
Y.-S. Ho (Ed.): PSIVT 2011, Part I, LNCS 7087, pp. 48–60, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

SLAM and Navigation in Indoor Environments 

Shang-Yen Lin and Yung-Chang Chen 

Department of Electrical Engineering, National Tsing Hua University, 
30013 Hsinchu, Taiwan 

ycchen@ee.nthu.edu.tw 

Abstract. In this paper, we propose a system for wheeled robot SLAM and 
navigation in indoor environments. An omni-directional camera and a laser 
range finder are the sensors to extract the point features and the line features as 
the landmarks. In SLAM and self-localization while navigation, we use 
extended Kalman filter (EKF) to deal with the uncertainty of robot pose and 
landmark feature estimation. After the map is built, robot can navigate in the 
environment based on it. We apply two scale path-planning for navigation. The 
large-scale planning finds an appropriate path from starting point to destination. 
The local-scale path-planning fills up the drawbacks of the prior step, such as 
dealing with the static and dynamic obstacles and smoothing the path for easier 
robot following. Through the experiment results, we show that the proposed 
system can smoothly and correctly locate itself, build the environment map and 
navigate in indoor environments.  
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1  Introduction 

In recent years, there is more and more attention on robotics research, especially the 
service robot industry all over the world. Many applications of the robotic technology 
have been developed, such as security robots, nursing robots, and so on. All of them 
need to navigate in an associated environment and locate themselves. There are four 
major problems needed to be overcome, which are self-localization, environment map 
establishment, path to destination detection and collision avoidance. However, these 
four problems are not independent, but mutually correlated. For example, once self-
localization consists in error, it may cause the wrong map building. And the wrong 
map will cause self-localization in larger error. Furthermore, the wrong map or self-
estimated location may induce path-planning failure. 

Fortunately, a number of researches have worked on these challenges. 
Simultaneous localization and mapping (SLAM) method builds an environment map 
using only relative environment observation and using the map for robot localization 
at the same time. An unbiased map needs correct robot location and vice versa. Smith 
et al. [1] [2] used probabilistic model, a state vector describing robot location and 
landmark position with a covariance matrix describing their mutual uncertainty, and 
extended Kalman filter (EKF) to represent and estimate the spatial uncertainty. 
Durrant-Whyte et al. [3] [4] proposed a framework of SLAM. Doucet et al. [5] solved 
the SLAM problem by means of Rao-Blackwellized particle filter (RBPF). 
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Montemerlo et al. proposed FastSLAM algorithm which tracks the landmarks by 
extended Kalman filter and estimate the robot’s pose by Rao-Blackwellized particle 
filter. There are also many researches using different sensors for SLAM [6][7][8].  

Also many researches discussed about path planning and obstacle avoidance. The 
path planning problems are typically approached using one of these two categories: 
search-based, sampling-based. The basic idea of search-based planning is using 
regular grid cells to represent the configuration space. The path planning problem is 
done by searching the grids and finding a point-to-point path from starting grid to the 
goal grid. Dijkstra [9] first proposed the Dijkstra’s Algorithm, which solves the 
shortest path problem by breath-first search. A* algorithm [10] further uses an 
admissible heuristic to reduce the search region. The continuing improvements 
including D* algorithm [11] which makes re-plan more efficient, Anytime A* [12] 
which concerns the deliberation time and AD* [13] which combines D* and Anytime 
A*. The sampling based planning does not use the regular grid cells but samples the 
vertices in the configuration space with appropriate edge assignment between them, 
and finds path from the candidate vertices. The probabilistic roadmap (PRM) [14] 
generates vertex by random sampling. The rapidly-exploring random tree (RRT) [15] 
makes the sampling more efficient. There are also Anytime RRT [16] and Anytime 
Dynamic RRT [17] Algorithms proposed for improving the speed of planning and re-
planning. 

In this paper, we propose a system for wheeled robot navigation in indoor 
environments using only on-robot sensors. When the robot enters a new environment, 
we first build the environment map by SLAM (Simultaneous Localization and 
Mapping). In our approach, we choose the omni-directional camera and laser range 
finder as the on-robot sensors which have wide sensing field. The property of wide 
sensing field is very important for robot localization and obstacle capturing because 
of increasing the duration of landmarks and obstacles observation, and decreasing the 
effect of landmarks being covered by obstacles. After the environment map has been 
built, the robot can navigate by finding the appropriate path from the built map. We 
separate the robot navigation into two parts. The first part is the large-scale path-
planning, which is similar as people select which path to go through. The other part is 
the local-scale path-planning for obstacle avoidance. This part rapidly generates a 
collision-free path and guarantees the robot real-time avoiding the obstacles when 
there are static or dynamic obstacles on the way to goal. 

The remaining sections of the paper are organized as follows. Section 2 gives the 
overview of our system. Section 3 introduces feature extraction with omni-directional 
camera and laser range finder. The SLAM and localization method using the point 
and line features is presented in section 4. Section 5 presents the large scale and local 
scale path-planning for robot navigation. Experimental results are shown in Section 6. 
Finally, conclusion is presented in section 7. 

2  System Overview 

Figure 1 and Figure 2 show the flowcharts of our system. Figure 1 shows the SLAM 
flowchart, which is used to build the map when robot first enters a new environment. 
We utilize the omni-directional camera and SICK laser range finder to extract 
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landmarks. The landmarks used in our system are point features and line features, 
which will be briefly described in next section. We use the extracted features and 
odometer data for SLAM. After data association, we revise error with extended 
Kalman filter.  

 

Fig. 1. Flowchart of SLAM   Fig. 2. Flowchart of robot navigation 

Figure 2 shows the flowchart of robot navigation. After the environment map is 
built, robot can navigate based on it. When robot navigates in the indoor environment, 
we still use the same method as Figure 1 for robot self-localization. The dotted block” 
Robot Pose” in Figure 2 is same as the dotted block in Figure 1. For navigation, we 
first apply a large-scale path-planning. In this step, the algorithm finds an appropriate 
path from the location of robot to the destination. After the path is generated, robot 
can go along it and move toward destination. While the robot is moving, there may be 
some obstacles which block the original path as detected by the laser range finder. 
The local-scale path-planning can quickly generate a new collision free path for 
avoiding robot collision. Finally, the robot can safely achieve to the destination. 

3  Landmark Extraction 

We use an omni-directional camera and a laser range finder as our sensor system to 
extract the landmarks in the environment. It is easy to combine data of these two 
sensors because they are center-aligned, facing the same direction, and both sensing 
data can be represented in polar coordinates. In landmark extraction, we extract two 
types of landmarks: the point landmarks and the line landmarks. The point landmarks 
are used for both x-y location and robot orientation estimation, similar to many point-
feature-based SLAM works. But the estimation with only point landmarks may have 
larger error if there are very few number of point landmarks in the observation region. 
Therefore, we add the line landmarks in our system. The line landmarks can improve 
the accuracy of robot orientation estimation. 

3.1  Point Landmarks 

A point landmark is the 2-D position of a 3-D vertical line, which is the intersection 
of the 3-D line with x-y plane as shown in Figure 3(a). It is very efficient to extract 
the vertical lines from images captured by onmi-directional camera, because of the 
property that all of the 3-D vertical lines extending pass through the center. Figure 
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3(b) shows the omni-directional camera data input. Because of the ratio of the image 
could influence the bearing information of the extracted landmark, we first resize the 
image to equal ratio, as shown in Figure 3(c). To make our processing concentrate on 
the useful region, we use a mask as given in Figure 3(d). Only the data in the white 
region will be processed. Then we apply the Canny edge detector to find out the 
edges. After we got the edge points, we record how many edge points exist in each 
angle degree. Once the number of existing edge points in an angle degree exceeds a 
threshold, a vertical line is affirmed. Combining with the laser range finder data, as 
the yellow points shown in Figure 3(f), we can get the position of the point 
landmarks. Finally, to reduce the observation error, we ignore those landmarks which 
are too far away. And for those landmarks existing in continuous angle degree, we 
only use the two sides of them as our point landmarks. 

 

Fig. 3. Illustration of point landmarks extraction 

3.2  Line Landmarks 

The line landmarks are the horizontal straight lines in the environment, which are 
extracted from the laser range finder data. Figure 4(a) shows the laser range finder 
data input. For extracting the straight lines, we first find the break points for 
separating each straight line. For each range point is , if is  satisfies one of the three 

conditions in (1), we consider is  as a break point. These three conditions are 

considered for different situation. The first condition focuses on the distance between 
two continuous range points. If the distance is huge, as shown by red circles in Figure 
4(b), two sides of is  should not belong to same straight line. The second condition 

considers the angle between 1i is s−  and 1i is s + . A large angle should not occur on a 

straight line. The third condition is dealing with the situation shown by the green 
circles in Figure 4(b). We can see is  in two green circles in Figure 4(b) have similar 

information of distance and angle, but those on the left form a straight line while 
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those on the right are break points. It is hard to use one threshold to distinguish them. 
Therefore, we use two smaller thresholds for double checking. After the break-point 
detection, those remaining range points could be seen as straight line points. For the 
sets consisting of consecutive points more than a threshold, apply the least square 
method and find the parameter of the line landmarks. 
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Fig. 4. Illustration of line landmarks extraction 

4  Extended Kalman Filter SLAM 

In SLAM, the uncertainty of the robot pose and landmark position is the dominant 
problem to be solved. In our system, we use EKF to handle uncertainties. The basic 
Kalman Filter is suited for a linear system. For a non-linear case we should linearize 
the original system appropriately. Generally, the EKF SLAM uses a state vector and a 
covariance matrix to describe status of the robot pose and landmark position. In our 
system the state vector is described as follows. 

[ ] [ ] [ ]
[ ]1

(point landmarks)
...            

    (line landmarks)

T
T T i i
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i

x y
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θ
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is the state vector at time k. rx is the robot pose vector, where [ ]T

r rx y is the 

robot location in the world coordinate and rθ is the orientation of the robot. im is the 

ith landmarks as [ ]T

i ix y  for point landmarks and [ ]iθ  for line landmarks. 

 SLAM by EKF contains following main steps: 



 SLAM and Navigation in Indoor Environments 53 

4.1  Prediction 

We use the motion model and the previous state to predict the current state. The state 
prediction step is 

 | 1  1| 1 1ˆ ˆ( , )r k k r k k k kf q− − − −= +x x u                            (3) 

1k −u is the odometer data of motion, including velocity and angular velocity. 
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 f is a non-linear function, describing how the robot moves in the world coordinate. 
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And the covariance matrix 1| 1k kP − − is propagated through the linearized state transition 

function f , yielding | 1k kP − given by 

| 1 1| 1 where  is the Jacobian of  at time        
f

T
k k f k k f k J f kP J P J Q− − −= +          (6) 

4.2  Observation 

The observation equation for ith landmark can be written as 

1 1( | )i i k k iz h x x w− −= +                                 (7) 

where iw is the uncertainty of observation which is temporally uncorrelated and zero-

mean random noise. For point landmarks, we use both range and bearing information. 
For line landmarks, we only use the bearing information. The following are their 
measurement functions. 

• Point landmarks:  
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Fig. 5. Relation between landmarks and robot 
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• Line landmarks: 

_ ( )i i iz normal vector line w= +                          (9) 

4.3  Data Association 

For point landmarks, we use the Mahalanobis distance, which makes the distance 
error measurement take the correlation of the data set into account. If the Mahalanobis 
distance between the observed landmark z  and the recorded landmark ih  is smaller 

than the threshold γ , we determine that z  is associated with ih . 

1

            ,    
            T

i i i T
i i i h hi i

where v z h S J PJ R
v S v γ−

= − = +<                (10) 

For line landmarks, we use the bearing information and the distance of the center of 
robot to feature line for association. 

                     i i dd dθθ θ γ γ− < − <
                        

(11) 

4.4  Update 

After landmark extraction and association, the measurement residual of associated 
landmarks can be used for EKF update. The Kalman gain Kk  is computed as 
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The state vector and covariance are updated as 
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5  Path Planning for Robot Navigation 

The robot navigation consists of two path planning parts. The first part is the large-
scale path planning, which is similar to people choosing the appropriate path for 
walking along to the destination. In our system, we apply a search based method A* 
with big grid size. The big grid size planning has rough results but makes the plan 
accomplished rapidly. In the first step we do not really need a precise path because 
the next step deals with the obstacle avoidance. The second step, local-scale path 
planning, is composed of an orientation decision method and a RRT-based path 
planning. The path planning in this step can rapidly generate a substitute path for 
path smoothing or collision avoidance. The orientation decision guarantees a real-
time command for reducing risks, even if the planning is not achieved in deliberation 
time. 
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5.1  Large-Scale Path Planning 

In large-scale path planning, we use A* algorithm to find the path from the pre-built 
environment map, as shown in figure 7.  A* is a best-first search using a heuristic 
cost function ( ) ( ) ( )f x g x h x= + , where ( )g x is the cost from the starting node to 

the current node, and ( )h x is the heuristic estimation of the cost from the current node 
to the destination. 

 

Fig. 6. Large-scale path planning by A* 

5.2  Local-Scale Path Planning for Obstacle Avoidance 

The local-scale path planning takes place in two situations.  When the original 
planned path is blocked by any obstacles, re-planning applied for a collision-free path. 
When the original path is including extremely sharp turning angle, re-planning is 
applied for a smooth path. 

• RRT-based path planning. 

GrowTree(tree) 
 1  while(xgoal != xnew) 
 2   xtarget = GenerateTarget(); 
 3   xnearest = NearestNeighbor(xtarget,tree); 
 4   xnew = Extend(xnearest, xtarget); 
 5   if(CollisionCheck(xnew)); 
 6    tree.add(xnew); 
GenerateTarget() 
 7  p = RandInt()%100; 

 8  if(p < λg) 
 9   return(xgoal) 
 10 else 
 11  return RandomPoint(); 
Main() 
 12 tree.init(xstart); 
 13  GrowTree(tree); 

Fig. 7. The RRT Algorithm 
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The standard RRT algorithm is shown in Figure 7. To grow the tree, first xtarget is 
randomly sampled from the configuration space by function GenerateTarget. To 
make the tree grow more efficiently and focused on xgoal, GenerateTarget returns 
xgoal with probability λg. Then, the NearestNeighbor function finds xnearest, which is 
the tree node closest to xtarget. After that, a new node is generated by Extend function. 
If the new node is free from collision, add the new node in. Else, no extension 
applied. These steps are repeated until xgoal is reached. 

In our system, we grow the RRT in three dimensional space, including the 2-D 
location ,x y and the robot orientation θ . θ  is used for smooth path generation. The 

NearestNeighbor function considers (14) as the distance between ix and targetx . 

( )target target

                                        ,where  is the weighting const.

 (  ) ( )i i ix x dir x x orientation x

ω

ω+ ⋅ −

                 

(14) 

The Extend function also needs to consider the orientation. For the smoothness of the 
generated path, xnew can only turn thθ even if the orientation difference between ix

and target ix x is larger than it.  

 

    Fig. 8. Illustration of risk region            Fig. 9. Illustration of orientation decision 

Furthermore, the RRT tends to generate path along the obstacle barrier, as shown 
in Figure 8(a). This is not a good property especially when the obstacle is moving. We 
set the risk region between obstacle and robot to make the planned path response to 
obstacle earlier. Those points in the risk region will have larger cost when connecting 
with the tree nodes to reduce the probability of planed path crossing through it.  

• Orientation Decision 

Although the RRT algorithm could be very fast in local-scale path planning, there are 
still some cases where the planning cannot be completed in real-time. Many works 
proposed the “anytime” version of RRT to cope with the time-limited problem. 
Although speeded up, still not guaranteed in real-time. In our system, we do not try to  
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guarantee real-time generating the path but to find the appropriate direction in real-
time for robot to follow. Because of the advantage of laser range finder, we can easily 
get the block distance in every angle degree. If the distance is smaller than a 
threshold, we determine that this angle degree is blocked, as shown in Figure 9. We 
also consider the angle degrees near the blocked angle degrees are in risk (green 
regions). Then, we choose the direction closest to the destination direction from the 
free degrees as the recommended direction. Once the RRT planning cannot be 
completed in deliberated time, we use the recommended direction for improving 
obstacle avoidance. 

6  Experimental Results 

6.1  Simultaneous Localization and Mapping 

In the SLAM experiment, the robot is controlled to run a closed loop in a long 
corridor. For the outward part (downward), localization and building map at the same 
time. For the return part (turning & upward), localization is applied only. Figure 10 
shows the results of SLAM using different landmarks. Table 1 shows the error 
between the starting point and ending point. Figure 10(a) shows the result using only 
odometer data. Figure 10(b) shows the result using the point landmarks. The result 
using the line landmarks is shown in Figure 10(c). And Figure 10(d) shows the result 
using both point and line landmarks.  

 

Fig. 10. Results of SLAM using different landmarks 

Table 1. Error comparison 

 X Y 
Ground Truth 0.0 m 0.0 m 

(a) 6.23 m -3.11 m 
(b) 0.07 m -0.41 m 
(c) 0.13 m -0.31 m 
(d) 0.05m 0.00 m 
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From Figure 10 and Table 1, we can find that the result (a) has large error, 
especially when the robot is turning, the robot completely missed its orientation. 
Because (a) does not use any landmarks for error correction, the error is continuously 
accumulated. Therefore, the final estimated location has extremely large error. Result 
(b) uses the point landmarks for error correction and performs much better than (a). 
However, when the robot goes through a section with fewer point landmarks, the error 
of orientation becomes large and makes the built map distorted. Result (c) using the 
line landmarks, which are used for orientation correction, is almost perfect in 
orientation estimation. However, because there is no x-y lacation compensation, the 
straigh path is longer than the ground truth. Result (d), which is the method used in 
our system, can both correct the x-y location and orientation. Although there are still 
tiny error occuring on the recorded path, the robot can continuously compensate 
errors and find the location by itself. 

6.2  Navigation 

In the experiment of robot navigation, we first simulate our local-scale path planning 
method to see if it can really generate a good path for static and dynamic obstacle 
avoidance. Figure 11 shows the simulation environment and Table 2 shows the 
statistical results. The black squares in Figure 11 represent the static obstacles. The 
blue circles represent the dynamic obstacles, their speed and moving direction is 
randomly generated. As shown in Table 2, the success probability with three dynamic 
obstacles is higher than 90%, and the success probability with orientation decision is 
higher than that without orientation decision. 

 

Fig. 11. Simulations of obstacle avoidance 

Table 2. Success rate comparison 

static 
obstacle 
number 

dynamic 
obstacle 
number 

Success(/100 times) 
(with orientation decision) 

Success(/100 times) 
(without orientation decision) 

2 1 99% 99% 
2 2 96% 94% 
2 3 91% 89% 
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Fig. 12. On-road testing of obstacle avoidance 

Beside the simulation results, we also have the on-road testing as shown in Figure 
12. In Figure 12(a), the robot follows the original path planned by large-scale 
planning. The robot detects the obstacle and generates a substitute path for collision 
avoidance, as shown in (b). This on-road testing shows the robot can continuously 
localize itself, even if the obstacle hides some landmarks, and follow the substitute 
path to move to the destination. 

7  Conclusion 

In this paper, we propose a system using omni-directional camera and laser range 
finder for robot SLAM and navigation in indoor environments. We extract the point 
features and the line features as the landmarks. In SLAM and self-localization while 
navigation, the uncertainty of the odometer and observation is compensated by 
applying the linearized system model and odometer data to the extended Kalman filter 
(EKF). By the error compensation, the robot pose and the landmark feature can be 
well estimated. After the map has been built, robot can navigate in the environment 
based on it. We apply two-scale path-planning for navigation. The large-scale 
planning finds an appropriate path from starting point to destination. The A* with big 
grids is used in this step. The local-scale path-planning fills up the drawbacks of the 
prior step, such as dealing with the static and dynamic obstacles and smoothing the 
path for easier robot following. We apply an improved RRT algorithm for the path-
planning in this step and use an orientation decision method to guarantee the real-time 
response to the detected obstacles. 

Through the experiment results, we showed that the proposed system can smoothly 
and correctly locate itself, build the environment map and navigate in indoor 
environment. With the advantage of wide sensing field sensors, the self-localization 
still works even when there are obstacles covering some landmarks or the robot 
continuously changes the orientation to avoid collision.  
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