
Extending BPMN 2.0 to Enable Links between

Process Models and ARIS Views Modeled with
Linked Data�

Feng Gao, Wassim Derguech, and Maciej Zaremba

National University of Ireland, Galway,
Digital Enterprise Research Institute

firstname.lastname@deri.org

www.deri.org

Abstract. Business Process Modeling Notation (BPMN) is an emerging
standard for modeling business processes. In its 2.0 version it defined for-
mal semantics to its elements which allows a process execution engine to
understand how processes should be integrated and executed. However,
BPMN2.0 elements use shallow String datatypes for their identification
(e.g., process participants, process resources) which does not explicitly
identify entities that a given element pertains to. In this paper, we pro-
pose to extend BPMN 2.0 in order to allow for linking its elements to ex-
ternal entities following the Linked Data principle. Our proposal leverage
the extension mechanism provided by BPMN 2.0 which does not result
in the alteration of the language specification. Our extensions consider
the ARIS views to support better integration and collaboration from
different perspectives of the enterprise systems.

Keywords: BPMN 2.0, ARIS, Linked Data, RDF.

1 Introduction

Business processes are capable to provide automated support for the collabora-
tion between people, departments, organizations and corporations by coordinat-
ing their resources and behaviors when integrated with the information systems.
The term Business Process Management (BPM) is sometimes referred to as the
“business process optimization process”. The BPM life cycle is generally divided
into four phases: design, deploy, execution and analysis. Similar to the principles
of developing supportable enterprise systems proposed in [8], BPM iterates these
phases to improve the supportability.

Process modeling in the design phase plays a central role in the BPM life
cycle. A recent advancement in the standardized business process modeling lan-
guage of BPMN 2.0 [10] defines the formal semantics of its elements thus the
process execution engines have explicit knowledge about their behaviors. More-
over, BPMN 2.0 provides means for its extensibility. However, business processes
� This work is funded by the Lion II project supported by Science Foundation Ireland

under grant number SFI/08/CE/I1380 Lion-2.

W. Abramowicz, L. Maciaszek, K. W↪ecel (Eds.): BIS 2011 Workshops, LNBIP 97, pp. 41–52, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

42 F. Gao, W. Derguech, and M. Zaremba

models defined in BPMN 2.0 do not follow Linked Data principles and are de-
fined without linking to external information. BPMN 2.0 elements use shallow
String datatypes for their identification (e.g., process participants, process re-
sources) what does not explicitly identify entity that the given element pertains
to. According to [1,11] both private and collaborative process models can bene-
fit from semantic technologies, while the work in [14] elaborate the necessity of
associating process models with the other views in the enterprise systems. Our
aim is to improve the BPMN 2.0 process models in these aspects.

We leverage the BPMN 2.0 extension mechanism to make the process mod-
els interlinked with relevant knowledge of the enterprise systems, i.e., with the
functional view, data view, organizational view and control view. We model the
information in these views with our RDF based descriptions. Therefore, the ex-
tended process models can benefit from the machine processable knowledge and
make improvements during the phases of the BPM life cycle. Current research
efforts concentrate much on utilizing semantic technologies to provide automated
execution support (i.e., ontology-backed service composition) for process models
and bridging the gap between the business perspective and technical perspective,
however we have a distinct interest and emphasize on using these technologies
to improve the other phases in the BPM life cycle as well.

The remainder of this paper is organized as follows. We give account of the
technologies and building blocks that we use in Section 2. We introduce our
approach and an example scenario in Section 3. We describe related work in
Section 4. Finally, in Section 5 we conclude the paper and discuss future works.

2 Background

In this paper, we leverage the BPMN 2.0 extensibility in order to achieve better
integration between the external knowledge and business processes. The ARIS
enterprise system modeling methodology is a guideline for our work. Linked
Data principles are followed while we build our framework.

2.1 Business Process Modeling Notation

The BPMN language provides a graphical representation for the business man-
agers and process designers to organize and manage their business process mod-
els. It has recently evolved to its 2.0 version which defines the formal semantics
of its elements. It also provides a mapping from BPMN to WS-BPEL, which
is an block-structured execution language for Web services. The vision of the
BPMN 2.0 is to make the processes executable in a top-down manner where
process designers can deploy, test and run developed processes without having
to deal with the low level process execution details, which makes the execution
of the language more “friendly” to upper layer users. Another interesting feature
introduced in the latest release of the language specification is its extensibility.
Both BPMN 2.0 Flow Objects and Artifacts can be extended to allow the process
designers to express additional features of BPMN 2.0 process models.

Extending BPMN 2.0 to Enable Links between Models and ARIS Views 43

2.2 ARIS Architecture

The Architecture of Information System (ARIS) provides a widely accepted en-
terprise modeling methodology. The ARIS framework defines five different views:
organization view, functional view, data view, control view and product/service
view. ARIS House shown in Figure 1 shows these five views and relations between
them. As depicted in the figure, the process models are the controlling dispatcher
of resources and actions, they act as the central role in the ARIS house, associating
with all the other views and integrate them in a uniformed way. A process model
respecting these associations between different views is understandable among in-
volved parties despite of their different work perspectives and is therefore capable
of providing better understandability, maintainability and scalability.

Fig. 1. The ARIS House (from [14])

2.3 Linked Data

Linked Data [3] is a set of best practices for publishing and interconnecting struc-
tured data on the Web. Linked Data provides explicit links between data from
diverse domains such as social networks, organizational structures, government
data and many others. The ultimate benefit of the Linked Data paradigm is
the increased machine-readability of published and interconnected data. Linked
Data is published using RDF where URIs are the means for connecting and
referring between various entities on the Web.

Over the last years we have observed an increasing adoption of Linked Data
principles and an explosion of datasets specified in RDF. Early adopters included
mainly academic researchers and developers. However, more recently we have ob-
served a considerable interest from organizations in publishing their data in RDF.
Some of the most prominent examples include BBC music data1, British govern-
ment data2 or Library of Congress data3. At the same time, we have observed
an increasing number of public vocabularies (ontologies) and their interconnect-
edness. Data published in RDF uses and refers to these public vocabularies what
further improves understanding of published data by data consumers.
1 http://www.bbc.co.uk
2 http://data.gov.uk
3 http://id.loc.gov

http://www.bbc.co.uk
http://data.gov.uk
http://id.loc.gov

44 F. Gao, W. Derguech, and M. Zaremba

3 Approach

The Business Process Management life cycle consists of four phases: Design, De-
ploy, Execution and Analysis as illustrated in Figure 2. In our approach, the
extended BPMN processes are typically created and annotated in the design
phase. However, we do not exclude the possibility that other phases may also
produce the extensions for the BPMN documents, e.g.: some dynamic process
meta-data like event triggering time, process completing time and other con-
trol information may be annotated during the process execution. BPMN 2.0
elements provide a shallow information i.e.: string types for element names. In
order to improve the interoperability of the knowledge on the business function,
organization and data etc, BPMN 2.0 elements should be described in more de-
tails with respects to all ARIS house views. With such extended annotations
we establish the links between the process model and the different views in the
ARIS house, while these views are modeled with linked data, they are inter-
linked with each other and can be further linked to the external open data to
obtain better data integration using linked data mechanism. Thereafter, process
management environments will be able to provide meaningful answers for the
queries on the process models and instances with specific interests based on the
common machine-understandable knowledge.

Analysis

Design
Deploy

Execution
Extended
BPMN

Retrieves

Generates

Functional View
Linked

Open Data

Data
View

Organizational
View

Control
View

Fig. 2. The Overview of The Framework

In the following, we will detail our concept of Structured Web Resource for
describing the information model in the ARIS views, the extension mechanism
for the BPMN 2.0 and a use case scenario to demonstrate our methodology.

3.1 Structured Web Resource

We propose the Structured Web Resource (SWR) model to describe the in-
formation model from the ARIS views. SWRs are described with a series of
attribute-value pairs. The attribute is a subclass of rdf:Property and its value is
equal to owl:Thing. The basic ontology for SWR is very simple and intuitive, as
shown in Table 1:

Extending BPMN 2.0 to Enable Links between Models and ARIS Views 45

Table 1. Basic Concept Definition

:BusinessFunction a rdfs:Class, owl:Class.
bf:Attribute rdfs:subClassOf rdfs:Property;

rdf:domain :BusinessFunction;
rdf:range bf:AttributeValue.

bf:AttributeValue owl:equal owl:Thing.

On top of a simple framework like that, we define further rules and relations to
promote the process management in the following aspects:

– Reusability. The subClassOf relation in RDFS4 and OWL5 does not imply
the similar semantics as the inheritance relation in Object-Oriented Pro-
gramming, since all the attributes and properties are defined at instance
level and will not be retained through the subClassOf relation. We argue
that this will lead to limitations on reusability. We propose to define rela-
tionships between SWR concepts and maintain a hierarchy of them. In order
to achieve this, we firstly define a basic relation named variantOf on the re-
sources. A resource r1 is variantOf a resource r2 if r1 is an instance (rdf:type)
or a subclass (rdfs:subClassOf) r2, formally, for all resources r1 and r2:

r1 swr : variantOf r2 ⇐⇒ r1 rdfs : subClassOf r2 || r1 rdf : type r2 (1)

We define extended relations, i.e., extends, specifies based on the mentioned
basic relation.

Given two SWR S1 and S2, we denote A1 and A2 as their set of attributes,
respectively; and for any attribute a in SWR S, we denote S(a) as the
attribue-value of a in S. We say S1 specifies S2 iff :

1. all the attributes of S2 are also attributes of S1,
2. for every shared attribute ai, S1(ai) is either equal or variantOf S2(ai),
3. there exists at least one shared attribute aj such that S1(aj) variantOf

S2(aj).

Or more formally:

S1 specifies S2 ⇐⇒
{∀ai ∈ A1|((ai ∈ A2)&(S1(ai) = S2(ai))||(S1(ai) variantOf S2(ai))}&
{∃aj ∈ A1|S1(aj) variantOf S2(aj)}.

(2)

Similarly, we say S1 extends S2 iff :

1. all the attributes of S2 are also attributes of S1,
2. for every shared attribute ai, S1(ai) is either equal or variantOf S2(ai),
3. there exists at least one attribute aj in S1 that is not an attribute of S2.

4 http://www.w3.org/TR/rdf-schema/
5 http://www.w3.org/TR/owl-features/

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-features/

46 F. Gao, W. Derguech, and M. Zaremba

Or more formally:

S1 extends S2 ⇐⇒
{∀ai ∈ A1|((ai ∈ A2)&(S1(ai) = S2(ai))||(S1(ai) variantOf S2(ai))}&
{∃aj ∈ A1|aj /∈ A2}.

(3)

Then, a process designer is able to reengineer on a process model rapidly by
leveraging these relations and inherit from a proper parent in the hierarchy
of SWR classes.

– Granular-diversity. Unlike the mechanism used in the SUPER6 project
and sBPMN [2] that treats all process activities/objects as the instances
from the ontology, we distinguish between abstract process elements and
concrete process elements, since we can inherit attributes from their “super”
classes. For instance, from the functional view in the ARIS house, SWRs
representing the Business Function (BF) can be either abstract categories
or concrete offers, which are distinguished by the Consumability attribute.
Concrete consumable BF offers have their value of Consumability attribute
set to true.

– Dynamicity. Instances of swr:AttributeValue can be statically specified.
However, in realistic and dynamic scenarios we cannot assume that this is
the case. AttributeValues are often: (1) context-dependent (e.g., availability
depends on the customer location), (2) sensitive from the business perspec-
tive (e.g., insurance price is available after multi-step interaction), (3) dy-
namic (e.g., currency exchange rates). Therefore, in many cases instances of
swr:AttributeValue have to be obtained on-the-fly. We support this scenario
in the twofold manner.

We describe the features of an attribute-value in the desc namespace.
Attributes can be derived using a desc:Specification that describes the rules
of computing an swr:AttributeValue based on inputs. On the other hand,
some swr:AttributeValues have to be dynamically obtained by interacting
with an external entity without explicitly defined rules, i.e., they are either
unintended to be exposed (e.g., insurance calculating formulas) or unable
to be defined statically (e.g., concurrency exchange rates). We make use of
the data-fetching mechanism [15] to retrieve detailed and real-time informa-
tion (after analyzing consumer parameters, constraints, etc.) about a given
resource. Notice that these dynamic parts should not cause any real world
state changes, as invocation of these data-fetching interfaces may happen
outside of the execution phase and are used for analytical or discovery pur-
poses only. Details in the desc:DataFetching rely on the available technical
implementation, e.g. service interface for the Web services and URIs for the
RESTful services.

6 http://www.ip-super.org

http://www.ip-super.org

Extending BPMN 2.0 to Enable Links between Models and ARIS Views 47

3.2 Extension Mechanism

Two extension mechanisms are defined in the BPMN 2.0 specification. A process
element can be either extended by Extension element or external Relation. Both
methods can be used for our purpose. Their suitability varies in the category
of the extended process element: Flow objects, e.g., Subprocesses, Activities and
Tasks, can only be extended using Extension element according to the BPMN
2.0 specification, on the other hand, Artifacts like Group, Data Object and Text
Annotation can only be extended with the Relation element. To define a BPMN
Extension element, one must specify a boolean-valued attribute named mustUn-
derstand for it. The attribute indicates the essentiality for a process engine to
correctly parse this extension. A definition attribute of the extension tells the
URI of the extension definition, where the schema of the extended information
is specified. Finally these extended elements and attributes can be added to the
BPMN document by referencing to their paths/query names.

For the Artifacts, we can use the Relationship element to link them to their
extended information model. Adding an external Relationship is straightforward.
A relationship between Artifacts exists in a non-intrusive manner (i.e., without
affecting the nature of the artifacts), it can be realized simply by indicating a
Relationship element with attributes like type, id and direction, sub-elements
named source and target will give the relative references.

We propose to extend the process models in BPMN 2.0 in the following views:

– Organisation View defines the roles, the participants, the organizational
entities and the relationships between them. BPMN 2.0 Activities should
be annotated with organizational information like: who is responsible with
executing the activity (individual or group), which organization/group does
he belong to and what role dose he have. Similarly, the meaning of BPMN
2.0 PartnerRole, Participant and PartnereEntity should be leveraged from
a basic string label to that given by concepts from dedicated organizational
ontologies for roles, participants and organizational entities respectively.

– Data View describes the information objects, the concepts in the mes-
sages exchanged by process tasks. Many BPMN 2.0 elements are using data
which is encapsulated in the BPMN ItemAwareElement. There are also many
BPMN elements related to Events and message flows that carry data with
them. They should be annotated with concepts from domain specific ontolo-
gies.

– Control View describes the control flow of BPs that carry out the business
operations inside the enterprise and it is an integration view between the
other views. During business process execution, information like the occur-
rence time of an activity or event are very important for monitoring and
auditing. BPMN Activity, Event and EventDefinition instances should carry
with them such information.

– Function View defines the functions required to satisfy the objective of the
enterprise. BPMN Activity should be defined as a domain specific business
function instead of just a label.

48 F. Gao, W. Derguech, and M. Zaremba

3.3 Use Case Scenario

We demonstrate our approach with a use case in a pizza ordering scenario7.
The process flow is shown in Figure 3. According to what we proposed in 3.2,
Pool and Roles in the Lanes can be extended to link with the Organizational
View, Tasks can link to the Functional View, Events can link to the Control
View and finally Messages to the Data View. Due to the limit of space, we
will take only the extensions for the Functional View as an example to detail
the methodology we use. Extending to the other views will not have a major
difference. More specifically, we will elaborate how the informational model of
the Provide ingredients functionality is built and how it is associated with the
task. We will also detail the extension mechanism through Relation elements
without the functional description of the group element.

Building the Functional Model. To provide customers with correct informa-
tion about pizza ingredients, the clerk will use an internal service to query on the
available servings. We build a hierarchy for the query functionality with a top level
category (coarse-grained) and a concrete querying service (fine-grained) for the
specific pizza shop. The top level category for the ingredient querying function is a
QueryService. Table 2 shows a part of the QueryService Business Function.

Table 2. Query Service Functional Model

SWR Attribute AttributeValue

strg:QueryService a ser:ServiceVariant;
swr:extends ser:ServiceVariantRoot;
ser:consumability xsd:Boolean;
ser:hasCoParam strg:QueryRequest;
ser:hasProParam strg:ListOfGoods;

The “swr” namespace refers to the SWR basic ontology, “strg” describes the
ontology for the storage of goods, “ser” refers to the general service ontology.
The swr:extends attribute indicates its inheritance from an upper level service
category, the root service. bf:consumability is a boolean value to indicate that
the service is abstract and is agnostic to the concrete consumability, its children
in the class hierarchy that specifying this attribute will tell if it is directly con-
sumable. The CoParam and the ProParam refer to the consumer parameter and
provider parameters, respectively. The provider of the business functionality is
expecting a query request from the consumer, and will provide a list of goods
based on the request. The request message and response message can also be a
part of the information model in the data view, and hence we have a information
model interlinked from different views. The abstract business function category
can be further inherited to model a detailed category, namely IngredientQuery-
Service, with which we use to model the Provide ingredients task. Table 3 shows
a part of the functional model.
7 Adapted from a similar one available at
http://www.omg.org/spec/BPMN/2.0/examples/PDF/

http://www.omg.org/spec/BPMN/2.0/examples/PDF/

Extending BPMN 2.0 to Enable Links between Models and ARIS Views 49

Pi
zz

a
Pr

ov
id

er
Pi

zz
a

C
on

su
m

er

C
le

rk
C

he
f

D
el

iv
er

y

Hungry
Query for

ingredients

Receive
ingredients

list
Order pizza

Make
payment

Eat pizza

Hunger satisfied

Query received

Provide
ingredients

Receive
order

Bake pizza

Deliver pizza
Receive
payment

Query

Ingredients Pizza

Money

Receipt

Order

Pizza received

Make Pizza

Fig. 3. The Pizza Purchasing Ordering Process Model. The process begins when a cus-
tomer feels hungry, then he will pick up the phone and make an pizza order, a clerk an-
swering the telephone in the shop will check the ingredients for the customer. According
to the list of ingredients provided, the customer will order his pizza. When the clerk re-
ceives the order from the customer, he will inform the baker to bake to pizza according
to the customer’s demand. The delivery boy takes the pizza when ready and delivers it to
the customer. The customer will pay for the pizza on receiving it, and the receipt will be
provided by the delivery boy. After consuming the pizza, the process ends.

Concrete service offers should indicate the information about the service
providers, and such information can also be part of the organizational view.
In our case, the service provider can be specified to a person, department, or
pizza company etc. According to our defined semantics for the extends and spec-
ifies relationship, only the different part needs to be described comparing from
the abstract functional model. The consumability is set to “true”to indicate that
this concrete service is consumable. The pizza:Ingredients resource is an instance
of the ProParam in the abstract model, its dynamicity is declared with the type
of desc:DynamicParameter, in which the namespace “desc” is an ontology for
describing the details of the parameters used in SWRs as we mentioned before.
Dynamic parameters will have a binding element whose value is a segment of
SPARQL construction query. The segment is expected to be utilized by the ap-
plication to build the concrete instance of the resource at run-time, based on
inputs either directly from user (using desc:specification we described before) or
from the result of the data-fetching mechanism.

The last element in the table is the data-fetching element that specify the ways
of retrieving the data, e.g., service endpoints, interfaces etc. Data-fetching is used
here to provide real-time and on-demand details for queries from process analyzer

50 F. Gao, W. Derguech, and M. Zaremba

Table 3. Pizza Ingredient Query Functional Model

SWR Attribute AttributeValue
strg:IngredientQueryService a ser:ServiceVariant;

ser:hasProvider strg:QueryServiceProvider;
ser:extends strg:QueryService;
ser:consumability xsd:true;
ser:hasProParam pizza:Ingredients.

pizza:Ingredients a strg:ListOfGoods,
desc:DynamicParameter;

desc:hasBinding “some sparql construct pattern”
desc:hasDataFetching :IngredientQueryDataFetching.

or discovery agent, without invoking the process and having post conditions. The
technical information contained in IngredientQueryDataFetching for executing
the data-fetching will not be detailed due to the space limit.

Referencing from BPMN. Referencing to the external business function
models with an Extension requires a extension definition schema for an XML
attribute, which can be specified as:

<xsd:attribute name=’hasBusinessFunction’ type=’xsd:anyURI’/>.

We can attach this extended attribute to a task while having indicated the
extension element for the process, as shown below:

<extension mustUnderstand="true" definition="ext:hasBusinessFunction" />

<process>

<task id=’id-t3’ name=’Provide ingredients’

ext:hasBusinessFunction=’strg:IngredientQueryService’>

...

</task>

...

</process>.

As the readers may have noticed, three tasks in the use case are grouped together
with a dotted box, indicating they serve as sub-functionalities of the“make pizza”
business function. Logically this may be a bad example, however, the intent is
to demonstrate how we could extend the Artifacts using a Relationship element.
We can define a relationship with the id “er-1” and relate the group “group1” to
the business function “MakePizza” as follow:

<relationship type=’swr-reference’ id=’er-1’ direction=’both’>

<documentation>

Reference from a group of activities to their information model from the

functional view

</documentation>

<source ref=’src:group1’/>

<target ref=’strg:MakePizza’/>

</relationship>

Extending BPMN 2.0 to Enable Links between Models and ARIS Views 51

4 Related Work

We propose SWR to be a lightweight advancement for describing concepts with
RDFS and OWL ontologies, respecting the concreteness and dynamicity of the
concepts. SWR is similar to WSML concept [13] which also introduces inher-
itance between classes. However, WSML focus on the service domain and is
considered “heavy weight” as it is equipped with explicitly defined axioms, rela-
tions and different mediators. However it’s not standardized and does not benefit
from linked data.

A relevant research work to ours is the sBPMN [2], it has defined semantic
variants of BPMN language. It used a WSML ontology language [4] to seman-
tically describe business processes. It aimed to provide the Semantic Business
Process Management (SBPM) [6]) framework. However, the approach taken by
the project resulted in the alteration of language specification and has not been
standardized. In our work, we use an extension mechanism of BPMN 2.0 which
is compatible. Another work of BPEL4SWS [9] follows the similar principles
we use to extend a “hosting” language with existing mechanisms to enable the
semantic relations non-intrusively. However it is mainly concerned with the se-
mantical process executions, including semantical service discovery and compo-
sition. While we are also interested in providing dynamic information about the
process model, thus more concrete and up-to-date information can be realized
during process analysis and discovery.

Other approaches such as those proposed in [7,12,5] proposed BPMN exten-
sions while considering some particular perspectives. [7] proposed a BPMN ex-
tension with business process goals and performance measures, [12] proposed a
BPMN extension for modeling security requirements and [5] proposed a BPMN
extension with a resource information layer. However, our work is aligned with
the ARIS views and categorize all the essential information in the enterprise
applications accordingly. It supports better integrations and collaborations from
different perspectives of the enterprise systems.

5 Conclusion and Future Work

In this paper we justify the need of providing semantics to the process models
from different perspectives according to ARIS architecture. We elaborate our
novel approach of leveraging the BPMN 2.0 extension mechanism to introduce a
compatible way of establishing the semantic links for process models in BPMN
2.0. We also propose a StructuredWebResource framework to model the infor-
mation related in the enterprise applications and provide means to enhance the
reusability, granular-diversity and dynamicity. We argue that we can make im-
provements with semantic technologies not only in the execution phase but also
during other phases in the BPM life cycle. As a future work we plan to expand
the relations in SWRs for more complex resource clouds beyond class hierarchies.

52 F. Gao, W. Derguech, and M. Zaremba

References

1. Abramowicz, W., Haniewicz, K., Kaczmarek, M., Zyskowski, D.: Semantic mod-
elling of collaborative business processes. In: eKNOW (February 2009)

2. Abramowicz, W., Filipowska, A., Kaczmarek, M., Kaczmarek, T.: Semantically
enhanced business process modeling notation. In: SBPM (2007)

3. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic
Web Inf. Syst. 5(3), 1–22 (2009)

4. de Bruijn, J., Lausen, H., Polleres, A., Fensel, D.: The Web Service Modeling
Language WSML: An Overview. In: Sure, Y., Domingue, J. (eds.) ESWC 2006.
LNCS, vol. 4011, pp. 590–604. Springer, Heidelberg (2006)

5. Großkopf, A.: An extended resource information layer for bpmn. Systems Engi-
neering, 1–17 (2007)

6. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic business
process management: a vision towards using semantic web services for business
process management. In: ICEBE (October 2005)

7. Korherr, B., List, B.: Extending the epc and the bpmn with business process goals
and performance measures. In: ICEIS (3), pp. 287–294 (2007)

8. Maciaszek, L.A.: Roundtrip architectural modeling. In: Proceedings of the 2nd
Asia-Pacific Conference on Conceptual Modelling, vol. 43. APCCM (2005)

9. Nitzsche, J., van Lessen, T., Karastoyanova, D., Leymann, F.: BPEL for Semantic
Web Services (BPEL4SWS). In: Chung, S., Herrero, P. (eds.) OTM-WS 2007, Part
I. LNCS, vol. 4805, pp. 179–188. Springer, Heidelberg (2007)

10. OMG: Business Process Model and Notation (BPMN) Version 2.0 Beta 2 (2010),
http://www.omg.org/spec/BPMN/2.0

11. Pedrinaci, C., Domingue, J., Brelage, C., van Lessen, T., Karastoyanova, D., Ley-
mann, F.: Semantic business process management: Scaling up the management of
business processes. In: ICSC (2008)

12. Rodŕıguez, A., Fernández-Medina, E., Piattini, M.: A bpmn extension for the mod-
eling of security requirements in business processes. IEICE Transactions 90-D(4)
(2007)

13. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres,
A., Feier, C., Bussler, C., Fensel, D.: Web service modeling ontology. Applied On-
tology 1(1) (2005)

14. Scheer, A.-W., Schneider, K.: Aris architecture of integrated information systems.
In: Handbook on Architectures of Information Systems (1998)

15. Zaremba, M., Vitvar, T., Moran, M.: Towards optimized data fetching for service
discovery. In: ECOWS (November 2007)

http://www.omg.org/spec/BPMN/2.0

	Extending BPMN 2.0 to Enable Links between Process Models and ARIS Views Modeled with Linked Data
	Introduction
	Background
	Business Process Modeling Notation
	ARIS Architecture
	Linked Data

	Approach
	Structured Web Resource
	Extension Mechanism
	Use Case Scenario

	Related Work
	Conclusion and Future Work
	References

