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Abstract. We address a photometric stereo problem that has unknown
lighting conditions. To estimate the shape, reflection properties, and
lighting conditions, we employ a nonlinear minimization that searches
for parameters that can synthesize images that best fit the input images.
A similar approach has been reported previously, but it suffers from slow
convergence due to specular reflection parameters. In this paper, we in-
troduce specular-free residual minimization that avoids the negative ef-
fects of specular reflection components by projecting the residual onto
the complementary space of the light color. The minimization process si-
multaneously searches for the optimal light color and other parameters.
We demonstrate the effectiveness of the proposed method using several
real and synthetic image sets.

1 Introduction

Photometric stereo is a method for recovering the shape and albedo of an object
from a set of images, when the object and the camera are fixed but the lighting
conditions vary between images. A classical formulation assumes that the object
is a Lambertian surface and that the lighting conditions are known. Several
recently developed methods consider unknown lighting conditions and/or non-
Lambertian surfaces (e.g., [4,14,3,10,2,11,12]).

We have developed a method based on the formulation of Migita et al. [6],
that directly minimizes a cost function to estimate the shape and the reflection
properties of the object and the light position for each image. The cost function
is the difference between input and synthesized images based on the Torrance-
Sparrow model [13]. In this study, we modify the cost function to improve the
performance because the nonlinearity of the Torrance-Sparrow model causes the
cost function to be highly nonlinear and thus convergence tends to be slow.

This method involves decomposing the residual (an RGB vector of the differ-
ence for each pixel) into two subspaces: a 1d space parallel to the light color and
a 2d space orthogonal to the light color. This decomposition is similar to that
proposed by Zickler et al. [15]. By using the latter component only, the specular
term is removed so that the estimation should be faster and more accurate. In
addition, removing specular component reduces the number of parameters to be
estimated.

However, there are some disadvantages with removing nonlinear components
from the input images. For example, the method cannot be used for monochrome
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Fig. 1. Reconstructed shape

......

Fig. 2. Images under various lighting conditions

images. Another problem is the generalized bas-relief (GBR) ambiguity [1,7,11].
Since our method removes the specular component, which may help resolve the
ambiguity, we have to rely only on the effect of near light sources to resolve the
ambiguity.

The new formulation does not use the Torrance-Sparrow model. Instead the
dichromatic reflection model [9,5] is used. This model is commonly used to ana-
lyze a color histogram to estimate the light source color. However, in our method,
estimation of the light source color is integrated with the minimization process
so that it is not a separate process.

We verify the effectiveness of our method using several real and synthetic
image sets.

2 Formulation

This section describes our formulation, which is referred to as the specular-free
residual (SR) minimization hereafter. We describe the similarities and differences
between our method and another method [6], which we call the full-color residual
(FR) minimization.

The method is essentially a photometric stereo method, which recovers the
object shape (e.g., Fig. 1) from images obtained under various lighting condi-
tions, such as Fig. 2. Input images are of a static object and are obtained by a
static camera. We also assume that the lighting is a single point light source in
the near distance. We need to estimate the shape and the reflection properties of
the object and the light position for each image. The reconstruction is performed
by nonlinear minimization by comparing input with images synthesized using an
image generation model (see below).

2.1 Full-Color Residual Minimization

Each pixel in the input image corresponds to a surface element of the object,
and its intensity is described by a certain reflection model.

The FR minimization uses a simplified version of the Torrance-Sparrow model
[13] to describe the input intensity efp (an RGB vector for the p’th pixel in the
f ’th image) as follows:
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and rfp is the residual, np is the normal vector, lf is the light position, v is
the camera position, � is the focal length of the camera, dp is an RGB vector
describing the diffuse reflectance, sp is the specular reflectance, S is an RGB
vector describing the light color, ηf is a coefficient describing the attenuation
of the light intensity due to the distance between the light and the object, ρ is
a specular parameter, and N [·] is an operator that normalizes the norm of a
vector to 1.

Note that for the first term in eq. (1), |βfp| ≥ π/2 implies that the surface
element is in an attached shadow region, which means the light is not positioned
in front of the surface element. Consequently, this term is replaced with 0 in this
case.

In the FR minimization, the shape, the reflection properties and the lighting
conditions are reconstructed by minimizing the following cost function.

E(p) =
1
2

F∑

f=1

P∑

p=1

|rfp|2 (3)

where rfp is the residual term in eq. (1). Note that, when the surface element for
the p’th pixel in the f ’th image is judged to be saturated or too dark (may be
due to a cast shadow), we set rfp = (0, 0, 0)T . The minimization is performed
by Levenberg-Marquardt (LM) method [8], the details of which are given in
section 3.

2.2 Specular-Free Residual Minimization

In the FR minimization, the specular term (i.e. the second term in eq. (1))
strongly reduces the convergence rate of the LM minimization process. Further-
more, it is computationally very expensive to calculate its derivative function,
which is required for the minimization. Thus, the basic idea of the present study
is to remove the specular term by using the following cost function instead of
eq. (3):
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with S = (S1, S2, S3)T . Since S×S = 0, we can calculate the specular-free resid-
ual S×rfp without calculating the second term in eq. (1). Thus, in our method,
specular reflection is not limited to the Torrance-Sparrow model. Instead, the
method employs a dichromatic reflection model; i.e., the specular color is same
in every pixel, although its scale can differ between pixels.

However, this formulation has several drawbacks, because the cross product
operation removes a part of the diffuse component in addition to the specular
term. Consequently, some important information is lost. For example, it can-
not process monochrome input images. Full-color input images are required to
decompose the residual vectors into components parallel and orthogonal to the
light color. Specifically the object must have two or more colors besides the light
color to avoid a local minima that causes the estimator for S to converge to the
diffuse color rather than the specular color.

In addition, the estimation is greatly stabilized by normalizing the residual
terms in eq. (4) as follows:

E(p) =
1
2
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P∑

p=1

|S×rfp|2
∣
∣S×yp

∣
∣2
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f

efp

⎤
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This normalization is interpreted as follows. Applying S× from left, the input
intensity is somewhat scaled and the scale factor is dependent on the color of
the corresponding surface element. This scale factor should be compensated to
accurately evaluate the residual rfp.

Another problem that needs to be considered is the GBR ambiguity. This
ambiguity is described as follows. The Lambertian component is expressed in
a bilinear form lT n, which could be transformed into (A−T l)T (An) by any
nonsingular 3×3 matrix A. Using the integrability constraint, A can be specified
up to three degrees of freedom [1]. To determine the remaining three parameters,
previous studies have used several nonlinearities [7,2,10]. The FR minimization
has some such nonlinearities. However, since our SR minimization removes the
specular component, we have to use another clue to resolve the ambiguity. The
most important clue is the attenuation with distance between the light source
and the object, as shown in [7]. Below, we present an experimental result that
demonstrates that this nonlinearity can resolve the ambiguity.

2.3 Estimation Parameters

The parameters to be estimated form a large vector p. The p consists of four
kinds of parameters: the object shape, the reflection properties, the global pa-
rameters, and the light positions as

p =
(
pT

w, pT
s , pT

m, pT
l

)T
. (7)

Object Shape. The object shape is described by the depth λp for each pixel.
A vector containing all the depths is ps = (λ1, · · · , λP )T , where P is the number
of pixels to be estimated.
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From the depths, the 3d coordinates xp for the p’th surface element are cal-
culated using the following formula:

xp = λp(
up

�
,
vp

�
, 1)T + (up, vp, 0)T (8)

where (up, vp)T is the 2d coordinates of the pixel with respect to the image
center and � is the focal length of the camera. For affine camera model, � is
set to infinity, while for projective camera model, � is set to a finite value. The
world origin is located at the center of the image plane and the camera position
v is (0, 0,−�)T .

The surface normal np for the p’th pixel is calculated from the 3d coordinates
of its neighboring pixels, l, r, t, b (i.e., left, right, top and bottom, respectively),
as follows:

np = (xt − xb) × (xr − xl) . (9)

The normal is not limited to being a unit vector. Instead, normalization is in-
cluded in the cosine operations in eq. (2).

Reflectance. In our SR minimization, reflection parameters are the diffuse
colors dp for each pixel. Unlike the FR minimization, specular reflectance sp is
not required. Therefore, pw = (dT

1 , · · · , dT
P )T .

Global Parameters. The only global parameter in the SR minimization is
the light (or specular) color S, whereas the FR minimization has an additional
specular parameter, ρ.

Light Positions. The light position is estimated for each image. Thus, pl =
(lT1 , · · · , lTF )T , where F is the number of input images.

3 Minimization

Letting the number of pixels to be P , there are more than 4P elements in p.
Thus, the search space can typically have the dimension of about 100,000. An
algorithm is required that can deal with a minimization problem on this scale.

3.1 LM Method

We use LM method for minimizing the cost function, as in the FR minimization,
which is given by:

pk+1 = pk − (JT
k Jk + μkI)−1JT

k rk (10)

where rk is a vector containing all the (specular-free) residual vectors, and J is
the Jacobian matrix. The subscript k indicates the value is dependent on the
parameter pk. The initial value p0 is discussed in section 3.3.
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Each (specular-free) residual depends on only 14 parameters: the diffuse re-
flectance, the depths of neighboring pixels, the light color, and the light position.
Thus, the Jacobian contains 14 non-zero elements in each row. The following
equation for the total derivative of rfp contains all the non-zero entries in Jk.

δrfp =
∂rfp

∂dp
δdp +

∂rfp

∂λp
δλp + · · · + ∂rfp

∂lf
δlf . (11)

The Hessian matrix can then be easily calculated. Its structure is given by:

JT
k Jk = (12)

Each block contains (from left to right or top to bottom) approximations of the
second order derivatives corresponding to pw, ps, pm, and pl, respectively.

For each iteration, we have to solve a linear system with this coefficient ma-
trix. Although this matrix is large, it is relatively sparse. To exploit its sparse
structure, it is preferable to use a preconditioned conjugate gradient method [8]
to solve the system.

3.2 Preconditioned Conjugate Gradient Method

We use the following preconditioned conjugate gradient method to solve Aw = b:

wk+1 = wk − αkdk (13)

where

dk =
{

C−1g0 (k = 0)
C−1gk + βkdk−1 (k > 0)

gk = Awk − b

βk = gT
k C−1gk/gT

k−1C
−1gk−1

αk = dT
k C−1gk/dT

k Adk

Here, C is a preconditioner, which should be an approximation of A and compu-
tationally easy to invert. This is constructed by taking the block diagonal part
of A, or JT

k Jk + μkI in eq. (10), as:

C = (14)
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Fig. 3. Initial shape
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Fig. 4. Residual w.r.t. iteration

3.3 Initialization

The initial parameter of the LM process is as follows.

Object Shape. We initialize the shape as a simple paraboloid described by the
following formula by an appropriate set of parameters (a, b):

λp = au2
p + bv2

p (15)

Fig. 3 shows an example. Using an appropriate curvature is effective for avoiding
local minima. Otherwise a convex shape may be recovered as a concave object.

Lighting. There are two types of lighting parameters: color, which is initialized
to (1, 1, 1)T (i.e., a white light source), and the light position for each image,
which is initialized to (0, 0,−d)T , which is independent of f , where d is an
appropriate value.

Although this is a very rough initialization, the nonlinear optimization algo-
rithm can search for a reasonable shape and light positions. A more elaborate
initialization such as a method based on SVD [14] may improve the convergence.

Reflectance. The Lambertian parameter dp is an RGB vector that is a scalar
multiple of the reflectance. It is initialized by taking an average of the input
images as in the following formula.

dp =
1
F

F∑

f=1

efp (16)

4 Experiments

The SR minimization was tested on several real and synthetic image sets.
In several of the experiments, affine and projective camera models were tested

and the results obtained were similar. The results given below are based on the
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affine model (i.e., infinite �). Note that the computational cost for infinite � could
be significantly smaller than for a finite �, although this is not the focus of this
paper.

4.1 Convergence Speed

The SR minimization removes the specular components to speed up conver-
gence. Fig. 4 shows the convergence speeds for FR and SR minimizations for an
synthetic image set. The SR minimization converges much faster than the FR
minimization. Although comparison of absolute RMSE values are not so mean-
ingful because the definitions of the residuals are different, the RMSE cannot be
significantly lower than 10−6, since the input images are given in 32-bit floating
point format. The SR minimization reached this limit after about 200 iterations,
but we doubt that the FR minimization will reach this limit.

4.2 Resistance for GBR Ambiguity

We verified that the nearby lighting can resolve GBR ambiguity in our formula-
tion. To demonstrate this, we used two sets of synthetic images. One is rendered
using near light sources and the other using distant light sources. Several min-
imization trials were conducted using various initial values that were created
by applying different GBR transformations to the same converged parameters.
Fig. 5 shows the results. The bottom row corresponds to the cases for near light
sources. The same distinctive shape was obtained from several initial values.
In contrast, the reconstructed shapes were not fully corrected for distant light
sources (the top row).

4.3 Real Image Sets

Here, we present several experiments on real image sets. We stopped the search
after 200 iterations. The results fully converged for several image sets, but not
for other image sets.

In these experiments, we used multiple light sources that had different in-
tensities, despite the fact that eq. (1) assumes that every light source has the
same intensity. This might generate some error in the distance between the light
source and the target object.

Apple. A fresh apple was imaged in a dark room. The light positions are shown
in Fig. 6. We obtained 24 images, several examples of which are shown in Fig.
7. The size of each image is 125 × 133 pixels, and 11,098 points are estimated.
The FR and SR minimizations produced the results shown in Fig. 8 and Fig.
9, respectively. In Fig. 8, the estimation produced a concave object, which is
apparently a failure. This is due to an intense specular reflection near the image
center. In Fig. 9, on the other hand, the estimated shape appears smooth and
apple-like. This result is an example of the SR minimization outperforming the
FR minimization.
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Distant light

Near light

Fig. 5. Shapes reconstructed from several initial values

object

light camera

Fig. 6. Configuration Fig. 7. Example images of an apple

Fig. 8. Apple results by FR minimization Fig. 9. Apple results by SR minimization
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lights

rotation

object

rotation axis

Fig. 10. Lighting system Fig. 11. Example images of a wooden
figure

Fig. 12. Results for a wooden figure

(a) Side view (b) Top view

Fig. 13. Light positions and a wooden figure

Fig. 14. An image of a human face Fig. 15. Results for a human face
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Wooden Figure. A wooden figure was imaged using the lighting system shown
in Fig. 10, which has six light bulbs on a rotating arm. We obtained 36 images
(Fig. 11) that were 128× 296 in size and 25,480 pixels were used for the estima-
tion. The resulting shape is shown in Fig. 12, and the light positions are shown
in Fig. 13 along with the reconstructed object. We used this sequence because
the light positions are known to form a cylinder. Fig. 13 shows slightly distorted
cylinder. One possible cause for this distortion is that the light bulbs have dif-
ferent intensities. On the other hand, the angles between the light columns are
estimated well, as the top view image shows. The radius and the height of the
estimated cylinder divided by the object height are approximately 3.2–4.2 and
4.6–5.5, respectively. There are considered to be reasonable results compared to
their actual values of 3.7 and 5.0, respectively.

Human Face. We show an example of applications to human faces. The input
images, an example of which is shown in Fig. 14, were obtained in the environ-
ment shown in Fig. 6. There are 24 images with a size 185×220, and 35,629 pixels
of which were used for the estimation. The eye regions were manually removed
because they were too glossy. The result is shown in Fig. 15. It is a satisfactory
result, since it does not exhibit any severe degradation due to specular reflection
and/or shadows cast around the nose.

5 Conclusions

This study considered a photometric stereo problem with unknown lighting con-
ditions. It has been reported [3,6] that the shape and the reflection properties
of the object and the lighting conditions can be recovered by minimizing the
differences between input and estimated images based on a reflection model. In
this paper, the cost function of the minimization is not constructed from the
full-color residual, but from a specular-free projection of the residual in a space
orthogonal to the light color. Using several real and synthetic image sets, we
demonstrated that the specular-free residual (SR) minimization exhibits better
performance than the full-color residual (FR) minimization for several cases.

This work was supported in part by the Ministry of Education, Culture,
Sports, Science and Technology, Japan, under a Grant-in-Aid for Young Sci-
entists (B) (No. 22700181).
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