �= E9,8, E9,22 = E9,9

22

10 A10,16 = A8,16, A10,27 = A8,27, E10,2 = 1, E10,4 = 1, E10,6 = 1, E10,15 = 0, E10,18 = 0, E10,25 = 0, E10,26 = 0, E10,27 = 1,
E10,28 = 0, E10,13 �= E10,0, E10,14 �= E10,0, E10,23 = E10,5, E10,20 = E10,7, E10,21 �= E10,8, E10,22 �= E10,9, E10,23 = E10,9,
E10,23 = E10,10, E10,29 = E10,10, E10,30 �= E10,12, E10,31 �= E10,13, E10,29 �= E10,16, E10,22 �= E10,17, E10,24 = E10,19

25

11 A11,16 = A10,16, A11,27 = A10,27, E11,2 = 0, E11,4 = 0, E11,6 = 1, E11,15 = 0, E11,18 = 0, E11,19 = 0, E11,20 = 1, E11,25 = 0,
E11,26 = 1, E11,28 = 0

12

12 E12,2 = 1, E12,4 = 1, E12,6 = 0, E12,15 = 1, E12,18 = 1, E12,19 = 1, E12,20 = 0, E12,25 = 1, E12,26 = 1, E12,27 = 0, E12,28 = 0,
E12,16 �= E11,16

12

13 E13,16 = 0, E13,17 = 0, E13,18 = 0, E13,19 = 0, E13,20 = 1, E13,27 = 0, E13,28 = 1, E13,13 �= E13,0, E13,14 = E13,0, E13,6 = E13,1,
E13,14 �= E13,1, E13,15 �= E13,1, E13,15 = E13,2, E13,29 = E13,2, E13,21 �= E13,3, E13,30 �= E13,3, E13,22 �= E13,4, E13,31 �= E13,4,
E13,23 �= E13,5, E13,24 �= E13,6, E13,25 = E13,7, E13,13 �= E13,8, E13,14 = E13,9, E13,30 = E13,11, E13,31 �= E13,12

25

14 E14,16 = 0, E14,17 = 0, E14,18 = 0, E14,19 = 0, E14,20 = 0, E14,27 = 0, E14,28 = 0 7

15 E15,16 = 1, E15,17 = 1, E15,18 = 1, E15,19 = 1, E15,20 = 1, E15,27 = 1, E15,28 = 1 7

17 W17,16 = 0, W17,27 = 0, W17,14 �= W4,15, W17,4 = W17,2, W17,29 �= W17,20 5
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Table 6. Starting point for a collision for 27 steps of SHA-256

i ∇Ai ∇Ei ∇Wi

-4 -------------------------------- --------------------------------

-3 -------------------------------- --------------------------------

-2 -------------------------------- --------------------------------

-1 -------------------------------- --------------------------------

0 -------------------------------- -------------------------------- --------------------------------

1 -------------------------------- -------------------------------- --------------------------------

2 -------------------------------- -------------------------------- --------------------------------

3 -------------------------------- -------------------------------- --------------------------------

4 -------------------------------- -------------------------------- --------------------------------

5 -------------------------------- -------------------------------- --------------------------------

6 -------------------------------- -------------------------------- --------------------------------

7 ???????????????????????????????? ???????????????????????????????? ?????????????????????????????x??

8 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

9 ???????????????????????????????? ???????????????????????????????? --------------------------------

10 -------------------------------- ???????????????????????????????? --------------------------------

11 -------------------------------- ???????????????????????????????? --------------------------------

12 -------------------------------- ???????????????????????????????? ????????????????????????????????

13 -------------------------------- ???????????????????????????????? --------------------------------

14 -------------------------------- -------------------------------- --------------------------------

15 -------------------------------- -------------------------------- ????????????????????????????????

16 -------------------------------- -------------------------------- --------------------------------

17 -------------------------------- -------------------------------- ????????????????????????????????

18 -------------------------------- -------------------------------- --------------------------------

19 -------------------------------- -------------------------------- --------------------------------

20 -------------------------------- -------------------------------- --------------------------------

21 -------------------------------- -------------------------------- --------------------------------

22 -------------------------------- -------------------------------- --------------------------------

23 -------------------------------- -------------------------------- --------------------------------

24 -------------------------------- -------------------------------- --------------------------------

25 -------------------------------- -------------------------------- --------------------------------

26 -------------------------------- -------------------------------- --------------------------------
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Table 7. Characteristic for a collision for 27 steps of SHA-256

i ∇Ai ∇Ei ∇Wi

-4 -------------------------------- --------------------------------

-3 -------------------------------- --------------------------------

-2 -------------------------------- --------------------------------

-1 -------------------------------- --------------------------------

0 -------------------------------- -------------------------------- --------------------------------

1 -------------------------------- -------------------------------- --------------------------------

2 -------------------------------- -------------------------------- --------------------------------

3 -------------------------------- -------------------------------- --------------------------------

4 -------------------------------- -------------------------------- --------------------------------

5 -------------------------------- ----------------1--------1------ --------------------------------

6 -------------------------------- -1--------0--0-10-1----0-0------ --------------------------------

7 -------unn--u------n---nn-uuuu-- 101-11---u10u1-0nuu-uuuu1n---n0- 00---1--un-0u-nuuuuu1-nu0n101n--

8 nnnnn-nnnn--------nuu----------- 0n0n001001u-1u1n01un010n01n00110 -----u--n---n---------nn--------

9 ----un--n--nu-------nu-u-------- -1n1n1011u011100nn100u10-10000u- --------------------------------

10 -------------------------------- u00000nuuu10uun01u00n00n110-u-u1 --------------------------------

11 -------------------------------- 0n000uuuuu01010111n-uun01n000n01 --------------------------------

12 -------------------------------- 01---1010u01u----111-010-0--110- ------110-u-------n0--u--n-n--nn

13 -------------------------------- 01-10u1nunuuu---1110-1nn11---01- --------------------------------

14 -------------------------------- -----1-01011----------00-------- --------------------------------

15 -------------------------------- -----1-001000---------11-------- 0u1-nn-n-u-1u---11un0uu10u101u0-

16 -------------------------------- -------------------------------- --------------------------------

17 -------------------------------- -------------------------------- ---0-1nnn---u-1-----10uu0-------

18 -------------------------------- -------------------------------- --------------------------------

19 -------------------------------- -------------------------------- --------------------------------

20 -------------------------------- -------------------------------- --------------------------------

21 -------------------------------- -------------------------------- --------------------------------

22 -------------------------------- -------------------------------- --------------------------------

23 -------------------------------- -------------------------------- --------------------------------

24 -------------------------------- -------------------------------- --------------------------------

25 -------------------------------- -------------------------------- --------------------------------

26 -------------------------------- -------------------------------- --------------------------------

Table 8. Collision for 27 steps of SHA-256

h0 6a09e667 bb67ae85 3c6ef372 a54ff53a 510e527f 9b05688c 1f83d9ab 5be0cd19

m
725a0370 0daa9f1b 071d92df ec8282c1 7913134a bc2eb291 02d33a84 278dfd29

0c40f8ea d8bd68a0 0ce670c5 5ec7155d 9f6407a8 729fbfe8 aa7c7c08 607ae76d

m∗ 725a0370 0daa9f1b 071d92df ec8282c1 7913134a bc2eb291 02d33a84 27460e6d

08c8fbea d8bd68a0 0ce670c5 5ec7155d 9f4425fb 729fbfe8 aa7c7c08 2d32d129

Δm
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00cbf344

04880300 00000000 00000000 00000000 00202253 00000000 00000000 4d483644

h1 5864015f 133494fa fa42bb35 94bc44f9 29eabb36 9e461e33 2eab27f8 106467c9
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Table 9. Set of conditions for the collision for 27 steps

i set of conditions

5 E5,6 = 1, E5,15 = 1 2

6 A6,2 = A5,2, A6,3 �= A5,3, A6,7 = A5,7, A6,8 �= A5,8, A6,19 �= A5,19, A6,22 �= A5,22, A6,23 = A5,23, E6,6 = 0, E6,8 = 0,
E6,13 = 1, E6,15 = 0, E6,16 = 1, E6,18 = 0, E6,21 = 0, E6,30 = 1, E6,2 = E5,2, E6,9 �= E5,9, E6,14 = E5,14

18

7 A7,2 = 1, A7,3 = 1, A7,4 = 1, A7,5 = 1, A7,7 = 0, A7,8 = 0, A7,12 = 0, A7,19 = 1, A7,22 = 0, A7,23 = 0,
A7,24 = 1, A7,10 �= A7,1, A7,11 �= A6,11, A7,25 �= A6,25, A7,31 �= A7,10, A7,31 �= A7,11, A7,25 = A7,14, A7,26 = A7,15,
A7,27 = A7,16, A7,28 = A7,16, A7,28 = A7,17, A7,29 = A7,17, A7,31 �= A7,20, E7,1 = 0, E7,2 = 0, E7,6 = 0, E7,7 = 1,
E7,8 = 1, E7,9 = 1, E7,10 = 1, E7,11 = 1, E7,13 = 1, E7,14 = 1, E7,15 = 0, E7,16 = 0, E7,18 = 1, E7,19 = 1,
E7,20 = 0, E7,21 = 1, E7,22 = 1, E7,26 = 1, E7,27 = 1, E7,29 = 1, E7,30 = 0, E7,31 = 1, E7,5 = E6,5, E7,12 = E6,12,
E7,28 = E6,28, E7,5 = E7,0, E7,23 = E7,4, E7,28 �= E7,23, W7,2 = 0, W7,3 = 1, W7,4 = 0, W7,5 = 1, W7,6 = 0,
W7,7 = 0, W7,8 = 1, W7,9 = 0, W7,11 = 1, W7,12 = 1, W7,13 = 1, W7,14 = 1, W7,15 = 1, W7,16 = 1, W7,17 = 0,
W7,19 = 1, W7,20 = 0, W7,22 = 0, W7,23 = 1, W7,26 = 1, W7,30 = 0, W7,31 = 0, W7,21 �= W7,0, W7,18 �= W7,1,
W7,29 �= W7,1, W7,21 �= W7,10, W7,25 = W7,10, W7,29 = W7,18, W7,29 = W7,25

80

8 A8,11 = 1, A8,12 = 1, A8,13 = 0, A8,22 = 0, A8,23 = 0, A8,24 = 0, A8,25 = 0, A8,27 = 0, A8,28 = 0, A8,29 = 0,
A8,30 = 0, A8,31 = 0, A8,10 �= W12,10, A8,14 �= W12,14, A8,26 �= W12,26, A8,19 �= A6,19, A8,10 �= A7,10, A8,20 = A7,20,
A8,26 �= A7,26, A8,10 = A8,1, A8,16 �= A8,4, A8,17 = A8,5, A8,15 �= A8,6, A8,18 = A8,6, A8,18 �= A8,7, A8,19 = A8,7,
A8,20 �= A8,8, E8,0 = 0, E8,1 = 1, E8,2 = 1, E8,3 = 0, E8,4 = 0, E8,5 = 0, E8,6 = 1, E8,7 = 0, E8,8 = 0, E8,9 = 0,
E8,10 = 1, E8,11 = 0, E8,12 = 0, E8,13 = 1, E8,14 = 1, E8,15 = 0, E8,16 = 0, E8,17 = 1, E8,18 = 1, E8,19 = 1,
E8,21 = 1, E8,22 = 1, E8,23 = 0, E8,24 = 0, E8,25 = 1, E8,26 = 0, E8,27 = 0, E8,28 = 0, E8,29 = 0, E8,30 = 0,
E8,31 = 0, W8,8 = 0, W8,9 = 0, W8,19 = 0, W8,23 = 0, W8,26 = 1, W8,20 �= W8,5, W8,22 = W8,5, W8,27 = W8,6,
W8,15 = W8,11, W8,24 �= W8,13, W8,30 �= W8,15, W8,29 = W8,25

70

9 A9,8 = 1, A9,10 = 1, A9,11 = 0, A9,19 = 1, A9,20 = 0, A9,23 = 0, A9,26 = 0, A9,27 = 1, A9,13 �= A7,13, A9,4 = A8,4,
A9,7 �= A8,7, A9,12 �= A9,0, A9,22 �= A9,1, A9,15 �= A9,3, A9,16 �= A9,4, A9,15 �= A9,6, A9,18 �= A9,7, A9,30 �= A9,7,
A9,29 �= A9,9, A9,30 �= A9,21, A9,31 �= A9,22, E9,1 = 1, E9,2 = 0, E9,3 = 0, E9,4 = 0, E9,5 = 0, E9,6 = 1, E9,8 = 0,
E9,9 = 1, E9,10 = 1, E9,11 = 0, E9,12 = 0, E9,13 = 1, E9,14 = 0, E9,15 = 0, E9,16 = 0, E9,17 = 0, E9,18 = 1,
E9,19 = 1, E9,20 = 1, E9,21 = 0, E9,22 = 1, E9,23 = 1, E9,24 = 1, E9,25 = 0, E9,26 = 1, E9,27 = 0, E9,28 = 1,
E9,29 = 0, E9,30 = 1

50

10 A10,8 �= A8,8, A10,10 �= A8,10, A10,19 �= A8,19, A10,20 = A8,20, A10,26 �= A8,26, A10,12 = A9,12, A10,13 = A9,13,
A10,22 = A9,22, A10,24 �= A9,24, A10,25 �= A9,25, A10,28 = A9,28, A10,29 = A9,29, A10,30 �= A9,30, A10,31 �= A9,31,
E10,0 = 1, E10,1 = 1, E10,3 = 1, E10,5 = 0, E10,6 = 1, E10,7 = 1, E10,8 = 0, E10,9 = 0, E10,10 = 0, E10,11 = 0,
E10,12 = 0, E10,13 = 0, E10,14 = 1, E10,15 = 1, E10,16 = 0, E10,17 = 0, E10,18 = 1, E10,19 = 1, E10,20 = 0,
E10,21 = 1, E10,22 = 1, E10,23 = 1, E10,24 = 1, E10,25 = 0, E10,26 = 0, E10,27 = 0, E10,28 = 0, E10,29 = 0,
E10,30 = 0, E10,31 = 1

44

11 A11,8 = A10,8, A11,10 = A10,10, A11,11 �= A10,11, A11,19 �= A10,19, A11,20 �= A10,20, A11,23 = A10,23, A11,26 �= A10,26,
A11,27 �= A10,27, E11,0 = 1, E11,1 = 0, E11,2 = 0, E11,3 = 0, E11,4 = 0, E11,5 = 0, E11,6 = 0, E11,7 = 1, E11,8 = 0,
E11,9 = 0, E11,10 = 1, E11,11 = 1, E11,13 = 0, E11,14 = 1, E11,15 = 1, E11,16 = 1, E11,17 = 0, E11,18 = 1, E11,19 = 0,
E11,20 = 1, E11,21 = 0, E11,22 = 1, E11,23 = 1, E11,24 = 1, E11,25 = 1, E11,26 = 1, E11,27 = 0, E11,28 = 0,
E11,29 = 0, E11,30 = 0, E11,31 = 0

39

12 E12,1 = 0, E12,2 = 1, E12,3 = 1, E12,6 = 0, E12,8 = 0, E12,9 = 1, E12,10 = 0, E12,12 = 1, E12,13 = 1, E12,14 = 1,
E12,19 = 1, E12,20 = 1, E12,21 = 0, E12,22 = 1, E12,23 = 0, E12,24 = 1, E12,25 = 0, E12,26 = 1, E12,30 = 1,
E12,31 = 0, E12,11 = W12,11, E12,27 �= W12,27, E12,0 �= A8,0, E12,5 = E12,0, W12,0 = 0, W12,1 = 0, W12,4 = 0,
W12,6 = 0, W12,9 = 1, W12,12 = 0, W12,13 = 0, W12,21 = 1, W12,23 = 0, W12,24 = 1, W12,25 = 1

35

13 E13,1 = 1, E13,2 = 0, E13,6 = 1, E13,7 = 1, E13,8 = 0, E13,9 = 0, E13,10 = 1, E13,12 = 0, E13,13 = 1, E13,14 = 1,
E13,15 = 1, E13,19 = 1, E13,20 = 1, E13,21 = 1, E13,22 = 0, E13,23 = 1, E13,24 = 0, E13,25 = 1, E13,26 = 1,
E13,27 = 0, E13,28 = 1, E13,30 = 1, E13,31 = 0, E13,5 = E13,0, E13,17 = E13,4, E13,18 = E13,5, E13,29 = E13,11

27

14 E14,8 = 0, E14,9 = 0, E14,20 = 1, E14,21 = 1, E14,22 = 0, E14,23 = 1, E14,24 = 0, E14,26 = 1 8

15 E15,8 = 1, E15,9 = 1, E15,19 = 0, E15,20 = 0, E15,21 = 0, E15,22 = 1, E15,23 = 0, E15,24 = 0, E15,26 = 1,
W15,1 = 0, W15,2 = 1, W15,3 = 1, W15,4 = 0, W15,5 = 1, W15,6 = 1, W15,7 = 0, W15,8 = 1, W15,9 = 1, W15,10 = 1,
W15,11 = 0, W15,12 = 0, W15,13 = 1, W15,14 = 1, W15,15 = 1, W15,19 = 1, W15,20 = 1, W15,22 = 1, W15,24 = 0,
W15,26 = 0, W15,27 = 0, W15,29 = 1, W15,30 = 1, W15,31 = 0, W15,23 �= W15,0, W15,25 �= W15,0, W15,25 = W15,18,
W15,28 �= W15,21

37

17 W17,7 = 0, W17,8 = 1, W17,9 = 1, W17,10 = 0, W17,11 = 1, W17,17 = 1, W17,19 = 1, W17,23 = 0, W17,24 = 0,
W17,25 = 0, W17,26 = 1, W17,28 = 0, W17,2 �= W17,0, W17,30 = W17,0, W17,31 = W17,1, W17,31 = W17,6, W17,21 =
W17,12, W17,21 = W17,14, W17,22 = W17,15, W17,27 �= W17,18

20
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Abstract. ARMADILLO2 is the recommended variant of a multi-pur-
pose cryptographic primitive dedicated to hardware which has been
proposed by Badel et al. in [1]. In this paper, we describe a meet-in-
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the PRNG mode. Finally we propose a (second) preimage attack when
used as a hash function. We have validated our attacks by implement-
ing cryptanalysis on scaled variants. The experimental results match the
theoretical complexities.

In addition to these attacks, we present a generalization of the parallel
matching algorithm, which can be applied in a broader context than
attacking ARMADILLO2.
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1 Introduction

ARMADILLO is a multi-purpose cryptographic primitive dedicated to hard-
ware which was proposed by Badel et al. in [1]. Two variants were presented:
ARMADILLO and ARMADILLO2, the latter being the recommended version.
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In the following, the first variant will be denoted ARMADILLO1 to distin-
guish it from ARMADILLO2. Both variants comprise several versions, each
one associated to a different set of parameters and to a different security level.
For both primitives, several applications are proposed: fixed input-length MAC
(FIL-MAC), pseudo-random number generator/pseudo-random function
(PRNG/PRF), and hash function. In [6], authors present a polynomial attack
on ARMADILLO1. Even if the design of ARMADILLO2 is similar to the design
of the first version, authors of [6] claim that this attack can not be applied on
ARMADILLO2.

The ARMADILLO family uses a parameterized internal permutation as a
building block. This internal permutation is based on two bitwise permutations
σ0 and σ1. In [1], these permutations are not specified, but some of the properties
that they must satisfy are given.

In this paper we provide the first cryptanalysis of ARMADILLO2, the rec-
ommended variant. As the bitwise permutations σ0 and σ1 are not specified,
we have performed our analysis under the reasonable assumption that they be-
have like random permutations. As a consequence, the results of this paper are
independent of the choice for σ0 and σ1.

To perform our attack, we use a meet-in-the-middle approach and an evolved
variant of the parallel matching algorithm introduced in [2] and generalized
in [5,4]. Our method enables us to invert the building block of ARMADILLO2
for a chosen value of the public part of the input, when a part of the output is
known. We can use this step to build key recovery attacks faster than exhaustive
search on all versions of ARMADILLO2 used in the FIL-MAC application mode.
Besides, we propose several trade-offs for the time and memory needed for these
attacks. We also adapt the attack to recover the key when ARMADILLO2 is used
as a stream cipher in the PRNG application mode. We further show how to build
(second) preimage attacks faster than exhaustive search when using the hashing
mode, and propose again several time-memory trade-offs. We have implemented
the attacks on a scaled version of ARMADILLO2, and the experimental results
confirm the theoretical predictions.

Organization of the paper. We briefly describe ARMADILLO2 in Section 2. In
Section 3 we detail our technique for inverting its building block and we explain
how to extend the parallel matching algorithm to the case of ARMADILLO2.
In Section 4, we explain how to apply this technique to build a key recovery
attack on the FIL-MAC application mode. We briefly show how to adapt this
attack to the stream cipher scenario in Section 4.2. The (second) preimage attack
on the hashing mode is presented in Section 5. In Section 6 we present the
experimental results of the verification that we have done on a scaled version of
the algorithm. Finally, in Section 7, we propose a general form of the parallel
matching algorithm derived from our attacks which can hopefully be used in
more general contexts.
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2 Description of ARMADILLO2

The core of ARMADILLO is based on the so-called data-dependent bit trans-
positions [3]. We recall the description of ARMADILLO2 given in [1] using the
same notations.

2.1 Description

Let C be an initial vector of size c and U be a message block of size m. The size
of the register (C‖U) is k = c+m. The ARMADILLO2 function transforms the
vector (C, U) into (Vc, Vt) as described in Figure 1:

ARMADILLO2 : Fc
2 × Fm

2 → Fc
2 × Fm

2

(C, U) �→ (Vc, Vt) = ARMADILLO2(C, U).

The function ARMADILLO2 relies on an internal bitwise parameterized permu-
tation denoted by Q which is defined by a parameter A of size a and is applied
to a vector B of size k:

Q : Fa
2 × Fk

2 → Fk
2

(A, B) �→ Q(A, B) = QA(B)

C U

QX(C‖U) X

QU (C‖U)

C U

�

�

U

�

�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
�

Y

�
���

Vc Vt

Fig. 1. ARMADILLO2

Let σ0 and σ1 be two fixed bitwise permutations of size k. In [1], the per-
mutations are not defined but some criteria they should fulfil are given. As the
attacks presented in this paper are valid for any bitwise permutations, we do
not describe these properties. We just stress that in the following, when com-
puting the complexities we assume that these permutations behave like random
ones. We denote by γ a constant of size k defined by alternating 0’s and 1’s:
γ = 1010 · · ·10.



Cryptanalysis of ARMADILLO2 311

Using these notations, we can define Q which is used twice in the
ARMADILLO2 function. Let A be a parameter and B be the internal state,
the parameterized permutation Q (that we denote by QA when indicating the
parameter is necessary) consists in a = |A| simple steps. The i-th step of Q
(reading A from its least significant bit to its most significant one) is defined by:
– an elementary bitwise permutation: B ← σAi(B), that is:

• if the i-th bit of A equals 0 we apply σ0 to the current state,
• otherwise (if the i-th bit of A equals 1) we apply σ1 to the current state,

– a constant addition (bitwise xor) of γ: B ← B ⊕ γ.

Using the definition of the permutation Q, we can describe the function
ARMADILLO2. Let (C, U) be the input, then ARMADILLO2(C, U) is defined
by:

– first compute X ← QU (C‖U)
– then compute Y ← QX(C‖U)
– finally compute (Vc‖Vt)← Y ⊕X , the output is (Vc, Vt).

Actually c and m can take different values depending on the required security
level. A summary of the sets of parameters for the different versions (A, B, C,
D or E) proposed in [1] is given in Table 1.

Table 1. Sets of parameters for the different versions of ARMADILLO2

Version k c m

A 128 80 48
B 192 128 64
C 240 160 80
D 288 192 96
E 384 256 128

2.2 A Multi-purpose Cryptographic Primitive

The general-purpose cryptographic function ARMADILLO2 can be used for
three types of applications: FIL-MAC, hashing, and PRNG/PRF.

ARMADILLO2 in FIL-MAC mode. The secret key is C and the challenge,
considered known by the attacker, is U . The response is Vt.

ARMADILLO2 in hashing mode. It uses a strengthened Merkle-Damg̊ard con-
struction, where Vc is the chaining value or the hash digest, and U is the message
block.

ARMADILLO2 in PRNG/PRF mode. The output sequence is obtained by tak-
ing the first t bits of (Vc, Vt) after at least r iterations. For ARMADILLO2 the
proposed values are r = 1 and t = k (see [1, Sec. 6]). When used as a stream
cipher, the secret key is C. The keystream is composed of k-bit frames indexed
by U which is a public value.
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3 Inverting the ARMADILLO2 Function

In [1] a sketch of a meet-in-the-middle (MITM) attack on ARMADILLO1, the
first variant of the primitive, is given by the authors to prove lower bounds
for the complexity and justify the choice of parameters. However, they do not
develop further their analysis.

In this section we describe how to invert the ARMADILLO2 function when
a part of the output (Vc, Vt) is known and U is chosen in the input (C‖U).
Inverting means that we recover C. The method we present can be performed
for any arbitrary bitwise permutations σ0 and σ1. To conduct our analysis we
suppose that they behave like random ones. Indeed, if the permutations σ0 and
σ1 were not behaving like random ones, one could exploit their distributions to
reduce the complexities of the attacks presented in this paper. Therefore, we are
considering the worst case scenario for an attacker.

First, we describe the meet-in-the-middle technique we use. It provides two
lists of partial states in the middle of the main permutation QX . To determine a
list of possible values for C, we need to select a subset of the cartesian product
of these two lists containing consistent couples of partial states. To build such a
subset efficiently, we explain how to use an adaptation of the parallel matching
algorithm presented in [2,5]. Then we present and apply the adapted algorithm
and compute its time and memory complexities.

All cryptanalysis, we present, on the different applications of ARMADILLO2
relies on the technique for recovering C presented in this section.

3.1 The Meet-in-the-Middle Technique

Whatever mode ARMADILLO2 is embedded in, we use the following facts:

– We can choose the m-bit vector U , in the input vector (C‖U).
– We know part of the output vector (Vc‖Vt): the m-bit vector Vt in the FIL-

MAC, the (c+m)-bit vector (Vc‖Vt) in the PRNG/PRF and the c-bit vector
Vc in the hash function.

We deal with two permutations: the pre-processing QU which is known as U
is known and the main permutation QX which is unknown, and we exploit the
three following equations:

– The permutation QU used in the pre-processing X = QU (C‖U) is known.
This implies that all the known bits in the input of the permutation can
be traced to their corresponding positions in X . For instance, there are m
coordinates of X whose values are determined by choosing U .

– The output of the main permutation Y = (Vc‖Vt)⊕X implies we know some
bits of Y . The amount of known bits of Y is denoted by y and is depending
on the mode we are focusing on through (Vc‖Vt).

– In the sequel, we divide X in two parts: X = (Xout‖Xin). Then, the main
permutation Y = QX(C‖U) can be divided in two parts: QXin and QXout

separated by a division line we call the middle, hence we perform the meet-
in-the-middle technique between QXin and Q−1

Xout
.
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As (Xout‖Xin) = QU (C‖U), we denote by min (resp. mout) the number of bits
of U that are in Xin (resp. Xout). We have mout + min = m. We denote by
�in (resp. �out) the number of bits coming from C in Xin (resp. Xout). We have
�out+�in = c. The meet-in-the-middle attack is done by guessing the �in unknown
bits of Xin and the �out unknown bits of Xout independently.

First, consider the forward direction. We can trace the �in unknown bits of
Xin back to C with Q−1

U . Next, for each possible guess of Xin, we can trace the
corresponding �in bits from C plus the m bits from U to their positions in the
middle by computing QXin(C‖U). Then consider the backward direction, we can
trace the y known bits of Y back to the middle for each possible guess of Xout,
that is computing Q−1

Xout
(Y ). This way we can obtain two lists Lin and Lout, of

size 2�in and 2�out respectively, of elements that represent partially known states
in the middle of QX .

To describe our meet-in-the-middle attack we represent the partial states in
the middle of QX as ternary vectors with coordinate values from {0, 1,−}, where
− denotes a coordinate (or cell) whose value is unknown. We say that a cell is
active if it contains 0 or 1 and inactive otherwise. The weight of a vector V ,
denoted by wt(V ), is the number of its active cells. Two partial states are a
match if their colliding active cells have the same values.

The list Lin contains elements QXin(C‖U) whose weight is x = �in + m. The
list Lout contains elements Q−1

Xout
(Y ) whose weight is y. When taking one element

from each list, the probability of finding a match will then depend on the number
of collisions of active cells between these two elements.

C U ︸ ︷︷ ︸ ︸︷︷︸
c =

�in + �out
m =

min + mout

QX(C‖U) X

QU(C‖U)

C U

�

�
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�

�

�
�
�
�
�
�
�
�
�
�
�
�
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��
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���

Vc Vt

︸ ︷︷ ︸ ︸︷︷︸
c =

�in + �out
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min + mout

Merging
point

QXin
(C‖U)

Q
−1
Xout
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⎫⎪⎪⎬⎪⎪⎭⎫⎬⎭
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Fig. 2. Overview of the inversion of the ARMADILLO2 core function

Consider a vector A in {0, 1,−}k with weight a. We denote by P[k,a,b](i) the
probability over all the vectors B ∈ {0, 1,−}k with weight b of having i active
cells at the same positions in A and B. This event corresponds to the situation
where there are i active cells of B among the a active positions in A and the
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remaining (b − i) active cells of B lie in the (k − a) inactive positions in A. As
the number of vectors of length k and weight b is

(
k
b

)
, we have:

P[k,a,b](i) =

(
a
i

)(
k−a
b−i

)(
k
b

) =

(
b
i

)(
k−b
a−i

)(
k
a

) .

Taking into account the probability of having active cells at the same positions
in a pair of elements from (Lin,Lout) and the probability that these active cells
do have the same value, we can compute the expected probability of finding a
match for a pair of elements, that we will denote 2−Ncoll . We have:

2−Ncoll =
y∑

i=0

2−iP[k,x,y](i).

This means that there will be a possible match with a probability of 2−Ncoll . In
total we will find 2�in+�out−Ncoll pairs of elements that pass this test. Each pair
of elements defines a whole C value. Next, we just have to check which of these
values is the correct one.

The big question now is that of the cost of checking which elements of the two
lists Lin and Lout pass the test. The ternary alphabet of the elements and the
changing positions of the active cells make it impossible to apply the approach
of traditional MITM attacks — having an ordered list Lin and checking for
each element in the list Lout if a match exists with cost 1 per element. Even
more, a priori, for each element in Lin we would have to try if it matches each
of the elements from Lout independently, which would yield the complexity of
exhaustive search.

For solving this problem we adapt the algorithm described in [5, Sec. 2.3] as
parallel matching to the case of ARMADILLO2. A generalized version of the
algorithm is exposed in Section 7 with detailed complexity calculations and the
link to our application case.

3.2 ARMADILLO2 Matching Problem: Matching Non-random
Elements

Recently, new algorithms have been proposed in [5] to solve the problem of
merging several lists of big sizes with respect to a given relation t that can be
verified by tuples of elements. These new algorithms take advantage of the special
structures that can be exhibited by t to reduce the complexity of solving this
problem. As stated in [5], the problem of merging several lists can be reduced to
the problem of merging two lists. Hereafter, we recall the reduced Problem 1
proposed in [5] that we are interested in.

Problem 1 ([5]). Let L1 and L2 be 2 lists of binary vectors of size 2�1 and 2�2

respectively. We denote by x a vector of L1 and by y a vector of L2.
We assume that vectors x and y can be decomposed into z groups of s bits,

i.e. x, y ∈ ({0, 1}s)z and x = (x1, . . . , xz) (resp. y = (y1, . . . , yz)). The vectors
in L1 and L2 are drawn uniformly and independently at random from {0, 1}sz.
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Let t be a Boolean function, t : {0, 1}sz × {0, 1}sz → {0, 1} such that there
exist some functions tj : {0, 1}s × {0, 1}s → {0, 1} which verify:

t(x, y) = 1 ⇐⇒ ∀j, 1 ≤ j ≤ z, tj(xj , yj) = 1.

Problem 1 consists in computing the set Lsol of all 2-tuples (x, y) of (L1×L2)
verifying t(x, y) = 1. This operation is called merging the lists L1 and L2 with
respect to t.

One of the algorithms proposed in [5] to solve Problem 1 is the parallel matching
algorithm, which is the one that provides the best time complexity when the
number of possible associated elements to one element is bigger than the size of
the other list, i.e., when we can associate by t more than |L2| elements to an
element from L1 as well as more than |L1| elements to an element from L2.

In our case, the lists Lin and Lout correspond to the lists L1 and L2 to merge
but the application of this algorithm differs in two aspects. The first one is
the alphabet, which is not binary anymore but ternary. The second aspect is
the distribution of vectors in the lists. In Problem 1, the elements are drawn
uniformly and independently at random while in our case the distribution is
ruled by the MITM technique we use. For instance, all the elements of Lin have
the same weight x and all the elements of Lout have the same weight y, which
is far from the uniform case.

The function t is the association rule we use to select suitable vectors from
Lin and Lout. We say that two elements are associated if their colliding active
cells have the same values. We can now specify a new Problem 1 adapted for
ARMADILLO2:

ARMADILLO2 Problem 1. Let Lin and Lout be 2 lists of ternary vectors of
size 2�in and 2�out respectively. We denote by x a vector of Lin and by y a vector
of Lout, with x, y ∈ {0, 1,−}k

The lists Lin and Lout are obtained by the MITM technique described in Para-
graph 3.1.
Let t : {0, 1,−}k×{0, 1,−}k → {0, 1} be the function defined by t = t1 · t2 · · · tk−1

· tk and:

∀j, 1 ≤ j ≤ k, tj : {0, 1,−}× {0, 1,−} → {0, 1},
xj 0 0 0 1 1 1 − − −
yj 0 1 − 0 1 − 0 1 −

tj(xj , yj) 1 0 1 0 1 1 1 1 1

We say that x and y are associated if t(x, y) = 1.
ARMADILLO2 Problem 1 consists in merging the lists Lin and Lout with
respect to t.

We can now adapt the parallel matching algorithm to ARMADILLO2
Problem 1.
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3.3 Applying the Parallel Matching Algorithm to ARMADILLO2

The principle of the parallel matching algorithm is to consider in parallel the
possible matches for the α first cells and the next β cells in the lists Lin and
Lout. The underlying idea is to improve, when possible, the complexity to find
all the elements that are a match for the (α + β) first cells. To have a match
between a vector in Lin and a vector in Lout, the vectors should satisfy:

– the vector in Lin has u of its x active cells among the (α + β) first cells;
– the vector in Lout has v of its y active cells among the (α + β) first cells;
– looking at the (α + β) first cells, both vectors should have the same value at

the same active position.

As x and y are the number of known bits from (C‖U) and from Y resp. (see
Fig. 2), the matching probability on the first (α + β) cells is:

2−Nα+β
coll =

x∑
u=0

P[k,α+β,x](u) ·
y∑

v=0

P[k,α+β,y](v) ·
v∑

w=0

2−wP[α+β,v,u](w).

This means that we will find 2c−Nα+β
coll partial solutions. For each pair passing

the test we will have to check next if the remaining k− α− β cells are verified.

Fig. 3. Lists used in the parallel matching algorithm

In a pre-processing phase, we first need to build three lists, namely LA, LB ,
L′

B, which are represented in Fig. 3.

List LA contains all the elements of the form (xA
1 . . . xA

α , yA
1 . . . yA

α ) with (xA
1 . . .

xA
α ) ∈ {0, 1,−}α and (yA

1 . . . yA
α ) being associated to (xA

1 . . . xA
α ). The size of

LA is:

|LA| =
α∑

i=0

((
α

i

)
2i3α−i2i

)
= 7α.

List LB contains all the elements of the form (xB
1 . . . xB

β , yB
1 . . . yB

β ) with (xB
1 . . .

xB
β ) ∈ {0, 1,−}β and (yB

1 , . . . , yB
β ) being associated to (xB

1 , . . . , xB
β ). The size

of LB is:

|LB| =
β∑

i=0

((
β

i

)
2i3β−i2i

)
= 7β .
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List L′
B contains for each element (xB

1 , . . . , xB
β , yB

1 , . . . , yB
β ) in LB all the ele-

ments x from Lin such that (xα+1 . . . , xα+β) = (xB
1 , . . . , xB

β ). Elements in L′
B

are of the form (yB
1 , . . . , yB

β , x1, . . . , xk) indexed1 by (yB
1 . . . , yB

β , x1, . . . , xα).
The probability for an element in Lin to have i active cells in its next β cells
is P[k,β,x](i). The size of L′

B is:

|L′
B| =

β∑
i=0

(
β

i

)
2i3β−i2i2�in

P[k,β,x](i)

2i
(
β
i

) =
β∑

i=0

3β−i2i2�inP[k,β,x](i).

The cost of building L′
B is upper bounded by (|L′

B|+3β), where 3β captures
the cases where no element in Lin corresponds to elements in LB and is
normally negligible.

Next, we do the parallel matching. The probability for an element in Lout to have
i active cells in its α first cells being P[k,α,y](i), for each element (xA

1 . . .xA
α,yA

1 . . .yA
α)

in LA we consider the 2�out P[k,α,y](i)

2i(α
i)

elements y from Lout such that (y1, . . . , yα) =

(yA
1 , . . . , yA

α ). Then we check in L′
B if elements indexed by (yα+1. . .yα+β , xA

1 . . .xA
α )

exist. If this is the case, we check if each found pair of the form (x, y) verifies the
remaining (k − α− β) cells. As we already noticed, we will find about 2c−Nα+β

coll

partial solutions for which we will have to check whether or not they meet the
remaining conditions.

The time complexity of this algorithm is:

O
(

2c−Nα+β
coll + 7α + 7β +

β∑
i=0

3β−i2i2�inP[k,β,x](i) +
α∑

i=0

3α−i2i2�outP[k,α,y](i)

)
.

The memory complexity is determined by 7α + 7β + |L′
B|. We can notice that if

β∑
i=0

3β−i2i2�inP[k,β,x](i) >

α∑
i=0

3α−i2i2�outP[k,α,y](i),

we can exchange the roles of Lin and Lout, so that the time complexity remains
the same but the memory complexity will be reduced. The memory complexity
is then:

O
(

7α + 7β + min

{
β∑

i=0

3β−i2i2�inP[k,β,x](i),
α∑

i=0

3α−i2i2�outP[k,α,y](i)

})
.

4 Meet in the Middle Key Recovery Attacks

4.1 Key Recovery Attack in the FIL-MAC Setting

In the FIL-MAC usage scenario, C is the secret key and U is the challenge.
The response is the m-bit size vector Vt. In order to minimize the complexity
of our attack, we want the number of known bits y from Y to be maximal. As
1 We can use standard hash tables for storage and look up in constant time.
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Y = (Vc‖Vt)⊕X and X = QU (C‖U) it means that we are interested in having
the maximum number of bits from U among the m less significant bits of X .

As we have m bits of freedom in U for choosing the permutation QU , we need
the probability of having i known bits (from U) among the m first ones (of X),
P[k,m,m](i), to be bigger than 2−m. Then to maximize the number of known bits
in Y , we choose y as follows:

y = max
0≤i≤m

{
i : P[k,m,m](i) > 2−m

}
. (1)

For instance for ARMADILLO2-A, we have y=38 with a probability of 2−45.19 >
2−48.

Then, from now on, we assume that we know y among the m bits of the lower
part of X and y bits at the same positions of Y .

Now, we can apply our meet-in-the-middle technique which allows us to re-
cover the key. We have computed the optimal parameters for the different ver-
sions of ARMADILLO2, with different trade-offs — the generic attack has a
complexity of 2c. The results appear in Table 2.

For each version of ARMADILLO2 presented in Table 2, the first line corre-
sponds to the (log2 of the) size of the lists Lin and Lout with the smallest time
complexity. The second line corresponds to the best parameters when limiting
the memory complexity to 245. In all cases, the complexity is determined by the
parallel matching part of the attack. The data complexity of all the attacks is 1,
that is, we only need one pair of plaintext/ciphertext to succeed.

Table 2. Complexities of the meet-in-the-middle key recovery attack on the FIL-MAC
application

Version c m �out �in α β log2(Time compl.) log2(Mem. compl.)

ARMADILLO2-A 80 48
34 46 24 20 72.54 68.94
18 62 16 9 75.05 45

ARMADILLO2-B 128 64
58 70 35 35 117.97 108.87
38 90 2 16 125.15 45

ARMADILLO2-C 160 80
76 84 43 43 148.00 135.90
35 125 4 16 156.63 45

ARMADILLO2-D 192 96
92 100 50 50 177.98 160.44
29 163 11 12 187.86 45

ARMADILLO2-E 256 128
125 131 65 65 237.91 209.83
29 227 11 13 251.55 45

4.2 Key Recovery Attack in the Stream Cipher Setting

As presented in [1], ARMADILLO2 can be used as a PRNG by taking the t first
bits of (Vc, Vt) after at least r iterations. For ARMADILLO2, the authors state
in [1, Sc. 6] that r = 1 and t = k is a suitable parameter choice. If we want
to use it as a stream cipher, the secret key is C. The keystream is composed of
k-bit frames indexed by U which is a public value.
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In this setting, we can perform an attack which is similar to the one on the
FIL-MAC, but with different parameters. As we know more bits of the output
of QX , y = m + �out, complexities of the key recovery attack are lower.

In general, the best time complexity is obtained when �in = �out, as the number
of known bits at each side is now x = m + �in in the input and y = m + �out in
the output. In this context it also appears that the best time complexity occurs
when α = β. There might be a small difference between α and β when the
leading term of the time complexity is 2c−Nα+β

coll .
We present the best complexities we have computed for this attack in Table 3

— the generic attack has a complexity of 2c. Other time-memory trade-offs
would be possible. As in the previous section, we give as an example the best
parameters when limiting the memory complexity to 245.

Table 3. Complexities of the meet-in-the-middle key recovery attack for the stream
cipher with various trade-offs

Version c m �out �in α β log2(Time compl.) log2(Mem. compl.)

ARMADILLO2-A 80 48
40 40 19 19 65.23 62.91
27 53 11 16 71.62 45

ARMADILLO2-B 128 64
64 64 31 32 104.71 101.75
29 99 9 16 119.69 45

ARMADILLO2-C 160 80
80 80 39 40 130.53 127.49
26 134 14 14 151.29 45

ARMADILLO2-D 192 96
96 96 47 48 156.35 153.23
30 162 8 16 184.37 45

ARMADILLO2-E 256 128
128 128 64 64 207.96 205.93
30 226 8 16 248.66 45

5 (Second) Preimage Attack on the Hashing Applications

We recall that the hash function built with ARMADILLO2 as a compression
function follows a strengthened Merkle-Damg̊ard construction, where the padding
includes the message length. In this case C represents the input chaining value,
U the message block and Vc the generated new chaining value and the hash
digest. In [1] the authors state that (second) preimages are expected with a
complexity of 2c, the one of the generic attack. We show, in this section, how to
build (second) preimage attacks with a smaller complexity.

5.1 Meet-in-the-Middle (Second) Preimage Attack

The principle of the attack is represented in Fig. 4. We first consider that the
ARMADILLO2 function is invertible with a complexity of 2q, given an output
Vc and a message block. In the preimage attack, we choose and fix �, the number
of blocks of the preimage. In the second preimage attack, we can consider the
length of the given message. Then, given a hash value h:
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In the backward direction:
– We invert the insertion of the last block Mpad (padding). This step costs

2q in a preimage scenario and 1 in a second preimage one. We get
ARMADILLO2−1(h, Mpad) = S′.

– From state S′, we can invert the compression function for 2b different
message blocks Mb with a cost 2b+q, obtaining 2b different intermediate
states: ARMADILLO2−1(S′, Mb) = S′′.

In the forward direction: From the initial chaining value, we insert 2a mes-
sages of length (� − 2) blocks, M = M1‖M2‖ . . . ‖M�−2, obtaining 2a inter-
mediate states S. This can be done with a complexity of O((�− 2)2a).

If we find a collision between one of the 2a states S and one of the 2b states
S′′, we have obtained a (second) preimage that is M‖Mb‖Mpad.
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Fig. 4. Representation of the meet-in-the-middle (second) preimage attack

A collision occurs if a + b ≥ c. The complexity of this attack is 2a + 2q + 2b+q in
time, where the middle term appears only in the case of a preimage attack and
is negligible. The memory complexity is about 2b (plus the memory needed for
inverting the compression function). So if 2q < 2c, we can find a and b so that
2a + 2b+q < 2c.

5.2 Inverting the Compression Function

In the previous section we showed that inverting the compression function for a
chosen message block and for a given output can be done with a cost of 2q < 2c.
In this section we show how this complexity depends on the chosen message
block, as the inversion can be seen as a key recovery similar to the one done
in Section 4. In this case we know U (the message block) and Vc, and we want
to find C. When inverting the function with the blocks Mb, we choose message
blocks (U) that define permutations QU which put most of the m bits from U
among the c most significant bits of X . This will result in better attacks, as the
bits in Y known from U do not cost anything and this gives us more freedom
when choosing the parameters �in and �out.

As before, we have 2m possibilities for QU . We denote by n the number of
bits of U in the c most significant bits of X . The number of message blocks (U)
verifying this condition is:

Nblock(n) = 2mP[k,c,m](n).
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In fact we are interested in the values of n which are the greatest possible (to
lower the complexity) that still leaves enough message blocks to invert in order
to obtain S′′. It means that these values belong to a set {ni} such that:∑

{ni}
Nblock(ni) ≥ 2b.

As the output is Vc, the �out bits guessed from X are also known bits from the
output of QX . The number of known bits of the output of QX is then defined
by:

y = min(c, �out + n)

Compared to the key recovery attack, the number of known bits at the end of the
permutation QX is significantly bigger, as we may know up to c bits, while in the
previous case the maximal number for y was y = maxi

{
i : P[k,m,m](i) > 2−m

}
.

To simplify the explanations, we concentrate on the case of ARMADILLO2-
A, that can be directly adapted to any of the other versions. For n = 48 we
have a probability P[128,80,48] = 2−44.171. This leaves 248−44.171 = 23.829 message
blocks to invert which allow us to know y = min(80, �out + 48) bits from the
output of QX . As we need to invert 2b message blocks, if b is bigger than 3.829,
we have to consider next the message blocks with n = 47, that allow us to
know y = min(80, �out + 47) bits, and so on. For each n considered, the best
time complexity (2qn) for inverting ARMADILLO2 might be different, but in
practice, with at most two consecutive values of n we have enough message
blocks for building the attack, and the complexity of inverting the compression
function for these two different types of messages is very similar.

Table 4. Complexities for inverting the compression function

Version c m �out �in n
log2(

Nblock(n))
α β

log2(Time
compl.)

log2(Mem.
compl.)

ARMADILLO2-A 80 48

35 45 47 9.95 22 16 65.90 63.08
35 45 48 3.83 22 16 65.90 63.08

20 60 47 9.95 16 8 71.36 45
27 53 48 3.83 11 16 71.62 45

ARMADILLO2-B 128 64
62 66 64 15.89 33 30 104.67 102.35
33 95 64 15.89 6 16 120.41 45

ARMADILLO2-C 160 80
78 82 80 19.82 41 38 130.48 128.08
26 134 80 19.82 11 16 152.24 45

ARMADILLO2-D 192 96
94 98 96 23.74 49 46 156.31 153.82
30 162 96 23.74 8 16 184.37 45

ARMADILLO2-E 256 128
126 130 128 31.58 65 62 207.96 205.30
34 222 128 31.58 5 16 249.47 45

For instance, in ARMADILLO2-A, we consider n = 48, 47, associated each to
23.829 and 29.96 possible message blocks respectively. The best time complexity
for inverting the compression function in both cases is 2q48 = 2q47 = 265.9, as we
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can see from Table 4. If we want to find the best parameters for a and b in the
preimage attack, we can consider that a + b = c and 2b = 2b48 + 2b47 , and we
want that 2a = 2b48265.9 + 2b47265.9 = 265.9(2b48 + 2b47), as the complexity of the
attack is O(2a +265.9(2b48 +2b47)). So if we choose the parameters correctly, the
best time complexity will be O(2a+1).

In this particular case the time complexity for n = 48 and for n = 47 is the
same, so finding the best b and a can be simplified by b = c−q

2 and a = c − b.
We obtain b = 7.275, a = 72.95. We see that we do not have enough elements
with n = 48 for inverting 2b blocks, but we have enough with n = 47 alone. As
the complexities are the same in both cases, we can just consider b = b47. The
best time complexity for the preimage attack that we can obtain is then 273.95,
with a memory complexity of 263.08. Other trade-offs are possible by using other
parameters for inverting the function, as shown in Table 5.

For the other versions of ARMADILLO2, the number of message blocks as-
sociated to y = m is big enough for performing the 2b inversions, so we do
not consider other n’s for computing the (second) preimage complexity. Then,
b = bm = c−q{n=m}

2 and a = c− bm.
Complexities for preimage attacks on the different versions of ARMADILLO2

are given in Table 5, where we can see two different complexities with different
trade-offs for each version.

Table 5. Complexities of the (second) preimages attacks

Best time Time-memory trade-off

Version c m
log2(Time

compl.)

log2(Mem.

compl.)

log2(Time

compl.)

log2(Mem.

compl.)

ARMADILLO2-A 80 48 73.95 63.08 76.81 45

ARMADILLO2-B 128 64 117.34 102.35 125.21 45

ARMADILLO2-C 160 80 146.24 128.08 157.12 45

ARMADILLO2-D 192 96 175.16 153.82 191.19 45

ARMADILLO2-E 256 128 232.98 205.30 253.74 45

6 Experimental Verifications

To verify the above theoretical results, we implemented the proposed key recov-
ery attacks in the FIL-MAC and stream cipher settings against a scaled version
of ARMADILLO2 that uses a 30-bit key and processes 18-bit messages, i.e.
c = 30 and m = 18. We performed the attack 10 times for both the FIL-MAC
and the PRNG settings where at each time we chose random permutations for
both σ0 and σ1 and random messages U (in the FIL-MAC case U was chosen so
that we got y bits from U among the m least significant bits of X).

As for each application the key is a 30-bit key, the generic attack requires
a time complexity of 230. Using the parallel matching algorithm we decrease
this complexity. Table 6 shows that the implementation results are very close
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to the theoretical estimates, confirming our analysis. We can also mention that
we exchanged the role of Lin and Lout in our implementation of the attacks to
minimize the memory needs.

Table 6. Key recovery attacks against a scaled version of ARMADILLO2 in the FIL-
MAC and PRNG modes

c m �out �in α β y log2(|L′
B|)

log2(c−
Nα+β

coll )

log2(Time
compl.)

log2(Mem.
compl.)

FIL-MAC
Impl. 30 18 12 18 8 6 14 23.477 27.537 27.874 24.066

Theory 30 18 12 18 8 6 14 23.475 27.538 27.874 24.064

PRNG
Impl. 30 18 14 16 7 6 32 22.530 24.728 25.396 22.738

Theory 30 18 14 16 7 6 32 22.530 24.735 25.401 22.738

7 Generalization of the Parallel Matching Algorithm

In Section 3, we managed to apply the parallel matching algorithm to invert the
ARMADILLO2 function by modifying the merging Problem 1 of [5].

When the number of possible associated elements to one element is bigger
than the other list as it is the case for ARMADILLO2, we cannot apply a ba-
sic algorithm like the instant matching algorithm proposed in [5]. Instead, we
can use either the gradual matching or the parallel matching algorithms also
proposed in [5]. We are going to concentrate on the parallel matching algo-
rithm which allows a significant reduction of the time complexity of solving
Problem 1, while allowing several time-memory trade-offs.

We can state the generalized problem that also covers our attack on
ARMADILLO2 and give the corresponding parallel matching algorithm. We be-
lieve that this more general problem will be useful for recognizing situations
where the parallel matching can be applied, and solving them in an automatized
way.

7.1 The Generalized Problem 1

As stated in [5], Problem 1 for N lists can be reduced to 2 lists, therefore we
will only consider the problem of merging 2 lists in the sequel.

Generalized Problem 1. We are given 2 lists, L1 and L2 of size 2�1 and 2�2

respectively. We denote by x a vector of L1 and by y a vector of L2. Coordinates
of x and y belong to a general alphabet A.

We assume that vectors x and y can be decomposed into z groups of s coor-
dinates, i.e. x, y ∈ (As)z and x = (x1, . . . , xz) (resp. y = (y1, . . . , yz)).

We want to keep pairs of vectors verifying a given relation t: t(x, y) = 1. The
relation t is group-wise,and is defined by t : (As)z × (As)z → {0, 1} such that
there exist some functions tj : As ×As → {0, 1}, verifying:

t(x, y) = 1 ⇐⇒ ∀j, 1 ≤ j ≤ z, tj(xj , yj) = 1.
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Generalized Problem 1 consists in merging these 2 lists to obtain the set
Lsol of all 2-tuples of (L1 × L2) verifying t(x, y) = 1. We say that x and y are
associated in this case.

In order to analyze the time and memory complexities of the attack we need to
compute the size of Lsol. This quantity depends on the probability that t(x, y) =
1. More precisely the complexities of the generalized parallel matching algorithm
depends on the conditional probabilities: Pryj [tj(xj , yj) = 1|xj = a], a ∈ As.
We will denote these probabilities by pj,a, a ∈ As.

In [5] the elements of the lists L1 and L2 were binary (i.e. A = {0, 1}) and
random, and the probability of each tj of being verified did not depend on the
elements xj or yj . Let us consider as an example the case where s = 1 and tj
tests the equality of xj and yj. We have:

∀j, 1 ≤ j ≤ z, pj,0 = pj,1 =
1
2
.

In the case of the ARMADILLO2 cryptanalysis that we present in this paper,
the alphabet is ternary (i.e. A = {0, 1,−}) and the association rule (see. AR-
MADILLO2 Problem 1 ) gives:

∀j, 1 ≤ j ≤ z, pj,0 =
2
3
, pj,1 =

2
3

and pj,− = 1

7.2 Generalized Parallel Matching Algorithm

First we need to build the three following lists:

List LA, of all the elements of the form (xA
1 , . . . , xA

α , yA
1 , . . . , yA

α ) with
(xA

1 , . . . , xA
α ) ∈ (As)α and (yA

1 , . . . , yA
α ) being associated by t to (xA

1 , . . . , xA
α ).

The size of LA is:
|LA| =

∑
a∈(As)α

α∏
j=1

|A|s pj,aj , (2)

where aj is the j-th coordinate of a ∈ (As)α.
List LB, of all the elements of the form (xB

1 , . . . , xB
β , yB

1 , . . . , yB
β ) with

(xB
1 , . . . , xB

β ) ∈ (As)β and (yB
1 , . . . , yB

β ) being associated by t to (xB
1 , . . . , xB

β ).
The size of LB is

|LB| =
∑

b∈(As)β

β∏
j=1

|A|s pj,bj ,

where bj is the j-th coordinate of b ∈ (As)β .
List L′

B, containing for each element (xB
1 , . . . , xB

β , yB
1 , . . . , yB

β ) in LB all the ele-
ments x from L1 such that (xα+1 . . . , xα+β) = (xB

1 , . . . , xB
β ). Elements in L′

B

are of the form (yB
1 , . . . , yB

β , x1, . . . , xz) indexed2 by (yB
1 . . . , yB

β , x1, . . . , xα).

2 We can use standard hash tables for storage and look up in constant time.
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If we denote by Pb,[α+1,α+β],L1 the probability of having an element x from
L1 such that (xα+1, . . . , xα+β) = b, the size of L′

B is:

|L′
B| =

∑
b∈(As)β

⎛⎝ β∏
j=1

|A|s pj,bj

⎞⎠ 2�1Pb,[α+1,α+β],L1.

The cost of building this list is upper-bounded by (|L′
B | + (|A|)β), where

the second term captures the cases where no element in L1 corresponds to
elements in LB and should be negligible.

In the case where∑
a∈(As)α

(
α∏

j=1

|A|s pj,aj

)
2�2Pa,[β+1,α+β],L2 <

∑
b∈(As)β

(
β∏

j=1

|A|s pj,bj

)
2�1Pb,[α+1,α+β],L1

we can swap L1 and L2, to reduce the memory complexity of the attack.
Next, we do the parallel matching. For each element (xA

1 , . . . , xA
α , yA

1 , . . . , yA
α )

in LA we consider the 2�2P(yA
1 ,...,yA

α ),[1,α],L2
elements y from L2 such that (y1. . .yα)

= (yA
1 , . . . , yA

α ) and we check in L′
B if elements indexed by (yα+1. . .yα+β, xA

1 . . .xA
α )

exist. If this is the case, we check if each found pair of the form (x, y) verifies the
remaining (k−α− β) cells. We denote by Ω the number of partial solutions for
which we will have to check whether or not they meet the remaining conditions:

Ω = 2�1+�2
∑

b∈(As)α+β

⎛⎝α+β∏
j=1

pj,bj

⎞⎠Pb,[1,α+β],L1

The time complexity of this algorithm is:

O
⎛⎝Ω + |LA|+ |LB |+ |L′

B |+
∑

a∈(As)α

⎛⎝ α∏
j=1

|A|s pj,aj

⎞⎠ 2�2Pa,[β+1,α+β],L2

⎞⎠
The memory complexity is determined by the size of the lists LA, LB and L′

B .
Therefore the memory complexity is:∑

a∈(As)α

α∏
j=1

|A|s pj,aj +
∑

b∈(As)β

β∏
j=1

|A|s pj,bj +
∑

b∈(As)β

(
β∏

j=1

|A|s pj,bj

)
2�1Pb,[α+1,α+β],L1

7.3 Link with Formulas in the Case of ARMADILLO

Using the previous formulas for the time and memory complexities, we can re-
discover formulas of the time and memory complexities we have computed for
ARMADILLO2 (see. Section 3.3). As these formulas depend essentially on the
size of the different lists, we simply expose how to find the size of the list |LA|
using equation (2).
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For ARMADILLO2, the probabilities pj,a are independent of the position j
and pj,a = 2/3 if and only if a is an active cell. Moreover, in this case, each cell
is composed of one letter of the alphabet which means that s = 1. And we have:

|LA| =
∑

a∈(As)α

α∏
j=1

|A|s pj,aj =
∑

a∈{0,1,−}α

α∏
j=1

3
(

2
3

)wt(a)

=
α∑

i=0

# {a : wt(a) = i} 3α

(
2
3

)i

=
α∑

i=0

(
α

i

)
2i

(
2
3

)i

3α

The same method can be applied to find the size of the list LB and L′
B. Here

we have Ω = 2c−Nα+β
coll .

8 Conclusion

In this paper, we have presented the first cryptanalysis of ARMADILLO2, the
recommended variant of the ARMADILLO family. We propose a key recovery
attack on all its versions for the FIL-MAC and the stream cipher mode, which
works for any bitwise permutations σ0 and σ1. We give several time-memory
trade-offs for its complexity. We also show how to build (second) preimage at-
tacks when using the hashing mode.

Besides the results on ARMADILLO2, we have generalized the parallel match-
ing algorithm presented in [5] for solving a wider Problem 1 which includes the
cases where the lists to merge do not have random elements. We believe that
new types of meet-in-the-middle attacks might appear now given this algorithm
that is cheaper than exhaustive search.
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Abstract. In this paper we describe the first single-key attack which
can recover the full key of the full version of Grain-128 for arbitrary keys
by an algorithm which is significantly faster than exhaustive search (by a
factor of about 238). It is based on a new version of a cube tester, which
uses an improved choice of dynamic variables to eliminate the previously
made assumption that ten particular key bits are zero. In addition, the
new attack is much faster than the previous weak-key attack, and has a
simpler key recovery process. Since it is extremely difficult to mathemat-
ically analyze the expected behavior of such attacks, we implemented it
on RIVYERA, which is a new massively parallel reconfigurable hardware,
and tested its main components for dozens of random keys. These tests
experimentally verified the correctness and expected complexity of the
attack, by finding a very significant bias in our new cube tester for about
7.5% of the keys we tested. This is the first time that the main compo-
nents of a complex analytical attack are successfully realized against a
full-size cipher with a special-purpose machine. Moreover, it is also the
first attack that truly exploits the configurable nature of an FPGA-based
cryptanalytical hardware.

Keywords: Grain-128, stream cipher, cryptanalysis, cube attacks, cube
testers, RIVYERA, experimental verification.

1 Introduction

Grain-128 [3] is a 128-bit variant of the Grain scheme which was selected by the
eSTREAM project in 2008 as one of the three recommended hardware-efficient
stream ciphers. The only single-key attacks published so far on this scheme
which were substantially faster than exhaustive search were either on a reduced
number of rounds or on a specific class of weak keys which contains about one in
a thousand keys. In this paper we describe the first attack which can be applied
to the full scheme with arbitrary keys. It uses an improved cube distinguisher
with new dynamic variables, which makes it possible to attack Grain-128 with
no restriction on the key. Its main components were experimentally verified by
running a 50-dimensional cube tester for 107 random keys and discovering a very
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strong bias (of 50 zeroes out of 51 bits) in about 7.5% of these keys. For these
keys, we expect the running time of our new attack to be about 238 times faster
than exhaustive search, using 263 bits of memory. Our attack is thus both faster
and more general than the best previous attack on Grain-128 [1], which was a
weak-key attack on one in a thousand keys which was only 215 times faster than
exhaustive search. However, our attack does not seem to threaten the security
of the original 80-bit Grain scheme.

In order to develop and experimentally verify the main components of the
attack, we had to run thousands of summations over cubes of dimension 49
and 50 for dozens of randomly chosen keys, where each summation required the
evaluation of 249 or 250 output bits of Grain-128 (running the time-consuming
initialization phase of Grain-128 for about 256 different key and IV values).
This process is hardware-oriented, highly parallelizable, and well beyond the
capabilities of a standard cluster of PC’s. We thus decided to implement the
attack on a new type of special purpose hardware consisting of 128 Spartan-3
FPGAs.

Special-purpose hardware, i. e., computing machines dedicated to cryptanalyt-
ical problems, have a long tradition in code-breaking, including attacks against
the Enigma cipher during WWII [15]. Their use is promising if two conditions
are fulfilled. First, the complexity of the cryptanalytical problem must be in the
range of approximately 250 . . . 264 operations. For problems with a lower com-
plexity conventional computer clusters are typically sufficient, such as the linear
cryptanalysis attack against DES [17] (which required 243 DES evaluations),
and more than 264 operations are difficult to achieve with today’s technology
unless extremely large budgets are available. The second condition is that the
computations involved are suited for customized hardware architectures, which
is often the case in symmetric cryptanalysis. Both conditions are fulfilled for the
building blocks of the Grain-128 attack described in this paper.

Even though it is widely speculated that government organizations have been
using special-purpose hardware for a long time, there are only two confirmed
reports about cryptanalytical machines in the open literature. In 1998, Deep
Crack, an ASIC-based machine dedicated to brute-forcing DES, was introduced
[16]. In 2006, COPACOBANA also allowed exhaustive key searches of DES, and
in addition cryptanalysis of other ciphers [13]. However, in the latter case often
only very small-scale versions of the ciphers are vulnerable. The paper at hand
extends the previous work with respect to cryptanalysis with dedicated hard-
ware in several ways. Our work is the first time that the main components of
a complex analytical attack, i. e., not merely an exhaustive search, are success-
fully realized in a public way against a full-size cipher by using a special-purpose
machine (previous attacks were either a simple exhaustive search sped up by a
special-purpose hardware, or advanced attacks such as linear cryptanalysis which
were realized in software on multiple workstations). Also, this is the first attack
which makes use of the reconfigurable nature of the hardware. Our RIVYERA
computer, consisting of 128 large FPGAs, is the most powerful cryptanalyti-
cal machine available outside government agencies (possessing more than four
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times as many logic resources as the COPACOBANA machine). This makes our
attack an interesting case study about what type of cryptanalysis can be done
with “university budgets” (as opposed to government budgets). As a final re-
mark, it is worth noting that the same attack implemented on GPU clusters
would require an extremely large number of graphic cards, which would not only
require a very high budget but would consume considerably more electric energy
to perform the same computations.

In the first part of this paper, we give the necessary background regarding
Grain-128 and dynamic cube attacks and describe our new attack on Grain-128.
In the second part of the paper, we present our FPGA implementation in detail.

2 Preliminaries

In this section we give a short description of Grain-128 [3], of cube testers (which
were introduced in [2]), and of dynamic cube attacks (developed in [1]).

2.1 Description on Grain-128

The state of Grain-128 consists of a 128-bit LFSR and a 128-bit NFSR. The
feedback functions of the LFSR and NFSR are respectively defined to be

si+128 = si + si+7 + si+38 + si+70 + si+81 + si+96

bi+128 = si+bi+bi+26+bi+56+bi+91+bi+96+bi+3bi+67+bi+11bi+13+bi+17bi+18+
bi+27bi+59 + bi+40bi+48 + bi+61bi+65 + bi+68bi+84

The output function is defined as
zi =

∑
j∈A bi+j + h(x) + si+93 , where A = {2, 15, 36, 45, 64, 73, 89}.

h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8

where the variables x0, x1, x2, x3, x4, x5, x6, x7 and x8 correspond to the tap
positions bi+12, si+8, si+13, si+20, bi+95, si+42, si+60, si+79 and si+95 respectively.

Grain-128 is initialized with a 128-bit key that is loaded into the NFSR, andwith
a 96-bit IV that is loaded into the LFSR, while the remaining 32 LFSR bits are
filled with 1’s. The state is then clocked through 256 initialization rounds without
producing an output, feeding the output back into the input of both registers.

2.2 Previous Results on Grain-128

All the previously published single-key attacks ([2], [5], [6], [7] and [8]) on Grain-
128 which are substantially better than exhaustive search can only deal with
simplified versions of the cryptosystem. In [9] a sliding property was used to
speed-up exhaustive search by a factor of two. Related-key attacks on the full
cipher were presented in [10]. However, the relevance of related-key attacks is
disputed, and in this paper we concentrate on attacks in the single key model.
The only significant known attack on the full version of Grain-128 in the single
key model is given in [1], where dynamic cube attacks are used to break a
particular subset of weak keys, which contains the 2−10 fraction of keys in which
ten specific key bits are all zero. The attack is faster than exhaustive search
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in this weak key set by a factor of about 215. For the remaining 0.999 fraction
of keys, there is no known attack which is significantly faster than exhaustive
search.

2.3 Cube Testers

In almost any cryptographic scheme, each output bit can be described by a mul-
tivariate master polynomial p(x1, .., xn, v1, .., vm) over GF(2) of secret variables
xi (key bits), and public variables vj (plaintext bits in block ciphers and MACs,
IV bits in stream ciphers). This polynomial is usually too large to write down
or to manipulate in an explicit way, but its values can be evaluated by run-
ning the cryptographic algorithm as a black box. The cryptanalyst is allowed
to tweak this master polynomial by assigning chosen values to the public vari-
ables (which result in multiple derived polynomials), but in single-key attacks
he cannot modify the secret variables.

To simplify our notation, we ignore in the rest of this subsection the distinction
between public and private variables. Given a multivariate master polynomial
with n variables p(x1, .., xn) over GF(2) in algebraic normal form (ANF), and a
term tI containing variables from an index subset I that are multiplied together,
the polynomial can be written as the sum of terms which are supersets of I and
terms that miss at least one variable from I:

p(x1, .., xn) ≡ tI · pS(I) + q(x1, .., xn)

pS(I) is called the superpoly of I in p. Compared to p, the algebraic degree of the
superpoly is reduced by at least the number of variables in tI , and its number
of terms is smaller.

Cube testers [2] are related to high order differential attacks [11]. The basic
idea behind them is that the symbolic sum over GF(2) of all the derived poly-
nomials obtained from the master polynomial by assigning all the possible 0/1
values to the subset of variables in the term tI is exactly pS(I) which is the su-
perpoly of tI in p(x1, .., xn). This simplified polynomial is more likely to exhibit
non-random properties than the original polynomial P .

Cube testers work by evaluating superpolys of carefully selected terms tI
which are products of public variables, and trying to distinguish them from a
random function. One of the natural properties that can be tested is balance:
A random function is expected to contain as many zeroes as ones in its truth
table. A superpoly that has a strongly unbalanced truth table can thus be used
to distinguish the cryptosystem from a random polynomial by testing whether
the sum of output values over an appropriate boolean cube evaluates as often to
one as to zero (as a function of the public bits which are not summed over).

2.4 Dynamic Cube Attacks

Dynamic Cube Attacks exploit distinguishers obtained from cube testers to re-
cover some secret key bits. This is reminiscent of the way that distinguishers
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are used in differential attacks to recover the last subkey in an iterated cryp-
tosystem. In static cube testers (and other related attacks such as the original
cube attack [18], and AIDA [19]), the values of all the public variables that are
not summed over are fixed to a constant (usually zero), and thus they are called
static variables. However, in dynamic cube attacks the values of some of the
public variables that are not part of the cube are not fixed. Instead, each one
of these variables (called dynamic variables) is assigned a function that depends
on some of the cube public variables and on some private variables. Each such
function is carefully chosen in order to simplify the resultant superpoly and thus
to amplify the expected bias (or the non-randomness in general) of the cube
tester.

The basic steps of the attack are briefly summarized below (for more details
refer to [1], where the notion of dynamic cube attacks was introduced).

A preprocessing stage: We first choose some polynomials that we want to set
to zero at all the vertices of the cube, and show how to nullify them by setting
certain dynamic variables to appropriate expressions in terms of the other public
and secret variables. To minimize the number of evaluations of the cryptosystem,
we choose a big cube of dimension d and a set of subcubes to sum over during the
online phase. We usually choose the subcubes of the highest dimension (namely
d and d− 1), which are the most likely to give a biased sum. We then determine
a set of e expressions in the private variables that need to be guessed by the
attacker in order to calculate the values of the dynamic variables during the
cube summations.

Note that these steps have to be done only once for each cryptosystem, and
the chosen parameters determine the running time and success probabilities of
the actual attack, in the same way that finding a good differential property can
improve the complexity of differential attacks on a cryptosystem.

The online phase of the attack has two parts:

Online Step 1

1. For each possible vector of values for the e secret expressions, sum modulo
2 the output bits over the subcubes chosen during preprocessing with the
dynamic variables set accordingly, and obtain a list of sums (one bit per
subcube).

2. Given the list of sums, calculate its score by measuring the non-randomness
in the subcube sums. The output of this step is a sequence of lists sorted
from the lowest score to the highest (in our notation the list with the lowest
score has the largest bias, and is thus the most likely to be correct in our
attack).

Given that the dimension of our big cube is d, the complexity of summing over
all its subcubes is bounded by d2d (using the Moebius transform [12]). Assuming
that we have to guess the values of e secret expressions in order to determine
the values of the dynamic variables, the complexity of this step is bounded by
d2d+e bit operations. Assuming that we have y dynamic variables, both the data
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and memory complexities are bounded by 2d+y (since it is sufficient to obtain
an output bit for every possible vertex of the cube and for every possible value
of the dynamic variables).

Online Step 2. Given the sorted guess score list, we determine the most likely
values for the secret expressions, for a subset of the secret expressions, or for the
entire key. The specific details of this step vary according to the attack.

2.5 A Partial Simulation Phase

The complexity of executing online step 1 of the attack for a single key is d2d+e

bit operations and 2d+y cipher executions. In the case of Grain-128, these com-
plexities are too high and thus we have to experimentally verify our attack with
a simpler procedure. Our solution is to calculate the cube summations in online
step 1 only for the correct guess of the e secret expressions. We then calculate the
score of the correct guess and estimate its expected position g in the sorted list
of score values by assuming that incorrect guesses will make the scheme behave
as a random function. Consequently, if the cube sums for the correct guess detect
a property that is satisfied by a random cipher with probability p, we estimate
that the location of the correct guess in the sorted list will be g ≈ max{p×2e, 1}
(as justified in [1]).

3 A New Approach for Attacking Grain-128

The starting point of our new attack on Grain-128 is the weak-key attack de-
scribed in [1] and we repeat it here for the sake of completeness. Both our new
attack and the attack described in [1] use only the first output bit of Grain-128
(with index i = 257). The output function of the cipher is a multivariate poly-
nomial of degree 3 in the state, and its only term of degree 3 is bi+12bi+95si+95.
Since this term is likely to contribute the most to the high degree terms in the
output polynomial, we try to nullify it. Since bi+12 is the state bit that is cal-
culated at the earliest stage of the initialization steps (compared to bi+95 and
si+95), it should be the least complicated to nullify. However, after many ini-
tialization steps, the ANF of bi+12 becomes very complicated and it does not
seem possible to nullify it in a direct way. Instead, the idea in [1] is to simplify
(and not nullify) bi+12bi+95si+95, by nullifying bi−21 (which participated in the
most significant terms of bi+12, bi+95 and si+95). The ANF of the earlier bi−21 is
much easier to analyze compared to the one of bi+12, but it is still very complex.
The solution adopted in [1] was to assume that 10 specific key bits are set to 0.
This leads to a weak-key attack on Grain-128 which can only attack a particular
fraction of 0.001 of the keys.

In order to attack a significant portion of all the possible keys, we use a
different approach which nullifies state bits that are produced at an earlier stage
of the encryption process. This approach weakens the resistance of the output
of Grain-128 to cube testers, but in a more indirect way. In fact, the output
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function is a higher degree polynomial which can be more resistant to cube testers
compared to [1]. This forces us to slightly increase the dimension d from 46 to 50.
On the other hand, since we choose to nullify state bits that are produced at an
earlier stage of the encryption process, their ANF is relatively simple and thus
the number of secret expressions e that we need to guess is reduced from 61 to
39. Since the complexity of the attack is proportional to d2d+e, the smaller value
of e more than compensates for the slightly larger value of d. Our new strategy
thus yields not only an attack which has a significant probability of success for
all the keys rather than an attack on a particular subset of weak keys, but also
a better improvement factor over exhaustive search (details are given at the end
of this section).

In the new attack we decided to nullify bi−54. This simplifies the ANF of the
output function in two ways: It nullifies the ANF of the most significant term
of bi−21 (the only term of degree 3), which has a large influence on the ANF of
the output. In addition, setting bi−54 to zero nullifies the most significant terms
of bi+62 and si+62, simplifying their ANF. This simplifies the ANF of the most
significant terms of bi+95 and si+95, both participating in the most significant
term of the output function. In addition to nullifying bi−54, we nullify the most
significant term of bi+12 (which has a large influence on the ANF of the output,
as described in the first paragraph of this section), bi−104bi−21si−21, by nullifying
bi−104.

The parameter set we used for the new attack is given in table 1. Most of the
dynamic variables are used in order to simplify the ANF of bi−54 = b203 so that
we can nullify it using one more dynamic variable with acceptable complexity.
We now describe in detail how to perform the online phase of the attack, given
this parameter set. Before executing these steps, one should take the following
preparation steps in order to determine the list of e secret expressions in the key
variables we have to guess during the actual attack.

1. Assign values to the dynamic variables given in table 1. This is a very simple
process which is described in Appendix B of [1] (since the symbolic values of
the dynamic variables contain hundreds of terms, we do not list them here,
but rather refer to the process that calculates their values).

2. Given the symbolic form of a dynamic variable, look for all the terms which
are combinations of variables from the big cube.

3. Rewrite the symbolic form as a sum of these terms, each one multiplied by
an expression containing only secret variables.

4. Add the expressions of secret variables to the set of expressions that need
to be guessed. Do not add expressions whose value can be deduced from the
values of the expressions which are already in the set.

When we prepare the attack, we initially get 50 secret expressions. However,
after removing 11 expressions which are dependent on the rest, the number of
expressions that need to be guessed is reduced to 39. We are now ready to execute
the online phase of the attack:
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1. Obtain the first output bit produced by Grain-128 (after the full 256 ini-
tialization steps) with the fixed secret key and all the possible values of the
variables of the big cube and the dynamic variables given in table 1 (the
remaining public variables are set to zero). The dimension of the big cube
is 50 and we have 13 dynamic variables and thus the total amount of data
and memory required is 250+13 = 263 bits.

2. We have 239 possible guesses for the secret expressions. Allocate a guess score
array of 239 entries (an entry per guess). For each possible value (guess) of
the secret expressions:
(a) Plug the values of these expressions into the dynamic variables (which

thus become a function of the cube variables, but not the secret vari-
ables).

(b) Our big cube in table 1 is of dimension 50. Allocate an array of 250 bit
entries. For each possible assignment to the cube variables:
i. Calculate the values of the dynamic variables and obtain the corre-

sponding output bit of Grain-128 from the data.
ii. Copy the value of the output bit to the array entry whose index

corresponds to the assignment of the cube variables.
(c) Given the 250-bit array, sum over all the entry values that correspond to

the 51 subcubes of the big cube which are of dimension 49 and 50. When
summing over 49-dimensional cubes, keep the cube variable that is not
summed over to zero. This step gives a list of 51 bits (subcube sums).

(d) Given the 51 sums, calculate the score of the guess by measuring the
fraction of bits which are equal to 1. Copy the score to the appropriate
entry in the guess score array and continue to the next guess (item 2).
If no more guesses remain go to the next step.

3. Sort the 239 guess scores from the lowest score to the highest.

To justify item 2.c, we note that the largest biases are likely to be created by
the largest cubes, and thus we only use cubes of dimension 50 and 49. To justify
item 2.d, we note that the cube summations tend to yield sparse superpolys,
which are all biased towards 0, and thus we can use the number of zeroes as a
measure of non-randomness. The big cube in the parameter set is of dimension
50, which has 16 times more vertices than the cube used in [1] to attack the weak
key set. The total complexity of algorithm above is about 50× 250+39 < 295 bit
operations (it is dominated by item 2.c, which is performed once for each of the
239 possible secret expression guesses).

Given the sorted guess array which is the output of online step 1, we are
now ready to perform online step 2 of the attack (which recovers the secret key
without going through the difficult step of solving the large system of polynomial
equations). In order to optimize this step, we analyze the symbolic form of
the secret expressions: Out of the 39 expressions (denoted by s1, s2, ..., s39), 20
contain only a single key bit (denoted by s1, s2, ..., s20). Moreover, 18 out of
the remaining 39 − 20 = 19 expressions (denoted by s21, s22, ..., s38) are linear
combinations of key bits, or can be made linear by fixing the values of 45 more key
bits. Thus, we define the following few sets of linear expressions: Set 1 contains
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the 20 secret key bits s1, s2, ..., s20. Set 2 contains the 45 key bits whose choice
simplifies s21, s22, ..., s38 into linear expressions. Set 3 contains the 18 linear
expressions of s21, s22, ..., s38 after plugging in the values of the 20+45 = 65 key
bits of the first two sets (note that the set itself depends on the values of the key
bits in the first two sets). Altogether, the first three sets contain 20+45+18 = 85
singletons or linear expressions. Set 4 contains 128−85 = 45 linearly independent
expressions which form a basis to the complementary subspace spanned by the
first three sets. Note that given the 128 values of all the expressions contained
in the 4 sets, it is easy to calculate the 128-bit key.

Our attack exploits the relatively simple form of 38 out of the 39 secret ex-
pressions in order to recover the key using basic linear algebra:

1. Consider the guesses from the lowest score to the highest. For each guess:
(a) Obtain the value of the key bits of set 1, s1, s2, ..., s20.
(b) For each possible possible values of the 45 key bits of set 2:

i. Plug in the (current) values of the key bits from sets 1 and 2 to the
expressions of s21, s22, ..., s38 and obtain set 3.

ii. Obtain the values of the linear expressions of set 3 from the guess.
iii. From the first 3 sets, obtain the 45 linear expressions of set 4 using

Gaussian Elimination.
iv. For all possible values of the 45 linear expressions of set 4 (iterated

using Gray Coding to simplify the transitions between values):
A. Given the values of the expressions of the 4 sets, derive the secret

key.
B. Run Grain-128 with the derived key and compare the result to

a given (known) key stream. If there is equality, return the full
key.

This algorithm contains 3 nested loops. The loop of item 1 is performed g times,
where g is the expected position of the correct guess in the sorted guess array.
The loop of item 1.b is performed 245 times per guess. The loop of item 1.b.iv is
performed 245 per iteration of the previous loop. The loop of item 1.b contains
linear algebra in item 1.b.iii whose complexity is clearly negligible compared
to the inner loop of item 1.b.iv, which contains 245 cipher evaluations. In the
inner loop of step 1.b.iv (in item 1.b.iv.A) we need to derive the 128-bit key. In
general, this is done by multiplying a 128×128 matrix with a 128-bit vector that
corresponds to the values of the linear expressions. However, note that 65 key bits
(of sets 1 and 2) are already known. Moreover, since we iterate the values of set
4 using Gray Coding (i. e., we flip the value of a single expression per iteration),
we only need to perform the multiplication once and then calculate the difference
from the previous iteration by adding a single vector to the previous value of the
key. This optimization requires a few dozen bit operations, which is negligible
compared to running Grain-128 in item 1.b.iv.B (which requires at least 1000
bit operation). Thus, the complexity of the exhaustive search per guess is about
245+45 = 290 cipher executions, which implies that the total complexity the
algorithm is about g × 290.
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The attack is worse than exhaustive search if we have to try all the 239 possible
values of g, and thus it is crucial to provide strong experimental evidence that
g is relatively small for a large fraction of keys. In order to estimate g, we
executed the online part of the attack by calculating the score for the correct
guess of the 39 expression values, and estimating how likely it is to get such a
bias for incorrect guesses if we assume that they behave as random functions.
We performed this simulation for 107 randomly chosen keys, out of which 8 gave
a very significant bias in which at least 50 of the 51 cubes sums were zero. This
is expected to occur in a random function with probability p < 2−45, and thus
we estimate that for about 7.5% of the keys, g ≈ max{2−45 × 239, 1} = 1 and
thus the correct guess of the 39 secret expressions will be the first in the sorted
score list (additional keys among those we tested had smaller biases, and thus
a larger g). The complexity of online step 2 of the attack is thus expected to
be about 290 cipher executions, which dominates the complexity of the attack
(the complexity of online step 1 is about 295 bit operations, which we estimate
as 295−10 = 285 cipher executions). This gives an improvement factor of 238 over
the 2128 complexity of exhaustive search for a non-negligible fraction of keys,
which is significantly better than the improvement factor of 215 announced in
[1] for the small subset of weak keys considered in that attack. We note that for
most additional keys there is a continuous tradeoff between the fraction of keys
that we can attack and the complexity of the attack on these keys.

Table 1. Parameter set for the attack on the full Grain-128, given output bit 257

Cube Indexes {0,2,4,11,12,13,16,19,21,23,24,27,29,33,35,37,38,41,43,44,46, 47,49,52,53,54,55,
57,58,59,61,63,65,66,67,69,72,75,76,78,79,81,82,84,85,87,89,90,92,93}

Dynamic Variables {31,3,5,6,8,9,10,15,7,25,42,83,1}
State Bits Nullified {b159, b131, b133, b134, b136, b137, b138, b145, s135, b153, b170, b176, b203}

4 Description of the Dedicated Hardware Used to Attack
Grain-128

Cube attacks and testers are notoriously difficult to analyze mathematically. To
test our attack experimentally and to verify its complexity, we had to try dozens
of random keys, and thus to run thousands of cube summations of dimension
49 and 50 for multiple random keys. This is only marginally feasible on a large
cluster of PCs, which are ill-suited for performing computations relying heav-
ily on bit-permutations as needed for this kind of attack. We thus decided to
experimentally verify our attack on dedicated reconfigurable hardware.

4.1 Architectural Considerations

We start with an evaluation of the online phase of the attack (for the cor-
rect guess of the 39 secret expression values) regarding possible optimizations in
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hardware. To get a better understanding of our implementation, we describe the
basic work-flow in Figure 1: The software implementation of the attack uses a
parameter set as input, e. g., the cube dimension, the cube itself, a base IV and
the number of keys to attack. It selects a random key to attack and divides
the big cube into smaller worker cubes and distributes them to worker threads
running in parallel. Please note that for simplicity the figure shows only one
worker. If 2w workers are used, the iterations per worker are reduced from 2d to
2d−w.

Fig. 1. Cube Attack — Program flow for cube dimension d

The darker nodes and the bold path show the steps of each independent
thread: As each worker iterates over a distinct subset of the cube, it evaluates
polynomials on the worker cube (dynamic variables) and updates the IV input to
Grain-128. Using the generated IV and the random key, it computes the output
of Grain-128 after the initialization phase. With this output, the thread updates
an intermediate value — the worker sum — and starts the next iteration. In the
end, the software combines all worker sums, evaluates the result and can chose
a new random key to start again.

With a cube of dimension d, the attack on one key (for the correct guess
of the 39 secret expression values) computes the first output bit of Grain-128
2d times. Thus, in order to speed-up the attack, it is necessary to implement
Grain-128 as efficiently as possible. The design of the stream cipher is highly
suitable for hardware implementations: It consists mainly of two shift registers
and some logic cells. As already proposed for cube testers on Grain-128 in [4], a
fast and small FPGA implementation is a very good choice in comparison to a
(bit-sliced) software implementation.

To create an independent worker on the FPGA, it is also required to im-
plement the IV generation. To estimate the effort of building a full worker in
hardware, we need to know how many dynamic inputs we have to consider: While
dynamic modifications, e. g., iterating over arrays with dynamic step sizes, pose
no problems in software, they can be very inefficient in hardware.

In order to compute the cipher, we need a key and an IV. The value of the key
varies, as it is chosen at random. The IV is a 128 bit value, where each bit utilizes
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one of three functions: it is either a value given by the base IV provided by the
parameter set, part of the (worker) cube or a dynamic variable. As the function of
each bit is modified not only per parameter set, but also when assigning partial
cubes to different workers, this input also varies. The first two functionalities
are both restricted and can be realized by simple multiplexers in hardware.
The dynamic variable on the other hand stores the result of a polynomial. As
we have no set of pre-defined polynomials and they are derived at runtime,
every possible combination of boolean functions over the worker cube (and thus
over the complete 128 bits) must be realized. Even with tight restrictions like a
maximum of terms per monomial and monomials per polynomial, it is impossible
to provide the reconfigurable structure in hardware.

As a consequence, a fully dynamic approach leads to extremely large multi-
plexers and thus to very high area consumption on the FPGA, which is
prohibitively slow. The completely opposite approach would be to utilize the
complete area of an FPGA for massive parallel Grain-128 computations with-
out additional logic. In this case, the communication between the host and the
FPGA will be the bottleneck of the system and the parallel cores on the FPGA
will idle.

For our attack, we use the RIVYERA special-purpose hardware cluster de-
scribed in greater detail in Appendix A. For the following design decisions we re-
mark that RIVYERA provides 128 powerful Spartan-3 FPGAs, which are tightly
connected to an integrated server system powered by an Intel Core i7 920 with
8 logical CPU cores. This allows us to utilize dedicated hardware and use a
multi-core architecture for the software part.

In order to implement the attack on the RIVYERA and benefit from its
massive computing power, we propose the following implementation. Figure 2
shows the design of the modified attack. The software design is split into two
parts: We use all but one core of the CPU to generate attack specific bitstreams,
i. e., configuration files for the FPGAs, in parallel to prepare the computation on
the FPGA cluster. Each of these generated designs configures the RIVYERA for
a complete attack on one random key provided by the host PC. As soon as one
bitstream was generated and waits in the queue, the remaining core programs
all 128 FPGAs with it, starts the attack, waits for the computation to finish and
stores the results.

In contrast to the first approach, which uses the generic structure realizable in
software, we generate custom VHDL code containing constant settings and fixed
boolean functions of the polynomials derived from the parameter set and the
provided key. Building specific configuration files for each attack setup allows us
to implement as many fully functional, independent, parallel workers as possible
without the area consumption of complex control structures. In addition, only a
single 7-bit parameter is necessary at runtime - to split the workspace between
all 128 FPGAs - to start the computation and receive a d-bit return value. This
efficiently circumvents all of the problems and overhead of a generic hardware
design at the cost of rerunning the FPGA design flow for each parameter/key
pair.
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Fig. 2. Cube Attack using RIVYERA

Please note that in this approach the host software modifies a basic design
by hard-coding conditions and adjusting internal bus and memory sizes for each
attack. We optimized the basic layout as much as possible, but the different
choices of polynomial functions lead to different combinatorial logic paths and
routing decisions, which can change the critical path in hardware. As the clock
frequency is linked to the critical path, we implemented different design strategies
as well as multiple fall-back options to modify the clock frequency constraints
in order to prevent parameter/key pairs from resulting in an invalid hardware
configurations.

4.2 Hardware Implementation Results

In this section, we give a brief overview of the implementation and present results.
As the total number of iterations for one attack (for the correct guess of the 39
secret expression values) is 2d, the number of workers for an optimal setup has
to be a power of two. Considering the area of a Spartan-3 5000 FPGA, we chose
to implement a set of 24 independent workers per FPGA.

Figure 3 shows the top level overview. As mentioned before, creating an attack
specific implementation allows us to strip down the communication interface and
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Fig. 3. FPGA Implementation of the online phase for cube dimension d

data paths to a minimum. This is very important as we cannot predict the impact
of the (unknown) parameters and need to relax the design as much as possible.

Each of the workers consists of its own IV generator and controls three Grain-
128 instances. The IV generator needs three clock cycles per IV and we need a
corresponding number of Grain instances to process the output directly. As it is
possible to run more than one initialization step per clock cycle in parallel, we
had to find the most suitable time/area trade-off for the cipher implementation.
Table 2 shows the synthesis results of our Grain implementation. In comparison,
Aumasson et al. used 25 parallel steps, which is the maximum number of sup-
ported parallel steps without additional overhead, on the large Virtex-5 LX330
FPGA used in [4].

Table 2. Synthesis results of Grain-128 implementation on the Spartan-3 5000 FPGA
with different numbers of parallel steps per clock cycle

Parallel Steps 20 21 22 23 24 25

Clock Cycles (Init) 256 128 64 32 16 8
Max. Frequency (MHz) 227 226 236 234 178 159
FPGA Resources (Slices) 165 170 197 239 311 418

The resulting attack system for the online phase — consisting of the software
and the RIVYERA cluster — uses 16 workers per FPGA and 128 FPGAs on
the cluster in parallel. This means that the number of Grain computations per
worker is reduced to 2d−11. The design ensures that each key can be attacked at
the highest possible clock frequency, while it tries to keep the building time per
configuration moderate.

Table 3 reflects the results of the generation process and the distribution of
the configurations with respect to the different clock frequencies. It shows that
the impact of the unknown parameters is predictable and that fallback strategies
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Table 3. Results of the generation process for cubes of dimension 46, 47 and 50.
The Duration is the time required for the RIVYERA cluster to complete the online
phase. The Percentage row gives the percentage of configurations built with the given
clock frequency out of the total number of configurations built with cubes of the same
dimension.

Cube Dimension d 46 47 50
Clock Frequency (MHz) 100 110 120 120 110 120
Configurations Built 1 7 8 6 60 93
Percentage 6.25 43.75 50 100 39.2 60.8
Online Phase Duration 17.2 min 15.6 min 14.3 min 28.6 min 4h 10 min 3h 49 min

are necessary. Please note that the new attack tries to generate configurations
for multiple keys in parallel. This process — if several strategies are tried —
may require more than 6 hours before the first configuration becomes available.
Smaller cube dimensions, i. e., all cube dimensions lower than 48, result in very
fast attacks and should be neglected, as the building time will exceed the du-
ration of the attack in hardware. Further note that the duration of the attack
increases exponentially in d, e. g., assuming 100 MHz as achievable for larger
cube dimensions, d = 53 needs 1.5 days and d = 54 needs 3 days.

5 Conclusions

We presented the first attack on Grain-128 which is considerably faster than
exhaustive search, and unlike previous attacks makes no assumptions on the
secret key. While the full attack is infeasible, we can convincingly estimate its
results by running a partial version in which all the e unknown secret expressions
are set to their correct value. Due to its high complexity and hardware-oriented
nature, the attack was developed and verified using a new type of dedicated
hardware. Our experimental results show that for about 7.5% of the keys we get
a huge improvement factor of 238 over exhaustive search.

Acknowledgements. The authors thank Martin Ågren and the anonymous
referees for their very helpful comments on this paper.

A Design and Architecture of the RIVYERA Cluster

In this work we employ an enhanced version of the COPACOBANA special-
purpose hardware cluster that was specifically designed for the task of crypt-
analysis [13]. This enhanced cluster (also known as RIVYERA [14]) is populated
with 128 Spartan-3 XC3S5000 FPGAs, each tightly coupled with 32MB memory.
Each Spartan-3 XC3S5000 FPGA provides a sea of logic resources consisting of
33,280 slices and 104 BRAMs enabling the implementation even of complex func-
tions in reconfigurable hardware. Eight FPGAs are soldered on individual card
modules that are plugged into a backplane which implements a global systolic



342 I. Dinur et al.

ring bus for high-performance communication. The internal ring bus is further
connected via PCI Express to a host PC which is also installed in the same 19"
housing of the cluster. Figure 4 provides an overview of the architecture of the
RIVYERA special purpose cluster.
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Fig. 4. Architecture of the RIVYERA cluster system
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Abstract. Since Rijndael was chosen as the Advanced Encryption Stan-
dard (AES), improving upon 7-round attacks on the 128-bit key variant
(out of 10 rounds) or upon 8-round attacks on the 192/256-bit key vari-
ants (out of 12/14 rounds) has been one of the most difficult challenges
in the cryptanalysis of block ciphers for more than a decade. In this pa-
per, we present the novel technique of block cipher cryptanalysis with
bicliques, which leads to the following results:

– The first key recovery method for the full AES-128 with computa-
tional complexity 2126.1.

– The first key recovery method for the full AES-192 with computa-
tional complexity 2189.7.

– The first key recovery method for the full AES-256 with computa-
tional complexity 2254.4.

– Key recovery methods with lower complexity for the reduced-round
versions of AES not considered before, including cryptanalysis of
8-round AES-128 with complexity 2124.9 .

– Preimage search for compression functions based on the full AES
versions faster than brute force.

In contrast to most shortcut attacks on AES variants, we do not need to
assume related-keys. Most of our techniques only need a very small part
of the codebook and have low memory requirements, and are practically
verified to a large extent. As our cryptanalysis is of high computational
complexity, it does not threaten the practical use of AES in any way.

Keywords: block ciphers, bicliques, AES, key recovery, preimage.

1 Introduction

Since the Advanced Encryption Standard competition finished in 2001, the world
saw little progress in the cryptanalysis of block ciphers. In particular, the current
standard AES is almost as secure as it was 10 years ago in the strongest and
most practical model with a single unknown key. The former standard DES has
not seen a major improvement since Matsui’s seminal paper in 1993 [37].

In contrast, the area of hash function cryptanalysis is growing quickly, en-
couraged by the cryptanalysis of MD5 [48], of SHA-0 [6, 15] and SHA-1 [47],
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followed by a practical attack on protocols using MD5 [44, 45], preimage attacks
on Tiger [28] and MD5 [43], etc. While differential cryptanalysis [7], a technique
originally developed for block ciphers, was initially carried over to hash function
analysis to enrich the cryptanalytic toolbox for hash functions, now cryptana-
lysts are looking for the opposite: a method of hash function analysis that would
give new results on block ciphers. So far the most successful attempt is the anal-
ysis of AES with local collisions [8–11], but it is only applicable in the related-key
model. In the latter model, an attacker works with plaintexts and ciphertexts
that are produced under not only the unknown key, but also under other keys
related to the first one in a way chosen by the adversary. Such a strong require-
ment is rarely practical and, thus, has not been considered to be a threat for the
use of AES. Also, there has been no evidence that the local collision approach
can facilitate an attack in the more practical and relevant single-key model.

State of the art for attacks on AES. AES with its wide-trail strategy was
designed to withstand differential and linear cryptanalyses [18], so pure versions
of these techniques have limited applications in attacks. With respect to AES,
probably the most powerful single-key recovery methods designed so far are im-
possible differential cryptanalysis [5, 36] and Square attacks [17, 22]. Impossible
differential cryptanalysis yielded the first attack on the 7-round AES-128 with
non-marginal data complexity. The Square attack and its variations such as in-
tegral attack and multiset attack resulted in the cryptanalysis of round-reduced
AES variants with lowest computational complexity to date, while the first at-
tack on 8-round AES-192 with non-marginal data complexity has appeared only
recently [22].

The situation is different in weaker attack models, where the related-key crypt-
analysis was applied to the full versions of AES-192 and AES-256 [9], and the re-
bound attack demonstrated a non-random property in 8-round AES-128 [27, 33].
However, there is little evidence so far that carrying over these techniques to the
most practical single-secret-key model is feasible. Note that no attack against
the full AES-128 has been known even in the relate-key model or a hash mode.

Meet-in-the-middle attacks with bicliques. Meet-in-the-middle attacks on
block ciphers have obtained less attention (see [13, 14, 16, 21, 24, 29, 49] for a
list of the most interesting ones) than the differential, linear, impossible differ-
ential, and integral approaches. However, they are probably the most practical
in terms of data complexity. A basic meet-in-the-middle attack requires only
the information-theoretical minimum of plaintext-ciphertext pairs. The limited
use of these attacks can be attributed to the requirement for large parts of the
cipher to be independent of particular key bits. As this requirement is not met
in AES and most AES candidates, the number of rounds broken with this tech-
nique is rather small [14, 21], which seems to prevent it from producing results
on yet unbroken number of rounds in AES. We also mention that the collision
attacks [19, 20] use some elements of the meet-in-the-middle framework.

In this paper we demonstrate that the meet-in-the-middle attacks on block
ciphers have great potential if enhanced by a new concept called bicliques. The
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biclique concept was first introduced for hash cryptanalysis by Savelieva
et al. [31]. It originates from the so-called splice-and-cut framework [1, 2, 28]
in hash function cryptanalysis, more specifically its element called initial struc-
ture. The biclique approach led to the best preimage attacks on the SHA family
of hash functions so far, including the attack on 50 rounds of SHA-512, and the
first attack on a round-reduced Skein hash function [31]. We show how to carry
over the concept of bicliques to block cipher cryptanalysis and get even more
significant results, including the first key recovery for all versions of the full AES
faster than brute force.

A biclique is characterized by its length (number of rounds covered) and
dimension. The dimension is related to the cardinality of the biclique elements
and is one of the factors that determines the advantage over brute force. The
total cost of the key search with bicliques was two main contributors: firstly the
cost of constructing the bicliques, and secondly the matching computations.

Two paradigms for key recovery with bicliques. Taking the biclique prop-
erties into account, we propose two different approaches, or paradigms, for key
recovery. Suppose that the cipher admits the basic meet-in-the-middle attack on
m (out of r) rounds. The first paradigm, the long-biclique, aims to construct a
biclique for the remaining r −m rounds. Though the dimension of the biclique
decreases as r grows, small-dimension bicliques can be constructed with numer-
ous tools and methods from differential cryptanalysis of block ciphers and hash
functions: rebound attacks, trail backtracking, local collisions, etc. Also from an
information-theoretic point of view, bicliques of dimension 1 are likely to exist
in a cipher, regardless of the number of rounds. The computational bottleneck
for this approach is usually the construction of the bicliques.

The second paradigm, the independent-biclique, aims to construct bicliques
of higher dimensions for smaller b < (r −m) number of rounds efficiently and
cover the remaining rounds in a brute-force way with a new method of matching
with precomputations. The construction of bicliques becomes much simpler with
this approach, the computational bottleneck is hence the matching computation.
Even though partial brute-force computations have been considered before for
cryptanalytically improved preimage search methods for hash functions [1, 41],
we show that its combination with biclique cryptanalysis allows for much larger
savings of computations.

Results on AES. The biclique cryptanalysis successfully applies to all full ver-
sions of AES and compared to brute force provides a computational advantage of
about a factor 3 to 5, depending on the version. Also, it yields advantages of up
to a factor 15 for the key recovery of the AES versions with smaller but yet secure
number of rounds. The largest factors are obtained in the independent-biclique
paradigm and have success rate 1. We also provide complexities for finding com-
pression function preimages for all full versions of AES when considered in hash
modes. Our results on AES are summarized in Table 1 and 2, and an attempt to
give an exhaustive overview with earlier results is given in Tables 4 and 5. The
“full version” reference refers to [12].
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Table 1. Biclique key recovery for AES

rounds data computations/succ.rate memory biclique length in rounds reference

AES-128 secret key recovery

8 2126.33 2124.97 2102 5 Full version

8 2127 2125.64 232 5 Full version

8 288 2125.34 28 3 Sec. 6

10 288 2126.18 28 3 Sec. 6

AES-192 secret key recovery

9 280 2188.8 28 4 Full version

12 280 2189.74 28 4 Full version

AES-256 secret key recovery

9 2120 2253.1 28 6 Sec. 7

9 2120 2251.92 28 4 Full version

14 240 2254.42 28 4 Full version

Table 2. Biclique preimage search of AES in hash modes (compression function)

rounds computations succ.rate memory biclique length in rounds reference

AES-128 compression function preimage, Miyaguchi-Preneel

10 2125.83 0.632 28 3 Sec. 6

AES-192 compression function preimage, Davies-Meyer

12 2125.71 0.632 28 4 Full version

AES-256 compression function preimage, Davies-Meyer

14 2126.35 0.632 28 4 Full version

2 Biclique Cryptanalysis

Now we introduce the concept of biclique cryptanalysis applied to block ciphers.
To make our approach clear for readers familiar with meet-in-the-middle attacks,
we introduce most of the terminology while explaining how meet-in-the-middle
works, and then proceed with bicliques.

2.1 Basic Meet-in-the-Middle Attack

An adversary chooses a partition of the key space into groups of keys of car-
dinality 22d each for some d. A key in a group is indexed as an element of a
2d × 2d matrix: K[i, j]. The adversary selects an internal variable v in the data
transform of the cipher such that

– as a function of a plaintext and a key, it is identical for all keys in a row :

P
K[i,·]−−−→

g1
v;
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– as a function of a ciphertext and a key, it is identical for all keys in a column:

v
K[·,j]←−−−

g2
C,

where g1 and g2 form the cipher E = g2 ◦ g1.
Given a plaintext-ciphertext pair (P, C) obtained under the secret key Ksecret,

an adversary computes 2d possible values −→v and 2d possible values ←−v from the
plaintext and from the ciphertext, respectively. A matching pair −→v i = ←−v j yields
a key candidate K[i, j]. The expected number of key candidates depends on the
bit size |v| of v and is given by the formula 22d−|v|. For |v| close to d and larger,
an attack has advantage of about 2d over brute force search as it tests 22d keys
with less than 2d calls of the full cipher.

The basic meet-in-the-middle attack has clear limitations in block cipher
cryptanalysis since an internal variable with the properties listed above can
be found for a very small number of rounds only. We show how to bypass this
obstacle with the concept of a biclique.

2.2 Bicliques

Now we introduce the notion of a biclique following [31]. Let f be a subcipher
that maps an internal state S to the ciphertext C: fK(S) = C. f connects 2d

internal states {Sj} to 2d ciphertexts {Ci} with 22d keys {K[i, j]}:

{K[i, j]} =

⎡⎣K[0, 0] K[0, 1] . . . K[0, 2d − 1]
. . .
K[2d − 1, 0] K[2d − 1, 1] . . . K[2d − 1, 2d − 1]

⎤⎦ .

The 3-tuple [{Ci}, {Sj}, {K[i, j]}] is called a d-dimensional biclique, if

Ci = fK[i,j](Sj) for all i, j ∈ {0, . . . , 2d − 1}. (1)

In other words, in a biclique, the key K[i, j] maps the internal state Sj to the
ciphertext Ci and vice versa. This is illustrated in Figure 1.

. . .

. . .
S0 S1 S2d−1

C0 C1 C2d−1

K[0, 0] K[2d − 1, 2d − 1]

Fig. 1. d-dimensional biclique
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2.3 The Flow of Biclique Cryptanalysis

Preparation. An adversary chooses a partition of the key space into groups
of keys of cardinality 22d each for some d and considers the block cipher as a
composition of two subciphers: e = f ◦ g, where f follows g. A key in a group is
indexed as an element of a 2d × 2d matrix: K[i, j].

Step 1. For each group of keys the adversary builds a structure of 2d ciphertexts
Ci and 2d intermediate states Sj with respect to the group of keys {K[i, j]} so
that the partial decryption of Ci with K[i, j] yields Sj . In other words, the
structure satisfies the following condition:

∀i, j : Sj
K[i,j]−−−−→

f
Ci. (2)

Step 2. The adversary asks the oracle to decrypt ciphertexts Ci with the secret
key Ksecret and obtains the 2d plaintexts Pi:

Ci
decryption oracle−−−−−−−−−−−→

e−1
Pi. (3)

Step 3. If one of the tested keys K[i, j] is the secret key Ksecret, then it maps
intermediate state Sj to the plaintext Pi. Therefore, the adversary checks if

∃i, j : Pi
K[i,j]−−−−→

g
Sj . (4)

A valid pair proposes K[i, j] as a key candidate.

3 New Tools and Techniques for Bicliques

In here we describe two approaches to construct bicliques, and propose a precom-
putation technique that speeds up the application of bicliques for key recovery.
The exposition is largely independent of a cipher.

3.1 Bicliques from Independent Related-Key Differentials

A straightforward approach to find a d-dimensional biclique would be to fix 2d

states and 2d ciphertexts, and derive a key for each pair to satisfy (2). This would
require at least 22d key recovery attempts for f . A much more efficient way for
the adversary is to choose the keys in advance and require them to conform to
specific differentials as follows.

Let the key K[0, 0] map the intermediate state S0 to the ciphertext C0, and
consider two sets of 2d related-key differentials each over f with respect to the

base computation S0
K[0,0]−−−−→

f
C0:
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– Δi-differentials. A differential in the first set maps the input difference 0
to an output difference Δi under a key difference ΔK

i :

0
ΔK

i�−−→
f

Δi with ΔK
0 = 0 and Δ0 = 0. (5)

– ∇j-differentials. A differential in the second set maps an input difference
∇j to the output difference 0 under key difference ∇K

j :

∇j

∇K
j�−−→

f
0 with ∇K

0 = 0 and ∇0 = 0. (6)

The tuple (S0, C0, K[0, 0]) conforms to both sets of differentials by definition.
If the trails of Δi-differentials do not share active nonlinear components (such
as active S-boxes in AES) with the trails of ∇j-differentials, then the tuple also
conforms to 22d combined (Δi,∇j)-differentials:

∇j

ΔK
i ⊕∇K

j�−−−−−−→
f

Δi for i, j ∈ {0, . . . , 2d − 1}, (7)

which are obtained by formal xor of differentials (5) and (6) (and trails, if neces-
sary). The proof follows from the fact that an active non-linear element in a trail
of a combined differential is active in either Δ- or∇-trail, hence its input still con-
forms to the corresponding trail by the assumption. A more formal and generic
proof can be derived from the theory of boomerang attacks [46] and particularly
from the concept of the S-box switch [9] and a sandwich attack [23]. Since Δi-
and ∇j-trails share no active non-linear elements, a boomerang based on them
returns from the ciphertext with probability 1 as the quartet of states forms the
boomerang rectangle at every step. In the special case where no nontrivial trail
of one differential intersects with a nontrivial trail of the other differential, the
differentials are completely independent and can be directly combined.

Substituting S0, C0, and K[0, 0] to the combined differentials (7), one obtains:

S0 ⊕∇j

K[0,0]⊕ΔK
i ⊕∇K

j−−−−−−−−−−−→
f

C0 ⊕Δi. (8)

Finally, we put
Sj = S0 ⊕∇j ,
Ci = C0 ⊕Δi, and
K[i, j] = K[0, 0]⊕ΔK

i ⊕∇K
j

and get exactly the definition of a d-dimensional biclique (1). If Δi �= ∇j for
i+j > 0, then all keys K[i, j] are different. The construction of a biclique is thus
reduced to the computation of Δi and ∇j , which requires no more than 2 · 2d

computations of f .
The independency of the related-key differentials allows one to efficiently con-

struct higher-dimensional bicliques and simplifies the partition of the key space.
Though this approach turns out to be effective in the case of AES, the length
of independent differentials (and hence a biclique) is limited by the diffusion
properties of the cipher.
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3.2 Bicliques from Interleaving Related-Key Differential Trails

The differential independency requirement appears to be a very strong require-
ment as it clearly limits the biclique length. An alternative way to construct a
biclique is to consider interleaving differential trails. However, a primitive secure
against differential cryptanalysis does not admit a long biclique of high dimen-
sion over itself, as such a biclique would consume too many degrees of freedom.
For small dimensions, however, the biclique equations admit a rather simple dif-
ferential representation, which allows a cryptanalyst to involve valuable tools
from differential cryptanalysis of hash functions.

We outline here how bicliques of dimension 1 can be constructed in terms
of differentials and differential trails with a procedure resembling the rebound
attack [39]. We are also able to amortize the construction cost of a biclique
by producing many more out of a single one. The construction algorithm is
outlined as follows for a fixed key group {K[0, 0], K[0, 1], K[1, 0], K[1, 1]}, see
also Figure 2:

– Intermediate state T . Choose an intermediate state T in subcipher f (over
which the biclique is constructed). The position of T splits f into two parts
: f = f2 ◦ f1. f1 maps Sj to T . f2 maps T to Ci.

– Δ- and ∇-trails. Choose some truncated related-key differential trails: Δ-
trails over f1 and ∇-trails over f2.

– Inbound phase. Guess the differences in the differential trails up to T . Get
the values of T that satisfy the input and output differences over f .

– Outbound phase. Use the remaining degrees of freedom in the state to
sustain difference propagation in trails.

– Output the states for the biclique.

We stress that the related-key trails are used in the single-key model.
Numerous optimizations of the outlined biclique construction algorithm are

possible. For instance, it is not necessary to guess all differences in the trail,
but only a part of them, and subsequently filter out the solutions. Instead of
fixing the key group, it is also possible to fix only the difference between keys
and derive actual values during the attack (the disadvantage of this approach
is that key groups are generated online, and we have to take care of possible
repetitions). It is also important to reduce an amortized cost of a biclique by
producing new ones for other key group by some simple modification.

3.3 Matching with Precomputations

Here we describe the idea of matching with precomputations, which provides a
significant computational advantage due to amortized computations. This is an
efficient way to check Equation (4) in the procedure of biclique cryptanalysis.

First, the adversary computes and stores in memory 2 · 2d full computations

for all i Pi
K[i,0]−−−−→ −→v and for all j ←−v K[0,j]←−−−− Sj
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??

? ?

K[0, 0] K[1, 1]

K[1, 0]

K[0, 1]

Guess
difference

in computations

Resolve
in the middle

S0 S1

C1C0

Construct
solutions

I II III

Fig. 2. Construction of a 1-dimensional biclique from dependent related-key differential
trails: Guess difference between computations and derive states Sj and ciphertext Ci

as conforming elements

up to some matching variable v, which can be a small part of the internal cipher
state. Then for particular i, j he recomputes only those parts of the cipher that
differ from the stored ones:

Pi Sj

v

The amount of recalculation depends on the diffusion properties of both in-
ternal rounds and the key schedule of the cipher. The relatively slow diffusion in
the AES key schedule allows the adversary to skip most recomputations of the
key schedule operations.

4 Two Paradigms of Key Recovery

We have introduced different approaches to construct bicliques and to perform
matching with precomputations. One may ask which approach is optimal and
relevant. We have studied several block ciphers and hash functions, including
different variants of AES, and it turns out that the optimal choice depends
on a primitive, its diffusion properties, and features of the key schedule. This
prepares the case to introduce two paradigms for key recovery, which differ both
methodologically and in their use of tools.

To put our statement in context, let us consider the basic meet-in-the-middle
attack (Section 2.1) and assume that it can be applied to m rounds of a primitive,
while we are going to attack r > m rounds.

4.1 Long-Biclique

Our first paradigm aims to construct a biclique over the remaining (r − m)
rounds so that the basic meet-in-the-middle attack can be applied with negligible
modification. The first advantage of this approach is that theoretically we can get
the same advantage as the basic attack if we manage to construct a biclique of
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appropriate dimension. If the dimension is inevitably small due to the diffusion,
then we use the second advantage: the biclique construction methods based on
differential cryptanalysis of block ciphers and hash functions.

The disadvantage of this paradigm is that the construction of bicliques over
many rounds is very difficult. Therefore, we are limited in the total number of
rounds that we can attack. Furthermore, the data complexity can be very large
since we use all the degrees of freedom to construct a biclique and may have
nothing left to impose restrictions on the plaintexts or ciphertexts.

Nevertheless, we expect this paradigm to benefit from the further develop-
ment of differential cryptanalysis and the inside-out strategy and predict its
applicability to many other ciphers.

Hence, to check (4) the adversary selects an internal variable v ∈ V that can
be computed as follows for each key group {K[i, j]}:

P
K[i,·]−−−→
E1

v
K[·,j]←−−−
E2

S. (9)

Therefore, the computational complexity of matching is upper bounded by 2d

computations of the cipher.

S0

S2

C0

C1

key

plaintext ciphertext

C2

S1

K[3, 3]

K[0, 0]

K[i, ∗] K[∗, j]

S3 C3

K[i, j]

K[∗, 3]

K[∗, 0]

Decryption
oracle

K[3, ∗]

K[0, ∗]

Fig. 3. Long-biclique attack with four states and four ciphertexts

Complexity of Key Recovery. Let us evaluate the full complexity of the
long-biclique approach. Since the full key recovery is merely the application of
Steps 1-3 2n−2d times, we get the following equation:

Cfull = 2n−2d [Cbiclique + Cmatch + Cfalsepos] ,

where

– Cbiclique is the complexity of constructing a single biclique. Since the
differential-based method is time-consuming, one has to amortize the con-
struction cost by selecting a proper set of neutral bytes that do not affect
the biclique equations.
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– Cmatch is the complexity of the computation of the internal variable v 2d

times in each direction. It is upper bounded by 2d calls of E.
– Cfalsepos is the complexity generated by false positives, which have to be

matched on other variables. If we match on a single byte, the number of false
positives is about 22d−8. Each requires only a few operations to re-check.

Generally, the complexity is dominated by Cmatch and hence has an advantage
of at least 2d over brute force. The memory complexity depends on the biclique
construction procedure.

4.2 Independent-Biclique

Our second paradigm lets the attacker exploit the diffusion properties rather
than differential properties, and does not aim to construct the longest biclique.
In contrast, it proposes to construct shorter bicliques with high dimension by
tools like independent related-key differentials (Section 3.1).

This approach has clear advantages. First, the data complexity can be made
quite low. Since the biclique area is small, the attacker has more freedom to
impose constraints on the ciphertext and hence restrict it to a particular set.
Secondly, the attack gets a compact and small description, since the independent
trails are generally short and self-explaining.

For further explanation, we recall the decomposition of the cipher:

E : P −→
E1

V −→
E2

S −→
E3

C,

In (4), the adversary detects the right key by computing an intermediate variable
v in both directions:

Pi
K[i,j]−−−−→
E1

−→v ?=←−v K[i,j]←−−−−
E2

Sj . (10)

Since the meet-in-the-middle attack is no longer applicable to the E2 ◦ E1, we
apply the matching with precomputations (Section 3.3).

As with the long-biclique paradigm, 22d keys are tested using only 2d inter-
mediate cipher states. The precomputation of about 2d+1 matches allows for a
significant complexity gain and is the major source of the computational advan-
tage of our attacks on AES (Section 3.3). The advantage comes from the fact
that in case of high dimension the basic computation has negligible cost, and
the full complexity is determined by the amount of precomputation. By a care-
ful choice of key groups, one is able to reduce the precomputation proportion
to a very small factor, e.g. factor 1/15 in attacks on reduced-round versions of
AES-256.

Complexity of Key Recovery. The full complexity of the independent bi-
clique approach is evaluated as follows:

Cfull = 2n−2d [Cbiclique + Cprecomp + Crecomp + Cfalsepos] ,

where
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– Cprecomp is the complexity of the precomputation in Step 3. It is equivalent
to less than 2d runs of the subcipher g.

– Crecomp is the complexity of the recomputation of the internal variable v 22d

times. It strongly depends on the diffusion properties of the cipher. For AES
this value varies from 22d−1.5 to 22d−4.

The biclique construction is quite cheap in this paradigm. The method in Sec-
tion 3.1 enables construction of a biclique in only 2d+1 calls of subcipher f .
Therefore, usually the full key recovery complexity will be dominated by 2n−2d ·
Crecomp. However, it is dependent on the width of the matching variable and
biclique dimension d too. We give more details for the case of AES in further
sections. The memory complexity of the key recovery is upper-bounded by stor-
ing 2d full computations of the cipher.

5 Description of AES

AES is a block cipher with 128-bit internal state and 128/192/256-bit key K
(AES-128, AES-192, AES-256, respectively). The internal state is represented
by a 4× 4 byte matrix, and the key is represented by a 4× 4/4× 6/4×8 matrix.

The encryption works as follows. The plaintext is xored with the key, and then
undergoes a sequence of 10/12/14 rounds. Each round consists of four transfor-
mations: nonlinear bytewise SubBytes, the byte permutation ShiftRows, linear
transformation MixColumns, and the addition with a subkey AddRoundKey.
MixColumns is omitted in the last round.

SubBytes is a nonlinear transformation operating on 8-bit S-boxes with max-
imum differential probability as low as 2−6 (for most cases 0 or 2−7). The
ShiftRows rotates bytes in row r by r positions to the left. The MixColumns
is a linear transformation with branch number 5, i.e. in the column equation
(y0, y1, y2, y3) = MC(x0, x1, x2, x3) only 5 and more variables can be non-zero.

We address two internal states in each round as follows in AES-128: #1 is the
state before SubBytes in round 1, #2 is the state after MixColumns in round 1,
#3 is the state before SubBytes in round 2, . . ., #19 is the state before SubBytes
in round 10, #20 is the state after ShiftRows in round 10 (MixColumns is omitted
in the last round). The states in the last round of AES-192 are addressed as #23
and #24, and of AES-256 as #27 and #28.

The subkeys come out of the key schedule procedure, which slightly dif-
fers for each version of AES. The key K is expanded to a sequence of keys
K0, K1, K2, . . . , K10, which form a 4× 60 byte array. Then the 128-bit subkeys
$0, $1, $2, . . . , $14 come out of the sliding window with a 4-column step. The
keys in the expanded key are formed as follows. First, K0 = K. Then, column
0 of Kr is the column 0 of Kr−1 xored with the nonlinear function (SK) of
the last column of Kr−1. Subsequently, column i of Kr is the xor of column
i− 1 of Kr and of column i of Kr−1. In AES-256 column 3 undergoes SubBytes
transformation while forming column 4.

Bytes within a state and a subkey are enumerated as follows
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0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Byte i in state Q is addressed as Qi.

6 Independent-Biclique: Key Recovery for the Full
AES-128

In this section we describe a key recovery method on the full 10-round AES-128
using the independent-bilcique approach. The computational bottleneck will be
the matching computation. See also Appendix A for an additional illustration.

Table 3. Parameters of the key recovery for the full AES-128

f Biclique

Rounds Dimension ΔK bytes ∇K bytes Time Memory

8-10 8 $88, $812 $81, $89 27 28

Matching

g Precomputation Recomputation

Rounds v Workload Memory SubBytes: forward SubBytes: backward

1-7 #512 28−ε 28 0.875 2.625

Total complexity

Memory Cbiclique Cprecomp Crecomp Cfalsepos Cfull

28 27 27 214.14 28 2126.18

6.1 Key Partitioning

For more clarity we define the key groups with respect to the subkey $8 of round
8 and enumerate the groups of keys by 2112 base keys. Since the AES-128 key
schedule bijectively maps each key to $8, the enumeration is well-defined. The
base keys K[0, 0] are all possible 2112 16-byte values with two bytes fixed to 0
whereas the remaining 14 bytes run over all values:

0
0

The keys {K[i, j]} in a group are enumerated by all possible byte differences i
and j with respect to the base key K[0, 0]:

ii

jj

This yields the partition of the round-8 subkey space, and hence the AES key
space, into the 2112 groups of 216 keys each.
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6.2 3-Round Biclique of Dimension 8

We construct a 3-round biclique from combined related-key differentials as de-
scribed in Section 3.1. The parameters of the key recovery are summarized in
Table 3. The adversary fixes C0 = 0 and derives S0 = f−1

K[0,0](C0) (Figure 4, left).
The Δi-differentials are based on the difference ΔK

i in $8, and ∇j -differentials
are based on the difference ∇K

j in $8:

ΔK
i ($8) =

ii

and ∇
K
j ($8) =

jj

.

Both sets of differentials are depicted in Figure 4 in the truncated form. As they
share no active S-boxes, the resulting combined differentials yield a biclique of
dimension 8.

Since the Δi-differential affects only 12 bytes of the ciphertext, all the cipher-
texts share the same values in bytes C0,1,4,13. Furthermore, since ΔK

i ($1010) =
ΔK

i ($1014), the ciphertext bytes C10 and C14 are also always equal. As a result,
the data complexity does not exceed 288.

Δi-differentials ∇j-differentials
base
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Step 1. Start with C0 = 0
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C0C0

S0S0

Ci

Sj , #15

Fig. 4. AES-128 biclique from combined differentials: base computation as well as Δi-
and ∇j-differentials
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Fig. 5. Recomputation in the backward direction: AES-128

Forward computation. Now we figure out how the computation Pi
K[i,j]−−−−→ −→v

differs from the stored one Pi
K[i,0]−−−−→ −→v i. Similarly, it is determined by the

influence of the difference between keys K[i, j] and K[i, 0], now applied to the
plaintext. Thanks to the low diffusion of the AES key schedule and sparsity of
the key difference in round 8, the whitening subkeys of K[i, j] and K[i, 0] differ
in 9 bytes only. The difference is no longer a linear function of j as it is in the
computation of ←−v , but still requires only three s-boxes in the key schedule to
recompute. The areas of internal states to be recomputed (with 13 S-boxes) are
depicted in Figure 6.

6.3 Matching over 7 Rounds

Now we check whether the secret key Ksecret belongs to the key group {K[i, j]}
according to Section 3.3. We make 2d+1 precomputations of v and store values
as well as the intermediate states and subkeys in memory. Then we check (10)
for every i, j by recomputing only those variables that differ from the ones stored
in memory. Now we evaluate the amount of recomputation in both directions.

Backward direction. Let us figure out how the computation ←−v K[i,j]←−−−− Sj differs

from the stored one ←−v j
K[0,j]←−−−− Sj. It is determined by the influence of the

difference between keys K[i, j] and K[0, j] (see the definition of the key group in
Section 6.1). The difference in the subkey $7 is non-zero in only one byte, so we
have to recompute as few as four S-boxes in round 7 (state #13). The full area
to be recomputed, which includes 41 S-boxes, is depicted in Figure 5. Note that
the difference in the relevant subkeys is a linear function of i, and hence can be
precomputed and stored.

Forward computation. Now we look at how the computation Pi
K[i,j]−−−−→ −→v differs

from the stored one Pi
K[i,0]−−−−→ −→v i. Similarly, it is determined by the influence

of the difference between keys K[i, j] and K[i, 0], now applied to the plaintext.
Thanks to the low diffusion of the AES key schedule and sparsity of the key
difference in round 8, the whitening subkeys of K[i, j] and K[i, 0] differ in 9
bytes only. The difference is no longer a linear function of j as it is involved into
the computation of ←−v , but still requires only three S-boxes in the key schedule
to recompute. This effect and the areas of internal states to be recomputed (with
13 S-boxes) are depicted in Figure 6.
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Fig. 6. Recomputation in the forward direction: AES-128

6.4 Complexities

Since only a portion of the round function is recomputed, one has to be highly
accurate in evaluating the complexity Crecomp. A rough division of AES-128
into 10 rounds is not precise enough. For a more exact evaluation, we count the
number of S-boxes in each SubBytes operation that we have to recompute, the
number of active variables in MixColumns, the number of output variables that
we need from MixColumns, and, finally, the number of S-boxes to recompute in
the key schedule.

Altogether, we need an equivalent of 3.4375 SubBytes operations (i.e., 55 S-
boxes), 2.3125 MixColumns operations, and a negligible amount of XORs in the
key schedule. The number of SubBytes computations clearly is a larger sum-
mand. S-boxes are also the major contributor to the practical complexity of
AES both in hardware and software. Therefore, if we aim for a single number
that refers to the complexity, it makes sense to count the number of SubBytes
operations that we need and compare it to that in the full cipher. The latter
number is 10 + 2.5 = 12.5 as we have to take the key schedule nonlinearity into
account. As a result, Crecomp is equivalent to 216 · 3.4375/12.5 = 214.14 runs of
the full AES-128. The values Cbiclique and Cprecomp together do not exceed 28

calls of the full AES-128.
The full computational complexity amounts to about

2112
(
27 + 27 + 214.14 + 28

)
= 2126.18.

The memory requirement is upper-bounded by the storage of 28 full computa-
tions of g. Since the coverage of the key space by groups around base keys is
complete, the success probability is 1.

This approach for 8-round AES-128 yields a key recovery with computational
complexity about 2125.34, data complexity 288, memory complexity 28, and suc-
cess probability 1. Similarly, preimage finding for the compression function of the
full AES-128 in Miyaguchi-Preneel mode requires about 2125.83 computations,
28 memory, and has a success probability of about 0.6321.

7 Long-Biclique: 9-Round AES-256

Our attack is differential-based biclique attack (Section 3.2).
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Step 1. A biclique of dimension 1 involves two states, two ciphertexts, and
a group of four keys. The keys in the group are defined via the difference in
subkeys:

K[0, 1] : $5(K[0, 1])⊕ $5(K[0, 0]) = ΔK;
K[1, 0] : $6(K[1, 0])⊕ $6(K[0, 0]) = ∇K;
K[1, 1] : $6(K[1, 1])⊕ $6(K[0, 1]) = ∇K.

The differences ΔK and ∇K are defined columnwise:

ΔK = (A, 0, 0, 0); ∇K = (B, B, 0, 0),

where

A = MixColumns

⎛⎜⎜⎝
0
0
2
0

⎞⎟⎟⎠ ; B =

⎛⎜⎜⎝
0
2

0xb9
2

⎞⎟⎟⎠ = MixColumns

⎛⎜⎜⎝
0xd0
0x69

0
0

⎞⎟⎟⎠ .

Let us note that the key relation in the next expanded key is still linear:

$4(K[1, 0])⊕ $4(K[0, 0]) = $4(K[1, 1])⊕ $4(K[0, 1]) = (B, 0, 0, 0).

Evidently, the groups do not intersect and cover the full key space. We split the
9-round AES-256 as follows:

– E1 is round 1.
– E2 is rounds 2-4.
– E3 is rounds 5-9.

Step 2. An illustration of steps 2(a) - 2(e) is given in Fig. 7.

Step 2 (a). The intermediate state T in E3 is the S-box layer in round 7. We
construct truncated differential trails in rounds 5-6 based on the injection of ΔK
after round 5 (Figure 7, left), and in rounds 7-9 based on the injection of ∇K
before round 9 (Figure 7, right).

Step 2 (b). We guess the differences in the truncated trails up to T . We have
four active S-boxes in round 6 and two active S-boxes in round 8. We also require
Δ-trails to be equal. In total we make 27·(4+2·2) = 256 guesses.

Step 2 (c). For each S-box in round 7 that is active in both trails (eight in total)
we take a quartet of values that conform to the input and output differences,
being essentially the boomerang quartet for the S-box (one solution per S-box
on average). For the remaining 8 S-boxes we take all possible values. Therefore,
we have 264 solutions for each guess in the inbound phase, or 2120 solutions in
total.
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Fig. 7. Biclique construction in AES-256. Δ-trail (left) and ∇-trail (right).

Step 2 (d). Outbound phase: we filter out the solutions that do not conform
to the differential trails in rounds 6 and 8. We have four active S-boxes in each
Δ-trail, and two active S-boxes in each ∇-trail, hence 12 in total. Therefore, we
get a 84-bit filter, and leave with 236 bicliques.

Step 2 (e). Now we keep only the bicliques with byte C0,0 equal to zero in both
ciphertexts. This is a 16-bit filter, which reduces the number of bicliques to 220.
We need only one.

Step 3-5. We ask for the decryption of two ciphertexts and get two plaintexts.
The matching position (v) is the byte #30,0. As demonstrated in Fig. 8, it is
equal as a function of the plaintext for keys with difference ΔK (not affected by
lightblue cells), and is also equal as a function of S for keys with difference ∇K
(not affected by red cells). We compute v in both directions and check for the
match.
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Step 6. We can produce sufficiently many bicliques out of one to amortize the
construction cost. Let us look at the subkey $6 in the outbound phase. We can
change its value to any of the 296 specific values so that the active S-boxes in
round 6 during the outbound phase are not affected. On the other hand, any
change in bytes in rows 1,2,3 affects only those rows in the subkeys $8 and $9
and hence does not affect C0,0. Therefore, we have 128 − 32 − 32 = 64 neutral
bits in $6.

Similarly, we identify 9 bytes in $7 that can be changed so that $6, the active
S-boxes in round 8, and the byte C0,0 are unaffected. Those are bytes in the first
three columns not on the main diagonal. Therefore, we have 72 neutral bits in
$7, and 136 neutral bits in total.

Complexity. A single biclique with C0,0 = 0 is constructed with complexity
2120−20 = 2100 and 28 memory needed for Step 2 (c). However, 136 neutral bits in
the key reduce the amortized construction cost significantly. Let us compute the
cost of constructing a new biclique according to Step 6. A change in a single byte
in K7 needs 5 S-boxes, 1 MC and several XORs recomputing for each ciphertext,
which gives us the complexity of 10/16 AES rounds. This change also affects two
bytes of K5, so we have to recompute one half of round 5, with the resulting
complexity of 1 AES round per biclique. The total amortized complexity is 1.625
AES rounds.

In the matching part we compute a single byte in two directions, thus spending
9/16 of a round in rounds 1-3, and full round 4, i.e. 3.125 full rounds per biclique.
In total we need 4.75 AES rounds per biclique, i.e. 2−0.92 9-round AES-256 calls.
The complexity generated by false positives is at most 2−6 rounds per biclique.
We need 2254 bicliques, so the total complexity is 2253.1.

The data complexity is 2120 since one ciphertext byte is always fixed. The
success rate of the attack is 1, since we can generate many bicliques for each key
group.

8 On Practical Verification

Especially for the type of cryptanalysis described in this paper where carrying
out an attack in full is computationally infeasible, practical verification of attack
details and steps is important in order to get confidence in it. To address this,
we explicitly state the following:

– We verified all truncated differentials through AES-128/192/256 for all the
attacks, including the independent bicliques.

– We constructed a real 6-round biclique for the 9-round AES-256 (Table 6).
To make the algorithm in Section 7 practical, we fixed more key bytes than
required. As a result, the construction cost for a single biclique dropped, but
the amortized cost has increased.

– We verified that some difference guesses must be equal (like in the AES-256
attack) due to the branch number of MixColumns that results in a correlation
of differences in the outbound phase.
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9 Discussion and Conclusions

We propose the concept of bicliques for block cipher cryptanalysis and give
various applications to AES, including a key recovery method for the full ver-
sions of AES-128, AES-192, and AES-256. Both the “long-biclique” and the
“independent-biclique” approach we introduced feature conceptual novelties that
we expect will find applications in other areas. For the “long-biclique” approach,
it is the use of techniques from differential collision attacks on hash functions
that forces two trails to be independent and hence allows to add more rounds at
low amortized cost. For the “independent-biclique” approach, it is the matching
with precomputation trick that allows to significantly reduce the cost of matching
computations over more rounds in a MITM attack.

Using the latter approach on AES, we allow a small portion of the cipher
to ie recomputed in every key test. The use of bicliques in combination with
the technique of matching with precomputation, results in a surprisingly low
recomputation in the innermost loop, varying from about 1/3 to approximately
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1/5 of the cipher depending on the key size, while having data complexities
of 288, 280 and 240 plaintext-ciphertext pairs, respectively. Arguably no known
generic approach to key recovery allows for that gain. We notice that the data
complexity of key recovery can be significantly reduced by sacrificing only a
small factor of computational advantage.

To conclude, we discuss the properties of AES that allowed us to cover more
rounds than in previous cryptanalysis, discuss the attained computational ad-
vantage, and list a number of problems to consider for future work.

9.1 What Properties of the AES Allowed to Obtain These New
Results

Our approach heavily relies on the existence of high-probability related-key dif-
ferentials over a part of the cipher. More specifically:

– The round transformation of AES is not designed to have strong resistance
against several classes of attacks for a smaller number of rounds. The fact
that our approach allows to split up the cipher into three parts exposes these
properties even when considering the full cipher. Also, as already observed
in [21, 42], the fact that the MixColumns transformation is omitted in the
last round of AES helps to design attacks for more rounds.

– In the key schedule, we especially take advantage of the relatively slow back-
ward diffusion. Whereas using key-schedule properties in related-key attacks
is natural, there seem only a few examples in the literature where this is used
in the arguably more relevant single-key setting. This includes the attack on
the self-synchronized stream cipher Moustique [30], the lightweight block ci-
pher KTANTAN [13], and recent improvements upon attacks on 8-rounds of
AES-192 and AES-256 [22].

9.2 On the Computational Advantage of the Biclique Techniques

Most computational complexities in this paper are relatively close to those of
generic attacks. In here we discuss why we think the complexity advantage is
meaningful.

– Biclique cryptanalysis with the independent-biclique approach allows us to
be very precise about the required computations. In all cases we arrive at
computational complexities considerably lower than those of generic attacks.

– For long-biclique cryptanalysis, whenever it is difficult to be precise about
certain parts of our estimates, we choose to be conservative, potentially
resulting in an underestimate of the claimed improvement. Again, in all
cases we arrive at a computational complexity that is considerably lower
than that of generic attacks.

– Improved AES implementations (that may e.g. be used to speed-up brute
force key search) will very likely also improve the biclique techniques we
propose.

– To the best of our knowledge, there are no generic methods known that
would speed-up key recovery given a part of the codebook.
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9.3 Open Problems

There are a number of other settings this approach may be applied to. It will
be interesting to study other block ciphers like the AES finalists or more recent
proposals with respect to this class of attacks. A combination of the “long-
biclique” and “independent-biclique” approaches may be a source for further
improvements. Also, we may decide to drop the requirement of the biclique to
be complete, i.e. instead of a complete bipartite graph consider a more general
graph. There may be cases where different tradeoffs between success probability,
complexity requirements, and even number of rounds are obtainable. Alterna-
tively, this paper may inspire work on more generic attacks on block ciphers
that try to take advantage of the fact that a small part of the codebook, or some
memory, is available.
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A Additional Illustration for the Case of Full AES-128

In Figure 9 we give an additional illustration of key recovery for the full AES-
128 described in Section 6. It demonstrates biclique differentials, influence of key
differences in matching, and the recomputations.

The influence of key differences in the matching part can be described as a
truncated differential that starts with a zero difference in the plaintext (forward
matching) or in the state (backward matching). Since both biclique and matching
result from the same key differences, it is natural to depict the related differen-
tials in the same computational flow (left and center schemes in Figure 9). We
stress that the full 10-round picture does not represent a single differential trail,
but it is rather a concatenation of trails in rounds 1–7 and 8–10, respectively.

The biclique differentials are depicted in pink (left, Δ-trail) and lightblue
(center, ∇-trail) colors. The same for the matching: pink is the influence of
ΔK on the backward computation, and lightblue is the influence of ∇K on the
forward computation. The recomputation parts are derived as follows: formally
overlap pink and blue schemes, then interleaving parts must be recomputed
(darkgray cells). The lightgray cells are those excluded from recomputation since
we do not match on the full state.

http://eprint.iacr.org/
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Table 4. Summary of previous results on AES in the single-secret-key model for 7 or
more rounds

rounds data workload memory method reference

AES-128

7 2127.997 2120 264 Square [25], 2000

7 232 2128−ε 2100 Square-functional [26], 2000

7 2117.5 2123 2109 Impossible [3], 2007

7 2115.5 2119 245 Impossible [50], 2007

7 2115.5 2119 2109 Impossible [4], 2008

7 2112.2 2112 + 2117.2MA 2109? Impossible [34] 2008

7 280 2113+2123 precomp. 2122 MitM [20], 2009

7 2106.2 2107.1 + 2117.2MA 294.2 Impossible [36], 2010

7 2103 2116 2116 Square-multiset [22], 2010

AES-192

7 2127.997 2120 264 Square [25], 2000

7 236 2155 232 Square [25], 2000

7 232 2182 232 Square [35], 2000

7 232 2140 284 Square-functional [26], 2000

7 292 2186 2153 Impossible [40], 2004

7 2115.5 2119 245 Impossible [50], 2007

7 292 2162 2153 Impossible [50], 2007

7 291.2 2139.2 261 Impossible [34] 2008

7 2113.8 2118.8MA 289.2 Impossible [34] 2008

7 234+n 274+n+2208−n precomp. 2206−n MitM [19], 2008

7 280 2113+2123 precomp. 2122 MitM [20], 2009

7 2103 2116 2116 Square-multiset [22], 2010

8 2127.997 2188 264 Square [25], 2000

8 2113 2172 2129 Square-multiset [22], 2010

AES-256

7 236 2172 232 Square [25], 2000

7 2127.997 2120 264 Square [25], 2000

7 232 2200 232 Square [35], 2000

7 232 2184 2140 Square-functional [26], 2000

7 292.5 2250.5 2153 Impossible [40], 2004

7 2115.5 2119 245 Impossible [50], 2007

7 2113.8 2118.8MA 289.2 Impossible [34] 2008

7 292 2163MA 261 Impossible [34] 2008

7 234+n 274+n+2208−n precomp. 2206−n MitM [19], 2008

7 280 2113+2123 precomp. 2122 MitM [20], 2009

8 2127.997 2204 21044 Square [25], 2000

8 2116.5 2247.5 245 Impossible [50], 2007

8 289.1 2229.7MA 297 Impossible [34] 2008

8 2111.1 2227.8MA 2112.1 Impossible [34] 2008

8 234+n 2202+n+2208−n precomp. 2206−n MitM [19], 2008

8 280 2241 2123 MitM [20], 2009

8 2113 2196 2129 Square-multiset [22], 2010
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Table 5. Summary of previous results on AES in hash-mode use, i.e. distinguishers in
chosen and known-key models, or preimage or collision attacks

rounds versions type/mode attack/gen. memory method reference

7 all known-key dist. 256/258? − Square [32], 2007

7 all chosen-key dist. 224/264 216 Rebound [38], 2009

8 all chosen-key dist. 248/264 232 Rebound [27, 33],2009

14 256 chosen-key dist. 269/277 − Boom-g [10], 2009

6 all collision/MMO+MP 256/264 232 Rebound [33], 2009

7 all near-coll./MMO 232/248 232 Rebound [33], 2009

7 all preimage/DM 2120/2128 28 Splice&Cut [42], 2011

7 all 2nd-pre./MMO+MP 2120/2128 28 Splice&Cut [42], 2011

Table 6. Example of a biclique for 9-round AES-256. Si are states after MixColumns
in round 5, Ci are ciphertexts.

S0

40 8a ba 52
30 4a 10 52
34 b6 84 52
b8 fe aa 52

S1

44 d2 66 7b
32 34 6e f7
36 f4 b0 7a
b8 ba 71 3a

C0

79 18 c0 8e
67 ac 89 9e
2e 39 52 84
3c fd 40 26

C1

5d 08 b5 ac
e5 bd d3 54
a0 ac d9 8a
09 6a 55 1e

K[0, 0] : $6, $7

7d 8a d8 a4 30 e8 0 0
12 a8 f9 31 5a 42 0 0
12 55 cd 0b 32 d6 0 0
58 66 d8 cf 54 f8 0 0

K[0, 1] : $6, $7

7d 8a d8 a4 34 ec 4 4
12 a8 f9 31 58 40 2 2
12 55 cd 0b 30 d4 2 2
58 66 d8 cf 52 fe 6 6

K[1, 0] : $6, $7

7d 8a d8 a4 30 e8 0 0
10 aa f9 31 5a 42 0 0
ab ec cd 0b 32 d6 0 0
5a 64 d8 cf 54 f8 0 0

K[1, 1] : $6, $7

7d 8a d8 a4 34 ec 4 4
10 aa f9 31 58 40 2 2
ab ec cd 0b 30 d4 2 2
5a 64 d8 cf 52 fe 6 6
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Abstract. We analyze the security of the TLS Record Protocol, a MAC-
then-Encode-then-Encrypt (MEE) scheme whose design targets confi-
dentiality and integrity for application layer communications on the
Internet. Our main results are twofold. First, we give a new distinguishing
attack against TLS when variable length padding and short (truncated)
MACs are used. This combination will arise when standardized TLS 1.2
extensions (RFC 6066) are implemented. Second, we show that when
tags are longer, the TLS Record Protocol meets a new length-hiding au-
thenticated encryption security notion that is stronger than IND-CCA.

1 Introduction

TLS is perhaps the Internet’s most widely used security protocol. At its heart
lies a sub-protocol for integrity-protecting and encrypting data, called the TLS
Record Protocol. The current version of this protocol, TLS 1.2, is specified in [12],
though earlier versions [10, 11] are still in widespread use. At a high level, the
TLS Record Protocol makes use of a MAC-then-Encode-then-Encrypt (MEE)
construction, where the “Encode” step takes care of any padding that might be
needed prior to the encryption step. For reasons that will become clear, we focus
on MEE when used with CBC mode.

In this case, TLS 1.2 works as follows to protect a messageM whose bit-length
m = |M | must be a multiple of eight. Let n be the block size of the block cipher
underlying CBC. Then, one chooses a fresh n-bit IV to use with CBC mode to
encrypt the bit stringM ‖T ‖P · · ·p+1 P . Here T is a τ -bit message authentication
tag produced by running HMAC over M and some header information including
a sequence number and P · · ·p+1 P is the bit string formed by concatenating
together p + 1 copies of the string P . The value P is the byte-encoding of the
number p, which indicates the number of padding bytes. It is required that
� = m+τ+8(p+1) be a multiple of n. We refer to this scheme as MEE-TLS-CBC.
A common instantiation uses AES and HMAC-SHA1, making n = 128 and
τ = 160.

Implementations can choose p in different ways. One is to use minimal-length
padding by letting p ≥ 0 to be the smallest possible value that results in � being
a multiple of n. Another is to use larger values of p in order to generate extra
padding. GnuTLS [14], for example, randomly selects p from the set of possible

D.H. Lee and X. Wang (Eds.): ASIACRYPT 2011, LNCS 7073, pp. 372–389, 2011.
c© International Association for Cryptologic Research 2011
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MAC Encoding Security target

BN00 [3] SUF-CMA Concatenation IND-CPA + PTXT

K01 [15] SUF-CMA Concatenation, tag fills one block IND-CPA + CUF-CPA

K01∗ SUF-CMA Concatenation, tag fills one block IND-CPA + CTXT

MT10 [18] SUF-CMA Any function Secure channel

This work PRF TLS’s padding, m + τ > n − 8 LHAE

Fig. 1. Summary of positive results known about MEE under various assumptions
about the MAC. The restriction on padding of our result involves the message length m,
tag length τ , and block length n. Our attack shows the necessity of this restriction for
security.

values. As indicated in the TLS specification, the intent is to combat traffic
analysis attacks that exploit plaintext message lengths [16, 21, 23–26].

This paper. We provide the first analysis of the security of MEE-TLS-CBC as
an authenticated encryption (AE) scheme. We start by strengthening traditional
AE notions [3, 20] to cover the goal of hiding plaintext lengths that motivates
the use of extra padding. Using our new length-hiding AE (LHAE) notion, we
provide complementary negative and positive results about MEE-TLS-CBC for
general m, τ , and n. When m+ τ ≤ n− 8 and extra padding is used, we give an
attack that allows a man-in-the-middle to readily distinguish between messages
of different lengths. A variant of this attack rules out proving traditional AE
security as well. On the other hand, we show that when m + τ > n − 8 one
provably achieves LHAE security. This positive result holds for a generalization
of TLS encoding; it may be applicable in other settings where MEE is used with
CBC.

In the current TLS standard [12], the allowed primitives are such that n ≤ 128
and τ ≥ 160. Here the attack does not apply and our positive results pro-
vide strong evidence of security. More worrisome is the use of truncated MACs,
where τ = 80 and the attack would apply. Truncated MACs are used widely in
other protocols (e.g., IPSec [17]) and are standardized as a TLS extension in
RFC 6066 [13].

Prior work on MEE. Before describing our results in a bit more detail, we
briefly summarize the literature as it applies to MEE-TLS-CBC — see Figure 1.
Bellare and Namprempre (BN00) [3] introduced two notions of integrity: in-
tegrity of plaintexts (PTXT) and of ciphertexts (CTXT). They showed that
MEE with any invertible encoding step is IND-CPA and has integrity of plain-
texts (PTXT) assuming the mac is strongly unforgeable (SUF-CMA), but argue
that PTXT is insufficient for applications because one should target CTXT.
Meeting both IND-CPA and CTXT is one of several equivalent formulations for
AE security [20].

Krawczyk (K01) [15] analyzed a variant of MEE-TLS-CBC in which m must be
a multiple of n, the tag length is τ = n, and no padding is used. He showed that
this variant —which does not arise in TLS— achieves a notion of integrity he calls
CUF-CPA. This is weaker than CTXT, though a straightforward extension of
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K01’s techniques prove that this variant is both IND-CPA and CTXT secure; we
list this as K01∗ in Figure 1. While we will build on the techniques underlying
these results, the fact that they ignore padding makes them of limited direct
relevance to TLS security. Indeed, as the attacks in [9, 22], discussed further
below, indicate, the way padding is handled is crucial to the (in)security of
MEE-TLS-CBC.

Maurer and Tackmann (MT10) [18] considered MEE with encoding steps
being any function, thus restricting attention to minimum-length padding only.
They provide a secure channel notion formalized within a new constructive cryp-
tography framework, but the details of this framework (at the time of our writ-
ing) have not yet emerged, making comparison with our results for minimum-
length padding TLS premature. Our approach uses a more traditional game-
based treatment.

As it stands, none of the prior works analyze the AE security of the version
of MEE-TLS-CBC used within the standard nor do they treat the length-hiding
goal of extra padding.

Length-hiding encryption. Our technical results begin by generalizing en-
cryption to consider the length-hiding goal targeted by TLS. The explicitly
stated intent is that applications should be able to hide the length of plaintexts
up to some granularity. As mentioned above, the GnuTLS client [14] attempts
to obfuscate plaintext length patterns by selecting the amount of padding for
each message randomly. This means that for a given message length, the appli-
cation may vary the amount of padding used. Standard-compliant decryption
implementations must support ciphertexts including such extra padding.

This choice was perhaps prescient: attacks taking advantage of leaked plain-
text lengths allow inferring web browsing habits [16, 21, 26] and voice-over-IP
conversations [23–25]. Note that even when only minimal-length padding is used,
MEE-TLS-CBC nevertheless seemingly should hide lengths that are padded to the
same multiple of n. Given [16, 21, 23–26], MEE-TLS-CBC seems to have a small
security advantage over MEE using OTP — the latter always leaks precise plain-
text lengths. Traditional security notions that explicitly allow message lengths
to leak (e.g., IND-CPA, IND-CCA) are too weak to surface this distinction.

To treat MEE-TLS-CBC in its full generality, then, we formalize length-hiding
encryption. We extend the usual syntax of authenticated encryption scheme with
associated data (AEAD) to allow the encryption algorithm to take an extra
ciphertext-length parameter, in addition to the usual key, header, and message.
This allows the user to indicate the desired length of ciphertext.

We correspondingly upgrade the traditional security notions, which do not
capture length hiding, and introduce a length-hiding authenticated encryption
(LHAE) security notion. Our all-in-one definition gives an attacker access to
a left-or-right encryption oracle on pairs of chosen messages M0,M1 of arbi-
trary lengths and a chosen ciphertext-length. As usual, the attacker’s job is
to output its guess for a hidden bit b. The LHAE definition captures length
hiding in settings where applications may adaptively vary padding per message
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(such as GnuTLS). Of course, a special case of our security notion is arrived at by
restricting to same-length messages: this corresponds to a left-or-right indistin-
guishability variant of the all-in-one AE notion of Rogaway and Shrimpton [20].
Proving LHAE security therefore establishes AE security as a special case.

New attacks against MEE-TLS-CBC. Our work brings to light interesting
new attacks against TLS. Consider MEE-TLS-CBC with when m + τ ≤ n − 8.
This means that a complete message M (of m bits), a tag, and at least one
padding byte can fit into a single CBC block of size n. Then an attacker, given
an encryption C of a message M that is created using longer-then-minimum
padding, is able to create another encryption C′ of the same message M ; we call
this a decryption collision.1 This immediately violates the ciphertext integrity
(CTXT) of MEE-TLS-CBC, thereby ruling out AE or LHAE security, and can
easily be extended to build an IND-CCA distinguisher as well.

It may seem that this deficiency is not dangerous. After all it just shows
that an attacker can generate a new ciphertext that decrypts to an already
legitimately encrypted message, and this does not threaten the security of TLS
as a secure channel protocol. Indeed, some formulations of channel security [6–
8], including that of [18], explicitly exclude decryption collisions from being
considered as an insecurity. Nevertheless, it rules out meeting the AE security
notion targeted, and met, by other designs.

What’s more, decryption collisions prove obviously damaging in the length-
hiding setting. We will show that they can be used to allow an attacker to
distinguish between encryptions of messages of different lengths, for example
“YES” and “NO”. This defeats the TLS design intention of hiding plaintext
lengths at this level of granularity. The distinguishing attack would be simple to
mount in practice by a man-in-the-middle.

TLS 1.2 (and older versions) specifies n ∈ {64, 128} (DES, AES) and τ ≥ 160
(HMAC-SHAx), so this attack does not affect the security of TLS as specified
in version 1.2. However 80-bit truncated MACs are explicitly defined for use
in extensions to TLS 1.2 [13]. Our attack would therefore apply to TLS using
CBC-AES with these truncated MACs and extra padding. We are unaware of
any current implementations that are vulnerable, but this will change if, for
example, GnuTLS implemented the TLS 1.2 truncated MAC extension.

LHAE security of MEE-TLS-CBC. Now the good news. We complement our
negative results by proving LHAE security for MEE-TLS-CBC exactly when the
above attacks do not work: when m+τ > n−8 or no extra padding is used. The
analysis is involved, as one may expect given the sharp divide between security
and insecurity. Let us look at it from a high-level.

The natural starting point for our analysis is the K01∗ result for concatena-
tion encoding, τ = n, block-aligned tags, and no padding. Here one splits the
task of proving authenticated encryption security into two key steps (leveraging

1 The terminology from [6] would call this a replay. We reserve replay for the more
traditional security goal of not accepting the same message twice, even if derived
from the same ciphertext. Achieving replay resistance requires stateful decryption.
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techniques from [20]): showing separately IND-CPA and CTXT security. IND-
CPA security is immediate from the IND-CPA security of CBC mode. A general
result gives that many-query CTXT is implied by qd times the advantage of
single-query CTXT where qd is the number of decryption queries. So what re-
mains is showing single-query CTXT. The K01∗ analysis applies the security
of the block cipher as a strong PRP to move to a setting in which the adver-
sary learns nothing about MAC tags from encryption queries and, moreover, for
its single decryption query submits a ciphertext consisting of blocks that were
output during encryption. The proof concludes via a case analysis partitioned
according to which ciphertext blocks are used and how they relate to where tags
were located within the encryption queries. The alignment of tags with block
boundaries eases this analysis, but it is still relatively involved.

Several new difficulties arise in applying this approach to MEE-TLS-CBC.
Foremost of these is that the case analysis becomes significantly more complex,
as tags may (for example) span multiple blocks and variable-length padding is
allowed. Also the K01∗ approach only provides a loose bound, approximately
2n/3, because it proves single-query CTXT and then uses a general hybrid argu-
ment to conclude multi-query CTXT. Finally, none of the general results apply
to length-hiding encryption. The last issue is the easiest to handle, and in the
full version we show that length-hiding IND-CPA and CTXT together imply
LHAE. The other issues prove more troublesome. We therefore first simplify our
task by introducing a new security notion that will enable further modularity.

Collision-resistant decryption security. Recall that our attack above
found decryption collisions: the adversary computed a new ciphertext that de-
crypts to a previously encrypted message. We formalize resistance to such attacks
and call the resulting notion collision-resistant decryption (CRD). It turns out
that CRD exactly characterizes the gap between CTXT and PTXT: we prove
that a scheme is CTXT if and only if it is both PTXT and CRD.

With this new characterization of CTXT in hand, we proceed as follows. We
show (in the full version) that MEE is length-hiding IND-CPA secure and PTXT
secure. Both of these results follow straightforwardly from the techniques of [3].
Thus to show LHAE of MEE-TLS-CBC reduces to proving CRD security. Here
we still have technical hurdles, including the fact that we must directly analyze
multi-query CRD, deal with arbitrary tag locations and sizes, and account for
variable length padding. What’s more, we must observe precise requirements on
tag and message lengths to avoid our attacks. To make this task slightly easier,
we assume that the MAC is a secure PRF. While this is a stronger assumption
than SUF-CMA, the MAC used by TLS is HMAC, which must be a good PRF
in other parts of the TLS protocol.

Stateful LHAE. In fact the TLS record protocol uses both stateful encryption
and stateful decryption, enabling replay resistance. We handle this, too. In the
full version we formalize a stateful LHAE notion (generalizing a definition of [4])
and show that one can easily lift all our results to the stateful setting.
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Prior versions of TLS. We have concentrated on the TLS 1.2 standard,
though all our results apply to TLS 1.1 as well. TLS 1.0 differs in two key ways,
changing the applicability of our results. First, standard-compliant implemen-
tations of TLS 1.0 allowed an attacker to distinguish between decoding failures
(arising from incorrectly formatted padding) and authentication failures (aris-
ing from MAC verification failures). It was shown in [9, 22] how this difference
could be exploited to decrypt ciphertexts in the OpenSSL implementation of
TLS. Consequently, the TLS 1.1 and 1.2 specifications mandate that implemen-
tations prevent such attacks by enforcing uniform error reporting (both in terms
of timing and the actual message returned). Our positive results are in this uni-
form error reporting model and don’t necessarily apply when non-uniform error
reporting is in effect.

The second difference is that in TLS 1.0 CBC mode used chained IVs, meaning
that the IV used to encrypt a message is set to the last ciphertext block from
the previously sent ciphertext. As reported in [19], Rogaway and Dai found
distinguishing attacks that exploit chained IVs, and so in TLS 1.1 and beyond,
dedicated IVs are required. Our attacks and proof only apply when dedicated
IVs are used as in TLS 1.1 and 1.2.

Recap and discussion. Putting together all our results, we see that the ex-
act nature of encoding in MEE must be carefully considered when analysing
protocols based upon it. Our attacks and positive results characterize the pa-
rameters under which MEE-TLS-CBC falls to (at least) distinguishing attacks
and those under which we can have significantly better confidence in security
via our proofs. To recap, tag size matters: too small and security fails, large
enough and LHAE security can be proved.

We are in contact with those involved in TLS standardization, and hope that
vulnerabilities in future versions can be avoided. There are several ways to protect
TLS from these problems. For example, one could include the padding length in
the MAC scope. Our attacks would no longer work and, in fact, one should be able
to prove LHAE security. The best solution is to stop using using MEE-based en-
cryption within TLS (and elsewhere). Instead, one could use Encrypt-then-MAC
or one of the dedicated AE schemes. We note that our LHAE notion is interest-
ing for these as well, allowing one to show, for example, that Encrypt-then-MAC
achieves some degree of length hiding in the case where one uses CBC.

2 Notation, Syntax and Basic Security Notions

Notation. When X is a set, we writeX ←$ X to mean that a element (namedX)
is uniformly sampled from X . We overload the notation for probabilistic or state-
ful algorithms, writing X ←$ M to mean that algorithm M runs and outputs
value named X . The set {0, 1}≤n contains all bitstrings of length at most n bits,
and as usual {0, 1}∗ is the set of all finite length strings. When X and Y are
strings, we writeX‖Y for their concatenation. When X ∈ {0, 1}∗ we write |X | for
its length. For a tuple of strings (X1, X2, . . . , Xb) we define |(X1, X2, . . . , Xb)| =
|X1 ‖X2 ‖ · · · ‖Xb|.
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We often use the notation M ⇒ x to denote the event (defined over some
specified probability space) that at some algorithm M outputs value x.

An adversary A is a probabilistic algorithm that takes zero or more oracles,
these denoted as superscripts.

Function Families, PRFs and SPRPs. Fix sets D,R and non-empty set
K. Let F : K × D → R be a mapping. For each K ∈ K we write FK(·) for
F (K, ·) and thus think of F as a function family indexed by K. Let Func(D,R)
denote the set of all functions from D to R. Let A be an adversary. We define
Advprf

F (A) = Pr
[
K ←$ K ; AFK(·) ⇒ 1

] − Pr
[
f ←$ Func(D,R) : Af(·) ⇒ 1

]
to be the PRF -advantage of A attacking F . We overload notation and write
Advprf

F (t, q, μ) to mean the maximum of Advprf
F (A) over all adversaries A that

run in time t, ask q queries, these totalling μ bits in length.
Fix integers k, n > 0, and let E : {0, 1}k × {0, 1}n → {0, 1}n be a function

family. If for every K ∈ {0, 1}k we have that EK(·) is a permutation (bijec-
tive mapping), then E is a blockcipher, and we call n the blocksize. We write
Perm(n) for the set of all permutations over {0, 1}n. We define Advsprp

E (A) =

Pr
[
K ←$ {0, 1}k : AEK(·),E−1

K (·) ⇒ 1
]
− Pr

[
π←$ Perm(n) : Aπ(·),π−1(·) ⇒ 1

]
to be the strong PRP -advantage of A attacking F . Again, we overload our nota-
tion and write Advsprp

E (t, q1, q2) to mean the maximum of Advsprp
E (A) over all

adversaries A that run in time t, asking a total of q queries to its oracles.

Encryption Schemes and MACs. An encryption scheme SE = (Kse,Enc,Dec)
is a triple of algorithms. The probabilistic algorithm Kse samples from a finite and
non-empty set Kse. The encryption algorithm Enc and decryption algorithm Dec
take an input (K, �,H,M) ∈ Kse ×N×{0, 1}∗×{0, 1}∗ (the key, output length,
associated data, and message or ciphertext) and outputs either a string or the
distinguished output ⊥. The encryption algorithm can be probabilistic while
decryption is always deterministic. We assume there are sets H ⊆ {0, 1}∗ (the
header space), L ⊆ N (the requested length space), M ⊆ {0, 1}∗ (the message
space) such that for all K ∈ Kse it holds that Pr[EncK(�,H,M) ∈ {0, 1}∗] = 1 if
(�,H,M) ∈ L×H×M and Pr[EncK(�,H,M) = ⊥] = 1 if (�,H,M) /∈ L×H×M.
For correctness we require that for all (K, �,H,M) ∈ Kse × L,H,M) it holds
that Pr[DecK(H,EncK(�,H,M)) = M ] = 1.

We further make a restriction that whether or not Enc returns ⊥ does not
vary with the message length (all other inputs kept equal). Formally, for all keys
(K, �,H) ∈ Kse × L × H and for all M,M ′ ∈ M×M such that |M | = |M ′| it
holds that for all coins EncK(�,H,M) = ⊥ iff EncK(�,H,M ′) = ⊥.

Let us make a few comments on what this syntax captures. First, because � is
a parameter of encryption, the syntax supports encryption schemes that return
variable-length ciphertexts of the same plaintext M . Second, for any fixed plain-
text length m, either all M ∈ {0, 1}m encrypt to valid ciphertexts, or none of
them do. Third, if � and M are such that encryption would return ⊥ (e.g. because
� < |M |, or the encryption algorithm does not support ciphertexts of length �),
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then it does so always. Finally, since decryption does not take the length pa-
rameter �, our correctness requirement implicitly demands that the length of the
underlying plaintext can be inferred given (K,H,C) where C = EncK(�,H,M).

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher. Then the encryption
scheme CBC[E] has message space {0, 1}n+ (all strings that are a multiple of n
bits). Key generation Kse outputs a random K ←$ {0, 1}k. On input including a
message M = M1‖ · · · ‖Mm ∈ {0, 1}nm, encryption ignores any requested length
or header inputs and returns the ciphertext C0 ‖ . . . ‖Cm+1 where C0 ←$ {0, 1}n

and Ci ← EK(Ci−1 ⊕Mi) for 1 ≤ i ≤ m.
Fix an integer τ > 0. A message authentication code (MAC) is a function

family F : Kma ×D → {0, 1}τ , where τ is the tag length of the MAC.

Conventions. The running time of algorithms (e.g. adversaries) is relative to
some implicit underlying RAM model of computation. The running time of an
adversary is assumed to include the time to execute the entire experiment in
which it executes, including (for example) the time for its oracles to execute.
Throughout we fix the convention that adversaries do not ask pointless queries:
they do not query an oracle on a value outside of its domain, nor on values
that are defined to cause a ⊥ return value. Also, adversaries are assumed not to
repeat queries to deterministic oracles. This convention is made without loss of
generality.

3 MAC-Encode-Encrypt and the TLS Record Protocol

The TLS Record Protocol uses the MAC-then-encode-then-encrypt paradigm.
The algorithm first applies a message authentication scheme to the message
and header to derive a tag. The message and tag are then encoded into a bit
string according to some encoding rules. Finally an encryption scheme is used
to encrypt the result.

Encoding schemes. An encoding scheme CODE = (encode, decode) is a pair of
deterministic algorithms. The encoding algorithm encode takes an input
(�,M, T ) ∈ N × {0, 1}∗ × {0, 1}∗ (the output length, message, and tag) and
returns a string of length � or the distinguished symbol ⊥. An encoding scheme
is assume to have a fixed maximum allowable output length �max. If � < |M |+|T |
or � > �max then encode returns ⊥. The decoding algorithm decode takes an in-
put in {0, 1}∗ and returns an element of {0, 1}∗ × {0, 1}∗ or (⊥,⊥). If either
algorithm is called on an input outside of its specified domain, it returns an
appropriate failure symbol. For correctness we require that, for all �, M , and T
such that encode(�,M, T ) �= ⊥ we have decode(encode(�,M, T )) = (M,T ).

The MEE AEAD scheme. We define the MEE scheme that forms the basis
for encryption in TLS, some modes of IPSec, and elsewhere. Fix some block
size n. Let SE = (K,Enc,Dec) be an encryption scheme with a message space
{0, 1}n+ (all strings of length a multiple of n). We assume that, given inputs of
an appropriate length, the algorithms Enc, Dec are failure-free. Let F : Kma ×
{0, 1}∗ → {0, 1}τ be a function. Let CODE = (encode, decode) be an encoding
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alg. K:

Kse←$ K

Kma←$ Kma

Ret (Kma,Kse)

alg. EncK(�,H,M):

(Kma, Kse)← K

T ←$ FKma(H,M)

X ← encode(�− n,M, T )

If X = ⊥ then Ret ⊥
Ret Y ←$ EncKse(X)

alg. DecK(H,C):

(Kma,Kse)← K

X ← DecKse(C)

(M,T )← decode(X)

If (M,T ) = (⊥,⊥) then Ret ⊥
If FKma(H,M) �= T then Ret ⊥
Ret M

Fig. 2. Algorithms for the MEE generic composition

scheme for which the outputs of encode all have bit lengths a positive multiple
of n. Then MEE[F,CODE, SE] = (K,Enc,Dec) is defined as shown in Figure 2.

Notice that Enc takes as input a requested ciphertext length �, as well as
associated data H and message M . The inclusion of � allows for variable length
padding to be used, while the inclusion of H allows us to incorporate additional
fields in the MAC scope, for example, TLS’s sequence numbers and compression
type and version fields. Notice that Dec can fail either because of a failure to
properly decode the message X , or because of a failure to verify the MAC tag
T . However, in our specification of the MEE scheme, these error events are not
distinguishable. This prevents the attacks of [9, 22] and is in-line with the TLS
specification [12]. In TLS, any such errors are fatal, leading to the destruction
of the TLS connection and the disposal of the keys, meaning that an attacker
can no longer interact with the protocol. In our description of MEE, these errors
are non-fatal, allowing an attacker to continue to interact with the MEE scheme
after an error has arisen. It is easy to see that security with non-fatal errors
immediately implies security with fatal errors, since any adversary in the former
case is more powerful than in the latter case. Thus any security results we prove
about MEE will imply security for the more realistic version of MEE in which
errors are fatal.

TLS encoding. Let TLScode = (TLSencode,TLSdecode) be the encoding
scheme defined in Figure 3. This scheme is parameterized by the integers ψ,
n, and τ , representing the maximal padding length, a block length, and a tag
length. Recall that we work with bits in our algorithmic descriptions and cryp-
tographic analysis, rather than with bytes as in the TLS specification [12].

For TLS, ψ can be as large as 2048, since the longest padding pattern that is
permitted consists of 256 copies of the byte value FFx. However, an implemen-
tation may select a smaller value of ψ. Note that this scheme has a decoding
algorithm permitting variable length padding of any length (not limited by ψ).
This decoding algorithm checks every byte of padding to ensure that it is correct.
It also allows the final message M (obtained after removing padding and parsing
the resulting string into message M and MAC tag T ) to be of zero length. Again,
these choices are in accordance with the TLS specification [12].

Generalizing TLS encoding. For the purposes of our positive results, we
will analyze a generalization of TLS encoding. An encoding scheme CODE =



Tag Size Does Matter: Attacks and Proofs for the TLS Record Protocol 381

alg. TLSencode(�,M, T ):

If � mod n �= 0 then Ret ⊥
p← �− (|M |+ |T |)
If p < 8 then Ret ⊥
If p > ψ then Ret ⊥
If p mod 8 �= 0 then Ret ⊥
P ← int2byte(p/8)− 1

X ←M ‖ T ‖ P · · ·P+1 P

Ret X

alg. TLSdecode(X):

If |X| mod n �= 0 then Ret (⊥,⊥)

(X,P )← split|X|−8,8(X)

b← byte2int(P )

p← 8 · b
If |X| − p− τ < 0 then Ret (⊥,⊥)

For i = 1 to b do

(X,P ′)← split|X|−8,8(X)

If P �= P ′ then Ret (⊥,⊥)

(M,T )← split|X|−τ,τ (X)

Ret (M,T )

Fig. 3. Algorithms for the TLS encoding scheme

(encode, decode) is MEE sufficient if it is parameterized by a block length n and
tag length τ and has the following properties:

(1) The output encode(�,M, T ) consists of a string M ‖ T ‖ P ∈ {0, 1}in for
some i ≥ 1 and where |P | = � − |M | − |T |. The particular padding P is
uniquely determined by |P |.

(2) Algorithm decode(X) for |X | = � returns (M,T ) only if encode(�,M, T )
outputs M ‖ T ‖ P .

(3) CODE yields prefix-free padding, which means that for any M,M ′ such that
|M | = |M ′|, for any T, T ′, the padding P returned by encode(�,M, T ) is
not a prefix of the padding returned by encode(�′,M ′, T ′) for any � �= �′.

One may be able to relax property (1) in various ways and still prove security, but
we focus on this case for greatest simplicity (while still covering TLS encoding).
Property (1) and the invertibility of encoding indicate that for any strings M,T
and number � for which encode(�,M, T ) does not output ⊥, there is a single
string P such that encode(�,M, T ) outputs M ‖ T ‖ P .

In the proof of our main technical result, Theorem 2, it will be useful to
assume that one can extract from encode a routine called Pad that, on input
(|M |, �), simply returns the padding P from M ‖ T ‖ P . Similarly, it will be
useful to assume that one can extract from decode: (1) a routine called Parse
that, on input X , returns the appropriate triple M,T, P ; and (2) a routine called
PadCheck that, on input (|M |, P, |X |), returns 1 if P is the correct padding, and
0 otherwise. It is easy to see that such routines can be extracted from TLSencode
and TLSdecode.

For notational clarity and letting F be some function family that will be clear
from context, we let MEE-GEN-CBC = MEE[F,CODE,CBC] be a mnemonic
defining the scheme that uses a MEE-sufficient encoding scheme CODE with
CBC. In particular, we let MEE-TLS-CBC = MEE[F,TLScode,CBC]. When we
need to be explicit, we write CBC[E] to mean that CBC encryption is done over
a function family E.
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main LHAESE:

K←$Kse

b←$ {0, 1}
b′ ← AEnc,Dec

Ret (b′ = b)

procedure Enc(�,H,M0,M1):

C0←$ EncK(�,H,M0)

C1←$ EncK(�,H,M1)

If C0 = ⊥ or C1 = ⊥ then

Ret ⊥
C ∪← Cb ; Ret Cb

procedure Dec(H,C):

If b = 1 ∧ C /∈ C then

Ret DecK(H,C)

Ret ⊥

Fig. 4. Length-hiding AEAD security game

4 Length-Hiding Authenticated Encryption

Here we formalize security goals for the TLS Record Protocol, and establish
some basic results about these goals. We target authenticated encryption secu-
rity, which requires (informally) that an adversary cannot generate new, valid
ciphertexts itself, nor learn partial information about encrypted plaintexts. Note
that this implies traditional chosen-ciphertext attack security. One security as-
pect traditional AE security goals do not treat, however, is length hiding. As we
saw in the previous section, the TLS standard includes the option for variable-
length-padding so that applications can choose to hide exact message lengths.
Even in the minimal-length-padding case some amount of length hiding could
exist since one must pad to the next block boundary. Classical security goals,
such as semantic security and the stronger AE notion mentioned above, ex-
plicitly leak message lengths. Thus one cannot use these to reason about the
length-hiding capabilities of MEE-TLS-CBC. We therefore give a new security
notion to capture length hiding under chosen-length attacks. It generalizes the
randomized AEAD security notion given in [20].

Length-hiding AEAD security. Let SE = (Kse,Enc,Dec) be an encryption
scheme and let A be an adversary. Figure 4 details a security length-hiding
authenticated-encryption game. We define the LHAE-advantage (of A) to be
Advlh-ae

SE (A) = 2 · Pr
[
LHAEA

SE ⇒ true
]− 1. Let LHAE1 (resp. LHAE0) be the

LHAE game except with b set to one (resp. zero). Then a standard argument
gives that Advlh-ae

SE (A) = Pr
[
LHAE1A

SE ⇒ true
]−Pr

[
LHAE0A

SE ⇒ false
]
. We

write Advlh-ae
SE (qe, μe, qd, μd) to mean the maximum of Advlh-ae

SE (A) taken over
all adversaries A that run for t computational steps, asking at most qe queries to
its left oracle that result in ciphertexts of total length μe bits, and qd queries to
its right oracle that total μd bits in length. Restricting attention to adversaries
A for which qd = μd = 0 yields a length-hiding version of the IND-CPA notion,
which we denote by LH-IND-CPA. We let Advlh-ind-cpa

SE (A) = Advlh-ae
SE (A) for

A that make no decryption queries.
The LHAE notion captures chosen-length attacks along two dimensions. First,

we allow |M0| �= |M1| unlike in previous formulations of encryption security. This
captures that an attacker cannot distinguish between the encryptions of two
chosen messages of arbitrary lengths. We only require that queried messages
both encrypt to a ciphertext (not ⊥). This restriction is necessary to avoid
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trivial wins in which an attacker abuses two tuples (�,H,M0) and (�,H,M1)
for which only one is handled by encryption. Second, we allow the adversary to
adaptively pick � for each query. A weaker notion restricts attention to a specific
� for the entire experiment. Indeed, this fixed-ciphertext-length notion may be
sufficient for some applications. Our attacks (in the next section) show insecurity
against this weaker notion, and so, by extension, the LHAE notion. On the
other hand, our proofs target the stronger notion, meaning when the proofs are
applicable, length-hiding security is achieved even if applications dynamically
change ciphertext lengths for a single key as done by GnuTLS [14] or if one
implemented traffic morphing [27] using MEE.

5 Attacking TLS for Short Messages and Tags

Next we sketch attacks against the MEE scheme as used in TLS and as described
in Section 3. In this section, for convenience, we work bytewise.

We give an attack that causes a decryption collision (recall: two valid ci-
phertexts that decrypt to the same plaintext). For concreteness, let n = 128
and τ = 80. This would be the case for truncated MACs [13]. Now suppose
the attacker can obtain a ciphertext C = C0||C1||C2 for a message M with
|M | = 40. Then the attacker computes a new ciphertext C′ = C′

0 ‖ C1 where
C′

0 = C0 ⊕ 0x00 · · ·14 0x00 0x00 0x10, where 0xab . . .k 0xab signifies a total of k
copies of the byte value 0xab. The plaintext underlying the CBC mode ciphertext
C is M ‖ T ‖ 0x11 · · ·20 0x11. It is easy to verify that the plaintext underlying C′

is M ‖ T ‖ 0x01, which is correctly formatted and, since it has the same message
and tag as in C, will verify.

This attack can be extended to break MEE-TLS-CBC in the traditional IND-
CCA sense. With parameters as before, suppose the attacker receives from its
encryption oracle a 3-block encryption C of Mb, one of two 5-byte messages
M0,M1. (The messages are the same length.) Then the attacker can modify C
by truncation and bit flipping in the IV to produce a fresh ciphertext C′ which
is a valid encryption of Mb. At this point C′ may be submitted to the decryption
oracle and the returned plaintext will be Mb, allowing the attacker to win the
IND-CCA game with probability 1. While this attack rules out MEE meeting
IND-CCA security (for short messages and MACs), notice that it does not seem
to translate into a mountable attack on TLS. This is because an attacker that
intercepts C and sends C′ instead will not see any difference in the behaviour of
the TLS connection as compared to having just sent C. One may conclude from
this that CTXT security, which is violated here, is overly strong and the abilty
to find decryption collisions does not endanger security.

This intuition is wrong, and in fact what we’ll see is that IND-CCA is in
fact too weak to capture the problem that decryption collisions give rise to.
Consider a client sending a short message, either “YES” or ”NO” encoded as
a 3-byte string or 2-byte string. Note these are of two different lengths, and so
the IND-CCA security definition excludes such a pair from consideration. Let
M ∈ {YES,NO} denote the message the client encrypts, which is not known to
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the attacker. Assume the client uses extra padding (such as done by GnuTLS)
to mask lengths; say the chosen extra padding during encryption was enough to
fill up one extra block. The attacker intercepts the ciphertext C = C0 ‖ C1 ‖ C2

generated by the client. It then generates a new ciphertext C′ = C′
0 ‖ C1 where

C′
0 = C0 ⊕ 0x00 · · ·12 0x00 0x10 0x10 0x10 0x10 .

The attacker then forwards C′ in place of C to the server and observes whether
decryption succeeds (say, by seeing if the session is torn down). If decryption suc-
ceeds, the attacker knows that M = NO and otherwise that M = YES. Why does
this work? The plaintext for CBC underlying C is either NO‖Tno‖0x14 · · ·20 0x14
or YES ‖ Tyes ‖ 0x13 · · ·19 0x13. If the former, then decrypting C′ succeeds since
the padding underlying C′ is exactly 0x04 · · ·4 0x04. But in the latter case, the
CBC decryption step applied to C′ yields YES ‖ T ′

yes ‖ 0x03 0x03 0x03 where
T ′

yes = Tyes ⊕ 0x00 · · ·9 0x00 0x10. Since the MAC tag is deterministic, it cannot
be that this MAC verifies and so decryption fails.

This attack extends immediately to handle TLS’s sequence numbers and asso-
ciated data. It also extends to give LHAE attacks for a variety of pairs of message
lengths, including combinations where one message is short (a few bytes) and
the other is long (even up to 15 blocks in size). The example can be generalised
to a variety of MAC sizes. Indeed, the attack still works in the extreme case
where the MAC size is just 8 bits less than the block size2, in which case one
of the messages in the attack is of zero length, a length permitted in the TLS
specification [12].

This distinguishing attack can be mounted in practice against TLS if an im-
plementation uses sufficiently short MAC tags, such as those arising from the
widespread use of truncated MACs (as done in IPsec and SSH). Fortunately
TLS 1.2 does not support short enough MACs, but 80-bit truncated MACs are
explicitly defined for use in extensions to TLS 1.2 [13]. In these extensions, then,
we have a vulnerability: a man-in-the-middle attacker can violate TLS’s confi-
dentiality design goal.

6 The CRD Security Notion

We saw in the last section that MEE with TLS paddding is always LHAE inse-
cure when τ + |M | ≤ n− 8 (where n is the underlying blockcipher length). Our
goal in the rest of the paper is therefore to prove that when τ + |M | > n− 8 the
MEE scheme is LHAE secure for the generalized TLS encoding scheme described
in Section 3. This will yield as a special case the first proof that the full TLS
Record Protocol is secure for standard chosen-ciphertext attack models.

Consider first the non-length-hiding case. Then a natural approach is to tar-
get the two properties IND-CPA and ciphertext integrity (CTXT). Recall that
CTXT [3] rules out the ability of an attacker to produce a valid ciphertext not
before returned by an encryption oracle. A result of Rogaway and Shrimpton [20]
states that satisfying both IND-CPA and CTXT is equivalent to AE security.
2 This case is extreme because TLS is a byte-oriented protocol.
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In the full versionwe state and prove a generalization of this equivalence for the
length hiding setting and also show that MEE is length-hiding IND-CPA (LH-
IND-CPA). The proofs are easy extensions of the proofs in the non-length-hiding
setting.

The complexity of the analysis lies in showing CTXT. Consider the analysis
by Krawczyk [15] for a restricted version of MEE with CBC that, unfortunately,
does not cover any usage case of TLS. His proof shows that MEE is single-query
CTXT in the case that τ = n, and encoding is both injective and ensures that
the tag fills exactly one plaintext block for the underlying encryption. These
restrictions make a proof more manageable, in particular leading to a simpler
final case analysis. In our setting, a direct CTXT analysis would require many
more cases, these induced by the relaxation to variable length padding and the
fact that tags may span multiple plaintext blocks. To ameliorate this complexity,
we takemore modular approach to proving CTXT.

CRD security. We introduce a new notion of security for encryption schemes
called collision-resistant decryption (CRD). This enables proofs of CTXT to be
split into two self-contained parts and helps modularize our analysis further.
Recall that plaintext integrity (PTXT) requires that an adversary not be able
to construct a ciphertext that decrypts to a valid message that was not before
queried to the encryption oracle. As mentioned above, CTXT rules out con-
structing any new ciphertext. As shown by Bellare and Namprempre [3], PTXT
is a strictly weaker property than CTXT. We show that CRD is exactly the
“gap” between the two properties. Informally, CRD security requires that an
attacker cannot produce a new ciphertext that decrypts to a message previously
queried to the encryption oracle. One can see, in fact, that the attacks of the
previous section are, at their core, breaking MEE in the sense of CRD.

Let SE = (Kse,Enc,Dec) be an encryption scheme, and let A be an adversary.
We define the collision-resistant decryption advantage of A as Advcrd

SE (A) =
Pr
[
CRDA

SE ⇒ true
]

where the game CRDSE is defined in Figure 5. In the usual
way, we write Advcrd

SE (t, qe, μe, qd, μd) to mean the maximum of Advcrd
SE (A) over

all adversaries A that run for t computational steps, asking at most qe queries
to its encryption oracle that total at most μe bits in length and asking at most
qd queries to its test oracle that total at most μd bits in length.

Figure 5 also specifies the games CTXTSE and PTXTSE. We similarly define
Advctxt

SE (A) = Pr
[
CTXTA

SE ⇒ true
]

and Advptxt
SE (A) = Pr

[
PTXTA

SE ⇒ true
]
.

We also define Advctxt
SE (t, qe, μe, qd, μd) and Advptxt

SE (t, qe, μe, qd, μd) analogously.
The following theorem shows that the combination of PTXT and CRD secu-

rity yields CTXT security. We omit the straightforward proof.

Theorem 1. (PTXT + CRD ⇒ CTXT) Let SE = (Kse,Enc,Dec) be an encryp-
tion scheme. Then Advint-ctxt

SE (t, qe, μe, qd, μd) ≤ Advint-ptxt
SE (t, qe, μe, qd, μd) +

Advcrd
SE (t, qe, μe, qd, μd). �

Given Theorem 1 and our earlier remarks about LHAE being implied by LH-
IND-CPA and CTXT, analyzing the LHAE security of any scheme can be sep-
arated into showing that LH-IND-CPA, PTXT and CRD are achieved. This
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main CTXTSE:

K←$ Kse; S ← ∅; i← 0

win← false

(H∗, C∗)←$ AEnc,Test

Ret win

procedure Enc(�,H,M):

i← i+ 1

Hi ← H ; Mi ←M

Ci←$ EncK(�,Hi,Mi)

S ← S ∪ {(Hi, Ci)}
Ret Ci

procedure Test(H∗, C∗):

M∗ ← DecK(H∗, C∗)

If M∗ �= ⊥∧(H∗, C∗) /∈ S
then win← true

Ret (M∗ �= ⊥)

main PTXTSE:

K←$Kse; S ← ∅; i← 0

win← false

(H∗, C∗)←$AEnc,Test

Ret win

procedure Enc(�,H,M):

i← i+ 1

Hi ← H ; Mi ←M

Ci←$ EncK(�,Hi,Mi)

S ← S ∪ {(Hi,Mi)}
Ret Ci

procedure Test(H∗, C∗):

M∗ ← DecK(H∗, C∗)

IfM∗ �= ⊥∧(H∗,M∗) /∈ S
then win← true

Ret (M∗ �= ⊥)

main CRDSE:

K←$ Kse; S ← ∅; i← 0

win← false

(H∗, C∗)←$ AEnc,Test

Ret win

procedure Enc(�,H,M):

i← i+ 1

Hi ← H ; Mi ←M

Ci←$ EncK(�,Hi,Mi)

S ← S ∪ {(Hi, Ci)}
Ret Ci

procedure Test(H∗, C∗):

M∗ ← DecK(H∗, C∗)

If M∗ �= ⊥ ∧ (H∗, C∗) /∈ S
∧∃i : (H∗,M∗) =

(Hi,Mi)

then win← true; Ret 1

Ret 0

Fig. 5. The CTXT, PTXT, and CRD experiments. The set S and the counter i are
global variables in each game.

modularity is particularly beneficial for the MEE construction, where showing
LH-IND-CPA and PTXT is straightforward. We defer discussion of these results
to the full version. Instead, we focus next on the most involved task: showing
CRD security of MEE using CBC and TLS padding.

7 The CRD Security of MEE-GEN-CBC

In this section we give a formal security bound for MEE-GEN-CBC. In the fol-
lowing theorem we consider the case that τ ≤ n, where n is the blocksize of
the blockcipher underlying CBC. In fact the bounds hold when τ > n, too. Say
that τ = n + n′ for some n′ > 0. Then we can reduce to the case considered
by Theorem 2 by assuming that the adversary actually controls the first n′ bits
of T ; essentially, they are treated as adversarially controlled message bits. Thus
we can restrict our attention to the case that τ ≤ n, which simplifies our proof.
Note that this does not significantly weaken our bound, since the dominating
term is a function of n when τ > n. We emphasize that, unlike prior proofs, we
make no assumption about the position of the tag.

In what follows, let the total plaintext length of an encryption query (�,H,M)
in the CRD experiment be the total number of blocks that are consequently
encrypted, i.e. the total number of blocks in M ‖T ‖P where T is the tag and P
is the padding.
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Theorem 2. Fix n > 0 and let E : {0, 1}n × {0, 1}n → {0, 1}n be a blockci-
pher. Let CODE = (encode, decode) be MEE sufficient with blocklength n and
taglength τ ≤ n. Let F : K × {0, 1}∗ → {0, 1}τ be a function family. Let SE =
MEE-GEN-CBC, where CBC is over blockcipher E. Let A be a CRD-adversary
that runs in time t; asks qe encryption queries, the sum of whose total plaintext
lengths is σe; and asks qd Test queries, the sum of whose lengths is σd blocks. Let
σ = σe+σd. Let bmin be the length (in bits) of the shortest message that A queries
to its encryption oracle. Then, if τ + bmin ≥ n, there exist adversaries B1, B2

such that

Advcrd
SE (A) ≤Advprf

F (B1) + Advsprp
E (B2)

+
.5σ2 + σ2

e + 2σdα(α + 1)qe + qeqd

2n
+
qeqd

2τ

where where α is the number of distinct padding patterns. Here B1 runs in time
t+ σTimeE and asks at most q + 1 queries, and B2 runs in time t+ O(σ) and
asks at most σ queries. �
The proof can be found in the full version. We note that for TLS with full
variable-length padding the parameter α is equal to 256.

Similarly, we can consider the case that minimal length padding is enforced
by the encoding scheme. Equivalently, we can restrict to CRD adversaries that
query ciphertext lengths � that result in padding only to the closest blocklength.
Let us call such adversaries minimal-length padding respecting. This case results
in exactly the same bound. However for TLS with minimum-length padding the
value of α changes to 16.

Corollary 1. Let all quantities and objects be as in Theorem 2, except that A
is a minimal-length padding respecting CRD-adversary. Then, if τ + bmin ≥ n,
there exist adversaries B1, B2

Advcrd
SE (A) ≤Advprf

F (B1) + Advsprp
E (B2)

+
.5σ2 + σ2

e + 2σdα(α + 1)qe + qeqd

2n
+
qeqd

2τ

where where α is the number of distinct padding patterns. Here B1 runs in time
t+ σTimeE and asks at most q + 1 queries, and B2 runs in time t+ O(σ) and
asks at most σ queries. �
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the plain as well as the BPK model, this construction remain the only
known simultaneous resettable zero-knowledge protocols.

In this work, we study the question of round complexity of simultane-
ous resettable zero-knowledge in the BPK model. We present a constant
round protocol in such a setting based on standard cryptographic as-
sumptions. Our techniques are significantly different from the ones used
by Deng, Goyal and Sahai.

1 Introduction

A fundamental question in cryptography deals with understanding the role that
randomness plays in cryptographic protocols and to what extent it is necessary.
Progress on this question was made relatively early with the result of Goldreich
and Oren [GO94] showing that zero knowledge protocols cannot exist in the
setting where the parties do not have access to any randomness resource at
all. While this work showed that randomness cannot be completely eliminated,
it simultaneously motivated several natural questions studying the “extent” to
which randomness is necessary. A rich line of work deals with studying the usage
of imperfect randomness in various settings (see [KLRZ08, DOPS04] and the
references therein). Another line of work (and the one dealt with in this paper)
studies whether all the random choices can be made “offline” and be fixed once
and for all. In other words, is it possible to design cryptographic protocols where
a party can reuse the same random tape in multiple (or even all) executions?

The question of reusing randomness in cryptographic protocols was first con-
sidered in the context of zero knowledge by Canetti, Goldreich, Goldwasser,
and Micali [CGGM00] who proposed the notion of resettable zero knowledge.
In resettable zero knowledge, the zero knowledge property is required to hold
even if a malicious verifier can “reset” the prover to the initial state and start
a new interaction where the prover uses the same random tape. Canetti et al.
[CGGM00] proposed constructions of resettable zero knowledge protocols based
on standard cryptographic assumptions. Barak, Goldreich, Goldwasser, and Lin-
dell [BGGL01] showed how to construct zero knowledge protocols for opposite
setting (where soundness is required to hold even if the verifier uses the same ran-
dom tape in multiple executions), which following Micali and Reyzin [MR01b]1

they call resettably sound (rS) zero-knowledge. Barak et. al. also showed that
any resettable sound zero-knowledge protocol must make use of non-black-box
simulation techniques (introduced in a breakthrough work of Barak [Bar01]).

Subsequent to these two works, a number of papers have studied the notion of
resettable security primarily in the setting where only one of the participating
parties uses a fixed random tape multiple times. Protocols have been proposed
in the so called plain model (cf. [CGGM00, BGGL01, BLV03, DL07a, GS09]. A
larger body of literature studies resettable security in the so called bare public
key (BPK) model. In the BPK model, a (possibly adversarial chosen) public

1 Micali and Reyzin defined resettable soundness (and other soundness notions) in
what is called the bare public key model.
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key is selected and published by the verifier(s) before any protocol interaction
starts 2. Protocol for resettable security in the BPK model were studied in
[CGGM00, MR01b, ZDLZ03, CPV04, DL07b, YZ07]. A more complete account
of the related works is given in a later subsection.

In a recent work, Deng, Goyal and Sahai (FOCS 2009) gave the first construc-
tion of a simultaneous resettable zero-knowledge protocol where both partici-
pants of the protocol can reuse a fixed random tape in any (polynomial) number
of executions. Their construction was in the plain model. The construction how-
ever required nε rounds of interaction between the prover and the verifier. Even
in the BPK model, the DGS construction remains the best known simultaneous
resettable zero-knowledge protocol. This motivates the following question:

“Does there exist a polylogarithmic (or even constant) round simultaneous
resettable zero-knowledge protocol in the BPK model?”

Our Results. In this paper, we resolve the above question by constructing a
constant round protocol for simultaneous resettable zero-knowledge in the BPK
model. Our main theorem is as follows.

Theorem 1. If there exist trapdoor permutations and collision resistant hash
function families, then there exist constant-round resettably-sound resettable
ZK arguments for NP in the BPK model.

We leave open the question of round complexity of simultaneous resettable zero-
knowledge in the plain model. Note that every resettable zero-knowledge protocol
is also concurrent zero-knowledge [CGGM00]. Hence, a breakthrough will be
required to construct a protocol in the plain model which matches the round
complexity of the one in the BPK model given in our paper.

Our Techniques. The techniques used in our paper are quite different from the
ones used in the DGS construction [DGS09]. Here we outline the main technical
problem which is required to be resolved to obtain a constant round construction
of simultaneous resettable zero-knowledge in the BPK model.

The source of large round complexity in the DGS construction is the usage
of recursive rewinding strategies (cf. [RK99, KP01, PRS02]) which are coupled
with a novel non-black-box simulation strategy. In the BPK model however,
it is indeed possible to avoid recursive rewinding because of the existence of a
“long term” trapdoor associated with the public key of the verifier (which the
simulator can try to extract). At a high level, our protocol in the BPK would
follow the following structure. The verifier would first prove knowledge of a long
term trapdoor associated with the public key using a zero-knowledge protocol.
The prover would then give a witness indistinguishable argument of knowledge
(WIAOK) proving either x ∈ L or that it “knows” such a trapdoor. Very roughly,
now once the simulator extracts a long term trapdoor for a public key, it never
needs to rewind a session with that public key (and the simulation can be done
2 Such a model is quite different from having a “setup assumption” where one would

assume, e.g., that a trusted party ensured that the public key was chosen correctly.
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straight line). This would lead to a much simpler rewinding strategy avoiding
large round complexity.

The key problem that arises while implementing the above approach in the
simultaneous resettable setting is that obtaining a WIAOK protocol from the
prover to the verifier is non-trivial and quite complex (since an adversarial ver-
ifier may rewind the prover to extract the witness). Instead, we would like to
resort to using ZAPs [DN00] which are two round WI protocol (and hence al-
ready “secure” in the simultaneous resettable setting). Using a ZAP leads to the
following problem. To arrive a contradiction in the proof of (resettable) sound-
ness, the prover should be forced to prove a false statement about the trapdoor
of the verifier (since we are not using an argument of knowledge protocol). This
is turn means that the theorems the verifier proves about its long term trapdoor
must also be false (this is important for the proof of resettable zero-knowledge
to go through). However note that statements about the same public key (and
the long term trapdoor) are being proven by the verifier in multiple sessions. To
simulate its proof in all of those sessions, it seems that the verifier will need to
use a (constant round) concurrent zero-knowledge protocol!

To overcome this problem, the verifier needs to be able to prove different
statements in different sessions with the same public key such that some of them
could be false while the others are true. This might suggest that the witness
(containing the trapdoor) used by the verifier in each session is different. Yet we
need that once we extract a trapdoor for any of these sessions, it should be a
long term trapdoor which should enable the simulator to simulate every session
with this public key (including even future sessions). Our protocol uses a careful
technique to resolve this tension between “using sufficiently different witnesses
in each session” and yet having “a common long term trapdoor binding them
all”. Our full protocol is described in Section 3.

Related Work. Subsequent to the works of Canetti et al. [CGGM00] and Barak
et al. [BGGL01] described above, a number of works have investigated the prob-
lem of security against resetting attacks for zero-knowledge protocols in the
plain model. Barak, Lindell, and Vadhan [BLV03] constructed the first constant-
round public-coin argument that is bounded resettable zero-knowledge. Deng and
Lin [DL07a] showed a zero-knowledge argument system that is bounded reset-
table zero-knowledge and satisfies a weak form of resettable soundness.

A larger body of work has investigated the same problems in a relaxed set-
ting, called the “bare public key” (BPK) model, introduced by [CGGM00],
which assumes that parties must register (arbitrarily chosen) public keys prior
to any attack taking place. [CGGM00] presented a constant-round resettable
zero-knowledge argument in the BPK model, the round complexity of which
was improved by Micali and Reyzin [MR01b]. Micali and Reyzin [MR01b] also
first investigated different notions of soundness in the BPK model, including the
notion of resettable soundness. Di Crescenzo, Persiano, and Visconti [CPV04]
described a resettable zero-knowledge protocol with concurrent soundness, and
Deng and Lin [DL07b] improved the computational assumptions needed to ob-
tain this result. Yung and Zhao [YZ07] also construct resettable zero-knowledge
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and concurrently sound arguments in the BPK model, using a general and effi-
cient transformation. Micali and Reyzin [MR01a] also proposed a stronger vari-
ant of the BPK model for constructing bounded-secure protocols, and provided
constant-round bounded resettable zero-knowledge arguments in this model; this
result was strengthened by Zhao et al. [ZDLZ03] also in a bounded setting for
resettable zero knowledge.

Goyal and Sahai [GS09] study the notion of general resettable two-party and
multi-party computation and presented general feasibility results when only one
of the parties may be reset. In this work, we restrict ourselves to the study of
the zero-knowledge functionality.

Rest of this paper. We provide some basic definitions in section 2. In section
3, we construct a constant-round resettably-sound concurrent ZK arguments for
NP in the BPK model. At last, we apply the transformation of Deng, Goyal
and Sahai [DGS09] to the protocol constructed in section 3 to obtain our main
result.

2 Definitions

Notation. We abbreviate probabilistic polynomial time as PPT. A function
f(n) is said to be negligible if for every polynomial q(n) there exists an N such
that for all n ≥ N , f(n) ≤ 1/q(n). If L is a language in NP, we define the
associated relation as the relation RL = {(x,w) |x ∈ L;w is a witness for ‘x ∈
L’}.
Interactive Arguments in the BPK Model. The bare public-key model
(BPK model) assumes that:

– A public file F that is a collection of records, each containing a verifier’s
public key, is available to the prover.

– An (honest) prover P is an interactive polynomial-time algorithm that is
given as inputs a secret parameter 1n, a n-bit string x ∈ L, a witness w for
x ∈ L, a public file F and a random tape r.

– An (honest) verifier V is an interactive polynomial-time algorithm that works
in two stages. In stage one (key registration stage), on input a security pa-
rameter 1n and a random tape r, V generates a key pair (pk, sk) and stores
pk in the file F . In stage two (proof stage), on input sk, an n-bit string x
and a random string ρ, V performs the interactive protocol with a prover,
and outputs “accept x” or “reject x”.

Definition 1 (Complete Interactive Arguments in the BPK Model).
We say that the protocol < P, V > is complete for a language L in NP, if for
all n-bit string x ∈ L and any witness w such that (x,w) ∈ RL, the probability
that V interacting with P on input w, outputs “reject x” is negligible in n.

Malicious Resetting Provers in the BPK model. Let s be a positive poly-
nomial and P ∗ be a PPT algorithm on input 1n.

A resetting attack by a s-resetting malicious prover P ∗ in the BPK model is
defined as the following process:
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– Run the key generation stage of V on input 1n and a random string r to
obtain pk and sk. P ∗ obtains pk and V stores the corresponding sk.

– Choose s(n) random string ρi, 1 ≤ i ≤ s(n), for V .
– P ∗ is allowed to choose an instance x and initiate any (polynomial) number

of sessions with each verifier and interact with it in the second stage (proof
stage) of the protocol. The i-th verifier uses input sk, ρi.

Definition 2 (Resettably sound arguments in the BPK model).
< P, V > satisfies resettable soundness for an NP language L in the BPK
model if for all positive polynomial s, for all s-resetting malicious prover P ∗, the
probability that in an execution of resetting attack, P ∗ ever receives “accept x”
for x /∈ L from any of these oracles is negligible in n

Malicious Resetting/Concurrent Verifiers in the BPK model. A reset-
ting attack by an (s, t)-resetting malicious PPT verifier V ∗, for any two positive
polynomials s and t, can be defined as the following process:

– In the key generation stage, on input 1n, V ∗ receives s instances x1, ..., xs(n)∈
L of length n each, and, outputs an arbitrary public file F

– Choose r1, ..., rs(n) for P uniformly at random.
– In proof stage, V ∗ starts in the final configuration of the key generation stage,

is given oracle access to s3(n) provers, P (xi, wi, pkj , rk, F ), 1 ≤ i, j, k ≤ s(n).
– V ∗ finally outputs its entire view of the interaction (i.e., its random tape

and the messages received from the provers). The total number of steps of
V ∗ in both stages is at most t(n).

The concurrent attack by V ∗ is defined in the same way except that we choose
s2 random tapes ri,j , 1 ≤ i, j ≤ s, and V ∗ is allowed to interact with s2 provers
P (xi, wi, pkj , ri,j , F ) (1 ≤ i, j ≤ s) concurrently. Note that here each random
tape is used only once.

Definition 3 (Resettable zero-knowledge in the BPK model). < P, V >
is (non-black-box) resettable zero knowledge for an NP language L in the BPK
model if for every pair of positive polynomials (s, t), for all (s, t)-resetting ma-
licious verifier V ∗, there exists a simulator S, given as input the description
of V ∗, such that for every x1, ..., xs(n) ∈ L, the following two distributions are
computationally distinguishable:

1. The output of V ∗ at the end of a resetting attack described above,

2. The output of S(V ∗, x1, ..., xs(n)).

Definition 4 (Concurrent zero-knowledge in the BPK model). < P, V >
is (non-black-box) concurrent zero-knowledge for an NP language L in the BPK
model if for every pair of positive polynomials (s, t), for all (s, t)-concurrent ma-
licious verifier V ∗, there exists a simulator S, given as input the description
of V ∗, such that for every x1, ..., xs(n) ∈ L, the following two distributions are
computationally distinguishable:

1. The output of V ∗ at the end of a concurrent attack described above,

2. The output of S(V ∗, x1, ..., xs(n)).
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3 Constructing Resettably-Sound Concurrent Zero
Knowledge Arguments for NP in the BPK Model

As a first step towards obtaining a simultaneous resettable zero-knowledge pro-
tocol, we present a resettably-sound concurrent zero knowledge argument for an
NP language in the BPK Model in this section. We will later show how to use a
compiler described in [DGS09] to obtain our main theorem.

Let (G,E,D) be a semantically secure public-key encryption scheme, where
G, E, and D denote key-generation algorithm, encryption algorithm, and de-
cryption algorithm respectively. The commitment scheme Com is a statistically
binding and computationally hiding commitment scheme. Com(s, r) denotes the
commitment to a string s using the random tape r. The protocol proceeds as
follows.

The resettably-Sound Concurrent ZK Argument (P, V ) in the BPK
model

The key registration stage: V runs the key generation algorithm G of a se-

mantically secure public key encryption scheme (G,E,D) twice independently,
(pk0, sk0) = G(1n, rk

0 ), (pk1, sk1) = G(1n, rk
1 ), publishes (pk0, pk1) and stores rk

b

and skb for a random b ∈ {0, 1}.

The proof stage (main protocol):

Common input: x (supposedly in L) and verifier’s public key (pk0, pk1).
P ’s private input: the witness w such that (x,w) ∈ RL.
V ’s private input: the randomness rk

b used in key generation for one of the public
keys.
P ’s randomness: rp.
V ’s randomness: rv.

1. P sends a commitment c = Com(e, r) to a random challenge e.
2. V Computes two ciphertexts of 0 under pk0 and pk1 independently, c0 =

E(pk0, 0, r0), c1 = E(pk1, 0, r1); Send c0, c1 and the first message a of the
3-round WI proof of Hamiltonian Cycle for the following statement:
(a) there exists rk

b such that (pkb, skb) = G(1n, rk
b ) (equivalently, “I know

one of secret keys”); and,
(b) there exist r0 and r1 such that c0 = E(pk0, 0, r0) and c1 = E(pk1, 0, r1)

(i.e., both cipertexts are encryption of 0).
The randomness used by V in this step as well as the rest of the protocol is
generated by applying a pseudorandom function frv to the first message c
of the prover.

3. P sends e and executes the BGGL protocol in which P proves that either:
1) there exists r such that c = Com(e, r), or, 2) x ∈ L.

4. V now responds to the challenge e by sending the final message z of the
3-round WI protocol of Hamiltonian Cycle.
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5. P executes a ZAP in which P proves that either x ∈ L or there exists rk
d ,

d ∈ {0, 1}, such that (pkd, skd) = G(1n, rk
d) and 0 = D(skd, cd) (i.e., one of

the decryptions result to the message 0).

Remark 1. For simplicity of presentation, we view com and ZAPs as non-
interactive protocol requiring only one message in each direction. However our
construction can indeed use two round protocols for each in a straight-forward
way.

Remark 2. Note that there is fine difference between the verifier and the prover
in proving a ciphertext is an encryption of 0: the verifier uses the knowledge of
randomness in encryption to prove the ciphertext is an encryption of 0, while
the prover uses the knowledge of the secret key (more precisely, randomness
that used to generate the public/secret key pair) to prove that one plaintext is
actually 0. We stress that this difference is crucial for security proof. In the course
of simulation, once our simulator extracts the randomness used for generating
one of pk0 and pk1 (note that it does not need the randomness used in these
encryptions by the verifier to execute a session), it can handle all sessions under
the same public key (pk0, pk1). On the other hand, in the proof of soundness, the
reduction algorithm, playing the role of verifier, needs only one of secret keys to
execute a session, and this will enable it to use the power of cheating prover to
either break the semantic security of the other public key scheme or break the
WI property of the underlying 3-round WI protocol if such a cheating prover
exists.

We now state the following theorem.

Theorem 2. The above protocol (P, V ) is a resettably-sound concurrent zero
knowledge argument.

The completeness is obvious. We will prove concurrent zero knowledge and
resettable-soundness in next two subsections.

Hardness assumption. Note that the 2-round statistically-binding commit-
ment scheme and semantically secure public key encryption scheme can be based
on trapdoor permutations, which also imply the existence of ZAPs. In addi-
tion, we need to assume collision-resistant hash functions required for the reset-
tably sound BGGL protocol (which makes use of non-black-box simulation tech-
niques). Thus we can base the above resettably-sound concurrent ZK argument
on the assumption of existence of trapdoor permutations and collision-resistant
hash function families.

3.1 Proof of Concurrent Zero-Knowledge

Let V ∗ be an concurrent malicious verifier. Assume w.l.g. in real world, on input
a fixed YES instance sequence x1, ..., xs(n) ∈ L of length n each, V ∗ generates
s public keys F = ((pk1

0 , pk
1
1), ..., (pk

s
0, pk

s
1)), and interacts with s2(n) incarna-

tions of prover, P (xi, wi, (pk
j
0, pk

j
1), ri,j , F ), 1 ≤ i, j ≤ s(n). We now construct a

simulator S as required by definition 3.
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S operates as follows. First, given a fixed YES instance sequence x1, ..., xs ∈ L
of length n each as input, S runs the key-generation phase of V ∗ to obtain the
public file F .

In proof stage, the first task of S is to extract one rk
b (b ∈ {0, 1}) for each

public key pair (pkj
0, pk

j
1) such that rk

b is the randomness used for generating
one public key pkj

b . Note that once these rk
b ’s are obtained, S is able to carry

out all sessions successfully in a straight-line manner by decrypting one of two
ciphertexts (and relying on the soundness of the WI protocol). We say a session
under public key (pkj

0, pk
j
1) is solved if S already extracted the corresponding

randomness rk
b ; otherwise, we say it is unsolved.

The extraction is done in a sequential way. Once receiving an accepting ex-
ecution of the 3-round WI protocol in an unsolved session under public key
(pkj

0, pk
j
1), S rewinds to the beginning of step 3, sends a random challenge e′ and

runs the simulator for BGGL protocol to prove that c is a commitment to e′.
When another accepting execution of this subprotocol is obtained, S solved all
sessions under this public key.

We would like to make the following remarks on the above extraction:

– The non-black-box simulator for the standalone BGGL protocol handles only
a single session, but it runs in a concurrent setting. This means, during
the execution of this subprotocol, many other sessions may appear. To deal
with this issue, we have the following strategy. First observe that all the
other sessions are being executed honestly by the simulator (and the cur-
rent rewinding thread will be aborted if an unsolved session reaches its final
prover message). Thus, we consider these sessions (and the part of the simu-
lator handling these sessions) as part of the adversarial machine itself. Then
our modified non-black-box simulator Sim will now simply act on this new
machine (by using its code) instead of the original one.

– For the analysis of running time to go through, we use the Goldreich-Kahan
technique to bound the running time of S.

The detailed description of S follows.

The Simulator S:
Input: the code of V ∗, s YES instances x1, ..., xs.

1. select a random tape for V ∗, and run the key-generation phase of V ∗ to
obtain the public file F = ((pk1

0 , pk
1
1), ..., (pk

s
0, pk

s
1)).

2. Set h ← (x1, ..., xs) and S ← ∅.
3. Do the following:

(a) Adopt the honest prover strategy until the final ZAP in every session,
and extend h to include the transcript generated in this step. If V ∗

terminates during this step, return h; Otherwise, go to next step.
(b) If a solved session reaches the final ZAP, use the relevant randomness

and secret key to produce a prover message of the final ZAP, and extend
h to include this message. If V ∗ terminates during this step, return h;
Otherwise, go to next step.
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(c) If an unsolved session reaches the end of of the underlying 3-round WI
protocol, and the resulting transcript (a, e, z) so far is accepting, do the
following:
– (Estimation) Suppose that the first two messages sent in the cur-

rent session are c, (c0, c1, a), and the corresponding public key is
(pkj

0, pk
j
1). Rewind P ∗ to the point (we call it rewinding point)

where the verifier’s message (c0, c1, a) was just sent, and repeat the
following until it receives the accepting transcript (a, e, z) of the
underlying 3 round WI argument n2 times: send the honest chal-
lenge e and choose independent randomness to execute the underly-
ing BGGL protocol honestly; when another unsolved session reaches
the final ZAP, S aborts the current thread3.
We denote by X the total number of iterations (or threads) of this
step.

– (Extraction) Rewind V ∗ to the above rewinding point again, and
repeat the following until it obtains another accepting transcript
(a, e′, z′) with e �= e′ until the X + 1st iteration is reached. If all
iterations fail, output “⊥”.
• For the current session, S send a new random challenge e′ �= e,

and then runs the non-black-box simulator Sim to prove that c
is a commitment to e′, where Sim proceeds exactly the same as
the simulator for the BGGL protocol (except for acting on the
new adversarial machine as described earlier).

• For any other solved session, S executes the strategy described
in step b; if an unsolved session reaches the final ZAP, S aborts
the current iteration.

(d) From the two accepting transcripts of the 3-round WI protocol (a, e, z)
and (a, e′, z′), compute the randomness rk

b such that (pkj
b , sk

j
b) =

G(1n, rk
b ),4 and update S to include rk

b , and go to step 1. (Note that
the above step 3(c) does not update history).

The concurrent zero knowledge property of our protocol follows from the follow-
ing claims.

Claim 1 S runs in expected polynomial time.

Claim 2 The output h by S is indistinguishable from real interaction.

Proof of Claim 1. We first count the number of queries which the simulator
makes to the adversary. Observe that the number of queries which S makes in
a single solved session is a constant C. Suppose that for a specific session i, S
enters step 3(c) with probability pi, then we have for this session, the expected
number of iterations in step 3(c) is at most pi · (2n2/pi) < 2n2. Since V ∗ is
only allowed to initiate s2 sessions, the entire simulation of S will make an
3 in this case, S cannot proceed further without knowledge of the relevant secret key.
4 Note that we can also compute the randomness that were used in the two encryptions

to 0, but we don’t need it to carry out the final ZAP.
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expected s2 · C · (2n2 + 1) number of queries (which is polynomial). Since each
query additionally requires only polynomial time, the overall running time of the
simulator is expected polynomial. �
Proof of Claim 2. We first prove the probability that S outputs ⊥ is negligible.
Observe that S outputs ⊥ only if it fails to extract a relevant secret key.

Assume that for session i, S enters step 3(c) with probability pi (taken over
the random coins used in step 3 of the protocol; here prover proves that e is the
correct challenge). We claim that in a single run of the Extraction in step 3(c),
the probability that S obtains an accepting transcript of the 3-round WI protocol
is at least pi − neg(n) for some negligible function neg (except for a negligible
fraction of protocol prefixes, i.e., transcripts of steps 1 and 2), otherwise, we can
use V ∗ to break either the computational-hiding property of the scheme Com
or the zero knowledge property of the BGGL protocol.

Note that the Goldreich-Kahan technique [GK96] guarantees that, the esti-
mation n2/X of pi is within a constant factor of pi except with exponentially
small probability, thus, we conclude that X > n2/(c · pi holds for some constant
c except with exponentially small probability.

Thus, the probability that S enters step 3(c) but doesn’t extract out the
randomness used in generation of some public key is

pi(1 − pi + neg)X

≤pi(1 − pi + neg)n2/(c·pi)

which is negligible.
Observe that the only difference between S and the honest prover is that they

use different witness to carry out the final ZAP in each session. Now by the
WI property of the ZAP, we conclude that h is indistinguishable from the real
interaction between honest provers and V ∗. �

3.2 Proof of Resettable-Soundness

Assume that there is a PPT resetting P ∗ that can cheat an honest verifier V (and
complete a protocol execution) on a NO instance x with noticeable probability
p. We shall now consider the following 5 hybrid verifier strategies. We shall prove
that in each hybrid, the probability of the verifier being able to cheat (in some
session) is still noticeable. In the final hybrid, we note that the above cheating
probability must be negligible by the soundness of the ZAP system (and thus
arrive at a contradiction). We shall first describe the hybrid strategies and then
argue that the probability of cheating remains negligible in each.

V1: Follow the honest verifier strategy V , except that whenever V is instructed to
applying the pseudorandom function specified by its random tape to generate
randomness, V1 uses truly random coins (while still making sure that for a
given prover first message c, it always uses the same random coins).

V2: Follow the strategy below.
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1. In the key registration stage, V2 acts exactly as V1.
2. In the proof stage, V2 first picks a session i at random.

Suppose that the first prover message in session i is c, and that the
public key is (pk0, pk1) and the secret key stored by V2 is skb for some
b ∈ {0, 1}.

3. For all sessions having a first prover message different than c, V2 executes
honest verifier’s strategy throughout the entire interaction between P ∗

and V2.
4. For all sessions having the first prover message c, V2 executes honest

verifier’s strategy until when a session among them first completes an
accepting proof via BGGL protocol for the correctness of challenge e, and
then rewinds to the point where it received c for the first time, computes
two encryptions of 0 under both public key pkb and pk1−b honestly again,
produces a fake first massage a that can answer e successfully according
to the 3-round WI protocol5, and continue (without using the actual
witness).

V3: Follow the strategy of V2 except that, in item 4 of V2, computes an encryption
of 0 under public key pkb and an encryption of 1 under public key pk1−b after
extracting the challenge e and then rewinding (but produces the first message
a in the same way as V2),

V4: Follow the strategy of V3 except that, in all sessions, whenever V3 needs to
use rk

b as partial witness to carry out the 3-round WI protocol, V4 uses rk
1−b.

V5: Follow the strategy of V4 except that, after rewinding, V5 computes two
encryptions of 1 under pk0 and pk1 respectively in those sessions having the
first prover message c.

First, we have that P ∗ can cheat V1 with probability negligibly close to p, due to
the pseudorandomness of the pseudorandom function specified by the random
tape of V .

We now prove that P ∗ can cheat V2 in a session having the first prover message
c with probability negligibly close to p/poly, where poly is the total number of
distinct first prover messages appeared in the whole interaction between P ∗ and
V2. Observe that for a randomly chosen first prover message c, P ∗ will cheat V1

in a session having this first prover message with probability exactly p/poly, and
that the only difference between the second run of V2 and V1 is the way in which
the transcript (a, e, z) is produced. Since in the 3-round protocol for Hamiltonian
Cycle, the simulated transcript (a, e, z) is computationally indistinguishable to
a real one, we conclude that V2 will accept with probability negligibly close to
p/poly in a session having the first prover message c.

We further claim that P ∗ can also cheat V3 in a session having the first
prover message c with probability negligibly close to p/poly. Notice that the
only difference between V2 and V3 is, in their second run (after rewinding), V2

encrypts to 0 under public key pk1−b, while V3 encrypts to 1 under public key

5 In the 3-round WI protocol for Hamiltonian Cycle, given a challenge e, there exists
a simple simulator that can produce an accepting transcript (a, e, z) efficiently.
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pk1−b. Notice also that in both their second runs, the message a is produced
independently of these encryptions. Thus, if the aforementioned claim is false,
we can construct an algorithm Vh to break the semantic security of the public
key encryption scheme: Vh acts as V2 except that, after rewinding, it obtains
the ciphertext (that is supposed to be 0 or 1) under the public key pk1−b from
an external challenger, instead of computing this ciphertext itself; When P ∗

convinces Vh to accept in a session having the first prover message c, Vh outputs
0, otherwise, outputs 1. Observe that if the ciphertext obtained from encryption
oracle is an encryption of 0, then Vh is identical to V2; if this ciphertext is an
encryption of 1, Vh is identical to V3. Hence, in a session having the first message
c, if there is a non-negligible gap between the probability that V2 accepts and the
probability that V3 accepts, Vh breaks the semantic security of the underlying
public key encryption scheme.

For strategies V3 and V4, we observe that the only difference between them is
that they use different witnesses to carry out the 3-round WI protocol. Consider
the following algorithm Vwi.

Vwi: 1. In the key registration stage, Vwi generates two public keys honestly,
i.e., it computes (pk0, sk0) = G(1n, rk

0 ), (pk1, sk1) = G(1n, rk
1 ), publishes

(pk0, pk1), chooses a random bit b and stores both rk
0 and rk

1 .
2. Like V2, Vwi first picks a session i at random. Again, suppose that the

first prover message in session i is c.
3. For all sessions having a first prover message different than c, when a

session with a distinct first prover message c′ was initiated for the first
time, Vwi executes honest verifier’s strategy to compute two encryptions
of 0, c0 = E(pk0, 0, r0) and c1 = E(pk1, 0, r1), send (rk

0 , r
k
1 , r0, r1) to an

independent honest prover Pwi of the 3-round WI protocol, and forward
the Pwi’s first message a′ along with c0, c1 to P ∗; Once a session with the
first prover message c′ first completes the correctness proof via BGGL
protocol for the challenge e′, Vwi sends e′ to Pwi and forwards Pwi’s
answer z′ to P ∗; in all sessions with c′ as the first prover message, Vwi

sends the same (a′, c0, c1) to P ∗, and if P ∗ reveals the same e′ again and
completes the correctness BGGL proof, Vwi answers with the same z′;
Otherwise, Vwi outputs “failure”.

4. When P ∗ sends c for the first time, Vwi acts the same as the above
strategy: computes two encryptions of 0, sends all random tapes to an
independent Pwi and forward Pwi’s first message a (and the two encryp-
tions) to P ∗. Once P ∗ repeats c, Vwi responds with the same a. When a
session with the first prover message c first completes an accepting proof
via BGGL protocol for the correctness of challenge e, it rewinds to the
point where it received c for the first time, computes an encryptions of
0 under public key pkb and an encryption of 1 under public key pk1−b,
produces a fake first massage a that can answer e successfully according
to the 3-round WI protocol, and continue.

We first note that Vwi outputs “failure” only if P ∗ opens some commitment
c′ to two different values and gives two accepting proofs for both. Due to the
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statistically-binding property of the commitment scheme and resettable-soundness
of the BGGL protocol, the probability that Vwi outputs “failure” is negligible.
Note also that, each independent Pwi is run once (i.e., the 3-round WI proto-
col is executed in concurrent setting), and that if all these Pwi’s uses rk

b (resp.,
rk
1−b) as partial witness, then Vwi is identical to V3 (resp., V4). Note that the

3-round WI protocol is concurrent witness indistinguishable. Thus, we conclude
that the probability that P ∗ cheats V4 in a session with the first prover message
c is negligibly close to p/poly.

Finally, notice that both V4 and V5 do not use the knowledge of the random-
ness rk

b (used in generation the public/secret key pair (pkb, skb)) to carry out
any session in their entire interaction, and the only difference between them is
that they encrypt different messages under pkb in sessions having the first prover
message c after rewinding. Similar to the analysis of V2 and V3, due to the se-
mantic security of the public key encryption scheme (pkb, skb), the probability
that P ∗ cheats V5 in a session with the first prover message c is negligibly close
to p/poly. However, since both ciphertexts in these sessions are encryptions of
1, by the soundness of the ZAP system, P ∗ can cheat V5 in any one of these
sessions only with negligible probability. Thus we have p is negligible.

4 Simultaneous Resettable Zero-Knowledge Arguments
for NP in the BPK model

In this section, we apply the transformation of [DGS09] to the resettably-sound
concurrent ZK arguments presented in the last section, and obtain simultane-
ously resettable arguments for NP in the BPK model. This establishes theorem 1.

Given a resettably-sound concurrent ZK argument (PRC , VRC) for NP lan-
guage L in the BPK model and a common input x ∈ L, the simultaneously
resettable argument (P, V ) for L proceeds as follows.

The key registration stage: V acts exactly the same as VRC in the key
registration stage.

The proof stage:
Common input: x (supposedly in L) and verifier’s public key ver k

P ’s randomness: (γ1
p , γ

2
p)

V ’s randomness: (γ1
v , γ

2
v)

1. P uses randomness γ1
p to generate a random string rp (of appropriate length)

and a first verifier message ρp of a ZAP system. P sends Cp = Com(rp) and
ρp (where Com is a perfect binding commitment scheme).

2. V sets (τ1
v , τ

2
v ) = fγ1

v
(x, ver k, Cp). Using randomness τ1

v , V generates the
first verifier message ρv and compute a commitment Ct = Com(0) to 0. V
sends ρv and Ct.

3. V and P execute the BGGL protocol in which V uses random tape τ2
v and

proves that Ct is a commitment to 0. In addition, in each verifier step in this
subprotocol, P generates a ZAP proof along with each verifier message for
the following OR statement:
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(a) The current message is produced by an honest verifier of the BGGL
protocol using random tape rp, or,

(b) x ∈ L
4. V sets (τ3

v , τ
4
v ) = fγ2

v
(hist), where hist is the history so far except those ZAP

proofs. Using randomness τ3
v , V sends a commitment Cv = Com(τ3

v ) to P .
In the remaining steps, V uses randomness τ4

v .
5. P sets τp = fγ2

p
(hist). Using random tape τp, P and V execute (PRC , VRC)

in which P proves x ∈ L, except that for every VRC ’s message, we have V
give an additional ZAP proof for the following OR statements:
(a) the current message is produced by an honest verifier of (PRC , VRC)

using random tape τ3
v , or,

(b) Ct is a commitment to 1.
V accepts if and only if VRC accepts the transcript of (PRC , VRC).

Remark. In [DGS09], the actual transformation of resettably-sound concurrent
ZK argument into a resettably-sound resettable ZK argument takes two steps:
1) transform the resettably-sound concurrent ZK argument into a hybrid sound
hybrid zero knowledge argument; 2) transform a hybrid sound hybrid zero knowl-
edge protocol into a resettably-sound resettable zero knowledge protocol. The
second step is done by simply having each party refresh their randomness via
a pseudorandom function. Here for the sake of simplicity and keeping the proof
short, we merge these two steps into a single transformation (and refer the reader
to [DGS09] for a detailed formal presentation).

Theorem 3. The protocol (P, V ) is a resettably-sound resettable zero knowl-
edge.

Proof sketch. The proof of this theorem is similar in spirit to the one appeared
in [DGS09]. Here we just give a proof outline.
The completeness is obvious.

Resettable-Soundness. For a given cheating prover P ∗ for (P, V ) and a NO in-
stance x /∈ L, we can construct a series of hybrid verifiers to show the cheating
probability is negligible just like the hybrid verifiers V1, V2, V3, V4 and V5 we
set up in the previous section. Whenever a hybrid verifier needs to rewind in
some target sessions with a specific first prover message Cp, it always computes
a commitment Ct to 1 in its first step, and then runs the simulator for the BGGL
protocol to prove that Ct is a commitment to 0 in all sessions having the same
first prover message Ct

6; Whenever it produces a fake first message a of the
underlying 3-round WI protocol in (PRC , VRC), it uses the witness for “Ct is
a commitment to 1” to execute ZAP for the correctness of message a. Similar
to the analysis presented in previous section, it is not hard to show that, if all
building blocks are secure, the above protocol (P, V ) is resettably-sound.
6 Note that, all subexecutions of BGGL protocol in these sessions are actually identical,

due to the resettable-soundness of ZAP and the instance x to be proven is a NO
instance. This is why the simulator for BGGL protocol in the standalone setting
works in this specific resettable setting.
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Resettable ZK. Note that the BGGL protocol is resettably-sound, and hence for
any malicious resetting verifier, if an execution of BGGL protocol in step 3 is
accepting, the message Ct sent in step 2 is guaranteed to be a commitment to
0 (except with negligible probability). As a consequence, all verifier’s messages
sent in the subprotocol (PRC , VRC) are determined by the commitment Cv sent
in step 4 and the session history of (PRC , VRC) due to the fact that ZAP is
resettably-sound, that is, for a fixed session prefix until step 4, all subexecutions
of (PRC , VRC) are identical. This observation enables us to adopt essentially the
same simulation strategy of S which works for concurrent adversary and prove
the property of resettable zero knowledge. Given a resetting verifier V ∗, our
simulator S’ proceeds as follows. For all sessions, S’ follows the honest prover
strategy until step 4. When reaching the subprotocol (PRC , VRC), S’ acts as the
simulator S for (PRC , VRC). For those solved sessions, S’ uses the relevant secret
key as witness to carry out the final ZAP. When an unsolved session reaches the
end of the 3-round WI protocol in (PRC , VRC), S’ applies the extraction strategy
of S to extract a secret key. We can perform a similar analysis and show that
S’ will run in expected polynomial time and its output is distinguishable from
that in the real interaction. �
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Abstract. We revisit the Two-Prover Bit Commitment Scheme of
BenOr, Goldwasser, Kilian and Wigderson [BGKW88]. First, we
introduce Two-Prover Bit Commitment Schemes similar to theirs and
demonstrate that although they are classically secure using their proof
technique, we also show that if the provers are allowed to share quantum
entanglement, they are able to successfully break the binding condition.
Secondly, we translate this result in a purely classical setting and investi-
gate the possibility of using this Bit Commitment scheme in applications.
We observe that the security claim of [BGKW88] based on the assump-
tion that the provers cannot communicate is not a sufficient criteria to
obtain soundness. We develop a set of conditions, called isolation, that
must be satisfied by any third party interacting with the provers to guar-
antee the binding property of the Bit Commitment.

1 Introduction

The notion of Multi-Prover Interactive Proofs was introduced by BenOr, Gold-
wasser, Kilian and Wigderson [BGKW88]. In the Two-Prover scenario, we have
two provers, Peggy and Patty, that are allowed to share arbitrary information
before the proof, but they become physically separated from each other dur-
ing the execution of the proof, in order to prevent them from communicating.
It was demonstrated by Babai, Fortnow, and Lund [BFL91] that Two-Prover
Interactive Proofs (with a polynomial-time verifier) exist for all languages in
NEXP-time. A fully parallel amalog was achieved by Lapidot and Shamir [LS97].

A quantum mechanical version of this scenario was considered by Kobayashi,
Matsumoto, Yamakami and Yao [KM03, KMY03, Yao03]. To this day, it is still

� An earlier version of this work was presented under the title “Classical and Quantum
Strategies for Two-Prover Bit Commitments”, at QIP ’06, The 9th Workshop on
Quantum Information Processing, January 16-20, 2006, Paris.

�� Supported in part by CIFAR, NSERC, MITACS, QuantumWorks and FQRNT’s
INTRIQ.

D.H. Lee and X. Wang (Eds.): ASIACRYPT 2011, LNCS 7073, pp. 407–430, 2011.
c© International Association for Cryptologic Research 2011
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an open problem to establish the exact power of Multi-Prover Quantum Inter-
active Proofs. A rather vast litterature now exists on this topic (see [BHOP08],
[CSUU07], [DLTW08], [IKM09], [IKPSY08], [KKMV08], [Weh06]). However, it
is still not even clear whether two provers are as powerful as more-than-two
provers.

The Two-Prover Zero-Knowledge Interactive Proofs of [BGKW88] rely on
the construction of a Bit Commitment scheme, information theoretically secure
under the assumption that the provers cannot communicate. We refer the reader
to their paper to understand the application of this Bit Commitment scheme to
the construction of Two-Prover Zero-Knowledge Proofs. We solely focus on their
Bit Commitment scheme for the rest of our work. In this paper, we consider
several important questions regarding Two-Prover Bit Commitment schemes.
We do not limit our interest of Two-Prover Bit Commitment to the context
of Zero-Knowledge proofs; as already discussed in [BGKW88] similar techniques
lead them to a secure Oblivious Transfer under the same assumption. Given that
any two-party computation may be achieved from Oblivious Transfer [Kil88], we
consider the security of such Bit Commitment scheme in a very general context.
We discuss at length the security in a very general composability situation.

In order to argue the security of their Bit Commitment scheme, the authors
of [BGKW88] asserted the following assumption:

"there is no communication between the two provers while
interacting with the verifier".

The current paper is concerned with the sufficiency of this assertion. We show
is Section 3.2 that, although this assumption must be made, it is however con-
siderably too weak, because we exhibit variations of the scheme that are equally
binding classically but that are not at all binding if the provers were allowed
to share entanglement. It is however a very well known fact that entanglement
does not allow communication. Although it is true that they can cheat if they
can communicate, it is also true that they can cheat without communicating.
Therefore the assumption that the provers cannot communicate is too weak.

This observation can be turned into a purely classical argument by exhibiting
a black-box two-party computation, that does not allow them to communicate,
but that allows them to cheat the binding condition of the Bit Commitment
scheme. This peculiar source of randomness may replace the entanglement used
by the attack. Furthermore, the above assertion of BGKW can be interpreted as
a prescription to the verifier that he should make sure not to help the provers to
communicate while interacting with him. Again, this prescription would not pre-
vent him from acting like the black-box we exhibit. Thus, a stronger prescription
is mandatory in order to assert security.

We carefully define a notion of isolation by which the two provers may not
communicate nor perform any non-local sampling beyond what is possible via
quantum mechanics. We finally formalize a set of conditions that any third party
involved in a Two-Prover Bit Commitment scheme may satisfy to make sure he
does not break the assumption that the provers are in isolation. In particular, we
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make sure that if such a Bit Commitment scheme is used in another larger cryp-
tographic protocol, its security properties will carry over to the larger context.

1.1 Related Work

The starting point of this research is clearly the Bit Commitment scheme intro-
duced by BenOr, Goldwasser, Kilian and Wigderson [BGKW88]. The security
of a Two-Prover Bit Commitment scheme against quantum adversaries has been
considered in the past in the work of Brassard, Crépeau, Mayers and Salvail
[BCMS98]. They showed that if such a Bit Commitment scheme is used in com-
bination to the Quantum Oblivious Transfer protocol of [BCMS98] it is not
sufficient to guarantee the security of the resulting QOT if the two provers can
get back together at the end of the protocol. In the current work, we consider
only the situation while the provers are isolated.

The research by Cleve, Høyer, Toner and Watrous [CHTW04] is the main
inspiration of the current paper. They have established some relations between
Two-Prover Interactive Proofs and so called “non-locality games”. More pre-
cisely, they showed that certain languages have a classical Two-Prover Interac-
tive Proof that looses soundness if the provers are allowed to share entanglement.
Some of our results are very similar to this. However, our new contributions are
numerous. While [CHTW04] focuses on languages, we focus on the tool known as
Bit Commitment. This tool is used in many contexts other than proofs of mem-
bership to a language: proofs of knowledge, Oblivious Transfer, Zero-Knowledge
proofs, general two-party computations. Moreover inspired by the observations
of [CHTW04], we analyze the security of such Two-Prover tools in a completely
classical situation. We conclude that proving security of such protocols is very
subtle when used in combination with other such tools. We also argue that the
claim of security of the protocols of [BGKW88] requires a lot more assumptions
than the mere “no communication” assumption (even in the purely classical
situation).

Despite the impossibility theorems of Mayers [May96] and Lo & Chau [LC97],
the possibility of information theoretically secure Bit Commitment schemes in
the Two-Prover model is not excluded in the classical and quantum models.
Indeed, the computations sufficient to cheat the binding condition of a Quantum
Bit Commitment scheme in the above “no-go” theorems cannot, in general, be
performed by the two provers when they are isolated from each other. This is
the reason why these theorems do not apply.

In a closely related piece of work, Kent [Ken05] showed how impossibility
of communication, implemented through relativistic assumptions, may be used
to obtain a Bit Commitment scheme similar to BGKW that can be constantly
updated to avoid cheating. Kent proves the classical security of his scheme while
remaining elusive about its quantum security. However, he claims security of one
round (see [Ken05], Lemma 3, p. 329) of his protocol which is more or less the
same as our Lemma 1. Unfortunately, his proof is incomplete as pointed out in
our proof of the Lemma. But we clearly recongnized that he was first to address
this question.
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A very different set of results [BCU+06] relates non-locality boxes and two-
party protocols such as Bit Commitment and Oblivious Transfer. These are only
marginally connected to the current research. They showed how these crypto-
graphic protocols may be securily implemented from those non-locality boxes.
On the cotrary, we show how to break such protocols using non-locality boxes...

2 Preliminaries

2.1 Isolation

First let us define the condition imposed on the two provers: we use the word
isolation to describe the relation between Peggy and Patty during the protocol.
The intuitive meaning of this term is that Peggy and Patty cannot communicate
with each other, since this condition is explicitly imposed by the Two-Prover
model. However, we introduce this new terminology instead of the traditional
“cannot communicate with one another” because we noticed that the meaning
of “no-communication” is too weak and must be very clearly defined to produce
valid security proofs. This isolation will be formally defined in Section 4. For now,
the reader may follow his intuition and picture Peggy and Patty as restricted to
compute their messages using only local variables.

2.2 Bit Commitment

The primitive known as “Bit Commitment” is a protocol in which a player Alice
first sends some information to another player Bob, such that this information
binds her to a particular bit value b. However, the information sent by Alice is
not enough for Bob to learn b (b is concealed). At a later time, Alice sends the
rest of the information to unveil the bit b, and she cannot change her mind to
reveal b̄ and convince Bob that this was the value to which she was committed in
the first step. The following definitions will be used to characterize the security
of a Bit Commitment scheme. Note that the function μ(n) always refers to a
negligible function in n.

Definition 1. A Bit Commitment scheme is statistically concealing if only a
negligible amount of information on the committed bit can leak to the verifier
before the unveiling stage.

Definition 2. A Bit Commitment scheme is statistically binding if, for b ∈
{0, 1}, the probability pb that Alice successfully unveils for b satisfies

p0 + p1 ≤ 1 + μ(n). (1)

This binding condition was first proposed by Dumais, Mayers, and Salvail
[DMS00], as a weaker substitute to the traditional definition pb ≤ μ(n) for
either b = 0 or 1. This definition has been henceforward used to show security of
many Bit Commitment schemes against quantum adversaries in various models,
e.g. [DMS00, CLS01, DFSS05].
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More recent definitions have been introduced since then ([DFRSS07]) that
appear to be better characterization of Bit Commitment security in a quantum
setting. However, we have not been able, so far, to find protocols that satisfy
these definitions. This, we hope, will be part of future work in this area.

3 Two-Prover Bit Commitment scheme

For simplicity reasons, we replace the original scheme of [BGKW88] by a far
simpler and compact version, which we call “simplified-BGKW” (or sBGKW as
a short-hand). Still, we strongly recommend the reader to [BGKW88] for the
details of the original construction. For an n-bit string r and a bit b, we define
the n-bit string b · r := b ∧ r1||b ∧ r2|| . . . ||b ∧ rn. The scheme is as follows:

Peggy and Patty agree on a uniform n-bit string w and a random bit d. They
are then isolated from one another.

Protocol 31 ( sBGKW - Commit to b )

1: Vic sends a random n-bit string r to Patty,

2: Patty replies with x := (d · r)⊕ w,

3: Peggy announces z := b⊕ d.

Protocol 32 ( sBGKW - Unveil b )

1: Peggy announces bit b and the n-bit string w,

2: Vic accepts iff w = ((b⊕ z) · r)⊕ x.

Note that at the unveiling stage, as in the original scheme it is not required
that Peggy be the one announcing b. It is as good to let Vic deduce b: Vic
computes y := w ⊕ x, if y = 0n he sets b := z and if y = r he sets b := z̄, and
otherwise rejects. Indeed, Peggy may not even know b!

3.1 BGKW’s Notion of Isolation

The assumption made in [BGKW88] is that Peggy and Patty are not allowed
to communicate with each other. Based solely on that constraint, the following
seems a “valid” security proof (it is more or less the same proof as in [BGKW88]).

Theorem 1. Constraining the provers as in [BGKW88], the sBGKW protocol
is secure classically.

Proof. Vic does not know w, and w is uniformly distributed among all possible
n-bit strings for both values of z. It follows that the two strings w and r⊕w have
the exact same uniform distribution and are perfectly indistinguishable from one
another. We can say the same for the pairs (z, w) and (z, r⊕w). Hence sBGKW
is concealing.
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Now suppose that Peggy and Patty would like to be able to unveil a certain
instance of b both as 0 and as 1. To do so, Peggy would like to announce ŵb

such that ŵb = (b · r) ⊕ x. We note that this models the two possible dishonest
behaviors for Peggy and Patty: honestly commit to b̄ and try to change to b
afterwards, and commit to nothing by sending some x and decide which b they
want to unveil only at the unveiling stage. It follows that in both scenarios, a
successful cheating strategy would allow to produce the two strings ŵ0 and ŵ1,
such that {ŵ0, ŵ1} = {x, r⊕ x}. However, the string ŵ0 ⊕ ŵ1 = x⊕ r⊕ x = r is
completely unknown to Peggy by the no-communication assumption. Therefore,
even using unlimited computational power, her probability of issuing a valid pair
ŵ0, ŵ1 is at most 1/2n. Hence sBGKW is binding.

Nevertheless, this result is incomplete1! Indeed, we show next how a correlated
random variable can be used to invalidate the result of Theorem 1 while not vio-
lating the “no-communication” assumption. This suggest that the conventional
wording “no-communication” is insufficient as it is not explicit enough to cover
any kind of cheating mechanism Peggy and Patty can employ.

3.2 Cheating sBGKW with an NL-box

An NL-box, short-hand for “Non-Locality box” introduced by Popescu and
Rohrlich [PR94, PR97], is a device with two inputs s and t, and two output
bits u and v such that u and v are individually uniformly distributed and satisfy
the relation f(s, t) = u ⊕ v for some function f . The pair (s, u) is on Peggy’s
side while the pair (t, v) is on Patty’s side. Because u and v are individually
uniformly distributed, no NL-box allow Peggy and Patty to communicate, in
either direction. The NL-boxes are usually assumed as asynchronous devices,
that is, feeding in the input s is sufficient to obtain u even if t has not been
input yet, and likewise for t. Such a particular box, known as the PR-box, is
defined for f(s, t) = s ∧ t, where s and t are binary inputs. It is known that
two classical players can simulate the PR-box with success probability2 at most
75% for all s, t, while quantum players sharing an entangled state can achieve a
success probability of cos2(π/8) ≈ 85% (consult [CHTW04] for details).

s ��
PR

t��

u := v ⊕ (s ∧ t) ���� v

Fig. 1. the cheating PR-box

Let the two provers be given a black-box access to this PR-box. The following
shows how this PR-box allows Peggy and Patty to unveil the bits committed

1 The broad explanation is that we implicitly assumed the provers had only access to
local variable. We’ll see we need to guarantee this restriction for the proof to hold.

2 This result is shown optimal by enumerating every possible classical strategies.
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d ��
PR

ri��

ŵi := xi ⊕ (ri ∧ d) ���� xi

Fig. 2. Using the PR-box

d ��
sBG
KW

r��

w := x⊕ (d · r) ���� x

Fig. 3. The cheating sBGKW-box

through sBGKW in either way, at Peggy’s will. For each position i, 1 ≤ i ≤ n,
Patty inputs in the PR-box the bit s := ri received from Vic and obtains output
xi := u from the PR-box, which corresponds to the i-th bit of the commitment
string. Patty sends x to Vic. Peggy discloses z a random bit to Vic. To unveil bit
b, Peggy inputs t := d := b ⊕ z in the PR-box and obtains the output ŵi := v
from the PR-box, which she sends to Vic together with b.

If d = 0 then d ∧ ri = 0 and thus ŵi = xi which is the right value she must
disclose. If d = 1 then d ∧ ri = ri and thus ŵi ⊕ xi = ri or ŵi = xi ⊕ ri which is
again the right value she must disclose.

Indeed, we can view an arbitrary cheat on the sBGKW as a non-local compu-
tation between the provers as in Fig. 3. Essentially we have just demonstrated
that an sBGKW-box can be emulated perfectly by perfect PR-boxes. However,
a valid cheating strategy might not succeed 100% of the time, so an sBGKW-box
that is correct 80% of the time, for instance, would be enough to break the bind-
ing property. It seems quite obvious, nevertheless, that a PR-box that is correct
80% of the time will not help implementing an sBGKW-box that is correct 80%
of the time. For that matter, any PR-box that is correct a constant fraction
p < 1 of the time will not help either...

It is not obvious that a sBGKW-box with error probability greater than zero
is equivalent to the PR-box, but it would be very interesting to prove either way.

3.3 Quantumly Insecure - Two-Prover Bit Commitments

We exhibit an intermediate scheme to emphasize how shared entanglement can
be used to cheat with probability almost one a classically “secure” Two-Prover
Bit Commitment. The protocol is a weaker version of the sBGKW scheme, called
wBGKW, where the acceptance criteria of the unveiling stage is loosen to tolerate
some errors. A second protocol (available in Sub-Section 3.7) is also a modified
version of the sBGKW scheme where the acceptance criteria is based on a game
described later, called the Magic Square game.

A weaker acceptance criteria: the wBGKW scheme Consider a weaker
acceptance criteria where the string ŵ sent by Peggy can differ in at most n/5
positions from what it should be. Formally the verifier Vic is to accept b if
d(ŵ, ((b ⊕ z) · r) ⊕ x) < n/5, where d(·) is the binary Hamming distance. The
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interest of such a modification is that now a cheating quantum pair Peggy and
Patty can use the non-local property of entanglement to approximate the PR-
box and successfully cheat wBGKW, while, as we show next, the Bit Commitment
is “secure” classically. To facilitate notation we add an index b to the string ŵ,
since ŵ is different whether we unveil zero or one. Also, define as B the random
variable corresponding to the value they unveil.

Theorem 2. For any classical strategy, the probability that it outputs a string
ŵ0 when B = 0 and ŵ1 when B = 1 s.t. E[d(ŵb, ((b⊕ z) · r)⊕x)] < n/5 for both
values of b, is exponentially small in n.

Proof (of Theorem 2).
Wlog, we can assume the provers use a deterministic strategy that may pro-

duce such a ŵ0 when B = 0, and ŵ1 when B = 1, so they can in fact output
both ŵ0 and ŵ1. Hence, Peggy can compute the string ŵ0 ⊕ ŵ1. Recall that
when d(ŵb, ((b ⊕ z) · r) ⊕ x) = 0 then ŵ0 ⊕ ŵ1 = r. We want to determine
the distance between ŵ0 ⊕ ŵ1 and r in our situation. From the theorem’s as-
sumption, there exists a classical strategy that outputs ŵ0 and ŵ1 such that
E[d(ŵb, ((b ⊕ z) · r) ⊕ x)] < n/5, for b = 0, 1. We easily obtain that for such a
strategy, the expected distance from r is

E[d(ŵ0⊕ŵ1, r)] = E[d(ŵ0⊕ŵ1, x⊕(x⊕r))] ≤ E[d(ŵ0, x)]+E[d(ŵ1, x⊕r)] < 2n/5

by the triangular inequality. Using a standard Chernoff bound argument, and
since r is absolutely unknown to Peggy, her probability of outputting a string
y = ŵ0⊕ŵ1 such that E[d(y, r)] < (1/2−ε) ·n is exponentially small in n for any
0 < ε ≤ 1/4. Hence, because 1/4 < 2/5 < 1/2, we conclude that such a strategy
cannot exist except with exponentially small probability, and so unveiling must
fail for one of the two possibilities.

Conversely, this scheme is almost totally insecure against quantum adversaries.

Theorem 3. There exists a quantum strategy that successfully cheats the
wBGKW scheme with probability 1 − μ(n).

Proof (of Theorem 3). We saw in Section 3.2 that the PR-box, taken as a
black box, correctly produces the needed ŵb to unveil as b. Using the well-
known result [e.g. [CHTW04]] that through entanglement, Peggy and Patty can
optimally simulate the PR-box such that for each i taken independently, 1 ≤
i ≤ n, the PR-box produces correlated outputs with probability cos2(π/8) ≈
0.85. Therefore, using the standard Chernoff bound, this independent quantum
strategy yields that for both values of b,

E[d(ŵb, ((b⊕ z) · r) ⊕ x)] = (1 − cos2(π/8)) · n

with probability exponentially close to one. Having that (1 − cos2(π/8)) · n <
0.15 · n < n/5, we conclude that a pair of quantum provers defeats the binding
condition of the scheme with probability 1 − μ(n).
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3.4 Discussion

The limitation of Theorem 1 (and Theorem 2) is that it claims that the following
non-local computation, named sBGKW2-box (see Fig. 4) , is a communication

r ��
sBG
KW2x ���� w0, w1 := x, x⊕ r

Fig. 4. the cheating sBGKW2-box

device (which is obvious) assuming that any implementation of an sBGKW-
box is sufficient to implement it (which is false, since the sBGKW-box is not a
communication device, it is impossible to implement any communication device
from it).

However, these proofs are not wrong either since it is impossible to accomplish
the sBGKW-box without some sort of communication, which also works for
the sBGKW2-box. In particular, it means that this proof is seriously context-
dependent. In a context where Patty and Peggy have access to a third party
that scrupulously monitors that they are not communicating with each other,
the proof does not hold anymore because using the third party as a sBGKW-
box is not excluded.

The bottom line here is that this proof is valid solely in a stand-alone security
model. As soon as one starts composing such protocols, one has to, not only,
monitor that the actions of the third party do not allow communication but also
do not constitute any form of correlation between Patty and Peggy.

This demonstrates that certain non-local correlations are enough to cheat
Two-Prover Bit Commitment schemes while they are not enough to communi-
cate. Thus we have to define the prover’s isolation in terms of these non-local
correlations and not only in terms of communication. This is the purpose of
Section 4.

3.5 A Non-Local Box to Cheat the Original BGKW Scheme

Similarly to the sBGKW scheme, we can define an analogous cheating box for the
original BGKW scheme with two binary inputs s, t, and two uniformly generated
ternary outputs x, y.

The original protocol goes as follows:
Peggy and Patty agree on a uniform n-trit string w. They are then isolated from
one another.

Protocol 33 ( BGKW - Commit to b )

1: Vic sends a random n-bit string r to Patty,

2: Patty replies with x such that for all k, xk := σrk(wk)− b mod 3.
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Protocol 34 ( BGKW - Unveil b )

1: Peggy announces bit b and the string w,

2: Vic accepts iff w is such that for all k, b = σrk(wk)− xk mod 3.

Where the σ function of [BGKW88] can be re-written as the single expression:
∀ r ∈ {0, 1}, w ∈ {0, 1, 2}

σr(w) = (1 + r)w mod 3. (2)

So using (2), we want from the cheating NL-box that u := (s+1)v− t mod 3
for each s, t, and uniformly chosen v. Because for any binary s, t we can easily
define the inverse permutation over trits to be v := (t + u)(s + 1) mod 3, the
following PR3-box does not allow to communicate since individually u and v
are uniformly distributed.

s ��
PR3

t��

u ���� v := (t+ u)(s+ 1) mod 3

Fig. 5. A non-local box to cheat BGKW

It is not hard to verify that the PR3-box that implements this non-local
computation from s, t is exactly the one needed to cheat the original BGKW
scheme. As with the PR-box, for each round i, Peggy inputs in the box s := ri

and obtains the trit xi := u, which she sends to Vic. If Patty wants to unveil for
b, she inputs t := b in the PR3-box, which correctly outputs ŵi := v. Clearly,
they successfully cheat since

∀ i (1 + ri)ŵi − xi mod 3 = (1 + ri)(b + xi)(1 + ri) − xi mod 3
= (1 + ri)2(b + xi) − xi mod 3
= (b+ xi) − xi mod 3
= b.

We can also demonstrate that the PR3-box is as powerful as the PR-box. It
is straightforward to check that the outputs x′ and y′ depicted in Figure 6 are
indeed the correct outputs to cheat the sBGKW scheme.

3.6 Magic Square Non-locality Game

A square is a 3 × 3 matrix whose entries are in {0, 1}. A row is said to be correct if
its parity is even, and a column is said to be correct if its parity is odd. We use the
following definition of the Magic Square game (from [CHTW04]), which slightly
differs from the original game due to Aravind [Ara02]. The verifier Vic picks at
random a row or column, say column ci, and a position xi

j on ci, i, j ∈ {1, 2, 3}.



Two Provers in Isolation 417

PR
s ��

PR3
�� t

x ���� y

�� ��
x′ := (s+ 1)x mod 3 mod 2 y′ := y + 2t mod 3 mod 2

Fig. 6. Reduction from the PR-box to the PR3-box.

He then asks the entries of column ci to Peggy, and the value in position xi
j to

Patty. The two provers win if the parity of ci is odd (more generally, if the row
or column asked for is correct), and if the value returned by Patty matches the
value at position xi

j in Peggy’s answer. The following defines the validity of a
square.

Definition 3. A (3 × 3) matrix S is valid for zero if all rows of S xor to 0, and
S is valid for one when all columns of S xor to 1.

For instance the following matrix S0 is valid for zero while S1 is valid for one:

S0 =
[

0 0 0
0 1 1
1 0 1

]
, S1 =

[
1 0 1
1 1 0
1 0 0

]
. (3)

Any classical strategy successfully wins this Magic Square game with prob-
ability at most

(
17
18

)
. Remarkably, there exists a quantum strategy that allows

Peggy and Patty to successfully win this game every time, see [CHTW04, Ara02]
for details.

3.7 Magic Square Bit Commitment

It is not hard to exploit the Magic Square game to build another Bit Commitment
scheme. This scheme is particularly relevant in our study of Bit Commitments
in the Two-Prover model as it is perfectly secure classically but can easily be
cheated with probability one using a quantum strategy. The scheme is as follows:

Peggy and Patty agree on a random bit v and n random squares Si such that
Si is valid for v. They are then isolated.

Protocol 35 ( MSBC - Commit to b )

1: Peggy computes x := v ⊕ b and sends x to Vic.

2: Vic picks a pair of random trits ri and ci and asks Peggy for Si(ri, ci).

Protocol 36 ( MSBC - Unveil b )

1: Peggy sends b to Vic,

2: Vic asks Patty for row number ri of Si if b = x, or column number ci of Si

if b = x̄.

3: Vic accepts b if, for each i, the row or column that should xor to b does,

and if the entry returned by Peggy matches with Patty’s answer. Vic rejects

otherwise.
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Theorem 4. Any classical strategy successfully cheats the binding property of
the MSBC scheme with probability at most

(
8
9

)n/6, except with exponentially
small probability.

Proof (of Theorem 4).
Wlog, it is sufficient to consider deterministic strategies. Consider the strategy

where only the entry (2, 2) is used to make the square Si correct for ŵi. When
ti = 0 or 1, Peggy answers the line or column of Si as is. However, when ti = 2,
she sets the entry (2, 2) to the correct value such that a line xores to 0 or
a column xores to 1. On query (yi, zi), Patty answers the entry (yi, zi) of Si if
(yi, zi) �= (2, 2), otherwise she answers 0. It is not hard to show that this strategy
is optimal, since Peggy knows all the information (the Si’s, x, and r), and Patty
knows nothing about x and r.

The problem for the provers is that whenever b · ri = 1, they succeed for at
most only one of b ∈ {0, 1}. This is because the square Si they share cannot
be correct for both xi and xi. Since r is uniformly distributed, by a Chernoff
argument, r contains at least n/3 1’s. Thus, there is at least one of b ∈ {0, 1} for
which in at least n/6 challenges the provers will answer correctly with probability
at most 8/9 (the sum of the challenges where she succeeds with probability at
most 8/9 for 0, and those where she succeeds with probability at most 8/9 for 1,
adds up to n/3). Therefore, their probability of successfully cheating is at most(

8
9

)n/6 for any classical strategy, except with exponentially small probability.

However, there exists a quantum strategy that allows Peggy and Patty to
successfully break the binding condition with probability 1 by winning the Magic
Square game every time.

Theorem 5. There exists a quantum strategy that successfully cheats MSBC
with probability 1.

4 Defining and Checking Isolation

The existence of such an inputs-correlated3 random variable, which does not
allow communication but allows cheating of the sBGKW Two-Prover Bit Com-
mitment scheme sheds some light on the limitations of the original assumption
of [BGKW88].

Indeed, the assumption of [BGKW88] is necessary but not sufficient to guar-
antee the binding property of the Bit Commitment scheme. Among its weakness,
we note that it does not explicitly force any cheating strategy to be repeatable.
The PR-box not being a repeatable process4 gives a first understanding why

3 We emphasize that at least one of the “inputs” to the random variable needs to
be obtained once the provers are isolated, otherwise such a random variable can
be shared while the provers are together, and is thus useless to cheat the sBGKW
scheme.

4 The PR-box cannot be repeated to generate two valid strings ŵ0 and ŵ1.
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we can still cheat the sBGKW scheme despite the result of Theorem 1, which
implicitly assumed repeatability of the cheating strategy.

Clearly, to achieve the binding condition, a stronger assumption is needed. One
could require that once the provers are isolated, there exists no mechanism by
which they may sample a joint random variable which is dependent on the inputs
they provide. We note that, among other things, this new condition excludes
communication between the two provers, as desired. However, it excludes a lot
more, such as shared entanglement! This is simply too strong; we need to be
more subtle in the way we define this “mechanism to sample a joint random
variable”.

It seems reasonable to believe that nature does not allow the existence of a
PR-box (consult [CHTW04]). So why even ask for a stronger assumption than
the no-communication assumption of [BGKW88]? Part of the answer is that Vic
can play the role of the PR-box, or any other third party. In no circumstances
can we ignore the fact that both Peggy and Patty individually talk to Vic.
Definitely, we need to consider this aspect of the protocol with great care. For
instance, consider the scenario where r is sent to Peggy but unveiling is not done
immediately after committing, but rather once Vic and the two provers have been
involved in other, unrelated, interactive protocols. It is perfectly conceivable that
within those protocols, for each i, Peggy and Patty succeed in sending ri and b
to Vic, and then in a completely different context (or a moment of unawareness)
Vic performs the required computation and output xi and ŵi, which are then
sent respectively to Peggy and Patty. It is obvious that if such a computation, or
any alike, can take place with enough probability then Peggy and Patty would
succeed in cheating the sBGKW protocol!

More generally, we must not only consider Vic but any other third party,
call it Ted, to which Peggy and Patty might have access to obtain correlated
information. The previous situation highlights the fact that there is a whole class
of functions with inputs coming from Peggy and Patty for which Ted must not
send the outputs. Intuitively, each time Ted sends a message to either Peggy or
Patty, he must ensure that the message does not outperform what Peggy and
Patty can achieve using local variables in the sense of quantum mechanics. We
propose two different approaches to formulate that statement as a criteria. The
first considers the practical flavor of the problem, when Ted is working with
instances of variables. The second approach is based on an information theoretic
argument. At this point, we will not consider the scenario where the players can
share quantum resources.

Let Peggy be identified by P0 and Patty by P1. The variable D ∈ {0, 1} is a
reference to player PD, and T ∈ {∅, {0}, {1}, {0, 1}} is a tag appended to each
message that indicates to Ted the player(s) that is (are) eligible for receiving
this message, where T = {0, 1} means by both players and T = ∅ means by none
of them. The message about to be sent from Ted to prover PD is represented by
(m,T )D. We formalize Ted’s behavior as follows.

Definition 4 (Practical criteria). Ted is said to be a “secure third party” if
∀D ∈ {0, 1}, Ted follows these points.



420 C. Crépeau et al.

1. A message received from player PD is tagged with T := {D}.
2. A message generated without involving any of the previous messages, e.g.

picking a random string, is tagged with T := {0, 1}.
3. A message obtained from a computation involving previous messages is tagged

with the intersection of the tags of all the messages involved in that compu-
tation.

4. A message (m,T )D is sent to player PD only if D ∈ T .

Note: It is important that the communication pattern between Ted and the
isolated provers be specified ahead of time, otherwise the traffic pattern (not
only the message contents) may leak information.

We now explain why Ted will not send a message that allows P0 and P1 to com-
municate or establish non-local correlations. Let (m,T )D be the message Ted is
about to send to player PD. From the fourth point of Definition 4, Ted will send
(m,T )D only if it is tagged T = {D} or {0, 1}. Looking at the message’s tag as-
signment rule number 3, this happens only if there is absolutely no message tagged
{1 −D} or ∅ used in the computation of (m,T )D. Using an induction argument,
it is not hard to see that this happens only when all the variables involved in the
computation of (m,T )D are independent of the information of P1−D, that is, they
have been themselves generated using variables tagged {D} or {0, 1}. Thus, such
a message (m,T )D is also independent of the information known only to P1−D.
Therefore, the messages sent by Ted do not let the two players communicate.

The case of non-locality is slightly more subtle, yet pretty straightforward.
Recall that in a general non-local process, both players use a message each and
receive a message uniformly distributed, from their point of view, such that the
four messages satisfy a certain relation. The received message does not allow
to communicate with the other player. Suppose P1−D receives his message first.
Since from his point of view, this message is uniformly distributed, Ted can in fact
generate a uniformly distributed message, tag it with T := {0, 1} and send it to
P1−D. At this point, this behavior does not violate anything because non-locality
has not been created yet. Then, Ted computes the message for PD. Because this
message needs to satisfy the relation that binds together the four messages, at
least a message tagged with T �= {D} and one tagged with T �= {1 − D} are
used in its computation (it can be the same message), so the resulting message
(m,T )D will be assigned a tag T := ∅ because the intersection does not contain
{D} nor {1−D}. This message (m, ∅)D is the one creating the non-local relation.
However, from point 4 of Definition 4, since D /∈ ∅, Ted will never send (m, ∅)D.

As mentioned before the previous definition, we can alternatively formalize
Ted’s behavior in terms of entropy. The advantage of doing so is to enable anal-
ysis of existing protocols. To satisfy the above practical criteria, the wrapping
protocol must be designed in a rather restricted way. To consider general proto-
cols, we offer this alternate definition.

Let the message about to be sent from Ted to prover PD be represented
by the variable (M,T )D. The set of variables SD,T represents all the variables
(messages) with tag T sent by prover PD to Ted, and the set of variables RD,T

all the variables (messages) with tag T sent by Ted to prover PD before (M,T )D.
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Definition 5 (Information based criteria). Ted is said to be a “secure third
party” if ∀D ∈ {0, 1}, Ted follows these points.

1. An information received from player PD is tagged with T := {D}5.
2. A variable M to be sent to PD is tagged with the less restrictive tag T ∈

{∅, {D}, {0, 1}} that satisfies the following relation6. Note that the calli-
graphic tag T ′ stands for the tag {0, 1}/(T ∩ {D}) and the calligraphic tag
T ′′ stands for the tag {D} ∪ (T ∩ {1 −D}).
H((M,T )D|SD,{D}, RD,{D}, RD,{0,1}, S1−D,T ′ , R1−D,T ′ , R1−D,{0,1})

= H((M,T )D|SD,T ′′ , RD,T ′′ , RD,{0,1}, R1−D,{0,1}) (4)

3. A variable (M,T )D is sent to player PD only if D ∈ T .

We warn the reader that the tags and players’ variables D and 1−D do not play
any role in the computation of the entropies; they are only present to discriminate
the variables and determine which ones to include in the conditional part of the
entropies. Notice also that, contrary to Definition 4, a variable’s tag is set only
when Ted considers sending it to a player, except for incoming variables. This
relaxation will turn out to be the key point to explain why this generalized
definition is not stronger than local variables on the players’ side.

The process of determining which tag to assign can be broken into two steps.
We start with the empty tag ∅. The first step is to decide whether we can add
{D} to the tag, or not. Notice that the right-hand side of equation (4) is the same
for T ∈ {∅, {D}}. This results from the calligraphic tag T ′′, which is equivalent
to {D} in this case. On the other hand, the calligraphic tag T ′ introduces the
terms S1−D,{1−D} and R1−D,{1−D} in the left-hand side of equation (4) when
T = {D}. Thus, if the result of this first step is that the tag is at least {D}, then
it means that the message to be sent is independent of the private information
held by P1−D. However, if we find that the tag is not even {D}, then it means
that the message to be sent has some dependencies with the private information
of P1−D, and therefore the message should not be sent.

If the first step terminates with a tag containing {D}, then we can move on
to determine whether we can add {1 −D} to the tag, or not. We note that T ′

won’t change for T ∈ {{D}, {0, 1}}, so the left-hand side is invariant. However,
the calligraphic tag T ′′ will remove the terms SD,{D} and RD,{D} from the
right-hand side if we consider the tag T = {0, 1}. Hence, if equation (4) is
satisfied with T = {0, 1}, it means that the message to be sent is not only
independent of the private information of P1−D (from the first step), but also of
the private information of PD. It follows naturally that this message be eligible
for distribution to both players.
5 This implies that the sets SD,{0,1} and S1−D,{0,1} are always empty. Therefore we

do not include them in equation (4), but a formal expression should include them in
the conditional part on both sides of the equality.

6 In order to write a clear equation, we had to specify to which player the message is
intended. As a result, we did not include {1−D} in the set of possible tags. It turns
out that the empty set tag is sufficient to cover both communication and correlation.
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The interest of Definition 5 is that it is more flexible in the tag assignation
than the practical Definition 4 (and thus more general). Indeed, whenever Ted
deliberately randomizes a message with new [uniformly distributed] information,
the information-based criteria concludes that there is no problem to send to PD

a message that would have been tagged with T = {1 − D} or ∅ by the prac-
tical definition. The reason is that by randomizing completely all the [private]
variables related to P1−D, Ted is reducing the message he sends to PD to what
PD can exactly achieve using local variables. That is to say, PD already has
(using local variables) a random view of P1−D’s variables (and so of the global
message), so there is no problem for Ted to first randomize P1−D’s variables and
then send this message to PD. Note however that the variables used to random-
ize will never be sent to PD since they now carry the sensible information. We
give two examples of these particular cases in the Appendix A.

Henceforth, the Two-Prover model’s assumption is based on this refined def-
inition of isolation.

Definition 6. We say that Peggy and Patty are isolated from one another if
they cannot communicate with one another, and if they only have access as
external resource to secure third parties.

Using this new definition of isolation, we are now guaranteed that any strategy
that Peggy and Patty try to perform through a third party can be achieved
using only local variables on each side. Using this fact together with the general
assumption that the cheating strategy is deterministic7, it is straightforward to
fix the proof of Theorem 1 by arguing that their classical strategy can be run
on each copy of the information to output both ŵ0 and ŵ1.

5 Quantum Secure Bit Commitment in the Two-Prover
Model

We now present the modified version of the sBGKW scheme, called the mBGKW
scheme, and prove its security against quantum adversaries. Although the two
schemes are almost identical, it turns out the proof against quantum provers is
easier with the latter. The security of the sBGKW and BGKW schemes will follow
as corollaries of mBGKW’s security. The scheme is as follows:

Peggy and Patty agree on an n-bit string w. They are then isolated as in
Definition 6.

Protocol 51 ( mBGKW - Commit to b )

1: Vic sends two random n-bit strings r0, r1 to Peggy.

2: Peggy replies with x := rb ⊕ w.

7 A probabilistic strategy can be made deterministic by fixing the randomness to the
best sequence.
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Protocol 52 ( mBGKW - Unveil b )

1: Patty announces an n-bit string ŵ

2: Vic computes r := ŵ ⊕ x. He accepts iff r ∈ {r0, r1} and deduces b from

r = rb.

We want to show that the mBGKW scheme is secure against a quantum ad-
versary. Clearly the commitment is concealing because Vic does not know w.
This means that there exists w and w′ such that x = r0 ⊕w = r1 ⊕w′, and Vic
cannot determine which one has been used.

To prove that the binding property holds according to Definition 2, we again
use the crucial observation that if Patty could simultaneously compute (ŵ0, ŵ1),
then she would learn r0 ⊕ r1 = ŵ0 ⊕ ŵ1. Let p⊕ := Pr[Patty determines r0 ⊕ r1].
The next lemma relates p⊕ to p0 + p1 in the desired way. Notice however that
because quantum information is involved this statement is much less straightfor-
ward than the classical analog: p0 and p1 still correspond to running the attack
twice on the same data but an attacker cannot do both.

Lemma 1. Assume Patty has probability pb to unveil bit b successfully, for both
values of b, and such that p0+p1 ≥ 1+ε for ε > 0. Then, Patty can guess r0⊕r1
with probability p⊕ ≥ ε2/4.

Proof (of Lemma 1).
Assume without loss of generality that when the unveiling phase of mBGKW

starts, Patty holds the pure state |ψ〉 ∈ HN of dimension N ≥ 2n. Note that we
do not need to consider the whole bipartite state between Peggy and Patty since
when the unveiling phase starts, Peggy does no longer play an active role in the
protocol and no communication is allowed between the two; hence her system
can be traced-out of the global Hilbert space. Moreover, by linearity, the proof
also holds if |ψ〉 is replaced by a mixed state. Notice also that, from the new
model’s assumption, Peggy and Patty cannot do better using a third party than
what they can achieve with entanglement.

Generally speaking, Patty has two possible strategies depending upon the
bit b she wants to unveil. When B = 0, she applies a unitary transform U0

to |ψ〉 in order to get the state |ψ0〉 := U0|ψ〉 that she measures in the com-
putational basis {|w〉〈w|}w∈{0,1}n applied to the first n qubits of |ψ0〉. When
B = 1, she proceeds similarly with unitary transform U1 allowing to prepare
the state |ψ1〉 := U1|ψ〉. She then measures |ψ1〉 using the same measurement
as for B = 0. All general measurement can be realized in this fashion, this is
thus a general strategy for Patty. Notice that in the proof of Kent [Ken05], the
use of unitary transformations U0 and U1 is obscured by the fact that he works
with projective measurements. Notice also that the measurement on the first
n qubits of |ψb〉 can alternatively be expressed by the measurement operators
{|w〉〈w| ⊗ IM}w∈{0,1}n on the whole state |ψb〉, where IM is the identity matrix
on the system of dimension M = N/2n.
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From the values r0, r1, x ∈ {0, 1}n announced by Vic and Peggy during the
committing phase, we define ŵb := rb ⊕ x as the string Patty has to announce
in order to open b with success. We have,

pb = 〈ψb|ŵb〉〈ŵb|ψb〉, (5)

which by assumption satisfies

p0 + p1 ≥ 1 + ε, ε > 0. (6)

Notice that 〈ψb|ŵb〉 is a generalized inner product8 since |ŵb〉 lives in a subspace
of dimension 2n in HN . Therefore when ŵb is obtained, there is some state left in
HN of dimension N/2n which we label as |v̂b〉 (i.e. |ψb〉 has not been completely
collapsed by the measurement). Thus, using (5) we can write |ψb〉 as

|ψb〉 =
√
pb|ŵb〉|v̂b〉 +

√
1 − pb|ŵ⊥

b 〉, (7)

where ‖〈v̂b|〈ŵb|ŵ⊥
b 〉‖2 = 0. Note that the “state” |ŵ⊥

b 〉 has not necessarily a
physical signification. It is simply a mathematical tool that allows us to conve-
niently carry the statistics.

We want to determine a lower bound for the probability p⊕. One possible way
for Patty to compute r0 ⊕ r1 is to obtain ŵ0 and ŵ1 individually. Again, one
possible way to do this is to use the following strategy:

1. Patty applies the strategy allowing to open B = 0 from |ψ0〉 = U0|ψ〉 re-
sulting in the state |ψ̃0〉 after the measurement in the computational basis
{|w〉〈w|}w∈{0,1}n has been performed on the first n qubits, and

2. Patty prepares |ψ̃1〉 := U1U
†
0 |ψ̃0〉 before applying again the measurement in

the computational basis {|w〉〈w|}w∈{0,1}n on the first n qubits.

Note that when preparing |ψ̃1〉, we applied U †
0 before U1. This is to put back

the state |ψ̃0〉 as close as possible as the original state |ψ〉. From (6) and for N
big enough, the probability to measure ŵ0 in the first step is not too small and
so, by applying the inverse of all the unitary transformations generated by U0,
the state |ψ̃〉 we get before applying U1 is a good enough approximation of the
original |ψ〉. Similarly we can say that the fidelity F (|ψ̃〉, |ψ〉) is large enough.
By invariance under unitary transformation, it follows that |ψ̃1〉 approximates
|ψ1〉 with the same fidelity F (|ψ̃〉, |ψ〉).

In the strategy described above, the probability to determine r0 ⊕ r1 is

p0 · pŵ1|ŵ0 .

As we said earlier, this is only one of the possible strategies to determine r0⊕r1,
thus

p⊕ ≥ p0 · pŵ1|ŵ0 .

8 If |w〉 ∈ HM and |ψ〉 ∈ HN then for |ψ〉N =
∑

i αi|ai〉M ⊗ |bi〉N/M we define
〈w|ψ〉 =

∑
i αi〈w|ai〉|bi〉.
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Let us first find a lower bound on the probability pŵ1|ŵ0 to produce ŵ1 given
that ŵ0 has already been produced after step 1. Since ŵ0 was obtained, the state
|ψ̃0〉 is equal to |ŵ0〉|v̂0〉. We have,

|ψ̃1〉 = U1U
†
0 |ψ̃0〉

= U1U
†
0 |ŵ0〉|v̂0〉

= U1

(
U †

0

|ψ0〉√
p0

− U †
0

√
1 − p0

p0
|ŵ⊥

0 〉
)

(8)

= U1
|ψ〉√
p0

− U1U
†
0

√
1 − p0

p0
|ŵ⊥

0 〉 (9)

=
|ψ1〉√
p0

− U1U
†
0

√
1 − p0

p0
|ŵ⊥

0 〉 (10)

=
1√
p0

(√
p1|ŵ1〉|v̂1〉 +

√
1 − p1|ŵ⊥

1 〉 − U1U
†
0

√
1 − p0|ŵ⊥

0 〉
)
, (11)

where (8) follows from isolating |ŵ0〉|v̂0〉 in (7), (9) and (10) are obtained by
definition of U0 and U1 respectively, and (11) also follows from (7). At this
point, Patty applies the measurement in the computational basis in order to
obtain ŵ1. Since we are interested only in finding a lower bound, the probability
to obtain ŵ1 is minimized when U1U

†
0 |ŵ⊥

0 〉 = |ŵ1〉|v̂1〉. It easily follows that,

pŵ1|ŵ0 = 〈ψ̃1|ŵ1〉〈ŵ1|ψ̃1〉
≥ 1
p0

(√
p1 −

√
1 − p0

)2

(12)

≥ 1
p0

(√
p1 −

√
p1 − ε

)2 (13)

≥ ε2

4p0
, (14)

where (12) follows from (11), (13) is obtained from (6), and (14) follows from a
Taylor expansion. Finally, (14) gives the desired result since

p⊕ ≥ p0 · pŵ1|ŵ0 ≥ ε2

4
.

Theorem 6. If there exists an algorithm A that can cheat the mBGKW Bit
Commitment scheme with probabilities p0 + p1 > 1+ 2/

√
2n then there exists an

algorithm A′ that can predict an unknown n-bit string (r0⊕r1) with probabilities
better than 1/2n, which is impossible.

Proof (of Theorem 6). From the isolation assumption, we have

p⊕ =
1
2n

.

Using the result from Lemma 1,

1
2n

≥ ε2

4
=⇒ ε ≤ 1√

2n−2
. (15)
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It follows that the binding condition is satisfied: plugging (15) in Lemma 1, we
get for any cheating strategies

p0 + p1 ≤ 1 +
1√

2n−2
.

Notice that the proof presented in Lemma 1 can easily be generalized to a
whole class of Bit Commitment schemes with the properties that information
unknown to Patty is sent to Peggy to commit, and an exact answer is needed
from Patty to unveil successfully the committed bit. Theorem 6 therefore holds
for a whole class of Bit Commitment schemes in the Two-Prover model.

Note that sBGKW is the same as mBGKW where r0 := 000...0 is the all-zero
string all the time. The statement and proof of Lemma 1 is equally valid for any
fixed choice of either (but not both)r0orr1because the probability to predict r0 ⊕ r1
remains exponentially small. Hence using only the model’s assumption we get:

Corollary 1. If there exists an algorithm A that can cheat the sBGKW Bit Com-
mitment scheme with probabilities p0 + p1 > 1 + 2/

√
2n then there exists an

algorithm A′ that can predict an unknown n-bit string r with probabilities better
than 1/2n, which is impossible.

However, as previously, this proof is valid solely in a stand-alone security model.
As soon as one starts composing such protocols, this proof is not necessarily
valid anymore.

6 Conclusion and Open Problems

This paper contained several results. It showed that Two-Prover Bit Commit-
ment schemes may or not be secure quantumly when they are classically. It also
considered for the first time ever the exact conditions that the provers and veri-
fier must satisfy to obtain security proofs of such Bit Commitment schemes both
classically and quantumly.

A natural question would be to determine if the binding condition of ALL Two-
Prover Quantum Bit Commitment schemes can be broken by a non-local compu-
tation that does not allow to communicate. This would imply that the
no-communication assumption is NEVER sufficient to asses security of such
schemes. A hierarchy of non-local correlations may be imagined with higher up
correlations simulating lower down correlations, but not the opposite. What is the
Bit Commitment scheme that can be broken only by a very highest correlation ?

In our definition of Bit Commitment, we assessed that cheating meant p0 +
p1 > 1+ε for non-negligible ε. However, recently more precise binding conditions
have been introduced [DFRSS07]. The results of this paper should be extended
to suit this newer definition.

The last natural question that results from our work is to find the complexity
class corresponding to Quantum Two-Prover Zero-Knowledge Interactive Proofs
(and similarly for k > 2 provers). Remember that these questions are not even
settled for Quantum Two-Prover Interactive Proofs alone. As soon as the verifier
is also quantum it is not clear how Bit Commitments may be used to “encrypt”
the verifier’s computations, thus the classical methodologies fall apart.
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A Isolation Examples

Example 1:
Let P0 send to Ted a message represented by (X, {0})0 (the variable X is tagged
with {0} and comes from P0). Then Ted generates a uniform random variable
(W,T )D (its tag and receiver have not been set yet) and produces the message
M = X ⊕ W for P1. Checking with equation (4) we see there is no problem
setting M’s tag to {1}, as

H((M, {1})1|(X, {0})0) = H((W,T )D) = H((M, {1})1).
This is satisfied since (W,T )D is uniform and has never been sent. However, the
practical definition would have assigned the tag T := {0} since W ’s tag would
have been {0, 1} (by the second rule) and {0} = {0} ∩ {0, 1}. Let Ted send
(M, {1})1. We now get that for both D = 0 and 1, if T = {D} or {0, 1} then the
left-hand side of equation (4) for W is

H((W,T )D|(X, {0})0, (M, {1})1) = 0,

and the right-hand side is respectively

H((W, {0})0|(X, {0})0) = H((W, {0})0) = 1,
H((W, {1})1|(M, {1})1) = H((X, {0})0) = 1,

H((W, {0, 1})D) = 1.

Because equation (4) is not satisfied for both T = {D} and {0, 1}, W ’s tag is
set to T := ∅, and Ted should not send (W, ∅)D to neither of PD, for D = 0, 1.

Example 2:
Similarly, we can send to P1 a message M that would have been tagged ∅ by the
practical definition. We take the PR-box relation as example. Suppose the vari-
ables (X, {0})0 and (Y, {1})1 have already been sent to Ted by the players (and
tagged accordingly), and (U, {0, 1})0 9 has been sent by Ted to P0. Let (W,T )D

be a uniformly distributed random variable chosen by Ted, with D ∈ {0, 1}.
Consider the following variable for P1,

V = U ⊕ (W ⊕X
) ∧ T,

that is, we randomized the variable tagged {0} (i.e. X) in the PR-box relation.
In the practical definition, because W is chosen uniformly and independently of
previous variables, the second rule would have assigned a tag {0, 1} to it, and so
V ’s tag would have been set to ∅ = {0, 1}∩{0, 1}∩{0}∩{1}. However, checking
with equation (4), because W has not been sent yet, we get that there is no
problem setting V ’s tag to {1}, as

H((V, {1})1|(Y, {1})1, (X, {0})0, (U, {0, 1})0)=
1

2
=H((V, {1})1|(Y, {1})1, (U, {0, 1})0).

9 It is straightforward to verify that this is the less restrictive tag.
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So Ted would send this message (V, {1})1 to P1. Is this a problem? No, because
the classical limitations of non-locality have not been violated yet! The reason is
simple: by randomizing completely all the [private] variables related to P0, Ted
is reducing the message he sends to P1 to what P1 can exactly achieve using
local variables. That is to say, P1 already has a random view of P0’s variables, so
there is no problem for Ted to first randomize P0’s variables and then send this
message to P1. If we make the calculations, we see that indeed, for the variable
V sent, the relation

V = U ⊕X ∧ Y

holds with probability 75%, just as in the classical scenario, and no W will never
let us beat that. Of course, as in the previous example, the variable (W,T )D used
to randomize can never be disclosed to any of the two players, and equation (4)
agrees with that (W ’s tag will be set to T := ∅ for both D).
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Abstract. We construct practical and efficient zero-knowledge arguments with
sublinear communication complexity. The arguments have perfect completeness,
perfect special honest verifier zero-knowledge and computational soundness. Our
zero-knowledge arguments rely on two-tiered homomorphic commitments for
which pairing-based constructions already exist.

As a concrete application of our new zero-knowledge techniques, we look at
the case of range proofs. To demonstrate a committed value belongs to a specific
N -bit integer interval we only need to communicate O(N

1
3 ) group elements.

Keywords: Zero-knowledge arguments, sublinear communication, circuit satis-
fiability, range proofs, two-tiered homomorphic commitments.

1 Introduction

Zero-knowledge proofs introduced by Goldwasser, Micali and Rackoff [18] are funda-
mental building blocks in cryptography that are used in secure multi-party computation
and numerous other protocols. Zero-knowledge proofs enable a prover to convince a
verifier of the truth of a statement without leaking any other information. The central
properties are captured in the notions of completeness, soundness and zero-knowledge.

Completeness: The prover can convince the verifier if the prover knows a witness
testifying to the truth of the statement.

Soundness: A malicious prover cannot convince the verifier if the statement is false.
We distinguish between computational soundness that protects against polynomial
time cheating provers and statistical or perfect soundness where even an unbounded
prover cannot convince the verifier of a false statement. We will call computation-
ally sound proofs for arguments.

Zero-knowledge: A malicious verifier learns nothing except that the statement is true.
We distinguish between computational zero-knowledge, where a polynomial time
verifier learns nothing from the proof and statistical or perfect zero-knowledge,
where even a verifier with unlimited resources learns nothing from the proof.

Recent works on zero-knowledge proofs [25] give us proofs with a communication
complexity that grows linearly in the size of the statement to be proven and [25,26]
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also give us proofs where the communication complexity depends quasi-linearly on the
witness-length. These works rely on standard assumptions; if one is willing to assume
the existence of fully homomorphic encryption [15] the communication complexity can
be reduced to the witness-length plus a small additive overhead [14,23].

For zero-knowledge arguments the communication complexity can be even lower.
Kilian [27] gave a zero-knowledge argument for circuit satisfiability with polylog-
arithmic communication. His argument goes through the PCP-theorem [3,2,11] and
uses a collision-free hash-function to build a hash-tree that includes the entire PCP
though. Even with the best PCP constructions known to date [4] Kilian’s argument has
high computational complexity for practical parameters. Goldwasser, Kalai and Roth-
blum [17] improve that state of affairs by constructing arguments that have both low
communication complexity and highly efficient verification.

A large body of research starting with Schnorr’s identification protocols [32] deals
with zero-knowledge proofs and arguments over prime order groups. A class of zero-
knowledge proofs and arguments known as Σ-protocols [8] is often used in practical
applications. Groth [22] also used prime order groups to develop practical sublinear
size zero-knowledge arguments for statements relating to linear algebra over Zp for
large primes p.

One particular example of zero-knowledge arguments that has appeared in several
applications, e.g., e-voting [10] and auctions [30] are range proofs. Here the prover
holds a commitment to a value w and wants to convince the verifier that the value
belongs to a specific integer interval [A;B). Boudot [5], Lipmaa [29] and Groth [20]
have given constant size zero-knowledge argument for interval membership based on
the strong RSA assumption.

In prime order groups the best range proof technique known was for a long time to
commit to the bits of the value and use OR-proofs [8] to show that the committed bits
were 0 or 1. For N -bit integers this communicates O(N) group elements. Camenisch,
Chaabouni and Shelat [6] improved this in the bilinear group setting by giving a zero-
knowledge range proof with communication complexityO( N

log N ). Chaabouni, Lipmaa
and Shelat [7] improved this complexity with a factor 2.

Our contribution. We construct zero-knowledge arguments for circuit satisfiability and
range proofs that have perfect completeness and perfect zero-knowledge. For simplicity
our constructions are in the common reference string model, but typically the common
reference string can be chosen by the verifier at the cost of one extra round in the
beginning to get zero-knowledge arguments in the plain model; we refer to the remarks
at end of Section 2.2 for further discussion.

The circuit satisfiability argument has communication complexity O(N
1
3 ) group el-

ements when the circuit has N gates. The range proof has a size of O(N
1
3 ) group el-

ements for N -bit intervals. The arguments have quasi-linear computational complexity
for the prover and very efficient verification. An efficiency comparison of the arguments
can be found in Tables 1 and 2.

In the tables we give the conservative estimate of O(N log2N) estimate for the
prover’s computation, but as we will discuss at the end of Section 3 it can often be
reduced to O(N logN) using Fast Fourier Transform techniques. When comparing the
range proofs, we are assuming a common reference string is available. This permits the
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Table 1. Zero-knowledge arguments for satisfiability of circuits with N NAND-gates measured
in group elements G, exponentiations E, and multiplications M

Rounds Comm. Prover comp. Verifier comp. Assumption
Cramer et al. [8] 3 O(N) G O(N) E O(N) E Dlog

Groth [22] 5 O(N
1
2 ) G O(N log2N) M O(N) M DLog

This paper 7 O(N
1
3 ) G O(N log2N) M O(N) M DPair

Table 2. Range proofs in prime order groups measured in group elements G, exponentiations E,
and multiplications M

Rounds Comm. Prover comp. Verifier comp. Assumption
Camenisch et al. [6] 3 O( N

log N
) G O( N

log N
) E O( N

log N
) E q-SDH

Chaabouni et al [7] 3 O( N
log N

) G O( N
log N

) E O( N
log N

) E q-SDH

This paper 7 O(N
1
3 ) G O(N log2N) M O(N

1
3 ) M DPair

incorporation of the initial messages in [6,7] into the common reference string such that
their range proofs only use 3 rounds instead of 4 rounds.

Our zero-knowledge arguments can be instantiated in asymmetric bilinear groups
where the computational double pairing assumption (Section 2.1) holds. In comparison,
the range proofs [6,7] are based on the q-SDH assumption in bilinear groups.

Techniques. Our main technical contribution is the batch product argument that can
be found in Section 3. Using homomorphic commitments to group elements [1,22]
we can in combination with Pedersen commitments to multiple elements commit to
N elements in Zp using only N

1
3 group elements. Given 3N committed elements

ui, vi, wi ∈ Zp we generalize techniques from [24,22] to develop a communication-
efficient zero-knowledge argument for proving that the committed values all satisfy
uivi = wi.

Since the commitments are homomorphic we can now do both additions and multi-
plications on the committed elements. This enables the prover to commit to the wires
in a circuit and prove that they respect the NAND-gates.

For the range proof we commit to the bitsw1, . . . , wN of the committed value. Using
the batch product argument we can show with a communication complexity of O(N

1
3 )

group elements that the committed bits satify wiwi = wi, which can only be true if
wi ∈ {0, 1}. Once we have the committed bits, we can then use the homomorphic
properties of the commitment schemes to compute w =

∑N
i=1 wi2i−1. This shows that

w belongs to the range [0; 2N) and can be generalized to a range of the form [A;B).

2 Preliminaries

We write y = A(x; r) when the algorithm A on input x and randomness r, outputs y.
We write y ← A(x) for the process of picking randomness r at random and setting
y = A(x; r). We also write y ← S for sampling y uniformly at random from the set S.
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We give a security parameterλwritten in unary as input to all parties in our protocols.
Intuitively, the higher the security parameter the more secure the protocol. We say a
function f : N → [0, 1] is negligible if f(λ) = O(λ−c) for every constant c > 0. We
write f ≈ g when |f(λ) − g(λ)| is negligible. We say f is overwhelming if f ≈ 1.

2.1 Two-tiered Homomorphic Commitments

A commitment scheme allows Alice to compute and send a commitment to a secret
message a. Later Alice may open the commitment and reveal to Bob that she commit-
ted to a. Commitments must be binding and hiding. Binding means that Alice cannot
change her mind; a commitment can only be opened to one message a. Hiding means
that Bob does not learn which message Alice committed to.

In the Pedersen commitment scheme [31] the public key contains the description
of a group of prime order p and group elements g, h. A commitment to a ∈ Zp is
constructed by picking r ← Zp and computing c = gahr. This commitment scheme is
very useful because it is homomorphic, i.e., the product of two commitments is c · c′ =
(gahr)(gbhs) = ga+bhr+s, which is a commitment to a+b. The Pedersen commitment
can be generalized such that the public key contains g1, . . . , gn, h and a commitment to
(a1, . . . , an) ∈ Zn

p is computed as hr
∏n

k=1 g
ak

k .
Abe, Fuchsbauer, Groth, Haralambiev and Ohkubo [1,21] proposed commitment

schemes for group elements. One of the commitment schemes uses a bilinear group
with a pairing e : G × Ĝ → T. Here G, Ĝ,T are cyclic groups of prime order p where
we call G, Ĝ the base groups and T the target group. The pairing is efficiently com-
putable, non-trivial and bilinear, i.e., for all x, y, a, b we have e(xa, yb) = e(x, y)ab.
The commitment scheme specifies non-trivial group elements v, u1, . . . , um ∈ Ĝ and
a commitment to (c1, . . . , cm) ∈ G is computed by picking at random t ∈ G and
computing C = e(t, v)

∏m
j=1 e(cj , uj). The commitment scheme is computationally

binding under the computational double pairing assumption, which states that given
random u, v ∈ Ĝ it is hard to find non-trivial s, t ∈ G such that e(s, u) = e(t, v).
The hardness of the computational double pairing assumption is implied by the deci-
sion Diffie-Hellman assumption in Ĝ [1,21].1 Furthermore, the bilinearity of the pairing
means that the commitment scheme is homomorphic in the sense that

C · C′ =

⎛⎝e(t, v) m∏
j=1

e(cj , uj)

⎞⎠⎛⎝e(t′, v) m∏
j=1

e(c′j , uj)

⎞⎠ = e(tt′, v)
m∏

j=1

e(cjc′j , uj)

is a commitment to the entry-wise product of the messages.
Combining the two types of commitment schemes it is possible to commit to com-

mitments. If we compute cj = hrj
∏n

k=1 g
ajk

k and C = e(t, v)
∏m

j=1 e(cj , uj) we have
a single target group element that is a commitment to mn values {ajk}m,n

j=1,k=1. Since
both commitment schemes are homomorphic the product of two commitmentsC ·C′ is
a commitment to the sums of the messages ajk +a′jk. In our zero-knowledge arguments

1 Galbraith, Paterson and Smart [12] classified bilinear groups into 3 types. The commitment
scheme described above uses type II or type III bilinear groups. In a type I bilinear group we
could instead use the decisional linear assumption based commitment scheme from [21].
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the homomorphic and the length-reducing properties allow the prover to do computa-
tions on committed values in a verifiable manner and with little communication.

The commitment schemes described above provide an example of what we will call
a two-tiered commitment scheme. With the Pedersen commitment scheme in mind we
will for simplicity assume the randomness is drawn from Zp but it would be easy to
generalize to other randomizer spaces. Furthermore, in the example given above the
Pedersen commitments are perfectly hiding and we can therefore use trivial randomness
t = 1 in the commitments to Pedersen commitments. This observation is incorporated
in the following definition of a two-tiered commitment scheme.

A two-tiered commitment scheme has three polynomial time algorithms
(K, com, com(2)). K is a key generator that on security parameter λ and integers m,n
returns a public key ck. The commitment key specifies cyclic groups Zp, G and T of
prime order p. It also specifies how to efficiently compute comck : Zn

p × Zp → G and

com(2)
ck : Gm → T.

Definition 1 (Homomorphic). We say the two-tiered commitment scheme is homomor-
phic, when the maps comck and com(2)

ck are Zp-linear.

Definition 2 (Computationally binding). The two-tiered commitment scheme
(K, com, com(2)) is computationally binding if for all non-uniform polynomial time
adversaries A and for all m,n = λO(1)

Pr
[
ck ← K(1λ,m, n); (a, b, r, s, c,d) ← A(ck) : a �= b ∈ Zn

p r, s ∈ Zp c �= d ∈ Gm

comck(a; r) = comck(b; s) or com(2)
ck (c) = com(2)

ck (d)
]
≈ 0.

Definition 3 (Perfectly hiding). The two-tiered commitment scheme (K, com, com(2))
is perfectly hiding if for all stateful adversaries A and all m,n ∈ λO(1)

Pr
[
ck←K(1λ,m, n); a0,a1 ← Z

n
p ; b← {0, 1}; c← comck(ab) : A(ck,a0,a1, c)=b

]
=

1

2
.

The zero-knowledge arguments we describe will work over any two-tiered homomor-
phic commitment scheme with a large prime p. When giving concrete efficiency esti-
mates we will assume we are using the bilinear group based scheme described earlier
in this section. The public key for this commitment scheme consists of a description of
a bilinear group (p,G, Ĝ,T, e) and m + n + 2 group elements in G and Ĝ. We will
be looking at statements of size N and the minimal communication complexity will be
obtained whenm = O(N

1
3 ) and n = O(N

1
3 ) giving a public key size ofO(N

1
3 ) group

elements.

2.2 Special Honest Verifier Zero-knowledge Arguments of Knowledge

We will for simplicity describe how our arguments work in the common reference string
model and how to obtain zero-knowledge against honest-but-curious verifiers. Both of
these restrictions can be removed at very small cost to get full zero-knowledge in the
plain model as described in the remarks at the end.
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Consider a triple of probabilistic polynomial time interactive algorithms (K,P ,V)
called the common reference string generator, the prover and the verifier. The common
reference string generator takes the security parameter λ as input in unary and some
auxilliary input m,n that specifies the size of the statements and generates a common
reference string. In the zero-knowledge arguments in this paper, the common reference
string will contain the public key ck for a two-tiered commitment scheme.

Let R be a polynomial time decidable ternary relation. For a statement x we call
w a witness if (ck, x, w) ∈ R. We define a corresponding common reference string
dependent language Lck consisting of statements x that have a witness w such that
(ck, x, w) ∈ R. This is a natural generalization of NP-languages; when R ignores ck
we have the standard notion of an NP-language.

We write tr ← 〈P(s),V(t)〉 for the public transcript produced by P and V when in-
teracting on inputs s and t. This transcript ends with V either accepting or rejecting. We
sometimes shorten the notation by saying 〈P(s),V(t)〉 = b, where b = 0 corresponds
to V rejecting and b = 1 corresponds to V accepting.

Definition 4 (Argument). The triple (K,P ,V) is an argument for relation R with per-
fect completeness if for all non-uniform polynomial time interactive adversaries A and
all m,n = λO(1) we have

Perfect completeness:

Pr
[
ck ← K(1λ,m, n); (x,w)←A(ck) : (ck, x, w) /∈R or 〈P(ck, x,w),V(ck, x)〉=1

]
=1.

Computational soundness:

Pr
[
ck ← K(1λ,m, n);x← A(ck) : x /∈ Lck and 〈A,V(ck, x)〉 = 1

]
≈ 0.

Definition 5 (Public coin argument). An argument (K,P ,V) is public coin if the ver-
ifier’s messages are chosen uniformly at random independently of the messages sent by
the prover.

We shall define an argument of knowledge through witness-extended emulation [19,28].
Informally, the definition says: given an adversary that produces an acceptable argu-
ment with probability ε, there exists an emulator that produces a similar argument with
roughly the same probability ε and at the same time provides a witness.

Definition 6 (Witness-extended emulation). We say the public coin argument
(K,P ,V) has computational witness-extended emulation if for all deterministic poly-
nomial time P∗ there exists an expected polynomial time emulator X such that for all
non-uniform polynomial time adversaries A and all m,n = λO(1)

Pr
[
ck ← K(1λ,m, n); (x, s) ← A(ck); tr ← 〈P∗(ck, x, s),V(ck, x)〉 : A(tr)=1

]
≈ Pr

[
ck ← K(1λ,m, n); (x, s) ← A(ck); (tr, w) ← X 〈P∗(ck,x,s),V(ck,x)〉(ck, x) :

A(tr) = 1 and if tr is accepting then (ck, x, w) ∈ R
]
,

where X has access to a transcript oracle 〈P∗(ck, x, s),V(ck, x)〉 that can be rewound
to a particular round and run again with the verifier using fresh randomness.
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We think of s as being the state of P∗, including the randomness. Then we have an
argument of knowledge in the sense that the emulator can extract a witness wheneverP∗

is able to make a convincing argument. This shows that the definition implies soundness.
We remark that the verifier’s randomness is part of the transcript and the prover is
deterministic. So combining the emulated transcript with ck, x, s gives us the view of
both the prover and the verifier and at the same time gives us the witness.

We define special honest verifier zero-knowledge (SHVZK) [8] for a public coin
argument as the ability to simulate the transcript without access to the witness as long
as the challenges are known in advance.

Definition 7 (Perfect special honest verifier zero-knowledge). The public coin argu-
ment (K,P ,V) is a perfect special honest verifier zero-knowledge argument for R if
there exists a probabilistic polynomial time simulator S such that for all non-uniform
polynomial time adversaries A and all m,n = λO(1)

Pr
[
ck ← K(1λ,m, n); (x,w, ρ)← A(ck); tr← 〈P(ck, x, w),V(ck, x; ρ)〉 :

(ck, x, w) ∈ R and A(tr) = 1
]

=Pr
[
ck ← K(1λ,m, n); (x,w, ρ)←A(ck); tr← S(ck, x, ρ) : (ck, x,w) ∈ R and A(tr)=1

]
.

The plain model. We will describe our arguments in the common reference string model
where the prover and verifier have a trusted setup. If we want to work in the plain
model we can add an initial round where the verifier picks the common reference string
and sends it to the prover. Provided it can be verified that the verifier’s initial message
describes a valid common reference string this will still be perfect SHVZK because
we do not rely on the simulator knowing any trapdoor information associated with the
common reference string.

Full zero-knowledge. For simplicity, we focus on SHVZK arguments in this paper.
There are very efficient standard techniques [9,13,19] to convert an SHVZK argument
into a public-coin full zero-knowledge argument with a cheating verifier when a com-
mon reference string is available.

If we work in the plain model and let the verifier choose the common reference
string, we can use coin-flipping techniques (for the full zero-knowledge property the
coin-flips should be simulatable against a dishonest verifier) for the challenges to get
private-coin2 full zero-knowledge arguments against a cheating verifier. Challenges in
our SHVZK arguments are very short so both in the case with and without a common
reference string the overhead of getting full zero-knowledge is insignificant compared
to the cost of the SHVZK arguments.

3 Batch Product Argument

We will now present our main technical contribution, which is a batch product argument
for committed values {uijk, vijk , wijk}M,m,n

i=1,j=1,k=1 satisfying uijkvijk = wijk . More

2 Goldreich and Krawczyk [16] have shown that only languages in BPP have constant-round
public-coin arguments.
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precisely, the statement consists of commitmentsCU1 , CV1 , CW1 ,. . ., CUM , CVM , CWM .
The prover argues knowledge of openings uijk, rij , vijk, sij , wijk , tij ∈ Zp satisfying

cuij = comck(uij1, . . . , uijn; rij) CUi = com(2)
ck (cui1 , . . . , cuim)

cvij = comck(vij1, . . . , vijn; sij) CVi = com(2)
ck (cvi1 , . . . , cvim)

cwij = comck(wij1 , . . . , wijn; tij) CWi = com(2)
ck (cwi1 , . . . , cwim)

uijkvijk = wijk .

The argument will have communication complexityO(M +m+n). In order to explain
the idea behind the argument let us first focus on soundness and for now postpone
the question of how to get SHVZK. In the argument, the prover will demonstrate that
she knows openings of CUi , CVi , CWi to cuij , cvij , cwij and that she knows openings of
cuij , cvij , cwij using standard techniques. She will also know openings aα, ρα, bβ, σβ ∈
Zp of intermediate commitments caα = comck(aα; ρα), cbβ

= comck(bβ , σβ) that she
sends during the argument and which will be specified later. The argument runs over
7 moves with the prover getting challenges x, y, z ∈ Z∗

p in round 2, 4 and 6. The
commitments caα are sent in round 3 and the commitments cbβ

are sent in round 5.
This means aα may depend on x but is independent of y and z, and bβ may depend on
both x and y but is independent of z.

The prover will demonstrate to the verifier that

M∑
i=1

m∑
j=1

n∑
k=1

(uijkvijk − wijk)xi(m+1)n+jn+k = 0. (1)

Unless uijkvijk = wijk for all choices of i, j, k this has negligible probability of
holding over a randomly chosen challenge x ∈ Z∗

p. Our main obstacle is to build up
this polynomial and convince the verifier that the equality (1) holds true using only
O(M +m+ n) communication.

We carefully choose appropriate linear combinations of the commitments and by the
homomorphic property get corresponding linear combinations of the uijk, vijk, wijk

values such that the equality (1) emerges. During this process, we will also use expo-
nentiations of some of the commitments to powers of x such that we get linear combi-
nations of uijkx

i(m+1)n+jn+k and wijkx
i(m+1)n+jn+k . Suppose for instance that the

prover after seeing x computes and opens

M∏
i=1

Cxi(m+1)n

Ui
= com(2)

ck (cu1 , . . . , cum) where cuj =
M∏
i=1

cx
i(m+1)n

uij

M∏
i=1

CVi = com(2)
ck (cv1 , . . . , cvm) where cvj =

M∏
i=1

cvij

M∏
i=1

Cxi(m+1)n

Wi
= com(2)

ck (cw1 , . . . , cwm) where cwj =
M∏
i=1

cx
i(m+1)n

wij
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and at the same time computes and opens

m∏
j=1

cx
jn

uj
= comck(u1, . . . , un; r) where uk =

M∑
i=1

m∑
j=1

uijkx
i(m+1)n+jn

m∏
j=1

cvj = comck(v1, . . . , vn; s) where vk =
M∑
i=1

m∑
j=1

vijk

m∏
j=1

cx
jn

wj
= comck(w1, . . . , wn; t) where wk =

M∑
i=1

m∑
j=1

wijkx
i(m+1)n+jn

Using only 3m commitments and 3m+ 3 elements in Zp this tells the verifier

ukx
k =

M∑
i=1

m∑
j=1

uijkx
i(m+1)n+jn+k vk =

M∑
i=1

m∑
j=1

vijk

wkx
k =

M∑
i=1

m∑
j=1

wijkx
i(m+1)n+jn+k .

We now have that

n∑
k=1

(ukvk − wk)xk

=
n∑

k=1

⎛⎝(
M∑
i=1

m∑
j=1

uijkx
i(m+1)n+jn+k)(

M∑
i′=1

m∑
j′=1

vi′j′k) −
M∑
i=1

m∑
j=1

wijkx
i(m+1)n+jn+k

⎞⎠
contains the desired polynomial from (1) but there are some cross-terms corresponding
to i �= i′ or j �= j′ so the polynomial given above may be non-zero.

We will choose the aα and bβ values such that they cancel out the cross-terms. How-
ever, we have to be careful that there are only O(M +m+n) of them and that they are
feasible to compute. We will therefore use an interactive technique that will enable the
verifier to pick aα and bα after seeing x. This introduces a second concern, namely to
choose them in a way such that they do not affect the original equality we wish to get.
We accomplish this by making sure that aα and bβ are modified by factors yα and zβ

for α, β �= 0 while the desired equality does not contain any such factors. To make this
happen we will modify the opening process of the commitmentsCUi andCVi described
above to open

M∏
i=1

Cxi(m+1)nyi

Ui
= com(2)

ck (cu1 , . . . , cum)
m∏

j=1

cx
jnzj

uj
= comck(u1, . . . , un; r)

M∏
i=1

Cy−i

Vi
= com(2)

ck (cu1 , . . . , cum)
m∏

j=1

cz
−j

vj
= comck(v1, . . . , vn; r)
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This gives us

ukx
k =

M∑
i=1

m∑
j=1

uijkx
i(m+1)n+jn+kyizj vk =

M∑
i=1

m∑
j=1

vijky
−iz−j.

We now have

n∑
k=1

ukx
kvk =

n∑
k=1

(
M∑
i=1

m∑
j=1

uijkx
i(m+1)n+jn+kyizj)(

M∑
i′=1

m∑
j′=1

vi′j′ky
−i′z−j′)

=
n∑

k=1

M∑
i=1

M∑
i′=1

m∑
j=1

m∑
j′=1

uijkx
i(m+1)n+jn+kvi′j′ky

i−i′zj−j′

By splitting the sum into three parts corresponding to the three cases j = j′, i = i′ and
j = j′, i �= i′ and j �= j′ and subtracting the wkx

k’s we get

n∑
k=1

(ukvk −wk)xk =
n∑

k=1

M∑
i=1

m∑
j=1

(uijkvijk − wijk)xi(m+1)n+jn+k

+

n∑
k=1

M∑
i=1

M∑
i′=1
i′ �=i

m∑
j=1

uijkx
i(m+1)n+jn+kvi′jky

i−i′

+
n∑

k=1

M∑
i=1

M∑
i′=1

m∑
j=1

m∑
j′=1
j′ �=j

uijkx
i(m+1)n+jn+kvi′j′ky

i−i′zj−j′ (2)

=

n∑
k=1

M∑
i=1

m∑
j=1

(uijkvijk − wijk)xi(m+1)n+jn+k

+
M∑

α=−M
α�=0

M,M∑
i=1,i′=1
i−i′=α

n∑
k=1

m∑
j=1

uijkx
i(m+1)n+jn+kvi′jky

α

+

m∑
β=−m

β �=0

m,m∑
j=1,j′=1
j−j′=β

n∑
k=1

(

M∑
i=1

uijkx
i(m+1)n+jn+kyi)(

M∑
i′=1

vi′j′ky
−i′)zβ

The prover will select

aα =
M,M∑

i=1,i′=1
i−i′=α

n∑
k=1

m∑
j=1

uijkx
i(m+1)n+jn+kvi′jk

bβ =
m,m∑

j=1,j′=1
j−j′=β

n∑
k=1

(
M∑
i=1

uijkx
i(m+1)n+jn+kyi)(

M∑
i′=1

yivi′j′ky
−i′)
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and send the commitments {caα}α before seeing y and send {cbβ
}β before seeing z.

She will reveal randomness R ∈ Zp such that

M∏
α=−M

α�=0

cy
α

aα
·

m∏
β=−m

β �=0

cz
β

bβ
= comck(

n∑
k=1

(ukvk − wk)xk;R).

This corresponds to the values in the commitments satisfying

M∑
α=−M

α�=0

aαy
α +

m∑
β=−m

β �=0

bβz
β =

n∑
k=1

(ukvk − wk)xk.

Keeping in mind the expansion of the right hand side (2) we get that with overwhelming
probability over y, z this can only be true if equation (1) holds.

In order to make the protocol SHVZK we add some commitments and values such
that cuj , cvj , cwj and uk, vk, wk cannot reveal anything about uijk, vijk , wijk . Further-
more, we add some dk values and cdk

commitments to cancel out new cross-terms
arising from the added values. This gives us the full batch product argument below.

Common reference string: Two-tiered commitment key ck.
Statement: Commitments CU1 , CV1 , CW1 . . . , CUM , CVM , CWM ∈ T.
Prover’s witness: Values u111, v111, w111, . . . , uMmn, vMmn, wMmn ∈ Zp and ran-

domness r11, s11, t11, . . . , rMm, sMm, tMm ∈ Zp such that for all
i ∈ {1, . . . ,M}, j ∈ {1, . . . ,m}, k ∈ {1, . . . , n} :

cuij = comck(uij1, . . . , uijn; rij) CUi = com(2)
ck (cui1 , . . . , cuim)

cvij = comck(vij1, . . . , vijn; sij) CVi = com(2)
ck (cvi1 , . . . , cvim)

cwij = comck(wij1, . . . , wijn; tij) CWi = com(2)
ck (cwi1 , . . . , cwim)

uijkvijk = wijk .

1. P → V: Pick u00k, v00k, w00k ← Zp and set u0jk = v0jk = w0jk = 0 and ui0k =
vi0k = wi0k = 0 for i �= 0 and j �= 0. Pick r00, s00, t00, τ1, . . . , τn ← Zp and pick
r0j , s0j, t0j ← Zp. Compute for j ∈ {0, . . . ,m} and k ∈ {1, . . . , n}

cu0j = comck(u0j1, . . . , u0jn; r0j) CU0 = com(2)
ck (cu01 , . . . , cu0m)

cv0j = comck(v0j1, . . . , v0jn; s0j) CV0 = com(2)
ck (cv01 , . . . , cv0m)

cw0j = comck(w0j1, . . . , w0jn; t0j) CW0 = com(2)
ck (cw01 , . . . , cw0m)

dk = u00kv00k − w00k cdk
= comck(dk; τk)

Send: cu00 , cv00 , cw00 , CU0 , CV0 , CW0 , {cdk
}n

k=1.
2. P ← V: x ← Z∗

p.
3. P → V: For α ∈ {−M, . . . ,−1, 1, . . . ,M} pick ρα ← Zp and compute

aα =
M,M∑

i=0,i′=0
i−i′=α

m∑
j=0

n∑
k=1

(uijkx
i(m+1)n+jn+k)vi′jk caα = comck(aα; ρα).
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Compute also for j ∈ {1, . . . ,m}

cuj =
M∏
i=0

cx
i(m+1)nyi

uij
cvj =

M∏
i=0

cy
−i

vij
cwj =

M∏
i=0

cx
i(m+1)n

wij
.

Send: {caα}α∈{−M,...,−1,1,...,M}, {cuj , cvj , cwj}m
j=1.

4. P ← V: y ← Z∗
p.

5. P → V: For β ∈ {−m, . . . ,−1, 1, . . . ,m} pick σβ ← Zp and compute

bβ =
m,m∑

j=0,j′=0
j−j′=β

n∑
k=1

(
M∑
i=0

uijkx
i(m+1)n+jn+kyi

)(
M∑

i′=0

vi′j′ky
−i′
)

Define cbβ
= comck(bβ ;σβ) and send: {cbβ

}β∈{−m,...,−1,1,...,m}.
6. P ← V: z ← Z∗

p.
7. P → V: Compute for k ∈ {1, . . . , n}

uk = u00k +

m∑
j=1

M∑
i=0

uijkx
i(m+1)n+jnyizj r = r00 +

m∑
j=1

M∑
i=0

rijx
i(m+1)n+jnyizj

vk = v00k +
m∑

j=1

M∑
i=0

vijky
−iz−j s = s00 +

m∑
j=1

M∑
i=0

sijy
−iz−j

wk = w00k +

m∑
j=1

M∑
i=0

wijkx
i(m+1)n+jn t = t00 +

m∑
j=1

M∑
i=0

tijx
i(m+1)n+jn

R =
n∑

k=1

τkx
k +

M∑
α=−M

α�=0

ραy
α +

m∑
β=−m

β �=0

σβz
β

Send: {uk, vk, wk}n
k=1, r, s, t, R.

Verification: Accept the argument if the following holds

cu00

m∏
j=1

cx
jnzj

uj
= comck(u1, . . . , un; r)

M∏
i=0

Cxi(m+1)nyi

Ui
= com

(2)
ck (cu1 , . . . , cum)

cv00

m∏
j=1

cz
−j

vj
= comck(v1, . . . , vn; s)

M∏
i=0

Cy−i

Vi
= com

(2)
ck (cv1 , . . . , cvm)

cw00

m∏
j=1

cx
jn

wj
= comck(w1, . . . , wn; t)

M∏
i=0

Cxi(m+1)n

Wi
= com

(2)
ck (cw1 , . . . , cwm )

n∏
k=1

cx
k

dk
·

M∏
α=−M

α�=0

cy
α

aα
·

m∏
β=−m

β �=0

cz
β

bβ
= comck(

n∑
k=1

(ukvk − wk)xk;R)

Theorem 1 (Full paper). The argument given above has perfect completeness, per-
fect SHVZK and witness-extended emulation if the two-tiered commitment scheme is
binding.
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Complexity. The communication complexity of the batch product argument is 3 ele-
ments in T, 2M + 5m+ n+ 1 elements in G and 3n+ 7 elements in Zp.

Let us estimate the computation complexity assuming that we use the two-tiered
commitment scheme we described in Section 2.1 in an asymmetric bilinear group with
base groups G, Ĝ and target group T. The verifier’s computation is 3m pairings and ex-
ponentiations in the target group T and 5M+2m+4n exponentiations in the base group
G. Using standard techniques for batch verification some of the equations can be com-
bined in a randomized manner and we may also use multi-exponentiation techniques to
reduce the complexity further to O( M+m+n

log(M+m+n) ) exponentiations.
A naı̈ve implementation of the prover would require 3m pairings andO(M+m+n)

exponentiations and O(N(M + m)) multiplications in Zp, where N −Mmn. When
M or m are large the latter complexity dominates.

We can use techniques for polynomial multiplication to reduce the prover’s compu-
tation. Consider as an example the computation in round 3, where the prover computes

aα =
M,M∑

i=0,i′=0
i−i′=α

m∑
j=0

n∑
k=1

(uijkx
i(m+1)n+jn+k)vi′jk

for α = −M, . . . ,−1, 1, . . . ,M . Define ui = (ui01x
i(m+1)n+0n+1,

. . . , uimnx
i(m+1)n+mn+n) and vi′ = (vi′01, . . . , vi′mn), which allows us to rewrite

it as

aα =
M,M∑

i=0,i′=0
i−i′=α

uiv
�
i′ .

Observe that aα is the M + α’th coefficient of the polynomial

p(ω) =

(
M∑
i=0

ωiui

)(
M∑

i′=0

ωM−i′v�
i′

)
∈ Zp[ω].

The degree of the polynomial is 2M so if we evaluate it in 2M + 1 different points
ω1, . . . , ω2M+1 ∈ Zp we can use polynomial interpolation to recover the coefficients.
The evaluation of

∑M
i=0 ω

iui and
∑M

i′=0 ω
M−i′v�

i′ in 2M + 1 different points can be
done using O(N log2M) multiplications. If 2M |p− 1 and M is a power of 2 we can
pick ω1, . . . , ω2M as 2M -roots of unity, i.e., ω2M

k = 1 and use the Fast Fourier Trans-
form to reduce the cost further down toO(N logM) multiplications.3 Similarly, we can
compute b−m, . . . , b−1, b1, . . . , bm using O(N log2m) multiplications or O(N logm)
multiplications if 2m|p− 1 and m is a power of 2.

Known values. Sometimes it will be useful to use publicly known values uijk in the ar-
gument. The trivial way to handle this is to use commitments cuij =
comck(uij1, . . . , uijn; 0). Since they use trivial randomness, the verifier can check di-
rectly that CU1 , . . . , CUM contain the correct values. A more careful inspection reveals

3 It takes a while before the assymptotic behaviour kicks in, so for small M it may be better to
use Toom-Cook related methods for computing the coefficients a−M , . . . , aM .
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that some efficiency savings can be made by abandoning the commitments cuij alto-
gether. Since the uijk values are public we do not need to hide them, so the prover may
choose u0jk = 0. The verifier can now herself compute the resulting uk values without
using the commitments at all.

A similar analysis reveals that when wijk are known the prover does not need to
communicate any CWi or cwj commitments since the verifier can compute wk himself.
In the special case where wijk = 0 this simplifies to fixing wk = 0.

3.1 Inner Product Argument

A slight modification of the batch product argument allows the prover to demonstrate
instead

∑M
i=1

∑m
j=1

∑n
k=1 uijkvijk =

∑M
i=1

∑m
j=1

∑n
k=1 wijk . The main observation

is that we can fix x = 1 instead of letting the verifier choose it, in which case equation
(1) gives us the desired equality.

The only issue in following this idea is the cross-terms arising from
u0jk, v0jk, w0jk . We therefore computeCx

U0
, Cx

V0
, Cx

W0
, cxu00

, cxv00
, cxw00

giving us com-
mitments to u0jkx, v0jkx,w0jkx. Since x ∈ Z∗

p these values will still ensure that
cuj , cvj , cwj , uk, vk, wk do not leak any information about uijk, vijk , wijk . But since
they are modified by a random factor x throughout the argument they will not inter-
fere with the equation

∑M
i=1

∑m
j=1

∑n
k=1 uijkvijk =

∑M
i=1

∑m
j=1

∑n
k=1 wijk . To get

perfect completeness, we use two commitments to d1 and d2 values to cancel out cross-
terms corresponding to x and x2.

4 Arguments for Circuit Satisfiability

Using the batch product argument from Section 3 we can give a 7-move SHVZK argu-
ment for circuit satisfiability. Consider a boolean circuit consisting of N − 1 NAND-
gates where the prover wants to convince the verifier that there is a satisfying assign-
ment making the circuit output 1. If the output wire is w, we can add a new variable u
and add a self-looping gate of the form w = ¬(w ∧ u), which can only be satisfied if
w = 1. The prover now has a circuit with N NAND-gates and no output and wants to
demonstrate that there is an internally consistent assignment to the wires that respects
all gates.

Let us without loss of generality consider a circuit with N = Mmn NAND-gates
for which the prover wants to demonstrate that there is a consistent assignment. The
prover enumerates the two inputs and the output of each gate as uijk, vijk, wijk . The
task is now to show that the committed values correspond to a satisfying assignment for
the circuit.

The prover first shows that all the committed values are either 0 or 1 corresponding
to truth values. This is done by using batch product arguments to show uijkuijk =
uijk, vijkvijk = vijk andwijkwijk = wijk , which can only be true if uijk, vijk, wijk ∈
{0, 1}.

The prover then uses the homomorphic property of the commitment scheme to com-
pute commitments to 1 − wijk . Using another batch product argument it can show
uijkvijk = 1 − wijk , which means the committed values respect the NAND-gates.
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Finally, using a technique from [22] it uses an inner product argument to show that all
committed values uijk, vijk and wijk corresponding to the same wire x
 are consistent
with each other. We describe this technique in the full circuit satisfiability argument
below.

Common reference string: Two-tiered commitment key ck.
Statement: N = Mmn NAND-gates x
2 = ¬(x
0 ∧ x
1) over variables x
.
Prover’s witness: An assigment to {x
} respecting all NAND-gates.
Argument: Label the inputs and outputs of the gates {uijk, vijk, wijk}M,m,n

i=1,j=1,k=1.
Pick rij , sij , tij ← Zp and compute the commitments

cuij = comck(uij1, . . . , uijn; rij) CUi = com(2)
ck (cui1 , . . . , cuim)

cvij = comck(vij1, . . . , vijn; sij) CVi = com(2)
ck (cvi1 , . . . , cvim)

cwij = comck(wij1, . . . , wijn; tij) CWi = com(2)
ck (cwi1 , . . . , cwim)

Send {CUi , CVi , CWi}M
i=1 to the verifier.

Engage in three batch product arguments with statements {CUi , CUi , CUi}M
i=1,

{CVi , CVi , CVi}M
i=1 and {CWi , CWi , CWi}M

i=1 in order to show that uijk, vijk ,
wijk ∈ {0, 1}.

Define c1 = comck(1, . . . , 1; 0) and C1 = com(2)
ck (c1, . . . , c1). Engage in a batch

product proof with statement {CU1 , CV1 , C1C
−1
Wi

}M
i=1 to show that the NAND-gates

are respected.
There are 3N = 3Mmn committed values uijk, vijk, wijk . Let us rename them
{bi}3N

i=1 and the corresponding commitments to {CBi}3M
i=1. The same variable x


may appear n
 times in the circuit as bi1 , . . . , bin�
. Define π as the permutation in

S3N such that for each variable x
 appearing n
 times in the circuit the permutation
makes a complete cycle i1 → i2 → . . . → in�

→ i1 corresponding to those
appearances.
The prover receives a challenge y from the verifier and defines ai = yi − yπ(i). It
uses the inner product argument4 from Section 3.1 to demonstrate

∑3N
i=1 aibi = 0.

This shows that for random y

3N∑
i=1

aibi =
3N∑
i=1

(yi − yπ(i))bi =
3N∑
i=1

yi(bi − bπ−1(i)) = 0.

With overwhelming probability over y this shows bπ(i) = bi for all i thus proving
that the values bi and hence the values uijk, vijk , wijk are consistent with the wires
x
.

Verification: Verify the 4 batch product proofs and the inner product argument.

Theorem 2 (Full paper). The argument for circuit satisfiability has perfect complete-
ness, perfect SHVZK and witness-extended emulation.

4 The first round of the inner product argument can be run independently of y such that the total
round complexity remains 7.
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Arithmetic circuits. Using similar techniques as in the circuit satisfiability argument,
we can also get an argument for the satisfiability of arithmetic circuits consisting of ad-
dition and multiplication gates over Zp. The prover commits to the values and uses the
homomorphic property of the commitment scheme to show that addition gates are re-
spected and the batch product argument to show that multiplication gates are respected.
If there are publicly known constants (without loss of generality a multiple of mn) in-
volved in the circuit, the prover commits to these using randomness 0 so the verifier can
check directly that they are correct. As in the circuit satisfiability argument the prover
also demonstrates that the committed values are consistent with the wiring of the arith-
metic circuit. This gives an arithmetic circuit argument with communication complexity
O(M +m+ n).

5 Range Arguments

As a concrete application of our batch product argument we will give a communication-
efficient range proof. The prover has a commitment c and wants to convince the verifier
that she knows an opening w, t such that c = comck(w; t) and w ∈ [A;B). Since the
commitment is homomorphic, the problem can be simplified to demonstrating that she
knows an opening of c ·comck(−A; 0) in the range [0;B−A). Let N = �log(B−A)�.
The prover can construct a commitment c0/1 = comck(b; s) and show that it contains 0

or 1 using standard techniques. By showing that c · comck(−A; 0) · cA−B+2N

0/1 contains

a value in the range [0; 2N) she convinces the verifier that w ∈ [A;B].
We can therefore without loss of generality focus on demonstrating that a commit-

ted value w belongs to the interval [0; 2N). We will now give such a range argument
that only communicates O(N

1
3 ) elements. The idea is that the prover will commit to

the bit representation of w. Using a batch product argument the prover can demon-
strate that the committed bits are 0 or 1. Furthermore, using techniques similar to
the buildup of wk in the batch product argument the prover will demonstrate that
w =

∑M
i=1

∑m
j=1

∑n
k=1 wijk2imn+jn+k−1 using O(M + m + n) communication.

If M = O(N
1
3 ),m = O(N

1
3 ), n = O(N

1
3 ) the communication complexity is O(N

1
3 )

elements.

Common reference string: ck.
Statement: c ∈ G.
Prover’s witness: w, t ∈ Zp such that w ∈ [0; 2N) and c = comck(w; t).
Argument: Let {wijk}M,m,n

i=1,j=1,k=1 be the bits of w. Pick rij ← Zp and compute

cwij = comck(wij1, . . . , wijn; rij) CWi = com
(2)
ck (cwi1 , . . . , cwim ) cwj =

M∏
i=1

c2
imn

wij
.

Pick w01, . . . , w0n ← Zp and r0, sd ← Zp and compute cw0 =
comck(w01, . . . , w0n; r0) and cd = comck(

∑n
k=1 w0k2k−1; sd).

Send {CWi}M
i=1, {cwj}m

j=0 and cd to the verifier and get a challenge x← Z∗
p back.

Compute

wk = xw0k +
M∑
i=1

m∑
j=1

wijk2imn+jn r = xr0 +
M∑
i=1

m∑
j=1

rij2imn+jn s = sdx+ t
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and send them to the verifier.
In parallel, engage in a batch product argument with statement{CWi, CWi , CWi}M

i=1

to show that each wijk satisfies wijkwijk = wijk , which implies wijk ∈ {0, 1}.
Verification: Verify that the batch product argument is valid and

M∏
i=1

C2imn

Wi
= com(2)

ck (cw1 , . . . , cwm) cxw0

m∏
j=1

c2
jn

wj
= comck(w1, . . . , wn; r)

cxdc = comck(
n∑

k=1

wk2k−1; s).

Theorem 3 (Full paper). The range argument given above has perfect completeness,
perfect SHVZK and witness-extended emulation.
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Abstract. Zero-knowledge proofs of knowledge (ZK-PoK) for discrete
logarithms and related problems are indispensable for practical crypto-
graphic protocols. Recently, Camenisch, Kiayias, and Yung provided a
specification language (the CKY-language) for such protocols which al-
lows for a modular design and protocol analysis: for every zero-knowledge
proof specified in this language, protocol designers are ensured that there
exists an efficient protocol which indeed proves the specified statement.

However, the protocols resulting from their compilation techniques
only satisfy the classical notion of ZK-PoK, which is not retained are
when they used as building blocks for higher-level applications or com-
posed with other protocols. This problem can be tackled by moving to
the Universal Composability (UC) framework, which guarantees reten-
tion of security when composing protocols in arbitrary ways. While there
exist generic transformations from Σ-protocols to UC-secure protocols,
these transformation are often too inefficient for practice.

In this paper we introduce a specification language akin to the CKY-
language and a compiler such that the resulting protocols are UC-secure
and efficient. To this end, we propose an extension of the UC-framework
addressing the issue that UC-secure zero-knowledge proofs are by defini-
tion proofs of knowledge, and state a special composition theorem which
allows one to use the weaker – but more efficient and often sufficient –
notion of proofs of membership in the UC-framework. We believe that
our contributions enable the design of practically efficient protocols that
are UC-secure and thus themselves can be used as building blocks.

Keywords: UC-Framework, Protocol Design, Zero-Knowledge Proof.

1 Introduction

The probably most demanding task when designing a practical cryptographic
protocol is to define its security properties and then to prove that it indeed
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satisfies them. For this security analysis it is often assumed that the “world”
consists only of one instance of the protocol and only of the involved parties,
rather than of many parties running many instances of the same protocol as well
as other protocols at the same time. While this approach allows for a relatively
simple analysis of protocols, it does not properly model reality and therefore
provides little if any security guarantees. Also, this approach does not allow for
a modular usage of the protocols, i.e., when a protocol is used as a building block
for another protocol, the security analysis must be all done from scratch.

To address these problems, a number of frameworks have been proposed over
the years, e.g., [1–3]. The so-called Universal Composability (UC) framework
by Canetti [2] seems to be the most prevalent one. A fundamental result in this
model is its very strong composition theorem: once a protocol is proved secure in
this model, it can be used in arbitrary contexts retaining its security properties.
This allows one to split a protocol into smaller subroutines so that the security of
each subprotocol can be analyzed separately, making the security of the overall
protocol much easier. In particular, each (sub-)protocol needs to be analyzed
only once and for all and does not have to be repeated for each specific context.

This modularity and the high security guarantees suggest that protocols
should always be designed and proven secure in the UC-framework. However,
this is only the case for a small fraction of the proposed cryptographic schemes,
such as oblivious transfer [4] and encryption- [5,6], and commitment schemes [7].
Furthermore, only very few UC-secure protocols are actually deployed in the real
world, e.g., [8,9]. We believe that one main reason for this is the high computa-
tional overhead which is often required to achieve UC-security.

When designing practical cryptographic protocols, efficient zero-knowledge
proofs of knowledge (ZK-PoK) for discrete logarithms and related problems have
turned out to be indispensable. On a high level, these are two party protocols
between a prover and a verifier which allow the former to convince the latter
that it possesses some secret piece of information, without the verifier being able
to learn anything about it. This allows protocol designers to enforce one party
to assure other parties that its actions are consistent with its internal knowledge
state. The shorthand notation for such proofs, introduced in [10], has been ex-
tensively used in the past and contributed to the wide employment of ZK-PoK
in cryptographic design. This notation suggests using, e.g., PK [(α) : y = gα] to
denote a proof of the discrete logarithm α = logg y, and it has appeared in many
works sometimes with quite complex statements, e.g., [11–23]. This informal no-
tion was recently formalized and refined by Camenisch, Kiayias and Yung who
have provided a specification language (CKY-language) for such protocols [24].
The language allows for the modular design and analysis of cryptographic pro-
tocols: protocol designers just needs to specify the statement the ZK-PoK shall
prove and, if the specification is in the CKY-language, they are ensured that the
proof protocol exists and indeed proves the specified statement.

The realizations given by Camenisch et al. [24] are based on Σ-protocols and
satisfy the classical notion of ZK-PoK but not that of UC zero-knowledge. On a
high level, the problem here is that the classical notion only requires that a valid
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witness can be extracted from every convincing prover given rewindable access
to that prover. However, in the UC-framework this has to be possible without
rewinding. While generic transformations from Σ-protocols to UC-ZK protocols
are known [25], they come along with a significant computational overhead,
making the resulting protocols impracticable for real-world usage.

However, the security proofs of many cryptographic protocols only require the
existence of a witness, and not that the prover actually knows it. Intuitively, this
should be easier to achieve than proofs of knowledge. Yet, in the UC-framework
zero-knowledge proofs are always proofs of knowledge. This is because otherwise
the ideal functionality generally could not decide whether or not a given state-
ment is true in polynomial time. In this paper we are aiming at closing the gap
between high security guarantees and modularity on the one hand, and practical
usability and efficiency of the resulting protocols on the other hand.

Our Contributions. We first present an exhaustive language and a compiler
which allow protocol designers to efficiently and modularly specify and obtain
UC-ZK protocols. We then give an extension of the UC-framework allowing
protocol designers to also make usage of the more efficient proofs of existence
(as opposed to proofs of knowledge), which we also incorporate into our language.
Let us explain this in more detail in the next paragraphs.

A language for UC-ZK protocols. We provide an intuitive language for speci-
fying ZK-PoK for discrete logarithms akin to the CKY-language [24] where the
specification also allows one to assess the complexity of the specified protocol.
We then provide a compiler which translates these specifications into concrete
protocols. Even though this compiler is mainly based on existing techniques, it
offers unified and unambiguous interfaces and semantics for the associated pro-
tocols for the first time. It thus enables protocol designers to treat specifications
in our language as black-boxes, while having clearly defined security guarantees.

Proving existence rather than knowledge. In the UC-framework, all ZK proofs
are necessarily proofs of knowledge. However, when designing higher-level proto-
cols, it is often sufficient to prove that some computation was done correctly, but
not to show that the secret quantities are actually known. To allow protocol de-
signers to also make use of these more efficient protocols (which are not proofs of
knowledge any more), we extend our language and provide the necessary frame-
work to prove UC-security. Loosely speaking, we therefore formulate the gullible
ZK ideal functionality FgZK, and provide a special composition theorem which
allows protocol designers to use existence-proofs “as if they were ideal function-
alities,” if they are later instantiated as described in our compiler. Roughly, the
theorem states that proving the correctness of a protocol using FgZK in a slightly
non-UC-compliant way is sufficient for the protocol where FgZK is instantiated
by the real-world protocol to be UC-secure in the standard sense.

Related Work. The UC-framework has first been introduced by Canetti [2].
The notion of Ω-protocols was introduced in [25, 26], and so far the most effi-
cient UC-secure zero-knowledge proofs of knowledge have been proposed in [27].
Further, [28] analyzes UC-ZK in the presence of global setup [29]. The idea
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of committed proofs was first mentioned in [30]. We combine the techniques
of [27, 30] to compile proof specifications in our language to real protocols. In
particular this allows us to realize proofs of existence.

A language for specifying ZK-PoK for discrete logarithms was presented by
Camenisch and Stadler [10] and later refined by Camenisch et al. [24], but neither
of their realizations are UC-secure. Our notation is strongly inspired by theirs. In
fact, our language has already turned out to be very useful to describe ZK-PoK
in a companion paper [31], and in this paper we fulfill the promises given there.

Functionalities similar to FgZK have already been used by Lindell [32,33] and
Pass and Rosen [34] in different contexts. That is, all this work is on two-party
protocols which preserve their security guarantees under bounded-concurrent
self-composition and not on full UC-security. Prabhakaran and Sahai [35, 36]
also suggest generalizations of the UC-framework in which functionalities can be
realized that cannot be realized in the plain UC-framework. Their work differs
from ours in that they leave the standard model of polynomial time computation
by granting the adversary access to some super-polynomially powerful oracle
(“imaginary angel”), while our approach works in the standard computational
model. Furthermore, they suggest generic solutions for ZK-PoK while we are
aiming at practically efficient protocols. Finally, ideas similar to ours have also
been suggested in unpublished work by Nielsen [37].

Roadmap. After introducing some notation, recapitulating fundamental theory
and presenting two running examples in §2, we describe a basic language for
specifying UC-secure ZK-PoK protocols in detail in §3. In §4, we show how
proofs of existence rather than knowledge can be UC-realized, resulting in much
more efficient protocols, and extend our language accordingly. In this section we
further show how such specifications can be compiled to actual protocols. We
give several extensions to our basic language in §5 and briefly conclude in §6.

2 Preliminaries

Let us introduce some notation first. By s ∈R S we denote the uniform random
choice of some element s in set S. The group of signed quadratic residues [38]
for some modulus n is denoted by SRn. For two random ensembles,

s≈ denotes
statistical indistinguishability. Finally, two party protocols between parties P and
V with common input y and private input w to P are written as (P(w),V)(y).

We assume that the reader is familiar with the notion of Σ- and Ω-protocols,
and only give informal definitions here. A protocol (P(w),V)(y) is called a Σ-
protocol [39], if it is an honest verifier ZK-PoK in the non-UC model, consisting
of three messages being exchanged (a commitment t, a challenge c ∈R C =
{0, 1}k, and a response r), such that the secret w can be computed from any two
valid protocol transcripts with the same commitment but different challenges. A
protocol is called an Ω-protocol [25], if it further takes a common reference string
σ as additional input, such that when knowing a trapdoor to σ it is possible to
compute the prover’s secret input from any successful run of the protocol.
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An Ω-protocol is said to be f -extractable, if it is not possible to compute w
from any successful run, but only f(w) for some function f . In particular, we will
make use of two types of f -extractable protocols: one the one hand we will use
f(w1, . . . , wn) = (w1, . . . , wk) for some k ≤ n, i.e., protocols which only allow to
extract parts of the witness. On the other hand, we will have f(w1, . . . , wn) =
(w1, . . . , wn,A(w1, . . . , wn)), i.e., functions f which in addition to all witnesses
additionally output some further values depending on these witnesses. These
constructions will allow for an efficiency speedup compared to using plain Ω-
protocols, while often still ensuring appropriate security guarantees.

2.1 The UC-Model

We next briefly recapitulate the Universal Composability (UC) framework [2].
A party is a probabilistic polynomial time interactive Turing machine. Each

party P is uniquely determined by a pair (PIDP , SIDP ), where PIDP and SIDP

are its party ID and its session ID. Two parties share the same session ID if and
only if they are participants of the same instance of a protocol. Party IDs are
solely used to distinguish between participants of the same protocol instance.
Following [31], we assume that session IDs are structured as pathnames. That
is, for a protocol with session ID SID, the session ID of any of its subprotocols
is given by SID/subsession, where subsession is a unique local identifier, con-
taining the party IDs of all participating parties and shared public parameters.

The main concept of the UC framework is that of UC-emulation. Loosely
speaking, a protocol ρ UC-emulates some protocol φ, if ρ does not affect the
security of anything else than φ would have, no matter how many other instances
of ρ or other protocols are executed concurrently. This implies that ρ can safely
be used on behalf of φ without compromising security. The most interesting
case is where φ is some ideal functionality F, which can be thought of as an
incorruptible trusted party that takes inputs from all parties, performs some
local computations, and hands back outputs to the parties. Ideal functionalities
can be seen as formal specifications of cryptographic tasks and are secure by
definition. Now, if ρ UC-emulates F, one can infer that ρ does not leak any other
information to an adversary than F would have, and therefore securely realizes
the given task in arbitrary contexts. For a more precise description see [2].

Protocols using an ideal functionality F as a subroutine are called F-hybrid.
If not stated otherwise, all protocols we are going to present are Fach-hybrid
protocols, where Fach is an ideal functionality realizing authenticated (but not
necessarily private) channels. The functionality takes as input a message x from
some a sender, and forwards it to a receiver. The adversary learns x, and, upon
corruption of the sender, is allowed to change it before it is delivered.

The corruption model underlying our discussion is adaptive corruptions with
erasures. This can be seen as a bit of a compromise: while only considering
static corruptions would not properly reflect reality, assuming secure data era-
sures is necessary to obtain efficient protocols in this setting. However, even if
implementing erasures might be difficult, it is not impossible.
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The zero-knowledge functionality FR,R′
ZK

1. Wait for an input (prove, y, w) from P such that (y,w) ∈ R if P is honest, or
(y,w) ∈ R′ if P is corrupt. Send (prove, �(y)) to A. Further wait for a message
ready from V , and send ready to A.

2. Wait for a message lock from A.
3. Upon receiving a message done from A, send done to P . Further wait for an

input proof from A and send (proof, y) to V .

Corruption rules:

	 If P gets corrupted after sending (prove, y,w) and before Step 2, A is given
(y,w) and is allowed to change this value to any value (y′, w′) ∈ R′ at any
time before Step 2.

Fig. 1. The basic zero-knowledge functionality FR,R′
ZK , parametrized by two binary

relations R,R′ such that R′ ⊇ R [31]

The Basic UC-ZK Ideal Functionality. In the following we discuss the
basic ideal zero-knowledge functionality, which is formally specified in Figure 1.
It is parametrized by two binary relations, R and R′, which have the following
meaning: the relation R specifies the set of inputs (y, w) the functionality accepts
from an honest prover. For such inputs, the functionality informs the verifier that
the prover knows a witness for y, while an adversary does not learn w. Yet, if the
prover is corrupted, it is allowed to supply inputs from a binary relation R′ ⊇ R,
in which case the ZK property does not have to be satisfied any more.

The relation R might itself be parametrized by system parameters, specifying,
e.g., the concrete groups being used. We will model all such parameters as public
coin parameters, i.e., the environment might know the random coins being used
to generate the system parameters. This is helpful if the same parameters are
used in other protocols as well, e.g., to sign messages.

The functionality defined in Figure 1 differs from the standard one found in
the literature in two ways. Firstly, we delay revealing the claimed statement y to
V and A until the last possible moment, and only give �(y) to the adversary in
the first step, where � is a leakage function, which roughly gives some information
about the “size and shape” of y to A (to be precise, �() is a parameter of FZK

as well which will be disregarded in the remaining discussion). This approach
prevents the simulator from being over-committed in our constructions, and to
the best of our knowledge FR,R′

ZK can safely be used instead of the standard UC-
ZK functionality in any application. Secondly, we allow corrupt parties to supply
witnesses from a larger set than honest parties. This relaxation stems from the
soundness gap of most known efficient constructions for ZK-PoK for discrete
logarithms in the non-UC case [40] (which are underlying the constructions for
UC-ZK protocols): there, the verifier can only infer that the prover knows a
witness w such that (y, w) ∈ R′, whereas an honest prover is ensured that for
(y, w) ∈ R the verifier cannot learn the secret. We further elaborate on this in §3.

The same formalization of the ZK functionality was also used in [31].



A Framework for Practical Universally Composable (ZK-PoK) 455

2.2 Running Examples

We next introduce two running examples, which we are going to use throughout
the discussion to illustrate our techniques.

Example 2.1 (Running Example 1). Let be given an integer commitment y ∈
SRn for some safe RSA modulus n. Let further be given two generators g, h of
SRn. In this example, a prover is interested in proving knowledge of integers ω, ρ
such that y = gωhρ and ω ≥ 0. �
Numerous practically relevant applications require such proof goals as basic
building blocks for more complex protocols, e.g., [14, 16].

Example 2.2 (Running Example 2). Let be given a cyclic group H of prime order
q, and two generators, g, h of H. Let further be given a triple (u1, u2, e) ∈ H3, and
let one be interested in proving that (u1, u2, e) is a valid encryption of gα ∈ H for
some α ∈ Zq known to the prover under the semantically secure version of the
Cramer-Shoup cryptosystem [30,41]. That is, the task is to prove that (u1, u2, e)
is of the form (gρ, hρ, gαcρ) for a publicly known c ∈ H. �
This example stems from [31], where such proofs are repeatedly needed in the
context of credential-authenticated key-exchange and identification protocols.

3 A Language for Specifying UC-ZK Protocols

As shown in [42], any ideal functionality can be UC-realized given only function-
alities realizing commitments and ZK proofs, respectively. This result suggests
that ZK proofs are important building blocks of higher-level applications, and
will thus often be deployed when UC-realizing cryptographic tasks.

Taking this as a motivation, we describe an intuitive language for specifying
universally composable zero-knowledge protocols. The language is strongly in-
spired by the standard notation for describing ZK-PoK in the non-UC case which
was introduced in [10]. We stress that similar to there, our notation does not
only specify proof goals (i.e., what one wants to prove), but concrete protocols.
Especially for our results given in §4, this unambiguity is important.

We start by describing a basic language, which allows one to specify arbitrary
Boolean combinations of protocols proving knowledge of discrete logarithms (or
representations) in arbitrary groups. In many cases the complexity of the result-
ing protocol can be inferred directly from the proof specification.

A protocol proving knowledge of integers ω1, . . . , ωn satisfying a predicate
φ(ω1, . . . , ωn) is denoted as follows:

Kω1 ∈ I∗(mω1), . . . , ωn ∈ I∗(mωn) : φ(ω1, . . . , ωn) . (1)

Here, each witness ωi belongs to some integer domain I∗(mωi). The predicate
φ(ω1, . . . , ωn) is a Boolean formula containing ANDs (∧) and ORs (∨), built
from atomic predicates of the following form:

y =
u∏

i=1

g
Fi(ω1,...,ωn)
i .
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The gi and y are elements of some commutative group, and the Fi are integer
polynomials, i.e., Fi ∈ Z[X1, . . . , Xn]. Similar to [10], we make the convention
that values of which knowledge has to be proved are denoted by Greek letters,
whereas all other quantities are assumed to be publicly known.

We next discuss the single components of our basic language in more detail.

Groups. Different atomic predicates may use different groups. Besides effi-
ciently evaluable group operations we only require that group elements are effi-
ciently recognizable, and that the group order does not contain any small prime
divisors, where “small” can be seen as an implementation dependent parame-
ter which typically will have 160 − 256 bits. In particular, we do not make any
intractability assumption for the groups.

We stress that the group of quadratic residues modulo a safe RSA modulus n
(i.e., n = pq, where p, q, p−1

2 , q−1
2 are prime, denoted by QRn) does not satisfy

the above requirements, as group membership cannot be efficiently verified. We
recommend using the group of signed quadratic residues instead [38].

Predicates. We allow predicates to be arbitrary combinations of atomic pred-
icates by the Boolean connectives AND and OR. Also, witnesses may be reused
across different atomic predicates.

Domains. We allow the secret values ω1, . . . , ωn to be arbitrary integers. How-
ever, for implementation issues, for each i an integer mωi satisfying

ωi ∈ I(mωi) := {l ∈ Z : −mωi ≤ l ≤ mωi}
is required. The value of mωi can be chosen arbitrarily large, and is only needed
for the protocols resulting from the construction in §4.1 to be statistically zero-
knowledge for any ωi ∈ I(mωi). They then guarantee that the prover knows
witnesses in a larger interval, i.e., they prove knowledge of witnesses ω∗

i satisfying

ω∗
i ∈ I∗(mωi) := {l ∈ Z : −tmωi ≤ l ≤ tmωi},

where t is an implementation dependent parameter, which usually will have
about 160−256 bits and which is independent of the groups used in the predicate.
In particular, I∗(mωi) is thus uniquely defined even if ωi is used across different
atomic predicates. More precisely, we have t ≈ 2k+l + 2k − 1, where 2−k is the
success probability of a malicious prover, and l is a security parameter controlling
the tightness of the statistical ZK property of the protocol.

Formally, the gap between I(mωi) and I∗(mωi) is modeled by allowing corrupt
provers to hand in values satisfying a relation R′ ⊇ R to the ideal functionality,
whereas honest parties have to supply values in R, cf. §2.1.

As a special case, we allow to define I∗(mωi) = I(mωi) = Zq, if (i) the secret
ωi only occurs in atomic predicates for which the order of the group is known,
and (ii) the integer q is a common multiple of all these group orders. This slightly
increases the efficiency of the resulting protocols because of shorter exponents
in the modular exponentiations in the protocol.
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Induced Relation. Each proof specification spec of the form (1) induces two
binary relations, R = R(spec) ⊆ R′(spec) = R′, and a protocol π = π(spec),
cf. §4.1. The protocol π then UC-emulates FR,R′

ZK , i.e., it is zero-knowledge for
(y, w) ∈ R, and guaranteed the verifier that the prover supplied (y′, w′) ∈ R′.

Let us now illustrate our basic language by means of our two running examples.

Example 3.1 (Running Example 1). We start by resolving the condition ω ≥ 0
into the form (1) by rewriting it to ω =

∑4
i=1 χ

2
i [43]. Let ω be an element of

[−T, T ], i.e., mω = T . Then, clearly, we have that mχi = �√T � for all i. Also,
for y to be blinding, we can assume that mρ = �n/4�.

The proof goal is thus given by:

Kρ ∈ I∗(�n/4�), {χi}4
i=1 ∈ I∗(�

√
T �) : y = gχ2

1+χ2
2+χ2

3+χ2
4hρ . �

Example 3.2 (Running Example 2). In this case, all secret values are elements of
Zq, where q is the order of H. We therefore get the following proof specification:

Kα, ρ ∈ Zq : u1 = gρ ∧ u2 = hρ ∧ e = gαcρ .

In particular note that the requirement that ordH does not have small prime
divisors is satisfied as q was assumed to be prime, cf. Example 2.1. �

4 Proving Existence Rather Than Knowledge

Realizing ZK-PoK in the UC-framework is a computationally expensive task. On
a high level this is because the simulator needs to be able to extract the secret
witness without rewinding, and the most efficient currently known way to achieve
this is to include Paillier encryptions of the witnesses into the proof. Now, in
larger protocols, ZK-PoK are often only used to ensure that a computation was
done correctly, and the simulators of these higher-level protocols do not make
usage of the witnesses. For instance, in Example 2.2 proving the existence of ρ
is sufficient to imply the required well-formedness of the ciphertext.

Thus, often a functionality realizing the following steps would be sufficient:

1. Wait for an input (prove, y, w) from P such that there is a w̃ satisfying
(y, w̃) ∈ R and f(w̃) = w, and send (prove, �(y)) to A. Further wait for a
message ready from V , and send ready to A.

2. Wait for a message lock from A.
3. Upon receiving a message done from A, send done to P . Further wait for an

input proof from A and send (proof, y) to V .

That is, one is aiming for a functionality which checks whether the prover knows
some (partial) information w = f(w̃) for a full witness w̃, and informs the verifier
if this is the case. However, the problem is that by definition any zero-knowledge
proof in the UC-Framework is always a proof of knowledge. This is, because in
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general the existence of w̃ cannot be checked efficiently, and thus the witness
has to be given as an input for the functionality to be able to check whether the
statement is true. We now propose a framework that circumvents this problem
and allows one to use proofs of existence in the UC-model.

We extend our basic language by the additional E-quantifier. For secrets quan-
tified under E(instead of K) only their existence (instead of their knowledge)
is proved. A generalized specification of a proof goal now looks as follows:

K{ωi ∈ I∗(mωi)}n
i=1 : E

{
χj ∈ I∗(mχj )

}m

j=1
: φ(ω1, . . . , ωn, χ1, . . . , χm) (2)

In the following we show how such specifications are compiled into protocols,
and then describe the underlying theory and composition theorem which allow
to use such specifications as modular building blocks in larger protocols.

4.1 Compiling Specifications to Protocols

Due to space limitations we here only give a brief overview about how protocol
specifications are compiled into protocols. For a detailed description we refer to
the full version of this paper [44].

� First, the proof specification is rewritten to a predicate which only contains
atomic predicates having homogeneous linear relations in their exponents.
This can be done by applying standard techniques [40, 43, 45–48].

� In a second step, the prover computes integer commitments yi to all secret
witnesses ωi quantified by K.

� Next, using the technique proposed in [40], each conjunctive term in the
specification (i.e., each subformula of φ not containing any OR connectives)
is translated into a Σ-protocol which additionally proves that the witnesses
being used are the same as in the yi.

� Now, the different Σ-protocols are combined by the Boolean connectives as
specified by the predicate φ [48, 49].

� As a fifth step, the Σ-protocol is transformed into an Ω-protocol [25, 26].
This is achieved by Paillier-encrypting the witnesses quantified by K[50],
and proving that the encrypted witnesses are the same as in the yi.

� Using a simulation sound trapdoor commitment [27] and the committed-
proof idea of [30], one finally obtains a protocol UC-emulating FR,R′

gZK .

Theorem 4.1. Let spec be a proof specification of the form (1), and let R =
R(spec), R′ = R′(spec), and π = π(spec). Then π UC-realizes FR,R′

ZK with
respect to adaptive corruptions, assuming that securely erasing data is possible.
If this is not the case, it still UC-realizes FR,R′

ZK with respect to static corruptions.

The proof of this theorem is a straightforward adaption of that in [27] and is
omitted due to space limitations.

Let us discuss the potential speed-up and the semantical consequences coming
along with the usage of the E-quantifier by means of our two running examples.
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Example 4.2 (Running Example 1). For being able to see the speed-up, we first
have to resolve the polynomial relation of Example 3.1. Using the technique
from [43], we obtain the following equivalent proof specification:

K{ρi}4
i=1 ∈ I∗(�n/4�), {χi}4

i=1 ∈ I∗(�
√
T �), ρ′ ∈ I∗((4�

√
T � + 1)�n/4�) :

4∧
i=1

yi = gχihρi ∧ y = yχ1
1 yχ2

2 yχ3
3 yχ4

4 hρ′

Keeping in mind that the χi, ρi and ρ′ can be computed efficiently from ω, ρ
using Lagrange’s Four Square Theorem and the Rabin-Shallit algorithm [51], it
is easy to see that this specification is semantically equivalent to the following:

Kω ∈ I∗(T ), ρ ∈ I∗(�n/4�) : E{ρi}4
i=1 ∈ I∗(�n/4�), {χi}4

i=1 ∈ I∗(�
√
T �),

ρ′ ∈ I∗((4�
√
T � + 1)�n/4�) : y = gωhρ ∧

4∧
i=1

yi = gχihρi ∧ y =
4∏

i=1

yχi

i hρ′

This rewriting yields a significant efficiency speedup, as only Paillier encryptions
for 2 instead of 9 values are required. Overall, the prover (verifier) thus saves 14
(7) Paillier encryptions and evaluations of the integer commitment scheme. �

In this example, changing from the K- to the E-quantifier is a purely syn-
tactical step, which increases the efficiency of the protocol. This can be seen by
considering the underlying Ω-protocol as f -extractable, where f(w) = (w,A(w))
and A is the algorithm of [51]. However, in general it is not possible to efficiently
compute the witnesses quantified by E, and even their existence cannot be ver-
ified efficiently, as is illustrated by the following example.

Example 4.3 (Running Example 2). The following specification is sufficient for
proving the required well-formedness of the ciphertext:

Kα ∈ Zq : Eρ ∈ Zq : u1 = gρ ∧ u2 = hρ ∧ e = gαcρ .

This observation reduces the complexity of the prover’s algorithms in the proto-
col by 2 Paillier encryptions and 2 evaluations of the integer commitment scheme
(one each for their computation and their commitment in the Σ-protocol). �

Here, the underlying Ω-protocol is f -extractable, where f is of the form
f(w1, . . . , wn) = (w1, . . . , wk) for k < n, such that the remaining wi cannot
be computed. This implies that in general it is not possible to construct an ideal
functionality which captures the semantics of an expression such as (2), as it
would have to run in probabilistic polynomial time by definition [2].

4.2 The Gullible ZK Functionality and a Composition Theorem

In the following we describe the theoretical framework which allows protocols
designers to treat specifications containing values quantified by E(almost) as if
they were quantified by K.
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The gullible zero-knowledge functionality FR,R′
gZK

1. Wait for an input (prove, y, (w, x)) from P and send (prove, �(y)) toA. Further
wait for a message ready from V , and send ready to A.

2. Wait for a message lock from A.
3. Upon receiving a message done from A, send done to P . Further wait for an

input proof from A and send (proof, y) to V .

Corruption rules:

	 If P gets corrupted after sending (prove, y, (w, x)) and before Step 2, A is
given (y, (w,⊥)) and is allowed to change this value at any time before Step 2.

Fig. 2. The gullible zero-knowledge functionality FR,R′
gZK always informs the verifier that

the proof was correct

The gullible zero-knowledge functionality FR,R′
gZK expects the prover to supply

an image y and a pair (w, x) as inputs, and always informs the verifier that
(y, (w, x)) ∈ R′, no matter whether this is the case or not, cf. Figure 2. For an
honest prover, w will be the part of the witness for which knowledge has to be
proved, whereas x is the part for which only existence has to be proved. Upon
corruption of the prover, the adversary only learns y and w, but not x. This is
to model the intuitive goal of proofs of existence appropriately.

Our special composition theorem guarantees that ρπ/FR,R′
gZK UC-emulates some

other protocol φ, if ρ UC-emulates φ with respect to a certain type of environ-
ments, called nice environments, which we define next. On a high level, these are
environments which (almost) never ask the dummy adversary to send incorrect
inputs to the gullible zero-knowledge functionality:

Definition 4.4. Let A∗ be the dummy adversary attacking some FR,R′
gZK -hybrid

protocol ρ. We call an environment Z nice (with respect to ρ), if the statements
it requires A∗ to send to FR,R′

gZK acting as a prover are true with overwhelm-
ing probability. That is, with overwhelming probability Z asks A∗ to send pairs
(y, (w, x)) to FR,R′

gZK , for which there is an w̃ satisfying (y, w̃) ∈ R and f(w̃) = w.

Note that the value of x submitted by a nice environment is not restricted by
this definition, but only w has to be a valid partial witness.

We now define UC-emulation with respect to nice environments:

Definition 4.5. Let ρ be an FR,R′
gZK -hybrid protocol. We say that ρ UC-emulates

a protocol φ with respect to the dummy adversary A∗ and nice environments
(w.r.t. ρ), if there is an efficient simulator S such that no nice environment can
distinguish whether it is interacting with ρ and A∗ or with φ and S. That is, for
every nice environment Z it holds that EXEC(ρ,A∗,Z) ≈ EXEC(φ,S,Z).

Here, EXEC(ρ,A,Z) denotes the random variable given by the output of Z
when interacting with ρ and A, and analogously for EXEC(φ,S,Z).
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s

with respect to nice environments for arbitrary environments

s
',RR

gZKF
*A S *A Ŝ

Fig. 3. Illustration of Theorem 4.6: for proving that ρπ/FR,R′
gZK UC-emulates φ, it is

sufficient to show that ρ emulates φ for nice environments

Note that any non-nice environment could potentially distinguish between ρ
and φ by just submitting a false statement, which will always be accepted by
FR,R′

gZK . Informally, our special composition theorem now states that every non-

nice environment can be detected if FR,R′
gZK is instantiated by π as described in

the previous section, and thus ρπ/FR,R′
gZK is secure against arbitrary environments.

This allows a protocol designer to use ZK proofs of existence in a UC-compliant
way, almost as if they were ZK-PoK. The theorem is illustrated in Figure 3.

Theorem 4.6. Let spec be a proof specification of the form (2), and let R =
R(spec), R′ = R′(spec), and π = π(spec). Let further ρ be an FR,R′

gZK -hybrid
protocol, such that ρ UC-emulates a protocol φ with respect to the dummy adver-

sary and nice environments, and let ρ, φ be subroutine respecting. Then ρπ/FR,R′
gZK

UC-emulates φ (in the standard sense) with respect to adaptive corruptions if
securely erasing data is possible.

Proof (Sketch). We omit a full proof here, and only give the underlying intuition.
Let therefore S be the simulator for nice environments, which exists by assump-
tion. We have to show that there exists an efficient simulator Ŝ such that for arbi-
trary environments Z we have that EXEC(ρπ/FR,R′

gZK ,A∗,Z)
s≈ EXEC(φ, Ŝ,Z).

The idea is that Ŝ runs a copy of S and one of A∗ internally, and all messages
sent to or received from Z are routed through the simulated A∗. In general, all
communication is further forwarded to S, and Ŝ outputs whatever S does. The
only exception is made when encountering a call to π between two parties, P
and V . In this case Ŝ internally executes the protocol on the given inputs and
behaves as follows (independent of the corruption state of the parties):

� If the run is successful, then with overwhelming probability the input was
correct (i.e., Z “behaved nicely”), as the underlying Σ-protocol is an interac-
tive proof system [52]. Thus, Ŝ proceeds like the simulator for Theorem 4.1,
cf. [30] and [27], expect for the following difference: secret values quantified
by Eare given to the attacker in the real protocol π, but not in the ideal
functionality FgZK. This can be simulated because of the committed proof
technique by choosing these secrets at random within their domains when-
ever necessary. Then, Ŝ computes the corresponding image y′ and opens the
commitment made in its first message accordingly. As in [27], this is possi-
ble because of the trapdoor property of the used commitment scheme. Note
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here that these values are deleted before sending out the final message, so
the simulator never has to supply them after the adversary learned y.

� If however the run of π is not successful, the given input was incorrect. In
this case, Ŝ behaves as S in the case that no proof-message had been sent
by the attacker. �

The theorem can be applied as follows by a protocol designer: He first designs
a high-level protocol using proofs of existence as if there was a corresponding
ideal functionality. Then, in the security proof, he shows that the protocol using
FR,R′

gZK UC-emulates a target functionality φ, where he may restrict himself to

nice environments only. Finally, after instantiating FR,R′
gZK by π(spec), he obtains

a protocol emulating φ in the full UC-sense.

5 Enhancing the Basic Language

Even if the basic language presented in §3 allows one to describe almost arbitrary
algebraic properties of and relations among the secret values, it might often
be more convenient to declare them explicitly. Also, the requirement that all
witnesses must be integers may seem overly restrictive.

To solve this problems, we next give some enhancements of our basic language.
More precisely, we will first define a set of macros for specifying algebraic prop-
erties of the secret witnesses, and then give conditions under which knowledge
of group elements can be proved instead of integers.

5.1 Using Macros to Specify Algebraic Properties of Witnesses

The language described in §3 does not allow to directly specify algebraic prop-
erties of the secrets or algebraic relations among them, and thus it becomes
inconvenient to use for complex proof goals. We therefore extend the set of
atomic predicates by so-called macros, which allow one to directly describe al-
gebraic properties of the integer witnesses ωi. In particular, we allow additional
atomic predicates of the following forms, all of which can easily be translated
into polynomial relations:

� ω ≥ 0. Such statements can easily be translated into statements of the above
form by proving knowledge of integers χ1, . . . , χ4 such that ω =

∑4
i=1 χ

2
i ,

see [43].
More generally, we also allow expressions of the form ω ∈ [a, b], where a, b ∈ Z

are public. Such an expression is equivalent to ω − a ≥ 0 ∧ b − ω ≥ 0. If
b − a is even, this can be rewritten to the even more efficient proof goal
−(ω −m)2 ≥ d2, where m = a+b

2 and d = b−a
2 .

� gcd(ν1, ν2) = 1, where each ν1, ν2 can be either public or private. As be-
fore, such expressions can be rewritten to a polynomial form by introducing
additional integers α1, α2 and proving knowledge of α1, α2, ν1, ν2 such that
α1ν1 + α2ν2 = 1.
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� ν1|ν2, where ν1, ν2 can be either public or private. By introducing an ad-
ditional secret δ, such relations can be expressed in polynomial form as
δν1 − ν2 = 0.

Example 5.1 (Running Example 1). Using the first of our specific macros, a pro-
tocol for proving knowledge of a non-negative opening of the integer commitment
y can be described as follows:

Kω ∈ I∗(T ), ρ ∈ I∗(�n/4�) : y = gωhρ ∧ ω ≥ 0 �
Before moving to the next extension of our basic language, we point out

that using macros impedes the possibility of estimating the computational costs
of the protocol from its specification, which was a favorable property of our
basic language. This can be seen by comparing Example 5.1 to Example 3.1: the
seemingly simple macro w ≥ 0 entails 5 atomic predicates, and 9 secret witnesses,
and thus conceals very much of the computational costs of the resulting protocol.

As an important remark we note that every auxiliary variables χi, which has
to be introduced when resolving any of these macros, can be quantified by E.
This can easily be seen by noting that considering the resulting Ω-protocol as
f -extractable for f(w) = (w,A(w)), where A is the algorithm the honest prover
used to compute the χi from ω.

5.2 Proving Knowledge of Group Elements

Sometimes it is required to prove knowledge of group elements instead of integers,
which is not possible in our basic language. For instance, one might be interested
in proving possession of a digital signature on a given message, which, in the
case of CL-signatures [53], essentially boils down to proving knowledge of a group
element ω such that e(ω, z) = y, where e is a bilinear map, and y, z are publicly
known.

We thus also allow one to specify protocols proving knowledge of a preimage
ω ∈ G under some group homomorphism ψ : G → H, if ψ satisfies two basic
properties: (i) the finite group G comes along with a generator g and an upper
bound B on its order, and (ii) the discrete logarithm problem is hard in H. Then
expressions of the following form, which, of course, can arbitrarily be combined
with expressions of the basic language, may be used:

Kω ∈ G : y = ψ(ω) .

When compiling protocol specifications containing such expressions, one first
has to perform the following steps, and then proceeds as in §4.1. The idea of the
construction is to first blind the secret preimage ω using g, and then to prove
knowledge of the blinding:

1. Set m′ = 2lB, where l is a security parameter.
2. Choose ω′ ∈R I(m′), and set u = gω′

ω, y′ = ψ(u)y−1, and g′ = ψ(g).
3. Rewrite the proof goal to Kω′ ∈ I∗(m′) : y′ = g′ω

′
, and add u to commit-

ment of the Σ-protocol.
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6 Conclusion

We presented a framework enabling the use of efficient zero-knowledge protocols
in the construction of UC-secure protocols. These protocols can be specified in
a unified and unambiguous notation and then generated by a compiler. To make
proving security of construction that make use proof of existence protocols easy,
we provide a special composition theorem. By means of two running examples we
illustrated that using proofs of existence (as opposed to proofs of knowledge) can
significantly reduce the computational overhead required to achieve UC-security
for many practical applications without affecting security.

We believe that by reducing the costs of UCZK protocols to a practically
acceptable level in many cases our result can contribute to a wider employment
of UC-secure protocols in the real world.
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2 Université catholique de Louvain, ICTEAM Institute, Belgium

Abstract. We present the first provably secure constructions of univer-
sally composable (UC) commitments (in pairing-friendly groups) that
simultaneously combine the key properties of being non-interactive, sup-
porting commitments to strings (instead of bits only), and offering re-
usability of the common reference string for multiple commitments. Our
schemes are also adaptively secure assuming reliable erasures.

1 Introduction

UC-security. Cryptographic protocols being proven secure in the Universal
Composability (UC) framework [6] bring several fundamental benefits compared
to protocols for which only stand-alone proofs of security exist. A widely rec-
ognized advantage is that executions of UC-secure protocols remain secure in
arbitrary, possibly malicious environments — essentially what one should ex-
pect from security protocols deployed in the real world. UC protocols do not
receive much attention from practitioners, who in addition to security take many
other factors into account such as efficiency and robustness, especially when it
comes to protocols that require network communication. In this work we focus
of universally composable commitment schemes [8] that are useful for various
distributed applications.

UC commitments and their properties. In general commitment schemes
are cryptographic protocols that proceed in two phases: In the commit phase
the sender computes a commitment c to some message m and communicates c
to the receiver; in the open phase the sender discloses the message m together
with some proof d to provide assurance that m was indeed used in the commit
phase. Typically, commitment schemes serve as building blocks in higher level
applications, which is why striving for UC-security of these schemes is worth-
while. It is known that UC commitments imply key exchange and more general
forms of secure two- and multi-party computation [9,12]. Unfortunately, secu-
rity of commitment schemes under universal composition cannot be obtained
without additional setup assumptions. A detailed explanation of the underlying
simulation problem and work-around has been given in the seminal work by
Canetti and Fischlin [8], who also showed that the UC-security of commitments
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prevents their malleability, which is critical to many anticipated applications of
these schemes. Since [8], one of the most basic and widely used setup assump-
tions is the Common Reference String (CRS) model, which is also used in our
work. Note that alternative constructions of UC commitments appeal to stronger
setup assumptions like random oracles [18] or hardware tokens [19]. In addition
to setup assumptions prior work has identified several key properties, based on
which UC commitment schemes are often compared. These properties (which we
list below) may serve as “quality criteria” for UC commitments since they shed
light on the security and potential practicality of the schemes.

Efficiency. Several factors contribute to the overall efficiency of a UC com-
mitment scheme. In particular, its communication complexity measures the to-
tal amount of bits (often in dependency on the security parameter) that are
transmitted between the sender and the receiver during the both phases of the
protocol. These costs also include the actual commitment length, i.e., number
of bits that receiver would have to store until the open phase. The computa-
tional complexity of a commitment schemes indicates the total amount of work
performed by participants and is often given in form of costly public-key oper-
ations (e.g. modular exponentiations). Earlier UC commitments, e.g. [8,9], were
bit commitments and required � executions of the basic protocol to commit to an
�-bit string. This results usually in a commitment length of Ω(� ·λ), whereas the
length should ideally be O(λ) only.1 Modern UC schemes, such as [13,12,5,22,20],
are more efficient in that they can be used to commit to �-bit strings directly
without incurring an expansion factor proportional to the security parameter.
Another efficiency indicator of UC commitments in the CRS model is the length
of the CRS, which should ideally remain independent of the number of possible
users. Note that this latter property is satisfied by many UC schemes today,
e.g. [12,5,22,20].

CRS re-usability. UC commitments in the CRS model assume trusted gen-
eration of the CRS parameters. Of practical relevance is the question of whether
these parameters are re-usable across polynomially many executions of the com-
mitment protocol or whether they need to be set up for each new commit phase.
Clearly, re-usability of CRS parameters is desirable in practice, where setting
up these parameters anew for each commitment operation may not always be
possible. Note that CRS re-usability is provided by many existing UC schemes,
e.g. [13,12,5,20], though the CRS length in [13] is not constant.

Interaction. Another important property of a UC commitment scheme is
whether its phases require interaction between the sender and the receiver. Ide-
ally, UC commitment should be non-interactive, meaning that each phase should

1 Due to the so-called extraction property of UC commitments [8] a commitment needs
to somewhat contain the entire message, stipulating that the commitment itself is
at least as large as the message. Hence, demanding a length O(λ) usually requires
� ≤ λ.
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contain at most one message sent by the sender towards the silent receiver. Such
property is, for example, inherent to many regular (non-UC) commitments, e.g.
[26]. Interactivity may increase the communication complexity by several fac-
tors, since in addition to the actual commitment length the amount of bits
communicated during the interactive phases would have to be counted as well.
For example, the two most recent interactive commitments by Lindell [20] have
commitment lengths of only 4 resp. 6 group elements, while their total commu-
nication complexity amounts to 14 resp. 19 group elements (we remark that for
concrete choices of parameters [20] still remains very efficient in this respect).

The actual advantage of non-interactive UC commitments from the practical
point of view is resistance to denial of service attacks: Within an interactive
phase (commit or open) parties maintain a state between the communication
rounds. It is thus possible for an adversary (malicious sender/receiver or man-
in-the-middle), by sending incorrectly formed messages during the interaction
rounds, to lure parties into wasting their (computational) resources — some-
thing which does not happen in the non-interactive case. Note that, even if no
adversary is present, interaction between the sender and the receiver may still
be endangered by faults. Earlier UC bit commitments [8,9] were non-interactive.
However, in the more desirable case of UC string commitments, the only known
non-interactive scheme is due to Nishimaki et al. [22]. However, [22] does not al-
low CRS re-usability, which arguably diminishes the advantage gained through
its non-interactivity. Other existing UC string commitments, e.g. [13,12,5,20],
are all interactive, either in the commit or in the open phase.

UC commitments that have acceptably low computation and communication
costs, allow CRS re-usability, and do not require any interaction between the
sender and the receiver would already be ideal from the practical point of view.
In addition to these properties there are further desirable properties which should
also be assessed concerning their impact on their relevance in practice.

Adaptive security. A typical question asked about UC-secure protocols is
whether security is proven against static or adaptive adversaries. A static ad-
versary can corrupt protocol participants at the outset of the protocol only. In
case of UC commitments such corruptions would be allowed only prior to the
execution of the commit phase, even before the CRS is generated. Since com-
mitments always have two phases with the open phase being executed after the
commit phase, it appears unrealistic to exclude corruptions between the two
phases. Hence, adaptive UC-security, where the adversary can corrupt partici-
pants at any point in time, revealing all their secrets (including randomness being
used), appears of higher practical relevance. We observe that some of known UC
commitments are adaptively secure, e.g. [8,9,12,5,20].

Secure erasures. Another property inherent to the UC-security of commit-
ment schemes is whether they rely on the additional assumption that secrets can
be securely erased. This assumption is often used in combination with adaptive
security where secrets used in the commit phase that are no longer needed for
the open phase are erased to allow simulation in case of later corruptions. Al-
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though secure erasures could be realized in practice, it is still desirable for a UC
commitment scheme to avoid them. We observe that most adaptively secure UC
commitments require secure erasures, the only exception (in addition to less effi-
cient bit commitments from [8,9]) where adaptivity is achieved without erasures
is the interactive string commitment by Damg̊ard and Groth [12].

Hardness assumptions. Last but not least, in addition to an inevitable setup
assumption (e.g. CRS) and possible reliance on secure erasures, UC-security
of commitments is typically based on further hardness assumptions. These are
either general assumptions such as existence of trapdoor permutations as in
[8,9] or more concrete number-theoretic assumptions, which are more likely to
give rise to efficient schemes. For example, UC commitments by Damg̊ard and
Nielsen [13] rely on p-subgroup [23] or Decision Composite Residuosity (DCR) as-
sumption [25]. The DCR assumption has also been used in the UC commitments
by Damg̊ard and Groth [12] (together with Strong RSA (SRSA) assumption), by
Camenisch and Shoup [5], and by Nishimaki et al. [22]. The recent UC commit-
ments by Lindell [20] rely on the more established Decision Diffie-Hellman (DDH)
assumption, which has also been used in one of the bit commitment schemes by
Canetti and Fischlin [8] and in a particular instantiation of Nishimaki et al.’s
scheme [22] with El-Gamal based matrix encryption of Peikert and Waters [27]
(those communication complexity is asymptotically comparable to that of a bit
commitment scheme though).

The current state of affairs is that none of the existing CRS-based UC-secure
string commitment schemes fulfills all of the above mentioned “quality criteria”.

1.1 Our Results and Comparison to Prior Work

Results. We propose the first UC-secure string commitment schemes in the
(standard) CRS model with the so far unique combination of key properties:
Our schemes have constant costs (i.e., independent of the message length and the
number of participants) for communication, computation, and CRS length. They
offer re-usability of the CRS for polynomially many executions. Both schemes
are completely non-interactive (i.e., the commitment and opening phases both
consist of a single message from the sender to the receiver). We prove their
UC-security under adaptive corruptions (with erasures) using the well-known
Decision Linear (DLIN) assumption [3]. As demonstrated in Table 1, such UC
string commitments were not known to exist before. In particular, their ability
to commit to strings with re-usable CRS in combination with non-interactivity
and adaptive security seems so far unique.2

Our schemes are also the first UC-secure commitments designed for pairing-
friendly groups. The main ingredients of our schemes are Groth-Sahai proofs [16]

2 Zhu [30] claims to have a non-interactive, UC-secure string commitment without
erasures for re-usable common reference strings; we were unable to verify the proof
of the scheme, though. In fact, the encryption-based scheme does not seem to satisfy
the usual equivocality property of such commitments.
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Table 1. Comparison of UC commitment schemes in the CRS model

UC commitment comm. complexity CRS non-inter. without adaptive hardness
schemes in sec.par.(bits) re-usable phases erasures security assumptions

CF01 (1) [8] O(
 · λ) — � � � TDP
CF01 (2) [8] O(
 · λ) � � — � CFP + CCA PKE
CF01 (3) [8] O(
 · λ) � � � � DDH + UOWHF
CLOS02 [9] O(
 · λ) � � � � TDP

DN02 (1) [13] 18 · λ (13824) � — � � p-subgroup
DN02 (2) [13] 24 · λ (18432) � — � � DCR
DG03 [12] 16 · λ (12288) � — � � DCR + SRSA
CS03 [5] 94 · λ (72192) � — — � DCR + CRHF
NFT09 [22] 21 · λ (16128) — � — � DCR + sEUF-OT

NFT09 [22] O(
 · λ) — � — � DDH + sEUF-OT
Lin11 (1) [20] 14 · λ (3584) � — � — DDH + CRHF
Lin11 (2) [20] 19 · λ (4864) � — — � DDH + CRHF

Scheme I 21 · λ (5376) � � — � DLIN + CRHF
Scheme II 40 · λ (10240) � � — � DLIN + CRHF

Complexity costs: 
 - length of committed messages, λ - security parameter,
(bits) - total number of communicated bits (based on λ)

In DN02, DG03, CS03, and DCR-based NFT09, λ is the length of the prime factor of N
(RSA modulus). We use λ = 768 bits.

In Lin11 λ is the length of the prime group order. We use λ = 256 bits.
In our schemes λ is the length of the prime group order of the input group.

We use λ = 256 bits (cf. [24] for parameter choice).
Hardness assumptions: TDP - trapdoor permutations, CFP - claw-free permutations,

UOWHF - universal one-way hash functions, CRHF - collision-resistant hash functions,
DDH - Decision Diffie-Hellman, DCR - Decision Composite Residuosity,
SRSA - Strong RSA, sEUF-OT - strongly unforgeable one-times signature,
DLIN - Decision Linear.

and Cramer-Shoup encryption (under DLIN assumption [3]). Although pairing
operations are traditionally costlier in comparison to modular exponentiations in
the RSA or Discrete Logarithm settings, constant costs incurred by our schemes
seem still to be sufficient for practical purposes. As demonstrated in Table 1, the
total communication costs of our schemes, when instantiated with appropriate
security parameters, are lower than in all previous DCR-based constructions. For
our first scheme, the costs are only slightly higher than for the recent (interactive)
UC commitments by Lindell [20]. The entire communication complexity amounts
to 21 group elements for our first scheme and 40 elements for our second scheme.
Yet our schemes have opposite trade-offs regarding the two phases: Our first
scheme outputs commitments containing only 5 group elements and transmits
16 elements in the open phase. In contrast, our second scheme requires 37 group
elements to commit and only 3 elements to open.

Techniques. Our first scheme is inspired by the UC commitment scheme of
Lindell [20], where the committer encrypts the message in the commit phase
using the DDH-based Cramer-Shoup encryption scheme, and in the open phase,
simply reveals the committed message and gives an interactive Sigma proof that
the message is indeed the one encrypted in the ciphertext. Using non-interactive
Groth-Sahai proofs we show that this interaction can be safely removed while
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preserving UC security and without losing much of the efficiency. We thus use
the DLIN assumption instead of DDH. Observe that DLIN assumption is often
referred to as a natural counterpart of the DDH assumption in bilinear groups
where the latter does not hold. More surprisingly, when transforming Lindell’s
scheme, we also obtain security against adaptive corruptions essentially for free.
That is, the basic scheme in [20] — which is the starting point for our first
construction — is only secure against static corruptions. Lindell then provides
additional means to derive a variant which withstands adaptive corruptions. In
[20], there is no way to prove the basic scheme adaptively secure (even with
reliable erasures) because the committer needs to store the randomness used
to encrypt in order to give the interactive zero-knowledge proof in the opening
phase, and thus cannot erase it after having committed. Having to present this
randomness in case of adaptive corruption, however, inhibits the necessary equiv-
ocality property of commitments [8], the ability to adapt simulated commitments
appropriately. In our case, the committer can compute the non-interactive proof
already in the commitment phase and present it together with the message in
the decommitment phase. By this, the committer only needs to store the proof
and can erase any randomness from the commitment phase, buying us security
against adaptive corruptions (with erasures).

At this point, we notice that Groth-Sahai proofs are widely used in many
cryptographic constructions for reducing the amount of interaction. Interest-
ingly, their applicability to the setting of UC commitments was not explored so
far. We thus show that their techniques are powerful enough to allow construc-
tion of UC commitments with, up till now, unique properties. We demonstrate
this not only with our first scheme, based on the Lindell’s commitments (while
using the DLIN assumption instead of DDH), but also with our second scheme,
which builds upon Camenisch-Shoup commitments [5] with the difference that
we work in a discrete logarithm setting instead of relying on the composite resid-
uosity assumption as in [5].

We obtain our second scheme using pairing-based trapdoor commitments to
group elements [10,15] in combination with Groth-Sahai proofs and DLIN-based
Cramer-Shoup encryption. This scheme can be viewed as the UC secure non-
interactive (pairing-based) version of the scheme from [5] with the following
tweak: We use trapdoor commitments to group elements prior to the encryp-
tion scheme. Unlike [5], where a Pedersen commitment [26] to message M with
randomness r is computed and followed by a verifiable encryption of (M, r), we
trapdoor-commit to M (viewed as group element) and then encrypt only M . Yet,
we can still extract an opening of the trapdoor commitment when the need arises
in the security proof (due to the properties of Groth-Sahai commitments). The
resulting scheme is somewhat more efficient in communication than if the full
opening of the trapdoor commitment is encrypted as in the original construction
[5]. We also notice that description of the UC commitment scheme in [5] was
limited to the presentation of main ideas but a concrete specification and the
eventual analysis of security were left open. With our pairing-based construction
and the above mentioned tweak, we not only remove interaction in this scheme
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and significantly improve its communication complexity but essentially develop
the initial ideas from [5] to a full-fledged specification and the corresponding
proof of security.

Organization. We recall the basic building blocks that we need in Section 2.
Section 3 then presents our non-interactive (adaptively) UC-secure string com-
mitment scheme with re-usable CRS together with the detailed proof of security.

2 Preliminaries

2.1 Complexity Assumptions

In the paper, we use groups (G,GT ) of prime order p with a generator g ∈ G

and endowed with a mapping e : G × G → GT such that e(ga, gb) = e(g, g)ab

for all a, b ∈ Zp and e(g, h) �= 1GT whenever g, h �= 1G. We occasionally con-
sider the Cartesian product of groups as vector spaces where component-wise
multiplication (A,B,C) · (X,Y, Z) = (AX,BY,CZ) is the vector addition and
component-wise exponentiation (A,B,C)x = (Ax, Bx, Cx) is the scalar multi-
plication. In these groups, we rely on the following assumption.

Definition 1 ([3]). The Decision Linear Problem (DLIN) in G consists
in distinguishing the distribution D1 = {(g, ga, gb, gac, gbd, gc+d)|a, b, c, d R← Z∗

p}
from the distribution D2 = {(g, ga, gb, gac, gbd, gz)|a, b, c, d, z R← Z∗

p}.

2.2 Groth-Sahai Proof Systems

In the following notations, for equal-dimension vectors A and B containing
group elements, A · B stands for their component-wise product.

When based on the DLIN assumption, the Groth-Sahai (GS) proof systems
[16] use a common reference string comprising vectors g1, g2, g3 ∈ G3, where
g1 = (g1, 1, g), g2 = (1, g2, g) for some g1, g2 ∈ G. To commit to X ∈ G, one
sets C = (1, 1, X) · g1

r · g2
s · g3

t with r, s, t R← Z∗
p. When proofs should be

perfectly sound, g3 is set as g3 = g1
ξ1 · g2

ξ2 with ξ1, ξ2
R← Z∗

p. Commitments
C = (gr+ξ1t

1 , gs+ξ2t
2 , X · gr+s+t(ξ1+ξ2)) are then Boneh-Boyen-Shacham (BBS)

ciphertexts [3] that can be decrypted using α1 = logg(g1), α2 = logg(g2). In the
witness indistinguishability (WI) setting, vectors g1, g2, g3 are linearly indepen-
dent and C is a perfectly hiding commitment. Under the DLIN assumption, the
two kinds of CRS are indistinguishable.

To commit to an exponent x ∈ Zp, one computes C = ϕx · g1
r · g2

s, with
r, s R← Z∗

p, using a CRS comprising vectors ϕ, g1, g2. In the soundness setting
ϕ, g1, g2 are linearly independent vectors (typically, one chooses ϕ = g3 ·(1, 1, g)
where g3 = g1

ξ1 ·g2
ξ2) whereas, in the WI setting, choosing ϕ = g1

ξ1 ·g2
ξ2 gives

a perfectly hiding commitment since C is always a BBS encryption of 1G. On a
perfectly sound CRS (where g3 = g1

ξ1 ·g2
ξ2 and ϕ = g3 ·(1, 1, g)), commitments

to exponents are not fully extractable since the trapdoor (α1, α2) only allows re-
covering gx from C = ϕx ·g1

r ·g2
s. To prove that committed variables satisfy a
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set of relations, the Groth-Sahai techniques require one commitment per variable
and one proof element (made of a constant number of group elements) per relation.
Such proofs are available for pairing-product relations, which are of the type

n∏
i=1

e(Ai,Xi) ·
n∏

i=1

·
n∏

j=1

e(Xi,Xj)aij = tT , (1)

for variables X1, . . . ,Xn ∈ G and constants tT ∈ GT , A1, . . . ,An ∈ G, aij ∈ G,
for i, j ∈ {1, . . . , n}. Efficient proofs also exist for multi-exponentiation equations

m∏
i=1

Ayi

i ·
n∏

j=1

X bj

j ·
m∏

i=1

·
n∏

j=1

X yiγij

j = T, (2)

for variables X1, . . . ,Xn ∈ G, y1, . . . , ym ∈ Zp and constants T,A1, . . . ,Am ∈ G,
b1, . . . , bn ∈ Zp and γij ∈ G, for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

Multi-exponentiation equations admit zero-knowledge proofs at no additional
cost. On a simulated CRS (prepared for the WI setting), the trapdoor (ξ1, ξ2)
makes it possible to simulate proofs without knowing witnesses, and simulated
proofs are perfectly indistinguishable from real proofs. As for pairing-product
equations, NIZK proofs are often possible (this is typically the case when the
target element tT has a special form) but usually come at some expense.

In both cases, proofs for quadratic equations (namely, when at least one of
the coefficients aij and γij is non-zero in (1) and (2), respectively) cost 9 group
elements. Linear pairing-product equations (when aij = 0 for all i, j in (1))
take 3 group elements each. Linear multi-exponentiation equations of the type∏n

j=1 X bj

j = T (resp.
∏m

i=1 Ayi

i = T ) demand 3 (resp. 2) group elements.

2.3 Cramer-Shoup Encryption Based on DLIN Assumption

This section recalls a variant of the Cramer-Shoup encryption scheme [11] based
on the DLIN assumption and suggested in [28,17]. The scheme offers IND-CCA2
security for encryption schemes with labels [29]. If we assume public generators
g1, g2, g that are parts of public parameters (i.e., a common reference string),
the receiver’s public key is made of

X1 = gx1
1 gx X3 = gx3

1 gy X5 = gx5
1 gz

X2 = gx2
2 gx X4 = gx4

2 gy X6 = gx6
2 gz.

To encrypt m ∈ G under the label L, the sender picks r, s R← Z∗
p and computes

ψCS =
(
U1, U2, U3, U4, U5

)
=
(
gr
1, g

s
2, g

r+s, m ·Xr
5X

s
6 , (X1X

α
3 )r · (X2X

α
4 )s
)
,
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Functionality FMCOM

FMCOM is parameterized by a message space M interacts with parties P1, . . . , Pn

and adversary S as follows.

– Upon receiving (commit, sid, cid, Pi, Pj ,M) from Pi, where M ∈ M, record
(sid, cid, Pi, Pj ,M) and send a publicly delayed (receipt, sid, cid, Pi, Pj) to
Pj . Ignore any subsequent (commit, sid, cid, Pi, Pj , ∗) messages.

– Upon receiving (open, sid, cid, Pi, Pj) from Pi, if some tuple (cid, Pi, Pj ,M)
was previously recorded then send a publicly delayed (open, sid, cid, Pi, Pj ,M)
to Pj . Otherwise halt.

– Upon receiving (corrupt-committer, sid, cid) from the adversary, check if
there is already an entry (sid, cid, Pi, Pj ,M) and, if so, send M to the ad-
versary. If the adversary provides some M ′ and (receipt, sid, cid, Pi, Pj)
has not yet been written on Pj ’s output tape, then change the record to
(sid, cid, Pi, Pj ,M

′).

Fig. 1. Functionality FMCOM for Multiple Commitments

where α = H(U1, U2, U3, U4, L) ∈ Zp is a collision-resistant3 hash function.
Given a pair (ψCS, L), the receiver computes α. If U5 �= Ux1+αx3

1 Ux2+αx4
2 Ux+αy

3

then the receiver outputs ⊥; otherwise he outputs m = U4/(Ux5
1 Ux6

2 Uz
3 ).

2.4 Ideal Functionality for Multiple Commitments

The ideal commitment functionality FMCOM described in Figure 1 is the one
defined by Canetti and Fischlin [8] but, as in [18], we consider publicly delayed
messages, where the message is delivered to the corresponding party only upon
confirmation by the adversary (who sees the message first). Note that the func-
tionality now takes another unique “commitment identifier” cid, which may be
used if a sender commits to the same receiver multiple times within a session.
We assume that the combination of sid, cid is globally unique.

3 Scheme I: A Tweak on Lindell’s Scheme

Our first construction builds on Lindell’s first interactive UC-secure commitment
scheme from [5], which is only known to be secure against static corruptions in its
original variant. We show how to utilize Groth-Sahai proofs so as to completely
remove interaction, while still guaranteeing UC security (in the adaptive sense)
and preserving all other valuable properties of the scheme.

3 The security proofs of the original Cramer-Shoup encryption scheme [11] and its
variants based on the DLIN assumption [17,28] only require a universal one-way
hash function [21]. As mentioned in [4], for example, collision-resistance is needed
when the scheme is extended so as to support labels.



Non-interactive and Re-usable Universally Composable String Commitments 477

CRS-Gen(λ): choose bilinear groups (G,GT ) of order p > 2λ, g R← G and
g1 = gα1 , g2 = gα2 , with α1, α2

R← Z∗
p. Define vectors g1 = (g1, 1, g),

g2 = (1, g2, g) and g3 = g1
ξ1 · g2

ξ2 with ξ1, ξ2
R← Z∗

p, which form a Groth-
Sahai CRS g = (g1, g2, g3) for the perfect soundness setting. Then, choose
a collision-resistant hash function H : {0, 1}∗ → Zp and generate a public
key pk = (X1, . . . , X6) for the linear Cramer-Shoup encryption scheme. The
CRS consists of crs = {λ,G,GT , g,g, H, pk}.

Commit(crs,M, sid, cid, Pi, Pj): to commit to message M ∈ G for party Pj

upon receiving a command (commit, sid, cid, Pi, Pj ,M), party Pi parses crs
as {λ,G,GT , g,g, f , pk}, respectively, first fetches crs from FCRS if not done
already, and then conducts the following steps.
1. Choose random exponents r, s R← Zp and compute a Cramer-Shoup

encryption ψCS = (U1, U2, U3, U4, U5) of M ∈ G under the label L =
Pi||sid||cid and the public key pk ∈ G6 as in Section 2.3.

2. Generate a NIZK proof πval-enc that ψCS = (U1, U2, U3, U4, U5) is a valid
encryption of M ∈ G. This requires to commit to exponents r, s and
prove that these exponents satisfy the multi-exponentiation equations

U1 = gr
1, U2 = gs

2, U3 = gr+s, (3)
U4/M = Xr

5X
s
6 , U5 = (X1X

α
3 )r · (X2X

α
4 )s

(which only takes 5 times 2 elements as base elements are all public).
Including commitments comr and coms to exponents r and s, the proof
πval-enc demands 16 group elements overall.

3. Pi erases (r, s) after the generation of πval-enc but retains the state in-
formation DM = πval-enc.

The commitment σ = ψCS comprises 5 group elements. Upon receiving
(Com, sid, cid, σ) from Pi, party Pj verifies that σ = ψCS can be parsed as an
element of G5. If yes, Pj outputs (receipt, sid, cid, Pi, Pj). Otherwise, Pj

ignores the message.
Open

(
crs,M,DM , sid, cid, Pi, Pj

)
: when receiving a command (open, sid, cid, Pi,

Pj ,M), party Pi reveals M and his state information DM = πval-enc to Pj .
Verify

(
crs, (Com, sid, cid, σ),M,DM , sid, cid, Pi, Pj

)
: Pj verifies the proof πval-enc

and ignores the opening if verification fails. If both proofs verify, Pj outputs
(open, sid, cid, Pi, Pj ,M) iff cid has not been used with this committer pre-
viously. Otherwise, Pj also ignores the message.

Theorem 1. The above commitment scheme securely realizes FMCOM in the
CRS model against adaptive corruptions (assuming reliable erasure), provided
that (i) the DLIN assumption holds in G; (ii) H is collision-resistant.

Proof. We construct an ideal-world adversary S that runs a black-box simu-
lation of the real-world adversary A by simulating the protocol execution and
relaying messages between A and the environment Z. The ideal-world adversary
S proceeds as follows in experiment IDEAL.
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1. S sets up crs by choosing g = (g1, g2, g3) as a Groth-Sahai CRS for the
perfect WI setting (namely, g3 = g1

ξ1 ·g2
ξ2 ·(1, 1, g)−1 for some ξ1, ξ2

R← Z∗
p).

Also, S generates a public key pk = (X1, . . . , X6) as specified by the linear
Cramer-Shoup encryption scheme.

2. When the environment Z requires some uncorrupted party Pi to commit to a
message and send (Commit, sid, cid, Pi, Pj ,M) to the functionality, the simu-
lator S is notified that a commitment operation took place but does not know
the committed message M . Therefore, S chooses a fake random message
R R← G and computes a linear Cramer-Shoup encryption ψCS of R ∈ G using
random exponents r, s R← Zp. The adversary A is then given (Com, sid, cid, σ)
with σ = ψCS and, when P̃j eventually obtains (Com, sid, cid, σ) and outputs
(Receipt, sid, cid, Pi, Pj), the simulator S allows FMCOM to proceed with
the delivery of message (Commit, sid, cid, Pi, Pj) to Pj .

3. If Z requires some uncorrupted party Pi to open a previously generated
commitment σ = ψCS to some message M ∈ G, S learns M from FMCOM

and, using the trapdoor ξ1, ξ2 ∈ (Zp)2 of the simulated Groth-Sahai CRS,
generates a simulated proof πval-enc that equations (3) are satisfied for the
message M obtained from FMCOM. The internal state of P̃i is modified to be
DM = πval-enc, which is also given to A as the real-world de-commitment.
Before allowing FMCOM to deliver the message (Open, sid, cid, Pi, Pj ,M) to
Pj , algorithm S waits for P̃j to acknowledge the opening in the simulation.

4. When the simulated adversary A delivers a commitment (Com, sid∗, cid∗, σ∗)
for party P̃i to party P̃j and the latter still has not received a commitment
with subsession ID cid∗ from P̃i, S proceeds as follows. If P̃i (and thus Pi as
well) is uncorrupted, S notifies FMCOM that the commitment (sid∗, cid∗) can
be delivered. The Receipt message returned by FMCOM is delivered to the
dummy Pj as soon as the simulated P̃j outputs his own Receipt message.
If P̃i is a corrupted party, then σ∗ has to be extracted. Namely, S parses σ∗

as ψ∗
CS. If ψ∗

CS �∈ G5, S simply ignores the commitment. Otherwise, it uses
the private key sk corresponding to pk to decrypt ψ∗

CS. If ψ∗
CS turns out to be

an invalid Cramer-Shoup ciphertext, the commitment is ignored. Otherwise,
S obtains the plaintext M ∈ G and sends (Commit, sid∗, cid∗, Pi, Pj ,M) to
FMCOM, which causes FMCOM to prepare a Receipt message for Pj . The
latter is delivered by S as soon as P̃j produces his own output.

5. If A gets a simulated corrupted party P̃i to correctly open a commitment
(Com, sid∗, cid∗, σ∗) to message M∗, the ideal-world adversary S compares
M∗ to the message M that was previously extracted from σ∗ and aborts if
M �= M∗. Otherwise, S sends (Open, sid, cid, Pi, Pj ,M) on behalf of Pi to
FMCOM. If A provides an incorrect opening, S simply ignores this opening.

6. If the simulated A decides to corrupt some party P̃i, S corrupts the corre-
sponding party Pi in the ideal world and obtains all his internal information.
It also modifies all de-commitment information about the unopened commit-
ments generated by P̃i so as to make it match the received de-commitment
information of Pi. (Note that Pi is supposed to reliably delete the exponents
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and to store only the group elements for decommitments.) This modified in-
ternal information is given to A. For each commitment intended for Pj but
for which Pj did not receive (Commit, sid, cid, Pi, Pj), the newly corrupted
P̃i is allowed to decide what the committed message will eventually be. A
new message M ∈ G is thus supplied by A and S informs FMCOM that M
supersedes the message chosen by Pi before his corruption.

To show that the output of the environment Z in the ideal world is indistinguish-
able from its output in the real world, we consider several hybrid experiments
involving hybrid adversaries Si.

HYB1
S1,Z : is identical to the real experiment with two differences. The first one

is that the simulator S1 generates the CRS by choosing g = (g1, g2, g3)
for the WI setting (namely, g3 is chosen as g3 = g1

ξ1 · g2
ξ2 · (1, 1, g)−1)

instead of the perfect soundness setting. The other difference is that honest
parties generate commitments by computing ψCS as an encryption of a ran-
dom group element R ∈ G instead of the real message M . The NIZK proof
πval-enc is then simulated using the trapdoor (ξ1, ξ2) of the Groth-Sahai CRS
(g1, g2, g3). Experiment HYB1

S1,Z proceeds almost identically to the ideal-
world experiment: the only difference is that S1 does not extract messages
that corrupted parties commit to and never has to abort.

We first observe that the output of the environment Z in HYB1
S1,Z is negligibly

close to its output in the real experiment REAL if the linear Cramer-Shoup
encryption scheme is IND-CPA and if the two types of Groth-Sahai reference
strings are indistinguishable.

Claim. If the DLIN assumption holds in G, the output of Z in REAL is negligibly
different from its output in HYB1

S1,Z .

Proof. The proof proceeds using two intermediate hybrid experiments HYB0

and HYB′
0 between REAL and HYB1

S1,Z . In HYB0, the perfectly sound CRS
g = (g1, g2, g3), where g3 = g1

ξ1 · g2
ξ2 , is replaced by a fake CRS, where

g3 = g1
ξ1 · g2

ξ2 · (1, 1, g)−1. It is clear that, under the DLIN assumption, this
modification cannot affect Z’s view.

Then, HYB′
0 is like HYB0 with the difference that NIZK proofs πval-enc (which

are generated when S1 has to open honestly generated commitments) are sim-
ulated using the trapdoor (ξ1, ξ2). Observe that proofs πval-enc are simulated
proofs for true statements in HYB′

0. Since these proofs have the same distribu-
tion as real proofs on a fake CRS, Z’s view is identical in HYB0 and HYB′

0.
We now turn to the indistinguishability of HYB′

0 and HYB1
S1,Z and rely on the

semantic security of the Cramer-Shoup cryptosystem, which is equivalent to the
DLIN assumption. Namely, if there exist an environment Z and an adversary A
for which the two experiments are distinguishable, there is an IND-CPA adver-
sary DCPA (in the sense of the left-or-right definition of [2]) against the linear
Cramer-Shoup scheme. This adversary takes in an encryption key pk and pro-
ceeds as follows. (We merely provide a sketch here.) It uses a Groth-Sahai CRS
g = (g1, g2, g3) for the WI setting and the challenge Cramer-Shoup public key
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pk is used to complete the generation of crs. It then simulates adversary A with
the left-or-right oracle and the simulation trapdoor (ξ1, ξ2) to simulate a NIZK
proof. Algorithm DCPA eventually outputs what the environment outputs. If the
secret bit of the encryption oracle is b = 0, DCPA is running experiment HYB′

0

whereas, if b = 1, it is running HYB1
S1,Z . The same argument as in [8, Theorem

8] shows that experiments REAL and HYB1
S1,Z are indistinguishable. �

We observe that the only situation where experiments IDEAL and HYB1
S1,Z

depart from each other is when, during the ideal experiment IDEAL, S gives a
message M to FMCOM when a corrupted party P̃i comes up with a commitment
and, later on, P̃i opens that commitment to M∗ �= M . We are thus left with the
task of bounding the probability of the latter event, which we call Fail, in IDEAL.
To this end, we will actually rule out the possibility of such a mismatch in an
experiment IDEAL/GENUINE where A’s view is nearly the same as in the ideal
experiment. We then argue that, if Fail occurs with non-negligible probability
during IDEAL, the same holds in IDEAL/GENUINE.

Experiment IDEAL/GENUINE is defined as being identical to IDEAL with
two differences: (1) when honest parties generate commitments, the simulator S
“magically” knows which message is being committed to and computes ψCS and
the corresponding opening πval-enc according to the specification of the scheme;
(2) S configures the Groth-Sahai CRS g = (g1, g2, g3) for the perfect soundness
setting (namely, with g3 = g1

ξ1 · g2
ξ2 , for some random ξ1, ξ2 ∈ Zp).

In IDEAL/GENUINE, event Fail occurs if, on behalf of a corrupted player,
the adversary A comes up with a commitment σ∗ = ψ∗

CS for which ψ∗
CS de-

crypts to M but A subsequently produces a convincing opening π∗
val-enc prov-

ing that ψ∗
CS opens to M∗ �= M . As in IDEAL, S aborts if Fail occurs during

IDEAL/GENUINE. As will be argued later on, the probability of Fail is actually
zero in IDEAL/GENUINE.

Claim. If the DLIN assumption holds and if H is collision-resistant, the prob-
ability that event Fail occurs in IDEAL is negligibly close to its probability of
occurring in experiment IDEAL/GENUINE.

Proof. To prove the statement, we define experiments IDEAL/GENUINE(1) and
IDEAL/GENUINE(2).

IDEAL/GENUINE(1): is identical to IDEAL except that S knows which messages
honest dummy parties commit to and computes ψCS as an encryption of the
committed message M . On the other hand, NIZK proofs πval-enc are still
simulated when these commitments have to be opened.

IDEAL/GENUINE(2): is as IDEAL/GENUINE(1) but, when the simulator S has
to open honest parties’ commitments, NIZK proofs πval-enc are calculated
using the real witnesses instead of the simulation trapdoor (ξ1, ξ2).

IDEAL/GENUINE: is the same as IDEAL/GENUINE(2) with the difference that
g = (g1, g2, g3) is defined to be a perfectly sound Groth-Sahai CRS.
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Experiments IDEAL/GENUINE(1) and IDEAL/GENUINE(2) provide the adversary
and Z with identical views since, in the WI setting, simulated proofs are dis-
tributed as real proofs. Also, it is straightforward that IDEAL/GENUINE and
IDEAL/GENUINE(2) are indistinguishable under the DLIN assumption.

It remains to prove indistinguishability of IDEAL and IDEAL/GENUINE(1). To
this end, we show that, if there exist an environment Z and an adversary A such
that Fail occurs with noticeably different probabilities in the two experiments,
there is a chosen-ciphertext adversary DCCA against the linear Cramer-Shoup
encryption scheme. Our adversary DCCA takes as input a public key pk for the
encryption scheme and is granted access to a decryption oracle. It then proceeds
similar to DCPA but this time uses its decryption oracle to extract messages
from adversarial commitments (we omit a formal description here for space rea-
sons). We observe that, if the challenger’s bit is b = 1, DCCA proceeds in such
a way that A’s view is exactly as in experiment IDEAL. If b = 0, DCCA is run-
ning experiment IDEAL/GENUINE(1). Hence, as long as the linear Cramer-Shoup
system is chosen-ciphertext secure, DCCA’s output probabilities in both experi-
ments must be negligibly far apart.

In experiment IDEAL/GENUINE, it is easy to see that event Fail cannot occur
whatsoever. Indeed, it would require the adversary to produce a valid proof for
a false statement, which is precluded by the perfect soundness of Groth-Sahai
proofs in the soundness setting. �

4 Scheme II: A Tweak on the Camenisch-Shoup Scheme

4.1 Trapdoor Commitments to Group Elements

We need a trapdoor commitment scheme, suggested in [10], that allows commit-
ting to elements of a pairing-friendly group G. To simplify our security analysis,
we need commitments to consist of elements of the same group G. We note
that Groth’s trapdoor commitment to group elements [15,1] could be used as
well. However, our construction would then require to include NIZK proofs for
pairing-product equations in each UC commitment, which would eventually re-
sult in longer commitment strings.

Such a trapdoor commitment can be obtained by modifying the opening phase
of perfectly hiding Groth-Sahai commitments so as to enable trapdoor open-
ings. This commitment uses a commitment key describing a prime order group
G and g ∈ G. The commitment key consists of vectors (f1,f2,f3) chosen as
f1 = (f1, 1, g), f2 = (1, f2, g) and f3 = f1

χ1 · f2
χ2 · (1, 1, g)χ3 , with f1, f2

R← G,
χ1, χ2, χ3

R← Z∗
p. To commit to X ∈ G, the sender picks θ1, θ2, θ3

R← Z∗
p and sets

CX = (1, 1, X) ·f1
θ1 ·f2

θ2 ·f3
θ3 , which, if f3 is parsed as (f3,1, f3,2, f3,3), can be

written CX = (fθ1
1 · fθ3

3,1, f
θ2
2 · fθ3

3,2, X · gθ1+θ2 · fθ3
3,3). To open CX = (C1, C2, C3),

the sender reveals (D1, D2, D3) = (gθ1 , gθ2, gθ3) and X . The receiver is convinced
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that the committed value was X by checking that⎧⎨⎩ e(C1, g) = e(f1, D1) · e(f3,1, D3)
e(C2, g) = e(f2, D2) · e(f3,2, D3)
e(C3, g) = e(X ·D1 ·D2, g) · e(f3,3, D3).

If a sender can come up with distinct openings of CX , we can easily construct
a distinguisher for the DLIN assumption (and even break a computational as-
sumption that implies DLIN), as noted in [10].

Using the trapdoor (χ1, χ2, χ3), the sender can equivocate commitments when
χ3 �= 0. Given a commitment CX and its opening (X, (D1, D2, D3)), one can
trapdoor open CX to any other X ′ ∈ G (without knowing logg(X ′)) by comput-
ing D′

1 = D1 · (X ′/X)χ1/χ3 , D′
2 = D2 · (X ′/X)χ2/χ3 and D′

3 = (X/X ′)1/χ3 ·D3.
The scheme is thus a trapdoor commitment whenever χ3 �= 0. When χ3 = 0, the
commitment is perfectly binding and even extractable with knowledge of discrete
logarithms of the commitment key since X can be computed from (C1, C2, C3)
using β1 = logg(f1), β2 = logg(f2).

4.2 Construction

Our second construction builds upon the Camenisch-Shoup interactive UC-
secure commitments [5]. The latter requires the committer to trapdoor-commit
to the message m using some randomness r with the Pedersen trapdoor com-
mitment [26] before encrypting m using a CCA2-secure encryption scheme sup-
porting labels. In the committing phase, the sender then provides an interactive
proof that the ciphertext ψ encrypts the plaintext which is committed to. To
remove interaction from this construction, we use the Groth-Sahai techniques
and combine them with the trapdoor commitment to group elements recalled in
Section 4.1. The proof itself relies on a common reference string.

CRS-Gen(λ): choose bilinear groups (G,GT ) of order p > 2λ with g R← G and
compute g1 = gα1 , g2 = gα2 , f1 = gβ1 , f2 = gβ2 with α1, α2, β1, β2

R← Z∗
p.

Define vectors g1 = (g1, 1, g), g2 = (1, g2, g) and g3 = g1
ξ1 · g2

ξ2 with
ξ1, ξ2

R← Z∗
p, which form a Groth-Sahai CRS g = (g1, g2, g3) for the perfect

soundness setting. Then, define vectors f1 = (f1, 1, g), f2 = (1, f2, g) and
f3 = f1

χ1 · f2
χ2 · (1, 1, g)χ3 with χ1, χ2, χ3

R← Z∗
p, which form a public key

f = (f1,f2,f3) for the trapdoor commitment to group elements. Finally,
choose a collision-resistant hash function H : {0, 1}∗ → Zp and generate
a public key pk = (X1, . . . , X6) for the linear Cramer-Shoup encryption
scheme. The CRS consists of crs = {λ,G,GT , g,g, f , H, pk}.

Commit(crs,M, sid, cid, Pi, Pj): to commit to message M ∈ G for party Pj

upon receiving a command (commit, sid, cid, Pi, Pj ,M), party Pi parses crs
as {λ,G,GT , g,g, f , pk}, respectively, first fetches crs from FCRS if not done
already, and then conducts the following steps.



Non-interactive and Re-usable Universally Composable String Commitments 483

1. Using vectors f = (f1,f2,f3) as f1 = (f1, 1, g), f2 = (1, f2, g) and
f3 = (f3,1, f3,2, f3,3), pick θ1, θ2, θ3

R← Z∗
p and compute a commitment

to M ∈ G as

comM = (cM,1, cM,2, cM,3) =
(
fθ1
1 · fθ3

3,1, f
θ2
2 · fθ3

3,2, M · gθ1+θ2 · fθ3
3,3

)
.

2. Choose exponents r, s R← Z∗
p and compute a Cramer-Shoup encryption

ψCS = (U1, U2, U3, U4, U5) of M ∈ G under the label L = Pi||sid||cid and
the public key pk ∈ G6 as in Section 2.3.

3. Generate a NIZK proof πval-enc that ψCS = (U1, U2, U3, U4, U5) is a valid
Cramer-Shoup encryption. This requires to commit to encryption expo-
nents r, s and prove that these satisfy U1 = gr

1 , U2 = gs
2, U3 = gr+s

and U5 = (X1X
α
3 )r · (X2X

α
4 )s (which only takes 4 times 2 elements as

base elements are all public). Including commitments comr and coms to
exponents r and s, the proof πval-enc demands 14 group elements overall.

4. Generate a NIZK proof πeq-com that ψCS encrypts the same group ele-
ment M ∈ G as the one that was committed to in comM . In other words,
prove that committed exponents (r, s, θ1, θ2, θ3) satisfy( U1

cM,1
,
U2

cM,2
,
U4

cM,3

)
=
(
gr
1 · f−θ1

1 · f−θ3
3,1 , gs

2 · f−θ2
2 · f−θ3

3,2 ,

g−θ1−θ2 · f−θ3
3,3 ·Xr

5 ·Xs
6

)
.

(4)

Commitments to r, s are already part of πval-enc. Committing to θ1, θ2, θ3
takes 9 elements. Proving (4) requires 6 elements as each relation is lin-
ear. Hence, πeq-com requires 15 group elements and Pi erases (r, s, θ1, θ2,
θ3) after its generation but retains the information DM = (gθ1 , gθ2 , gθ3).

The entire commitment σ = (comM , ψCS, πval-enc, πeq-com) takes 37 group
elements. Upon receiving a commitment (Com, sid, cid, σ) from Pi, party Pj

verifies the proofs πval-enc, πeq-com in σ and, if correct, outputs (receipt, sid,
cid, Pi, Pj); for invalid proofs Pj ignores the message.

Open
(
crs,M,DM , sid, cid, Pi, Pj

)
: when receiving (open, sid, cid, Pi, Pj ,M), Pi

reveals M and DM = (D1, D2, D3) = (gθ1 , gθ2, gθ3) to Pj .
Verify

(
crs, (Com, sid, cid, σ),M,DM , sid, cid, Pi, Pj

)
: Pj verifies proofs πval-enc,

πeq-com (or recalls the previous check in the commitment phase) and ignores
the opening if verification fails. If both proofs verify, Pj outputs (open, sid,
cid, Pi, Pj ,M) iff cid has not been used with this committer previously and
the opening DM = (D1, D2, D3) of comM passes the verification test (as
described in section 4.1). Otherwise, Pj also ignores the message.

4.3 Security

Theorem 2. The above commitment scheme securely realizes FMCOM in the
CRS model against adaptive corruptions (assuming reliable erasure), provided
that (i) the DLIN assumption holds in G; (ii) the hash function H is collision-
resistant. (The proof appears in the full version of the paper).
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5 Conclusion

In this paper we gave new constructions of efficient UC-secure commitment
schemes in the CRS model, simultaneously supporting many useful properties:
their commitment/opening phases are both non-interactive and they allow com-
mitting to strings rather than single bits while re-using the common reference
string for an unbounded (but polynomial) number of commitments. Such UC
secure commitments have not been known to exist so far. The only missing prop-
erty, left as an open problem of our work, is to find new ways for eliminating the
reliance on erasures (without introducing new assumptions, such as deployment
of tamper-proof hardware that can be used in practice to avoid erasures, or using
weaker adversary models that prevent adversarial access to ephemeral secrets).
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Abstract. We show how to leverage the RKA (Related-Key Attack)
security of blockciphers to provide RKA security for a suite of high-level
primitives. This motivates a more general theoretical question, namely,
when is it possible to transfer RKA security from a primitive P1 to
a primitive P2? We provide both positive and negative answers. What
emerges is a broad and high level picture of the way achievability of
RKA security varies across primitives, showing, in particular, that some
primitives resist “more” RKAs than others. A technical challenge was to
achieve RKA security even for the practical classes of related-key deriving
(RKD) functions underlying fault injection attacks that fail to satisfy the
“claw-freeness” assumption made in previous works. We surmount this
barrier for the first time based on the construction of PRGs that are not
only RKA secure but satisfy a new notion of identity-collision-resistance.

1 Introduction

By fault injection [16,10] or other means, it is possible for an attacker to induce
modifications in a hardware-stored key. When the attacker can subsequently
observe the outcome of the cryptographic primitive under this modified key, we
have a related-key attack (RKA) [5,19].

The key might be a signing key of a certificate authority or SSL server, a
master key for an IBE system, or someone’s decryption key. Once viewed merely
as a way to study the security of blockciphers [9,27,5], RKAs emerge as real
threats in practice and of interest for primitives beyond blockciphers.

It becomes of interest, accordingly, to achieve (provable) RKA security for
popular high-level primitives. How can we do this?

Practical contributions. One approach to building RKA-secure high-level
primitives is to do so directly, based, say, on standard number-theoretic assump-
tions. This, however, is likely to yield ad hoc results providing security against
classes of attacks that are tied to the scheme algebra and may not reflect attacks
in practice.

D.H. Lee and X. Wang (Eds.): ASIACRYPT 2011, LNCS 7073, pp. 486–503, 2011.
c© International Association for Cryptologic Research 2011
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We take a different approach. RKA security is broadly accepted in practice as
a requirement for blockciphers; in fact, AES was designed with the explicit goal
of resisting RKAs. We currently have blockciphers whose resistance to RKAs is
backed by fifteen years of cryptanalytic and design effort. We propose to leverage
these efforts.

We will provide a general and systematic way to immunize any given instance
of a high-level primitive against RKAs with the aid of an RKA-secure blockcipher,
modeling the latter, for the purpose of proofs, as a RKA-secure PRF [5]. We will
do this not only for symmetric primitives that are “close” to PRFs like symmet-
ric encryption, but even for public-key encryption, signatures and identity-based
encryption. Our methods are cheap, non-intrusive from the software perspective,
and able to completely transfer all the RKA security of the blockcipher so that
the high-level primitive resists attacks of the sort that arise in practice.

Theoretical contributions. The ability to transfer RKA security from PRFs
to other primitives lead us to ask a broader theoretical question, namely, when
is it possible to transfer RKA security from a primitive P1 to a primitive P2?
We provide positive results across a diverse set of primitives, showing, for exam-
ple, that RKA-secure IBE implies RKA-secure IND-CCA PKE. We also provide
negative results showing, for example, that RKA-secure signatures do not imply
RKA-secure PRFs.

All our results are expressed in a compact set-based framework. For any prim-
itive P and class Φ of related-key deriving functions —functions the adversary
is allowed to apply to the target key to get a related key— we define what it
means for an instance of P to be Φ-RKA secure. We let RKA[P] be the set of
all Φ such that there exists a Φ-RKA secure instance of primitive P. A trans-
fer of RKA security from P1 to P2, expressed compactly as a set containment
RKA[P1] ⊆ RKA[P2], is a construction of a Φ-RKA secure instance of P2 given
both a normal-secure instance of P2 and a Φ-RKA secure instance of P1. Com-
plementing this are non-containments of the form RKA[P2] �⊆ RKA[P1], which
show the existence of Φ such that there exists a Φ-RKA instance of P2 yet no
instance of P1 can be Φ-RKA secure, indicating, in particular, that RKA security
cannot be transferred from P2 to P1.

As Fig. 1 shows, we pick and then focus on a collection of central and represen-
tative cryptographic primitives. We then establish these containment and non-
containment relations in a comprehensive and systematic way. What emerges is
a broad and high level picture of the way achievability of RKA security varies
across primitives, showing, in particular, that some primitives resist “more”
RKAs than others.

We view these relations between RKA[P] sets as an analog of complexity
theory, where we study relations between complexity classes in order to better
understand the computational complexity of particular problems. Let us now
look at all this more closely.

Background. Related-key attacks were conceived in the context of blockci-
phers [9,27]. The first definitions were accordingly for PRFs [5]; for F : K×D →
R they consider the game that picks a random challenge bit b and random target
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key K ∈ K. For each L ∈ K the game picks a random function G(L, ·): D → R,
and next allows the adversary multiple queries to an oracle that given a pair
(φ, x) with φ: K → K and x ∈ D returns F (φ(K), x) if b = 1 and G(φ(K), x) if
b = 0. They say that F is Φ-RKA secure, where Φ is a class of functions mapping
K to K, if the adversary has low advantage in predicting b when it is only allowed
in its queries to use functions φ from Φ.

Let RKA[PRF] be the set of all Φ for which there exists a Φ-RKA secure PRF.
Which Φ are in this set? All the evidence so far is that this question has no simple
answer. Bellare and Kohno [5] gave natural examples of Φ not in RKA[PRF],
showing the set is not universal. Membership of certain specific Φ in RKA[PRF]
have been shown by explicit constructions of Φ-RKA PRFs, first under novel
assumptions [28] and then under standard assumptions [3]. Beyond this we must
rely on cryptanalysis. Modern blockciphers including AES are designed with the
stated goal of RKA security. Accordingly we are willing to assume their Φ-RKA
security —meaning that Φ ∈ RKA[PRF]— for whatever Φ cryptanalysts have
been unable to find an attack.

Beyond PRFs. Consideration of RKAs is now expanding to primitives beyond
PRFs [20,2,22]. This is viewed partly as a natural extension of the questions on
PRFs, and partly as motivated by the view of RKAs as a class of sidechannel
attacks [19]. An RKA results when the attacker alters a hardware-stored key via
tampering or fault injection [16,10] and subsequently observes the result of the
evaluation of the primitive on the modified key. The concern that such attacks
could be mounted on a signing key of a certificate authority or SSL server, a
master key for an IBE system, or decryption keys of users makes achieving RKA
security interesting for a wide range of high-level primitives.

Definitions. We focus on a small but representative set of primitives for which
interesting variations in achievability of RKA security emerge. These are PRF
(pseudorandom functions), Sig (Signatures), PKE-CCA (CCA-secure public-key
encryption), SE-CCA (CCA-secure symmetric encryption), SE-CPA (CPA-secure
symmetric encryption), IBE (identity-based encryption) and wPRF (weak PRFs
[29]). We define what it means for an instance of P to be Φ-RKA secure for
each P ∈ {wPRF, IBE, Sig, SE-CCA, SE-CPA,PKE-CCA}. We follow the defini-
tional paradigm of [5], but there are some delicate primitive-dependent choices
that significantly affect the strength of the definitions and the challenge of achiev-
ing them (cf. Section 2). We let RKA[P] be the set of all Φ for which there exists
a Φ-RKA secure instance of P. These sets are all non-trivial.

Relations. We establish two kinds of relations between sets RKA[P1] and
RKA[P2]:

• Containment: A proof that RKA[P1] ⊆ RKA[P2], established by construct-
ing a Φ-RKA secure instance of P2 from a Φ-RKA secure instance of P1,
usually under the (minimal) additional assumption that one is given a normal-
secure instance of P2. Containments yield constructions of Φ-RKA secure
instances of P2.
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PKE-CCA �⊆ �⊆ �⊆ �⊆ ⊆

Fig. 1. Relations between RKA[P] classes. A containment RKA[P1] ⊆ RKA[P2]
is represented in the picture by an arrow P1 → P2 and in the table by a “⊆” in the
row P1, column P2 entry. A non-containment RKA[P1] �⊆ RKA[P2] is represented in
the table by a “�⊆” in the row P1, column P2 entry. The picture does not show non-
containments. The picture sometimes shows a redundant containment (for example
the arrow PRF → Sig when there is already a path PRF → IBE → Sig) because it
corresponds to an interesting direct construction. A blank entry in the table means we
do not know.

• Non-containment: A proof that RKA[P2] �⊆ RKA[P1]. Here we exhibit a
particular Φ for which we (1) construct a Φ-RKA secure instance of P1 under
some reasonable assumption, and (2) show, via attack, that any instance of
P2 is Φ-RKA insecure.

We show that RKA-secure PRFs are powerful enablers of RKA-security: Given
a Φ-RKA PRF and a normal-secure instance of P, we construct a Φ-RKA secure
instance of P for all P ∈ {wPRF, IBE, Sig, SE-CCA, SE-CPA,PKE-CCA}. This is
represented by the string of containments in the first row of the table in Fig. 1.
On the practical side, instantiating the PRF with a blockcipher yields a cheap
way to immunize the other primitives against RKAs. On the theoretical side,
instantiating the PRF with the construct of [3] yields Φ-RKA secure instances
of the other primitives based on standard assumptions.

The separations shown in the first column of the table of Fig. 1, however,
also show that RKA-PRFs are overkill: all the other primitives admit Φ-RKA
secure instances for a Φ for which no Φ-RKA PRF exists. This leads one to ask
whether there are alternative routes to RKA-secure constructions of beyond-
PRF primitives.

We show that IBE is a particularly powerful starting point. We observe that
Naor’s transform preserves RKA-security, allowing us to turn a Φ-RKA secure
IBE scheme into a Φ-RKA secure Sig scheme. Similarly, we show that the trans-
form of Boneh, Canetti, Halevi and Katz (BCHK) [15] turns a Φ-RKA secure
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IBE scheme into a Φ-RKA secure PKE-CCA scheme. What lends these transforms
well to RKA-security is that they do not change the secret key. We also show
that given a Φ-RKA secure wPRF we can build a Φ-RKA secure SE-CPA scheme.
(A wPRF is like a PRF except that is only required to be secure on random in-
puts [29].) These results motivate finding new Φ-RKA secure IBE schemes and
wPRFs.

As the table of Fig. 1 indicates, we show a number of other non-containments.
Sig emerges as a very “RKA-resilient” primitive in the sense that it can be
secure against strictly more RKAs than most other primitives. Some of the
non-containments, such as RKA[PKE-CCA] �⊆ RKA[SE-CPA] might seem odd;
doesn’t PKE always imply SE? What we are saying is that the trivial trans-
formation of a PKE scheme to an SE one does not preserve RKA-security and,
moreover, there are Φ for which no transform exists that can do this.

Claws ok. All previous constructions of Φ-RKA secure primi-
tives [5,28,3,20,2,22,23] assume Φ is claw-free (distinct functions in φ disagree
on all inputs) because it is hard to do the proofs otherwise, but the Φ underlying
practical fault injection attacks are not claw-free, making it desirable to get
constructions avoiding this assumption. For the first time, we are able to do
this. In Section 2 we explain the technical difficulties and sketch our solution,
which is based on the construction of a Φ-RKA PRG that has a novel property
we call identity-collision-resistance (ICR), a variant of the collision-resistance
property from [24].

Related work. The first theoretical treatment of RKAs was by Bellare and
Kohno [5]; being inspired by blockciphers, the work addressed PRFs and PRPs.
They showed examples of classes not in RKA[PRF], gave conditions on Φ for
ideal ciphers to be Φ-RKA secure, and provided standard model constructs for
some limited classes. Subsequently, constructions of Φ-RKA secure PRFs and
PRPs for more interesting Φ were found, first under novel assumptions [28]
and then under standard assumptions [3], and the results on ideal ciphers were
extended in [1].

We are seeing growing interest in RKA security for primitives other than
PRFs. Goldenberg and Liskov [20] study related-secret security of lower-level
primitives, namely one-way functions, hardcore bits and pseudorandom gener-
ators. Applebaum, Harnik and Ishai [2] define RKA security for (randomized)
symmetric encryption, gave several constructions achieving that definition for in-
teresting Φ and then presented numerous applications. Connections with point
obfuscation are made by Bitansky and Canetti [11].

Gennaro, Lysyanskaya, Malkin, Micali and Rabin [19] suggest that RKAs
may arise by tampering. They show that one can achieve security when re-
lated keys are derived via arbitrary key modification, but assume an external
trusted authority signs the original secret key and installs the signature on the
device together with its own public key, the latter being “off limits” to the at-
tacker. (Meaning, the related-key deriving functions may not modify them.) In
our case, no such authority is assumed. The off-limit quantities are confined to
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pre-installed public parameters. No information that is a function of the param-
eters and the key is installed on the chip.

Ishai, Prabhakaran, Sahai and Wagner [25] are concerned with tampering of
wires in the computation of a circuit while we are concerned with tampering
with hardware-stored keys. Dziembowski, Pietrzak and Wichs [18] develop an
information theoretic method for preventing tampering and show that a wide
class of limited, but non-trivial, Φ can be achieved (unconditionally) for any
so-called “interactive stateful system.”

Independent work. Interest in RKA security for higher-level primitives is
evidenced by Goyal, O’Neill and Rao [22,23], who define correlated-input (CI)
hash functions, show how to construct them from the q-DHI assumption based
on Boneh-Boyen signatures [13,14] and the Dodis-Yampolskiy PRF [17], and
apply this to get Φ-RKA secure signatures from q-DHI for a class Φ consisting of
polynomials over a field of prime order. (They indicate their approach would also
work for other primitives.) Their construction is similar to ours. Their definitions
and results, unlike ours, are restricted to claw-free Φ. Also, we start from Φ-RKA-
PRFs and thus get in-practice security for any class Φ for which blockciphers
provide them, while they start from a number-theoretic assumption and get
security for a specific class Φ, related to the scheme algebra. Their work and
ours are concurrent and independent. (Ours was submitted to, and rejected
from, Eurocrypt 2011, while theirs was submitted to, and accepted at, TCC
2011.)

Kalai, Kanukurthi and Sahai [26] provide encryption and signature schemes
that protect against both tampering and leakage via the idea of key-updates
that originated in forward-secure signatures [7]. They allow arbitrary tampering
functions but only allow a bounded number of tampering queries within each
time period. Their work and ours are again concurrent and independent.

2 Technical Approach

Before providing formal definitions, constructions and proofs of our many posi-
tive and negative results, we would like to illustrate one technical issue, namely
the challenges created by Φ that are not claw-free and how we resolve them.
For concreteness, our discussion is restricted to the design of Φ-RKA signatures
based on Φ-RKA PRFs.

The claw-freeness assumption. All known constructions of Φ-RKA-secure
primitives [5,28,3,20,2,22,23] are restricted to Φ that are claw-free. This means
that any two distinct functions in Φ disagree on all inputs. This assumption is
made for technical reasons; it seems hard to do simulations and proofs without
it. Yet the assumption is undesirable, for many natural and practical classes of
functions are not claw-free. For example, fault injection might be able to set
a certain bit of the key to zero, and if Φ contains the corresponding function
and the identity function then it is not claw-free. Any Φ that can set the key to
a constant value is also not claw-free. Accordingly it is desirable to avoid this
assumption. For the first time we are able to do so, via a new technical approach.
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Definitions and issues. The degree to which claw-freeness is embedded in
current approaches is made manifest by the fact that the very definition of Φ-
RKA secure signatures of [22,23] assumes it and is unachievable without it. Let
us take a closer look to see how.

The signature RKA-security game of [22,23] picks secret signing key sk and
associated public verification key vk . It gives the adversary a signing oracle
Sign that takes m and φ ∈ Φ, and returns the signature of message m under
key φ(sk). The adversary eventually outputs m,σ. Besides validity of m,σ under
vk , winning requires that m be “new,” meaning not “previously signed.” The
delicate question is, how do we define this? The choice of [22,23] is to disallow
signing query id,m, where id is the identity function. But the adversary can
easily define a function φ that is the identity on all but a negligible fraction of
its inputs. A query φ,m is then valid since φ �= id, but almost always returns
the signature σ of m under sk , so the adversary can output m,σ and win. By
assuming Φ is claw-free and contains id, [22,23] ensure that such a φ is not in Φ
and the attack is ruled out.

Our altered definition of m being “new” is that there was no signing query
φ,m with φ(sk ) = sk . This seems, indeed, the natural requirement, ruling out
nothing more than that m was signed under sk .

We now have a much more general definition that is meaningful even for the
non claw-free Φ that arise in practice, but it has a subtle feature that makes
achieving it a challenge. Namely, checking whether the adversary won apparently
requires knowing sk for we have to test whether or not φ(sk) = sk . In the
reduction proving security, we will be designing an adversary B attempting to
distinguish “real” or “random” instances of some problem given an adversary A
breaking the signature scheme; B will see if A won, declaring “real” if so and
“random” otherwise. But B will be simulating A and will not know sk , so the
difficulty is how it can test that A won.

Overview of solution. We start from a Φ-RKA secure PRF F : K × D →
R that has what we call a key fingerprint for the identity function. This is a
relaxation of the notion of a key fingerprint of [3]. It consists of a vector w
over D such that for all K and all φ ∈ Φ with φ(K) �= K there is some i such
that F (K,w[i]) �= F (φ(K),w[i]). This allows statistical disambiguation of the
original key K from other keys. Such fingerprints exist for the Φ-RKA PRFs
of [3] and for blockciphers and are thus a mild assumption.

We now turn F into a PRG (Pseudorandom Generator) G that has two prop-
erties. First, it is Φ-RKA secure; this means the adversary has low advantage
in determining the challenge bit b in the game that picks a random target key
K and random function R, and then gives the adversary an oracle Gen that
on input φ returns G(φ(K)) if b = 1 and R(φ(K)) if b = 0. This is of course
easily obtained from a Φ-RKA PRF. We call the new second property Φ-ICR
(Identity-Collision-Resistant); this means that for a hidden key K, it is hard
for the adversary to find φ ∈ Φ such that φ(K ) �= K yet G(φ(K )) = G(K ). At
first it might seem this follows from Φ-RKA security but Proposition 2 shows it
does not. However Proposition 3 shows how to build a PRG that is both Φ-RKA
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and Φ-ICR secure from a Φ-RKA PRF with an identity key fingerprint, without
assuming Φ is claw-free.

We build our Φ-RKA secure signature scheme from this PRG G and a base
(normal secure) signature scheme, as follows. The secret key of our new signature
scheme is a key K for the PRG. The output of the PRG on input K, G(K), is
used as randomness to run the key-generation algorithm K of the base signature
scheme, yielding a public key pk which becomes the public key of our scheme,
and the corresponding secret key which is discarded. (Recall the secret key of
the new scheme is the PRG key K.) To sign a message m under K, run G on K
to get coins for K, run the latter with these coins to get pk , sk and finally sign
m under sk with the base signature scheme. Verification is just as in the base
signature scheme.

For the proof we must construct an adversary B breaking the Φ-RKA security
of G given an adversary A breaking the Φ-RKA security of our signature scheme.
B thinks of the key K underlying its game as the secret key for our signature
scheme and then runs A. When A makes Sign query φ,m, adversary B will
call its Gen oracle on φ and use the result as coins for K to get a secret key
under which it then signs m for A. Eventually A outputs a forgery attempt m,σ.
The assumed security of the base signature scheme will make it unlikely that
A’s forgery is a winning one when Gen is underlain by a random function. So
B would like to test if A’s forgery was a winning one, outputting 1 if so and
0 otherwise, to win its game. The difficulty is that it cannot test this because,
not knowing K, it cannot test whether or not A made a Sign query φ,m with
φ(K) = K. The Φ-ICR property of G comes to the rescue, telling us that whether
or not φ(K) = K may be determined by whether or not the outputs of G on
these two inputs, which B does have, are the same.

This sketch still pushes under the rug several subtle details which are dealt
with in the full proof of Theorem 5, to be found in the full version of this
paper [4].

3 Preliminaries

Notation. For sets X,Y, Z let Fun(X,Y ) be the set of all functions mapping X
to Y , and let FF(X,Y, Z) = Fun(X×Y, Z). The empty string is denoted ε. If v is
a vector then |v| denotes the number of its coordinates and v[i] denotes its i-th
coordinate, meaning v = (v[1], . . . ,v[|v|]). A (binary) string x is identified with
a vector over {0, 1} so that |x| is its length and x[i] is its i-th bit. If a1, . . . , an

are strings then a1 ‖ · · · ‖ an denotes their concatenation. If S is a set then |S|
denotes its size and s←$ S the operation of picking a random element of S and
calling it s. We say that a real-valued function on the integers is negligible if it
vanishes faster than the inverse of any polynomial.

Algorithms. Unless otherwise indicated, an algorithm is PT (Polynomial Time)
and may be randomized. An adversary is an algorithm. If A is an algorithm
and x is a vector then A(x) denotes the vector (A(x[1]), . . . , A(x[|x|])). By
y ← A(x1, x2, . . . ; r) we denote the operation of running A on inputs x1, x2, . . .
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and coins r ∈ {0, 1}∗. We denote by y←$ A(x1, x2, . . .) the operation of picking
r at random and letting y ← A(x1, x2, . . . ; r). We denote by [A(x1, x2, . . .)] the
set of all possible outputs of A on inputs x1, x2, . . .. We denote by k ∈ N the
security parameter and by 1k its unary encoding. It is assumed that the length
of the output of any algorithm A depends only on the lengths of its inputs. In
particular we can associate to single-input algorithm A its output length � sat-
isfying |A(x)| = �(|x|) for all x. If A,B are algorithms then A ‖B denotes the
algorithm that on any input x returns A(x) ‖B(x).

Games. Some of our definitions and proofs are expressed via code-based games [8].
Recall that such a game consists of an Initialize procedure, procedures to re-
spond to adversary oracle queries and a Finalize procedure. A game G is exe-
cuted with an adversary A as follows. First, Initialize executes on input 1k and
its output is the input to A. Then A executes, its oracle queries being answered
by the corresponding procedures of G. When A terminates, its output becomes
the input to the Finalize procedure. The output of the latter, denoted GA, is
called the output of the game. We let “GA ⇒ d” denote the event that this game
output takes value d. If Finalize is absent it is understood to be the identity
function, so the game output is the adversary output. Boolean flags are assumed
initialized to false.

4 Classes of RKDFs and RKA-PRFs

Classes of RKDFs. In [5], a class Φ of related-key deriving functions (RKDFs)
is a finite set of functions, all with the same domain and range. Our more general,
asymptotic treatment requires extending this, in particular to allow the func-
tions to depend on public parameters of the scheme. For us a class Φ = (P ,Q)
of RKDFs, also called a RKA specification, is a pair of algorithms, the second
deterministic. On input 1k, parameter generation algorithm P produces param-
eters π. On input π, a key K and a description φ of an RKD function, the
evaluation algorithm Q returns either a modified key or ⊥. We require that for
all φ, π, either Q(π,K, φ) = ⊥ for all K or for no K. We let Φπ,φ(·) = Q(π, ·, φ).
We require that Φ always includes the identity function. (Formally, there is a
special symbol id such that Φπ,id(K) = K for all K,π. This is to ensure that Φ-
RKA security always implies normal security.) We let ID be the class consisting
of only the identity function, so that ID-RKA security will be normal security.

A scheme (regardless of the primitive) is a tuple (P , · · · ) of algorithms, the
first of which is a parameter generation algorithm that on input 1k returns a
string. If � is the output length of P , we say that Φ = (P ,Q) is compatible with
the scheme if the string formed by the first �(k) bits of the output of P(1k)
is distributed identically to the output of P(1k) for all k ∈ N. This is done so
that, in constructing one Φ-RKA primitive from another, we can extend the
parameters of the constructed scheme beyond those of the original one without
changing the class of RKDFs.

We say that Φ = (P ,Q) is claw-free if φ �= φ′ implies Q(π,K, φ) �= Q(π,K, φ′)
(or both values are ⊥) for all π,K. This property has been assumed almost
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proc Initialize // PRF

π←$ P(1k) ; K←$ K(π)
b←$ {0, 1}
Return π

proc Fn(φ, x) // PRF

K′ ← Φπ,φ(K)
If K′ = ⊥ then return ⊥
If b = 1 then
T [K′, x]← F(π,K′, x)

If b = 0 and T [K′, x] = ⊥ then
T [K′, x]←$ Rng(π)

Return T [K′, x]

proc Finalize(b′) // PRF

Return (b = b′)

proc Initialize // IDFP

π←$ P(1k)
K←$ K(π)
w←$ IKfp(π)
Return π,w

proc Fn(φ) // IDFP

K′ ← Φπ,φ(K)
If (K′ = ⊥) then return ⊥
If (K′ �= K) then

If (F(K′,w) = F(K,w)) then
Win← true

Return F(K′,w)

proc Finalize() // IDFP

Return Win

Fig. 2. Games defining Φ-RKA PRF security and Φ-IDFP security of function family
FF = (P ,K,F) having range Rng(·)

ubiquitously in previous work [5,28,20,3] because of the technical difficulties
created by its absence, but its assumption is in fact quite restrictive since many
natural classes do not have it. We are able to remove this assumption and provide
constructs secure even for non-claw-free classes via new technical approaches. We
let CF be the set of all Φ that are claw-free.

The class Φconst = (P ,Qconst) of constant functions associated to class Φ =
(P ,Q) is defined by Φconst

π,a (K) = a for all K, a ∈ {0, 1}∗ and all π. The union
Φ1 ∪ Φ2 = (P ,Q) of classes Φ1 = (P ,Q1) and Φ2 = (P ,Q2) is defined by having
Q(π,K, φ) parse φ as i ‖φ∗ for i ∈ {1, 2} and return Qi(π,K, φ∗).

Discussion. In a non-asymptotic treatment, there is no formal line between
“secure” and “insecure.” This makes it unclear how to rigorously define the sets
RKA[P]. Lead, accordingly, to pursue an asymptotic treatment, we introduce
parameter dependence; this allows us to capture constructs in the literature [28,3]
where RKDFs are defined over a group that is now parameter-dependent rather
than fixed. (We note that even in the non-asymptotic case, a treatment like
ours is needed to capture constructs in [28] relying on a RSA group defined by
random primes. This issue is glossed over in [28].) A dividend of our treatment
is a separation between an RKDF and its encoding, the latter being what an
adversary actually queries, another issue glossed over in previous work.

Function families. A function family FF = (P ,K,F) consists of a param-
eter generator, a key generator, and an evaluator, the last deterministic. For
each k ∈ N and π ∈ [P(1k)], the scheme also defines PT decidable and sam-
pleable sets Dom(π) and Rng(π) such that F(π,K, ·) maps elements of Dom(π)
to Rng(π). We assume there are polynomials d, l, called the input and output
lengths, respectively, such that Dom(π) ⊆ {0, 1}d(k) and Rng(π) ⊆ {0, 1}l(k).
Unless otherwise indicated we assume Rng(π) = {0, 1}l(k) and l(k) = ω(log(k))
and |Dom(π)| ≥ 2k for all π ∈ [P(1k)] and all k ∈ N.
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RKA-PRFs. Let FF = (P ,K,F) be a function family as above. Game PRF of
Fig. 2 is associated to FF and a RKA specification Φ that is compatible with
FF . Let Advprf-rka

FF ,A,Φ(k) equal 2 Pr[PRFA ⇒ true] − 1 when the game has input
1k. We say FF is Φ-RKA secure if this advantage function is negligible.

Identity key fingerprints. An identity key fingerprint function with vector
length v(·) for FF = (P ,K,F) is an algorithm IKfp that for every π ∈ [P(1k)]
and every k ∈ N returns, on input π, a v(k)-vector over Dom(π) all of whose
coordinates are distinct. Game IDFP of Fig. 2 is associated to FF and a RKA
specification Φ = (P ,Q) that is compatible with FF . Let Advidfp

FF ,A,Φ(k) equal
Pr[IDFPA ⇒ true] when the game has input 1k. We say FF is Φ-IDFP secure if
this advantage function is negligible.

The key fingerprint notion of [3] can be seen as allowing statistical disam-
biguation of any pair of keys. They showed that the Naor-Reingold PRF NR
had such a fingerprint, but in general, it does not seem common. Interestingly,
their own Φ-RKA PRFs, which build on NR, are not known to have such a fin-
gerprint. Our relaxation can be seen as asking for computational disambiguation
of the original key from other keys, and ends up being much easier to achieve.
In particular, such fingerprints exist for the constructs of [3]. This is a conse-
quence of something more general, namely that any Φ-RKA secure PRF with
large enough range is Φ-IDFP secure if Φ is claw-free, using any point in the
domain functioning as the fingerprint. This is formalized by Proposition 1 below,
with a proof in [4]. Φ-IDFP security for the constructs of [3] follows as the Φ
they use is claw-free.

Proposition 1. Suppose Φ is claw-free and FF is a Φ-RKA secure PRF with
associated domain Dom(·) and super-polynomial size range Rng(·). Let IKfp be
any algorithm that on input π returns a 1-vector over Dom(π). Then FF is
Φ-IDFP secure.

In practice Φ-IDFP security seems like a mild assumption even when Φ is not
claw-free. A vector of a few, distinct domain points ought to be a suitable fin-
gerprint for any practical blockcipher. This does not follow from a standard
assumption on it such as PRF, but is consistent with properties assumed by
cryptanalysts and can be proved in the ideal cipher model.
Φ-IDFP security of given Φ-RKA PRFs, even for non-claw-free Φ, will be

important in the constructions underlying our containment results, and we make
it a default assumption on a Φ-RKA PRF. The above shows that this is a mild
and reasonable assumption.

RKA sets. We say that an RKA specification Φ = (P ,Q) is achievable for
the primitive PRF if there exists a Φ-RKA and Φ-IDFP secure PRF that is
compatible with Φ. We let RKA[PRF] be the set of all Φ that are achievable for
PRF.

What can attacks modify? We view the system as a whole as having the
following components: algorithms (code), parameters, public keys (if any) and
secret keys. Of these, our convention is that only secret keys are subject to RKAs.
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proc Initialize // PRG

π←$ P(1k)
K ←$ K(π) ; b←$ {0, 1}
Return π

proc Gen(φ) // PRG

K ′ ← Φπ,φ(K )
If K ′ = ⊥ then return ⊥
If T [K ′] = ⊥ then

If b = 1 then T [K ′]← G(π,K ′)

Else T [K ′]←$ {0, 1}r(k)

Return T [K ′]

proc Finalize(b′) // PRG

Return (b = b′)

proc Initialize // ICR

π←$ P(1k)
K ←$K(π) ; T0 ← G(π,K )
Return π

proc Gen(φ) // ICR

K ′ ← Φπ,φ(K )
If K ′ = ⊥ then return ⊥
S ← G(π,K ′)
If ((S = T0) ∧ (K �= K ′)) then Win← true
Return S

proc Finalize() // ICR

Return Win

Fig. 3. Games defining Φ-RKA security and identity-collision-resistance for PRG
PRG = (P ,K,G, r)

This is not the only possible model, nor is it necessarily the most realistic if con-
sidering tampering attacks in practice, but it is a clear and interesting one with
some justification. Parameters are systemwide, meaning fixed beforehand and
independent of users, and may, in an implementation, be part of the algorithm
code. Public keys are accompanied by certificates under a CA public key that
is in the parameters, so if parameters are safe, so are public keys. This leaves
secret keys as the main target. One consequence of this is that in a public key
setting the attack is only on the holder of the secret key, meaning the signer for
signatures and the receiver for encryption, while in the symmetric setting, both
sender and receiver are under attack, making this setting more complicated.

We could consider attacks on public keys, but these are effectively attacks
on parameters. Furthermore the only way for them to succeed is to modify the
CA public key in the parameters in a rather special way, replacing it by some
other key under which the attack produces signatures for the modified public
key. “Natural” attacks caused by fault-injection are unlikely to do this, further
supporting our convention of confining attacks to secret keys.

5 ICR PRGs: A Tool in Our Constructions

We will be using Φ-RKA PRFs to build Φ-RKA instances of many other primi-
tives. An important technical difficulty will be to avoid assuming Φ is claw-free.
A tool we introduce and use for this purpose is a Φ-RKA PRG satisfying a weak
form of collision-resistance under RKA that we call Φ-ICR. In this section we
define this primitive and show how to achieve it based on a Φ-RKA and Φ-IDFP
secure PRF.

RKA PRGs. A PRG PRG = (P ,K,G, r) is specified by a parameter generation
algorithm, a key generation algorithm, an evaluation algorithm and an output
length r(·). Game PRG of Fig. 3 is associated to PRG and an RKA specification
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Φ that is compatible with PRG . Let Advprg
PRG ,A,Φ(k) = 2 Pr[PRGA ⇒ true] − 1

when the game has input 1k. We say PRG is Φ-RKA secure if this advantage
function is negligible for all A.

We clarify that unlike a normal PRG [12], we don’t require a Φ-RKA PRG
to be length extending, meaning that outputs need not be longer than inputs.
If one does want a length extending Φ-RKA PRG (we won’t) one can get it by
applying a normal-secure PRG to the output of a given Φ-RKA PRG.

ICR. We define and use a weak form of collision-resistance for PRGs which
requires that the adversary be unable to find φ so that Φπ,φ(K ) �= K yet
G(Φπ,φ(K )) = G(K ). Game ICR of Fig. 3 is associated to PRG and a RKA spec-
ification Φ that is compatible with PRG . Let Advicr

PRG ,C,Φ(k) equal 2 Pr[ICRC ⇒
true]−1 when the game has input 1k. We say PRG is Φ-ICR (Identity-Collision-
Resistant) secure if this advantage function is negligible.

Does RKA security imply ICR security? At first glance it would seem
that if a PRG PRG = (P ,K,G, r) is Φ-RKA secure then it is also Φ-ICR secure.
Indeed, suppose an adversary has φ such that Φπ,φ(K ) �= K yet G(Φπ,φ(K )) =
G(K ). Let it query R0 ← Gen(id) and R1 ← Gen(φ) and return 1 if R0 = R1

and 0 otherwise. In the real (b = 1) case R0, R1 are equal but in the random
(b = 0) case they would appear very unlikely to be equal, so that that this
strategy would appear to have high advantage in breaking the Φ-RKA security
of PRG . The catch is in our starting assumption, which made it appear that
Φπ,φ(K ) �= K yet G(Φπ,φ(K )) = G(K ) was an absolute fact, true both for
b = 0 and b = 1. If Φπ,φ(K ) and K are different in the real game but equal in
the random game, the adversary sees an output collision in both cases and its
advantage disappears. Can this actually happen? It can, and indeed the claim
(that Φ-RKA security implies Φ-ICR security) is actually false:

Proposition 2. Suppose there exists a normal-secure PRG PRG = (P ,K,G, r)
with r(·) = ω(log(·)). Then there exists a PRG PRG = (P ,K,G, r) and a class
Φ such that PRG is Φ-RKA secure but PRG is not Φ-ICR secure.

A proof is in [4]. Briefly, the constructed PRG PRG adds a redundant bit to the
seed of PRG so that seeds differing only in their first bits yield the same outputs,
meaning create non-trivial collisions. But Φ is crafted so that that its members
deviate from the identity function only in the real game, so that output collisions
appear just as often in both cases but in the real game they are non-trivial while
in the random game they are trivial.

Construction. We saw above that not all Φ-RKA PRGs are Φ-ICR secure.
Our containments will rely crucially on ones that are. We obtain them from
Φ-RKA PRFs that have key fingerprints for the identity function:

Proposition 3. Let FF = (P ,K,F) be a Φ-RKA PRF with output length l.
Let IKfp be a Φ-IDFP secure identity key fingerprint function for FF with vector
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proc Initialize // Sig

π←$ P(1k) ; M ← ∅
(vk , sk)←$K(π)
Return (π, vk)

proc Sign(φ,m) // Sig

sk ′ ← Φπ,φ(sk)
If sk ′ = ⊥ then return ⊥
If sk ′ = sk then M ←M ∪ {m}
Return σ←$ S(π, sk ′,m)

proc Finalize(m,σ) // Sig

Return ((V(π, vk , m, σ) = 1) ∧ (m �∈M))

proc Finalize(b′) // IBE

Return (b = b′)

proc Initialize // IBE

π←$ P(1k) ; (mpk ,msk)←$M(π)
b←$ {0, 1} ; id∗ ← ⊥ ; S ← ∅
Return (π,mpk)

proc KD(φ, id) // IBE

msk ′ ← Φπ,φ(msk)
If msk ′ = ⊥ then return ⊥
If msk ′ = msk then S ← S ∪ {id}
If (msk ′ = msk) ∧ (id = id∗) then return ⊥
Return dk ←$ K(π,mpk ,msk ′, id)

proc LR(id , m0,m1) // IBE

If |m0| �= |m1| then return ⊥
id∗ ← id ; If id∗ ∈ S then return ⊥
Return C←$ E(π,mpk , id ,mb)

proc Finalize(b′) // IBE

Return ((b = b′) ∧ (id∗ /∈ S))

Fig. 4. Games defining Φ-RKA security for primitives Sig, IBE

length v. Let r = lv and let K, on input π ‖w, return K(π). Define PRG PRG =
(P ‖ IKfp,K,G, r) via

G(π ‖w,K) = F(π,K,w[1]) ‖ · · · ‖F(π,K,w[|w|]) .
Then PRG is Φ-RKA secure and Φ-ICR secure.

6 Relations

We first present a containment and a non-containment related to Sig. Then we
turn to IBE-related results. Other results can be found in [4].

Signatures. A signature scheme DS = (P ,K,S,V) is specified as usual by its
parameter generation, key generation, signing and verifying algorithms. Game
Sig of Fig. 4 is associated to DS and an RKA specification Φ that is compatible
with DS . Let Advsig-rka

DS ,A,Φ(k) = Pr[SigA ⇒ true] when the game has input 1k.
We say DS is Φ-RKA secure if this advantage function is negligible. Normal
security of a signature scheme is recovered by considering Φ that contains only
the identity function. One feature of the definition worth highlighting is the way
we decide which messages are not legitimate forgeries. They are the ones signed
with the real key sk , which means that oracle Sign needs to check when a related
key equals the real one and record the corresponding message, which is a source
of challenges in reduction-based proofs.

Attacks. In [4] we present an attack, adapted from [6,19], that shows that
there are some (quite simple) Φ such that no signature scheme is Φ-RKA secure,
meaning Φ �∈ RKA[Sig]. This indicates that the set RKA[Sig] is non-trivial.
Similar attacks can be presented for other primitives.
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From Φ-RKA PRGs to Φ-RKA signatures. We will prove containments
of the form RKA[PRF] ⊆ RKA[P] by proving RKA[PRG] ⊆ RKA[P] and
exploiting the fact that RKA[PRF] ⊆ RKA[PRG].

We start with a Φ-RKA PRG PRG = (P ,K,G, r) and a normal-secure signa-
ture scheme DS = (P ,K,S,V) such that r(·) is the number of coins used by K.
We now build another signature scheme DS = (P ‖P ,K′,S,V) as follows:
1. Parameters: Parameters for DS are the concatenation π ‖π of independently

generated parameters for PRG and DS .
2. Keys: Pick a random seed K ←$ K(π) and let (vk , sk) ← K(π;G(K )) be the

result of generating verifying and signing keys with coins G(K ). The new
signing key is K and the verifying key remains vk . (Key sk is discarded.)

3. Signing: To sign message m with signing key K , recompute (vk , sk) ← K(π;
G(K )) and then sign m under S using sk .

4. Verifying: Verify that σ is a base scheme signature of m under vk using V .
Signature scheme DS remains compatible with Φ since the parameters of PRG
prefix those of DS .

We want DS to inherit the Φ-RKA security of PRG . In fact we will show
more, namely that DS is (Φ∪Φc)-RKA secure where Φc is the class of constant
RKDFs associated to Φ. The intuition is deceptively simple. A signing query
φ,m of an adversary A attacking DS results in a signature of m under what
is effectively a fresh signing key, since it is generated using coins G(φ(K )) that
are computationally independent of G(K ) due to the assumed Φ-RKA security
of the PRG. These can accordingly be simulated without access to K . On the
other hand, signing queries in which φ is a constant function may be directly
simulated. The first difficulty is that the adversary attacking the Φ-RKA security
of PRG that we must build needs to know when A succeeds, and for this it needs
to know when a derived seed equals the real one, and it is unclear how to do this
without knowing the real seed. The second difficulty is that a queried constant
might equal the key. We take an incremental approach to showing how these
difficulties are resolved, beginning by assuming Φ is claw-free, which makes the
first difficulty vanish:

Theorem 4. Let signature scheme DS = (P ‖P,K′,S,V) be constructed as
above from Φ-RKA PRG PRG = (P ,K,G, r) and normal-secure signature scheme
DS = (P ,K,S,V) and assume Φ is claw-free. Then DS is (Φ∪Φc)-RKA secure.

A proof of Theorem 4 is in [4], and the intuition was discussed in Section 2.
This result, however, is weaker than we would like, for, as we have already
said, many interesting classes are not claw-free. Also, this result fails to prove
RKA[PRF] ⊆ RKA[Sig] since the first set may contain Φ that are not claw-free.
To address this we show that the claw-freeness assumption on Φ can be replaced
by the assumption that PRG is Φ-ICR secure:

Theorem 5. Let signature scheme DS = (P ‖P,K′,S,V) be constructed as
above from Φ-RKA secure and Φ-ICR secure PRG PRG = (P ,K,G, r) and



Cryptography Secure against Related-Key Attacks and Tampering 501

normal-secure signature scheme DS = (P ,K,S,V). Then DS is (Φ ∪ Φc)-RKA
secure.

A proof of Theorem 5 is in [4]. Proposition 3 says we can get the PRGs we want
from Φ-RKA PRFs so Theorem 5 establishes the containment RKA[PRF] ⊆
RKA[Sig]. (Theorem 4 only established RKA[PRF] ∩ CF ⊆ RKA[Sig] ∩CF.)

Our construction has the advantage that the verification process as well as the
form of the signatures and public key are unchanged. This means it has minimal
impact on software, making it easier to deploy than a totally new scheme. Signing
in the scheme now involves evaluation of a Φ-RKA-PRG but this can be made
cheap via an AES-based instantiation. However, signing also involves running
the key-generation algorithm K of the base scheme which might be expensive.

This construction also meets a stronger notion of Φ-RKA security where the
adversary cannot even forge a signature relative to the public keys associated
with the derived secret keys. We elaborate on this in [4].

Some base signature schemes lend themselves naturally and directly to im-
munization against RKAs via Φ-RKA PRFs. This is true for the binary-tree,
one-time signature based scheme discussed in [21], where the secret key is al-
ready that of a PRF. If the latter is Φ-RKA secure we can show the signature
scheme (unmodified) is too, and moreover also meets the strong version of the
definition alluded to above. See [4].

Separating Φ-RKA PRFs from Φ-RKA signatures. Having just shown
that RKA[PRF] ⊆ RKA[Sig] it is natural to ask whether the converse is true
as well, meaning whether the sets are equal. The answer is no, so RKA[Sig] �⊆
RKA[PRF]. The interpretation is that there exist Φ such that there exist Φ-RKA
secure signatures, but there are no Φ-RKA PRFs. An example is when Φ = Φc

is the set of constant functions. Theorem 4 implies that there exists a Φc-RKA
secure signature scheme by setting Φ = ∅ in the theorem, so that PRG need only
be a normal-secure PRG. But attacks from [5] show that no PRF can be Φc-RKA
secure. Thus, this separation is quite easily obtained. In [4] we present others
which are more interesting. This separation motivates finding other avenues to
Φ-RKA signatures. Below we will show that IBE is one such avenue.

IBE. Our specification of an IBE scheme IBE = (P ,M,K, E ,D) adds a param-
eter generation algorithm P that given 1k returns parameters π on which the
masterkey generation algorithm M runs to produce the master public key mpk
and master secret key msk . The rest is as usual except that algorithms get π as an
additional input. Game IBE of Fig. 4 is associated to IBE and an RKA specifica-
tion Φ = (P ,Q) that is compatible with IBE . An adversary is allowed only one
query to LR. Let Advibe-rka

IBE ,A,Φ(k) equal 2 Pr[IBEA ⇒ true]−1 when the game has
input 1k. We say IBE is Φ-RKA secure if this advantage function is negligible.
Here the feature of the definition worth remarking on is that the adversary loses if
it ever issues a query to KD that contains the challenge identity and derives the
same master secret key. In [4] we show (1) that the standard Naor transform pre-
serves RKA security and thus RKA[IBE] ⊆ RKA[Sig], and (2) that the BCHK
transform [15] preserves RKA security and thus RKA[IBE] ⊆ RKA[PKE-CCA].
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Other relations. The remaining results and definitions from Fig. 1 are pre-
sented in [4].
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Abstract. We present an accelerated Schoof-type point-counting algo-
rithm for curves of genus 2 equipped with an efficiently computable real
multiplication endomorphism. Our new algorithm reduces the complex-
ity of genus 2 point counting over a finite field Fq of large characteristic
from Õ(log8 q) to Õ(log5 q). Using our algorithm we compute a 256-bit
prime-order Jacobian, suitable for cryptographic applications, and also
the order of a 1024-bit Jacobian.

1 Introduction

Cryptosystems based on curves of genus 2 offer per-bit security and efficiency com-
parable with elliptic curve cryptosystems. However, many of the computational
problems related to creating secure instances of genus 2 cryptosystems are con-
siderably more difficult than their elliptic curve analogues. Point counting—or,
from a cryptographic point of view, computing the cardinality of a cryptographic
group—offers a good example of this disparity, at least for curves defined over
large prime fields. Indeed, while computing the order of a cryptographic-sized el-
liptic curve with the Schoof–Elkies–Atkin algorithm is now routine, computing
the order of a comparable genus 2 Jacobian requires a significant computational
effort [8,10].

In this article we describe a number of improvements to the classical Schoof–
Pila algorithm for genus 2 curves with explicit and efficient real multiplication
(RM). For explicit RM curves over Fp, we reduce the complexity of Schoof–Pila
from Õ(log8 p) to Õ(log5 p). We applied a first implementation of our algorithms
to find prime-order Jacobians over 128-bit fields (comparable to prime-order
elliptic curves over 256-bit fields, and therefore suitable for contemporary cryp-
tographic applications). Going further, we were able to compute the order of
an RM Jacobian over a 512-bit prime field, far beyond the cryptographic range.
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(For comparison, the previous record computation in genus 2 was over a 128-bit
field.)

While these RM curves are special, they are not “too special”. Every ordi-
nary genus 2 Jacobian over a finite field has RM; our special requirement is that
this RM be known in advance and efficiently computable. The moduli of curves
with RM by a fixed ring form 2-dimensional subvarieties (Humbert surfaces) in
the 3-dimensional moduli space of all genus 2 curves. We can generate random
curves with the specified RM by choosing random points on an explicit model
of the corresponding Humbert surface [11]. In comparison with elliptic curves,
for which the moduli space is one-dimensional, this still gives an additional de-
gree of freedom in the random curve selection. To generate random curves with
efficiently computable RM, we choose random curves from some known one and
two-parameter families (see §4).

Curves with efficiently computable RM have an additional benefit in cryptog-
raphy: the efficient endomorphism can be used to accelerate scalar multiplication
on the Jacobian, yielding faster encryption and decryption [12,16,20]. The RM
formulæ are also compatible with fast arithmetic based on theta functions [7].

2 Conventional Point Counting for Genus 2 Curves

Let C be a curve of genus 2 over a finite field Fq of odd characteristic, defined
by an affine model y2 = f(x), where f is a squarefree polynomial of degree 5 or
6 over Fq. Let JC be the Jacobian of C; we assume JC is ordinary and absolutely
simple. Points on JC correspond to degree-0 divisor classes on C; we use the
Mumford representation for divisor classes together with the usual Cantor-style
composition and reduction algorithms for divisor class arithmetic [6,3]. Multipli-
cation by � on JC is denoted by [�], and its kernel by JC [�]. More generally, if φ is
an endomorphism of JC then JC [φ] = ker(φ), and if S is a set of endomorphisms
then JC [S] denotes the intersection of ker(φ) for φ in S.

2.1 The Characteristic Polynomial of Frobenius

We let π denote the Frobenius endomorphism of JC , with Rosati dual π† (so
ππ† = [q]). The characteristic polynomial of π has the form

χ(T ) = T 4 − s1T
3 + (s2 + 2q)T 2 − qs1T + q2, (1)

where s1 and s2 are integers (our s2 is a translation of the standard definition).
The polynomial χ(T ) determines the cardinality of JC(Fqk) for all k: in partic-
ular, #JC(Fq) = χ(1). Determining χ(T ) is called the point counting problem.

The polynomial χ(T ) is a Weil polynomial : all of its complex roots lie on the
circle |z| =

√
q. This implies the Weil bounds

|s1| ≤ 4
√
q and |s2| ≤ 4q.

The possible values of (s1, s2) do not fill the whole rectangle specified by the
Weil bounds: Rück [18, Theorem 1.1] shows that s1 and s2 satisfy

s21 − 4s2 > 0 and s2 + 4q > 2|s1|√q.
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The possible values of (s1, s2) therefore lie in the following domain:

s1/
√
q

s2/q

2.2 The Classical Schoof–Pila Algorithm for Genus 2 Curves

The objective of point counting is to compute χ(T ), or equivalently the tuple of
integers (s1, s2). When the characteristic of Fq is large, the conventional approach
is to apply the Schoof–Pila algorithm as far as is practical, before passing to a
baby-step giant-step algorithm if necessary (see §2.5).

The strategy of Schoof’s algorithm and its generalizations is to compute the
polynomials χ
(T ) = χ(T ) mod (�) for sufficiently many primes (or prime pow-
ers) � to reconstruct χ(T ) using the Chinese Remainder Theorem (CRT). Since
χ
(T ) is the characteristic polynomial of π restricted to JC [�] (see [17, Proposition
2.1]), we have

χ
(π)(D) = 0 for all D in JC [�].

Conversely, to compute χ
(T ) we let D be a generic element of JC [�] (as in §2.3
below), compute the three points

(π2 + [q̄])2(D), (π2 + [q̄])π(D), and π2(D),

and then search for the coefficients (s̄1, s̄2) of χ
(T ) in (Z/�Z)2 for which the
linear relation

(π2 + [q̄])2(D) − [s̄1] (π2 + [q̄])π(D) + [s̄2]π2(D) = 0 (2)

holds. If the minimal polynomial of π on JC [�] is a proper divisor of χ
(T )—which
occurs for at most a finite number of � dividing disc(χ)—then the polynomial so
determined is not unique, but χ
(T ) can be determined by deducing the correct
multiplicities of its factors.

Once we have computed χ
(T ) for sufficiently many �, we reconstruct χ(T )
using the CRT. The Weil and Rück bounds together with a weak version of the
prime number theorem tell us how many � are required: Pila notes in [17, §1] that
the set of O(log q) primes � < 21 log q will suffice. We analyse the complexity of
the classical Schoof–Pila algorithm in §2.4.

2.3 Endomorphisms and Generic Kernel Elements

We now recall how to construct an effective version of a generic �-torsion element.
We present it in a slightly more general setting, so that we can use this ingredient
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in the subsequent RM-specific algorithm: we compute a generic element of the
kernel of some endomorphism φ of JC (the classical algorithm takes φ = [�]).

Definition 1. Fix an embedding P �→ DP of C in JC. We say that an endomor-
phism φ of JC is explicit if we can effectively compute polynomials d0, d1, d2, e0, e1,
and e2 such that if P = (xP , yP ) is a generic point of C, then the Mumford rep-
resentation of φ(DP ) is given by

φ(DP ) =
(
x2 +

d1(xP )
d2(xP )

x+
d0(xP )
d2(xP )

, y − yP

(
e1(xP )
e2(xP )

x+
e0(xP )
e2(xP )

))
. (3)

The d0, d1, d2, e0, e1, and e2 are called the φ-division polynomials.

In the case φ = [�], the [�]-division polynomials are the �-division polynomials of
Cantor [4]. The φ-division polynomials depend on the choice of embedding P �→
DP ; we will make this choice explicit when computing the φ-division polynomials
for each of our families in §4. Note that if φ is an explicit endomorphism, then
we can use (3) (extending Z-linearly) to evaluate φ(D) for general divisor classes
D in JC .

To compute a generic element of JC [φ], we generalize the approach of [8] (which
computes generic elements of JC [�]). The resulting algorithm is essentially the
same as in [8, §3] (except for the parasite computation step, which we omit) with
φ-division polynomials replacing �-division polynomials, so we will only briefly
sketch it here.

Let D = (x2 + a1x+ a0, y − (b1x+ b0)) be (the Mumford representation of) a
generic point of JC . We want to compute a triangular ideal Iφ in Fq[a1, a0, b1, b0]
vanishing on the nonzero elements of JC [φ]. The element D equals D(x1,y1) +
D(x2,y2), where (x1, y1) and (x2, y2) are generic points of C. To find a triangular
system of relations on the ai and bi such that D is in JC [φ] we solve for x1, y1,
x2, and y2 in

φ(D(x1,y1)) = −φ(D(x2,y2)),

using (3) and resultants computed with the evaluation–interpolation technique
of [8, §3.1]. We then resymmetrize as in [8, §3.2] to express the result in terms of
the ai and bi. We can now compute with a “generic” element
(x2 + a1x+ a0, y − (b1x+ b0)) of JC [φ] by reducing the coefficients modulo Iφ
after each operation.

Following the complexity analysis of [8, §3.5], we can compute a triangular
representation for Iφ in O(δ2M(δ) log δ + M(δ2) log δ) field operations, where δ
is the maximum among the degrees of the φ-division polynomials, and M(d) is
the number of operations required to multiply polynomials of degree d over Fq.
Using asymptotically fast multiplication algorithms, we can therefore compute Iφ
in Õ(δ3) field operations. The degree of Iφ is in O(δ2); with this triangular
representation, each multiplication modulo Iφ costs Õ(δ2) field operations.

2.4 Complexity of Classical Schoof–Pila Point Counting

Proposition 1. The complexity of the classical Schoof–Pila algorithm for a
curve of genus 2 over Fq is in Õ((log q)8).
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Proof. To determine χ(T ), we need to compute χ
(T ) for O(log q) primes � in
O(log q). To compute χ
(T ), we must first compute the �-division polynomials,
which have degrees in O(�2). We then compute the kernel ideal I
; the total cost
is in Õ(�6) field operations, according to §2.3. The cost of checking (2) against
a generic element of JC [�] decomposes into the cost of computing Frobenius
images of the generic element in Õ(�4 log q) and of finding the matching pair
(s̄1, s̄2) in Õ(�5) field operations. So the total complexity for computing χ
(T )
is in Õ(�4(�2 + log q)) field operations. In terms of bit operations, for each �

bounded by O(log q), we compute χ
(T ) in time Õ((log q)7). The result follows
from the addition of these costs for all the O(log q) different �. �

2.5 Baby-Step Giant-Step Algorithms

In practice, computing χ
(T ) with classical Schoof–Pila becomes impractical for
large values of �. The usual approach is to carry out the Schoof–Pila algorithm
to the extent possible, obtaining congruences for s1 and s2 modulo some integer
M , before completing the calculation using a generic group algorithm such as
baby-step giant-step (BSGS). Our BSGS algorithm of choice is the low-memory
parallelized variant of the Matsuo–Chao–Tsuji algorithm [9,13].

The Weil bounds imply that the search space of candidates for (s1, s2) is
in O(q3/2), so a pure BSGS approach finds (s1, s2) in time and space Õ(q3/4).
However, when we apply BSGS after a partial Schoof–Pila computation, we
have a congruence for (s1, s2) modulo M . If M < 8

√
q, then the size of the

search space is reduced to O(q3/2/M2), and the complexity for finding (s1, s2)
is reduced to Õ(q3/4/M). For larger M , the value of s1 is fully determined; the
problem is reduced to a one-dimensional search space of size O(q/M), for which
the complexity is Õ(

√
q/M).

3 Point Counting in Genus 2 with Real Multiplication

By assumption, JC is ordinary and simple, so χ(T ) is an irreducible polynomial
defining a quartic CM-field with real quadratic subfield Q(

√
Δ). We say that

JC (and C) has real multiplication (RM) by Q(
√
Δ ). For a randomly selected

curve, Δ is in O(q); but in the sequel we consider families of curves with RM by
Q(

√
Δ) for small Δ (= 5 or 8), admitting an explicit (in the sense of Definition 1)

endomorphism φ such that

Z[φ] = Q(
√
Δ) ∩ End(JC) (4)

(that is, Z[φ] is the full real subring of End(JC)), and

disc (Z[φ]) = Δ.

We presume that the trace Tr(φ) and norm N(φ), such that φ2−Tr(φ)φ+N(φ) =
0, are known. We also suppose that φ is efficient, in the following sense:
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Definition 2. We say that an explicit endomorphism φ is efficiently computable
if evaluating φ at points of JC(Fq) requires only O(1) field operations (comparable
to a few group operations in JC). In practice, this means that the φ-division
polynomials have small degree.

The existence of an efficiently computable φ and knowledge of Δ allows us
to make significant improvements to each stage of the Schoof–Pila algorithm.
Briefly: in §3.2 we use φ to simplify the testing procedure for each �; in §3.3 we
show that when � splits in Z[φ], we can use φ to obtain a radical reduction in
complexity for computing χ
(T ); and in §3.4 we show that knowing an effective
φ allows us to use many fewer primes �.

3.1 The RM Characteristic Polynomial

Let ψ = π + π†; we consider Z[ψ], a subring of the real quadratic subring of
End(JC). The characteristic polynomial of ψ is the real Weil polynomial

ξ(T ) = T 2 − s1T + s2; (5)

the discriminant of Z[ψ] is Δ0 = s21 − 4s2. The analogue of Rück’s bounds for
(s1, Δ0) is

(|s1| − 4
√
q)2 ≥ Δ0 = s21 − 4s2 ≥ 0. (6)

Equation (4) implies that Z[ψ] is contained in Z[φ], so there exist integers m
and n such that

ψ = m+ nφ. (7)

Both s1 and s2 are determined by m and n: we have

s1 = Tr(ψ) = 2m+ nTr(φ) and s2 = N(ψ) = (s21 − n2Δ)/4. (8)

In fact n is the conductor of Z[ψ] in Z[φ] up to sign: |n| = [Z[φ] : Z[ψ]], and
hence

Δ0 = disc(Z[ψ]) = s21 − 4s2 = n2Δ.

The square root of the bounds in (6) gives bounds on s1 and n:

4
√
q − |s1| ≥

√
Δ0 = |n|

√
Δ ≥ 0;

In particular, |s1| ≤ 4
√
q and |n| ≤ 4

√
q/Δ. Applying (8), we have the bounds

|m| ≤ 2(|Tr(φ)| +
√
Δ)
√
q/Δ and |n| ≤ 4

√
q/Δ. (9)

Both |m| and |n| are in O(
√
q).
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3.2 An Efficiently Computable RM Relation

We can use our efficiently computable endomorphism φ to replace the relation
of (2) with a more efficiently computable alternative. Multiplying (7) through
by π, we have

ψπ = π2 + [q] = mπ + nφπ.

We can therefore compute m̄ = m mod � and n̄ = n mod � by letting D be a
generic �-torsion point, computing the three points

(π2 + [q̄])(D), π(D), and φπ(D),

and then searching for the m̄ and n̄ in Z/�Z such that

(π2 + [q̄])(D) − [m̄]π(D) − [n̄]φπ(D) = 0 (10)

holds; we can find such an m̄ and n̄ in O(�) group operations.
Solving (10) rather than (2) has several advantages. First, computing (π2 +

[q̄])(D), π(D), and φπ(D) requires only two applications of Frobenius, instead
of the four required to compute (π2 + [q̄])2(D), (π2 + [q̄])π(D), and π2(D) (and
Frobenius applications are costly in practice). Moreover, either s2 needs to be
determined in O(q), or else the value of n in (2) leaves a sign ambiguity for each
prime �, because only n2 mod � can be deduced from (s̄1, s̄2). In contrast, (10)
determines n directly.

3.3 Exploiting Split Primes in Q(
√

Δ)

Let Z[φ] ⊂ End(JC) be an RM order in Q(φ) ∼= Q(
√
Δ). Asymptotically, half of

all primes � split: (�) = p1p2 in Z[φ], where p1 + p2 = (1) (and this carries over
to prime powers �). This factorization gives a decomposition of the �-torsion

JC [�] = JC [p1] ⊕ JC [p2].

In particular, any �-torsion point D can be uniquely expressed as a sum D =
D1 +D2 where Di is in JC [pi].

According to the Cohen–Lenstra heuristics [5], more than 75% of RM fields
have class number 1; in each of the explicit RM families in §4, the order Z[φ]
has class number 1. All ideals are principal in such an order, so we may find a
generator for each of the ideals pi. The following lemma shows that we can find
a generator which is not too large.

Lemma 1. If p is a principal ideal of norm � in a real quadratic order Z[φ], then
there exists an effectively computable generator of p with coefficients in O(

√
�).

Proof. Let α be a generator of p, and ε a fundamental unit of Z[φ]. Let γ �→ γ1

and γ �→ γ2 be the two embeddings of Z[φ] in R, indexed so that |α1| ≥ |α2| and
|ε1| > 1 (replacing ε with ε−1 if necessary). Then R = log(|ε1|) is the regulator
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of Z[φ]. Set β = ε−kα, where k = [log(|α1/
√
�|)/R]; then β = a + bφ is a new

generator for p such that

−1
2
≤ log(|βi/

√
�|)

R
≤ 1

2
·

These bounds imply that |β1 + β2| = |2a + bTr(φ)| and |β1 − β2| = |b√Δ| are
bounded by 2eR/2

√
�. Since Tr(φ), Δ and R are fixed constants, |a| and |b| are

in O(
√
�). The “effective” part of the result follows from classical algorithms for

quadratic fields. �
Lemma 2. Let JC be the Jacobian of a genus 2 curve over a finite field with an
efficiently computable RM endomorphism φ. There exists an algorithm which,
given a principal ideal p of norm � in Z[φ], computes an explicit generator α of
p and the α-division polynomials in O(�) field operations.

Proof. By Lemma 1, we can compute a generator α = [a] + [b]φ with a and b
in O(

√
�). The [a]- and [b]-division polynomials have degrees in O(�), and can

be determined in O(�) field operations. The division polynomials for the sum
α = [a]+ [b]φ require one sum and one application of φ; and since φ is efficiently
computable, this increases the division polynomial degrees and computing time
by at most a constant factor. �
We can now state the main theorem for RM point counting.

Theorem 1. There exists an algorithm for the point counting problem in a fam-
ily of genus 2 curves with efficiently computable RM of class number 1, whose
complexity is in Õ((log q)5).

Proof. Let JC be a Jacobian in a family with efficiently computable RM by Z[φ].
Suppose that � is prime, (�) = p1p2 in Z[φ], and that the pi are principal. By
Lemma 2 we can compute representative α-division polynomials for p1 and p2,
and hence generic points Di in JC [pi], in time Õ(�).

We recall that (10) is the homomorphic image under π of the equation

ψ(D) − [m̄](D) − [n̄]φ(D) = 0.

When applied to Di in JC [pi], the endomorphisms ψ and φ act as elements of
Z[φ]/pi

∼= Z/�Z. Moreover x̄i = φ mod pi is known, and it remains to determine
ȳi = ψ mod pi by means of the discrete logarithm

ψ(Di) = [ȳi](Di) = [m̄+ n̄x̄i](Di)

in the cyclic group 〈Di〉 ∼= Z/�Z. The application of π transports this discrete
logarithm problem to that of solving for ȳi in

D′′
i = [ȳi]D′,

whereD′
i = π(Di) and D′′

i = (π2+[q̄])(Di). By the CRT, from (ȳ1, ȳ2) in (Z/�Z)2

we recover ȳ in Z[φ]/(�), from which we solve for (m̄, n̄) in (Z/�Z)2 such that

ȳ = m̄+ n̄φ ∈ Z[φ]/(�).

The values of (s̄1, s̄2) are then recovered from (8).
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The ring Z[φ] is fixed, so as log q goes to infinity we find that 50% of all primes
� split in Z[φ] by the Chebotarev density theorem. It therefore suffices to consider
split primes in O(log q). In comparison with the conventional algorithm presented
in §2.2, we reduce from computation modulo the ideal for JC [�] of degree in
O(�4), to computation modulo the ideals for JC [pi] of degree in O(�2). This
means a reduction from Õ(�4(�2 + log q)) to Õ(�2(�+ log q)) field operations for
the determination of each χ
(T ), giving the stated reduction in total complexity
from Õ((log q)8) to Õ((log q)5). �
Remark 1. Computing (m,n) instead of (s1, s2) allows us to reduce the number
of primes � to be considered by about a half, since by (9) their product needs
to be in O(

√
q) instead of O(q). While this changes only the constant in the

asymptotic complexity of the algorithm, it yields a significant improvement in
practice.

Remark 2. If the class number h of Z[φ] is not 1, and if (�) = p1p2 where the pi are
not principal, then we may apply Lemma 2 to a larger proportion of small ideals
by using a small complementary ideal (c) = c1c2 such that the cipi are principal.
Moreover, if (m̄, n̄) is known modulo c, this can be used to reduce the discrete log
problem modulo �. Again, since a fixed positive density 1/2h of primes are both
split and principal, this does not affect the asymptotic complexity. We observe
that the first discriminant with h > 1 is Δ = 65, well beyond the current range
for which an explicit RM construction is currently known.

3.4 Shrinking the BSGS Search Space

In the conventional Schoof–Pila context, we need to find s1 in O(
√
q) and s2

in O(q). However, (7) and the effective form of (10) (valid for all D in JC)
replace (s1, s2) with the tuple (m,n) of integers in O(

√
q). This reduces the

search space size from O(q3/2) to O(q), so a BSGS strategy can find (m,n)
(which determines (s1, s2)) in time and space O(

√
q), compared with O(q3/4)

when searching directly for (s1, s2).
As in the general case, if one knows (m,n) modulo an integerM , then the area

of the search rectangle is reduced by a factor of M2, so we find the tuple (m,n) in
O(

√
q/M) group operations. In contrast to the general case of §2.5, sincem and n

have the same order of magnitude, the speed-up is always by a factor ofM .

4 Examples of Families of Curves with Explicit RM

We now exhibit some families of curves and efficient RM endomorphisms that
can be used as sources of inputs to our algorithm.

4.1 Correspondences and Endomorphisms

To give a concrete representation for endomorphisms of JC , we use correspon-
dences : that is, divisors on the surface C×C. Suppose that R is a curve on C×C,
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and let π1 : R → C and π2 : R → C be the restrictions to R of the natural pro-
jections from C×C onto its first and second factors. The pullback homomorphism
(π1)∗ : Pic(C) → Pic(R) is defined by

(π1)∗
([ ∑

P∈C(Fq)

nPP
])

=
[ ∑

P∈C(Fq)

nP

∑
Q∈π−1

1 (P )

Q
]
,

where the preimages Q are counted with the appropriate multiplicities (we
can always choose divisor class representatives so that each π−1(P ) is zero-
dimensional). The pushforward homomorphism (π2)∗ : Pic(R) → Pic(C) is de-
fined by

(π2)∗
([ ∑

Q∈R(Fq)

nQQ
])

=
[ ∑

Q∈R(Fq)

nQπ2(Q)
]
.

Note that (π1)∗ maps Picn(C) into Pic(n deg π1)(R) and (π2)∗ maps Picn(R) into
Picn(C) for all n. Hence (π2)∗ ◦ (π1)∗ maps Pic0(C) into Pic0(C), so we have an
induced endomorphism

φ = (π2)∗ ◦ (π1)∗ : JC → JC .

We write x1, y1 and x2, y2 for the coordinates on the first and second factors of
C×C, respectively (so πi(x1, y1, x2, y2) = (xi, yi)). In our examples, the corre-
spondence R will be defined by two equations:

R = V (A(x1, x2), B(x1, y1, x2, y2)) .

On the level of divisors, the image of a generic point P = (xP , yP ) of C (that is,
a generic prime divisor) under the endomorphism φ is given by

φ : (xP , yP ) �−→ V (A(xP , x), B(xP , yP , x, y)) .

Using the relations y2
P = f(xP ) and y2 = f(x) (and the fact that correspondences

cut out by principal ideals induce the zero homomorphism), we can easily replace
A and B with Cantor-reducible generators to derive the Mumford representation
of φ(P ), and thus the φ-division polynomials.

4.2 A 1-Dimensional Family with RM by Z[
(
1 +

√
5
)
/2]

Let t be a free parameter, and suppose that q is not a power of 5. Let CT be the
family of curves of genus 2 over Fq considered by Tautz, Top, and Verberkmoes
in [21, Example 3.5], defined by

CT : y2 = x5 − 5x3 + 5x+ t.

Let τ5 = ζ5 + ζ−1
5 , where ζ5 is a 5th root of unity in Fq. Let φT be the endomor-

phism induced by the (constant) family of correspondences

RT = V
(
x2

1 + x2
2 − τ5x1x2 + τ2

5 − 4, y1 − y2

) ⊂ CT×CT.
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(Note that RT and φT are defined over Fq(τ5), which is equal to Fq if and only
if q �≡ ±2 mod 5.) The family CT has a unique point P∞ at infinity, which we
can use to define an embedding of CT in JCT by

P = (xP , yP ) �−→ DP := [(P ) − (P∞)] ↔ (x− xP , y − yP ).

The φT-division polynomials with respect to this embedding are

d2 = 1, d1 = −τ5x, d0 = x2 + τ2
5 − 4, e2 = 1, e1 = 0, e0 = 1.

Proposition 2. The minimal polynomial of φT is T 2 + T − 1: that is, φT acts
as multiplication by −(1 +

√
5)/2 on JCT . A prime � splits into two principal

ideals in Z[φT] if and only if � ≡ ±1 mod 5.

Proof. The first claim is proven in [21, §3.5]. More directly, if P and Q are generic
points of CT, then on the level of divisors we find

(φ2
T + φT)((P ) − (Q)) = (P ) − (Q) + div

(
y − y(P )
y − y(Q)

)
.

Hence Z[φT] is isomorphic to the ring of integers of Q(
√

5). The primes � splitting
in Q(

√
5) are precisely those congruent to ±1 modulo 5; and since Q(

√
5) has

class number 1, the primes over � are principal. �
The Igusa invariants of CT, viewed as a point in weighted projective space, are
(140 : 550 : 20(32t2 − 3) : 25(896t2 − 3109) : 64(t2 − 4)2); in particular, CT has a
one-dimensional image in the moduli space of curves of genus 2. The Jacobian of
the curve with the same defining equation over Q(t) is absolutely simple (cf. [12,
Remark 15]).

4.3 A 2-Dimensional Family with RM by Z[
(
1 +

√
5
)
/2]

Let s and t be free parameters. Consider the family of genus 2 curves defined by
CH : y2 = FH(x), where

FH(x) = sx5 − (2s+ t)x4 + (s2 + 3s+ 2t− 1)x3 − (3s+ t− 3)x2 + (s− 3)x+ 1.

This family is essentially due to Humbert; it is equal to the family of Mestre [14,
§2.1] with (U, T ) = (s, t), and the family of Wilson [22, Proposition 3.4.1] with
(A,B) = (s,−t−3s+3). The family has a full 2-dimensional image in the moduli
space of genus 2 curves.

Let RH be the family of correspondences on CH×CH defined by

RH = V
(
x2

1x
2
2 + s(s− 1)x1x2 − s2(x1 − x2) + s2, y1 − y2

)
;

let φH be the induced endomorphism. There is a unique point P∞ at infinity on
CH, which we can use to define an embedding of CH in JCH by

P = (xP , yP ) �−→ DP := [(P ) − (P∞)] ↔ (x− xP , y − yP ).

The φH-division polynomials with respect to this embedding are

d2 = x2, d1 = (s2 − s)x+ s2, d0 = −s2x+ s2, e2 = 1, e1 = 0, e0 = 1.
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Proposition 3. The minimal polynomial of φH is T 2+T−1: that is, φH acts as
multipliction by −(1 +

√
5)/2 on JCH . A prime � splits into two principal ideals

in Z[φH] if and only if � ≡ ±1 mod 5.

Proof. The first assertion is [14, Proposition 2] with n = 5; the rest of the proof
is exactly as for Proposition 2. �

4.4 A 2-Dimensional Family with RM by Z[
√

2]

For an example with Δ = 8, we present a twisted and reparametrized version of
a construction due to Mestre [15]. Let s and t be free parameters, let v(s) and
n(s) be the rational functions

v = v(s) :=
s2 + 2
s2 − 2

and n = n(s) :=
4s(s4 + 4)
(s2 − 2)3

,

and let CM be the family of curves defined by

CM : y2 = FM(x) := (vx− 1)(x− v)(x4 − tx2 + vt− 1).

The family of correspondences on CM×CM defined by

RM = V

(
x2

1x
2
2 − v2(x2

1 + x2
2) + 1,

y1y2 − n(x2
1 + x2

2 − t)(x1x2 − v(x1 + x2) + 1)

)
induces an endomorphism φM of JCM .

The family CM has two points at infinity, P+
∞ and P−

∞, which are generically
only defined over a quadratic extension of Fq(s, t). Let D∞ = (P+

∞)+(P−
∞) denote

the divisor at infinity. We can use the rational Weierstrass point Pv = (v, 0) on
CM to define an embedding of CM in JCM by

P = (xP , yP ) �−→ DP := [(P ) + (Pv) −D∞]
↔
(
(x− xP )(x− v), y − yP (x−v)

xP−v (x− v)
)

(appropriate composition and reduction algorithms for divisor class arithmetic
on genus 2 curves with an even-degree model, such as CM, appear in [6]). The
φM-division polynomials with respect to this embedding are

d2 = x2 − v2, e2 = (x2 − v2)FM(x),
d1 = 0, e1 = n(x− v)(x4 − tx2 + tv2 − 1),
d0 = −v2x2 + 1, e0 = n(vx− 1)(x4 − tx2 + tv2 − 1).

Proposition 4. The minimal polynomial of φM is T 2 − 2: that is, φM acts as
multiplication by

√
2 on JCM. A prime � splits into two principal ideals in Z[φM]

if and only if � ≡ ±1 mod 8.
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Proof. Let P and Q be generic points of CM. An elementary but lengthy calcu-
lation shows that on the level of divisors

φ2
M((P ) − (Q)) = 2(P ) − 2(Q) + div

(
x+ x(P )
x+ x(Q)

)
,

so φ2
M([D]) = 2[D] for all [D] in Pic0(CM). Hence φ2

M = [2], and Z[φM] is iso-
morphic to the maximal order of Q(

√
2). The primes � splitting in Q(

√
2) are

precisely those congruent to ±1 modulo 8; further, Q(
√

2) has class number 1,
so the primes over � are principal. �
Remark 3. As noted above, this construction is a twisted reparametrization of
a family of isogenies described by Mestre in [15, §2.1]. Let a1 and a2 be the
roots of T 2 − tT + v2t− 1 in Fq(v, t). Mestre’s curves C′ and C are equal (over
Fq(v, a1, a2)) to our CM and its quadratic twist by A = 2(v2−1)(v2+1)2 = (2n)2,
respectively. We may specialize the proofs in [15] to show that CM has a two-
dimensional image in the moduli space of curves of genus 2, and that the Jacobian
of the curve with the same defining equation over Q(s, t) is absolutely simple.
Constructions of curves with RM by Z[

√
2] are further investigated in Bending’s

thesis [1].

Remark 4. Our algorithms should be readily adaptable to work with Kummer
surfaces instead of Jacobians. In the notation of [7], the Kummers with param-
eters (a, b, c, d) satisfying b2 = a2 − c2 − d2 have RM by Z[

√
2], which can be

made explicit as follows: the doubling algorithm decomposes into two identical
steps, since (A : B : C : D) = (a : b : c : d), and the components after one step
are the coordinates of a Kummer point. This step therefore defines an efficiently
computable endomorphism which squares to give multiplication by 2.

5 Numerical Experiments

We implemented our algorithm in C++ using the NTL library [19]. For non-
critical steps, including computations in quadratic fields, we used Magma [2] for
simplicity. With this implementation, determining χ(T ) for a curve over a 128-bit
prime field takes approximately 3 hours on one core of a Core2 processor at 2.83
GHz. This provides a proof of concept rather than an optimized implementation.

5.1 Cryptographic Curve Generation

When looking for cryptographic curves we used an early-abort strategy, switching
to another curve as soon as either the order of the Jacobian or its twist cannot
be prime. Using our adapted Schoof algorithm, we can guarantee that the group
orders are not divisible by any prime that splits in the real field up to the CRT
bound used. In fact, any prime that divides the group order of a curve having
RM by the maximal order of Q(

√
Δ) must either be a split (or ramified) prime,

or divide it with multiplicity 2. As a consequence, the early abort strategy works
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much better than in the classical Schoof algorithm, because it suffices to test
half the number of primes up to our CRT bound.

We ran a search for a secure curve over a prime field of 128 bits, using a CRT
bound of 131. Our series of computations frequently aborted early, and resulted
in 245 curves for which χ(T ) was fully determined, and for which neither the
group order nor its twist was divisible by a prime less than 131. Together with
the twists this provided 490 group orders, of which 27 were prime and therefore
suitable for cryptographic use. We give here the data for one of these curves,
that was furthermore twist-secure: the order of both the Jacobian and its twist
are prime.

Let q = 2128 + 573, and let C/Fq be the curve in the family CT of §4.2 spe-
cialized at t = 75146620714142230387068843744286456025. The characteristic
polynomial χ(T ) is determined by

s1 = −26279773936397091867,
s2 = −90827064182152428161138708787412643439,

giving prime group orders

#JC(Fq) = 115792089237316195432513528685912298808
995809621534164533135283195301868637471,

#JC′(Fq) = 115792089237316195414628441331463517678
650820031857370801365706066289379517451,

where C′ denotes the quadratic twist of C. Correctness of the orders is easily
verified on random points in the Jacobians.

5.2 A Kilobit Jacobian

Let q be the prime 2512 + 1273, and consider the curve over Fq from the family
CT of §4.2 specialized at

t = 2908566633378727243799826112991980174977453300368095776223
2569868073752702720144714779198828456042697008202708167215
32434975921085316560590832659122351278.

This value of t was randomly chosen, and carries no special structure. We com-
puted the values of the pair (s1 mod �, n mod �) for this curve for each split prime
� up to 419; this was enough to uniquely determine the true value of (s1, n) using
the CRT. The numerical data for the curve follows:

Δ = 5
s1 = −10535684568225216385772683270554282199378670073368228748

7810402851346035223080
n = −37786020778198256317368570028183842800473749792142072230

993549001035093288492
s2 = (s21 − n2Δ)/4

= 990287025215436155679872249605061232893936642355960654938
008045777052233348340624693986425546428828954551752076384
428888704295617466043679591527916629020
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The order of the Jacobian is therefore

N = (1 + q)2 − s1(1 + q) + s2
= 179769313486231590772930519078902473361797697894230657273

430081157732675805502375737059489561441845417204171807809
294449627634528012273648053238189262589020748518180898888
687577372373289203253158846463934629657544938945248034686
681123456817063106485440844869387396665859422186636442258
712684177900105119005520.

The total runtime for this computation was about 80 days on a single core of a
Core 2 clocked at 2.83 GHz. In practice, we use the inherent parallelism of the
algorithm, running one prime � on each available core.

We did not compute the characteristic polynomial modulo small prime pow-
ers (as in [10]), nor did we use BSGS to deduce the result from partial modular
information as in §3.4 (indeed, we were more interested in measuring the be-
haviour of our algorithm for large values of �). These improvements with an
exponential-complexity nature bring much less than in the classical point count-
ing algorithms, since they have to be balanced with a polynomial-time algorithm
with a lower degree. For this example, we estimate that BSGS and small prime
powers could have saved a factor of about 2 in the total runtime.

References

1. Bending, P.R.: Curves of genus 2 with
√

2 multiplication. Ph. D. thesis. University
of Oxford (1998)

2. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comput. 24, 235–265 (1997)

3. Cantor, D.G.: Computing in the Jacobian of a hyperelliptic curve. Math.
Comp. 48(177), 95–101 (1987)

4. Cantor, D.G.: On the analogue of the division polynomials for hyperelliptic curves.
J. Reine Angew. Math. 447, 91–145 (1994)

5. Cohen, H., Lenstra Jr., H.W.: Heuristics on class groups of number fields.
In: Number Theory, Noordwijkerhout 1983. Lecture Notes in Math., vol. 1068,
pp. 33–62 (1984)

6. Galbraith, S.D., Harrison, M.C., Mireles Morales, D.J.: Efficient Hyperelliptic
Arithmetic Using Balanced Representation for Divisors. In: van der Poorten, A.J.,
Stein, A. (eds.) ANTS-VIII 2008. LNCS, vol. 5011, pp. 342–356. Springer, Heidel-
berg (2008)

7. Gaudry, P.: Fast genus 2 arithmetic based on Theta functions. J. Math. Crypt. 1,
243–265 (2007)
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Abstract. Two fundamental building blocks of secure two-party com-
putation are oblivious transfer and bit commitment. While there exist
unconditionally secure implementations of oblivious transfer from noisy
correlations or channels that achieve constant rates, similar constructions
are not known for bit commitment.

In this paper, we show that any protocol that implements n instances
of bit commitment with an error of at most 2−k needs at least Ω(kn)
instances of a given resource such as oblivious transfer or a noisy channel.
This implies in particular that it is impossible to achieve a constant rate.

We then show that it is possible to circumvent the above lower bound
by restricting the way in which the bit commitments can be opened. We
present a protocol that achieves a constant rate in the special case where
only a constant number of instances can be opened, which is optimal.
Our protocol implements these restricted bit commitments from string
commitments and is universally composable. The protocol provides sig-
nificant speed-up over individual commitments in situations where re-
stricted commitments are sufficient.

Keywords: secure two-party computation, bit commitment, string com-
mitment, oblivious transfer, noisy channel, information theory.

1 Introduction

Commitment schemes [4] are one of the basic building blocks of two-party com-
putation [42]. Commitments can be used in coin-flipping [4], zero-knowledge
proofs [21,20], zero-knowledge arguments [7] or as a tool in general two-party
computation protocols to prevent malicious players from actively cheating (see
for example [14]).

A commitment scheme has two phases. In the commit phase, the sender has
to decide on a value b. After the commit phase the value b is fixed and cannot be
changed, while the receiver still does not get any information about its value. At
a later time, the players may execute the second phase, called the open phase,
where the bit b is revealed to the receiver. The scheme is called a bit commitment
if b is only one bit, and it is called a string commitment if b is a longer bit string.

Bit commitments can be implemented from a wide variety of information-
theoretic primitives [11,16,38,41]. There are protocols which implement a single
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string commitment from noisy channels at a constant rate, meaning that the
size of the string grows linearly with the number of instances of noisy channels
used, which is essentially optimal [38]. Protocols which implement individual
bit commitments at a constant rate, however, are not known. In [30] it has
been shown that in any perfectly correct and perfectly hiding non-interactive
bit commitment scheme from distributed randomness with a security of 2−k, the
size of the randomness given to the players must be at least Ω(k).

Another primitive that is of fundamental importance in two-party computa-
tion is oblivious transfer (OT) [36,32,19]. Oblivious transfer can be implemented
from noisy channels [10,12,11,13], cryptogates [28] and weak variants of noisy
channels [16,15,40,41]. While all these protocols require Ω(k) instances of a
given primitive to implement a single OT with a security of 2−k, it has been
shown in [23,26,25,24] that there are more efficient protocols if many OTs are
implemented at once. In the semi-honest model and in some cases also in the
malicious model, it is possible to implement OT at a constant rate, which means
n instances of OT can be implemented from just O(n) instances of the given
primitive, if n is big enough compared to the security parameter. It is, there-
fore, possible to achieve the lower bound for such reductions [17,2,39,37] up to a
constant factor. In the following we address the question whether such efficient
protocols also exist in the case of bit commitment.

1.1 Contribution

We show that — in contrast to implementations of OT — no constant rate re-
duction of bit commitment to distributed randomness can exist. More precisely,
in Theorem 1 we show that if a protocol implements n bit commitments with
a security of at least 2−k from distributed randomness, then the mutual infor-
mation between the sender’s and the receiver’s randomness must be almost kn
or larger. Our proof is built on the insight that any such protocol must reveal
at least k bits of information about the receiver’s randomness for each commit-
ted bit that is opened. This implies that we need at least Ω(kn) instances of
oblivious transfer or noisy channels to implement n bit commitments. Thus, ex-
ecuting for each bit commitment a protocol that uses O(k) instances is optimal.
In combination with the lower bound from [38], this bound can be generalized
to string commitments: any protocol that implements n string commitments of
length � needs at least Ω(n(�+ k)) bits of distributed randomness.

However, in many applications of bit commitments the full strength of the
commitment scheme is not required. For example in the famous zero-knowledge
protocol of [20], it is only required that a constant number of committed bits can
be opened. We show that restricting the ways in which the bit commitments can
be opened enables us to implement more efficient schemes that circumvent our
impossibility result.1 We introduce a new concept that we call bit commitments
with restricted openings. It allows a sender to commit to N bits, from which he

1 Note that for the specific case of zero-knowledge proofs other, more efficient, tech-
niques are known [29].
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may open up to r < N one by one. After that, he may only open all the remaining
bits at once. Our protocol uses so-called cover-free families, and implements
bit commitments with restricted openings from string commitments. Together
with a simple construction of a cover-free family from [18], our results imply
that for any prime power q, we can implement N = q2 bit commitments from
which r can be opened from (r + 1)q string commitments of length q. (See
Corollary 4 for the more general statement.) Together with the protocol from
[38], we get a constant-rate bit commitment protocol from noisy channels, for any
constant r. As bit commitments with restricted openings are strictly stronger
than a string commitment, this is optimal. Together with another construction
of a cover-free family from [6], it is possible to implement N = 2Ω(n/r2) bit
commitments from n string commitments. We prove our protocol secure in the
Universal Composability model (UC) [8].

We will prove our lower bounds for independent bit commitments in Section 2.
In Section 3, we introduce commitments with restricted openings and give reduc-
tions to string commitments. Note that Section 3 can be read without reading
Section 2.

1.2 Notation

In the following, the probability distribution of a random variable X is denoted
by PX(x). The joint distribution PXY (x, y) defines a conditional distribution
PX|Y (x, y) = PXY (x, y)/PY (y) for all y with PY (y) > 0. The statistical distance
between the distributions PX and PX′ over the domain X is defined as

δ(PX , PX′) := max
D

| Pr[D(X) = 1] − Pr[D(X ′) = 1] | ,

where we maximize over all (inefficient) distinguishers D : X → {0, 1}. We use
the notation [n] for the set {1, . . . , n}. For a sequence x = (x1, . . . , xn) and
t ∈ [n], we denote by xt the subsequence (x1, . . . , xt).

1.3 Information Theory

We will use the following tools from information theory in our proofs. We assume
that the reader is familiar with the basic concepts of information theory, and
refer to [9,22] for more details. The conditional Shannon entropy of X given Y
is defined as2

H(X | Y ) := −
∑
x,y

PXY (x, y) logPX|Y (x, y) .

We use the notation

h(p) = −p log(p) − (1 − p) log(1 − p)

2 All logarithms are binary, and we use the convention that 0 · log 0 = 0.
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for the binary entropy function, i.e., h(p) is the entropy of the Bernoulli distribu-
tion3 with parameter p. The mutual information of X and Y given Z is defined
as

I(X ;Y | Z) = H(X | Z) − H(X | Y Z) .

The mutual information satisfies the following chain rule

I(X1 . . . Xn;Y ) =
n∑

i=1

I(Xi;Y | X1 . . . Xi−1).

The Kullback-Leibler divergence or relative entropy of two distributions PX and
QX on X is defined as

D(PX ‖ QX) =
∑
x∈X

PX(x) log
PX(x)
QX(x)

.

The conditional divergence of two distributions PXY and QXY on X × Y is
defined as

D(PY |X ‖ QY |X) =
∑
x∈X

PX(x)D(PY |X=x ‖ QY |X=x) .

The binary divergence of two probabilities p and q is defined as the divergence
of the Bernoulli distributions with parameters p and q, i.e.,

d(p ‖ q) = p log
p

q
+ (1 − p) log

1 − p

1 − q
.

The divergence (and hence also the conditional divergence) is always non-negative.
Furthermore, we have the following chain rule

D(PXY ‖ QXY ) = D(PX ‖ QX) + D(PY |X ‖ QY |X) . (1)

This implies

D(PXPY |X ‖ PXQY |X) = D(PY |X ‖ QY |X). (2)

Let QX and PX be two distributions over the inputs to the same channel
PY |X . Then the divergence between the outputs PY =

∑
x PXPY |X and QY =∑

xQXPY |X of the channel is not greater than the divergence between the in-
puts, i.e., the divergence satisfies the data-processing inequality

D(PX ‖ QX) ≥ D(PY ‖ QY ) . (3)

Furthermore, for random variables X,Y and Z distributed according to PXY Z

I(X ;Y | Z) = D(PX|Y Z ‖ PX|Z) . (4)

Let PX|Y =y = PX|Y =y,Z=z for all y, z (or PZ|Y =y = PZ|Y =y,X=x for all y, z,
which is equivalent). Then we say thatX , Y and Z form a Markov-chain, denoted
by X ↔ Y ↔ Z. If W ↔ XZ ↔ Y , then

I(X ;Y | ZW ) ≤ I(X ;Y | Z) . (5)
3 The Bernoulli distribution with parameter p ∈ [0, 1] takes on the value 1 with prob-

ability p and 0 otherwise.
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2 Impossibility Results

2.1 Model and Security Definition

We will consider the following model: a trusted third party holds random vari-
ables (U, V ) with a joint distribution PUV and sends U to the sender and V
to the receiver. The sender receives an input bit b ∈ {0, 1}. In the commit
phase, the players exchange messages in several rounds. Let all the messages
exchanged be M , which is a randomized function of (U, V, b). In the open phase,
the sender sends b together with a value D1 to the receiver. The receiver then
sends a message E1 to the receiver, who replies with a message D2 and so
on. Let N := (D1, E1, D2, E2, . . . , Et−1, Dt) be the total communication in the
open phase. (We assume that the number of rounds in the open phase is upper
bounded by a constant t. By padding the protocol with empty rounds we can
thus assume without loss of generality that the protocol uses t rounds in every
execution.) Finally, the receiver accepts or rejects, which we model by a random-
ized function F (b, V,M,N) that outputs 1 for accept and 0 for reject. Let the
distribution in the honest setting be PUV MN |B=b. We define three parameters
that quantify the security for the sender and the receiver, respectively, and the
correctness of the protocol.

– ε-correct : Pr[F (b, V,M,N) = 1] ≥ 1 − ε.
– β-hiding: δ(PV M|B=0, PV M|B=1) ≤ β.
– γ-binding: For any b ∈ {0, 1} and for any malicious sender that is honest

in the commit phase on input b and tries to open 1 − b, we have Pr[F (1 −
b, V,M,N ′) = 1] ≤ γ, where N ′ is the communication between the malicious
sender and the honest receiver in the open phase.

Note that the above security conditions are not sufficient to prove the security of
a protocol4, but any sensible security definition for commitments implies these
conditions. Since we only use the definition to prove the non-existence of certain
protocols, this makes our result stronger.

2.2 Lower Bound for Multiple Bit Commitments

In the following we prove a lower bound on the mutual information between
the randomness of the sender and the randomness of the receiver in any bit
commitment protocol. First, we show the following technical lemma.

Lemma 1. If a protocol that implements bit commitment from distributed ran-
domness (U, V ) is γ-binding, ε-correct and β-hiding, then for b ∈ {0, 1}

d(1 − ε ‖ γ + β) ≤
t∑

i=1

I(Di;V |MDi−1Ei−1, B = b). (6)

4 To prove the security of a protocol one had to consider for example a malicious
sender in the commit phase.
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Proof. Let b ∈ {0, 1} and b̄ := 1 − b. Assume that the sender in the commit
phase honestly commits to b. If she honestly opens b in the open phase, the
communication can be modeled by a channel PDE|V M (that may depend on b)
and the resulting distribution is

PDEV M|B=b = PDE|V MPV M|B=b ,

We have omitted U as it does not play a role in the following arguments. The
correctness property implies that an honest receiver accepts values drawn from
this distribution with probability at least 1 − ε. Let the sender commit to b̄
and then try to open b by sampling her messages according to the distributions
PD1|M and PDi|MDi−1Ei−1 for 2 ≤ i ≤ t. (Note that the sender does not know V
and, therefore, chooses her messages independently of V .) The communication
in the opening phase can be modeled by a channel

QDE|V M := PD1|MPE1|V MD1 . . . PDt|MDt−1Et−1 .

The binding property implies that the receiver accepts values distributed accord-
ing to PV M|B=b̄QDE|V M with probability at most γ. δ(PV M|B=b, PV M|B=b̄) ≤ β
implies that

δ(PV M|B=bQDE|V M , PV M|B=b̄QDE|V M ) ≤ β,

and hence values drawn from the distribution PV M|B=bQDE|V M are accepted
with probability at most γ+ β. Note that the bit indicating acceptance can also
be modeled by a channel PF |DEV M . Thus, we can apply the data-processing
inequality (3) to bound d(1 − ε ‖ γ + β). Using the chain rule (1) and the non-
negativity of the relative entropy, we have (we omit conditioning on B = b in
the following)

d(1 − ε ‖ γ + β) ≤ D(PV MPDE|V M ‖ PV MQDE|V M)
= D(PDE|V M ‖ QDE|V M)

=
t∑

i=1

D(PDi|V MDi−1Ei−1 ‖ PDi|MDi−1Ei−1)

+
t−1∑
i=1

D(PEi|V MDiEi−1 ‖ PEi|V MDiEi−1)

=
t∑

i=1

D(PDi|V MDi−1Ei−1 ‖ PDi|MDi−1Ei−1)

=
t∑

i=1

I(Di;V | MDi−1Ei−1)

�
The following lemma follows easily from Theorem 2.1 in [31]. We will use it to
bound the right-hand side of (6) in the following.
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Lemma 2. Let ε = β = γ = 2−k. Then, for k ≥ 3, we have

d(1 − ε ‖ γ + β) ≥ (k − 2) · 2k−2 − 2
2k−2 − 1

.

The following lemma generalizes the lower bounds on the size of the randomness
for perfectly correct and perfectly hiding non-interactive schemes from [30] to
arbitrary protocols. However, it also provides a more powerful result, namely a
lower bound on the information that the communication in the open phase must
reveal about the receiver’s randomness V for any protocol that implements bit
commitment from a shared distribution PUV . The lower bound is essentially k
if the error of the protocol is at most 2−k. This stronger statement will allow
us in the following to prove that there are no constant rate reductions of bit
commitment to distributed randomness, the main result of this section.

Lemma 3. Let k ≥ 3. Then any 2−k-secure bit commitment must have for
b ∈ {0, 1}

I(N ;V |M,B = b) − I(N ;V | UM,B = b)

= I(U ;V | M,B = b) − I(U ;V |MN,B = b) ≥ (k − 2) · 2k−2 − 2
2k−2 − 1

.

Proof. Again, we omit conditioning on B = b in the following. Consider a
protocol over t rounds in the open phase, i.e., the whole communication is
N = (D,E) = (D1, E1, . . . , Dt). Since Di ↔ UMDi−1Ei−1 ↔ V , we have
I(Di;V | UMDi−1Ei−1) = 0. Hence,

I(NU ;V |M) = I(U ;V |M) +
t−1∑
i=1

I(Ei;V | UMDiEi−1) .

Furthermore, from Ei ↔ VMDiEi−1 ↔ U and inequality (5) follows that for
all i

I(Ei;V |MDiEi−1) ≥ I(Ei;V | UMDiEi−1) .

Hence, we have

I(N ;V |M) =
∑

i

I(Ei;V | MDiEi−1) +
∑

i

I(Di;V | MDi−1Ei−1)

≥
∑

i

I(Ei;V | UMDiEi−1) +
∑

i

I(Di;V |MDi−1Ei−1)

and

I(U ;V |MN) = I(NU ;V |M) − I(N ;V |M)

= I(U ;V |M) +
∑

i

I(Ei;V | UMDiEi−1) − I(N ;V |M)

≤ I(U ;V |M) −
∑

i

I(Di;V |MDi−1Ei−1) .

The statement now follows from Lemma 1 and Lemma 2. �
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Next, we consider implementations of n individual bit commitments. The sender
gets input bn = (b1, . . . , bn) and commits to all bits at the same time, which
results in the overall distribution

PUV M|Bn=bn = PUV PM|UV,Bn=bn .

after the commit phase. To reveal the ith bit, the sender and the receiver inter-
act resulting in the transcript Ni. The following theorem says that the mutual
information between the sender’s randomness U and the receiver’s randomness
V must be almost kn to implement n bit commitments with an error of at most
2−k. The proof uses Lemma 3 to lower bound the information that the sender
must reveal about V for every bit that he opens.

Theorem 1. Let k ≥ 3. Then any 2−k-secure protocol that implements n bit
commitments from randomness (U, V ) must have for all bn ∈ {0, 1}n

I(U ;V ) ≥ I(U ;V |M,B = bn) ≥ n(k − 2) · 2k−2 − 2
2k−2 − 1

.

Proof. Let î ∈ [n]. We first construct a commitment to a single bit, which will
allow us to apply the bound from Lemma 3. This bit commitment is defined as
follows: to commit to the bit b, the players execute the commit phase on input
bn, which is equal to the input bit b on position î and equal to the constant
b̂n ∈ {0, 1}n on all other positions. Additionally, (still as part of the commit
phase), the sender opens the first î − 1 commitments, which means that the
messages N î−1 get exchanged. To open the commitment, the sender opens bit
î. This bit commitment scheme has at least the same security as the original
commitment. Thus, Lemma 3 implies that (we omit conditioning on B = b̂n in
the following)

I(U ;V |MN î) ≤ I(U ;V | MN î−1) − (k − 2) · 2k−2 − 2
2k−2 − 1

. (7)

Since this holds for all î, we can apply (7) repeatedly to get

0 ≤ I(U ;V |MNn)

≤ I(U ;V |MNn−1) − (k − 2) · 2k−2 − 2
2k−2 − 1

≤ I(U ;V |M) − n(k − 2) · 2k−2 − 2
2k−2 − 1

By induction over all rounds of the commit protocol using (5) (see, for example,
[37] for a detailed proof) it follows that

I(U ;V |M) ≤ I(U ;V ) .

This implies the statement. �
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It is possible to securely implement 1-out-of-2 bit oblivious transfer
((

2
1

)
-OT1

)
from randomness distributed according to PUV with I(U ;V ) = 1 [3,1]. A binary
symmetric noisy channel ((p)-BSNC) with crossover probability p can be imple-
mented from randomness distributed according to PUV with I(U ;V ) = 1−h(p).
Together with these reductions, Theorem 1 implies that (almost) kn instances
of
(
2
1

)
-OT1 or kn/(1− h(p)) instances of a (p)-BSNC are needed to implement n

bit commitments with an error of at most 2−k.
There exists a universally composable protocol5 that implements bit com-

mitment from 2k instances of
(
2
1

)
-OT1 with an error of at most 2−k. Thus, n

bit commitments can be implemented from 2n(k+ log(n)) instances of
(
2
1

)
-OT1

with an error of at most n · 2−(k+log(n)) = 2−k using n parallel instances of this
protocol. Theorem 1 shows that this is optimal up to a factor of 4 if k ≥ log(n).

2.3 Lower Bounds for Multiple String Commitments

A string commitment is a generalization of bit commitment where the sender
may commit to a bit-string of length � ≥ 1. It is weaker than � instances of
bit commitment because the sender has to reveal all bits simultaneously. In [38]
a lower bound on the conditional entropy of the sender’s randomness U given
the receiver’s randomness V for any string commitment protocol from random-
ness (U, V ) has been shown. This bound essentially says that H(U | V ) must be
greater than or equal to � to implement a string commitment of length �. The
following lemma provides a similar bound for the security definition considered
here. (The proof can be found in the full version of this paper [33].)

Lemma 4. If any protocol implements an �-bit string commitment from ran-
domness (U, V ) is ε-correct, β−hiding and γ-binding, then

H(U | V ) ≥ (1 − ε− β − γ)�− h(β) − h(ε+ γ).

Together with the bound of Theorem 1, we obtain the following lower bound on
the randomness of the sender in any bit commitment protocol.

Corollary 1. Let k ≥ 3. For any protocol that implements n individual �-bit
string commitments from randomness (U, V ) with an error of at most 2−k

H(U) ≥ n(k + �− 2) · 2k−2 − 2
2k−2 − 1

− 3 · 2−k · n�− 3h(2−k).

Proof. Using Lemma 4 and Theorem 1, we get

H(U) = I(U ;V ) + H(U | V )

≥ n(k − 2) · 2k−2 − 2
2k−2 − 1

+ (1 − 3 · 2−k)n�− h(2−k) − h(2−k+1)

≥ n(k + �− 2) · 2k−2 − 2
2k−2 − 1

− 3 · 2−k · n�− 3h(2−k).

�
5 See for example Claim 33 in the full version of [8].
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In [5] it has been shown that any non-interactive perfectly hiding and per-
fectly correct bit commitment protocol from distributed randomness PUV is
at most (2−H(V |U))-binding. This result implies stronger bounds than Theo-
rem 1 and Lemma 4 for certain reductions. The following lemma provides a
lower bound on the uncertainty of the sender about the receiver’s random-
ness for any bit commitment protocol. This lower bound is essentially equal
to k if the protocol is 2−k-secure and implies, in particular, the result from [5].

Lemma 5. If a protocol that implements bit commitment from randomness
(U, V ) is γ-binding, ε-correct and β-hiding, then

d(1 − β − ε ‖ γ) ≤ H(V | UM) ≤ H(V | U).

where M is the whole communication in the commit phase. If β = γ = ε = 2−k,
then

H(V | U) ≥ (k − 1) · 2k−1 − 4
2k−1 − 1

. (8)

Proof. We have δ(PV M|B=b, PV M|B=b̄) ≤ β. This implies that the distribution
PU|V M,B=b̄PV M|B=b is β-close to PUV M|B=b̄. Thus, when the sender honestly
opens b̄ starting from values distributed according PU|V M,B=b̄PV M|B=b, the re-
ceiver accepts the resulting values with probability at least 1−β−ε. We consider
the following attack: the sender honestly commits to b, generates v′ by applying
PV |UM,B=b and then generates u by applying the channel PU|V M,B=b̄ to (v′,m).
When the sender now tries to open b̄, the binding property guarantees that the
receiver accepts the resulting values with probability at most γ. Thus, we can
apply the data-processing inequality (3) to bound d(1 − β − ε ‖ γ). Let V ′ be a
copy of V , i.e., a random variable with distribution PV V ′(v, v) = PV (v). Using
the chain rule (2), we have

d(1 − β − ε ‖ γ) ≤ D(PV V ′|UM,B=bPUM|B=b ‖ PV |UM,B=bPV |UM,B=bPUM|B=b)
≤ D(PV V ′|UM,B=b ‖ PV |UM,B=bPV |UM,B=b)
= H(V | UM,B = b)
≤ H(V | U).

Using Lemma 2 this implies inequality (8).
�

Consider a protocol that implements n bit commitment with security of 2−k from
n′ instances of

(
2
1

)
-OT
′ . Since

(
2
1

)
-OT
′ can be reduced to a shared distribution

PUV with H(V |U) = 1, Lemma 5 implies that n′ ≥ (k − 1) · 2k−1−4
2k−1−1

, i.e., one
needs, independently of �′, almost k instances of OT.

Together with Theorem 1 and Lemma 4, this implies the following lower
bound on the number of instances of OT needed to implement multiple string
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commitments, which demonstrates that all three lower bounds can be meaningful
in this scenario.

Corollary 2. Let k ≥ 3. For any protocol that implements n individual �-bit
string commitments with an error of at most 2−k from n′ instances of

(
2
1

)
-OT
′

n′ ≥ max
(
�n

�′
(1 − 3 · 2−k) − 3h(2−k)

�′
,
(k − 2)n

�′
· 2k−2 − 2
2k−2 − 1

, (k − 1)
2k−1 − 4
2k−1 − 1

)
.

3 Commitments with Restricted Openings

In this section, we will present a protocol that implements commitments with
restricted openings from several instances of string commitment. We will use the
Universal Composability model [8], and assume that the reader is familiar with
it. In our proof, we will only consider static adversaries. For simplicity, we omit
session IDs and players IDs.

String Commitment is a functionality that allows the sender to commit to a
string of n bits, and to reveal the whole string later to the receiver. The receiver
does not get to know the string before it is opened, and the sender cannot change
the string once he has sent it.

Definition 1 (String-Commitment). The functionality Fn
SCOM behaves as

follows:

– Upon input (commit, b) with b ∈ {0, 1}n from the sender: check that commit
has not been sent yet. If so, send committed to the receiver and store b.
Otherwise, ignore the message.

– Upon input openall from the sender: check if there has been a commit
message before, and the commitment has not been opened yet. If so, send
(openall, b) to the receiver and ignore the message otherwise.

Note that given Fn
SCOM, it is possible to commit to individual bits at different

times: the sender simply commits to a random string b′ = (b′1, . . . , b
′
n), and

whenever he wants to commit to a bit bi for i ∈ [n], he sends bi ⊕ b′i to the
receiver. On the other hand, it is not possible to open bits at different times
using Fn

SCOM.
Bit commitment is a string commitment of length 1, i.e., FBCOM := F1

SCOM.
We denote n independent bit commitments by (FBCOM)

n. Since (FBCOM)
n does

allow bits to be opened at different times, it is strictly stronger than Fn
SCOM.

However, as we have seen in the last section, (FBCOM)
n is also quite expensive to

implement in terms of resources needed. Therefore, we define a primitive that
is somewhere between these two: commitments with restricted openings allow a
sender to commit to n bits, but then he may only open r individual bits of his
choice one by one. To open more than r bits, he has to open the remaining bits
all at once.
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Definition 2 (Commitments with restricted openings). The functionality
Fn,r
RCOM behaves as follows:

– Upon input (commit, b) with b ∈ {0, 1}n from the sender: check that commit
has not been sent yet. If so, send committed to the receiver and store b.
Otherwise, ignore the message.

– Upon input (open,i) with i ∈ [n] from the sender: check that there has been
a commit message before, and that i has not been opened yet. Also check that
the number of opened values so far is smaller than r. If so, send (open, i,
bi) to the receiver and ignore the message otherwise.

– Upon input openall from the sender: check if there has been a commit
message before, and no openall message has been received yet from the
sender. If so, send (openall, b) to the receiver and ignore the message oth-
erwise.

For r = 0 and r = n, commitment with restricted openings are equivalent to
string commitments and individual bit commitments, respectively: Fn

SCOM = Fn,0
RCOM

and (FBCOM)
n ≡ Fn,n

RCOM.
Our protocol makes use of cover-free families [27,18,35,6], which are a gener-

alization of Sperner sets [34]. Cover-free families are also known as superimposed
codes and require that no set is covered by the union of r other sets.

Definition 3. Let X be a set of n elements and let B be a set of subsets of X ,
then (X ,B) is a r-cover-free family r−CFF(X ,B) if for any r sets Bi1 , . . . Bir ∈
B, and any other B ∈ B, it holds that

B �⊆
r⋃

j=1

Bij .

Example 1. All subsets of [n] of size s form a cover-free family for r = 1, because
there is no subset that completely covers any other subset.

Here is a simple example of a cover-free family for r > 1 given in [18].

Example 2 ([18]). Let q be a prime power, and d, r ∈ N such that rd < q. Let
X = Y × GF (q), where Y ⊆ GF (q) and |Y| = rd + 1. An element B in the
family B is constructed from a polynomial p(y) := a0 + y · a1 + ... + yd · ad of
degree d where ai ∈ GF(q) by B := {(y, p(y)) : y ∈ Y)}. Two polynomials of
degree d intersect at most d times. Therefore, any union of r elements B1, . . . Br

intersects any other element B at most rd < |Y| times, and therefore cannot
cover B. (X ,B) is therefore a r-cover-free family with |X | = (rd + 1)q and
|B| = qd+1.

We now give a protocol that implements FN,r
RCOM from n instances of FN

SCOM using
a r−CFF(X ,B), where X = {1, . . . , n} and B = {B1, B2, ..., BN}.
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Protocol 1.

– When the sender receives (commit, b), he chooses n uniformly chosen
strings c1, . . . cn ∈ {0, 1}N , with the restriction that for all i ∈ [N ] we
have ⊕

j∈Bi

cj,i = bi .

For j ∈ [n], the sender sends (commit, cj) to the jth instances of FN
SCOM.

After that he ignores all messages (commit, b′).
– When the receiver has received committed from all instances of FN

SCOM,
he outputs committed.

– For the first r times when the sender receives (open,i), he sends
(open,i) to the receiver and openall to all instances of FN

SCOM in Bi,
if they have not been opened yet. After that, he ignores all messages
(open,i).

– For the first r times when the receiver receives (open,i) from the
sender and (open, cj) from all instances FN

SCOM in Bi, he outputs (open,⊕
j∈Bi

cj,i). After that, he ignores these messages.
– When the sender receives openall, he sends openall to the receiver and

to all instances of FN
SCOM. After that, he ignores all openall messages.

– When the receiver receives openall from the sender and (open, cj)
from all instances of FN

SCOM, he outputs (openall, (b′1, . . . , b′N )), where
b′i := ⊕j∈Bicj,i. After that, he ignores all messages openall.

Theorem 2. Given an r−CFF(X ,B) where |X | = n and |B| = N , Protocol 1
UC-implements FN,r

RCOM from n instances of FN
SCOM.

Proof. It is easy to verify that the protocol is correct if the two players are
honest.

Corrupted sender. First, we consider the case where the comitter is corrupted.
He may send messages (commit, cj) or openall to the instances of FN

SCOM, and
message (open,i) or openall to the receiver.

Our simulator simulates the adversary, and records all messages sent out by
the adversary. After receiving all messages (commit, cj) to the instances of FN

SCOM,
he calculates bi := ⊕j∈Bicj,i for all i and sends (commit, (b1, . . . , bN)) to FN,r

RCOM.
After receiving (open,i) and all messages openall sent to the instances of FN

SCOM

in Bi, he sends (open,i) to FN,r
RCOM. After receiving openall sent to the receiver

and all instances FN
SCOM, he sends openall to FN,r

RCOM. It is not difficult to verify
that our simulation is perfect, and we get real≡ ideal.

Corrupted receiver. Let the receiver be corrupted by the adversary. He receives
committed and (open,cj) messages from the instances of FN

SCOM, and messages
(open,i) and openall from the sender.
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Our simulator simulates the adversary, and interacts with FN,r
RCOM and the ad-

versary. After receiving the committed message from FN,r
RCOM, it sends committed

from all FN
SCOM to the adversary. After receiving message (open,i,bi) from FN,r

RCOM,
he first sends (open,i) to the adversary. Then for all instances of FN

SCOM in Bi

which have not been opened yet, he chooses strings cj uniformly at random, with
the restriction that ⊕j∈Bicj,i = bi, and sends (open,cj) from the jth instance
of FN

SCOM to the adversary. After receiving message (openall,b) from FN,r
RCOM, he

first sends openall to the adversary. Then for all instances of FN
SCOM which have

not been opened yet, he chooses the strings cj uniformly at random, with the
restriction that ⊕j∈Bicj,i = bi, and sends (open,cj) from the jth instance of
FN
SCOM to the adversary.
To show that this simulation in the ideal setting is identical to the real setting,

we have to show that they are identical after each step. It is easy to see that
this is the case before anything has been opened, and after openall has been
executed.

FN,r
RCOM allows the sender to open at most r values. Assume that s ≤ r have

been opened so far. Since B is a r−CFF(X ,B), there is at least one instance of
FN
SCOM in Bi for all the remaining i ∈ [N ] that has not been opened yet. Since

the ith bit of that string is uniform and all the ith bits of the strings in Bi add
up to bi, the bits at the ith position of all the opened strings are uniform and
independent of each other and of the bit bi. Therefore, the simulated values cj
sent to the adversary have the same distribution in the real and in the ideal
setting. The simulation is again perfect, and we get real≡ ideal. �
Note that in each instance of FN

SCOM in Protocol 1, only a subset of the bits are
actually used. Since they are at fixed positions and both players know where they
are, they can be removed without changing the properties of the protocol. If we
use the cover-free family from Example 1, the length of the string commitments
used can be reduced to Ns/n, and we get the following corollary.

Corollary 3. For any n ≥ s ≥ 1 and N =
(
n
s

)
there exists a protocol that

UC-implements FN,1
RCOM from

(
FNs/n
SCOM

)n

.

The protocol is optimal in the length of the strings up to a factor s; otherwise it
would be possible to implement a string commitment of length bigger than n · �
from n instances of string commitment of length �, which is not possible. Thus,
we can build N = n(n − 1)/2 bit commitments (choosing s = 2), from which
one can be opened, from n string commitments of length n− 1. When choosing
s = n/2, we obtain an exponential number of committed bits from n strings,
since N =

(
n

n/2

)
> 2n/2.

If we use the cover-free family of Example 2, then the size of the commitments
can be reduced by a factor of q because we can let all the bit commitments which
have different values a0 but the same values a1, ..., ad share the same position in
the string commitments. We get the following corollary.

Corollary 4. Let q be a prime power, d < q and N := qd+1. There exists a
protocol that UC-implements FN,r

RCOM from (rd + 1)q instances of FN/q
SCOM .
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This is optimal in the length of the strings up to a factor rd + 1; otherwise it
would again be possible to implement a string commitment of length bigger than
n · � from n instances of string commitment of length �, which is not possible.
Choosing d = 1, we get N = q2 and n = (r + 1)q. Thus, there exists a pro-
tocol that uses (r + 1)q string commitments of length q and implements q2 bit
commitments from which r can be opened.

To obtain an exponential number of bit commitments from n string commit-
ments, we can use Corollary 1 in [6] which gives an explicit construction of a
t−CFF(X ,B) where |X | < 24t2 log(|B|+ 2). Hence, we get the following result.

Corollary 5. There exists a protocol that from FN,r
RCOM from 24r2 log(N + 2) in-

stances of FN
SCOM.

This is close to the optimal efficiency we can expect from Protocol 1, as it has
been shown in Theorem 1.1 in [35] that t−CFF(X ,B) must have

|X | ≥ c · t2

log t
log |B| ,

for a constant c.
Our protocols can be generalized in a simple way as follows: let FN,r,c

RCOM be
the same functionality as FN,r

RCOM except that every bit is replaced by a block of
size c. The sender can open up to r blocks, or all N blocks at the same time.
It is not difficult to see that if Protocol 1 implements FN,r

RCOM from n instances of
F

SCOM, then it can be transformed into a protocol that implements FN,r,c

RCOM from
n instances of F
c

SCOM.

3.1 Commitments from Noisy Channels at a Constant Rate

From Corollary 4 with d = 1 in combination with the string commitment pro-
tocol presented in [38], we get the following corollary.

Corollary 6. For any constant r, there exists a protocol that implements Fn,r
RCOM

using only O(n) noisy channels.

This is optimal up to a constant factor.

4 Conclusions

In this work we have shown a strong lower bound for reductions of multiple bit
commitments to other information theoretic primitives, such as oblivious transfer
or noisy channels. Our bound shows that every single bit commitment needs at
least Ω(k) instances of the underlying primitive. This makes bit commitments
often much more costly to implement than oblivious transfer, for example. It
would be interesting to see whether these results can be generalized to other
functionalities.
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We have presented a protocol that implements bit commitments more effi-
ciently, when the number of bits that can be opened is restricted. Our protocol
implements commitments with restricted openings from string commitments.
We think that for some resources more efficient protocols might be possible by
implementing them directly, instead of using string commitments as a building
block.
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7. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37, 156–189 (1988)

8. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Proceedings of the 42nd Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS 2001), pp. 136–145 (2001), Updated Version
at http://eprint.iacr.org/2000/067

9. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience,
New York (1991)
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Abstract. In this paper we solve the problem of secure communication
in multicast graphs, which has been open for over a decade. At Euro-
crypt ’98, Franklin and Wright initiated the study of secure communica-
tion against a Byzantine adversary on multicast channels in a neighbor
network setting. Their model requires node-disjoint and neighbor-disjoint
paths between a sender and a receiver. This requirement is too strong
and hence not necessary in the general multicast graph setting. The
research to find the lower and upper bounds on network connectivity
for secure communication in multicast graphs has been carried out ever
since. However, up until this day, there is no tight bound found for any
level of security.

We study this problem from a new direction, i.e., we find the necessary
and sufficient conditions (tight lower and upper bounds) for secure com-
munication in the general adversary model with adversary structures,
and then apply the results to the threshold model. Our solution uses
an extended characterization of the multicast graphs, which is based on
our observation on the eavesdropping and separating activities of the
Byzantine adversary.

Keywords: secure communication, reliable communication, multicast,
privacy, reliability, adversary structure.

1 Introduction

In most communication networks, a sender S and a receiver R are connected
by unreliable and distrusted channels. The distrust of the channels is because of
the assumption that there exists an adversary who, with unbounded computa-
tional power, can control some nodes on these channels. The interplay of network
connectivity and secure communication between S and R has been studied ex-
tensively (see, e.g., [2,3,6,4,13]).

Secure communication is based on the problem of secure message transmission
(SMT) between S and R. The aim of SMT is to enable a message to be transmit-
ted from S to R privately (i.e., the adversary does not learn the message) and
reliably (i.e., R can output the message correctly). In particular, reliable message
transmission (RMT) is essential for all transmission protocols, and hence it has
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been studied exclusively. Normally there are two different measures of security
or reliability: perfect (i.e., zero probability that the protocol fails to be secure
or reliable) and almost perfect (i.e., an arbitrarily small probability that the
protocol fails to be secure or reliable) [7].

The traditional studies of RMT and SMT consider a point-to-point network
setting, where a sending node can transmit a message to a receiving node through
a channel they choose. In the threshold model (t-bounded), the adversary is able
to control up to t nodes in a network graph. The result by Dolev et al. [6] shows
that n > 2t node-disjoint paths are required for RMT and SMT between S and
R. In [7], Franklin and Wright showed that the connectivity for almost perfect
security can be reduced by using multicast channels.

A multicast channel allows a sending node to transmit a message to multiple
receiving nodes. The study of secure multicast was initiated by Franklin and
Yung in [9]. They used hypergraphs to model multicast networks, and studied
privacy against a passive adversary (eavesdropper). Goldreich et al. [10] also
studied multicast networks, but their work is in the full information model,
which is different to the partial broadcast model in which we are interested. At
Eurocrypt ’98, Franklin and Wright [7] (see also [8]) first studied a Byzantine
(active) adversary on multicast channels in neighbor networks (defined in [9]), in
which a message multicast by a node is received—simultaneously and privately—
by all its neighbors, where a neighbor is a node that shares a common edge
with the sending node.1 They found that with some properties of the multicast
channels, only n > t node-disjoint paths are needed for almost perfectly RMT
and SMT. However, their setting is based on a strong assumption, that is, all
paths between S and R must be neighbor-disjoint (i.e., there do not exist two
paths that have a common neighbor node). Indeed, such a strong assumption
may not be necessary in general multicast networks, and hence they gave the
following open problem:

. . . if these n disjoint paths do not have disjoint neighborhood, then an adver-
sary may be able to foil our protocols with t < n faults by using one fault to
eavesdrop on two disjoint lines. An obvious direction of further research is to
characterize secure communication fully in this more general (multicast graph)
setting.

Wang and Desmedt [14] further investigated the problem of secure communica-
tion in a more general multicast graph setting. They conjectured that a general
connectivity (weaker than n > t neighbor-disjoint) is the upper bound for achiev-
ing perfect privacy and almost perfect reliability (see Section 6 for more details).
In another study, Desmedt and Wang [4] (see also [15]) extended this result. By
using examples, they showed that the previously conjectured connectivity of [14]
is not necessary, and they also proposed a lower bound for SMT and conjectured
its tightness. Since it is very difficult to apply the threshold model in general

1 For example, in Fig 1(a) in Section 3, when a message is multicast by node 2, it will
be simultaneously received by nodes 1, 3 and 4. A multicast channel does not allow
node 2 to send a message to node 1 and 3 without node 4 receiving it.
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multicast graphs, up until this day, there has been no result that gives the
necessary and sufficient conditions for RMT and SMT in multicast graphs.

Our contributions. We completely solve the problem of secure communica-
tion in multicast graphs (neighbor network setting), which has been open and
studied for over a decade. We view this problem from a new direction. That
is, our solution is based on two basic ideas: (1) a general graph setting can be
applied naturally in the general adversary model with adversary structures (see,
e.g., [11,13,5,17]); (2) a threshold corresponds to a special adversary structure.
Thus we study multicast graphs in the general adversary model, and then apply
the results to the threshold model.

We found that the current adversary structure model is not enough to char-
acterize multicast graphs. Therefore, in Section 3, we give an extended char-
acterization of the multicast graphs, which is based on our observation on the
eavesdropping and separating activities of the adversary on the multicast chan-
nels. This characterization gives a clearer view on how the message can be
securely transmitted over multicast graphs.

With the new characterization, we give the necessary and sufficient conditions
for RMT and SMT respectively in Section 4 and Section 5. Besides proving that
our conditions imply the lower bounds on network connectivity, we also provide
message transmission protocols to show that these bounds are tight.

Finally in Section 6, we use our results in the general adversary model to
find the necessary and sufficient conditions for RMT and SMT in the threshold
model. Also by analyzing the previous results, we show how our results explain
all the examples and prove all the conjectures in the previous work. Our final
result regarding the tight bounds on network connectivity for RMT and SMT
in multicast graphs is presented at the end of this paper.

2 Model

We abstract away the concrete network structure and model a multicast com-
munication neighbor network by an undirected graph G(V,E), whose nodes are
the parties in the network and edges are private and authenticated multicast
channels. Let S,R ∈ V , the paths between S and R are not necessarily node-
disjoint.2

Let F be a sufficiently large finite field, we assume that M ⊆ F is the message
space from which S chooses messages. Let A be a set, we use |A| to denote the
number of elements in A, and we write a ∈R A to indicate that a is chosen from
A with respect to uniform distribution.

In the threshold model, an adversary can control up to t nodes in a graph, and
hence control up to t node-disjoint paths. In the general adversary model, an
adversary is characterized by an adversary structure, which is defined as follows
(see [12,11]): Given a party set P , an adversary structure A on P is a subset

2 Throughout the paper we consider only the simple paths. A simple path is a path
with no repeated nodes.
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of 2P such that for any A ∈ 2P , if A ∈ A and A ⊇ A′, then A′ ∈ A. The
adversary is able to choose one set A ∈ A to control. It is straightforward that
the threshold model is a special case of the general adversary model, because
a threshold t can be seen as a special adversary structure A such that any set
A ∈ 2P that has t parties or less is in A.

In this paper we consider a Byzantine adversary who can exhibit an active
behavior. A Byzantine adversary has unlimited resources and computational
power. Not only can the adversary read the traffic through the parties it controls,
but it can also decide, whether to deny or to modify the message, whether to
follow the protocol or not, etc.

We use the security model given by Franklin and Wright [7]. Let Π be an
SMT protocol. S starts with a message mS drawn from a message space M. At
the end of Π , R outputs a message mR. For any execution of the protocol Π ,
let adv be the adversary’s view of the entire protocol, i.e., the behavior of the
faulty nodes, the initial state of the adversary, and the coin flips of the adversary
during the execution. We write adv(m, r) to denote the adversary’s view when
mS = m and when the coin flips of the adversary are r.

Privacy. Π is ε-private if, for any two messages m1,m2 ∈ M and any r, we
have

∑
c |Pr[adv(m1, r) = c] − Pr[adv(m2, r) = c]| ≤ 2ε. The probabilities

are taken over the coin flips of the honest parties, and the sum is over all
possible values of the adversary’s view.

Reliability. Π is δ-reliable if, with probability at least 1− δ, R outputs mR =
mS at the end of the protocol. The probability is over the choice of mS and
the coin flips of all parties.

Security. Π is (ε, δ)-secure if it is ε-private and δ-reliable.

We say Π is perfectly secure (PSMT) if it is a (0, 0)-SMT protocol. In this paper,
we also discuss reliability (without requirement for privacy): δ-RMT, 0-RMT,
and almost perfect security: (ε, δ)-SMT and (0, δ)-SMT. Note that in the rest of
the paper, ε and δ only appear when studying almost perfect security, thus we
let ε > 0 and 0 < δ < 1

2 .
We employ the authentication code auth(m; a, b) = am + b for information-

theoretically secure authentication. An authentication key (a, b) ∈R F2 can be
used to authenticate one message m without revealing any information about
the key itself.

3 Characterization of Multicast Graphs

In this section we characterize multicast graphs based on the adversary struc-
tures. We give an extended characterization which is essential for obtaining the
necessary and sufficient conditions in the multicast model. This should give a
clearer insight to the problems we are dealing with.

We let P be the set of all paths between S and R in a given graph G(V,E).
The adversary chooses a set of nodes A ∈ A to control, where A is an adversary
structure on V \ {S,R}. For each path p ∈ P , we define eavesdropping and
separating as follows.
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Definition 1. We say that the adversary can eavesdrop on p if it cannot control
any node on p but can control some neighbors of p.3 Suppose that the adversary
can eavesdrop on p and there is an element a to be transmitted between S and R
on p. We say that the adversary can completely eavesdrop on p if, despite what
protocol is executed, the adversary can learn a by eavesdropping.

Definition 2. We say that the adversary can separate S and R on p if it can
control some nodes on p. Suppose that the adversary can separate S and R on
p and there are k elements (a1, . . . , ak) ∈ Fk to be transmitted on p. We let
(aS

1 , . . . , a
S
k ) and (aR

1 , . . . , a
R
k ) be the views of S and R respectively on these k

elements at the end of any protocol. We say that the adversary can completely
separate S and R if, despite what protocol is executed and how large k is, there
exists a strategy of the adversary that causes ∀i (1 ≤ i ≤ k) : aS

i �= aR
i .

Next we show two lemmas regarding the eavesdropping and separating activities
of the adversary on a single path p ∈ P . We assume that the path p is placed in
a left-to-right direction, with S at the left end and R at the right end.

Lemma 1. The adversary can completely eavesdrop on a path p ∈ P if and only
if it can eavesdrop on two adjacent nodes4 on p.

Proof. We first prove the “if” direction. The privacy problem has been studied
by Franklin and Yung in [9]. They showed that private communication on p is
possible only if, by removing all the faulty nodes and the hyperedges on which the
faulty nodes are, path p remains.5 Evidently, this necessary condition for privacy
is satisfied if and only if the adversary cannot eavesdrop on two adjacent nodes
on p (See Example 1 following this proof). Thus if the adversary can eavesdrop
on two adjacent nodes on p, then it can completely eavesdrop on p.

Next we prove the “only if” direction. We give the following protocol, which
allows S to send an element aS to R with perfect privacy, when the adversary
cannot eavesdrop on two adjacent nodes on p. First we assume that including S
and R, there are k+ 2 nodes v0, . . . , vk+1 on p. We let S be node v0, R be node
vk+1, and v1, . . . , vk be the other k nodes from left to right.

Single Path Private Propagation Protocol

1. For each 1 ≤ i ≤ k + 1, vi initiates an element ai ∈R F and multicasts it.
Thus for each 0 ≤ i ≤ k, vi receives element ai+1 from its right side neighbor
node vi+1.

3 Obviously, if the adversary can control some nodes on p, then it can learn everything
passing through those controlled nodes. However, for the purpose of our observation,
we do not consider this activity as “eavesdropping”, instead, we characterize it as
“separating”, which we describe in Definition 2.

4 Two nodes u, v ∈ V are said to be adjacent to one another if there is an edge
{u, v} ∈ E between them.

5 In the threshold model where any t nodes can be the faulty, such connectivity is
called the weak thyper-connectivity. We discuss this connectivity in more detail in
Section 6.
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Fig. 1. Eavesdropping activities on a single path p

2. S sets i := 1 and multicasts b0 = aS+a1. While i ≤ k, vi receives element bi−1

from its left side neighbor node vi−1, vi then multicasts bi = bi−1−ai +ai+1

and sets i := i+ 1.
3. When i = k+1, R receives element bk from vk, R then sets aR := bk −ak+1.

End.

Obviously, for each 0 ≤ i ≤ k, the element that vi multicasts is an encrypted
ciphertext bi = aS +ai+1. In order to decrypt aS , the adversary needs to learn a
pair (bi, ai+1) for some 0 ≤ i ≤ k. Since bi is multicast by vi and ai+1 is multicast
by vi+1, the adversary who cannot eavesdrop on two adjacent nodes is not able
to learn aS by eavesdropping. �
Single Path Eavesdropping Examples.

(a) If the adversary can eavesdrop on two adjacent nodes on path p, then the
necessary condition of [9] is not satisfied. For example, in Fig 1(a), the faulty
node is node 4 and the hyperedges are

(S, {1}), (1, {S, 2, 4}), (2, {1, 3, 4}), (3, {2, R}), (4, {1, 2}) and (R, {3}).

By removing the hyperedges that node 4 is on, the remaining hyperedges
are

(S, {1}), (3, {2, R}) and (R, {3}).
Thus p does not remain because edge {1, 2} is removed, and hence the con-
dition of [9] is not satisfied.

(b) If the adversary cannot eavesdrop on two adjacent nodes on path p, then the
necessary condition of [9] is satisfied. For example, in Fig 1(b), the faulty
node is node 4 and the hyperedges are

(S, {1}), (1, {S, 2, 4}), (2, {1, 3}), (3, {2, 4, R}), (4, {1, 3}) and (R, {3}).

By removing the hyperedges that node 4 is on, the remaining hyperedges
are

(S, {1}), (2, {1, 3}) and (R, {3}).
Thus p remains because all edges on p remain, and hence the condition of [9]
is satisfied.

The different separating activities were observed by Franklin and Wright in [7],
but here we extend their result and upgrade their protocol.
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Lemma 2. (following [7]) The adversary can completely separate S and R on a
path p ∈ P if and only if it can control two or more nodes on p.

Proof. We refer the proof of the “if” direction to [8].
Next we prove the “only if” direction. We assume that including S and R,

there are k + 2 nodes v0, . . . , vk+1 on p. We let S be node v0, R be node vk+1,
and v1, . . . , vk be the other k nodes from left to right. We show that with the
following protocol, the adversary cannot completely separate S and R when k
elements (a1, . . . , ak) are transmitted on p if the adversary can control no more
than one node on p.

Single Path Distribution Protocol

1. For each 1 ≤ i ≤ k, vi initiates an element ai ∈R F and multicasts it.
2. For each 1 ≤ i ≤ k, the nodes on the left side of vi execute an instance

of the Single Path Private Propagation Protocol from vi−1 to S in which
vi−1 sends ai, and the nodes on the right side of vi execute an instance of
the Single Path Private Propagation Protocol from vi+1 to R in which vi+1

sends ai.
3. At the end of the protocol, for each 1 ≤ i ≤ k, S receives an element aS

i and
R receives an element aR

i . If S (or R) receives nothing regarding element ai

for some 1 ≤ i ≤ k, then S (or R) sets aS
i = 1 (or aR

i = 1). End.

Let ve (1 ≤ e ≤ k) be the only faulty node on p. It is straightforward that at
the end of the protocol, aS

e = aR
e , even if ve does not initiate and multicast any

element (in this case aS
e = aR

e = 1). �
Next, we give the following two lemmas, which are trivial so we omit the proofs.

Lemma 3. If the adversary can only control one node v on a path p ∈ P , then
despite what protocol is executed on p, there exists a strategy of the adversary
that causes the views of S and R to be different except for their views on the
elements multicast by v.

Lemma 4. Given a node v on a path p ∈ P , if the adversary cannot separate S
and R on p, completely eavesdrop on p, or control a neighbor of v, then during
the execution of the Single Path Distribution Protocol on p, the adversary cannot
learn the elements multicast by v.

Having these lemmas, we now present an extended characterization ζA of a mul-
ticast graph G(V,E) given an adversary structure A on V \ {S,R}.
Definition 3. Given a graph G(V,E), let A = {A1, . . . , Az} be an adversary
structure on V \ {S,R} and P be the set of all paths between S and R. An
Extended Characterization of G given A is ζA = {ζA1 , . . . , ζAz} where for each
1 ≤ i ≤ z, we have ζAi = (P (+)

i , P
(1)
i , P

(∗)
i , Pi) where

– P
(+)
i is the set of all paths on each of which there are at least two nodes

in Ai,
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– P
(1)
i is the set of all paths on each of which there is exactly one node in Ai,

– P
(∗)
i is the set of all paths on each of which there is no node in Ai, but on

each path in P
(∗)
i , there are two adjacent nodes that both have neighbors in

Ai, and
– Pi = P

(+)
i ∪P (1)

i is the set of all paths on each of which there is at least one
node in Ai.

With the extended characterization ζA, we know that during the execution of
any protocol, by choosing a set Ai ∈ A to control, the adversary can separate S
and R on Pi, completely separate S and R on P

(+)
i and completely eavesdrop

on P
(∗)
i .

Given any set Ai ∈ A, we are particularly interested in the nodes of Ai on the
paths of P (1)

i . For each path p ∈ P
(1)
i , we use Ai  p to denote the single node

v ∈ Ai that is on path p; i.e., v = Ai  p. Note that this notation is only used
for the paths in P

(1)
i .

Definition 4. Given a graph G(V,E) and an adversary structure A on V \
{S,R}, we say that S and R are highly A-connected if for any set Ai ∈ A, we
have Pi ∪ P

(∗)
i �= P .

Definition 5. Given a graph G(V,E) and an adversary structure A on V \
{S,R}, we say that S and R are lowly 2A-separated if there exist two (not
necessarily distinct) sets A1, A2 ∈ A such that

(a) P1 ∪ P2 = P , and
(b) P

(1)
1 = ∅, or for each path p ∈ P

(1)
1 , we have that p ∈ P2 ∪ P

(∗)
2 or A1  p

has a neighbor in A2, and
(c) P

(1)
2 = ∅, or for each path p ∈ P

(1)
2 , we have that p ∈ P1 ∪ P

(∗)
1 or A2  p

has a neighbor in A1.
We say that S and R are lowly 2A-connected if they are not lowly 2A-separated.

Lemma 5. Given a graph G(V,E) and an adversary structure A on V \{S,R},
if S and R are lowly 2A-connected, then for any set Ai ∈ A, we have Pi �= P .

Proof. Assume there exits a set Ai ∈ A such that Pi = P , if we let both the sets
A1, A2 of Definition 5 be Ai, then it is straightforward that S and R are lowly
2A-separated. Thus we have a contradiction. �

4 Reliable Communication

In this section, we discuss reliable communication with no requirement for pri-
vacy. We study almost perfect reliability (δ-RMT) in Section 4.1 and perfect
reliability (0-RMT) in Section 4.2.



546 Q. Yang and Y. Desmedt

4.1 Almost Perfect Reliability

We give the necessary and sufficient condition for δ-RMT in multicast graphs.

Theorem 1. Given a graph G(V,E) and an adversary structure A on V \
{S,R}. The necessary and sufficient condition for δ-RMT from S to R is that
S and R are lowly 2A-connected.

Next, we use Lemma 7 and Lemma 8 to show the necessity and sufficiency of
the condition respectively. Before we present these two lemmas, we first give the
following Lemma 6, which is a key ingredient for proving the necessity.

Lemma 6. If there exists two sets A1, A2 ∈ A such that P (+)
1 ∪ P

(+)
2 = P , and

δ < 1
2 (1 − 1

|M|), then δ-RMT from S to R is impossible.

Proof. This lemma can be easily proven using a similar technique as that in [8,
Theorem 5.1] and [5, Theorem 3]. See the full version of this paper [1]. �
Lemma 7. The condition of Theorem 1 is necessary.

Proof. It is straightforward that in order to achieve δ-reliability, it is necessary
to have Pi �= P for any Ai ∈ A; i.e., P \ Pi �= ∅.

Next we prove the necessity of the condition by contradiction. We assume
that S and R are lowly 2A-separated (i.e., there exist two sets A1, A2 ∈ A as
they are in Definition 5) and there exists a δ-RMT protocol Π that transmits a
message m ∈ M from S to R. Without loss of generality, we let P1∩P2 = ∅. Now
if P (1)

1 = ∅ and P
(1)
2 = ∅, then we have P (+)

1 = P1 and P
(+)
2 = P2, and hence

P
(+)
1 ∪ P

(+)
2 = P (following Definition 5(a)), thus due to Lemma 6, δ-RMT is

impossible in the case. In the rest of our proof we let P (1)
1 �= ∅ and/or P (1)

2 �= ∅.
We make an observation on how protocol Π can achieve δ-reliability. Given

a node v on a path p ∈ P , we use (v ∼ p) to denote the tuple of the elements
that are multicast by v and received (in any way) by both S and R on p, and
let (v ∼ p)S and (v ∼ p)R be the views of S and R respectively on (v ∼ p).

The strategy of the adversary is to choose an e ∈R {1, 2} and control the
set Ae. Let d ∈ {1, 2} such that d �= e, then R should be able to recover the
actual message from the elements received on Pd. If, despite whether e = 1 or
e = 2, (v ∼ p)S �= (v ∼ p)R for any v on any p ∈ Pe (i.e., the views of S and R
are completely different on Pe), then following Lemma 6, δ-RMT is impossible.
Therefore, there must exist an e ∈ {1, 2} such that (v ∼ p)S = (v ∼ p)R

is guaranteed for some v on some p ∈ Pe. We say that the tuple of elements
(v ∼ p) where p ∈ Pe such that (v ∼ p)S = (v ∼ p)R supports the actual
message. Following Lemma 2, the adversary can completely separate S and R

on P
(+)
e and cause ∀(p ∈ P

(+)
e , v on p) : (v ∼ p)S �= (v ∼ p)R. Following

Lemma 3, for any path p ∈ P
(1)
e (if P (1)

e �= ∅), (v ∼ p)S = (v ∼ p)R can only
be guaranteed if v = Ae  p. Therefore, there must exist an e ∈ {1, 2} such that
the actual message received on Pd is supported by some ((Ae  p) ∼ p) where
p ∈ P

(1)
e . Next, following Definition 5(b,c), for each path p ∈ P

(1)
d (if P (1)

d �= ∅),
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we have case 1: p ∈ Pe ∪ P (∗)
e , or case 2: Ad  p has a neighbor in Ae. In case 1:

p ∈ Pe ∪ P
(∗)
e , due to Lemma 1, there is no private transmission on path p

whatsoever, so the adversary can learn ((Ad  p) ∼ p). In case 2: Ad  p has a
neighbor in Ae, it is trivial that the adversary can learn ((Ad  p) ∼ p).

To sum up, we can conclude that when the adversary chooses Ae to control,
then the actual message, which can be recovered from the elements received on
Pd, should be supported by some ((Ae  p) ∼ p) where p ∈ P

(1)
e (if P (1)

e �= ∅),
and the adversary can learn ((Ad  p) ∼ p) for each p ∈ P

(1)
d (if P (1)

d �= ∅).
Now during the execution of the protocol Π , the adversary corrupts Pe and

causes (v ∼ p)S �= (v ∼ p)R for all nodes v on all paths p ∈ Pe except for p ∈ P
(1)
e

and v = Ae p. This is possible due to Lemma 2 and Lemma 3. As we concluded
above, the adversary can always learn ((Ad  p) ∼ p) for each p ∈ P

(1)
d . Thus on

Pe, the adversary simulates the protocol as S sent a message m′ ∈ M, and m′

can be supported by ((Ad  p) ∼ p), where p ∈ P
(1)
d .

Therefore, at the end of the protocol Π , despite whether e = 1 or e = 2, the
view of R always consists of the following:
– on P1, a message is recovered which can be supported by ((A2  p) ∼ p) for

any p ∈ P
(1)
2 (if P (1)

2 �= ∅), but may not be supported by any other elements
received on P2;

– on P2, a different message is recovered which can be supported by ((A1p) ∼
p) for any p ∈ P

(1)
1 (if P (1)

1 �= ∅), but may not be supported by any other
elements received on P1.

Thus as we showed in Lemma 6, with probability δ ≥ 1
2 (1− 1

|M|), R recovers the
wrong message m′. We have a contradiction, which proves the necessity of the
low 2A-connectivity. �
Let P = {p1, . . . , pn}, we first generalize some of Franklin and Wright’s protocols
in multicast graphs.

Full Distribution Protocol

1. For each 1 ≤ j ≤ n, the nodes on path pj execute an instance of the Single
Path Distribution Protocol for each node vi on pj to distribute an element
ai,j . The nodes not on pj do not multicast anything.

2. At the end of the protocol, on each path pj (1 ≤ j ≤ n), S and R receive
aS

i,j and aR
i,j respectively as the element initiated by node vi on pj . End.

Private Propagation Protocol

1. For each 1 ≤ j ≤ n, the nodes on path pj execute an instance of the Single
Path Private Propagation Protocol from S to R in which S sends an element
aS

j , and the nodes not on pj do not multicast anything.
2. At the end of the protocol, on each path pj (1 ≤ j ≤ n), R receives aR

j as
the element that S initiated and propagated on pj. End.

Now we present the following protocol, which achieves δ-RMT for a message
m ∈ M in a graph G(V,E).
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Reliable Transmission Protocol

1. The nodes of V execute an instance of the Full Distribution Protocol in
which for each 1 ≤ j ≤ n, the elements that node vi on path pj initiates
are (ai,j , bi,j) ∈R F2. Let (aS

i,j , b
S
i,j) and (aR

i,j , b
R
i,j) be what S and R receive

respectively regarding (ai,j , bi,j).
2. The nodes of V execute an instance of the Private Propagation Protocol

from S to R in which S sends the same vector on all paths in P :

(m, 〈auth(m; aS
i,j , b

S
i,j)〉),

where 〈auth(m; aS
i,j , b

S
i,j)〉 is an ordered set of the authenticated m with all

keys (aS
i,j , b

S
i,j) that S receives in Step 1. At the end of the instance, R receives

a vector (mk, 〈ui,j,k〉) on each path pk ∈ P .
3. Given the vector (mk, 〈ui,j,k〉) that R receives on pk, if ∃(i, j) : ui,j,k =

auth(mk; aR
i,j , b

R
i,j), then we say that mk is qualified on (vi ∼ pj). R finds an

Af ∈ A that satisfies the following three α-conditions:
α-1 all vectors received on P \ Pf are the same, say vector (ml, 〈ui,j,l〉);
α-2 P

(1)
f = ∅, or for each pj ∈ P

(1)
f , ml is qualified on ((Af  pj) ∼ pj);

α-3 Pf ∪P (∗)
f = P , or for any vector (mk, 〈ui,j,k〉) received on path pk ∈ Pf

such that mk �= ml, we have that mk is not qualified on any (vi ∼ pj)
where pj ∈ P \ (Pf ∪ P

(∗)
f ) and vi does not have a neighbor in Af .

R then outputs the message ml. End.

Lemma 8. The Reliable Transmission Protocol is a δ-RMT protocol under the
condition of Theorem 1.

Proof. It is straightforward that if the adversary cannot learn some (ai,j , bi,j)
(initiated by vi and multicast on pj) but a corrupted mk is qualified on (vi ∼ pj),
then the Reliable Transmission Protocol fails. We use RT to denote the event
when the above failure occurs and RT to denote the event otherwise. Let n be
the total number of paths between S and R and y be the maximum number of
nodes on any path, following the proof of [8, Theorem 3.4], the probability that
the protocol fails is Pr[RT ] < yn2

|F| . This probability is negligible in the security
parameter (given F is sufficiently large). Next in our proof, we assume that the
above failure does not happen. That is, we analyze the protocol in the event RT .

In the following, we first show that R can always find an Af ∈ A that satisfies
the three α-conditions, then we prove, by contradiction, that in the event RT ,
the message output by R is correct.

Now we show that there always exists anAf that satisfies all three α-conditions,
at least when the adversary chooses Af to control so that Pf is corrupted. Since
Pf �= P (following Lemma 5), we immediately have that condition α-1 is satis-
fied and ml received on P \Pf is the actual message. If P (1)

f �= ∅, then as shown

in the proof of Lemma 2, on each pj ∈ P
(1)
f , S and R always have the same

view on the key initiated by Af  pj. Thus it is clear that ml is qualified on
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((Af  pj) ∼ pj), and hence condition α-2 is satisfied. If Pf ∪ P
(∗)
f �= P , then

the adversary cannot learn the key initiated by any node vi which is on a path
pj ∈ P \ (Pf ∪ P

(∗)
f ) if vi does not have a neighbor in Af . Thus without the

above mentioned failure RT , any faulty message mk �= ml cannot be qualified
on such (vi ∼ pj), and hence condition α-3 is satisfied.

Next, using contradiction, we show that in the event RT , the message ml

that S outputs is the actual message. For contradiction, we assume that ml is
modified by the adversary who chooses a set Ae ∈ A to control, and all three
α-conditions are satisfied. We now show that the three α-conditions imply the
three properties of A1, A2 in Definition 5.

– From condition α-1, since all vectors received on P \ Pf are modified, we
have Pe ∪ Pf = P (i.e., corresponding to Definition 5(a)).

– Condition α-2 indicates that either P (1)
f = ∅, or the adversary can learn the

key initiated by node Af  pj on any path pj ∈ P
(1)
f to make the faulty

message ml qualified on ((Af  pj) ∼ pj). Due to Lemma 4, this means that
the adversary can separate S and R on pj , completely eavesdrop on pj or
control a neighbor of Af pj . Thus from condition α-2 we can conclude that
P

(1)
f = ∅, or for each path pj ∈ P

(1)
f , we have that pj ∈ Pe ∪P (∗)

e or Af  pj

has a neighbor in Ae (i.e., corresponding to Definition 5(c)).
– Finally, since Pe �= P and Pe ∪ Pf = P , there exists at least one path
pk ∈ Pf such that the message mk received on pk is the actual message. Due
to condition α-3, there are two cases:

case 1 Pf ∪ P (∗)
f = P , thus we have P (1)

e ⊆ Pf ∪ P
(∗)
f = P ;

case 2 The actual message mk is not qualified on any (vi ∼ pj) where pj ∈
P \ (Pf ∪ P

(∗)
f ) and vi does not have a neighbor in Af . This implies

that either pj ∈ P
(+)
e , or pj ∈ P

(1)
e but any vi on pj that does not

have a neighbor in Af is not Ae  pj (because otherwise the actual
message mk should be qualified on (vi ∼ pj), due to the proof of
Lemma 2). That is, if such pj ∈ P

(1)
e exists, then all the nodes on pj

that do not have a neighbor in Af are not Ae  pj . This implies that
Ae  pj has a neighbor in Af .

It is easy to conclude that in either case, P (1)
e = ∅, or for each path pj ∈ P

(1)
e ,

we have pj ∈ Pf ∪ P
(∗)
f or Ae  pj has a neighbor in Af (i.e., corresponding

to Definition 5(b)).

To sum up, Ae, Af are as A1, A2 in Definition 5. This means S and R are lowly
2A-separated, which contradicts the condition of Theorem 1.

Therefore, at the end of the Reliable Transmission Protocol, R can recover
ml = m with an arbitrarily small probability of failure (i.e., Pr[RT ] < yn2

|F| ).
Thus the Reliable Transmission Protocol is a δ-RMT protocol. �
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4.2 Perfect Reliability

Here we study 0-RMT in multicast graphs. Similar to the result in [7], we show
that the necessary and sufficient condition for 0-RMT in the multicast setting
is the same as that in the point-to-point setting. The following theorem can be
easily proven following some previous results in [8,5].

Theorem 2. Given a graph G(V,E) and an adversary structure A on V \
{S,R}. The necessary and sufficient condition for 0-RMT from S to R is that
Pi ∪ Pj �= P for any two sets Ai, Aj ∈ A.

Proof. See the full version of this paper [1]. �

5 Secure Communication

In this section we take the problem of achieving privacy into consideration. We
study almost perfect security in Section 5.1; i.e., we discuss both (ε, δ)-SMT and
(0, δ)-SMT. In Section 5.2, we study (0, 0)-SMT that enables perfect security.

5.1 Almost Perfect Security

First we give the necessary and sufficient condition for (ε, δ)-SMT in multicast
graphs. Unlike the setting in [7] in which the conditions for both δ-RMT and
(ε, δ)-SMT are the same (i.e., n > t), in multicast graphs, (ε, δ)-SMT requires
stronger connectivity than that for δ-RMT.

Theorem 3. Given a graph G(V,E) and an adversary structure A on V \
{S,R}. The necessary and sufficient condition for (ε, δ)-SMT from S to R is
that S and R are highly A-connected and lowly 2A-connected.

Proof. We first prove the necessity of the condition. It is straightforward that
the high A-connectivity, i.e., Pi ∪P (∗)

i �= P , is necessary for achieving ε-privacy,
because otherwise there is no private transmission between S and R on any path
in P . Moreover, as proven in Lemma 7, the low 2A-connectivity is necessary for
achieving δ-reliability. Thus the condition is necessary for (ε, δ)-SMT.

Next we show that the condition is sufficient. Let P = {p1, . . . , pn}, we give
the following protocol (similar to [8,15]) for S to send a message m ∈ M to R.

Private Transmission Protocol

1. The nodes of V execute an instance of the Private Propagation Protocol
from S to R in which for each 1 ≤ j ≤ n, S sends a pair (aS

j , b
S
j ) ∈R F on

path pj ∈ P . At the end of the instance, R receives a pair (aR
j , b

R
j ) on each

path pj ∈ P .
2. R chooses an element rR ∈R F and for each 1 ≤ j ≤ n, computes sR

j =
auth(rR; aR

j , b
R
j ). The nodes of V executes an instance of the Reliable Trans-

mission Protocol from R to S in which R sends a vector (rR, sR
1 , . . . , s

R
n ). At

the end of the instance, S outputs a vector (rS , sS
1 , . . . , s

S
n).
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3. S computes an index set I = {j|sS
j = auth(rS ; aS

j , b
S
j )} and an encryption

key key =
∑

j∈I a
S
j , and encrypts the message c = m+ key. The nodes of V

executes an instance of the Reliable Transmission Protocol from S to R in
which S sends a vector (I, c). At the end of the instance, R outputs a vector
(I ′, c′).

4. R computes a decryption key key′ =
∑

j∈I′ aR
j and decrypts the message

m′ = c′ − key′. End.

First we show that this protocol achieves ε-privacy. Suppose that the adversary
chooses a set Ae to control. Since Pe ∪ P

(∗)
e �= P , there exists a path pd ∈

P \ (Pe ∪ P
(∗)
e ). As shown in the proof of Lemma 1, the adversary cannot learn

(aS
d , b

S
d ) in Step 1. Because pd /∈ Pe, we have (aR

d , b
R
d ) = (aS

d , b
S
d ). Let RT denote

the event that the instance of the Reliable Transmission Protocol in Step 2
succeeds and RT denote the event otherwise. In the event RT , rS = rR and for
each 1 ≤ j ≤ n, we have sS

j = sR
j . This implies that d ∈ I. The adversary who

cannot learn aS
d by eavesdropping or by decoding sR

d will not be able to compute
key to decrypt m. That is, for any two messages m1,m2 ∈ M and any coin flips
r, using the adversary’s view adv, we have the following:∑

c |Pr[adv(m1, r) = c|RT ]− Pr[adv(m2, r) = c|RT ]| = 0 (1)∑
c |Pr[adv(m1, r) = c|RT ] − Pr[adv(m2, r) = c|RT ]| ≤ | + 1| + | − 1| = 2 (2)

Let Pr[RT ] = ε, which is arbitrarily small as we discussed in the proof of
Lemma 8, by combining Eq. 1 and Eq. 2, we have the following:∑

c |Pr[adv(m1, r) = c] − Pr[adv(m2, r) = c]| ≤ 0 · Pr[RT ] + 2 · Pr[RT ] = 2ε.

Thus the Private Transmission Protocol achieves ε-privacy.
Next we show that the protocol achieves δ-reliability. Let δ1 be the proba-

bility that the instance of the Reliable Transmission Protocol in Step 2 fails
and δ2 be the probability that the instance in Step 3 fails. As we showed in
the proof of Lemma 8, δ1 and δ2 are negligible in the security parameter. Let
δ3 be the probability that both the above mentioned instances succeed, but R
outputs m′ �= m. This can only happen if there exists at least one j ∈ I such
that aS

j �= aR
j . Since both reliable protocols succeed, the fact j ∈ I implies

auth(rR; aS
j , b

S
j ) = auth(rR; aR

j , b
R
j ). That is,

aS
j r

R + bSj = aR
j r

R + bRj ⇒ rR =
bRj − bSj
aS

j − aR
j

∈ F, (3)

where aS
j �= aR

j . Since rR is chosen with respect to the uniform distribution,
if the adversary modifies (aS

j , b
S
j ) to (aR

j , b
R
j ) on path pj in Step 1, then the

probability that Eq. 3 is fulfilled is 1
|F| . Since the adversary can corrupt |Pe|

paths, it is straightforward that δ3 = |Pe|
|F| < n

|F| , which is much smaller than δ1
and δ2. Thus the final probability that the protocol fails to be reliable is

δ = δ1 + (1 − δ1)δ2 + (1 − (δ1 + (1 − δ1)δ2))δ3 < δ1 + δ2 + δ3.
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To sum up, the Private Transmission Protocol is an (ε, δ)-SMT protocol. �
Note that the condition of Theorem 3 can be seen as it consists of two parts,
with the high A-connectivity enables private communication and the low 2A-
connectivity enables δ-reliable communication. These two types of connectivity
are independent. Indeed, with some examples in Section 6, we can show that
they do not imply each other.

In [16], Yang and Desmedt proved that reducing the requirement for privacy
does not weaken the minimal connectivity. In the following theorem, we show
that the condition for (ε, δ)-SMT is also necessary and sufficient for (0, δ)-SMT.

Theorem 4. Given a graph G(V,E) and an adversary structure A on V \
{S,R}. The necessary and sufficient condition for (0, δ)-SMT from S to R is
that S and R are highly A-connected and lowly 2A-connected.

Proof. It is straightforward that the condition is necessary. Next we show that
the condition is sufficient by slightly amending the Private Transmission Protocol
to the following protocol which achieves perfect privacy.

Perfectly Private Transmission Protocol

1. Same as Step 1 in the Private Transmission Protocol.
2. R chooses an element rR ∈R F and for each 1 ≤ j ≤ n, computes sR

j =
auth(rR; aR

j , b
R
j ). The nodes of V executes an instance of the Reliable Trans-

mission Protocol from R to S in which R sends a vector (rR, sR
1 , . . . , s

R
n ). At

the end of the instance, S distinguishes the following two cases:
Case 1 If there exist two sets Af1 , Af2 ∈ A that satisfy all three α-conditions

of the Reliable Transmission Protocol, and the two vectors (both
regarding the vector (rR, sR

1 , . . . , s
R
n )) that S receives respectively

on P \Pf1 and P \Pf2 are different, then S terminates the protocol.
Case 2 Otherwise, S outputs a vector (rS , sS

1 , . . . , s
S
n) and goes to Step 3.

3. Same as Step 3 in the Private Transmission Protocol.
4. Same as Step 4 in the Private Transmission Protocol. End.

Now we show that this protocol achieves 0-privacy. Following the proof of
Theorem 3, the privacy of the message transmission can only be breached in
the event RT . It is clear that the instance of the Reliable Transmission Protocol
in Step 2 allows S to distinguish the events RT and RT . As we showed in
the proof of Lemma 8, in the event RT , only the correct vector can be output
after the Reliable Transmission Protocol. This means if two different vectors can
be output, then the event RT occurs. Thus in Step 2, Case 1 indicates RT and
Case 2 indicates RT . In the eventRT , S terminates the protocol so the adversary
learns nothing about the message. Thus the protocol achieves 0-privacy.6 Next,
using a similar proof as that for Theorem 3, we can prove that the Perfectly
Private Transmission Protocol is also δ-reliable, which concludes the proof. �
6 A more formal proof is available in the full version of this paper [1].
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5.2 Perfect Security

In [6], Dolev et al. showed that if σ is the maximum number of channels that
a listening (passive) adversary can control and ρ is the maximum number of
channels that a disrupting (active) adversary can control, then there must be
at least max{σ + ρ + 1, 2ρ + 1} channels between S and R for PSMT (i.e.,
(0, 0)-SMT). This setting can be generalized in our model as follows: given an
adversary structure A = {A1, . . . , Az}, then {P1∪P (∗)

1 , . . . , Pz∪P (∗)
z } consists of

the subsets of paths a listening adversary can control and {P1, . . . , Pz} consists
of the subsets of paths a disrupting adversary can control. Thus we give the
following theorem for (0, 0)-SMT in multicast graphs.

Theorem 5. Given a graph G(V,E) and an adversary structure A on V \
{S,R}. The necessary and sufficient condition for (0,0)-SMT from S to R is
that
(Pi ∪ P (∗)

i ) ∪ Pj �= P for any Ai, Aj ∈ A.

Proof. See the full version of this paper [1]. �

6 Corresponding Threshold Model

In this section we use our results in the general adversary model to find the
necessary and sufficient conditions for RMT and SMT in the threshold model.
Because a threshold is a special case of an adversary structure, we re-define the
threshold model in the adversary structure context.

Definition 6. Given a graph G(V,E), a threshold t is an adversary structure
AT ⊆ 2V \{S,R} such that ∀(A ⊆ V \ {S,R}, |A| ≤ t) : A ∈ AT . Furthermore,
– we say that S and R are tζ-private-connected if they are highly AT -connected;
– we say that S and R are tζ-reliable-connected if they are lowly 2AT -connected.

It is easy to show that our results correspond to Franklin and Wright’s [7] if the
multicast graph only consists of n node-disjoint and neighbor-disjoint paths. For
more details see the full version of this paper [1].

Next we discuss the connectivity in the general multicast graph setting with
some previous results. In [4], Desmedt and Wang looked at four different types
of connectivity. With slight changes, we show them in our model as follows.

– t-connectivity. For any A ∈ AT , after removing all nodes in A from G, there
remains a path between S and R.

– weak thyper-connectivity. For any A ∈ AT , after removing from the hyper-
graph HG(V,EH) all nodes in A and all hyperedges on each of which there
is at least one node in A, there remains a path between S and R (see [9]).

– tneighbor-connectivity. For any A ∈ AT , after removing all nodes in A and
all their neighbors from G, there remains a path between S and R.

– weak (n, t)-connectivity. There are n node-disjoint paths p1, . . . , pn between
S and R, and for any A ∈ AT , after removing all nodes in A and all their
neighbors from G, there remains a path pi (1 ≤ i ≤ n) between S and R.
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Fig. 2. Private and reliable connectivity

As we showed in the proof of Lemma 1, Franklin and Yung’s weak thyper-
connectivity [9] in a hypergraph HG is essentially our tζ-private-connectivity in
a multicast graph G. Thus we use the tζ-private-connectivity to replace the weak
thyper-connectivity in the rest of the paper for a simpler presentation. Desmedt
and Wang [4] showed that the following implications are strict:

weak (n, t)-connectivity ⇒ tneighbor-connectivity ⇒ tζ-private-connectivity
⇒ t-connectivity.

In [14], Wang and Desmedt claimed that the weak (n, t)-connectivity is suffi-
cient for (0, δ)-SMT. Since weak (n, t)-connectivity ⇒ tζ-private-connectivity, it
is clear that 0-privacy can be achieved. However, δ-reliability is only achiev-
able under their condition if weak (n, t)-connectivity ⇒ tζ-reliable-connectivity.
In [14], there is not a proper proof showing this implication. Thus their claim is
only a conjecture. We leave this as an open problem.

Later study by Desmedt and Wang [4] showed that the conjectured upper bound,
i.e., the weak (n, t)-connectivity, is not necessary for (0, δ)-SMT, by showing an
example, as Fig. 2(a), in which S andR are not weakly (2, 1)-connected but (0, δ)-
SMT is possible. We observe that their protocol (appeared in [15]) is actually
an (ε, δ)-SMT protocol but the claim is correct, because S and R are obviously
1ζ-private-connected and 1ζ-reliable-connected in Fig. 2(a). They also showed that
the weak thyper-connectivity (i.e., the tζ-private-connectivity) is the lower bound
for (0, δ)-SMT but not necessary for δ-RMT, as in Fig. 2(b) where S andR are not
1ζ-private-connected but δ-RMT is possible. This claim is obvious under our con-
dition because S and R are clearly 1ζ-reliable-connected. Finally they conjectured
that the weak thyper-connectivity (i.e., the tζ-private-connectivity) is not sufficient
for (0, δ)-SMT, by asking whether (0, δ)-SMT is possible in Fig. 2(c) such that S
andR are 1ζ-private-connected. Our condition proves their conjecture. Indeed, not
only is (0, δ)-SMT impossible in Fig. 2(c), but δ-RMT is also impossible, because
S and R are not 1ζ-reliable-connected. Therefore, our result explains all the exam-
ples and proves all the conjectures in the previous work.

Note that the examples of Fig. 2(b) and Fig. 2(c) also show that the tζ-private-
connectivity (or, the high A-connectivity) and the tζ-reliable-connectivity (or,
the low 2A-connectivity) do not imply each other, because in Fig. 2(b), S and R
are 1ζ-reliable-connected but not 1ζ-private-connected, and in Fig. 2(c), they are
1ζ-private-connected but not 1ζ-reliable-connected.

At the end, we present the following corollary as the final result of this paper.

Corollary 1. Given a graph G(V,E) and an adversary who can control up to t
nodes in V \ {S,R}.
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– δ-RMT is possible if and only if S and R are tζ-reliable-connected in G.
– 0-RMT is possible if and only if S and R are 2t-connected in G.
– (ε, δ)-SMT or (0, δ)-SMT is possible if and only if S and R are tζ-private-

connected and tζ-reliable-connected in G.
– (0,0)-SMT is possible if and only if S and R are (tζ-private + t)-connected

in G. The (tζ-private + t)-connectivity means that for any Ai, Aj ∈ AT , we
have (Pi ∪ P (∗)

i ) ∪ Pj �= P .
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Abstract. We consider the problem of private function evaluation (PFE)
in the two-party setting. Here, informally, one party holds an input x
while the other holds a (circuit describing a) function f ; the goal is for
one (or both) of the parties to learn f(x) while revealing nothing more
to either party. In contrast to the usual setting of secure computation,
where the function being computed is known to both parties, PFE is
useful in settings where the function (i.e., algorithm) itself must remain
secret, e.g., because it is proprietary or classified.

It is known that PFE can be reduced to standard secure computa-
tion by having the parties evaluate a universal circuit, and this is the
approach taken in most prior work. Using a universal circuit, however,
introduces additional overhead and results in a more complex imple-
mentation. We show here a completely new technique for PFE that
avoids universal circuits, and results in constant-round protocols with
communication/computational complexity linear in the size of the cir-
cuit computing f . This gives the first constant-round protocol for PFE
with linear complexity (without using fully homomorphic encryption),
even restricted to semi-honest adversaries.

1 Introduction

In the setting of two-party private function evaluation (PFE), a party P1 holds
an input x while another party P2 holds a (circuit Cf describing a) function f ;
the goal is for one (or both) of the parties to learn the result f(x) while not
revealing to either party any information beyond this. (The parties do agree in
advance on the size of the circuit being computed, as well as the input/output
length. See Section 2.1 for further discussion.) PFE is useful when the function
being computed must remain private, say because the function is classified, be-
cause revealing the function would lead to security vulnerabilities, or because the
implementation of the function (e.g., the circuit Cf itself) is proprietary even if
the function f is known [34, 6, 8, 9, 11–13, 19, 5, 33, 31, 3].
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PFE stands in contrast to the standard setting of secure two-party compu-
tation [37, 14], where the parties hold inputs x and y, respectively, and wish to
compute the result f(x, y) for some mutually known function f using an agreed-
upon circuit Cf for computing f . On the other hand, it is well known that the
problem of PFE can be reduced to the problem of secure computation using
universal circuits. In more detail, let Un be some (fixed) universal circuit such
that Un(x,C) = C(x) for every circuit C having at most n gates. (We implicitly
assume here some fixed representation for circuits.) Then if Cn is the class of cir-
cuits having at most n gates, PFE for this class is solved by having the parties
run a (standard) secure computation of Un.

There are, however, drawbacks to using universal circuits to implement PFE.
First is the resulting complexity: although PFE using universal circuits has
been implemented [35], it is fair to say that it is more challenging, tedious,
and error-prone to write code involving universal circuits than it is to imple-
ment secure computation “directly” using Yao’s garbled circuit approach (as
done, e.g., in [27, 26, 32, 16, 17]). Using universal circuits also impacts efficiency.
Valiant [36] showed a construction of a universal circuit achieving (optimal)
|Un| = O(n logn); the construction is complex, however, and the constant terms
(as well as the low-order terms) are significant. Kolesnikov and Schneider [23, 35]
gave a simpler construction of universal circuits: they obtain the worse asymp-
totic bound |Un| = O(n log2 n), but their techniques are claimed to yield smaller
universal circuits than Valiant’s construction for “reasonable” values of n. (The
exact improvement depends also on the number of inputs and outputs. We refer
the reader to their work for a detailed comparison.) Even so, as secure two-party
computation is used for ever-larger circuits (secure computation of circuits with
up to 1 billion gates has been reported [17]), the overhead introduced by universal
circuits becomes prohibitive. Indeed, the implementation of PFE by Kolesnikov
and Schneider [23, 35] can handle circuits of only a few thousand gates [31].

Another approach to PFE is given by Abadi and Feigenbaum [1], who show
a PFE protocol with complexity O(n) but using O(d) rounds, where d is (an
upper bound on) the depth of the circuit being computed.

1.1 Contributions of Our Work

We show the first constant-round PFE protocols with linear complexity, with-
out relying on fully homomorphic public-key encryption.1 We begin by showing
a protocol in the semi-honest setting; this illustrates our core techniques and
represents what we consider to be our main contribution. (Semi-honest security
was the focus of all prior work on PFE [34, 6, 8, 9, 11–13, 19, 5, 33, 31, 3].) Zero-
knowledge proofs can be used in the standard way [15] to obtain security against
malicious parties, still in constant rounds and with linear complexity; however,
the resulting protocol is unlikely in practice to out-perform secure computation

1 It is easy to construct constant-round, linear-complexity PFE from fully homomor-
phic encryption. But it is of theoretical interest to reduce the assumptions used, and
of practical importance to avoid the overhead of fully homomorphic encryption.
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of universal circuits using efficient protocols for the malicious setting (e.g., [24]).
We sketch a more efficient construction for achieving security against a mali-
cious P1.

Our protocols rely on (singly) homomorphic public-key encryption as well as a
symmetric-key encryption scheme secure against linear related-key attacks; see
Definition 2. The former can be instantiated using various standard cryptosys-
tems (e.g., [10, 30]); the latter can be instantiated in the random oracle model,
or in a provable sense [2] based on the decisional Diffie-Hellman assumption.

In addition to the theoretical improvement, our approach should yield better
performance in practice for PFE of large circuits and/or in certain settings. Specif-
ically, although our protocol uses O(n) public-key operations — in contrast to
universal-circuit-based approaches that use O(n logn) or O(n log2 n) symmetric-
key operations2 — our protocol has linear communication complexity, making it
advantageous when network communication is expensive. Moreover, there are sev-
eral ways our protocol can be improved (e.g., using elliptic-curve cryptography
along with fast algorithms for performing multiple fixed-base exponentiations) to
reduce its computational cost.

1.2 Overview of Our Techniques

Our main technical contribution, as noted above, is our idea for achieving PFE
with linear complexity in the semi-honest setting; we describe this here. Our
description is fairly detailed and we will refer to it in the formal description
of our protocol later; it should also be possible to skim this section so as to
obtain the main ideas. Our approach adapts Yao’s garbled-circuit technique.
At a very high level, our idea is to have P1 generate a sequence of gates; P2

then connects these gates together, using (singly) homomorphic encryption, in
a manner that is oblivious to P1, while still enabling P1 to prepare a garbled
circuit corresponding to the circuit Cf held by P2. This idea of having one party
connect gates of the circuit together is vaguely reminiscent of the “soldering”
approach taken in [29]; our setting, however, is different than theirs (in [29]
it was required that both parties know the circuit being computed), as is our
implementation of the “soldering” step.

Say x ∈ {0, 1}
, and assume that f outputs a single bit and that Cf is known
to contain exactly n nand gates. (Neither of these assumptions is necessary, but
we avoid complications for now.) It will be useful to distinguish between outgoing
wires and ingoing wires of a circuit. Outgoing wires include the � input wires
of the circuit, along with the wire that exits each gate of the circuit; thus, in
a circuit with � inputs and n gates there are exactly �+ n outgoing wires. The
ingoing wires are exactly the input wires to each gate of the circuit; thus, in a
circuit with n two-input gates there are exactly 2n ingoing wires. A circuit is
defined by specifying the output wires, and by giving a correspondence between

2 This does not account for any oblivious transfers performed in the universal-circuit-
based approaches. However the number of oblivious transfers scales linearly in the
input length, not the circuit size.
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outgoing wires and ingoing wires; e.g., specifying that outgoing wire i (which
may be an input wire or a wire exiting some gate) connects to ingoing wires j, k,
and �. We stress that even though we speak of each internal gate as having only
a single outgoing wire, we handle arbitrary fan-out since a single outgoing wire
can be connected to several ingoing wires.

In our description below, we assume for concreteness that P2 learns the output
f(x). However, it is trivial to modify our protocol (with no additional cost) so
that only P1 learns the output. See the remark at the end of this section.

The protocol begins by having P1 generate and send a public key pk for a
(singly) homomorphic encryption scheme Enc. Similar to Yao’s garbled-circuit
technique, P1 then chooses �+ n pairs of random keys that will be assigned to
each of the outgoing wires. Let sb

i denote the key corresponding to bit b on wire i.
Then P1 sends[

Encpk(s01),Encpk(s11)
]
, . . . ,

[
Encpk(s0
+n),Encpk(s1
+n)

]
to P2. (It will become clear from what follows that P1 need not send the final
encrypted pair

[
Encpk(s0
+n),Encpk(s1
+n)

]
. We include it above for clarity.)

P2, in turn, obliviously defines keys for each of the 2n ingoing wires. P2 sorts
the gates of Cf topologically, so that if the outgoing wire from some gate i
connects to an ingoing wire of some gate j then i < j. This defines a natural
enumeration of the outgoing wires in the circuit: outgoing wires numbered from
1 to � correspond to the input wires of the circuit, and outgoing wire �+ i (for
i ∈ {1, . . . , n}) corresponds to the wire exiting gate i. The output wire of the
circuit corresponds to outgoing wire � + n. (Recall that here we assume f is
boolean; in Section 3.1 we relax this.)

For each ingoing wire of the circuit, P2 does as follows. Say the ingoing wire
of some gate i is connected to outgoing wire j. Then P2 chooses random ai, bi
and defines the (encrypted) keys for this ingoing wire to be[

Encpk(ai · s0j + bi), Encpk(ai · s1j + bi)
]
,

where the above is computed using the homomorphic properties of the encryp-
tion scheme. (In the above, the ciphertexts are re-randomized in the usual
way.) Two observations are in order: first, the (unencrypted) keys (r0, r1) def=(
ai ·s0j + bi, ai ·s1j + bi

)
are random and independent of j. Second, given sb

j it is
possible for P2 to compute rb (using ai, bi); without s1−b

j , however, P2 learns no
information about r1−b. (Recall we are in the semi-honest setting, so ai, bi are
chosen at random.)

Expanding upon the above, say gate i of the circuit has its left ingoing wire
connected to outgoing wire j and right ingoing wire connected to outgoing wire k.
(As always, the outgoing wire from this gate is numbered �+ i.) Then P2 defines
the encrypted “garbled gate”

encGGi =

⎛⎜⎜⎝
[
Encpk(ai · s0j + bi), Encpk(ai · s1j + bi)

][
Encpk(a′i · s0k + b′i), Encpk(a′i · s1k + b′i)

][
Encpk(s0
+i), Encpk(s1
+i)

]
⎞⎟⎟⎠ ,
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where ai, bi, a
′
i, b

′
i are chosen uniformly at random. Finally, P2 sends

encGG1, . . . , encGGn

to P1. (In fact P2 need not transmit the final pair
[
Encpk(s0
+i), Encpk(s1
+i)

]
of

each encrypted garbled gate, since P1 knows it. We include it above for clarity.)
Upon receiving this message, P1 decrypts each encGG to obtain, for each

gate i, the three pairs of keys
(
[L0

i , L
1
i ], [R

0
i , R

1
i ], [s

0

+i, s

1

+i]
)
. It then prepares a

garbled version GGi of this gate in the usual way: namely, it computes the four
ciphertexts

C′
b,c ← sEncLb

i

(
sEncRc

i

(
s
nand(b,c)

+i

))
, b, c ∈ {0, 1}

(where sEnc denotes a symmetric-key encryption scheme), and sets GGi to be
the four ciphertexts

(
C′

0,0, . . . , C
′
1,1

)
in random permuted order. P1 then sends

GG1, . . . ,GGn to P2. In addition, P1 sends the appropriate input-wire keys sx1
1 ,

. . . , sx�


 , as well as both output-wire keys
(
s0
+n, s

1

+n

)
.

P2 now has enough information to compute the result, using a procedure
analogous (but not identical) to what is done in a standard application of
Yao’s garbled-circuit methodology. P2 begins knowing a key si for each out-
going wire i ∈ {1, . . . , �}. (Recall these are the input wires of the circuit that
correspond to P1’s input.) Inductively, P2 can compute a key for every outgoing
wire as follows: Consider the (�+ i)th outgoing wire exiting from gate i, where
the left ingoing wire to this gate is connected to outgoing wire j < i and the
right ingoing wire to this gate is connected to outgoing wire k < i. Assume P2

has already determined keys sj, sk for outgoing wires j, k, respectively. P2 com-
putes keys Li = aisj + bi and Ri = a′isk + b′i for the left and right ingoing wires
to gate i. Then P2 tries to decrypt each of the four ciphertexts in GGi. With
overwhelming probability, only one of these decryptions will be successful; the
result of this successful decryption defines the key s
+i for outgoing wire � + i.
Once P2 has determined key s
+n, it can check whether this corresponds to an
output of ‘0’ or ‘1’ using the ordered pair

(
s0
+n, s

1

+n

)
sent by P1.

Further details, intuition for security of the above, proofs of security, and
extensions to handle malicious behavior of P1 are described in the sections that
follow. A more efficient variant of the above protocol is described in Section 3.2.

Remark 1: It is trivial to modify the above protocol, at no additional cost, so
that only P1 learns the output (and P2 learns nothing): first, change round 3 so
that P1 does not send the output-wire keys

(
s0
+n, s

1

+n

)
. Then when P2 learns

the final key s
+n it simply sends this key back to P1, who can then check
whether it is equal to s0
+n or s1
+n.

1.3 Other Related Work

Several works have explored weaker variants of PFE. Paus et al. [31] consider
semi-private function evaluation where the circuit topology (i.e., the connections
between gates) is assumed to be known to both parties, but the boolean function
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computed by each gate can be hidden. Here we treat the more difficult case where
everything about the circuit (except an upper bound on its size and the number
of inputs/outputs) is hidden. Another direction has been to consider PFE for
limited classes of functions: e.g., functions defined by low-depth circuits [34, 4],
branching programs [19, 3], or polynomials [9, 28]. Here we handle functions
defined by arbitrary (polynomial-size) circuits.

2 Definitions

Let k be the security parameter. A distribution ensemble X = {X(1k, a)}k∈N, a∈D
is an infinite sequence of random variables indexed by k ∈ N and a ∈ D, for
D some specified set. The two ensembles X = {X(1k, a)}k∈N, a∈D and Y =
{Y (1k, a)}k∈N, a∈D are computationally indistinguishable, denoted X

c≡ Y , if for
every non-uniform polynomial-time algorithmD there exists a negligible function
μ(·) such that for every k and every a ∈ D∣∣∣Pr[D(X(1k, a)) = 1] − Pr[D(Y (1k, a)) = 1]

∣∣∣ ≤ μ(k).

2.1 Private Function Evaluation

Our definitions of security are standard, but we include them here for complete-
ness. For simplicity, we treat the case where P1 holds some value x ∈ {0, 1}
 as
input while P2 holds a circuit Cf computing some deterministic function f ; the
goal of the protocol is for P2 to learn f(x). The definitions we provide here, as well
as our protocols, extend easily to handle, e.g., additional input provided by P2

(this can simply be incorporated into the circuit Cf ), randomized functions f ,
or the case where P1 receives output (see Remark 1 at the end of Section 1.2).

The problem of PFE is meaningless in practice if P2 learns the output and
f (resp., Cf ) is allowed to be completely arbitrary: in that case P2 could take
f(x) = x and learn P1’s entire input! It is thus reasonable to impose some
restrictions on Cf . The most general formulation to assume that both parties
fix some class C of circuits, and require that Cf ∈ C; in that case we refer to the
problem as C-PFE. This encompasses both the case when P1 knows some partial
information about f (as in [31]), as well as the case where Cf is restricted in
some way (e.g., to have low depth). In this work, we assume only that P1 knows
the input length �, and upper bounds on the output length m and the number
of gates n (i.e., C contains only circuits satisfying those constraints). Note that
if m $ � then meaningful privacy of P1’s input is maintained regardless of what
circuit Cf ∈ C is used by P2.

There are two ways one could incorporate a security parameter k into the
definition of the problem. The usual way, which we find less natural in our setting,
is to allow the sizes of the inputs to grow and to set the security parameter equal
to the input size(s). We prefer instead to treat the input domains (namely, {0, 1}


and some class of circuits C) as fixed, and to treat k as an additional input.
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A two-party protocol for C-PFE is a protocol running in polynomial time and
satisfying the following correctness requirement: if party P1, holding input 1k

and x, and party P2, holding input 1k and Cf ∈ C, run the protocol honestly,
then (except with probability negligible in k) the output of P2 is Cf (x).

Security in the semi-honest case. In the semi-honest case we assume both
parties follow the protocol honestly but may each try to learn some additional
information from their (respective) view. Fix C and let Π be a protocol for C-
PFE. The view of the ith party during an execution of Π when the parties begin
holding inputs x and Cf , respectively, and security parameter 1k is denoted by
view

Π
i (1k, x, Cf ). The view of Pi contains Pi’s input and random tape, along

with the sequence of messages received from the other party P3−i.
When f is deterministic it suffices to consider the views of the parties in

isolation, rather than their joint distribution [14, Sect. 7.2.2.1]. We thus have:

Definition 1. Protocol Π is a secure C-PFE protocol for semi-honest adversaries
if there exist probabilistic polynomial-time simulators S1,S2 such that{S1

(
1k, x

)}
k∈N, x∈{0,1}�, Cf∈C

c≡ {view
Π
1

(
1k, x, Cf

)}
k∈N, x∈{0,1}�, Cf∈C{S2

(
1k, Cf , Cf (x)

)}
k∈N, x∈{0,1}�, Cf∈C

c≡ {view
Π
2

(
1k, x, Cf

)}
k∈N, x∈{0,1}�, Cf∈C .

Security against malicious behavior. We refer to the full version of this
paper [21] for a definition of security against malicious adversaries within the
usual real/ideal framework [14].

2.2 Tools

We use a (singly) homomorphic public-key encryption scheme (Gen,Enc,Dec).
The actual property we need is the ability to evaluate a pairwise-independent
function on the plaintext space. If the plaintext space is a group G of prime
order p, written additively, this can be achieved by mapping a ∈ Zp, b ∈ G, and
Encpk(m) to a (random) encryption of Encpk(am + b). Thus, e.g., standard El
Gamal encryption [10] can be used (though G in that case is usually written
multiplicatively). In fact, the plaintext space is not required to have prime or-
der, as we only require “almost” pairwise-independence. In particular, Paillier
encryption [30] could also be used.

We also use a symmetric-key encryption scheme (sEnc, sDec) whose key space
is viewed as a group G(k) of order p = p(k) that is, for simplicity, the same as
the plaintext space of the public-key encryption scheme being used. (In practice,
this can be achieved for any desired G by implementing encryption with key
g ∈ G using AES with key SHA-1(g), truncated to 128 bits.) We impose the
same requirements on (sEnc, sDec) as in [25]: namely, that it have elusive and
efficiently verifiable range. (These properties are easily satisfied.) In addition,
we require (sEnc, sDec) to satisfy a weak form of related-key security where,
roughly, encryption remains secure even when performed using linearly related
keys (where the linear relations are chosen at random). That is:
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Definition 2. Encryption scheme (sEnc, sDec) is secure against linear related-key
attacks if the following is negligibly close (in k) to 1/2 for all polynomials d and
all ppt adversaries A:

Pr

⎡⎣s← G(k); c← {0, 1};
a1, . . . ad ← Zp(k)

b1, . . . , bd ← G(k)
: AsEncc

a1s+b1
(·,·),...,sEncc

ads+bd
(·,·)(a1, b1, . . . , ad, bd)=c

⎤⎦ ,
where sEncc

s(m0,m1)
def= sEncs(mc).

We remark that a weaker definition (where A queries each sEncc
ais+bi

(·, ·) only on
two inputs, chosen nonadaptively) suffices for our proof. It is easy to construct an
encryption scheme satisfying the above definition using a (non-programmable)
random oracle, and it would be surprising if standard encryption schemes based
on AES could be shown not to satisfy the above definition. Moreover, recent work
of Applebaum et al. [2] can be used to construct a scheme satisfying the above
definition in a provable sense, based on the decisional Diffie-Hellman assumption.

3 A C-PFE Protocol for Semi-honest Adversaries

3.1 Description of the Protocol

We now formally define our C-PFE protocol for semi-honest adversaries. In our
description here, we assume the reader is familiar with the protocol overview
provided in Section 1.2.

We assume that all circuits in C are composed solely of nand gates. This is
for simplicity only, and our protocol can be easily modified to handle circuits
over an arbitrary basis of 2-to-1 gates with only a small impact on the efficiency.
Let n be an upper bound on the size of any circuit in C, and let m be an upper
bound on the number of outputs. By adjusting n appropriately, we may assume
that every circuit in C has exactly m outputs (P2 can always add “dummy”
outputs that are fixed to some constant); that the output wires of the circuit
do not connect to any other gates (this can be achieved by adding at most m
gates to the circuit); and that every circuit in C contains exactly n gates (P2 can
add “dummy” gates whose output wires are connected to nothing). We make all
these assumptions in what follows. We also assume that P2 learns the output;
however, it is trivial to modify the protocol so that P1 learns the output; see
Remark 1 in Section 1.2.

Recall from Section 1.2 that we distinguish between outgoing wires and ingo-
ing wires of Cf . (Recall also that although each gate has only a single outgoing
wire, we handle circuits with arbitrary fan-out since a single outgoing wire can
be connected to several ingoing wires.) As in Section 1.2, party P2 sorts the gates
of Cf topologically and this defines an enumeration of the N def= �+ n outgoing
wires. The outgoing wires numbered from 1 to � correspond to the � input wires
of the circuit, and outgoing wire � + i (for i ∈ {1, . . . , n}) corresponds to the
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output wire from gate i. The output wires of the circuit correspond to the m
outgoing wires N −m+ 1, . . . , N .

We first define an algorithm encYao that prepares garbled gates as in Yao’s
protocol: encYao takes as input three pairs of keys and outputs four ciphertexts,
and is defined as

encYao
(
[L0, L1], [R0, R1], [s0, s1]

) def=
{
sEncLb

(
sEncRc

(
snand(b,c)

))}
b,c∈{0,1}

,

where the four ciphertexts are in random permuted order. We analogously define
an algorithm decYao that takes as input two keys (for each of two ingoing wires)
and a garbled gate, and outputs a key for the outgoing wire; this algorithm, given
keys L,R and four ciphertexts {C′

0, C
′
1, C

′
2, C

′
3}, computes sDecL(sDecR(C′

i)) for
all i and outputs the unique non-⊥ value that is obtained. (If more than one
non-⊥ value results, this algorithm outputs ⊥.)

Our protocol is described in Figure 1. Correctness holds with all but negligible
probability, via an argument similar to the one in [25].

In our description of the protocol we aimed for clarity rather than effi-
ciency, and several improvements are possible. For one, P2 need not include[
Encpk(s0
+i), Encpk(s1
+i)

]
as part of encGGi since P1 already knows these

values. Furthermore, P1 need not send[
Encpk(s0N−m+1),Encpk(s1N−m+1)

]
, . . . ,

[
Encpk(s0N ),Encpk(s1N )

]
in round 1 (since these outgoing wires do not connect to any ingoing wires).
Moreover, P1 can set s0N−m+1 = · · · = s0N = 0 and s1N−m+1 = · · · = s1N = 1 (and
then there is no need to send the output-wires message in the third round); that
is, for gates whose outgoing wires are the output of the circuit, P1 can encrypt
the wire value itself rather than encrypting a key that encodes the wire value.

Security against a semi-honest P1 is easy to see. In fact, security in that case
holds in a statistical sense. Indeed, with all but negligible probability it holds
that s0i �= s1i for all i ∈ {1, . . . , N}. Assuming this to be the case, the top two rows
of each encGGi sent by P2 to P1 in round 2 consist only of (random) encryptions
of the four independent, uniform values

ai · s0j + bi, ai · s1j + bi, a′i · s0k + b′i, a′i · s1k + b′i.

In particular, these values are independent of the interconnections between gates
of Cf , and thus the view of P1 is independent of the circuit held by P2.

Security against a semi-honest P2 holds computationally, assuming seman-
tic security of the homomorphic encryption scheme and security against linear
related-key attacks for the symmetric-key encryption scheme. Roughly, the ini-
tial encryptions sent to P2 in round 1 do not reveal anything about the values
s0i , s

1
i that P1 assigns to each outgoing wire in the circuit. Thus, the information

sent to P2 in round 3 is essentially equivalent to the information sent to P2 in a
standard application of Yao’s garbled-circuit methodology, with the only differ-
ence being that here ingoing wires and outgoing wires have different keys, and
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Inputs: The security parameter is k. The input of P1 is a value x ∈ {0, 1}
,
and the input of P2 is a circuit Cf with �, n,m as described in the text.

Round 1 P1 computes (pk, sk) ← Gen(1k) and sends pk to P2. In addition,
P1 chooses N = � + n pairs of random keys s0i , s

1
i for i ∈ {1, . . . , N}. It

then sends to P2 the ciphertexts[
Encpk(s01),Encpk(s11)

]
, . . . ,

[
Encpk(s0N),Encpk(s1N )

]
.

Round 2 For each gate i ∈ {1, . . . , n} of Cf , with left ingoing wire connected
to outgoing wire j, right ingoing wire connected to outgoing wire k, and
outgoing wire �+ i, party P2 chooses ai, bi, a

′
i, b

′
i uniformly (from the ap-

propriate domains) and computes

encGGi =

⎛⎜⎜⎝
[
Encpk(ai · s0j + bi), Encpk(ai · s1j + bi)

][
Encpk(a′i · s0k + b′i), Encpk(a′i · s1k + b′i)

][
Encpk(s0
+i), Encpk(s1
+i)

]
⎞⎟⎟⎠

using the homomorphic properties of Enc. (In the above, each ciphertext
is re-randomized.) Then P2 sends encGG1, . . . , encGGn to P1.

Round 3 For i ∈ {1, . . . , n}, party P1 decrypts encGGi using sk to obtain

the three pairs of keys keysi
def
=
(
[L0

i , L
1
i ], [R

0
i , R

1
i ], [s

0

+i, s

1

+i]
)
. It then

computes GGi ← encYao(keysi), and sends GG1, . . . ,GGn to P2. Finally,
P1 sends

input-wires: sx1
1 , . . . , sx�


 ; output-wires:
(
s0N−m+1, s

1
N−m+1

)
, . . . ,

(
s0N , s

1
N

)
.

Output determination Say P1 sent input-wires: s1, . . . , s
 to P2 in the pre-
vious round. Then for all i ∈ {� + 1, . . . , � + n}, party P2 does: If the left
ingoing wire of gate i is connected to outgoing wire j < i and the right in-
going wire of gate i is connected to outgoing wire k < i, then (1) compute
Li = aisj+bi andRi = a′isk+b′i, and then (2) set si = decYao(Li, Ri,GGi).

Once P2 has computed s1, . . . , s
+n, it sets the jth output bit oj (for
j ∈ {N −m+ 1, . . . , N}) to be the (unique) bit for which sj = s

oj

j .

Fig. 1. A C-PFE protocol for semi-honest adversaries

P2 must compute a key Li on some ingoing wire by “translating” one of the keys
sj on the outgoing wire connected to that ingoing wire.

We have:

Theorem 1. Assume the homomorphic encryption scheme is semantically se-
cure, and the symmetric-key encryption scheme is secure against linear related-
key attacks and has elusive and efficiently verifiable range. Then the protocol of
Figure 1 is a secure C-PFE protocol for semi-honest adversaries.

Due to space limitations, a proof appears in the full version [21].
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3.2 A More Efficient Variant

In this section we describe a more efficient variant of our protocol in which the
wire labels are chosen in a coordinated fashion, as in [22]. Unfortunately, we are
only able to prove security of the resulting protocol in the random oracle model;
see further discussion at the end of this section.

We merely sketch the basic idea. Now, in round 1, P1 chooses a global random
shift r and � + n outgoing-wire keys {s0i }; it then sets s1i = s0i + r for all i.
The first-round message from P1 now contains pk and the � + n ciphertexts
Encpk(s01), . . . ,Encpk(s0
+n).

For each ingoing wire of the circuit, P2 does as follows. Say this wire is con-
nected to outgoing wire j. Then P2 chooses random a and defines the (encrypted)
0-key for this ingoing wire to be (a re-randomization of) Encpk(s0j + a), where
this is computed using the homomorphic properties of the encryption scheme.
Thus, if gate i of the circuit has its left ingoing wire connected to outgoing wire j
and right ingoing wire connected to outgoing wire k, party P2 defines the ith
encrypted “garbled gate” via

encGGi =

⎛⎜⎜⎝Encpk(s0j + ai)

Encpk(s0k + a′i)

Encpk(s0
+i)

⎞⎟⎟⎠ ,

where ai, a
′
i are chosen uniformly at random. P2 sends encGG1, . . . , encGGn to P1.

Upon receiving this message, P1 decrypts each encGG to obtain, for each
gate i, the keys

(
L0

i , R
0
i , s

0

+i,
)
. It defines L1

i = L0
i + r and R1

i = R0
i + r, and

then prepares a garbled version GGi of this gate as in the previous sections. P2

can then compute the result as usual. The entire protocol is roughly twice as
efficient as the original.

As we have mentioned, however, we are only able to prove security of this mod-
ified protocol in the (non-programmable) random oracle model. Although it may
appear possible to prove security in the standard model if the symmetric-key en-
cryption scheme satisfies a strong enough definition of security, we were not able
to isolate any suitable definition. In particular, correlation robustness [18] does
not appear to suffice, since there is a circularity when, e.g., keys s, s+ r, s′, s′ + r
are used to encrypt keys s′′ and s′′ + r. (Some combination of correlation ro-
bustness and circular security appears necessary.) The same issue seems to be
present in the works of [22, 29] as well.

4 Security for Malicious Adversaries

As noted in the Introduction, we can apply zero-knowledge proofs in the stan-
dard way [15] to obtain a protocol with linear complexity (and constant round
complexity) that is secure against malicious adversaries. However, the resulting
protocol is unlikely in practice to out-perform secure computation of universal
circuits using efficient protocols for the malicious setting (e.g., [24]). Here, we
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sketch a more efficient construction that achieves security against a malicious P1

only. As in the previous section, our goal here is not to optimize the efficiency
of the resulting protocol but rather to illustrate the main ideas.

We continue to assume that P2 learns the output, however Remark 1 of
Section 1.2 applies here as well and so the protocol is easily modified so that
only P1 learns the output.

4.1 Protocol Modifications

We introduce the following changes to the protocol described in Section 3.1:

Proof of well-formedness of pk. We require P1 to prove that the public key
pk it sends in round 1 was output by the specified key-generation algorithm Gen.
(This step is not necessary if it is possible to efficiently verify whether a given
pk could have been output by Gen, as is the case with, e.g., El Gamal encryp-
tion.) We remark further that it suffices for the proof to be honest-verifier zero
knowledge (since we only require security against a semi-honest P2), and we do
not require it to be a proof of knowledge.

The complexity of this step is independent of n.

Validity of outgoing-wire keys. Let
[
C0

1 , C
1
1

]
, . . . ,

[
C0

N , C
1
N

]
denote the ci-

phertexts sent by P1 in round 1. (Recall that it is supposed to be the case that
Cb

i = Encpk(sb
i).) We now require P1 to prove that (1) each Cb

i is a well-formed
ciphertext with respect to the public key pk (once again, this step is unnecessary
if it is possible to efficiently verify validity of ciphertexts, as is the case with El
Gamal encryption), and (2) for each i, the ciphertexts C0

i , C
1
i are encryptions of

distinct values. If the encryption scheme is additively homomorphic, and we let
s0i (resp., s1i ) denote the plaintext corresponding to C0

i (resp., C1
i ), then P2 can

compute Encpk(s0i −s1i ) and the latter step is equivalent to proving that this is not
an encryption of 0. Once again, it suffices for these proofs to be honest-verifier
zero knowledge and they are not required to be proofs of knowledge.

The complexity of this step is linear in n since the statement being proved
can be written as a conjunction of n statements, each of size independent of n.

Correctness of garbled-circuit construction. We require P1 to prove cor-
rectness of the garbled gates it sends to P2 in the final round. This amounts to
proving, for each i ∈ {1, . . . , n}, that GGi was correctly constructed from encGGi.
As before, it suffices for these proofs to be honest-verifier zero knowledge and
they are not required to be proofs of knowledge.

The complexity of this step is linear in n since the statement being proved
is a conjunction of n statements, each of which has size independent of n. We
also note that by using an appropriate homomorphic encryption scheme and
symmetric-key encryption scheme, these proofs can be made (reasonably) ef-
ficient using the techniques of Jarecki and Shmatikov [20] (who show efficient
proofs for exactly this purpose, assuming a common reference string, using a
variant of the Camenisch-Shoup encryption scheme [7]).
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Correctness of input-wire and output-wire keys. Finally, P1 is required
to prove that the input-wire and output-wire keys it sends in the final round
are correct. Let

[
C0

1 , C
1
1

]
, . . . ,

[
C0

N , C
1
N

]
denote the ciphertexts sent by P1 in

round 1 (recall it is supposed to be the case that Cb
i = Encpk(sb

i)), and let

input-wires: s1, . . . , s
 and output-wires:
(
s0N−m+1, s

1
N−m+1

)
, . . . ,

(
s0N , s

1
N

)
be the values sent by P1 in the last round. Then P1 must prove that: (1) that
for each index i ∈ {1, . . . , �}, one of the ciphertexts C0

i , C
1
i is an encryption

of the plaintext si, and (2) that for each index i ∈ {N − m + 1, . . . , N}, the
ciphertext C0

i (resp., C1
i ) is an encryption of s0i (resp., s1i ). It suffices for each of

these proofs to be honest-verifier zero knowledge; the first set of proofs (proving
correctness of the input-wire keys) must be proofs of knowledge to allow for
input extraction. (Alternately, if the proof of well-formedness of the public key
is a proof of knowledge then proofs of knowledge are not needed here.)

The complexity of this step is linear in �+m.

We remark that most of the above proofs can be implemented efficiently for any
homomorphic encryption scheme. The main exception is the proof of correctness
of the garbled-circuit construction; however, as noted above, there exists at least
one specific homomorphic encryption scheme for which this step can be done
reasonably efficiently [20]. A proof of the following appears in [21].

Theorem 2. Under the same assumptions as in Theorem 1, the protocol of
Figure 1 with the modifications described in the previous section is a secure C-
PFE protocol for a malicious P1.

5 Conclusions and Future Work

We have shown the first constant-round protocol for PFE with complexity linear
in the size of the circuit being computed (without relying on fully homomorphic
encryption). Our results leave several interesting open questions:

– In addition to its theoretical importance, we believe our work is also of prac-
tical relevance: specifically, we expect that our approach to PFE will be both
easier to implement and more efficient (for large circuits) than approaches
relying on universal circuits. It remains to experimentally validate this claim.

– Our work leaves open the question of designing a fully secure protocol for
PFE (i.e., PFE with security against a malicious P1 and a malicious P2) with
linear complexity that would have better performance than what results from
running a secure computation of universal circuits using efficient protocols
for the malicious setting (e.g., [24]).

– It would also be interesting to further improve on the cryptographic as-
sumptions needed for our results: e.g., to construct a protocol based on se-
mantically secure symmetric-key encryption (without requiring related-key
security), or to avoid the use of homomorphic public-key encryption.

The contents of this paper do not necessarily reflect the position or the policy
of the US Government, and no official endorsement should be inferred.
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1 Introduction

Multi-party computation (MPC) is a powerful and interesting tool in cryptology.
It allows a set of n mutually un-trusted parties to compute a predefined function
f with their private information as inputs. After running the MPC protocol, the
parties obtains only the predefined outputs but nothing else, and the privacy
of their inputs is guaranteed. Although generic solutions for MPC (which can
compute any function f) already exist [3,9], these solutions tend to be inefficient
and thus not applicable for practical use. So, to fix this problem, we focus on
constructing efficient protocols for specific functions.

Recently, in the work [6], Damg̊ard et al. proposed a novel technique called
bit-decomposition which can, in constant rounds, convert a polynomial sharing
of secret x into the sharings of the bits of x. Bit-decomposition (which will of-
ten be referred to as BD hereafter for short) is a very useful tool for MPC.
For example, after getting the sharings of the bits of some shared secrets us-
ing BD, we can securely perform Boolean operations on these secrets (such as
computing the Hamming Weight, XOR, etc). Thus we can say that BD can be
viewed as a “bridge” (in the world of MPC) connecting the arithmetic circuits
and the Boolean circuits. What’s more, with the help of BD, we can construct
constant-rounds protocols for some very important basic problems in MPC, such
as equality test, comparison, public modulo reduction and private exponentiation,
which will be referred to as four main applications of BD. After getting the bit-
wise sharings of the shared inputs to these problems (using BD), we will be able
to use the divide and conquer technique to solve these problems.

However, a problem is, BD is relatively expensive in terms of round and
communication complexities, and thus all the protocols relying on BD inherit
this inefficiency. For example, the communication complexity of BD (with perfect
security) is non-linear, thus all the protocols involving BD have a non-linear
communication complexity. A feasible solution for this problem is to construct
protocols for MPC problems without relying on BD. It is already proved that,
three of the four main applications of BD, i.e. equality test, comparison and
public modulo reduction, can be realized without relying on BD [11,12] and the
main advantage is that the communication complexity can be reduced to linear
(under the premise of ensuring perfect security). Thus a natural problem is
whether a similar conclusion can be arrived at for another important application
of BD: private exponentiation. This is generally believed to be impossible before
(e.g. [11], Page 2; [14], Page 2), however, in this paper, we show that it can.
What’s more, we show an improvement of the public modulo reduction protocol
(without BD) proposed in [12]. The details of our results are presented below.
Here we’d like to argue that although these four applications of BD can be
realized without involving BD, this does not mean BD is meaningless for these
problems because all these protocols (without relying on BD) depend heavily
on the ideas, techniques and sub-protocols of BD and thus can be viewed as an
extension of the research on BD.
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1.1 Our Results

First we introduce some necessary notations. In this paper, we concern mainly
about MPC based on linear secret sharing schemes (LSSS). Assume that the
underlying LSSS is built on field Zp where p is a prime with bit-length l (i.e.
l = %log p&). For an element x = (xl−1, ..., x1, x0) ∈ Zp, we use [x]p to denote
“the sharing of x”, and [x]B to denote “the bitwise sharing of x” (which will also
be referred to as “the sharings of the bits of x” or “the shared base-2 form of x”
in this paper), i.e. [x]B = ([xl−1]p, ..., [x1]p, [x0]p).

Our work is mainly about two basic problems in MPC: the private exponen-
tiation problem and the public modulo reduction problem. We construct efficient
protocols, which are constant-rounds, linear and perfectly secure, for these two
problems. The details are presented below.

The private exponentiation problem can be formalized as:

[xa mod p]p ← Private-Exponentiation([x]p, [a]p)

where x, a ∈ Zp.
Hereafter we will refer to [xa mod p]p as [xa]p for simplicity. For solving this

problem, it seems that we must involve BD to get the bitwise sharing of the
exponent, i.e. [a]B. This is exactly the case in the private exponentiation protocol
in [6]. However, in this paper we show that this is not necessary. That is to say,
the private exponentiation problem can also be solved without relying on BD
and the communication complexity can also be reduced to linear (in the input
length l). Compared with the private exponentiation protocol in [6] (denoted as
Pri-Expo-BD(·) in this paper), our protocol (denoted as Pri-Expo+(·)) reaches
lower round complexity and much lower communication complexity.

The public modulo reduction problem (which will be referred to as Pub-MRP
for short) can be formalized as:

[x mod m]p ← Public-Modulo-Reduction([x]p,m)

where x ∈ Zp and m ∈ {2, 3, ..., p− 1}.
Our work on this problem can be viewed as an extension of [12], in which

Ning and Xu proposed a generalization of BD and, as a simplification of their
generalization, they proposed a linear protocol for Pub-MRP without involving
BD (denoted as Pub-MR(·) in this paper). In this paper, we propose a further
generalization of their generalization and, similarly and more importantly, as
a simplification of our further generalization, we propose a protocol for Pub-
MRP with improved efficiency (denoted as Pub-MR+(·)). Specifically, the round
complexity of our Pub-MR+(·) protocol is the same with Pub-MR(·) and, for
relatively small m, the communication complexity is reduced by a factor of ap-
proximately 4.

We’d like to stress that all the protocols constructed in this paper are constant-
rounds and perfectly secure. See Appendix A (Table 1) for an overview of our
protocols. What’s more, we strongly recommend the interested readers to read
[13] which is the full version of this paper. Many of the details are omitted in
the present paper due to space constraints.
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1.2 Related Work

Both of the two problems considered in this paper, exponentiation and mod-
ulo reduction, are applications of bit-decomposition (BD). The problem of BD
was first considered by Algesheimer et al. in [1], in which a partial solution was
proposed. The first full solution for BD in the secret sharing setting was pro-
pose in [6] by Damg̊ard et al. The main concern of this work is constant-rounds
solution for BD and this is achieved by realizing various constant-rounds sub-
protocols which are important building blocks for subsequent research including
ours. What’s more, as an application of BD, they also proposed a private ex-
ponentiation protocol which is the foundation of our work. Independently and
concurrently, Schoenmakers and Tuyls [16] solved the problem of BD for MPC
based on (Paillier) threshold homomorphic cryptosystems [4,7] and they con-
cern mainly about efficient variations of BD for practical use. In the work [11],
Nishide and Ohta proposed solutions for interval test, comparison and equality
test of shared secrets without relying on the expensive BD protocol although
it seems necessary. Their ideas and techniques play an important role in our
work. Recently, Toft showed a novel technique that can reduce the communi-
cation complexity of BD to almost linear [18]. This is a very meaningful work
and some key ideas of our work come from it. In a followup work, Reistad and
Toft proposed a linear BD protocol [14], however, the security of this protocol
is non-perfect.

As for the public modulo reduction problem (Pub-MRP), Guajardo et al.
proposed a protocol for it in the threshold homomorphic setting without relying
on BD [8]. Their protocol is very efficient (thus can be very useful for practical
use) and is enlightening to this paper, however, they did not consider the general
case (of Pub-MRP) where the inputs can be arbitrary size. In [12], Ning and Xu
proposed a generalization of BD, and, as a simplification of their generalization,
they proposed a linear protocol (without BD) for Pub-MRP which can deal with
arbitrary inputs. Our work on Pub-MRP depends heavily on their work.

2 Preliminaries

In this section we introduce some important notations and known primitives.

2.1 Notations and Conventions

As mentioned above, the MPC considered in this paper is based on LSSS, such
as Shamir’s [15]. We denote the underlying field (of the LSSS) as Zp where p is a
prime with bit-length l = %log p&. For a secret x ∈ Zp, we use [x]p to denote the
sharing of x and [x]B = ([xl−1]p, ..., [x1]p, [x0]p) to denote the bitwise sharing of
x. What’s more, assume that there are n participants in the MPC protocol.

As in previous works, such as [6,11], we assume that the underlying LSSS
allows to compute [x+ y mod p]p from [x]p and [y]p without communication,
and that it allows to compute [xy mod p]p from (public) x ∈ Zp and [y]p without
communication. We also assume that the LSSS allows to compute [xy mod p]p
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from [x]p and [y]p through communication among the parties and we call this
procedure secure multiplication (or multiplication for simplicity). One invocation
of this multiplication will be denoted as

[xy mod p]p ← Sec-Mult([x]p, [y]p)

in which [xy mod p]p will be referred to as [xy]p for simplicity. Obviously, for
MPC protocols, this multiplication protocol is a dominant factor of complexity
as it involves communication. So, as in previous works, the round complexity of
the (MPC) protocols is measured by the number of rounds of parallel invocations
of multiplication (Sec-Mult(·)), and the communication complexity is measured
by the number of invocations of multiplication. For example, if in all a protocol
involves a multiplications in parallel and then another b multiplications in par-
allel, then we can say that the round complexity of this protocol is 2 and the
communication complexity is a+ b multiplications. What’s more, if a procedure
does not involve any secure multiplication, then it can be viewed as free and will
not count for complexity. For example, if we get [x]B, then [x]p can be freely
obtained by a linear combination since x =

∑l−1
i=0 xi · 2i.

As in [11], when we write [C]p, where C is a Boolean test, it means that

C ∈ {0, 1} and C = 1 iff C is true. For example, we use [x
?= y]p to denote the

output of the equality test protocol, i.e. (x
?= y) = 1 iff x = y holds.

Given [c]p, we need a protocol to reveal c, which is denoted by c← Reveal([c]p).
Note that although this protocol involves communication, it does not count
for (both round and communication) complexity because the communication it
involves can be carried out through a public channel.

As in [17], we will often use the conditional selection command below:
[C]p ← [b]p ? [A]p : [B]p

in which A,B,C ∈ Zp and b ∈ {0, 1}, and which means the following:
If b = 1, then C is set to A; otherwise, C is set to B.

It is easy to see that this command can be realized by setting
[C]p ← [b]p([A]p − [B]p) + [B]p

which costs only 1 round and 1 multiplication. We will frequently use this condi-
tional selection command in this paper because it can make our protocols easier
to be understood.

2.2 Known Primitives

We will now simply introduce some existing primitives which will be of impor-
tance later on. We refer the readers to [6,11,18] for detailed descriptions of these
primitives.

• Random Bit Protocol. The Random-Bit(·) protocol has no input and it
will output a shared uniformly random bit [b]p which is unknown to all par-
ties. In the secret sharing setting, it takes only 2 rounds and 2 multiplications
[6].
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• Bitwise Less-Than Protocol. Given two bitwise shared inputs, [x]B and

[y]B, the Bit-LessThan(·) protocol can compute a shared bit [x
?
<y]p which

identifies whether x < y holds. The complexity of this protocol can be re-
ferred to as 8 rounds and 14l multiplications when l ≥ 36 holds which is
often the case in practice [18,12].

• Secure Inversion Protocol. Given a shared non-zero secret [x]p as input,
the secure inversion protocol Sec-Inver(·) will output [x−1 mod p]p. This
protocol will cost only 2 rounds and 2 multiplications [2,6,11].

• Unbounded Fan-In Multiplication. In this paper, we will often need to
perform the unbounded fan-in secure multiplication [2,5], i.e. given l sharings
[A0]p, [A1]p, ..., [Al−1]p where Ai ∈ Z∗

p for i ∈ {0, 1, ..., l − 1}, computing a
sharing [A]p where A =

∏l−1
i=0 Ai mod p. By the detailed analysis in [11], we

get to know that this protocol, denoted as Sec-Prod∗(·) in this paper, can
be realized in only 3 rounds and 5l multiplications.

• Equal-Zero Test Protocol. In [11], a linear protocol Equ-Zero(·) was
proposed for testing whether a given secret [x]p is 0 or not, i.e. we have

[x
?= 0]p ← Equ-Zero([x]p). Obviously, this protocol can also be used to test

“whether two shared secrets [x]p and [y]p are equal” because “x = y” ⇔ “(x−
y) = 0”. The complexity of this protocol is 8 rounds and 81l multiplications.

• Generation of Bitwise Shared Random Value. This protocol, denoted
by Solved-Bits(·), has no input and can output a bitwise shared random
integer [r]B satisfying r < p. The complexity of this protocol can be referred
to as 7 rounds and 56l multiplications when l ≥ 36 [18].

• Bit-Decomposition (BD). In the secret sharing setting, the function of
BD can be described as converting [x]p to [x]B , i.e. we have [x]B ← BD([x]p)
[6,18]. To the best of our knowledge, currently the most efficient version of
BD (with perfect security) was proposed in [18], whose complexity can be
referred to as 23 rounds and 76l+31l log l multiplications when l ≥ 36; in the
text when analyzing the complexities of (exponentiation) protocols involving
BD, we will refer to the complexity of BD as above. We note that [18] also
proposed a BD protocol with almost-linear communication complexity (i.e.
O(l log∗ l) multiplications or even lower). This is of course a very meaning-
ful work. However, inevitably the round complexity of this version of BD
is relatively high and thus for obtaining (private exponentiation) protocols
with close and comparable round complexities, (as well as for notational
convenience) we do not referred to this BD protocol in detail in the text.
(Although we focus mainly on the communication complexity of protocols,
the round complexity should also be considered.) We also note that in [14],
a linear BD is proposed, however, the security of this BD protocol is (at
most) statistical; so in the text we will not refer to this BD protocol in detail
neither, because we focus on protocols with perfect security.
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3 Multi-party Computation for Private Exponentiation
with BD

In [6], a constant-rounds private exponentiation protocol was constructed with
the help of BD. This protocol is the foundation of our work and in our expo-
nentiation protocol, we need to use the sub-protocols of it. So, in this section,
we describe in detail this private exponentiation protocol with BD. We will first
introduce two important sub-protocols of it, i.e. the public exponentiation pro-
tocol and the bit exponentiation protocol. All the protocols in this section are
re-descriptions of the ones in [6] but with detailed analysis.

3.1 The Public Exponentiation Protocol

With a shared non-zero value [x]p (i.e. x ∈ Z∗
p) and a public value a ∈ Z as

inputs, the public exponentiation protocol, Pub-Expo(·), can compute [xa]p. The
details are presented in Figure 1. Generally speaking, this protocol is a slightly
improved version of the one in [6].

Protocol [xa]p ← Pub-Expo([x]p, a)
This protocol requires that x �= 0.

1. Every party Pi (i ∈ {1, 2, ..., n}) picks a random integer ri ∈ Z∗
p and computes

r−a
i . Then Pi shares ri and r−a

i between the parties, i.e. the parties get [ri]p and
[r−a

i ]p.

2. The parties compute
[r]p ← Sec-Prod∗([r1]p, [r2]p, ..., [rn]p)
[r−a]p ← Sec-Prod∗([r−a

1 ]p, [r
−a
2 ]p, ..., [r

−a
n ]p)

3. [xr]p ← Sec-Mult([x]p, [r]p)

4. xr ← Reveal([xr]p)

5. Return [xa]p = (xr)a · [r−a]p

Fig. 1. The Public Exponentiation Protocol

As for the correctness, notice that in Step 4 we need to reveal the value of
xr where r is non-zero, and it is easy to see that xr = 0 ⇔ x = 0. This is just
why this protocol requires x �= 0: if x = 0, then the parties will get to know
this in this step. Also note that in this protocol the public exponent (−a) is the
additive inverse of a in the sense of mod (p− 1) rather than mod p.

Privacy is straightforward.
The complexity will be discussed in two cases: the semi-honest case and the

malicious case. The difference between these two cases lies in Step 1 where every
party Pi (i ∈ {1, 2, ..., n}) is required to distribute two sharings, [ri]p and [r−a

i ]p,
between the parties. Below we will first analyze the complexity of this step.
Before going on, recall the well-known fact that when considering the communi-
cation complexity of MPC protocols (in the LSSS setting), 1 invocation of the se-
cure multiplication is equivalent to distributing n sharings between the n parties
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and thus the communication complexity of distributing 1 sharing (between the n
parties) can be viewed as 1

n multiplications.
In the semi-honest case, all the n parties follow the protocol, so every party

distributes 2 sharings between all the n parties, thus the complexity of Step 1 is
1 round and 2

n · n = 2 multiplications.
In the malicious case, as mentioned in [6], the complexity is much higher

because we need to involve the cut-and-choose technique to make the protocol
robust. Specifically, besides [ri]p and [r−a

i ]p, every party Pi (i ∈ {1, 2, ..., n})
is required to distribute another two sharings [si]p and [s−a

i ]p. Then the parties
involve the Random-Bit(·) protocol to jointly form a shared random bit [bi]p and
open it. Then they open ([si]p, [s−a

i ]p) or compute and open ([siri]p, [s−a
i r−a

i ]p)
according to the value of bi and then verify that the first value is non-zero
and that the second value is the (−a)’th power of the first. We call the above
process one instance of cut-and-choose. For every party Pi (i ∈ {1, 2, ..., n}), to
get a lower error probability, we can repeat the above process k (which satisfies
k ≥ 1 and which will be referred to as “the security parameter for cut-and-
choose”) times in parallel, leading to an error probability 2−k. Then we can
say that in all we need kn instances of cut-and-choose in parallel. As for the
complexity of one instance, we notice the following facts: distributing [si]p and
[s−a

i ]p between the parties involves 2
n multiplications; the generation of [bi]p

involves 2 rounds and 2 multiplications and can be scheduled in parallel with the
process of distributing [si]p and [s−a

i ]p; the computation of ([siri]p, [s−a
i r−a

i ]p)
involves 1 round and 2 multiplications and, obviously, on average we need only
to compute ([siri]p, [s−a

i r−a
i ]p) once every 2 instants of cut-and-choose because

bi is a uniformly random bit. So, on average, the complexity of one instance is
(at most) 2 + 1 = 3 rounds and 2

n + 2 + 2 · 1
2 = 2

n + 3 multiplications. Recall
that in all we need kn parallel instances of cut-and-choose. What’s more, notice
that the process of cut-and-choose can be scheduled in parallel with the process
of distributing [ri]p and [r−a

i ]p. So, in the malicious case, the complexity of Step
1 is 3 rounds and 2 + kn · ( 2

n + 3) = 2 + 2k + 3kn multiplications.
Then it is easy to see that, in the semi-honest case, the overall complexity

of this Pub-Expo(·) protocol is Rpub � Rs−h
pub = 1 + 3 + 1 = 5 rounds and

Cpub � Cs−h
pub = 2 + 5n · 2 + 1 = 10n+ 3 multiplications; in the malicious case,

the overall complexity is Rpub � Rmal
pub = 3 + 3 + 1 = 7 rounds and Cpub �

Cmal
pub = (2 + 2k + 3kn) + 5n · 2 + 1 = 3kn + 10n + 2k + 3 multiplications1.

Recall that n denotes the number of the parties and k is the security parameter
for cut-and-choose. Hereafter, we will generally refer to the complexity of this
protocol as Rpub rounds and Cpub multiplications. The values of Rpub and Cpub

1 Thanks to one of the anonymous reviewers, we get to realize that (seen in isolation)
we can combine Step 2 and Step 3 (in Figure 1 by viewing [x]p as one of the inputs
of the Sec-Prod∗() protocol for computing [r]p) to save 1 round; this is of course a
meaningful improvement for a “constant-rounds” protocol. However, considering the
parallel invocations of this Pub-Expo() protocol (e.g. in the forthcoming protocol in
Figure 5), we still separate these two steps (Step 2 and Step 3) when analyzing the
complexity.
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are determined by the adversaries considered; moreover, we can say that both
Rpub and Cpub can be viewed as constants because they are independent from
(the input length) l.

3.2 The Bit Exponentiation Protocol

With a shared non-zero value [x]p and a bitwise shared value
[a]B = ([al−1]p, ..., [a1]p, [a0]p) as inputs, the bit exponentiation protocol, Bit-
Expo(·), can compute [xa]p. The details are seen in Figure 2.

Protocol [xa]p ← Bit-Expo([x]p, [a]B)
This protocol requires that x �= 0.

1. For i = 0, 1, ..., l − 1 in parallel: [Ai]p ← Pub-Expo([x]p, 2
i)

2. For i = 0, 1, ..., l − 1 in parallel: [Bi]p ← [ai]p ? [Ai]p : 1

3. Return [xa]p ← Sec-Prod∗([Bl−1]p, ..., [B1]p, [B0]p)

Fig. 2. The Bit Exponentiation Protocol

Correctness and privacy is straightforward. The complexity of this protocol is
Rpub +1+3 = Rpub +4 rounds and Cpub · l+ l+5l = (Cpub +6)l multiplications.

3.3 The Private Exponentiation Protocol with BD

Here we come to the private exponentiation protocol relying on BD proposed in
[6], which will be denoted by Pri-Expo-BD(·). Given two shared inputs [x]p and
[a]p, Pri-Expo-BD(·) will output [xa]p. This time, both x and a can be arbitrary
values in Zp. See Figure 3 for the details.

Protocol [xa]p ← Pri-Expo-BD([x]p, [a]p)
1. [b]p ← Equ-Zero([x]p)

2. [x̃]p = [x]p + [b]p

3. [a]B ← BD([a]p)

4. [x̃a]p ← Bit-Expo([x̃]p, [a]B)

5. Return [xa]p = [x̃a]p − [b]p

Fig. 3. The Private Exponentiation Protocol with BD

As for the correctness, notice that b = (x
?= 0) and that [x̃]p = [x]p +[x

?=0]p is
always non-zero and thus can be given to Bit-Expo(·) as the first input. What’s

more, it can be easily verified that [xa]p = [x̃a]p − [x
?=0]p always holds no

matter x is 0 or not. Using x̃ to substitute x to perform the protocol is in fact
the “exception trick” proposed in [6] for handling the special case where x = 0.
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Privacy follows readily from only using private sub-protocols.
The overall complexity of this protocol is 23 + (Rpub + 4) = Rpub + 27 rounds

and 81l+(76l+31l log l)+((Cpub+6)l) = 163l+Cpub ·l+31l log l multiplications.
See [13] for the detailed complexity analysis.

4 Linear Multi-party Computation for Private
Exponentiation

In this section, we propose a private exponentiation protocol with constant round
complexity and linear communication complexity. Specifically, we will first show
how to remove the invocation of BD to get a protocol with linear communica-
tion complexity. Then we will further improve this linear protocol to reduce the
communication complexity considerably.

4.1 The Private Exponentiation Protocol without BD

See Figure 4 for our private exponentiation protocol without BD which will be
denoted as Pri-Expo(·).

Protocol [xa]p ← Pri-Expo([x]p, [a]p)
1. [b]p ← Equ-Zero([x]p)

2. [x̃]p = [x]p + [b]p

3. [r]B ← Solved-Bits() 	 Recall that [r]B implies [r]p.

4. [c]p = [a]p + [r]p

5. c← Reveal([c]p) 	 c = a+ r mod p

6. [C]p ← Pub-Expo([x̃]p, c) 	 C = x̃c mod p

7. [C′]p ← Sec-Mult([C]p, [x̃]p) 	 C′ = C · x̃ = x̃c+1 = x̃c+1+ϕ(p) = x̃c+p mod p

8. [f ]p ← Bit-LessThan(c, [r]B)

9. [C̃]p ← [f ]p ? [C′]p : [C]p 	 C̃ = x̃a+r mod p

10. [R]p ← Bit-Expo([x̃]p, [r]B)

11. [R−1]p ← Sec-Inver([R]p) 	 R−1 = x̃−r mod p

12. [x̃a]p ← Sec-Mult([C̃]p, [R
−1]p)

13. Return [xa]p = [x̃a]p − [b]p

Fig. 4. The Private Exponentiation Protocol without BD

Correctness: As for the correctness, similar to the Pri-Expo-BD(·) protocol
(in Figure 3), we use the non-zero [x̃]p to substitute [x]p to perform the main
process. The main idea of this protocol is as follows.

First we compute [C̃]p = [x̃a+r]p. Notice that we have c = a + r mod p and
there are two cases: no wrap-around mod p occurs or there is a wrap-around.
In the former case, a + r = c holds over the integers (or we can say “a+ r = c
holds unconditionally”) and then we have c ≥ r because a ≥ 0; similarly, in
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the latter case, a + r = c + p holds over the integers (i.e. a + r = c + p holds
unconditionally) and then we have c < r because c = r + (a − p) and a < p.
So, for computing [x̃a+r ]p, we can compute both of the two possible values of it,
[x̃c]p and [x̃c+p]p, and then select the correct one; this selection can be carried
out by testing whether c < r holds. What’s more, when computing [x̃c]p we
need to involve the Pub-Expo(·) protocol; however, this is not necessary when
computing [x̃c+p]p because we have: x̃c+p = x̃c+p−(p−1) = x̃c+1 = x̃c · x̃ mod p.

Then, in the following steps, after getting [R]p = [x̃r]p using the Bit-Expo(·)
protocol, we can obtain [x̃a]p based on the simple fact x̃a = x̃a+r ·(x̃r)−1 mod p.
Then finally [xa]p can be easily obtained.

Privacy: Privacy is straightforward.

Complexity: As for the complexity, both in the semi-honest case and the ma-
licious case, the complexity of this protocol (Pri-Expo(·)) can be referred to as
8 + (Rpub + 6) + 1 = Rpub + 15 rounds and
81l+ 56l+ Cpub + 1 + 14l+ 1 + (Cpub + 6)l+ 2 + 1 = 157l+ Cpub · l + Cpub + 5
multiplications (See [13] for the detailed complexity analysis). Recall that both
Rpub and Cpub can be viewed as constants, so this is a constant-rounds protocol
with linear communication complexity. Compared with the (perfectly secure)
Pri-Expo-BD(·) protocol proposed in [6] (whose complexity is Rpub + 27 rounds
and 163l + Cpub · l + 31l log l multiplications), our protocol has a lower round
complexity and a significantly lower communication complexity.

4.2 A Further Improvement

In this section, we make a further improvement of our Pri-Expo(·) protocol
above by improving one of the sub-protocols of it, Bit-Expo(·), which is often
the dominate factor of the communication complexity. The improved version of
Pri-Expo(·) and Bit-Expo(·) will be denoted as Pri-Expo+(·) and Bit-Expo+(·)
respectively. Generally speaking, by replacing the invocation of Bit-Expo(·) with
Bit-Expo+(·) in our Pri-Expo(·) protocol, we get our further improved private
exponentiation protocol: Pri-Expo+(·). The details are presented below.

In our Pri-Expo(·) protocol (in Figure 4), Bit-Expo(·) is a very important
sub-protocol. Recall that the communication complexity of this sub-protocol is
(Cpub +6)l multiplications; what’s more, in the semi-honest case Cpub = Cs−h

pub =
10n + 3, and in the malicious case Cpub = Cmal

pub = 3kn + 10n + 2k + 3 (see
Section 3.1). In many cases, Bit-Expo(·) is relatively expensive. For example,
in the malicious case, if we set n = 20 and k = 10, then the communication
complexity of Bit-Expo(·) will be (Cmal

pub + 6)l = 829l multiplications; at the
same time, the communication complexity of the (whole) Pri-Expo(·) protocol
is (Cmal

pub + 157)l + Cmal
pub + 5 = 980l + 828 multiplications. So we can see that,

in this case, Bit-Expo(·) is obviously a dominate factor of the communication
complexity of Pri-Expo(·). So, reducing the communication complexity of Bit-
Expo(·) is very meaningful.

The communication complexity of Bit-Expo(·) comes mainly from the l invo-
cations of Pub-Expo(·) which is non-trivial (See Figure 2 and Figure 1). Here we
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show a technique that can reduce the number of invocations (of Pub-Expo(·))
to 2

√
l (with slight increase in round complexity) and thus reduce the commu-

nication complexity significantly. The main idea is presented below.
Consider the case that we want to compute xa. We divide the given exponent

a = (al−1, ..., a1, a0) into s blocks, each of which contains t bits. Obviously,
we have s · t = l and 1 ≤ s, t ≤ l. We denote the i’th block of a as as×t

i

for i ∈ {0, 1, ..., s − 1}, and denote the j’th bit of the i’th block as as×t
i,j for

j ∈ {0, 1, ..., t− 1}. That is to say, we have

a = (al−1, ..., a1, a0) =
(
as×t

s−1, ..., a
s×t
1 , as×t

0

)
=
( (
as×t

s−1,t−1, ..., a
s×t
s−1,1, a

s×t
s−1,0

)
, ...,

(
as×t
1,t−1, ..., a

s×t
1,1 , a

s×t
1,0

)
,
(
as×t
0,t−1, ..., a

s×t
0,1 , a

s×t
0,0

) )
Obviously, as×t

i can be viewed as the i’th digit of the base-2t form of a. What’s
more, we have as×t

i,j = ai·t+j . Now we have the following equations:

xa = x

s−1∑
i=0

as×t
i ·(2t)i

=
s−1∏
i=0

xas×t
i ·(2t)i

=
s−1∏
i=0

(
xas×t

i

)(2t)i

=
s−1∏
i=0

⎛⎝xt−1∑
j=0

as×t
i,j ·2j

⎞⎠(2t)i

=
s−1∏
i=0

⎛⎝t−1∏
j=0

xas×t
i,j ·2j

⎞⎠(2t)i

=
s−1∏
i=0

⎛⎝t−1∏
j=0

(
x2j
)as×t

i,j

⎞⎠(2t)i

=
s−1∏
i=0

⎛⎝t−1∏
j=0

(
as×t

i,j ? x2j

: 1
)⎞⎠(2t)i

Based on the above facts, we propose our improved Bit-Expo(·) protocol, Bit-
Expo+(·), which is presented in Figure 5. Note that in Figure 5, for the con-
venience of the forthcoming discussions, the two variables, s and t, are not
assigned. We will discuss how to assign them when analyzing the complexity
of this protocol.

Protocol [xa]p ← Bit-Expo+([x]p, [a]B)
This protocol requires that x �= 0.

1. For j = 0, 1, ..., t− 1 in parallel: [Aj ]p ← Pub-Expo([x]p, 2
j)

2. For i = 0, 1, ..., s− 1 in parallel do
For j = 0, 1, ..., t− 1 in parallel: [Bi,j ]p ← [as×t

i,j ]p ? [Aj ]p : 1
[Bi]p ← Sec-Prod∗([Bi,0]p, [Bi,1]p, ..., [Bi,t−1]p)
[Ci]p ← Pub-Expo

(
[Bi]p, (2

t)i
)

End for

3. Return [xa]p ← Sec-Prod∗([C0]p, [C1]p, ..., [Cs−1]p)

Fig. 5. The Improved Bit Exponentiation Protocol
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Correctness and privacy is straightforward. As for the complexity, notice that
there are invocations of Pub-Expo(·) in both Step 1 and Step 2. One important
point is, these two places of invocations can be scheduled partially in parallel.
Specifically, when the invocations (of Pub-Expo(·)) in Step 1 are proceeding with
the first two steps of Pub-Expo(·) (See Figure 1), the invocations in Step 2 can
also proceed with them. That is to say, although these two places of invocations
can not be scheduled (completely) in parallel, they will cost only 1 more round
than one single invocation (note that Step 3 through Step 5 in Pub-Expo(·)
(Figure 1) involve only 1 multiplication). So, the complexity of this protocol is
Rpub +1+3+1+3 = Rpub +8 rounds and Cpub · t+ t · s+5t · s+Cpub · s+5s ≤
Cpub · (s+ t) + 11l multiplications. (Recall that s · t = l and 1 ≤ s ≤ l.)

It remains to assign concrete values to s and t. Note that we have “s + t ≥
2
√
s · t = 2

√
l” and “s + t = 2

√
l iff s = t =

√
l”. So we should set s =

t =
√
l, because in this case the communication complexity of this Bit-Expo+(·)

protocol will be the lowest, i.e. Cpub ·2
√
l+11l multiplications. Then, if we replace

the invocation of Bit-Expo(·) in our Pri-Expo(·) protocol (in Figure 4) with
the Bit-Expo+(·) protocol here, we will get an improved private exponentiation
protocol (denoted as Pri-Expo+(·)) whose complexity is Rpub + 19 rounds and
162l+Cpub · 2

√
l+Cpub +5 multiplications. Compared with the Pri-Expo-BD(·)

protocol in [6] (whose complexity is Rpub +27 rounds and 163l+Cpub · l+31l log l
multiplications), our Pri-Expo+(·) protocol reaches lower round complexity and
much lower communication complexity. What’s more, we can say that, the larger
Cpub is (which implies larger n and k), the greater advantage our protocol has.
For systems with relatively more participants, higher security requirements and
longer input length (i.e. l), our protocol can be of overwhelming advantage. (See
Appendix A (Table 1) for an overview.)

See [13] for some further discussions.

5 Further Generalization of BD and Improved Solution
for Public Modulo Reduction

In this section, we propose a further generalization of BD and an improved
solution for Pub-MRP. The work in this section depends heavily on the work in
[12] which we’d strongly recommend the readers to read before going on.

Given a sharing of secret x, BD allows the parties to extract the shared base-2
form of x in constant rounds. In the work [12], Ning and Xu show us a gener-
alization of BD which is named as “Base-m Digit-Decomposition” (or “Base-m
Digit-Bit-Decomposition”) and which can extract the shared (or bitwise shared)
base-m form of x in constant rounds. We note that their generalization can
be further generalized to a “Hybrid-base Digit-Decomposition” (or “Hybrid-base
Digit-Bit-Decomposition”) protocol which can extract the shared (or bitwise
shared) hybrid-base form of x; here hybrid-base means the base of every digit
can be different. For example, if we denote

“9 days 23 hours 59 minutes 59 seconds”
(which could be the “Time Left” before the submission deadline of this
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conference) as
x = 9 23 59 59

then x can be used to represent the total seconds (left) and can be viewed as
a hybrid-base integer with bases (from left to right) 10, 24, 60, 60. Here the
left-most base (i.e. “10”) can be set as we wish, but other bases are fixed.

Below we discuss the relationship between “the value of an integer” and “the
bases” in another point of view. Specifically, we list 3 cases below.

1. Getting the base-2 form of x ∈ Zp

In this case, we get l = %log p& bits xi ∈ {0, 1} for i ∈ {0, 1, ..., l−1} satisfying

x =
l−1∑
i=0

(
xi · 2i

)
2. Getting the base-m form of x ∈ Zp

Similarly, in this case, for the given base m ≥ 2, we get l(m) = %logm p&
digits x(m)

i ∈ {0, 1, ...,m− 1} for i ∈ {0, 1, ..., l(m) − 1} satisfying

x =
l(m)−1∑

i=0

(
x

(m)
i ·mi

)
3. Getting the hybrid-base form of x ∈ Zp

Given an l(M) size “array of bases” M [ ] =
[
ml(M)−1, ...,m1,m0

]
satisfying

mi ≥ 2 for i ∈ {0, 1, ..., l(M) − 1} and
∏l(M)−2

i=0 mi < p <
∏l(M)−1

i=0 mi, we get
l(M) digits x(M)

i ∈ {0, 1, ...,mi − 1} for i ∈ {0, 1, ..., l(M) − 1} satisfying the
following equation (in which we set m−1 = 1)

x =
l(M)−1∑

i=0

⎛⎝x(M)
i ·

i−1∏
j=−1

mj

⎞⎠
Here, we call

(
x

(M)

l(M)−1
, ..., x

(M)
1 , x

(M)
0

)
“the hybrid-base form of x defined by

M [ ]”.

It is easy to see that in the hybrid-base case (i.e. Case 3) if we set the “array of
bases” M [ ] to be [m, ...,m,m] where l(M) = l(m), then we will get the base-m
case (i.e. Case 2); if we set M [ ] = [2, ..., 2, 2] where l(M) = l, we will get the
base-2 case (i.e. Case 1).

Given a shared secret [x]p and an “array of bases” M [ ], our “Hybrid-base
Digit-Decomposition” (or “Hybrid-base Digit-Bit-Decomposition”) protocol,
whose asymptotic complexity is O(1) rounds and O(l(M) log l(M) + l) 2 (or
O(l log l)) multiplications, can output the shared (or bitwise shared) hybrid-base

2 This term was mistakenly written as O(l(M) log l(M)) in the submission; thanks to
one of the anonymous reviewers for pointing this out.
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form of x defined by M [ ] (i.e. the sharings (or bitwise sharings) of all the digits
x

(M)
i for i ∈ {0, 1, ..., l(M) − 1}) which will be referred to as [x]MD (or [x]MD,B).

That is to say, we have

[x]MD ← Hybrid-Base-Digit-Decomposition([x]p,M [ ]);

[x]MD,B ← Hybrid-Base-Digit-Bit-Decomposition([x]p,M [ ]).

The intuition behind our further generalization is similar to that of the gen-
eralization of BD in [12]. Specifically, as shown in [12], for getting the shared
(or bitwise shared) base-m form of x, we need to randomize [x]p using a jointly
generated random integer r whose bitwise shared base-m form is known to the
parties; that is to say, the parties generate an array of bitwise shared base-m
digits to form r; here, a base-m digit is in fact a non-negative integer less than
m and the details of generating such a (bitwise shared) digit can be seen in [12]
(the Random-Digit-Bit(·) protocol). Similarly, to obtain the shared (or bitwise
shared) hybrid-base form of x (which is defined by M [ ]), we should randomize
[x]p using a (jointly generated random) integer r+ whose bitwise shared hybrid-
base form (which is also defined by M [ ]) is known to the parties. This is the
key idea of our further generalization and is also the key difference between the
generalization in [12] and our further generalization.

More importantly, as a simplification of our “Hybrid-base Digit-Decomposi-
tion” protocol, we can get an improved public modulo reduction protocol
(denoted as Pub-MR+(·) here) which is more efficient than the one in [12]
(denoted as Pub-MR(·)). Specifically, in [12], for solving Pub-MRP (i.e. com-
puting [x mod m]p from [x]p and m ∈ {2, 3, ..., p− 1}), Ning and Xu view this
problem as extracting only (the sharing of) the least significant base-m digit
of x, and thus their modulo reduction protocol (i.e. Pub-MR(·)) can be viewed
as a simplification of their “Base-m Digit-Decomposition” protocol (which ex-
tracts (the sharings of) all the base-m digits of x). In another point of view,
we can say that they set M [ ] = [m, ...,m,m] and extract only (the sharing of)
x

(M)
0 (see Case 3 above). This is of course correct because in this case we have

x =
∑l(M)−1

i=0

(
x

(M)
i ·mi

)
. However, this is not a must, and, enlightened by [11]

and [8], we find that, by setting M [ ] = [2, ..., 2, 2,m] where l(M) =
⌈
log
⌊

p
m

⌋⌉
+1,

we can also solve Pub-MRP because in this case we have

x =
l(M)−1∑

i=1

(
x

(M)
i · 2i−1 ·m

)
+ x

(M)
0

and thus x(M)
0 = (x mod m). That is to say, in the case whereM [ ] = [2, ..., 2, 2,m],

if we extract only (the sharing of) the least significant digit of x, which can be
viewed as a simplification of our “Hybrid-base Digit-Decomposition”, we can
also get [x mod m]p; this public modulo reduction protocol is just Pub-MR+(·).
Comparison: Below we show the advantage of our Pub-MR+(·) protocol over
Pub-MR(·). Similar to the generalization and further generalization of BD, when
computing [x mod m]p from [x]p and m, both Pub-MR(·) and our Pub-MR+(·)



Linear MPC for Exponentiation and Modulo Reduction 587

need to use a jointly generated random integer to randomize [x]p [12]. The key dif-
ference between these two (modulo reduction) protocols lies just in the genera-
tion of this random integer. Specifically, in the Pub-MR(·) protocol, the random
integer needed, denoted as r here, should be of a “hybrid-base” form defined by
M [ ] = [m, ...,m,m] where l(M) = l(m); whereas in our Pub-MR+(·) protocol, the
random integer needed, denoted as r+, should be of a hybrid-base form defined by
M [ ] = [2, ..., 2, 2,m] where l(M) =

⌈
log
⌊

p
m

⌋⌉
+ 1. Then obviously, in Pub-MR(·)

when generating r, we need to generate l(M) = l(m) (bitwise shared) base-m digits,
whereas in our Pub-MR+(·) when generating r+, we need only to generate 1 such
base-m digit. This is just the advantage of our improved public modulo reduction
protocol; reducing the demand for such base-m digits is very meaningful because
the generation of them is a non-trivial work. Specifically, when m is a non-power
of 2, roughly speaking the generation of 1 such digit will cost 8 rounds and 64L(m)
multiplications where L(m) � %logm& denotes the bit-length of m [12].

Complexity: Finally, we conclude that, the complexity of our Pub-MR+(·)
protocol is 22 rounds and (about) 78l + 276L(m) multiplications. Compared
with Pub-MR(·) (whose complexity is 22 rounds and (about) 326l + 28L(m)
multiplications), we can see that, for relatively smallm (thus L(m) is very small),
the communication complexity is reduced considerably. For example, in the case
where l = 256,m = 100 (then L(m) = %log 100& = 7), the communication
complexity is reduced by a factor of approximately 3.8.

6 Discussions

We note that using the ideas in [11], the round complexity of our private expo-
nentiation protocols (as well as our public modulo reduction protocol) can be
improved; the method is to use preprocessing, i.e. moving all the generation of
(shared) random values (e.g. the invocations of Random-Bit(·)) to the beginning
of the whole protocol. In the analysis of the round complexity of our protocols,
we simply ignore this for clarity.

An interesting point is that the communication complexity of our “Hybrid-
base Digit-Decomposition” protocol and “Hybrid-base Digit-Bit-Decomposition”
protocol can be reduced to “almost linear” using the techniques of [18]. Specif-
ically, the only non-linear part of these two protocols is the computation of a
prefix -◦ [6,12]; and the techniques proposed in [18], which is used to reduce
the complexity of the only non-linear part of BD (computation of a postfix-
comparison) to “almost linear”, can also be used to reduce the complexity of the
computation of this prefix -◦ to “almost linear”.

7 Future Work

In our private exponentiation protocol, we need an important sub-protocol called
public exponentiation protocol (i.e. Pub-Expo(·)) for computing [xa mod p]p from
[x]p and a public a. A problem is, the communication complexity of this sub-
protocol is relatively high and more importantly, the communication complexity
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depends on n and k (see Section 3.1 for the details). We leave it an open problem
to construct more efficient protocols for this problem and protocols with commu-
nication complexity independent from n and k would be most welcome. What’s
more, in our private exponentiation protocol when involving Pub-Expo(·), the
second input (i.e. the public a in Figure 1) is (almost) always a power of 2. So
designing more efficient public exponentiation protocols for this special case is
also meaningful.

Acknowledgments. We would like to thank the anonymous reviewers for their
careful work and helpful comments.
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A An Overview of the New Protocols

The details are presented in Table 1. Below are some notes.
As mentioned in Section 3.1, Rpub represents the round complexity of the

public exponentiation protocol (i.e. Pub-Expo(·)) and Cpub represents the com-
munication complexity (of Pub-Expo(·)), and the values of Rpub and Cpub are
determined by the adversary considered. Specifically, in the semi-honest case,
Rpub = Rs−h

pub = 5 and Cpub = Cs−h
pub = 10n + 3; in the malicious case, Rpub =

Rmal
pub = 7 and Cpub = Cmal

pub = 3kn+10n+2k+3, in which n denotes the number
of the participants of the MPC protocol and k is the security parameter for cut-
and-choose. Both Rpub and Cpub can be viewed as constants because they are
independent from (the input length) l. What’s more, as mentioned in Section 5,
L(m) = %logm& represents the bit-length of m.

Table 1. Overview of The New Protocols

Protocol Description Rounds Multiplications

[xa]p ← Pub-Expo([x]p, a) Rpub Cpub

[xa]p ← Bit-Expo([x]p, [a]B) Rpub + 4 Cpub · l + 6l

[xa]p ← Bit-Expo+([x]p, [a]B) Rpub + 8 Cpub · 2
√
l + 11l

[xa]p ← Pri-Expo-BD([x]p, [a]p) Rpub + 27 163l +Cpub · l + 31l log l

[xa]p ← Pri-Expo([x]p, [a]p) Rpub + 15 157l +Cpub · l + Cpub + 5

[xa]p ← Pri-Expo+([x]p, [a]p) Rpub + 19 162l +Cpub · 2
√
l + Cpub + 5

[x mod m]p ← Pub-MR([x]p,m) 22 326l + 28L(m)

[x mod m]p ← Pub-MR+([x]p,m) 22 78l + 276L(m)

http://eprint.iacr.org/2011/069
http://www.daimi.au.dk/~ttoft/publications/dissertation.pdf
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1 Introduction

The notion of secret sharing was introduced independently by Shamir [30] and
Blakley [2] in 1979. Since then, it has remained an important topic in cryp-
tographic research. For integers n and t such that n > t ≥ 0, an (n, t)-secret
sharing scheme is a method used by a dealer D to share a secret s among a
set of n parties (the sharing phase) in such a way that in the reconstruction
phase any subset of t+ 1 or more honest parties can compute the secret s, but
subsets of size t or fewer cannot. Since in some secret sharing applications the
dealer may benefit from behaving maliciously, parties also require a mechanism
to confirm the correctness of the dealt values. To meet this requirement, Chor
et al. [6] introduced the concept of verifiable secret sharing (VSS).

VSS has remained an important area of cryptographic research for the last
two decades [3, 9–11, 13, 20, 21, 23, 26, 27]. In the literature, VSS schemes are
categorized based on the adversarial computational power: computational VSS
schemes and unconditional VSS schemes. In the former, the adversary is com-
putationally bounded by a security parameter, while in the latter the adversary
may possess unbounded computational power. Naturally, the computational VSS
schemes are significantly more practical and efficient in terms of message and
communication complexities as compared to the unconditional schemes. Thus,

the majority of the recent research has been focussed on devising practical
constructions for unconditional VSS. In this work, we revisit the concept of com-
putational VSS [3, 9, 13, 26] to settle the round complexity of computational VSS
based on minimal cryptographic assumptions (which is cryptographic commit-
ment in our case) and to investigate the role of homomorphism of commitment
schemes in the context of VSS.

Motivation and Contributions. The major savings in the computational
VSS schemes come from the use of cryptographic commitments. Interestingly,
we find that all computational VSS schemes in the literature except [13, App.
A] (which satisfies weaker conditions; see related work) require these commit-
ments to be homomorphic. However, homomorphism is not inherent to crypto-
graphic commitments; it is an additional property provided by discrete logarithm
(DLog), Pedersen [27] and few other commitment schemes. As we elaborate later
in the paper, commitments can be designed from general primitives such as one-
way functions or collision-free hash functions; but, homomorphism may not be
guaranteed in these constructions. Furthermore, relying on as little assumptions
as possible without much loss in efficiency is always a general goal in cryptog-
raphy. Therefore, computational VSS schemes based only on the definitional
properties of commitments can be interesting to study.

In this paper, we show that homomorphism is not a necessity for VSS in
both synchronous (known and bounded message delays) and asynchronous (un-
bounded message delays) communication model. While our VSS schemes (in
both network settings) based on any commitment scheme are almost as good
as the existing computational VSS protocols using homomorphic commitment
schemes in terms of communication, they are considerably better than the
unconditional VSS schemes.
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In the synchronous communication model with a broadcast channel, Gennaro
et al. [11] initiated the study of round complexity (number of rounds required
to complete an execution) and proved a lower bound of three rounds during the
sharing phase and one round during the reconstruction phase for unconditional
VSS. The work was extended in [10, 20] with tight polynomial time constructions,
and in [21, 23] by improving the bounds in a statistical scenario where the VSS
properties are held statistically and can be violated with a negligible probability.

The round complexity of computational VSS has never being formally ana-
lyzed in the synchronous VSS literature. We observe that the round complexity
of all known practical computational VSS protocols [9, 27] for the optimal re-
silience of n ≥ 2t + 1 is the same as that of unconditional VSS schemes: three
rounds in the sharing phase.1 This similarity is surprising considering the us-
age of commitments in computational VSS. We analyze the round complexity of
computational VSS with homomorphic and non-homomorphic commitments.

1. We show the impossibility of 1-round computational VSS protocol in the
standard communication model under consideration; specifically, we prove
that a computational VSS scheme with one round in the sharing phase is
impossible for t ≥ 2 or n ≤ 3t. However, we find that there exists a special
1-round VSS construction for t = 1 and n ≥ 4, when the dealer is one of the
participants; we include the construction in the full version of the paper [1].

2. We then tighten our lower-bound result by providing a 2-round computa-
tional VSS scheme for n ≥ 2t + 1 using any commitment scheme. Existing
VSS schemes [9, 13, 27] based on homomorphic commitments require three
rounds for n ≥ 2t+1. Comparing with unconditional VSS schemes, we notice
that the message (the number of messages transferred) and communication
(the number of bits transferred) complexities of our scheme are at least a
linear factor less. Also, our scheme is better in terms of round complexity or
resilience bound as compared to all known unconditional VSS schemes.
We then provide a VSS scheme for n ≥ 2t + 1 using homomorphic com-
mitments that has the same message and communication complexities but
requires one less round of communication as compared to [9, 13, 27].

Organization. In the rest of this section, we review the related work. In
Section 2, we describe our adversary model, and definitions of VSS and com-
mitments. We present all our results for the synchronous model in Section 3 and
those for the asynchronous model in Section 4. In Section 5, we discuss a few
interesting open problems. Some of our proofs are shifted to the full version [1].

Related Work. For our work in the synchronous setting, we closely follow
the network and adversary model of the best known VSS schemes: Feldman
VSS [9] and Pedersen VSS [27]. These schemes are called non-interactive as

1 Note that it is possible to reduce a round in sharing in [9, 27] but that asks for
a sub-optimal resilience of n ≥ 3t + 1. Further, with a much stronger assumption
of non-interactive zero-knowledge (NIZK), it is possible to reduce the number of
sharing rounds to one for n ≥ 2t + 1 in the public key infrastructure [15].
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they require unidirectional private links from the dealer to the parties; non-
dealer parties speak only via the broadcast channel. Our protocol assumes nearly
the same network model; however, in addition, we also allow parties to send
messages to the dealer over the private channels. In practice, it is reasonable to
assume that private links are bidirectional. Note that we do not need any private
communication links between non-dealer parties.

It is also important to compare our results with unconditional VSS as we
work towards reducing the cryptographic assumptions required for computa-
tional VSS. In unconditional or information theoretic settings, there are two
different possibilities for the VSS properties; they can be held perfectly (i.e.,
error-free) or statistically with negligible error probability. Perfect VSS is possi-
ble if and only if n ≥ 3t+1 [8], while statistical VSS is possible for n ≥ 2t+1 [28],
assuming a broadcast channel. Gennaro et al. [11] initiated the study of the round
complexity of unconditional VSS, which was extended by Fitzi et al. [10] and
Katz et al. [20]. They concentrate on unconditional VSS with perfect security
and show that three rounds in the sharing phase are necessary and sufficient for
n ≥ 3t+1. In the statistical scenario, Patra et al. [23] show that n ≥ 3t+1 is nec-
essary and sufficient for 2-round statistical VSS. Recently, Kumaresan et al. [21]
extended the result to prove that 3 rounds are enough for designing statistical
VSS with n ≥ 2t+ 1.

The round complexity is never studied formally for computational VSS. In the
standard model that we follow, the best known computational VSS protocols [9,
13, 27] require two rounds; however, they work only for a suboptimal resilience
of n ≥ 3t + 1. Although these schemes can also be adopted for n ≥ 2t + 1,
they then ask for three rounds. In addition, the only known VSS scheme among
these that does not mandate homomorphic commitments, [13, App. A], does
not satisfies the generally required stronger commitment property described in
Section 2.2. In this paper, we improve all the above results by showing that
two rounds are necessary and sufficient for (stronger) VSS with n ≥ 2t + 1
using (homomorphic or non-homomorphic) cryptographic commitments. Note
that it is also possible to achieve 1-round VSS in the presence of a public-
key infrastructure (PKI) employing NIZK proofs [15]. However, NIZK proofs
requires a common reference string or a random oracle. Furthermore, the scheme
of [15] can only achieve computational secrecy, whereas our schemes can obtain
unconditional or computational secrecy as required.

For our work in the asynchronous setting, we follow the standard model of
Cachin et al. [3]. In the asynchronous setting, Cachin et al. [3], Zhou et al. [31],
and more recently Schultz et al. [29] suggested computational VSS schemes.
Of these, protocol by Cachin et al. is the most practical computational VSS
protocol with O(n2) message complexity. However, all of these schemes rely on
homomorphism of the commitment scheme. We avoid the use of homomorphism,
while maintaining the message complexity of the VSS protocol by Cachin et al.
[3]. Note that our protocol is significantly efficient in all aspects as compared to
unconditional VSS schemes [4, 5, 24, 25] in the asynchronous setting.
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2 Preliminaries

We work in the computational security setting, where κ denotes the security
parameter of the system, in bits. We assume that the dealer’s secret s lies over
a finite field Fp, where p is an κ bits long prime. Our polynomials for secret
sharing belong to Fp[x] or Fp[x, y], and the indices for the parities are chosen
from Zp. Without loss of generality, we assume these indices to be {1, . . . , n}. A
function ε(·) : N → R+ is called negligible if for all c > 0 there exists a κ0 such
that ε(κ) < 1/κc for all κ > κ0. In the paper, ε(·) denotes a negligible function.

2.1 Adversary Model

We consider a network of n parties P = {P1, P2, . . . , Pn}, where a distinguished
party D ∈ P works as a dealer. Our adversary A is t-bounded and it can com-
promise and coordinate actions of up to t out of n parties. We also assume that
the adversary is adaptive; it may corrupt any party at any instance during a
protocol execution as long as the number of corruptions is bounded by t.

We work in the synchronous as well as the asynchronous settings , and post-
pone the discussions on communication setting to the respective sections (syn-
chronous model in Section 3 and asynchronous model in Section 4).

2.2 VSS and Variants

We now present a definition of VSS [11]. A VSS protocol among n parties P =
{P1, P2, . . . , Pn} with a distinguished party D ∈ P consists of two phases: a
sharing phase and a reconstruction phase.

Sharing. Initially, D holds an input s, referred to as the secret, and each party
Pi may hold an independent random input ri. At the end of the sharing
phase, each honest party Pi holds a view vi that may be required to recon-
struct the dealer’s secret later.

Reconstruction. In this phase, each party Pi publishes its entire view vi from
the sharing phase, and a reconstruction function Rec(v1; . . . ; vn) is applied
and is taken as the protocol’s output.

We call an n-party VSS protocol, with t-bounded adversary A, an (n, t)-VSS
protocol if it satisfies the following conditions:

Secrecy. If D is honest then the adversary’s view during the sharing phase
reveals no information about s. More formally, the adversary’s view is iden-
tically distributed for all different values of s.

Correctness. If D is honest then the honest parties output the secret s at the
end of the reconstruction phase.

Commitment. If D is dishonest, then at the end of the sharing phase there
exists a value s∗ ∈ Fp∪{⊥}, such that at the end of the reconstruction phase
all honest parties output s∗.
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The sharing phase as well as the reconstruction phase may consist of several
communication rounds. A VSS protocol is considered efficient if the total com-
putation and communication performed by all the honest parties is polynomial
in n and the security parameter κ. The optimal resiliency bound for VSS is
n ≥ 2t + 1 (in the presence of a broadcast channel) in the synchronous setting
and n ≥ 3t+ 1 in the asynchronous setting.

Variants of VSS. A few variants of VSS have been introduced as required in
secret sharing applications. We briefly describe those below.

1. In our VSS definition, we assume that secrecy is unconditional, while cor-
rectness and commitment are computational. We can have a variation where
secrecy is computational, and correctness and commitment are unconditional
in nature. This is easily possible as secrecy and correctness of a VSS scheme
are derived respectively from the hiding and binding of the commitment
scheme under use. Our lower bound results hold for this variation as well.
However, for computationally secure VSS, we can prove security only against
a static adversary that chooses t parties before a protocol execution starts.

2. In our VSS, the reconstruction may end with ⊥. By fixing a default value
in Fp (say 0) that will be output instead of ⊥, it is possible to say that
s∗ ∈ Fp. However, as suggested in [11, Sec. 2.1], there is even a stronger VSS
definition possible. The stronger definition has exactly the same secrecy and
correctness properties, but has a stronger commitment property:
Strong Commitment. Even if D is dishonest, at the end of the sharing

phase, each party locally outputs a share of a secret s∗ chosen only from
Fp such that shares from any t+ 1 honest parties are consistent with s∗.

For Shamir’s secret sharing, this property means that at the end of the shar-
ing phase, there exists a t-degree polynomial f(x) such that a share si held
by every honest party Pi is equal to f(i). While our asynchronous protocol
in Section 4.2 satisfies the basic VSS definition, our 2-round protocols in
sections 3.2 and 3.4 satisfy the stronger definition. In the full version [1], we
present an asynchronous protocol satisfying the stronger definition.

3. Another stronger variant of VSS considers dealer D to be an external party
(i.e., D /∈ P) and allows the t-bounded adversary to corrupt the dealer and
up to t additional parties in P .
Our lower bound results and all of our protocols except our one-round VSS
protocol [1] work for this variant as well. We show that 1-round VSS with
an external dealer is impossible even when t = 1 irrespective of the value of
n and the number of rounds in the reconstruction phase.

We work on VSS as a standalone primitive in this paper. The required VSS prop-
erties, specially the commitment property, may change in some VSS application.
We consider that to be an interesting future work and discuss in Section 5.

2.3 Commitment Schemes

A cryptographic commitment scheme is a two-phase cryptographic protocol be-
tween a committer and a verifier.
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Commit Phase. Given a messagem, a committer runs [C, (m, d)] = Commit(m)
and publishes C as a commitment that binds her to message m (binding)
without revealing it (hiding). The function may output an opening value d.

Open Phase. The committer opens commitment C by revealing (m, d) to a
verifier. The verifier can then check if the message is consistent with the
commitment (i.e., m ?= Open(C,m, d)).

We note that the commitment schemes also require a setup that generally in-
volves choosing the cryptographic parameters. This can easily be included in the
VSS setup and thus we do not consider it in detail.

A commitment scheme cannot be unconditional (perfect or statistical) bind-
ing and hiding at the same time. As a result, commitments come in two flavors:
perfect (or statistical) binding but computational hiding commitments, and per-
fect (or statistical) hiding but computational binding commitments. There are
many applications of commitments where they may never be opened or opened
only after a while. In such scenarios, commitments of the second type are gener-
ally considered advantageous over the first type, since the committed values are
hidden in information theoretic sense in the second type.

Perfect hiding but computational binding (under the DLog assumption) Ped-
ersen commitment scheme [27] is the most commonly used commitment scheme
in computational VSS. It has an interesting additive homomorphic property that
a product of two commitments C1 and C2 (associated respectively with messages
m1 and m2) commits to an addition of the committed messages (m1 + m2).
However, with its reliance on the DLog assumption, this commitment scheme
will not be suitable once quantum computers arrive.

On the other hand, commitments of both types can be achieved from any
one-way function (see [16] and references within). In this paper, we concentrate
on the commitments of the second type, whose efficient constructions are pos-
sible from any claw-free permutation [14], any one-way permutation [22] or any
collision-free hash function [17]. Along with being non-homomorphic, some of
these commitment constructions are also interactive in the nature. We restrict
ourselves to the non-interactive commitment constructions (e.g., [14] and [17]) as
the interactive commitment constructions may increase the rounds complexity
of our VSS schemes.

3 VSS in the Synchronous Network Model

Before presenting our results in the synchronous setting, we describe our
synchronous communication model in detail.

3.1 Synchronous Communication Model

We closely follow the bounded-synchronous communication model in [9, 13, 27].
Here, the dealer is connected to every other party by a private, authenticated
and bidirectional link. We do not require communication links between any two
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non-dealer parties in P . We further assume that all parties have access to a
common broadcast channel that allows a party to send a message to all other
parties and every party is assured that all parties have received the same message
in the same round.

In the synchronous model, the distributed protocols operate in a sequence of
rounds. In each round, a party performs some local computation, sends messages
(if any) to the dealer through the private and authenticated link, and broadcasts
some information over the broadcast channel. By the end of the round, it also
receives all messages sent or broadcast by the other parties in the same round.

Along with being adaptive and t-bounded, we allow the adversary to be rush-
ing: in every round of communication it can wait to hear the messages of the
honest parties before sending (or broadcasting) its own messages. By round com-
plexity of VSS, we mean the number of rounds in the sharing phase only, since
all of our protocols ask for single round during reconstruction.

3.2 2-Round VSS for n ≥ 2t + 1 from Any Commitment

Here, we present a 2-round sharing and 1-round reconstruction VSS protocol
for n ≥ 2t + 1. Our 2-round VSS protocol allows any form of commitment.
Feldman and Pedersen VSS schemes require three rounds for n ≥ 2t + 1. The
general structure of the sharing phase of their three round VSS schemes is: In
the first (distribution) round, the dealer sends shares to parties and publishes a
commitment on these shares. In the second round, parties may accuse (through
broadcast) the dealer of sending inconsistent shares, which he resolves (through
broadcast) in the third round. It is impossible to have distribution and accusation
in the same round. Therefore, in order to reduce the number of rounds to two, the
accusation and resolution rounds in VSS are collapsed into one round. To achieve
this, the set of parties (in addition to dealer) performs some communication in
the first round. We then employ a commitment-based modification of standard
round-reduction technique from unconditional VSS protocols [11, Sect. 3.1]. It
involves every party publicly committing to some randomness and sending that
randomness to the dealer in the first round. The dealer uses this randomness as a
blinding pad to broadcast the shares in the next round. Further, we use bivariate
polynomial instead of univariate polynomials used in Feldman or Pedersen VSS.
In the absence of homomorphism and without using bivariate polynomial, we
do not know how the parties can check if the degree of a shared univariate
polynomial is t without using expensive NIZK proofs.

Overview. In our 2-round protocol, dealer D chooses a t-degree symmetric
bivariate polynomial F (x, y) such that F (0, 0) = s, the secret that he wants
to distribute. Note that all of our protocols in this paper work also with the
asymmetric bivariate polynomials. However, for ease of understanding, we always
use symmetric polynomials in our descriptions. Dealer D gives the univariate
polynomial fi(x) = F (x, i) to every party Pi and publicly commits to evaluations
fi(j) for j ∈ [1, n]. As already mentioned, we allow every party to communicate
toD independently in the first round. Specifically, every party Pi sends n random
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Protocol 2-Round-VSS(D,P , s): Sharing Phase (Two Rounds)

Round 1: Dealer D
– chooses a random symmetric bivariate polynomial F (x, y) of degree-t such that
F (0, 0) = s

– computes [Comij , (fij , rij)] = Commit(fij) for i, j ∈ [1, n] and i ≥ j, where
fij = F (i, j)

– assigns Comij = Comji and rij = rji for i, j ∈ [1, n] and i < j
– sends (fij , rij) to Pi for j ∈ [1, n] and broadcasts Comij for i, j ∈ [1, n]

Every other party Pi

– chooses two sets of n random values (pi1, . . . , pin) and (gi1, . . . , gin).
– computes [PComij , (pij , qij)] = Commit(pij) and [GComij , (gij , hij)] =

Commit(gij) for j ∈ [1, n].
– sends (pij , qij) and (gij , hij) for j ∈ [1, n] to D, and broadcasts PComij and

GComij for j ∈ [1, n].
Round 2: Dealer D, for every party Pi,

– verifies if pij
?
= Open(PComij , pij , qij) and gij

?
= Open(GComij , gij , hij) for j ∈

[1, n]
– broadcasts (αij , βij) for all j ∈ [1, n] such that αij = fij+pij and βij = rij+gij

if the verification succeeds, and broadcasts (fij , rij) for all j ∈ [1, n] otherwise.
Party Pi

– verifies if deg(fi(x))
?
= t and fij

?
= Open(Comij , fij , rij) for j ∈ [1, n], where

fi(x) is the polynomial defined by fijs for j ∈ [1, n].
– broadcasts nothing if the verifications succeeds, and broadcasts (pij , qij) and

(gij , hij) for j ∈ [1, n] otherwise.
Pi is said to be happy if she broadcasts nothing, and considered unhappy otherwise.

Local Computation: Every party Pk

1. discards D and halts the execution of 2-Round-VSS, if D broadcasts
– Comij �= Comji for some i and j
– (fij , rij) such that fij �= Open(Comij , fij , rij) for some i and j
– fij for j = [1, n] that define polynomial of degree > t for some i
– (fij , rij) and (fji, rji) for some i and j such that (fij �= fji) or (rij �= rji)
– (αij , βij) and Pi broadcasts (pij , qij) and (gij , hij) such that pij =

Open(PComij , pij , qij), gij = Open(GComij , gij , hij) for all j; and (f ′
ij �=

Open(Comij , f
′
ij , r

′
ij) or deg(f ′

i(x)) > t) where f ′
ij = αij−pij , r

′
ij = βij−gij

and f ′
i(x) is the polynomial defined by f ′

ijs for j ∈ [1, n].
2. discards an unhappy party Pi, if she broadcasts pij and gij for j ∈ [1, n] such

that pij �= Open(PComij , pij , qij) or gij �= Open(GComij , gij , hij) for some j. Let
Q be the set of non-discarded parties.

3. outputs (fkj , rkj) for j ∈ [1, n] as received in round 1, if Pk is happy and in Q. If
she is unhappy and belongs toQ then she outputs (fkj , rkj) for j ∈ [1, n] if they
are broadcasted in round 2. Otherwise, Pk computes (fkj , rkj) for j ∈ [1, n] as
fkj = αkj − pkj and rkj = βkj − gkj .

Fig. 1. Sharing Phase of Protocol 2-Round-VSS(D,P , s) for n ≥ 2t+ 1

values privately to D and publicly commits them. At the end of the first round,
every party checks the consistency of his received univariate polynomial with
the commitments of D and D checks consistency of his received values with
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Protocol 2-Round-VSS(D,P , s): Reconstruction Phase (One Round)

1. Each Pi in Q broadcasts (f ′
ij , r

′
ij) for j ∈ [1, n]

Local Computation: For every party Pk,
1. Party Pi ∈ Q is said to be confirmed if deg(f ′

i(x)) = t and f ′
ij =

Open(Comij , f
′
ij , r

′
ij) for j ∈ [1, n], where f ′

i(x) is the polynomial defined by
f ′

ij ’s for all j ∈ [1, n].
2. Consider f ′

i(x) polynomials of any t+1 confirmed parties. Interpolate F ′(x, y)
and output s′ = F ′(0, 0).

Fig. 2. Reconstruction Phase of Protocol 2-Round-VSS(D,P , s) for n ≥ 2t+ 1

the corresponding commitments of the individual parties. The second round
communication consists of only broadcasts. Any inconsistency between the public
commitments and private values as well as the pairwise inconsistencies in the
bivariate polynomial distribution (i.e, fi(j)

?= fj(i)) are sorted out in the second
round. Note that there will be agreement among the parties at the end of local
computation of sharing phase; i.e. every honest party knows if D is discarded,
otherwise every honest party has identical copy of Q, the set of parties allowed
to participate in the reconstruction phase.

In the reconstruction phase, every party discloses their respective univariate
polynomials. They are verified with respect to the public commitments and the
consistent polynomials are used for the reconstruction of the bivariate polynomial
and consequently the committed secret s. We present the protocol in Fig. 1 and
Fig. 2. We prove that the 2-Round-VSS protocol satisfies the stronger variant of
VSS defined in Section 2.2.

Theorem 1. Protocol 2-Round-VSS is a VSS scheme for n ≥ 2t+ 1.

Proof. We prove the secrecy, correctness and strong commitment properties of
VSS to show that the above theorem holds.
Secrecy. The secrecy of the scheme follows from the unconditional hiding prop-
erty of the underlying commitment function and the property of symmetric
bivariate polynomial. D’s public commitments Comij ’s will be uniformly dis-
tributed given the unconditional hiding property of the underlying commitment
function. Moreover, the αij , βij values for j ∈ [1, n] corresponding to honest Pi’s
will be uniformly distributed. Now the secrecy of the constant term of the D’s
degree-t bivariate polynomial follows from the standard information-theoretic
argument [27] against an adversary controlling at most t parties, i.e.,

Pr[A computes s|{Vi for any t parties,Public Information}] = Pr[A computes s],

where Vi represents all the information available at or computable by party Pi

at the end of the sharing phase.

Correctness. If D is honest, then he will never be discarded. Moreover, all
the honest parties will be happy. Now, correctness will follow if we show that a
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corrupted Pi ∈ Q is considered as confirmed only when she broadcasts correct
polynomials in the reconstruction phase. Assume that corrupted Pi is consid-
ered to be confirmed even when she broadcasts f ′

ij and r′ij for j ∈ [1, n], where
these values are not equal to fij and rij (as given by D). We can then devise
an algorithm to break the computational binding property of the commitment
function using this adversary. Therefore, given that the commitment function
achieves computational binding, all the confirmed parties disclose proper fij and
rij for j ∈ [1, n]. Therefore, every honest party will correctly reconstruct F (x, y)
and consequently s = F (0, 0).

Strong Commitment. We have to consider the case of a corrupted D. If D
is discarded in the sharing phase, then every party may assume some default
predefined value as D’s secret. So we consider the case when D is not discarded.

Firstly, note that an honest party will never be discarded. Moreover at the
end of sharing phase honest Pi will output n points (i.e. fij ’s for all j ∈ [1, n])
on a degree-t polynomial fi(x) and n values rij such that for every honest Pj ,
it holds that fij = fji and rij = rji. We show this by considering all the three
cases for any pair of honest parties (Pi, Pj):

If Pi and Pj are happy, then we have Comij = Comji. Now Pi verified consis-
tency of (Comij , fij , rij), and Pj verified consistency of (Comji, fji, rji). This
implies the pair (fij , rij) is same as (fji, rji), unless corrupted D had broken
the binding property of the commitment function.

If Pi is happy and Pj is unhappy, then (Comij , fij , rij) is consistent and also
Comij = Comji. For Pj , we have two cases: (1) D has broadcasted fj(k) and
rjk for k ∈ [1, n]; (2) D broadcasted αik, βik for k ∈ [1, n] and Pj computed
fik = αik−pik, rik = βik−gik. However, in both the above cases, fik and rik

are consistent with Comjk for all k ∈ [1, n] (for otherwise D would have been
discarded). This also implies that tuple (Comji, fji, rji) is consistent. Again
unless corrupted D had broken the binding property of the commitment
function, the pairs (fij , rij) and (fji, rji) are identical.

If Pi and Pj are unhappy, then D would have been discarded if the pairs
(fij , rij) and (fji, rji) are not identical.

So unless corrupted D breaks the binding property of commitment function, the
polynomials of the honest parties define symmetric bivariate polynomials, say
F (x, y). Now in the reconstruction phase, every honest party will be considered
as confirmed. However, a corrupted party will be considered as confirmed if she
broadcasts points on degree-t polynomial fi(x) = F (x, i) (assuming she does not
break binding of commitment function). Let Pi broadcasts n points, say f ′

ij ’s,
corresponding to f ′

i(x) that is different from fi(x). Then fij must be different
from f ′

ij at least for one j where Pj is honest. Then f ′
ij will not be consistent

with Comij and Pi will not be confirmed. Now it follows that the parties will
reconstruct D’s committed secret s = F (0, 0) in the reconstruction phase. �

The sharing phase of our 2-Round VSS protocol requires O(n2κ) bits of broad-
cast and O(n2κ) bits of private communication, while the reconstruction phase
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requires O(n2κ) bits of broadcast. This communication complexity is at least a
linear factor lower than the unconditional VSS schemes for n ≥ 2t+ 1 [21]. On
the other hand, it is also a linear factor higher than the communication com-
plexity of 3-round Pedersen or Feldman VSS. This difference arises due to the
use of bivariate polynomial in our protocol, which results from the lack of homo-
morphism in the commitment scheme under use. We suppose this increase in the
communication complexity is a price paid for a reduction in the assumptions.
In subsection 3.4, we present a more efficient VSS protocol using homomorphic
commitments that has same communication complexity as Pedersen or Feldman
VSS, but requires one less round of communication.

3.3 (Im)possibility Results for 1-Round VSS

Here, we prove the impossibility of 1-Round VSS except when t = 1 and n ≥ 4,
which lower-bounds computational VSS for n ≥ 2t + 1 and any t to a round
complexity of two. Our 2-round protocol presented in the previous section thus
has an optimal round complexity. Our results hold irrespective of computational
or unconditional nature of the secrecy property.

Theorem 2. 1-round VSS is impossible for t > 1 and n ≥ 4, irrespective of the
number of rounds in the reconstruction phase.

Proof (Sketch). The proof of this theorem is very similar to the proof of Theorem
7 of [23]. We prove the theorem by contradiction. So we assume that 1-round
VSS, sayΠ , with t = 2 exists. Without loss of generality, we assumeD to be some
party other than P1. We then show that for any execution if party P1 receives
some particular piece of information from the dealer, then she will reconstruct a
particular secret in the reconstruction phase irrespective of what P2, . . . , Pn has
received from the dealer. This of course allows us to show a breach of secrecy
of Π , since P1 could be the sole corrupted party and can distinguish the secret
when he receives the particular information. We note that the proof does not
make any assumption on the computational power of P1 i.e. even a polynomial
time P1 can breach the secrecy. Since the proof strategy is very similar to the
proof of Theorem 7 of [23], we skip the details here and present a detailed proof
in the full version of the paper [1].

Theorem 3. 1-round VSS is impossible for n ≤ 3t, irrespective of the number
of rounds in the reconstruction phase.

Proof (Sketch). This theorem is also proved by contradiction. In brief, we show
that if such a scheme exists, then the the view of any t parties in the sharing
phase must determine the secret. This further implies a breach of secrecy, since
adversary A can corrupt and coordinate any t parties. A detailed proof appears
in the full version of the paper [1].

In Theorem 3, we show that 1-round VSS is impossible for n ≤ 3t, which implies
the impossibility of 1-round VSS for t = 1 and n ≤ 3. Further, in Theorem 2,
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we show that 1-round VSS is impossible for t > 1 and n ≥ 4. Therefore, 1-round
VSS, if possible, will work for t = 1 and n ≥ 4. We present a 1-round protocol
in support of the corollary in the full version of the paper.

VSS with an External Dealer. Here it can be shown that 1-round sharing
VSS is impossible even in the presence of a single corruption apart from the
dealer irrespective of the total number of parties and number of rounds in the
reconstruction phase. Basically, we can follow the proof of Theorem 2 and arrive
at the same contradiction while assuming t = 1 and the dealer is corrupted.
Hence, we have the following theorem.

Theorem 4. 1-round VSS with external dealer is impossible for t > 0 irrespec-
tive of the number of parties and the number of rounds in reconstruction phase.

3.4 An Efficient 2-round VSS Using Homomorphic Commitments

We now present a 2-round sharing, 1-round reconstruction VSS protocol for
n ≥ 2t + 1 using homomorphic commitments. It has the same message and
communication complexities as that of Feldman and Pedersen VSS schemes,
and requires one less round of interaction. The protocol is similar to our 2-round
protocol in Section 3.2; however, we do not need bivariate polynomials here.

Without loss of generality, we use the Pedersen commitment scheme as a
representative homomorphic commitment scheme. In the sharing phase, dealer
D chooses two random degree-t polynomials f(x) and r(x) such that f(0) = s.
Dealer D then sends fi = f(i) and ri = r(i) to each Pi over the private links
and broadcasts commitments on the coefficients of f(x) (using the coefficients
of r(x) as random strings). By the end of the second round, every honest party
must hold the correct point on the committed polynomial. To ensure that every
Pi sends two pairs (pi, qi) and (gi, hi) in F2

p to dealer D and publicly commits pi

(using qi as a random element) and gi (using hi as a random element). Broadcasts
and local computations in the second round are very similar to 2-Round-VSS in
Section 3.2. The protocol is presented in Fig. 3. Similar to 2-Round-VSS, we note
that there will be agreement among the parties at the end of local computation
of sharing phase on whether D is discarded or not. If D is not discarded, then
every honest party will have identical copy of Q.

Theorem 5. Protocol 2-Round-VSS-Hm is a VSS scheme for n ≥ 2t+ 1.

The proof of the theorem closely follows from the proof of Theorem 1, and we
include it in the full version of the paper.

The sharing phase requires O(nκ) bits of communication over both the private
links and the broadcast channel. The reconstruction phase requires O(nκ) bits
of communication over the broadcast channel.

4 VSS in the Asynchronous Communication Model

We now shift our focus to the asynchronous communication setting where VSS
is possible for n ≥ 3t+1. As we discuss in the related work, all known computa-
tional VSS scheme [3, 29, 31] in the asynchronous communication setting rely on
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Protocol 2-Round-VSS-Hm(D,P , s)

Sharing Phase: Two Rounds
Round 1:

1. D selects two random polynomials f(x) and r(x) of degree-t, such that
f(0) = s. Let f(x) = a0 +a1x+ . . .+atx

t and r(x) = b0 + b1x+ . . .+ btx
t.

2. For every i ∈ [1, n], D sends fi = f(i) and ri = r(i) to Pi and broadcasts
Comi = Commit(ai, bi) for i = 0, . . . , t.

3. Every party Pi sends two pairs (pi, qi) and (gi, hi) in F2
p to D and broad-

casts commitments PComi = Commit(pi, qi) and GComi = Commit(gi, hi).
Round 2:

1. D checks if PComi and GComi are consistent with the received pairs (pi, qi)
and (gi, hi). If they are not consistent, then D broadcasts (fi, ri); else he
broadcasts αi = fi + pi and βi = ri + gi.

2. Party Pi checks if Commit(fi, ri) =
∏t

j=0(Comi)
ij

. If not, then Pi broad-
casts pairs (pi, qi) and (gi, hi), else she broadcasts nothing. Party Pi is
considered happy in the later case while she is unhappy in the former case.

Local Computation: Every party Pk

1. discards D and halts the execution of 2-Round-VSS-Hm, if D broadcasts

(a) fi, ri for some i and Commit(fi, ri) �=
∏t

j=0(Comi)
ij

.
(b) αi, βi; and Pi broadcasts (pi, qi) and (gi, hi) such that PComi =

Commit(pi, qi) and GComi = Commit(gi, hi); and Commit(f ′
i , r

′
i) �=∏t

j=0(Comi)
ij

where f ′
i = αi − pi and r′i = βi − gi.

2. discards an unhappy party Pi if she broadcasts (pi, qi) and (gi, hi) such
that PComi �= Commit(pi, qi) or GComi �= Commit(gi, hi). Let Q be the set
of non-discarded parties.

3. outputs fk, rk as received from D in round 1, if Pk is in Q and happy. An
unhappy Pk in Q outputs fk, rk if they are directly broadcasted by D in
round 2. Else Pk computes fk and rk as fk = αk − pk and rk = βk − gk.

Reconstruction Phase: One Round
Round 1:

1. Each Pi ∈ Q broadcasts f ′
i and r′i.

Local Computation: For every party Pk,

1. Party Pi ∈ Q is said to be confirmed if Commit(f ′
i , r

′
i) =

∏t
j=0(Comi)

ij

.

2. Consider f ′
i values of any t + 1 confirmed parties and interpolate f ′(x).

Output s′ = f ′(0).

Fig. 3. Protocol 2-Round-VSS-Hm for n ≥ 2t+ 1 with Homomorphic Commitments

homomorphism of commitments. In this section, we show that homomorphism
is not necessary for computational VSS in the asynchronous communication set-
ting. We build our protocol from asynchronous VSS of [3] as it is the only generic
and efficient asynchronous VSS scheme known in the literature. Further, with
its O(n2) messages complexity, it is extremely efficient in terms of the num-
ber of messages. We modify this scheme so that it satisfies the VSS properties
when the underlying commitment need not be homomorphic. This protocol does
not guarantee that every honest party receive his share of the secret. However, it
guarantees that even a corrupted D can not commit to ⊥ instead of a secret from
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Fp (which is stronger than the basic definition given in section 2.2). We present
another protocol in the full version that achieves the stronger definition where
every party receives his share of the secret. Although this protocol increases the
communication complexity by a linear factor in n, it is highly efficient in terms
of communication when compared with the unconditional schemes [4, 5, 24, 25].

4.1 Asynchronous Communication Model

We follow the communication model of [3] and assume an asynchronous net-
work of n parties P1, . . . , Pn such that every pair of parties is connected by an
authenticated and private communication link. We work against a t-bounded
adaptive adversary that we defined in Section 2.1. In the asynchronous commu-
nication setting, we further assume that the adversary controls the network and
may delay messages between any two honest parties. However, it cannot read
or modify these messages as the links are private and authenticated, and it also
has to eventually deliver all the messages by honest parties. In the asynchronous
communication setting, a VSS scheme has to satisfy the liveness and agreement
properties (also called as the termination conditions) along with the secrecy,
correctness and commitment properties described in Section 2.2.

Liveness. If the dealer D is honest in the sharing phase, then all honest parties
complete the sharing phase.

Agreement. If some honest party completes the sharing phase, then all honest
parties complete the sharing phase eventually. If all honest parties subse-
quently start the reconstruction, then all honest parties will complete it.

4.2 VSS for n ≥ 3t + 1 from Any Commitment

We observe that VSS of [3] heavily relies on homomorphism of the underlying
commitment schemes and does not satisfy VSS properties if we replace the homo-
morphic commitments by non-homomorphic commitments (agreement property
will not be satisfied). The incapability stems from the fact that verifying the
following with respect to non-homomorphic commitment is not easy: given com-
mitments on n values (associated with n indices), the underlying values define
a degree-t polynomial. However, we find that with subtle enhancements to VSS
of [3], one can obtain an asynchronous VSS protocol. In our enhanced protocol,
a majority (t + 1 or more) of the honest parties receives proper share of the
secret (t-degree univariate polynomial), while the remaining honest parties are
assured that there are t + 1 or more honest parties that have received t-degree
univariate polynomial and can complete the reconstruction phase. The message
and communication complexities of our protocol are same as that of VSS of [3].

In our protocol,D chooses a symmetric bivariate polynomial F (x, y) satisfying
F (0, 0) = s. He then computes an n×n commitment matrix, Com such that (i, j)th

entry in Com is the commitment on F (i, j). Now D delivers fi(x) = F (x, i) and
Com to every Pi. In the rest of the protocol the parties try to agree on Com and
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Protocol AsynchVSS(D,P , s)
Sharing Phase:
Code for D:

– Choose a random symmetric bivariate polynomial F (x, y) of degree-t such that
F (0, 0) = s.

– Compute [Comij , (fij , rij)] = Commit(fij) for i, j ∈ [1, n] and i ≥ j, where fij =
F (i, j).

– Assign Comij = Comji and rij = rji for i, j ∈ [1, n] and i < j. Let Com be the n× n
matrix containing Comij for j ∈ [1, n] in the ith row.

– Send (send, Com, fi(x), ri(x)) to Pi, where fi(x) = F (x, i), ri(x) is the degree-(n−1)
polynomial defined by the points ((1, ri1), . . . , (n, rin)).

Code for Pi:

– On receiving (send, Com, fi(x), ri(x)) from D, send (echo, Com) to every Pj if (a)

Com is an n× n symmetric matrix and (b) fi(j)
?
= Open(Comij , fi(j), ri(j)).

– On receiving (echo, Com) from at least 2t + 1 parties (possibly including it-
self) satisfying that Com received from Pj is same as received from D, send
(ready, share-holder, Com) to every Pj , if you have already sent out echo mes-
sages.

– If you have not sent out any ready signal before:
1. on receiving ready messages from at least t+1 Pj ’s satisfying that Com received

from Pj is same as received from D, send (ready, share-holder, Com) to every
Pj , if you have already sent out echo messages.

2. on receiving (ready, share-holder, Com) from at least t + 1 Pj ’s such that all
the Com are same but do not match with the copy received from D, update
your Com with this new matrix, delete everything else received from D and
send (ready, �, Com) to every Pj .

– On receiving ready signals from at least 2t+1 parties such that all of them contain
same Com as yours and at least t+1 ready signals contain share-holder, agree on
Com and terminate.

Reconstruction Phase:
Code for Pi:

1. Send (fi(x), ri(x)) to every Pj if you had sent (ready, share-holder, Com) in the
sharing phase.

2. Wait for t+1 (fj(x), rj(x)) messages such that fj(x) is degree-t polynomial, rj(x)
is degree-(n−1) polynomial and fj(k) = Open(Comjk, fj(k), rj(k)) for all k ∈ [1, n],
interpolate F (x, y) using those t+1 fj(x) polynomials, compute s = F (0, 0) as the
secret.

Fig. 4. Asynchronous VSS for n ≥ 3t+ 1 (optimal resilience)

check whether their polynomials are consistent with Com or not. We observe
that the parties do not need to exchange and verify their common points on the
bivariate polynomial, given that agreement on Com can be achieved. Because, the
parties can now perform local consistency checking of their polynomial with Com.
In our protocol, some honest parties may not receive polynomials consistent with
Com, however, they still help to reach agreement on Com sensing that majority
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of the honest parties have received a common Com and also the polynomials
received by them are consistent with Com. We describe the protocol in Fig. 4.

Lemma 1. If an honest party Pi sends a ready message containing Com and a
distinct honest party Pj sends a ready message containing Com, then Com = Com.

Proof. We prove this by contradiction. Let there exists an honest pair (Pi, Pj)
such that Com �= Com. The honest Pi communicates ready with Com if: (a) it
receives (echo, Com) from at least 2t+ 1 parties OR b) it receives (ready, ·, Com)
from at least t + 1 parties, where · can be either share-holder or �. Similar
reasons apply for Pj who sends Com. If Pi and Pj send ready messages due to
(a), then it implies that there is at least one honest party who communicates
echo messages with Com as well as with Com. This is impossible, since an honest
party communicates echo with a unique matrix. For all other cases, we arrive
at the contradiction that there is at least one honest party who sends echo with
two different matrices or ready with two different matrices. We show this by
considering the case when Pi sends ready due to (a) and Pj sends due to (b).
The other cases will follow. Pj sends ready due to (b) implies that there is at
least one honest party, say Pk who communicated ready with Com to Pj . Then
by chain of arguments, we either get that honest Pi has sent ready with Com or
get an honest party (possibly including Pi) who communicates ready with Com
due to (a). In both cases, we arrive at contradiction, since no honest party can
send echo/ready with two different matrices. Hence, we prove the lemma. �

Lemma 2. If some honest party Pi has agreed on Com, then every honest party
will eventually agree on Com.

Proof. To prove the lemma, it is enough to prove the following: If some honest
party Pi has received 2t+ 1 ready messages with Com such that at least t+ 1 of
them contain share-holder, then every honest party will eventually receive the
same. If Pi receives ready messages as above, then there are at least t+1 honest
parties who send out ready messages with Com and at least one of the honest
party’s ready message must contain share-holder. An honest party sends out
ready with share-holder in two cases: (a) She received at least 2t + 1 echo
message with Com and it has sent out echo with Com. Among these 2t+1 parties
t+1 are honest and they will eventually receive ready message from all the t+1
honest parties who also sent the same to Pi (also by Lemma 2 if some honest
party has sent a ready message with Com, then no other honest party will send
ready with Com). Hence these t+1 honest parties will eventually send out ready
with share-holder. Hence eventually every honest party will receive 2t + 1
ready messages with Com such that at least t+1 of them contain share-holder.
(b) She received at least (t + 1) ready messages with Com and she has sent out
echo with Com. Among these (t+1), there is at least one honest party, say Pk. If
Pk has sent ready with share-holder, then by recursive argument this case will
boil down to case (a). However if Pk sends ready without share-holder, then
he has received at least t+ 1 ready massages with share-holder which ensures
existence of another honest Pl who sent ready massage with share-holder.
Now again by recursive argument, this case will boil down to case (a). �
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Lemma 3. If some honest party Pi has agreed on Com, then there is a set H of
at least t+1 honest parties each holding degree-t polynomial fj(x) such that it is
consistent with Com and there is a symmetric bivariate polynomial F (x, y) such
that F (x, i) = fi(x).

Proof. If honest Pi has agreed on Com, then she has received 2t+ 1 ready mes-
sages with Com such that at least t + 1 of them contain share-holder. From
the previous proof, eventually t + 1 honest parties (possibly including Pi) will
eventually send out ready with share-holder. So there will be a set of at least
t+1 honest parties who send out ready with share-holder. We claim that this
set of honest parties, denoted by H will satisfy the conditions mentioned in the
lemma statement. We notice that the honest parties in H never update Com and
by previous lemma they eventually agree on the same. Also they send out echo
well before sending out ready. This implies each honest party Pi in H ensures
that her polynomial fi(x) (i.e. the points on it) are consistent with Com. Now
we proceed to show that there is a symmetric bivariate polynomial F (x, y) such
that F (x, i) = fi(x). This can be shown by showing for every pair (Pi, Pj) from
H, fi(j) = fj(i) holds good. This follows from the fact that Pi and Pj has same
Com where they checked Comij = Comji holds and then Pi and Pj individually

ensured fi(j)
?= Open(Comij , fi(j), ri(j)) and fj(i)

?= Open(Comji, fj(i), rj(i)) re-
spectively. If the above arguments do not hold then corrupted D has broken
binding property of underlying commitment, as he knows how to open Comij in
two different ways. �

Theorem 6. Protocol AsynchVSS is an asynchronous VSS for n ≥ 3t+ 1.

Proof. Liveness. If D is honest, then every honest party will eventually send
out echo and then ready with share-holder. Since there are at least 2t + 1
honest parties, every honest party will eventually agree on Com.
Agreement. Agreement follows from Lemma 2.
Correctness. Correctness follows from Lemma 2 and 3. Honest dealer case is
easy to follow. For a corrupted dealer the unique secret determined in the shar-
ing phase is nothing but the constant term of F (x, y) defined by H in Lemma
3. In the reconstruction phase, all the parties will reconstruct D’s secret us-
ing the polynomials sent by the honest parties in H. Specifically, every honest
party will definitely consider fj(x), rj(x) sent by party Pj in H. However, we
will be done if we show that any wrong degree-t polynomial fj(x) sent by a
corrupted party Pj will never be considered (unless corrupted Pj breaks binding
of commitment). This is ensured by the following check performed by an hon-
est party before considering Pj ’s polynomial for the reconstruction of F (x, y):
fj(k) = Open(Comjk, fj(k), rj(k)) for all k ∈ [1, n]. This check ensures that fj(x)
must match with fj(x) at the t + 1 positions corresponding to H. But then it
implies fj(x) = fj(x).
Secrecy. Follows from the properties of bivariate polynomial and the hiding of
underlying commitment scheme. �
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5 Discussion and Future Work

In this paper, we considered computational VSS as a standalone primitive. Our
VSS schemes may also be easily leveraged in applications such as asynchronous
Byzantine agreement protocols [5]. However, other VSS applications such as
proactive share renewal and share recovery schemes [3, 18] and distributed key
generation [12, 19] heavily rely on homomorphism of the commitments. It repre-
sents an interesting open problem if we can do better than in the unconditional
case (e.g., [7]) for these applications. Further, most of the threshold crypto-
graphic protocols also rely on homomorphism to verify the correctness. It will
be interesting to check the feasibility of these threshold protocols based our VSS
schemes without using expensive zero-knowledge proofs.

Finally, our schemes based on the definitional properties of commitments are
expensive (by a linear factor) in terms of communication complexity in com-
parison to the respective schemes employing homomorphic commitments. It is
worthwhile to study whether this gap in communication complexity is inevitable.
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Abstract. We present new families of access structures that, similarly
to the multilevel and compartmented access structures introduced in
previous works, are natural generalizations of threshold secret sharing.
Namely, they admit an ideal linear secret sharing schemes over every
large enough finite field, they can be described by a small number of
parameters, and they have useful properties for the applications of secret
sharing. The use of integer polymatroids makes it possible to find many
new such families and it simplifies in great measure the proofs for the
existence of ideal secret sharing schemes for them.

Keywords: Cryptography, secret sharing, ideal secret sharing schemes,
multipartite secret sharing, integer polymatroids.

1 Introduction

The first proposed secret sharing schemes by Shamir [29] and by Blakley [6]
have threshold access structures , that is, the qualified subsets are those having
at least a certain number of participants. In addition, they are ideal , which
means that every share has the same length as the secret. Moreover, as it was
noticed by Bloom [7] and by Karnin, Greene and Hellman [19], they are linear ,
which implies that both the computation of the shares and the reconstruction
of the secret can be performed by using basic linear algebra operations.

Even though there exists a linear secret sharing scheme for every access struc-
ture [4,18], the known general constructions are very inefficient because the
length of the shares grows exponentially with the number of participants. Actu-
ally, the optimization of secret sharing schemes for general access structures has
appeared to be an extremely difficult problem and not much is known about it.
Readers are referred to [2] for a recent survey on this topic.

Nevertheless, this does not mean that efficient secret sharing schemes exist
only for threshold access structures. Actually, the construction of ideal linear
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secret sharing schemes for non-threshold access structures has attracted a lot of
attention. This line of research was initiated by Kothari [20], who presented some
ideas to construct ideal linear secret sharing schemes with hierarchical properties.
Simmons [30] introduced the multilevel and compartmented access structures,
and presented geometric constructions of ideal linear secret sharing schemes for
some of them. Brickell [8] formalized the ideas in previous works [7,19,20,30] and
introduced a powerful linear-algebraic method to construct ideal linear secret
sharing schemes for non-threshold access structures. In addition, he used that
method to construct such schemes for the families of access structures introduced
by Simmons [30]. Tassa [31] and Tassa and Dyn [32] combined Brickell’s [8]
method with different kinds of polynomial interpolation to construct ideal linear
secret sharing schemes for more general families of multilevel and compartmented
access structures. Constructions for other interesting variants of compartmented
access structures are given in [16,23]. All these families of access structures have
some common features that are enumerated in the following.

1. They are natural and useful generalizations of threshold access structures.
In the threshold case, all participants are equivalent, while the access struc-
tures in those families are multipartite, which means that the participants
are divided into several parts and the participants in the same part play
an equivalent role in the structure. In addition, they have some interesting
properties for the applications of secret sharing. Some of them are useful for
hierarchical organizations, while others can be used in situations requiring
the agreement of several parties.

2. Similarly to the threshold ones, the access structures in those families admit
a very compact description. Typically, they can be described by using a small
number of parameters, at most linear on the number of parts.

3. They are ideal access structures, that is, they admit an ideal secret sharing
scheme. Actually, every one of those access structures admits a vector space
secret sharing scheme, that is, an ideal linear secret sharing scheme con-
structed by using the method proposed by Brickell [8]. Moreover, the only
restriction on the fields over which these schemes are constructed is their
size, and hence there is no required condition about their characteristic. Ob-
serve that this is also the case for threshold access structures, which admit
vector space secret sharing schemes over every finite field with at least as
many elements as the number of participants.

4. Even though the existence of ideal linear secret sharing schemes for those
access structures has been proved, the known methods to construct such
schemes are not efficient in general. This is an important difference to the
threshold case, in which the construction proposed by Shamir [29] solves the
problem. Tassa [31, Section 3.3] presented an efficient algorithm for the mul-
tilevel access structures. This is the only other family for which an efficient
algorithm is known.

5. Determining over which fields those schemes can be constructed is another
open problem. It is unsolved even for threshold access structures. In this case,
it is equivalent to the problem considered in [1], and it is equivalent as well to
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determine over which fields uniform matroids are representable [24, Problem
6.5.12, Conjecture 14.1.5], and also to determine the size of maximum arcs
in projective spaces [27]. This is due to the well-known connection between
threshold secret sharing and maximum distance separable codes [22]. Much
less is known for the other families of multipartite access structures. Differ-
ently to the threshold case, there is a huge gap between the known lower
and upper bounds on the minimum size of such fields.

Two questions naturally arise at this point. The first one is the search for new
families of access structures with the properties above. The second one is to de-
termine the existence of efficient methods to construct ideal linear secret sharing
schemes for them, and to find better bounds on the minimum size of the fields
over which such schemes can be found.

Another related line of work deals with the characterization of the ideal ac-
cess structures in several families of multipartite access structures. The bipartite
access structures [25] and the weighted threshold access structures [3] were the
first families for which such a characterization was given. Some partial results
about the tripartite case were presented in [10,16]. On the basis of the well known
connection between ideal secret sharing schemes and matroids [9], Farràs, Mart́ı-
Farré and Padró [12] introduced integer polymatroids to study ideal multipartite
secret sharing schemes. The power of this new mathematical tool was demon-
strated in the same work by using it to characterize the ideal tripartite access
structures. Subsequently, the use of integer polymatroids made it possible to
characterize the ideal hierarchical access structures [14].

This work is devoted to the search for new families of ideal access structures
that are among the most natural generalizations of threshold secret sharing, and
to the efficiency analysis of the methods to construct ideal secret sharing schemes
for them.

Our results strongly rely on the connection between integer polymatroids and
ideal multipartite secret sharing presented in [12], which is summarized here
in Theorem 2.2. The concepts, notation and related facts that are required to
understand this result are recalled Section 2. Actually, the use of this tool pro-
vides important advantages in comparison to the techniques applied in previous
constructions of ideal multipartite secret sharing schemes [8,16,23,25,30,31,32].

While no strong connection between all those families was previously known, a
remarkable common feature is made apparent by identifying the integer polyma-
troids that are associated to those ideal multipartite access structures. Namely,
they are Boolean polymatroids or basic transformations and combinations of
Boolean polymatroids. This is of course a fundamental clue when trying to find
new families of ideal access structures satisfying the aforementioned require-
ments.

By using other Boolean polymatroids, and by combining them in several dif-
ferent ways, we present a number of new families of ideal multipartite access
structures. Specifically, we present in Section 4 several generalizations of the
compartmented access structures introduced in [8,30,32]. Section 5 deals with
some families of partially hierarchical access structures that can be defined from
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Boolean polymatroids. For instance, we present a family of compartmented ac-
cess structures in which every compartment has a hierarchy. Ideal (totally) hi-
erarchical access structures, which were completely characterized in [14], are
associated as well to a special class of Boolean polymatroids. Finally, we use
another family of integer polymatroids, the uniform ones, to characterize in Sec-
tion 6 the ideal members of another family of multipartite access structures: the
ones that are invariant under every permutation of the parts.

All integer polymatroids that we use to find new families of ideal multipartite
access structures can be defined by a small number of parameters, linear on the
size of the ground set, and they are representable over every large enough finite
field. Actually, these requirements are implied by the conditions we imposed on
the access structures to be simple generalizations of threshold secret sharing. We
analyze in Section 3 the basic integer polymatroids as well as the operations to
modify and combine them that are used in our constructions. In particular, the
result we prove in Proposition 3.4 is extremely useful.

We focus in this paper on a few examples that can be useful for the applica-
tions of secret sharing, but many other families can be described by using other
integer polymatroids with those properties, and surely some other useful families
will be found in future works.

Differently to the aforementioned previous works, our proofs that the struc-
tures in these new families are ideal are extremely concise. Of course, this is due
to the use of integer polymatroids. In addition, some easily checkable necessary
conditions that are derived from the results in [12] make it possible to prove that
certain given multipartite access structures are not ideal. This simplifies as well
the search for new families.

Even though the efficiency of the methods to construct actual ideal linear
secret sharing schemes for those families of access structures has not been signif-
icantly improved by using the results from [12], they provide a unified framework
in which the open problems related to that issue can be precisely stated. These
open problems and some possible strategies to attack them are discussed in
Section 7.

2 Preliminaries

2.1 Multipartite Access Structures and Their Geometric
Representation

We introduce here some notation that will be used all through the paper. In
addition, we present a very useful geometric representation of multipartite access
structures that was introduced in [12,25].

We use Z+ to denote the set of the non-negative integers. For every i, j ∈ Z

we write [i, j] = {i, i+ 1, . . . , j} if i < j, while [i, i] = {i} and [i, j] = ∅ if i > j.
Consider a finite set J . We notate J ′ for a set of the form J ′ = J ∪ {p0} for
some p0 /∈ J . Given two vectors u = (ui)i∈J and v = (vi)i∈J in ZJ , we write
u ≤ v if ui ≤ vi for every i ∈ J . The modulus |u| of a vector u ∈ ZJ

+ is defined
by |u| =

∑
i∈J ui. For every subset X ⊆ J , we notate u(X) = (ui)i∈X ∈ ZX .
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The support of u ∈ ZJ is defined as supp(u) = {i ∈ J : ui �= 0}. Finally, we
consider the vectors ei ∈ ZJ such that ei

j = 1 if j = i and ei
j = 0 otherwise.

For a finite set P , we notate P(P ) for the power set of P , that is, the set of
all subsets of P . A family Π = (Πi)i∈J of subsets of P is called here a partition
of P if P =

⋃
i∈J Πi and Πi ∩ Πj = ∅ whenever i �= j. Observe that some of

the parts may be empty. If |J | = m, we say that Π is an m-partition of P . For
a partition Π of a set P , we consider the mapping Π : P(P ) → ZJ

+ defined by
Π(A) = (|A ∩ Πi|)i∈J . We write P = Π(P(P )) = {u ∈ ZJ

+ : u ≤ (|Πi|)i∈J}.
For a partition Π of a set P , a Π-permutation is a permutation σ on P such
that σ(Πi) = Πi for every part Πi of Π . An access structure on P is said to
be Π-partite if every Π-permutation is an automorphism of it. If the number of
parts in Π is m, such an access structure is called m-partite.

A multipartite access structure can be described in a compact way by taking
into account that its members are determined by the number of elements they
have in each part. If an access structure Γ on P is Π-partite, then A ∈ Γ if and
only if Π(A) ∈ Π(Γ ). That is, Γ is completely determined by the partition Π
and set of vectors Π(Γ ) ⊆ P ⊆ ZJ

+. Moreover, the set Π(Γ ) ⊆ P is monotone
increasing, that is, if u ∈ Π(Γ ) and v ∈ P are such that u ≤ v, then v ∈ Π(Γ ).
Therefore,Π(Γ ) is univocally determined by minΠ(Γ ), the family of its minimal
vectors, that is, those representing the minimal qualified subsets of Γ . By an
abuse of notation, we will use Γ to denote both a Π-partite access structure
on P and the corresponding set Π(Γ ) of points in P , and the same applies to
minΓ .

2.2 Polymatroids and Matroids

A polymatroid S is a pair (J, h) formed by a finite set J , the ground set , and a
rank function h : P(J) → R satisfying

1. h(∅) = 0, and
2. h is monotone increasing: if X ⊆ Y ⊆ J , then h(X) ≤ h(Y ), and
3. h is submodular : if X,Y ⊆ J , then h(X ∪ Y ) + h(X ∩ Y ) ≤ h(X) + h(Y ).

If the rank function h is integer-valued, we say that S is an integer polymatroid .
An integer polymatroid such that h(X) ≤ |X | for every X ⊆ J is called a
matroid . Readers that are unfamiliar with Matroid Theory are referred to the
textbooks [24,33]. A detailed presentation about polymatroids can be found
in [28, Chapter 44] or [17].

While matroids abstract some properties related to linear dependency of col-
lections of vectors in a vector space, integer polymatroids do the same with
collections of subspaces. Let V be a K -vector space, and let (Vi)i∈J be a fi-
nite collection of subspaces of V . It is not difficult to check that the mapping
h : P(J) → Z defined by h(X) = dim(

∑
i∈X Vi) is the rank function of an integer

polymatroid. Integer polymatroids and, in particular, matroids that can be de-
fined in this way are said to be K -representable. Observe that, in a representable
matroid, dimVi ≤ 1 for every i ∈ J , and hence representations of matroids are
considered as collections of vectors in a vector space.
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Let Z be an integer polymatroid with ground set J . Consider the set D of the
integer independent vectors of Z, which is defined as

D = {u ∈ ZJ
+ : |u(X)| ≤ h(X) for every X ⊆ J}.

Integer polymatroids can be characterized by its integer bases , which are the
maximal integer independent vectors. A nonempty subset B ⊆ ZJ

+ is the family
of integer bases of an integer polymatroid if and only if it satisfies the following
exchange condition.

– For every u ∈ B and v ∈ B with ui > vi, there exists j ∈ J such that uj < vj

and u− ei + ej ∈ B.

In particular, all bases have the same modulus. Every integer polymatroid is uni-
vocally determined by the family of its integer bases. Indeed, the rank function
of Z is determined by h(X) = max{|u(X)| : u ∈ B}.

Since only integer polymatroids and integer vectors will be considered, we
will omit the term “integer” most of the times when dealing with the integer
independent vectors or the integer bases of an integer polymatroid.

If D is the family of independent vectors of an integer polymatroid Z on J ,
then, for every X ⊆ J , the set D|X = {u(X) : u ∈ D} ⊆ ZX

+ is the family of
independent vectors of an integer polymatroid Z|X with ground set X . Clearly,
the rank function h|X of this polymatroid satisfies (h|X)(Y ) = h(Y ) for every
Y ⊆ X . Because of that, we will use the same symbol to denote both rank
functions.

For an integer polymatroid Z and a subset X ⊆ J of the ground set, we
write B(Z, X) to denote the family of the independent vectors u ∈ D such that
supp(u) ⊆ X and |u| = h(X). Observe that there is a natural bijection between
B(Z, X) and the family of bases of the integer polymatroid Z|X .

2.3 Integer Polymatroids and Multipartite Matroid Ports

The aim of this section is to summarize the results in [12] about ideal multipartite
secret sharing schemes and their connection to integer polymatroids.

For a polymatroid S with ground set J ′ = J ∪ {p0}, the family Γp0(S) =
{A ⊆ J : h(A ∪ {p0}) = h(A)} of subsets of J is monotone increasing, and
hence it is an access structure on J . If S is a matroid, then the access structure
Γp0(S) is called the port of the matroid S at the point p0. As a consequence
of the results by Brickell [8] and by Brickell and Davenport [9], matroid ports
play a very important role in secret sharing. Ports of K-representable matroids
are called K-vector space access structures . Such an access structure admits an
ideal scheme that is constructed according to the method given by Brickell [8].
In addition, Brickell and Davenport [9] proved that the access structure of every
ideal secret sharing scheme is a matroid port. This result was generalized in [21]
by proving that the access structure of a secret sharing scheme is a matroid port
if the length of every share is less than 3/2 times the length of the secret.
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Definition 2.1. Let Π = (Πi)i∈J be a partition of a set P of participants.
Consider an integer polymatroid Z ′ on J ′ with h({p0}) = 1 and h({i}) ≤ |Πi|
for every i ∈ J , and take Z = Z ′|J . We define a Π-partite access structure
Γp0(Z ′, Π) in the following way: a vector u ∈ P is in Γp0(Z ′, Π) if and only if
there exist a subset X ∈ Γp0(Z ′) and a vector v ∈ B(Z, X) such that v ≤ u.

The following theorem summarizes the results from [12] about the connection
between ideal multipartite access structures and integer polymatroids. An access
structure is said to be connected if all participants are in at least one minimal
qualified subset.

Theorem 2.2 ([12]). Let Π = (Πi)i∈J be a partition of a set P . A Π-partite
access structure Γ on P is a matroid port if and only if it is of the form
Γp0(Z ′, Π) for some integer polymatroid Z ′ on J ′ with h({p0}) = 1 and h({i}) ≤
|Πi| for every i ∈ J . In addition, if Z ′ is K-representable, then Γp0(Z ′, Π) is an
L-vector space access structure for every large enough finite extension L of K.
Moreover, if Γ is connected, the integer polymatroid Z ′ is univocally determined
by Γ .

3 Some Useful Integer Polymatroids

In order to find families of ideal multipartite access structures with the required
properties, we need to find families of integer polymatroids that are representable
over every large enough finite field and can be described in a compact way.
To this end, we describe in the following two families of integer polymatroids,
namely the Boolean and the uniform ones, and several operations to obtain new
polymatroids from some given ones.

3.1 Operations on Polymatroids

We begin by presenting two operations on polymatroids: the sum and the trun-
cation. The first one is a binary operation, while the second one is unitary.

The sum Z1 + Z2 of two polymatroids Z1,Z2 on the same ground set J and
with rank functions h1, h2, respectively, is the polymatroid on J with rank func-
tion h = h1 + h2. If Z1,Z2 are K-representable integer polymatroids, then their
sum is K-representable too. Clearly, if Z1 is represented by the vector subspaces
(Vi)i∈J of V and Z2 is represented by the vector subspaces (Wi)i∈J of W , then
the subspaces (Vi ×Wi)i∈J of V ×W form a representation of the sum Z1 +Z2.
If D1,D2 ⊆ ZJ

+ are the sets of independent vectors of Z1 and Z2, respectively,
then, as a consequence of [28, Theorem 44.6], the independent vectors of Z1 +Z2

are the ones in D1 + D2 = {u1 + u2 : u1 ∈ D1, u2 ∈ D2}. Therefore, the bases
of Z1 +Z2 are the vectors in B1 +B2, where B1,B2 ⊆ ZJ

+ are the families of the
bases of those polymatroids.

For an integer polymatroid Z on J with rank function h and a positive integer
t with t ≤ h(J), it is not difficult to prove that the map h′ defined by h′(X) =
min{h(X), t} is the rank function of an integer polymatroid on J , which is called
the t-truncation of Z. Observe that a vector x ∈ ZJ

+ is a basis of the t-truncation
of Z if and only if x is an independent vector of Z and |x| = t.
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3.2 Boolean and Uniform Polymatroids

We introduce here two families of integer polymatroids.
The Boolean polymatroids form the first one. They are very simple integer

polymatroids that are representable over every finite field. Consider a finite set
B and a family (Bi)i∈J of subsets of B. Clearly, the map h(X) =

∣∣⋃
i∈X Bi

∣∣
for X ⊆ J is the rank function of an integer polymatroid Z with ground set J .
A Boolean polymatroid is an integer polymatroid that can be defined in this
way. Boolean polymatroids are representable over every field K. If |B| = r, we
can assume that B is a basis of the vector space V = Kr. For every i ∈ J ,
consider the vector subspace Vi = 〈Bi〉. Obviously, these subspaces form a K-
representation of Z. The modular polymatroids are those having a modular rank
function, that is, h(X∪Y )+h(X∩Y ) = h(X)+h(Y ) for every X,Y ⊆ J . Every
integer modular polymatroid is Boolean, and hence it is representable over every
finite field. A Boolean polymatroid is modular if and only if the sets (Bi)i∈J are
disjoint. Observe that the rank function of an integer modular polymatroid is of
the form h(X) =

∑
i∈X bi for some vector b ∈ ZJ

+. Actually, this vector is the
only basis of such a polymatroid.

Proposition 3.1. Every truncation of a Boolean polymatroid is representable
over every large enough finite field.

Proof. For a field K and a positive integer t, we consider the map ψt : K →
Kt defined by ψt(x) = (1, x, . . . , xt−1). Observe that, for every t different field
elements x1, . . . , xt ∈ K, the set of vectors {ψt(xi) : i = 1, . . . , t} is linearly
independent. Let Z be a Boolean polymatroid with ground set J , take r = h(J),
and consider a field K with |K| ≥ r. Take B ⊆ K with |B| = r and a family
(Bi)i∈J of subsets of B such that h(X) =

∣∣⋃
i∈X Bi

∣∣ for every X ⊆ J . For a
positive integer t ≤ r and for every i ∈ J , consider the vector subspace Vi ⊆ Kt

spanned by the vectors in {ψt(x) : x ∈ Bi}. Clearly, these subspaces form a
K-representation of the t-truncation of the Boolean polymatroid Z. �
The second family that is introduced in this section is the one of the uniform
polymatroids. We say that a polymatroid Z with ground set J is uniform if
every permutation on J is an automorphism of Z. In this situation, the rank
h(X) of a set X ⊆ J depends only on its cardinality, that is, there exist values
0 = h0 ≤ h1 ≤ · · · ≤ hm, where m = |J |, such that h(X) = hi for every
X ⊆ J with |X | = i. It is easy to see that such a sequence of values hi defines a
uniform polymatroid if and only if hi − hi−1 ≥ hi+1 − hi for every i ∈ [1,m− 1].
Clearly, a uniform polymatroid is univocally determined by its increment vector
δ = (δ1, . . . , δm), where δi = hi − hi−1. Observe that δ ∈ Rm is the increment
vector of a uniform polymatroid if and only if δ1 ≥ · · · ≥ δm ≥ 0. A uniform
polymatroid is a matroid if and only if δi ∈ {0, 1} for every i = 1, . . . ,m. In this
case, we obtain the uniform matroid Ur,m, where r = max{i ∈ [1,m] : δi = 1}.
It is well known that Ur,m is K-representable whenever |K| ≥ m. Obviously, the
sum of uniform polymatroids is a uniform polymatroid whose increment vector
is obtained by summing up the corresponding increment vectors. The next result
was proved in [13].
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Proposition 3.2 ([13], Proposition 14). Every uniform integer polymatroid
is a sum of uniform matroids. In particular, every uniform integer polymatroid
with ground set J is representable over every field K with |K| ≥ |J |.

3.3 Multipartite Access Structures from Bases of Integer
Polymatroids

We present in the following a consequence of Theorem 2.2 that is very useful
in the search of new ideal multipartite access structures. Namely, we prove that
a multipartite access structure is ideal if its minimal vectors coincide with the
bases of a representable integer polymatroid. We need the following result, which
is a consequence of [11, Proposition 2.3].

Proposition 3.3 ([11]). Let Z be an integer polymatroid with ground set J and
let Λ be an access structure on J . Then there exists an integer polymatroid Z ′

on J ′ with h({p0}) = 1 and Z = Z ′|J such that Λ = Γp0(Z ′) if and only if the
following conditions are satisfied.

1. If X ⊆ Y ⊆ J and X /∈ Λ while Y ∈ Λ, then h(X) ≤ h(Y ) − 1.
2. If X,Y ∈ Λ and X ∩ Y /∈ Λ, then h(X ∪ Y ) + h(X ∩ Y ) ≤ h(X) + h(Y )− 1.

Proposition 3.4. Let Z be a K-representable integer polymatroid on J and let
Γ be a Π-partite access structure whose minimal vectors coincide with the bases
of Z. Then Γ is an L-vector space access structure for every large enough finite
extension L of K.

Proof. The access structure Λ = {X ⊆ J : h(X) = h(J)} and the integer poly-
matroid Z satisfy the conditions in Proposition 3.3. Moreover, for this particular
access structure, if Z is K-representable, then the integer polymatroid Z ′ whose
existence is given by Proposition 3.3 is L-representable for every large enough
finite algebraic extension L of K. Indeed, consider a K-vector space V and vec-
tor subspaces (Vi)i∈J forming a K-representation of Z. A representation of Z ′

is obtained by finding a vector v0 ∈ V such that v0 /∈∑i∈X Vi for every X ⊆ J
with h(X) < h(J). Since

∑
i∈X Vi �= V if h(X) < h(J), such a vector exists if K

is large enough. Finally, it is not difficult to check that the minimal vectors of
Γp0(Z ′, Π) coincide with the bases of Z. �

4 Compartmented Access Structures

4.1 Compartmented Access Structures with Upper and Lower
Bounds

Simmons [30] introduced compartmented access structures in opposition to the
hierarchical ones. Basically, compartmented access structures can be seen as a
modification of threshold access structures to be used in situations that require
the agreement of several parties. In a compartmented structure, all minimal
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qualified subsets have the same size, but other requirements are added about
the number of participants in every part, or the number of involved parts.

The first examples of compartmented access structures were introduced by
Simmons [30]. Brickell [8] introduced a more general family, the so-called com-
partmented access structures with lower bounds , and showed how to construct
ideal secret sharing schemes for them. These are the Π-partite access structures
defined by minΓ = {u ∈ P : |u| = t and u ≥ a} for some vector a ∈ ZJ

+ and
some positive integer t with t ≥ |a|. The compartmented access structures with
upper bounds are the Π-partite access structures with min Γ = {u ∈ P : |u| =
t and u ≤ b}, where b ∈ ZJ

+ and t ∈ Z+ are such that bi ≤ t ≤ |b| for every
i ∈ J . They were introduced by Tassa and Dyn [32], who constructed ideal secret
sharing schemes for them.

We introduce in the following a new family of compartmented access struc-
tures that generalize the previous ones. Namely, we prove that the compart-
mented access structures that are defined by imposing both upper and lower
bounds on the number of participants in every part are ideal.

For a positive integer t and a pair of vectors a, b ∈ ZJ
+ with a ≤ b ≤ Π(P ),

and |a| ≤ t ≤ |b|, and bi ≤ t, consider the Π-partite access structure Γ defined
by

minΓ = {x ∈ P : |x| = t and a ≤ x ≤ b}. (1)

The compartmented access structures with upper bounds and the ones with
lower bounds correspond to the compartmented access structures defined above
with a = 0 and with b = Π(P ), respectively. We prove in the following that the
access structures (1) are ideal by checking that they are of the form Γ0(Z ′, Π) for
a certain family of representable integer polymatroids. Given a positive integer
t and two vectors a, b ∈ ZJ

+ with a ≤ b and |a| ≤ t ≤ |b|, consider the vector
c = b − a ∈ ZJ

+ and the integer s = t − |a| ∈ Z+. Let Z1 be the integer
modular polymatroid defined by the vector a, and let Z2 be the s-truncation
of the integer modular polymatroid defined by the vector c. Then the integer
polymatroid Z = Z1 + Z2 is representable over every large enough finite field.
The family of bases of Z is B = {x ∈ ZJ

+ : |x| = t and a ≤ x ≤ b}. By
Proposition 3.4, this proves that the compartmented access structures of the
form (1) are vector space access structures over every large enough finite field.

4.2 Compartmented Compartments

We introduce next another family of compartmented access structures. In this
case, instead of an upper bound for every compartment, we have upper bounds
for groups of compartments. Take J = [1,m] × [1, n] and a partition Π =
(Πij)(i,j)∈J of the set P of participants. Take vectors a ∈ ZJ

+ and b ∈ Zm
+ ,

and an integer t with |a| ≤ t ≤ |b| and
∑n

j=1 aij ≤ bi ≤ t for every i ∈ [1,m].
Consider the Π-partite access structure Γ defined by

minΓ =

⎧⎨⎩x ∈ P : |x| = t, and a ≤ x, and
n∑

j=1

xij ≤ bi for every i ∈ [1,m]

⎫⎬⎭ .
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That is, the compartments are distributed into m groups and we have an upper
bound for the number of participants in every group of compartments, while we
have a lower bound for every compartment.

We prove next that these access structures admit a vector space secret sharing
scheme over every large enough finite field. Consider the vector c ∈ Zm

+ defined
by ci = bi −

∑n
j=1 aij and the integer s = t − |a| ∈ Z+. Let Z1 be the integer

modular polymatroid with ground set J defined by the vector a. Let Z3 the
integer polymatroid with ground set J and family of bases

B3 =

⎧⎨⎩x ∈ ZJ
+ :

n∑
j=1

xij = ci for every i ∈ [1,m]

⎫⎬⎭ ,

and let Z2 be the s-truncation of Z3. Finally, take Z = Z1 + Z2.

Lemma 4.1. The minimal qualified sets of Γ coincide with the bases of Z.

Proof. Let B and B2 be the families of bases of Z and Z2, respectively. The
bases of Z are precisely the vectors of the form x = a+ y with y ∈ B2. Observe
that a vector y ∈ ZJ

+ is in B2 if and only if |y| = s and
∑n

j=1 yij ≤ ci for every
i ∈ [1,m]. �
Lemma 4.2. The integer polymatroid Z is representable over every large enough
finite field.

Proof. We only have to prove that this holds for Z2. By Proposition 3.1, for every
large enough finite field K there exist subspaces (Vi)i∈[1,m] of a K-vector space
V that form a representation of the s-truncation of the modular polymatroid
with ground set [1,m] defined by the vector c. Then the subspaces (Wij)(i,j)∈J

of V with Wij = Vi for every j ∈ [1, n] form a representation of Z2. �

5 Ideal Partially Hierarchical Access Structures

5.1 Ideal Hierarchical Access Structures

For an access structure Γ on a set P , we say that a participant p ∈ P is hierar-
chically superior in Γ to a participant q ∈ P , and we write q ( p, if A∪{p} ∈ Γ
for every A ⊆ P � {p, q} with A ∪ {q} ∈ Γ . Two participants are hierarchically
equivalent if q ( p and p ( q. Observe that, if Γ is Π-partite, every pair of
participants in the same part Πi are hierarchically equivalent.

An access structure is hierarchical if every pair of participants are hierarchi-
cally comparable. In this situation, the hierarchical order ( is a total order on
Π . Weighted threshold access structures, which were introduced by Shamir [29]
in his seminal work, are hierarchical, but they are not ideal in general. The ideal
weighted threshold access structures were characterized by Beimel, Tassa and
Weinreb [3]. Other examples of hierarchical access structures are the the mul-
tilevel access structures introduced by Simmons [30], which were proved to be
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ideal by Brickell [8], and the hierarchical threshold access structures presented
by Tassa [31]. These were the only known families of ideal hierarchical access
structures before the connection between integer polymatroids and ideal mul-
tipartite secret sharing presented in [12] made it possible to characterize the
ideal hierarchical access structures [14]. Actually, all ideal hierarchical access
structures are obtained from a special class of Boolean polymatroids [14] and,
because of that, they are vector space access structures over every large enough
finite field. Moreover, they admit a very compact description, as we see in the
following.

Consider two sequences a = (a0, . . . , am) and b = (b0, . . . , bm) of integer
numbers such that a0 = a1 = b0 = 1 and ai ≤ ai+1 ≤ bi ≤ bi+1 for every
i ∈ [0,m − 1]. For i ∈ [0,m], take the subsets Bi = [ai, bi] of the set B =
[1, bm] and consider the Boolean polymatroid Z ′ = Z ′(a,b) with ground set
J ′ = [0,m] defined from them. It is proved in [14] (full version) that a vector
x ∈ P ⊆ Zm

+ is in the Π-partite access structure Γ = Γ0(Z ′, Π) if and only if
there exists i0 ∈ [1,m] such that

∑i0
j=1 xj ≥ bi0 , and

∑i
j=1 xj ≥ ai+1 − 1 for

all i ∈ [1, i0 − 1]. Therefore, the participants in Πi are hierarchically superior
to the participants in Πj if i ≤ j, and hence every access structure of the
form Γ0(Z ′(a,b), Π) is hierarchical. Moreover, every ideal hierarchical access
structure is of this form or it can be obtained from a structure of this form by
removing some participants [14].

In particular, if ai = 1 for all i ∈ [0,m] and 1 = b0 ≤ b1 < · · · < bm, then
x ∈ Γ0(Z ′(a,b), Π) if and only if

∑i0
j=1 xj ≥ bi0 for some i0 ∈ [1,m]. These

are precisely the multilevel access structures introduced by Simmons [30], also
called disjunctive hierarchical threshold access structures by other authors [31].
They were proved to be ideal by Brickell [8]. On the other hand, the conjunc-
tive hierarchical threshold access structures for which Tassa [31] constructs ideal
secret sharing schemes are obtained by considering 1 = a0 = a1 < · · · < am

and 1 = b0 < b1 = · · · = bm. In this case, x ∈ Γ0(Z ′(a,b), Π) if and only if∑i
j=1 xj ≥ ai+1 − 1 for all i ∈ [1,m − 1] and

∑m
j=1 xj ≥ bm. Observe that, in

an access structure in the first family, there may be qualified subsets involving
only participants in the lowest level. This is not the case in any access structure
in the second family, because every qualified subset must contain participants in
the highest level.

By using the results in [14], we can find other ideal hierarchical access struc-
tures with more flexible properties. If we take, for instance, a = (1, 1, 1, 5, 5) and
b = (1, 4, 6, 10, 12), every qualified subset in the hierarchical access structure
Γ0(Z ′(a,b), Π) must contain participants in the first two levels, but some of
them do not have any participant in the first level.

5.2 Partial Hierarchies from Boolean Polymatroids

Moreover, by considering other Boolean polymatroids, we can find other fam-
ilies of ideal access structures satisfying some given partial hierarchy, that is,
Π-partite access structures in which the hierarchical relation ( on Π is a partial
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order. We present next an example of such a family of ideal partially hierarchi-
cal access structures . Consider a family of subsets (Bi)i∈[0,m] of a finite set B
satisfying:

– |B0| = 1 and B0 ⊆ B1, while B0 ∩Bi = ∅ if i ∈ [2,m], and
– B1 ∩Bi �= ∅ for every i ∈ [2,m], and
– Bi ∩Bj = ∅ for every i, j ∈ [2,m] with i �= j.

Let Z ′ be the Boolean polymatroid with ground set J ′ = [0,m] defined from this
family of subsets, and consider the Π-partite access structure Γ = Γ0(Z ′, Π).
Take t1 = |B1| and ti = |Bi � B1|, and si = |Bi ∩ B1| for i ∈ [2,m]. Then a
vector x ∈ P is in the access structure Γ if and only if there exist a vector u ∈ P
such that

– u ≤ x,
– 1 ∈ supp(u) = X , |u| =

∑
i∈X ti,

– for every Y ⊆ X , |u(Y )| ≤∑i∈Y (ti + si), where s1 = 0.

Clearly, q ( p if p ∈ Π1 and q ∈ Πi for some i ∈ [2,m]. On the other hand,
any two participants in two different parts Πi, Πj with i, j ∈ [2,m] are not
hierarchically related.

5.3 Compartmented Access Structures with Hierarchical
Compartments

We can consider as well compartmented access structures with hierarchical com-
partments. Take J = [1,m] × [1, n] and a partition Π = (Πij)(i,j)∈J of the set
P of participants. Consider a finite set B and a family of subsets (Bij)(i,j)∈J

such that Bin ⊆ · · · ⊆ Bi2 ⊆ Bi1 for every i ∈ [1,m], and B11 ∪ · · · ∪Bm1 = B,
and Bi1 ∩ Bj1 = ∅ if i �= j. Let Z be the t-truncation of the Boolean poly-
matroid defined by this family of subsets. If Γ is a Π-partite access structure
such that its minimal vectors coincide with the bases of Z, then Γ is a vector
space access structure over every large enough finite field. We now describe Γ .
For (i, j) ∈ J , take bij = |Bij |. Consider the vector b = (b11, . . . , bm1) ∈ Zm

+ . Of
course, |b| = |B|. Suppose bi1 ≤ t ≤ |b| for every i ∈ [1,m]. It is not difficult to
check that a vector x ∈ ZJ

+ is a basis of Z, and hence a minimal vector of Γ , if
and only if |x| = t and

∑n
k=j xik ≤ bij for every (i, j) ∈ J . Observe that Γ can

be seen as a compartmented access structure with compartments Πi =
⋃n

j=1 Πij

for i ∈ [1,m], because every minimal qualified subset has exactly t participants,
and at most bi1 of them in compartment Πi. In addition, we have a hierarchy
within every compartment. Actually, q ( p if p ∈ Πij and q ∈ Πik with j ≤ k.

6 Ideal Uniform Multipartite Access Structures

Herranz and Sáez [16, Section 3.2] introduced a family of ideal multipartite access
structures that can be seen as a variant of the compartmented ones. Specifically,
given integers 1 ≤ k ≤ t, consider the Π-partite access structure defined by

Γ = {x ∈ P : |x| ≥ t and | supp(x)| ≥ k}. (2)
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It is proved in [16] that Γ is a vector space access structure over every large
enough finite field. Observe that the parts in the partition Π = (Πi)i∈J are
symmetrical in Γ . That is, the minimal vectors of Γ are invariant under any
permutation on J . In the following, we characterize all ideal multipartite access
structures with this property. We prove that all of them are vector space access
structures over every large enough finite field.

A Π-partite access structure Γ is said to be uniform if the set minΓ ⊆ ZJ
+

of its minimal vectors is symmetric, that is, if u = (ui)i∈J ∈ minΓ , then σu =
(uσi)i∈J ∈ minΓ for every permutation σ on J . In this section, we characterize
the uniform multipartite access structures that admit an ideal secret sharing
scheme. Moreover, we prove that all such access structures are vector space
access structures over every large enough finite field. This is done by using the
uniform integer polymatroids described in Section 3.2 to construct a family of
uniform multipartite access structures that admit a vector space secret sharing
scheme over every large enough finite field. Then we prove in Theorem 6.2 that
every ideal uniform multipartite access structure is a member of this family.

Let Z be a uniform integer polymatroid with increment vector δ on a ground
set J with |J | = m. For i ∈ [0,m], consider hi =

∑i
j=1 δj , the values of the rank

function of Z. Recall that the (k,m)-threshold access structure on J consists of
all subsets of J with at least k elements.

Lemma 6.1. For an integer k ∈ [1,m], there exists an integer polymatroid Z ′
k

on J ′ = J∪{p0} with h({p0}) = 1 and Z = Z ′
k|J such that Γp0(Z ′

k) is the (k,m)-
threshold access structure on J if and only if 1 ≤ k ≤ m− 1 and δk > δk+1, or
k = m and δm > 0.

Proof. If there exists a polymatroid Z ′ with the required properties, then the first
condition in Proposition 3.3 implies that hk−1 < hk, while hk+1 + hk−1 < 2hk if
1 ≤ k ≤ m−1 by the second one. Therefore, our condition is necessary. We prove
now sufficiency. Let Λ be the (k,m)-threshold access structure on J . Observe
that hk > hk−1 because δk > 0, and hence h(X) < h(Y ) if X ⊆ Y ⊆ J and
X /∈ Λ while Y ∈ Λ. Consider now two subsets X,Y ∈ Λ such that X ∩ Y /∈ Λ.
This implies in particular that k < m. Take r1 = |X | ≥ k, r2 = |Y | ≥ k, and
s = |X ∩ Y | < k. Then hr1+r2−s − hr2 =

∑r1−s
i=1 δr2+i <

∑r1−s
i=1 δs+i = hr1 − hs.

The inequality holds because k = s+i0 for some i0 ∈ [1, r1−s], and hence δs+i0 >
δr2+i0 . Therefore, h(X ∪Y )+h(X ∩Y ) < h(X)+h(Y ). By Proposition 3.3, this
concludes the proof. �
Consider an integer k ∈ [1,m] in the conditions of Lemma 6.1 and the corre-
sponding integer polymatroid Z ′

k. For a partition Π = (Πi)i∈J of a set P of
participants, consider the Π-partite access structure Γ = Γp0(Z ′

k, Π). A vector
v ∈ P is in Γ if and only if there exists a vector u with 0 ≤ u ≤ v such that

– s = | supp(u)| ≥ k and |u| = hs, and
– |u(Y )| ≤ hi for every i ∈ [1,m] and for every Y ⊆ J with |Y | = i.

As a consequence of the next lemma, Γ = Γp0(Z ′
k, Π) is a vector space access

structure over every large enough finite field. Moreover, every ideal uniform
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multipartite access structure is of this form. Due to space limitations, we skip
the proof of this result, which will be given in the full version of this paper.

Theorem 6.2. Let Π = (Πi)i∈J with |J | = m be a partition of a set P of
participants and let Γ be a uniform Π-partite access structure. Then Γ is ideal
if and only if there exist a uniform integer polymatroid Z on J and an integer k ∈
[1,m] in the conditions of Lemma 6.1 such that Γ = Γp0(Z ′

k, Π). In particular,
every ideal uniform multipartite access structure is a vector space access structure
over every large enough finite field.

The uniform multipartite access structures of the form (2) were proved to be
ideal in [16]. By using the previous characterization, we obtain a shorter proof
for this fact. Consider the uniform integer polymatroid Z on J with increment
vector δ defined by δ1 = t − k + 1, and δi = 1 if i ∈ [2, k], and δi = 0 if
i ∈ [k + 1,m]. Consider the integer polymatroid Z ′

k whose existence is given by
Lemma 6.1. We claim that every Π-partite access structure Γ of the form (2)
is equal to Γ (Z ′

k, Π). Indeed, a vector v ∈ P is in Γ (Z ′
k, Π) if and only if there

exists a vector u with 0 ≤ u ≤ v such that

– s = | supp(u)| ≥ k and |u| = hs = t, and
– |u(Y )| ≤ hi for every i ∈ [1,m] and for every Y ⊆ J with |Y | = i.

Since hi = t − k + i for every i ∈ [1, k], it is clear that every vector u ∈ P
satisfying the first condition satisfies as well the second one.

7 Efficiency of the Constructions of Ideal Multipartite
Secret Sharing Schemes

Several families of ideal multipartite access structures have been presented in the
previous sections. We proved that every one of these structures admits a vector
space secret sharing scheme over every large enough finite field. Our proofs are
not constructive, but a general method to construct vector space secret sharing
schemes for multipartite access structures that are associated to representable
integer polymatroids was given in [12]. Unfortunately, this method is not efficient,
and no general efficient method is known.

Some issues related to the efficiency of the constructions of ideal schemes for
several particular families of multipartite access structures have been consid-
ered [8,5,15,31,32]. We describe in the following a unified framework, derived
from the general results in [12], in which those open problems can be more
precisely stated.

Take J = [1,m] and J ′ = [0,m], and let (Πi)i∈J be a partition of the set P
of participants, where |Πi| = ni and |P | = n. Consider an integer polymatroid
Z ′ = (J ′, h) with ki = h({i}) ≤ ni for every i ∈ J and k0 = h({0}) = 1, and
take k = h(J ′). Consider as well a finite field K and a K-representation (Vi)i∈J′

of Z ′. In this situation, one has to find a matrix M = (M0|M1| · · · |Mm) over K

with the following properties:
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1. Mi is a k × ni matrix (n0 = 1) whose columns are vectors in Vi.
2. If u = (u0, u1, . . . , um) is a basis of Z ′, every k × k submatrix of M formed

by ui columns in every Mi is nonsingular.

As a consequence of the results in [12], every such a matrix M defines a vector
space secret sharing scheme for the multipartite access structure Γ0(Z ′, Π).

One of the unsolved questions is to determine the minimum size of the fields
over which there exists a vector space secret sharing scheme for Γ0(Z ′, Π). An
upper bound can be derived from [12, Corollary 6.7]. Namely, such a matrix M
exists if |K| > (n+1

k

)
. The best known lower bounds on |K| are linear on the

number of participants, and they can be derived from [1, Lemma 1.2] and other
known results about arcs in projective spaces. Even though very large fields
are required in general to find such a matrix by using the known methods, the
number of bits to represent the elements in the base field is polynomial on the
number of participants, and hence the computation of the shares and the the
reconstruction of the secret value can be efficiently performed in such a vector
space secret sharing scheme.

Another open problem is the existence of efficient methods to construct a
vector space secret sharing scheme for Γ = Γp0(Z ′, Π), that is, the existence of
polynomial-time algorithms to compute a matrix M with the properties above.
One important drawback is that no efficient method is known to check whether
a matrix M satisfying Property 1 satisfies as well Property 2. Moreover, this
seems to be related to some problems about representability of matroids that
have been proved to be co-NP-hard [26].

We discuss in the following some general construction methods that can be
derived from the techniques introduced in previous works [8,5,15,25,31,32] for
particular families of multipartite access structures.

The first method, which was used in [8,25] and other works, consists basically
in constructing the matrix M column by column, checking at every step that
all submatrices that must be nonsingular are so. Arbitrary vectors from the
subspaces Vi can be selected at every step, but maybe a wiser procedure is to take
vectors of some special form as, for instance, Vandermonde linear combinations
of some basis of Vi. In any case, an exponential number of determinants have to
be computed.

A probabilistic algorithm was proposed in [31,32] for multilevel and compart-
mented access structures. Namely, the vectors from the subspaces Vi are selected
at random. This method applies as well to the general case and the success prob-
ability is at least 1−(n+1

k

)
N |K|−1, where N =

∑
i∈J kini. By using this method,

a matrix M that, with high probability, defines a secret sharing scheme for the
given access structure can be obtained in polynomial time. Nevertheless, no ef-
ficient methods to check the validity of the output matrix are known.

Finally, we survey two different methods proposed by Brickell [8] and by
Tassa [31] for the hierarchical threshold access structures. Other related solu-
tions appeared in [5,15] for very particular cases of hierarchical threshold access
structures. To better understand these methods, let us consider first the case
of the threshold access structures. If the field |K| is very large, n+ 1 randomly
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chosen vectors from Kk will define with high probability an ideal (k, n)-threshold
scheme. Nevertheless, no efficient algorithm to check the validity of the output
is available. One can instead choose n+1 vectors of the Vandermonde form, and
in this case an ideal (k, n)-threshold scheme is obtained, and of course we can
check its validity in polynomial time. The solutions proposed in those works are
based on the same idea. Namely, the vectors from the subspaces Vi have to be
of some special form such that a matrix with the required properties is obtained
and, in addition, the validity of the output can be efficiently checked. The so-
lution proposed by Brickell [8] is not efficient because it requires to compute a
primitive element in an extension field whose extension degree increases with
the number of participants. The one proposed by Tassa [31, Section 3.3], which
works only for prime fields, provides a polynomial time algorithm to construct a
vector space secret sharing scheme for every hierarchical threshold access struc-
ture. The existence of similar efficient methods for other families of multipartite
access structures is an open problem.
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Abstract. Structure-preserving signatures are signatures whose public
keys, messages, and signatures are all group elements in bilinear groups,
and the verification is done by evaluating pairing product equations. It is
known that any structure-preserving signature in the asymmetric bilinear
group setting must include at least 3 group elements per signature and
a matching construction exists.

In this paper, we prove that optimally short structure preserving sig-
natures cannot have a security proof by an algebraic reduction that
reduces existential unforgeability against adaptive chosen message at-
tacks to any non-interactive assumptions. Towards this end, we present a
handy characterization of signature schemes that implies the
separation.

Keywords. Structure-Preserving Signatures, Algebraic Reduction, Meta-
Reduction.

1 Introduction

1.1 Background

When messages, signatures, and verification keys are elements of bilinear groups
and the signature verification is done by evaluating pairing product equations,
a signature scheme is called structure-preserving [2]. A structure-preserving sig-
nature (SPS for short) blends well with the Groth-Sahai non-interactive proof
system [24], and enables the construction of efficient cryptographic protocols
such as round-optimal blind signatures [4,2], traceable signatures [1], group en-
cryption [10], proxy signatures [2], and delegatable credential systems [17].
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The first SPS was presented in [23] as a feasibility result. A variation of
the Camenisch-Lysyanskaya signature scheme [9] introduced in [22] is an SPS
that is secure against random message attacks. Schemes in [10] and [16] are
efficient when signing a single group element, but their signature size grows
linearly in the size of the message. The scheme in [16] is called automorphic as
the message space includes its own public key, which is a useful feature in many
applications. [2] presented the first constant-size SPS whose signature consists of
7 group elements. Yet shorter signatures have been pursued since then, however,
[3] proved that any secure SPS in asymmetric bilinear groups requires at least 3
group elements. They presented a scheme matching the lower bound.

The 3-element SPS in [3] is based on a strong interactive assumption. They
also constructed a 4-element SPS with a restricted message space based on a non-
interactive assumption. It has been left as an open problem to find an optimal
SPS based on a non-interactive assumption.

1.2 Black-Box Separations

A fully black-box reduction from a primitive B to a cryptographic scheme A
is an algorithm R such that for any instance f of B and for any adversary E
against A, if E breaks Af then Rf,E breaks f . A black-box separation is to
show the absence of such an algorithm R. While there are number of non-black-
box techniques, e.g., [5], black-box separations are meaningful as a convincing
indication of the hardness of finding a reduction and as a guide to find a way to
get around it. For variations and more discussion we refer to [33].

Oracle separation and meta-reduction are widely used techniques in showing a
separation. Oracle separation is useful in showing the difficulty of constructing a
cryptographic scheme from a minimal primitive such as a one-way function. Since
black-box reductions relativise, showing the existence of an oracle that is useful
in breaking A but useless in breaking B implies absence of black-box reductions
from B to A. Since the seminal work by Impagliazzo and Rudich [26], numerous
results have been found using this approach. In most cases, primitives are simple
cryptographic objects such as one-way functions, and the schemes in question
are non-interactive ones such as collision-free hash function [34] or signature
schemes [20,14,13]. A recent work in [27] addresses more involved interactive
schemes, blind signatures, by extending this line of techniques.

In the Meta-reduction approach, initiated by [7,11], the proof of separation is
done by constructing an algorithm, a so-called meta-reduction, that uses a re-
duction as a black-box and solves a targeted problem, which can be the same as
or different from the primitive the reduction is supposed to break. The intuition
is that if a reduction is successful, the reduction breaks the underlying prim-
itive by itself without help from the adversary. Proofs for separation exploits
strong properties of the target schemes and underlying primitives. [15] exploits
the blindness property in constructing a meta-reduction separating three-move
blind signatures from non-interactive assumptions. In [32] a class of protocols,
constant-round sequentially witness-hiding special-sound protocols for unique
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witness relations, is separated from any standard assumptions. It includes some
practically important protocols such as Schnorr identification schemes.

Separation is often considered for limited classes of reductions. [31] assumes a
key-preserving property where the same RSA moduli are used in all oracle calls.
Later in [29] an assumption so-called instance non-malleability is introduced
to ease the limitation. A variation in prime-order groups appears in [28]. In
[7,11,30,8,19], a class of algorithms called algebraic reductions is considered. In
this class, yielding a new group element is limited so that it is possible to extract
its representation for relevant bases. As claimed in [7], the class of algebraic
reductions are not overly restrictive. In particular, for prime order groups, all
known efficient reductions fall into this class to the best of our knowledge.

1.3 Our Contribution

This paper shows that no algebraic reduction falls short in proving existential
unforgeability against adaptive chosen message attacks of 3-element SPS in type-
III bilinear groups [18] based on any non-interactive assumption. This gives a
partial justification for the existing 3-element schemes with interactive assump-
tions since algebraic algorithms, while covering all known reduction algorithms in
prime order groups, are not powerful enough to prove the security of a 3-element
SPS.

Our separation follows the meta-reduction paradigm. However, instead of
showing a monolithic proof that constructs a meta-reduction from scratch, we
present a handy characterization that separates a signature scheme from any
non-interactive assumptions. It facilitates the proofs, in particular when the re-
ductions are restricted to a class of algorithms where knowledge extraction is
given for free. The intuition behind our characterization is that if the signature
scheme in question forces a reduction algorithm to know some information, e.g.,
the signing-key itself, to simulate the signing oracle in the euf-cma game, and
this information is so essential that the adversary wins the game by seeing it,
then the reduction algorithm can break the assumption without help from the
adversary. Given the characterization, we show that such crucial information ex-
ists in any 3-element SPS when the reduction algorithm is algebraic. This gives
us our separation from non-interactive assumptions.

2 Preliminaries

2.1 Digital Signature Scheme

We consider signature schemes that works over a set of common parameters, say
GK . Concretely, there is a generator of the common parameters and the key
generation algorithm takes GK as input. Such an extended formulation is often
used in practical cryptographic protocols where many users share the group for
efficiency reasons.
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Definition 1 (Digital Signature Scheme). A digital signature scheme Sig is
a set of efficient algorithms (C,K,S,V). C is the common-parameter generator
that takes security parameter 1λ as input and outputs a common parameter GK.
K is the key generator that takes GK as input and outputs a signing-key SK and
verification-key VK. The keys include GK and the public-key defines a message
space Msp. S is the signature generation algorithm that computes a signature Σ
for input message M by using signing key SK . V is the verification algorithm
that takes VK, M , and Σ and outputs 1 or 0 that represent acceptance and
rejection, respectively.

A signature scheme must be correct, i.e., it is required that for any keys generated
by K and for any message in Msp, it holds that 1 = V(VK ,M,S(SK ,M)). It is
assumed that there exists an efficiently computable function TstVk that takes λ
and VK as input and checks the validity of VK such that if 0 ← TstVk(1λ,VK )
then V(VK , ∗, ∗) always returns 0, and if 1 ← TstVk(1λ,VK ) then the message
space Msp is well defined and it is efficiently and uniformly sampleable. A sig-
nature Σ is called invalid (with respect to VK and M), if 1 �= V(VK ,M,Σ).
Otherwise, it is called valid.

We use the standard notion of existential unforgeability against adaptive cho-
sen message attacks (euf-cma) [21] formally defined as follows.

Definition 2 (euf-cma). A signature scheme Sig = (C,K,S,V) is existentially
unforgeable against adaptive chosen message attacks if, for any A ∈ PPT, the
probability

Pr

⎡⎣GK ← C(1λ),
(VK ,SK ) ← K(GK ),
(M�, Σ�) ← AS(SK ,·)(VK )

: M� �∈ Q ∧ 1 ← V(VK ,M�, Σ�)

⎤⎦
is negligible in λ. Here, S(SK , ·) is a signing oracle that takes message M and
returns signatures Σ ← S(SK ,M). Q is the set of messages submitted to the
signing oracle.

2.2 Bilinear Groups

In this paper, let G be a generator of bilinear groups. It takes security parameter
1λ as input and outputs Λ := (p,G1,G2,GT , e) where

– p is a λ-bit prime,
– G1,G2,GT are groups of prime order p with efficiently computable group

operations, membership tests, and bilinear mapping e : G1 × G2 → GT ,
– ∀G ∈ G1 \ {1}, H ∈ G2 \ {1}, e(G,H) generates GT , and
– ∀A ∈ G1, ∀B ∈ G2, ∀x, y ∈ Z : e(Ax, By) = e(A,B)xy.

By generic operations, we mean the group operation, membership testing, and
bilinear mapping over the groups in Λ. In Type-III groups [18], no efficient
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isomorphisms are provided for either directions between G1 and G2. Throughout
this paper, group descriptions Λ always describe Type-III groups.

By G∗, we denote either G1 or G2 in Λ. For a vector of group elements
A := (A1, . . . , Ak) ∈ Gk

∗ and a vector of scalar values x := (x1, . . . , xk) ∈ Zk
p, we

define the notation Ax =
∏k

i=1 A
xi

i .

2.3 Structure Preserving Signatures

For a description of bilinear groups Λ = (p,G1,G2,GT , e), an equation of the
form ∏

i

∏
j

e(Ai, Bj)aij = Z

for constants aij ∈ Zp, Z ∈ GT , and constants or variables Ai ∈ G1, Bj ∈ G2 is
called a pairing product equation (PPE for short).

Definition 3 (Structure-Preserving Signatures). A signature scheme (C,K,
S,V) is called structure preserving with respect to bilinear group generator G if

– Common parameter GK consists of a group description Λ. Constants aij in
Zp are also included in GK if any,

– Verification-key VK includes Λ and group elements in G1, G2, and GT ,
– Messages M consists of group elements in G1 and G2,
– Signature Σ consists of group elements in G1 and G2, and
– Verification V evaluates membership in G1 and G2 and PPEs.

In a narrow sense, SPS might be limited to Z = 1 and VK excluding elements
in GT so that accompanying witness-indistinguishable Groth-Sahai proofs can
have the zero-knowledge property.

2.4 Algebraic Algorithms

An algorithm is called algebraic with respect to a group if it takes a vector
of elements X in the group and outputs a group element Y and there is a
corresponding algorithm called an extractor that can output the representation
of Y with respect to X. For instance, if the algebraic algorithm R takes A,B ∈
G∗ as input and outputs C ∈ G∗, then R’s extractor E outputs (a, b) such that
C = AaBb.

In the following, we give a formal definition of the minimal case where an
algorithm takes group elements from one group as input and outputs only one
group element.

Definition 4 (Algebraic Algorithm). Let R be a probabilistic polynomial
time algorithm that takes Λ, a string aux ∈ {0, 1}∗, and group elements X ∈ Gk∗
for some k and G∗ in Λ as input and outputs a group element in G∗ and a string
ext ∈ {0, 1}∗. R is called algebraic with respect to G if there exists E ∈ PPT
getting the same input as R including the same random coins such that for
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any Λ ← G(1λ) and all polynomial size X and aux, the following probability is
negligible in λ.

Pr
[

(Y, ext) ← R(Λ,X , aux ; r),
(y, ext) ← E(Λ,X , aux ; r) : Y �= Xy

]
.

Please note that unlike the case of the knowledge of exponent assumptions
[12,25,6] that assumes the presence of E for any malicious R, here we try to
capture the limitation of current technology in building reduction algorithms. It
is in fact easy to imagine an algorithm R that may not be algebraic as defined
above; R takes a string from aux and directly translates it as a group element in
G∗. For such R there may not be an efficient extractor E . However, a reduction
algorithm that chooses Y in this way will typically not be more useful than one
that chooses Y with a known discrete logarithm with respect to X . Accordingly,
we consider algorithms that compute on explicitly given group elements. We also
stress that we are only interested in capturing the structure of Y with respect to
the base X. It is possible that aux contains additional group elements and that R
returns group elements in ext for which we do not care to know a representation
with respect to X.

The above definition extends naturally to A that takes group elements from
both groups and outputs multiple group elements at the same time. Furthermore,
we note that algorithms that outputs no group elements can also be regarded
as algebraic by taking the identity as default output for such algorithms so that
extracting the representation is trivial. Trivial algorithms that output group
elements taken from inputs intact are algebraic, too.

The notion is also extended to oracle algorithms. Let (Y, ext)[X ′, aux ′] ←
R̄O(Λ,X, aux) denote an execution of R̄ accessing to oracle O where [X ′, aux ′]
denotes all inputs to R̄ given from (all invocations of) O. We say that oracle
algorithm R̄ is algebraic if there exists an algebraic algorithm R, and the com-
putation by R̄O is equivalent to the following sequence of computation. First set
X0 := X and aux 0 := aux . Run (Y 1, ext1||ω1) ← R(Λ,X0, aux0) and repeat

(X ′
i, aux ′

i) ← O(Λ,Y i, ext i),

Xi+1 := Xi||X ′
i, aux i+1 := ωi||aux ′

i

(Y i+1, ext i+1||ωi+1) ← R(Λ,Xi+1, aux i+1).

for i = 1 until state ωi+1 explicitly indicates termination and Y i+1 includes Y .
The extractor for R̄ is to compute (y, ext) ← EO(Λ,X, aux) that fulfills Y =
(X ′′)y for X ′′ = X ∪X ′. Such extractor can be constructed in straightforward
manner by using the extractor for R.

By Clsalb we denote the set of all algebraic algorithms with respect to G.

2.5 Non-interactive Hardness Assumptions

Intuitively, an assumption states that there is no algorithm A that is better
than any known (typically trivial) algorithm U , which, for example, selects its
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output uniformly from a proper domain. In fact, our formulation is so general
that it can capture too strong assumptions that never hold and too weak ones
that always hold. But it does not matter for our purpose since we are to show
the impossibility to reduce the security of a signature scheme to such (extreme)
assumptions.

Definition 5 (Non-interactive Hardness Assumptions). A non-interactive
problem consists of a triple of algorithms P = (I, V, U) where I ∈ PPT is an
instance generator, which takes 1λ and outputs a pair of an instance and a wit-
ness, (y, w), and V is a verification algorithm that takes y, w and an answer
x, and outputs 1 or 0 that represents acceptance or rejection, respectively. A
non-interactive hardness assumption for problem P is to assume that, for any
A ∈ PPT, the following advantage function Adv is negligible in λ.

AdvA(1λ) =Pr[(y, w) ← I(1λ), x← A(y) : 1 = V (y, x, w)]

− Pr[(y, w) ← I(1λ), x ← U(y) : 1 = V (y, x, w)] (1)

In search problems, U is typically set to an algorithm that returns constant ⊥
(or a random answer x when the domain is uniformly sampleable). In decision
problems, U typically returns 1 or 0 randomly so that the latter probability is
1/2.

As we are concerned with structure preserving signatures, we consider hard
problems that are defined over bilinear groups as follows.

Definition 6 (Hard Problem over G). A non-interactive problem P over
bilinear group generator G is a non-interactive problem such that

– instance generator I runs Λ ← G(1λ), and output y includes Λ, and
– there exists A that solves P with access to an oracle that solves the discrete

logarithm problem for the groups in Λ.

By NIP, we denote all non-interactive problems. Similarly, NIPG denotes NIP over
G. Throughout the paper, we simply say that algorithm A solves problem P if
advantage AdvA(1λ) is not negligible.

2.6 Black-Box Reduction and Meta-Reduction

When algorithm R is given A as black-box, denoted by RA, we mean that R
and A are given the same security parameter and A is given access to arbitrary
number of copies of A as oracles. Interaction between R and A can be done
in interleaving manner. If A is a randomized algorithm, A has random coins
inside and every copy uses the same randomness. The security parameter and
the random coins are out of the control of R.

For problem P and signature scheme Sig, R is a fully black-box reduction if,
for any (even inefficient) successful forger A for Sig, RA is successful in solving
P . By Sig ⇒R P , we mean that R is a black-box reduction from Sig to P . A
separation between Sig and P is to show that for Sig and P , there is no such R
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under hardness assumption for problem P ′. (The problem P ′ can be the same
as P to make the separation unconditional.) Note that R depends on Sig and P .
To claim that a class of hardness assumption falls short of proving the security
of any construction of a signature scheme in a class by any black-box reduction,
one need to show the absence of R for every signature and assumption in the
respective classes.

In the meta-reduction paradigm, a proof typically begin with constructing
a magic adversary A that is inefficient (or given access to powerful oracle) but
successful in breaking Sig so that RA works as expected. It then constructs meta-
reduction M that MR solves P ′. A major task of M is to efficiently emulate
A by rewinding R and/or exploiting special properties of R and Sig. If M is
successful in the emulation, MR can be seen as a polynomial-time algorithm
that solves P ′, which contradicts the assumed hardness of P ′.

3 Crucial Relation

If any algorithm that simulates signatures must “know” the secret key, the un-
forgeability of the signature scheme cannot be proven by black-box reduction to
any non-interactive assumption. We extend this idea in such a way that it is not
necessary to know the entire secret key but some crucial information is neces-
sary to conduct the simulation and sufficient to forge a signature if leaked to
the adversary. Informally, crucial information is a witness for a binary relation,
Ψ(θ,!), which we call crucial relation defined over signatures θ and some sen-
sitive information !. The relation requires three properties: every θ has exactly
one ! (uniqueness), whenever an entity is successful in producing signatures, it
is possible to extract ! from the entity (extractability), and ! is useful enough
to yield a forgery (usefulness). A crucial relation is defined with respect to a
class of algorithms, Cls ⊆ PPT to which the entity that generates θ belongs.

Let us first prepare some notations used in the formal definition. For a public
key VK , a sequence of messages M = {M1, . . . ,Mn} ∈ Mspn and signatures
Σ = {Σ1, . . . , Σn}, define V(θ) for θ := (VK ,M ,Σ) by a function that returns∏n

i=1 V(VK ,Mi, Σi).

Definition 7 (Crucial Relation). Let Sig = (C,K,S,V) be a signature scheme.
Let ! ∈ {0, 1}∗ and θ = (VK ,M ,Σ) ∈ {0, 1}∗. A relation Ψ(θ,!) is a cru-
cial relation for Sig with respect to a class of algorithms Cls if the following
properties are provided.

– (Uniqueness) For every θ := (VK ,M ,Σ) such that 1 = V(θ), there exists
exactly one (polynomial size) ! fulfilling 1 = Ψ(θ,!).

– (Extractability) For any R ∈ Cls, there exists E ∈ PPT and n > 0 such
that, for any VK ∈ {0, 1}∗ such that 1 ← TstVk(1λ,VK ), and any arbitrary
string ϕ in 1λ||{0, 1}∗, probability

Pr

⎡⎢⎢⎣
M←Mspn

Σ ← R(ϕ,M )
! ← E(ϕ,M )
θ := (VK ,M ,Σ)

: 1 = V(θ) ∧ 1 �= Ψ(θ,!)

⎤⎥⎥⎦ (2)
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is negligible in λ. The probability is taken over the choice of M and the
randomness given to R. The same randomness is given to E.

– (Usefulness) There exists an algorithm B ∈ PPT such that, for any θ :=
(VK ,M ,Σ) and ! that satisfies Ψ(θ,!) = 1, the following probability is
not negligible in λ.

Pr
[
(M,Σ) ← B(θ,!) : M �∈ M ∧ 1 = V(VK ,M,Σ)

]
Remarks:

- The intuition of extractability is that whenever ϕ is helpful for R in comput-
ing valid signatures, extractor E should be successful in extracting ! from
ϕ. This must hold even for non-legitimate VK as long as it is functional with
respect to the verification.

- For R that is successful only with negligible probability, E can be an empty
algorithm. So we only need to care for successful R that yields valid sig-
natures. In particular, conditioned that 1 = V(θ) happens with noticeable
probability, the conditional provability that 1 = Ψ(θ,!) is overwhelming.

- There may be many ϕ that make R produce the same Σ from the same VK
and M . Whichever ϕ is given, E must output the same !.

Let SIGCRCls denote signature schemes that has a crucial relation for a class of
algorithms, Cls. We require Cls be a class of algorithms in PPT that satisfies
the following trivial composition. For any A ∈ Cls, the following A′ is also in
Cls. A′ takes inputs, say aux1 and X1, . . . , Xn, and runs A as (aux i+1, Yi+1) ←
A(aux i, Xi) for i = 1, ..., n. A then picks some Yi whose index is in the list spec-
ified in aux 1. Obviously, algebraic algorithms are in such a class. The following
proof is given for such Cls.

Theorem 8. For any signature scheme Sig in SIGCRCls, for any non-interactive
problem P in NIP, there is no R ∈ Cls such that Sig ⇒R P if pseudo-random
functions exit.

Proof. Let O be a deterministic oracle that takes θ as input and returns !
that 1 = Ψ(θ,!) if it exists (otherwise return ⊥). Consider the following all-
powerful adversary A attacking Sig with access to O. Let f be a pseudo-random
function. Given VK as input, A selects a random key for f and checks if 1 ←
TstVk(1λ,VK ) (if not, A halts). Then it chooses M randomly from Mspn for
some constant n by using pseudo-randomness generated by f (VK ). Let M ←
Mspf (VK ) denote these steps. A then send M to the signing oracle (simulated by
R). After receiving n signatures, Σ, A aborts if Σ contains an invalid signature.
Otherwise,A callsO with input θ = (VK ,M ,Σ) and obtains!. It then executes
(M,Σ) ← B(VK ,M ,Σ, !) and outputs (M,Σ).

To verify that above AO is indeed a successful forger, consider that AO is
given legitimate VK and signatures generated by S(SK ,M). By correctness of
Sig and the uniqueness property, ! indeed exist and is uniquely defined. So O
returns !. Then due to the usefulness property, the output from B satisfies the
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predicates with probability not negligible in λ. Thus AO is a successful forger
against Sig.

Suppose that there exists R ∈ Cls that Sig ⇒R P holds. Since R is a
fully black-box reduction it must be successful with the above AO. Namely,
AdvRAO (1λ) as defined in Definition 5 is not negligible.

Without loss of generality, we assume that A outputs n messages as M at
once. We also assume, without loss of generality, that when R outputs something
for interaction it also outputs the internal state ϕ at that moment. Then R is
restarted taking ϕ and some data from the interaction as input.

We construct meta-reduction M that MR solves P . M emulates AO without
any oracles. By a session, we mean the conversation between R and a copy of
A initiated by R with input VK i to A. Every session is labelled by an index.
Given y ← I(1λ), M sets ϕ0 := y. Let BADSIG[i] be a flag that indicates the
presence of an invalid signature in i-th session. It is initialized to zero. M runs
R(ϕ0) and do as follows.

– If R outputs (ϕi,VK j) to invoke j-th copy of A, M checks TstVk(1λ,VK j)
and halt the session if it is not 1. Otherwise, M selects M j←Mspn

j (if the
same VK j has been observed before, say in session k, M uses the same
Mk instead), and resume R as R(ϕi||M j). Here Mspj is the message space
associated to VK j .

– If R outputs (ϕi, Σk,
) for existing session k, M checks if 1 = V(VK k,
Mk,
,Σk,
). If not, M sets BADSIG[k] to 1. It then continues as follows.
• If � < n, M continues by running R(ϕi).
• If � = n and BADSIG[k] = 0, then M extracts !k for this session

as follows. Let ϕi be the internal state that R outputs with VK k.
Let Mk′ be the last message R is given before outputting Σk,n. Let
ϕ′

i := ϕi||{Mk+1, . . . ,Mk′}. Let R′ be an algorithm associated to R
that computes Σk ← R′(ϕ′

i,Mk). R′ is a simple algorithm that parses
ϕ′

i into ϕi||{Mk+1, . . . ,Mk′}, runs R(ϕi,Mk), continue running R giv-
ing messages Mk+1, . . . ,Mk′ as input, and collects signatures Σk,i for
i = 1, . . . , n, and finally outputs Σk. As R is in Cls, so is R′ as assumed
to Cls. Due to the extractability property, there exists polynomial-time
E that computes !k for θk := (VK k,Mk,Σk). Thus, M runs E(ϕ′

i,Mk)
and obtains !k. As V(θk) = 1 holds, 1 = Ψ(θk, !k) holds except for neg-
ligible probability. M then invokes (M�

k, Σ
�
k) ← B(θk, !k) and runs

R(ϕi||(M�
k, Σ

�
k)) to continue.

– If R outputs x, then M outputs x and halts.

Let AdvP
MR(1λ) be the advantage of the above M in solving P . We show that

the difference |AdvP
RAO (1λ)−AdvP

MR(1λ)| is negligible. We start from MR and
modifies M slightly at a time. First replace truly random choice M j←Mspn

j with
pseudo-random one M ← Mspf (VK ). Call this modified algorithm M′. The loss
of the advantage by this modification is negligible due to the indistinguishability
of f . We prove that by constructing a distinguisher D for f as follows. D runs
(y, w) ← I(1λ) and emulate MR(y) as it is except that whenever M chooses
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Mk, D sends VK k to the challenger and obtains a string and use it as random
coins to generate Mk. It then returns Mk to R. When M terminates with
x, D outputs V (y, x, w). Obviously, if the strings from the challenger are truly
random, D emulates M. If, on the other hand, they are the output of f , D
emulates M′. Since the advantage of D, say Advf

D(1λ), is assumed negligible,
we have |AdvP

M(1λ) − AdvP
M′(1λ)| = Advf

D(1λ) < negl(λ).
Next replace extractor E with oracle O. Call this modified algorithm M′′. We

show that the loss of advantage by moving from M′ to M′′ is negligible. Let

Pr
[
M ← Mspn

j

! ← E
]

(3)

denote the probability presented in (2). We replace Mspn
j and E with Mspf and

O accordingly with trivial meaning. With this notation, the loss of advantage is
upper bound by

|AdvP
M′(1λ) − AdvP

M′′(1λ)| ≤
∣∣∣∣Pr
[

M ← Mspf

! ← E
]
− Pr

[
M ← Mspf

! ← O

]∣∣∣∣ . (4)

To evaluate the right hand of (4), first observe that∣∣∣∣Pr
[
M ← Mspn

j

! ← E
]
− Pr

[
M ← Mspf

! ← E
]∣∣∣∣ (5)

is negligible due to the indistinguishability of f . Also,∣∣∣∣Pr
[

M ← Mspn
j

! ← E
]
− Pr

[
M ← Mspn

j

! ← O

]∣∣∣∣ (6)

is negligible due to the extractability property. Finally observe that∣∣∣∣Pr
[
M ← Mspn

j

! ← O

]
− Pr

[
M ← Mspf

! ← O

]∣∣∣∣ (7)

is zero because oracle O never causes 1 �= Ψ(θ,!) if 1 = V(θ) due to the unique-
ness condition. Thus both probabilities in (7) are zero. Since (5) to (7) are all
negligible, we conclude that (4) is negligible, too.

Finally, observe that M′′ is identical to AO. Accordingly, |AdvP
RAO (1λ) −

AdvP
MR(1λ)| is negligible. Since R and E belongs to Cls ⊆ PPT and M only

performs operations that can be done in polynomial-time, the total running time
of M and R remains polynomial. Thus MR forms a polynomial-time algorithm
that solves P , which contradicts to the assumed hardness of P . �

4 Crucial Relation in Size-3 SPS

We consider the class of algebraic reductions that make oracle calls with keys
formed over over the groups for which it is defined as algebraic. This constraint
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plays a role when we construct an extractor for crucial relation based on the
extractor associated with the algebraic reduction. Since the extractor works only
for the groups the algebraic reduction is defined, so does the resulting extractor
for crucial relation. Since the crucial relation involves the verification keys, we
require all keys to be generated over the same groups the extractor works for.
We call such algorithms group-preserving algebraic reductions. This notion has
been used before in the literature, e.g., [19] and the constraint also has some
similarity to key-preservation [31] and instance non-malleability [29].

Theorem 9. There exists no group-preserving algebraic reduction that reduces
the existential unforgeability of an SPS scheme to hardness of any problem in
NIPG if signatures consist of three base group elements.

We prove Theorem 9 actually by proving the following lemma. Then applying
Theorem 8 completes the proof.

Lemma 10. Any SPS scheme with signature size 3 has a crucial relation with
respect to group-preserving algebraic algorithms.

We begin by recalling the result from [3] that any SPS scheme whose verification
consists of one pairing product equation, or whose signature consists only of G1

or G2 is not euf-cma. A signature scheme for signing multiple elements at once
can always be used to sign a single element by setting the other group elements
to 1. Without loss of generality, it therefore suffices to consider schemes whose
message consists of a single group element and where the signature consists
of 2 elements in one group and 1 element in the other. We will also consider,
without loss of generality, the case where the verification consists of two pairing
product equations. The result applies to schemes with more than two verification
equations as well and the proofs can be adopted with superficial changes.

Case of Σ ∈ G2
1 × G2.

In any SPS whose signature consists of 3 group elements, (R,S, T ) ∈ G2
1 × G2,

the verification predicate includes at least two pairing product equations that
can be reduced to the following general form.

e(R,U1 T
a1) e(S,U2 T

a2) e(M,U3 T
a3) e(U0, T

a4) = Z1 (8)

e(R, V1 T
b1) e(S, V2 T

b2) e(M,V3 T
b3) e(V0, T

b4) = Z2 (9)

The group elements except for M,R, S and T are taken from the public key, and
the constants in Zp are taken from the common parameters. For a message M
and a signature (R,S, T ), let ϕr, αr, ϕs, αs, and t be

R = GϕrMαr , S = GϕsMαs , and T = Ht. (10)

We consider ϕr, αr, ϕs, αs be variables that fulfill relations determined by (8),
(9) and (10). Let f1 and f2 be

f1 = αrm+ ϕr − r, and f2 = αsm+ ϕs − s (11)
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where small-case letters, r, s, and m, represents the discrete-logs (to base G)
of group elements denoted by corresponding large-case letters. (This convention
is used throughout this paper.) By replacing R and S in (8) with those in (10)
and taking the discrete-logs with respect to base e(G,H), we can represent (8)
as f3m+ f4 = 0 where

f3 = αr (u1 + a1 t) + αs (u2 + a2 t) + (u3 + a3 t), and (12)

f4 = ϕr (u1 + a1 t) + ϕs (u2 + a2 t) + u0 a4 t− z1. (13)

Similarly, (9) can be represented as f5m+ f6 = 0 where

f5 = αr (v1 + b1 t) + αs (v2 + b2 t) + (v3 + b3 t), and (14)

f6 = ϕr (v1 + b1 t) + ϕs (v2 + b2 t) + v0 b4 t− z2. (15)

Consider a system of equations Q := {f1 = 0, . . . , f6 = 0}. Focus on a non-
redundant part, e.g., f1 = f2 = f3 = f5 = 0 which is represented as⎛⎜⎜⎝

m 0 1 0
0 m 0 1

u1 + a1t u2 + a2t 0 0
v1 + b1t v2 + b2t 0 0

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
αr

αs

ϕr

ϕs

⎞⎟⎟⎠ =

⎛⎜⎜⎝
r
s

−(u3 + a3t)
−(v3 + b3t)

⎞⎟⎟⎠ . (16)

Let Kt denote the leftmost matrix in (16). It has rank 4, and

det(Kt) = (a1b2 − a2b1) t2 + (a1v2 + u1b2 − u2b1 − a2v1) t+ (u1v2 − u2v1).
(17)

If det(Kt) �= 0, there exists unique (αr, αs, ϕr, ϕs) that fulfills Q. Note that Q is
defined with respect to the public key and M and T .

Crucial Relation. Now we are ready to define a crucial relation as follows.
For VK = (GK , U0, U1, U2, U3, U4, V0, V1, V2, V3, V4) and θ = (VK ,M ,Σ), let
! = (αr, αs, G

ϕr , Gϕs , Ht). Relation Ψ(θ,!) returns 1 if there exists a valid
(M,R, S, T ) in θ such that

- T = Ht,
- (αr, αs, ϕr, ϕs) determined by ! fulfills Q w.r.t. VK and M , and
- (M,R, S, T ) is the first one in θ that det(Kt) �= 0.

Relation Ψ also returns 1 if det(Kt) = 0 for all (M,R, S, T ) in θ and ! = ⊥.
Note that the second condition implies R = GϕrMαr , S = GϕsMαs . Such ! is
extractable, unique, and useful as shown below.

Uniqueness. The first (M,Σ) with det(Kt) �= 0 is unique in θ (assuming that
signatures are stored in order) if it exists. Then, ! is uniquely determined for
such (M,Σ) from relation (16). When there is no (M,σ) with det(Kt) �= 0 exists
in θ, ! is also uniquely defined to ⊥. Accordingly, for any θ, there is unique !
such that Ψ(θ,!) = 1.
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Usefulness. Given ! that satisfies Ψ(θ,!) = 1, a valid signature for ar-
bitrary message can be created as follows. We first consider the case where
! = (αr, αs, G

ϕr , Gϕs , Ht) �= ⊥. Given ! and arbitrary message M�, compute
R� = (Gϕr )M�αr , S� = (Gϕs)M�αs , T � = (Ht). To see that Σ� = (R�, S�, T �)
is a valid signature for M�, observe that the first verification predicate (8) is

e(R�, U1T
a1) e(S�, U2T

a2) e(M�, U3T
a3) e(U0, U4T

a4)

= e(GϕrM�αr , Hu1+a1 t) e(GϕsM�αs , Hu2+a2 t)

e(M�, Hu3+a3 t) e(Gu0 , Hu4+a4 t)

= e(M�, H)f3 e(G,H)f4 .

It results in 1 since ! satisfies f3 = f4 = 0. The second predicate can be verified
in the same way. Thus, by choosing fresh M�, (R�, S�, T �) is a successful forgery.

We next consider the case of ! = ⊥. It means that det(Kt) = 0 holds for
all M and (R,S, T ) in θ. We then present a concrete attack as follows. First we
consider the case where (17) is not a zero polynomial. Since (17) is quadratic
in t, there are at most two T s for which det(Kt) = 0. Given θ including more
than three signatures, such T must appear more than once. Given two signa-
tures (M1, R1, S1, T ) and (M2, R2, S2, T ) in θ, the forger computes random linear
combination of the signatures as (M�, R�, S�) = (Mβ1

1 Mβ2
2 , Rβ1

1 Rβ2
2 , Sβ1

1 Sβ2
2 ) for

randomly chosen β1 and β2 that satisfies β1 +β2 = 1. Then (R�, S�, T ) is a valid
signature for M� that is random and fresh with high probability. (The forger
chooses messages that are not 1 to make sure M1 �= 1 or M2 �= 1 to get M�

uniform.) Next consider the case where (17) is a zero polynomial. Then we have
a1b2 = a2b1 and u1v2 = u2v1. Let δ1 and δ2 be

δ1 :=
b1
a1

=
b2
a2
, and δ2 :=

v1
u1

=
v2
u2
, (18)

which are defined to zero if any of a1, a2, u1 or u2 is zero. Then, from f3 = f5 = 0
in (12) and (14), we have(

u2 + a2 t

u1 + a1 t
− v2 + b2 t

v1 + b1 t

)
αs +

(
u3 + a3 t

u1 + a1 t
− v3 + b3 t

v1 + b1 t

)
= 0. (19)

The coefficient of αs in (19) is zero since det(Kt) = 0. Thus we have

u3 + a3 t

u1 + a1 t
− v3 + b3 t

v1 + b1 t
= 0. (20)

Since (20) holds for any t, we have

b3
a3

=
b1
a1

= δ1, and
v3
u3

=
v1
u1

= δ2. (21)

Similarly, from f4 = f6 = 0 in (13) and (15), we have

v0 b4
u0 a4

=
b1
a1

= δ1, and
z2
z1

=
v1
u1

= δ2. (22)
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From (18), (21) and (22), the second verification predicate (9) is

1 = e(Ra1Sa2Ma3Ua4
0 , T )δ1 · {e(R,U1) e(S,U2) e(M,U3)Z−1

1 }δ2 ,

and the first verification predicate (8) is

1 = e(Ra1Sa2Ma3Ua4
0 , T ) · {e(R,U1) e(S,U2) e(M,U3)Z−1

1 }.

If δ1 = δ2, the verification predicates are in a linear relation. Thus they shrink
into one predicate and the scheme is insecure. If δ1 �= δ2, the equations hold if
and only if

e(Ra1Sa2Ma3Ua4
0 , T ) = 1, and e(R,U1) e(S,U2) e(M,U3)Z−1

1 = 1.

The first equation implies either Ra1Sa2Ma3Ua4
0 = 1 or T = 1. For such a case,

the following attack succeeds. Request three or more signatures on randomly cho-
sen messages. Then find two signatures (M1, R1, S1, T1) and (M2, R2, S2, T2) such
that T1 = T2 = 1 or T1 · T2 �= 1. Then, linear combination of the two signatures
yields a new valid signature. That is, let (M�, R�, S�) = (Mβ1

1 Mβ2
2 , Rβ1

1 Rβ2
2 ,

Sβ1
1 Sβ2

2 ) for randomly chosen β1 and β2 that satisfies β1+β2 = 1. Then (M�, R�,
S�, T1) is a valid fresh signature. Keeping the condition on T1 and T2 in mind,
inspection is not hard and omitted. This concludes that a successful forgery is
possible even for the case of ! = ⊥.

Extractability. Observe that, for any algebraic algorithm that obtains M as
input and computes group element R, there exists an extractor that outputs
αr such that R = (Gϕr )Mαr where (Gϕr ) part is computed by multi-base ex-
ponentiation of group elements except for M . Similarly, the extractor outputs
αs such that S = (Gϕs)Mαs . Thus (α1, α2, ϕ1, ϕ2) determined uniquely from
extracted (α1, α2, G

ϕ1 , Gϕ2 , Ht) fulfills f1 and f2. We then claim that fi = 0
for i = 3, . . . , 6 also hold except for negligible probability. Otherwise, the al-
gorithm can be used to solve the discrete-logarithm problem between G and
M . As we can manipulate all group elements given to the algorithm so that all
their discrete-logarithms are known except for M , we can compute ϕr (and ϕs)
from the extracted exponents. Suppose that, without loss of generality, f3 �= 0
happens for M �= 1. Since f3m + f4 = 0 for valid signature, f4 �= 0 happens,
too. Thus equation f3m + f4 = 0 with non-zero f3 and f4 determine m. For
the case of f5 �= 0, use equation f5m+ f6 = 0 with non-zero f5 and f6 instead.
Accordingly, the extracted (α1, α2, G

ϕ1 , Gϕ2 , Ht) fulfills Qt with overwhelming
probability assuming the hardness of the discrete-logarithm problem in G1.

Since we can extract (α1, α2, G
ϕ1 , Gϕ2 , Ht) for allM and (R,S, T ) in θ, a ques-

tion is how to find the first one with det(Kt) �= 0 if it exists. It is done as follows.
Suppose that θ includes more than six valid signatures, say (Ri, Si, Ti) for Mi

for i = 1, . . . , q. Given corresponding αri and αsi that satisfies f1 = 0 and f2 = 0
from (12) and (13), one can solve the equations to obtain (u1, u2, u3, v1, v2, v3)
and every ti. Observe that, when (12) and (14) are to be zero, we can represent
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αri and αsi by

αri = {(u3 + a3 ti)(v2 + b2 ti) − (v3 + b3 ti)(u2 + a2 ti)}/det(Kti) , and

αsi = {(v3 + b3 ti)(u1 + a1 ti) − (u3 + a3 ti)(v1 + b1 ti)}/det(Kti).

If det(Kti) �= 0, pair (αri, αsi) is unique to ti. By using the extracted (u1, u2, u3,
v1, v2, v3) and ti in each signature, we can find the smallest index i∗ ∈ {1, . . . , q}
at which det(Kti∗ ) �= 0 with respect to (Mi∗ , Σi∗) ∈ M × Σ, and assign !
accordingly. If there is no such index, we set ! = ⊥. The success probability
of the extraction is overwhelming since the probability of the extractor for the
algebraic algorithm is overwhelming conditioned that given signatures are valid.

Case of Σ ∈ G1 × G2
2.

As well as the previous case, any SPS with signature (R,S, T ) ∈ G1 × G2
2 for

message M ∈ G1 verifies at least two pairing product equations that can be
reduced to the following form.

e(R,U1 T
a1Sb1) e(M,U2 T

a2Sb2) e(U3, T
a3) e(U4, S

b4) = Z1 (23)

e(R, V1 T
c1Sd1) e(M,V2 T

c2Sd2) e(V3, T
c3) e(V4, S

d4) = Z2 (24)

Let R = GϕrMαr . As before, we consider the relation in the exponent with
respect to base e(G,H). Then (23) and (24) are transformed as follows.

{αr(u1 + a1t+ b1s) + (u2 + a2t+ b2s)}m
+ ϕr(u1 + a1t+ b1s) + u3a3t+ u4b4s = z1 , and (25)

{αr(v1 + c1t+ d1s) + (v2 + c2t+ d2s)}m
+ ϕr(v1 + c1t+ d1s) + v3c3t+ v4d4s = z2. (26)

Consider a system of equations Q := {f1 = 0, . . . , f5 = 0} where fi is defined as

f1 = αrm+ ϕr − r, (27)

f2 = αr(u1 + a1t+ b1s) + (u2 + a2t+ b2s), (28)

f3 = ϕr(u1 + a1t+ b1s) + u3a3t+ u4b4s− z1, (29)

f4 = αr(v1 + c1t+ d1s) + (v2 + c2t+ d2s) , and (30)

f5 = ϕr(v1 + c1t+ d1s) + v3c3t+ v4d4s− z2. (31)

Note that, with the above definition, (25) and (26) can be written as f2m+f3 =
0 and f4m + f5 = 0, respectively. Also note that if u1 + a1t + b1s �= 0 or
v1 + c1t+ d1s �= 0, then αr is uniquely determined by Q.

Crucial Relation. For VK = (GK , G,H,U0, U1, U2, U3, V0, V1, V2, V3) and
θ = (VK ,M ,Σ), let ! = (αr, G

ϕr , Hs, Ht). Relation Ψ(θ,!) returns 1 if,
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- ! = ⊥, and there exists (M,R, S, T ) in θ for which u1 + a1t+ b1s = 0 and
v1 + c1t+ d1s = 0 hold, or

for the first (M,R, S, T ) in θ,

- R = GϕrMαr , S = Hs, and T = Ht hold, and
- (αr, ϕr) determined by ! fulfills Q with respect to VK , M , S, and T .

In the following, we show that such ! is unique, useful and extractable.

Uniqueness. If θ includes a signature that causes u1 + a1t + b1s = 0 and
v1 + c1t + d1s = 0, then ! must be ⊥ to have Ψ(θ,!) = 1. If θ does not, then
each element in ! is uniquely determined from the first (M,R, S, T ) in θ.

Usefulness. Given ! = (αr, G
ϕr , Hs, Ht), pick randomM� and compute R� =

GϕrM�αr , and set S� = Hs and T � = Ht. Then (M�, R�, S, T ) is a valid forgery.
If ! = ⊥ and Ψ(θ,!) = 1, we show that the scheme is insecure. Suppose that
(u1 + a1t+ b1s = 0 ∧ v1 + c1t+ d1s = 0) happens with respect to (M,R, S, T )
in θ. From (28) and (30), we have u2 + a2t+ b2s = 0 and v2 + c2t+ d2s = 0. It
results in U2 T

a2Sb2 = V2 T
c2Sd2 = 1 in (23) and (24). Thus, (M�, R, S, T ) is a

valid forgery.

Extractability. Given (M,R, S, T ), relation (u1 + a1t+ b1s = 0 ∧ v1 + c1t+
d1s = 0) can be verified by testing (U1T

a1Sb1 = 1 ∧ V1T
c1Sd1 = 1). If it

happens for any signature in θ, set ! = ⊥. Suppose, without loss of generality,
u1 + a1t + b1s �= 0 holds. Let (M,R, S, T ) be the first signature in θ. For any
algebraic algorithm that outputs (R,S, T ) for given M , there exists an extractor
that outputs αr such that R = GϕrMαr for some ϕr. As argued before, this αr

fulfills Q except for negligible probability if the discrete-logarithm problem in
G1 is hard. Thus outputting ! = (αr, G

ϕr , S, T ) completes the extraction.

5 Conclusion and Open Problems

Some ideas are suggested to get around our impossibility result. The first is to
resort to interactive assumptions as done for constructing 3-element scheme in
[3]. The second would be to go beyond the group-preserving algebraic reduction.
It however needs a number theoretic breakthrough to exploit an adversary that
works for a group with different prime order. More exotic approach is to find a
non-blackbox reduction that uses the adversary in non-blackbox manner. It also
needs a breakthrough technique to exploit the code of the adversary to handle
number-theoretic object like bilinear groups.

While this paper focused on particular type of bilinear groups due to its
importance, it is of interest to see whether similar result is obtained in other
settings. Since known 4-element schemes based on non-interactive assumptions
only sign messages in either of the base groups but not both, it would be worth
pursuing a 4-element scheme that signs group elements from both groups at the
same time, or to show the impossibility.
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Abstract. We provide constructions of (m, 1)-programmable hash func-
tions (PHFs) for m ≥ 2. Mimicking certain programmability properties
of random oracles, PHFs can, e.g., be plugged into the generic construc-
tions by Hofheinz and Kiltz (J. Cryptol. 2011) to yield digital signature
schemes from the strong RSA and strong q-Diffie-Hellman assumptions.
As another application of PHFs, we propose new and efficient construc-
tions of digital signature schemes from weaker assumptions, i.e., from
the (standard, non-strong) RSA and the (standard, non-strong) q-Diffie-
Hellman assumptions.

The resulting signature schemes offer interesting tradeoffs between
efficiency/signature length and the size of the public-keys. For example,
our q-Diffie-Hellman signatures can be as short as 200 bits; the signing
algorithm of our Strong RSA signature scheme can be as efficient as the
one in RSA full domain hash; compared to previous constructions, our
RSA signatures are shorter (by a factor of roughly 2) and we obtain a
considerable efficiency improvement (by an even larger factor). All our
constructions are in the standard model, i.e., without random oracles.

Keywords: digital signatures, RSA assumption, q-DH assumption,
programmable hash functions.

1 Introduction

Digital Signatures are one of the most fundamental cryptographic primitives.
They are used as a building block in numerous high-level cryptographic proto-
cols. Practical signature schemes are known whose security is based on relatively
mild intractability assumptions such as the RSA [6] or the (bilinear) Computa-
tional Diffie-Hellman (CDH) assumption [13]. However, their security can only
be proved in the random oracle model [5] with all its limitations (e.g., [17,26]).

Standard Model Signatures. Signature schemes in the standard model (i.e.,
without using random oracles) are often considerably less efficient or based on
much stronger assumptions. While tree-based signature schemes can be built
from any one-way function [48], these constructions are far from practical. On the
other hand, “Hash-and-sign” signatures are considerably more efficient, but the

D.H. Lee and X. Wang (Eds.): ASIACRYPT 2011, LNCS 7073, pp. 647–666, 2011.
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most efficient of these schemes rely on specific “strong” number theoretic hard-
ness assumptions which we call Strong q-assumptions.1 In Strong q-assumptions,
an adversary is provided with a polynomial number of random “solved instances”
and has to compute a new solved instance of its choice. For example, the schemes
in [23,29,28,36,38,50] are based on the Strong (or, Flexible) RSA assumption
and the schemes in [11,38,50] are based on the Strong q-Diffie-Hellman assump-
tion. Both assumptions are considerably stronger than their “non-strong” coun-
terparts (i.e., the q-Diffie-Hellman and the RSA assumptions, respectively), in
which an adversary has to solve a given, fixed instance. (See the full version
of this paper [34] for a discussion of the exact difference between strong and
non-strong assumptions.)

Programmable Hash Functions. In order to mimic certain “programma-
bility properties” of random oracles, Hofheinz and Kiltz [38] introduced the
combinatorial concept of programmable hash functions (PHF). (See Section 3
for a formal definition.) Among a number of other applications, they used PHFs
as a building block for efficient and short hash-and-sign signatures based on the
Strong RSA and the Strong q-Diffie-Hellman assumptions. Concretely, signa-
tures in the Strong RSA based HK signature scheme SigRSA[H] are of the form
sig(M) = (H(M)1/e mod N, e), where N = pq is a public RSA modulus, H(·) is
a (m, 1)-PHF, and e is a short prime (chosen at random during the signing pro-
cess). A given HK signature (σ, e) is verified by checking if σe = H(M) mod N .
The efficiency of the HK signature scheme is dominated by the time needed to
generate the prime e, which (as shown in [38]) depends on the parameter m
of the PHF: the bigger m, the smaller e and consequently the more efficient is
the signing process.2 Over bilinear groups there exists a similar construction,
SigS-q-DH[H], whose security is based on the Strong q-DH assumption. The main
disadvantages of HK signatures is that their security relies on Strong assump-
tions, i.e., on the Strong RSA (Strong q-DH) and not on the standard RSA
(q-DH) assumption.

RSA signatures. As a step towards practical signatures from the (standard)
RSA assumption, Hohenberger and Waters [40,39] proposed the first hash-and-
sign signature scheme (HW signatures) whose security is based on the RSA
assumption. HW signatures are computed as sig(M) = g1/P(M) mod N , where
g ∈ Z∗

N is a public element and P(M) = e1 · . . . · e|M| is the product of |M |
distinct primes. Here each prime ei is uniquely determined by the i-bit prefix
M|i of the message M , and for each generation of ei a number of primality
tests have to be executed which is the dominant running time of signing (and
verifying). The above signature scheme is only weakly secure under the RSA

1 There are exceptions, e.g., by Waters [53] (CDH assumption in bilinear groups), Ho-
henberger and Waters [40], and the lattice-based schemes [18,14] (SIS assumption).
However, these are not among the most efficient “Hash-and-sign”-type schemes.

2 We stress that the PHF parameter m does not directly correspond to the number
of signatures that can be created during the security reduction. Rather, m indicates
how many collisions of (honestly generated) e-values we can handle in the reduction.
Hence, the larger m is, the smaller e can be chosen.
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assumption, and a chameleon hash has to be used to make it fully secure, thereby
doubling the signature size to two elements from ZN and adding ≈ 2kbit to the
public-key size [39]. The main disadvantage of HW signatures is, however, the
generation and testing of the |M | primes e1, . . . , e|M| necessary to compute the
hash function P(M). Concretely, for k = 80 bits security, HW signatures need
to generate |M | = 160 random primes for the signing process.

1.1 Summary of Our Contributions

As the main technical contribution we propose several new constructions of
(m, 1)-PHFs for any m ≥ 1. In particular, we solve the open problem posed
in [38] of constructing deterministic (m, 1)-PHFs for m > 2. Even though our
main applications are digital signatures we remark that PHFs are a very general
framework for designing and analyzing cryptographic protocols in the Diffie-
Hellman and RSA setting. For example, in [38], it was shown that PHFs imply
collision-resistant hash functions and lead to elegant and simple proofs of Wa-
ters’ IBE and signature schemes [53] and its countless variants (e.g., [15,7]). More
importantly, a large body of cryptographic protocols with security in the stan-
dard model are using — implicitly or explicitly — the partitioning trick that is
formalized in PHFs. To mention only a few examples, this ranges from collision-
resistant hashing [20,4], digital signature schemes [12,53] (also in various flavors
[47,51,8]), chosen-ciphertext secure encryption [15,41,35,37,14], identity-based
encryption [9,10,42,18,1], attribute-based encryption [49] to symmetric authen-
tication [43]. We expect that our new PHF constructions can also be applied to
some of the mentioned applications.

We also show how to use our new (m, 1)-PHFs for generic constructions of
short yet efficient hash-and-sign signatures whose security is based on weaker
hardness assumptions: the q-DH and the RSA assumption. Whereas our q-DH
schemes Sigq-DH[H] are (to the best of our knowledge) the first hash-and-sign
schemes from this assumption, our RSA schemes SigRSA[H] and SigRSA[H] are
conceptually different from HW signatures and we obtain a considerable effi-
ciency improvement. A large number of new signature schemes with different
tradeoffs can be derived by combining the generic signature schemes with PRFs.
An overview of the efficiency of some resulting schemes and a comparison with
existing schemes from [23,29,11,38,40] is provided in Table 1. Our new schemes
offer different tradeoffs between signature size, efficiency, and public-key size.
The bigger the parameter m in the (m, 1)-PHF, the larger the public-key size,
the shorter the signatures. To obtain extremely short and/or efficient signatures,
the size of the public key can get quite large. Concretely, with a public-key
of size 26mbit we obtain 200 bit signatures from the (Strong) q-DH assump-
tion. These are the shortest knwon standard-model digital signatures in bilinear
groups. Remarkably, SigSRSA[Hcfs] which instatiates the Strong RSA signatures
from [38] with our new (m, 1)-PHF Hcfs for m ≥ 6, results in a hash-and-sign
signature scheme where the signing procedure is dominated by one single modu-
lar exponentiation. This is the first RSA-based signature scheme whose signing
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complexity is not dominated by generating random primes.3 Hence signing is
essentially as efficient as RSA full-domain-hash [6] with the drawback of a huge
public-key.

While these short signatures are mostly of theoretical interest and contribute
to the problem of determining concrete bounds on the size of standard-model
signatures, we think that in certain applications even a large public-key is tol-
erable. In particular, our public key sizes are still comparable to the ones of
recently proposed lattice-based signatures [46,30,18,14].

We note furthermore, that it is possible to apply efficiency improvements
from [40] to our RSA-based schemes as well. This allows us to reduce the number
of primality tests required for signing and verification sigificantly. More precisely,
it is possible to transform each signature scheme requiring λ primality tests into
a scheme which requires only λ/c primality tests, at the cost of loosing a factor
of 2−c in the security reduction. For example, Sig∗RSA[HWeak]§ with m = 11 and
c = 40 is a RSA-based signature scheme which requires only a single primality
test for signing and verification, at the cost of loosing a factor of 2−40 in the
security reduction.

1.2 Details of Our Contributions

Our main technical contribution to obtain shorter signatures are several new
constructions of (m, 1)-PHFs for m ≥ 2 (cf. Table 2 in Section 3). Using cover-
free sets, we construct a deterministic (m, 1)-PHF Hcfs with public parameters
of O(km2) group elements. This solves the problem from [38] of constructing
deterministic (m, 1)-PHFs for m > 2. We remark that cover-free sets were al-
ready used in [25,33,22] to construct identity-based encryption schemes. Fur-
thermore, we propose a randomized (m, 1)-PHF Hrand with public parameters
of O(m2) group elements and small randomness space. Finally, we construct
a weakly secure deterministic (m, 1)-PHF HWeak with public parameters of m
group elements. The latter PHF already appeared implicitly in the context
of identity/attribute-based encryption [19,49] (generalizing [9]). Weakly secure
PHFs only yield weakly secure signature schemes that need to be “upgraded”
to fully secure schemes using a chameleon hash function.

RSA Signatures. Our new RSA signatures SigRSA[H] are of the form

sig(M) = (H(M)1/P(s) mod N, s), (1)

where s is a short random bitstring, H(·) is a (m, 1)-PHF, and P(s) := e1 · . . . ·e|s| is
the product of |s| primes e1, . . . , e|s|, where the ith prime is uniquely determined by
the ith prefix s|i of the randomness s. (If the PHFH is probabilistic, sig additionally
contains a small randombitstring r.)Our securityproof is along the lines of [38], but

3 Since the complexity of finding a random μ-bit prime with error 2−k is O(kμ4), we
expect that for μ ≈ 60 (or, equivalently, using Hcfs with m ≥ 6) a full exponentiation
modulo a 1024-bit integer become roughly as expensive as generating a random μ-bit
prime.
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Table 1. Signature sizes of different schemes. Rows with grey background indicate
new results from this paper. The chosen parameters provide unforgeability with k =
80 bits of security after revealing maximally q = 230 signatures. RSA signatures are
instantiated with a modulus of |N | = 1024 bits, Bilinear signatures in asymmetric
pairings using a BN curve [3] with log p = 160 bits. (In this, we actually ignore the
multiplicative reduction loss between a forger and, e.g., an RSA adversary.) We assume
that elements in G1 can be represented by |G1| = 160 bits, while an element G2 by
|G2| = 320 bits. The description of the bilinear group/modulus N is not counted in the
public key. We assume 2k = 160-bit messages in order to provide k=80 bits of security
(to sign longer messages, we can apply a collision-resistant hash function first). The
efficiency column counts the dominant operations for signing. For Bilinear and RSA
signatures this counts the number of modular exponentiations, for RSA signatures
k×Pμ counts the number of random μ-bit primes that need to be generated to evaluate
function P(·). (For μ � 60, 1 × Pμ takes more time than 1 × Exp.) ∗The RSA-based
chameleon hash function from [39] (which builds upon [2]) was used (adding 1× |ZN |
to signature size). §Security reduction loses an additional factor of 240.

Signature scheme Assumption Sig. Size Efficiency PK size

Waters [53] CDH 320 2× Exp 26k

Boneh-Boyen [11] Strong q-DH 320 1× Exp 640
SigS-q-DH[HWat] [38] Strong q-DH 230 1× Exp 26k
SigS-q-DH[Hcfs] (m=8) Strong q-DH 200 1× Exp 26m

Sigq-DH[HWat,HWat] (m=2) q-DH 230 1× Exp 48k
Sigq-DH[Hcfs,HWat] (m=8) q-DH 200 1× Exp 26m

Cramer-Shoup [23] Strong RSA 2208 1× P160 3k
Gennaro et. al.∗ [29] Strong RSA 2048 1× P160 3k
SigSRSA[HWat] [38] Strong RSA 1104 1× P80 128k
SigSRSA[Hcfs] (m=6) Strong RSA 1068 ≈ 1× Exp 94m
Sig∗

SRSA[HWeak] (m=6) Strong RSA 2092 ≈ 2× Exp 9k

Hohenberger-Waters∗ [40] RSA 2048 160× P1024 3k
Sig∗

RSA[HWeak] (m=2) RSA 2048 70× P1024 5k
Sig∗

RSA[HWeak] (m=4) RSA 2048 50× P1024 7k
SigRSA[HWat] (m=2) RSA 1094 70× P1024 128k
SigRSA[Hrand] (m=4) RSA 1214 50× P1024 32k
SigRSA[Hcfs] (m=4) RSA 1074 50× P1024 40m

Sig∗
RSA[HWeak]

§
(m=11) RSA 2048 1× P1024 14k

using P enables a reduction to the RSA assumption (Theorem 7) in the standard
model. The main conceptual novelty is that we apply P to the randomness s rather
than the messageM as in HW signatures. Because the values s are relatively small,
our scheme is considerably more efficient than that of [40].

Concretely, the length of s is controlled by the PHF parameter m as |s| =
log q+ k/m, where q is an upper bound on the number of signatures the scheme
supports. (See the full version [34] for a formal argument.) For k = 80 bits
security and q = 230 (as recommended in [6]) we can make use of our new
constructions of (m, 1)-PHFs with m ≥ 2. For example, with a (4, 1)-PHF, the
bitstring s can be as small as 50 bits which leads to very small signatures. More
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importantly, since the function P(s) only has to generate |s| distinct primes
e1, . . . , e|s| (compared to |M | * |s| primes in HW signatures), the signing and
verification algorithms are considerably faster. The drawback of our new signa-
ture scheme is that the system parameters of H grow with m.

Bilinear Signatures. Our new q-DH signatures Sigq-DH[H] are of the form

sig(M) = (H(M)1/d(s), s), (2)

where again s is a short random bitstring, H is a (m, 1) programmable hash
function, and d(·) is a special (secret) function mapping bitstrings to Zp. Since
D(s) := gd(s) can be computed publicly, verification is done by using the proper-
ties of the bilinear group. Security is proved under the q-DH assumption in the
standard model. Similar to our RSA-based signatures the length of s is controlled
by the PHF parameter m. For example, for m = 8 we obtain standard-model
signatures of size |G| + |s| = 160 + 40 = 200 bits. We have to refer to the full
version [34] for details.

Full-Domain Hash Signatures. We remark that full-domain hash signa-
ture schemes over a homomorphic domain (e.g., RSA-FDH [6] and BLS sig-
natures [13]) instantiated with (m, 1)-PHFs provide efficient m-time signature
schemes without random oracles. This nicely complements the impossibility re-
sults from [26] who show that without the homomorphic property this is not
possible. We remark that an instantiation of RSA-FDH as a m-time signature
scheme was independently observed in [24].

Proof Techniques and Related Work. Our RSA-based signature scheme
represents a combination of techniques from [38] and [40]. Namely, in the basic
RSA-based signature scheme from [38], a signature is of the form (H(M)1/s mod
N, s) for a prime s. The use of a programmable hash function H enables very
efficient schemes, whose security however cannot be reduced to the standard
(non-strong) RSA problem, since a forged signature (H(M)1/s∗

, s∗) corresponds
to an RSA inversion with adversarially chosen exponent s∗. On the other hand,
the (basic, weakly secure) signature scheme from [40] is of the form g1/P(M) mod
N . The special structure of P (which maps a message M to the product of |M |
primes) makes it possible to prove security under the standard RSA assumption.
However, since P is applied to messages (i.e., 160-bit strings), evaluation of P
requires a large number of primality tests. We combine the best of both worlds
with signatures of the form (H(M)1/P(s) mod N, s) for short (e.g., 40-bit) random
strings s. In contrast to the scheme of [40], this directly yields a fully secure
signature scheme, so we do not need a chameleon hash function.

In the security proof of our RSA signatures we distinguish between two types
of forgers: type I forgers recycle a value from {s1, . . . , sq} for the forgery, where
the si’s are the random bitstrings used for the simulated signatures; type II
forgers use a new value s∗ �∈ {s1, . . . , sq} for the forgery and therefore are more
difficult to reduce to the RSA assumption. For the reduction of type II forgers to
the RSA assumption we can use a clever “prefix-guessing” technique from [40]
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to embed the prime e from the RSA challenge in the function P(·) such that
the product P(s∗) contains e.4 Similar to the proof of HK signatures [38], the
reduction for Type I forgers makes use of the (m, 1) programmability of H(·).

Strong q-DH signatures from [38] can actually be viewed as our q-DH signa-
tures from (2) instantiated with the special function d(s) = x+s (where x is part
of the secret-key). In our scheme, the leverage to obtain security from q-DH is
that the function D(s) := gd(s) acts as a (poly, 1)-PHF. That is, d(·) can be setup
such that (with non-negligible probability) d(si) = x + a(si) for a(si) �= 0 but
d(s∗) = x, where s1, . . . , sq is the randomness used for the generated signatures
and s∗ is the randomness used for the forgery.

1.3 Open Problems

A number of interesting open problems remain. We ask how to construct (de-
terministic) (m, 1)-PHFs for m ≥ 1 with smaller parameters than the ones from
Table 2. Since the constructions of cover free sets are known to be optimal up to
a log factor, a new method will be required. Furthermore, obtaining truely prac-
tical signatures from the RSA or factoring assumption is still an open problem.
In particular, we ask for a construction of hash-and-sign (strong) RSA signatures
that do not require the generation of primes at signing.

2 Preliminaries

For k ∈ N, we write 1k for the string of k ones, and [k] for {1, . . . , k}. Moreover,
|x| denotes the length of a bitstring x, while |S| denotes the size of a set S.
Further, s $← S denotes the sampling a uniformly random element s of S. For
an algorithm A, we write z $← A(x, y, . . .) to indicate that A is a (probabilistic)
algorithm that outputs z on input (x, y, . . .).

2.1 Digital Signatures

A digital signature scheme Sig = (Gen, Sign,Vfy) consists of three algorithms.
Key generation Gen generates a keypair (pk, sk) $← Gen(1k) for a secret signing
key sk and a public verification key pk. The signing algorithm Sign inputs a
message and the secret signing key, and returns a signature σ

$← Sign(sk,m)
of the message. The verification algorithm Vfy takes a verification key and a
message with corresponding signature as input, and returns b ← Vfy(pk,m, σ)
where b ∈ {accept, reject}. We require the usual correctness properties.

4 More precisely, when simulating a type II forger, the values s1, . . . , sq are known
in advance to the simulator. Since s∗ �∈ {s1, . . . , sq} there is some prefix s∗|i of s∗

that is different from all prefixes of s1, . . . , sq. We can guess the smallest such prefix
such that the simulator knows s∗|i from the forgery at the beginning. This knowledge
can be used to embed e from the RSA challenge in the function P(·) such that the
product P(s∗) contains e.
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Let us recall the existential unforgeability against chosen message attacks
(EUF-CMA) security experiment [31], played between a challenger and a forger
F .
1. The challenger runs Gen to generate a keypair (pk, sk). The forger receives

pk as input.
2. The forger may ask the challenger to sign a number of messages. To query

the i-th signature, F submits a message mi to the challenger. The challenger
returns a signature σi under sk for this message.

3. The forger outputs a message m∗ and signature σ∗.
F wins the game, if accept← Vfy(pk,m∗, σ∗), that is, σ∗ is a valid signature

for m∗, and m∗ �= mi for all i. We say that F (t, q, ε)-breaks the EUF-CMA
security of Sig, if F runs in time t, makes at most q signing queries, and has
success probability ε. We say that Sig is EUF-CMA secure, or Sig is fully secure,
if ε is negligible for any probabilistic polynomial-time algorithm F .

We also say, that a scheme is weakly secure, if it meets the above security defi-
nition, but the adversary can not choose the messages to be signed adaptively.
Instead it has to commit to a list m1, . . . ,mq before seeing the public key. There
exist efficient generic techniques to convert a weakly secure signature scheme
into a fully secure one, e.g., using chameleon hashes [44].

2.2 Prime Numbers, Factoring, and the RSA Assumption

For x ∈ N let π(x) denote the number of primes between 0 and x. The following
lemma is a direct consequence of Chebyshev’s bounds on π(x) (see [32], for
instance).

Lemma 1. x
log2 x < π(x) < 2x

log2 x

We say that a prime p is a safe prime, if p = 2p′+1 and p′ is also prime. Let p and
q be two randomly chosen k/2-bit safe primes, and let N = pq. Let e ∈ Zφ(n)

be a random integer, relatively prime to φ(N). We say that an algorithm A
(t, ε)-breaks the RSA assumption, if A runs in time t and

Pr[y1/e $← A(N, e, y)] ≥ ε.

We assume that there exists no algorithm that (t, ε)-breaks the RSA assumption
with polynomial t and non-negligible ε.

We denote with QRN the group of quadratic residues moduloN . The following
lemma, which is due to Shamir [52], is useful for the security proof of the generic
RSA-based signature scheme described in Section 4.

Lemma 2. There is an efficient algorithm that, on input y, z ∈ ZN and integers
e, f ∈ Z such that gcd(e, f) = 1 and ze ≡ yf mod n, computes x ∈ ZN satisfying
xe ≡ y mod N .

2.3 Generalized Birthday Bound

Although not explicitly stated, the following lemma is implicit in [36]. We will
apply it several times in the security proofs for our generic signature schemes.
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Lemma 3. Let A be a set with |A| = a. Let X1, . . . , Xq be q independent random
variables, taking uniformly random values from A. Then the probability that there
exist m+ 1 pairwise distinct indices i1, . . . , im+1 such that Xi1 = · · · = Xim+1 is
upper bounded by qm+1

am .

3 Programmable Hash Functions

3.1 Definitions

Let G = (Gk) be a family of groups, indexed by security parameter k ∈ N. We
omit the subscript when the reference to the security parameter is clear, thus
write G for Gk.

A group hash function H over G with input length l = l(k) consists of
two efficient algorithms PHF.Gen and PHF.Eval. The probabilistic algorithm
κ

$← PHF.Gen(1k) generates a hash key κ for security parameter k. Algorithm
PHF.Eval is a deterministic algorithm, taking as input a hash function key κ and
X ∈ {0, 1}l, and returning PHF.Eval(κ,X) ∈ G.

Definition 1. We say that a group hash function H = (PHF.Gen,PHF.Eval) is
(m,n, γ, δ)-programmable, if there is an efficient trapdoor generation algorithm
PHF.TrapGen and an efficient trapdoor evaluation algorithm PHF.TrapEval with
the following properties.
1. The probabilistic algorithm (κ, τ) $← PHF.TrapGen(1k, g, h) takes as input

group elements g, h ∈ G, and produces a hash function key κ together with
trapdoor information τ .

2. For all generators g, h ∈ G, the keys κ, κ′, where κ
$← PHF.Gen(1k) and

κ′ $← PHF.TrapGen(1k, g, h), are statistically γ-close.
3. On input X ∈ {0, 1}l and trapdoor information τ , the deterministic trapdoor

evaluation algorithm (aX , bX) ← PHF.TrapEval(τ,X) produces aX , bX ∈ Z

so that for all X ∈ {0, 1}l,

PHF.Eval(κ,X) = gaXhbX

4. For all g, h ∈ G, all κ generated by κ
$← PHF.TrapGen(1k, g, h), and all

X1, . . . , Xm ∈ {0, 1}l and Z1, . . . , Zn ∈ {0, 1}l such that Xi �= Zj for all i, j,
we have

Pr[aX1 = · · · = aXm = 0 and aZ1 , . . . , aZn �= 0] ≥ δ,

where (aXi , bXi) = PHF.TrapEval(τ,Xi), (aZj , bZj ) = PHF.TrapEval(τ, Zj),
and the probability is taken over the trapdoor τ produced along with κ.

We also say that H is (m,n)-programmable for short, if γ is negligible and δ is
noticeable. If H is (1, q)-programmable for every polynomial q = q(k), then we
say that H is (1, poly)-programmable.

In settings in which the group order is hidden, we will use a refinement of the
PHF definition:
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Definition 2. A group hash function H = (RPHF.Gen,RPHF.Eval) is evasively
(m,n, γ, δ)-programmable, if it is (m,n, γ, δ)-programmable as in Definition 1,
but with the strengthened requirement
4’. For all prime numbers e with 2l < e ≤ |G|, all g, h ∈ G, and all κ gen-

erated by κ
$← PHF.TrapGen(1k, g, h), and all X1, . . . , Xm ∈ {0, 1}l and

Z1, . . . , Zn ∈ {0, 1}l such that Xi �= Zj for all i, j, we have

Pr[aX1 = · · · = aXm = 0 and gcd(aZ1 , e) = · · · = gcd(aZn , e) = 1] ≥ δ.

Here aXi and aZj denote the output of the trapdoor evaluation algorithm
(aXi , bXi) = PHF.TrapEval(τ,Xi) and (aZj , bZj ) = PHF.TrapEval(τ, Zj), and
the probability is taken over the trapdoor τ produced along with κ.

Hofheinz and Kiltz [36] have also introduced the notion of randomized pro-
grammable hash functions. A randomized group hash function H with input
length l = l(k) and randomness space R = (Rk) consists of two efficient al-
gorithms RPHF.Gen and RPHF.Eval. Algorithm RPHF.Gen is probabilistic, and
generates a hash key κ $← RPHF.Gen(1k) for security parameter k. The determin-
istic algorithm RPHF.Eval takes randomness r ∈ Rk and X ∈ {0, 1}l as input,
and returns a group element RPHF.Eval(κ,X) ∈ G.

Definition 3. Let H = (RPHF.Gen,RPHF.Eval) be a randomized group hash
function. We say that H is (m,n, γ, δ)-programmable, if there are efficient algo-
rithms RPHF.TrapGen, RPHF.TrapEval, and RPHF.TrapRand such that:
1. The probabilistic algorithm RPHF.TrapGen(1k, g, h) takes as input group el-

ements g, h ∈ G, and produces a key κ and trapdoor τ . For all generators
g, h ∈ G, the keys κ $← RPHF.Gen(1k) and κ′ $← RPHF.TrapGen(1k, g, h) are
statistically γ-close.

2. The deterministic trapdoor evaluation algorithm takes as inputX ∈ {0, 1}l and
r ∈ Rk, and produces two functions (aX(·), bX(·)) ← RPHF.TrapEval(τ,X, r)
such that for all X ∈ {0, 1}l,

RPHF.Eval(κ,X, r) = gaX(r)hbX (r).

3. On input of trapdoor τ , X ∈ {0, 1}l, and index i ∈ [m], the RPHF.TrapRand
algorithm produces r ← RPHF.TrapRand(τ,X, i) with r ∈ Rk. For all g, h ∈
G, all κ generated by (κ, τ) $← PHF.TrapGen(1k, g, h), all X1, . . . , Xm, and
rXi = RPHF.TrapRand(τ,Xi, i), we require that the rXi are independent and
uniformly distributed random variables over Rk.

4. For all g, h ∈ G and all κ generated by (κ, τ) $← PHF.TrapGen(1k, g, h), all
X1, . . . , Xm ∈ {0, 1}l and Z1, . . . , Zn ∈ {0, 1}l such that Xi �= Zj, and for
all r̃1, . . . , r̃n ∈ Rk and rXi ← RPHF.TrapRand(τ,Xi, i), we have

Pr[aX1(rX1 ) = · · · = aXm(rXm ) = 0 and aZ1(r̃1), . . . , aZn(r̃n) �= 0] ≥ δ,

where the aXi and aZj are the output of the trapdoor evaluation (aXi , bXi) =
RPHF.TrapEval(τ,Xi, rXi) and (aZj , bZj ) = PHF.TrapEval(τ, Zj , r̃j), and the
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Table 2. Overview of our constructions of (randomized/weak) programmable hash
functions. Rows with grey background are new constructions from this paper.

Name Type Param. (m,n) Size of κ Randomness

HWat [53,36] (§ 3.2) PHF (1, poly) and (2, 1) (l + 1)× |G| —
Hcfs (§ 3.3) PHF (m, 1) (16m2l + 1) × |G| —
Hrand (§ 3.4) RPHF (m, 1) (2m2 + 1)× |G| {0, 1}l
HWeak (§ 3.5) weak PHF (m, 1) (m+ 1)× |G| —

probability is taken over the trapdoor τ produced along with κ. Here Xi may
depend on Xj and rXj for j < i, and the Z1, . . . , Zn may depend on all Xi

and ri.
Again we omit γ and δ, if γ is negligible and δ is noticeable. Randomized eva-
sively programmable hash functions are defined as in Definition 2.

In the remainder of this Section we propose a number of new PHFs offering
different trade-offs. Our results are summarized in Table 2.

3.2 Multi-generator Programmable Hash Function

The programmable hash function described in Definition 4 below was (implicitly)
introduced in [53]. An explicit analysis can be found in [36].

Definition 4. Let G = (Gk) be a group family, and l = l(k) be a polynomial.
Let HWat = (PHF.Gen,PHF.Eval) be defined as follows.
– PHF.Gen(1k) returns κ = (h0, . . . , hl), where hi

$← Gk for i ∈ [l].
– On input X = (x1, . . . , xl) ∈ {0, 1}l and κ = (h0, . . . , hl), PHF.Eval(κ,X)

returns

PHF.Eval(κ,X) = h0

l∏
i=1

hxi

i .

Theorem 1 (Theorem 3.6 of [36]). For any fixed polynomial q = q(k) and
any group with known order, HWat is evasively (1, q, 0, O(1/(q

√
l)))-programmable

and (2, 1, 0, O(1/l))-programmable hash function.

Although evasive programmability was not introduced in [36], it follows from
their proof, since the values of aZj that occur there are bounded in the sense
|aZj | < 2l. We remark that Theorem 1 also carries over to groups of unknown
order.

3.3 A New Deterministic Programmable Hash Function

Let S, T be sets. We say that S does not cover T , if T �⊆ S. Let d,m, s be
integers, and let F = (Fi)i∈[s] be a family of s subsets of [d]. We say that F is
m-cover free, if for any set I containing (up to) m indices I = {i1, . . . , im} ⊆ [s],
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it holds that Fj �⊆ ⋃i∈I Fi for any j which is not contained in I. In other words,
if |I| ≤ m, then the union

⋃
i∈I Fi is not covering Fj for all j ∈ [s] \ I. We say

that F is w-uniform, if |Fi| = w for all i ∈ [s].

Lemma 4 ([27,45]). There is a deterministic polynomial-time algorithm that,
on input of integers m, s = 2l, returns d ∈ N and set family F = (Fi)i∈[s] such
that F is m-cover free over [d] and w-uniform, where d ≤ 16m2l and w = d/4m.

In the following we will associate X ∈ {0, 1}l to a subset Fi, i ∈ [s], by inter-
preting X as an integer in the range [0, 2l − 1], and setting i = X + 1. We will
write FX to denote the subset associated to X .

Definition 5. Let G = (Gk) be a group family, and l = l(k) and m = m(k) be
polynomials. Let s = 2l, d = 16m2l, and w = d/4m. We define a hash function
Hcfs = (PHF.Gen,PHF.Eval) be as follows.
– PHF.Gen(1k) returns κ = (h1, . . . , hd), where hi

$← Gk for 1 ≤ i ≤ d.
– Let FX ⊆ [d] be the subset associated to X ∈ [0, 2l − 1]. On input X and
κ = (h1, . . . , hd), PHF.Eval(κ,X) returns

PHF.Eval(κ,X) =
∏

i∈FX

hi.

Theorem 2. Let G = Gk be a group of known order p. Hcfs is an evasively
(m, 1, γ, δ)-programmable hash function with γ = 0 and δ = 1/(16m2l).

Proof. Consider the following algorithms.
– PHF.TrapGen(1k, g, h) samples d uniformly random integers b1, . . . , bd

$← Zp

and an index t
$← [d]. Then it sets ht = ghbt , and hi = hbi for all i ∈ [1, d]

with i �= t. PHF.TrapGen returns (κ, τ) with τ = (t, b1, . . . , bd) and κ =
(h1, . . . , hd).

– On input (τ,X), PHF.TrapEval sets bX =
∑

i∈FX
bi, and aX = 1 if t ∈ FX ,

and aX = 0 if t �∈ FX , and returns (aX , bX).
PHF.TrapGen outputs a vector of independent and uniformly distributed group
elements, thus we have γ = 0. Fix X1, . . . , Xm, Z ∈ [0, 2l − 1]. Since F is a
m-cover free set family, there must be an index t′ such that t′ �∈ ⋃m

i=1 FXi ,
but t′ ∈ FZ . Since t is picked uniformly random among 16m2l possibilities, we
have t = t′, and thus aXi = 0 and aZ = 1, with probability δ = 1/(16m2l).
Finally, aZ = 1 implies gcd(aZ , e) = 1 for all primes e, thus Hcfs is evasively
programmable.

Theorem 2 can be generalized to groups of hidden order. The proof proceeds
exactly like the proof of Theorem 2, except that we have to approximate the
group order. E.g., for the group of quadratic residues QRn, we can sample random
exponents bi

$← Zn2 . This way, we can sample nearly uniform (1/
√
n-close) group

elements hi = hbi , which yields the following theorem.

Theorem 3. Let G = QRn be the group of quadratic residues modulo n =
pq, where p and q are safe distinct primes. Hcfs is a (m, 1, γ, δ)-evasively pro-
grammable hash function over G with γ = d/

√
n and δ = 1/(16m2l).
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3.4 A Randomized Programmable Hash Function

In [38] a randomized (2, 1)-PHF was described which we now generalize to a
randomzied (m, 1)-PRF, for any m ≥ 1.

Definition 6. Let G = (Gk) be a group family, and m = m(k) be a polynomial.
In the following, let [X ]2l ∈ Z denote a canonical interpretation of a field element
X ∈ F2l as an integer between 0 and 2l − 1. We assume that X and [X ]2l are
efficiently computable from one another. Let Hrand = (PHF.Gen,PHF.Eval) be
defined as follows.
– RPHF.Gen(1k) returns a uniformly sampled κ = (h0, (hi,j)(i,j)∈[2m]×[m]) ∈

G2m2+1.
– RPHF.Eval(κ,X ; r) parses X, r ∈ F2l , and computes and returns

RPHF.Evalκ(X ; r) = h0

m∏
i,j=1

h
([iX+r]2l)

j

i,j .

Theorem 4. For any group G of known order, Hrand is evasively (m, 1, 0, 1/2)-
programmable. For the group G = QRN of quadratic residues modulo N = pq
for safe distinct primes p and q, the function Hrand is evasively (m, 1, (2m2 +
1)/

√
N, 1/2)-programmable.

The proof is given in the full version of this paper [34].

3.5 A Weak Programmable Hash Function

Essentially, a weak programmable hash function is a programmable hash function
according to Definition 1, except that the trapdoor generation algorithm receives
a list X1, . . . , Xm ∈ {0, 1}l as additional input. On the one hand this allows us
to construct significantly more efficient deterministic programmable hash func-
tions, while on the other hand our generic signatures schemes are only weakly
secure when instantiated with weak programmable hash functions. Fully secure
signature schemes can be obtained by applying a generic conversion from weak to
full security, for instance using chameleon hashes [44] which can be constructed
based on standard assumptions like discrete logarithms [44], RSA [2,21,39], or
factoring [44].

Definition 7. A group hash function is a weak (m,n, γ, δ)-programmable hash
function, if there is a (probabilistic) algorithm PHF.TrapGen and a (determinis-
tic) algorithm PHF.TrapEval such that:
1. (κ, τ) $← PHF.TrapGen(1k, g, h,X1, . . . , Xm) takes as input group elements

g, h ∈ G and X1, . . . , Xm ∈ {0, 1}l, and produces a hash function key κ
together with trapdoor information τ .

2.-4. Like in Definition 1.
As before, we may omit γ and δ, if γ is negligible and δ is noticeable. Weak
evasively programmable hash functions are defined as in Definition 2.
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Interestingly, there is a very simple way to construct a randomized pro-
grammable hash function according to Definition 3 from any weak programmable
hash function. Let us now describe our instantiation of a weak (evasively) pro-
grammable hash function. This PHF already appeared implicitly in [19,49] and
[9] for m = 1.

Definition 8. Let G = (Gk) be a group family, and l = l(k) and m = m(k) be
polynomials. Let HWeak = (PHF.Gen,PHF.Eval) be defined as follows.
– PHF.Gen(1k) returns κ = (h0, . . . , hm), where hi

$← Gk for i ∈ {0, . . . ,m}.
– On input X ∈ {0, 1}l and κ = (h0, . . . , hm), PHF.Eval(κ,X) returns

PHF.Eval(κ,X) =
m∏

i=0

h
(Xi)
i .

Here we interpret the l-bit strings Xi, i ∈ [m], as integers in the canonical
way.

Theorem 5. Let G = Gk be a group of known order p. HWeak is a weak evasively
(m, 1, γ, δ)-programmable hash function with γ = 0 and δ = 1.

Again we can generalize Theorem 5 to groups of hidden order. The proof proceeds
exactly like the proof of Theorem 5, except that we have to approximate the
group order. For the group of quadratic residues QRn, we can sample the random
exponents bi from Zn2 for i ∈ [0,m], which yields the following theorem.

Theorem 6. Let G = QRN be the group of quadratic residues modulo N = pq,
where p and q are safe distinct primes. HWeak is a (m, 1, γ, δ)-programmable hash
function over G with γ = (m+ 1)/

√
N and δ = 0.

4 Signatures from the RSA Problem

4.1 Construction

Let l = l(k) and λ = λ(k) be polynomials. Let H = (PHF.Gen,PHF.Eval) be
group hash functions over G = QRN with input length l. We define the signature
scheme SigRSA[H] = (Gen, Sign,Vfy) as follows.

Gen(1k): The key generation algorithm picks two large safe k/2-bit primes p
and q, and sets N = pq. Then it generates a group hash function key κ

$←
PHF.Gen(1k) for the group QRN . Finally it chooses a random key K for the
pseudorandom function PRF : {0, 1}∗ → {0, 1}r and picks c $← {0, 1}r, where
r = %logN&. These values define a function F as

F(z) = PRFK(μ||z) ⊕ c,

where μ, called the resolving index of z, denotes the smallest positive integer
such that PRFK(μ||z)⊕ c is an odd prime. Here ⊕ denotes the bit-wise XOR
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operation, and we interpret the r-bit string returned by F as an integer in
the obvious way. (The definition of F is the same as in [40]. It is possible
to replace the PRF with an 2k2-wise independent hash function [16].) The
public key is pk = (n, κ,K, c), the secret key is sk = (pk, p, q).

In the following we will write H(M) shorthand for PHF.Eval(κ,M), and define
P : {0, 1}λ → N as P(s) =

∏λ
i=1 F(s|i), where s|i is the i-th prefix of s, i.e., the

bit string consisting of the first i bits of s. We also define s|0 = ∅, where ∅ is the
empty string, for technical reasons.

Sign(sk,M): On input of secret key sk and message M ∈ {0, 1}l, the signing
algorithm picks s $← {0, 1}λ uniformly random and computes

σ = H(M)1/P(s) mod N,

where the inverse of P(s) is computed modulo the order φ(n) = (p−1)(q−1)
of the multiplicative group Z∗

N . The signature is (σ, s) ∈ ZN × {0, 1}λ.
Vfy(pk,M, (σ, s)): On input of pk , message M , and signature (σ, s), return

accept if
H(M) = σP(s) mod N.

Otherwise return reject.

Correctness. If σ = H(M)1/P(s), then we have σP(s) = H(M)P(s)/P(s) = H(M).

Theorem 7. Let PRF be a (ε′′, t′′)-secure pseudo-random function and H be a
(m, 1, γ, δ)-evasively programmable hash function. Suppose there exists a (t, q, ε)-
forger F breaking the existential forgery under adaptive chosen message attacks
of SigRSA[H]. Then there exists an adversary that (t′, ε′)-breaks the RSA assump-
tion with t′ ≈ t and ε is bounded by

(q + 1)λ
(

4r2

δ

(
ε′ +

r

l · 2r−l−1

)
+ 3ε′′ +

r(q + 1)2λ2 + 2r + 1
2r

+ γ +
1

2r−l

)
+
qm+1

2mλ

We only give a brief proof outline here, and refer to the full version [34] for
details. As customary in proofs for similar signature schemes (e.g., [23,28,36]),
we distinguish between Type I and Type II forgers. A Type I forger forges a
signature of the form (M∗, σ∗, s∗) with s∗ = si for some i ∈ [q]. (That is, a
Type I forger reuses some si from a signature query.) A Type II forger returns
a signature with a fresh s∗.

It will be easiest to first describe how to treat a Type II forger F . Recall
that we need to put up a simulation that is able to generate q signatures
(Mi, σi, si)i∈[q] for adversarially chosen messages Mi. To do this, we choose all
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si in advance. We then prepare the PHF H using PHF.TrapGen, but relative to
generators g and h for which we know P(si)-th roots. (That is, we set g := ĝE

and h = ĥE for E :=
∏

i P(si).) This allows to generate signatures for F ; also,
by the security of the PHF H, this change goes unnoticed by F . However, each
time F outputs a new signature, it essentially outputs a fresh root g1/P(s∗) of g,
from which we can derive a P(s∗)-th root of ĝ. To construct an RSA adversary
from this experiment, we have to embed an auxiliary given exponent e into the
definition of P, such that ĝ1/P(s∗) allows to derive ĝ1/e. This can be done along
the lines of the proof of the Hohenberger-Waters scheme [40]. Concretely, for
initially given values si and e, we can set up P such that (a) e does not divide
any P(si), but (b) for any other fixed s∗, the probability that e divides P(s∗) is
significant. Note that in our scheme, the si are chosen by the signer, and thus our
simulation can select them in advance. In contrast to that, the HW scheme uses
the signed messages Mi as arguments to P, and thus their argument achieves
only a weaker form of security in which the forger has to commit to all signature
queries beforehand.

Now the proof for Type I forgers proceeds similarly, but with the addi-
tional complication that we have to prepare one or more signatures of the form
H(Mi)1/P(si) for the same si = s∗ that F eventually uses in his forgery. We re-
solve this complication by relying on the PHF properties of H. Namely, we first
choose all si and guess i (i.e., the index of the si with si = s∗). We then prepare
H with generators g, h such that we know all P(sj)th roots of h (for all j), and
all P(sj)th roots of g for all sj �= si. Our hope is that whenever F asks for the
signature of some Mj with sj = si, we have H(Mi) ∈ 〈h〉, so we can compute
H(Mj)1/P(sj ). At the same time, we hope that H(M∗) �∈ 〈h〉 has a nontrivial
g-factor, so we can build an RSA adversary as for Type II forgers. The PHF
property of H guarantees a significant probability that this works out, provided
that there are no more than m indices j with sj = si (i.e., provided that there
are no (m+ 1)-collisions). However, using a birthday bound, we can reasonably
upper bound the probability of (m+ 1)-collisions.

In the full version [34] we also give a variant of our scheme which is slightly
more efficient but only offers weak security. A weakly secure signature scheme
can be updated to a fully secure one by using a (randomized) Chameleon Hash
Function.

Efficiency. Given P(s) and φ(N), computing σ = H(M)1/P(s) can also be car-
ried out by one single exponentiation. Since one single evaluation of P(·) has to
perform (expected) λr many primality tests (for r-bit primes), the dominiant
part of signing and verification is to compute P(s), for s ∈ {0, 1}λ. Theorem 7
tells us that if H is a (m, 1)-PHF we can set λ = log q + k/m, see the full
version [34] for more details.

Hohenberger and Waters [40] proposed several ways to improve the efficiency
of their RSA-based signature scheme. These improvements apply to our RSA-
based schemes as well. We refer to the full version [34] for details.
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Abstract. In this paper we present a new practical key-recovery attack
on the SFLASH signature scheme. SFLASH is a derivative of the older
C∗ encryption and signature scheme that was broken in 1995 by Patarin.
In SFLASH, the public key is truncated, and this simple countermeasure
prevents Patarin’s attack. The scheme is well-known for having been
considered secure and selected in 2004 by the NESSIE project of the
European Union to be standardized.

However, SFLASH was practically broken in 2007 by Dubois, Fouque,
Stern and Shamir. Their attack breaks the original (and most relevant)
parameters, but does not apply when more than half of the public key
is truncated. It is therefore possible to choose parameters such that
SFLASH is not broken by the existing attacks, although it is less
efficient.

We show a key-recovery attack that breaks the full range of parameters
in practice, as soon as the information-theoretically required amount of
information is available from the public-key. The attack uses new crypt-
analytic tools, most notably pencils of matrices and quadratic forms.

1 Introduction

Multivariate cryptography is a brand that encompasses the (mostly public-key)
cryptographic schemes whose security relies on the difficulty of solving systems
of multivariate polynomial equations over a finite field. Even when restricted
to quadratic polynomials, and to the smallest possible finite field, the problem
is well-known to be NP-complete, not to mention very difficult in practice. In
that restricted setting, the problem is often called Multivariate Quadratic (MQ
for short). Because this mathematical problem is well-known and has a simple
statement, it was very tempting to design cryptographic schemes relying on its
hardness. This has the added benefit that no quantum algorithm is known to
break MQ faster than in the classical world, unlike most number-theoretic hard
problem that would fall to Shor’s algorithm [16].

Multivariate polynomials have been used in cryptography as early as in 1984,
mostly with the purpose of designing RSA variants with faster decryption [11,12,5].

D.H. Lee and X. Wang (Eds.): ASIACRYPT 2011, LNCS 7073, pp. 667–685, 2011.
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At about the same time, Matsumoto and Imai designed the first public-key
scheme explicitly based on the hardness of MQ. In fact, they had several pro-
posal, but only a single one (their “Scheme A”) made it to the general crypto
community, and was presented at Eurocrypt’88 [10] under the name C∗. It is
very similar to RSA, as its only non-linear component is a power function over a
finite field. However, unlike RSA this power function is an easy-to-invert bijec-
tion, therefore in C∗ it is composed with two secret invertible linear maps that
destroy its algebraic structure. We therefore see C∗ as an attempt to obfuscate a
power function in Fqn by presenting it as a collection of n quadratic polynomials
in n variables over Fq.

Several years later, Patarin found a devastating attack against C∗, allowing
to decrypt and to forge signatures in a few seconds [13]. He showed that there
always are bilinear relations between the ciphertext and the plaintext, which
can be easily discovered by the adversary. This allows for an efficient attack by
substituting the ciphertext into the bilinear relations, which results in a system
of linear equations whose solution is the plaintext.

The SFLASH signature scheme [14] is a derivative of the original C∗ that
was proposed in 2001 by Courtois, Goubin and Patarin. It is famous for having
been selected in 2003 by the NESSIE European project to be proposed to the
standardization bodies.

The idea behind SFLASH is to take the original C∗ but to throw away a part
of the output. The resulting trapdoor one-way function can no longer be used for
encryption, but it can still be used for signatures. This is achieved by removing
a part of the public key, which is the obfuscated description of the power func-
tion. The idea of removing some of the public polynomials has been originally
suggested by Shamir [15], and was called the “Minus transform”. The original C∗

with the minus transform is thus often called C∗−. This countermeasure is very
effective since it avoids the reconstruction of the bilinear relations and makes it
much harder to compute Gröbner basis of the public key.

SFLASH has in turn been very badly broken in 2007 when Dubois, Fouque,
Stern and Shamir found a practical forgery attack [4,3], and further broken in
2008 when Fouque, Macario-Rat and Stern found a practical key-recovery at-
tack [6]. Both attacks are very practical, defeating the actual SFLASH parame-
ters in minutes. They are essentially polynomial in the security parameter(s), so
that there is no hope that increasing them may make the scheme simultaneously
secure and usable.

However, both attacks only apply as long as the number of removed polyno-
mials is less than half of the total number. There are therefore unbroken ranges
of parameters, even though they are less practical than the original (defeated)
proposal. For instance, let us consider the parameters q = 128 and n = 257. The
original C∗ public key would be made of 257 polynomial in 257 variables over
F128. If we throw away 75% of the public key, we obtain a C∗− public-key with 64
multivariate quadratic polynomials in 257 variables, and the existing attacks do
no apply. The signatures are 1799-bit long, and the public-key is 1.8Mbyte long.
Forging a signature by exhaustive search requires 2448 trials, and computing a
Gröbner basis should require even more arithmetic operations.
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Our Contribution. We show that SFLASH/C∗− can be broken regardless of
the fraction of the public that was thrown away, thus improving on the previ-
ous attacks. We present a practical key-only attack that recovers the secret-key
and applies as soon as three polynomials from the public key are available. This
happens to be the information-theoretic minimum quantity of data required to
uniquely characterize the set of possible secret keys. The attack has been im-
plemented and tested. It runs very efficiently, and breaks in practice all the
meaningful ranges of parameters. For instance, the particular parameters men-
tioned in the previous paragraph can be broken in about 10 hours using a single
computer.

SFLASH had already been thrown out of the league of possible alternatives to
RSA of discrete-logarithm based schemes by the previous attacks. The contribu-
tion of this work is not only to further break SFLASH, but also to introduce new
cryptanalytic techniques. To achieve our results, we make use of mathematical
tools that were not previously used in multivariate cryptanalysis, such as pencils
of matrices or quadratic forms, adjugate matrices, simultaneous diagonalization
of quadratic forms, kernels of quadratic forms, etc. We expect that some of these
tools might apply further to other schemes, in particular those sharing some
features with SFLASH, notably HFE.

1.1 Organization of the Paper

In section 2, we present some mathematical background. Then, in section 3, we
describe the C∗ and SFLASH signature schemes. In section 4, we investigate
in great detail the mathematical properties of C∗ and find exploitable relations
between the secret and public keys. Finally, we expose our key-recovery attack
in section 5, and give experimental results.

2 Mathematical Background

Finite Fields. Let K the finite field with q elements, where q is a power of
two, and F an extension of K of degree n. Recall that F is isomorphic to Kn, so
that we often identify the two spaces. The trace on F over K is the K-linear map
defined by TrF/K(x) = x + xq + . . . + xqn−1

. The norm on F over K is defined
by NF/K(x) = x · xq . . . · xqn−1

. Both TrF/K and NF/K are functions from F to
K, and we simply denote them Tr and N since there is no confusion. The map
x �→ xq is called the Frobenius map, and it is a field automorphism.

Lemma 1. For any K-linear mapping L on F over K, there exists an element
λ of F such that, for all x in F, L(x) = Tr(λx). Moreover, if Tr(λx) = 0 for
all x ∈ F, then λ = 0.

Quadratic forms. A quadratic form over K is a degree 2 homogeneous poly-
nomial:

Q(x1, . . . , xn) =
∑

1≤i≤j≤n

aij · xixj with aij ∈ K.
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It is well-known that over fields of characteristic not two, a quadratic form Q is
uniquely represented by its polar form, i.e., the symmetric bilinear form defined
by ψ(Q) : (x, y) �→ 1/2 · (Q(x+ y) −Q(x) −Q(y)), with the nice property that
Q(x) = ψ(Q)(x, x). Over fields of characteristic two, this is however no longer
possible, because the division by two is not defined. In this paper, we will slightly
abuse the usual definition, and we define the polar form of a quadratic form to
be the symmetric bilinear form:

ψ(Q) : (x, y) �→ Q(x+ y) −Q(x) −Q(y)

Given a basis b1, . . . , bn of F, ψ(Q) can be represented by a n × n symmetric
matrix whose (i, j) coefficient is ψ(Q) (bi, bj). By an abuse of notation, we will
often identify ψ(Q) with its matrix representation.

The Kernel of a Quadratic Form. The kernel of a quadratic form Q, also
called the radical of Q is the vector space of elements a ∈ F such that for
any x ∈ F, ψ(Q)(x, a) = 0. It is easy to see that the kernel of a quadratic form
is the kernel of the matrix ψ(Q). What makes the kernel interesting is that in
characteristic two, when n is odd, all quadratic forms have a non-trivial kernel.

Theorem 1 ([1]). Let q be a power of two, and let Q be a quadratic form over K.
Then the rank of ψ(Q) is even.

Linear Algebra. We denote the characteristic polynomial of M by χ (M). A
minor of M is simply the determinant of a submatrix of M . We will use in the
following the adjugate matrix adj(M) of a matrix M . We recall that it is the
transpose of the comatrix, which is the matrix of the cofactors. A cofactor of
M , cofi,j(M) is the determinant of the submatrix M j

i
, where in this notation we

refer to the matrix M without the ith row and the jth column. We lastly recall
two well-known results connecting a matrix M and its adjugate.

Theorem 2 (Cayley-Hamilton). If χ (M) = Xn +cn−1X
n−1 + · · ·+c1X+c0

is the characteristic polynomial of M , then:

Mn + cn−1M
n−1 + · · · + c1M + c0 · In = 0

Mn−1 + cn−1M
n−2 + · · · + c2M + c1 · In = adj(−M)

It follows that −M · adj(−M) = adj(−M) · −M = det(−M) · In

Lemma 2. The rank of adj(M) can be deduced from the rank of M :

– if rank(M) = n, then rank(adj(M)) = n.
– if rank(M) = n− 1, rank(adj(M)) = 1.
– In all other cases, rank(adj(M)) = 0.
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3 The C∗ and SFLASH Signature Schemes

The basic idea underlying both C∗ and SFLASH is to hide an easily invertible
function φ in the large finite field F using two secret invertible linear (or affine)
maps S and T which mix together the n coordinates of φ over the small field K,
with PK = T ◦ φ ◦ S. The signature of a message y is a vector x such that
PK(x) = y. The legitimate signer easily computes x by successively inverting
T, φ and then S.

Let π be the canonical isomorphism between Kn and F, and let φ be defined
by φ(X) = X1+qθ

. Enforcing that gcd(1 + qθ, qn − 1) = 1 makes φ bijective.
Because we may write φ(X) = X ·Xqθ

, we find that φ is in fact the product of
two linear functions (recall that the Frobenius map and its iterates are linear).
It follows that π ◦φ◦π−1 is a quadratic bijection of Kn, i.e., that if x ∈ Kn, then
π ◦ φ ◦ π−1 is a vector whose coordinates are quadratic forms in the coordinates
of x. For the sake of lighter notations, we omit π in the sequel.

The secret key of the scheme is composed by the two invertible n×n matrices
S and T with coefficients in K. The exponent θ and π are public parameters. The
public-key of the scheme is formed by the representation over Kn of T ◦ φ ◦ S.
More precisely, if Ti denotes the i-th line of T , then the public key of C∗ is the
vector of n quadratic forms over Kn:

Pi (x1, . . . , xn) = Tr
(
Ti · φ (S (x1, . . . , xn))

)
1 ≤ i ≤ n

The public key of SFLASH is composed of the first r quadratic forms P1, . . . ,Pr.
Typical values of the parameter may be the ones defined for SFLASH V3:
q = 128, n = 67, r = 56 and θ = 33.

Although the public key is a vector of polynomials in (K[x1, . . . , xn])n, it is
more convenient to see them as functions from F to K. We therefore write

Pi(x) = Tr
(
Ti · S(x)1+qθ

)
.

Equivalent Secret Keys. Given a public-key, there are many possible cor-
responding secret keys (there are “equivalent” secret keys [18]). A key-recovery
attack is expected to retrieve one possible secret key amongst those generating
the targeted public-key. The existence of many equivalent secret keys gives some
freedom to the attacker: we may be guaranteed that there is an equivalent secret
key satisfying some interesting property.

Lemma 3. If (S, T ) is an SFLASH secret-key that generates the public key PK,
then for any integer k > 1 there is an equivalent secret key (S′, T ′) in which
T ′

i = (Ti/T1)qk

(seeing the vectors Ti as elements of F).

Proof. Because the function x ∈ F �→ a · x is linear over F, it can be represented
by a matrix Ma over Kn. The key idea is that multiplications “commute” with
the internal power function:

Pi (x) = Tr
(

Ti

a1+qθ · [a× (S · x)]1+qθ

)
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Now, we pick a such that a1+qθ

= T1 (this is always possible because the power
function is bijective). Thus, a possible equivalent secret key is such that T ′

i =
Ti/T1, and S′ = Ma · S.

Next, it follows from the definition of the trace, and from the identity xqn

= x

which holds over F that Tr
(
xqk
)

= Tr(x). This shows that

Pi (x) = Tr

((
Ti

a1+qθ

)qk

·
(
[(a× (S · x)]qk

)1+qθ
)

Thus, if F denotes the matrix representing the Frobenius, i.e., the linear map
x �→ xq in F, then a possible equivalent secret key is such that T ′

i = (Ti/T1)qk

,
and S′ = F k ·Ma · S. �

4 Mathematical Properties of C∗− Public Keys

The aim of this section is to exhibit relations involving the secret elements S
and the Ti’s on the one hand, and the public key on the other hand, in such a
way that the secrets can be easily reconstructed given only a small number of
public polynomials.

For this purpose, we consider two public polynomials Pi and Pj , and we define
the pencil of quadratic forms P = λPi + μPj , with λ, μ in K. We also define the
pencil of vectors T = λTi + μTj , and because the Trace is K-linear we have:

P(X) = Tr
(
T · S(X)1+qθ

)
. (1)

We are interested in the kernel of P, which is by definition the set of vectors a
such that for any x, ψ(P)(a, x) = 0. In fact, it is simply the kernel of the matrix
representation of the polar form ψ(P). We first relate the kernel of P to the
components of the secret key in section 4.1, and then with the components of
the public-key in section 4.2. This allows us, by “transitivity”, to find exploitable
relations between the public key and the secret elements in section 4.3.

In the sequel, we adopt the typographic convention that any quantity that
depends implicitly on λ and μ is written in bold.

4.1 Relations between the Kernel and the Secret-Key

It is not very surprising that the kernel of P admits a relatively simple expression
in terms of the components of the secret key.

Theorem 3. Given that n is odd, and gcd(θ, n) = 1, we have:

(i) The kernel of P is
{
x ∈ Kn | T · S(x)1+qθ ∈ K

}
.

(ii) The matrix pencil ψ(P) has rank n− 1.
(iii) When (λ, μ) �= (0, 0), there exists a unique vector a ∈ Kn in the kernel of

P such that P(a) = 1.



Practical Key-Recovery for All Possible Parameters of SFLASH 673

(iv) There exists δ ∈ N such that a = S−1
(
Tδ
)
. A possible value for δ is

δ =
(q

2
− 1
)
·

n−1∑
i=0

qi +
n−1∑

i=(n+1)/2

q2iθ (2)

Proof. It is known that the polar forms of C∗ polynomials have a special shape:

ψ(P)(x, y) = Tr
(
T ·
[
S(x) · S(y)qθ

+ S(x)qθ · S(y)
])

After some manipulations, by exploiting the linearity of the Frobenius, of the
Trace, and the fact that they commute, we find when x �= 0:

ψ(P)(x, y) = Tr

([
T · S(x)1+qθ

+
(
T · S(x)1+qθ

)qθ]
·
(
S(y)
S(x)

)qθ)
Now, inside the trace, the first term of the product depends only on x, and the
second member takes all possible values in F when y ranges across F, because S
and the Frobenius are bijective. Lemma 1 then tells us that if x �= 0 belongs to
the kernel of P, then

T · S(w)1+qθ

+
(
T · S(w)1+qθ

)qθ

= 0

It remains to show that the solutions of the equation X + Xqθ

= 0 in F are
precisely the elements of K. It is easy to check that any x ∈ K is a solution,
because the fields are of characteristic two, which makes the equation equivalent
to X = Xqθ

. The other direction is not much more difficult: by induction we
find that X = Xqiθ

for any i ∈ N. Since over F we always have x = xqn

, then
when iθ is congruent to 1 modulo n, the equation implies X + Xq = 0, which
shows that the solutions all lies in K. This establishes point (i).

Let us prove point (ii). The polar form ψ(P) cannot be of rank n, because it
is a skew-symmetric matrix and n is odd (this is well-known for matrices over
fields, and is extended to the case of matrices multivariate polynomial rings in
lemma 8, appendix A). Now, we show that the rank of ψ(P) is greater than n−1.
If we specialize (λ, μ) to any value in K2 distinct from (0, 0), then by point (i)
ψ(λPi + μPj), seen as a matrix with entries in K, has a kernel of dimension 1.
By the rank theorem (over K), its rank is then n − 1. This shows that there is
a non-zero minor of dimension (n − 1). This minor (seen as a polynomial in λ
and μ) cannot be the zero polynomial, otherwise it could become non-zero for
a particular choice of λ and μ in K, hence the rank of ψ(P) (seen as a matrix
with entries in K[λ, μ] has rank exactly n− 1.

Point (iii) follows immediately from (i) and from the fact S, T and the power
function are bijective. To establish point (iv), we need to find a suitable value

δ such that S (a) = Tδ. By definition of a, we should have
(
Tδ
)1+qθ

· T = 1, so
that δ satisfies the equation 1 + δ(1 + qθ) = 0 modulo (qn − 1). Checking that
the given value of δ is valid is technical and not very interesting, and we refer
the reader to [8] for more details. �
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The fourth point of theorem 3 makes it possible to explicitly write down the
expression of a, the kernel vector introduced in the proposition, as a function of
λ and μ. Let us set d = (n− 1)/2, and let us introduce PN , PS ∈ F[λ, μ]:

pN = N(T) =
n−1∏
i=0

(
λ · T1

qi

+ μ · T2
qi
)

pS = S−1

⎛⎝ n−1∏
i=(n+1)/2

(
λ · T1

q2iθ

+ μ · T2
q2iθ
)⎞⎠ (3)

The idea is that pN only depends on T , while pS depends “linearly” on S. It is
fairly obvious that pN has total degree n while pS has total degree d. Next, we
claim that pN in fact has coefficients in K. A possible way to see this is that
because it coincides with the Norm, it takes values in K when λ, μ ∈ K, and
therefore it could be interpolated as a polynomial of K[λ, μ].

We have carefully chosen pN and pS so that the vector a defined in point (iii)
of proposition 3 is such that:

a = (pN )q/2−1 · pS .

This fact is an easy consequence of the fourth point of proposition 3. Note that
because pN has values in K, then pS(λ, μ) spans the kernel of P, but unlike a, pS

does not a priori satisfy the additional condition that P(pS) = 1. It follows, by
definition of a, because P(λx) = λ2P(x) when λ ∈ K and because x−1 = xq−2

in K, that:

P
(
(pN )q/2−1 · pS

)
=

P (pS)
pN

= 1

And we find that pN = P(pS). The two polynomials pN and pS play a crucial
role in the sequel: we will show in section 5 that knowing them is sufficient
to reconstruct the secret key in polynomial time. In addition, we will also show
that they can be reconstructed in polynomial time from the public-key. However,
doing this requires some more mathematical machinery.

4.2 Relations between the Kernel and the Public Key

The kernel of P can be computed using only publicly available information, since
it only depends on the public polynomials. If the values of λ and μ were fixed,
this could be achieved with standard linear algebra. More sophisticated computer
algebra systems have functions that compute a basis of the kernel in terms of λ
and μ. We remove the need for such sophisticated operations by explicitly giving
the form of the kernel.

Theorem 4. Let P be a pencil of two public polynomials, B = {b1, . . . , bn} a
basis of Kn. There exists a vector k = (k1, . . . ,kn) of degree-d homogeneous
bivariate polynomials in K[λ, μ], such that:
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i) The adjugate matrix of the polar form of P can be expressed as the tensor
product of k with itself:

adj (ψ(P)) = (ki · kj)1≤i,j≤n

ii) the kernel of ψ(P) is spanned by
n∑

i=1

ki · bi

Proof. According to theorem 3, item (ii), the matrix pencil ψ(P) is of rank n−1,
and lemma 2 states that in this case adj(ψ(P)) has rank 1. We will now show
that adj(ψ(P)) is the square of some other matrix, but we first require a technical
lemma.

Lemma 4. Let P be an arbitrary pencil of quadratic forms. There exists a family
of bivariate polynomials p0, . . . ,pd ∈ K[λ, μ] such that pi is homogeneous of
degree i, and the characteristic polynomial of the polar form of P is:

χ (ψ (P)) =
d∑

i=0

pi
2 ·Xn−2i.

The proof of lemma 4 is postponed to appendix A. It follows from lemma 4
and theorem 2 that:

adj(ψ(P)) =
d∑

i=0

pi
2 · ψ(P)2d−2i =

(
d∑

i=0

pi · ψ(P)d−i

)2

.

We denote by R the natural square-root of adj(ψ(P)) occurring on the right-hand
side. It is a symmetric matrix pencil whose coefficients are bivariate polynomials
of degree d in λ and μ. Let us consider the i-th diagonal term of adj(ψ(P)). We
find:

adj(ψ(P))i,i =
n∑

j=1

Ri,j · Rj,i =

⎛⎝ n∑
j=1

Ri,j

⎞⎠2

.

Consequently, let us define ki =
∑n

j=1 Ri,j . The previous equation tells us
that adj(ψ(P))i,i = ki

2 for all 1 ≤ i ≤ n. This establishes point (i) for the
diagonal of adj(ψ(P)) only.

Let us now consider the other terms with i �= j. Since adj(ψ(P)) is of rank 1,
we know that all the minors of dimension 2 of adj(ψ(P)) obtained by keeping
only the i-th row and the j-th column is null. This yields:

adj(ψ(P))i,i · adj(ψ(P))j,j + (adj(ψ(P))i,j)
2 = 0

and consequently adj(ψ(P))i,j = ki·kj (when the field is of characteristic two, the
square root always exists and is unique because the Frobenius map is bijective).
This completes the proof of (i).
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Let us now focus on point (ii). One of the ki’s at least is non-zero, be-
cause adj(ψ(P)) is not the null matrix. We therefore assume (without loss of
generality) that k1 is non-zero, and we consider the matrix relation given by
theorem 2:

ψ(P) · adj(ψ(P)) = 0.

Looking at the first column of the product, we conclude that

ψ(P) ·
(

n∑
i=1

k1ki · bi
)

= 0,

and because k1 is non-zero, we conclude that ψ(P) · (∑n
i=1 ki · bi) = 0. �

In light of theorem 4, it seems that we can derive from the public key a
polynomial whose properties mimic those of pS . Keeping the notations of the
theorem, we define:

p̃S =
n∑

i=1

ki · bi, p̃N = P (p̃S)

We deduce from theorem 4 that p̃S has the same degree as pS , and that like pS ,
it spans the kernel of ψ(P). We also need to find a polynomial p̃N that would
be an analogous of pN and that could be derived from the public key. Note that
it immediately follows from theorem 4 that p̃S spans the kernel of P.

4.3 Relations between the Secret-Key and the Public-Key

The last (but not least) step of our analysis is to show that the two polyno-
mials pN , pS derived from the secret key in section 4.1 on the one hand, and
the polynomials p̃N , p̃S derived from the public key in section 4.2 are in general
equal up to a constant multiplicative factor.

Theorem 5. If T2/T1 is primitive over F (i.e., generates the multiplicative
group of F), then there exists a constant ζ �= 0 in K such that p̃S = ζ · pS,
and (accordingly) p̃N = ζ2 · pN .

Proof. The first step of the proof is to show that p̃N has degree n, just like pN .
The polynomials k1, . . . ,kn defined in theorem 4 have coefficients in K, and are
homogeneous of degree d. We can therefore find a family c0, . . . , cd of coefficients
in F such that:

p̃S =
n∑

i=1

ki · bi =
d∑

i=0

ci · λd−iμi. (4)

It turns out that this family enjoys a nice property: over the subspace of Kn

that it spans, the pencil P is in fact a diagonal form (i.e., the two public poly-
nomial it is made of are simultaneously diagonal).

Lemma 5. ψ(P)(ci, cj) = 0 for any 0 ≤ i, j ≤ d.
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Lemma 6. For any family {ri}0≤i≤d of polynomials over K, we have

P

(
d∑

i=0

ri · ci
)

=
d∑

i=0

r2i · P(ci).

The proofs are postponed to appendix B. Applying lemma 6 to (4), we get:

p̃N = P (p̃S) = P

(
d∑

i=0

ci · λd−iμi

)
=

d∑
i=0

(
λP1(ci) + μP2(ci)

)
· λ2d−2iμ2i

From there, it is easy to see that p̃N has degree 2d+ 1 = n.
Now that it has been established that pN and p̃N have the same degree, we

will use irreducibility properties of pN to conclude the proof of theorem 5. We
first claim that the univariate polynomial pN (λ, 1) ∈ K[λ] is irreducible over K.
After a few manipulations we find

pN (λ, 1) = N(λT1 + T2) = N(T1) · N(λ+ T2/T1).

Thus T2/T1, which is primitive over F, is a root of pN (λ, 1), and this polynomial
is therefore irreducible over K.

Lemma 7. There exist ζ, ζ̃ in K[λ, μ] such that:

ζ · pS = ζ̃ · p̃S and gcd
(
ζ, ζ̃
)

= 1.

Proof. First, the rank of the two-column matrix (pS , p̃S) is one. If it was two,
then this matrix could be extended to a n×n matrix M of rank n. We then find
that the rank of ψ(P) ·M would be at most n − 2, since its two first columns
are null, which contradicts the fact established earlier that ψ(P) has rank n− 1.

There exist polynomials {�i} such that pS =
∑n

i=1 �i · bi. We now argue that
there exists an index i0 such that ki0 �= 0 and �i0 �= 0. The reasoning is by
contradiction: assume that for all i we have ki · �i = 0. Since p̃S �= 0 and pS �= 0,
there exist indices i, j such that ki �= 0 and �j �= 0. By hypothesis, kj = 0 and
�i = 0. But then, we find that ki · �j +kj · �i = ki · �j �= 0. Consequently, a minor
of dimension two of (pS , p̃S) is non-zero, which contradict the fact that it is of
rank one.

We can therefore assume without loss of generality that k1 �= 0 and �1 �= 0.
The linear combination k1 · pS + �1 · p̃S is null since by construction its first
coordinate is zero, and the other coordinates are minors of dimension 2 of (pS , p̃S)
and are also null. We can now assert that the pair(

k1

gcd (k1, �1)
,

�1
gcd (k1, �1)

)
satisfies the requirements of the lemma. �
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Let
(
ζ, ζ̃
)

a pair of bivariate polynomials over K satisfying lemma 7. By

applying P, we get: ζ2 · pN = ζ̃2 · p̃N . Any irreducible factor of ζ̃ must divide
pN since it does not divide ζ. But because pN is irreducible, ζ̃ is necessarily of
degree 0. And ζ is also degree 0 because pN and p̃N have the same degree. This
concludes the proof of theorem 5. �

We conclude this section by giving one last important but somewhat technical
result. The polynomial pS is “designed” to reveal the image of S on the subspace
of Kn spanned by its d + 1 coefficients (seen as vectors of Kn). It does actually
matter whether these are linearly independent or not.

Theorem 6. The coefficients of the polynomials pS form an independent family
if and only if (T2/T1)qθ

is not a root of the polynomials x+xq2iθ

for 1 ≤ i ≤ d. In
particular, if n is a prime number this condition is satisfied since by assumption
T1 and T2 are independent.

The proof is given in appendix C.

5 The Attack

We are now ready to leverage our in-depth investigation of the properties of C∗,
by presenting a practical key-recovery attack that does not require any signature.
The global attack strategy is to compute the polynomials p̃N and p̃S defined in
section 4.2. Then, theorem 5 tells us that with non-negligible probability, these
are equal to the polynomials pN and pS defined in section 4.1, from which the
secret-key can be efficiently recovered.

Reconstructing the Polynomials pN and pS. Given a pencil P = λPi+μPj

of polynomials from the public key, we first show how the polynomials p̃N and p̃S

defined in section 4.2 can be determined. More precisely, we show how to build
a function Kernel-Recovery(P) that returns the two polynomials pN and pS

described in section 4.1. Because pN = P(pS), we focus our attention on the non-
obvious part consisting in recovering pS . This can be achieved in two different
ways. A first possibility is to follow the proof of theorem 4, which results in the
following procedure:

1. Compute the characteristic polynomial ζ of ψ(P) and factor it into

ζ = X ·
(

d∑
i=0

pi
2 ·Xd−i

)2

2. Compute the matrix R =
∑d

i=0 pi · ψ(P)d−i and let ki =
∑n

j=1 Ri,j .
3. Finally let pS be equal to

∑n
i=1 ki · bi
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Note that computing the characteristic polynomial can be achieved over any com-
mutative ring using the division-free algorithm of Mahajan and Vinay [9]. Com-
puting the factorization of the characteristic polynomial is a (classical) multivari-
ate factorization problem. Both functionality are available in several computer
algebra systems, including (but not limited to) MAGMA [2] and SAGE [17].

Alternatively, we may directly compute a basis of kerψ(P) (which is a module
over K[λ, μ]) using the ad hoc function present in some computer algebra systems.
This function is for instance available in MAGMA, and seems to rely on Gröbner
basis computations. It is apparently much faster than the previous option.

From Kernel to Secret-Key. Let us call (T ′, S′) the equivalent key we try
to forge. Thanks to lemma 3, we know that we may without loss of generality
assume that T ′

1 = 1 and T ′
2 = (T2/T1)qi

, for any i > 0. This shows that if
(pN , pS) = Kernel-Recovery(λP1 + μP2), then we may safely choose T ′

2 to
be any root of pN (λ, 1) different from one. We then focus on equation (3):

pS = S−1

⎛⎝ n−1∏
i=(n+1)/2

(
λ · T1

q2iθ

+ μ · T2
q2iθ
)⎞⎠

Given the values of T ′
1 and T ′

2, we may explicitly evaluate the product on the
right-hand side. Identifying both sides coefficient-wise then reveals the image
of S′ on the subspace of Kn spanned by the d + 1 coefficients of the product.
Theorem 6 tells us that this subspace is of dimension d + 1 with non-negligible
probability.

To complete the key-recovery of the secret element, we use a third polynomial
from the public-key. We compute (p′N , p

′
S) = Kernel-Recovery(λP1 + μP3).

Only one of the roots of p′N yields a valid choice for T ′
3, therefore we pick one

at random, and we will try again with another one in case of failure in the
subsequent steps. Knowledge of T ′

1 and T ′
3 allows to discover the image of S′ on

another subspace spanned by d+ 1 generators following the same procedure.
At this point, we have learned the image of S′ on n + 1 vectors, and we

really hope that S′ is completely revealed. If it is not the case, we may try again
with P4 instead of P3. Once S′ is known, finding the other Ti’s can be done by
straightforward linear algebra. If no solution exists for any of them, then our
guess for T ′

3 was wrong.

5.1 Complexity

We implemented the whole key-recovery using the MAGMA computer algebra
system. The code of the full attack is 120 lines long, and is available on the
web page of the first author. We first applied the attack to SFLASH v2 and
SFLASH v3, that were already broken (universal forgery) by Dubois, Fouque,
Stern and Shamir [3], and further broken (key-recovery) by Fouque, Macario-Rat
and Stern [6]. We then applied the attack to SFLASH instances that cannot be
broken by the existing attack, because the number of polynomials in the public
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Table 1. Experimental results

SFLASH
q n

#public Signature Already Attack KeyGen
version polynomials size broken ? time time

v2 128 37 26 (70%) 259 bits [3,6] 7s 0.1s
v3 128 67 56 (83%) 469 bits [3,6] 47s 0.6s

256 131 56 (42%) 1048 bits No 17min 5s
65536 257 64 (25%) 4112 bits No ≈ 10h 141s

2 331 80 (24%) 331 bits No 105min 16s
2 521 80 (24%) 521 bits No ≈ 11h 62s
2 1031 128 (12%) 1031 bits No ... 680s

key is less than n/2. We tried various combinations of field size and variable
numbers, and found out that the attack works quite well in practice, as Table 1
shows. There are thus no longer any practically unbroken set of parameters for
SFLASH.
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A Mathematical Results

Lemma 8. Let P = λA + μB be a matrix pencil over K, symmetric and with
null diagonal, of any dimension n. Its determinant is a bivariate form of degree
n. If n is odd, det(M) = 0, and if n is even, there exists a bivariate form k over
K of degree n/2 such that det(M) = k2.

Proof. We will prove this result using a recurrence in a 2 by 2 step. For n = 1,

M = (0) and det(M) = 0. For n = 2, we have M =
(

0 k
k 0

)
, where k is a bivari-

ate form of degree 1 and det(M) = k2. Now, let n ≥ 3 and assume the property
is true for n−2. We will show that it is also true for n. We compute the determi-
nant ofM by developing according to the first column. Since the (1, 1)-coefficient
of M is null, we have det(M) =

∑n
i=2Mi,1 det(M1

i
), where Mi,1 denote the co-

efficient (i, 1) of M and det(M1
i
) the (1, i) minor. We can see that in all these

minors, the first row has never been removed and always the first column. We can
now do a development according to the first row and using the multi-linearity of
the determinant, we get det(M) =

∑n
i=2

∑n
j=2 Mi,1M1,j det(M1,j

1,i
), where M1,j

1,i

denote the matrix M by removing the rows 1 and i and the columns 1 and j.
Since M is symmetric, we can add together the terms (i, j) and (j, i) for i �= j
and these terms vanish. The determinant that we compute is equal to det(M) =∑n

i=2M
2
i,1 det(M1,i

1,i
). Now we can use the recurrence assumption and if n is odd,

det(M) = 0 and if n is even, det(M) =
∑n

i=2 M
2
i,1k

2
i = (

∑n
i=2 Mi,1ki)2, where

the forms ki, for i = 2, . . . , n are of degree (n − 2)/2. Consequently, the degree
of the form

∑n
i=2Mi,1ki is n/2. �

http://eprint.iacr.org/
http://www.sagemath.org
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Lemma 9. Let Pλ,μ be an arbitrary pencil of quadratic forms. There exist a
family of bivariate polynomials {pi}0≤i≤d in K[x, y] such that pi is of degree i,
and the characteristic polynomial of the polar form of P is:

χ (ψ (Pλ,μ)) =
d∑

i=0

pi
2 ·Xn−2i.

Proof. The result follows from lemma 8. The coefficient of Xn−i in χ (ψ (Pλ,μ))
is the sum of all M minors obtained by choosing n − i diagonal terms and
removing the (n− i) corresponding rows and columns. The minors obtained are
of dimension i. �

B Simultaneous Diagonalization of Two Quadratic Forms

Lemma 10. ψ(P)(ci, cj) = 0 for 0 ≤ i, j ≤ d.

Proof. Let (λ, μ) and (λ′, μ′) two pairs of variables in K2 such that λμ′ + λ′μ �=
0. Because p̃S(λ, μ) and p̃S(λ′, μ′) are the kernels of λψ (P1) + μψ (P2) and
λ′ψ (P1) + μ′ψ (P2) respectively, we find:

(λψ (P1) + μψ (P2))(p̃S(λ, μ), p̃S(λ′, μ′)) = 0
(λ′ψ (P1) + μ′ψ (P2))(p̃S(λ, μ), p̃S(λ′, μ′)) = 0

By linear combination, we have

(λμ′ + λ′μ)ψ (P1) (p̃S(λ, μ), p̃S(λ′, μ′)) = 0
(λμ′ + λ′μ)ψ (P2) (p̃S(λ, μ), p̃S(λ′, μ′)) = 0

and since (λμ′ + λ′μ) �= 0,

ψ (P1) (p̃S(λ, μ), p̃S(λ′, μ′)) = 0
ψ (P2) (p̃S(λ, μ), p̃S(λ′, μ′)) = 0.

Finally, thanks to the linearity of ψ (P1) and ψ (P2), we get:

d∑
i=0

d∑
j=0

ψ (P1) (ci, cj) · λd−iμiλ′d−j
μ′j = 0

d∑
i=0

d∑
j=0

ψ (P2) (ci, cj) · λd−iμiλ′d−j
μ′j = 0.�

Lemma 11. For any family {ri}0≤i≤d of polynomials over K, we have:

P

(
d∑

i=0

ri · ci
)

=
d∑

i=0

ri
2 ·P(ci).
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Proof. We will prove it by induction on the number of non null polynomials in
the family. We have P (r1 · c1) = r1

2 · P (c1) since P is a (pencil of) quadratic
form(s) whose coefficients are bivariate polynomials over K. Let us assume that
the result holds for k − 1 polynomials. According to the definition of the polar
form, we can write:

P

⎛⎝ k∑
j=1

rj · cj
⎞⎠ =

P(r1c1) + P

⎛⎝ k∑
j=2

rj · cj
⎞⎠+ ψ(P)

⎛⎝r1 · c1, k∑
j=2

rj · cj
⎞⎠ =

r1
2 · P (c1) +

k∑
j=2

rj
2 ·P(cj) +

k∑
j=2

r1 · cj · ψ(P)(c1, cj).

And lemma 10 allows to conclude.

C Showing Independence of the Coefficients of a
Polynomial

We concentrate on a simpler polynomial of the form
∏d−1

i=0 (x+ tq
i

).

Definition 1. Let d ≥ 1 a positive integer. We call elementary symmetric poly-
nomials of order d, the d+1 polynomials with d variables σi,d, 0 ≤ i ≤ d defined
implicitly by:

d∏
i=1

(X +Xi) =
d∑

i=0

σi,d(X1, . . . , Xd)Xd−i.

We also recall the following lemma useful to prove that a family of elements
in F is independent [7].

Lemma 12. Let A = {αi}0≤i≤d a family of elements of F. The elements in A

are independent if and only if the determinant of the matrix (αqj

i )0≤i,j≤d is non
null.

Let t an element of F. In a first step we try to find an equivalent condition to
the fact that the coefficients of the polynomial

∏d−1
i=0 (x + tq

i

) are independent.
These coefficients can be expressed using the elementary symmetric polynomials.
They are equal to {σi,d(t, tq, . . . , tq

d−1
)}0≤i≤d.

We describe some notations. We denote by si,d and Δd the mapping over F

defined by:

si,d(x) = σi,d(x, xq , . . . , xqd−1
),

Δd(x) = det((si,d(x)qj

)0≤i,j≤d).
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Using the above lemma, and these notations, we can say that the coefficients
of the polynomial

∏n
i=d+1(x+ tq

2iθ

) are independent if and only if Δd(t) �= 0. In
the following, we try to compute some simple expression for Δd.

Lemma 13. For d and i integers such that 0 ≤ i ≤ d, the Frobenius mapping
commute with the mappings si,d, i.e. for every x ∈ F, si,d(xq) = si,d(x)q.

Proof. The mappings si,d(x) are by construction sums of elementary functions
x �→ xqj1+...+qji , 0 ≤ j1 < . . . < ji ≤ d− 1. The Frobenius mapping is linear and
commute with each of these monomials. �
Lemma 14. For d and i integers such that 1 ≤ i ≤ d, we have:

si,d(x) + si,d(xq) = si−1,d−1(xq)(x + xqi

).

Proof. We have the following relations:∏d−1
i=0 (X + xqi

) +
∏d−1

i=0 (X + xqi+1
) =

(x+ xqi

)
∏d−1

i=1 (X + xqi

) = (x + xqd

)
∏d−2

i=0 (X + xqi+1
)

and
d−1∏
i=0

(X + xqi

) =
d∑

i=0

si,d(x)Xd−i

d−1∏
i=0

(X + xqi+1
) =

d∑
i=0

si,d(xq)Xd−i

d−2∏
i=0

(X + xqi

) =
d∑

i=0

si,d−1(x)Xd−1−i.

We get the desired equality by considering the coefficient Xd−i. �
Lemma 15. For d ≥ 1, we have:

Δd(x) = Δd−1(xq)(x+ xqd

)1+q+...+qd−1
.

Proof. The function Δd is a determinant of dimension d+1. We can note that the
first line is composed of d+1 times the value 1 since for 0 ≤ j ≤ d, sqj

0,d = 1qj

= 1.
We do not change the value of the determinant by adding each column to its
right neighbor. After this operation, the first line is composed of one time the
value 1 and d times the value 0. After this addition and using lemma 14, the
term (i+ 1, j + 1) is:

si+1,d(x)qj

+ si+1,d(x)qj+1
= (si,d(x) + si,d(xq))qj

= si,d+1(xq)qj

(x+ xqd

)qj

,

which correspond to the term (i, j) of Δd−1(xq) times (x+xqd

)qj

. By developing
the determinant using its first row, we recoverΔd−1(xq) times the factors of each
column, that is

∏d−1
j=0(x+ xqd

)qj

. �
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Theorem 7. For d ≥ 1,

Δd(x) =
d∏

i=1

(x+ xqi

)qd−i+...+qd−1
.

Proof. By induction. Indeed, the formula is straightforward for d = 1 and

Δ1(x) = det
(

1 1
x xq

)
= x+ xq.

Assume that it is true for d− 1, one gets:

Δd−1(xq) =
d−1∏
i=1

(xq + xqi+1
)qd−1−i+...+qd−2

Δd−1(xq) =
d−1∏
i=1

(x + xqi

)qd−i+...+qd−1
.

Using the formula of lemma 15, we get the result. �
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Abstract. A cryptographic assumption is the (unproven) mathematical
statement that a certain computational problem (e.g. factoring integers)
is computationally hard. The leakage-resilience limit of a cryptographic
assumption, and hence of a computational search problem, is the maxi-
mal number of bits of information that can be leaked (adaptively) about
an instance, without making the problem easy to solve. This implies se-
curity of the underlying scheme against arbitrary side channel attacks by
a computationally unbounded adversary as long as the number of leaked
bits of information is less than the leakage resilience limit.

The hardness of a computational problem is typically characterized
by the running time of the fastest (known) algorithm for solving it. We
propose to consider, as another natural complexity-theoretic quantity,
the success probability of the best polynomial-time algorithm (which
can be exponentially small). We refer to its negative logarithm as the
unpredictability entropy of the problem (which is defined up to an additive
logarithmic term).

A main result of the paper is that the leakage-resilience limit and the
unpredictability entropy are equal. This demonstrates, for the first time,
the practical relevance of studying polynomial-time algorithms even for
problems believed to be hard, and even if the success probability is
too small to be of practical interest. With this view, we look at the
best probabilistic polynomial time algorithms for the learning with er-
rors and lattice problems that have in recent years gained relevance in
cryptography.

We also introduce the concept of witness compression for computa-
tional problems, namely the reduction of a problem to another problem
for which the witnesses are shorter. The length of the smallest achiev-
able witness for a problem also corresponds to the non-adaptive leakage-
resilience limit, and it is also shown to be equal to the unpredictability
entropy of the problem. The witness compression concept is also of inde-
pendent theoretical interest. An example of an implication of our result
is that 3-SAT for n variables can be witness compressed from n bits (the
variable assignments) to 0.41n bits.
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1 Introduction and Motivation

1.1 Leakage Resilience of Cryptographic Assumptions

There have been many recent works (e.g., [2,3,10,13,16,14,21,33,37,38,40,42,43],
and the references therein) aimed at designing cryptographic schemes that are
secure against a large class of side-channel attacks. Some of these look at side
channel attacks where the adversary can obtain some function of the secret key.
We look at an even more general class of side-channel attacks where the adversary
can obtain a bounded amount of arbitrary information. We model this kind of
attack by allowing the adversary a bounded number of queries to an infinitely
powerful oracle O that can be asked arbitrary binary (YES/NO) questions. This
oracle was considered by Maurer [37] to study the hardness of factoring N given
queries to this oracle.

Goldwasser et al [24] raised a more general question regarding leakage which
is also the question that we are concerned with: Which of the cryptographic
assumptions (rather than cryptographic schemes) are secure in the presence of
leakage of some bits of information?

1.2 Complexity Notions

In this section, we introduce three notions, unpredictability entropy, oracle com-
plexity, and witness compressibility, whose relationship we study in this paper.

A well-studied and realistic approach in the study of the computational com-
plexity of a computational problem is to look at probabilistic polynomial time
(PPT) algorithms that solve the problem. We define the unpredictability entropy
[31] of a problem (essentially) as − log2 p, where p is the maximum possible
success probability of a PPT algorithm for solving the problem. A common un-
derstanding is that the study of probabilistic algorithms makes sense only if the
probability of success is non-negligible. While there have been a few results like
[6,7,9,12,17,18,19,23,44,48] that look at the class of one-sided error probabilistic
polynomial time (OPP) algorithms for decision problems with negligible suc-
cess probability p, these are studied with the viewpoint of improving the bound
on the exact worst-case complexity of the problem by repeating the algorithm
O(1/p) times and hence amplifying the success probability to a non-negligible
quantity. However, we argue that PPT algorithms are interesting even if the
success probability p is negligible and even if there exist other exact algorithms
that run in time much less than O(1/p).

Maurer [37] considered a class of PPT algorithms for search problems given
the oracle O. If the algorithm is allowed as many binary queries to the oracle
as is the length of the solution/witness, then there is a trivial algorithm that
solves the problem. Thus, this class of algorithms is looked at with the goal of
minimizing the number of queries. The minimum number of queries required by
a PPT algorithm for solving this problem with overwhelming probability is the
oracle complexity (which is the same as the leakage-resilience limit) of the prob-
lem. A motivation for looking at such an oracle, as pointed out by the author, is
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to determine whether the difficulty of a certain problem can be concentrated in a
few difficult bits leading to a new complexity theoretic classification of problems.
This question was answered in the affirmative for the integer factorization prob-
lem in [37] but it remains open for other computational problems. Consider, for
instance, the problem of computing discrete logarithms modulo a prime q. One
can see that the hardness of this problem and the integer factorization problem
is closely related in the sense that almost all algorithms for solving the factoring
problem have a variant that solves the discrete logarithm problem modulo a
prime. A survey of this can be found in Chapter 3 of [28]. However, the hardness
of the two problems seems to differ significantly in terms of the number of queries
to O required in order to solve these problems in polynomial time. Factoring can
be solved with a small number of queries but, to the best of our knowledge, there
exists no algorithm that solves the discrete logarithm problem with a non-trivial
number (i.e., substantially less than the solution size) of queries to O. Thus,
finding the oracle complexity seems to be an interesting research area in itself.

We introduce another related notion called the witness compressibility of a
problem. This is the smallest size k such that there is a PPT reduction that
reduces the witness size of a given instance to at most k with overwhelming
probability. This quantity can be seen as the non-adaptive leakage-resilience
limit of an assumption about the hardness of the problem. A problem is not
resilient to k bits of non-adaptive leakage if and only if it is witness compressible
up to k bits. 1

Note that the three quantities, i.e., unpredictability entropy, oracle complex-
ity, and witness compressibility can only be defined up to an additive logarithmic
term (see Section 2.2).

1.3 Our Contributions

We show that for all search problems with an efficiently computable verification
predicate, the following are equivalent.

(i) There exists a PPT algorithm that solves a problem S with success proba-
bility Θ(2−k).

(ii) There exists a PPT algorithm that makes at most k queries to O and solves
the problem S with a constant success probability.

(iii) There exists a PPT reduction that reduces the witness size of a given
instance of S to at most k with constant probability.

This implies that the three quantities, i.e., unpredictability entropy, oracle com-
plexity, and witness compressibility are essentially equal.

From this result, we get an exact characterization of the leakage-resilience of a
cryptographic assumption about the hardness of some computational problem S
in terms of the best possible PPT algorithm for S. A cryptographic assumption
is robust up to k bits of leakage if and only if there is an algorithm that solves
1 Witness compression should not be confused with instance compression that has

been studied in [29,20].
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the corresponding problem with probability Θ(2−k). This provides motivation
for improving the success probability of PPT algorithms for various computa-
tional problems. With this goal in mind, we present in this paper the best PPT
algorithms for some problems relevant in cryptography - in particular for the
learning with errors and lattice problems that have recently gained substantial
importance in cryptography.

The results of this paper also raise some interesting questions in complex-
ity theory. One question this paper draws attention to is the following: Which
problems have optimal witness size, or stated differently, which problems can
or cannot be efficiently reduced to problems with a smaller witness size? Com-
bining the results of [44] with our result gives evidence that the witness size
of Circuit-SAT cannot be compressed under reasonable complexity theoretic as-
sumptions. However, for instance if we look at the 3-SAT problem, which is also
an NP-complete problem, combining our results with Schöning’s PPT algorithm
[48] that solves 3-SAT with probability (4/3)−n, we conclude that the witness of
3-SAT can be compressed to a log2 4/3-fraction, i.e., about 41.5% of its original
size.

1.4 Organization of This Paper

In Section 2, we introduce the definitions of problems and complexity notions
mentioned in the introduction. In Section 3, we prove the witness compression
lemma and establish the equivalence of (i), (ii) and (iii) mentioned in Section
1.2. In Section 4 we give/mention the best known PPT algorithms for some
problems relevant in cryptography. In Section 5, we conclude and give a list of
open problems that emerge from the results of this paper.

2 Definitions

2.1 Computational Search Problems

A computational search problem S is characterized by an instance space X , a
solution (or witness) space W , and a (verification) predicate V : X × W →
{0, 1}. Each element of X and W is assumed to be represented as a bitstring.
In this paper, unless otherwise stated, we consider problems for which there is
a polynomial time algorithm that computes the predicate V . We call this set of
problems PC.2

The instance space X can be partitioned into two sets: the set X1 and X0 of
instances for which there exists a witness and for which there exists no witness,
respectively, i.e.,

X1 := {x ∈ X | ∃ w ∈ W , V (x,w) = 1} , and

X0 := {x ∈ X | ∀w ∈ W , V (x,w) = 0} .
2 The name of this class, PC, is taken from [26].
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The sets X1 and X0 are sometimes referred to as the set of YES instances and
that of NO instances, respectively.

We define γV : X1 �→ N as the size of the smallest witness for a given x, i.e.,

γV (x) := min
w∈W,V (x,w)=1

|w| .3

A search problem is the problem of finding, for a given element x ∈ X1, a
witness w ∈ W such that V (x,w) = 1. By O, we denote the infinitely powerful
oracle that can answer arbitrary binary questions. The oracle, and hence the
language in which questions are asked can be defined freely, and hence need not
be specified (it can be thought of as being universally quantified).

Let p : N × N �→ [0, 1] and q : N × N �→ N ∪ {0} be functions.

Definition 1. Let S = (X ,W , V ) be a search problem. An algorithm F is called
a (p, q)-solver for S if for all m,n ∈ N and for all x ∈ X1 such that |x| ≤ m and
γ(x) ≤ n, F makes at most q (m,n) queries to O, and with probability at least
p (m,n), computes a w ∈ W such that V (x,w) = 1.

In the above definition, F is called efficient if it runs in time polynomial in
the size of input.

2.2 Complexity Notions

Now, we introduce the notion of witness compressibility. A problem is k-witness
compressible if there exists another predicate V ′ such that for any given instance
of the problem, there exists a witness of length at most k with respect to V ′,
and given this witness one can efficiently compute a witness with respect to V .
More formally,

Definition 2. A search problem S defined by S = (X ,W , V ) is (deterministic)
k-witness compressible if there exists a witness set W ′, a predicate V ′ : X×W ′ �→
{0, 1}, and a polynomial time algorithm T : X×W ′ �→ W such that for all x ∈ X1,

– γV ′
(x) ≤ k(|x|, γV (x)).

– For all w ∈ W ′, V ′(x,w) = 1 if and only if V (x, T (x,w)) = 1.

As has been often seen in complexity theory, the best known PPT algo-
rithm/reduction is significantly faster than the best known deterministic poly-
nomial time algorithm/reduction, e.g. primality testing. In fact sometimes the
former exists but the latter eludes discovery. Thus it is reasonable to look at the
following randomized version of the above definition.

Definition 3. A search problem S defined by S = (X ,W , V ) is k-witness com-
pressible within ε if there exists a witness set W ′, an efficiently samplable random
variable S that takes values from a set S, a set of predicates V ′

S : X×W ′ �→ {0, 1},
and polynomial time algorithms TS : X ×W ′ �→ W parametrized by S such that
for all x ∈ X1,
3 We omit the predicate V if it is clear from the context.
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– Pr
(
γV ′

S (x) ≤ k
(|x|, γV (x)

)) ≥ 1 − ε(|x|, γV (x)).4

– For all w ∈ W ′, s ∈ S , V ′
s (x,w) = 1 if and only if V (x, Ts(x,w)) = 1.

With these definitions in place we now define the three quantities that we
show, in this paper, are (essentially) equal. Let k = k(m,n) be some integer
valued function.

Definition 4. A search problem S has unpredictability entropy at most k if there
exists an efficient (2−k, 0)-solver for S.

Definition 5. A search problem S has oracle-complexity at most k if there exists
an efficient (1 − ε, k)-solver for S for some negligible function ε(m,n).5

Definition 6. A search problem S is k-witness compressible if S is k-witness
compressible within ε for some negligible function ε(m,n).

Note that in these definitions, k(m,n) is unique only up to an additive term
of O(log2 m). Also note that we can have an alternative version of these defini-
tions where, for instance, the unpredictability entropy is equal to k(m,n) (again,
up to an additive term of O(log2m)) by saying that there exists an efficient
(2−k(m,n), 0)-solver but no efficient (2−k(m,n)+ω(log2 m), 0)-solver for S. However,
it would be cumbersome to make these alternative definitions precise and so we
avoid them.

3 Relations between Complexity Notions for Search
Problems

3.1 Two Simple Results

In this section, we give two simple relations between complexity notions for
search problems.

Lemma 1. For any search problem S and any functions p = p(m,n), q =
q(m,n), and k = k(m,n) ≤ q(m,n), if there exists an efficient (p, q)-solver
for S, then there exists an efficient (p · 2−k, q − k)-solver for S.

Proof. Let S be a search problem and let F be an efficient (p, q)-solver for S.
Let F ′ be an algorithm that simulates F except that it guesses the answer to
the last k oracle queries uniformly at random. Thus F ′ makes q− k queries and
guesses the answer to the k queries correctly with probability 2−k and hence
succeeds in solving S with probability at least p · 2−k.

It is folklore as observed by a number of papers, e.g., [40,3,4] that non-adaptive
leakage-resilience is the same as adaptive leakage-resilience. This can be seen in
our terminology by the following lemma.
4 The witness length is at most k with probability at least 1 − ε, where k and ε are

both functions of |x| and γV (x).
5 The term negligible, like the term efficient, is in terms of the input size m. So, for

any m large enough, and any n, and any polynomial P (.), ε(m,n) < 1/P (m).
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Lemma 2. For any functions k = k(m,n) and ε = ε(m,n), every search prob-
lem is k-witness compressible within ε if and only if it has an efficient (1− ε, k)-
solver.

Proof. ( ⇒ ) The idea is that, with probability 1 − ε, the witness size of an
instance is reduced to size k, and hence we can use k queries to O to obtain a
witness for the resulting instance.

Let S = (X ,W , V ) be the search problem. There exists some W ′, V ′
S : X ×

W ′ �→ {0, 1} and TS : X × W ′ �→ W as in Definition 3. We give a polynomial
time algorithm F that is a (1 − ε, k)-solver for S. On input x ∈ X , F generates
S = s and then uses k queries to O to ask for w′, the string formed from the last
k bits of a smallest length witness w ∈ W ′ (if it exists) such that V ′

s (x,w) = 1.
Then the algorithm outputs Ts(x,w′).

Let m = |x| and n = γV (x). With probability at least 1 − ε, S = s such
that the conditions of Definition 3 hold. Thus, w′ = w since γV ′

s (x) ≤ k. Hence
V ′

s (x,w′) = 1, which implies V (x, Ts(x,w′)) = 1.
( ⇐ ) Let F be a (1 − ε, k)-solver for S. Define W ′ as the set of all bitstrings

and let S denote the random choices made by F . Define Ts(x,w) to be the
output of F on input x, S = s and the result of the oracle queries equal to w.
Further, define V ′

s (x,w) as V (x, Ts(x,w)). This gives the desired result.

3.2 The Witness Compression Lemma

We state a few lemmas that we need in order to prove the main lemma of this
section.

Lemma 3. Let Y1, . . . , Yt be pairwise independent binary random variables where
Pr (Yi = 1) = p for 1 ≤ i ≤ t. Then

Pr (∃i ∈ {1, . . . , t} : Yi = 1) ≥ max(tp− t2p2

2
, 1 − 1

tp
)

Proof. We give two ways to bound the term on the left. Using Bonferroni in-
equalities [15],

Pr (∃i ∈ {1, . . . , t} : Yi = 1) = Pr (Y1 = 1 ∨ Y2 = 1 ∨ · · · ∨ Yt = 1)

≥
∑

1≤i≤t

Pr (Yi = 1) −
∑

1≤i1<i2≤t

Pr (Yi1 = 1 ∧ Yi2 = 1)

= tp− t (t− 1)
2

p2

≥ tp− t2p2

2
.

Now, let Y = Y1 + · · · + Yt. The expected value of Y is E(Y ) = tp and the
variance of Y is V ar(Y ) = tp(1 − p). Thus,
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Pr (∃i ∈ {1, . . . , t} : Yi = 1) = 1 − Pr(Y = 0)
≥ 1 − Pr (|Y − E(Y )| ≥ E(Y ))

≥ 1 − V ar(Y )
E(Y )2

= 1 − 1 − p

tp
≥ 1 − 1

tp
,

where the second last inequality follows from the Chebyshev’s inequality.

Lemma 4. Let F be a finite field of cardinality 2
, let φ be a bijection from F to
{0, 1}
, and let T ⊂ {0, 1}
. Further, let y1, . . . , yt be some fixed distinct elements
of F. Then, for randomly chosen A,B ∈R F, the probability that φ (Ayi +B) ∈ T

for some 1 ≤ i ≤ t is at least max
( t|T |

2� − t2|T |2
2(2�)2

, 1 − 2�

t|T |
)
.6

Proof. Define binary random variables Y1,. . . , Yt such that Yi =1 if φ (Ayi +B) ∈
T . Thus,

Pr(Yi = 1) =
|T |
2


,

and it can be easily seen that the Yi’s are pairwise independent random variables.
Therefore, by Lemma 3, the probability that φ (Ayi +B) ∈ T for some 1 ≤ i ≤ t
is at least

max
( t|T |

2

− t2|T |2

2(2
)2
, 1 − 2


t|T |
)
.

Now, we state the main lemma of this section.

Lemma 5. [Witness Compression Lemma] Let k = k(m,n) and k′ =
k′(m,n) ≥ k(m,n) be any functions. Every search problem with an efficient
(2−k, 0)-solver is k′-witness compressible within 1

2k′−k .

Proof. Let S = (X ,W , V ) be a search problem and let F be an efficient (2−k, 0)-
solver for S. For a given input instance x ∈ X1, let R ∈ {0, 1}
 denote the random
choices made by F . Then,

Pr (V (x,F (x,R)) = 1) ≥ 2−k . (1)

We define the set R (x) as the set of r such that F is successful in finding a
witness for x for this choice of r, i.e.,

R (x) = {r ∈ {0, 1}
 | V (x,F (x, r)) = 1} .
From (1), it follows that |R (x) | ≥ 2
−k for all x ∈ X1.

Now, let F, φ, A,B and y1, . . . , yt be as in Lemma 4. Thus, by using the second
bound from Lemma 4, with t = 2k′

, and T = R(x), we get

Pr
(
∃1 ≤ i ≤ 2k′

: φ (Ayi +B) ∈ R(x)
)
≥ 1 − 1

2k′−k
.

6 Note that the result of this lemma will hold for any pairwise independent random
function from F to itself, instead of Ay +B.



694 D. Aggarwal and U. Maurer

Then, let S = (A,B) be uniformly distributed over F×F. Furthermore, define
W ′ = {0, 1}∗,

TS(x,w) = F(x, φ(Ayw +B)), and V ′
S(x,w) = V (x, TS(x,w)) .

In the above argument, we can also use the first bound from Lemma 4 to show
that the problem is k-witness compressible within 1

2 .

3.3 The Main Result

Combining the results of Lemma 1, 2, and 5, we get the following result:

Theorem 1. For any search problem S, and for any functions k = k(m,n) and
c = c(m,n) = ω(log2 m):

– If S is k-witness compressibile, then S has oracle complexity at most k.
– If S has oracle complexity at most k, then S has unpredictability entropy at

most k.
– If S has unpredictability entropy at most k, then S is k+c-witness compress-

ibile.

Note that the results of this section are useful only if k(m,n) = ω(log2m) be-
cause otherwise the corresponding search problem is solvable in expected polyno-
mial time. Thus, without loss of generality, we can assume k(m,n) = ω(log2 m)
and then choosing c(m,n) as any function asymptotically smaller than k but
larger than log2m (e.g. c =

√
k), we get that the three quantities in Theorem 1

are essentially equivalent for functions in k + o(k).
Remark 1: Theorem 1 implies that an assumption of the hardness of a search

problem S is secure up to k bits of leakage of arbitrary information if and only if
there is no PPT algorithm that succeeds in solving S with probability Θ(2−k).
However, the hardness assumptions we consider are worst case assumptions and
not average case assumptions, which are more relevant in practice. Note that this
is not a disadvantage, since our result implies a corresponding result for average
case assumptions, just by restricting the set of instances of the problem to those
where the problem is successful with significant (though possibly exponentially
small) probability.

Remark 2: A similar result as Theorem 1 can also be proved for decision prob-
lems (using essentially the same proofs) but for that we need to be more careful
in defining the oracle complexity of a problem and also the success probability
of a PPT algorithm and we do not do so in this version of the paper.

4 PPT Algorithms for Problems Relevant in
Cryptography

In this section, we give the best PPT algorithms known for various search prob-
lems relevant in cryptography. We look in more detail at the learning with errors
and lattice problems that have been of interest in cryptography in recent years.
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4.1 Factoring and Discrete Logarithms

There is a sequence of results [47,11,30] that show that partial information about
p and q is enough to factor the RSA modulus pq. The best result in this direction
is the result in [37] that, under a conjecture, shows that there is a polynomial
time algorithm that factors N given ε log2N questions to O where ε is some
arbitrary constant. Equivalently, there exists a PPT algorithm that factors N
with probability 2−ε log2 N .

Even though the problem of computing discrete logarithms modulo a prime is
closely related to the problem of factoring integers, to the best of our knowledge,
there exists no non-trivial PPT algorithm for solving discrete logarithms in Zp.
The same holds for the Computational Diffie Hellman problem.

It would be interesting to come up with an algorithm for solving discrete
logarithm modulo a prime p that runs in time polynomial in log2 p and succeeds
with probability better than the trivial poly(log2 p)

p .

4.2 Lattices

Preliminaries An n-dimensional lattice is a discrete additive subgroup of Rn.
A set of linearly independent vectors that generates a lattice is called a basis
and is denoted by B = {b1, . . . ,bn} ⊂ Rn. The lattice Λ generated by the basis
B is

Λ = L(B) =
{
Bz =

n∑
i=1

zibi : z ∈ Zn
}
.

For any point t ∈ Rn, the distance of t to the closest point in the lattice is
written as dist(t, Λ).

The Gram Schmidt orthogonalization of B, denoted as {b̃1, . . . , b̃n}, is defined
as

b̃i = bi −
i−1∑
j=1

μi,jb̃j , where μi,j =
〈bi, b̃j〉
〈b̃j , b̃j〉

.

By λ1(Λ), we denote the length of the shortest non-zero vector of the lattice
Λ. For this paper, the lengths are always assumed to be in the �2 norm. If the
lattice is clear from the context, then we write it simply as λ1. It is well known
and can be shown easily that

λ1 ≥ min
i

‖b̃i‖ .

Definition 7. A basis B = {b1, . . . ,bn} is a δ-LLL Reduced Basis [35] if the
following holds:

– ∀ 1 ≤ j < i ≤ n, μi,j ≤ 1
2 ,

– ∀ 1 ≤ i < n, δ‖b̃i‖2 ≤ ‖μi+1,ib̃i + b̃i+1‖2.
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We choose δ = 3
4 and then it can be easily seen (e.g., refer to [25]) from the

above definition that for a δ-LLL reduced basis, ∀ 1 ≤ i < n, ‖bi‖ ≤ √
2‖bi+1‖.

Since there is an efficient algorithm [35] to compute an LLL-reduced basis, we
assume, unless otherwise stated, that the given basis is always LLL-reduced and
hence satisfies the above mentioned properties.

Now, we define some problems over lattices that we are interested in for this
paper.

Definition 8. The shortest vector problem is defined as follows: Given a basis
B of an n-dimensional lattice Λ = L(B), it is required to find a vector v ∈ Λ
such that ‖v‖ = λ1.

A decision variant, whose hardness many cryptographic schemes are based
on, is the gap shortest vector problem defined as follows.

Definition 9. The gap shortest vector problem GapSVPγ for some γ = γ(n) is
defined as follows: Given a basis B of an n-dimensional lattice Λ = L(B) and
d > 0 such that d /∈ [λ1/γ, λ1), decide whether d ≥ λ1 or d < λ1/γ.

Next we define the closest vector problem (CVP) and bounded distance de-
coding (BDD) which is a special case of the CVP.

Definition 10. The closest vector problem CVP is defined as follows: Given a
basis B of an n-dimensional lattice Λ = L(B), and t ∈ Rn, find v ∈ Λ such that
‖v − t‖ = dist(t, Λ).

Definition 11. The α-bounded distance decoding problem BDDα for some 0 <
α = α(n) < 1/2 is defined as follows: Given a basis B of an n-dimensional
lattice Λ = L(B), and t ∈ Rn such that dist(t, Λ) ≤ αλ1, find v ∈ Λ such that
‖v − t‖ = dist(t, Λ).

Shortest Vector Problem In this section, we give a polynomial time algorithm
that computes the shortest vector of a lattice with probability 1

2(n+1)(n+2)/4 . This
algorithm, of course, also solves the GapSVP problem.

Theorem 2. There exists a polynomial algorithm that, given a basis B of a
lattice Λ = L(B), finds the shortest vector of Λ with probability 1

2(n+1)(n+2)/4 .

Proof. Since an LLL-reduced basis can be computed efficiently, we assume with-
out loss of generality that B is an LLL-reduced basis. Let the shortest vector u
of the lattice be u = a1b̃1 + a2b̃2 + · · ·+ anb̃n. Since b̃1 = b1 is a lattice vector,
therefore ‖u‖ ≤ ‖b̃1‖. By the property of the LLL basis, ‖b̃1‖ ≤ 2(i−1)/2‖b̃i‖,
which implies ‖u‖ ≤ 2(i−1)/2‖b̃i‖. Thus, |ai| ≤ 2(i−1)/2. The component ai is
determined by the coefficients of bi, . . . ,bn in u. Thus, given the coefficients
of bn, . . . ,bi+1, the coefficient of bi can be chosen correctly with probability
1/(2 · 2(i−1)/2) = 2−(i+1)/2. This gives a polynomial time algorithm that suc-
ceeds in finding the shortest vector with probability

n∏
i=1

2−(i+1)/2 = 2−(n+1)(n+2)/4 .
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Closest Vector Problem In this section, we give a polynomial time algorithm
that solves the closest vector problem with probability 1

2n(n+1)/4 .

Theorem 3. There exists a polynomial time algorithm that, given a basis B
of an n-dimensional lattice Λ = L(B), and t ∈ Rn, finds v ∈ Λ such that
‖v − t‖ = dist(t, Λ) with probability 1

2n(n+1)/4 .

Proof. Let t = ρ1b̃1 + . . . ρnb̃n and let the closest vector to t in the lattice
be u = a1b1 + a2b2 + · · · + anbn. Babai’s algorithm [5] returns a vector x
such that ‖x − t‖ ≤ 1

22n/2‖b̃n‖. Thus ‖u − t‖ ≤ ‖x − t‖ ≤ 1
22n/2‖b̃n‖, which

implies |an − ρn| ≤ 1
22n/2. Thus the algorithm proceeds as follows: Choose ân

uniformly at random from (ρn − 1
22n/2, ρn + 1

22n/2) and recursively compute the
closest vector to t − ânbn in the lattice L(b1, . . . ,bn−1). The probability that
(â1, . . . , ân) = (a1, . . . , an) is

n∏
i=1

2−i/2 = 2−n(n+1)/4 .

Bounded Distance Decoding (BDD) Problem The algorithm given in the
previous section, of course, also solves the BDD problem since BDD is a special
case of the closest vector problem. However, there exists an algorithm for BDDα

with a larger success probability 1
αn2(n+1)(n+2)/4 as given below.

Theorem 4. There exists a polynomial time algorithm that, given a basis B of
an n-dimensional lattice Λ = L(B), and t ∈ Rn such that dist(t, Λ) ≤ αλ1 for
some 0 < α(n) < 1/2, finds v ∈ Λ such that ‖v− t‖ = dist(t, Λ) with probability

1
αn2(n+1)(n+2)/4 .

Proof. Since an LLL-reduced basis can be computed efficiently, we assume with-
out loss of generality that B is an LLL-reduced basis. Let t = t1b̃1 + t2b̃2 + · · ·+
tnb̃n and the closest vector u of the lattice be u = u1b̃1 + u2b̃2 + · · · + unb̃n.
Since b̃1 = b1 is a lattice vector, therefore ‖u − t‖ ≤ α‖b̃1‖. By the property
of the LLL basis, ‖b̃1‖ ≤ 2(i−1)/2‖b̃i‖, which implies ‖u − t‖ ≤ 2(i−1)/2α‖b̃i‖.
Thus, |ui−ti| ≤ α2(i−1)/2. The component ui is determined by the coefficients of
bi, . . . ,bn in u. Thus, given the coefficients of bn, . . . ,bi+1, the coefficient of bi

can be chosen correctly with probability 1/(2α · 2(i−1)/2) = 2−(i+1)/2α−1. This
gives a polynomial time algorithm that succeeds in finding the shortest vector
with probability

n∏
i=1

1
2(i+1)/2α

=
1

αn2(n+1)(n+2)/4
.

4.3 Learning with Errors and Its Relation to Lattice Problems

In this section, we mention the best PPT algorithm for the learning with errors
(LWE) problem and its relation to the lattice problems with respect to leakage.
The proofs and other details are omitted.
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Theorem 5. For some function β = β(n) such that βq = ω(log2 n), β(n) =
o(1/ log2 n) and m ≥ n, there is a polynomial time algorithm that solves search-
LWEn,q,m,ψβ

with probability (βq log2 n)−n for a constant fraction α of the inputs.

Note that it is straightforward to interpret the above mentioned algorithms for
LWE and lattice problems as PPT algorithms that succeed with constant prob-
ability given − log2 p queries to O (or equivalently − log2 p bits of leakage),
where p is the success probability of the algorithm. We do not need the witness
compression lemma to make this conclusion. The witness compression lemma
however implies that if there is any PPT algorithm for any of these problems
that succeeds with probability p′ < p, then there is a PPT algorithm that makes
− log2 p

′ queries to O and succeeds with constant probability.
It is common practice to base the LWE-based schemes on the hardness of

lattice based schemes. In the same spirit, by a careful inspection of the reduction
of BDD to LWE from [46], we get the following result:

Theorem 6. If there exists a PPT algorithm that solves search-LWEn,q,m,ψβ

with probability p then there exists a PPT algorithm that solves BDD β
n

with

probability cp�n/ log2 q�) for some constant c.

By Theorem 6, we can base the LWE assumption with leakage on the expo-
nential hardness of the BDD assumption as follows.

Corollary 1. If there exists no polynomial time algorithm that solves BDD β
n

with probability 2−δn2
, then the search-LWEn,q,m,ψβ

assumption is robust to
δn log2 q − o(log2 q) bits of leakage.

5 Conclusions and Open Problems

We show that the unpredictability entropy of a problem is equal to its leakage-
resilience limit. This provides motivation to look at PPT algorithms for problems
relevant in cryptography with maximum possible success probability. A question
that is wide open is to what extent can the success probability of PPT algo-
rithms be improved for various problems like the discrete logarithm problem,
search LWE problem or various lattice problems. Note that if we repeatedly run
algorithms for lattice problems given in Section 5 to amplify the success proba-
bility to a non-negligible quantity, we get algorithms with running time 2O(n2),
which is much worse than the best known algorithms that run in time 2O(n)

[1,39]. Due to this large gap, one might expect that it should be possible to im-
prove the success probability of a PPT algorithm and this has eluded discovery
because of lack of attention to this question.

The witness compression lemma implies that the best known PPT algorithms,
for instance [6,7,9,12,17,18,19,23], immediately give a lower bound on the maxi-
mum witness compressibility of the corresponding problems.

The results of [44] give evidence that perhaps Circuit-SAT is not witness
compressible to any non-trivial witness size. In fact the result of [44], which
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shows that there exists no non-trivial PPT algorithm for Circuit-SAT (and hence
for all NP problems) under reasonable complexity assumptions, can be proved
by proving a decision version of the witness compression lemma. If there exist
non-trivial PPT algorithms for all NP problems, we can repeatedly apply the
witness compression lemma until the witness size is reduced to a constant, thus
resulting in a sub-exponential time algorithm for any NP problem, which is not
believed to be possible. It is interesting to look at the question of which are the
other problems that, like Circuit-SAT are not witness compressible. The discrete
logarithm problem modulo a prime seems to be a candidate.

Another interesting research direction is to look at PPT-reductions, i.e., PPT
algorithms for solving one “hard” problem given a PPT algorithm for solving
another problem (with possibly negligible success probability). Consider, for in-
stance, the reduction of [36] from GapSVP to BDD. This reduction was derived
from the main idea of [41] in obtaining the first public key cryptosystem whose
hardness was based on the GapSVP. This reduction does not seem to translate
easily to the case of PPT algorithms, since given a BDD oracle that solves the
problem with an exponentially small probability, it is not clear how to use it to
solve the GapSVP problem. If such a reduction was possible, we could base the
leakage-resilience of the search LWE assumption on the exponential hardness of
the GapSVP problem.
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Abstract. We present a generic method to secure various widely-used
cryptosystems against arbitrary side-channel leakage, as long as the leak-
age adheres three restrictions: first, it is bounded per observation but in
total can be arbitrary large. Second, memory parts leak independently,
and, third, the randomness that is used for certain operations comes from
a simple (non-uniform) distribution.

As a fundamental building block, we construct a scheme to store a
cryptographic secret such that it remains information theoretically hid-
den, even given arbitrary continuous leakage from the storage. To this
end, we use a randomized encoding and develop a method to securely
refresh these encodings even in the presence of leakage. We then show
that our encoding scheme exhibits an efficient additive homomorphism
which can be used to protect important cryptographic tasks such as
identification, signing and encryption. More precisely, we propose effi-
cient implementations of the Okamoto identification scheme, and of an
ElGamal-based cryptosystem with security against continuous leakage,
as long as the leakage adheres the above mentioned restrictions. We prove
security of the Okamoto scheme under the DL assumption and CCA2 se-
curity of our encryption scheme under the DDH assumption.

1 Introduction

In the last years, a large body of work attempts to analyze the effectiveness
of side-channel countermeasures in a mathematically rigorous way. These works
propose a physical model incorporating a (mostly broad) class of side-channel at-
tacks and design new cryptographic schemes that provably withstand them under
certain assumptions about the physical hardware (see, e.g., [24,11,12,16,9,5,23]
and many more). By now we have seen new constructions for many important
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schemes that are provably secure against surprisingly broad classes of leakage
attacks.

Unfortunately, most of these new constructions are rather complicated non-
standard schemes, often relying on a heavy cryptographic machinery, which
makes them less appealing for implementations on computationally limited de-
vices. In this work, we take a different approach: instead of developing new
cryptographic schemes, we ask the natural question whether standard, widely-
used cryptosystems can be implemented efficiently such that they remain secure
in the presence of continuous bounded leakage. We answer this question affirma-
tively, and show a generic way that “compiles” various common cryptosystems
into schemes that remain secure against a broad class of leakage attacks.

Similar to earlier work, we make certain restrictions on the leakage. We follow
the work of Dziembowski and Pietrzak [11], and allow the leakage to be arbitrary
as long as the following two restrictions are satisfied:

1. Bounded leakage: the amount of leakage in each round is bounded to λ
bits (but overall can be arbitrary large).

2. Independent leakage: the computation can be structured into rounds,
where each such round leaks independently (we define the notion of a “round”
below).

Formally, this is modeled by letting the adversary in each round choose a poly-
nomial time computable leakage function f with range {0, 1}λ, and then giving
her f(τ) where τ is all the data that has been accessed during the current round.
In addition to these two restrictions, we require that our device has access to a
source of correlated randomness generated in a leak-free way – e.g., computed
by a simple leak free component. We elaborate in the following on our leakage
restrictions.

On the bounded leakage assumption. Most recent work on leakage re-
silient cryptography requires that the leakage is bounded per observation to
some fraction of the secret key. This models the observation that in practice
many side-channel attacks only exploit a polylogarithmic amount of informa-
tion, and typically require thousands of observations until the single key can
be recovered. This is, for instance, the case for DPA-based attacks where the
power consumption is modeled by a weighted sum of the computation’s inter-
mediate values. We would like to mention that all our results also remain true
in the entropy loss model, i.e., we do not necessarily require that the leakage
is bounded to λ bits, but rather only need that the min entropy of the state
remains sufficiently high even after given the leakage.

On independent leakages. In this paper, we assume that the memory of
the device is divided into three parts L,R and C where (L,C) and (R,C) leak
independently. To use the independent leakage assumption, we structure the
computation into rounds, where each round only accesses either (L,C) or (R,C).
Similar assumptions have been used in several works [24,11,27,21,12].

On leak-free components. We require that devices that implement our
schemes have access to a source of correlated randomness sampled in a leak-
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free way. Such a source can, for instance, be implemented by a probabilistic
leak-free component that outputs the correlated randomness. Of course, the as-
sumption of a leak-free component is a strong requirement on the hardware, but
let us argue why in our particular case it still may be a feasible assumption. As
in earlier works that made use of leak-free components [15,13,20,16], we require
that our component leaks from its outputs, but the leakage function is oblivi-
ous to its internals. To be more concrete, in the simplest case our component
O outputs two random vectors A,B ← Fn (with F being a finite field and n
being a statistical security parameter) such that their inner product is 0, i.e.,∑

iAi ·Bi = 0. We require that A gets stored on one part of the memory, while
B gets stored on the other, thus, we require that A and B leak independently.

Our component O exhibits several properties that are beneficial for implemen-
tations. First, O is simple and small. It can be implemented in size linear in n, as
one simply needs to sample uniformly at random vectors A and (B1, . . . , Bn−1)
and computes the last element Bn such that

∑
iAi · Bi = 0.1 Second, O is

used in a very limited way, namely, it is needed only when the secret key gets
refreshed (cf. Section 1.2 for further discussion on this). Finally, O does not
take any inputs, and hence its computation is completely independent of the
actual computation (e.g., encryption or signing) that is carried out by the de-
vice. This not only allows to test the component independently from the actual
cryptoscheme that is implemented, but moreover makes it much harder to attack
by side-channel analysis, as successful attacks usually require some choice (or at
least knowledge) over the inputs.

1.1 Leakage Resilient Standard Cryptographic Schemes

While in the last years tremendous progress has been made in the design of new
cryptographic schemes with built-in leakage resilience, two common criticisms
are frequently brought up:

1. Cryptographic schemes are rarely used stand-alone, but more often are part
of an industrial standard. Even if desirable, it is unlikely that in the near
future these standards will be adjusted to include recent scientific progress.

2. Many of the current leakage resilient cryptoschemes are complicated, rely on
non-standard complexity assumptions and are often rather inefficient.

In this work, we are interested in techniques that allow for efficient leakage
resilient implementations of widely-used cryptographic schemes. Before we given
an overview of our contributions in the next section, we discuss some related
literature that considered a similar question.

Leakage Resilient Circuit Compilers. One fundamental question in leak-
age resilient cryptography is whether any computation can be implemented in a
way that resists certain side-channel leakages. This question has been studied in
a series of works [19,13,20,16] and dates back to the work of Ishai et al. [19]. In

1 For simplicity, we assume that Ln is non-zero.
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particular, the works of Juma and Vahlis [20] and Goldwasser and Rothblum [16]
study the question whether any computation can be implemented in a way that
withstands arbitrary polynomial-time computable leakages. As a building block
they use a public-key encryption scheme and encrypt the entire computation of
the circuit. More precisely, the approach of Juma and Vahlis makes use of fully
homomorphic encryption, while Goldwasser and Rothblum generate for each
Boolean wire of the circuit a new key pair and encrypt the current value on the
wire using the corresponding key. We would like to emphasize that all circuit
compilers (except for the one of Ishai et al.) require leak-free components. Notice
also that the work of Goldwasser and Rothblum and Juma and Vahlis requires
the independent leakage assumption.

Leakage Resilient ElGamal. While circuit compilers allow to secure any
(cryptographic) computation against leakage, they typically suffer from a large
efficiency overhead. A recent work of Kiltz and Pietrzak [21] makes progress in
this direction. The authors show that certain standard cryptographic schemes
can be implemented efficiently in a leakage resilient way. The main weakness of
this work is that the security proof is given in the generic group model.

1.2 Our Contribution

In this paper, we show a generic method to implement various standard cryp-
tographic schemes that are provably secure in the above described leakage model.
More precisely, we propose an efficient and simple implementation of the Okamoto
authentication/signature scheme and of an ElGamal-based encryption scheme,
and prove the security of our implementations under continuous leakage attacks.
We also discuss why our techniques are fairly general and may find applica-
tions for the secure implementation of various other cryptographic schemes. As
a fundamental tool, we introduce an information theoretically secure scheme to
refresh an encoded secret in the presence of continuous leakage. We detail on
our results below.

Leakage Resilient Refreshing of Encoded Secrets. Recently, Davi et
al. [8] introduced the notion of leakage resilient storage (LRS). An LRS encodes a
secret S such that given partial knowledge about the encoding an adversary does
not obtain any knowledge about the encoded secret S. One of their instantiations
relies on the inner product two-source extractor introduced in the seminal work
of Chor and Goldreich [7]. In this scheme the secret S is encoded as a pair
(L,R) ∈ Fn × Fn, where F is some finite field, and 〈L,R〉 :=

∑
i Li · Ri = S.

Unfortunately, the construction of Davi et al. has one important weakness: it
can trivially be broken if an adversary continuously leaks from the two parts L
and R. The first contribution of this paper is to propose an efficient refreshing
scheme for the inner product based encoding.

This is achieved by dividing the memory of the device into three parts L,R
and C, where initially (L,R) are chosen uniformly subject to the constraint that
〈L,R〉 = S, and C is empty. Our refreshing scheme Refresh takes as input (L,R)
and outputs a fresh encoding (L′, R′) of S. The computation of Refresh will be
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structured into several rounds, where in each round we only touch either (L,C)
or (R,C), but never L and R at the same time. We will allow the adversary
to adaptively leak a bounded amount of information from (L,C) and (R,C).
In fact, this is the only assumption we make, i.e., we do not require that the
rounds of the computation leak independently. Since in our protocol the third
part C is only used to “communicate” information between L and R, we will
usually describe our schemes in form of a 2-party protocol: one party, PL, is
controlling L, while the second party, PR, holds R. The third part C is used to
store messages that are exchanged between the parties. Hence, instead of saying
that we allow the adversary to retrieve information from (L,C) and (R,C), we
can say that the leakage functions take as inputs all variables that are in the
view of PL or PR.

Our protocol for the refreshing uses the following basic idea. Suppose initially
PL holds L and PR holds R with 〈L,R〉 = S, then we proceed as follows:

1. PL chooses a vector X that is orthogonal to L, i.e., 〈L,X〉 = 0, and sends it
over to PR.

2. PR computes R′ := R +X and chooses a vector Y that is orthogonal to R′

and sends it over to PL.
3. PL computes L′ := L+ Y .

The output of the protocol is (L′, R′). By simple linear algebra it follows that
〈L,R〉 = 〈L′, R′〉 = S. One may hope that the above scheme achieves security
in the presence of continuous leakage. Perhaps counterintuitive, we show in the
full version of this paper that this simple protocol can be broken if the leakage
function can be evaluated on (L,X, Y ) and (R,X, Y ). To avoid this attack, we
introduce a method for PL to send a random X to PR in an “oblivious” way,
i.e., without actually learning anything about X , besides the fact that X is
orthogonal to L (and symmetrically a similar protocol for PR sending Y to PL).
We propose an efficient protocol that achieves this property by making use of
our source of correlated randomness (A,B) ← O. Notice that even given access
to such a distribution, the refreshing of an encoded secret is a non-trivial task,
as, e.g., just computing L′ = L+A and R′ = R+B does not preserve the secret.

The protocol that we eventually construct in Figure 1 solves actually a more
general problem: we will consider schemes for storing vectors S ∈ Fm, and the
encoding of a secret S will be a random pair (L,R) where L is a vector of length
n and R is an n×m-matrix (where n * m is some parameter), and S = L · R.

Leakage Resilient Authentication and Signatures. We then use our
protocol for refreshing an encoded secret as a building block to efficiently im-
plement standard authentication and signature schemes. More concretely, we
show that under the DL assumption a simple implementation of the widely-used
Okamoto authentication scheme is secure against impersonation attacks even if
the prover’s computation leaks continuously. Using the standard Fiat-Shamir
heuristic, we can turn our protocol into a leakage resilient signature scheme.

At a high level, our transformation of the standard Okamoto scheme encodes
the original secret keys with our inner product based encoding scheme. Then,
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we carry out the computation of the prover in “encoded form”, and finally after
each execution of the prover, we refresh the encoded secrets using our leakage
resilient refreshing scheme. To carry out the computation of the prover in an
encoded, we use the following two observations about the inner product based
encoding:

1. it exhibits an additive homomorphism, i.e., if we encode two secrets S1, S2 as
(L,Q) and (L,R), then (L,Q+R) represents an encoding of S1 +S2. More-
over, if Q and R are stored on the same memory part, then this computation
can be carried out in a leakage resilient way.

2. for two secrets S1 and S2 and two group generators g1 and g2, it allows to
compute gS1

1 · gS2
2 in a leakage-resilient way. To illustrate this, suppose that

S1 is encoded by (L,Q) and S2 is encoded by (L,R). A protocol to compute
gS1
1 · gS2

2 proceeds then as follows. PR computes the vector A := gQ
1 g

R
2 =(

gQ1
1 gR1

2 , . . . , gQn

1 gRn
2

)
and sends it over to PL. Next, PL computes the vector

B := AL = (AL1
1 , . . . , ALn

n ) and finally it computes gS1
1 gS2

2 =
∏

i Bi.

Together with our scheme for refreshing the inner product encoding, these both
basic components suffice to implement the standard Okamoto authentication
scheme in a leakage resilient way (cf. Section 4).

Leakage Resilient CCA2-secure encryption. As a third contribution, we
show that a simple and efficient variant of the ElGamal cryptosystem can be
proven to be CCA2 secure in the RO model even if the computation from the
decryption process leaks continuously. We would like to emphasize that we allow
the leakage to depend on the target ciphertext. We achieve this by exploiting
the independent leakage assumption and carry out the computation using the
above described protocol for secure exponentiation. We would like to note that
even though our scheme uses a simulation sound (SS) NIZK, our construction
is rather efficient, as SS-NIZKs can be implemented efficiently via the Fiat-
Shamir heuristic. Notice that the Fiat-Shamir heuristic is the only place where
the random oracle assumption is used.

A general paradigm for leakage resilient implementations. We ob-
serve that our methods for implementing cryptographic schemes is fairly general.
Indeed, the two main properties that we require are

1. The secret key of the cryptosystem is an element in a finite field, and the
scheme computes only a linear function of the secret keys, and

2. The secret key is hidden information theoretically even given the transcript
that an adversary obtains when interacting with the cryptosystem.

Various other cryptosystems satisfy these properties. For instance, we can use
our techniques to construct a (rather inefficient) leakage resilient CCA2-secure
encryption scheme that is provably secure in the standard model.

Comparison to Other Related Work We would like to mention that in a
series of important recent works [9,5,23,22,4] new schemes for leakage resilient
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signing and encryption (CPA-secure) have been proposed. While these works
have an obvious advantage over our work by considering a more powerful leak-
age model, we would like to point out that these schemes are non-standard,
rather inefficient and rely on non-standard assumptions. Very recently, Dodis et
al. [10] introduced a method for storing and refreshing a secret. Their construc-
tion does not require leak-free components, but is rather inefficient and relies on
computational assumptions. Moreover, it is not clear if it can be used for other
purposes such as implementing standard cryptosystems.

2 Preliminaries

For a natural number n the set {1, . . . , n} will be denoted by [n]. If X is a random
variable then we write x ← X for the value that the random variable takes when
sampled according to the distribution of X . In this paper, we will slightly abuse
notation and also denote by X the probability distribution on the range of the
variable. V is a row vector, and we denote by V T its transposition. We let F be
a finite field and for m,n ∈ N, let Fm×n denote the set of m×n-matrices over F.
Typically, we use Mi to denote the column vectors of the matrix M . For a matrix
M ∈ Fm×n and an m bit vector V ∈ Fm we denote by V ·M the n-element vector
that results from matrix multiplication of V and M . For a natural number n by
(0n) we will denote the vector (0, . . . , 0) of length n. We will often use the set of
non-singular m×m matrices denoted by NonSingm×m(F) ⊂ Fm×m.

Let in the rest of this work n be the statistical and k be the computational
security parameter. Let G be a group of prime order p such that log2(p) ≥ k.
We denote by (p,G) ← G a group sampling algorithm. Let g be a generator
of G, then for a (column/row) vector A ∈ Zn

p we denote by gA the vector
C = (gA1 , . . . , gAn). Furthermore, let CB be the vector (gA1B1 , . . . , gAnBn).

Let X0, X1 be random variables distributed over X and Y be a random vari-
able over a set Y, then we define the statistical distance between X0 and X1 as
Δ(X0;X1) =

∑
x∈X 1/2|Pr[X0 = x]−Pr[X1 = x]|. Moreover, letΔ(X0;X1|Y ) def=

Δ((Y,X0); (Y,X1)) be the statistical distance conditioned on Y .

2.1 Model of Leakage

In this work, we assume that the memory of a physical device is split into two
parts, which leak independently. We model this in form of a leakage game, where
the adversary can adaptively learn information from each part of the memory.
More formally, let L,R ∈ {0, 1}s be the two parts of the memory, then for a
parameter λ ∈ N, we define a λ-leakage game played between an adaptive adver-
sary A – called a λ-limited adversary – and a leakage oracle Ω(L,R) as follows.
For some t ∈ N, the adversary A can adaptively issue a sequence {(fi, xi)}t

i=1 of
requests to the oracle Ω(L,R), where xi ∈ {L,R} and fi : {0, 1}s → {0, 1}λi. For
the ith query the oracle replies with fi(xi). The only restriction is that in total
the adversary does not learn more than λ bits from each L and R. In the follow-
ing, let Out(A, Ω(L,R)) be the output of A at the end of this game. Without
loss of generality, we assume that Out(A, Ω(L,R)) := (f1(x1), . . . , ft(xt)).
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Leakage from Computation. So far, we discussed how to model leakage from
the memory of a device, where the memory is split into two parts (L,R). If the
physical device carries out “some computation” using its memory (L,R), then
this computation leaks information to the adversary. We model this in form of
a two-party protocol Π = (PL, PR) executed between the parties PL and PR.

Initially, the party PL holds L, while PR holds R. The execution of Π with
initial inputs L and R, denoted by Π(L,R), proceeds in rounds. In each round
one player is active and sends messages to the other one. These messages can
depend on his input (i.e., his initial state), his local randomness, and the messages
that he received in earlier rounds. Additionally, the user of the protocol (or the
adversary – in case the user is malicious) may interact with the protocol, i.e., he
may receive messages from the players and send messages to them. For simplicity,
we assume that messages that are sent by the user to the protocol are delivered
to both parties PL and PR. At the end of the protocol’s execution, the players
PL and PR (resp.) may output a value L′ and R′ (resp.). These outputs may be
viewed as the new internal state of the protocol.

One natural way to describe the leakage of the computation (and memory)
of such a protocol is to allow the adversary to adaptively pick at the begin-
ning of each round a leakage function f and give f(state) to the adversary.
Here, state contains the initial state of the active party, its local randomness
and the messages sent and received during this round. Indeed, we allow the
adversary to learn such leakages. To ease description, we consider however a
stronger model, and use the concept of a leakage game introduced earlier in this
section. More precisely, for player Px ∈ {PL, PR}, we denote the local random-
ness that is used by Px as ρx, and all the messages that are received or sent
(including the messages from the user of the protocol) by Mx. At any point in
time, we allow the adversary A to play a λ-leakage game against the leakage
oracle Ω((L, ρL,ML); (R, ρR,MR)). A technical problem may arise if A asks for
leakages before sending regular messages to the players. In such a case parts of
Mx may be undefined, and for simplicity, we will set them to constant 0. For
some initial state (L,R), we denote the output of A after this process with A
� (Π(L,R) → (L′, R′)).

As we are interested in the continuous leakage setting, we will mostly consider
an adversary that runs in many executions of A � (Π(L,R) → (L′, R′)). For
the ith execution of the protocol Π(Li−1, Ri−1), we will write

A �
(
Π(Li−1, Ri−1) → (Li, Ri)

)
,

where the current initial state of this round is (Li−1, Ri−1) and the new state of
PL and PR will be (Li, Ri). After A �

(
Π(Li−1, Ri−1) → (Li, Ri)

)
, we assume

that the players PL and PR erase their current state except for their new state Li

and Ri, respectively. For the ith execution of A �
(
Π(Li−1, Ri−1) → (Li, Ri)

)
,

we let the adversary interact with the leakage oracle Ω((Li−1, ρi
L,M

i
L); (R

i−1, ρi
R,

M i
R)). If A is a λ-limited adversary, then we allow him to learn up to λ bits from

the oracle in each such execution.
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2.2 Leakage-Resilient Storage

A leakage-resilient storage (LRS) Φ = (Encode,Decode) allows to store a secret in
an “encoded form” such that even given leakage from the encoding no adversary
learns information about the encoded values. A simple LRS for the independent
leakage model can be based on two source extractors. More precisely, an LRS
for the independent leakage model is defined for message space M and encoding
space L×R as follows:

– Encode : M → L×R is a probabilistic, efficiently computable function and
– Decode : L×R → M is a deterministic, efficiently computable function such

that for every S ∈ M we have Decode(Encode(S)) = S.

An LRS Φ is said to be (λ, ε)-secure, if for any S, S′ ∈ M and any λ-limited
adversary A, we have

Δ(Out(A, Ω(L,R));Out(A, Ω(L′, R′))) ≤ ε,

where (L,R) := Encode(S) and (L′, R′) := Encode(S′).
We consider a leakage-resilient storage scheme that allows to efficiently store

elements S ∈ Fm for some m ∈ N. Namely, we propose Φn,m
F

= (Encoden,m
F

,
Decoden,m

F
) defined as follows:

– Encoden,m
F

(S) first selects L ← Fn \ {(0n)} at random, and then samples
R ← Fn×m such that L · R = S. It outputs (L,R).

– Decoden,m
F

(L,R) outputs L · R.

The following lemma shows that Φn,m
F

is a secure LRS. The proof uses the fact
that an inner product over a finite field is a two-source extractor [7,28] and
appears in the full version.

Lemma 1. Let m,n ∈ N with m < n and let F such that |F| = Ω(n). For
any 1/2 > δ > 0, γ > 0 the LRS Φn,m

F
as defined above is (λ, ε)-secure, with

λ = (1/2 − δ)n log |F| − log γ−1 and ε = 2m(|F|m+1/2−nδ + |Fm| γ).

The following is an instantiation of Lemma 1 for concrete parameters.

Corollary 1. Suppose |F| = Ω(n) and m < n/20. Then, LRS Φn,m
F

is (0.3 ·
|Fn| , negl(n))-secure, for some negligible function negl.

3 Leakage-Resilient Refreshing of LRS

For a secret S and a leakage resilient storage Φ = (Encode,Decode) with mes-
sage space M, we develop a probabilistic protocol (L′, R′) ← Refresh(L,R) that
securely refreshes (L,R) ← Encode(S), even when the adversary can continu-
ously observe the computation from the refreshing process. The only additional
assumption that we make is that the protocol has access to a simple leak-free
source O of correlated randomness.
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Initially, PL holds L and PR holds R. At any point during the execution of
the protocol, the adversary can interact with a leakage oracle and learn infor-
mation about the internal state of PL and PR. At the end the players output
the “refreshed” encoding (L′, R′), i.e., the new state of the protocol. Notice that
the only way in which the adversary can “interact” with the protocol is via the
leakage oracle.

For correctness, we require that Decode(L,R) = Decode(L′, R′) Informally,
for security, we require that no λ-limited adversary can learn any significant
information about S (for some parameter λ ∈ N). We will define the security
of the refreshing protocol using an indistinguishability notion. Intuitively, the
definition says that for any two secrets S, S′ ∈ M the view (i.e., the leakage)
resulting from the execution of the refreshing of secret S is statistically close to
the view from the refreshing of secret S′. Before we formally define security of
our refreshing, we consider the following experiment, which runs the refreshing
protocol for � rounds and lets the adversary play a leakage game in each round.
For a protocol Π , an LRS Φ, a λ-bounded adversary A, � ∈ N and S ∈ M, we
have Exp(Π,Φ)(A, S, �):

1. For a secret S, we generate the initial encoding as (L0, R0) ← Encode(S).
2. For i = 1 to � run A against the ith round of the refreshing protocol: A �(

Π(Li−1, Ri−1) → (Li, Ri)
)
.

3. Return whatever A outputs.

Wlog. we assume that A outputs just a single bit b ∈ {0, 1}. To simplify notation,
we will sometimes omit to specify Φ in Exp(Π,Φ)(A, S, �) explicitly. We are now
ready to define security of a refreshing protocol.

Definition 1 (A (�, λ, ε)-refreshing protocol). For a LRS Φ = (Encode,
Decode) with message space M, a refreshing protocol (Refresh, Φ) is (�, λ, ε)-
secure, if for every λ-limited adversary A and any two secrets S, S′ ∈ M, we
have that Δ(Exp(Refresh,Φ)(A, S, �); Exp(Refresh,Φ)(A, S′, �)) ≤ ε.

In the rest of this section, we construct a secure refreshing protocol for the
LRS scheme Φn,m

F
= (Encoden,m

F
,Decoden,m

F
) from Section 2.2. Our protocol can

refresh an encoding (L,R) ← Encoden,m
F

(S) any polynomial number of times,
and guarantees security for λ being a constant fraction of the length of L and
R (cf. Theorem 1 and Corollary 2 for the concrete parameters). To ease nota-
tion, we often omit to specify Φn,m

F
when talking about the refreshing protocol

(Refreshn,m
F

, Φn,m
F

) and just write Refresh.
As outlined in the introduction, we assume that the players have access to

a non-uniform source of randomness. More precisely, they may access an oracle
O that samples pairs (A,B) ∈ Fn × NonSingn×m(F) such that A �= (0n) and
A · B = (0m). In each iteration the players will sample the oracle twice: once
for refreshing the share of PR (denote the sampled pair by (A,B)), and once for
refreshing the share of PL (denote the sampled pair by (Ã, B̃)). The protocol is
depicted on Fig. 1. To understand the main idea behind the protocol, the reader
may initially disregard the checks (in Steps 1 and 4) that L and R′ have full



712 S. Dziembowski and S. Faust

Protocol (L′, R′)← Refreshn,m
F

(L,R):

Input (L,R): L ∈ Fn is given to PL and R ∈ Fn×m is given to PR.

Refreshing the share of PR:

1. If L does not have a full rank then the players abort. Let (A,B)← O and give A
to PL and B to PR.

2. Player PL generates a random non-singular matrix M ∈ Fn×n such that L ·M = A
and sends it to PR.

3. Player PR sets X := M · B and R′ := R+X.

Refreshing the share of PL:
4. If R′ does not have a full rank then the players abort. Let (Ã, B̃)← O and give Ã

to PL and B̃ to PR.
5. Player PR generates a random non-singular matrix M̃ ∈ Fn×n such that M̃ ·R′ = B̃

and sends it to PL.
6. Player PL sets Y := Ã · M̃ and L′ := L+ Y .

Output: The players output (L′, R′).

The adversary plays a λ-leakage game against:
Ω
(
(L,A,M, Ã, M̃) ; (R,B,M, B̃, M̃)

)

Fig. 1. Protocol Refreshn,m
F

. The oracle O samples randomly pairs (A,B) ∈ Fn ×
NonSingn×m(F) such that A �= (0n) and A ·B = (0m). The text in the frame describes
the leakage game played by the adversary. Note that sampling the random matrices in
Steps 2 and 5 can be done efficiently.

rank (these checks were introduced only to facilitate the proof and only occur
with very small probability). The reader may also initially assume that m = 1
(the case of m > 1 is a simple generalization of the m = 1 case). The main idea
of our protocol is that first the players generate the value X ∈ Fn×m such that
L ·X = (0m), and then in Steps 3 the player PR sets R′ := R+X (note that, by
simple linear algebra L ·R′ = L · (R+X) = L ·R+L ·X = L ·R). Symmetrically,
later, the players generate Y ∈ Fn such that Y · R′ = (0m) and set (in Step 6)
L′ = L + Y . By a similar reasoning as before we have L′ · R′ = L · R′(= L · R).
The above analysis gives us the correctness of our protocol.

Lemma 2 (Correctness of the refreshing). Assuming that the players PL

and PR did not abort, we have for any S ∈ Fm: Decoden,m
F

(Refreshn,m
F

(S)) = S.

We now state our main theorem which shows that the protocol Refreshn,m
F

from
Figure 1 satisfies Definition 1. In the full version of this paper, we show that
our refreshing is secure even if the adversary has some (not necessarily short)
auxiliary information about the encoding.

Theorem 1 (Security of Refreshn,m
F

). Let m/3 ≤ n, n ≥ 16 and � ∈ N. Let
n,m and F be such that Φn,m

F
is (λ, ε)-secure (for some λ and ε). The protocol

Refreshn,m
F

is a (�, λ/2 − 1, ε′)-refreshing protocol for an LRS Φn,m
F

with ε′ :=
2� |F|m (3 |F|m ε+m |F|−n−1).

For the proof of this theorem, we will need to show that any adversary A that
interacts for � iterations with the refreshing experiment ExpRefresh (as given in
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Definition 1), will only gain a negligible (in n) amount of information about the
encoded secret S. Notice that this in particular means that A’s interaction with
the leakage oracle given in the frame of Figure 1 will not provide the adversary
with information on the encoded secret. More formally, we will show that for
every (λ/2 − 1)-limited A and every S, S′ we have:

Δ(ExpRefresh(A, S, �); ExpRefresh(A, S′, �)) ≤ 2� |F|m (3 |F|m ε+m |F|−n−1). (1)

This will be proven using the standard technique called the “hybrid argument”
by creating a sequence of “hybrid distributions”. We will show that the first dis-
tribution in this sequence is statistically very close to ExpRefresh(A, S, �), while the
latter is close to ExpRefresh(A, S′, �). Moreover, each two consecutive distributions
in the sequence will be statistically close. Hence, by applying the triangle inequal-
ity multiple times, we will obtain that ExpRefresh(A, S, �) and ExpRefresh(A, S′, �)
are close. The proof of the theorem is deferred to the full version of this paper.
Combining Theorem 1 with Corollary 1 we get the following.

Corollary 2. Let n ∈ N be the security parameter. Suppose |F| = Ω(n) and
let m = o(n). Then Refreshn,m

F
is a (�, 0.15 · n log(|F|) − 1, negl(n))-refreshing

protocol for the LRS Φn,m
F

, where � is a polynomial in n and negl(n) is some
negligible function.

4 Identification and Signature Schemes

In an identification scheme ID a prover attempts to prove its identity to a
verifier. For a security parameter k, ID consists out of three PPT algorithms
ID = (KeyGen,P ,V):

– (pk , sk) ← KeyGen(1k): It outputs the public parameters of the scheme and
a valid key pair.

– (P(pk , sk),V(pk)): An interactive protocol in which P tries to convince V of
its identity by using his secret key sk . The verifier V outputs either accept
or reject .

We require that ID is complete. This means that an honest prover will always
be accepted by the verifier. The standard security definition of an identification
scheme ID considers a polynomial-time adversary A that inputs the public key
pk and interacts with the prover P(pk , sk) playing the role of a verifier. Then,
A tries to impersonate P(pk , sk) by engaging in an interaction with V(pk ). We
say that the scheme is secure if every polynomial-time adversary A impersonates
the prover with only negligible probability.

We extend this standard security to incorporate leakage from the prover’s
computation. To this end, we let the adversary take the role of V in the exe-
cution of the protocol (P(pk , sk),V(pk)) and allow him to obtain leakage from
the prover’s execution. We denote a single execution of this process by A �(P(sk) → sk ′), where sk ′ may be the updated key.
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Definition 2 (Security against Leakage and Impersonation Attacks (ID-
LEAK security)). Let k ∈ N be the security parameter. An identification
scheme ID = (KeyGen,P ,V) is λ(k)-ID-LEAK secure if for any PPT λ(k)-
limited adversary A it holds that the experiment below outputs 1 with probability
at most negl(k):

1. The challenger samples (pk , sk0) ← KeyGen(1k) and gives pk to A.
2. Repeat for i = 0 . . . poly(k) times: A �

(P(sk i) → sk i+1
)
, where in each

execution the adversary can interact with the honest prover and gets up to
λ(k) bits about the current secret state sk i and the randomness that is used.

3. A impersonates the prover and interacts with V(pk). If V(pk) accepts, then
output 1; otherwise output 0.

Notice that the adversary is allowed to obtain λ bits of information for each
execution of the identification protocol.

4.1 A Construction of a Leakage-Resilient Identification Protocol

Our construction is based on the standard Okamoto identification scheme [25].
Let g1 and g2 be two generators of G such that α = logg1

(g2) is unknown. The
secret key sk is equal to (x1, x2) ← Z2

p and the public key pk is gx1
1 · gx2

2 .

1. P chooses (w1, w2) ← Z2
p, computes a := gw1

1 gw2
2 , and sends a to V .

2. V chooses c← Zp and sends it to P .
3. P computes z1 := w1 + cx1 and z2 := w2 + cx2 and sends (z1, z2) to V .
4. V accepts if and only if gz1

1 gz2
2

?= a · pk c.

We next describe how to implement the Okamoto scheme such that it remains
secure even if the computation of the prover is carried out on a leaky device.
Verification is as in the standard Okamoto scheme, while the key generation
and the computation of the prover is adjusted to protect against leakage at-
tacks. More precisely, instead of using (x1, x2) ∈ Z2

p as secret key, we store
(L, (R1, R2)) ← Encoden,2

F
(x1, x2) and implement the computation of the prover

as a two-party protocol run between PL(L) and PR(R1, R2). To this end, we will
use the fact that the Okamoto identification protocol only requires to compute
a linear function of the encoded secret key. The protocol is given in Figure 2.

Finally, we will combine our identification protocol with our protocol for re-
freshing to construct an identification scheme Oka = (KeyGen,P ,V ,Refreshn,2

Zp
)

that is ID-LEAK secure. More precisely, in the ith execution of (P(pk , (L,R)),
V(pk)) after Step 5 in Figure 2, we execute (Li+1, Ri+1) ← Refreshn,2

Zp
(Li, Ri)

and set the prover’s secret key for the next round to sk i+1 := (Li+1, Ri+1). No-
tice that in such a case, we include into the leakage oracle from the figure the
variables that are used by the refreshing and let the adversary interact in each
round with the following leakage oracle:

Ω
(
(Li, U, Z,A,M, Ã, M̃) ; (Ri,W,A,M, Ã, M̃)

)
.



Leakage-Resilient Cryptography from the Inner-Product Extractor 715

Key generation KeyGen(1k):
Sample (p,G) ← G(1k), generators g1, g2 ← G, S = (x1, x2) ← Z2

p and
(L,R)← Encoden,2

Zp
(S). Set sk = (L,R) and pk = (p, g1, g2, h := gx1

1 gx2
2 ).

The identification protocol (P(pk , (L,R)),V(pk))

Input for prover (L,R): L is given to PL and R is given to PR.

Prover P(pk , (L,R)): Verifier V(pk):

1. PR samples (W1,W2) ← Z2n
p , computes U :=

gW1
1 � gW2

2 and sets W := (W T
1 ,W

T
2 ). The vec-

tor U is sent to PL (� is component-wise mul-
tiplication of vectors).

2. PL computes V = UL and a =
∏

i Vi. The value
a is sent to V.

3. Senc c← Zp to P .

4. PR computes the n × 2 matrix Z := W + cR
and sends it to PL.

5. PL computes (z1, z2) = L·Z. The values (z1, z2)
are given to V.

At any time, the adversary can play a λ-
leakage game against: Ω ((L,U,Z) ; (R,W )).
We set Z = 0 for leakage queries that are
asked before c is fixed.

6. Accept iff gz1
1 gz2

2 = ahc.

Fig. 2. The key generation algorithm and the protocol (P(pk , (L,R)),V(pk)) for iden-
tification. (P(pk , (L,R)),V(pk)) is an interactive protocol between a prover P and a
verifier V.

It is easy to see that the above protocol satisfies the completeness property.
This is due to the correctness of the refreshing protocol, and the fact that mes-
sages that are exchanged by the parties P and V in Figure 2 are as in the original
Okamoto protocol. The security of our protocol Oka is proven in the following
theorem.

Theorem 2. Oka = (KeyGen,P ,V ,Refreshn,2
Zp

) is ((0.15 · n − 3) log p − 1)-ID-
LEAK secure, if the DL assumption holds.

The proof follows from the following three observations:

1. We first consider a single execution of the protocol (P(pk , (L,R)),V(pk))
from Figure 2 and prove a simple property in the information theoretic set-
ting. Namely, we show that the there exists an (unbounded) simulator with
access to a leakage oracle Ω(L∗, R∗) can simulate A(pk )’s view in A �
(P(L,R)) → (L,R)). In this step the analysis neglects the leakage from the
refreshing process as we consider only a single run of the protocol.
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2. We next consider the setting where unbounded A runs in many iterations of
A �

(P(Li, Ri)) → (Li+1, Ri+1)
)
, where we also take into account that the

refreshing of (Li, Ri) leaks information. We will combine our results from
the last section with the simulator defined in 1 to show that any unbounded
adversary will only learn a negligible amount of information about the secret
key.

3. Finally, we will argue why this proves the ID-Leak security of our scheme. To
this end, we rely on a recent result of Dodis et al. [2], which shows security
of the original Okamoto scheme for keys sampled from a high average min-
entropy source.

Leakage Resilient Signatures It is well known fact that the Okamoto iden-
tification protocol can be turned into a signature scheme using the Fiat-Shamir
heuristic. Similarly, we can turn the scheme from Figure 2 into a leakage resilient
signature scheme which can be proven secure against continuous leakage attacks
in the random oracle model under the DL assumption.

5 Leakage Resilient Encryption

In this section, we construct an efficient encryption schemes that is secure against
continuous leakage attacks. Our construction is based on a variant of the ElGa-
mal cryptosystem and is proven secure against adaptive chosen message and
leakage attacks (CCLA2) in the Random Oracle model.

5.1 Definitions

For security parameter k a public-key encryption scheme PKE = (KeyGen,Encr,
Decr) consists of three PPT algorithms.

– (pk , sk) ← KeyGen(1k): It outputs a valid public/secret key pair.
– c ← Encr(pk ,m): That is, a probabilistic algorithm that on input some

message m and the public key pk outputs a ciphertext c = Encr(pk ,m).
– m = Decr(sk , c): The decryption algorithm takes as input the secret key sk

and a ciphertext c such that for any m we have m = Decr(sk ,Encr(pk ,m)).

To define security we allow the adversary to query the decryption oracle on some
chosen ciphertext c, and additionally allow him to obtain a bounded amount of
leakage from the decryption process. This may be repeated many times, hence,
eventually the adversary may learn a large amount of information. Formally,
we define security against adaptive chosen ciphertext and leakage attacks (IND-
CCLA2 security) as follows.

Definition 3 (Security against Chosen Ciphertext Leakage Attacks
(CCLA2-secure)). Let k ∈ N be the security parameter. A public-key encryp-
tion scheme PKE = (KeyGen,Encr,Decr) is λ(k)-IND-CCLA2 secure if for any
PPT λ(k)-limited adversary A the probability that the experiment below outputs
1 is at most 1/2 + negl(k).
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1. Sample b ← {0, 1} and (pk , sk) ← KeyGen(1k). Give pk to A.
2. Repeat until A(1k) outputs (m0,m1): A(1k) �

(
Decr(sk , c) → sk ′), where for

each decryption query c the adversary additionally retrieves up to λ(k) bits
about the current secret state sk . Set the key for the next round to sk := sk ′.

3. The challenger computes c∗ ← Encr(pk ,mb) and gives it to A.
4. Repeat until A(1k) outputs b′: A(1k) �

(
Decr(sk , c) → sk ′), where for each

decryption query c �= c∗ the adversary additionally retrieves up to λ(k) bits
about the current secret state sk . Set the key for the next round to sk := sk ′.

5. If b = b′ then output 1; otherwise output 0.

The weaker notion of CCLA1-security can be obtained by omitting Step 4 in the
experiment above.

5.2 Efficient IND-CCLA2-secure Encryption

An important tool of our encryption scheme is a simulation-sound (SS) NIZK.
Informally, a NIZK proof system is said to be simulation sound, if any adver-
sary has negligible advantage in breaking soundness (i.e., forging an accepting
proof for an invalid statement), even after seeing a bounded number of proofs
for (in)valid statements. We refer the reader to [3,29] for the formal definition of
NIZKs and simulation soundness. SS-NIZKs can be instantiated in the common
random string model using the Groth-Sahai proof system [18] and the techniques
of [17]. Unfortunately, this results into an impractical scheme. In contrast, in the
random oracle model using the Fiat-Shamir heuristic [14] simulation soundness
can be achieved efficiently. In particular, it has been proven in [1] that the stan-
dard Chaum-Pedersen protocol [6] for proving equivalence of discrete logarithms
can be turned into a SS-NIZK using the Fiat-Shamir heuristic. Let in the fol-
lowing (Prov,Ver) denote such a non-interactive proof system for proving the
equivalence of discrete logarithms.

Our scheme can be viewed as a leakage-resilient implementation of the fol-
lowing simple variant of the ElGamal encryption scheme using the above sim-
ulation sound NIZK. Let g1, g2 be two generators of a prime order p group G.
Let sk = (x1, x2) ∈ Z2

p be the secret key and pk = (g1, g2, h = gx1
1 · gx2

2 ) the
public key. To encrypt a message m ∈ G, pick uniformly r ← Zp and compute
c = (u := gr

1, v := gr
2 , w := hrm,π), where π := Prov(u, v, r) is a NIZK proof

of logg1
(u) = logg2

(v). To decrypt c = (u, v, w, π), verify the NIZK, and if it
accepts, output w · (u−x1 · v−x2).

It can easily be shown that this scheme achieves standard CCA2 security in
the RO model. In this section, we will show how to implement this scheme such
that it remains secure even if the decryption continuously leaks information.
Similar to our transformation of the Okamoto scheme, we store the secret key
(x1, x2) as (L,R) ← Encoden,2

F
(x1, x2) and implement the computation of the

decryption process as a two-party protocol run between PL(L) and PR(R). The
protocol for key generation and decryption is given in Figure 3. Finally, we will
combine the protocol from Figure 3 with our refreshing protocol from Section 3
to construct an encryption scheme PKE = (KeyGen,Encr,Decr,Refreshn,2

Zp
) that

is CCLA2 secure.
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Key generation KeyGen(1k):
Let (p,G) ← G(1k), g1, g2 ← G, S = (x1, x2) ← Z2

p and (L,R) ← Encoden,2
Zp

(S).
Let sk = (L,R) and pk = (p, g1, g2, h := gx1

1 gx2
2 ).

Encryption Encr(pk ,m) :

Sample r ← Zp uniformly at random and compute c = (u := gr
1 , v :=

gr
2 , w := hrm). Run the NIZK prover Prov(u, v, r) to obtain a proof π for

logg1
(u) = logg2

(v). Return (c, π).

The protocol for decryption Decr(sk , c) :

Input for decryption sk := (L,R): L is given to PL and R is given to PR.

Both parties obtain c and parse it as (u, v, w, π). If Ver(u, v, π) = reject then abort;
otherwise proceed as follows:

1. PR computes the vector U := uR1�vR2 . U is sent to PL (� denotes component-
wise multiplication of vectors).

2. PL computes V = U−L and outputs w
∏

i Vi.

Notice that we can omit the leakage from the verification of the NIZK as it
only includes publicly known values. At any time, the adversary can play a
λ-leakage game against: Ω ((L, U) ; R).

Fig. 3. Our public-key encryption scheme PKE

The security analysis follows the outline given in the last section. We first show
that the leakage from a single decryption query can be simulated in a perfect way
with just access to a leakage oracle Ω(L∗, R∗). For this simulation to go through,
we require that an adversary can only observe leakage from operations that
involve the secret key, if the decryption oracle is queried on a valid ciphertexts.
We call a ciphertext valid, if logg1

(u) = logg2(v) holds. Notice that this is also
the reason why we need NIZKs and cannot use the standard techniques to get
CCA1/2 security based on hash proof systems. In the next step, we show that
even when the adversary can continuously obtain leakage from the decryption, he
will not be able to learn information about the encoded secret key. To this end,
we will combine the scheme from Figure 3 with our refreshing protocol Refreshn,2

Zp
.

In the following theorem, we show IND-CCLA2 security of our scheme.

Theorem 3. PKE is (0.15 ·n logp−1)-IND-CCLA2 secure in the random oracle
model, if the DDH assumption holds.

6 A General Paradigm for Leakage-Resilient
Cryptographic Schemes

In the last sections, we proposed leakage-resilient implementations of standard
cryptographic schemes. Namely, we showed how to implement the standard
Okamoto identification scheme and a variant of the ElGamal encryption scheme
such that they satisfy strong security guarantees even under continuous leakage
attacks. The security proof of both schemes relied on very similar observations,
namely:
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1. The underlying cryptographic scheme (e.g., the Okamoto scheme or the El-
Gamal variant) computes only a linear function of the secret key. Notice that
in the examples of the last section the linear function was computed in the
exponen. This is not a problem as long as the computation can be carried
out efficiently. This was indeed the case for the schemes of the last sections.

2. The secret key is hidden information theoretically even given the protocol
transcript that an adversary obtains when interacting with the underlying
cryptographic scheme. In the protocols from the last section, for instance,
the secret key (x1, x2) was information theoretically hidden even given the
corresponding public key. Furthermore, for the Okamoto scheme this holds
even given (a, z1, z2), which were sent by the prover to the verifier.

Various other cryptographic schemes satisfy the above properties, and hence can
be made secure against continuous leakage attacks. For instance, the Pedersen
commitment scheme [26], which is information-theoretically hiding and at the
same time only requires to compute a linear function of its secrets.2 Another
example of the above paradigm is a variant of the linear Cramer-Shoup cryp-
tosystem as presented in [30]. Notice that as in the encryption scheme from
Section 5, this requires to use as a check for the validity of the ciphertexts a
NIZK proof system. One can instantiate such a NIZK in the standard model us-
ing the Groth-Sahai proof system [18]. This gives us an efficient CCLA1-secure
public-key encryption scheme in the standard model, and a rather inefficient
CCLA2-secure scheme using the extensions of [17]. We suggest that many other
standard cryptographic schemes can be proven secure following the ideas that
were presented in this paper.

Acknowledgments. The authors are grateful to Francesco Davi, Yevgeniy Dodis,
Krzysztof Pietrzak, Leonid Reyzin and Daniele Venturi for helpful discussions
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Abstract. We consider general program obfuscation mechanisms using
“somewhat trusted” hardware devices, with the goal of minimizing the
usage of the hardware, its complexity, and the required trust. Specifically,
our solution has the following properties:

(i) The obfuscation remains secure even if all the hardware devices in
use are leaky. That is, the adversary can obtain the result of evaluating
any function on the local state of the device, as long as this function has
short output. In addition the adversary also controls the communication
between the devices.

(ii) The number of hardware devices used in an obfuscation and the
amount of work they perform are polynomial in the security parameter
independently of the obfuscated function’s complexity.

(iii) A (universal) set of hardware components, owned by the user, is
initialized only once and from that point on can be used with multiple
“software-based” obfuscations sent by different vendors.

1 Introduction

Program obfuscation is the process of making a program unintelligible while pre-
serving its functionality. (For example, we may want to publish an encryption
program that allows anyone to encrypt messages without giving away the secret
key.) The goal of general program obfuscation is to devise a generic transforma-
tion that can be used to obfuscate any arbitrary input program.

It is known from prior work that general program obfuscation is possible with
the help of a completely trusted hardware device (e.g., [7, 28, 19]). On the other
hand, Barak et al. proved that software-only general program obfuscation is im-
possible, even for a very weak notion of obfuscation [6]. In this work we consider
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an intermediate setting, where we can use hardware devices but these devices are
not completely trusted. Specifically, we consider using leaky hardware devices,
where an adversary controlling the devices is able to learn some information
about their secret state, but not all of it.

We observe that the impossibility result of Barak et al. implies that hardware-
assisted obfuscation using a single leaky device is also impossible, even if the
hardware device leaks only a single bit (but this bit can be an arbitrary function
of the device’s state). See Section 1.3. Consequently, we consider a model in
which several hardware devices are used, where each device can be locally leaky
but the adversary cannot obtain leakage from the global state of all the devices
together. Importantly, in addition to the leakage from the separate devices, our
model also gives the adversary full control over the communication between
them.

The outline of our solution is as follows: Starting from any hardware-assisted
obfuscation solution that uses a completely trusted device (e.g., [19, 25]), we first
transform that device into a system that resists leakage in the Micali-Reyzin
model of “only computation leaks” (OCL) [29] (or actually in a slightly aug-
mented OCL model). In principle, this can be done using OCL-compilers from
the literature [27, 24, 22] (but see discussion in Section 1.4 about properties of
these compilers). The result is a system that emulates the functionality of the
original trusted device; however, now the system is made of several components
and can resist leakage from each of the components separately.

This still does not solve our problem since the system that we get from OCL-
compilers only resists leakage if the different components can interact with each
other over secret and authenticated channels (see discussion in Section 1.3).
We therefore show how to realize secure communication channels over inse-
cure networks in a leakage-resilient manner. This construction, which uses non-
committing encryption [12] and information theoretic MACs (e.g., [33, 3]), is the
main technical novelty in the current work. See Section 1.4.

The transformation above provides an adequate level of security, but it is not
as efficient and flexible as one would want. For one thing, the OCL-compilers in
the literature [27, 24, 22] produce systems with roughly as many components as
there are gates in the underlying trusted hardware device. We show that using
fully homomorphic encryption [31, 18] and universal arguments [4] we can get a
system where the number of components depends only on the security parameter
and is (almost) independent of the complexity of the trusted hardware device
that we are emulating. See Section 1.1.

Another drawback of the solution above is that it requires a new set of hard-
ware devices for every program that we want to obfuscate. Instead, we would
like to have just one set of devices, which are initialized once and thereafter can
be used to obfuscate many programs. We show how to achieve such a reusable
obfuscation system using a simple trick based on CCA-secure encryption, see
Section 1.2.

We now proceed to provide more details on the various components of our
solution.
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1.1 Minimally Hardware-Assisted Obfuscation

Forgetting for the moment about leakage-resilience, we begin by describing a
hardware-assisted obfuscating mechanism where the amount of work done by
the trusted hardware is (almost) independent of the complexity of the program
being obfuscated. The basic idea is folklore: The obfuscator encrypts the program
f using a fully homomorphic encryption scheme [31, 18], gives the encrypted
program to the evaluator and installs the decryption key in the trusted hardware
device. Then, the evaluator can evaluate the program homomorphically on inputs
of its choice and ask the device to decrypt.

Of course, the above does not quite work as is, since the hardware device can
be used for unrestricted decryption (so in particular it can be used to decrypt the
function f itself). To solve this, we make the evaluator prove to the device that
the ciphertext to be decrypted was indeed computed by applying the homomor-
phic evaluation procedure on the encrypted program and some input. Note that
to this end we must add the encrypted program itself or a short hash of it to the
device (so as to make “the encrypted program” a well-defined quantity). To keep
the device from doing a lot of work, the proof should be verifiable much more
efficiently than the computation itself, e.g., using the “universal arguments” of
Barak and Goldreich [4]. We formalize this idea and show that this obfuscation
scheme satisfies a strong notion of simulation based obfuscation. It can even be
implemented using stateless hardware with no source of internal randomness (so
it is secure against concurrent executions and reset attacks). See Section 2 for
more details.

1.2 Obfuscation Using Universal Hardware Devices

A side-effect of the above solution is that the trusted hardware device must be
specialized for the particular program that we want to protect (e.g., by hard-
wiring in it a hash of the encrypted program), so that it has a well-defined
assertion to verify before decryption. Instead, we would like the end user to use
a single universal hardware device to run all the obfuscated programs that it
receives (possibly from different vendors).

We obtain this goal using a surprisingly simple mechanism: The trusted hard-
ware device is installed with a secret decryption key of a CCA-secure cryptosys-
tem, whose public key is known to all vendors. Obfuscation is done as before,
except that the homomorphic decryption key and the hash of the encrypted
program are encrypted using the CCA-secure public key and appended to the
obfuscation. This results in a universal (or “sendable”) obfuscation, the device
is only initialized once and then everyone can use it to obfuscate their programs.
See more details in Section 3.

1.3 Dealing with Leaky Hardware

The more fundamental problem with the hardware-assisted obfuscation is that
the hardware must be fully leak-free and can only provide security as long as it is
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accessed as a black box. This assumption is not true in many deployments, so we
replace it by the weaker assumption that our hardware components are “honest-
but-leaky”. Namely, in our model an obfuscated program consists of software
that is entirely in the clear, combined with some leaky hardware components.
Our goal is therefore to design an obfuscator that transforms any circuit with
secrets into a system of software and hardware components that achieves strong
black-box obfuscation even if the components can leak.

We remark that the impossibility of universal obfuscation [6] implies that
more than one hardware component is necessary. To see this, observe that if we
had a single hardware component that resists (even one-bit) arbitrary leakage
then we immediately get a no-hardware obfuscation in the sense of Barak et al.
[6]: The obfuscated program consists of our software and a full description of
the hardware component (including all the embedded secrets). This must be a
good obfuscation since any predicate that we can evaluate on this description
can be seen as a one-bit leakage function evaluated on the state of the hardware
component. If the device was resilient to arbitrary one-bit leakage, it would mean
that any such leakage/predicate can be computed by a simulator that only has
black-box access to the function; hence, we have a proper obfuscator.

The model of leaky distributed systems. Given the impossibility result for a
single leaky hardware component, we concentrate on solutions that use multiple
components. Namely, we have (polynomially) many hardware components, all of
which are leaky. The adversary in our model can freely choose the inputs to the
hardware components and obtain leakage by repeatedly choosing one component
at a time and evaluating an arbitrary (polynomial-size) leakage function on the
current state and randomness of that component. We place no restriction on the
order or the number of times that components can be chosen to leak, so long as
the total rate of leakage from each component is not too high.

In more detail, we consider continual leakage, where the lifetime of the system
is partitioned into time units and within each time unit we have some bound on
the number of leakage bits that the adversary can ask for. The components are
running a randomized refresh protocol at the end of each time unit and erase
their previous state.1 A unique feature of our model is that the adversary sees
and has complete control over all the communication between these components
(including the communication needed for the refresh protocol). We term our
leakage model the leaky distributed system model (LDS), indeed this is just the
standard model of a distributed system with adversarially controlled communi-
cation, when we add to it the fact that the individual parties are leaky.

We stress that this model seems realistic: the different components can be
implemented by physically (and even geographically) separated machines, amply
justifying the assumption on separate leakage. We also note that a similar (but
somewhat weaker) model was suggested recently by Akavia et al. [1], in the
context of leakage-resilient encryption.

1 This is reminiscent to the proactive security literature [30, 13].
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Only-computation-leaks vs. leaky distributed systems. Our leakage model shares
some similarities to the “only computation leaks” (OCL) model, in that the ad-
versary can get leakage from different parts of the global state separately but
not from the entire global state at once. These two models are nonetheless fun-
damentally different, for two reasons. One difference is that in the OCL the
different components “interact” directly by writing to and reading from mem-
ory, and communication is neither controlled by nor visible to the adversary. In
the LDS model, on the other hand, the adversary sees and controls the entire
communication. Another difference is that in the OCL model, the adversary can
only get leakage from the components in the order in which they perform the
computation, whereas in LDS model, it can get leakage in any order.

An intermediate model, that we use as a technical tool in this work, is where
the adversary can get leakage from the components in any order (as in the LDS
model), but the components communicate securely as in the OCL model. For
lack of a better name, we call this intermediate model the OCL+ model. Clearly,
resilience to leakage in the model of leaky distributed systems is strictly harder
than in the OCL or OCL+ models and every solution secure in our model will
automatically be secure also in the two weaker models.

1.4 From OCL+ to LDS

We present a transformation that takes any circuit secure in the OCL+ model
and converts it into a system of components that maintains the functionality
and is secure in the model of leaky distributed systems. Recently, Goldwasser-
Rothblum [22] constructed a universal compiler, which transforms any circuit
into one that is secure in the OCL+ model. (Unlike previous compilers [17, 24, 27],
the [22] compiler does not require a leak-free hardware component.) Combining
the compiler with our transformation, we obtain a compiler that takes any cir-
cuit and produces a system of components with the same functionality that is
secure in the LDS model. The number of components in the resulting system
is essentially the size of the original circuit, assuming we use the underlying
Goldwasser-Rothblum compiler. However, as we explain in Section 1.5 below,
we can reduce the number of components to be independent of the circuit size,
by first applying the hardware-assisted obfuscator from Section 1.1.

The main gap between the OCL+ model and our model of leaky distributed
systems, is that in the former, communication between the components is com-
pletely secure, whereas in the latter it is adversarially controlled. In the heart of
our transformation stands an implementation of leakage-tolerant communication
channels that bridges the above gap, based on the following tools:

Non-Committing Encryption. Our main technical observation is that secret
communication in the face of leakage can be obtained very simply using non-
committing encryption [12]. Recall that non-committing encryption is a (poten-
tially interactive) encryption scheme such that a simulator can generate a fake
transcript, which can later be “opened” as either an encryption of zero or as
an encryption of one. This holds even when the simulator needs to generate
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the randomness of both the sender and the receiver. In our context, the dis-
tributed components use non-committing encryption to preserve the privacy of
their messages. The observation is that non-committing encryption can be used
to implement “leakage resilient channels”, in the sense that any leakage query
on the state of the communicating parties could be transformed into a leakage
query on the underlying message alone (see Section 4).

Leakage-resilient MACs. In addition to secrecy, we also need to ensure authen-
ticity of the communication between the components. We observe that this can
be done easily using information-theoretic MAC schemes based on universal-
hashing [33, 3]. Roughly, each pair of components will maintain rolling MAC
keys that are only used Θ(1) times. To authenticate a message, they will use the
MAC key sent with the prior message and will send a new MAC key to be used
for the next message. (We use a short MAC key to authenticate a much longer
message, so the additional bandwidth needed for sending future MAC keys is
tolerable.) Since these MAC schemes offer information-theoretic security, it is
very easy to prove that they can also tolerate bounded leakage. Authenticating
the communication assures that secrecy is kept (e.g. the adversary cannot have a
component encrypt a secret message under an unauthentic key) and also ensures
that the components remain “synchronized” (see Section 4).

1.5 The End-Result: Obfuscation with Leaky Hardware

To obfuscate a program, we first apply the hardware-assisted obfuscator from
Section 1.1, thus obtaining a universal hardware device, whose size and amount
of computation (per input) depend only on the security parameter, and which
can be used to evaluate obfuscated programs from various vendors. We next ap-
ply the Goldwasser-Rothblum compiler [22], together with our transformation
from Section 1.4, to the code of the hardware device, resulting in a system of
components that can still be used for obfuscation in exactly the same way (as
the universal device), but is now guaranteed to remain secure even if the com-
ponents are leaky and even if the communication between them is adversarially
controlled.

To obfuscate a program f using this system, the obfuscator generates keys for
the FHE scheme and encrypts f under these keys. In addition, it uses the public
CCA2 key generated with the original universal device to encrypt the secret FHE
key together with a hash of the encrypted program. The encrypted program and
parameters are then sent to the user. Evaluating the obfuscated program consists
of running the FHE evaluation procedure and then interacting with the system
of components (in a universal argument) to decrypt the resulting ciphertext. The
system verifies the proof in a leakage-resilient manner and returns the decrypted
result.

We remark that our transformation from any circuit/device to a leaky system
of components, as well as our transformation from circuit-specific obfuscation
schemes to general-purpose ones, are generic and can be applied to any device-
assisted obfuscation scheme, such as the schemes of [19, 25]. When doing so, the
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end result will inherit the properties of the underlying scheme. In particular,
when instantiated with [19, 25], the amount of work performed by the devices is
proportional to the size of the entire computation (the hardware used for each
gate in the obfuscated circuit).

1.6 Related Work

Research on formal notions of obfuscation essentially started with the work
of Barak et. al. [6], who proved that software-only obfuscation is impossible
in general. This was followed by other negative results [20] and some posi-
tive results for obfuscating very simple classes of functions (e.g., point func-
tions) [32, 11, 15]. The sweeping negative results for software-only obfuscation
motivated researchers to consider relaxed notions where some interesting special
cases can be obfuscated (e.g., [23, 26, 8]).

In contrast, the early works of Best [7], Kent [28] and Goldreich and Ostro-
vsky [19] addressed the software-protection problem using a physically shielded
full-blown CPU. The work of Goyal et. al. [25] showed that the same can be
achieved also with small stateless hardware tokens. These solutions only con-
sider perfectly opaque hardware. Furthermore, in these works the amount of
work performed by the secure hardware device during the evaluation of one
input is proportional to the size of the entire computation.2

The work by Goldwasser et. al. [21] on one-time programs shows that pro-
grams can be obfuscated using very simple hardware devices that do very little
work. However, their resulting obfuscated program can be run only once.

Our focus on obfuscation with leaky hardware follows a large corpus of recent
works addressing leakage-resilience cryptography (see, e.g., [16, 2] and references
within). In particular, our construction uses results of Goldwasser and Roth-
blum [24, 22], which show how to convert circuits into ones that are secure in
only computation leaks model of Micali and Reyzin [29] (or even in the stronger
OCL+ model described above).

Our construction of leakage-tolerant secure channels and the relation between
leakage-tolerance and adaptive security were further investigated and generalized
in [10], who consider general universally composable leaky protocols.

Organization In Section 2 we construct a hardware-assisted obfuscation scheme
where the amount of work done by the hardware is minimal (polynomial in the
security parameter). In Section 3 we show how to transform any “circuit-specific”
scheme, such as the one constructed in Section 2, to a “general-purpose” scheme
where the same hardware device can be used for multiple obfuscated programs.
In Section 4 we show how to transform any hardware-assisted obfuscation, such
as the above, to a leakage-resilient scheme. The full details and proofs as well as
some of the secondary results can be found in the full version of this paper [9].

2 On the other hand, the solutions in [19, 25] can be based on one-way functions, while
our solution requires stronger tools such as FHE and universal arguments.
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2 Hardware Assisted Obfuscation

In this section we construct a hardware assisted obfuscation scheme. The basic
model and definitions are presented in Section 2.1. An overview of the construc-
tion is presented in Section 2.2. The detailed construction and its analysis can
be found in the full version of this paper[9].

2.1 The Model

In the setting of hardware assisted obfuscation, a circuit C (taken from a family
Cn of poly-size circuits) is obfuscated in two stages. First, the PPT obfuscation
algorithm O is applied to C, producing the “software part” of the obfuscation
obf, together with (secret) parameters params for device initialization. At the
second stage, the hardware device HW is initialized with params. The evalu-
ator is given obf and black-box access to the initialized device HWparams. In
our security definition, we consider a setting in which the adversary is given
t = poly (n) independent obfuscations of t circuits, where obfuscation i consists
of a corresponding device HWparamsi

and obfuscated data obfi. In this model each
obfuscated circuit may have its own specialized device.

Definition 2.1 (Circuit-specific hardware-assisted obfuscation (CSHO)).
(O,HW,Eval) is a CSHO scheme for a circuit ensemble C = {Cn}, if it satisfies:

– Functional Correctness. Eval is a poly-time oracle aided TM , such that
for any n ∈ N, C ∈ Cn and input v for C: EvalHWparams

(
1|C|, obf, v

)
= C (v),

where (obf, params) ← O (C).
– Circuit-Independent Efficiency. The size of HWparams is poly(n), in-
dependently of |C|, where (params, obf) ← O(C). Also, during each run of
EvalHWparams

(
1|C|, obf, v

)
on any input v, the total amount of work performed

by HWparams is poly(n), independently of |C|.
– Polynomial Slowdown. O is a PPT algorithm. In particular, there is a
polynomial q, such that for any n ∈ N and C ∈ Cn, |obf| ≤ q (|C|).

– t-Composable Virtual Black Box (VBB). Any adversary, given t ob-
fuscations, can be simulated, given oracle access to the corresponding circuits.
That is, for any PPT A (with arbitrary output) there is a PPT S such that:{AHW1,...,HWt (z, obf1, . . . , obft)

} ≈c

{SC1,...,Ct (z, 1n, |C1|, . . . , |Ct|)
}

,

where C1 . . . Ct ∈ Cn, z ∈ {0, 1}poly(n) is an arbitrary auxiliary input, HWi =
HWparamsi

and (obfi, paramsi) ← O (Ci).
We say that the scheme is stand-alone VBB if it is 1-composable. We say
that the scheme is composable if its t-composable for any polynomial t.

While previous solutions [19, 25] satisfy the correctness and security require-
ments of Definition 2.1, they require that the total amount of work performed
by the device for a single evaluation is proportional to |C|, the size of the en-
tire circuit. Namely, they do not achieve circuit-independent efficiency. In this
section we show that how to construct schemes which do achieve this feature,
based on a different approach. The main result is given by Theorem 2.1.
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Theorem 2.1. Assuming fully homomorphic encryption, there exists a compos-
able CSHO scheme for all polynomial size circuit ensembles C = {Cn}.

2.2 The Construction

We next overview the main aspects of the constructions.

The main ideas. Informally, given a FHE scheme E , we obfuscate a circuit C by
sampling (sk, pk) ← Gen (1n), encrypting Ĉ = Encpk (C) and creating a “proof-
checking decryption device” HW = HWsk which is meant to decrypt “proper
evaluations”. The obfuscation consists of obf = (Ĉ, pk) and oracle access to HW.
To evaluate the obfuscation on input v, compute e = Evalpk(Ĉ, Us,v), where
Us,v is a universal circuit that given a circuit C of size s outputs C (v).3 Then,
“prove” to HW that indeed e = Evalpk(Ĉ, Us,v). In case HW is “convinced”, it
decrypts C (v) = Decsk (e) and returns the result to the evaluator. Intuitively,
the semantic security of E and the soundness of the proof system in use should
prevent the evaluator from learning anything about the original circuit C other
than its input-output behavior.

We briefly point out the main technical issues that arise when applying the
above approach and the way we deal with these issues.

– Minimizing the device’s workload. Proving the validity of an evalu-
ated ciphertext e w.r.t. an encrypted circuit Ĉ amounts to proving that a
poly(|C|)-long computation was performed correctly. However, the running
time of our device should be independent of |C| and hence cannot process
such a computation. In fact, it cannot even process the assertion itself as it
includes the poly(|C|)-long encryption Ĉ. To overcome this, we use univer-
sal arguments (UA’s) that also have a proof of knowledge property [4]and
collision resistant hashing. Specifically, the device only stores a (short) hash
h(Ĉ) and the evaluator proves it “knows” an encrypted circuit Ĉ′ with the
same hash and that the evaluated ciphertext is the result of applying Evalpk

to Ĉ′ and the universal circuit Us,v (corresponding to some input v).
– Using a stateless device with no fresh randomness. Our device can

be implemented as a boolean circuit that need not maintain a state between
evaluator calls nor generate fresh randomness; in particular, it should with-
stand concurrent proof attempts and “reset attacks” (as termed by [14]). To
enable this, we use similar techniques to those in [5]. Informally, these tech-
niques allow transforming the UA protocol we use to a “resettable” protocol,
where the verifier’s randomness is fixed to some pseudo random function. 4

3 Abusing notation, we denote by Eval both evaluation algorithms EvalHWparams(obf, v)
and Evalpk. To distinguish between the two, we always denote the evaluation algo-
rithm of the FHE scheme by Evalpk .

4 The mentioned techniques essentially transform any public-coin constant-round pro-
tocol to a “resettable” one.
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3 General-Purpose (Sendable) Obfuscation

In this section we show how to convert any circuit-specific obfuscation scheme,
such as the one in Section 2, to a scheme which uses a single universal (general-
purpose) hardware device. The basic model and definitions are presented in
Section 3.1, the transformation is presented in Section 3.2 and analyzed in the
full version of this paper [9].

3.1 The Model

In circuit-specific obfuscation, the obfuscator gives the user a device that depends
on the obfuscated circuit C. More precisely, the “specifying parameters” params,
produced by O (C), depend on C and are hardwired into the device before it is
sent to the user. Thus, each device supports only a single obfuscated circuit.

We consider a more natural setting in which different parties can send obfus-
cations to each other online, without the need of exchanging devices per each
obfuscation. Informally, in this setting we assume that a trusted manufacturer
creates devices, where each device is associated with private and public param-
eters (prv, pub). The private parameters are hardwired into the device and are
never revealed (they can be destroyed), while the public ones are published to-
gether with the “identity” of the device (e.g., on the manufacturer’s web page
www.obfuscationdevices.com). Any user, who wishes to send an obfuscation of
a circuit C to another user who holds such a device, retrieves the corresponding
public parameters and sends the required obfuscation.

Concretely, a general-purpose obfuscation scheme consists of two randomized
algorithms (Gen,O) and a device HW. First, Gen (1n) generates private and pub-
lic parameters (prv, pub) (independently of any circuit). Then, HW is initialized
with prv and the initialized device HWprv is given to the user. The corresponding
pub are published. Anyone in hold of pub can obfuscate a circuit C by computing
obf ← O (C, pub) and sending obf to the user holding the device.

Definition 3.1 (General-purpose hardware-assisted obfuscation
(GPHO)). (O,Gen,HW,Eval) is a GPHO scheme for C = {Cn} if it satisfies:

– Functional Correctness. Eval is a polynomial-time oracle aided TM, such
that for any n ∈ N, C ∈ Cn and input v for C: EvalHWprv

(
1|C|, obf, v

)
= C (v),

where (prv, pub) ← Gen (1n) and obf ← O (C, pub).
– Circuit-Independent Efficiency. The size of HWprv is polynomial in n,
independent of |C|, where (prv, pub) ← Gen (1n). Moreover, during each run
of EvalHWprv

(
1|C|, obf, v

)
on any input v, the total amount of work performed

by HWprv is polynomial in n, independent of |C|.
– Polynomial Slowdown. O and Gen are PPT algorithms. In particular,
there is a polynomial q such that for any n ∈ N, C ∈ Cn, |pub, prv| ≤ q (n)
and |obf| ≤ q (|C|).

– Virtual Black Box (VBB). For any PPT adversary A and polynomial t
there is a PPT simulator S such that:{AHWprv (z, obf1, . . . , obft)

} ≈c

{SC1,...,Ct (z, 1n, |C1|, . . . |Ct|)
}

,
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where C1 . . . Ct ∈ Cn, z ∈ {0, 1}poly(n) is an arbitrary auxiliary input
(prv, pub) ← Gen (1n) and obfi ← O (Ci, pub).

3.2 The Transformation

Essentially, we wish to avoid restricting the device to a specific circuit C (like
hard-wiring h(Ĉ) into the device as done in our circuit-specific scheme). Instead,
we would like to have the user “initialize” his device with the required parameters
params for each obfuscation he wishes to evaluate. However, params cannot be
explicitly given to the evaluator as they contain sensitive information.

For this purpose, we simply use a CCA2 public key encryption scheme. That
is, the obfuscator will generate params, but instead of hard-wiring them into the
hardware device (which will make the device circuit-specific), he will encrypt
params and send the resulting ciphertext to the user. The fact that the underlying
encryption scheme is CCA2 secure implies that the user can neither gain any
information about params nor change it to related parameters params′.

More formally, the new general-purpose device HW′ is manufactured together
with a pair of CCA2 keys (prv, pub) = (sk, pk). The secret key sk is hardwired
into the device (and destroyed), while pk is published. Each device call is ap-
pended with the CCA2 encryption of params. The device HW′ answers its calls by
first decrypting the encrypted parameters params and then applying the device
HWparams of the underlying circuit-specific scheme (e.g. the scheme in Section 2).
In the full version [9] we present the detailed construction and show:

Theorem 3.1. Given a CCA2 encryption scheme, any circuit-specific obfusca-
tion scheme as in Definition 2.1 can be transformed to a general-purpose one as
in Definition 3.1.

Corollary 3.1 (of Theorems 2.1,3.1). Assume that there exists a fully ho-
momorphic encryption scheme and a CCA2 encryption scheme, then there exists
a general-purpose obfuscation scheme.

Remark 3.1. The above transformation would also work (as is) for schemes with
no circuit-independent efficiency. The amount of work performed by the general-
purpose device is essentially inherited from the underlying scheme (with the fixed
overhead of CCA2 decryption). In particular, we can apply it to the scheme of
[25] and get a general-purpose solution that is based solely on the existence of
CCA2 schemes, but which makes poly(|C|) device calls.

4 Obfuscation with Leaky Hardware

We now turn to the task of dealing with leaky hardware. As we explained in the
introduction, if we allow arbitrary leakage functions (even with small output)
then it is impossible to obfuscate using a single leaky hardware device. Hence, our
goal is to show how to use many leaky hardware devices to achieve obfuscation.
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We first show how to obfuscate any function f using leaky hardware devices,
where the number of devices is proportional to the size of the circuit computing f .
Then, when we apply this obfuscator to the function computed by the hard-
ware device from Section 2 (or Section 3, respectively), to get circuit-specific (or
general-purpose, respectively) obfuscation with leaky hardware devices, where
the number of devices is polynomial in the security parameter, independent of
the function being obfuscated.

4.1 An Overview

In what follows, we give an informal definition of obfuscation with leaky hardware
and a high-level overview of our construction. The formal definitions and detailed
construction are given in Sections 4.2 and 4.3. The security analysis can be found
in the full version of this paper [9].

The leaky distributed system (LDS) model. In the LDS model a functionality
f (with secrets) is implemented by a system of multiple hardware components
(HW1,HW2, . . . ,HWm). The components can maintain a state and generate fresh
randomness. To evaluate the functionality f , an input v is given to HW1 and the
components communicate to jointly compute f(v), which is eventually outputted
by HWm. The adversary (evaluator) in our model can freely choose the inputs
to the computation and is given full control over the communication between
the components. In addition, the adversary can choose one component at a time
and evaluate a leakage function on its inner state and randomness.

We consider a continual leakage model, where the lifetime of each component
HWi is partitioned into time periods (that are set according to the inputs that
HWi receives). At the end of each time period, HWi “refreshes” its inner state
by applying an Update procedure (that erases the previous state). The Update
procedures performed at different components are coordinated by exchange of
messages. As the rest of the computation, the Update procedure is also exposed to
leakage and the adversary controls the exchange of messages during the update.

We place no restriction on the order and timing of the adversary’s interaction
with the system. In particular, it can pass messages to any component at any
time and get leakage on any component at any time (which can depend on
previous leakage and messages).

Constructing secure leaky distributed systems (LDS). Our goal is to compile (or
“obfuscate”) any functionality, given by some circuit C (with hardwired secrets),
into an LDS that perfectly protects C, as long as the leakage from each HWi

in each time period is bounded. In the terminology of obfuscation, the LDS
should perform as a virtual black-box: The view of any adversary A attacking
the LDS can be simulated by a simulator S which can only access C as a black-
box. In particular, S should simulate on its own the communication between the
components and all the leakage. We achieve this goal in two main steps:

1. We apply the Goldwasser-Rothblum compiler to the circuit C to get a circuit
that is secure in the (augmented) only computation leaks (OCL+) model.
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2. Then, we provide a general transformation that takes any OCL+-secure cir-
cuit and transforms it to a secure LDS.

Hence, our main goal is to show that an adversary in the LDS model can be
simulated by an adversary in the OCL+ model (that does not witness the com-
munication between the modules). Then, by the OCL+-security (implied by the
GR compiler), we can deduce that simulation can be done only with black-box
access to the underlying functionality.

In the heart of our transformation stands an implementation of leakage toler-
ant communication channels. We first explain the main ideas required to achieve
secrecy and then explain how to get authenticity.

Leaky secret channels from non-committing encryption. In the OCL+ model, the
components can securely exchange messages. Still, the adversary might get some
leakage on the contents of these messages as the (leaky) state of the components
includes the messages at some point. The OCL+ security guarantee implies,
however, that a bounded amount of leakage does not compromise the security
of the entire system.

To enhance OCL+-security to LDS-security we implement the secure commu-
nication channels. As explained above, we assume for now that the adversary
delivers all messages intact and deal only with secrecy. The standard solution
for secret channels would be to encrypt all communication between the com-
ponents; however, in the face of leakage this approach encounters the following
difficulty: Consider a sender component HWS in the LDS model that wishes to
communicate a message M to a receiver component HWR (using some encryp-
tion scheme). Note that the adversary can obtain arbitrary (bounded) leakage
on the state of both HWS ,HWR, including leakage on both the plaintext M and
the randomness rS , rR used to encrypt/decrypt. Moreover, the leakage function
can depend on the corresponding ciphers which were already sent. This implies
that naively simulating the communication (by say encryptions of 0) won’t work.

Our main technical observation is that the above obstacle can be overcome
using non-committing encryption (NCE) [12]. NCE schemes (which can poten-
tially be interactive) allow simulating a fake cipher (or transcript) c together
with two optional random strings (r0S , r

1
S), (r0R, r

1
R) for both the sender S and

the receiver R. The simulated cipher can later be “opened” as an encryption of
either 1 or 0 (using the suitable randomness).5 This tool allows us to show that
the view of an attacker A in the LDS model can be simulated by an attacker A′

in the OCL+ model, provided that the components communicate using NCE.
Specifically, for any single bit message, the OCL+ adversary A′ (which does

not see any communication) will use the NCE to generate fake communication
5 NCE was so far mainly used in the setting of multi-party-computation as a tool

for dealing with adaptive corruptions. Indeed, leakage can be viewed as a restricted
form of “honest but curious” corruption, where the adversary learns part of the
state, whereas in full corruption, it learns the entire state. In both cases, the choice
of leakage/corruption is done adaptively according to the view of the adversary so
far. The relation between leakage-tolerant protocols and adaptively secure protocols
is further generalized in [10].
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with corresponding randomness r̄ = (r0S , r
1
S), (r0R, r

1
R). Then, when the simulated

A performs a leakage query L to be evaluated on both the plaintext b and the
encryption’s randomness, A′ can translate it to a new leakage query L′ which
will only be evaluated on the plaintext message. The leakage function L′

will have the simulated randomness r̄ hardwired into it and will choose which
randomness to use according to the plaintext b.

Leakage resilient MACs. To deal with adversaries that interfere with message
delivery we use leakage-resilient c-time MAC schemes. Informally, each two com-
ponents maintain rolling MAC keys that are used at most c = O(1) times. After
c− 1 times the components run the Update protocol to regain fresh MAC keys.
The communication during the update is done using NCE as described above,
while authentication is done using the c-th application of the previous key.

4.2 The LDS Model

Our leakage model postulates an adversary A that interacts with a system of
distributed leaky hardware components. Each component maintains a state and
is capable of producing fresh randomness. At the onset of the interaction, the
components are pre-loaded with some secret state and thereafter they can receive
messages, send messages and leak information to the attacker. In our model all
the I/O of the components and their communication is done via the attacker A.

Definition 4.1 (Single-input leakage). In a distributed single-input λ-leakage
attack a PPT adversary A interacts with hardware components (HW1, . . . ,HWm)
and can do the following (in any order, possibly in an interleaving manner):

1. Feed O(C) a single input of his choice.
2. Interact with each component, sending it messages and receiving the resulting

outputs and replies. These devices are message-driven, so they are activated
by receiving messages from the attacker, then they compute and send the
result, then wait for more messages.

3. Adaptively send up to λ 1-bit leakage queries to each of the hardware com-
ponents. Each leakage query is modeled as a poly-size Boolean circuit and
is applied to the entire state of a single hardware device. Without loss of
generality, we can think of the state of the device as it was in the last time
that the device was activated, including all the randomness that the device
generated in order to deal with the last activation.

We denote the output of A in such attack by A[λ : HW1, . . . ,HWm].

Definition 4.2 (Continual leakage). A continual λ-leakage attack is an at-
tack where a PPT adversary A repeats a single-input λ-leakage attack poly many
times, where between any two consecutive attacks the devices’ secret state is up-
dated by applying a PPT algorithm Update to the state of each HWi separately. A
obtains leakage during the Update procedure, where the leakage function takes as
input both the current secret state of HWi and the randomness used by Update.
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We denote by time period t at device HWi the time period between the begin-
ning of the (t − 1)st Update procedure and the end of the t-th Update procedure
(note that these time periods are overlapping).6 We allow the adversary A to
leak at most λ bits from each HWi during each (local) time period.

We denote the output of A in such attack by A[λ : HW1, . . . ,HWm : Update].

Below we consider an obfuscator O that takes as input a circuit C and outputs an
“obfuscated” version of C that uses leaky hardware devices as above. Namely,
we have (HW1, . . . ,HWm) ← O(C), where the HWi’s are the leaky hardware
devices, initialized with the appropriate circuits.

Remark 4.1. In Definitions 2.1 and 3.1, the obfuscator O outputs a “software
part” obf and parameters params for initializing the hardware. In the current
setting, the obfuscation does not contain a software part. The simplified nota-
tion (HW1, . . . ,HWm) ← O(C), should be interpreted as sampling {paramsi} ←
O(C) (where paramsi corresponds to the i-th sub-computation)and initializing
the hardware devices {HWi} accordingly.

Definition 4.3. We say that O is an LDS-obfuscator with continual λ-leaky
hardware if for any circuit C and (HW1, . . . ,HWm) ← O(C), the distributed
system (HW1, . . . ,HWm) maintains the functionality of C when all the messages
between them are delivered intact and in addition we have the following:

For any PPT attacker A, executing a continual λ-bit leakage attack, there
exists a PPT simulator S, such that for any ensemble of poly-size circuits {Cn}:

{A(z)[λ : HW1, . . . ,HWm : Update]} n∈N,C∈Cn

z∈{0,1}poly(n)
≈c

{
SC(z, 1|C|)

}
n∈N,C∈Cn

z∈{0,1}poly(n)

,

where (HW1, . . . ,HWm) ← O(C) and z is an arbitrary auxiliary input.

4.3 The Construction

We build our solution using a compiler C that is secure in the continual λ-
OCL+ model. Namely, C converts any circuit C into a collection of leaky sub-
components (sub1, . . . , subm) (that also have an update procedure, Update′) that
is secure long as the adversary can only get λ leakage from each component in
each time unit and cannot see or influence the communication between them. In
our model, however, the communication is under the control of the adversary.
To secure the communication, we use non-committing encryption and c-time
leakage resilient MACs (as described in the overview).

The construction. Given a circuit C, the obfuscator O does the following:

6 Intuitively, time period t is the entire period where the t-th updated secret states
can be leaked. During the t-th Update procedure, both the (t− 1)st secret state and
the t-th secret state may leak, which is why the time periods are overlapping.



Program Obfuscation with Leaky Hardware 737

1. Apply the λ-OCL+ compiler C to C and obtain a circuit C′ = (sub1, . . . , subm)
and an Update′ procedure, such that (C′,Update′) is secure in the continual
λ-OCL+ model.
We assume for simplicity that: (a) sub1 is the input module, that takes as
input the “original” input x ∈ {0, 1}n and passes it to the relevant subj ’s.
(b) subm generates the final output. (c) The exchanged messages between
the modules are all of the same size � = �(n).

2. Put each module subi in a separate hardware component HWi.
3. For every two communicating modules i, j ∈ [m], generate a random key

Ki,j ← {0, 1}t for a λ-leakage-resilient MAC scheme (MAC,Vrfy), with keys
of length t = Θ(λ). For every i ∈ [m], hard-wire in HWi the set of keys
{(j,Ki,j)}, for every j such that subj and subi communicate.

4. For every i ∈ {1, . . . ,m − 1} and every j ∈ {2, . . . ,m}, whenever subi is
supposed to send a message M = (M1, . . . ,M
) to subj , the corresponding
hardware HWi sends M to HWj using a non-committing encryption scheme
(NCGen,NCEnc,NCDec). Moreover, all the communication in this process
is authenticated using the MAC scheme (MAC,Vrfy). More specifically, the
hardware devices HWi and HWj communicate as follows:
(a) Hardware HWj does the following:

i. For each k ∈ [�], sample a random rG,k ∈ {0, 1}poly(n) and compute
(ek, dk) = NCGen(1n; rG,k). Henceforth, let e = (e1, . . . , e
),d =
(d1, . . . , d
).

ii. Compute σe = MAC(e;Ki,j).
iii. Send (e, σe) to HWi and keep d as part of the secret state.

(b) Hardware HWi does the following:
i. Verify that Vrfy(e, σe;Ki,j) = 1 and verify that (e, σe) was not al-

ready sent by HWj during this time period. If this check fails then
discard the message e.

ii. If the check passes, for each k ∈ [�] choose a random rE,k∈{0, 1}poly(n),
compute ck = NCEnc(Mk, ek; rE,k). Henceforth, let c = (c1, . . . , c
).

iii. Compute σc = MAC(c;Ki,j).
iv. Send (c, σc) to HWj .

(c) Hardware HWj does the following:
i. Verify that Vrfy(c, σc;Ki,j) = 1 and verify that (c, σc) wasn’t already

sent by HWi. If this check fails then discard the message c.
ii. If the check passes, compute for each k ∈ [�], Mi = NCDec(ci, di).

Once HWj gets M, it runs subj on input M (unless subj is waiting for
additional inputs).

5. Finally, HWm sends an output message (assuming subm is the sub-
computation that generates the outputs).

6. For each HWi, after each “valid” activation (i.e., after it did its share in a
computation), HWi erases all its computations and updates its secret state,
using an update procedure Update, defined as follows.
(a) Apply the Update′ procedure to update the state of subi.
(b) Refresh the MAC keys by choosing new random MAC keys K ′

i,j for every
j > i such that HWi and HWj communicate. Then send K ′

i,j to HWj .
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(c) Erase the previous MAC keys Ki,j.
(d) Communication: All the communication within the update procedure

is done as in step 4. Namely, for each message, repeat steps 4(a) − 4(c),
where the MACs are w.r.t. the previous MAC key Ki,j .

Theorem 4.1. Assuming the compiler C used in the above construction is secure
in the λ-OCL+ model. Then the above construction yields an LDS-obfuscator with
continual λ-leaky hardware HW1, . . . ,HWm.

The proof of Theorem 4.1 is given in the full version of this paper [9].
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Abstract. The assumption of the availability of tamper-proof hardware tokens
has been used extensively in the design of cryptographic primitives. For exam-
ple, Katz (Eurocrypt 2007) suggests them as an alternative to other setup as-
sumptions, towards achieving general UC-secure multi-party computation. On
the other hand, a lot of recent research has focused on protecting security of
various cryptographic primitives against physical attacks such as leakage and
tampering.

In this paper we put forward the notion of Built-in Tamper Resilience (BiTR)
for cryptographic protocols, capturing the idea that the protocol that is encap-
sulated in a hardware token is designed in such a way so that tampering gives
no advantage to an adversary. Our definition is within the UC model, and can
be viewed as unifying and extending several prior related works. We provide
a composition theorem for BiTR security of protocols, impossibility results, as
well as several BiTR constructions for specific cryptographic protocols or tam-
pering function classes. In particular, we achieve general UC-secure computation
based on a hardware token that may be susceptible to affine tampering attacks. We
also prove that two existing identification and signature schemes (by Schnorr and
Okamoto, respecitively) are already BiTR against affine attacks (without requir-
ing any modification or endcoding). We next observe that non-malleable codes
can be used as state encodings to achieve the BiTR property, and show new posi-
tive results for deterministic non-malleable encodings for various classes of tam-
pering functions.

1 Introduction

Security Against Physical Attacks. Traditionally, cryptographic schemes have been
analyzed assuming that an adversary has only black-box access to the underlying func-
tionality, and no way to manipulate the internal state. For example, traditional security
definitions for encryption schemes address an adversary who is given the public key —
but not the private key — and tries to guess something about the plaintext of a chal-
lenge ciphertext, by applying some black-box attack (e.g., CPA or CCA). In practical
situations, however, an adversary can often do more. For example, when using small
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portable devices such as smart-cards or mobile-phones, an adversary can take hold of
the device and apply a battery of attacks. One class of attacks are those that try to
recover information via side channels such as power consumption [29], electromag-
netic radiation [38], and timing [11]. To address these attacks, starting with the work
of [27,33] there has been a surge of recent research activity on leakage-resilient cryp-
tographic schemes. For example, refer to [41,37,1,22,10,19,32,9,31] and the references
therein. The present work addresses tampering attacks, where an adversary can modify
the secret data by applying various physical attacks (c.f., [2,8,7,40,4]). Currently, there
are only a few results in this area [23,26,21].

Hardware Tokens. As discussed above, cryptographic primitives have traditionally
been assumed to be tamper (and leakage) proof. In the context of larger cryptographic
protocols, there have been many works that (implicitly or explicitly) used secure hard-
ware as a tool to achieve security goals that could not be achieved otherwise. The work
most relevant to ours is that of Katz [28], who suggests to use tamper-proof hardware
tokens to achieve UC-secure [12] commitments. This allows achieving general feasi-
bility results for UC-secure well-formed multi-party computation, where the parties,
without any other setup assumptions, send each other tamper-proof hardware tokens
implementing specific two-party protocols. There were several follow-up works such
as [34,16,18,25,30,24,20], all of which assume a token that is tamper proof.

Given the wide applicability of tamper-proof tokens on one hand, and the reality of
tampering attacks on the other, we ask the following natural question:

Can we relax the tamper-proof assumption, and get security using tamperable
hardware tokens?

Clearly, for the most general interpretation of this question, the answer is typically
negative. For example, if the result of [28] was achievable with arbitrarily-tamperable
hardware token, that would give general UC-secure protocols in the “plain” model,
which is known to be impossible [13]. In this work we address the above question in
settings where the class of possible tampering functions and the class of protocols we
wish to put in a token and protect are restricted.

1.1 Our Contributions

BiTR Definition. We provide a definition of Built-in Tamper Resilience (BiTR) for two
party cryptographic protocols, capturing the idea that the protocol can be encapsulated
in a hardware token, whose state may be tamperable. Our definition is very general,
compatible with the UC setting [12], and implies that any BiTR protocol can be used as
a hardware token within larger UC-protocols. Our definition may be viewed as unifying
and generalizing previous definitions [23,26,21] and bringing them to the UC setting.

BiTR is a property of a cryptographic protocol M , which roughly says the follow-
ing. Any adversary that is able to apply tampering functions from the class T on a
token running M , can be simulated by an adversary that has no tampering capability,
independently of the environment in which the tokens may be deployed.

The strongest result one would ideally want is a general compiler that takes an arbi-
trary protocol and transforms it to an equivalent protocol that is BiTR against arbitrary
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tampering functions, without having to encode the state into a larger one, and without
requiring any additional randomness.1 Since such a strong result is clearly impossible,
we provide several specific results that trade off these parameters (see below), as well
as the following composition theorem.

BiTR Composition. As BiTR is a protocol centric property, the natural question that
arises is whether it is preserved under composition. A useful result for a general theory
of BiTR cryptography would be a general composition theorem which allows combin-
ing a BiTR protocol calling a subroutine and a BiTR implementation of that subrou-
tine into one overall BiTR protocol. To this end, we characterize BiTR composition
of protocols by introducing the notion of modular-BiTR which captures the property
of being BiTR in the context of a larger protocol. We then prove that the property of
modular-BiTR is necessary and sufficient for construction of composite BiTR proto-
cols. At the same time we also derive a negative result, namely that modular-BiTR
protocols that preserve the BiTR property in any possible context (something we term
universal-BiTR) are unattainable assuming the existence of one-way functions, at least
for non-trivial protocols. These results thus settle the question of BiTR composability.

BiTR Constructions without State Encoding. We describe results for BiTR prim-
itives that require no state encodings. It may come as a surprise that it is possible
to prove a cryptographic protocol BiTR without any encoding and thus without any
validation of the secret protocol state whatsoever. This stems from the power of our
definitional framework for BiTR and the fact that it is can be achieved for specially
selected and designed protocols and classes of tampering functions. We define the class
Taff = {fa,b | a ∈ Z∗

q , b ∈ Zq, fa,b(v) := av + b mod q}. That is, the adversary may
apply a modular affine function of his choice to tamper the state. Affine tampering is
an interesting class to consider as it has as special cases multiplication (e.g., shifting —
which may be the result of tampering shift-register based memory storage), or addition
(which may be result of bit flipping tampering).

We prove three protocols BiTR with respect to this class, where the tamper resilience
is really “built-in” in the sense that no modification of the protocol or encoding of the
state are necessary. The first one is Schnorr’s identification (two-round) protocol [39].
The second is Okamoto’s signature scheme [35]. Both protocols are interesting on their
own (e.g., previous work [23] focused mostly on signature schemes), but the latter is
also useful for the third protocol we prove affine-BiTR, described next.

UC-Secure Computation from tamperable tokens. Katz’s approach [28] for building
UC-secure computation using hardware tokens allows a natural generalization that in-
volves a commitment scheme with a special property, we call a dual-mode parameter
generation (DPG) — depending on the mode of the parameter, the commitment scheme
is either statistically hiding or a trapdoor commitment. We then observe that any DPG-
commitment is sufficient for providing UC-secure multi-party computation assuming
tamper proof tokens. Following this track, we present a new DPG-commitment scheme

1 If an encoding ψ of the state is required, it is desirable that it is deterministic (randomness
may not be available in some systems or expensive to generate), and that it has as high rate as
possible. Ideally, an existing scheme can be proven BiTR as-is, without any state encoding at
all.
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that is BiTR against affine tampering functions, that relies on discrete-log based prim-
itives including the digital signature scheme of Okamoto [35]. Thus, we obtain UC-
secure general computation using hardware tokens tamperable with affine functions.

BiTR Constructions with State Encoding. We next discuss how one can take advan-
tage of state consistency checks to design BiTR protocols. We observe first that non-
malleable codes, introduced by Dziembowski, Pietrzak and Wichs [21] can be used as
an encoding for proving the BiTR property of protocols. This gives rise to the prob-
lem of constructing such codes. Existing constructions [21] utilize randomness in cal-
culating the encoding; we provide new constructions for such encodings focusing on
purely deterministic constructions. In fact, when the protocol uses no randomness (e.g.,
a deterministic signing algorithm) or a finite amount of randomness (e.g., a prover in
the resettable zero-knowledge [14] setting), by using deterministic encodings the token
may dispense with the need of random number generation.

Our design approach takes advantage of a generalization of non-malleable encodings
(called δ-non-malleable), and we show how they can be constructible for any given set
of tampering functions (as long as they exist). Although inefficient for general tamper-
ing functions, the construction becomes useful if each function in the class T works
independently on small blocks (of logarithmic size). In this case, we show that a non-
malleable code for the overall state can be constructed efficiently by first applying Reed-
Solomon code to the overall state and then applying δ-non-malleable codes for small
blocks to the resulting codeword. We stress that this construction is intended as a feasi-
bility result.

1.2 Related Work

We briefly describe the most relevant previous works addressing protection against tam-
pering. We note that none of these works had addressed tampering in the context of
UC-secure protocols.

Gennaro et al. [23] considered a device with two separate components: one is tamper-
proof yet readable (circuitry), and the other is tamperable yet read-proof (memory).
They defined algorithmic tamper-proof (ATP) security and explored its possibility for
signature and decryption devices. Their definition of ATP security was given only for
the specific tasks of signature and encryption. In contrast, our definition is simulation
based, independent of the correctness or security objectives of the protocol, and we con-
sider general two-party protocols (and the implications in the UC framework [12,28]).

Ishai et al. [26] considered an adversary who can tamper with the wires of a circuit.
They showed a general compiler that outputs a self-destructing circuit that withstands
such a tampering adversary. Considering that memory corresponds to a subset of the
wires associated with the state in their model, the model seems stronger than ours (as
we consider only the state, not the computation circuit). However, the tampering attack
they considered is very limited: it modifies a bounded subset of the wires between each
invocation, which corresponds to tampering memory only partially.

Dziembowski et al. [21] introduced the notion of non-malleable codes and tamper
simulatability to address similar concerns as the present work. A distinguishing feature
of BiTR security from their approach is that BiTR is protocol-centric. As such, it allows
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arguing about tamper resilience by taking advantage of specific protocol design features
that enable BiTR even without any encodings. Moreover, the positive results of [21]
require the introduction of additional circuitry or a randomness device; this may be
infeasible, uneconomical or even unsafe in practice — it could be introducing new
pathways for attacks. In contrast, our positive results do not require state encodings or
when they do, they do not rely on randomness.

Bellare and Kohno defined security against related key attacks (RKA) for block ci-
phers [6], and there has been follow-up work [5,3] (see also the references therein).
Roughly speaking, RKA-security as it applies to PRFs and encryption is a strengthen-
ing of the security definition of the underlying primitive (be it indistinguishability from
random functions or semantic security). RKA-security was only shown against tam-
pering that included addition or multiplication (but not both simultaneously). In fact,
RKA-security for PRFs as defined in [5] is different from BiTR when applied to PRFs.
A BiTR PRF is not necessarily RKA-secure since the BiTR simulator is allowed to
take some liberties that would violate key independence under tampering as required
by RKA-security. We do not pursue these relationships further here formally as it is
our intention to capture BiTR in a weakest possible sense and investigate how it cap-
tures naturally in a simulation-based fashion the concept of tamper resilience for any
cryptographic primitive.

2 BiTR Definitions

BiTR Protocols. Katz [28] modeled usage of a tamper-proof hardware token as an ideal
functionality Fwrap in the UC framework. Here, we slightly modify the functionality
so that it is parameterized by an interactive Turing machine (ITM) M for a two-party
protocol2 (see Fig. 1). The modification does not change the essence of the wrapper
functionality; it merely binds honest parties to the use of a specific embedded program.
Corrupted parties may embed an arbitrary program in the token by invoking Forge. We
also define a new functionalityFtwrap similar to Fwrap but with tampering allowed. Let
T be a collection of (randomized) functions. Let ψ = (E,D) be an encoding scheme3.
The essential difference between Ftwrap and Fwrap is the ability of the adversary to
tamper with the internal state of the hardware token — a function drawn from T is
applied on the internal state of the hardware token. This (weaker) ideal functionality
notion is fundamental for the definition of BiTR that comes next.

We define a security notion for a protocol M , called Built-in Tamper Resilience
(BiTR), which essentially requires that Ftwrap(M) is interchangeable with Fwrap(M).
We adopt the notations in the UC framework given by Canetti [12].

Definition 1 (BiTR protocol). The protocolM is (T , ψ)-BiTR if for any PPT A, there
exists a PPT S such that for any non-uniform PPT Z ,

IDEALFtwrap(M,T ,ψ),A,Z ≈ IDEALFwrap(M),S,Z ,

where ≈ denotes computational indistinguishability.

2 We will interchangeably use protocols and ITMs, if there is no confusion.
3 We will sometimes omit ψ from Ftwrap when it is obvious from the context.
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Fwrap(M) is parameterized by a polynomial p and a security parameter k.
Create: Upon receiving 〈Create, sid, P, P ′,msg〉 from party P : Let msg′ = (Initialize,

msg). Run M(msg′) for at most p(k) steps. Let out be the response of M
(set out to ⊥ if M does not respond). Let s′ be the updated state of M . Send
〈Initialized, sid, P ′, out〉 to P , and 〈Create, sid, P, P ′, 1|s′|〉 to P ′ and the adversary.
If there is no record (P, P ′, ∗, ∗), then store (P, P ′,M, s′).

Forge: Upon receiving 〈Forge, sid, P, P ′,M ′, s〉 from the adversary, if P is not corrupted,
do nothing. Otherwise, send 〈Create, sid, P, P ′, 1|s|〉 to P ′. If there is no record
(P, P ′, ∗, ∗), then store (P, P ′,M ′, s).

Run: Upon receiving 〈Run, sid, P,msg〉 from party P ′, find a record (P, P ′,K, s). If
there is no such record, do nothing. Otherwise, do:

1. Run K(msg; s) for at most p(k) steps. Let out be the response of K (set out to ⊥
if K does not respond). Let s′ be the updated state of K. Send (sid, P, out) to P ′.

2. Update the record with (P, P ′,K, s′).
—————————————————————————————–

Ftwrap(M, T , ψ) is also parameterized by p and k (and ψ = (E,D) is an encoding scheme).
Create: As in Fwrap(M) with the only change that state s′ is stored as E(s′) in memory.
Forge: As in Fwrap(M).
Run: Upon receiving 〈Run, sid, P,msg〉 from party P ′, find a record (P, P ′,K, s̃). If

there is no such record, do nothing. Otherwise, do:
1. (Tampering) If P ′ is corrupted and a record 〈sid, P, P ′, τ〉 exists, set s̃ = τ(s̃)

and erase the record.
2. (Decoding) If P is corrupted, set s = s̃; otherwise, set s = D(s̃). If s = ⊥, send

(sid, P,⊥) to P ′ and stop.
3. Run K(msg; s) for at most p(k) steps. Let out be the response of K (set out to ⊥

if K does not respond). Let s′ be the updated state of K. Send (sid, P, out) to P ′.
4. (Encoding) If P is corrupted, set s̃ = s′; otherwise set s̃ = E(s′). Update the

record with (P, P ′,K, s̃).
Tamper: Upon receiving 〈Tamper, sid, P, P ′, τ〉 from the adversary A, if P ′ is not cor-

rupted or τ �∈ T , do nothing. Otherwise make a record (sid, P, P ′, τ) (erasing any
previous record of the same form).

Fig. 1. Ideal functionalities Fwrap(M) and Ftwrap(M, T , ψ)

In case ψ = (id, id) (i.e., identify functions), we simply write T -BiTR. Note that this
definition is given through the ideal model, which implies (by the standard UC theorem)
that whenever a tamper-proof token wrapping M can be used, it can be replaced by a
T -tamperable token wrapping M .4 As a trivial example, every protocol is {id}-BiTR.

We note that the above definition is intended to capture in the weakest possible sense
the fact that a protocol is tamper resilient within an arbitrary environment. A feature of
the definition is that there is no restriction in the way the simulator accesses the under-
lying primitive (as long as no tampering is allowed). This enables, e.g., a signature to be
called BiTR even if simulating tampered signatures requires untampered signatures on
different chosen messages, or even on a larger number of chosen messages. We believe

4 One could also consider a definition that requires this in the context of a specific UC-protocol.
We believe our stronger definition, which holds for any UC-protocol using a token with M , is
the right definition for built-in tamper resilience.
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that this is the correct requirement for the definition to capture that “if the underlying
primitive is secure without tampering, it is secure also with tampering” (in the signa-
ture example, security is unforgeability against any polynomial time chosen message
attack). Nonetheless, it can be arguably even better to achieve BiTR security through
a “tighter” simulation, where the BiTR simulator is somehow restricted to behave in a
manner that is closer to the way A operates (except for tampering of course) or possi-
bly even more restricted. For instance, one may restrict the number of times the token
is accessed by the simulator to be upper bounded by the number of times A accesses
the token. In fact all our positive results do satisfy this desired additional tighter simula-
tion property. Taking this logic even further, one may even require that once tampering
occurs the BiTR simulator can complete the simulation without accessing the token at
all — effectively suggesting that tampering trivializes the token and makes it entirely
simulatable. We believe that the ability of BiTR to be readily extended to capture such
more powerful scenarios highlights the robustness of our notion and, even though these
scenarios are not further pursued here, the present work provides the right basis for such
upcoming investigations.

2.1 Composition of BiTR ITMs

It is natural to ask if a modular design approach applies to BiTR protocols. To investi-
gate this question we need first to consider how to define the BiTR property in a setting
where protocols are allowed to call subroutines.

Consider an ITM M2 and another ITM M1 that calls M2 as a subroutine. We denote
by (M1;M2) the compound ITM. The internal state of (M1;M2) is represented by the
concatenation of the two states s1||s2 where s1 and s2 are the states of M1 and M2 at
a certain moment of the runtime respectively. Let Ftwrap(M1;M2, T1 × T2, ψ1 × ψ2)
denote an ideal functionality that permits tampering with functions from T1 for the state
of M1 and from T2 for the state of M2 while the states are encoded with ψ1 and ψ2

respectively. We can also consider a sequence of ITMs that call each other successively
M = (M1; . . . ;Mn). We next generalize the BiTR notion for an ITM Mi employed in
the context of M in a straightforward manner.

Definition 2 (modular BiTR protocol). Given M = (M1; . . . ;Mn), T = T1 × . . .×
Tn, and ψ = ψ1 × . . .×ψn, for some i ∈ [n], we say that Mi is modular-(Ti, ψi)-BiTR
with respect to M, T and ψ if for any PPT A there exists a PPT S such that for any
non-uniform PPT Z ,

IDEALFtwrap(M,Ti,ψ),A,Z ≈ IDEALFtwrap(M,Ti+1,ψ),S,Z ,

where Ti = {id} × . . .× {id} × Ti × . . .× Tn.

Roughly speaking, this definition requires that whatever the adversary can do by tam-
peringMi with Ti (on the left-hand side) should be also done without (on the right-hand
side) in the context of M, T , ψ. For simplicity, if M, T , ψ are clear from the context,
we will omit a reference to it and call an ITM Mi simply modular-(Ti, ψi)-BiTR.

The composition theorem below confirms that each ITM being modular BiTR is a
necessary and sufficient condition for the overall compound ITM being BiTR.
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Theorem 1 (BiTR Composition Theorem). Consider protocols M1, . . . ,Mn with
M = (M1, . . . ,Mn) and T = T1 × . . . × Tn, and ψ = ψ1 × . . . × ψn. It holds
that Mi is modular-(Ti, ψi)-BiTR for i = 1, . . . , n, with respect to M, T , ψ if and only
if (M1; . . . ;Mn) is (T , ψ)-BiTR.

A natural task that arises next is to understand the modular-BiTR notion.

Context Sensitivity of Modular-BiTR Security. The modular-BiTR definition is
context-sensitive; an ITM may be modular BiTR in some contexts but not in others,
in particular depending on the overall compound token M . This naturally begs a ques-
tion whether there is a modular-BiTR ITM that is insensitive to the context. In this way,
akin to a universally composable protocol, a universally BiTR ITM could be used mod-
ularly together with any other ITM and still retain its BiTR property. To capture this we
formalize universal-BiTR security below, as well as a weaker variant of it that is called
universal-BiTR parent which applies only to ITMs used as the parent in a sequence of
ITMs.

Definition 3 (universal BiTR). If an ITM M is modular-(T , ψ)-BiTR with respect to
any possible M, T , ψ then we call M universal-(T , ψ)-BiTR. If M is modular-(T , ψ)-
BiTR whenever M is used as the parent ITM then we call it universal-(T , ψ)-BiTR
parent.

Not very surprisingly (and in a parallel to the case of UC protocols) this property is
very difficult to achieve. In fact, we show that if one-way functions exist then non-
trivial universal-BiTR ITMs do not exist. We first define non-triviality: an ITM M will
be called non-trivial if the set of its states can be partitioned into at least two sets S0, S1

and there exists a set of inputsA that produce distinct outputs depending when the ITM
M is called and its internal state belongs to S0 or S1. We call the pair of sets a state
partition for M and the set A the distinguishing input-set. Note that if an ITM is trivial
then for any partition of the set of states S0, S1 and any set of inputs A, the calling
of the ITM M on A produces identical output. This effectively means that the ITM M
does not utilize its internal state at all and obviously is BiTR by default. Regarding non-
trivial ITMs we next prove that they cannot be (T , ψ)-BiTR for any tampering function
τ that switches the state between the two sets S0, S1, i.e., τ(S0) ⊆ S1, τ(S1) ⊆ S0.
We call such tampering function state-switching for the ITM M . If an encoding ψ is
involved, we call τ state-switching for the encoding ψ. We are now ready to prove our
negative result.

Theorem 2. Assuming one-way functions exist, there is no non-trivial universal-(T , ψ)-
BiTR ITM M such that T contains a state-switching function for M and the encoding
ψ.

Roughly speaking, the theorem holds since a parent ITM M1 calling M2 can make
the message exchanges between them quite non-malleable by outputting a signature
on these messages. In this context, no non-trivial M2 can be modular-BiTR, and thus
M2 is not universal-BiTR. We note that the above theorem is quite final for the case
of universal BiTR ITMs. It leaves only the possibility of proving the universal-BiTR
property for trivial ITMs (that by default satisfy the notion) or for sets of functions that
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are not state-switching, i.e., essentially they do not affect the output of M and therefore
inconsequential. This state of affairs is not foreign to properties that are supposed to
universally compose. Indeed, in the case of UC-security large classes of functionalities
are not UC-realizable [15]. To counter this issue, in the UC-setting one may seek setup
assumptions to alleviate this problem, but in our setting setup assumptions should be
avoided. For this reason, proving the modular-BiTR property within a given context is
preferable.

On the other hand, the universal-BiTR parent property turns out to be feasible, and
thus this leaves a context insensitive property to be utilized for modular design of BiTR
protocols. We in fact take advantage of this, and jumping ahead, the parent ITM in
the compound ITM used to achieve general UC-secure MPC in Section 4 satisfies this
property and can be composed with any child ITM.

3 Affine BiTR Protocols without State Encoding

In this section, we show two protocols (for identification and signatures, respectively)
that are BiTR against certain tampering functions, without using any modification or
encoding. Specifically, we consider a tampering adversary that can modify the state of
the hardware with affine functions. Assuming the state of the hardware is represented
by variables of Zq for some prime q, the adversary can choose a tampering fa,b on a
variable v, which will change v into fa,b(v) = av + b mod q. Let Taff = {fa,b | a ∈
Z∗

q , b ∈ Zq} and T 2
aff = Taff × Taff .

Schnorr Identification [39]. The Schnorr identification is a two-round two-party pro-
tocol between a prover and a verifier. The common input is y = gx, where g is a
generator of a cyclic group of size q, and the prover’s auxiliary input is x ∈ Zq . The
protocol proceeds as follows:

1. The prover picks a random t ∈ Zq and sends z = gt to the verifier.
2. The verifier picks a random c ∈ Zq and sends c to the prover, which in turn com-

putes s = cx+ t mod q and sends s to the verifier. The verifier checks if zyc = gs.

We consider an ITM M on the prover side wrapped as a hardware token. This ITM is
BiTR against affine functions. To see why it is BiTR, suppose that the adversary tampers
with the state changing x into ax+ b for some a and b. In the second round, the BiTR
simulator — given c, from the adversary, that is supposed to go to Ftwrap(M ; Taff)
— has to find out an appropriate c′ going to Fwrap(M) such that the simulator, on
receiving s′ = c′x + t from Fwrap(M), can output c(ax + b) + t that would come
from Ftwrap(M ; Taff). In summary, given (a, b, c, s′), but not x or t, the simulator has
to generate a correct output by controlling c′. It can do so by choosing c′ = ac and
outputting s′ + cb. Note that s′ + cb = c(ax+ b) + t.

Signature Scheme due to Okamoto [35]. The digital signature scheme of Okamoto
[35] was employed in the context of designing blind signatures. Here we show that
it is BiTR against affine functions. We give a brief description next. Let (G1,G2) be
a bilinear group as follows: (1) G1 and G2 are two cyclic groups of prime order q
possibly with G1 = G2; (2) h1 and h2 are generators of G1 and G2 respectively; (3)
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Moka: The description of G1, G2, g2, u2, v2, and a collision-resistant hashing function H :
{0, 1}n→Z∗q are embedded in the program as a public parameter. The state is x ∈ Zq .

Initialization
- Upon receiving a message (Initialize), choose x ∈R Zq , and g2, u2, v2 ∈R G2 and output
(g2, w2, u2, v2).

Message Handling
- Upon receiving a message (Sign,m), Choose random r, s ∈ Z∗q such that x + r �= 0

(mod q). Compute σ = (g
H(m)
1 u1v

s
1)

1/(x+r) and output (σ, r, s).

Fig. 2. Okamoto signature Moka

ψ is an isomorphism from G2 to G1 such that ψ(h2) = h1; (4) e is a non-degenerate
bilinear map e : G1 × G2→GT where |GT | = p, ∀u ∈ G1 ∀v ∈ G2 ∀a, b ∈ Z :
e(ua, ub) = e(u, v)ab.

The signature scheme below is secure against a chosen message attack under the
Strong Diffie-Hellman assumption [35].

– Key Generation: Randomly select generators g2, u2, v2 ∈ G2 and compute g1 =
ψ(g2), u1 = ψ(u2), and v1 = ψ(v2). Choose a random x ∈ Z∗

q and compute
w2 = gx

2 . Verification key is (g1, g2, w2, u2, v2). Signing key is x.
– Signature of a message m ∈ Z∗

q : Choose random r, s ∈ Z∗
q . The signature is

(σ, r, s) where σ = (gm
1 u1v

s
1)1/(x+r) and x+ r �= 0 (mod q).

– Verification of (m,σ, r, s): Check that m, r, s,∈ Z∗
q , σ ∈ G1, σ �= 1, and

e(σ,w2g
r
2) = e(g1, gm

2 u2v
s
2).

The signature token is described in Fig. 2. Similarly to the ITM for Schnorr signature
scheme, this token can be shown to be BiTR against affine functions.

Theorem 3. ITM Moka in Fig. 2 is Taff-BiTR.

4 UC Secure Computation from Tamperable Tokens

In this section we examine the problem of achieving UC-secure computation relying
on tamperable (rather than tamper-proof) tokens. Our starting point is the result of Katz
[28], obtaining a UC commitment scheme (and general UC-secure computation) in the
Fwrap(M)-hybrid for an ITMM , which unfortunately, is not BiTR. However, we man-
aged to change M so that the modified ITM M ′ is BiTR against affine functions, thus
obtaining a UC commitment in the Ftwrap(M ′)-hybrid. Along the way, we present a
generalization of Katz’s scheme for building commitment schemes we call commit-
ments with dual-mode parameter generation.

4.1 Katz’s Commitment Scheme and its Generalization.

Intuitively, the UC-secure commitment scheme given by Katz [28] uses the tamper-
proof hardware token to give the simulator the advantage over the adversary to force the
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commitment scheme to become extractable (in case the sender is corrupted) or equivo-
cal (in case the receiver is corrupted). In spirit, this idea can be traced to mixed commit-
ment schemes introduced in [17], although the two results differ greatly in techniques.

We abstract the approach of [28] to build UC commitments in Fig. 3. The UC com-
mitment scheme is based on a primitive that we call commitment with dual-mode pa-
rameter generation (DPG-commitment for short).

Commitment Phase:

1. Each of the sender and the receiver calls Fwrap(M) with a Create message.
2. Each party executes the procedure dual-mode parameter generation with the
Fwrap(M). Let pS be the parameter the receiver obtained, and pR be one the sender
obtained. The parameters pR and pS are exchanged.

3. The sender commits to a message m by sending 〈C1, C2, π〉, where C1 is a commit-
ment tom based on the parameter pS,C2 is a statistically-binding commitment tom,
and π is WI proof that (1) C1 and C2 commits to the same message, or (2) pR was
generated in the extraction mode.

Opening Phase:

1. The sender reveals 〈m,π′〉, where m is the committed message, π′ is WI proof that
(1) C2 commits to m, or (2) pR was generated in the extraction mode.

Fig. 3. A UC Commitment that uses a DPG-commitment scheme Π with protocol M in the
Fwrap(M)-hybrid model.

A DPG-commitment is a commitment scheme whose parameter is generated by an
interactive protocol M that is wrapped in a hardware token. Formally we define the
following:

Definition 4 (DPG-Commitment scheme). A commitment schemeΠ=(Com,Decom)
that is parameterized by p, has a dual mode parameter generation (DPG-commitment)
if there are ITMs M and P that form a two party protocol 〈P,M〉 and have the follow-
ing properties:

– (Normal mode) For any PPT P ∗, with overwhelming probability, the output of
〈P ∗,M〉 satisfies that if it is not ⊥ then it contains a parameter p over which the
commitment scheme Π is unconditionally hiding.

– (Extraction mode) For any M∗ with the same I/O as M , there is a PPT S that re-
turns (p, t) such that the commitment scheme Π with the parameter p is a trapdoor
commitment scheme with trapdoor t and the parameter generated by S is compu-
tationally indistinguishable from the parameter generated by 〈P,M∗〉.

It is worth noting that DPG-commitments are very different from the mixed commit-
ments of [17]. For one thing, contrary to mixed commitments, DPG-commitments do
not have equivocal parameters. Moreover, mixed commitments have parameters that
with overwhelming probability become extractable based on a trapdoor hidden in the
common reference string. In contrast, DPG-commitments become extractable due to
the manipulation of the parameter generation protocolM (specifically the ability of the
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simulator to rewind it). Now using the same arguments as in [28] it is possible to show
that the commitment scheme in figure 3 is a UC-commitment provided that the under-
lying scheme used forC1 is a DPG-commitment. We briefly sketch the proof argument.
When the sender is corrupted, the simulator has to extract the committed message. This
can be done by making pS extractable. Then, given a commitment 〈C1, C2, π〉 from
the adversary, the simulator can extract the message committed to from C1 using the
trapdoor of pS. When the receiver is corrupted, the simulator can make the commitment
equivocal by causing pR to be extractable. Using the trapdoor for pR as witness, the
simulator can generate a WI proofs π and π′ with respect to the condition (2) and thus
open the commitment to an arbitrary message.

We next briefly argue that the construction suggested in [28] amounts to a DPG-
commitment scheme. The token operates over a multiplicative cyclic group of prime
order. In the first round, a party generates a cyclic group and sends to the token the
group description and random elements g and h of the group; then, the token sends
back a Pedersen commitment c = com(g1, g2) to random g1, g2 [36].5 In the second
final round, the party sends a random h1, h2, and then the token opens the commitment
c and outputs the signature on (g, h, ĝ1, ĝ2) where ĝ1 = g1h1 and ĝ2 = g2h2. With
parameter (g, h, ĝ1, ĝ2), commitmentC1 to a bit b is defined as (gr1hr2 , ĝ1

r1 ĝ2
r2gb) for

randomly-chosen r1, r2 ∈ Zq . It is well-known (and easy to check) that if the parameter
is a Diffie-Hellman (DH) tuple and r = logg ĝ1 = logh ĝ2 is known, then b can be
efficiently extracted from the commitment. On the other hand, if it is a random tuple,
this commitment scheme is perfectly hiding. Extraction mode is achieved by rewinding
the code of a malicious tokenM∗. Specifically for a givenM∗, the simulator S proceeds
by picking a random DH tuple (g, h, ĝ1 = gt, ĝ2 = ht) and running M∗ once to reach
a successful termination and learn the values g1, g2. Subsequently, it rewinds M∗ right
before the second round and selects h1 = ĝ1/g1 and h2 = ĝ2/g2. This will result in
the parameter produced by M∗ to be equal to the DH tuple, i.e., a parameter that is
extractable with trapdoor t.

4.2 UC-Secure Commitment Scheme from a Tamperable Token

It is easy to see that the following result holds using the BiTR security properties.

Corollary 4. If an ITM M , achieving parameters for DPG-commitment scheme, is T -
BiTR, then there exists a UC-secure commitment scheme in the Ftwrap(M, T )-hybrid
model.

Therefore, if the token used in [28] is Taff -BiTR, then we obtain a UC-secure com-
mitment scheme in the Ftwrap(M, Taff)-hybrid model. Unfortunately, the token is not
Taff-BiTR. We explain the issue below. Recall that in the first round the token sends
a commitment to g1, g2. Suppose that g1 = gr1 and g2 = gr2 and that the values r1
and r2 are stored as state in the token after the first round. Suppose in addition that by
tampering with an affine function the adversary causes the state to become (ar1 + b, r2)
for some a and b. Then, in the second round, the simulator — given h1 and h2 from

5 We use a slightly different notation compared to [28] to unify the presentation with our BiTR
token that is shown later.
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Let G be the cyclic multiplicative group of size q defined by a safe prime p = 2q + 1 and
g be a generator of G. The description of G is embedded in the program. The state is
(r1, r2, s1, s2) ∈ Z4

q. It uses a signature ITM K as a subprotocol.
Initialization

- Upon receiving a message (Initialize), call K with (Initialize), sets the state to all 0s and
output whatever K outputs.

Message Handling
- Upon receiving a message h0: Check h0 is a generator of G. If the checking fails, output
⊥. Otherwise, pick ri, si ∈R Zq and compute Pedersen commitments comi = gsih

X(gi)
0

for i = 1, 2, where gi = gri and X is defined as: X (α) = α if α > p/2, p−α otherwise.
Output (com1, com2).
- Upon receiving a message (h, h1, h2, x1, x2): Check h, h1, h2 ∈ G, x1, x2 ∈ Z∗

q . If the
checking fails, output ⊥. Otherwise, let gi = gri and compute ĝi = gxi

i hi for i = 1, 2.
CallK with (Sign, (P, P ′, p, g, h, ĝ1, ĝ2)) to get a signature σ. Output (g1, g2, s1, s2, σ).
Pick ri, si ∈R Zq for i = 1, 2.

Fig. 4. Dual parameter generating ITM Mdpg that is universal-BiTR parent

the adversary — has to send Fwrap appropriate messages h′1 and h2 so that it can ma-
nipulate the output from Fwrap as if the result is from Ftwrap. Here the signature on
(g, h, ĝ1, ĝ2) is a critical obstacle, since the simulator cannot modify it (otherwise, it
violates unforgeability of signature schemes). This means that for simulation to be suc-
cessful it should hold that ĝ1 = gar1+bh1 = gr1h′1, i.e., the simulator should select
h′1 = g(a−1)r1+bh1. Unfortunately, the simulator does not know r1 when it is supposed
to send h′1.

By slightly changing the token above, however, we manage to obtain a DPG-achieving
ITM Mdpg that is BiTR against affine tampering functions. Its description is given
in Fig. 4. First, we show Mdpg achieves parameters for DPG-commitment. Roughly
speaking, the protocol in the normal mode generates a random tuple (g, h, ĝ1, ĝ2), by
multiplying random numbers g1 and g2 (from Mdpg) and random numbers h1 and h2

(from the party). Therefore, the probability that the tuple (g, h, ĝ1, ĝ2) is a DH tuple is
negligible since ĝ1 and ĝ2 are uniformly distributed. In the extraction mode, however,
the simulator emulating Fwrap can rewind the ITM to cause (g, h, ĝ1, ĝ2) to be a DH
tuple. Specifically, the simulator picks a random DH tuple (g, h, ĝ1, ĝ2) and, after find-
ing out the values g1, g2, rewinds the machine right before the second round and sends
hi = ĝi/g

xi

i for i = 1, 2. Under the DDH assumption, parameters from the normal
mode and from the extraction mode are indistinguishable.

More importantly, Mdpg is BiTR against affine tampering functions. To achieve
BiTR security, we introduce x1 and x2. As before, suppose that the state for g1 is
changed from r1 to ar1 + b. In the second round, the simulator — given h1 and x1

— has to send appropriate h′1 and x′1 to Fwrap such that ĝ1 = g(ar1+b)x1h1 = gr1x′
1h′1.

This means that h′1 = gzh1 where z = (ar1x1 + bx1 − r1x
′
1). The good news is that

although the simulator doesn’t know r1, it does know how to pick x′1 to satisfy the equa-
tion: x′1 = ax1. The value h′1 can be computed subsequently from the above equation.
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Theorem 5. The ITM Mdpg in Fig. 4 is T 4
aff-BiTR.

Furthermore, the way the ITM Mdpg uses a signature scheme is simple enough (it sim-
ply passes through whatever it receives from the signature token) and we can easily
extend the above lemma to prove that Mdpg is universal BiTR parent. We also show
that the ITM for the Okamoto signature scheme Moka is modular-Taff-BiTR when used
with Mdpg.

Lemma 6. ITM Moka in Fig. 2 is modular-Taff-BiTR with respect to (Mdpg;Moka).

Applying the composition theorem (Theorem 1) along with Theorem 5 and Lemma
6 to the above scheme, we obtain a BiTR token that gives a UC commitment based on
corollary 4.

Corollary 7. (Mdpg;Moka) is T 5
aff -BiTR.

5 BiTR Protocols against General Classes of Tampering Functions

5.1 BiTR Protocols from Non-malleable Codes

In this section we will see how the BiTR property can be derived by implementing an
integrity check in the form of an encoding ψ. A useful tool for this objective is the no-
tion of non-malleable codes [21]. A pair of procedures (E,D) is a non-malleable code
with respect to tampering functions T , if there is an algorithm S that detects whether
the state becomes invalid, given only the tampering function t. In particular S should
satisfy the following property: for all x ∈ {0, 1}n and t ∈ T , if x = D(t(E(x))) (i.e.,
x stays the same even after applying the tampering t), it holds that S(t) = , with over-
whelming probability, while otherwise S(t) is statistically (or computationally) close
to D(t(E(x))). By encoding the state of a protocol with a non-malleable code it is pos-
sible to show the following restatement of Theorem 6.1 of [21] under the BiTR security
framework.

Theorem 8 ([21]). Let T be a class of tampering functions over {0, 1}m and (E,D,S)
be a non-malleable code with respect to T , where E : {0, 1}n → {0, 1}m, D :
{0, 1}m → {0, 1}n and S are efficient procedures. Let M be any ITM whose state
is of length n. Then M is (T , ψ)-BiTR where ψ = (E,D).

The above theorem suggests the importance of the problem of constructing non-malleable
codes for a given class of tampering functions T . Some positive answers to this diffi-
cult question are given in [21] for a class of tampering functions that operate on each
one of the bits of the state independently; they also provide a general feasibility result
for tampering families of bounded size (with an inefficient construction); an important
characteristic of those solutions is relying on the randomness of the encoding. Here we
show a different set of positive results by considering the case of deterministic non-
malleable codes, i.e., the setting where (E,D) are both deterministic functions.

In our result we will utilize a relaxation of non-malleable codes: (E,D, Predict)
is called a δ-non-malleable code with distance ε if for any x ∈ {0, 1}n and t ∈ T ,
it holds that (i) D(E(x)) = x, (ii) the probability that D(t(E(x))) is neither x nor
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⊥ is at most δ,6 and (iii) Predict(·) outputs either , or ⊥, and |Pr[D
(
t(E(x))

)
=

x] − Pr[Predict(t) = ,]| ≤ ε. It is easy to see that if ε, δ are negligible the resulting
code is non-malleable: given that δ is negligible, property (ii) suggests that D will
return either the correct value or fail, and thus in case it fails, Predict(·) will return ⊥
with about the same probability due to (iii). We call δ the crossover threshold and ε the
predictability distance.

5.2 Constructing Deterministic Non-malleable Codes

Inefficient Construction for Any T . We now consider the problem of constructing a
δ-non-malleable code E : {0, 1}n→{0, 1}m for a given class of tampering functions
and parameters δ, ε. We will only consider the case when δ > ε as the other case is not
useful. We note that the construction is inefficient for large m and n, but it becomes
efficient for logarithmic values of m,n. Following this we utilize it in the construction
of deterministic non-malleable codes.

For a given t ∈ T consider the graph G that is defined with vertex set V = {0, 1}m

with each edge (u1, u2) having weight wt(u1, u2) = Pr[t(u1) = u2].7 Finding a good
δ-non-malleable code amounts to finding a partition S, S = V \ S of G satisfying the
following properties that for each t ∈ T :

– For all u, v ∈ S, it holds that wt(u, v) ≤ δ.
– Either (i) ∀u ∈ S :

∑
v∈S wt(u, v) ≥ 1 − ε or (ii) ∀u ∈ S :

∑
v∈S wt(u, v) ≤ ε.

If S satisfies condition (i) (resp., condition (ii)) for a given t ∈ T , we will say that S is
a repeller (resp., an attractor) with respect to t.

We next provide a simple algorithm that is guaranteed to produce a code of non-zero
rate if such exists. Consider all pairs of vertices {u1, u2} and classify them according to
whether they are repellers or attractors with parameters δ, ε. Note that testing whether
these sets are repellers or attractors requires O(|V |) steps. We perform the same for all
tampering functions t ∈ T and then consider only those sets that appear in the list of
all tampering functions. Finally, we improve the size of such a selected pair by moving
vertices from S to S provided that the repeller or attractor property is maintained. We
note that this approach will enable us to reach a local maximum code nevertheless it is
not guaranteed to find an optimal code.

Assume now that the output of the above procedure is the set C ⊆ V = {0, 1}m. We
next set n = �log2 |C|� and considerE : {0, 1}n → {0, 1}m an arbitrary injection from
{0, 1}n to C. The decoding D is defined as the inverse of E when restricted on C, and
⊥ everywhere else. We next define Predict as follows. On input t, if C is an attractor,
then output ok; otherwise output ⊥ (i.e., for the case C is an repeller).

6 The tampering t may change the codeword x into another valid codeword.
7 In the above description, we assumed the probabilities Pr[t(c) = u] are known. If they are

not known, they can be estimated using standard techniques. In particular, to evaluate the
probability of an event A, repeat k independent experiments of A and denote the success ratio
of the k experiments as p̂. Let Xi be the probability that the i-th execution of the event A is
successful. The expected value of Y =

∑k
i=1Xi is k · p. Using the Chernoff bound it follows

that |p̂− p| ≤ 1/N with probability 1− γ provided that k = Ω(N2 ln(γ−1)).
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The rate of the constructed code is n/m, while the time-complexity of construct-
ing E,D, Predict(·) is 2O(n)|T |. The size of the circuit evaluating each one of these
functions is respectively 2n, 2m, |T |.

Theorem 9. Fix any class of functions T . If there exists a code (E,D, Predict) with
rate > 0 that is δ-non-malleable w.r.t. T and distance ε, then such a code is produced
by the above procedure.

When does a deterministic non-malleable code exist? The basic idea of the con-
struction above was to search for a one-sided set of codewords and use it to define the
non-malleable code. The necessity of one-sidedness is easy to see since if the property
fails, i.e., ε < qu,t < 1 − ε for some t and u, the requirement on Predict cannot hold
in general since it cannot predict with high probability what would happen in the real
world after tampering a state that is encoded as u. We now provide two illustrative ex-
amples and discuss the existence (and rate) of a deterministic non-malleable encoding
for them.

Example 1: Set Functions. If T contains a function t that sets the i-th bit of u ∈ {0, 1}m

to 0, it follows that the code C we construct must obey that either all codewords have
the i-th bit set to 0 or all of them have the bit set to 1. This means that the inclusion
of any bit setting function in T cuts the size of the code |C| by half. There is no non-
malleable code when the collection T contains Set functions for every bit position (this
is consistent with the impossibility result of [23] for algorithmic tamper proof security
when Set functions are allowed for tampering).

Example 2: Differential Fault Analysis [8]. Consider a single function t which flips
each 1-bit to a 0-bit with probability β. Consider a code C ⊆ {0, 1}m for which it
holds that all codewords in C have Hamming distance at least r between each other
and 0m ∈ C. Then it is easy to see that δ, the probability of crossover, is at most βr.
Further, now suppose that t is applied to an arbitrary codeword u in C other than 0m.
We observe that the number of 1’s in u is at least r (otherwise it would have been too
close to 0m). It follows that t will change some of these 1’s to 0’s, with probability at
least 1 − (1 − β)r . It follows that we can predict the effect of the application of t with
this probability when we restrict to codewords in C \ {0m}. In summary, any code C
over {0, 1}m with minimum distance r that contains 0m allows for a βr-non-malleable
code with (1 − β)r for t using the code C \ {0m}.

We can extend the above to the case when a compositions of t are allowed. Note
that a sequence of a applications of t will flip each 1-bit to a 0-bit with probability
β + (1 − β)β + . . .+ (1 − β)a−1β = 1 − (1 − β)a. The encoding now has crossover
(1 − (1 − β)a)r ≤ e−(1−β)ar. Thus, from e−(1−β)ar ≤ δ, we obtain r ≥ (1/(1 −
β))a ln(1/δ), i.e., when β is bounded away from 1, the minimum distance of the code
grows exponentially with a.

Efficient Construction for Localized T . Now, we show a simple way to use the
(inefficient) construction of the beginning of the section with constant rate and any
cross-over δ < 1/2, to achieve an efficient construction with negligible cross-over (and
thus, BiTR security for any protocolM whose state is encoded with the resulting code),
when the class contains only functions that can be split into independent tampering
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of local (i.e., logarithmically small) blocks. Here we consider a tampering class T of
polynomial size. Roughly speaking, the construction is achieved first by applying a
Reed-Solomon code to the overall state and then by applying the δ-non-malleable code
to the resulting codeword in small blocks. Let T 
 denote T ×· · ·×T (with � repetitions).

Theorem 10. Let k be a security parameter. Let T be a class of functions over {0, 1}m

with m = O(log k) for which a δ-non-malleable code exists and is efficiently con-
structible with rate r. Then there is an efficiently constructible deterministic
non-malleable code w.r.t. T 
 for any rate less than (1−δ)r provided �/ log � = ω(log k).
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