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Abstract. This paper outlines image processes for object detection and
feature match weighting utilising stereoscopic image pairs, the Scale Invari-
ant Feature Transform (SIFT) [13/4] and 3D reconstruction. The process
is called FEWER; Feature Extraction and Weighting for Enhanced Recog-
nition. The object detection technique is based on noise subtraction utilis-
ing the false positive matches from random features. The feature weighting
process utilises a 3D spatial information generated from the stereoscopic
pairs and 3D feature clusters. The features are divided into three different
types, matched from the target to the scene and weighted based on their
3D data and spatial cluster properties. The weightings are computed by
analysing a large number of false positive matches and this gives an estima-
tion of the probability that a feature is matched correctly. The techniques
described provide increased accuracy, reduces the occurrence of false pos-
itives and can create a reduced set of highly relevant features.

1 Introduction

The scale invariant feature transform (SIFT) [I3] is used as a detection algorithm
for finding correspondence between features within parts of images thereby al-
lowing image matching to occur. In this paper we consider the specific matching
problem of a target stereoscopic image pair of a 3D object within a hand-held
stereoscopic video sequence. This paper introduces novel techniques for object
detection and feature weighting. The process is called FEWER; Feature Extrac-
tion and Weighting for Enhanced Recognition.

For the detection process a set of random features are matched to the scene
and the ratio of matches to the number of target features is used as a baseline
for noise as these are false positives. Subtracting this noise correspondence ratio
from the correspondence ratio calculated from a target image acts as a threshold
to indicate if the object is present in a scene.

For the weighting process a 3D point cloud is constructed from target and
scene stereo pairs and the features are clustered. For each image the features
are divided into three different types, matched from the target to the scene and
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weighted based on the their 3D and spatial cluster properties. This weighting
gives an estimation of the probability that a feature is matched correctly. The
technique, similar to the previous one, utilises the expected rate of false positives
found by studying how randomly selected features match to a scene, creating
noise property statistics.

The paper is structured as follows; background work, an explanation of the
noise subtraction based object detection, the feature weighting process, with an
explanation of the technique by which the weightings are calculated, followed by
evaluation and conclusions.

1.1 Background

The SIFT feature detection algorithm developed and pioneered by David Lowe
[4UT3] is a process that creates unique and highly descriptive features from an image.
These features are designed to be invariant to rotation and are robust to changes
in scale, illumination, noise and small changes in viewpoint. The features are used
to indicate if there is any correspondence between areas within images. This allows
object recognition to be implemented by comparing a set of features generated from
input images to a set of features generated from images of target objects.

As the target and scene data both consist of stereoscopic pairs a structure from
motion (SfM) system (Bundler API utilising a modified version of the sparse
bundle adjustment [7] as the optimisation engine) is used to detect different
types of matches and produce 3D geometric reconstruction.

Object recognition work using multiple views of a scene has been carried
out [BI8II8] using multiple images and rough registration information to de-
termine possible corresponding detections across multiple viewpoints. Work on
integrating information across many images has been conducted using Bayesian
strategies to combine uncertain information between views [L0/19]. Combining
data across multiple frames of a video to obtain depth information has also been
studied [IJ20]. Many other papers show that the use of 3D depth information
BIGIBITTIT2ITOITT] can be applied successfully to aid object recognition.

Although the processes in this paper use SIFT they could be applied to many
other feature detectors such as SURF [2], GLOH [15] or FAST [9].

2 Noise Subtraction for Object Detection

The initial basis for this work is a novel method to detect the presence of an
object using the ratio of matched features to the total number of features in a
target image. The target image is that of the object being searched for in a pair of
scene images. By dividing the total matched features by the total features in the
target image the correspondence ratio can be found. This normalises the number
of features matched therefore different target images with varying numbers of
features can be compared. For example, an image with five hundred features
may have fewer matches to a scene than an image with two thousand features,
but may have a higher correspondence ratio. The higher absolute number of
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Fig. 1. The results of noise subtraction across 1062 frames of a video sequence. The top
left graph shows the feature count for each frame. The top right hand graph shows the
result of noise subtraction where the peaks indicate the presence of the object and the
bottom left graph shows the target correspondence ratio for the object being identified
(524 features) and the bottom right graph shows the false positive noise from a set of
fifty thousand randomly collected features. Green (lighter) areas highlight those frames
where the object is not present at all and these are shown to be negative on the top
right, noise subtraction, graph.

matches in the second images may be noise (false positives) as the larger number
of features available means more false positives will occur.

The technique uses the correspondence ratio for a large numbers of randomly
collected features as a noise baseline for a particular scene. The features were
collected automatically by randomly downloading large numbers of images from
Flickr and applying SIFT to them. As these features are known to be random
they are unlikely to match. This means that the ratio of matches indicates a
level of matches that are statistically insignificant for an object that is being
detected. As such, a ratio greater than this baseline of noise plus the average
standard deviation can be deemed statistically significant (1o) for detection.
Tests have shown that using SIFT’s default parameters has an average false
positive rate of 0.024 and an average standard deviation of 0.007 for a random
set of one million features. It has also been calculated that as few as ten thousand
random features are enough to achieve these noise characteristics. This therefore
means that on average a correspondence ratio greater than 0.031 is required for
the number of matches to a scene to be deemed statistically significant.

By subtracting the noise correspondence ratio from the actual target cor-
respondence ratio the data is automatically thresholded such that many false
positives from the target to the scene will be ignored. Fig. [Il demonstrates this
for a target image matched to 1062 frames of a video sequence where the object
is present in most but not all of the frames.
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3 FEWER: Feature Extraction and Weighting for
Enhanced Recognition

Following this initial technique for subtraction of SIFT noise a second process
has been developed which utilises the 3D stereoscopic image pairs of the target
and scene to specify weighted feature matches to indicate confidence in their ac-
curacy. This is called FEWER; Feature Extraction and Weighting for Enhanced
Recognition. A pair of target images of the object that is being detected and a
pair (or stream of pairs) of stereo images of a scene are used. Simply put, if a
feature doesn’t match well to its counterpart in a stereo pair the chances of it
being stable are lower. The process has nine stages:

Extract SIFT Features. Extract the features from the target and scene stereo
pairs as shown in Fig.

Fig.2. A stereo pair of target images displaying the SIFT features extracted from
them. There are 2176 in the left image and 2087 in the right image.

Calculate 3D Positions. For both the target and scene pairs a 3D point cloud
is generated from the features as shown in Fig.

Fig. 3. The set of 3D feature positions generated from the stereo pair in Fig. [2] using
the Bundler API [7]. The first two images show two different angles for the same data
and the curvature of the shoe is clearly visible. This is a subset of the total features
extracted from the original images and consists of 885 features. The right hand image
shows the type3 features spatially clustered.

Cluster 3D Data. The 3D matched features are then spatially clustered in 3D
space (using k-means [14]) to separate and label various 3D aspects of the scene.
Clusters help differentiate between foreground and background objects.
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Fig. 4. The final set of clustered type2 and type3 features for the left and right images
in a stereo pair. There are 1802 in the left image and 1782 in the right image.

Fig. 5. The set of clustered features in a scene input image. The advantages of spatial
clustering are clearer here as various objects have are roughly separated by the different
clusters so as to provide more information when matching features.

Feature Labelling. Three different feature types are defined depending on
their 3D and cluster properties. Type3 features are labelled by mapping the 3D
features back to their 2D image locations for each image. Type3 features are
those which have 3D information associated with them and therefore match to
the other stereo image. To define type2 features a distance threshold is used to
find other features near each of the type3 features and they are added to the
clusters. These features are likely to be part of the same object as they are nearby
but as they do not match to the other stereo image they can be considered less
reliable. These are therefore labelled as type2 and a secondary cluster index is
generated for them. The remaining features are then labelled as typel and they
do not have any cluster information relating to them.

Target to Scene Matching. Feature matching is performed for each target
to scene combination; left target to left scene, left target to right scene, right
target to left scene and right target to right scene. This is done using the nearest
neighbour technique described by Lowe [13].

Initial Weighting. Each target image has its own set of weighting for matches
to both of the scene images. Thus four sets of weightings are calculated. The
initial weightings for each feature are given by which type they are and which
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type they match too. A type3 target to type3 scene match will have a larger
initial weighting than a type3 target to typel scene match. There are therefore
nine possible combinations of matches each with their own weighting.

Type 3 Mismatches. The weightings are then adjusted by checking if matching
pairs of type3 features from each target image match to similar positions in the
scene images. Fig. [0l illustrates these cases. If the same type3 feature in both
of the target images matches to different points in the scene the weighting is
reduced as the likelihood of one or either being correct is reduced. The weighting
is effected differently if the single scene feature is type3 or not type3.

Left Scene Right Scene Left Scene Right Scene

R A

a / ; b

Left Target / Right Target Left Target Right Target
==

Fig.6. This shows the two cases for type3 mismatches. Case a shows the
(lighter) and incorrect (darker) matches from type3 features in the target images to
any type of scene feature. Case b shows the and incorrect matches from the
target image to the type3 scene features.

A secondary check is carried out for each target feature which matches to a type3
scene feature. If the feature matches to both corresponding type3 scene features
then the weighting is increased. If a target feature matches a type3 scene feature
and also matches a different feature in the other scene image then the weighting
is reduced. There is no effect if the target feature matches one scene but not the
other. Again the weighting is affected differently if the single target feature is
typed or not type3.

Cluster Weightings. The next stage is to adjust the weightings based on the 3D
spatial cluster that a feature is in and how groups of features in the same cluster
match. The basic hypothesis is that as more features in a target cluster match to
a specific scene cluster the more likely it is that there is correspondence between
these areas of the scenes. The confidence weighting is calculated as follows:

signal

confidence = x \/sample size (1)

noise

where signal is the correspondence ratio from a target cluster to a scene cluster,
noise is the correspondence ratio from the target cluster to every other scene
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cluster and sample size is the total correspondence ratio from the target cluster
to all of the scene clusters. A confidence value is calculated for each target
cluster to every scene cluster. This equation means that the sample size and the
signal both have to be significantly large to generate a high confidence thus a
low numbers of matches will not be statistically significant when calculating a
feature’s weighting. This confidence value is thresholded so that a high confidence
cluster pair will result in a higher weighting for features which match between
them. The boundaries and distribution of the clusters can affect the performance
of this technique and as such there is no negative weighting for low confidence.

Threshold Matches. The weighting is normalised transforming its value into
the range of 0 to 1. A threshold can now be applied to select a subset of the
weighted feature matches.

Table 1. The stages used for extracting and weighting features with FEWER
Stage Output

Extract SIFT Features  Sets of SIFT image features.
Calculate 3D Positions  Relative 3D positions of matched features.

Cluster 3D Data Index of features indicating the cluster they are contained in.
Feature Labelling Features labelled by type.

Target to Scene Matching Indies indicating where features match to the scenes.

Initial Weighting Weightings for each feature match.

Type 3 Mismatches Updated weightings based on a disparity in matches.

Cluster Weightings Updated weightings based on matches between clusters.
Threshold Matches Set of matched features with weightings above a threshold.

4 Calculating Weightings from Noise

Values for the FEWER weighting adjustment stages described above have to be
calculated to weight various characteristics of a matched feature. This is done by
studying the noise properties for each stage using a set of stereo features know
not to match correctly. By looking at the level of false positives for various feature
match types ratios can be calculated which indicate how much more reliable one
type of match is than another. The data describes how each type of match is
affected by false positives. For the initial weighting stage the correspondence
ratio for false positives for each match combination is calculated using large sets
of random features. They are matched to videos which are known to contain
no correspondence to the scene image. By obtaining the average correspondence
ratio across the frames and adding the standard deviation it can be seen for the
test data that type3 to type3 feature matches have a correspondence ratio 16
times less (0.64 / 0.04 from the full set of data listed in Tab. 2] than typel to
typel thus the weighting reflects this directly. The weighting (w) is calculated
as follows:

1 relevant matched features
w=k X (2)
T+o total matched features
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where 7 is the mean noise value across a sample, o is the mean standard deviation
of the noise and k is a scaling factor. The relevant matched features are the subset
of the total matched features actually involved in the particular weighting process
so that the weightings are scaled accordingly.

Table 2. Weighting values calculated from experimental data for different aspects of
the weighting process. The left table shows the initial match weighting values and the
right show the type3 mismatch weightings. T and S refer to Target and Scene.

typel S type2 S type3 S type3 S type3 T
typel T 0.04 0.11 0.26 correct type3 0.12 0.06
type2 T 0.06 0.41 0.39 correct not type3 0.07 0.01
type3 T 0.11 0.75 0.64 incorrect -0.48 -9.3

The same process is used to calculate the weightings for the type3 mismatches
where the number of false positives matches are used but as only the type3 fea-
tures are involved the relevant matched features value reflects this. This incor-
porates a negative weighting for mismatches which have a relatively high cost
as seen in Tab.

For the cluster weightings, analysis has provided data on how well false pos-
itive matches cluster and what is the minimum level of cluster matching confi-
dence required to occur beyond random chance. This allowed a cluster confidence
threshold to be calculated using the same equation and a weighting for values
greater than the threshold to be defined. This only relates to type2 and type3
features as typel features are not clustered. The threshold was calculated to be
0.00015 and the weighting value added to matches greater than this threshold is
0.4 when using six clusters.

After these three stages the maximum possible weighting that can be achieved
using the experimental data weightings is 1.36 and this value is used for normal-
isation.

5 Results

Following the weighting calculations based on over 2000 frames of video and over
20000 stereo target features, the system has been tested on different target and
scene input data within a similar environment. The test involved a 2500 frame
stereo video with a target object located within the sequence. Stereo images of
the target objects are matched to each frame using the techniques described
previously. The system outputs the four match images for each combination of
target to scene matches with the matched features drawn using a heat map style
colour coding. The colour changes linearly through RGB space from blue to
green to red as the weighting increases.

Figs [ and Rl shows examples of the coloured weightings as feature matches are
deemed to be of higher or lower reliability. The images are consistent with the
other frames in the sequence and show that incorrect matches are weighted lower.
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Fig. 7. A typical example of weighted feature matching displaying matches from the left
hand target image to the left scene image. Some of the correct matches are green and
red indicating higher weightings. The mismatched features in this scene have received
low weightings and are coloured blue. The feature matches with low weightings can
be removed by adjusting the weighting threshold which is set at 0 in these cases. The
graph below shows the weightings for each of the 33 matched features and whether
they match correctly.

Fig. 8. A typical example of weighted feature matching displaying matches from the
left hand target image to the left scene image. This shows false positives matches
sucessfully being weighted with lower values.

Fig. @ shows the correspondence ratio across the 2500 frames and the large
peak indicates the location of the target. By adjusting the weighting threshold it
is shown that the false positive count is reduced leaving many of the most reliable
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Fig. 9. This shows the correspondence ratio before and after applying a threshold on
the feature weightings. The graphs are the mean of the four possible match scenarios
(each target to each scene). The peak indicates the location of the object. The left
graph shows the correspondence ratio when no threshold has been applied and the
right graph shows what happens when a threshold of 0.9 is applied. This reduces the
remaining correspondence ratio substantially but the features remaining are of a higher
quality and fewer false positives are present across the video sequence.

features. The weighting threshold could be computed adaptively by analysing a
set of known false positive feature matches in a similar manner to Section 2] and
adjusting the weighting to minimise them.

6 Evaluation

FEWER has been shown to weight the features successfully. It relies on the
probability of a feature type being a mismatch therefore, in some cases, incorrect
matches can be weighted highly and vica-versa. Investigating how often this
occurs will be future work. The weighting threshold provides a sliding scale
between a small number of highly reliable matches and a large number of features
including more unreliable matches.

The reason FEWER works is that type3 features are likely to be more stable
than the other features as they correspond between the stereo images and are
therefore known to match to a different view of the object. The SfM process [7]
could be removed and normal SIFT matching used instead to generate type3
features. The SfM process has its advantages for clustering and background
separation and is more discriminative when matching than just using SIFT as
the matched features have to fit correctly to a 3D model not just match. The
type2 features are more stable than typel as the features are likely to exist on
the objects that have been matched between the stereo objects due to their
proximity to the type3 features and less likely to be background features. T'ypel
features are the least stable and have no extra properties associated with them.
The difference between them is highlighted in Fig. 10Ol

FEWER allows the system to select a subset of features which are higher in
confidence rather than just thresholding using the noise properties in Section
which has no indication of which features are likely to be correct. A combination
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Fig. 10. These are the mean correspondence ratio graphs for the three feature types for
matches from both target to both scene images. It can be seen that the typel feature
matches have fewer peaks and troughs and the green (lighter) areas, where the object is
not present are harder to distinguish than for the type3 feature matches. They therefore
resulted in lower weighting (see Tab. ). For the random data used for calculating
weightings in Section [ these graphs are flatter with lower correspondence ratios. They
display the random noisy correspondence ratio and give a minimum baseline for noise
for each feature type.

of the noise thresholding for detection and FEWER could be used so that the
computationally expensive weighting process is only applied to frames which are
likely to contain the object to select the best matches.

7 Conclusion

The results of this work are promising and provide a technique for identifying
and selecting the best feature matches. The results have shown examples of
features being weighted to indicate which matches are correct and which are
incorrect. The advantages of FEWER are clear as the detection process provides
a higher confidence in the matches than standard SIFT matching alone. The
system could result in lower data transmission rates as fewer matched features
are selected.

Further development of the algorithm will involve data fusion to combine the
four output images (left target to left scene etc.) into a single location mapped to
a 3D model and superimposed on the 3D scene model. This will provide the user
with a consolidated view of the output data to visualise where features match.
Also, since the epipolar geometry is available, the weighting could possibly be
improved at the matching stage by limiting the search region to a band around
the epipolar lines. Comparison will be made to other methods for reducing the
number of incorrect mathces using outlier detection methods such as RANSAC
alone or the Hough binning used by Lowe [13].
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