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Abstract. In object detection research, there is a discussion on weak
feature and strong feature, feature descriptors, regardless of being consid-
ered as ’weak feature descriptors’ or ’strong feature descriptors’ does not
necessarily imply detector performance unless combined with relevant
classification algorithms. Since 2001, main stream object detection re-
search projects have been following the Viola Jone’s weak feature (Haar-
like feature) and AdaBoost classifier approach. Until 2005, when Dalal
and Triggs have created the approach of a strong feature (Histogram of
Oriented Gradient) and Support Vector Machine (SVM) framework for
human detection.

This paper proposes an approach to improve the salience of a weak
feature descriptor by using intra-feature correlation. Although the inten-
sity histogram distance feature known as Histogram Distance of Haar
Regions (HDHR) itself is considered as a weak feature and can only
be used to construct a weak learner to learn an AdaBoost classifier. In
our paper, we explore the pairwise correlations between each and ev-
ery histograms constructed and a strong feature can then be formulated.
With the newly constructed strong feature based on histogram distances,
a SVM classifier can be trained and later used for classification tasks.
Promising experimental results have been obtained.

Keywords: Weak feature, Pairwise correlations, Histogram distances,
SVM classifier.

1 Introduction

In computer vision research, it is widely recognized that good features are cru-
cial for object detection tasks, there is abundant literature introducing state-of-
the-art feature extraction algorithms [1][2][3]. Another research direction is the
introduction of new object detection frameworks or improved feature extraction
algorithm(s) [4][5]. In this paper, in addition to proposing a new feature based
on correlate histograms, we are more interested in introducing a way to extract
more information from an existing weak feature, we use the Histogram Distance
of Haar Regions (HDHR) feature as an example.

In [4], the authors proposed the HDHR feature, the HDHR feature is defined as
the intensity histogram distance between two adjacent Haar regions. Comparing
with the simple Haar-like feature used by [6], the HDHR feature contains more
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information (hence should be able to better distinguish positive samples from
negative samples) and can be calculated efficiently with the Integral Histogram
framework proposed in [7][8]. An AdaBoost classifier is used in [4] to perform
the object detection task of separating image regions that contains airplane from
those regions which do not contain airplane.

In [9], the authors introduced the Shape Context feature descriptor, the shape
context feature extraction algorithm is composed of three steps, the first step
is to extract sample points from the edge map of the input image; the second
step is to calculate the distance and orientation difference between the current
sample point and every other sample point; the third step is to quantize those
distances and orientation differences in to predefined number of bins. [9] is an
early approach of feature extraction algorithms which are based on measuring
object similarities with regard to certain distance metrics.

In [1], the authors introduced an approach to measure similarities between
objects with a local descriptor, the descriptor is called Local Self-similarities
(LSS). The LSS is based on matching internal self-similarities. That is, only
the internal layout is correlated across images (or video sequences). Because
the attributes for visual tasks (color, texture and illumination) within an image
is relatively uniform compared to that of other images, exploring internal self-
similarities can better capture the pattern of the visual entity. The LSS feature
extraction process can be regarded as two steps, the first step is calculating
correlation surface, this step is achieved by matching a smaller image patch from
an image with a larger image region within the same image; the second step is
translating the correlation surface intoa binned log-polar representation, this step
is similar to the final step of the Shape Context feature extraction. In [1], the
CIE L*a*b space is used instead of the RGB color space to calculated the Sum
of Squared Distances (SSDs) between patch colors. The LSS is a state-of-the-art
feature descriptor based on self-similarity.

In [2], the authors introduced a new feature termed as Color Self-similarity
(CSS), the CSS is based on the observation that objects such as a human do
exhibit some structure in which colors are locally similar (e.g. the skin color
of a specific person is similar on their two arms and face). In CSS, a positive
sample (i.e. sample images which tightly bounds the object of interest) is first
labeled with different semantic patches, such as arms, legs, upper body and
background, then each semantic patch (of size 8 × 8 pixels) is used to measure
the color similarity between the patch and the whole sample, the authors used
HSV color space because it works best compared to RGB, HLS, CIE Luv, and
etc. Each semantic patch will generate a similarity sample, in such similarity
samples, the homogeneous region (for its corresponding similarity patch) will
have a higher similarity score. Self-similarities between those similarity samples
are then explored and utilized to construct a SVM classifier. In [2], the CSS is
integrated with other features for object detection. It is one of the latest object
detection approach using self-similarity measurement.

Motivated by the self-similarity feature being introduced in [1] and [2]. We
propose a method that is capable of bring significant improvement over the
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saliency of the original weak feature such that a SVM classifier can be used
to substitute the original AdaBoost classifier. Our feature extraction algorithm
is composed of three steps, sub blocking, histogram binning, and correlating.
Details will be given in Section 2.

Our contributions in this paper can be summarized as follows.
Firstly, by exploring its self-correlation, we transform a weak feature (HDHR)

into a strong feature, we term it Correlation based Histogram Distance (COHD),
this transformation is similar to the self-similarity features being proposed in [1].
As a strong feature, COHD enables the use of a SVM classifier for object detec-
tion, this saves a lot of time in comparison with having to train an AdaBoost
classifier for the original weak HDHR feature.

Secondly, the newly proposed self-correlation feature based on histogram dis-
tances can be quickly calculated with the method proposed in [7], this is a
precious computational advantage.

Thirdly, different from [1], which explores self-similarities from raw image
level, we seek self-correlations from feature descriptor (i.e. Intensity Histogram)
level, this can greatly reduce the computational cost and still well preserve the
feature saliency.

The rest of this paper will be organized as follows, Section 2 introduces the
formulation of a strong feature, we follow a typical object detection framework
by replacing the original feature with the newly formed feature. Section 3 gives
experimental results. Section 4 concludes this paper.

2 Weak Feature and Self-correlations

In this section, we will first introduce two types of weak feature, they are Density
Variance feature and Histogram Distance of Haar Regions (HDHR) feature (nei-
ther of them can be directly combined with a SVM classifier for object detection
task due to their weak saliency), then we introduce our proposed correlation
feature derived from those two features mentioned above.

The Density Variance Feature was introduced in [5], such feature can be rep-
resented by

VG =
∑n

i=1 |Gi − G|
n · G (1)

In (1), i is the index for the sub blocks as illustrated in Fig. 1, G is defined
as the mean value of the gradient strength for the whole sample, and Gi is the
mean value of the gradient strength for sub block i, n is the total number of
sub blocks in a sample. In [5], the Density Variance feature was simply used as
a global statistical filter to speed up the detection process for a license plate
detector.

The Histogram of Haar Regions (HDHR) feature was first proposed in [4],
the HDHR feature was introduced because of two reasons. Firstly, in order to
differentiate two adjacent regions in a more suitable way, histograms provides
more detailed information than classical Haar features. Secondly, Histograms can
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be computed linearly, which is a precious computational advantage. The HDHR
feature descriptor is represented by

D(f, g) =

∑N
j=1 (f [j] − g[j])2

∑N
j=1 (f2[j] + g2[j])

(2)

In (2), D is defined as the Distance between the histogram f [·] and histogram
g[·], as f [·] and g[·] each corresponding to a histogram constructed from image
regions f and g, respectively. The number of bins in f [·] equals to the number
of bins in g[·] and both equal to N , hence the distance calculation is a division
of two summations over the bin index j. In [4], the HDHR feature was used
together with AdaBoost supervised learning algorithm for airplane detection.

As mentioned in Section 1, our feature extraction method is composed of
sub blocking, histogram binning, and correlating. Our sub blocking method was
motivated by [5], our histogram binning method was motivated by [4], and mo-
tivated by [2], we use correlating to increase the feature salience.

In our approach, instead of considering the distance between two adjacent
Haar-like Regions, we divide the sample image region into sub blocks of p × q,
in each sub block, a histogram can be constructed, hence the total number of
histograms can be used to calculate D is p · q. Given p · q histograms, we will
consider the pairwise correlation between each pair of histograms, hence the
total number of histogram distances can be measured is represented by

C2
p·q =

(p · q) × (p · q − 1)
2

(3)

Finally, the Correlation based Histogram Distance feature, we term it Correlation
Histogram Distance (COHD) feature descriptor is represented by

SD = {D(f, g)} (4)

which is a vector of length C2
p·q.

With COHD feature, an object detection framework can be easily constructed
by train a Support Vector Machine (SVM) Classifier.

Moreover, we propose two variants based on different normalization schemes,
the L1 − norm for COHD feature is represented by

E1(f, g) =
N∑

j=1

|f [j] − g[j]| (5)

The corresponding L2 − norm is represented by

E2(f, g) =

√
√
√
√

N∑

j=1

(f [j] − g[j])2 (6)

In (5) and (6), the definitions for f [·], g[·], j and N are the same as those of (2).
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By substitute D with E1, the COHD L1 − norm feature descriptor is repre-
sented by

SE1 = {E1(f, g)} (7)

Similarly, the COHD L2 − norm feature descriptor is represented by

SE2 = {E2(f, g)} (8)

Details of the Correlation of Histogram Distance features (i.e. SD, SE1 , and SE2)
are illustrated in Fig. 1. In Fig. 1, f corresponding to the sub block from where
histogram f [·] is constructed, and g corresponding to the sub block from where
histogram g[·] is constructed.

Fig. 1. Extracting Correlation of Histogram Distance features

The input image is first divided into p · q sub blocks, for each sub block f ,
a histogram f [·] can be obtained, f [·] is then compared with another histogram
g[·] resulted from region g. The distance between f [·] and g[·] is one dimension
of the C2

p·q-Dimensional feature vector.

3 Experimental Results

As one of the most representative strong feature, Histogram of Oriented Gradient
(HOG) has attracted numerous attention of various researchers. As a result, we
compare the descriptive power of HOG with our newly proposed correlation
feature by replacing the HOG feature within the HOG and SVM framework
with the correlation feature [10].
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We use the MIT CBCL Dataset for our experiments, in particular, we evaluate
the performance of the framework using Face, Human and Car [11][12][13]. The
MIT CBCL Dataset is composed of four types of Data, they are, face, human,
car, and scenario. More details of the Dataset can be found from Table 1.

Table 1. Details of the MIT CBCL Dataset

Face Human Car

# of Positive Training Samples 2429 924 516
# of Negative Training Samples 4548 - -
# of Positive Testing Samples 472 - -
# of Negative Testing Samples 23573 - -
Sample Size(Width×Height) 19 × 19 64 × 128 128 × 128

Some of the examples being used in our experiments can be found from Fig. 2.

(a) Face (b) Human (c) Car

Fig. 2. Some Examples from MIT CBCL Dataset

Detailed parameter settings can be found from Table 2.
As mentioned in [2], block normalization proven to be crucial, we use the same

normalization scheme as provided in the MATLAB implementation of HOG and
SVM framework by [10] to normalize the COHD feature descriptor.

A quantitative measure of the experimental results can be observed from
Fig. 3. From Fig. 3, we can see that before sub block normalization, the newly
proposed correlation feature based on HDHR can out perform HOG by approxi-
mately 4% on the MIT CBCL Face Dataset. However, the HOG feature remains
extremely competitive on the MIT CBCL Human Dataset and MIT CBCL Car
Dataset. Those results can be observed from Fig. 4 and Fig. 5, respectively. Yet
our newly proposed feature (COHD with L1-norm) can achieve a detection rate
of 97% at a false positive rate of approximately 2% on the Human dataset and
90% detection rate at 2% false positive rate on the Car dataset.

As we can see from Fig. 3b, Fig. 4b, and Fig. 5b, normalization can signifi-
cantly improve the experimental results. The ROC curve for the human dataset
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Table 2. Detailed parameter settings in our experiments1

Face Human Car

# of Sub blocks (W×H)2 3 × 3 5 × 4 5 × 5
Scaled sample size (Width×Height) 19 × 19 32 × 64 32 × 32
# of Bins for COHD 32 32 32
# of Bins for COHD(L1) 32 32 32
# of Bins for COHD(L2) 32 32 32
# of Bins for HOG 9 9 9
# of Training Positive 2429 800 400
# of Training Negative 4548 1600 881
# of Testing Positive 472 124 116
# of Testing Negative 23573 195 160

1The negative samples for Human and Car Dataset was randomly cropped from
background images which contains neither human nor car.

2W: the number of sub blocks in each row, H: the number of sub blocks in each
column.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

D
e
t
e
c
t
i
o
n
 
R
a
t
e

 

 

COHD(L1−norm) + SVM

HOG + SVM

COHD + SVM

COHD(L2−norm) + SVM

(a) Before Sub block Normalization

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

D
e
t
e
c
t
i
o
n
 
R
a
t
e

 

 

HOG + SVM

COHD + SVM

COHD(L1−norm) + SVM

COHD(L2−norm) + SVM

(b) After Sub block Normalization

Fig. 3. ROC Curves on MIT CBCL Face Dataset

and car dataset is more rough than than that of the face dataset due to a smaller
number of testing samples.

Those experimental results indicate that by exploring self-correlations, an
original weak feature can be significantly improved to a strong feature, this ap-
proach of exploring intra-feature self-correlations is similar to the self-similarity
features being proposed in [1][2][3], the difference is that the self-correlation is
extracted from the feature descriptor level instead of the raw image data level,
hence there will be some information loss to degrade the quality of the feature
descriptor, but the computational complexity is also greatly reduced compared
to that of self-similarity features and there is always a weight of balance between
the computational cost and performance gain.
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Fig. 4. ROC Curves on MIT CBCL Human Dataset
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Fig. 5. ROC Curves on MIT CBCL Car Dataset

The proposed correlation method does not require matrix convolution dur-
ing the feature extraction process, comparing with HOG, which needs gradient
magnitude computation and arc tangent computation, the feature extraction
process is much simpler. Although to extract Haar-like feature is also very sim-
ple, the computational cost (especially time complexity) for AdaBoost training
is very high, this computational advantage is especially important for devices
with limited computational power, such as wireless sensors.

The computational cost (in terms of time complexity) to measure a pair-
wise histogram distances for a detection window that is partitioned into k sub
windows is k×(k−1)

2 . Without using Integral Histogram, the computational cost
needed to calculate the histogram feature of a detection window of size n× n is
O(n2), the Integral Histogram can reduce this cost to O(1). As reported by [3],
to calculate the LSS descriptor for one pixel with patch size ω×ω and block size
N×N requires N2ω2 operations, the authors for [3] also mentioned that although
Fast Fourier Transform(FFT) can speed up the process with 3N2logN2 + N2

operations, the speed up is marginal as N > ω.
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In our experiments, we also compared the execution speed of the COHD
feature extraction algorithms with that of the HOG feature extraction algorithm
on the same platform, details are listed in Table 3. For the implementation of
HOG feature extraction, we use the code provided by [10]. Depending on each
particular sample, the speed of feature extraction varies, hence we compare the
total time needed to convert the entire training dataset to corresponding feature
descriptors. Details about each dataset is given in Table 2. Using Matlab 2009b
with a Windows XP(32bit) environment, on a computer with 3.16GHz CPU and
3.25GB of RAM, we obtained the results in Table 3.

Table 3. Speed Comparison for Feature Extraction

Face Human Car

HOG [10] 16.42 seconds 10.88 seconds 11.70 seconds
COHD 11.98 seconds 7.85 seconds 6.28 seconds
COHD(L1) 11.99 seconds 7.84 seconds 6.28 seconds
COHD(L2) 12.04 seconds 7.98 seconds 6.38 seconds

4 Conclusion

In this paper, we have proposed a self-correlation method to improve the saliency
of a weak feature, by dividing the detection window into sub blocks, we have pro-
posed three different normalization schemes for self-correlated features derived
from intensity histograms. The experimental results on MIT CBCL Dataset
proved that those self-correlated features can dramatically increase the feature
saliency. In particular, for MIT CBCL Face Dataset, the self-correlated feature
outperform one classical strong feature object detection framework. However,
this method is not limited to one particular type of feature, other weak features
can be enhanced by this self-correlation method as well.
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