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Abstract. We introduce an alternative method to improve optical flow estimation
using image data for control functions. Base on the nature of object motion, we
tune the energy minimization process with an image-adaptive scheme embedded
inside the energy function. We propose a hybrid scheme to improve the quality
of the flow field and we use it along with the multiscale approach to deal with
large motion in the sequence. The proposed hybrid scheme take advantages from
multigrid solver and the pyramid model. Our proposed method yields good esti-
mation results and it shows the potential to improve the performance of a given
model. It can be applied to other advanced models. By improving quality of mo-
tion estimation, various applications in intelligent systems are available such as
gesture recognition, video analysis, motion segmentation, etc.

1 Introduction

Motion estimation is still an active field in computer vision with various applications,
including motion segmentation, video understanding, and gesture recognition. Optical
flow, in particular, has been developed and improved in various ways for almost three
decades. Several models and techniques have been proposed to enhance the quality of
optical flow, since the first approach of Horn and Schunck [[1] and Lucas-Kanade [2].
It is important to detect the object motion rather than pixel-wise intensity matching
(e.g. optical flow) for real-life applications. Thus, the occlusion problem in optical flow
estimation must be taken into account. The sharpness of the flow field along the object
boundary is also important in the motion segmentation task.

The intensity difference constraint and the smoothness constraint, which are well-
known in the literature, do not exactly describe the object movement in a real scene. In
[3]], the author tends to minimize the energy function with both the intensity constraint
and smoothness constraint embedded inside. This model may hold in normal circum-
stances but not in the case of occlusion. In such a case, the intensity constraint does
not hold. The flow field might be shifted to somewhere else but not the occluded area
due to the energy function minimization. Thus, the partial differential equation (PDE)
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Fig. 1. Visual result of adapting function on Dimetrodon sequence [10] the color code for

image and control functions, [(b)| enhanced image of frame 10, [(c)] data adapting-function f;,
smoothness adapting-function

is no longer a favored tool to solve this problem as better solvers are available. In [4],
the authors also use the variational model similar to [3] to initialize the flow field. They
employ the color segmentation with flow field information to improve the estimation.
Recently, [3] reveals excellent results performed by the variational model with the help
of color information and improvements in the regularizers. Among the best, the total
variational methods are also very strong solutions for this problem, as yields
the top results on Middlebury’s website. So far, many improvements have been made
to enhance the estimation result of optical flow. Yet, we can still push quality of optical
flow estimation further. The key answer for this lies in the nature of object motion and
the purpose of the estimation model. We will show how to improve a given model by
using advanced scheme.

In this paper, we propose a model that can adapt the estimation process using the im-
age information. We start from basic constraints of optical flow and use PDE solver for
energy minimization to prove that our proposed method can improve the quality of the
flow field. We propose the hybrid solver, which takes advantage of the multi-grid solver
and coarse-to-fine estimation scheme, to deal with large displacement. With some small
adaptations, we can even speed up the estimation process. Given an estimation model,
our proposed scheme can push the quality of the estimation result further. The adapting
functions and the hybrid scheme are the keys in our method. In the next section, we
will discuss the proposed model and how the image information can be embedded in
the model. We introduce details the hybrid scheme we use to solve the energy mini-
mization problem in Section Bl We will detail the implementation and experiments in
Sectiondl We summarize the paper and outline on future work in Section[3l

2 Image-Adapting Energy Function

2.1 Optical Flow Constraints

Intensity Constraint. This constraint is the most basic constraint in every optical flow
estimation model. It can be stated as follows

p =argmin|l, 4, (x+p)— 1 (x)| (1

where I;(x) : R? — R denotes the image intensity of point (x,y) at time ¢ with x =
(x,y)T, and p = (u,v)7 is the motion vector between an image at time ¢ and another
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image at time ¢ + A¢. This constraint is mostly described in the literature as the equation
L1 a:(x+p) — I;(x) = 0; by which the linearized form yields the well-known optical
flow constraint [[1]]:

Lu+Iyv+1=0. 2)

The gradient constraint, conversely, is less sensitive to slight changes in brightness.
However, it only holds when an object undergoes translation motion but not in the
general case. Therefore, we only use the intensity constraint in the model.

Smoothness Constraint. This constraint states that the motion field must be smooth
inside the object, even the object undergoes complex motion. In addition, the aperture
problem occurs when the gradient disappears, or when the flow can only be detected in
normal direction to the gradient. This is solved by considering the flow field smooth-
ness. The flow field discontinues along the object boundary to achieve optimal esti-
mation. With f;(x) as a function of image data, we formally express this piecewise
smoothness constraint as follows

p = argmin (f; (x) (|Vu|2+|Vv|2)). (3)

2.2 Adapting Functions

We arrive at the energy function used by previous work [3I11412] using the above con-

straints:
E =Ejua+ BEgradient + CEgnooth

“4)
= [ [ou(x.0) + Bos (x.p) + . (x.p)] dx

where @4 (X,p), ¢, (X,p) and @, (x,p) are data term, gradient term and smoothness term
respectively. In this work, we drop the gradient term, as mentioned above, and inject the
adapting functions in the energy functions as follows:

01 (x,P) = @4 (fa(X)|rar (x+p) — L (x)[*) (5)
s (%, p) = s (fs (x) (|Vul>+[Vv]?)) (6)

where f;, f; are adapting functions that will tune the estimation process using image
information. The image itself contains much information. The idea is that we can sup-
press the difference of the data and flow, based on the features of the current pixel,
given image information. In this way, the model can adapt to various kinds of image
sequences and yields better estimation results.

Data Adaptation. We design f; to suppress the difference in intensity of the points in-
side the object. First, the flow field inside the object must be smooth, since the smooth-
ness constraint will drive the flow inside the object. Conversely, we can deal with the
occlusion problem simultaneously. When a part of the object is occluded in the next
frame, this data term still holds if the occluded area is inside the object. Fig. Il shows
the visual view of control functions on the Dimetrodon sequence [[10].
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Fig. 2. Plot of control functions f;(red dashed line) and f;(blue line)

We can introduce several forms of f; to yield the same effect based on the image
features. Here, we introduce f; as a function of gradient magnitude. Let 7(x) = |VI| be
the magnitude of the image gradient at x, then f; can be simply defined as

f1(x) = fi(1(x)) = 1 — e T/ D

As in Fig.[2] the data difference is suppressed when the point is inside the homogenous
area, e.g. |VI| ~ 0. The data difference includes intensity difference, gradient difference,
and other measurements, such as Hessian. In this work, we are concerned about the
intensity difference in the model. Other measurements obviously can be controlled by
this function, without a problem, since it is a function of spatial position. The parameter
04 has an important role in the estimation result. We choose o, sufficiently small, so
that it cannot create an over-smooth effect in the final result. Many experiments have
been performed and we choose 6; = 1/0.001 that yields the most stable results among
test sequences.

Smoothness Adaptation. The function f; should be large in homogenous area due to
the smoothness energy (6), so that the flow field inside the object will be as smooth as
possible. Similar to the data control function f; above, f; can be defined as follows

2

£ (%) = fo(T(x)) = e TW/0F

where A and o; are parameters controlling the shape of f;. Setting 4 to 2, we will get
a similar form to f;. However, this is not the case for f;. The shape of function f; must
be wider and slowly drop, as in Fig.[2l When f; drops too fast, the discontinuity of the
flow will appear at some area where the gradient magnitude is larger than the specific
threshold. This creates a segmentation effect on the flow field that we do not really want;
especially, when the scene has smooth areas, where the gradient only changes a little
bit from one to the next. This analysis leads to the f; in (§) with A = 3 and oy = 0.1.
Other designs of f; and f; are available and can yield the same result, if they satisfy the
above descriptions.

®)
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Fig. 4. Hybrid scheme with coarse-to-fine strategy

3 Hybrid Scheme for Energy Minimization

The energy function (@) now becomes

E= [ [pa(xp)+ g (x,p)] dx ©
Q

with the Euler-Lagrange equation system:

@ (®) fa (%) L1 — odiv (@ (o) £ (x)Vu)
@) (9) f4 (x) 1,1y — oudiv (@) (9) f:(x) V)

where I, is the temporal difference

0 10)
. (

Ly =1l s (x+p)— It,*(x)a

and I, are the spatial derivatives in the next frame /, s, . (X +p). We choose the regular-
ization functions @y, @y as @(s%) = /52 + €2 that yields the total variation regularizer
proposed in [13]]. This regularizer leads to pseudo L;-minimization. The quantity € is
chosen to be reasonably small, e.g. 0.001, to guarantee that ¢ is differentiable at s = 0.

The Euler-Lagrange equations are highly nonlinear due to the choice of ¢; and .
The iteration scheme [12] is used to solve the flow field. It is necessary to approxi-
mate the global optimum of the energy using the iteration scheme and the multiscale
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Algorithm 1. Mulrigrid scheme for flow estimation, V-cycle
if coarsest layer then
Solve the flow field
else
- Save result from previous step
- Perform pre-relaxation on flow field
- Restrict the flow to coarse layer
Perform V-cycle on coarse layer
- Calculate the error at coarse layer
- Prolong the error to current layer
- Update the flow at current layer
- Perform post-relaxation on the flow
end if

approach. Let p(k) be the flow field at step k, then the flow of the next iteration will be
the solution of

0= gy() a1 V1 — adiv (gl(0) f(x) Va1

(k1) (8 - (1
0= gj(e) fa(x)1* V1Y — audiv (9 (o) () V1)

where
04(0) = ¢/ (fax) (M2 (x+2) D L)) )
0i() = ¢ (£i(x) (Va2 + [wulDR) ).

The details of the discretization form can be derived easily, so we do not show them
here. Both the coarse-to-fine scheme [315112/14]] and the multigrid scheme [[11J15416417]]
have been used so far to solve (II) effectively. Here, we introduce the hybrid scheme
to take advantage of the multigrid scheme and the coarse-to-fine scheme to produce an
effective solver. The hybrid scheme is designed to solve (II) with an arbitrary scale
parameter.

The purpose of the proposed scheme is to cope with large motion and improve the
robustness of the solver simultaneously. While large motion can be detected at a coarse
scale, the sharpness and precision of the flow field are enhanced at a fine scale. We
build the pyramid of images and its derivative with the scale parameter s that can be
larger than 0.5. The larger the value of s, the higher the computation cost. The idea of
the multigrid solver is to solve the residual equations at the coarse layer and prolong
the error from the coarse layer to the fine layer to correct the flow field. The flow is
incrementally updated each iteration step as we use the iteration scheme. Thus, we
employ the idea of the multigrid solver and form the scheme in Fig.

Let u; «, be the flow value at iteration ith on the kth layer in the pyramid model. Fig.
shows the basic V-cycle that we use to solve equation system. First, we perform the
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Fig. 5. Visual result of our method on evaluation sequences from Middlebury’s dataset [[10]]

relaxation step on flow u; i, to yield u’jhl The flow uifhl is restricted to a coarser layer,
as Mlj;—e—ll i with the scale factor s. This pre-relaxation step and restriction step continue
until we reach the coarsest layer. At this stage, we can simply calculate the error, as the
difference between the final result and the restricted result from the fine layer. As we
have the error at a certain layer, say ei?{fl ,» We can propagate it to a finer layer, as e;’hz
with the scale factor s—!. The flow is updated using this error as follows

tgy, Ul + ey

We perform post-relaxation on the flow uls,fhl once again, before calculating the error
at the current layer and propagating it to the finer layer. This process repeats until we
reach the finest layer. Fig. Bland algorithm[I] summarize the details of this scheme.

The coarse-to-fine strategy is used along with the V-cycle that we described above
to deal with large motion. We perform the V-cycle on each layer. The result is then
propagated to the finer layer with scale factor s~'. This process is repeated from the
coarsest layer to the finest layer, as in Fig.[dl We can achieve a good result with only a
few iterations at each relaxation step. In the experiment, we use five iterations for each
relaxation step.



80 D.D. Nguyen and J.W. Jeon
4 Experiments
The quality of flow field is evaluated by angular error and end-point error. Some other

measurements are also used but they are not comparable in the context of object move-
ment. The angular error is given as follows:

pipe+1

€g — arccos
Vi p+ 1\/p£tppz +1

(12)
where At = 1 and pg = (ug, V4 ) is the true motion field of the current image.

Table 1. Estimation results on synthetic training sequences [[10]

Sequence AEE STD AAE STD
Dimetrodon 0.154 0.154 2.667 2.598
Grove?2 0.246 0.435 3.509 6.972
Grove3 0.687 1.424 6.910 16.613
Hydrangea 0.181 0.376 2.221 5.574
RubberWhale 0.128 0.324 4.247  11.799
Urban2 0.427 1.276 3.199 8.319
Venus 0.332 0.604 4.718  13.356

4.1 Synthetic Images

First, the experiments were performed on the training data with available groundtruths.
Our proposed flow field is very sharp along the object boundary. Table [I] gives the
quantitative evaluation, where AEE is the average end-point error, AAE is the aver-
age angular error, and STD is the standard deviation of those two errors. We perform
experiments on these training sequences to get the parameter set that yield the most
stable results through difference sequences. Even though the smooth parameter can be
embedded inside the control function, we still keep it as additional parameter for our
experiments.

The proposed model does not operate at its best, as we are using the grayscale image,
since much information has been discarded. In addition, it is hard to specify which point
belongs to object by its color, because the color range is limited on the grayscale image.
Therefore, comparing our method to other methods operating on color images is unfair.
However, even if the grayscale image limits our model, we still obtained some good
results, as shown in Table [Tl

We also performed the experiments with the evaluation dataset on Middlebury’s web-
site [10] to show how the proposed model can improve a given model. We start from
a very basic model, which is close to the model in [14]]. We even discard the gradient
term in the model. We choose this basic model, as it can easily reveal the performance
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Fig. 6. Estimation result of our method on some evaluation sequences from MiddleBury’s dataset
[10]. First row is frame 10 and second row is the estimated flow field. Backyard,
Dumptruck, [(¢)] Evergreen.

of our proposed model and our optimization scheme. It is very hard to see how good
the result is for advanced models in the top of Middlebury’s list. The results at the top
of the table are very close to one another.

Second column of Table 2] shows the results with the present of Hybrid scheme. The
results in first column are obtained with the used of control functions and the multiscale
approach. As we see here, the Hybrid scheme reduces the end-point error for most
of evaluation sequences comparing to the traditional multiscale approach. The Hybrid
scheme gives about the same performance as multiscale approach for Urban, Yosemite,
and Teddy. However, it still improves the end-point error 9% accuracy in average (30%
on Mequon sequence, 33% on Wooden sequence, 23% on Army). A similar observation
can be seen in Table 3 It reduces 5% of angular error in average (31% on Mequon
and Wooden sequence). As a result, the Hybrid scheme shows that it can cope with
large motion as multiscale approach and slightly improves accuracy of the flow field.
These results consistently show the improvement of our proposed method compared
to the original model. Our method yields better results than some of the current state-
of-art methods for Urban sequence. A similar observation
can be seen on the Grove sequence. The angular errors on Urban, Teddy, and Yosemite
sequences are higher when we apply the Hybrid scheme. The reason for large error
on these sequences comes from low contrast image (Urban, Yosemite) and low texture
(top right side of Teddy). Thus, additional correction step can be applied to push the
accuracy further.
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Table 2. End-point error on evaluation sequences [10]

Sequence with adapting functions + hybrid scheme

Army 0.22 0.17
Mequon 0.87 0.61
Schefflera 1.17 1.20
‘Wooden 0.99 0.66
Grove 1.17 0.99
Urban 0.72 0.73
Yosemite 0.14 0.18
Teddy 1.37 1.30

Table 3. Angular error on evaluation sequences [10]

Sequence with adapting functions + hybrid scheme

Army 7.88 6.49
Mequon 13.4 9.22
Schefflera 17.6 16.4
Wooden 12.0 8.22
Grove 4.38 3.77
Urban 5.69 6.84
Yosemite 2.75 3.59
Teddy 6.59 7.51

4.2 Real-Life Images

We are interested in the results on real-life sequences for applications. Therefore, we
performed the method on some real-life sequences to prove how effective it is for real
applications. Middlebury’s website has another measurement, termed interpolation er-
ror, beside the end-point error and angular error. This measurement, however, does not
completely hold in our case. As we are interested in the object movement, rather than
intensity matching, the interpolation error can be large due to the occlusion problem.
Thus, the evaluation results on interpolation error cannot be compared in our case.

Fig. 6l shows some results on real-life sequences of the evaluation dataset [[10]. The
discontinuity of the flow field along the object boundary is highly preserved. Other
experiments are performed on real-life sequences from the training dataset [10]. Fig. [
shows some visual results on these sequences. The results on the DogDance sequence
and MiniCooper sequence are proof for the effectiveness of our proposed method. The
proposed method indeed improves the smoothness of flow field, while retaining the
sharpness on edge in case of DogDance and MiniCooper sequences. This is especially
helpful when we use the result for motion segmentation, object isolation, etc. We can
see that our method outperforms the original model. We achieve the sharpness, the
smoothness, and solve the occlusion problem simultaneously. Our proposed method
shows how we can improve performance of a given estimation model further.



Improving Motion Estimation Using Image-driven Functions 83

Fig.7. Estimation result of our method on other real-life sequences [10]. [(a)] Dimetrodon,
DogDance, [(c) MiniCooper.

5 Conclusion

We proposed an improved algorithm for optical flow estimation using the variational
model. The image information was used to tune the estimation process. We introduced
the adapting functions and embedded them to the energy function. Our model also ad-
dressed the occlusion problem. We proposed a hybrid scheme that took advantage of
the coarse-to-fine approach and the multigrid solver to yield more robust results. The
result with the present of hybrid solver and control functions was indeed much better
and more robust.

We are applying the method for grayscale images. Further work includes the exten-
sion of our approach to color images. Our approach can also be integrated into advanced
models to produce even better results. An in-depth study of the effect of our method on
advanced models may lead to some interesting results in the near future.
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