


Lecture Notes in Computer Science 7087
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Yo-Sung Ho (Ed.)

Advances in Image
and Video Technology

5th Pacific Rim Symposium, PSIVT 2011
Gwangju, South Korea, November 20-23, 2011
Proceedings, Part I

13



Volume Editor

Yo-Sung Ho
Gwangju Institute of Science and Technology (GIST)
1 Oryong-dong Buk-gu, Gwangju, 500-712, South Korea
E-mail: hoyo@gist.ac.kr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-25366-9 e-ISBN 978-3-642-25367-6
DOI 10.1007/978-3-642-25367-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011940679

CR Subject Classification (1998): H.5.1, H.5, I.4-5, I.2.10, I.3, H.3-4, E.4

LNCS Sublibrary: SL 6 – Image Processing, Computer Vision, Pattern Recognition,
and Graphics

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

We are delighted to welcome readers to the proceedings of the 5th Pacific-Rim
Symposium on Video and Image Technology (PSIVT 2011), held in Gwangju,
Korea, during November 20-23, 2011. The first PSIVT was held in Hsinchu,
Taiwan, in 2006. Since then, it has been hosted successfully by Santiago, Chile, in
2007, Tokyo, Japan, in 2009, Singapore in 2010, and finally Gwangju, one of the
beautiful and democratic cities in Korea. The symposium provides a forum for
presenting and discussing the latest research and development in image and video
technology and explores possibilities and future directions in the field. PSIVT
2011 continued to attract researchers, artists, developers, educators, performers,
and practitioners of image and video technology from the Pacific rim and around
the world.

In PSIVT 2011, the Program Committee was made up of Area Chairs and
a Technical Program Committee. The technical areas of PSIVT 2011 covered
Image/Video Coding and Transmission, Image/Video Processing and Analysis,
Imaging and Graphics Hardware and Visualization, Image/Video Retrieval and
Scene Understanding, Biomedical Image Processing and Analysis, Biometrics
and Image Forensics, and Computer Vision Applications. For each technical
area, at least two Area Chairs were assigned to coordinate the paper-review
process with their own team of reviewers selected from the Technical Program
Committee. The review process was double-blind in which author names and
affiliations were not made known to Area Chairs and reviewers. Reviewers also
did not know their Area Chairs. Each paper received at least three reviews. The
reviewers were asked to submit a detailed review report and the Area Chairs
made the final decisions on the acceptance of papers with little moderation
from the Program Chairs. In PSIVT 2011, we accepted 71 papers out of 168
submissions including oral and poster session papers. The acceptance rate of
42% indicates our commitment to ensuring a very high-quality symposium.

PSIVT 2011 was organized by the Realistic Broadcasting Research Center
(RBRC) at Gwangju Institute of Science and Technology (GIST) in Korea. The
symposium was supported by the Center for Information Technology Education
(BK21) at GIST, Gwangju Convention and Visitors Bureau, and the MPEG
Forum in Korea.

This symposium would not be possible without the efforts of many peo-
ple. First of all, we are very grateful to all the authors who contributed their
high-quality research work and shared their knowledge with our scientific com-
munity. We would also like to appreciate the full support of the excellent Program
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Committee and all reviewers that provided timely and insightful reviews. Finally,
our thanks must go to all members of the Organizing and Steering Committee for
their precious time and enthusiasm. They did their best in financing, publicity,
publication, registration, Web and local arrangements.

November 2011 Yo-Sung Ho
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Abstract. This paper presents a method for color image enhancement in HSV 
space with preserving image details. The RGB color image is converted into 
HSV space and V channel image is now subjected for enhancement. By applying 
image dependent nonlinear transfer function the local image contrast preserving 
dynamic range compression as well as contrast enhancement is performed 
simultaneously on the V channel image. Finally, the enhanced V channel image 
and original H and S channel images are converted back to RGB image to obtain 
enhanced RGB image. The original color of the image is preserved because H 
and S component are kept unchanged. The experimental results show that the 
performance of the proposed method is better in terms of both subjective and 
objective evaluation in comparison with conventional methods. 

Keywords: nonlinear transfer function, dynamic range compression, image 
local contrast, multiscale enhancement. 

1   Introduction 

The image captured in natural environment with high dynamic range (HDR) includes 
both bright and dark regions. The camera has the capability to capture high dynamic 
range images, while most of the display devices have low dynamic range. On the 
other hand if the dynamic range of human eye sensing is exceeded, it is difficult to 
perceive the HDR images. Image enhancement with dynamic range compression is a 
common approach to improve the quality of those images in terms of human visual 
perception. The image enhancement techniques can be divided into two categories 
namely: spatial domain methods and transform domain methods. In spatial domain 
methods the intensity of the pixel in image is directly manipulated. But in transform 
domain techniques the image intensity data is transformed into specific domain by 
using methods such as DFT, DCT, DWT, etc. and the frequency content of the image 
is altered for image enhancement. 

Various image processing technique have been developed to improve the quality of 
the image in terms of human visual perception. One of the traditional and well known 
techniques for image contrast enhancement is histogram equalization (HE). But HE in 
its original form tends to introduce some annoying artifacts and unnatural enhancement. 
To overcome those problems different variants of traditional HE method are developed. 
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In the literature methods like [1], [2], [3], [4] etc. can be found as modified HE based 
method for image contrast enhancement. Methods like [1], [2] divides image into two 
sub images based on mean and median of the original image respectively and performs 
the HE in each image independently. At last, the processed sub images are composed 
into one image to get the final result. An improved version of those methods is 
presented in [3]. Here separation is done recursively; separates each new histogram 
further based on their respective mean. As the number of separation increases, the 
output image’s mean brightness will converge to the input image’s mean brightness. 
Similarly method [4] modifies the histogram of the original image by weighting and 
thresholding before the HE. But, the problem with HE based methods is that it is 
indiscriminate. It may increase the contrast of background noise, while decreasing the 
usable signal. On the other hand it produces unrealistic effects in the images.  

R. Fattel et al. [5] developed a gradient domain high dynamic range compression 
method. They modified the gradient field of the luminance image by attenuating 
magnitude of the large gradients and obtain the low dynamic range image by solving 
a Poisson equation on the modified gradient field. On the other hand Debevec et al. 
[6] develop a method of recovering high dynamic range radiance maps from ordinary 
photographs. Their algorithm used the multiple differently exposed photographs to 
recover the response function of the imaging process and with this response function 
the algorithm can fuse the multiple photographs into single, high dynamic range 
radiance map. The multiscale retinex based method, e.g., Jobson et al. [7], and single 
scale retinex based image enhancement method, e.g., Choi et al. [8] are also 
developed, in which luminance enhancement and contrast enhancement are realized 
simultaneously. Tao et al. [9] presented an adaptive and integrated neighborhood 
dependent approach for nonlinear enhancement (AINDANE) to improve the visual 
quality of digital images captured under low or nonuniform illumination conditions. It 
consists of two independent processes: adaptive luminance enhancement and adaptive 
contrast enhancement, which are applied to treat luminance information of images. 
Recently, many transform based enhancement techniques have also been developed. 
Xiao et al. [10] proposed a method for enhancing contrast of the image based on 
wavelet transform and human visual system. Clement et al. [11] developed the image 
enhancement algorithm in compressed DCT domain which is able to enhance both 
dark and bright region of an image equally well. 

Most of the digital video cameras have adopted a knee curve as a dynamic range 
compression function. This method strongly compressed the highlighted range over 
the knee point, so the contrast in the highlighted region is much degraded. To improve 
this problem an auto knee curve has been used for dynamic range compression. 
However, the auto knee slightly improves the highlight contrast instead of lowering 
the luminance in the middle range. To solve these problems an approximated auto 
knee curve is used by Monobe et al. [12] for dynamic range compression with 
preserving local image contrast. This algorithm automatically and adaptively 
enhances the local image contrast in the highlighted regions. Here, because the use of 
approximated auto knee curve local contrast capabilities are limited. On the other 
hand, we would like to able to have strong enhancement capability and like to extend 
the enhancement in the middle and low frequency regions. To achieve this goal, in 
this paper we are using the concept of contrast preserving proposed by [12] with 
nonlinear transfer function as dynamic range compression function. In this paper the 
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concepts from [9] and [12] are combined to achieve color image enhancement in HSV 
space. Image enhancement in HSV space has the advantage of preserving color and 
saturation of the image by only modifying value component of the original image in 
the enhancement process. Recently, D. Ghimire et al. [13] presented a method for 
image enhancement in HSV space by considering image locality in dynamic range 
compression process. This is the improved version of the method proposed in [9]. In 
this paper we are also using the concept of multiscale image convolution to improve 
the result of image enhancement.  

The rest of the paper is organized as follows. In section 2, the procedure of image 
enhancement in HSV space is presented. In section 3, experimental results along with 
performance evaluation of the proposed method are shown. Finally the conclusion is 
given in section 4. 

2   Local Contrast Preserving Image Enhancement 

In general, color images are represented in RGB color space. This paper uses HSV 
color space for image enhancement, in which the hue (H) refers to the spectral 
composition of color, saturation (S) defines the purity of colors and value (V) refers 
the brightness of a color or just the luminance value of the color. Here RGB values of 
the image are converted into HSV values and then the value component image is now 
subjected for enhancement. HSV color space is selected in this image enhancement 
procedure to preserve the saturation and color of the input image.  

In this paper we are using the basic concept of local contrast preserving proposed 
in [12] for dynamic range compression. The mathematical condition to preserve the 
local contrast is described as follows.  
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where, f(x, y) and fave(x, y) denotes the input luminance level and the input local 
average, g(x, y) and gave(x, y) denotes the output luminance level and the output local 
average of each pixel (x, y) of the value component image in HSV space respectively. 

The core equation describing the condition to preserve the local contrast in 
dynamic range compression process given by [12] is described as follows. 
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where, p(f(x, y)) denotes an arbitrary tone mapping curve in luminance domain, and α 
denotes a gain parameter for the local contrast enhancement. 

The local average fave(x, y) in (2) and (3) is calculated by taking the convolution of 
spatial averaging filter A(x, y) and the input value component image f(x, y) as follows, 
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Here, the 2-D Gaussian function A(x, y) is defined as 
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The standard deviation (σ) of the 2-D Gaussian distribution determines the size of the 
neighborhood. In this equation K is a gain factor and is determined by 
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The selection of tone mapping function, p(f(x, y)) in Eq. (2) and (3) is very important 
and will affect the result of enhancement directly. In [12], the authors are using 
approximated knee curve as a tone mapping curve. But the knee curve only 
compresses the highlighted range over the knee point. On the other hand here we want 
the strong enhancement capabilities and like to extend the enhancement in the middle 
and low frequency regions too. Different type of tone mapping function can be used 
to have different type of enhancement results. In this paper we are trying to enhance 
the regions with low intensity or with dark pixels. Therefore, we have selected the 
nonlinear transfer function as mapping function used by [9] for luminance 
enhancement which also serves as dynamic range compression and is defined as 
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The range of f(x, y) in Eq. (7) is 0 to 1. The nonlinear transfer function provided in 
Eq. (7) is image dependent with parameter z and is calculated by using following 
relation 
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where L is the luminance level corresponding to a cumulative distribution function 
(CDF) of 0.1 of value component input image in HSV space. The range of L is 0 to 
255.  

The image dependent parameter z can be calculated from the image globally, or 
can be calculated from the value component image locally. Calculating parameter 
locally depending upon each small region of the image and applying luminance 
enhancement with different shaped transfer function for each corresponding small 
region can produce better result than applying global transfer function in luminance 
enhancement process [13]. But, calculating parameter locally increases the 
computational complexicity of the algorithm. Fig. 1 shows the shape of nonlinear 
transfer function for different values of z and Fig. 2 shows an input value component 
image along with corresponding CDF. 
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Fig. 1. Shape of nonlinear transfer functions with different z values 

 

Fig. 2. An intensity image and its cumulative distribution function (CDF) 

According to Eq. (3) we need differential function of nonlinear transfer function of 
Eq. (7) which is defined as 
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Now Eq. (3) can be applied for image enhancement. In our experiment we are using 
value of α as 1.5, because we want to increase the local contrast of the input image. 
Selection of scale (standard deviation) in Gaussian function is another important 
aspect in image enhancement procedure because it directly affects the result of 
enhancement. Convolution with a small scale, such as a few neighboring pixels, can 
provide luminance information about the nearest neighborhood pixels, while the 
convolution with a large scale comparable to the image dimensions can provide the  
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information about the large-scale luminance variation over the whole image. 
Generally, smaller scale convolution tends to produce result with fine details and 
convolution with larger scale tends to produce natural looking and smooth results. A 
medium scale convolution can produce combination of both small scale and large 
scale results. Therefore we can use multiple scale convolutions to produce different 
results and we can combine all of them to find the final image enhancement result. 
But, if we need faster processing we can use medium scale convolution in image 
enhancement process. On the other hand we can also use parallel processing to find 
the enhancement results in different scales to get rid from the computational 
complexicity. The image enhancement with multiscale convolution can be described 
by the following equations 
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where n is the number of scales and σi represents different scales.  
In our experiment, we selected n = 3 and find the enhanced images in three scales: 

small, medium and large. In this work, used three scales are 5, 15 and 50. It is 
experimentally determined that those scales are suitable for almost all type of images. 
After obtaining the average enhancement result of value component image in HSV 
space by using Eq. (14), it is combined with original H and S component images and 
converted back to RGB space to find the final result in RGB space. The saturation and 
hue channels are not altered in this image enhancement procedure. 

3   Results and Discussion 

The proposed algorithm has been applied to large number of digital images captured 
under dark illumination conditions for performance evaluation and comparison with 
other techniques. This section contains some results as well as discussion about the 
performance of the proposed algorithm for image enhancement. The proposed 
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algorithm is also compared with other methods using both subjective and objective 
evaluation. 

3.1   Subjective Evaluation 

Image enhanced with various scales in Gaussian function are shown in Fig. 3. The 
effect of different scales can be clearly seen in these enhanced images. Result of 
image enhancement using very small scale has the richer local details and result by 
using large sale has smoothing effect. Convolution with medium scale has the result 
in somewhere middle of both large and small scale result. Therefore, from this result 
it is clear that combination of all the scales can produce better results. But the 
computational complexicity is increased in multiscale convolution image 
enhancement process if computation is carried out in serial manner. 

                                              

(a)                                                                       (b) 

 

(c)                                                                       (d) 

Fig. 3. Image enhancement results with different scales in Gaussian function: (a) Input image, 
(b) enhancement using scale = 5, (c) enhancement using scale = 10, and (d) enhancement using 
scale = 50 

Here we compare the performance of the proposed method with the HE, 
AINDANE [9], MSRCR [7] and literature [13]. The enhanced image using proposed 
method has fine local and global details with natural looking, and balanced luminance 
and contrast across the whole image and no change in original color of the image in  
 



8 D. Ghimire and J. Lee 

comparison with other methods. Fig. 4 shows two input color images and result of 
enhancement using different methods. The color of the image is changed as well as 
the local contrast of the image is increased unnecessarily using MSRCR method. The 
global enhancement using AINDANE and [13] are satisfactory, but local details are 
still to be enhanced. In the output image of our method both local and global contrast 
are increased well with preserving image details. Here we are using miltiscale 
convolution for enhancement using proposed method. More results of image 
enhancement using proposed method are shown in Fig. 5. The experiment on other 
test images has shown similar results. 

 

 

 

Fig. 4. Comparison of image enhancement with different methods: Input color images (first 
row), enhancement results using MSRCR (second row), enhancement results using AINDANE 
(third row), enhancement results using [13] (fourth row) and enhancement results using 
proposed method (last row) 
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Fig. 4. (continued) 

 

Fig. 5. More results of image enhancement using proposed method 
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3.2   Objective Evaluation 

In this subsection, we use the objective evaluation criteria to compare the 
performance of the proposed method with other methods. One of the objective 
evaluation criteria was taken to be the Detail Variance (DV) and Background 
Variance (BV) from [14]. DV and BV values are obtained firstly by computing the 
variance of the gray-levels in the neighboring pixels of each pixel in the image. After 
that, the pixel is classified to the foreground when the variance is more than a 
threshold; otherwise the pixel is classified to the background. DV is the average 
variance of the pixels included in the detail region, and BV is the average variance of 
all the pixels included in the background region. The desired result is increase in DV 
and no change in BV after applying the enhancement [14]. Here the size of the 
neighborhood is chosen to be 7 × 7 and threshold was chosen to be 5. Results for 
some test images are shown in Table 1. From Table 1 it is clear that the results are 
better than AINDANE and Literature [13], and are comparable to the MSRCR. The 
variance of the detail region is increased sufficiently and variance of the background 
region is unchanged, which is desirable. Even the result of MSRCR seems best, from 
the subjective evaluation it is clear that MSRCR produces unnatural result with 
unnecessarily increase in contrast.  

The proposed image enhancement method is also compared with other methods by 
using statistical method proposed by D. J. Jabson et al. [15]. In this method, the 
statistical properties of image, mean, and the mean of zonal standard deviation, are 
used to describe the visual quality of the image in terms of image contrast and details. 
Here, first we divide the image into 40 × 40 non overlapping pixel blocks and for each 
block mean and standard deviation is calculated and plotted as shown in Fig. 6 with 
different enhancement results. The image quality is classified as visually optimal if it 
lies inside the white rectangle region [15]. The blue data points indicates the position 
of the small block of the original image and corresponding red data points connected 
via a straight line indicates the position of those small blocks of the image after 
enhancement. Fig. 6 (a) shows the enhanced image using MSRCR and corresponding 
statistical plot of that image, Fig. 6 (b) shows the enhanced image using AINDANE 
and corresponding statistical plot and Fig. 6 (c) shows the enhanced image using 
proposed method and corresponding statistical plot. By using proposed method 50 % 
of the red points are inside the white rectangle where as only 32 % and 47 % of the 
red points is inside white rectangle using AINDANE and MSRCR enhancement 
methods respectively. This proves the robustness of the proposed method in 
comparison with other methods.  

Table 1. DV and BV values for different enhancement results 

Image 
Original MSRCR [7] AINDANE 

[9] 
Literature 

[13] 
Proposed 
Method 

BV DV BV DV BV DV BV DV BV DV 
1 1.52 15.03 1.50 35.80 1.09 17.37 1.23 21.10 1.21 28.59 
2 2.80 23.95 2.83 41.60 3.39 26.11 3.47 36.38 3.47 36.38 
3 3.27 25.18 3.21 57.40 3.54 35.87 3.47 40.78 3.50 54.30 
4 2.48 21.56 1.27 38.91 1.82 24.15 1.92 28.09 1.69 39.30 

Average 2.51 21.43 2.20 43.42 2.46 25.87 2.52 31.58 2.46 39.64 



 Nonlinear Transfer Function-Based Image Detail Preserving Dynamic Range 11 

 

(a) 

 

(b) 

 

(c) 

Fig. 6. Enhancement results with statistical characteristics of image of Fig. 3 (a) (image local 
block mean versus corresponding local block standard deviation) using: (a) MSRCR method, 
(b) AINDANE method, and (c) proposed method 

4   Conclusion 

In this paper we propose a color image enhancement method in HSV space with 
preserving image details. Both subjective and objective performance evaluation has 
shown the proposed method is superior then other enhancement methods like 
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MSRCR, AINDANE and [13]. The enhancement results are natural with no change in 
original color, because the use of HSV space for image enhancement without 
changing hue and saturation of the input image. The future work will focus on 
decreasing computational complexicity and making the enhancement results more 
natural looking without degrading quality of enhancement results. 
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Abstract. Recently, a variety of stereoscopic contents have been provided to 
academic and industrial fields for broadcasting, movies and mobile materials. 
However, few works have been interested in the adjustment of 3D contents for 
diverse displays. For instance, movie contents suited to large screen frequently 
do not deliver the same 3D perception to small-size screen such as mobile 
phone, tabular PCs, etc. For this, this paper presents an adjustment method of 
stereoscopic contents. 2D+Depth is one of popular methods with which 
stereoscopic images are generated. For this, depth planes are derived based on a 
depth histogram. By adjusting depth planes, a new depth map is made. Then 
2D+Depth produces a stereoscopic image. Experiments performed on various 
2D+Depth images validate that the proposed methods deliver more enhanced 
3D depth based on subjective evaluation experiments. 

Keywords: stereoscopic perception, depth map adjustment, subjective test. 

1  Introduction 

The advances in stereoscopic video technologies have led to an increasing interest in 
various 3D applications [1, 2]. Significant amount of research has been carried out for 
new 3D applications. In general, stereoscopic images are acquired from two camera 
sensors. Displaying the images on a 3D monitor, humans can view and perceive 3D. 
In the previous applications, the stereoscopic images are delivered to viewers without 
any modification or enhancement. Any similar efforts have not been performed for 
solving such problem, yet. Based on this, this paper presents a novel method to 
enhance 3D perception of the stereoscopic images based upon depth map. The overall 
aim of the proposed method is to enhance the quality of viewing experience of the end 
users [3]. 2D+D (depth map) approach is used as the representation format in our 
approach. Spatial complexity of depth map is one of the key dimensions by which the 
perceived quality and depth perception of stereoscopic image are adjusted. The 
experimental results demonstrate that the lower the spatial complexity is, the higher 
the perceived video quality and depth perception are. In order to support the assertion, 
human visual fatigue is also examined.  

The paper is organized as follows: Overall approach is introduced in Section 2. 
Section 3 presents the algorithm of dividing the depth into depth planes utilizing the 
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spatial complexity of the depth maps. The depth map adjustment algorithm is 
presented in Section 4. Experimental results are described in Section 5. Finally, 
Section 6 concludes the paper. 

2  Overview of Proposed Method 

Fig. 1 shows the overall approach of the proposed method. Given an input depth map, 
its histogram is analyzed for separating a depth map into multiple depth planes. The 
spatial complexity is examined for the depth planes. Then the depth planes undergo 
the adjustment for the variation of 3D perception. Combining the depth planes, a new 
depth map is made. Finally, a stereoscopic image is generated by 2D+Depth method. 

 

Fig. 1. Block diagram of the proposed method 

2.1  Spatial Complexity 

Spatial complexity of a depth map is measured by calculating a standard deviation of 
pixel depth values. The reason behind using the standard deviation for the 
measurement of spatial complexity is that it is the measure of the dispersion or 
variability of a set of values around the mean of that set [4]. Thus, if the depth map 
has high spatial complexity, the standard deviation of the pixel depth values is 
expected to be high. The pixels in the depth map determine the distance of the 
associated color image pixel to the viewer. They take grey values ranging from 0 to 
255. 0 represents the furthest away pixel from the viewer, while 255 corresponds to 
the closest pixel to the viewer in a 3D scene. 

Given an MxN depth map, the mean pixel depth is computed by 
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2.2  Histogram Analysis 

Depth map histogram )(iH provides the frequency of the depth value i in the depth 

map D, and is defined as follows: 
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As well, a cumulative histogram C(i) of a histogram H(i) is defined as  
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where C(255) = NM for a 256-level luminance image 

2.3  Depth Plane Generation 

The histogram separation using Gaussian mixture model has been studied in some 
applications [5]. This method might work for a couple of objects and background. On 
the contrary, for images containing multiple objects and background, this method may 
not work well. Therefore, we use a simple, but efficient method utilizing the 
cumulative histogram. The following condition is used. 

TkiCkiC <+−− |)()(|  (5)

where T is a threshold value and k is a user-defined parameter. 
i values satisfying the above condition are chosen as depth thresholds separating a 

depth map. Suppose that (L+1) depth thresholds (e.g., i0, i1, … , iL) are acquired. L 
depth planes are then generated. Then the range of the lth depth plane is defined as 

},...,1{],,1[]max,min[ Lllili
lDlDl

DR ∈−==  (6)

Fig. 2 shows an example of depth thresholds with which a depth map is divided into 
five depth planes. The red bar indicates the depth thresholds. 

 

Fig. 2. The separation of a depth map into depth planes by depth thresholds (colored in red) 



16 J.I. Gil, S.E. Jang, and M. Kim 

 

The mean and standard deviation of pixel depth values of each depth plane are 
computed by 

l
DR

l
DRj

jD

l

in  pixels .of No

)(
∈

=μ  and
l
DR

l
DRj

l
jD

l

in  pixels .of No

2
])([

∈
−

=

μ

σ  (7)

3   Depth Map Adjustment 

The block diagram of Fig. 3 shows the depth map adjustment algorithm proposed in 
this paper. Given depth planes, standard deviation representing the spatial complexity 
is computed for each depth plane. The source standard deviation 

Sσ  is the sum of 

depth plane standard deviations. If a target standard deviation Tσ  is determined (
Tσ  

< 
Sσ ), the depth range of depth planes are reduced until 

Sσ  is less than 
Tσ . As a 

result, the distance between neighboring depth planes are widened and the 3D depth 
between them becomes stronger. Finally, a stereoscopic image can be generated from 
2D+Depth approach. 

 

Fig. 3. The block diagram of depth map adjustment method 

For each depth plane, the standard deviation lσ is computed using Eq. (2). Then 

Sσ is the sum of L depth plane standard deviations. 


=

=
L

l

l
S

1

σσ  (8)
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To reduce the spatial complexity, we define a target standard deviation
Tσ as follows; 

ST στσ ⋅=  (9)

where τ is a user-defined parameter at [0, 1]. In the experiments,τ is set to be 0.9, 
0.8, 0.7, and 0.6. 

Until 
Tσ  is achieved, the depth range of depth planes are reduced. The depth 

planes are sorted according to its standard deviation. The reduction of depth range 
starts from a depth plane with the greatest standard deviation with a reduction ratio λ . 
The following equation explains how the range of a depth plane is reduced. For a 
range [ lDmin

, lDmax
], its depth range is adjusted into [ lEmin

, lEmax ] as follows: 

ll DE minmin )1( λ+=  ll DE maxmax )1( λ−=  (10)

The depth plane adjustment algorithm is implemented by the following iterative 
method: 

Given L input depth planes, 

Step 1: 

lσ is computed for each depth plane. Subsequently, Sσ is also computed. 

Step 2: Target standard deviation 
Tσ  is set with. 

Step 3: We sort the depth planes according to lσ . The depth adjustment of a 
depth plane with the greatest standard deviation is processed. l = 0 and 
λ is set to be 0.l or 0.05. 

Step 4: The depth range of l th depth plane is adjusted. As well, a new standard 
deviation Sσ is also computed.  

Step 5: If Tσ  < Sσ , examine whether l is less than L. If l < L, l = l + 1 and go 

to Step 4. Otherwise l is 0 and increase l by 1 and λλλ Δ+= .  

Step 6: If Tσ  > Sσ , stop and final depth planes are acquired. 

4   Experimental Results 

The proposed method was performed on various 2D images and depth maps. We 
illustrate the results for each test image. The first image is MSR breakdance image [6] 
and depth sequences as shown in Fig. 4. 

  

Fig. 4. RGB image and depth map [6] 
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The depth thresholds are 38, 45, 70, 149, 210, and 216. Five depth planes are 
shown in Fig. 5. 

     

Fig. 5. Five depth planes of Breakdance 

Table 1. Standard deviation of input and output depth planes. (* denotes the range-changed 
depth planes). 

Output standard deviation 

Depth  

plane  
lσ  

τ = 0.9 

Tσ =998 
τ = 0.8 

Tσ =887 
τ = 0.7 

Tσ =776 

1 43 43 39* 39* 

2 8 82 68* 68* 

3 35 359 289* 188* 

4 41 298* 176* 176* 

5 214 214 214* 214* 

= l
S

σσ
 

341 996 786 685 

When τ is 0.8, at the first iteration, we can not achieve 
Tσ . So, we increased λ  

by 0.1. Then in the second iteration, the condition was met at the depth plane 4. A 
final 

Sσ is 786. For τ =0.7, the second iteration was completed with depth plane 3. A 

final 
Sσ is 685. Detailed numerical values are found in Table.1. The final depth 

planes are shown in Fig. 6. 

     
(a)  

     
(b)  

Fig. 6. Depth planes generated according toτ  (a) τ =0.8 and (b) τ =0.7 
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Fig. 7 shows the histogram of input and output depth maps. As τ becomes 
smaller, the distance between depth planes increases. Therefore, depth difference is 
more apparent. 

    

(a)                (b)               (c)                (d) 

Fig. 7. The histograms of (a) input depth map and depth maps at (b) τ =0.9, (c) τ =0.8, and 
(d) τ =0.7 

The second test image in Fig. 8 is Ballet sequence of MSR [6]. Fig. 9 shows newly 
adjusted depth planes. 

  

Fig. 8. RGB image and depth map of Ballet 

    

(a) 

    

     (b) 

Fig. 9. Depth planes generated according toτ  (a) τ =0.8 and (b) τ =0.7 
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(a)           (b)               (c)             (d) 

Fig. 10. The histograms of (a) input depth map and depth maps at τ = (b) 0.9, (c) 0.8, and (d) 0.7 

We observed the stereoscopic images with a 3D monitor adopting DQCQS (Double 
Stimulus Continuous Quality Scale) subjective test [7]. At the first stage, original 
views were displayed to five participants. Each participant watched the views for 10 
seconds and their new views for the same period, and evaluated the effect of the 3D 
depth. Two test sets were carried out in order to examine the 3D perception 
improvement. Depth perception was then subjectively judged on a scale of 1 (no 
improvement), 2 (mild improvement), 3 (average improvement), 4 (good 
improvement) and 5 (excellent improvement) in terms of 3D perception. Fig. 11 
shows two subjective grades with respect to τ as well as 

Sσ . As τ decreases, we 

observe that the perceived quality is improved. Furthermore, in order to examine the 
visual fatigue of the stereoscopic image viewing, we performed subjective visual  

 

 

Fig. 11. Subjective grades with respect to (a)τ  and (b)
Sσ   

 
Fig. 12. Subjective test for visual fatigue with respect toτ   
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fatigue test. Visual fatigue was subjectively judged on a scale of 1 (severe fatigue), 2 
(fatigue), 3 (mild fatigue), 4 (slight fatigue) and 5 (not at all). As validated in Fig. 12, 
the overall grade is greater than 4.0, which means that the proposed method makes 
comfortable stereoscopic images. 

5  Conclusion 

In this paper, we presented a depth map adjustment method that could provide the 
improvement of 3D stereoscopic perception. For this, a histogram of a depth map is 
used for the extraction of multiple depth planes. For spatial complexity, standard 
deviation of each depth plane is examined. According to the target standard deviation, 
the depth range of each depth plane is adjusted, thereby making the distance between 
neighboring depth planes increased. This effect delivers better 3D perception that was 
validated through subjective tests. Our proposed method is nearly automatic and is 
expected to provide a technical contribution to 3D video field. 
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Abstract. A method for synthesizing high-quality free-viewpoint im-
ages from a set of multi-view images is presented. First, an accurate depth
map is estimated from a given target viewpoint using modified semi-
global stereo matching. Then, a high-resolution image from that view-
point is obtained through super-resolution reconstruction. The depth
estimation results from the first step are used for the second step. First,
the depth values are used to associate pixels between the input images
and the latent high-resolution image. Second, the pixel-wise reliabilities
of the depth information are used for regularization to adaptively control
the strength of the super-resolution reconstruction. Experimental results
using real images showed the effectiveness of our method.

Keywords: free-viewpoint image, semi-global stereo, super-resolution,
depth reliability, regularization.

1 Introduction

Free-viewpoint image synthesis refers to the process of combining a set of multi-
view images to generate an image from a new viewpoint where no camera was
actually located. This technology has attracted much research interest due to
its potential for representing 3-D visual information [1]; using this technology,
users can fly through the 3-D space and can also display real objects on auto-
stereoscopic 3-D displays with tens of parallax views [2].

In this work, we reconsider the framework of free-viewpoint image synthesis.
In general, this synthesis consists of two steps: first, the depth/shape of the target
scene is estimated from input images; then, using the estimated depth/shape,
the input images are registered and blended together to produce a new image.
The blending operation in the second step can obscure depth/shape errors by
blurring the image. However, this scheme has a fundamental limitation in the
resolution of the resultant image; fine textures are decayed due to the blurring
nature of blending.

Y.-S. Ho (Ed.): PSIVT 2011, Part I, LNCS 7087, pp. 22–35, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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A promising solution for improving resolution is to replace blending by super-
resolution (SR) reconstruction [3] because multiple observations of the same
scene are given as input. However, SR reconstruction is very sensitive to reg-
istration errors; it could even be destructive if applied with large registration
errors. Estimating perfect depth/shape information from images alone is far be-
yond the capability of current computer vision technologies, so some extent of
registration errors should be accepted. Consequently, we conceived of the idea
to combine blend-based synthesis and SR-based synthesis adaptively according
to the reliability of the estimated depth information.

On the basis of this idea, we propose a new method for super-resolved free-
viewpoint image synthesis. Our method has three features. First, we adopt a
view-dependent approach like that in Refs. [4,5]; we focus on image synthesis
from the given target viewpoint rather than complete reconstruction of the 3-D
structure. More precisely, our method works directly on the coordinate system of
the target free-viewpoint image. The second feature is semi-global depth estima-
tion based on that in Refs. [6,7], which achieves accurate depth estimation with
considerably low computational costs. The final feature is depth-reliability-based
regularization, which can control the strength of SR reconstruction according to
the pixel-wise reliability of the depth information. This regularization is the key
to achieving high-quality synthesis and also provides a new framework where
blend-based synthesis and SR-based synthesis are adaptively combined. The ef-
fectiveness of our method was confirmed by experiments using real images.

1.1 Background

Super-resolution (SR) reconstruction [3] combines multiple low-resolution images
to restore a latent high-resolution image. One of the input images is selected
as the basis image to which other input images are registered and for which
the resulting high-resolution image is synthesized. Then, an image formation
model is established between the input and latent high-resolution images. Finally,
by inverting the image formation model with prior knowledge, the latent high-
resolution image can be restored. However, the viewpoint of the resulting image
is limited to that of one of the input images because this technology is not
designed for producing free-viewpoint images.

Free-viewpoint image synthesis has been studied in a different context [1]. As
mentioned above, most conventional methods use blend-based synthesis, result-
ing in the fundamental limitation of the image resolution. To our knowledge,
only a few works use SR reconstruction for free-viewpoint image synthesis. Tung
et al. [8] super-resolved input multi-view images, and Goldluecke et al. [9] syn-
thesized texture maps using SR reconstruction. Their purpose was to generate
a complete 3-D model of a single object. In contrast, our method takes a view-
dependent approach for synthesizing free-viewpoint images and deals with the
entire scene (which includes both objects and backgrounds). The most similar
work to ours is that of Mudenagudi et al. [10]. They formulated view-dependent
SR reconstruction of an entire scene as a multiple-labeling problem, where a
label corresponds to the color of each pixel of the resulting image. However,
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z = zn

z

I(1)

I(t)

I (4)

I(3)

I(2)
I(t)

SR
,

I(1) I(2)

I(3) I(4)

Fig. 1. Configuration used in proposed method (left) and input images (right)

their method was computationally complex and expensive due to the nature of
the formulation. Our method, which consists of view-dependent depth estima-
tion followed by SR reconstruction with depth-reliability-based regularization,
is computationally more tractable and would be easier to speed-up for real-
time applications in the future. Our previous work in Ref. [11] also aimed for
view-dependent SR reconstruction. But due to the poor depth estimation and
non-efficient algorithm design, it is incomparable to the method presented in
this paper.

2 Overview of Proposed Method

The configuration used by our method is shown in Fig. 1. The input images,
denoted by I(m) (m = 1, . . .M), are captured from viewpoints that are arranged
roughly on the same plane. The camera parameters are estimated beforehand.
The distance from the input camera plane is denoted by z. The goal of our
method is to synthesize an image viewed from a new viewpoint, referred to as the
target viewpoint, which is denoted by t. We define two synthesized images, I(t)

and ISR
(t) . I(t) is produced by blend-based synthesis and has the same resolution as

the input images; ISR
(t) is produced by our new SR-based scheme. We assume that

four images are given as the input and that the resolution of ISR
(t) is twice that of

I(t) both in the horizontal and vertical directions. However, our framework can
easily be extended to more general setups.

In general, our method first registers the input images to the coordinate sys-
tem of the target viewpoint t and then applies a SR scheme to obtain a high-
resolution resulting image. Registration of multi-view images is equivalent to
depth estimation. In particular, if pixel-wise depth information from the tar-
get viewpoint is available, all pixels of the target image can be associated with
the pixels of the input images, which is sufficient for constructing an image for-
mation model for SR reconstruction. Thus, the first step of our method is to
estimate a depth map viewed from the target viewpoint (described in Section
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input images

semi-global depth estimation
at the target viewpoint

depth

reliability

blend-based 
synthesis

SR-based synthesis 
with depth-reliability
based regularization

with known
camera parameters

Fig. 2. Flowchart of our method

3). To estimate accurate depth with reasonable speed, we use the semi-global
stereo method [6,7], modified for our problem. The depth map is estimated in
the same resolution as the input images. It is then upsampled to the resolution
of ISR

(t) and used for the next SR reconstruction step (described in Section 4).
In SR reconstruction, the per-pixel reliability of the depth information, which is
obtained through the depth-estimation step, is also used to control the strength
of the regularization. This scheme, referred to as depth-reliability-based regu-
larization, is the key to achieving high-quality synthesis, since it can adaptively
combine blend-based synthesis and SR-based synthesis. Our entire method is
summarized in Fig. 2.

3 Semi-global Depth Estimation

The first step of our method is to estimate a depth map from the target view-
point. In Section 3.1, we briefly describe the semi-global stereo method [6,7],
which is extended to our free-viewpoint setup in Section 3.2. The obtained depth
map is further refined in Section 3.3.

3.1 Semi-global Stereo Matching

The purpose of stereo matching, given two or more input images, is to find pixel
correspondences between the images. This is equivalent to depth estimation if
the camera parameters are known. Typically, one of the input images is selected
as the basis image for which the depth value of each pixel is estimated.

Modern stereo methods consider not only the photometric consistency be-
tween the input images (i.e., corresponding pixels should exhibit similar inten-
sities/colors) but also the inter-pixel relations in the estimated depth map (i.e.,
depth values should not vary drastically except around the object boundaries).
These conditions are represented as an energy minimization problem, whose op-
timal solution can be found using sophisticated numerical methods. The most
common choices for optimization are belief-propagation and graph-cut, but they
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are computationally prohibitively expensive since many iterations are required
for convergence [12]. In contrast, semi-global stereo matching [6,7] can find a
near-optimal solution with much lower computational cost because no iterative
calculations are needed.

The energy function for semi-global stereo matching is described as

Esm(D) =
∑

p

⎧⎨
⎩C(p, D(p)) +

∑
q∈Np, |D(p)−D(q)|=1

λ1 +
∑

q∈Np, |D(p)−D(q)|>1

λ2

⎫⎬
⎭ , (1)

where D is the resulting depth map and D(p) is the depth of a pixel p that
is represented as an integer disparity value. The first term evaluates the photo-
metric consistency between the input images for each pixel p with the assumed
depth D(p). The second and third terms penalize depth discontinuities; Np is
the neighbor of p, and λ1 and λ2 are non-negative weights, where λ1 ≤ λ2.

The optimization procedure is very similar to dynamic programming. First,
the photometric consistency cost C(p, n) is obtained for all pixels and all depth
levels. Then, it is accumulated along the 1-D path with a direction r as

Lr(p, n) = C(p, n) − min
k

Lr(p−r, k)

+ min {Lr(p−r, n), Lr(p−r, n−1) + λ1, Lr(p−r, n+1) + λ1,

min
k

Lr(p−r, k) + λ2}. (2)

The accumulated costs for 8 or 16 directions (8 are used in this work) are added
to yield S(p, n). Finally, a semi-optimal depth map D(p) is obtained through a
minimum search over the depth levels for each pixel p.

D(p) = argmin
n

S(p, n), where S(p, n) =
∑

r

Lr(p, n). (3)

In the post-processing step, isolated noises are removed from the resulting depth
map, but this step is beyond the scope of this paper.

3.2 Extension to Arbitrary Viewpoint Setups

The semi-global stereo method [6,7] was designed to work on the coordinate
system of the basis image that is selected from the input images, similar to
most stereo methods. However, our purpose is to estimate a depth map directly
from the arbitrary target viewpoint where free-viewpoint image synthesis is per-
formed. In this subsection, the coordinate system of the resulting depth map
D is set to the target viewpoint, and we introduce three modifications to the
original semi-global stereo method [6,7].

First, disparities cannot uniquely be defined to represent depth in our problem
because the target viewpoint is set to an arbitrary position. Instead of using
disparities, we quantize the depth space into N levels as

1
zn

=
1

zmax
+

n − 1/2
N

(
1

zmin
− 1

zmax

)
(n = 1, . . . , N), (4)



Super-Resolved Free-Viewpoint Image Synthesis 27

where zmin and zmax are the minimum and maximum of the object depths. This
quantization is natural because the disparity space (which is proportional to the
inverse of the depth) is evenly divided, similar to most stereo methods. In our
method, each pixel of the depth map D(p) takes an integer that represents the
depth index. The physical depth value for D(p) can be written as zD(p).

Second, the photometric consistency in Eq. (1) should be given over the coor-
dinate system of the target viewpoint. Consequently, we have to map the pixels
from the target viewpoint to the input viewpoints in evaluating the consistencies.
Specifically, we define C(p, D(p)) as

C(p, D(p)) =
1
Z

∑
q∈Bp

⎧⎨
⎩

∑
m �=m′

Cm,m′(q, D(q))

⎫⎬
⎭ , (5)

where Bp is a window centered at p, m and m′ are the indices of input images,
and Z is a constant for normalization. Cm,m′(p, D(p)) evaluates the consistency
for a pixel p of the target image as

Cm,m′(p, D(p)) = diff
(
I(m)(Pt→m(p, zD(p)), I(m′)(Pt→m′(p, zD(p)))

)
, (6)

where Pα→β(p, z) is a function that maps a point p on the camera α onto the
camera β with a known depth z. The derivation details are described in the
appendix A.1. The function diff is defined as

diff(a, b) = min
{‖a− b‖2, diffmax

}
, (7)

where diffmax is an upper limit for the difference values. Giving an upper limit
is useful for handling occlusions because we have multiple pairs of input images.

Third, λ2 is set to a constant in our method, while it was set to be proportional
to the inverse of the image gradient in the original [6,7]. In our problem, the
image gradients are unavailable directly because the coordinate system is set to
a new viewpoint from which no image was captured.

3.3 Depth Refinement

The depth map D obtained through the previous step takes discrete integer
values. These values can be refined by fitting parabolic curves to the energy
values S(p, n) around the minimums. For each pixel p, the refined depth value
D̂(p) and corresponding energy value Ŝmin(p) are given by

D̂(p) = D(p) +
Spre

min(p) − Snext
min (p)

2(Spre
min(p) − 2Smin(p) + Snext

min (p))
(8)

Ŝmin(p) = Smin(p) − (Spre
min(p) − Snext

min (p))2

8(Spre
min(p) − 2Smin(p) + Snext

min (p))
, (9)

where Smin(p) = S(p, D(p)), Snext
min (p) = S(p, D(p) + 1), and Spre

min(p) = S(p,
D(p)−1) (see appendix A.2 for the derivation). This refinement is equivalent to
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interpolation in the disparity space because the value of D(p) is proportional to
the inverse of the depth. The resulting depth map D̂ takes continuous values, but
the corresponding physical depths can also be obtained from Eq. (4) by simply
treating n as a continuous value. Thus, without any inconsistency, the physical
depth for D̂(p) can be described as zD̂(p).

Using the refined depth map D̂(p), we can obtain the image from the target
viewpoint, I(t), whose resolution is the same as those of the input images.

I(t)(p) =
1
M

∑
m

I(m)(Pt→m(p, zD̂(p))) (10)

This image is referred to as a blend-based image because the input images are
blended together to produce it.

4 Super-Resolved Free-Viewpoint Image Synthesis

After the depth estimation from the target viewpoint, which was described in
Section 3, we have a depth map D̂, cost map Ŝmin, and synthesized image I(t),
with the same resolutions as those of the input images. As the pre-process of
super-resolution, the images are upsampled to the target resolution by using a
standard interpolation method (in this work, bicubic interpolation), to obtain
D̂↑, Ŝmin↑, and I(t)↑. The super-resolved image from the target viewpoint is
denoted as ISR

(t) ; the inference process is described in this section.

4.1 Formulation with Depth-Reliability-Based Regularization

Following the standard reconstruction-based SR scheme, the problem can be
described by minimization of a energy function Esr as

Esr(ISR
(t) ) = E(1)

sr (I(1), ..., I(M)|ISR
(t) ) + λ E(2)

sr (ISR
(t) ), (11)

where E
(1)
sr is a fidelity term, E

(2)
sr is a regularizer, and λ is a positive weight.

The fidelity term evaluates the relation between the input images I(m) and
the desired super-resolved image ISR

(t) . We formulated it as

E(1)
sr =

∑
m

∑
p∈I(m)

‖I(m)(p) − Î(m)(p)‖2, where Î(m) = ft↑→m(ISR
(t) , D̂↑). (12)

In brief, the function ft↑→m represents an image formation model. Using the
given depth map D̂↑, ft↑→m transforms the latent image ISR

(t) into the m-th
input image. The pixel correspondences between the two cameras, t↑ and m, are
captured by Pt↑→m, where t↑ means the target image has double the resolution.
Occlusions and the point-spreading function are also considered in this transform
(see appendix A.3 for more details).

The regularizer should reflect the prior knowledge about the resulting image
ISR
(t) , where we introduce two assumptions. First, ISR

(t) resembles the upsampled
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version of the blend-based image I(t)↑. Second, the image formation model is less
reliable where depth estimation is less accurate. On the basis of these assump-
tions, we define the regularization term as

E(2)
sr =

∑
p∈ISR

(t)

w(p)‖ISR
(t) (p) − I(t)↑(p)‖2 (13)

where w(p) = max{‖Ŝmin↑(p)‖4, wmin}. (14)

Note that the second assumption is reflected in the pixel-wise weighting fac-
tor w(p), which introduces adaptivity to the regularization. We observe that
Ŝmin(p) takes large values around occlusion boundaries, for example, where the
estimated depths are likely to be erroneous (see Fig. 4 (b)). Thus, for such re-
gions, we increase the weight for the regularization term to stabilize the result.
When the weight is ultimately large for a pixel p, the result for p converges
to the blend-based synthesis, i.e., ISR

(t) (p) ∼ I(t)↑(p). Meanwhile, for the regions
where the depth estimation is sufficiently reliable, we decrease the weight for
regularization to encourage the resolution enhancement that is enabled by the
image formation model. This scheme, referred to as depth-reliability-based reg-
ularization, is very important in practice because depth information cannot be
perfect. Moreover, this regularization is a natural extension of the conventional
blend-based approach since it can adaptively combine blend-based synthesis with
SR-based synthesis.

4.2 Implementation

Let X , X̄ , and Ym be 1-D vector representations of ISR
(t) , I(t)↑, and I(m), respec-

tively. Let Am be a matrix that represents the relation between the inputs and
outputs of the function ft↑→m in Eq. (12). Let W denote a diagonal matrix given
by diag(w). Equation (11) can be rewritten as

Esr(X) =
∑
m

‖Ym − AmX‖2 + λ W‖(X − X̄)‖2. (15)

We set the initial value of X as X0 = X̄ and iterate

Xj+1 = Xj − αj∇Esr(Xj), αj =
‖∇Esr(Xj)‖2

∇Esr(Xj)T (∇2Esr)∇Esr(Xj)
(16)

until it converges, where ∇Esr(Xj) denotes the gradient of Esr at X = Xj . In
our test, this solution is faster and more stable than solving a linear equation
∇Esr(Xj) = 0 using MATLAB’s numerical solver.

5 Experiments

The four images of a city diorama shown in Fig. 1, which were taken from the
Multi-view Image Database of University of Tsukuba, Japan, were used as input
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Table 1. Default values for parameters

Eq. (1) λ1 = 100, λ2 = 400

Eq. (4) zmin=250 mm (21.00∗), zmax=1900 mm (2.76∗), N = 40

Eq. (5) size of Bp : 3×3 pixels

Eq. (7) diffmax = 150

Eq. (11) λ = 5.0×10−13

Eq. (14) wmin = 10

∗corresponding disparities (in pixels) between input images

(3.0, 7.0) (1.1, 6.1) (2.9, 7.9)

Fig. 3. Resulting images from various viewpoints by (top) blend-based synthesis and
(bottom) SR-based synthesis. A demo video is available from our website.

for our method. The input viewpoints were located at the corners of a square
of 16 × 16 mm. The original images had 640 × 480 pixels in RGB color. We
converted them to grayscale and reduced them to 160 × 120 pixels to use them
as the input.

The target viewpoints were located inside the square formed by the input
viewpoints. Our method first estimated a depth map with 160 × 120 pixels from
a given target viewpoint, then generated a resulting image with 320 × 240 pixels
from that viewpoint. The parameter settings, which were empirically determined
based on several tests, are in Table 1.

Images from different viewpoints were generated by blend-based synthesis
(I(t)↑) and SR-based synthesis (ISR

(t) ), shown in the top and bottom rows respec-
tively of Fig. 3. The tuples of numbers below the images indicate the coordinates
of the viewpoints according to the database notation, where the input view-
points were described as (1, 6), (3, 6), (1, 8), and (3, 8). The figure shows that
free-viewpoint images were successfully synthesized and that SR-based synthesis
achieves better quality with finer texture details. A video for further demonstra-
tion is available from our website http://nae-lab.org/˜keita/.
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(a) Proposed (depth) (b) Proposed (cost Ŝmin) (c) W/o global optimization

(d) W/o occlusion handling (e) W/o block matching (f) W/o depth refinement

Fig. 4. Comparison of depth estimation results

5.1 Detailed Evaluation

To evaluate our method more closely, we fixed the target viewpoint to the center
of the square, i.e., (2, 7) according to the database notation, where the ground
truth image was available from the database.

First, we evaluated the depth estimation part of our method. We disabled
each element of our method one by one and estimated the depth. The results are
shown in Fig. 4. As shown in (a), the proposed method produced a good result.
The cost map Ŝmin, shown in 1/10 scale in (b), was used for the depth-reliability-
based regularization mentioned later. When the global optimization was turned
off by setting λ1, λ2 = 0, the resulting depth map was very noisy, as shown in
(c). Unless the occlusions were handled properly, depth estimation was erroneous
around the occlusion boundaries, as shown in (d). When the block matching was
disabled by setting the block size to 1×1 pixels, the depth map became granular,
as shown in (e). When depth refinement was skipped, the depth map took only
the quantized values, as shown in (f).

Next, we evaluated the adaptive regularization scheme in SR-based synthesis,
which is represented by Eq. (14). Images synthesized with different regulariza-
tion factors (λ in Eq. (11)) are shown in Fig. 5. The top row shows the results
with adaptive regularization, and the bottom shows those without it, where
w(p) was fixed to 2000 for all pixels. When λ became larger (meaning stronger
regularization), the resulting images by SR-based synthesis converged to I(t)↑ in
both cases. Meanwhile, when λ became smaller (meaning weaker regularization),
the resulting images were sharper, but some regions, such as occlusion bound-
aries, became noisy due to mis-registrations. By our regularization scheme, the
resulting quality was successfully optimized around λ = 5.0 × 10−13 because
the regions with less reliable depth are more strongly regularized. Without this
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λ = 5.0 × 10−14 λ = 5.0 × 10−13 λ = 1.0 × 10−11

Fig. 5. Resulting images with (top) and without (bottom) adaptive regularization
based on pixel-wise depth reliabilities
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Fig. 6. Regularization factor vs. quality
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Fig. 7. Number of depths vs. quality

adaptive regularization we cannot obtain good results with any value of λ. The
same results are shown quantitatively in Fig. 6. The horizontal axis denotes the
value of λ in log scale, and the vertical axis is the mean squared error (MSE)
against the ground truth image. The dashed line represents the quality of blend-
based synthesis. The SR-based synthesis successfully improved the quality (re-
duced the MSE) if and only if the adaptive regularization was enabled.

Finally, we evaluated the performance change with regard to the number of
candidate depths (N in Eq. (4)) and depth refinements (Eqs. (8) and (9)). The
graph in Fig. 7 shows the relation between the number of candidate depths and
the resulting image quality in MSE. As an overall trend, the quality improved as
the number of depths increased, but using more than 40 depths had no benefit
in our environment. As clearly seen in the graph, SR-based synthesis performed
better than blend-based synthesis with a sufficient number of depths. Moreover,
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depth refinement was effective for improving the quality, especially when it was
combined with SR-based synthesis.

6 Conclusion

We proposed a method for free-viewpoint image synthesis with resolution im-
provement. The main features of our method are its view-dependent approach
focused on a given target viewpoint, fast and accurate semi-global depth estima-
tion, and super-resolution-based synthesis with depth-reliability-based regular-
ization. Experimental results validated the effectiveness of our method. Future
work will be focused on its real-time implementation. Our current implementa-
tion with unoptimized MATLAB codes performs at an unsatisfactory speed. We
plan to transplant it to C++ and CUDA codes to improve the processing rate.

Acknowledgments. This research is supported by the Strategic Information
and Communication R&D Promotion Programs (SCOPE) of the Ministry of
Internal Affairs and Communications, Japan.

A Appendix

A.1 Derivation of Mapping Function

Here we show how to derive the point correspondence between two cameras α
and β with a known depth z. Let P(α) be the 3 × 4 projection matrix of the
camera α. An object point X is projected onto an image point uα as

p(α) = P(α)X, where p(α) = (uα, vα, 1)t, X = (X, Y, Z, 1)t. (17)

A plane located at Z = z can be written as

[0, 0, 1,−z] · X = 0. (18)

By combining Eqs. (17) and (18), we obtain
⎛
⎜⎜⎝p(α)

0

⎞
⎟⎟⎠ = P̂(α)X, where P̂(α) =

⎛
⎜⎜⎝ P(α)

0 0 1 −z

⎞
⎟⎟⎠ . (19)

Similarly, we can also derive P̂(β) for the camera β. By using them, we obtain
the point correspondence between the two cameras as

⎛
⎜⎜⎝p(β)

0

⎞
⎟⎟⎠ = P̂(β)P̂

−1
(α)

⎛
⎜⎜⎝p(α)

0

⎞
⎟⎟⎠ . (20)

This is equivalent to the mapping function Pα→β(uα, z) in Eq. (6).
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A.2 Derivation of Depth Refinement Procedure

Assume a parabolic function, y = ax2 + bx + c, to locally approximate the
energy function S(p, n) around n = D(p). We substitute three points, (x, y) =
(D(p), Smin(p)), (D(p) − 1, Spre

min(p)), and (D(p) + 1, Snext
min (p)), to obtain the

coefficients a, b, and c. This function clearly takes the minimum c − b2/4a at
x = −b/2a, which are equivalent to Eqs. (8) and (9), respectively.

A.3 Derivation of warping function

A pseudo-code of the function ft↑→m in Eq. (12) is given as follows.

00: function I ′(m) = ft↑→m(ISR
(t) , D̂↑)

01:
02: for each m
03: D(m) = depth warping(D̂↑, t↑ → m)
04: end
05:
06: I ′(m)(p) = 0 for all p ∈ I ′(m)

07: for each p ∈ ISR
t

08: p(m) = Pt↑→m(p, zD̂↑(p))
09: get integer pixel positions p(m),i (i = 1, 2, . . .) around p(m)

10: for each p(m),i

11: if ||D(m)(p(m),i) − D̂↑(p)| ≤ 1
12: get ri based on |p(m) − p(m),i| and PSF
13: I ′(m)(p(m),i) = I ′(m)(p(m),i) + riI

SR
(t) (p)

14: end
15: end
16: end

In lines 02–04, depth maps viewed from input viewpoints D(m) are obtained by
warping D̂↑ to the input viewpoints, whose details are given later. In line 06, all
pixels of I ′(m) are initialized with zero. In line 08, a pixel on ISR

(t) , p, is warped
onto the m-th input camera, resulting in p(m). Since p(m) is not an integer
pixel position in general, neighboring integer pixels p(m),i are selected. After the
occlusion test in line 11, we determine the contribution weight ri in line 12. This
weight is calculated from the distance between p(m) and p(m),i, and the shape of
the point spreading function (PSF). We use a box-shaped PSF that is equal to
the pixel in size. In line 13, ISR

(t) (p) is weighted by ri and added to I ′(m)(p(m),i).
These procedures are iterated for every pixel p ∈ ISR

t .
The function depth warping() is given as follows. In line 02, each pixel is ini-

tialized with 0, which corresponds to the infinite distance. In line 04, each pixel
on D̂↑ is warped to the m-th input viewpoint. Depth values of D(m) are updated
with the occlusion test as shown by lines 05–07.
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00: function D(m) = depth warping(D̂↑, t↑ → m)
01:
02: D(m)(p) = 0 for all p ∈ D(m)

03: for each p ∈ ISR
t

04: p(m) = round(Pt↑→m(p, zD̂↑(p)))

05: if D(m)(p(m))≤D̂↑(p)
06: D(m)(p(m))=D̂↑(p)
07: end
08: end
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Abstract. We present a new subcortical structure shape modeling
framework using heat kernel smoothing constructed with the Laplace-
Beltrami eigenfunctions. The cotan discretization is used to numerically
obtain the eigenfunctions of the Laplace-Beltrami operator along the sur-
face of subcortical structures of the brain. The eigenfunctions are then
used to construct the heat kernel and used in smoothing out measure-
ments noise along the surface. The proposed framework is applied in
investigating the influence of age (38-79 years) and gender on amyg-
dala and hippocampus shape. We detected a significant age effect on
hippocampus in accordance with the previous studies. In addition, we
also detected a significant gender effect on amygdala. Since we did not
find any such differences in the traditional volumetric methods, our re-
sults demonstrate the benefit of the current framework over traditional
volumetric methods.

1 Introduction

The amygdala and hippocampus are primary subcortical structures involved in
emotion and memory [1,2]. Age and gender could be major factors that affect
the functions and structures of these regions, as implied by postmortem studies
[3]. Although the atrophy of brain tissues associated with the increase of age
is reported in several hundreds subjects [4,5], the findings on the atrophy of
amygdalar and hippocampal structures are somewhat inconsistent. The volume
reduction of amygdala and hippocampus due to aging has been found in some
studies [6,7,8], while other studies did not find such association [4,5,9,10]. For
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the effect of gender, one study reported significant differences in amygdala and
hippocampus volume between the groups [11] whereas others failed to reproduce
these [12]. The inconsistency between these results may have been due to the
different image processing and analysis pipelines used in these studies.

In these volumetric studies, the total volume of the amygdala or hippocampus
was typically estimated by tracing the region of interest (ROI) manually and
counting the number of voxels within the ROI. The limitation of this ROI-
based volumetry is that it cannot determine if the volume difference is diffuse
over the whole ROI or localized within specific regions of the ROI [13]. Our
proposed deformation-based morphometry (DBM) framework can localize the
volume difference up to the mesh resolution at each surface mesh vertex.

Using the 3D deformation field derived from spatial normalization of MRI,
we can model how the surfaces of subcortical structures are different from each
other at the vertex level. Since the deformation field is noisy, it is necessary to
smooth out the field along the surface to increase the signal-to-noise ratio (SNR).
Further, smoothing is desirable in satisfying the assumptions of the random field
theory (RFT), which is used in correcting for multiple comparisons [14,15]. For
RFT to work, the Gaussianness and smoothness of data are needed [14,16].
As the amount of smoothing increases, Gaussianness and smoothness of data
increases. With these motivations, we present a new framework of smoothing
scalar and vector measurements using heat kernel smoothing, which is equivalent
to performing isotropic diffusion but without discretizing the diffusion equation.
The proposed framework is then used in examining the effect of age and gender
on amygdala and hippocampus, contrasting the traditional volumetric analysis.

2 Method

We analyze the shape of subcortical structures as follows: (1) obtain a population
mean volume by averaging the spatially normalized binary masks, and extract a
template surface from the averaged binary volume (section 2.1), (2) interpolate
the 3D displacement vector field onto the vertices of the surface meshes (section
2.1), (3) perform heat kernel smoothing on the displacement length along the
template surface to reduce noise, and on the surface coordinates to smooth out
the surface itself for better visualization (section 2.2 and 2.3), (4) apply a general
linear model testing the effect of age and gender. The detailed description of
each step is given in section 2 except the statistical inference which is given in
section 3.

2.1 Images and Preprocessing

We have high resolution T1-weighted inverse recovery fast gradient echo anatom-
ical 3D images, collected in 124 contiguous 1.2-mm axial slices (TE=1.8 ms;
TR=8.9 ms; flip angle = 10◦; FOV = 240 mm; 256 × 256 data acquisition
matrix) of 69 middle age and elderly adults ranging between 38 to 79 years
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Fig. 1. Subcortical masks superimposed on MRI (top) and the corresponding isosur-
faces of the masks (bottom)

(mean age = 58.04 ± 11.34 years). The data were originally collected for a na-
tional study for the health and well-being in the aged population, called MIDUS
(Midlife in US; http://midus.wisc.edu/).

There are 23 males and 46 females. The amygdalae and hippocampi were
manually segmented by a trained individual rater. Brain tissues in the MRI
scans were first segmented using Brain Extraction Tool (BET) [17]. Then we
performed a nonlinear image registration using the diffeomorphic shape and
intensity averaging technique with cross-correlation as similarity metric through
Advanced Normalization Tools (ANTS) [18]. A study-specific unbiased template
was constructed from a random subsample of 10 subjects. Using the deformation
field of warping the individual brain to the template, we deformed the amygdala
and hippocampus binary masks to the template space. The normalized masks
were then averaged to produce the subcortical masks. The isosurfaces of the
subcortical masks are extracted using the marching cube algorithm [19]. The
subcortical masks and the corresponding surfaces are shown in Fig. 1.

Using ANTS, we have the deformation vector field of warping an individual
brain to the template. The vector field is defined on voxels. On the other hand,
the vertices of the subcortical surface meshes are located within voxels. So we
simply assigned the vector field onto the mesh vertices by linear interpolation
(Fig. 2). The length of the displacement vector at each vertex is computed and
used as a feature to measure the local shape variation.

http://midus.wisc.edu/
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Fig. 2. Displacement vector field (blue arrows) of a subject on an axial slice of the tem-
plate brain (left). Yellow contour in the left panel is the boundary of the left hippocam-
pus in the template. The vector field has been interpolated on the left hippocampus
surface (right).

2.2 Heat Kernel Smoothing

Since the displacement length on the template surface is noisy, it is necessary to
smooth out the measurements to increase the signal-to-noise ratio (SNR) and
to improve the smoothness and Gaussianness of data for RFT-based statistiscal
inference [20]. We propose a new diffusion smoothing framework that uses the
Laplace-Beltrami eigenfunctions.

Diffusion equations have been widely used in image processing as a form of
noise reduction starting with Perona and Malik in 1990 [21]. Although numer-
ous techniques have been developed for surface fairing and mesh regularization
[20,22,23,24,25,26] based on heat diffusion. Most diffusion smoothing approaches
mainly use finite element or finite difference schemes which is known to suffer
numerical instability if the forward Euler scheme is used.

In this paper, we propose a new smoothing framework that constructs the
heat kernel analytically using the eigenfunctions of the Laplace-Beltrami op-
erator. Although solving the eigenfunctions of the Laplace-Beltrami operator
requires the finite element method, the proposed method is analytic in a sense
that heat kernel smoothing is formulated as a series expansion explicitly. We are
not claiming our framework to be analytic which is theoretically impossible when
dealing with real data. The proposed method represents isotropic heat diffusion
analytically as a series expansion so it avoids the numerical instability associated
with solving the diffusion equations numerically [20,22,27]. Our framework is an
improvement over previous approaches in the sense that it bypasses the vari-
ous numerical problems that are associated with previous approaches including
numerical instability, slow convergence, and accumulated linearization error.
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Consider a real-valued functional measurement Y (p) defined on a manifold
M ⊂ R

3. We assume the following additive model:

Y (p) = θ(p) + ε(p), (1)

where θ(p) is the unknown mean signal to be estimated and ε(p) is a zero-
mean Gaussian random field. We may assume Y ∈ L2(M), the space of square
integrable functions on M with the inner product

〈f, g〉 =
∫
M

f(p)g(p)dμ(p),

where μ is the Lebesgue measure such that μ(M) is the volume of M. Solving

Δψj = λjψj , (2)

for the Laplace-Beltrami operator Δ on M, we find the eigenvalues λj and
eigenfunctions ψj . The eigenfunctions ψj form an orthonormal basis in L2(M)
[28]. We may order eigenvalues as 0 = λ0 < λ1 ≤ λ2 · · · and corresponding
eigenfunctions as ψ0, ψ1, ψ2, · · · .

heat kernel Kσ(p, q) is then analytically given as

Kσ(p, q) =
∞∑

j=0

e−λσψj(p)ψj(q), (3)

where σ is the bandwidth of the kernel [29]. Heat kernel smoothing of Y is given
analytically defined as

Kσ ∗ Y (p) =
∞∑

j=0

e−λσβjψj(p), (4)

where βj = 〈Y, ψj〉 are Fourier coefficients. The heat kernel smoothing (4) is
taken as an estimate for the unknown signal θ. Since the expansion (4) is a
unique solution to isotropic heat diffusion, we can avoid the need to solve the
diffusion using less stable numerical schemes such as the finite difference method
[29,30].

2.3 Numerical Implementation

As the closed form expression for the eigenfunctions of the Laplace-Beltrami
operator on an arbitrary curved surface is unknown, the eigenfunctions are nu-
merically calculated by discretizing the Laplace-Beltrami operator. To solve the
eigensystem (2), we need to discretize it on a triangular mesh using the Cotan
discretization [31,32]. Using the Cotan discretization, (2) is linearized as the
generalized eigenvalue problem:

Cψ = λAψ (5)
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Fig. 3. Illustration of heat kernel smoothing. By summing the Laplace-Beltrami eigen-
functions, we smooth out functional measurements on surfaces. The left most surfaces
are the noisy original surfaces with the displacement length. First three eigenfunc-
tions ψ0, ψ1, ψ2 are shown in the middle. The right most surfaces are the results of
summation with σ = 0.5.

where C is the stiffness matrix, A is the mass matrix and ψ = (ψ(p1), · · · , ψ(pn))′

is the unknown eigenfunction evaluated at n mesh vertices. A first few eigen-
functions for the subcortical surfaces are shown in Fig. 3.

In this study, we have chosen the bandwidth σ=0.5 and used the finite eigen-
function expansion using up to 1,000 basis (Fig. 3). We smoothed the length of
displacement vector field and the coordinates of template surfaces as well.

Once we obtained the basis functions ψj numerically, we need to estimate
the Fourier coefficients βj . It can be shown that the Fourier coefficients can be
estimated as

βj = Y′Aψj , (6)

where Y = (Y (p1), · · · , Y (pn))′ and ψj = (ψj(p1), · · · , ψj(pn))′ [33].
The MATLAB code for computing the eigenfunctions and performing

heat kernel smoothing is available at http://brainimaging.waisman.wisc.
edu/~chung/lb/.

2.4 Validation

The heat kernel smoothing framework is validated on a unit sphere where the
Laplace-Beltrami eigenfunctions are exactly given as spherical harmonics. We
used a spherical mesh with 40,962 uniformly sampled mesh vertices. Let Ylm

be the spherical harmonic of degree l and order m [34]. Due to the multiplicity,
there are 2l+1 eigenfunctions Yl,−l, · · · , Yl,l corresponding to the same eigenvalue
l(l + 1). Further, any linear combination

∑l
m=−l βlmYlm is an eigenfunction as

well. So it is not possible to validate the accuracy of the obtained eigenfunctions.
Therefore, we only checked if solving (5) produces the expected eigenvalues.

http://brainimaging.waisman.wisc.edu/~chung/lb/
http://brainimaging.waisman.wisc.edu/~chung/lb/
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Fig. 4. Left: 133 eigenvalues are numerically computed (blue dotted) and compared
against the ground truth (red solid) λl = l(l + 1) for up to degree l = 11. Right: The
plot of the root mean squared errors (RMSE) of computed heat kernel over the number
of eigenfunctions used (horizontal) for bandwidths 0.05, 0.1, 0.2 and 0.5. As the number
of eigenfunctions increases, our implementation converge to the ground truth.

Fig. 4 shows the 133 computed eigenvalues compared against the ground truth.
The maximum possible relative error is 0.0032 (0.32%).

We also checked the accuracy of the constructed heat kernel. On a unit sphere,
the heat kernel is given by

Kσ(p, q) =
∞∑
l=0

l∑
m=−l

e−l(l+1)σYlm(p)Ylm(q). (7)

We have taken the degree l = 85 expansion as the ground truth and compared
it to the numerically constructed heat kernel. The RMSE of heat kernel against
the ground truth was computed for various bandwidth between 0.05 and 0.5
(Fig. 4). The rate of convergence depends on the bandwidth. As the number
of eigenfunctions increases, the constructed heat kernel converge to the ground
truth quickly. Beyond 150 eigenfunctions, the reconstruction error is negligible.

3 Results: General Linear Models on Surface Shapes

3.1 Traditional Volumetric Analysis

In the traditional volumetric approach, the volumes of amygdala and hippocam-
pus binary mask were simply computed by counting the number of voxels within
the mask. In order to account for the effect of intersubject variability in brain
size, the brain volume excluding cerebellum was computed and covariated in
general linear models.

The brain volume is significantly correlated with the amygdala (left: r= 0.55,
p < 10−5; right: r=0.49, p < 10−4) and the hippocampus volumes (left: r= 0.59,
p < 10−7; right: r=0.63, p < 10−8). Since amygdala and hippocampus volumes
are dependent on the whole brain volume, we really need to factor out the brain
volume in the general liner models.
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We model the V olume of amygdala and hippocampus as

V olume = β1 + β2 · Brain + β3 · Age + β4 · Gender + ε (8)

where ε is zero mean Gaussian noise and Brain is the total brain volume. The
age and gender effects are determined by testing the significance of parameters
β3 and β4 at α = 0.01. The results are displayed in Figure 5.
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Fig. 5. Scatterplots of left, right and combined amygdala volumes over age (top) and
gender (bottom)
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Fig. 6. Scatterplots of the volume of left, right and total hippocampus over age (top)
and gender (bottom)
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For the amygdala volume, we did not find a significant effect of age (left p=
0.31; right p= 0.15; combined p= 0.20) nor gender (left p= 0.20; right p= 0.35;
combined p= 0.25) For the hippocampus volume, we did not find a significant
effect of age (left p= 0.92; right p= 0.90; total p= 0.90) nor gender (left p= 0.05;
right p= 0.04; total p= 0.03).

Since our results are based on the volume of the whole amygdala and hip-
pocampus, it is still unclear if there are any localized shape differences within
the parts of amygdala and hippocampus.

3.2 Localized Subcortical Shape Analysis

The length of displacement vector fields along the template surfaces were com-
puted and smoothed as described in section 2. Then Length is regressed over
the total brain volume and other variables:

Length = β1 + β2 · Brain + β3 · Age + β4 · Gender + ε (9)

where ε is zero mean Gaussian noise. The age and gender effects are determined
by testing the significance of parameters β3 and β4 at α = 0.01. We used SurfS-
tat MATLAB toolbox (http://galton.uchicago.edu/faculty/InMemoriam/
worsley/research/surfstat/), for the statistical analysis and multiple com-
parison correction. The details on the SurfStat package is given in [34]. The
results are displayed in Figure 7.

Fig. 7. F -statistic maps on the amygdala and hippocampus surfaces showing the age
(a) and gender (b) effects with corresponding p-values indicated. The posterior regions
of the both left and right hippocampi show a significant age effect. The ventral region
of the right amygdala shows a significant gender effect.

http://galton.uchicago.edu/faculty/InMemoriam/worsley/research/surfstat/
http://galton.uchicago.edu/faculty/InMemoriam/worsley/research/surfstat/
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Age effect. We found the region of significant effect of age on the posterior part
of hippocampi (left: max F = 39.43, p < 10−5; right: max F = 23.11, p = 0.002)
Particularly, on the caudal regions of the left and right hippocampi, we found
highly localized signals. It is consistent with other shape modeling studies on
hippocampus [35,36]. We did not find any age effects on the amygdala surface
at α = 0.01.

Gender effect. We found a highly focalized region of gender effect on the inferior
part of the right amygdala (max F = 24.66, p < 0.001). In particular, the gender
effect is focused around the ventral part of laterobasal group [37].

We did not find any significant gender effects on the left amygdala and hip-
pocampi.

4 Conclusion

We have presented a new subcortical structure shape modeling framework us-
ing heat kernel smoothing constructed with the Laplace-Beltrami eigenfunctions.
The proposed framework demonstrated higher sensitivity in modeling shape vari-
ations compared to the traditional volumetric analysis. The ability to localize
subtle morphological difference may provide an anatomical evidence for the func-
tional organization within human subcortical structures.
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Abstract. In this paper, we propose a system for wheeled robot SLAM and 
navigation in indoor environments. An omni-directional camera and a laser 
range finder are the sensors to extract the point features and the line features as 
the landmarks. In SLAM and self-localization while navigation, we use 
extended Kalman filter (EKF) to deal with the uncertainty of robot pose and 
landmark feature estimation. After the map is built, robot can navigate in the 
environment based on it. We apply two scale path-planning for navigation. The 
large-scale planning finds an appropriate path from starting point to destination. 
The local-scale path-planning fills up the drawbacks of the prior step, such as 
dealing with the static and dynamic obstacles and smoothing the path for easier 
robot following. Through the experiment results, we show that the proposed 
system can smoothly and correctly locate itself, build the environment map and 
navigate in indoor environments.  

Keywords: SLAM, EKF, navigation, path-planning, obstacle avoidance, robot. 

1  Introduction 

In recent years, there is more and more attention on robotics research, especially the 
service robot industry all over the world. Many applications of the robotic technology 
have been developed, such as security robots, nursing robots, and so on. All of them 
need to navigate in an associated environment and locate themselves. There are four 
major problems needed to be overcome, which are self-localization, environment map 
establishment, path to destination detection and collision avoidance. However, these 
four problems are not independent, but mutually correlated. For example, once self-
localization consists in error, it may cause the wrong map building. And the wrong 
map will cause self-localization in larger error. Furthermore, the wrong map or self-
estimated location may induce path-planning failure. 

Fortunately, a number of researches have worked on these challenges. 
Simultaneous localization and mapping (SLAM) method builds an environment map 
using only relative environment observation and using the map for robot localization 
at the same time. An unbiased map needs correct robot location and vice versa. Smith 
et al. [1] [2] used probabilistic model, a state vector describing robot location and 
landmark position with a covariance matrix describing their mutual uncertainty, and 
extended Kalman filter (EKF) to represent and estimate the spatial uncertainty. 
Durrant-Whyte et al. [3] [4] proposed a framework of SLAM. Doucet et al. [5] solved 
the SLAM problem by means of Rao-Blackwellized particle filter (RBPF). 
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Montemerlo et al. proposed FastSLAM algorithm which tracks the landmarks by 
extended Kalman filter and estimate the robot’s pose by Rao-Blackwellized particle 
filter. There are also many researches using different sensors for SLAM [6][7][8].  

Also many researches discussed about path planning and obstacle avoidance. The 
path planning problems are typically approached using one of these two categories: 
search-based, sampling-based. The basic idea of search-based planning is using 
regular grid cells to represent the configuration space. The path planning problem is 
done by searching the grids and finding a point-to-point path from starting grid to the 
goal grid. Dijkstra [9] first proposed the Dijkstra’s Algorithm, which solves the 
shortest path problem by breath-first search. A* algorithm [10] further uses an 
admissible heuristic to reduce the search region. The continuing improvements 
including D* algorithm [11] which makes re-plan more efficient, Anytime A* [12] 
which concerns the deliberation time and AD* [13] which combines D* and Anytime 
A*. The sampling based planning does not use the regular grid cells but samples the 
vertices in the configuration space with appropriate edge assignment between them, 
and finds path from the candidate vertices. The probabilistic roadmap (PRM) [14] 
generates vertex by random sampling. The rapidly-exploring random tree (RRT) [15] 
makes the sampling more efficient. There are also Anytime RRT [16] and Anytime 
Dynamic RRT [17] Algorithms proposed for improving the speed of planning and re-
planning. 

In this paper, we propose a system for wheeled robot navigation in indoor 
environments using only on-robot sensors. When the robot enters a new environment, 
we first build the environment map by SLAM (Simultaneous Localization and 
Mapping). In our approach, we choose the omni-directional camera and laser range 
finder as the on-robot sensors which have wide sensing field. The property of wide 
sensing field is very important for robot localization and obstacle capturing because 
of increasing the duration of landmarks and obstacles observation, and decreasing the 
effect of landmarks being covered by obstacles. After the environment map has been 
built, the robot can navigate by finding the appropriate path from the built map. We 
separate the robot navigation into two parts. The first part is the large-scale path-
planning, which is similar as people select which path to go through. The other part is 
the local-scale path-planning for obstacle avoidance. This part rapidly generates a 
collision-free path and guarantees the robot real-time avoiding the obstacles when 
there are static or dynamic obstacles on the way to goal. 

The remaining sections of the paper are organized as follows. Section 2 gives the 
overview of our system. Section 3 introduces feature extraction with omni-directional 
camera and laser range finder. The SLAM and localization method using the point 
and line features is presented in section 4. Section 5 presents the large scale and local 
scale path-planning for robot navigation. Experimental results are shown in Section 6. 
Finally, conclusion is presented in section 7. 

2  System Overview 

Figure 1 and Figure 2 show the flowcharts of our system. Figure 1 shows the SLAM 
flowchart, which is used to build the map when robot first enters a new environment. 
We utilize the omni-directional camera and SICK laser range finder to extract 
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landmarks. The landmarks used in our system are point features and line features, 
which will be briefly described in next section. We use the extracted features and 
odometer data for SLAM. After data association, we revise error with extended 
Kalman filter.  

 

Fig. 1. Flowchart of SLAM   Fig. 2. Flowchart of robot navigation 

Figure 2 shows the flowchart of robot navigation. After the environment map is 
built, robot can navigate based on it. When robot navigates in the indoor environment, 
we still use the same method as Figure 1 for robot self-localization. The dotted block” 
Robot Pose” in Figure 2 is same as the dotted block in Figure 1. For navigation, we 
first apply a large-scale path-planning. In this step, the algorithm finds an appropriate 
path from the location of robot to the destination. After the path is generated, robot 
can go along it and move toward destination. While the robot is moving, there may be 
some obstacles which block the original path as detected by the laser range finder. 
The local-scale path-planning can quickly generate a new collision free path for 
avoiding robot collision. Finally, the robot can safely achieve to the destination. 

3  Landmark Extraction 

We use an omni-directional camera and a laser range finder as our sensor system to 
extract the landmarks in the environment. It is easy to combine data of these two 
sensors because they are center-aligned, facing the same direction, and both sensing 
data can be represented in polar coordinates. In landmark extraction, we extract two 
types of landmarks: the point landmarks and the line landmarks. The point landmarks 
are used for both x-y location and robot orientation estimation, similar to many point-
feature-based SLAM works. But the estimation with only point landmarks may have 
larger error if there are very few number of point landmarks in the observation region. 
Therefore, we add the line landmarks in our system. The line landmarks can improve 
the accuracy of robot orientation estimation. 

3.1  Point Landmarks 

A point landmark is the 2-D position of a 3-D vertical line, which is the intersection 
of the 3-D line with x-y plane as shown in Figure 3(a). It is very efficient to extract 
the vertical lines from images captured by onmi-directional camera, because of the 
property that all of the 3-D vertical lines extending pass through the center. Figure 
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3(b) shows the omni-directional camera data input. Because of the ratio of the image 
could influence the bearing information of the extracted landmark, we first resize the 
image to equal ratio, as shown in Figure 3(c). To make our processing concentrate on 
the useful region, we use a mask as given in Figure 3(d). Only the data in the white 
region will be processed. Then we apply the Canny edge detector to find out the 
edges. After we got the edge points, we record how many edge points exist in each 
angle degree. Once the number of existing edge points in an angle degree exceeds a 
threshold, a vertical line is affirmed. Combining with the laser range finder data, as 
the yellow points shown in Figure 3(f), we can get the position of the point 
landmarks. Finally, to reduce the observation error, we ignore those landmarks which 
are too far away. And for those landmarks existing in continuous angle degree, we 
only use the two sides of them as our point landmarks. 

 

Fig. 3. Illustration of point landmarks extraction 

3.2  Line Landmarks 

The line landmarks are the horizontal straight lines in the environment, which are 
extracted from the laser range finder data. Figure 4(a) shows the laser range finder 
data input. For extracting the straight lines, we first find the break points for 
separating each straight line. For each range point is , if is  satisfies one of the three 

conditions in (1), we consider is  as a break point. These three conditions are 

considered for different situation. The first condition focuses on the distance between 
two continuous range points. If the distance is huge, as shown by red circles in Figure 
4(b), two sides of is  should not belong to same straight line. The second condition 

considers the angle between 1i is s−  and 1i is s + . A large angle should not occur on a 

straight line. The third condition is dealing with the situation shown by the green 
circles in Figure 4(b). We can see is  in two green circles in Figure 4(b) have similar 

information of distance and angle, but those on the left form a straight line while 
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those on the right are break points. It is hard to use one threshold to distinguish them. 
Therefore, we use two smaller thresholds for double checking. After the break-point 
detection, those remaining range points could be seen as straight line points. For the 
sets consisting of consecutive points more than a threshold, apply the least square 
method and find the parameter of the line landmarks. 
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Fig. 4. Illustration of line landmarks extraction 

4  Extended Kalman Filter SLAM 

In SLAM, the uncertainty of the robot pose and landmark position is the dominant 
problem to be solved. In our system, we use EKF to handle uncertainties. The basic 
Kalman Filter is suited for a linear system. For a non-linear case we should linearize 
the original system appropriately. Generally, the EKF SLAM uses a state vector and a 
covariance matrix to describe status of the robot pose and landmark position. In our 
system the state vector is described as follows. 

[ ] [ ] [ ]
[ ]1

(point landmarks)
...            

    (line landmarks)

T
T T i i

k r n r r r r i

i

x y
m m x y θ

θ

= = = 


x x x m     (2) 

kx
 
is the state vector at time k. rx is the robot pose vector, where [ ]T

r rx y is the 

robot location in the world coordinate and rθ is the orientation of the robot. im is the 

ith landmarks as [ ]T

i ix y  for point landmarks and [ ]iθ  for line landmarks. 

 SLAM by EKF contains following main steps: 
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4.1  Prediction 

We use the motion model and the previous state to predict the current state. The state 
prediction step is 

 | 1  1| 1 1ˆ ˆ( , )r k k r k k k kf q− − − −= +x x u                            (3) 

1k −u is the odometer data of motion, including velocity and angular velocity. 

 where  ,
2
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= ==   u                (4) 

 f is a non-linear function, describing how the robot moves in the world coordinate. 
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And the covariance matrix 1| 1k kP − − is propagated through the linearized state transition 

function f , yielding | 1k kP − given by 

| 1 1| 1 where  is the Jacobian of  at time        
f

T
k k f k k f k J f kP J P J Q− − −= +          (6) 

4.2  Observation 

The observation equation for ith landmark can be written as 

1 1( | )i i k k iz h x x w− −= +                                 (7) 

where iw is the uncertainty of observation which is temporally uncorrelated and zero-

mean random noise. For point landmarks, we use both range and bearing information. 
For line landmarks, we only use the bearing information. The following are their 
measurement functions. 

• Point landmarks:  

( ) ( )
( )

2 2

2 ,

i i r i r
i i

i i r i r r

r x x y y
z w

arcTan y y x xθ θ

   − + − = = +     − − − 

                 (8) 

 

Fig. 5. Relation between landmarks and robot 
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• Line landmarks: 

_ ( )i i iz normal vector line w= +                          (9) 

4.3  Data Association 

For point landmarks, we use the Mahalanobis distance, which makes the distance 
error measurement take the correlation of the data set into account. If the Mahalanobis 
distance between the observed landmark z  and the recorded landmark ih  is smaller 

than the threshold γ , we determine that z  is associated with ih . 

1

            ,    
            T

i i i T
i i i h hi i

where v z h S J PJ R
v S v γ−

= − = +<                (10) 

For line landmarks, we use the bearing information and the distance of the center of 
robot to feature line for association. 

                     i i dd dθθ θ γ γ− < − <
                        

(11) 

4.4  Update 

After landmark extraction and association, the measurement residual of associated 
landmarks can be used for EKF update. The Kalman gain Kk  is computed as 
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The state vector and covariance are updated as 
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5  Path Planning for Robot Navigation 

The robot navigation consists of two path planning parts. The first part is the large-
scale path planning, which is similar to people choosing the appropriate path for 
walking along to the destination. In our system, we apply a search based method A* 
with big grid size. The big grid size planning has rough results but makes the plan 
accomplished rapidly. In the first step we do not really need a precise path because 
the next step deals with the obstacle avoidance. The second step, local-scale path 
planning, is composed of an orientation decision method and a RRT-based path 
planning. The path planning in this step can rapidly generate a substitute path for 
path smoothing or collision avoidance. The orientation decision guarantees a real-
time command for reducing risks, even if the planning is not achieved in deliberation 
time. 
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5.1  Large-Scale Path Planning 

In large-scale path planning, we use A* algorithm to find the path from the pre-built 
environment map, as shown in figure 7.  A* is a best-first search using a heuristic 
cost function ( ) ( ) ( )f x g x h x= + , where ( )g x is the cost from the starting node to 

the current node, and ( )h x is the heuristic estimation of the cost from the current node 
to the destination. 

 

Fig. 6. Large-scale path planning by A* 

5.2  Local-Scale Path Planning for Obstacle Avoidance 

The local-scale path planning takes place in two situations.  When the original 
planned path is blocked by any obstacles, re-planning applied for a collision-free path. 
When the original path is including extremely sharp turning angle, re-planning is 
applied for a smooth path. 

• RRT-based path planning. 

GrowTree(tree) 
 1  while(xgoal != xnew) 
 2   xtarget = GenerateTarget(); 
 3   xnearest = NearestNeighbor(xtarget,tree); 
 4   xnew = Extend(xnearest, xtarget); 
 5   if(CollisionCheck(xnew)); 
 6    tree.add(xnew); 
GenerateTarget() 
 7  p = RandInt()%100; 

 8  if(p < λg) 
 9   return(xgoal) 
 10 else 
 11  return RandomPoint(); 
Main() 
 12 tree.init(xstart); 
 13  GrowTree(tree); 

Fig. 7. The RRT Algorithm 
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The standard RRT algorithm is shown in Figure 7. To grow the tree, first xtarget is 
randomly sampled from the configuration space by function GenerateTarget. To 
make the tree grow more efficiently and focused on xgoal, GenerateTarget returns 
xgoal with probability λg. Then, the NearestNeighbor function finds xnearest, which is 
the tree node closest to xtarget. After that, a new node is generated by Extend function. 
If the new node is free from collision, add the new node in. Else, no extension 
applied. These steps are repeated until xgoal is reached. 

In our system, we grow the RRT in three dimensional space, including the 2-D 
location ,x y and the robot orientation θ . θ  is used for smooth path generation. The 

NearestNeighbor function considers (14) as the distance between ix and targetx . 

( )target target

                                        ,where  is the weighting const.

 (  ) ( )i i ix x dir x x orientation x

ω

ω+ ⋅ −

                 

(14) 

The Extend function also needs to consider the orientation. For the smoothness of the 
generated path, xnew can only turn thθ even if the orientation difference between ix

and target ix x is larger than it.  

 

    Fig. 8. Illustration of risk region            Fig. 9. Illustration of orientation decision 

Furthermore, the RRT tends to generate path along the obstacle barrier, as shown 
in Figure 8(a). This is not a good property especially when the obstacle is moving. We 
set the risk region between obstacle and robot to make the planned path response to 
obstacle earlier. Those points in the risk region will have larger cost when connecting 
with the tree nodes to reduce the probability of planed path crossing through it.  

• Orientation Decision 

Although the RRT algorithm could be very fast in local-scale path planning, there are 
still some cases where the planning cannot be completed in real-time. Many works 
proposed the “anytime” version of RRT to cope with the time-limited problem. 
Although speeded up, still not guaranteed in real-time. In our system, we do not try to  
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guarantee real-time generating the path but to find the appropriate direction in real-
time for robot to follow. Because of the advantage of laser range finder, we can easily 
get the block distance in every angle degree. If the distance is smaller than a 
threshold, we determine that this angle degree is blocked, as shown in Figure 9. We 
also consider the angle degrees near the blocked angle degrees are in risk (green 
regions). Then, we choose the direction closest to the destination direction from the 
free degrees as the recommended direction. Once the RRT planning cannot be 
completed in deliberated time, we use the recommended direction for improving 
obstacle avoidance. 

6  Experimental Results 

6.1  Simultaneous Localization and Mapping 

In the SLAM experiment, the robot is controlled to run a closed loop in a long 
corridor. For the outward part (downward), localization and building map at the same 
time. For the return part (turning & upward), localization is applied only. Figure 10 
shows the results of SLAM using different landmarks. Table 1 shows the error 
between the starting point and ending point. Figure 10(a) shows the result using only 
odometer data. Figure 10(b) shows the result using the point landmarks. The result 
using the line landmarks is shown in Figure 10(c). And Figure 10(d) shows the result 
using both point and line landmarks.  

 

Fig. 10. Results of SLAM using different landmarks 

Table 1. Error comparison 

 X Y 
Ground Truth 0.0 m 0.0 m 

(a) 6.23 m -3.11 m 
(b) 0.07 m -0.41 m 
(c) 0.13 m -0.31 m 
(d) 0.05m 0.00 m 



58 S.-Y. Lin and Y.-C. Chen 

From Figure 10 and Table 1, we can find that the result (a) has large error, 
especially when the robot is turning, the robot completely missed its orientation. 
Because (a) does not use any landmarks for error correction, the error is continuously 
accumulated. Therefore, the final estimated location has extremely large error. Result 
(b) uses the point landmarks for error correction and performs much better than (a). 
However, when the robot goes through a section with fewer point landmarks, the error 
of orientation becomes large and makes the built map distorted. Result (c) using the 
line landmarks, which are used for orientation correction, is almost perfect in 
orientation estimation. However, because there is no x-y lacation compensation, the 
straigh path is longer than the ground truth. Result (d), which is the method used in 
our system, can both correct the x-y location and orientation. Although there are still 
tiny error occuring on the recorded path, the robot can continuously compensate 
errors and find the location by itself. 

6.2  Navigation 

In the experiment of robot navigation, we first simulate our local-scale path planning 
method to see if it can really generate a good path for static and dynamic obstacle 
avoidance. Figure 11 shows the simulation environment and Table 2 shows the 
statistical results. The black squares in Figure 11 represent the static obstacles. The 
blue circles represent the dynamic obstacles, their speed and moving direction is 
randomly generated. As shown in Table 2, the success probability with three dynamic 
obstacles is higher than 90%, and the success probability with orientation decision is 
higher than that without orientation decision. 

 

Fig. 11. Simulations of obstacle avoidance 

Table 2. Success rate comparison 

static 
obstacle 
number 

dynamic 
obstacle 
number 

Success(/100 times) 
(with orientation decision) 

Success(/100 times) 
(without orientation decision) 

2 1 99% 99% 
2 2 96% 94% 
2 3 91% 89% 
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Fig. 12. On-road testing of obstacle avoidance 

Beside the simulation results, we also have the on-road testing as shown in Figure 
12. In Figure 12(a), the robot follows the original path planned by large-scale 
planning. The robot detects the obstacle and generates a substitute path for collision 
avoidance, as shown in (b). This on-road testing shows the robot can continuously 
localize itself, even if the obstacle hides some landmarks, and follow the substitute 
path to move to the destination. 

7  Conclusion 

In this paper, we propose a system using omni-directional camera and laser range 
finder for robot SLAM and navigation in indoor environments. We extract the point 
features and the line features as the landmarks. In SLAM and self-localization while 
navigation, the uncertainty of the odometer and observation is compensated by 
applying the linearized system model and odometer data to the extended Kalman filter 
(EKF). By the error compensation, the robot pose and the landmark feature can be 
well estimated. After the map has been built, robot can navigate in the environment 
based on it. We apply two-scale path-planning for navigation. The large-scale 
planning finds an appropriate path from starting point to destination. The A* with big 
grids is used in this step. The local-scale path-planning fills up the drawbacks of the 
prior step, such as dealing with the static and dynamic obstacles and smoothing the 
path for easier robot following. We apply an improved RRT algorithm for the path-
planning in this step and use an orientation decision method to guarantee the real-time 
response to the detected obstacles. 

Through the experiment results, we showed that the proposed system can smoothly 
and correctly locate itself, build the environment map and navigate in indoor 
environment. With the advantage of wide sensing field sensors, the self-localization 
still works even when there are obstacles covering some landmarks or the robot 
continuously changes the orientation to avoid collision.  
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Abstract. Colonoscopy is the accepted screening method for detecting 
colorectal cancer or colorectal polyps. One of the main factors affecting the 
diagnostic accuracy of colonoscopy is the quality of bowel preparation. Despite 
a large body of published data on methods that could optimize cleansing, a 
substantial level of inadequate cleansing occurs in 10% to 75% of patients in 
randomized controlled trials. In this paper, we propose a novel approach that 
automatically determines percentages of stool areas in images of digitized 
colonoscopy video files, and automatically computes an estimate of the BBPS 
(Boston Bowel Preparation Scale) score based on the percentages of stool areas. 
It involves the classification of image pixels based on their color features using 
a new method of planes on RGB (Red, Green and Blue) color space. Our 
experiments show that the proposed stool classification method is sound and 
very suitable for colonoscopy video analysis where variation of color features is 
considerably high. 

Keywords: Image Classification, Region of Interest Detection, Colonoscopy, 
Medical Image Analysis. 

1   Introduction 

Advances in video technology are being incorporated into today’s healthcare practices. 
Various types of endoscopes are used for colonoscopy, upper gastrointestinal 
endoscopy, enteroscopy, bronchoscopy, cystoscopy, laparoscopy, wireless capsule 
endoscopy, and some minimally invasive surgeries (i.e., video endoscopic 
neurosurgery). These endoscopes come in various sizes, but all have a tiny video 
camera at the tip of the endoscope. During an endoscopic procedure, this tiny video 
camera generates a video signal of the interior of a human organ, which is displayed 
on a monitor for real time analysis by the physician. Colonoscopy is an important 
screening tool for colorectal cancer. In the US, colorectal cancer is the second leading 
cause of all cancer deaths behind lung cancer [1]. As the name implies, colorectal 
cancers are malignant tumors that develop in the colon and rectum. The survival rate 
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is higher if the cancer is found and treated early before metastasis to lymph nodes or 
other organs occurs.  

The effectiveness of colonoscopy in prevention of colorectal cancers depends on 
the quality of the inspection of the colon, which generally can be evaluated in terms 
of the withdrawal time (time spent during the withdrawal phase) and the thoroughness 
of the inspection of the colon mucosa. Current American Society for Gastrointestinal 
Endoscopy (ASGE) guidelines suggest that (1) on average the withdrawal phase 
during a screening colonoscopy should last a minimum of 6 minutes and (2) the 
visualization of cecum anatomical landmarks such as the appendiceal orifice and the 
ileocecal valve should be documented [2].   

Nevertheless, there was no automated measurement method to evaluate the 
endoscopist's skill and the quality of a colonoscopic procedure. To address this critical 
need, we have developed a prototype capturing system, which automatically records 
colonoscopic procedures on a hard disk in MPEG-2 format [3]. This system has been 
placed at Mayo Clinic Rochester since the beginning of February 2003 to capture 
colonoscopic procedures performed by de Groen (co-author) and colleagues.  

The diagnostic accuracy of colonoscopy depends on the quality of the bowel 
preparation [4]. Inadequate cleansing can result in missed pathologic lesions. Colonic 
cleansing is mostly performed with solutions containing polyethylene glycol (PEG), 
and the alternatives are sodium phosphate, magnesium citrate, or bisacodyl [5]. The 
ideal preparation method would reliably empty the colon of all fecal material, and 
have little effect on the gross or the microscopic appearance of the mucosa. It would 
require a relatively short period for ingestion and evacuation, cause little patient 
discomfort, and produce no significant fluid-electrolyte shifts. It also should 
maximize the detection of colonic disease including polyps and carcinoma [5]. 

The quality of bowel cleansing is generally assessed by the quantity of solid or 
liquid stool in the lumen. Despite a large body of published data on methods that 
could optimize cleansing, a substantial level of inadequate cleansing occurs in 10% to 
75% of patients in randomized controlled trials [6]. Poor bowel preparation has been 
associated with patient characteristics, such as inpatient status, history of constipation, 
use of antidepressants, and noncompliance with cleansing instructions. The American 
Society for Gastrointestinal Endoscopy (ASGE) and American College of 
Gastroenterology (ACG) Taskforce on Quality in Endoscopy suggested that every 
colonoscopy report should include an assessment of the quality of bowel preparation. 
They proposed the use of terms such as “excellent,” “good,” “fair,” and “poor,” but 
admitted that these terms lack standardized definitions [7]. To address this, the 
authors in [7] proposed the ‘Boston Bowel Preparation Scale’ (BBPS) in which the 
terms “excellent,” “good,” “fair,” and “poor,” were replaced by a four-point scoring 
system applied to each of the three broad regions of the colon: the right colon 
(including the cecum and ascending colon), the transverse colon (including the 
hepatic and splenic flexures), and the left colon (including the descending colon, 
sigmoid colon, and rectum). This scoring system will be discussed in Section 4 later. 

This method is still based on some subjective evaluation of colon parts (i.e., just 
numbers instead of terms). An automatic method to identify stool in digitized images 
obtained during colonoscopy would obviate any subjective scoring methods and be a 
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valuable asset among automated tools for measuring the quality of colonoscopy 
procedures.  

A frame in colonoscopy video consists of a number of pixels as other digitized 
images typically do.  Each pixel has three number values representing Red (R), 
Green (G), and Blue (B), so each pixel can be plotted into 3-dimensional RGB color 
space. A set of stool pixels can form arbitrary shape(s) of volume(s) in 3-D RGB 
color space. If we can represent the volume(s) mathematically, we can decide 
automatically whether a pixel is a stool pixel or not.  For the mathematical 
representation, we propose to use a set of planes (which will be discussed in more 
detail in Section 3). In this study, we propose two methods as follows: 

• a method automatically deciding a percentage of stool area for each frame of 
colonoscopy video, and  

• a method automatically computing an estimate of BBPS score based on the 
percentages of stool areas. 

The rest of the paper is organized as follows. Section 2 discusses the background and 
related work. Section 3 and Section 4 describe the proposed methodology and the 
calculation of BBPS score, respectively. Section 5 shows our experimental results. 
Finally, Section 6 summarizes our concluding remarks. 

2   Background and Related Work 

Much research has focused on color based classification of images. In fact, color 
based classification plays a major role in the field of medical imaging. A huge number 
of articles based on color features has been published. The most common problem 
discussed within these articles deals with new positive class examples emerging after 
the training processes finish. We will briefly discuss two examples. 

Zeki et al [8] proposed an incremental learning algorithm with SVM (Support 
Vector Machine) ensembles. The authors mainly focus on how to overcome a 
catastrophic misclassification problem of the SVM classifier by adding the ability to 
learn new instances. They propose to create a new ensemble of SVM classifier for the 
newly added data instances. The authors suggested to generate a number of classifiers 
for a given data set, and to keep a subset of most effective classifiers that are selected 
based on a weighted majority voting system. They combined the Learn++ algorithm 
with SVM to give it the ability to learn new instances. A major shortcoming of this 
approach is that the method is not applicable if there is not enough new data available 
to train a new SVM ensemble. 

In our previous work [9], we proposed a method classifying stool images in 
colonoscopy videos using a SVM classifier. For each frame a vector is specified, and 
a color histogram is computed for each frame.  The video frame is down-sampled 
into blocks in order to reduce the size of the feature vector. Features to the SVM 
classifier are, in fact, the mean value for each block. Then, the stool mask is applied 
to each video frame using the trained SVM classifier, and a post processing step is 
applied to improve the detection quality. The post processing step includes a majority 
filter and a binary area opening filter. Finally, frames having more than 5% of stool  
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area are classified as stool frames. It also has the catastrophic misclassification 
problem when it comes to learn new instances. And it lacks the ability to learn new 
data instances when available. 

Our new method is preferable in detecting stool regions over the above mentioned 
methods because of the following; 

• Our new method addresses the catastrophic misclassification problem 
(incremental learning) of SVM classifier.  It can learn new instances 
instantly, and does not need a certain amount of data as in SVM classifier. 
Consequently, it is more accurate. 

• Since our method can learn new instances instantly, its training process is 
fast. Also, its detecting process is fast because we can optimally reduce the 
number of comparisons. 

3  Classification and Detection Methodology 

The proposed method has the training and the detecting (or test) stages. The training 
stage has three steps: All stool pixel projection, Stool plane selection, and Stool plane 
modeling. As a result, the training stage generates a classification model which is 
used in the detecting stage. In this section, we will discuss the two stages. 

3.1  Training Stage 

Digital color images including our colonoscopy images are modeled in a RGB color 
space (cube) in which each color band is represented with 8-bit ranging from 0 to 255, 
giving us a total of 2563 potential colors. Fig. 1 shows an example of frames that can 
be found in a colonoscopy video. We project all stool pixels in a frame into RGB 
color cube as the first step (All stool pixel projection). To discriminate stool pixels 
from non-stool pixels we use the fact that each color pixel has a unique location in the 
RGB color cube as three coordinates R, G, B as illustrated in Fig. 2(a). For 
convenience, RGB is mapped to the XYZ coordinate system as shown. In the second 
step (Stool plane selection), we put 256 planes into the RGB cube along the R (X) 
axis so that each integer location on the R axis has a plane parallel to a GB plane as 
seen in Fig. 2 (b). It is possible to put planes along the G or B axis – doing so will not 
alter the classification modeling. In our study we selected the R axis along which we 
put planes. We assign a number (from 0 to 255) to each plane (i.e., Plane#0, Plane#1, 
… Plane#255). One assigned number to each plane is sufficient since all planes are 
perpendicular to the GB (YZ) plane. Among these 256 planes, we select only planes 
with stool pixels. Each selected plane is called a ‘Positive Plane’. 

Each positive plane contains a projection of stool pixels at the corresponding 
location, and is treated as a 2D classifier at the relevant location. For instance, 
Plane#0 at the location (0, 0, 0) is treated as a classifier for positive class examples 
(stool pixels in our case) that has a R (X) value of zero (0). This method inherits fast 
classification as it already possesses the property of eliminating non-relevant class 
examples (i.e., non-stool pixels in our case) in the training process. 
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(a) (b) 

Fig. 1. Examples of (a) Stool- marked with blue (b) Non-stool Frames 

(a) (b) 

Fig. 2. (a) RGB cube and corresponding locations of stool pixels, and mapping of RGB axis to 
XYZ axis (within brackets), and (b) Several planes inserted into the RGB cube of (a) 

In the third step (Stool plane modeling), we model the areas of positive class 
examples (stool pixels). First, a positive plane (Fig. 3(a)) is divided into four blocks. 
A block is a square since each plane is a square (256 x 256), and each may contain all 
stool pixels, all non-stool pixels, or mixture of non-stool and stool pixels. For all four 
blocks, we check the following three conditions. If all (or more than 95%) of pixels in 
a block are positive class examples (stool pixels), the block becomes a positive block, 
and the procedure for this block is done. If all pixels in a block are non-positive class 
examples (non-stool pixels), then the block becomes a negative block, and the 
procedure for this block is done. If some (less than 95%) of pixels in a block are 
positive class examples (stool pixels), and the block has more than or equal to the 
MNP (Minimum Number of Pixels – MNP is 16 in our case), the block is divided into 
four smaller blocks, and we check the above three conditions for all four smaller 
blocks. The minimum block size is 4 x 4. When the iteration reaches the minimum 
block size, a block becomes a positive block if it has more positive class examples 
(stool pixels). Otherwise, it becomes negative block. This procedure is recursive, and 
the blocks become smaller in the next iteration (Each block is divided by four at each 
iteration). In case the block has less than the MNP and it has more positive class 
examples (stool pixels), then it becomes a positive block. Otherwise, it becomes a 
negative block.  All levels of blocks have their own unique number values in the 
way shown in Fig. 3(c). It is a very convenient and non-ambiguous way for 
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numbering. Among these numbers, a set of numbers for positive blocks can form a 
vector for a positive plane, and a set of vectors from all positive planes can form a 
classification model for the detecting stage. This model possesses an incremental 
learning property. Its incremental learning is performed as follows. When there is a 
new positive pixel to be inserted into the model, we can find a corresponding 
minimum size (4 x 4) block which is a negative block. The block can become a 
positive block if it gets more positive class examples (stool pixels) by adding this new 
positive pixel. In this way, we do not have to run the entire training process from the 
beginning when we need to add additional positive examples. 

   

(a) (b) (c)

Fig. 3. (a) Positive class examples (stool pixels) projected on a positive plane (plane#250) as 
looking into the RGB cube from right side in Fig. 2(b),  (b) Minimum coverage area of the 
positive classes examples (stool pixels), and (c) Unique numbering of blocks for fast access 
(not all shown for clarity) – clockwise numbering starting from top left quadrant 

3.2  Detecting Stage 

Detection of the stool pixel is performed by evaluating a candidate pixel on the 
classification model generated in Section 3.1. Once there is pixel to be detected, the R 
(X) value of the pixel is obtained and used as the index to select the corresponding 
positive plane. For example, if the R (X) value is 5, then Plane#5 is selected and 
examined. This will dramatically reduce the number of comparisons so that the 
analysis time is significantly reduced. In other words, the analysis time to determine 
pixel stool class of the proposed technique is not dependent on the number of positive 
planes, but on how many positive blocks there are in the corresponding plane, which 
is usually very small. By comparing the GB (YZ) values of the pixel with the vector 
obtained from the third step of the training stage (discussed in Section 3.1), we can 
determine whether it can be classified as a positive class (stool) pixel. Otherwise, it is 
classified as negative (non-stool) class pixel. After all pixels of a frame are evaluated, 
we can calculate a percentage of stool area for each frame: the number of all stool 
pixels divided by the number of total pixels. 

4  Computing BBPS Score 

In this section, we will discuss a method automatically compute an estimate of the 
BBPS score based on the percentages of stool areas obtained in Section 3. As 
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mentioned in Section 1 (Introduction), the authors in [7] proposed ‘Boston Bowel 
Preparation Scale’ (BBPS) in which the terms “excellent,” “good,” “fair,” and “poor,” 
were replaced by a four-point scoring system applied to each of the three broad 
regions of the colon: the right colon (including the cecum and ascending colon), the 
transverse colon (including the hepatic and splenic flexures), and the left colon 
(including the descending colon, sigmoid colon, and rectum). These six parts of colon 
can be seen in Fig. 4, and the relationships between the terms and the points can also 
be seen in Table 1. 

 

Fig. 4. Six parts of Colon: 1 - Cecum, 2 - Ascending colon, 3 - Transverse colon, 4 - 
Descending colon, 5 - Sigmoid, and 6 - Rectum 

Table 1. Relationship between the quality terms and the quality points 

Quality Term Quality Point 

Excellent 3 

Good 2 

Fair 1 

poor 0 

The points in Table 1 are assigned as follows: 

• 0 = Unprepared colon segment with mucosa not seen due to solid stool that 
cannot be cleared. 

• 1 = Portion of mucosa of the colon segment seen, but other areas of the colon 
segment not well seen due to staining, residual stool and/or opaque liquid. 

• 2 = Minor amount of residual staining, small fragments of stool and/or opaque 
liquid, but mucosa of colon segment seen well. 

• 3 = Entire mucosa of colon segment seen well with no residual staining, small 
fragments of stool or opaque liquid.  

Each region of the colon receives a “segment score” from 0 to 3 and these segment 
scores are summed for a total BBPS score ranging from 0 to 9. Therefore, the 
maximum BBPS score for a perfectly clean colon without any residual liquid is 9, and 
the minimum BBPS score for an unprepared colon is 0. 
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We compute an estimate of the BBPS score automatically for a recorded 
colonoscopy video. A colonoscopy video consists of two phases: an insertion phase 
and a withdrawal phase as seen in Figure 5. During the insertion phase, a flexible 
endoscope (a flexible tube with a tiny video camera at the tip) is advanced under 
direct vision via the anus into the rectum and then gradually into the cecum (the most 
proximal part of the colon) or the terminal ileum. During the withdrawal phase, the 
endoscope is gradually withdrawn. The purpose of the insertion phase is to reach the 
cecum or the terminal ileum. Careful mucosa inspection and diagnostic or therapeutic 
interventions such as biopsy, polyp removal, etc., are performed during the withdrawal 
phase.   

 

Fig. 5. Two Phases in Colonoscopy Video  

The recorded colonoscopy video is divided into insertion phase and withdrawal 
phase automatically using the techniques we developed [10]. In our estimate of BBPS 
implementation, the right colon has the last 40% of insertion phase plus the first 30% 
of withdrawal phase. The transverse colon has the middle 30% of insertion phase plus 
the middle 30% of withdrawal phase. The left colon has the first 30% of insertion 
phase plus the last 40% of withdrawal phase. These numbers are based on 
experiments and opinion of the domain expert. We calculate estimated BBPS score 
values mathematically based on the stool percentage values obtained above for each 
frame. We assign a score value for each frame based on the stool pixel percentage 
present in the frame, and calculate the numerical average for each colon segment 
(right colon, transverse colon, and left colon) for the final score value. The stool 
percentage values and the corresponding score values are estimates based on the 
original images of the BBPS description and are shown in the table 2. 

Table 2. Stool percentage in a frame and the assigned score value 

Stool percentage % Score value assigned 

0 – 10 3 

11- 25 2 

26 – 50 1 

51 – 100 0 
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5  Experimental Results 

All the computations in our experiments were performed on a PC-compatible 
workstation with an Intel Pentium D CPU, 1GB RAM, and Windows XP operating 
system. For our experiments, we used 58 videos recorded with Fujinon colonoscopes. 
The average length of the videos is around 20 minutes, and their frame size is 720 x 
480 pixels. This section is divided into two subsections; one for assessing the 
proposed stool detection and the other for BBPS score calculation. 

5.1  Stool Detection 

We randomly extracted 1,000 frames from all 58 videos, in which each frame has at 
least one stool region. The domain experts marked and confirmed the positive (stool) 
regions in these frames. From half (500) of these frames, we filtered out duplicate 
examples (pixels), and obtained only unique positive examples (stool pixels) for the 
training. Table 3 shows the stool and non-stool pixels used for training. Using 31,858 
stool pixels, we followed all the steps in Section 3.1. Then, we used all the pixels in 
the remaining half (500) of the frames for the detecting stage discussed in Section 3.2. 
We assess the effectiveness of our proposed algorithm at the pixel level by 
determining the performance metrics Sensitivity and Specificity. For a comparison 
purpose, we implemented the method in our previous work [9] using the same dataset 
mentioned above (also seen in Table 3). Table 4 shows this comparison. As seen in 
the table, the proposed method is better than the previous one in terms of sensitivity 
and specificity.  

Table 3. Number of examples (pixels) used in the training stage 

 Stool Dataset 

Positive  
(stool) 
 

31,858 

Negative  
(non-stool) 

52,434 

Table 4. Performance comparison with previous work 

Sensitivity Specificity 

New Old New Old 

92.9 (%) 90.6 95.0 93.8 

 

Also, we implemented the well-known KNN (K-Nearest Neighbor, K=1 in our 
study) classifier using the same dataset mentioned above to see how fast the proposed 
method can perform. Table 5 presents the speed comparison for KNN classifier with 
our proposed method. It takes more than 420 seconds (7 minutes) to evaluate a frame 
(720 x 480 pixels) in the KNN.  On average, it takes 0.00127 seconds to evaluate 
one pixel. However, it takes around 11 seconds to evaluate a frame (720 x 480 pixels) 
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in the proposed method. If we consider only the detection stage, it takes less than one 
second to evaluate one frame. This is a significant achievement. We need to process 
3,600 frames to generate a colonoscopy report for a 20 minute colonoscopy video if 
we analyze 3 frames per second (3 frames/second * 60 seconds/minute * 20 minutes = 
3600 frames). Thus, it is not practical to use KNN classifier even though it can 
provide 98% of sensitivity and specificity on average.  

Table 5. Average Time taken for KNN and the proposed method 

KNN (trainging +detection) Proposed method 
(Detection) 

Prposed Method 
(Training ) 

    
437.5 (seconds) 0.9 10.0 

Fig. 6 lists some results obtained using the proposed method. The numbers (1, 2 
and 3) on each frame represent the regions semi-automatically segmented for the 
determination of ground truth. For instance, region 2 in Fig. 6(a), region 1 in Fig. 
6(b), and region 1 in Fig. 6(c) were labeled as stool by the domain experts. The first 
row consists of the original frames with the ground truth marked, and the second row 
contains the results from our method for the first row (stool regions are marked with 
blue). 

 

(a) 

 

(b) 

 

(c) 

  

Fig. 6. Sample results for stool detection 

5.2  BBPS Calculation 

We generated estimates of BBPS scores for all 58 videos and list randomly selected 5 
results in Table 6 having a comparison with the ground truth scores suggested by 
domain experts. The column ‘Ground truth BBPS’ in Table 6 is the average score 
values from three different experts. It is rare to find video files where all three experts 
agree this close about the scores. Therefore, it is hard to find a definitive Ground 
Truth score for a given video. We took the average of three BBPS ground truths as 
our target value to be reached. As seen in the table, the calculated values are very 
close to the ground truths. 
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Table 6. Comparision of Calculated BBPS scores with Ground Truth BBPS scores 

Video ID Calculated BBPS Ground Truth BBPS 

1.mpg 7 6 

5.mpg 4 3 

9.mpg 6 6 

10.mpg 6 7 

13.mpg 6 5 

6  Conclusion and Future Work 

The two most critical aspects of colonoscopy that determine its protective effect 
against development of colorectal cancer are the quality of bowel cleansing and 
technical performance of the endoscopist. Neither of these two aspects can be 
objectively measured in a manual fashion. Recent reports of “missed” polyps and 
cancers suggest that the protective effect of colonoscopy is far from complete, raise 
questions about the quality of bowel cleansing as well as technical performance, and 
call for new methods to measure and improve the quality of colonoscopy. Indeed, 
automated video analysis techniques have recently been introduced to objectively 
determine technical performance. In this paper, we present an automated method to 
detect stool regions based on the color features using new classification modeling. 
Our preliminary investigation shows that our stool detection method is able to detect 
stool with very high accuracy achieving sensitivity over 93% with 95% specificity. 
Our previous work for stool detection [9] was very good, but had its limitations. First, 
the training data were images derived from a single patient; but in this new study, we 
used 58 different videos from 58 different patients. Second, a global, objective “colon 
cleansing” score was needed to be developed representing a composite of all 
individual image scores and tested against one or more manual “colon cleansing” 
scores. In this new study, we implemented a method to compute an estimate of the 
BBPS score automatically, and compared the score with the ground truths provided 
by domain experts. Our new method shows improved performance and can be applied 
in colonoscopy practice for quality measurements. In addition, our method has the 
ability to learn new positive class examples without running the entire training 
process from beginning as we can adjust each plane separately. This adds to our 
method the valuable ability of incremental learning. However, further research is 
necessary. For example, stool varies in consistency from solid lumps to transparent 
water-diluted fluid; our training data consisted of images where the outline of solid or 
non-transparent, liquid stool was marked as “stool”. Thus mucosa with just a thin 
cover of semi-transparent liquid stool was not included in our training data. This 
means that not the entire amount of stool was targeted for recognition. Clearly, more 
testing is needed to determine how well our algorithms hold up under variable, real-
life circumstances.  
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Abstract. We introduce an alternative method to improve optical flow estimation
using image data for control functions. Base on the nature of object motion, we
tune the energy minimization process with an image-adaptive scheme embedded
inside the energy function. We propose a hybrid scheme to improve the quality
of the flow field and we use it along with the multiscale approach to deal with
large motion in the sequence. The proposed hybrid scheme take advantages from
multigrid solver and the pyramid model. Our proposed method yields good esti-
mation results and it shows the potential to improve the performance of a given
model. It can be applied to other advanced models. By improving quality of mo-
tion estimation, various applications in intelligent systems are available such as
gesture recognition, video analysis, motion segmentation, etc.

1 Introduction

Motion estimation is still an active field in computer vision with various applications,
including motion segmentation, video understanding, and gesture recognition. Optical
flow, in particular, has been developed and improved in various ways for almost three
decades. Several models and techniques have been proposed to enhance the quality of
optical flow, since the first approach of Horn and Schunck [1] and Lucas-Kanade [2].
It is important to detect the object motion rather than pixel-wise intensity matching
(e.g. optical flow) for real-life applications. Thus, the occlusion problem in optical flow
estimation must be taken into account. The sharpness of the flow field along the object
boundary is also important in the motion segmentation task.

The intensity difference constraint and the smoothness constraint, which are well-
known in the literature, do not exactly describe the object movement in a real scene. In
[3], the author tends to minimize the energy function with both the intensity constraint
and smoothness constraint embedded inside. This model may hold in normal circum-
stances but not in the case of occlusion. In such a case, the intensity constraint does
not hold. The flow field might be shifted to somewhere else but not the occluded area
due to the energy function minimization. Thus, the partial differential equation (PDE)
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(a) (b) (c) (d)

Fig. 1. Visual result of adapting function on Dimetrodon sequence [10] (a) the color code for
image and control functions, (b) enhanced image of frame 10, (c) data adapting-function fd , (d)
smoothness adapting-function

is no longer a favored tool to solve this problem as better solvers are available. In [4],
the authors also use the variational model similar to [3] to initialize the flow field. They
employ the color segmentation with flow field information to improve the estimation.
Recently, [5] reveals excellent results performed by the variational model with the help
of color information and improvements in the regularizers. Among the best, the total
variational methods are also very strong solutions for this problem, as [6,7,8,9] yields
the top results on Middlebury’s website. So far, many improvements have been made
to enhance the estimation result of optical flow. Yet, we can still push quality of optical
flow estimation further. The key answer for this lies in the nature of object motion and
the purpose of the estimation model. We will show how to improve a given model by
using advanced scheme.

In this paper, we propose a model that can adapt the estimation process using the im-
age information. We start from basic constraints of optical flow and use PDE solver for
energy minimization to prove that our proposed method can improve the quality of the
flow field. We propose the hybrid solver, which takes advantage of the multi-grid solver
and coarse-to-fine estimation scheme, to deal with large displacement. With some small
adaptations, we can even speed up the estimation process. Given an estimation model,
our proposed scheme can push the quality of the estimation result further. The adapting
functions and the hybrid scheme are the keys in our method. In the next section, we
will discuss the proposed model and how the image information can be embedded in
the model. We introduce details the hybrid scheme we use to solve the energy mini-
mization problem in Section 3. We will detail the implementation and experiments in
Section 4. We summarize the paper and outline on future work in Section 5.

2 Image-Adapting Energy Function

2.1 Optical Flow Constraints

Intensity Constraint. This constraint is the most basic constraint in every optical flow
estimation model. It can be stated as follows

p = argmin|It+Δ t (x + p)− It (x) | (1)

where It(x) : R
2 �→ R denotes the image intensity of point (x,y) at time t with x =

(x,y)T , and p = (u,v)T is the motion vector between an image at time t and another
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image at time t +Δ t. This constraint is mostly described in the literature as the equation
It+Δ t(x + p)− It(x) = 0; by which the linearized form yields the well-known optical
flow constraint [1]:

Ixu + Iyv + It = 0. (2)

The gradient constraint, conversely, is less sensitive to slight changes in brightness.
However, it only holds when an object undergoes translation motion but not in the
general case. Therefore, we only use the intensity constraint in the model.

Smoothness Constraint. This constraint states that the motion field must be smooth
inside the object, even the object undergoes complex motion. In addition, the aperture
problem occurs when the gradient disappears, or when the flow can only be detected in
normal direction to the gradient. This is solved by considering the flow field smooth-
ness. The flow field discontinues along the object boundary to achieve optimal esti-
mation. With fs (x) as a function of image data, we formally express this piecewise
smoothness constraint as follows

p = argmin
(

fs (x)
(|∇u|2 + |∇v|2)). (3)

2.2 Adapting Functions

We arrive at the energy function used by previous work [3,11,12] using the above con-
straints:

E = Edata + β Egradient + αEsmooth

=
∫

Ω
[ϕd (x,p)+ β ϕg (x,p)+ αϕs (x,p)]dx

(4)

where ϕd (x,p), ϕg (x,p) and ϕs (x,p) are data term, gradient term and smoothness term
respectively. In this work, we drop the gradient term, as mentioned above, and inject the
adapting functions in the energy functions as follows:

ϕd (x,p) = ϕd
(

fd(x)|It+Δ t (x + p)− It (x) |2) (5)

ϕs (x,p) = ϕs
(

fs (x)
(|∇u|2 + |∇v|2)) (6)

where fd , fs are adapting functions that will tune the estimation process using image
information. The image itself contains much information. The idea is that we can sup-
press the difference of the data and flow, based on the features of the current pixel,
given image information. In this way, the model can adapt to various kinds of image
sequences and yields better estimation results.

Data Adaptation. We design fd to suppress the difference in intensity of the points in-
side the object. First, the flow field inside the object must be smooth, since the smooth-
ness constraint will drive the flow inside the object. Conversely, we can deal with the
occlusion problem simultaneously. When a part of the object is occluded in the next
frame, this data term still holds if the occluded area is inside the object. Fig. 1 shows
the visual view of control functions on the Dimetrodon sequence [10].
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τ(x)

f (τ(x))

-1 -0.5 0 0.5 1

0.5

1

fd(x) = f1(τ(x)) = 1− e−τ(x)2/σ 2
d

fs(x) = f2(τ(x)) = e−τ(x)3/σ 2
s

Fig. 2. Plot of control functions fd(red dashed line) and fs(blue line)

We can introduce several forms of fd to yield the same effect based on the image
features. Here, we introduce fd as a function of gradient magnitude. Let τ(x) = |∇I| be
the magnitude of the image gradient at x, then fd can be simply defined as

fd(x) = f1(τ(x)) = 1− e−τ(x)2/σ 2
d (7)

As in Fig. 2, the data difference is suppressed when the point is inside the homogenous
area, e.g. |∇I| ≈ 0. The data difference includes intensity difference, gradient difference,
and other measurements, such as Hessian. In this work, we are concerned about the
intensity difference in the model. Other measurements obviously can be controlled by
this function, without a problem, since it is a function of spatial position. The parameter
σd has an important role in the estimation result. We choose σd sufficiently small, so
that it cannot create an over-smooth effect in the final result. Many experiments have
been performed and we choose σd =

√
0.001 that yields the most stable results among

test sequences.

Smoothness Adaptation. The function fs should be large in homogenous area due to
the smoothness energy (6), so that the flow field inside the object will be as smooth as
possible. Similar to the data control function fd above, fs can be defined as follows

fs (x) = f2(τ(x)) = e−τ(x)λ /σ 2
s . (8)

where λ and σs are parameters controlling the shape of fs. Setting λ to 2, we will get
a similar form to fd . However, this is not the case for fs. The shape of function fs must
be wider and slowly drop, as in Fig. 2. When fs drops too fast, the discontinuity of the
flow will appear at some area where the gradient magnitude is larger than the specific
threshold. This creates a segmentation effect on the flow field that we do not really want;
especially, when the scene has smooth areas, where the gradient only changes a little
bit from one to the next. This analysis leads to the fs in (8) with λ = 3 and σs = 0.1.
Other designs of fd and fs are available and can yield the same result, if they satisfy the
above descriptions.
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Fig. 3. Hybrid scheme is used to solve Euler-Lagrange equations with scale parameter s
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Fig. 4. Hybrid scheme with coarse-to-fine strategy

3 Hybrid Scheme for Energy Minimization

The energy function (4) now becomes

E =
∫

Ω
[ϕd (x,p)+ αϕs (x,p)]dx (9)

with the Euler-Lagrange equation system:

ϕ ′
d (•) fd (x) IrIx −αdiv

(
ϕ ′

s(•) fs(x)∇u
)

= 0

ϕ ′
d (•) fd (x) IrIy −αdiv

(
ϕ ′

s(•) fs(x)∇v
)

= 0
(10)

where I∗r is the temporal difference

I∗r = It+Δ t,∗(x + p)− It,∗(x),

and I∗ are the spatial derivatives in the next frame It+Δ t,∗(x+p). We choose the regular-
ization functions ϕd , ϕs as ϕ(s2) =

√
s2 + ε2 that yields the total variation regularizer

proposed in [13]. This regularizer leads to pseudo L1-minimization. The quantity ε is
chosen to be reasonably small, e.g. 0.001, to guarantee that ϕ is differentiable at s = 0.

The Euler-Lagrange equations are highly nonlinear due to the choice of ϕd and ϕs.
The iteration scheme [12] is used to solve the flow field. It is necessary to approxi-
mate the global optimum of the energy using the iteration scheme and the multiscale
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Algorithm 1. Mulrigrid scheme for flow estimation, V-cycle
if coarsest layer then

Solve the flow field
else

- Save result from previous step
- Perform pre-relaxation on flow field
- Restrict the flow to coarse layer
Perform V-cycle on coarse layer
- Calculate the error at coarse layer
- Prolong the error to current layer
- Update the flow at current layer
- Perform post-relaxation on the flow

end if

approach. Let p(k) be the flow field at step k, then the flow of the next iteration will be
the solution of

0 = ϕ ′
d(•) fd(x)I(k+1)

r I(k)
x −αdiv

(
ϕ ′

s(•) fs(x)∇u(k+1)
)

0 = ϕ ′
d(•) fd(x)I(k+1)

r I(k)
y −αdiv

(
ϕ ′

s(•) fs(x)∇v(k+1)
) (11)

where

ϕ ′
d(•) = ϕ ′

(
fd(x)

(
|It+Δ t(x + p)(k+1)− It(x)|2

))
,

ϕ ′
s(•) = ϕ ′

(
fs(x)

(
|∇u(k+1)|2 + |∇v(k+1)|2

))
.

The details of the discretization form can be derived easily, so we do not show them
here. Both the coarse-to-fine scheme [3,5,12,14] and the multigrid scheme [11,15,16,17]
have been used so far to solve (11) effectively. Here, we introduce the hybrid scheme
to take advantage of the multigrid scheme and the coarse-to-fine scheme to produce an
effective solver. The hybrid scheme is designed to solve (11) with an arbitrary scale
parameter.

The purpose of the proposed scheme is to cope with large motion and improve the
robustness of the solver simultaneously. While large motion can be detected at a coarse
scale, the sharpness and precision of the flow field are enhanced at a fine scale. We
build the pyramid of images and its derivative with the scale parameter s that can be
larger than 0.5. The larger the value of s, the higher the computation cost. The idea of
the multigrid solver is to solve the residual equations at the coarse layer and prolong
the error from the coarse layer to the fine layer to correct the flow field. The flow is
incrementally updated each iteration step as we use the iteration scheme. Thus, we
employ the idea of the multigrid solver and form the scheme in Fig. 3.

Let ui
skh

be the flow value at iteration ith on the kth layer in the pyramid model. Fig. 3
shows the basic V-cycle that we use to solve equation system. First, we perform the



Improving Motion Estimation Using Image-driven Functions 79

(a) Army (b) Mequon (c) Schefflera

(d) Wooden (e) Grove (f) Urban

(g) Yosemite (h) Teddy

Fig. 5. Visual result of our method on evaluation sequences from Middlebury’s dataset [10]

relaxation step on flow ui
skh

to yield ui+1
skh

. The flow ui+1
skh

is restricted to a coarser layer,

as ui+1
sk+1h

with the scale factor s. This pre-relaxation step and restriction step continue
until we reach the coarsest layer. At this stage, we can simply calculate the error, as the
difference between the final result and the restricted result from the fine layer. As we
have the error at a certain layer, say ei+2

sk+1h
, we can propagate it to a finer layer, as ei+2

skh
with the scale factor s−1. The flow is updated using this error as follows

ui+1
skh

← ui+1
skh

+ ei+2
skh

We perform post-relaxation on the flow ui+1
skh

once again, before calculating the error
at the current layer and propagating it to the finer layer. This process repeats until we
reach the finest layer. Fig. 3 and algorithm 1 summarize the details of this scheme.

The coarse-to-fine strategy is used along with the V-cycle that we described above
to deal with large motion. We perform the V-cycle on each layer. The result is then
propagated to the finer layer with scale factor s−1. This process is repeated from the
coarsest layer to the finest layer, as in Fig. 4. We can achieve a good result with only a
few iterations at each relaxation step. In the experiment, we use five iterations for each
relaxation step.
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4 Experiments

The quality of flow field is evaluated by angular error and end-point error. Some other
measurements are also used but they are not comparable in the context of object move-
ment. The angular error is given as follows:

eθ = arccos

⎛
⎝ pT pgt + 1√

pT p+ 1
√

pT
ptppt + 1

⎞
⎠ (12)

where Δ t = 1 and pgt = (ugt ,vgt) is the true motion field of the current image.

Table 1. Estimation results on synthetic training sequences [10]

Sequence AEE STD AAE STD
Dimetrodon 0.154 0.154 2.667 2.598
Grove2 0.246 0.435 3.509 6.972
Grove3 0.687 1.424 6.910 16.613
Hydrangea 0.181 0.376 2.221 5.574
RubberWhale 0.128 0.324 4.247 11.799
Urban2 0.427 1.276 3.199 8.319
Venus 0.332 0.604 4.718 13.356

4.1 Synthetic Images

First, the experiments were performed on the training data with available groundtruths.
Our proposed flow field is very sharp along the object boundary. Table 1 gives the
quantitative evaluation, where AEE is the average end-point error, AAE is the aver-
age angular error, and STD is the standard deviation of those two errors. We perform
experiments on these training sequences to get the parameter set that yield the most
stable results through difference sequences. Even though the smooth parameter can be
embedded inside the control function, we still keep it as additional parameter for our
experiments.

The proposed model does not operate at its best, as we are using the grayscale image,
since much information has been discarded. In addition, it is hard to specify which point
belongs to object by its color, because the color range is limited on the grayscale image.
Therefore, comparing our method to other methods operating on color images is unfair.
However, even if the grayscale image limits our model, we still obtained some good
results, as shown in Table 1.

We also performed the experiments with the evaluation dataset on Middlebury’s web-
site [10] to show how the proposed model can improve a given model. We start from
a very basic model, which is close to the model in [14]. We even discard the gradient
term in the model. We choose this basic model, as it can easily reveal the performance
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(a) (b) (c)

Fig. 6. Estimation result of our method on some evaluation sequences from MiddleBury’s dataset
[10]. First row is frame 10 and second row is the estimated flow field. (a) Backyard, (b)
Dumptruck, (c) Evergreen.

of our proposed model and our optimization scheme. It is very hard to see how good
the result is for advanced models in the top of Middlebury’s list. The results at the top
of the table are very close to one another.

Second column of Table 2 shows the results with the present of Hybrid scheme. The
results in first column are obtained with the used of control functions and the multiscale
approach. As we see here, the Hybrid scheme reduces the end-point error for most
of evaluation sequences comparing to the traditional multiscale approach. The Hybrid
scheme gives about the same performance as multiscale approach for Urban, Yosemite,
and Teddy. However, it still improves the end-point error 9% accuracy in average (30%
on Mequon sequence, 33% on Wooden sequence, 23% on Army). A similar observation
can be seen in Table 3. It reduces 5% of angular error in average (31% on Mequon
and Wooden sequence). As a result, the Hybrid scheme shows that it can cope with
large motion as multiscale approach and slightly improves accuracy of the flow field.
These results consistently show the improvement of our proposed method compared
to the original model. Our method yields better results than some of the current state-
of-art methods [4,5,18,19,20,21,22,23,24] for Urban sequence. A similar observation
can be seen on the Grove sequence. The angular errors on Urban, Teddy, and Yosemite
sequences are higher when we apply the Hybrid scheme. The reason for large error
on these sequences comes from low contrast image (Urban, Yosemite) and low texture
(top right side of Teddy). Thus, additional correction step can be applied to push the
accuracy further.
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Table 2. End-point error on evaluation sequences [10]

Sequence with adapting functions + hybrid scheme
Army 0.22 0.17
Mequon 0.87 0.61
Schefflera 1.17 1.20
Wooden 0.99 0.66
Grove 1.17 0.99
Urban 0.72 0.73
Yosemite 0.14 0.18
Teddy 1.37 1.30

Table 3. Angular error on evaluation sequences [10]

Sequence with adapting functions + hybrid scheme
Army 7.88 6.49
Mequon 13.4 9.22
Schefflera 17.6 16.4
Wooden 12.0 8.22
Grove 4.38 3.77
Urban 5.69 6.84
Yosemite 2.75 3.59
Teddy 6.59 7.51

4.2 Real-Life Images

We are interested in the results on real-life sequences for applications. Therefore, we
performed the method on some real-life sequences to prove how effective it is for real
applications. Middlebury’s website has another measurement, termed interpolation er-
ror, beside the end-point error and angular error. This measurement, however, does not
completely hold in our case. As we are interested in the object movement, rather than
intensity matching, the interpolation error can be large due to the occlusion problem.
Thus, the evaluation results on interpolation error cannot be compared in our case.

Fig. 6 shows some results on real-life sequences of the evaluation dataset [10]. The
discontinuity of the flow field along the object boundary is highly preserved. Other
experiments are performed on real-life sequences from the training dataset [10]. Fig. 7
shows some visual results on these sequences. The results on the DogDance sequence
and MiniCooper sequence are proof for the effectiveness of our proposed method. The
proposed method indeed improves the smoothness of flow field, while retaining the
sharpness on edge in case of DogDance and MiniCooper sequences. This is especially
helpful when we use the result for motion segmentation, object isolation, etc. We can
see that our method outperforms the original model. We achieve the sharpness, the
smoothness, and solve the occlusion problem simultaneously. Our proposed method
shows how we can improve performance of a given estimation model further.
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(a)

(b)

(c)

Fig. 7. Estimation result of our method on other real-life sequences [10]. (a) Dimetrodon, (b)
DogDance, (c) MiniCooper.

5 Conclusion

We proposed an improved algorithm for optical flow estimation using the variational
model. The image information was used to tune the estimation process. We introduced
the adapting functions and embedded them to the energy function. Our model also ad-
dressed the occlusion problem. We proposed a hybrid scheme that took advantage of
the coarse-to-fine approach and the multigrid solver to yield more robust results. The
result with the present of hybrid solver and control functions was indeed much better
and more robust.

We are applying the method for grayscale images. Further work includes the exten-
sion of our approach to color images. Our approach can also be integrated into advanced
models to produce even better results. An in-depth study of the effect of our method on
advanced models may lead to some interesting results in the near future.
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Abstract. We propose a range-limited Genetic Algorithm (GA) search
with an accelerated Graphics Processing Unit (GPU) based implementa-
tion for background compensation where pan-tilt-zoom (PTZ) cameras
are used. Our method contains GA with search ranges restricted using
histogram matching and GPU implementation of the range-limited GA.
First, based on histogram matching, estimation of approximate scale
(camera zoom) and translation (camera pan and tilt) parameters is used
to restrict the ranges for the later GA search. Next, the GA is applied
to find an optimal solution. Experimental comparisons of the proposed
method to existing methods show that our work has advantages: robust
to critical situations due to using GA, and fast processing.

Keywords: Background compensation, histogram matching, GA, GPU.

1 Introduction

Intelligent visual surveillance, using computer vision techniques, is increasingly
important over recent years. PTZ cameras are mainly used in this research area
for object detection and tracking. The challenge of using this type of camera
is to eliminate the dynamic background caused by camera motion. Hence, mo-
tion based tracking with a PTZ camera encounters difficulties such as identifying
features of object motion, compensating background motion, and tracking mech-
anism. Although compensating background requires less computational cost and
memory storage compared to mosaicing background and optical flow clustering
[1], it typically yields a non-optimal solution.

Alternative approaches have been proposed to compensate background. In [2],
specialized hardware is used to measure pan, tilt and zoom parameters. Rela-
tionship between pixels representing the same 3-D point in frames is estimated
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to eliminate background motion. Background motion is represented by an affine
transformation in [3], and affine motion parameters are estimated using least
median of squares. In this method, a number of feature points in the current
image and their corresponding points in the previous image are picked out, and
the pixels from the regions of moving objects are considered as outliers of the
affine estimator. However, it is sensitive in selecting feature points due to mo-
tion blur. In [4], M-estimator like techniques in a multiresolution framework are
used as the parametric motion model estimation. Multi-resolution Hough trans-
form is used to estimate affine parameters in [5]. Results in this paper show
that the main advantage resides with motion estimation in presence of motion
blur. Overcoming disadvantanges of the previous methods, [1] presents the 1-D
feature matching and outlier rejection method. This method is robust to motion
blur and moving object proportion.

GA have been widely applied in estimating global motion. It is a stochastic
search technique based on the principles of natural selection and genetics to find
the approximate solutions of optimization and search problems. A GA in the
continuous space to estimate global motion is proposed in [6]. A multiresolution
GA is proposed in [7] to solve the imagerelated optimization problems image
segmentation, stereo vision and motion estimation. Background motion can be
effectively determined based on the proposed motion estimation method. For a
problem, GA can yield a near-optimal solution when it is well-modeled and its
related parameters are appropriately configured. However, there is a trade-off
between computational cost and accuracy: higher numbers of chromosomes and
generations increase processing time. Therefore, the existing GA based back-
ground compensation methods are not appropriate for real-time systems when
high accuracy is being considered.

Range-limited GA search implemented using GPU is presented in this paper
to achieve high accuracy and low processing time of background compensation
for PTZ cameras. Our method overcomes all drawbacks of existing methods:
motion blur, a large proportion of moving objects, and difficulty in selecting
feature points. The proposed GA model contains two components: 1) estima-
tion of approximate scale (camera zoom) and translation (camera pan and tilt)
parameters is used to limit ranges for the later GA search, and 2) GA search
is used to reach the optimal solution. The estimation model employs projection
histograms to quickly determine the scale and translation parameters. Further-
more, processing time is significantly reduced by the GPU implementation.

Our method of range-limited GA search for background compensation is pre-
sented in Section 2. GPU implementation is in Section 3. Section 4 presents
experimental results. The paper is drawn to a conclusion in Section 5.

2 Range-Limited GA Search

2.1 Background Motion Model and GA Search

GA typically contains a population of suitably encoded solutions to the problem
and contains an evaluation function. It differs from other traditional optimization
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techniques, because it involves a search from a population of solutions, but not
from a single point. Due to its characteristics, GA is perfectly suited to solving
the optimization problem represented by background compensation.

Based on [1], we initially assume that the relationship between successive
frames captured by a PTZ camera can be approximated by a transformation
of four parameters (two directional zooms, pan and tilt). Hence, a chromosome
in the GA based background compensation problem can be identified with the
array formed by motion model parameters. In the case of an affine motion model,(

x′

y′

)
= A
(

x
y

)
+ b, (1)

the chromosome is thus formed by the combination of four, in this paper, motion
parameters. This means A and b are 2×2 and 2×1 matrices, respectively:

A =
(

sx 0
0 sy

)
;b =

(
tx
ty

)
; sx, sy > 0. (2)

The chromosome representing four parameters, sx, sy, tx and ty, are floating
point vectors. In GA, a random initial population with a given number of indi-
viduals is first generated. If the explicit information of the system is provided in
advance, then such knowledge can be included in the initial population (e.g., we
propose a method to restrict the search range of scale and translational param-
eters). In the second step of GA, the fitness of each individual is evaluated. The
fitness function is defined for background compensation as:

f
(
Ci

j

)
=

1
η

∑
x

|It(x) − Aff (It−1(x))|, (3)

where Ci
j =
(
(sx)i

j , (sy)i
j , (tx)i

j , (ty)i
j

)
is the chromosome j (j = 1, 2..., Np, where

Np is the number of chromosomes) at the ith generation; It(x) and It−1(x) are
the pixel values of the point x = (x, y) in the frame t and t−1; Aff is the affine
function utilizing

(
(sx)i

j , (sy)i
j , (tx)i

j , (ty)i
j

)
; η is the number of common points in

images It and It−1. The third step is selection; it is implicitly coupled with the
replacement step. The fourth step is applying the crossover. Two chromosomes
(parents) from the current population are randomly selected to be mated. In this
paper, we apply uniform crossover to our problem, and we ignore the mutation
step for simplicity but not for less effectiveness. All steps are repeated for each
generation until a termination condition is met.

To speed up the GA process and to obtain high accuracy, we propose a method
to limit the search ranges of scale and translation parameters in the motion
model (1). Various studies, attempting to reduce computational cost, use tech-
niques such as hibridizing [8], predicting [9] or imitating [10]. Users should have
knowledge about the nonlinearities of real-world applications to define a trade-off
between accuracy and computation speed. In this paper, we focus on a method
that restricts GA search ranges.
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2.2 Limiting the Search Range of Scale Parameters

This section presents the scale parameter estimation algorithm based on his-
togram matching. It is assumed that scale parameters, sx and sy, in the motion
model (1) can be separately estimated from translation parameters, tx and ty.
In this case, the translation matrix becomes b̂ = (0, 0)T , and the scale matrix
Â is formed by ŝx and ŝy. The estimated parameters, ŝx and ŝy, are supposed
to approximate the actual parameter, sx and sy, of the motion model. In fact,
sx and sy might be inside the range [ŝ − Δs; ŝ + Δs] where ŝ represents ŝx or
ŝy, and Δs is a value used to define the search range for sx and sy around the
anchor ŝ. Hence, the relationship between two images It and It−1 is defined as:

It = I
ˆA

t−1 = ς ŝx
(
ς ŝy (It−1)

)
= ς ŝy

(
ς ŝx(It−1)

)
, (4)

where the scale parameter Â is decomposed into two directional scale values, one
represents the scale with respect to the horizontal direction, the other is for the
vertical direction; ς ŝx(It−1) and ς ŝy(It−1) are the horizontal and vertical scaling
functions of It−1. The scaling-down functions resize the full-size image It−1 to
an image region in It, i.e., the scaled It−1 stays inside It. Similarly, the scale-up
functions resize the full-size image It to an image region in It−1.

We simplify estimating two scale parameters to estimating only ŝy, then we
seek for the optimal sx and sy inside the range [ŝy − Δs; ŝy + Δs]. There are
two reasons: 1) it is to reduce the complexity of estimation with an assumption
that camera zoom is homogeneous in both horizontal and vertical directions; 2)
estimating ŝy but not ŝx is to achieve high performance memory access in GPU
implementation with the usage of coalesces.

In this paper, vertical and horizontal histograms of gray images are con-
structed. The matching value of two histograms is calculated based on values
of the two histograms. The vertical histogram of an image is constructed by
projecting along vertical lines (columns), and one histogram is constructed per
vertical line (column). Let HV (I) be the vertical histogram of the image I:

HV (I) =
{
hV

j (I) : j = 0, 1, ..., W − 1
}
, (5)

where W is the number of columns; hV
j (I) is the histogram of column j of I:

hV
j (I) =

{
hV

jl(I) : l = 0, 1, ..., L − 1
}
, (6)

where L is the number of bins; hV
jl(I) is the number of pixels with intensities in

bin l. The matching value dV (.) of vertical histograms hV
i (Irt−1) and hV

j (Irt ) is

dV
(
hV

i (Irt−1), h
V
j (Irt )

)
= 1 − ξ4/(2H), (7)

where ξ4 =
∑L−1

l=0

∣∣hV
il (I

r
t−1)−hV

jl(I
r
t )
∣∣, Irt−1 = It−1, Irt is an image region inside

It if camera zooms out. Similarly, Irt = It, and Irt−1 is an image region of It−1
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when camera zooms in. Let DV
(
HV (It−1), HV (It), ŝy

)
be the matching value of

two vertical histograms of It−1 and It:

DV
(
HV (It−1), HV (It), ŝy

)
= ξ5/(W − 1), (8)

where ξ5 is calculated by: If ŝy < 1 (zoom out), ξ5 =
∑W−1

i=0 dV
(
hV

i (It−1), hV
i (Irt )

)
,

and if ŝy ≥ 1 (zoom in), ξ5 =
∑W−1

i=0 dV
(
hV

i (Irt−1), hV
i (It)

)
, where Irt−1 and Irt

are image regions of It−1 and It. Scale ratio between two images with respect to
vertical direction is determined by searching for the value ŝy that maximizes the
matching value of the vertical projection histograms of two images. Thus, ŝy is

ŝy = arg max
smin<ŝ′

y<smax

DV
(
HV (It−1), HV (It), ŝ′y

)
, (9)

Fig. 1 shows vertical scaling of the ith column in It−1 and It. In case of camera
zoom-out, It is approximately It−1 added with two marginal regions. Similarly,
the case of zoom in, It−1 is approximately It plus two marginal sub-images.

(a) (b)

Fig. 1. Vertical scaling of a column in two successive images

2.3 Limiting the Search Range of Translation Parameters

This section presents the translation parameters estimation based on histogram
matching. It is assumed that the translation parameters, tx and ty, in the motion
model (1) can be separately estimated from the scale parameters, sx and sy. The
goal is to estimate b̂ and then to define the GA search range of b before executing
GA for background compensation. The estimated parameter, b̂, is supposed to
approximate the actual parameter, b, of the affine model. Indeed, b might be
inside the range [b̂ − Δb; b̂ + Δb] where Δb = [Δtx, Δty]T is a value used to
define the search range for b around the anchor b̂.

Similar to scale parameter estimation, the translational displacement between
It−1 and It in the x-axis direction is determined by searching for the value t̂x
that maximizes the matching value of the vertical histograms of the two images:

t̂x = arg max
−W<t̂′x<W

DV
(
HV (It−1) , HV (It) , t̂′x

)
. (10)



90 T.T. Nguyen and J.W. Jeon

Displacement in y-axis direction is determined by searching for the value t̂y that
maximizes the matching value of the horizontal histograms of the two images:

t̂y = arg max
−H<t̂′y<H

DH
(
HH (It−1) , HH (It) , t̂′y

)
. (11)

where HH(I) is the horizontal histogram of the image I; DH(· ) is the matching
value of two horizontal histograms.

Fig. 2(a) shows horizontal translation of the ith column in It−1 to the (i+t̂′x)th
column in It with a horizontal displacement t̂′x. Histograms of the two corre-
sponding columns are matched with respect to the common histogram matching
region (bold border rectangles) of the two images. Similarly, Fig. 2(b) shows the
jth row in It−1 is vertically translated by a displacement t̂′y to the (j + t̂′y)th
row in It. With every trial displacement t̂′x (or t̂′y), the matching value of two
vertical (or horizontal) histograms is calculated; later, the best match is found
using (10) (or (11)).

(a) (b)

Fig. 2. Horizontal and vertical translation of a column and a row in images

3 GPU Accelerated Implementation

In recent years, processing ability of GPU has rapidly increased. NVIDIA has
developed the CUDA (compute unified device architecture) technology to indi-
cate the problems of GPU. In this paper, the proposed range-limited GA search
is implemented using CUDA. Fig. 3 summaries the high-level implementation
architecture with <<< kernel >>> represents a function that is callable from
the host (CPU) and executed on the GPU device simultaneously by parallel
threads. Stages of GPU implementation are described as below.

3.1 Implementation of Translation Parameter Estimation

Initializing and Calculating HV (It−1), HV (It), HH(It−1) and HH(It).
HV (It−1), HV (It), HH(It−1) and HH(It) are all set to zeros. In our implementa-
tion, Nbins, the number of bins in a histogram, is equal to the number of threads;
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Fig. 3. High-level GPU implementation architecture of the proposed range-limited GA

and the number of thread blocks corresponds to imgHeight (or imgWidth in the
case of horizontal histograms). Next, pixels from two images are accumulated to
vertical and horizontal histograms. At each pixel position, the gray value is first
stored to a vertical histogram, then it is accumulated to a horizontal histogram.
Hence, a thread is responsible for accumulating two pixel values from two images
to projection histograms. The projection histograms, stored in global memories,
are distributed among threads. Updating those histograms is data dependent,
since many threads might attempt to update the same memory location. This
situation results in writing conflicts. The conflict is effective solved with atomic
operators [11] used in device functions.

Calculating Matching Values with Different Displacements. The kernel
requires a minimum number of threads, Nt = 16, and a large number of blocks
(e.g., in vertical histogram matching, the number of blocks is (imgWidth ×
numberOfDisplacements)/Nt). The global index belonging to this kernel, cal-
culated using built-in variables blockIdx, blockDim and threadIdx, is used to
encode the succession of displacements t̂′x (or t̂′y) and ith column (or row). Hence,
differently matching values of every pair of vertical (or horizontal) histograms
are calculated and stored in an array of floating point numbers. We notice that
sequentially changing the displacements t̂′x, t̂′y are replaced by simultaneously
processing a number of displacements in only one kernel. Thus, there are no
loops in kernel code. Afterwards, the best matches t̂x and t̂y are found.

3.2 Implementation of Scale Parameter Estimation

This section presents the vertically scaled histogram matching. Similar to the
previous section, however, columns in images are scaled and matched in this case.
For simplicity, the nearest-neighbor interpolation method is applied to resize im-
age columns. Distinct from separating codes into three kernels in the previous
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section, the code in this section is integrated into one kernel with the optimized
utilization of shared memories. Steps of initializing, accumulating histograms
(with interpolation), and calculating matching values are completely manipu-
lated on shared memories. Reasons of this implementation are: 1) only vertical
histograms are considered (each image pixel is essentially visited once), 2) based
on the first reason, memory conflicts are eliminated in this implementation: one
thread processes one column and calculates the corresponding matching value of
two vertically scaled histograms, and 3) shared memories, which are potentially
150× faster than global memories and can be as fast as registers, are utilized.

3.3 Implementation of GA

Random Population Generation. A random initial population is generated
with a given number of chromosomes. A efficient parallel random number gener-
ator [12] is utilized for our purpose. Each initial chromosome is formed by four
floating point numbers that satisfy the conditions sx ∈ [ŝy − Δsx, ŝy + Δsx],
sy ∈ [ŝy −Δsy , ŝy + Δsy], tx ∈ [t̂x −Δtx, t̂x + Δtx] and ty ∈ [t̂y −Δty, t̂y + Δty];
therefore, there are 4Np generated floating point numbers. Each thread is as-
signed to work on four numbers at once, and access the population as a vector
of float4 to minimize the number of memory accesses.

Fitness Evaluation. Fitness function is the average of the sum of absolute
differences between two images. The kernel is launched with one thread per pair
of pixels (one pixel is from It−1, one is from It). Each thread calculates the
different intensity of It(x) and Aff(It−1(x) as in (3). With the specification of
the GeForce GTX 460 used in this paper, our implementation can process the
maximum number of pixels Nt × Nb = 1024× 65535. For instance, with a fixed
size of the two images 320× 240, (Nt ×Nb)/(320× 240) ≈ 873 chromosomes can
be computed in parallel. We work on float4 and compute the final value of each
individual’s fitness via parallel reduction [13].

Selection and Crossover. The grid of selection and crossover kernels depends
on population size. In selection, we define the number of threads equal to popu-
lation size, a multiple of 16 (to optimize, especially for SIMD-type processing).
This means only one block is required. Similarly, in crossover, one block is used.

4 Experimental Results

Eight image sequences were used in experiments. These sequences were acquired
by a PTZ camera while tracking moving objects. The camera used in the ex-
periment was a Sony EVI-D100 CCD video camera. The captured images had a
resolution of 320× 240 pixels. Table 1 specifies their corresponding descriptions,
such as environment, lighting condition, background complexity, and distance
from camera to object. Fig. 4 shows sample images of test sequences.

We used a PC with an AMD Athlon ×2 Processor 2.90 GHz and 4–GB RAM,
and NVIDIA GeForce GTX 460. We compared the error (intensity difference
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Table 1. Description of test image sequences

Indoor/Outdoor Lighting condition Background complexity Distance to object # images

SQ1 Indoor Normal High 4-5m 150
SQ2 Outdoor Bright High 10-15m 190
SQ3 Indoor Dark Low 11-15m 250
SQ4 Indoor Dark Medium 0-7m 320
SQ5 Indoor Dark Low 8-32m 340
SQ6 Outdoor Normal High 5-7m 440
SQ7 Indoor Dark High 4-16m 480
SQ8 Outdoor Bright High 50-100m 700

Fig. 4. Sample images of test sequences and correspondences. First row: SQ1, SQ2,
SQ3, SQ4. Second row: SQ5, SQ6, SQ7, SQ8.

mean) and execution time of our method with other four methods: two Motion2D
methods (M2D ARN and M2D AH2N) [4], multi-resolution Hough transform
(MHT) [5], and Suhr’s method [1]. For MHT, we set parameters as same as in
[5]: number of binary images was 32, tolerance value was 0.1, scale range was
[0.9, 1.1], Δθ = Δρ = 0.0003, and reduction factor σ = 2, μ = 1. With the
method in [1], we set the same parameter values: tx, ty ∈ [−25, 25] with 1 pixel
resolution, s ∈ [0.9, 1.1] with 0.01 resolution, 7 and 5 sub-images for horizontal
and vertical feature extraction, window size for local minima and maxima was
3, matching threshold was 10, and matching search radius was 40 pixels.

We set the parameters so they were as similar to those of the other methods as
possible. We defined t̂x, t̂y ∈ [−25, 25] with 1 pixel resolution, and ŝy ∈ [0.9, 1.1]
with 0.01 resolution. GA parameters were: Np = 32, crossover rate pc = 0.5, and
number of generations ngen = 5. GA search ranges were defined as Δtx = Δty =
2 and Δsx = Δsy = 0.02. It was noticed that t̂x, t̂y and ŝy were determined using
histogram matching; therefore, sx ∈ [ŝy−Δsx, ŝy+Δsx], sy ∈ [ŝy−Δsy, ŝy+Δsy],
tx ∈ [t̂x − Δtx, t̂x + Δtx] and ty ∈ [t̂y − Δty, t̂y + Δty]. Table 2 shows the
experimental results. Our method outperformed the other methods, especially
in the critical cases of small difference in background and motion blur. Fig. 5
shows three typical cases of compensation results with comparing the proposed
method to the others. Moreover, our processing time was stable to different
image sequences where panning, tilting, and zooming have large changes.

Robustness of our method was evaluated in two ways. First, the error was
analyzed with respect to the proportion of background with small difference.
Based on Table 1, SQ5 and SQ8 were selected in the criterion of low background



94 T.T. Nguyen and J.W. Jeon

Table 2. Error and time (ms) comparison of our method and others

M2D ARN M2D AH2N MHT Suhr’s Ours
Error Time Error Time Error Time Error Time Error Time

SQ1 2.77 23.2 2.76 25.9 3.7 999.6 2.94 25.6 2.61 15.6
SQ2 2.43 30.6 2.42 34.9 3.18 843.9 3.37 33.7 2.33 15.6
SQ3 1.68 37.7 1.68 41.8 2.04 797.3 2.2 31.0 1.58 16.0
SQ4 1.5 51.0 1.49 53.6 1.9 649.8 1.69 27.2 1.4 15.7
SQ5 1.41 53.3 1.4 58.4 1.69 619.1 2.29 33.0 1.34 15.4
SQ6 3.41 71.7 3.4 77.5 4.52 903.2 5.17 28.4 3.27 15.4
SQ7 1.72 71.2 1.72 76.8 1.99 867.2 1.91 28.2 1.63 15.4
SQ8 2.24 108.8 2.23 122.2 2.83 956.6 2.26 30.4 2.09 15.3

Avg. 2.0 68.2 2.0 73.1 2.49 798.7 2.49 30.6 1.9 15.6

Fig. 5. Results of three typical examples of background compensation. From left to
right: small different in background, severe blur, and zoom-in.
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complexity. These sequences were corresponding to the background proportion
30–39%, 60–69%, 40–49%, and 70–79%. Fig. 6(a) shows error with different
proportion of background with small difference. Suhr’s method was not stable
because the Hough space used to reject outliers had a large bin size. Second, the
error was analyzed in terms of motion blurring effect. There were 530 blurred im-
ages manually selected from all sequences for this experiment. Fig. 6(b) presents
the error comparison to blurring effect.

(a) (b)

Fig. 6. (a) Error with different proportion of background with small difference; (b)
Error comparison to blurring effect

Table 3 presents time percentages of GPU processing. Code to estimate scale
parameter were merged into one kernel to achieve full optimization; therefore, its
processing time is lowest. Kernels of GA search occupied nearly all GPU time.
The fitness evaluation kernel took most of GA time.

Table 3. GPU time percentages of our implemented kernels

Translation Initialize HV (.) and HH (.) 0.714 %

parameter 4.516 % Calculate HV (.) and HH (.) 14.288 %

estimation Calculate dV (.) and dH(.) 84.998 %

Scale parameter 3.226 % Initialize and calculate scaled 100 %
estimation histogram matching in one kernel

Range Create population 3.497 %
limited 92.258 % Evaluate fitness 92.702 %
GA Select 2.524 %
search Crossover 1.277 %

5 Conclusion

Our GPU accelerated and range-limited GA search is faster than the Motion2D
methods by 4.5 times, the MHT method by 53 times, and the Suhr’s method by 2
times. The computational improvement of our method is not only due to limiting
the GA search ranges but also due to the GPU implementation techniques.
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In this paper, the combination of GA and GPU implementation techniques is
successfully applied to the background compensation problem for PTZ cameras.
By experimentally comparing the results of our method to other methods, our
work has two advantages. First, our method is robust in coping with critical situ-
ations, because the GA was proved that it can reach an optimal solution. Second,
its processing time is very fast with the graphics card based implementation.

We plan to port the current implementation to a NVIDIA Tegra SoC mobile
processor [14] to achieve high applicability on mobile computing platforms.
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Abstract. As one of the techniques for robust speech recognition un-
der noisy environment, audio-visual speech recognition using lip dynamic
visual information together with audio information is attracting atten-
tion and the research is advanced in recent years. Since visual informa-
tion plays a great role in audio-visual speech recognition, what to select
as the visual feature becomes a significant point. This paper proposes,
for spoken word recognition, to utilize c combined parameter(combined
parameter) as the visual feature extracted by Active Appearance Model
applied to a face image including the lip area. Combined parameter con-
tains information of the coordinate value and the intensity value as the
visual feature. The recognition rate was improved by the proposed fea-
ture compared to the conventional features such as DCT and the prin-
cipal component score. Finally, we integrated the phoneme score from
audio information and the viseme score from visual information with high
accuracy.

1 Introduction

Recently, various speech recognition technologies have been put to practical
use by the development of speech recognition technologies. However, in cur-
rent speech recognition technologies, there is a problem that the recognition
performance remarkably decreases under noisy environment, and it becomes a
significant problem in aiming at the practical use of speech recognition.

Then, as one of the techniques for robust speech recognition under noisy en-
vironment, audio-visual speech recognition using lip dynamic visual information
together with audio information is attracting attention and the research is ad-
vanced in recent years.

In audio-visual speech recognition, there are mainly three integration meth-
ods; early integration[1] that connects the audio feature vector with the
visual feature vector, late integration[2] that weights the likelihood of the re-
sult obtained by a separate process for audio and visual signals, and synthetic
integration[3] that calculates product of output probability in each state and so
on. The research to lip-reading only in the visual feature is actively advanced

Y.-S. Ho (Ed.): PSIVT 2011, Part I, LNCS 7087, pp. 97–108, 2011.
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because the visual feature, of course the audio feature, greatly influences the
recognition rate in these processing. As the visual feature, various techniques
such as width and height of lip[4], optical flow[5] and DCT[6] are employed.

In our research, the lip area is automatically extracted by Active Appear-
ance Models[7][8] (AAM) regardless of speaker’s position in the dynamic scene.
Moreover, the combined parameter of AAM(c parameter) is employed as the fea-
ture parameter for utterance recognition. It is thought that shape information
included in this parameter can express the lip contour movement, and texture
information can express intensity changes such as tooth. Therefore, in this pa-
per, we propose a method that constructs visual HMM using c parameter and
integrates it with audio HMM. AdaBoost method[9] is employed that uses the
Haar-like feature as a face area extraction method, and the late integration
that does not take care of audio-visual asynchrony is employed as an integrated
method of audio and visual information.

2 System Flow

Fig. 1 shows the block diagram of a processing flow. First, the face area is
detected by AdaBoost method that uses the Haar-like feature on the input movie.
This is because the extraction accuracy of the feature points by AAM search
greatly depends on the initial search area. Therefore, the extraction accuracy of
the feature points improves by giving the face area detected by AdaBoost as an
initial search area of AAM.

Next, AAM is applied to the detected face area. This process contains two
kinds of AAMs. One is the whole face AAM constructed with the training image
set in which the feature points are given manually beforehand. The other is the
lip area AAM constructed with feature points of the lip area.The purpose of
utilizing two AAMs is to extract the feature points accurately on the lip area
by applying the whole face AAM roughly at first and then applying the lip area
AAM precisely on the extracted lip area. If c parameter extracted from the
whole face AAM is used as a recognition parameter, the recognition rate might
decrease by the information other than the lip area. Therefore, we use two kinds
of AAMs to extract a more accurate parameter of the lip area.

Input
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HMM

Feature extraction

(C parameter)

ResultIntegration

Feature extraction

(MFCC)

Face area

AAM
Face

detection

1
q

2
q

3
q
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Image
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Fig. 1. System Flow
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When the lip area AAM is applied to the input image, c parameter that
generates the most similar lip area image with the input image is extracted
as the visual feature. In training, audio and visual HMMs are independently
constructed by using the visual feature and audio feature extracted from the
same movie. Finally, the recognition result is output by integrating likelihoods
from visual HMM and audio HMM.

3 Feature Extraction

3.1 Active Appearance Models

AAM is a technique to express the face model by the low-dimensional parameter.
The subspace is constructed by applying PCA to shape and texture of face
feature points.

The shape vector s that is composed of the feature points on the face image
and mean shape s̄ is computed from the training image set. Inner texture of s
is normalized to mean shape. The shape vector s and the texture vector g are
given in s = (x1, y1, · · · , xn, yn)T , g = (g1, · · · , gm)T . where xi, yi (1 ≤ i ≤ n)
are the coodinates of the feature points. gj (1 ≤ j ≤ m) is the intensity value
at each pixel within the area srrounded by s̄, and mean intensity value ḡ can be
computed from the training image set. Vectors s and g are expressed by using
eigenvector matrices Ps and Pg, obtained by applying PCA to deviation from
s̄ and ḡ, as shown in Eq. (1) and Eq. (2).

s = s̄ + Psbs (1)
g = ḡ + Pgbg (2)

bs and bg are called the shape parameter and the texture parameter respectively,
and shape vector s and texture vector g are converted to them. Moreover, bs

and bg are combined and reduced as shown in Eq. (3) by applying PCA because
there is a correlation in shape and texture parameters.

b =
(

Wsbs

bg

)
=
(

WsPT
s (s− s̄)

PT
g (g − ḡ)

)
=
(

Qs

Qg

)
c = Qc (3)

where Ws is the matrix that normalizes the difference of the unit between the
shape vector and the texture vector. Q is an eigenvector matrix, and c, called
combined parameter, is a parameter that controls both shape and texture. s and
g are expressed as shown in Eq. (4) and Eq. (5) by c.

s(c) = s̄ + PsWs
−1Qsc (4)

g(c) = ḡ + PgQgc (5)

Thus, it becomes possible to treat shape and texture together by controlling
parameter vector c.
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Image with 63 feature points used 

for model construction of AAM

Face area shape

Lip area shape

Face area AAM

Lip area AAM

Fig. 2. Construction of two kinds of AAMs

3.2 Model Construction

Two kinds of AAMs are constructed as described in Chapter 2. The whole face
AAM is constructed by using the shape information and the inside texture in-
formation from the training image set with the feature points manually given to
the whole face as shown in Fig. 2. The lip area AAM is constructed with the
shape information and the inside texture information extracted automatically
from the feature points only on the lip area extracted by the whole face AAM.

3.3 Combined Parameter

Since the images with the mouth opening and closing are included in the training
data set of AAM, the various movements of the lip can be expressed by changing
c parameter as shown in Fig. 3. Since c parameter has information on detailed
shape and the intensity value of the lip, we propose to utilize c parameter as
the visual feature. As an extraction method of c parameter, error e between
the image g(c) generated by AAM (this is called a model image) and the input
image is formulated as shown in Eq. (6).

e(c, p) = ‖g(c) − Ii(W(p))‖2 (6)

where Ii(W(p)) is the image obtained by Affine transform to the input image Ii.
p is an Affine parameter of scaling, rotation and translation and W is a function
that executes the Affine transform. The number of dimension of c is set to 10.
78 training images are prepared. Since the video rame rate is about 1/3 of audio
frame rate in our data set, there is a possibility that the visual recognition rate
decreases compared to the audio recognition rate. Therefore, it is interpolated
by the cubic spline function between visual frames. c parameters obtained thus,
its Δ and ΔΔ coefficients with 30 dimensions in total are finally used as the
visual feature.

3.4 Additional Feature

In order to compare with c parameter, 2D DCT and pixel values on the lip area
are extracted. The lip area is located by the whole face AAM, and the area is



Audio-Visual Speech Recognition Based on AAM Parameter 101

Mean textureClosed lip

/ a / / i /

/ u /

Fig. 3. Example of model images generated by changing c parameter (in a counter-
clockwise fashion from the top middle, mean texture, the closed lip, utterance /a/, /i/
and /u/.)

normalized to the square with the fixed ratio of width to hight and converted
into the gray scale. The feature is extracted on this area. A square size is 32 32
pixel. PCA is applied to this 1024 dimensional vector of pixel values for the
dimension reduction. The number of dimension is set to 10 according to the
cumulative contribution ratio 90% . PCA score, its Δ and ΔΔ coefficients with
30 dimensions in total are used as the feature of PCA score. In a case of 2D
DCT, after DCT operation, 16 low-frequency components are selected because
the information concentrates on the low-frequency region in DCT. DCT, its Δ
and ΔΔ coefficients with 48 dimensions in total are used as the feature of DCT.

4 Recognition Method

As a recognition method, both word type HMM and subword type HMM are
used. MFCC with 12 dimensions and logarithm power, their Δ and ΔΔ coeffi-
cients with 39 dimensions in total are used as the audio feature. A final likelihood
is calculated by the late integration of audio and visual information as shown in
Eq. (7)[2].

LA+V = αLA + (1 − α)LV , 0 ≤ α ≤ 1 (7)

where LA+V is a likelihood after integration, LA and LV are likelihoods of audio
and visual features respectively. α is the combination weight.

5 Experiment

5.1 Experimental Condition

We used ATR phoneme balance words (216 words)×10 sets and single set of 100
words (different from 216 words) chosen at random from ATR phoneme balance
sentences as an utterance words. Logicool Qcam Orbit MP was used as a filming
equipment and SONY ECM-PC50 was also used as a microphone. Resolution
was 960×720 pixel, and the frame rate was 30fps.
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Fig. 4. Recognition results by various audio and visual features in different conditions

One specific speaker uttered in a clear tone with the frontal face. The dis-
tance from the speaker to the camera was about 40cm. The noise was added
onto the speech so that SNR became 5dB, 0dB and -5dB. The leave-one-out
method was applied to 216 words×10 sets, and the recognition rate was the av-
erage over the 10 sets. We call this experiment as one under the language closed
condition because the same 216 words are used for training and recognition. In
addition, 216 words×10 sets were used for training, and 100 words×1 set were
recognized. We call this experiment as one under the language open condition,
because 100 words are recognized different form 216 words used for training.
Word type HMMs were constructed with 5 states and 4 mixtures and used in
the language closed condition. As subword type HMMs, monophone HMMs were
constructed and used in both the language closed and open conditions. The num-
ber of mixture was experimentally chosen for the best one in the language open
condition.

5.2 Recognition Result by Using Respective Feature

Fig. 4 shows the result of the utterance recognition carried out separately using
the visual feature and audio feature respectively. Closed1 in Fig. 4 indicates
the recognition rate by word type HMM, closed2 is by subword type HMM
in the language closed condition, and open is in the language open condition.
C parameter(face) and C parameter(lip) indicate the recognition results by c
parameter extracted from the whole face AAM and the lip AAM respectively.

Comparing these results in terms of the features, a high recognition rate was
obtained by the conventional features and c parameter in closed1. Moreover,
it was confirmed that the lip area c parameter was more effective than the
conventional features in closed2 and open.

Comparing these results in terms of the conditions, the recognition rate de-
creased in closed2 and open compared with closed1 for the visual feature while
it was high in any condition for audio feature. The difference of the conditions
between closed1 and closed2 was the HMM type; word type HMM or subword



Audio-Visual Speech Recognition Based on AAM Parameter 103

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

DCT PCA C parameter

(%)

(Number

of Mixtures )

R
e
c
o
g
n
it
io
n
 r
a
te

Fig. 5. Recognition rates as a function of
the number of mixtures(closed2)
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Fig. 6. Recognition rates as a function of
the number of mixtures(open)

type HMM. The recognition rate by the subword type HMM was lower than
that by the word type HMM because connected training of the phoneme was
necessary for the subword type HMM. In the open condition, the recognition
rate was lower than that in closed2. Fig. 5 and 6 show the recognition rates
by the visual HMMs as a function of the number of mixtures. In the figure, as
the number of mixtures increases, the recognition rate is improved in closed2.
Since the increase of the number of mixtures leads to the complex model and
the training words and test words are same in closed2, it seems that the model
is over-fitted to the training data. On the other hand, the recognition rate tends
to be lower as the number of mixtures increases in open. Due to this reason, in
closed2, the recognition rate is higher than that in open.

5.3 Integrated Result of Audio and Visual Features

In order to integrate the visual result with the audio result under noisy envi-
ronment, output likelihood by visual HMM with c parameter and that by audio
HMM were integrated by Eq. (7). Fig. 7 shows the recognition results at 5dB,
0dB and -5dB SNR of the speech data. The weight 1 − α to visual feature was
increased by 0.1 from 0.0 to 1.0.

Three types of integration of the visual HMMs were carried out with the
subword type audio HMM. They were word type visual HMM(closed1), subword
type visual HMM(closed2) in the language closed condition and subword type
visual HMM(open) in the language open condition respectively. A horizontal
axis in Fig. 7 indicates the weight to visual feature. The weight 0 corresponds
to audio feature only, and 1 to visual feature only.

From Fig. 7, it can be seen that, in any conditions, the recognition rate is
comparatively acceptable in clean and 5dB SNR environment. Therefore, the
recognition rate is high at any values of the weight and is improved by taking
the optimum value of the weight. The recognition rate by audio HMM greatly
falls down in the strong noisy environment at 0dB and -5dB SNR. However, it
can be improved by increasing the weight to the image. From these results, it can
be confirmed that the recognition rate is improved compared with audio feature
by integrating the visual feature and audio feature under noisy environment.
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Fig. 7. Integrated result of audio and visual features

6 Phoneme Analysis of Visual Feature

6.1 Continuous Phoneme Recognition

In order to investigate the recognition accuracy of each phoneme using audio and
visual features, continuous phoneme recognition was carried out for words. The
language model was phoneme pair such that vowel appears after consonant and
consonant appears after vowel at equal probability. The acoustic model and the
visual model were the subword type audio HMM and the subword type visual
HMM trained by 216words×10 sets, and the recognition words were 100 words
used in the language open condition. The visual feature was c parameter.

Fig. 8 shows the confusion matrix of the phoneme recognition in language
open condition by audio features, and Fig. 9 shows the confusion matrix of the
phoneme recognition in language open condition by c parameter. ”IN” and ”LA”
in the figure indicate the number of insertion errors and the number of deletion
errors respectively. MoreoverCin order to evaluate the phoneme recognition ac-
curacy, the phoneme correct and the phoneme accuracy of vowel, consonant and
all phonemes were computed. The phoneme correct and the phoneme accuracy
correspond to word correct and word accuracy respectively when the phoneme
is regarded as a word.

Table 1 shows the result. In the table, the recognition accuracy is approx-
imately 80% in both vowel and consonant in audio. However, the recognition
accuracy of consonant is about 12% in open condition by visual feature though
vowel is approximately 70%, and the accuracy of all phonemes is approximately
40%. Thus, it can be said that consonants are not recognized well by the visual
feature.

6.2 Analysis of False Recognition of the Phoneme

In Fig.8 and Fig.9, both vowel and consonant recognition accuracies are high by
audio feature. On the other hand, in c parameter, vowels are recognized well to
some degree, but various errors occur more than audio feature in consonants.

The insertion error occurs a lot in ”r”. It is thought that the shape of the
mouth becomes same in ”a” and ”ra” and it can not be distinguished because
”r” is a consonant uttered by the movement of the tongue only. The deletion
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Table 1. Phoneme correct and phoneme accuracy (%)

Audio Visual

Open Open Closed2

Accuracy Correct Accuracy Correct Accuracy Correct

Vowel 82.91 82.91 67.81 68.38 65.46 66.21

Consonant 72.4 75.38 11.85 21.58 37.46 45.87

All 77.65 79.26 40.74 45.74 52.86 57.05

a a: b by ch d dy e e: f g gy h hy i i: j k ky m my n N ny o o: p py q r ry s sh t ts u u: w y z LA

a 84 3 1

a: 3

b 24 3 1 1 1 1 2

by 1

ch 13 1 1 1

d 11 1 1 2 5

dy

e 33

e: 1 1

f 2 11 1 6 1 5

g 2 8 1 1 1 1 4

gy

h 3 1 1

hy

i 2 63 1 3 5

i: 1 1

j 1 11

k 2 1 1 26 1 2

ky 1 1 1

m 13 1

my 1

n 5 1

N 1 39 1

ny

o 52 1

o: 1

p 6

py

q 3 3

r 1 19 6

ry 1

s 10 1

sh 1 17

t 1 1 10

ts 5

u 1 1 1 52 34

u: 4 2

w 1 3

y 1 2 3

z 5

IN 1 1 1 8

Fig. 8. Phoneme confusion matrix by au-
dio feature (open)

a a: b by ch d dy e e: f g gy h hy i i: j k ky m my n N ny o o: p py q r ry s sh t ts u u: w y z LA

a 63 3 11 2 9

a: 3

b 9 1 11 2 11

by 1

ch 5 1 1 2 3 4

d 1 1 1 1 3 3 2 3 2 3

dy

e 4 21 3 2 3

e: 2

f 9 1 1 2 3 10

g 1 1 1 1 1 1 4 1 2 5

gy

h 1 1 2 1

hy

i 1 1 46 4 1 2 1 18

i: 2

j 6 1 3 2

k 1 2 4 6 3 1 16

ky 1 1 1

m 3 1 9 1

my 1

n 1 1 1 3

N 2 3 7 3 26

ny

o 1 47 5

o: 1

p 1 2 3

py

q 1 5

r 2 1 2 7 1 13

ry 1

s 3 1 3 1 3

sh 1 1 2 1 3 1 2 4 3

t 3 1 1 1 2 1 1 2

ts 1 1 2 1

u 4 1 63 1 20

u: 6

w 1 3

y 2 1 3

z 2 1 1 1

IN 1 1 3 6 6 1 1 3 9 1 2

Fig. 9. Phoneme confusion matrix by vi-
sual feature (open)

error occurs a lot in ”N”. When ”N” appears at the end of the word, the mouth
becomes in a closed shape. Since the mouth is closed before and after the utter-
ance, it is regarded as a silent section, then the deletion error occurs. Moreover,
when ”N” appears in the word, the shape of the mouth is kept similar to the
previous vowel. Therefore, it is thought that the deletion error is increased be-
cause ”N” has a large variance and sparse feature. The substitution error occurs
in various phonemes. For instance, ”k” is falsely recognized as the consonants
such as ”g”, ”n” and ”r”. It is thought that the substitution error occurs because
there is no movement of the mouth in these consonants.

6.3 Experiment with Viseme

The reason why the false recognition described in 6.2 is caused is attributed to
the fact that the phoneme is a minimum unit representing the sound. When the
phoneme is applied to the visual feature, the phonemes with the same shape of
the mouth such as ”k” and ”g” cannot be distinguished. Therefore, the viseme
will be the best unit, instead of the phoneme, to represent the visual feature.
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Fig. 10. Integrated result when the viseme is used for visual information and phoneme
is used for audio information

Table 2. Viseme correct and viseme accuracy (%)

Open Closed2

Accuracy Correct Accuracy Correct

Vowel 75.9 75.9 78.21 78.58

Consonant 47.69 57.85 63.28 68.44

All 62.54 67.35 71.59 74.08

From this viewpoint, the viseme was employed as a unit to represent the visual
feature, referring to Fukuda[10], and the visual data was recognized as was done
in Chapter 5 by visual HMM and the result was integrated with the audio
result. The number of mixtures was set to 12 based on the best result using the
viseme. There were some words that could not be distinguished like ”eikyou”
and ”eigyou” because both became ”eisyou” in viseme. For such words, the
same output likelihood from the visual HMM was integrated with those from
the audio HMMs with different phoneme sequence. Fig. 10 shows the integrated
result in closed2 and open.

In the figure, it can be confirmed that the recognition results are better than
those in Fig. 7, because the recognition rate by the visual HMM using viseme is
higher than that using phoneme shown in Fig. 7. Therefore, the highest accuracy
is obtained by integrating the recognition results using phoneme for audio feature
and viseme for visual feature.

As the experiment, the continuous viseme recognition was carried out. Fig.
11 shows the confusion matrix, and Table 2 shows the correct and the accuracy
when viseme is used.

Comparing Table 2 with Table 1, the viseme greatly improved the recogni-
tion accuracy in both vowels and consonants, compared to the phoneme case.
However, it is still low by about 10 points in closed2 compared to audio. In Fig.
11, ”N” has still many deletion errors as is described in 6.2 for the phoneme,
and ”t” has many substitution errors with various visemes. Viseme ”t” includes
the phoneme ”t”, ”d” and ”n”. In order to discriminate these, it is important
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a i u e o p r sy w t s y vf N LA

a 73 10 8

i 57 21

u 68 6 27

e 3 3 26 4

o 50 5

p 54 1

r 1 11 2 3 9

sy 1 44 2 2 2

w 1 26 3

t 5 2 2 15 1 2 5 7

s 5 7 8 1

y 1 2 2

vf 2 8 7 3 18 17

N 2 10 29

IN 10 18 1 3 1

Fig. 11. Viseme confusion matrix using c parameter(open)

to extract the movement of the tongue because they are uttered by changing
the tonge position. Moreover, if they can be discriminated, the accuracy of the
viseme ”vf” will be improved that has many substitution error to ”t”.

It is thought that there will be still room in the improvement of the visual
feature. In the future, we will investigate the feature that can be extracted from
the movement of the tongue described above, and the feature that can recognize
”N” clearly.

7 Conclusion

We proposed to utilize c parameter extracted by Active Appearance Model ap-
plied to a face image for the utterance recognition. The effectiveness was con-
firmed by integrating c parameters as the visual feature with the audio feaure.
The difference between the phoneme recognition accuracy by the audio feature
and the visual feature was clarified by calculating the phoneme confusion matrix.
In addition, the phoneme score from audio feature and the viseme score from
visual feature were integrated with high accuracy.

In our approach, the utterances spoken by one specific speaker with a clear
tone were recognized in the experiment. Future tasks include the recognition of
utterances spoken by more people, new integration method of audio and visual
feature, weight optimization technique, recognition of speech with spontaneous
tone, application of AAM to images with various face directions, expansion to
continuous speech recognition, and robustness to the difference of time session.
Though monophone type HMM was used in this experiment because of the
data amount, a further improvement of the recognition rate will be expected by
increasing the data amount and using triphone type HMM.
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Abstract. We describe a fast and robust gradient integration method
that computes scene depths (or heights) from surface gradient (or surface
normal) data such as would be obtained by photometric stereo or inter-
ferometry. Our method allows for uncertain or missing samples, which
are often present in experimentally measured gradient maps; for sharp
discontinuities in the scene’s depth, e.g. along object silhouette edges;
and for irregularly spaced sampling points. To accommodate these fea-
tures of the problem, we use an original and flexible representation of
slope data, the weight-delta mesh. Like other state of the art solutions,
our algorithm reduces the problem to a system of linear equations that is
solved by Gauss-Seidel iteration with multi-scale acceleration. Its novel
key step is a mesh decimation procedure that preserves the connectivity
of the initial mesh. Tests with various synthetic and measured gradi-
ent data show that our algorithm is as accurate and efficient as the best
available integrators for uniformly sampled data. Moreover our algorithm
remains accurate and efficient even for large sets of weakly-connected
instances of the problem, which cannot be efficiently handled by any
existing algorithm.

1 Introduction

The integration of a gradient map to yield a height map is a computational
problem that arises in several computer vision contexts, such as shape-from-
shading [9,8] and multiple-light photometric stereo [10,22]. These methods usu-
ally determine the mean surface normal vector within each image pixel, from
which one can obtain the height gradient (the partial derivatives of the surface’s
height Z with respect to the spatial coordinates X and Y ). See figure 1.
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(a) (b) (c)

Fig. 1. Derivative maps ∂Z/∂X and ∂Z/∂Y (b,c) of a hemisphere and the height
map(c) obtained by integration

Although this information alone does not determine the absolute surface
heights, it can yield height differences between parts of the same surface. This
relative height information is sufficient for many important applications, such
as industrial quality control [18], pottery fragment reassembly [11], surveillance,
face recognition [13], and many others.

In practical contexts, this problem faces at least four difficulties. First, the
gradient data is usually discretized, that is, given as a finite set of gradient
samples, each being an average of the gradient ∇Z over some neighborhood of
a gradient sampling point.

Second, the gradient data is usually contaminated with noise arising from
unavoidable measurement, quantization, and computation errors.

Third, the height function Z(X, Y ) of a real scene is usually discontinuous. In
particular, it almost always has step-like discontinuities, or cliffs, at the edges of
solid objects. Most gradient acquisition methods, such as photometric stereo, will
return meaningless values for any sample that straddles a cliff or that cannot be
measured. For this reason, practical integration algorithms require an additional
input, a real-valued weight map that specifies the reliability of each gradient
sample. The weight map can be just a binary mask that is zero where there is
invalid data or cliffs and 1 elsewhere. See figure 2.

(a) (b) (c) (d)

Fig. 2. A height map with cliff-like discontinuities (a), the derivative maps ∂Z/∂X

and ∂Z/∂Y (b,c), as could be obtained by photometric stereo methods, and a binary

mask (d) showing the location of the cliffs. Note that the gradient map is oblivious to

the cliffs, and gives no clue as to which end of the ramp (if any) is at ground level.

Finally, even if the data is initially acquired over a regular X–Y grid of sam-
pling points, the samples may become irregularly spaced when the data is sub-
jected to optical rectification, filtering, or interpolation.
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2 Previous Solutions

There is a substantial bibliography on the gradient-to-height problem of com-
puter vision, beginning with B. K. P. Horn’s seminal papers [9,8]. Three surveys
have been published by Agrawal [3], Ng et al. [14], and Saracchini et al. [16].
The published solution methods fall into a few major classes:

Path integration methods [5,15,2] compute the relative height of each pixel
as a line integral along a single path from some reference pixel. These methods
are very efficient (Θ(N) time and space, where N is the number of data pixels),
but are extremely sensisitive to noise present in the gradient data and generally
yield height maps with spurious cliffs. See figure 3.

Fig. 3. Output of Fraile-
Hancock’s integrator [5] ap-
plied to the gradient data of
figure 1 with noise added

Spectral methods, such as those of Frankot-
Chellappa [6], Georghiades [7], and Wei [21] use
the fast Fourier transform (FFT) to perform
the integration by filtering the gradient data in
the frequency domain. These methods are only
slightly more expensive than path integration
(Θ(N log N) time and Θ(N) space) and fairly im-
mune to random data noise. However, they cannot
handle data with cliffs or missing samples, since
the FFT only works with regularly spaced data
and gives the same weight to every sample. When applied to scenes with cliffs,
these methods return severely distorted height maps. See figure 4.

Fig. 4. Output of the Frankot-
Chellappa integrator [6] ap-
plied to the gradient data of
figure 2

Kernel methods, introduced by Ng et al. [14]
assume a sparse gradient field, and reduce the
problem to data fitting with a high-dimensional
function approximation space. This approach can
accomodate irregularly spaced gradient sampling
points and is claimed to provides better “fill in”
for missing data than Poisson methods. However
it requires solving a very large (3N × 3N) linear
equation system, and is therefore way expensive
in time and space.

Direct Poisson-like methods reduce the problem to an N×N sparse system of
equations which is solved directly through Gaussian or Cholesky factorization,
as described by Agrawal [3]. The system can be obtained in many equivalent
ways, such as by analogy to the Poisson second-order differential equation [3],
through an energy minimization formulation [3], as the least squares solution
to an overdetermined system [8], or by a local averaging principle [17]. These
methods can take into account weight maps, modify the Poisson system so as
to use only valid data and avoid integrating around cliffs. As result, they can
handle problems that path-based and spectral methods cannot.

On the other hand, direct Poisson-like methods can be quite expensive. The
solution of the system requires approximately Θ(N1.5) time and Θ(N1.15) space,
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with large constants factors. The high memory cost makes this approach imprac-
tical for megapixel gradient maps [16].

Iterative Poisson-like methods build the same linear system as the direct
variant, but solve it by the iterative Gauss-Seidel method [19]. With this ap-
proach the memory space needed is only Θ(N), but the time to achieve a preset
accuracy grows at least proportionally to N2; so that even modest (100 × 100)
gradient maps may require more than 105 iterations to produce a minimally
usable result.

Multi-scale Poisson-like methods, first described by Terzopoulos in 1986
[20,19], usemulti-scale techniques to acelerate theGauss-Seidel iterative algorithm.
The idea is to recursively solve a coarse version of the original problem, with the
gradientmaps reduced to half size; and then use the resulting heigh map, expanded
back to the original scale, as the initial guess for the Gauss-Seidel iterator.

Let ε(k) be the residual error, namely the difference between the current guess
and the true solution, after k Gauss-Seidel iterations. As observed by Terzopou-
los [19], the slow convergence of the Gauss-Seidel method is due to the Fourier
components of ε(k) with low spatial frequency, which decrease very little at each it-
eration.Thehigh-frequency components of the error, on the other hand, are quickly
eliminated after a few iterations. Thus, the recursively computed initial guess will
provide the correct low-fequency components of the solution, and the Gauss-Seidel
loop quickly fixes the high frequency components. A fast weighted Poisson-based
integrator along these principles was developed in by Saracchini et al. [16].

2.1 The Problem of Weakly Connected Data

The multi-scale approach fails when the slope maps contain narrow bands of
data surrounded by cliffs or missing samples. When the weight map is reduced,
any pixel of the result that contains a zero weight pixel of the original must
be set to zero too, since it may contain a cliff. It follows that the relative area
affected by the missing samples expands at each successive reduction, until the
narrow bands of data disappear and/or the connectivity of the gradient map is
broken. See figure 5.

Fig. 5. A height map, its gradient map, weight map (256x256 and 16x16 scale) and

the integrator’s output [16] after 200 iterations

At that point, the solution computed for the reduced problem is no longer
a suitable starting guess, since its low-frequency components are usually quite
wrong. On such maps, the multiscale Gauss-Seidel solver becomes considerabily
slower than the direct Gauss or Cholesky solver.
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3 Integration on an Irregular Mesh

Our algorithm is a Poisson method with a novel multiscale iterative solver, that
is effective even for weakly-connected instances like that of figure 5.

The Weight-Delta Mesh Model. We depart from tradition by using a graph
representation for the gradient and weight data, instead a regular grid of samples.
A weight-delta mesh (WDM) is an abstract directed planar graph G with vertices
(nodes) V G and edges (arcs) E G. Each vertex v represents a height sampling
point and is associated to an unknown height value z[v]. Each directed edge e
connects two close vertices and has two numeric parameters: the edge delta d[e],
and the edge weight w[e].

The edge delta d[e] is an estimate for the difference z[v] − z[u] between the
height values at the edge’s origin vertex u = org(e) and its destination ver-
tex v = dst(e). This estimate is presumably derived from measured surface
gradients between the corresponding height sampling points; the details of this
computation depend on the application and are not relevant to this paper. The
edge weight w[e] is a positive number that expresses the reliability of that esti-
mate. More precisely, we assume that the edge delta d[e] includes some Gaussian
measurement error ( provenient from camera noise, quantization,etc.), whose ex-
pected value is zero and whose variance is proportional to 1/w[e].

By definition, a weight-delta mesh has no loop edges. We say that a WDM is
simple if it is free from parallel edges (two or more edges with same origin and
destination). In a simple WDM, we can identify each edge e with the ordered
pair (u, v) of its origin and destination vertices. In that case we may denote d[e]
also by d[u, v], and w[e] by w[u, v]. Also by definition, for every directed edge e
in a WDM, the oppositely directed edge sym(e) is also present in the mesh, with
d[sym(e)] = −d[e] and w[sym(e)] = w[e]. Therefore, when drawing the mesh it
suffices to draw only one directed edge out of each pair e, sym(e). See figure 6.

5:5

-5:5

0:5

0:8 -2:3

0:21:6 1:5

Fig. 6. A small WDM. The
edge labels are d[e]:w[e].

Edge Equations. A WDM can be interpreted as
an equation system, with one edge equation

z[dst(e)] − z[org(e)] = d[e] (1)

for every directed edge e. This equation is assumed
to have “strength” w[e]. The problem is then to
solve this system for the height z[v] of each vertex
v, given the mesh and the parameters d[e], w[e] for
every graph edge e.

Since each connected component of the WDM
implies a separate set of unknowns and equations,
we will henceforth assume that the WDM is a con-
nected graph. Note that the edge equations (1)
only depend on height differences; therefore the solution for a connected mesh
has at least one degree of freedom (an additive term corresponding to the inte-
gration constant of the continuous problem).
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Vertex Equilibrium Equations. If G has cycles, the edge equation system (1)
is overdetermined. In that case, measurement errors present in the deltas often
make it impossible to satisfy all equations at the same time. Given the as-
sumption of independent Gaussian measurement errors in the d values, Bayesian
analysis says that the most likely set of heights z is the weighted least squares so-
lution to the system (1). That solution turns out to satisfy the vertex equilibrium
equation

z[u]−
∑

v∈G[u]

λ[v]z[v] = −
∑

v∈G[u]

λ[v]d[u, v] (2)

for every vertex u, where G[u]is the set of vertices adjacent to u in the mesh and
λ[v] is w[u, v]/

∑
s w[u, s], the relative weight of v among the neighbors of u.

4 The Algorithm

The core of the algorithm is a mesh decimation step that removes a certain
fraction of the vertices of the input mesh G, producing a smaller mesh G′. The
vertices of G′ are a subset of those of G, and the edges of G′ are defined so as
to best summarize the weight and delta information contained in the edges of
G. The algorithm then solves the problem recursively for the mesh G′ yielding a
tentative height function z′ for its vertices. It then interpolates heights to provide
a starting guess z for the original mesh G. Finally it adjusts the heights z by
applying few Gauss-Seidel iterations to the equilibrium equations (2).

The recursion stops when G is reduced to a single vertex v, whose height z[v]
can be set to zero. In other words, we construct a pyramid G(0), G(1), . . . , G(m) of
meshes, where G(0) is the input mesh G, G(m) is a single vertex v, and each mesh
G(k+1) is obtained by decimation of the previous one G(k). Then we compute
solutions z(m), z(m−1), . . . , z(0), in that order; where z(m)[v] is zero for its single
vertex v, and each z(k) is obtained from z(k+1) by mesh interpolation and Gauss-
Seidel iteration. The map z(0) is the result. See figure 7.

G(0) G(1) G(2) G(13)

⇒ ⇒ ⇒ . . .

⇓ ⇓ ⇓ ⇓

⇐ ⇐ ⇐ . . .

Z(0) Z(1) Z(2) Z(13)

Fig. 7. The multiscale integration method
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Formally, the algorithm is the recursive procedure Integrate whose pseudocode
is given in figure 8. It takes as inputs the weight-delta mesh G, an iteration limit
κ and a tolerance ε; and outputs a height function z from V G to R.

Integrate(G, κ, ε)
1. If #V G = 1 then

2. Let v be the only vertex in V G; set z[v] ← 0;
3. else

4. G′ ← Decimate(G);
5. β ← #V G′/#V G;
6. z′ ← Integrate(G′, κ/

√
β, ε

√
β, );

7. z ← Interpolate(z′, G′, G);
8. z ← SolveSystem(z, G, κ, ε);

9. Return z.

Fig. 8. The main procedure of the integrator

Mesh Decimation. The procedure Decimate, called in step 4, takes a simple
mesh G, planar and connected, and outputs a smaller mesh G′, which is also
simple, planar, and connected.

First, the procedure partitions V G into a set R of vertices to be removed,
and a set K of vertices to be kept. The set R is a maximal subset of V G whose
elements are independent (that is, pairwise disconnected in G) and have degree
six or less. The set R is found by a greedy algorithm [4].

Next, the vertices in the R set are removed from G. Whenever a vertex u is
removed, the edges incident to u are removed, too. If u has degree 1, nothing
else needs to be done. If u has degree 2 or more, new edges are added to G′,
connecting the neighbors of u. (Observe that all these neighbors are in K and
therefore they will be vertices of G′.) The endpoints, weights and deltas of the
new edges are chosen so that the solution z′[v] for the mesh G′ is as close as
possible to the solution z[v], on every vertex v ∈ K.

More precisely, let k be the degree of u in G; let e0, e1, . . . , ek−1 be the edges
incident to u, oriented out from u, in counterclockwise order around u; and let
v0, v1, . . . , vk−1 be the corresponding destination vertices. Let wi be the weight
of ei, and di its delta. It can be shown that the solution z′ for G′ would exactly
match the solution z for G if, for every pair i, j, we added an edge e′i,j from vi to
vj with delta d′ij = dj − di and weight w′

ij = wiwj/wtot, where wtot is the sum
of all weights wi. We call this operation — removal of u, removal of all incident
edges ei, and the addition of all edges e′ij — a star-clique swap.

If the vertex has degree k = 2, the swap will add only one pair of opposite
edges e′01 and e′10. If the degree k is 3, there will be three new edge pairs: e′01, e′12,
e′02, and their opposites. In both cases, the planarity of the mesh G is preserved.
However, when the degree k is 4 or more, adding all the k(k−1) directed edges e′i,j
would generally make G′ non-planar, and would severely impact the algorithm’s
efficiency.
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Therefore, when k ≥ 4 we use instead a star-cycle swap, which adds only the
edges e′i,i+1 that connects successive vertices vi and vi+1, for i ∈ {0, 1 . . . k − 1}
into a cycle; as well their opposites. (All indices are taken modulo k). The deltas
d′i,i+1 of these edges are those of the star-clique swap, namely d′i,i+1 = di+1 −di.
The weights w′

i,i+1, on the other hand, are given by different formulas for each
degree k. For the new edge e′01 = (v0, v1), we have

k w′
01

2 w0w1/wtot

3 (w0w1 + 0.5(w0w2 + w1w3))/wtot

4 (w0w1 + 0.5(w0w2 + w1w3))/wtot

5 (w0w1 + 1.1690(w2w4 + w0w2 + w1w4))/wtot

6 (w0w1 + 2w5w2 + 1.5(w5w1 + w0w2))/wtot

The same formulas hold for any other edge e′i,i+1 of the cycle, except that all
indices are incremented by i modulo k.

Unlike the star-clique swap, the star-cycle swap does not ensure that the
heights determined by G′ are exactly equal to those implied by G. However,
the solution z′ for the mesh G′ retains the “low-frequency” components of the
solution z of G — in the sense that the error is highly localized, and can be
removed by only a few Gauss-Seidel iterations.

An edge e′ij introduced by the star-cycle swap may have the same endpoints
as a preexisting edge. Therefore, after performing all the star-cycle swaps, the
Decimate procedure collapses every set of parallel edges into a single equivalent
edge in a way that preserves the final solution. Namely, if edges e′ and e′′ have
the same origin and destination, with weights w′, w′′ and deltas d′, d′′, they are
replaced by a single edge e with the same endpoints, with attributes

w[e] = w′ + w′′ d[e] = (w′d′ + w′′d′′)/(w′ + w′′) (3)

Interpolation. Once a solution z′ has been obtained for the reduced mesh G′

(step 6), it is expanded to a starting guess z for G, by the procedure Interpolate
(step 7). First, for every vertex v in the shared set K, we set z[v] ← z′[v]. Then,
for every vertex u in the deleted set R, we compute z[u] by its vertex equilibrium
equation (2). Note that every neighbor v ∈ G[u] belongs to K, and therefore its
height z[v] is defined at this point.

Iterative Adjustment. The initial guess z is then used as the starting guess
for the Gauss-Seidel procedure SolveSystem (step 8). Each iteration of the latter
scans every vertex u ∈ V G and uses the equilibrium equation (2) to recompute
its height z[u] from the current heights z[v] of its neighbors. The procedure ter-
minates after a specified maximum number κ of iterations, or after the maximum
absolute change in any height z[u] is less than the specified tolerance ε, whichever
happens first. Note that the iteration limit κ is increased by a factor 1/

√
β, and

the tolerance ε is reduced by
√

β, at each level of the recursion (step 6); where
β is the mesh size reduction factor achieved by Decimate (step 4).
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5 Analysis of the Algorithm

Correctness. The star-cycle transformation and the collapsing of parallel edges
preserve both planarity and connectivity, so the recursive calls to Integrate sat-
isfy its preconditions that G′ be simple, connected and planar. Therefore, the
connectivity and planarity of the original mesh is preserved at all levels of the
pyramid; even within narrow corridors the relevant gradient information is re-
tained all the way to the top. Moreover, if κ is large enough, the final application
of the Gauss-Seidel algorithm (at scale 0) will eventually converge to the unique
solution z = z(0) of the vertex equations (2), irrespective of the starting guess
obtained from the decimated mesh G(1). The experimental tests (section 6) show
that convergence is achieved after only a few iterations, even in instances that
cause other multiscale methods to fail.

Space and Time Costs. Let N = #V G, Nk = #V G(k), M = # E G, Mk =
# E G(k). It is known that, for planar simple graphs, M ≤ 6N and Mk ≤ 6Nk;
and that any such graph has at least N/7 vertices with degree 6 or less. From
these facts it follows that the vertex reduction factor β of the Decimate procedure
has a theoretical upper bound β̂ ≤ 41/42 ≈ 0.976 [12]. In practice, the reduction
factor β is usually 0.6.

The maximum scale m is therefore at most log1/β̂ N = O(log N). Moreover,

the total vertex count in all meshes is at most N/(1 − β̂) = O(N) ≈ 2.5N in
practice. The amount of memory required by the algorithm is dominated by
the representation of the mesh G(k); a simple representation that is sufficient for
our purposes uses only Nk + 2 × 3Mk ≤ 19Nk words for the mesh G(k), and
(19/(1 − β̂))N words for all meshes in the pyramid.

The decimation algorithm runs in time O(N +M) = O(N) for a planar graph,
therefore the whole pyramid is built in O(N/(1 − β̂)) = O(N) time. The time
required for one Gauss-Seidel iteration at level k is Θ(Nk + 2Mk) = Θ(Nk).
The maximum number of iterations at that level is qk = q/β̂k/2. The maximum
time spent at level k is then proportional to Nkqk = (Nβ̂k)(q/β̂k/2) = Nβ̂k/2.
Therefore, the total work at all levels is O(N/(1 − β̂1/2)) = O(N).

6 Tests

In this section we experimentally compare the cost and accuracy of our graph-
based multiscale integrator (MG) with those of other published methods. We
consider only weighted Poisson-based algorithms since they are the ones that can
cope with errors and discontinuities in the gradient data within an acceptable
execution time. Another methods such were not tested due being unable to cope
with discontinuities [6], high sensibility towards gradient noise [5] or too high
memory/time requirements to be comparable [14].

Specifically, we used the M-Estimators (ME) and Affine Transforms (AT)
algorithms [3] of Agrawal et al. with direct system solving; and the the multi-
scale iterative integrator (MS) of Saracchini et al. [16]. For ME and AT we used
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the author’s Matlab implementations [1] under MS Windows, adapted to use our
input and output file formats and a user-given (rather than internally computed)
weight map. For MS we used the author’s implementation in C. Our algorithm
MG was also implemented in C; both were compiled and tested on a GNU Linux
platform. The maximum number of Gauss-Seidel iterations κ was set to 200 for
MS (as proposed by the authors) and to 20 for our method.

Datasets. In our tests we used four datasets provided by Saracchini et al., as
shown in figure 9. Three of them (spdome, cbabel, and cpiece) are defined by
mathematical functions, and one (dtbust) is a terrain model of a human torso
obtained by a structured-light 3D scanner. In order to simulate the measurement
noise usually present in real datasets, we added to each gradient sample an
independent Gaussian random number with zero mean and deviation 0.3. Each
gradient and its weight map were converted to a WDM whose vertices were the
pixels of desired height map and whose arcs connected pixels that were vertically
or horizontally adjacent in that map. The final vertex height z were then output
in the regular grid format.

spdome cbabel

dtbust cpiece

Fig. 9. Datasets used in the tests, showing the gradient maps (left), the weight masks
(middle), and the correct height map (right)

Accuracy and Robustness. For each combination of dataset and algorithm,
we computed the RMS value ρ of the correct and integrated height fields, and the
RMS difference η between them. In these computations, the height fields were first
shifted to have zero mean, and all averages are weighted by the input weight maps.

Table 1. Relative RMS errors of each method

Results - datasets with 30% of Gaussian noise

spdome cbabel dtbust cpiece

Meth. η η/ρ η η/ρ η η/ρ η η/ρ

AT 3.32 9.8% 0.80 3.0% 1.22 4.9% 0.52 4.1%
ME 0.63 1.8% 0.86 3.3% 0.71 2.8% 0.55 4.3%

MS 0.34 1.0% 23.02 121.0% 0.67 2.7% 5.74 52.5%

MG 0.34 1.0% 0.80 3.1% 0.59 2.3% 0.52 4.1%
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As table 1 shows in these tests the accuracy of our MG method was equivalent
or better than that of the other three. Note that MS integrator failed on the
cbabel and cpiece datasets, due to loss of connectivity after the first few levels
of the pyramid. On the dtbust dataset, MS gives the correct solution but only
after 200 iterations at the base level.
Cost. To evaluate the efficiency of our method, we measured the computing
time and memory needed for the integration of two gradient fields sampled with
various grid sizes from 64 × 64 to 512 × 512. We used the two datasets which
where correctly integrated by all methods (spdome and dtbust), without noise.
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Fig. 10. Log-log plots of the running time (top) and memory usage (bottom) of PC,
AT,MS and MG

For AT and ME, we measured only the system solving step; namely, we
aborted the algorithm after a single iteration of its weight-computing step. For
MS and MG, we included the cost of their decimation/interpolation steps as well
as of the Gauss-Seidel solver. The direct solving methods AT and ME need to
store the Poisson system’s matrix A and also its Gaussian triangular factor U
(or Cholesky’s R). For those methods, we counted the nonzero entries NA in the
system’s matrix A and NU in its Gauss or Cholesky’s factor U , and estimated
the memory usage conservatively as 12NA + 16NU bytes For MS we used the
memory estimate given by the authors [16]. For our method we used the estimate
19Ntot where Ntot was the actual number of vertices in all meshes.

The running times of MS and MG cannot be compared directly to those of AT
and ME, since Matlab code is inherently slower than C code. However, figure 10
shows that memory and time costs of MS and MG scale linearly with N, where
as those of AT and ME scale as O(N1.15) and O(N1.5), respectively.

7 Conclusions

Our algorithm allows robust integration of slope maps with cliffs and missing
data. Unlike previous linear-cost algorithms, it can handle gradient maps with
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narrow corridors. Also it can be used as the inner loop of iterative methods such
as described in [3], were the the computed heights are used to determine the
weights of the next iteration, allowing the detection of outliers and noisy data.
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Abstract. In this paper, we propose a new method for real-time disparity 
estimation and intermediate view synthesis from stereoscopic images. Some 3D 
video systems employ both the left and right depth images for virtual view 
synthesis; however, we estimate only one disparity map at a virtual viewpoint. 
In addition, we utilize hierarchical belief propagation and convergence check 
methods to find the global solution rapidly. In order to use the virtual viewpoint 
disparity map for intermediate view synthesis, we build an occlusion map that 
describes the occlusion information in the virtual viewpoint region of the 
reference image. We have also implemented the total system using GPU 
programming to synthesize virtual viewpoint images in real time.  

Keywords: Stereo matching, belief propagation, CUDA, DIBR, GPU 
programming, view interpolation. 

1  Introduction 

In recent years, various researches have been on a 3D video system as increasing 
interest in a 3D multimedia service. The 3D video system provides realistic 
multimedia services that offer 3D effects based on a binocular depth cue. It can be 
used in a wide range of multimedia applications such as immersive games, movies, 
presentations, video conferencing, 3D TVs and medical imaging. With the increasing 
demand of a 3D video display, MPEG has made an effort for a 3D audio-visual 
(3DAV) technology standardization [1]. The information of the 3D video display is 
characterized by a disparity map that consists of disparity vectors (DVs) for pixel 
pairs between the left and right images. As shown in Figure 1, virtual viewpoint 
images can be synthesized with respect to different virtual camera positions using the 
disparity map. Thus, disparity map estimation and virtual view synthesis are two most 
important parts in 3D video display. 

Many disparity map estimation algorithms for stereo image pairs have been 
proposed in the past, and they can be classified into two types. One type emphasizes a 
low computational complexity for real time implementation. The block matching 
algorithm (BMA) provides a good example for this type. Due to the low complexity, a 
quality of the resulting disparity map is lower and the low quality disparity map 
affects a quality of synthesized virtual view. The other type attempts to get an 
accurate disparity map with a higher complexity. For example, global energy 
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minimization algorithms are proposed in [2-4] for this purpose. Even though these 
methods can be used to synthesize high quality virtual viewpoint images, they 
demand a large amount of computation. So, their real time implementation is 
challenge.  

Most virtual viewpoint image generation methods use two disparity maps (left and 
right viewpoints) or single disparity map at one of two reference viewpoints.  First 
methods generate accurate synthesized image at a virtual viewpoint. However, it takes 
a long time to estimate two disparity maps. Second method needs half time for 
disparity estimation, but synthesis accuracy is lower than first one due to occlusion 
regions. 

 

 

Fig. 1. Outline of view synthesis method 

 
In this paper, we propose a real time virtual viewpoint synthesis method. In order 

to synthesize virtual viewpoint images in real time, we estimate disparity maps at the 
virtual viewpoint. Also we find convergence regions of the disparity map in the 
hierarchical belief propagation process. We cancel message updates at convergence 
regions to remove residual calculation by using a convergence map. After the 
disparity estimation process, we decide the occlusion map of the virtual viewpoint to 
select regions which can be back-projected. We synthesize the virtual viewpoint 
image using the virtual viewpoint disparity map and the occlusion map. Additionally, 
we implement the proposed method in real time using parallel programming called 
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CUDA. CUDA is the general purpose computing engine in NVIDIA GPUs that is 
accessible to software developers through industry standard programming languages. 

This paper organized as follows. In Section 2, related work about view 
interpolation is explained. In Section 3, our proposed method is explained. In Section 
4, the experimental results are given. The conclusion is presented in Section 5. 

2  Related Work 

There are many researches related to virtual viewpoint image synthesis techniques. 
Generally, left and right disparity maps are used for view synthesis [5]. As shown in 
Figure 2, this method estimates two left and right disparity maps and warp virtual 
images respectively. Then, two virtual images are summed by weighting function. 
Although it has heavy complexity due to two disparity estimation parts, it generates 
virtual images which are respectable quality. 

 

 

Fig. 2. Conventional view synthesis method 

 
Also, single disparity map estimation process can be used to synthesize a virtual 

viewpoint image. For instance, the single disparity map at left or right viewpoint can 
be used to generate virtual viewpoint image [6]. Omitting a disparity map estimation 
part of the other viewpoint leads it to fast execution. Qualities of view synthesis 
outputs are, however, lower than the first method due to occlusion regions which 
should only refer pixel information from the other viewpoint. 

In the global disparity estimation methods, the belief propagation algorithm is 
frequently used [7]. Although it produces an accurate disparity map, it is too slow to 
be practical. So, the hierarchical belief propagation algorithm is proposed [8][9]. It 
runs much faster than the previous algorithms while maintaining comparable 
accuracy. The main difference between the HBP and the standard BP algorithm is that 
the HBP algorithm works in a coarse-to-fine manner. In other words, the HBP 
algorithm estimates the disparity map with a smallest resolution, then it estimates 
higher resolution disparity maps with a previously estimated disparity map. The basic 
steps are: (a) initialize the messages at the coarsest level to all zeros, (b) apply the BP 



124 I.-Y. Shin and Y.-S. Ho 

algorithm at the coarsest level to iteratively refine the messages, (c) use refined 
messages from the coarser level to initialize the messages for the next level. 
Specifically, if X is a pixel at a coarser level, and its corresponding pixels at the finer 
level are X’i, i ∈ [1, 4], as shown in Figure 3. 

 

 

Fig. 3. Two levels in the coarse-to-fine method 

  
Two main parameters S and T define the behavior of the HBP algorithm, S is the 

number of levels and T is the number of iterations at each level. Generally, we 
estimate disparity maps with five levels and ten iterations (S=5, T=10). Actually, we 
only compute beliefs (disparity map) at level 0 in the HBP algorithm. 

3  Virtual Disparity Estimation and Convergence Check 

In this section, we describe the proposed method for the real time virtual viewpoint 
image generation using the virtual viewpoint disparity estimation method and the 
convergence check method of the HBP algorithm. As shown in Figure 4, our method 
contains following steps. 

 

 

Fig. 4. View synthesis using virtual disparity estimation 
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3.1  Virtual Viewpoint Disparity Estimation 

Global stereo matching methods find corresponding points using iterative energy 
minimization algorithms. An energy function E considers photo-consistency (a 
corresponding pixel should have the same intensity value) and piecewise smoothness 
(neighboring pixels are likely to have the similar disparity value). 

 

 , ,   , ,  , ,              (1) 
 

As shown in Figure 5, we directly estimate the disparity map at the virtual viewpoint. 
For this case, we calculate data cost by using 

 ∑ _ , , _ , ,,           (2) 
 

where dV_L/R and IL/R are virtual viewpoint disparity maps and input images. 
Relationship between disparity values of dV_R and dV_L is 

 _ , _ ,                    (3) 
 

where Alpha is a relative distance from the virtual viewpoint to the right viewpoint 
when a distance between the left viewpoint and the virtual viewpoint is one.  

 

 

Fig. 5. Virtual viewpoint disparity estimation 
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most plausible value by using surrounding pixel information. Most of the presented 
hole filling methods use image interpolation or in-painting algorithm. In order to get 
best quality hole filled images, neighboring background pixel values and their 
geometric information should be used. The reason why we use generally background 
region information is that background pixels rather than the foreground ones as the 
disoccluded area is more reasonable by definition of the disocclusion [10,11]. Thus, 
we fill up hole regions with neighboring pixel values which have background 
disparities. 

3.5  GPU Implementation 

For the real time implementation, we use the GPU parallel programming which 
executed on the GPU. The architecture of CPU and GPU are very different. Although 
GPU has a small number of instruction control unit, it has a lot of cores capable of 
calculating floating points operation. Thus, GPU has a Single Instruction Multiple 
Threads (SIMT) structure [12]. So, image processing algorithm is very suitable for 
GPU programming due to that all of image pixels may have same operation. There is 
an important condition of the SIMT parallel processing. It is a data independency 
between all data executed simultaneously. We implement whole process with the 
parallel GPU programming while maintaining a data independency.  

4  Experimental Results 

In order to evaluate performance of proposed algorithm, we have implemented three 
methods (method A, method B, and proposed method) on CPU and additionally 
applied GPU parallel programming to proposed method. Because fast processing time 
and acceptable visual quality are key points of our algorithm, we measured processing 
time and visual quality by calculating PSNR value between original and output 
images. Furthermore, we check these measurements with other two methods. Method 
A and B are conventional methods. Method A interpolates the virtual viewpoint 
image using left and right disparity maps. Method B uses only a left disparity map. 
For the experiment, we performed tests on several rectified stereo images which listed 
in Table 1. Test images are obtained from Middlebury stereo website and MVD test 
materials. Test stereo set includes not only stereo images, but also intermediate 
viewpoint images to verify synthesis quality by comparing original images.  

Table 1. Specification of the test stereo image set 

Sequence Teddy Poster Cones 
News 
papers 

Book 
arrivals 

Size 640x480 480x416 480x416 640x480 640x480 

max disparity 30 20 20 50 50 
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Fig. 10. Execution time of three methods 

 

 

Fig. 11. Execution time in CPU and GPU 

5  Conclusions 

In this paper, we present the real time view interpolation method. In order to make it 
more rapidly, we apply the virtual viewpoint disparity estimation method and GPU 
parallel programming. Previous methods estimate some duplicated and unnecessary 
disparity values for the certain viewpoint. Thus, our proposed method reduces 
complexity and makes accurate synthesized images by eliminating surplus 
calculation. We designed the data cost function for the virtual viewpoint disparity 
map. The hierarchical belief propagation algorithm is used to minimize the energy 
function. In the view synthesis part, we warp pixels from reference images to the 
virtual viewpoint using the virtual viewpoint disparity map. In order to check a 
synthesized image quality, we calculate PSNR values by comparing original images 
and synthesized images. Our results are generally 0.3dB higher than previous method. 
For the real time implementation, we utilize the high speed GPU parallel programming 
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called CUDA. As a result, we can synthesize the virtual viewpoint image at a rate of 
30 frames per second at most. 
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Abstract. In this paper, a new face descriptor called spatial feature 
interdependence matrix (SFIM) is proposed for addressing representation of 
human faces under variations of illumination and facial expression. Unlike 
traditional face descriptors which usually use a hierarchically organized or a 
sequentially concatenated structure to describe the spatial arrangement of 
features in different facial regions, SFIM is focused on exploring inherent 
spatial feature interdependences among separated facial regions in a face image. 
We compute the feature interdependence strength between each pair of facial 
regions as the Chi square distance between two corresponding histogram based 
feature vectors. Once face images are represented as SFIMs, we then employ 
spectral regression discriminant analysis (SRDA) to achieve face recognition 
under a nearest neighbor search framework. Extensive experimental results on 
two well-known face databases demonstrate that the proposed method has 
superior performance in comparison with related approaches. 

Keywords: Face recognition, spatial feature interdependence matrix, spectral 
regression discriminant analysis, object representation. 

1  Introduction 

Urged by the fact that human face is one of the most potential physiological 
biometrics [1] for many applications such as public security, surveillance, human 
computer interaction (HCI) and multimedia, automatic face recognition has been an 
active research area in computer vision community for over three decades [2], [3], [4]. 
From the perspective of practical application, a desirable 2-D image based face 
recognition system should be the one that is able to identify or verify a human face 
under variations of facial expression, illumination, pose and occlusion in an accurate 
and efficient manner. To this end, a myriad of approaches have been proposed so far. 
However, face recognition under above challenges is still far from being effectively 
resolved [3], [5], [6]. One critical reason that prevents this from happening is the lack 
of reliable and generic methods to represent face instead of image data itself. The fact 
of the matter is that the information contained in source image is usually highly 
redundant or non-discriminative for face recognition regardless of feature extraction. 
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A lot of seminal research works have already been done on the issue of how to 
build up an effective and compact face representation from 2-D image feature space. 
The current state of the art approaches differ vastly in terms of principles and 
techniques applied. Following a high-level categorization guideline suggested from 
the psychological studies on how human recognize objects, the available face 
representation approaches can be classified into two categories—on the basis of 
holistic information and on the basis of local features [3], [7], [8], [9]. 

The category of holistic face representation approaches is characterized by a family 
of subspace methods originated from the Eigenface approach [10], which employs 
principal component analysis (PCA) to project high dimensional face feature vectors 
onto a significantly low dimensional feature space. By probing the projection 
directions that maximize the total scatter of all labeled face data of the same person, 
the underlying Euclidean space structure is discovered. Different from PCA, linear 
discriminant analysis (LDA) [11] pays particular attention to the discrimination 
between face classes in a linear separable space without the prerequisite of orthogonal 
bases. Although PCA and LDA are the two most popular techniques for face 
recognition, they cannot recover the non-linear structure of data set. To address this 
problem, the Laplacianface method [12] employs locality preserving projections (LPP) 
to find an embedding that preserves local information, and obtains a face subspace that 
best detects the essential face manifold structure. Similar to the approaches of [10], 
[11] and [12], other popular holistic face representation approaches including kernel 
based methods [13], [14], independent component analysis (ICA) [15], 2-dimensional 
principal component analysis (2-D PCA) [16] and so on, are also designed to address 
the problem of linear/nonlinear dimensionality reduction. Apart from these traditional 
holistic representation approaches [10], [11], [12], [13], [14], [15], [16], a probe face 
image can also be expressed as various linear combinations of gallery set [17], [18], 
[19]. In summary, all above mentioned holistic face representation methods directly 
use typical intensity images of human face as the inputs. That is, they mainly focus on 
seeking a linear/non-linear subspace or a linear combination that can best represent 
the structure of face data in favor of the class with minimal reconstructive error, while 
pay less attention to the fact that gray-scale images are generally not discriminative 
enough owing to the effect of factors such as redundancy, rotation, noise, lighting and 
albedo. 

The category of local face representation approaches has recently also gained 
attention due to its robust capability to handle difficulties such as rotation and 
lighting. In general, this category approach benefiting from local information assumes 
that individual features extracted from prominent facial regions (e.g., eyes, nose, chin 
and mouth) are more vital to face recognition than the identification of holistic 
information. One of the pioneering works is elastic bunch graph matching (EBGM) 
[20], which describes faces using Gabor filter responses in 25 facial landmarks and 
uses a graph structure to represent the spatial locations of these landmarks. A 
modified EBGM algorithm is presented in [21] where the Gabor features in all facial 
landmarks are replaced by the histograms of oriented gradients (HOG) [22]. Instead 
of using a graph structure to represent face, the authors of [23] consider face images 
as a composition of micro patterns over small regions and take spatially weighted 
local binary pattern (LBP) histograms as the descriptors to represent face images. 
Later on, local Gabor binary pattern histogram sequence (LGBPHS) [24] and 
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histogram of Gabor phase patterns (HGPP) [25] are proposed for robust face 
recognition by the same research group. LGBPHS is intended to use the magnitude 
parts of Gabor filter and LBP operator simultaneously, while HGPP is mainly 
designed to jointly encode local and global Gabor phase patterns. In the approaches of 
[23], [24] and [25], a face image is divided into different regions, from which 
respective histograms are independently extracted and further concatenated into an 
extended histogram vector to represent the target face. It is worth noting that these 
approaches put more emphasis on the spatial arrangement of features in facial regions 
yet pay less attention to the spatial feature interdependences among different facial 
regions. 

In this paper, we explore inherent spatial feature interdependence between any two 
different facial regions in a face image. By encoding all pair-wise spatial feature 
interdependence strengths over separated facial regions inside a face image, we 
propose a new face descriptor called spatial feature interdependence matrix (SFIM). 
In contrast to previous face descriptors [23], [24], [25], SFIM explicitly depicts an 
inherent spatial feature interdependence network among the facial parts of a face 
image. Furthermore, it provides a bridge to the association of sophisticated learning 
approaches [10], [11], [12], [13], [14], [15], [16], [17], [18], [19] and discriminative 
local features [22], [23], [24], [25]. In our approach, the feature interdependence 
between two different facial regions is estimated as the Chi square distance between a 
corresponding histogram vector pair. Once face images are represented as SFIMs, 
spectral regression discriminant analysis (SRDA) [26] is further employed to achieve 
face recognition under a nearest neighbor search framework. Comparative 
experiments are confined to frontal human face recognition, and the variations of 
illumination and facial expression are mainly addressed. Extensive experimental 
results on the extended Yale B [27] and the cropped AR [28] face databases validate 
the efficacy of the proposed approach. 

The rest of this paper is organized as follows. Section 2 presents a detailed 
description of our SFIM based face descriptor. Section 3 describes the face 
recognition algorithm. Section 4 presents the comparative experiments on two 
publicly available face databases. Section 5 summarizes the paper and makes an 
outlook of possible future extensions. 

2  Spatial Feature Interdependence Matrix 

In this section, we will define the concept of SFIM, describe SFIM based descriptor 
for face object and show the properties of SFIM. 

2.1  Definition of SFIM 

The idea of SFIM is inspired by the following two facts. First, a standard human face 
is a whole unit consisting of different facial part structures. A successful application 
example of this fact is the well-known facial action coding system (FACS) [29], in 
which 46 different action units are defined to account for changes in facial expression. 
Second, as for human visual system, face recognition is not only dependent on visual 
information extracted from prominent facial parts (e.g., eyebrows, eyes, nose, mouth 
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and chin) but also assisted by latent information contained in the non-prominent facial 
parts [2], [3], [5], [18]. The aim of our proposed SFIM is not focused on precise 
segmentation of facial parts but on exploring spatial feature interdependence between 
any two different facial regions in a face image. We believe that the spatial feature 
interdependence between each pair of facial regions is a potential cue to identify face 
images of a certain person, and a careful handling of spatial feature interdependences 
may provide a completely new face representation approach. In accordance with 
above description, SFIM is defined as follows. 

Let I  represent a face image containing M  separated regions{ }1 2, , , MR R R , 

the SFIM of I is defined as a square symmetric matrix of size M M× . 
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where ija  is the feature interdependence between facial regions iR and jR , 

0 1ija≤ ≤ , 1 ,i j M≤ ≤ . The diagonal corresponds to the feature interdependence of 

a facial region itself, and it is composed of zeros. 

2.2  SFIM Based Face Descriptor 

From equation (1), it is clear the exact patterns of SFIM directly rely on the features 
and measures used to compute ija . For easy implementation, in our approach, face 

images are divided into spatially non-overlapped rectangular facial regions of same 
size. As the facial regions { }1 2, , , MR R R  have been determined, a feature vector is 

computed in each facial region independently. Various features are available in the 
literature for describing an image region of interest. We employ widely used 
histogram features to describe each rectangular facial region mainly due to two 
reasons. First, as the quantized and compact distributions of particular contents (e.g., 
intensity, gradient, phase, texture and high order filter response) in an image region of 
interest, histogram features have already been shown to be robust to noise, local 
image transformation, partial occlusion, etc. Second, histogram features can be 
calculated in a highly efficient way. 

Let ih  and jh  be the normalized N-bin histograms of facial regions iR and jR , 
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interdependence between facial regions iR  and jR  is computed as 
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In the literature, above defined interdependence is known as Chi square distance 
between a histogram feature vector pair. It measures how unlikely histogram 
distribution jh is drawn from the population represented by histogram distribution ih . 
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(c)                                  (d) 

Fig. 1. The discriminative capability of SFIM on different face objects 

Fig. 1 shows some examples to demonstrate the power of SFIM for representing 
faces under different facial expressions. The source images of two persons in three 
different facial expressions are displayed in Fig. 1(a) and Fig. 1(b), respectively. The 
corresponding SFIMs are shown in Fig. 1(c) and Fig. 1(d), respectively. The source 
images are taken from the cropped AR face database [28]. To compute corresponding 
SFIMs, the converted gray-scale images are divided into 6 6× spatially non-
overlapped rectangular facial regions, and 32-bin intensity histogram is used to 
describe each facial region. Note that the patterns of the resulting SFIMs of each 
person are relatively similar across different facial expressions, but are different 
across two persons. These results preliminarily show that the proposed SFIM can 
effectively handle the difficulties resulted from facial expression changes. The 
detailed experiments described in section 4 will further show the effectiveness of our 
SFIM based face descriptor, and the choice of dimensionality of SFIM is also 
clarified in section 4. 



 SFIM: A Robust Descriptor for Face Recognition 137 

2.3  Properties of SFIM 

The above section presents the definition of SFIM and describes the approach to 
represent a face image as an SFIM. In this section, we will shed more light on the 
properties of our SFIM based face descriptor. 

First, considering each facial region as a node, the most characteristic property of 
SFIM is that it depicts a feature interdependence network among the separated facial 
regions in a face image. That means all pair-wise spatial feature inconsistencies are 
explicitly encoded via SFIM. Consequently, different from traditional face descriptors 
which usually employ a hierarchically organized [20], [21] or a sequentially 
concatenated structure [23], [24], [25] to describe the spatial arrangement of features in 
different facial regions, SFIM is designed to make a careful handling of inherent 
spatial feature interdependence between any two different facial regions in a face 
image. Second, SFIM has a form of square symmetric matrix and its entries are 
computed from histogram features in different facial region pairs, which make the 
resulting SFIMs of face images can be easily used as the inputs of any sophisticated 
learning approaches [10], [11], [12], [13], [14], [15], [16], [17], [18], [19] to achieve 
face recognition goal. In this paper, although we employ histogram features and Chi 
square distance to calculate the entries of SFIM, other features (e.g., covariance 
matrices [30] and Gabor based region covariance matrices [31]) and measures (e.g., 
Kullback-Leibler divergence and earth mover’s distance) can also be used to compute 
SFIM. Therefore, the proposed SFIM provides a bridge to the association of 
sophisticated learning approaches and discriminative local features. Third, according 
to the description provided in section 2.2, it is clear that the computation of square 
symmetric SFIM is intrinsically efficient. Finally, the notations of video self-
similarity matrices [32], [33], [34] used for describing periodic motion in temporal 
space are most closely related to our proposed SFIM in form. However, the main 
focus of SFIM is on the use of a structured layout of spatial feature interdependences 
over all pairs of facial regions for face representation. To our knowledge, this problem 
is not clearly addressed in available face representation methods [35], [36], [37], [38]. 

3  SFIM Based Face Recognition 

Once every face image is represented as an SFIM with its entries computed as Chi 
square distances between histogram vectors extracted from any pair of non-
overlapped rectangular facial regions, face recognition can be achieved in various 
ways. One possible way is to use a matrix measure (e.g., matrix cosine similarity and 
Frobenius norm) to directly compare the dissimilarity between a probe SFIM and 
every gallery SFIM. Another possible way is to use the SFIMs as the inputs of a 
traditional subspace method [10], [11], [12], [13], [15], [26] or a linear optimization 
approach [17], [18], [19]. Considering that SRDA [26] casts discriminant analysis 
into a regression framework that facilitates efficient computation, we use it as a test 
case to evaluate the performance of SFIM based face descriptor under a nearest 
neighbour search framework. Recall that SFIM is a square symmetric matrix whose 
diagonal entries are zeros, the lower/upper triangular entries of SFIM are discarded. 
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Let us consider a gallery set of N normalized face images belonging to C  classes, 
and assume that kn represents the number of training images of the kth face class 

(
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= ). The face recognition algorithm is described as follows. 
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5. Given a probe face image, compute corresponding SFIM according to step 1 and 
rearrange it into a vector x according to step 2.  

6. Get the embedding z  of x by equation (5). 
7. Compute the Euclidean distance between z and each iz , and take the class of the 

gallery face image with the minimum distance to label probe face image. 

4  Experiments and Results 

In this section, extensive experiments on two challenging face databases (i.e., the 
extended Yale B [27] and the cropped AR [28] face databases) are carried out to 
demonstrate the efficacy of the proposed SFIM. In the experiments, two kinds of 
histogram feature (i.e., 32-bin intensity histogram and histogram of LBP) are 
employed to calculate SFIM. A comprehensive comparison of the performance of our 
approach and the published results on each test database is presented. We want to 
point out here that the reported results grouped in [18] (including Eigenface [10], 
Fisherface [11], Laplacianface [12], SVM+Laplacianface [14] and sparse 
representation [18]) are shown for a large range of feature dimensions. For the sake of 
fair comparison, we just pick the best results. The results of spatially weighted LBP 
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[23], LGBPHS [24] and the histogram of monogenic binary pattern (HMBP) [39] on 
the cropped AR face database are collected from [39]. Considering that we embed 
SFIM based descriptor in SRDA algorithm to achieved face recognition, the results of 
standard SRDA [26] are also presented. As for standard SRDA, the results are 
computed for an exact same range of feature dimensions to that of [18], and only the 
best results are shown for comparison (see the supplementary file for details). 

4.1  Experiments on the Extended Yale B Face Database 

The extended Yale B face database contains 2414 images of 38 subjects showing  
1 frontal pose under 64 laboratory-controlled illumination conditions. Some examples 
are shown in Fig. 2(a). The cropped and normalized gray-scale image has a resolution 
of 192×168 pixels. For each subject, half of the images are selected for training while 
the other half are adopted as testing dataset. All these parameters are same to those of 
the published reference results grouped in [18]. 

 

 
(a) 

 
(b) 

Fig. 2. Examples of representative subjects from: (a) the extended Yale B face database; (b) the 
cropped AR face database 

Table 1. Comparison of the top recognition accuracy of different approaches 

Methods Recognition rate on the 
extended Yale B face 
database (%) 

Recognition rate on the 
cropped AR face 
database (%) 

Eigenface [10] 88.40 80.50 
Fisherface [11] 87.60 86.80 
Laplacianface [12] 90.70 89.70 
SVM+Laplacianface [14] 97.70 95.70 
Sparse representation [18] 98.26 94.99 
Spatially weighted LBP [23] N/A 97.71 
LGBPHS [24] N/A 97.29 
HMBP [39] N/A 98.57 
Standard SRDA [26] 94.38 78.71 
SFIM+32-bin intensity histogram 99.34 94.52 
SFIM+histogram of LBP 99.59 98.71 
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The results on this database are shown in Table 1. From Table 1, it can be seen that 
the Fisherface method is worse than the others. This is partially due to the fact that the 
maximal number of valid Fisherfaces is one less than the number of face classes [11], 
[18]. Although the approaches of [10], [12] outperform the Fisherface method, their 
recognition rates are relatively low. The algorithm presented in [14] achieves a high 
recognition accuracy of 97.7%. More high result is reported for the sparse 
representation approach [18]. Taking the SFIMs computed from 32-bin intensity 
histogram and histogram of LBP as face descriptors, our approach yields recognition 
rates of 99.34% and 99.59%, respectively. These results are 1.08 and 1.33 percent 
better than the best result of comparison approaches, respectively. Furthermore, by
utilizing intensity histogram based feature interdependence between each facial region 
pair in a face image, our approach outperforms standard SRDA (whose inputs are 
normalized intensity images) by 4.96 percent in accuracy. These results fairly verify 
our assumption that the spatial feature interdependence between each pair of facial 
regions is a potential cue to identify face images in difficult scenarios. Therefore, by 
properly encoding all pair-wise spatial histogram based feature interdependences over 
different facial regions inside a class-specific face image, SFIM can handle the 
difficulty resulted from illumination changes in a more effective way. The choice of 
dimensionality of SFIM on the extended Yale B face database is shown in Fig. 3(a). 
With respect to the SFIM based face descriptors computed from histogram of LBP, it 
can be seen that the recognition rate of our approach becomes constant (>99%) in the 
face partition range of 8×8~12×12 rectangular regions. As for the other case, stable 
results (>98.5%) are achieved in the face partition range of 10×10~12×12 rectangular 
regions. 
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Fig. 3. The choice of the dimensionality of SFIM on: (a) the extended Yale B face database; (b) 
the cropped AR face database 

4.2  Experiments on the Cropped AR Face Database 

The cropped AR face database consists of 2600 color images corresponding to 100 
subjects (50 men and 50 women). Different facial expressions (neutral, smile, anger 
and surprise), illumination conditions (left light on, right light on and all lights on) 
and occlusions (glass, scarf, etc.) are included. Each subject participates in two 
sessions separated by two weeks. The same images are taken in both sessions. For 
each subject, 14 images with illumination and expression variations are considered in 
the experiments. The 7 images from session 1 are selected for training, and the other  
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7 images from session 2 are chosen for testing. The cropped 165×120 color images 
(as shown for 7 example images in Fig. 2(b)) are converted to gray-scale images. 
Same to section 4.1, all above parameters are identical to those of the published 
results grouped in [18], [39]. 

The results on this database are shown in Table 1. Similar to the results on the 
extended Yale B face database, the approaches of Eigenface, Fisherface and 
Laplacianface exhibit relatively low recognition rates, while the approaches of [14] 
and [18] demonstrate better performance. More high results are reported for the 
approaches of [23], [24], [39]. As for the SFIM based face descriptors computed from 
histogram of LBP, our approach yields the best recognition rate of 98.71%. With 
regard to the SFIM based face descriptors computed from 32-bin intensity histogram, 
the recognition rate of our approach is 94.52%. Compared with the results of standard 
SRDA, the results of our approach are 20 and 15.81 percent better, respectively. 
These results fairly show that typical intensity images of human face are generally not 
discriminative enough for face recognition in complex scenarios. Since the inherent 
spatial feature inconsistencies between any two different facial regions of a class-
specific face image are encoded via SFIM, our approach demonstrates better 
capability to deal with the variations of facial expression and illumination. The choice 
of dimensionality of SFIM on the cropped AR face database is shown in Fig. 3(b). 
Note that the recognition rate of our approach becomes stable in the face partition 
range of 13×13~15×15 rectangular regions (>98% and >94% corresponding to two 
types of SFIM, respectively). 

5  Conclusions 

This paper presents a new face descriptor called SFIM. SFIM takes advantage of the 
form of a square symmetric matrix to explicitly encode inherent spatial feature 
interdependence between any two separated facial regions in a face image. We first 
use SFIMs computed from histogram features and Chi square distance as the 
descriptors to represent face images. Subsequently, SRDA is used as a test case to 
achieve efficient face recognition under a nearest neighbor search framework. 
Extensive experiment results on two well-known benchmark face databases verify the 
efficacy of the proposed SFIM. 

Our further work will be extended in two directions. First, how to incorporate 
more class-specific information into SFIM is an open issue. Second, SFIM can be 
generalized for representing other objects needed in applications such as object 
detection, multi-class object classification and content based image retrieval (CBIR). 
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Abstract. Recently, 3D video has gained increasing attention in multimedia 
field. The representation of 3D video is often based on dynamic 3D mesh 
model, which is reconstructed from multi-view video, plus surrounding texture 
information for rendering, so that arbitrary novel views can be synthesized 
accordingly. However, the dynamic 3D mesh model herein is not time-
consistent, resulting in a difficulty in applying traditional mesh compression 
tools efficiently (e.g., MPEG-4 AFX 3DMC). In this paper, we modify the 
3DMC algorithm for the coding and transmission of 3D video, taking its 
advantage of high coding efficiency for edge topologies and enhancing it with 
3D motion estimation of vertices between two time-successive mesh models. 
Experiment results show that our method can reach about 30 times of 
compression ratio. Compared to MPEG-4 AFX 3DMC, under comparable 
reconstruction quality, our algorithm has a bit rate saving of about 20%~45%.  

Keywords: 3D video, 3D mesh, 3D motion estimation. 

1  Introduction 

Nowadays, the development of multimedia video has already been promoted from 2D 
to 3D, or from single-view toward multi-views. With 3D video, observers are capable 
of seeing around an object by changing the viewing directions at their will. The 
observed views are no longer restricted to those captured by the really arranged 
cameras. For example, a dancer on the stage can be seamlessly looked around (or 
evenly zoomed-in/out) by an audience who controls a mouse to change the viewing 
direction [6]. This effect however relies on image projection of a 3D model or novel-
view synthesis from multiply captured images. In a foreseeable future, 3D video will 
have more applications in education, art, entertainment, etc.  

The representation of 3D video can be divided into two kinds: one is multi-view 
video plus depth information for each view [4], the other is dynamic 3D mesh model 
plus surrounding texture information for rendering [5]. Both kinds of methods need to 
arrange a number of inwards cameras for capturing the object views from several 
discrete directions. The former then estimates the disparity or depth information from 
any two adjacent views so that arbitrary novel views can be synthesized by using the 
DIBR (Depth Image-Based Rendering) technique, whereas the latter constructs a 3D 
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model from all the captured views so that arbitrary views can be synthesized by 
projecting the 3D model onto an image plane, with textures being rendered thereon. 
Both methods take their own advantages and disadvantages. For example, multi-view 
video plus depth approach is advantageous of its system simplicity but is difficult in 
accurate disparity/depth estimation. On the other hand, the 3D mesh approach 
requires more cameras for accurate 3D model reconstruction, but benefits from 
flexibility in arbitrary view generation. 

This work is a part of a 3D video system that adopts the approach of dynamic 3D 
mesh and texture rendering, focusing on the compression of the dynamic 3D mesh 
models that are reconstructed from a number of inwards cameras around the target 
objects. Though 3D mesh models have ever been widely used, the ones reconstructed 
in 3D video systems are different from those generated via tools of computer 
graphics. The most important is that topologies of the 3D mesh models (including the 
number of vertices, vertices comprising the triangular meshes, and number of 
triangles) most likely vary from time to time, presenting no correspondences between 
two 3D mesh models at successive time instants. This case, however, will not happen 
in computer-graphics-generated 3D mesh models. 

The development of 3DMC (3D mesh coding) in MPEG-4 part 16 AFX 
(Animation Framework eXtension) has been mature for several years. This tool is 
however mainly developed for a single static model, but not for dynamic models 
generated/reconstructed at successive time instants. Though some techniques [7, 8] 
have been proposed to fill this gap, they are based on time-consistent dynamic 3D 
meshes (i.e., assuming that the vertex and edge sets of the 3D mesh models at 
successive time instants are kept preserved). As mentioned earlier, this assumption 
does not hold for 3D video applications. Theoretically, the MPEG-4 AFX tool can be 
applicable to the above-mentioned 3D video system by individually encoding the 3D 
mesh model reconstructed at each time instant. The encoding efficiency can be further 
improved by exploring the relation or redundancies between two time-successive 
mesh models. 

It is the goal of this work to encode time-inconsistent dynamic 3D mesh models 
for 3D video transmission. The algorithm is essentially a modification of the MPEG-4 
AFX, taking advantage of its high coding efficiency for edge topologies and 
enhancing it with accurate prediction of vertices between two time-successive mesh 
models. 

2  Topological Surgery for 3D Mesh Model 

There are many projects in MPEG-4 Part 16 AFX which concern about animation. 
Among them, 3DMC (3D mesh coding) was targeted for the compression of a single 
3D mesh model. It adopts a “geometric compression through topological surgery 
(TS)” algorithm [1], which keeps the relation between meshes accurately and is 
capable of reaching a high compression performance.  
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The manner that 3DMC considers for a single mesh model can be named as  
“intra-model” coding. However, to handle dynamic 3D mesh models, the redundancy 
between each pair of time-successive mesh models should be taken into account for  
coding efficiency improvement. We name this “inter-model” coding, following the 
terminologies from the state-of-the-art video coding. The TS technique [1] is to 
dissect a mesh model into a spanned tree and then perform encoding of the resulting 
“vertex tree”, “triangle tree”, and “vertex coordinates”. Among the above three 
quantities to be encoded, we first explore the inter-model redundancies for vertex 
coordinates in this work. For time-inconsistent dynamic 3D mesh models, the inter-
model redundancies for the vertex trees and triangle trees remain still an open issue to 
the researchers. In one word, our algorithm follows the tree spanning and encoding 
procedures proposed in 3DMC, but modifies the encoding of vertex coordinates that 
constitute the most significant part of the resulting bit stream. 

3  Inter-model Coding Based on 3D Motion Estimation 

We borrow the concept of inter-frame 2D motion estimation from video coding for 
this inter-model vertex prediction, that is, “3D motion estimation” which predicts 
vertex coordinates of the current (time) model from the previous (time) model and 
encodes the residuals. It is inefficient for each vertex to have a prediction parameter 
(e.g., 3D transform parameters) for calculating the residuals. Rather, we group 
vertices to adopt a limited set of 3D transform parameters. It is observed that 
transformation between successive (-time) 3D mesh models is often non-rigid (e.g., 
motions of the human’s body and limbs might not be consistent). Hence, k-means 
clustering algorithm (in this work, k=5, considering human’s body and 4 limbs) is 
adopted to partition the vertices of each model into k groups. Then the well-known 
ICP (Iterative closest point) algorithm [2] is used to align each group of vertices with 
those (the whole set) in the previous reconstructed (after decoding) mesh model 

1

~
−nF  . The estimated 3D transform parameters by using the ICP algorithm are 

regarded as the 3D motion parameter by which vertices of each cluster can be nearly 

aligned (or, closest to) with one of those in 1

~
−nF  (see Fig.1). After 3D motion 

estimation, the information need to be recorded and transmitted include the indices of 

the corresponded vertex in 1

~
−nF  and the displacement (residuals) between the 

transformed current vertex and the corresponded vertex, written as (v_index, 
x_residue , y_ residue , z_ residue). After k-means clustering and ICP (i.e., 3D motion 
estimation), the vertices between two consecutive mesh models will be closer so that 
we can get much less residuals for encoding. 

To further improve the coding efficiency, we introduce two procedures: “spatio-
temporal search” and “local index search”. Spatio-temporal search means that vertex 

prediction source can not only be from 1

~
−nF  , but also from a subset of nF

~
 itself. 

The subset that meets this purpose is limited to those vertices preceding the current  
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vertex in the decoding procedure (i.e., vertices with smaller indices). Those vertices 
not encoded yet will be excluded from consideration in spatio-temporal search. The 
search results in the spatial and temporal domains are compared and the one with less 
coordinate residual is chosen as the final prediction source for encoding. 

 

 
Fig. 1. ICP algorithm [2] 

In addition to residuals of vertex coordinates, we still need to encode an extra list 
that records the indices of the corresponded vertices after 3D motion estimation. 
“Local index search” plus differential index coding will be beneficial to the coding 
efficiency of this list. In 3D motion estimation, we need to find a vertex in the 
previous model that is closest to the transformed current vertex. When the search 
range is restricted to locally neighboring indices of the prior encoded vertex, both the 
time complexity and the bit rate required for encoding the referred list can be 

significantly reduced. An exception is that a full search of 1

~
−nF  will be still 

conducted if the residual of vertex coordinates from the local index search result is 
larger than a given threshold. The flow chart of our modified 3DMC algorithm based 
on inter-model prediction is summarized in Fig. 2. 

4  Experiment Results 

The 3D mesh models used in experiments are created from multi-view videos 
captured from 13 cameras arranged around the targeted objects, as shown in Fig. 3. 
For multi-view images at each time instant, the visual hull algorithm [3] is applied to 
reconstruct dynamic 3D mesh models. As mentioned earlier, dynamic 3D mesh 
models reconstructed in this way will not be time-consistent, that is, the number of 
vertices and the associated topology information will not be preserved. Frames 0-5 of 
“robot” (Fig.4) are used for experiments to test our proposed algorithm. (here, a 
“frame” means a reconstructed 3D mesh model at a time instant) 

Table 1 shows the result of compression ratio. Since Frame-0 uses the MPEG-4 
AFX-3DMC for encoding, we do not list it in Table 1. It is observed that the average 
compression ratio is 31.85 for Frames 1-5. 
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1-nF̂

 
 

Fig. 2. The proposed modified 3DMC algorithm for time-inconsistent dynamic 3D mesh 
models 

 
 

 
 

Fig. 3. Part of the multi-view video capturing configuration 
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Table 1. Compression ratio of our modified 3DMC algorithm 

  

Original file size 
(KB) 

Compressed 
file size (KB) 

Compression 
Ratio 

Frame1 1339 42 31.88 

Frame2 1074 35 30.69 

Frame3 1278 40 31.95 

Frame4 1323 41 32.27 

Frame5 1154 37 31.19 

Three quality measures are calculated for the decoded 3D mesh models:  

(1) E1: average norm-1 error (in terms of mm) of vertex position, 
(2) E2: KG error [9] (a well-known measurement in computer graphics), 
(3) E3: SNR (dB) of derived depth image (projecting the 3D mesh model onto a 

selected image plane to get depth image). 
 

 

 
(a) Frame 0 

 
(b) Frame 1 

 
(c) Frame 2 

 
(d) Frame 3 

 
(e) Frame 4 

 
(f) Frame 5 

 
Fig. 4. 3D mesh models reconstructed based on multi-view images 

 
To compare with the MPEG-4 AFX 3DMC, Figs. 5~7 show their R-D curves. Note 

that each data point of different bit rate is obtained by varying the coordinate accuracy 
(BPV=8,9,10,12,14 bit per vertex) for MPEG-4 AFX 3DMC or varying residual 
accuracy (Quality Factor, QF=1,2,5,10, 24, the larger, the more accuracy) for the 
modified 3DMC. 

Figs. 5-7 show that our method outperforms MPEG-4 AFX 3DMC, regarding all 
three measures. At the same quality, our method has a compression gain of about 20% 
in bit rate.  
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We also conduct an experiment on computer-graphics-generated mesh model: 
“chicken” (Fig.8) to prove the applicability of our modified 3DMC on time-consistent 
models (but does not take advantage of the vertex correspondence relations).  
Similarly, we compute the three R-D curves for comparison (not shown here). At a 
considerable quality, our method outperforms MPEG-4 AFX 3DMC by a bit rate 
saving of 42.5% (4.6 KB/model vs. 8 KB/model). This better gain lies on the fact that 
a less noisy topology makes 3D motion estimation more reliable to finding matching 
vertices between two successive models. 

R-D curve

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

30 40 50 60 70 80

bit rate (kbyte/model)

E
1
 :
 a
v
e
ra
g
e
 e
rr
o
r 
(m
m
)

our method

3DMC

 

Fig. 5. The R-D curve (E1 vs. bit rate) in comparison 
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Fig. 6. The R-D curve (E2 vs. bit rate) in comparison 
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Fig. 7. The R-D curve (E3 vs. bit rate) in comparison 

  

Fig. 8. Frames 0 & 1 of “Chicken” created by computer-graphics tools 

5  Concluding Remarks 

Essentially, our modified 3DMC algorithm is based on the traditional TS scheme, 
enhanced with a 3D motion estimation algorithm for vertex prediction between 
successive models. We also develop two algorithms of spatio-temporal search and 
local index search to further improve the coding efficiency. The compression ratio 
depends on the variation (e.g., global behavior or consistency of vertex motions) 
between two successive models, while that of 3DMC which compresses each model 
separately is kept less varying if the number of vertices is fixed. Another promising 
way to further improve coding efficiency is to build vertex correspondence and vertex 
ordering at the earlier stage of 3D mesh reconstruction, that is, adopting a 
preprocessing instead of a post-processing (via ICP algorithm). 
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Abstract. An algorithm that shows how ray divergence in multi-view
stereo scene reconstruction can be used towards improving bundle ad-
justment weighting and conditioning is presented. Starting with a set of
feature tracks, ray divergence when attempting to compute scene struc-
ture for each track is first obtained. Assuming accurate feature matching,
ray divergence reveals mainly camera parameter estimation inaccuracies.
Due to its smooth variation across neighboring feature tracks, from its
histogram a set of weights can be computed that can be used in bundle
adjustment to improve its convergence properties. It is proven that this
novel weighting scheme results in lower reprojection errors and faster
processing times than others such as image feature covariances, making
it very suitable in general for applications involving multi-view pose and
structure estimation.

Keywords: Multi-view reconstruction, ray divergence, weighted bundle
adjustment, confidence ellipsoids, image feature covariances.

1 Introduction

During the past years there has been a surge in the amount of work dealing with
multi-view reconstruction of scenes, for industry and in many other modern ap-
plications. State-of-the-art algorithms [1] provide very accurate matching, cam-
era poses and scene structure, based on sparse features such as those obtained
with the SIFT [2] or related algorithms. These recent algorithms are capable of
reconstructing large scenes from even unstructured image sets, obtained for ex-
ample from the Internet. In such scenarios, camera parameters such as location,
orientation and intrinsics may be available or accurately estimated for some of
the cameras but not all. This could also be the case even in structured sets of
images acquired with the same camera. Because of this reason, despite very ac-
curate feature matching, the accuracy of a multi-view reconstruction still relies
on accurate camera parameter calibrations. This creates a great need to identify
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where and why errors are present in these parameters, specifically without the
need to know ground-truth, since this is not always available. In the absence of
ground-truth data, multi-view algorithms usually resort to bundle adjustment [3]
to reduce reprojection error, which is the most meaningful geometric measure
of accuracy in the lack of any ground-truth. However, this can be an expensive
element in a scene reconstruction pipeline for high numbers of scene points and
cameras, despite recent and efficient sparse implementations such as SBA [3],
and must be used wisely. Furthermore, it requires a good enough starting point
close to the global minimum for convergence.

Our main goal in this paper is to show how simple ray divergence when at-
tempting scene reconstruction is an inexpensive yet powerful tool that can aid in
bundle adjustment convergence for multi-view stereo. Ray divergence is defined
as the shortest distance between rays emanating from each respective camera
center and through each pixel position of a given feature track, as will be further
described in Subsection 2.1. Our work is partially inspired by the recent algo-
rithm of Knoblauch et al. [4], which measures per-correspondence ray divergence
when attempting scene reconstruction from a set of initial unconstrained dense
correspondences and then decomposes the total error map into errors related to
camera parameters and correspondence errors. To the knowledge of the authors
there had been no other previous work on such an error factorization without
using ground truth knowledge. The ray divergence metric relies on the input fea-
ture matches being unconstrained, which is what allows for measuring geometric
errors. Using matches generated for example through epipolar geometry-based
guided matching would yield no reconstruction error, since these are generated
such that they lie on the same epipolar plane with the point they represent in
3D space.

As far as other previous work on camera parameter error analysis, it has been
done for the most part with respect to ground-truth values, such as the method-
ology to test the accuracy of camera pose estimation presented in Rodehorst et
al. [5]. The work in Zhao et al. [6] deals with how extrinsic and intrinsic calibra-
tion inaccuracies contribute towards depth estimate errors, but for the specific
case of a stereo camera pair with a known baseline and other relative positioning
information. Benchmarks also exist for reconstruction accuracy [7], though the
analysis is done versus ground-truth values, and our algorithm is based on ray
divergence rather than the accuracy of exact recovered positions.

In our algorithm, we compute ray divergence per feature track and use it
as a joint measure of all camera parameter inaccuracies, without the need for
ground-truth knowledge and prior to actually computing the 3D structure. We
start out similarly to Knoblauch et al. [4], first computing ray divergences for
all available feature matches but with the important difference that we use ro-
bust SIFT features instead of dense correspondences, keeping in mind that such
feature matches are also unconstrained and therefore it is possible to extract
a geometric error unlike in guided matching. We also assume that these fea-
ture matches are highly accurate, and this is generally true since sparse SIFT
matches are less prone to mismatching due to occlusions, repetitive patterns and
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texture-less regions than dense correspondences. To further ensure that we have
very accurate matches, epipolar geometry-based RANSAC outlier removal [8] is
applied prior to computing ray divergences. This in turn allows us to assume
that the total ray divergence error corresponds only to camera-related inaccu-
racies, such that we can avoid the error decomposition in Knoblauch et al. to
obtain camera parameter errors.

As will be discussed, the validity of ray divergence as a measure of camera
parameter uncertainty can be proven, since it correlates well with Beder et al.’s
confidence ellipsoid roundness measure for computed 3D scene points [9] in the
case when image feature covariances are set to identity. Furthermore, since ray
divergence encodes camera inaccuracy information, we show how it can be used
in weighted bundle adjustment to improve its convergence properties. It is shown
how this scheme outperforms weighting based on more-expensive image feature
covariance metrics [10,11] or Beder et al.’s confidence measure. The entire proce-
dure is first derived for the two-view case, but later shown how this can easily be
extended to multiple views. In summary, our algorithm presents a very practical
and inexpensive way to measure camera parameter uncertainty in the absence
of ground-truth information and use that uncertainty to improve bundle adjust-
ment conditioning. The entire procedure will be described in detail in Section 2,
followed by experimental results (Section 3) and conclusions (Section 4).

2 Proposed Algorithm

Our analysis will begin with the two-view case, where it is first shown in Sub-
section 2.1 how to compute ray divergence, and in Subsection 2.2 how to set up
weighted bundle adjustment based on ray divergence values. The extension to
multiple views will be outlined in Subsection 2.3.

2.1 Two-View Ray Divergence Calculation

The first step in our algorithm is to compute ray divergence per feature match,
similarly to Knoblauch et al. [4], except we start with sparse SIFT features [2]
instead of dense correspondences. In the case of perfect feature matches, camera
intrinsics and extrinsics and no radial distortion, rays starting from each camera
center and through the respective image plane feature location should intersect
at an exact position in 3D space, but due to any inaccuracies this generally will
not occur. We define ray divergence as the shortest distance between such rays,
as depicted on the left image of Fig. 1. As mentioned earlier, due to accurate
feature matching ray divergence is assumed to correspond entirely to camera pa-
rameter inaccuracies, which turns out to be a good approximation even if there
are small matching errors. Matches will never be perfect in reality, but we filter
bad matches through RANSAC on the epipolar geometry, using a 3.84σ2 inlier
threshold on Sampson error [8].

Ray directions Di for the two cameras are calculated per Eq. 1, with xi and
yi being the pixel coordinates in each image. The absolute orientation Ri and
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Fig. 1. Concept of ray divergence d (left), and sample dense camera parameter error
maps for image pairs from different datasets, to depict their smooth variation

position Ci for each of the two cameras is computed by factorizing the essen-
tial matrix, which can be computed from feature matches using N-point algo-
rithms [8]. The cameras’ intrinsic parameters (such as focal length and principal
point, with no pixel skew) are assumed to be at least roughly known in order to
create each 3 × 3 matrix Ki.

Di = Ri ∗ K−1
i ∗ (xi yi 1

)T
. (1)

Given the camera center locations Ci, the shortest distance between the two rays
corresponds to the Euclidean distance between the nearest distance points Pi on
each ray as shown in Eq. 2, with ti defining the distance to move along each ray.
Finally, the ray divergence d can be obtained from di = |P1 − P2|2. This error
comprises any inaccuracies with the camera poses, intrinsics or radial distortion,
and influences scene reconstruction in a global, smooth manner [4].

Pi = Ci + ti ∗ Di . (2)

The ray divergence d is then computed for all available feature matches. In
Knoblauch et at. [4], the resulting set of divergences corresponds to the total
reconstruction error which is a function of both feature matching errors and
camera-related errors, but as mentioned earlier we assume here that the entire
error corresponds to the cameras. Therefore, we can say that ray divergence di for
a given feature match is a function of relative rotation between the two cameras
Rrel, relative translation Trel, intrinsic parameters for the two cameras K1 and
K2, and radial distortion, which we’ll represent as distorted pixel coordinates
(xri, yri), such that di = f(Rrel, Trel, K1, K2, xri, yri).

To show how errors in these parameters affect ray divergence in a global,
smooth manner, and for visualization purposes since it becomes more difficult
to show using sparse matches, we computed dense correspondences through a
standard optical flow method to obtain a total ray divergence map for a few
test sequences. Each was factorized into camera-parameter error maps, modelled
as smooth B-spline surfaces, and correspondence error maps (remaining high-
frequency components). The resulting camera-parameter error maps are shown
in Fig. 1. Starting with sparse features, a smooth but sparse set of surface points
is obtained as shown in Fig. 2 for the Palmdale dataset, which shows grayscale-
coded ray divergence values for all available matches. In general, it has been
observed that the highest divergences tend to occur towards the edges of images



Ray Divergence-Based Bundle Adjustment Conditioning 157

Fig. 2. Ray divergences (left) for the set of matches from a pair of Palmdale dataset
images (middle), displayed such that lighter colors indicate higher divergences. The
true radial distortion map for the used camera, in pixels, is also displayed (right).

(as seen in Fig. 2, where most matches are on the left-hand side of the images)
in part because of radial distortion, and it becomes clear that we want such
matches to have less of an influence in bundle adjustment because of their higher
ray divergence, as discussed further in Subsection 2.2.

2.2 Bundle Adjustment Weighting with Ray Divergences

Now that ray divergences have been computed, and assuming that these are a
function mainly of camera parameter inaccuracies, it will be shown how these
values can be used as input weights to bundle adjustment in order to improve
its convergence properties. However, one further step before applying bundle
adjustment is to obtain initial estimates for the scene’s structure. We use Lind-
strom’s triangulation algorithm [12] due to its superior accuracy and speed with
respect to standard linear triangulation [8].

Weighted Bundle Adjustment. The objective of bundle adjustment is to
adjust pose and structure estimates in such a way that the total reprojection
error of the 3D points with respect to their corresponding 2D feature track
positions in each camera is minimized [8]. The cost function which is traditionally
minimized can be expressed as the sum of squares of reprojection errors between
each 3D point and the feature matches which yielded it, as shown in Eq. 3 for
the general case of N 3D points seen in M cameras.

min(aj , bi)
N∑

i=1

M∑
j=1

vij(d(Q(aj , bi), xij))2 . (3)

Here, xij is the position of the ith feature on image j. The binary variable vij

equals ‘1’ if point i is visible in image j (‘0’ otherwise). The vectors aj and bi

parametrize each camera j and 3D point i, respectively, with Q(aj , bi) as the
reprojection of point i on image j. Finally, d2 is the Euclidean distance in each
image between each original correspondence and its associated reprojection. This
minimization involves a total of 3N + 11M parameters, and can be achieved us-
ing the Levenberg-Marquardt algorithm. The SBA implementation [3] was used,
since it exploits the sparse block structure of the normal equations solved at
each iteration to greatly speed up the process.
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The Levenberg-Marquardt algorithm is based on solving the augmented nor-
mal equations at each iteration. In weighted bundle adjustment, each input fea-
ture is weighted differently with the objective of improving convergence by giving
less weight to those features that are more likely to be inaccurate. In practice,
these weights are implemented as covariances. The normal equations have the
form shown in Eq. 4, but when using weighted bundle adjustment, the equations
change to the form shown in Eq. 5, where Σ corresponds to a block-diagonal
matrix consisting of 2 × 2 covariance matrices for each input feature, J is the
parameter Jacobian matrix, δp the parameter update step, μ the damping term
and ε the error vector.

(JT J + μI)δp = JT ε . (4)

(JT Σ−1
x J + μI)δp = JT Σ−1

x ε . (5)

Comparison with Reconstructed Point Confidence Ellipsoid Round-
ness. Before proceeding, we wish to analyze the validity of ray divergence as a
measure of camera errors, such that it can aid in bundle adjustment. Beder et
al. [9] present an algorithm to determine the best initial pair for a multi-view
reconstruction. Their analysis is based on computing a confidence ellipsoid for
each computed 3D scene point X , such that its roundness measures the quality
of each obtained point. For two views, the covariance matrices of image feature
matches x′ and x” are given by C′ and C” respectively [10,11]. Then, the co-
variance matrix CXX of the distribution of the scene point coordinates X is
proportional to the upper left 4×4 submatrix N−1

1:4,1:4 for the inverse of the 5×5
matrix N given by Eq. 6. The A and B matrices encode information related to
the projection matrices for the two cameras, the image coordinates of the feature
match yielding the scene point, and the 3D point coordinates.

N =

⎛⎝AT

(
B

(
C’ 0
0 C”

)
BT

)−1

A X

XT 0

⎞⎠ . (6)

Now, if the homogeneous vector X = [XT
0 , Xh]T is normalized to Euclidean co-

ordinates, the covariance matrix of the distribution of the Euclidean coordinates
is given by Eq. 7, where Je corresponds to the Jacobian of a division of X0 by
Xh.

C(e) = JeCXXJT
e . (7)

Finally, if we perform the singular value decomposition of the matrix C(e), the
roundness R of the confidence ellipsoid is obtained as the square root of the
quotient of the smallest singular value λ3 and the largest singular value λ1, per
R =

√
λ3
λ1

. The value of R lies between 0 and 1, and only depends on the rel-
ative geometry of the two poses, the feature positions and the 3D point; radial
distortion is not modelled.
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Fig. 3. Reconstructed point confidence ellipsoid roundness values using identity im-
age feature covariances (left) for the set of matches from a pair of Palmdale dataset
images, where lighter colors indicate lower roundness values. The middle image shows
its correlation with ray divergence. The right image displays Zeisl’s covariance metric
values [11] for SIFT features in a Stockton image as green ellipsoids.

Something very important to note here is that image feature covariances [10,11]
are defined completely by the intensity variations in local neighborhoods and
thus may look rather random to visual inspection, with no clear pattern as the
image is traversed, as seen on the right in Fig. 3. On the other hand, the surface
of ray divergences has a much smoother shape, which is a function of all camera
parameter inaccuracies. So if we filter out all features that have high image co-
variances, matches obtained between remaining ‘good’ features are still bound
to the information ray divergence provides, in order to know if they’re overall
good or bad matches for reconstruction purposes. This is the power of using ray
divergence to weight bundle adjustment, since it provides information beyond
just the feature matching uncertainty. For example, two perfect matches could
still yield a non-zero ray divergence due to camera inaccuracies. Therefore, using
ray divergence or even the values provided by Beder et al.’s metric [9], though
more expensive to compute and not inclusive of radial distortion, provide a
stronger constraint towards weighting bundle adjustment than image-based co-
variances [10,11]. The right side of Fig. 3 shows the result of applying Zeisl’s
image covariance metric [11] on a select group of SIFT features, displayed as el-
lipses with size proportional to covariance values. The left side shows the smooth
transitions in values for Beder et al.’s confidence ellipsoid roundness [9] using
identity image feature covariances, and the middle shows its correlation with
ray divergence. Though it is not an exact correlation because of differences near
the edges of images, where the behavior is slightly different, the bulk of points
show a very good correlation (a coefficient of 0.93 for the main linear part of this
particular plot), such that higher divergences, in absolute value, exhibit lower
roundness.

Gaussian Weighting. A close look at a ray divergence histogram reveals a
smooth curve, typically reaching a maximum near zero. If we assume that the
probability p(d) that a given feature match exhibits a ray divergence d is given
by Eq. 8, where μd corresponds to the mean ray divergence and σd to its stan-
dard deviation for a given two-view set of feature matches, we can essentially
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assume that ray divergence histogram values follow a Gaussian probability den-
sity function (pdf) and use these values as weights for bundle adjustment. The
average and standard deviation are computed directly from the ray divergences
for the available set of feature matches. Since these weights must be input as
2×2 covariance matrices, we assume an isotropic probability distribution and set
the diagonal elements with equal pdf-based values, while setting the remaining
two elements to zero. It is very important to note that we want to penalize low
pdf values since these correspond typically to higher divergences. Therefore, we
‘invert’ the pdf values and place this number along the diagonal; their original
values are obtained again later from matrix inversion while solving the aug-
mented weighted normal equations. This results in higher covariances providing
lower weights.

p(d) =
1

2πσ2
d

e
|d−μd|2

2σ2
d . (8)

The advantages of using Gaussian values as weights is that positive weights
are always obtained, no matter what the divergence values are or if they show
zero-crossings. The area under the computed Gaussian curve is always unity,
by definition, and this is helpful towards mathematical stability since very large
variations between the smallest and largest assigned weights is not typical. Also,
exponentials are much cheaper to compute than for example a singular value
decomposition, as needed in Beder et al.’s algorithm [9]. Finally, ray divergence
transitions are smooth such that high ray divergences should be assigned higher
covariances than lower ones.

2.3 Extension to Multiple Views

The extension to multiple views is rather simple, and is based directly on the
two-view case. In a sequential multi-view pipeline, since covariances have to
be specified as 2 × 2 covariance matrices for each feature of a given feature
track, for each feature in a new image we simply assign the Gaussian-based
weight corresponding to the ray divergence for the feature’s match to the prior
image. Average and standard deviation are obtained from the set of pairwise
matches between the two most recent images, in order to compute the pdf prior
to computing each individual weight. Covariances for the features in the very first
image can be initialized to identity, or by computing them from images [10,11] for
better initial accuracy. This way of chaining pairwise consecutive estimates works
well no matter what the number of frames as long as pairwise ray divergence
estimates are well-conditioned, which can usually be achieved through a prior
frame decimation [13]. An analysis of this baseline effect on divergences is shown
in Section 3. For non-sequential cases, the average of all ray divergence values
for all matches to a given feature could potentially be used, though we have yet
to test this case.
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Fig. 4. Ray divergence histograms at increasing baselines (left to right), for pairwise
frames from the Stockton dataset

3 Results

The algorithm was tested on real scenes such as Stockton, Palmdale, castle-
P19 [7] and Medusa [14], as well as synthetic scenes such as Megascene1 and
Coneland. All tests were conducted on a single-core Intel Xeon machine at
2.80GHz with 1 GB of RAM, on one thread. For all tests, we assume that
the same camera is used per dataset and have initial values available for the
focal length and principal point, though these in some cases were inaccurate.
Images were not undistorted prior to testing, and were acquired sequentially.

One important initial experiment consisted in analyzing the behavior of ray
divergence given different baselines. For this, we started out with one frame of
the Stockton sequence and then obtained ray divergences at different baselines
from that particular frame. In Fig. 4, results show that Gaussian fitting works
well for ‘good’ baselines, which are typically achieved by applying frame decima-
tion [13] or other choosing algorithms [1] such that the baseline is not too small
for linear triangulation but not too small or large for pose estimation degenera-
cies to occur. This was also verified in several other datasets. The middle image
shows the most smooth histogram, and that is where frame decimation picked
the best keyframe. In general, with good baselines ray divergence histograms
are smooth and can generally be approximated well by Gaussian fitting. With
other baselines, ray divergences would not be suitable for Gaussian fitting and
for bundle adjustment, since the values are more heavily affected by noise. A
good frame decimation is key to our algorithm’s success. Table 1 shows the re-
projection error and processing time results for these different baselines, where
it is shown that the frame decimation keyframe yielded the lowest reprojection
error and processing time per point.

In the next experiment, we compared processing times and reprojection er-
rors obtained using weighted bundle adjustment under four different conditions:
bundle adjustment weighted by image feature covariances [10], by confidence
ellipsoid roundness with and without including image feature covariances, and
based on ray divergences. This was only performed on good two-view baselines,
obtained with prior frame decimation. Table 2 shows the results for some test
datasets. Average values for all test parameters were obtained across pairwise
frame analysis for all consecutive pairs of each dataset. Unweighted bundle ad-
justment was not compared, since the comparison would not be direct. Time
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Table 1. Number of points, final total reprojection error R (pixels), bundle adjustment
iterations I , processing time t in seconds and min/max ray divergence for Gaussian-
pdf ray divergence-weighted bundle adjustment at different baselines, for the Stockton
dataset. Best results were obtained for the three-frame frame decimation keyframe.

Baseline Points R I t mind maxd

Consecutive 3605 0.049 150 4.24 −0.606 0.774
3 frames 3369 0.013 33 0.83 −0.863 0.508
5 frames 1831 0.200 73 0.87 −0.774 0.561
8 frames 476 0.111 30 0.09 −0.297 0.537

Table 2. Iterations I , final total reprojection error R (pixels) and processing time
t (seconds) in (I, R, t) format obtained using bundle adjustment under four different
weighting schemes: image feature covariances (CBA), reconstructed point confidence
ellipsoid roundness with (UWBA) and without including image feature covariances
(UIBA), and Gaussian-pdf with ray divergences (RDBA)

Dataset CBA UWBA UIBA RDBA

Stockton 43, 0.621, 0.90 40, 0.171, 0.84 37, 0.072, 0.79 38, 0.015, 0.78
Palmdale 23, 4.687, 0.45 22, 1.692, 0.38 20, 0.831, 0.41 22, 0.113, 0.37
castle-P19 150, 281.13, 0.99 150, 4150, 0.95 150, 1046.1, 0.88 97, 90.036, 0.62
Dinosaur 26, 2.631, 0.06 22, 0.286, 0.05 24, 0.09, 0.05 24, 0.162, 0.05
Megascene1 49, 12.14, 0.04 42, 0.179, 0.03 45, 0.074, 0.03 46, 0.124, 0.04
Coneland 150, 28052, 1.10 150, 1880.38, 0.99 115, 599.88, 0.79 126, 81.86, 0.90

is consumed by the SBA software [3] to read-in covariance data, and there is
matrix inversion for covariance matrices and multiplication of these with Jaco-
bian matrix elements at each iteration, so processing times are typically higher
when using covariances. Even so, our bundle adjustment weighting outperforms
unweighted bundle adjustment as far as final reprojection error in almost every
case, as seen on the right in Fig. 6 where NBA represents the unweighted case.
It can be seen that ray divergence-based weighting outperforms every other type
of weighting in just about every category, though it’s slightly slower and with a
higher reprojection error than the more-expensive UIBA in a few cases. Over-
all, our weighting scheme provides the best combination of processing time, final
reprojection error and computational complexity in computing weights. As far
as complexity, Beder’s algorithm (UWBA and UIBA) for example includes the
inversion of a 5× 5 matrix and two singular value decompositions of a 4× 4 and
a 3 × 3 matrix, whereas ray divergence computation does not involve SVD or
inversions at all. The feature covariance method CBA is also more expensive,
requiring multiple exponential evaluations for each covariance matrix, whereas
our method computes a single exponential value.

Having proven that the algorithm performs very well on pairwise reconstruc-
tions, it was applied as explained in Subsection 2.3 to perform multi-view recon-
structions using our sparse multi-view reconstruction pipeline. Fig. 5 shows on
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Fig. 5. Top row: sparse multi-view reconstructions for the Stockton (left), Medusa (mid-
dle left), Palmdale (middle right) and Megascene1 (right) datasets. Their respective
dense reconstructions using the PMVS algorithm [15] are shown on the bottom.

Fig. 6. Side view of a multi-view reconstruction showing the effect of using distorted
images (left) versus images undistorted with parameters recovered per our algorithm
(middle), for the Palmdale dataset. Total reprojection errors are lower than with other
weighting schemes (right), as shown for a few datasets.

the top row sparse reconstructions that were obtained while applying sequential
multi-view reconstruction, bundle-adjusting with each added image using ray
divergence-based weighting. These high-quality sparse reconstructions allow for
other algorithms to be applied, such as dense reconstructions with the PMVS
algorithm [15] as shown on the bottom row of Fig. 5. Fig. 6 shows the effect on
scene reconstruction of using original distorted images versus versions that were
undistorted using parameters recovered with our weighted bundle adjustment.

4 Conclusions

An algorithm that makes use of scene reconstruction ray divergence for weighting
bundle adjustment and improving its convergence properties was introduced. It
was shown that ray divergence, which is a function of all camera parameter inac-
curacies, is more efficient to compute and outperforms other weighting schemes
such as those based on image feature covariances. There is no dependence on
ground-truth information, and results show an improved convergence on different
real and synthetic scene types.
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Abstract. This paper presents a new efficient algorithm for computing
temporally consistent disparity maps from video footage. Our method is
motivated by recent work [1] that achieves high quality stereo results by
smoothing disparity costs with a fast edge-preserving filter. This previous
approach was designed to work with single static image pairs and does
not maintain temporal coherency of disparity maps when applied to video
streams.

The main contribution of our work is to transfer this concept to the
spatio-temporal domain in order to efficiently achieve temporally con-
sistent disparity maps, where disparity changes are aligned with spatio-
temporal edges of the video sequence. We further show that our method
can be used as spatio-temporal regularizer for optical flow estimation.
Our approach can be implemented efficiently, achieving real-time results
for stereo matching. Quantitative and qualitative results demonstrate
that our approach (i) considerably improves over frame-by-frame meth-
ods for both stereo and optical flow; and (ii) outperforms the state-of-
the-art for local space-time stereo approaches.

1 Introduction

Computing disparity maps from two static images is a well-studied problem
and many methods have reported impressive results in the past (see e.g. [7] for
an overview). However, applying even the best of these methods to sequences of
stereo pairs in a frame-by-frame manner, often results in temporally inconsistent
disparity maps. This temporal inconsistency is perceived as unpleasing flicker-
ing, when using such disparity maps to visualize a video on auto-stereoscopic
monitors. Such displays use disparity maps to render novel views from virtual
view points.

The goal of this work is to improve the quality of the reconstruction by addi-
tionally exploiting the temporal information available in the input sequence. To
understand the basic idea behind our spatio-temporal stereo method, let us first
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( x

( y

( a ) Left stereo image ( c ) Cost map at disparity d ( d ) Disparity map computed
using cost map in ( c )

( e ) Cost map in ( c )
smoothed with box filter

( b ) Right stereo image

( g ) Cost map in ( c )
smoothed with edge-

preserving filter

( f ) Disparity map computed
using cost map in ( e )

( h ) Disparity map computed
using cost map in ( g )

Fig. 1. Single-frame stereo matching. From a stereo pair, captured at a single
moment (a),(b) the associated cost maps and computed disparity maps are shown for
different filtering techniques (c)-(h). See the text for a detailed explanation.

consider a conventional local stereo approach that computes a disparity map
from a static image pair. Such methods typically build upon a Winner-Takes-All
framework [7] and first compute the costs for choosing disparity d at each pixel.
An example of the resulting cost map for a single disparity level is shown in
fig. 1(c). By choosing for each pixel the disparity with the lowest cost gives a
noisy disparity map (see fig. 1(d)). The key idea of block matching algorithms is
to improve the result by aggregating the costs over a (square) support window.
It is known (see e.g. [1],[7]) that this cost aggregation is equivalent to filtering
the cost map with a box filter. Fig. 1(e) shows the cost map in fig. 1(c) after
smoothing with a box filter. The resulting disparity map in fig. 1(f) is smoother
in comparison to the one generated from the raw cost map in fig. 1(d). The im-
plicit assumption of box filtering methods is that all pixels inside the filter kernel
have constant disparity. This assumption is violated if the filter kernel overlaps
a depth discontinuity, which often coincides with object boundaries. Therefore,
the disparity map generated by box filtering (fig. 1(f)) does not preserve the
disparity discontinuities well. A solution is provided by adaptive support weight
approaches [2],[3],[6],[1] that locally adjust the filter kernel such that it does not
overlap the object boundaries. In particular, such approaches smooth the costs
with a weighted box filter. The weights are chosen such that they are high in
regions which are close in color and distance to the central pixel of the filter
kernel and low otherwise. The disparity map in fig. 1(h) better preserves the
disparity discontinuities, because it was generated from the cost maps filtered
with a weighted box filter (fig. 1(g)).

In this work, we transfer the adaptive support weight concept to the spatio-
temporal domain: Given multiple frames in time, a spatio-temporal cost volume
is generated by stacking the cost maps of the input frames shown in fig. 2(a)
(the cost maps are not visualized in fig. 2). A simple approach would smooth
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( b ) x/t slice of video
volume in ( a )

( c ) x/t slice of ground truth disparity
volume corresponding to ( a )

( d ) x/t slice of disparity
volume generated by 3D

block matching

( f ) x/t slice of disparity
volume generated by our

3D filter

( t

( x

( x

( y

( a ) Left stereo input sequence
( e ) x/t slice of input

sequence & filter weights

Fig. 2. Spatio-temporal stereo matching. Given a sequence of stereo images (a)
the cost volume is smoothed using a 3D box filter illustrated in red in (a) and (b). The
resulting disparity map (d) does not preserve disparity discontinuities. Our approach
weights the pixels inside the 3D box filter (e) to achieve a result (f) that is aligned
with the space-time object boundaries.

the cost volume with a 3D spatio-temporal box filter as illustrated by the red
cube in fig. 2(a). This approach assumes that disparities are constant inside this
space-time window. This assumption is not met for the red box in fig. 2(b),
since the space-time window overlaps an object boundary. Hence, the resulting
disparity map (fig. 2(d)) over-smoothes the spatio-temporal object boundaries.
In our approach, we weight the pixels inside the 3D filter kernel - pixels which
belong to the same object as the center pixel receive high weights and low weights
if they lie on a different object. Our assumption is that the disparity of an object
is approximately constant over a small space-time window. The filter weights
for the kernel outlined in red in fig. 2(e) are visualized by the intensity values
inside the red box: Bright pixels encode high weights and dark pixels encode
low weights. We see that the weights nicely adapt to the object outline. As a
consequence the object boundaries are well preserved in the resulting disparity
map shown in fig. 2(f).

The works most closely related to our approach are the methods of [6] and
[1]. The stereo method of [6] uses a fast approximation of the bilateral filter to
smooth the disparity costs in the spatio-temporal domain. This method is fast
(real-time) but the results cannot compete with the state-of-the-art in stereo
matching. [1] showed that state-of-the-art results can be achieved at run times
similar to [6], by replacing the bilateral filter with the guided image filter [5].
However, the authors of [1] did not adopt their method to temporal sequences.
Therefore, the main contribution of our work is to extend the approach of [1]
to the spatio-temporal domain. In particular, we present a space-time stereo
method that works in real-time and achieves results that outperform the space-
time stereo approach of [6]. This is done by extending the guided image filter [5]
to the spatio-temporal domain. Furthermore, we leverage this concept to optical
flow estimation to achieve temporally smooth flow fields.

Related Work
In the following, we discuss related work that incorporates temporal smoothness
constraints for stereo and optical flow estimation.
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Although first attempts to enforce temporal coherence for stereo matching go
back as far as [20], relatively little research has been conducted in this domain
since then. Many previous approaches simply encourage temporally constant
disparity solutions. This is either enforced locally by smoothing the cost volume
with a rectangular spatio-temporal support window [19],[18],[17] (as discussed
above) or globally by propagating the disparity over temporally consecutive pix-
els (see e.g. [21],[9]). These methods cannot cope well with considerably large
movement of scene objects. To account for faster moving scene objects, previ-
ous work proposed to orient the rectangular averaging window in the space-time
domain such that linear motions can be handled [17]. Other methods compute
the optical flow field between consecutive frames and then smooth the disparity
values along the computed flow vectors [22],[23]. In contrast, our method implic-
itly finds the spatio-temporal neighborhood and thus avoids computing a flow
field explicitly. Another approach to overcome the problem of flow estimation
is [25], where filter responses that capture the local spatio-temporal structure
of the video volume are used as matching primitives. A related field of research
aims to compute the three-dimensional scene flow [8], which is the computa-
tion of the 3D motion field using scene structure information. In contrast, our
work aims to reconstruct a temporally smooth disparity map without recovering
three-dimensional flow vectors. Note that avoiding the need to compute optical
flow is a considerable advantage. We do need to address the optical flow prob-
lem that might due to its large label space (consisting of all 2D vectors) be more
challenging than the problem that we are actually trying to solve, i.e. temporal
stereo. Obviously, we can also avoid the computational overhead that goes along
with optical flow computation.

Analogously to space-time stereo matching, only small amount of works have
been devoted to temporal consistent optical flow computation. Most algorithms
encourage temporal neighboring pixels to be assigned to the same flow vector
[16],[15],[14],[13],[24], which however incorporates the assumption that the flow
field remains piecewise constant over time. In [12] the less restrictive assumption
of constantly moving objects is encoded by encouraging matching pixels in two
consecutive frames to take the same flow vector. Our approach is more related to
non-local smoothness terms that assume that the flow vector at a certain pixel
is similar to the vectors at self-similar pixels in a larger neighborhood. To the
best of our knowledge such non-local smoothness terms have only been applied
in the spatial domain yet [11], [10].

2 Proposed Algorithm

In this section we describe our algorithm for generating temporally coherent
disparity maps. Section 3 adopts this method as temporal regularizer for optical
flow estimation.

Our temporal stereo matching algorithm comprises three major steps: (i) con-
struct a spatio-temporal cost volume for each disparity d; (ii) smooth each of
these cost volumes with a spatio-temporal filter; and (iii) select for each pixel
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in the spatio-temporal volume the disparity which holds the lowest costs in its
corresponding cost volume. We now discuss each of these steps in detail.

2.1 Cost Volume Construction

In the first step, a cost volume Cd is constructed for each disparity d. This cost
volume is a three-dimensional (spatio-temporal) array with axes x, y and t. It
stores the costs for choosing disparity d at each voxel i = (x, y, t) (we denote a
pixel in a spatio-temporal volume as voxel), where x, y and t are its spatial and
temporal coordinates, respectively.

Let I l and Ir be two spatio-temporal video volumes with axes x, y, t that
define a sequence of rectified stereo pairs. Also, let u = (d, 0, 0) be a vector that
defines the displacement in x, y and t dimensions. The costs are defined by the
correlation of voxel i in I l with its matching voxel in Ir shifted by vector u:

Cd
i = α · M c

i,u + (1 − α) · Mg
i,u. (1)

Similar to [1], the correlation costs in eq. (1) comprise a color term M c that is
weighted against a gradient term Mg by a factor α. The color term is defined
as:

M c
i,u = min

(‖I l
i − Ir

i−u‖, τc

)
,

where τc is a truncation value and ‖I l
i − Ir

i−u‖ is the summed-up absolute dif-
ferences in RGB values. Similarly, we define the gradient term as:

Mg
i,u = min

(‖∇xI l
i −∇xIr

i−u‖, τg

)
,

where ∇x denotes the gradient in x direction and τg is a truncation value.

2.2 Spatio-temporal Cost Volume Smoothing

Once the cost volume is constructed for each disparity, we filter each cost vol-
ume in the spatio-temporal domain. In particular, the smoothed cost value Ĉd

i ,
associated with disparity d at voxel i is a weighted average of neighboring voxels
in Cd:

Ĉd
i =
∑

j

Wi,j(I l)Cd
j . (2)

The filter weights Wi,j depend on the the sequence of input reference frames I l

and have to be chosen such that spatio-temporal edges in I l are preserved in
the filtered output. A possible choice is to use the weights of the bilateral filter.
They have the drawback that an exact implementation is slow and approxima-
tions come at the loss of quality. Therefore, we follow [1] where the weights of
the recently proposed guided image filter [5] have been used. The guided filter
has edge-preserving properties similar to the bilateral filter and its exact imple-
mentation has a runtime independent of the filter size. Originally, the guided
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filter [5] has been defined for the spatial domain only. In this work we extend it
to a spatio-temporal kernel, where the filter weights are defined as:

Wi,j =
1

|ω|2
∑

k:(i,j)∈ωk

(1 + (I l
i − μk)T (Σk + εU)−1(I l

j − μk)). (3)

Here, Σk and μk are the covariance and mean vector computed over the spatio-
temporal window ωk with dimensions wx × wy × wt, centered at voxel k in the
video volume I l. The number of pixels in this 3D window is denoted by |ω| and
ε is a smoothness parameter. I l

i , I l
j and μk are 3 × 1 (color) vectors, and the

covariance matrix Σk and identity matrix U are of size 3 × 3.
The guided filter weights do not have to be computed explicitly and can be

implemented exactly by applying a sequence of linear operations to the input
cost volume [5]:

ak = (Σk + εU)−1

(
1
|ω|
∑
i∈ωk

I l
iC

d
i − μkC̄d

k

)
.

bk = C̄d
k − aT

k μk.

Ĉd
i = āT

i I l
i + b̄i. (4)

Here, C̄d
k = 1

|ω|
∑

i∈ωk
Cd

i is the mean of Cd in ωk and āi = 1
|ω|
∑

i∈ωk
ak and

b̄i = 1
|ω|
∑

i∈ωk
bk. All summations are 3D box filters and can be computed in

O(N) time, where N is the number of image voxels.

2.3 Disparity Selection

After smoothing the cost volumes with the spatio-temporal guided filter, a
spatio-temporal disparity volume f l, which holds the sequence of disparity maps
for the left input sequence I l, is computed by applying the Winner-Takes-All
strategy:

f l
i = argmin

d∈D
Ĉd

i , (5)

where D is the set of allowed disparities.
In addition to the disparity volume for the left video volume I l, we also

compute the disparity volume f r for the right input video volume Ir in a similar
manner by substituting I l with Ir and vice versa in eqs. (1)-(4). Then we apply
left-right consistency checking: A pixel in the left disparity volume f l is marked
as invalid, if the disparity value of its matching pixel in f r differs by a value
> 1 pixel. The invalid pixels are then filled by the lowest disparity value of the
closest valid pixels which lie on the same spatial scanline (i.e. a single row in
x dimension). This simple filling can generate artifacts in the output disparity
maps. To reduce these artifacts, we apply a spatio-temporal weighted median
filter on the filled regions. This weighted median filtering smoothes the filled
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pixels, while preserving the object boundaries. In particular, we use a filter kernel
with dimensions wb

x × wb
y × wb

t with bilateral filter weights:

WBL
i,j =

1
Ki

exp(−|i − j|2
σ2

s

) exp(−|Ii − Ij |2
σ2

c

), (6)

where Ki is a normalization factor and σs, σc are parameters which adjust the
spatial and color dissimilarity, respectively.

3 Temporally Consistent Optical Flow

We now adopt our temporal stereo matching framework to optical flow estima-
tion. Similar to stereo, the goal is to reduce the ambiguity of the solution space
by exploiting the temporal coherence of the flow field. The implicit assumption
of our algorithm is that the flow vectors are constant within self-similar regions
of the video volume. This assumption is usually met for objects that do not
quickly change their speed and direction.

Our optical flow algorithm is almost identical to our stereo method. Here,
the displacement vector u, used in the terms M c and Mg in eq. (1), is defined
as u = (a, b, 0), where a and b is the flow in x and y directions, respectively.
For constructing the cost volume we modify the stereo correlation measure, by
additionally using the gradient in y direction. This is done by replacing term
Mg in eq. (1) with

Mg
i,u = min

(‖∇xI l
i −∇xIr

i−u‖ + ‖∇yI l
i −∇yIr

i−u‖, τg

)
. (7)

Once the cost volumes are established, we filter them and obtain the flow field
by applying the Winner-Takes-All strategy as in sec. 2.3. As for stereo, we apply
left-right consistency checking to determine invalid matches1. We then follow [1]
and fill the invalid matches by applying a 2D (spatial) weighted median filter of
size wb

x ×wb
y with weights as in eq. (6). Since the weighted median filter overlaps

some valid pixels, the flow vectors can be propagated to the invalid regions. To
compute sub-pixel accurate flow fields, we simply upscale the input frames using
bicubic interpolation as done in [26],[1].

4 Experimental Results

We implemented and tested our proposed temporal stereo and optical flow al-
gorithms on a PC equipped with an Intel Core 2 Quad, 2.4 GHZ CPU and
an Nvidia GeForce GTX480 GPU with 1.5GB of memory. We used CUDA for
implementing our algorithm on the GPU.

In our test runs, the parameters of our algorithm were set to constant values.
We use the following constant parameter settings to generate all results for both
stereo matching and optical flow: {wx=wy, wt=wb

t , wb
x=wb

y, ε, α, σs, σc, τc, τg}
= {31, 5, 15, 0.001, 0.5, 9, 0.1, 0.028, 0.008}. These parameters have been found
empirically.
1 In optical flow literature it is called forward-backward consistency check.
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Fig. 3. Temporal vs. frame-by-frame processing. 1st row: Left input frames of
stereo sequences are shown. 2nd row: Disparity maps computed by a frame-by-frame
implementation show flickering artifacts (arrows point to major artifacts). 3rd row: Our
proposed method exploits temporal information, thus can remove most artifacts. Test
sequences courtesy of [6].

Table 1. Quantitative stereo comparison. Our method outperforms all competi-
tors in terms of quality and is the fastest method that maintains temporal coherent
results (time measured without post-processing). See text for details.

Algorithm Time[ms]
Book Street Tanks Temple Tunnel

mean stdev mean stdev mean stdev mean stdev mean stdev

DCBGrid [6] 51 52.2 2.1 32.5 2.3 36.0 6.2 39.5 1.9 25.7 11.1
Ours frame-by-frame 41 18.0 1.5 16.4 1.3 10.8 1.7 11.17 2.1 14.4 7.8

Temporal DCBGrid [6] 90 44.0 2.0 25.9 2.0 31.4 6.1 31.7 1.8 36.4 7.9
Ours Temporal 41 10.1 1.5 12.2 1.0 8.7 1.3 6.6 1.5 17.7 8.6

4.1 Stereo

We evaluated our stereo method visually on real stereo video sequences as well
as quantitatively using a synthetic dataset comprising five stereo sequences with
known ground truth disparity, provided by [6]. We compare our spatio-temporal
stereo method to both the frame-by-frame and the spatio-temporal method of
[6], which we denote as “DCBGrid” and “Temporal DCBGrid”, respectively (we
used the authors implementation to generate results for [6]). A further competi-
tor is our approach applied in a frame-by-frame manner, i.e. using a temporal
filter window of size 1 (wt = wb

t = 1 in eq. (3) and eq. (6)). Note that our method
applied on a frame-by-frame basis degenerates to the method of [1].

First, we visually compare the results of our spatio-temporal method with the
frame-by-frame variant of our approach. Fig. 3 shows results for two consecutive
frames of three synthetic sequences. The disparity maps generated by our spatio-
temporal method (3rd row in fig. 3) are temporally coherent and exhibit less
artifacts than the disparity maps generated by our method applied in a frame-
by-frame manner (2nd row in fig. 3).
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Left input frames Results of “Temporal DCBGrid” Our spatio-temporal results

Fig. 4. Visual comparison to “Temporal DCBGrid” [6] Example (1). On these
two frames of a movie sequence our temporal regularization could remove artifacts
better than the temporal approach of [6] (red boxes mark major differences).

Next, we quantitatively compare our approach to its competitors. To this end,
we follow [6] and generate results for the dataset of [6] after adding Gaussian
noise2 of (σ = 20) to the input frames. Table 1 shows the mean error (percentage
of bad pixels) for the five ground truth sequences as well as their standard
deviations. The table shows that our spatio-temporal method outperforms the
“Temporal DCBGrid” in terms of mean error and smaller standard deviations3.
This indicates that our algorithm gives results of higher quality and is more
robust. This is also reflected in the visual comparison shown in figs. 4 and 5.
Results for the full video sequences are shown in the supplementary material.
Table 1 also reveals that our temporal method is more than two times faster4

than the “Temporal DCBGrid”. An important note from this table is that the
time consumed by our frame-by-frame method is the same as the time of our
temporal method. This is mainly due to the fact that in the 3D box filter the
sliding window technique is used in the three dimensions wx, wy and wt.

In another experiment, we evaluate the robustness of the different methods
to noise. In particular, we plot the error rates at different noise levels (additive
Gaussian noise with σ in the range from 0 to 100) for each of the five sequences
of [6] in fig. 6. We see that for a noise level of zero, all methods are close-by.
This is because the synthetic scenes are absolutely noise-free (which is in con-
trast to real-world scenarios), which makes it relatively easy for the different

2 This was done in order to provide a more realistic scenario, since the original images
are noise-free.

3 The two algorithms have poor performance in the “Tunnel” sequence. A possible
explanation is that this is due to that this sequence is highly textured and the
filtering process over-smoothes its frames.

4 Times were measured on different machines but should give a good indication of the
computational complexity.
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Left input frames Results of “Temporal DCBGrid” Our spatio-temporal results

Fig. 5. Visual comparison to “Temporal DCBGrid” [6] Example (2). Our
spatio-temporal method can preserve some object outlines better than the approach of
[6].

approaches to perform well. However, as the noise level increases the error level
for the “DCBGrid” and the “Temporal DCBGrid” increase faster than the er-
ror level for our methods. Furthermore, the “Temporal DCBGrid” only slightly
improves over its frame-by-frame counterpart (“DCBGrid”). In contrast, the im-
provement gained by our temporally coherent algorithm over the frame-by-frame
implementation of our approach is considerably larger.

4.2 Optical Flow

We follow previous work [24] and test our approach on the “Yosemite” and “Mar-
ble” sequences which can be obtained from http://www.cs.brown.edu/ black/
images.html and http://i21www.ira.uka.de/image sequences/, respectively. We
did not test on the Middlebury sequences, because they violate our assumption
of a temporally smooth flow field. (Note that also previous work did not test on
these sequences for the same reason [24].)

Table 2. Quantitative flow comparison. The average angular error (AAE) for
different temporal window sizes on the “Yosemite” and “Marble” sequences is shown.

Temporal Window Size (wt) 1 3 5 7

Yosemite Mean AAE 3.85◦ 2.90◦ 2.83◦ 2.76◦

Marble Mean AAE 6.72◦ 5.26◦ 4.78◦ 4.61◦

We show the Average Angular Error (AAE) for different sizes of the temporal
filter window wt on the “Yosemite” and “Marble” sequences in table 2. We see
that an increased temporal window size notably reduces the error. (Note that
when using a temporal filter window of size 1 our method degenerates to the
approach in [1].) Hence, our temporal processing improves the results of [1]. We
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Fig. 6. Robustness to noise. We plot the average error vs. Gaussian noise levels
for five ground truth sequences. See the text for a discussion and the supplementary
material for a visual comparison. Best viewed in color.

( a ) Input frame ( b ) Ground truth ( c ) Our frame-by-frame result ( d ) Our temporal result

Fig. 7. Effect of temporal smoothing for optical flow. Temporally smoothing
the flow field gives a result that is closer to the ground truth than the flow generated
without temporal coherency. Color coding of flow maps as on the Middlebury evaluation
page.

visually show the effect of the temporal processing for frame 8 of the “Yosemite”
sequence in fig. 7. The optical flow map generated with our spatio-temporal
method is closer to the ground truth than the one computed by our frame-by-
frame method.

5 Conclusion

This paper proposed an efficient technique for computing temporally coherent
disparity maps from a sequence of stereo images. The main contribution was to
extend the filter-based frame-by-frame stereo approach of [1] to the temporal
domain. To this end we adopted the 2D image filter of [5] to the 3D spatio-
temporal space. A further contribution was to apply our method to optical flow
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estimation. We demonstrated that exploiting temporal information considerably
improves the frame-by-frame approach of [1] for both stereo and optical flow
estimation and we outperform the current state-of-the-art in local space-time
stereo matching.

Future work may concentrate on obtaining a better understanding of the rela-
tionship between filtering-based and energy-based optimization. This knowledge
may lead to fast and even better filtering approaches than presented in this
paper.
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14. Weickert, J., Schnörr, C.: Variational optic flow computation with a spatio-
temporal smoothness constraint. In: JMIV, vol. 14, pp. 245–255 (2001)

15. Black, M.J., Anandan, P.: Robust dynamic motion estimation over time. In: CVPR
(1991)

http://www.middlebury.edu/stereo/


Temporally Consistent Disparity and Optical Flow 177

16. Nagel, H.H.: Extending the ’Oriented Smoothness Constraint’ into the Temporal
Domain and the Estimation of Derivatives of Optical Flow. In: Faugeras, O. (ed.)
ECCV 1990. LNCS, vol. 427, pp. 139–148. Springer, Heidelberg (1990)

17. Zhang, L., Curless, B., Seitz, S.M.: Spacetime Stereo: Shape Recovery for Dynamic
Scenes. In: CVPR (2003)

18. Zhang, L., Snavely, N., Curless, B., Seitz, S.M.: Spacetime faces: high-resolution
capture for modeling and animation. In: SIGGRAPH (2004)

19. Davis, J., Nehab, D., Ramamoorthi, R., Rusinkiewicz, S.: Spacetime stereo: a uni-
fying framework for depth from triangulation. In: PAMI, vol. 27(2), pp. 296–302
(2005)

20. Jenkin, M., Tsotsos, J.: Applying temporal constraints to the dynamic stereo prob-
lem. In: CVGIP, vol. 33, pp. 16–32 (1986)

21. Williams, O., Isard, M., MacCormick, J.: Estimating Disparity and Occlusions in
Stereo Video Sequences. In: CVPR (2005)

22. Larsen, E.S., Mordohai, P., Pollefeys, M., Fuchs, H.: Temporally consistent recon-
struction from multiple video streams using enhanced belief propagation. In: ICCV
(2007)

23. Bleyer, M., Gelatuz, M.: Temporally Consistent Disparity Maps from Uncalibrated
Stereo Videos. In: ISPA (2009)

24. Zimmer, H., Bruhn, A., Weickert, J.: Optic Flow in Harmony. In: IJCV, vol. 93,
pp. 368 – 388 (2011)

25. Sizintsev, M., Wildes, R.P.: Spatiotemporal stereo via spatiotemporal quadric ele-
ment (stequel) matching. In: CVPR (2009)
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Abstract. We address a photometric stereo problem that has unknown
lighting conditions. To estimate the shape, reflection properties, and
lighting conditions, we employ a nonlinear minimization that searches
for parameters that can synthesize images that best fit the input images.
A similar approach has been reported previously, but it suffers from slow
convergence due to specular reflection parameters. In this paper, we in-
troduce specular-free residual minimization that avoids the negative ef-
fects of specular reflection components by projecting the residual onto
the complementary space of the light color. The minimization process si-
multaneously searches for the optimal light color and other parameters.
We demonstrate the effectiveness of the proposed method using several
real and synthetic image sets.

1 Introduction

Photometric stereo is a method for recovering the shape and albedo of an object
from a set of images, when the object and the camera are fixed but the lighting
conditions vary between images. A classical formulation assumes that the object
is a Lambertian surface and that the lighting conditions are known. Several
recently developed methods consider unknown lighting conditions and/or non-
Lambertian surfaces (e.g., [4,14,3,10,2,11,12]).

We have developed a method based on the formulation of Migita et al. [6],
that directly minimizes a cost function to estimate the shape and the reflection
properties of the object and the light position for each image. The cost function
is the difference between input and synthesized images based on the Torrance-
Sparrow model [13]. In this study, we modify the cost function to improve the
performance because the nonlinearity of the Torrance-Sparrow model causes the
cost function to be highly nonlinear and thus convergence tends to be slow.

This method involves decomposing the residual (an RGB vector of the differ-
ence for each pixel) into two subspaces: a 1d space parallel to the light color and
a 2d space orthogonal to the light color. This decomposition is similar to that
proposed by Zickler et al. [15]. By using the latter component only, the specular
term is removed so that the estimation should be faster and more accurate. In
addition, removing specular component reduces the number of parameters to be
estimated.

However, there are some disadvantages with removing nonlinear components
from the input images. For example, the method cannot be used for monochrome
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Fig. 1. Reconstructed shape

......

Fig. 2. Images under various lighting conditions

images. Another problem is the generalized bas-relief (GBR) ambiguity [1,7,11].
Since our method removes the specular component, which may help resolve the
ambiguity, we have to rely only on the effect of near light sources to resolve the
ambiguity.

The new formulation does not use the Torrance-Sparrow model. Instead the
dichromatic reflection model [9,5] is used. This model is commonly used to ana-
lyze a color histogram to estimate the light source color. However, in our method,
estimation of the light source color is integrated with the minimization process
so that it is not a separate process.

We verify the effectiveness of our method using several real and synthetic
image sets.

2 Formulation

This section describes our formulation, which is referred to as the specular-free
residual (SR) minimization hereafter. We describe the similarities and differences
between our method and another method [6], which we call the full-color residual
(FR) minimization.

The method is essentially a photometric stereo method, which recovers the
object shape (e.g., Fig. 1) from images obtained under various lighting condi-
tions, such as Fig. 2. Input images are of a static object and are obtained by a
static camera. We also assume that the lighting is a single point light source in
the near distance. We need to estimate the shape and the reflection properties of
the object and the light position for each image. The reconstruction is performed
by nonlinear minimization by comparing input with images synthesized using an
image generation model (see below).

2.1 Full-Color Residual Minimization

Each pixel in the input image corresponds to a surface element of the object,
and its intensity is described by a certain reflection model.

The FR minimization uses a simplified version of the Torrance-Sparrow model
[13] to describe the input intensity efp (an RGB vector for the p’th pixel in the
f ’th image) as follows:



180 T. Migita, K. Sogawa, and T. Shakunaga

efp = ηfdp cosβfp + ηfspS
1

cos γp
exp
(
ρα2

fp

)
+ rfp (1)
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cosβfp = N [np]
T N [l′fp

]
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]
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p

]]
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,

(2)

and rfp is the residual, np is the normal vector, lf is the light position, v is
the camera position, � is the focal length of the camera, dp is an RGB vector
describing the diffuse reflectance, sp is the specular reflectance, S is an RGB
vector describing the light color, ηf is a coefficient describing the attenuation
of the light intensity due to the distance between the light and the object, ρ is
a specular parameter, and N [·] is an operator that normalizes the norm of a
vector to 1.

Note that for the first term in eq. (1), |βfp| ≥ π/2 implies that the surface
element is in an attached shadow region, which means the light is not positioned
in front of the surface element. Consequently, this term is replaced with 0 in this
case.

In the FR minimization, the shape, the reflection properties and the lighting
conditions are reconstructed by minimizing the following cost function.

E(p) =
1
2

F∑
f=1

P∑
p=1

|rfp|2 (3)

where rfp is the residual term in eq. (1). Note that, when the surface element for
the p’th pixel in the f ’th image is judged to be saturated or too dark (may be
due to a cast shadow), we set rfp = (0, 0, 0)T . The minimization is performed
by Levenberg-Marquardt (LM) method [8], the details of which are given in
section 3.

2.2 Specular-Free Residual Minimization

In the FR minimization, the specular term (i.e. the second term in eq. (1))
strongly reduces the convergence rate of the LM minimization process. Further-
more, it is computationally very expensive to calculate its derivative function,
which is required for the minimization. Thus, the basic idea of the present study
is to remove the specular term by using the following cost function instead of
eq. (3):

E(p) =
1
2

F∑
f=1

P∑
p=1

∣∣∣∣S×
|S| rfp

∣∣∣∣2 (4)

where

S× =

⎡⎣ 0 −S3 S2

S3 0 −S1

−S2 S1 0

⎤⎦ (5)
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with S = (S1, S2, S3)T . Since S×S = 0, we can calculate the specular-free resid-
ual S×rfp without calculating the second term in eq. (1). Thus, in our method,
specular reflection is not limited to the Torrance-Sparrow model. Instead, the
method employs a dichromatic reflection model; i.e., the specular color is same
in every pixel, although its scale can differ between pixels.

However, this formulation has several drawbacks, because the cross product
operation removes a part of the diffuse component in addition to the specular
term. Consequently, some important information is lost. For example, it can-
not process monochrome input images. Full-color input images are required to
decompose the residual vectors into components parallel and orthogonal to the
light color. Specifically the object must have two or more colors besides the light
color to avoid a local minima that causes the estimator for S to converge to the
diffuse color rather than the specular color.

In addition, the estimation is greatly stabilized by normalizing the residual
terms in eq. (4) as follows:

E(p) =
1
2

F∑
f=1

P∑
p=1

|S×rfp|2∣∣S×yp

∣∣2 , where yp = N
⎡⎣∑

f

efp

⎤⎦ . (6)

This normalization is interpreted as follows. Applying S× from left, the input
intensity is somewhat scaled and the scale factor is dependent on the color of
the corresponding surface element. This scale factor should be compensated to
accurately evaluate the residual rfp.

Another problem that needs to be considered is the GBR ambiguity. This
ambiguity is described as follows. The Lambertian component is expressed in
a bilinear form lT n, which could be transformed into (A−T l)T (An) by any
nonsingular 3×3 matrix A. Using the integrability constraint, A can be specified
up to three degrees of freedom [1]. To determine the remaining three parameters,
previous studies have used several nonlinearities [7,2,10]. The FR minimization
has some such nonlinearities. However, since our SR minimization removes the
specular component, we have to use another clue to resolve the ambiguity. The
most important clue is the attenuation with distance between the light source
and the object, as shown in [7]. Below, we present an experimental result that
demonstrates that this nonlinearity can resolve the ambiguity.

2.3 Estimation Parameters

The parameters to be estimated form a large vector p. The p consists of four
kinds of parameters: the object shape, the reflection properties, the global pa-
rameters, and the light positions as

p =
(
pT

w, pT
s , pT

m, pT
l

)T
. (7)

Object Shape. The object shape is described by the depth λp for each pixel.
A vector containing all the depths is ps = (λ1, · · · , λP )T , where P is the number
of pixels to be estimated.
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From the depths, the 3d coordinates xp for the p’th surface element are cal-
culated using the following formula:

xp = λp(
up

�
,
vp

�
, 1)T + (up, vp, 0)T (8)

where (up, vp)T is the 2d coordinates of the pixel with respect to the image
center and � is the focal length of the camera. For affine camera model, � is
set to infinity, while for projective camera model, � is set to a finite value. The
world origin is located at the center of the image plane and the camera position
v is (0, 0,−�)T .

The surface normal np for the p’th pixel is calculated from the 3d coordinates
of its neighboring pixels, l, r, t, b (i.e., left, right, top and bottom, respectively),
as follows:

np = (xt − xb) × (xr − xl) . (9)

The normal is not limited to being a unit vector. Instead, normalization is in-
cluded in the cosine operations in eq. (2).

Reflectance. In our SR minimization, reflection parameters are the diffuse
colors dp for each pixel. Unlike the FR minimization, specular reflectance sp is
not required. Therefore, pw = (dT

1 , · · · , dT
P )T .

Global Parameters. The only global parameter in the SR minimization is
the light (or specular) color S, whereas the FR minimization has an additional
specular parameter, ρ.

Light Positions. The light position is estimated for each image. Thus, pl =
(lT1 , · · · , lTF )T , where F is the number of input images.

3 Minimization

Letting the number of pixels to be P , there are more than 4P elements in p.
Thus, the search space can typically have the dimension of about 100,000. An
algorithm is required that can deal with a minimization problem on this scale.

3.1 LM Method

We use LM method for minimizing the cost function, as in the FR minimization,
which is given by:

pk+1 = pk − (JT
k Jk + μkI)−1JT

k rk (10)

where rk is a vector containing all the (specular-free) residual vectors, and J is
the Jacobian matrix. The subscript k indicates the value is dependent on the
parameter pk. The initial value p0 is discussed in section 3.3.
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Each (specular-free) residual depends on only 14 parameters: the diffuse re-
flectance, the depths of neighboring pixels, the light color, and the light position.
Thus, the Jacobian contains 14 non-zero elements in each row. The following
equation for the total derivative of rfp contains all the non-zero entries in Jk.

δrfp =
∂rfp

∂dp
δdp +

∂rfp

∂λp
δλp + · · · + ∂rfp

∂lf
δlf . (11)

The Hessian matrix can then be easily calculated. Its structure is given by:

JT
k Jk = (12)

Each block contains (from left to right or top to bottom) approximations of the
second order derivatives corresponding to pw, ps, pm, and pl, respectively.

For each iteration, we have to solve a linear system with this coefficient ma-
trix. Although this matrix is large, it is relatively sparse. To exploit its sparse
structure, it is preferable to use a preconditioned conjugate gradient method [8]
to solve the system.

3.2 Preconditioned Conjugate Gradient Method

We use the following preconditioned conjugate gradient method to solve Aw = b:

wk+1 = wk − αkdk (13)

where

dk =
{

C−1g0 (k = 0)
C−1gk + βkdk−1 (k > 0)

gk = Awk − b

βk = gT
k C−1gk/gT

k−1C
−1gk−1

αk = dT
k C−1gk/dT

k Adk

Here, C is a preconditioner, which should be an approximation of A and compu-
tationally easy to invert. This is constructed by taking the block diagonal part
of A, or JT

k Jk + μkI in eq. (10), as:

C = (14)
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Fig. 3. Initial shape
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3.3 Initialization

The initial parameter of the LM process is as follows.

Object Shape. We initialize the shape as a simple paraboloid described by the
following formula by an appropriate set of parameters (a, b):

λp = au2
p + bv2

p (15)

Fig. 3 shows an example. Using an appropriate curvature is effective for avoiding
local minima. Otherwise a convex shape may be recovered as a concave object.

Lighting. There are two types of lighting parameters: color, which is initialized
to (1, 1, 1)T (i.e., a white light source), and the light position for each image,
which is initialized to (0, 0,−d)T , which is independent of f , where d is an
appropriate value.

Although this is a very rough initialization, the nonlinear optimization algo-
rithm can search for a reasonable shape and light positions. A more elaborate
initialization such as a method based on SVD [14] may improve the convergence.

Reflectance. The Lambertian parameter dp is an RGB vector that is a scalar
multiple of the reflectance. It is initialized by taking an average of the input
images as in the following formula.

dp =
1
F

F∑
f=1

efp (16)

4 Experiments

The SR minimization was tested on several real and synthetic image sets.
In several of the experiments, affine and projective camera models were tested

and the results obtained were similar. The results given below are based on the
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affine model (i.e., infinite �). Note that the computational cost for infinite � could
be significantly smaller than for a finite �, although this is not the focus of this
paper.

4.1 Convergence Speed

The SR minimization removes the specular components to speed up conver-
gence. Fig. 4 shows the convergence speeds for FR and SR minimizations for an
synthetic image set. The SR minimization converges much faster than the FR
minimization. Although comparison of absolute RMSE values are not so mean-
ingful because the definitions of the residuals are different, the RMSE cannot be
significantly lower than 10−6, since the input images are given in 32-bit floating
point format. The SR minimization reached this limit after about 200 iterations,
but we doubt that the FR minimization will reach this limit.

4.2 Resistance for GBR Ambiguity

We verified that the nearby lighting can resolve GBR ambiguity in our formula-
tion. To demonstrate this, we used two sets of synthetic images. One is rendered
using near light sources and the other using distant light sources. Several min-
imization trials were conducted using various initial values that were created
by applying different GBR transformations to the same converged parameters.
Fig. 5 shows the results. The bottom row corresponds to the cases for near light
sources. The same distinctive shape was obtained from several initial values.
In contrast, the reconstructed shapes were not fully corrected for distant light
sources (the top row).

4.3 Real Image Sets

Here, we present several experiments on real image sets. We stopped the search
after 200 iterations. The results fully converged for several image sets, but not
for other image sets.

In these experiments, we used multiple light sources that had different in-
tensities, despite the fact that eq. (1) assumes that every light source has the
same intensity. This might generate some error in the distance between the light
source and the target object.

Apple. A fresh apple was imaged in a dark room. The light positions are shown
in Fig. 6. We obtained 24 images, several examples of which are shown in Fig.
7. The size of each image is 125 × 133 pixels, and 11,098 points are estimated.
The FR and SR minimizations produced the results shown in Fig. 8 and Fig.
9, respectively. In Fig. 8, the estimation produced a concave object, which is
apparently a failure. This is due to an intense specular reflection near the image
center. In Fig. 9, on the other hand, the estimated shape appears smooth and
apple-like. This result is an example of the SR minimization outperforming the
FR minimization.
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Distant light

Near light

Fig. 5. Shapes reconstructed from several initial values

object

light camera

Fig. 6. Configuration Fig. 7. Example images of an apple

Fig. 8. Apple results by FR minimization Fig. 9. Apple results by SR minimization
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lights

rotation

object
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Fig. 10. Lighting system Fig. 11. Example images of a wooden
figure

Fig. 12. Results for a wooden figure

(a) Side view (b) Top view

Fig. 13. Light positions and a wooden figure

Fig. 14. An image of a human face Fig. 15. Results for a human face
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Wooden Figure. A wooden figure was imaged using the lighting system shown
in Fig. 10, which has six light bulbs on a rotating arm. We obtained 36 images
(Fig. 11) that were 128× 296 in size and 25,480 pixels were used for the estima-
tion. The resulting shape is shown in Fig. 12, and the light positions are shown
in Fig. 13 along with the reconstructed object. We used this sequence because
the light positions are known to form a cylinder. Fig. 13 shows slightly distorted
cylinder. One possible cause for this distortion is that the light bulbs have dif-
ferent intensities. On the other hand, the angles between the light columns are
estimated well, as the top view image shows. The radius and the height of the
estimated cylinder divided by the object height are approximately 3.2–4.2 and
4.6–5.5, respectively. There are considered to be reasonable results compared to
their actual values of 3.7 and 5.0, respectively.

Human Face. We show an example of applications to human faces. The input
images, an example of which is shown in Fig. 14, were obtained in the environ-
ment shown in Fig. 6. There are 24 images with a size 185×220, and 35,629 pixels
of which were used for the estimation. The eye regions were manually removed
because they were too glossy. The result is shown in Fig. 15. It is a satisfactory
result, since it does not exhibit any severe degradation due to specular reflection
and/or shadows cast around the nose.

5 Conclusions

This study considered a photometric stereo problem with unknown lighting con-
ditions. It has been reported [3,6] that the shape and the reflection properties
of the object and the lighting conditions can be recovered by minimizing the
differences between input and estimated images based on a reflection model. In
this paper, the cost function of the minimization is not constructed from the
full-color residual, but from a specular-free projection of the residual in a space
orthogonal to the light color. Using several real and synthetic image sets, we
demonstrated that the specular-free residual (SR) minimization exhibits better
performance than the full-color residual (FR) minimization for several cases.

This work was supported in part by the Ministry of Education, Culture,
Sports, Science and Technology, Japan, under a Grant-in-Aid for Young Sci-
entists (B) (No. 22700181).
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Abstract. This paper outlines image processes for object detection and
featurematchweightingutilising stereoscopic imagepairs, the Scale Invari-
ant Feature Transform (SIFT) [13,4] and 3D reconstruction. The process
is called FEWER; Feature Extraction and Weighting for Enhanced Recog-
nition. The object detection technique is based on noise subtraction utilis-
ing the false positive matches from random features. The feature weighting
process utilises a 3D spatial information generated from the stereoscopic
pairs and 3D feature clusters. The features are divided into three different
types, matched from the target to the scene and weighted based on their
3D data and spatial cluster properties. The weightings are computed by
analysing a large number of false positive matches and this gives an estima-
tion of the probability that a feature is matched correctly. The techniques
described provide increased accuracy, reduces the occurrence of false pos-
itives and can create a reduced set of highly relevant features.

1 Introduction

The scale invariant feature transform (SIFT) [13] is used as a detection algorithm
for finding correspondence between features within parts of images thereby al-
lowing image matching to occur. In this paper we consider the specific matching
problem of a target stereoscopic image pair of a 3D object within a hand-held
stereoscopic video sequence. This paper introduces novel techniques for object
detection and feature weighting. The process is called FEWER; Feature Extrac-
tion and Weighting for Enhanced Recognition.

For the detection process a set of random features are matched to the scene
and the ratio of matches to the number of target features is used as a baseline
for noise as these are false positives. Subtracting this noise correspondence ratio
from the correspondence ratio calculated from a target image acts as a threshold
to indicate if the object is present in a scene.

For the weighting process a 3D point cloud is constructed from target and
scene stereo pairs and the features are clustered. For each image the features
are divided into three different types, matched from the target to the scene and

Y.-S. Ho (Ed.): PSIVT 2011, Part I, LNCS 7087, pp. 190–201, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.cs.manchester.ac.uk
http://www.michael-may.co.uk


FEWER - SIFT Feature Weighting 191

weighted based on the their 3D and spatial cluster properties. This weighting
gives an estimation of the probability that a feature is matched correctly. The
technique, similar to the previous one, utilises the expected rate of false positives
found by studying how randomly selected features match to a scene, creating
noise property statistics.

The paper is structured as follows; background work, an explanation of the
noise subtraction based object detection, the feature weighting process, with an
explanation of the technique by which the weightings are calculated, followed by
evaluation and conclusions.

1.1 Background

The SIFT feature detection algorithm developed and pioneered by David Lowe
[4,13] is a process that creates unique andhighlydescriptive features froman image.
These features are designed to be invariant to rotation and are robust to changes
in scale, illumination, noise and small changes in viewpoint. The features are used
to indicate if there is any correspondence between areas within images. This allows
object recognition to be implementedby comparing a set of features generated from
input images to a set of features generated from images of target objects.

As the target and scene data both consist of stereoscopic pairs a structure from
motion (SfM) system (Bundler API utilising a modified version of the sparse
bundle adjustment [7] as the optimisation engine) is used to detect different
types of matches and produce 3D geometric reconstruction.

Object recognition work using multiple views of a scene has been carried
out [5,8,18] using multiple images and rough registration information to de-
termine possible corresponding detections across multiple viewpoints. Work on
integrating information across many images has been conducted using Bayesian
strategies to combine uncertain information between views [10,19]. Combining
data across multiple frames of a video to obtain depth information has also been
studied [1,20]. Many other papers show that the use of 3D depth information
[3,6,8,11,12,16,17] can be applied successfully to aid object recognition.

Although the processes in this paper use SIFT they could be applied to many
other feature detectors such as SURF [2], GLOH [15] or FAST [9].

2 Noise Subtraction for Object Detection

The initial basis for this work is a novel method to detect the presence of an
object using the ratio of matched features to the total number of features in a
target image. The target image is that of the object being searched for in a pair of
scene images. By dividing the total matched features by the total features in the
target image the correspondence ratio can be found. This normalises the number
of features matched therefore different target images with varying numbers of
features can be compared. For example, an image with five hundred features
may have fewer matches to a scene than an image with two thousand features,
but may have a higher correspondence ratio. The higher absolute number of
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Fig. 1. The results of noise subtraction across 1062 frames of a video sequence. The top
left graph shows the feature count for each frame. The top right hand graph shows the
result of noise subtraction where the peaks indicate the presence of the object and the
bottom left graph shows the target correspondence ratio for the object being identified
(524 features) and the bottom right graph shows the false positive noise from a set of
fifty thousand randomly collected features. Green (lighter) areas highlight those frames
where the object is not present at all and these are shown to be negative on the top
right, noise subtraction, graph.

matches in the second images may be noise (false positives) as the larger number
of features available means more false positives will occur.

The technique uses the correspondence ratio for a large numbers of randomly
collected features as a noise baseline for a particular scene. The features were
collected automatically by randomly downloading large numbers of images from
Flickr and applying SIFT to them. As these features are known to be random
they are unlikely to match. This means that the ratio of matches indicates a
level of matches that are statistically insignificant for an object that is being
detected. As such, a ratio greater than this baseline of noise plus the average
standard deviation can be deemed statistically significant (1σ) for detection.
Tests have shown that using SIFT’s default parameters has an average false
positive rate of 0.024 and an average standard deviation of 0.007 for a random
set of one million features. It has also been calculated that as few as ten thousand
random features are enough to achieve these noise characteristics. This therefore
means that on average a correspondence ratio greater than 0.031 is required for
the number of matches to a scene to be deemed statistically significant.

By subtracting the noise correspondence ratio from the actual target cor-
respondence ratio the data is automatically thresholded such that many false
positives from the target to the scene will be ignored. Fig. 1 demonstrates this
for a target image matched to 1062 frames of a video sequence where the object
is present in most but not all of the frames.
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3 FEWER: Feature Extraction and Weighting for
Enhanced Recognition

Following this initial technique for subtraction of SIFT noise a second process
has been developed which utilises the 3D stereoscopic image pairs of the target
and scene to specify weighted feature matches to indicate confidence in their ac-
curacy. This is called FEWER; Feature Extraction and Weighting for Enhanced
Recognition. A pair of target images of the object that is being detected and a
pair (or stream of pairs) of stereo images of a scene are used. Simply put, if a
feature doesn’t match well to its counterpart in a stereo pair the chances of it
being stable are lower. The process has nine stages:

Extract SIFT Features. Extract the features from the target and scene stereo
pairs as shown in Fig. 2.

Fig. 2. A stereo pair of target images displaying the SIFT features extracted from
them. There are 2176 in the left image and 2087 in the right image.

Calculate 3D Positions. For both the target and scene pairs a 3D point cloud
is generated from the features as shown in Fig. 3.

Fig. 3. The set of 3D feature positions generated from the stereo pair in Fig. 2 using
the Bundler API [7]. The first two images show two different angles for the same data
and the curvature of the shoe is clearly visible. This is a subset of the total features
extracted from the original images and consists of 885 features. The right hand image
shows the type3 features spatially clustered.

Cluster 3D Data. The 3D matched features are then spatially clustered in 3D
space (using k-means [14]) to separate and label various 3D aspects of the scene.
Clusters help differentiate between foreground and background objects.
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Fig. 4. The final set of clustered type2 and type3 features for the left and right images
in a stereo pair. There are 1802 in the left image and 1782 in the right image.

Fig. 5. The set of clustered features in a scene input image. The advantages of spatial
clustering are clearer here as various objects have are roughly separated by the different
clusters so as to provide more information when matching features.

Feature Labelling. Three different feature types are defined depending on
their 3D and cluster properties. Type3 features are labelled by mapping the 3D
features back to their 2D image locations for each image. Type3 features are
those which have 3D information associated with them and therefore match to
the other stereo image. To define type2 features a distance threshold is used to
find other features near each of the type3 features and they are added to the
clusters. These features are likely to be part of the same object as they are nearby
but as they do not match to the other stereo image they can be considered less
reliable. These are therefore labelled as type2 and a secondary cluster index is
generated for them. The remaining features are then labelled as type1 and they
do not have any cluster information relating to them.

Target to Scene Matching. Feature matching is performed for each target
to scene combination; left target to left scene, left target to right scene, right
target to left scene and right target to right scene. This is done using the nearest
neighbour technique described by Lowe [13].

Initial Weighting. Each target image has its own set of weighting for matches
to both of the scene images. Thus four sets of weightings are calculated. The
initial weightings for each feature are given by which type they are and which
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type they match too. A type3 target to type3 scene match will have a larger
initial weighting than a type3 target to type1 scene match. There are therefore
nine possible combinations of matches each with their own weighting.

Type 3 Mismatches. The weightings are then adjusted by checking if matching
pairs of type3 features from each target image match to similar positions in the
scene images. Fig. 6 illustrates these cases. If the same type3 feature in both
of the target images matches to different points in the scene the weighting is
reduced as the likelihood of one or either being correct is reduced. The weighting
is effected differently if the single scene feature is type3 or not type3.

Fig. 6. This shows the two cases for type3 mismatches. Case a shows the correct
(lighter) and incorrect (darker) matches from type3 features in the target images to
any type of scene feature. Case b shows the correct and incorrect matches from the
target image to the type3 scene features.

A secondary check is carried out for each target feature which matches to a type3
scene feature. If the feature matches to both corresponding type3 scene features
then the weighting is increased. If a target feature matches a type3 scene feature
and also matches a different feature in the other scene image then the weighting
is reduced. There is no effect if the target feature matches one scene but not the
other. Again the weighting is affected differently if the single target feature is
type3 or not type3.

Cluster Weightings. The next stage is to adjust the weightings based on the 3D
spatial cluster that a feature is in and how groups of features in the same cluster
match. The basic hypothesis is that as more features in a target cluster match to
a specific scene cluster the more likely it is that there is correspondence between
these areas of the scenes. The confidence weighting is calculated as follows:

confidence =
signal
noise

×
√

sample size (1)

where signal is the correspondence ratio from a target cluster to a scene cluster,
noise is the correspondence ratio from the target cluster to every other scene
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cluster and sample size is the total correspondence ratio from the target cluster
to all of the scene clusters. A confidence value is calculated for each target
cluster to every scene cluster. This equation means that the sample size and the
signal both have to be significantly large to generate a high confidence thus a
low numbers of matches will not be statistically significant when calculating a
feature’s weighting. This confidence value is thresholded so that a high confidence
cluster pair will result in a higher weighting for features which match between
them. The boundaries and distribution of the clusters can affect the performance
of this technique and as such there is no negative weighting for low confidence.

Threshold Matches. The weighting is normalised transforming its value into
the range of 0 to 1. A threshold can now be applied to select a subset of the
weighted feature matches.

Table 1. The stages used for extracting and weighting features with FEWER

Stage Output

Extract SIFT Features Sets of SIFT image features.

Calculate 3D Positions Relative 3D positions of matched features.

Cluster 3D Data Index of features indicating the cluster they are contained in.

Feature Labelling Features labelled by type.

Target to Scene Matching Indies indicating where features match to the scenes.

Initial Weighting Weightings for each feature match.

Type 3 Mismatches Updated weightings based on a disparity in matches.

Cluster Weightings Updated weightings based on matches between clusters.

Threshold Matches Set of matched features with weightings above a threshold.

4 Calculating Weightings from Noise

Values for the FEWER weighting adjustment stages described above have to be
calculated to weight various characteristics of a matched feature. This is done by
studying the noise properties for each stage using a set of stereo features know
not to match correctly. By looking at the level of false positives for various feature
match types ratios can be calculated which indicate how much more reliable one
type of match is than another. The data describes how each type of match is
affected by false positives. For the initial weighting stage the correspondence
ratio for false positives for each match combination is calculated using large sets
of random features. They are matched to videos which are known to contain
no correspondence to the scene image. By obtaining the average correspondence
ratio across the frames and adding the standard deviation it can be seen for the
test data that type3 to type3 feature matches have a correspondence ratio 16
times less (0.64 / 0.04 from the full set of data listed in Tab. 2) than type1 to
type1 thus the weighting reflects this directly. The weighting (w) is calculated
as follows:

w = k
1

x̄ + σ
× relevant matched features

total matched features
(2)



FEWER - SIFT Feature Weighting 197

where x̄ is the mean noise value across a sample, σ is the mean standard deviation
of the noise and k is a scaling factor. The relevant matched features are the subset
of the total matched features actually involved in the particular weighting process
so that the weightings are scaled accordingly.

Table 2. Weighting values calculated from experimental data for different aspects of
the weighting process. The left table shows the initial match weighting values and the
right show the type3 mismatch weightings. T and S refer to Target and Scene.

type1 S type2 S type3 S

type1 T 0.04 0.11 0.26

type2 T 0.06 0.41 0.39

type3 T 0.11 0.75 0.64

type3 S type3 T

correct type3 0.12 0.06

correct not type3 0.07 0.01

incorrect -0.48 -9.3

The same process is used to calculate the weightings for the type3 mismatches
where the number of false positives matches are used but as only the type3 fea-
tures are involved the relevant matched features value reflects this. This incor-
porates a negative weighting for mismatches which have a relatively high cost
as seen in Tab. 2.

For the cluster weightings, analysis has provided data on how well false pos-
itive matches cluster and what is the minimum level of cluster matching confi-
dence required to occur beyond random chance. This allowed a cluster confidence
threshold to be calculated using the same equation and a weighting for values
greater than the threshold to be defined. This only relates to type2 and type3
features as type1 features are not clustered. The threshold was calculated to be
0.00015 and the weighting value added to matches greater than this threshold is
0.4 when using six clusters.

After these three stages the maximum possible weighting that can be achieved
using the experimental data weightings is 1.36 and this value is used for normal-
isation.

5 Results

Following the weighting calculations based on over 2000 frames of video and over
20000 stereo target features, the system has been tested on different target and
scene input data within a similar environment. The test involved a 2500 frame
stereo video with a target object located within the sequence. Stereo images of
the target objects are matched to each frame using the techniques described
previously. The system outputs the four match images for each combination of
target to scene matches with the matched features drawn using a heat map style
colour coding. The colour changes linearly through RGB space from blue to
green to red as the weighting increases.

Figs 7 and 8 shows examples of the coloured weightings as feature matches are
deemed to be of higher or lower reliability. The images are consistent with the
other frames in the sequence and show that incorrect matches are weighted lower.
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Fig. 7. A typical example of weighted feature matching displaying matches from the left
hand target image to the left scene image. Some of the correct matches are green and
red indicating higher weightings. The mismatched features in this scene have received
low weightings and are coloured blue. The feature matches with low weightings can
be removed by adjusting the weighting threshold which is set at 0 in these cases. The
graph below shows the weightings for each of the 33 matched features and whether
they match correctly.

Fig. 8. A typical example of weighted feature matching displaying matches from the
left hand target image to the left scene image. This shows false positives matches
sucessfully being weighted with lower values.

Fig. 9 shows the correspondence ratio across the 2500 frames and the large
peak indicates the location of the target. By adjusting the weighting threshold it
is shown that the false positive count is reduced leaving many of the most reliable
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Fig. 9. This shows the correspondence ratio before and after applying a threshold on
the feature weightings. The graphs are the mean of the four possible match scenarios
(each target to each scene). The peak indicates the location of the object. The left
graph shows the correspondence ratio when no threshold has been applied and the
right graph shows what happens when a threshold of 0.9 is applied. This reduces the
remaining correspondence ratio substantially but the features remaining are of a higher
quality and fewer false positives are present across the video sequence.

features. The weighting threshold could be computed adaptively by analysing a
set of known false positive feature matches in a similar manner to Section 2 and
adjusting the weighting to minimise them.

6 Evaluation

FEWER has been shown to weight the features successfully. It relies on the
probability of a feature type being a mismatch therefore, in some cases, incorrect
matches can be weighted highly and vica-versa. Investigating how often this
occurs will be future work. The weighting threshold provides a sliding scale
between a small number of highly reliable matches and a large number of features
including more unreliable matches.

The reason FEWER works is that type3 features are likely to be more stable
than the other features as they correspond between the stereo images and are
therefore known to match to a different view of the object. The SfM process [7]
could be removed and normal SIFT matching used instead to generate type3
features. The SfM process has its advantages for clustering and background
separation and is more discriminative when matching than just using SIFT as
the matched features have to fit correctly to a 3D model not just match. The
type2 features are more stable than type1 as the features are likely to exist on
the objects that have been matched between the stereo objects due to their
proximity to the type3 features and less likely to be background features. Type1
features are the least stable and have no extra properties associated with them.
The difference between them is highlighted in Fig. 10.

FEWER allows the system to select a subset of features which are higher in
confidence rather than just thresholding using the noise properties in Section 2
which has no indication of which features are likely to be correct. A combination
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Fig. 10. These are the mean correspondence ratio graphs for the three feature types for
matches from both target to both scene images. It can be seen that the type1 feature
matches have fewer peaks and troughs and the green (lighter) areas, where the object is
not present are harder to distinguish than for the type3 feature matches. They therefore
resulted in lower weighting (see Tab. 2). For the random data used for calculating
weightings in Section 4 these graphs are flatter with lower correspondence ratios. They
display the random noisy correspondence ratio and give a minimum baseline for noise
for each feature type.

of the noise thresholding for detection and FEWER could be used so that the
computationally expensive weighting process is only applied to frames which are
likely to contain the object to select the best matches.

7 Conclusion

The results of this work are promising and provide a technique for identifying
and selecting the best feature matches. The results have shown examples of
features being weighted to indicate which matches are correct and which are
incorrect. The advantages of FEWER are clear as the detection process provides
a higher confidence in the matches than standard SIFT matching alone. The
system could result in lower data transmission rates as fewer matched features
are selected.

Further development of the algorithm will involve data fusion to combine the
four output images (left target to left scene etc.) into a single location mapped to
a 3D model and superimposed on the 3D scene model. This will provide the user
with a consolidated view of the output data to visualise where features match.
Also, since the epipolar geometry is available, the weighting could possibly be
improved at the matching stage by limiting the search region to a band around
the epipolar lines. Comparison will be made to other methods for reducing the
number of incorrect mathces using outlier detection methods such as RANSAC
alone or the Hough binning used by Lowe [13].
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Abstract. Conventional stereophotogrammetry uses a canonical config-
uration in which the optical axes of both cameras are parallel. However,
if we follow lessons from evolution and swivel the cameras so that their
axes intersect in a fixation point, then we obtain considerably better
depth resolution. We modified our real-time stereo hardware to handle
verging axis configurations and show that the predicted depth resolu-
tion is practically obtainable. We compare two techniques for rectifying
images for verging configurations. Bouguet’s technique gives a simpler
geometry - the iso-disparity lines are straight and the familiar recipro-
cal relationship between depth and disparity may still be used. However
when the iso-disparity lines are the Veith-Muller circles, slightly better
depth resolution may be obtained in the periphery of the field of view -
at the expense of a more complex conversion from disparity to depth.

1 Preamble

Although the underlying geometry is well understood and mathematical models
for verging axis stereophotogrammetry long published[1], the advantages of these
configurations - discovered millions of years ago in the evolutionary process as
animals learned to swivel their eyes in their sockets[2] - seem to have been sub-
stantially overlooked in favour of the trivially modeled canonical configurations
in which the optical axes are parallel. Iso-disparity surfaces are also known as
horopters[3]. The intersections between the horopters and the plane containing
the optical centres and the fixation point are the Veith-Muller circles. Pollefeys
et al.[4] analyzed these iso-disparity curves for different camera configurations.
Olson et al.[5] studied the use of the horopter for active stereo heads. Here, we
show that verging axis configurations lead to better depth resolution. Further, we
implemented a real-time stereo system handling verging camera configurations
in an FPGA. We report several experiments to validate the predicted positions
and separations of the iso-disparity lines and demonstrate the enhanced depth
resolution compared to a canonical stereo configuration.

Stereophotogrammetry systems usually capture ‘raw’ images from two cam-
eras and then rectify them so that the images correspond to those taken by
ideal pin-hole cameras - in a canonical configuration - with their axes parallel
and perpendicular to the baseline joining the optical centres of both cameras[6].
This configuration has a significant advantage: scan lines of the rectified images
are the epipolar lines so that the search for corresponding points in the two im-
ages may be constrained to the scan lines turning an O(n2) search into a O(n)

Y.-S. Ho (Ed.): PSIVT 2011, Part I, LNCS 7087, pp. 202–213, 2011.
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Fig. 1. Verging Axis Geometry showing two
Veith-Muller circles. OL|R are the optical
centres.

Fig. 2. Verging Axis Geometry using
Bouguet’s method[7] - the original im-
age plane is transformed to the virtual
one parallel to the base line and the
principal points moved so that the op-
tical axes intersect at the original fixa-
tion point

one. First, we show the theoretical benefits of verged axis systems (principally
in enhanced depth resolution) and then show how our real-time stereo hardware
was modified to gain these benefits.

If the cameras are deliberately verged, then we can use the same rectifica-
tion procedures to convert the raw images to those taken by ideal cameras in
the canonical configuration, but this loses the enhanced depth resolution of the
verging configuration. We compare two techniques for rectifying verged camera
images in ways that retain the improved depth resolution. We present some lab-
oratory images of the same object taken with both configurations - empirically
demonstrating the benefits and confirming the predicted benefit. Finally, the
costs of both configurations were compared.

2 Stereo Geometry

A verging axis configuration is illustrated in Figure 1. For simplicity, we assume
that two identical pin-hole cameras are rotated around an axis perpendicular to
the baseline joining the optical centers of the two cameras so that the optical
axes meet at a fixation point in the scene. We use capital letters, (X, Y, Z), for
coordinates in a ‘world’ frame centred on the baseline midway between the opti-
cal centres of the two cameras, with its X-axis parallel to the baseline, its Z-axis
lying in the same plane as the camera optical axes and its Y -axis perpendicular
to the baseline. Lower case, (x, y, z) (with L or R subscripts as needed), is used
for camera based coordinates and lengths. Both cameras are rotated about their
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Fig. 3. Image plane use for a canonical configuration (left) vs a verging axis one (right):
note the large areas outside the common field of view (CFoV) imaged in the canonical
configuration

y-axes so that their optical axes intersect at an angle φ (the vergence angle) at
the fixation point, (0, 0, Zfix). Then

Zfix =
b

2
cot

φ

2
(1)

where b = baseline length. In the canonical configuration, the optical axes are
parallel so φ = 0 and Zfix = ∞.

2.1 Depth Resolution

In stereo systems, depth is recovered from a pair of images by measuring the
disparity or separation between pixels corresponding to the same scene point
in the left and right images. In the verging axis configuration, the camera axes
intersect at the fixation point in the scene. This point appears at the same
position in both image planes and thus has disparity, d = 0. The loci of points
with the same disparity are the Veith-Muller circles - see Figure 1. Considering
only points along the central axis of the system, X = 0, Y = 0, the distance to
points of disparity, d,

Z(d, φ) =
b

2
cot(

φ

2
+ tan−1(

d

2λ
)) (2)

where λ = f/τ (f = focal length and τ = pixel width) is the focal length in
pixels.

Most stereo correspondence algorithms measure disparity in integral pixels
only, so that the depth resolution at any point on the central axis is

δZ(d, φ) = Z(d, φ) − Z(d − 1, φ)

=
b

2
(cot (

φ

2
+ tan−1(

d

2λ
)) − cot (

φ

2
+ tan−1(

d − 1
2λ

)))
(3)
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Note that, in a verging axis system, unlike the canonical configuration, disparities
may be negative: points with Z > Zfix will have d < 0.

Some practical constraints govern any stereo configuration. A practical corre-
spondence algorithm will be able to handle disparities in some range, dmin ≤ d ≤
dmax, thus depth can only be measured in the area between Zmax = Z(dmax, φ)
and Zmin = Z(dmin, φ) along the central axis (X = 0) and, in general, between
the Veith-Muller circles for dmax and dmin.

To understand the increase in depth resolution, in Figure 1, observe the inter-
sections of the rays projected through image plane pixels and the central axis.
These rays intersect the line X = 0 at points of even disparity: thus the distance
between any two intersections is roughly twice the depth resolution at that point.
As the vergence angle increases, these gaps become smaller and depth resolution
improves. We can also observe that the distance over which usable 3D data can
be obtained, i.e. between Zmin and Zmax, shrinks as φ increases: this distance is
divided into dmax − dmin + 1 measurable intervals, so depth resolution increases
over the whole usable area. However, note that, in general, Zmax is no longer at
infinity whereas Z(d = 0, φ = 0) = ∞, so that the increased depth resolution is
not without limitations. In practice this is rarely a problem, because the depth
resolution, δZ(d = 0, φ = 0) = ∞, is of little practical value.

Verging axis configurations also ‘waste’ less of the image planes of both cam-
eras. Figure 3 shows wide regions of monocular points - for which no depth
information can be derived. With a verging axis configuration, the full image
planes of both cameras are used effectively.

In a canonical configuration, disparities are constant along straight lines par-
allel to the baseline, leading to the familiar relationship between depth and
disparity:

Z = bλ/d (4)

However in verging axis configurations, disparities are constant along the Veith-
Muller circles (cf. Figure 1) leading to a more complex transformation, d → Z[8],
For corresponding pixels at (uL|R, vL|R) in the left and right images respectively:

Z =
b

tan (φL + tan−1 uL

λ ) + tan (φR + tan−1 uR

λ )

X =
b tan (φL + tan−1 uL

λ )
tan (φL + tan−1 uL

λ ) + tan (φR + tan−1 uR

λ )
− b

2

Y =
bvL

λ(tan (φL + tan−1 uL

λ ) + tan (φR + tan−1 uR

λ ))
(5)

2.2 Rectification

Our first approach to rectification converts the original raw images to ones in
which the ‘scan’ lines are these epipolar lines. Firstly, we remove distortion and
align the images so that the optical axes intersect at (0, 0, Zfix) (i.e. the cameras
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Fig. 4. Disparity map contours - flat panel roughly perpendicular to the system axis.
Note that the regions of equal disparity are curved because the flat surface of the object
intersects several Veith-Muller circles cf. Figure 1.

have been rotated around their y axes only1). The epipolar lines are now straight
lines crossing the ‘raw’ images at an angle to the original scan lines (except for
the scan line passing through the principal point).

Computing Epipolar Lines. The fundamental matrix, F, was found using
the eight point algorithm[9]. We identified corresponding pairs of epipolar lines
for each image using F[9]: for any point, p, in the left image, the corresponding
epipolar line in the right image is l′ = Fp. Similarly for a point p′ in right image,
the corresponding epipolar line in the left image is l = FT p′.

We now generate images in which the ‘rows’ are these epipolar lines: they can
be fed directly to a correspondence algorithm used for a canonical configuration:
it expects epipolar lines - in the canonical configuration, these are the same as
scan lines. We simply changed the rectification lookup table so that it generated
epipolar lines rather than scan lines. With this method, the depth resolution
is the distance between adjacent Veith-Muller circles in Figure 1: it is given by
Equation 3 along the central axis (X = 0, Y = 0) of the system.

Figure 4 shows a disparity map obtained by this method. The viewed object
is flat but equal disparity regions are curved as expected cf. Figure 1.

2.3 Bouguet’s Method

An alternative method due to Bouguet[7] also preserves the enhanced depth
resolution. It rectifies the two images into a canonical configuration and then
re-projects them so that the optical axis meet at the fixation point. It computes
a rectification matrix, Rrect, that takes the epipole in the left camera to infinity.
The rotation matrix, R, computed from calibration, is split into two matrices,
RL and RR, rotating each camera by the same amount. From the original camera
matrices, ML and MR, rectified camera matrices are then computed Mrect

L =
MLRrectRL and Mrect

R = MRRrectRR. Mrect
L and Mrect

R are multiplied by

1 This implies that small unintended rotations about camera x and z axes have been
corrected.
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projection matrices, with μxL and μyL set so that the two optical axis intersect
at the fixation point - see Figure 2.

This method gives a slightly better depth resolution along the central axis
(X = 0, Y = 0) than the verging configuration in Figure 1, but slightly worse
depth resolution for points on the periphery of the field of view, where the Veith-
Muller circles get closer - see Figure 6. This changes the curved boundaries
between regions of equal disparity to straight lines. Transforming disparity to
depth uses the re-projection matrix:

Q =

⎡⎢⎢⎣
1 0 0 −μxL

0 1 0 −μyL

0 0 0 λ

0 0 − 1
b

μxL
−μxR

b

⎤⎥⎥⎦ (6)

where (μxL|R , μyL|R) is the optical center of the (left|right) camera.⎡⎢⎢⎣
X
Y
Z
W

⎤⎥⎥⎦ = Q

⎡⎢⎢⎣
u
2
v
d
1

⎤⎥⎥⎦ (7)

The 3D coordinates are (X/W, Y/W, Z/W ). Depth resolution is now:

δZ(d)Bouguet = Z(d) − Z(d − 1)

= bλ(
1

d − (μxL − μxR)
− 1

(d − 1) − (μxL − μxR)
)

(8)

3 Implementation

3.1 Stereo Hardware

The real time stereo matching hardware uses Gimbelfarb’s Symmetric Dynamic
Programming Stereo algorithm[10]. It has a pair of Cameralink cameras attached
directly to an Altera Stratix III FPGA connected to the host PC via an 8-lane
PCIExpress bus. The FPGA removes lens distortion, rectifies the images and
produces disparity and occlusion maps. It can compute dense disparity maps
with 128 disparity levels at 30fps[11].

A checkerboard pattern was used for calibration[12].
For both rectification methods, all the corrections are combined into a sin-

gle lookup table containing displacements for every pixel in the left and right
rectified image. These lookup tables are reduced[11] and fed to the real time
stereo matching hardware that produces the left and right rectified images and
the disparity and occlusion maps.
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4 Experiments

4.1 Experiment 1 - Stepped Target

For ground truth, we constructed a simple stepped target from Lego blocks,
see Figure 5. Lego blocks are, of necessity, produced with the high dimensional
accuracy needed to allow thousands of blocks to be used to build complex models.
We measured a sample of blocks and confirmed that each block’s dimensions were
the same to within 0.1mm. Our test structure (Figure 5) has six steps each of
two blocks and a height of 15.6 ± 0.1 mm.

Fig. 5. Lego block structure h = 63mm, w = 40mm and d = 15.6mm

Disparity maps were acquired with both canonical and verging configurations
with the target at various depths. The configurations were - canonical: b =
80mm, f = 9mm and φ = 0 giving a predicted depth resolution from 9.7 mm to
993mm for disparity values from 126 to 12; verging: b = 427mm, f = 9mm and φ
= 17.15o, fixation point at 1400mm and predicted depth resolution from 1.6mm
to 2.3mm for disparity values from 126 to 12. In the verging configuration, a
longer baseline was used so that the target fills the field of view at approximately
the same distance.

Disparity maps are shown in Figure 7. In every case, the expected dispar-
ity was observed and step depths were correct to within the predicted depth
resolution for that disparity.

4.2 Experiment 2 - Sphere

In the second experiment, we used a ten-pin bowling ball: bowling balls must
be precise spheres2 so a ground truth can be derived from the geometry of a
sphere. The ball was placed 600mm in front of the cameras and disparity maps
were captured with both verging and canonical configurations. Configurations

2 Round to within 0.010” (or 0.25mm in more widely accepted units)[13].
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Fig. 6. Depth resolution for configurations of Experiment 1. dz VMC is depth reso-
lution for a verging configuration (Figure 1), dz Bouguet is the depth resolution for
Bouguet’s method (Figure 2), dz canonical is the depth resolution for a canonical con-
figuration and dz VMC off is the depth resolution for verging configuration but along
the periphery of Figure 1. The left figure compares all configurations while the right
figure compares verging configurations only at an expanded scale.

(a) Canonical configuration

(b) Verging axis configuration, φ = 17.15o

Fig. 7. Disparity maps for Lego block structure - note the increased number of disparity
changes evident for the verging axis configuration

were - canonical b = 38.7mm, f = 9mm and φ = 0, the depth resolution ranged
from 4.9mm to 1.25m for a disparity range of 123 to 2; verging b = 95.9mm,
f = 9mm and φ = 5.2o, depth resolution of 2.0mm to 5.5mm for a disparity
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(a) Canonical configuration disparity map (b) Canonical configuration ground truth

(c) Verging configuration disparity map (d) Verging configuration ground truth

(e) Canonical configuration contours (f) Verging configuration contours

Fig. 8. Sphere experiment: contours on disparity maps. Note that SDPS produces a
double-width disparity map[10], (a) through (d), leading to the apparently flattened
images: when they are rescaled to the same width as the raw images, the contours are
circles - see (e) and (f).

Table 1. Bowling ball matching performance

canonical configuration verging axis configuration

Threshold % Bad pixels % Bad pixels

0.5 70 68
1 44 37

1.5 22 15
2 10 7

RMS error (disparity units) 2.2 2.4

range of 123 to 2. and fixation point at 1055mm. The results of the experiments
are summarized in Table 1 and the depth resolution plotted in Figure 9. The
disparity maps and ground truth are in Figure 8.

4.3 Experiment 3 - Statue

The third experiment captured disparity maps of a complex object. This ex-
periment demonstrates the increased depth resolution for a ‘real’ target. The
configurations for this experiment were the same as those for experiment 2.
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Fig. 9. Depth resolution for configurations used in Experiment 2. Labels are the same
as for Figure 6.

Fig. 10. Contours derived from disparity maps of the statue. From left to right: original
raw image, canonical configuration contours and verging axis configuration contours.
A small area of the disparity maps has been expanded to show the contour detail.

Fig. 11. System handling negative disparities: the fixation point is on the statue’s nose,
so that all points on the face and background appear to the left in the right image

Because there is no ground truth, Salmon[14]was used to find contours on dis-
parity maps from both configurations. Contours on the verging axis disparity
maps are more closely spaced due to the higher depth resolution. Note that, in
the binocularly visible part of the face shown in Figure 10, there are 31 contours
in the verging axis configuration disparity map compared to 13 - an increase in
depth resolution of ∼ 2.5.

4.4 Hardware Costs

In our FPGA hardware, rectification uses a lookup table which maps pixels in
the desired configuration to actual image pixels. For either verging configuration,
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we simply compute a different lookup table and load it. Negative disparities are
handled by trivial changes to the FPGA hardware - adjusting the length of
the right pixel delay register - decreasing it for negative disparities. Figure 11
shows a pair of images with negative disparities and the contoured disparity map
obtained. The total logic utilization was decreased by 4%.

4.5 Computation Costs

Rectification using the epipolar lines requires more complex computation to
convert image coordinates to real-world coordinates. In software, conversion of
a 1.5 × 106 entry disparity map to real world coordinates using Equation 7
takes 125ms, whereas using Equation 5 requires 325ms (2.0 GHz Pentium Dual
Core). Either computation could be moved to the FPGA hardware leading to a
negligible (< 1ms) increase in latency as pixels of the disparity map are streamed
out of the correspondence circuit’s back-track module[15].

5 Conclusion and Future Research

We have shown theoretically and verified experimentally that a verging axis
configuration gives better depth accuracy. Verging axis configurations also gen-
erally produce a more useful common field of view. The depth resolution is
essentially similar using either rectification approach. Some applications (e.g.
collision avoidance, where we may only need a warning that a hazard has en-
croached an exclusion zone) can work with disparity data. Where conversion
from disparities in pixels to world coordinates is required, Bouguet’s rectifica-
tion procedure is faster when the conversion must be performed in software on
the host and adds slightly less latency if the hardware is used. The Veith-Muller
circles give a slightly better depth resolution at the periphery of the common
field of view but take longer to convert from disparity space to world space.
In our FPGA system, rectification uses lookup tables, so there is no additional
hardware cost or latency for a verging axis configuration: thus, the increased
flexibility to design a more useful common field of view combined with superior
depth resolution makes verging axis configurations preferable in practical con-
figurations. Allowing the area behind the fixation point to be used (i.e. allowing
negative disparities) produces a slightly smaller circuit by shortening the right
pixel delay register and adds further flexibility in choosing the imaged region.
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Abstract. In object detection research, there is a discussion on weak
feature and strong feature, feature descriptors, regardless of being consid-
ered as ’weak feature descriptors’ or ’strong feature descriptors’ does not
necessarily imply detector performance unless combined with relevant
classification algorithms. Since 2001, main stream object detection re-
search projects have been following the Viola Jone’s weak feature (Haar-
like feature) and AdaBoost classifier approach. Until 2005, when Dalal
and Triggs have created the approach of a strong feature (Histogram of
Oriented Gradient) and Support Vector Machine (SVM) framework for
human detection.

This paper proposes an approach to improve the salience of a weak
feature descriptor by using intra-feature correlation. Although the inten-
sity histogram distance feature known as Histogram Distance of Haar
Regions (HDHR) itself is considered as a weak feature and can only
be used to construct a weak learner to learn an AdaBoost classifier. In
our paper, we explore the pairwise correlations between each and ev-
ery histograms constructed and a strong feature can then be formulated.
With the newly constructed strong feature based on histogram distances,
a SVM classifier can be trained and later used for classification tasks.
Promising experimental results have been obtained.

Keywords: Weak feature, Pairwise correlations, Histogram distances,
SVM classifier.

1 Introduction

In computer vision research, it is widely recognized that good features are cru-
cial for object detection tasks, there is abundant literature introducing state-of-
the-art feature extraction algorithms [1][2][3]. Another research direction is the
introduction of new object detection frameworks or improved feature extraction
algorithm(s) [4][5]. In this paper, in addition to proposing a new feature based
on correlate histograms, we are more interested in introducing a way to extract
more information from an existing weak feature, we use the Histogram Distance
of Haar Regions (HDHR) feature as an example.

In [4], the authors proposed the HDHR feature, the HDHR feature is defined as
the intensity histogram distance between two adjacent Haar regions. Comparing
with the simple Haar-like feature used by [6], the HDHR feature contains more
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information (hence should be able to better distinguish positive samples from
negative samples) and can be calculated efficiently with the Integral Histogram
framework proposed in [7][8]. An AdaBoost classifier is used in [4] to perform
the object detection task of separating image regions that contains airplane from
those regions which do not contain airplane.

In [9], the authors introduced the Shape Context feature descriptor, the shape
context feature extraction algorithm is composed of three steps, the first step
is to extract sample points from the edge map of the input image; the second
step is to calculate the distance and orientation difference between the current
sample point and every other sample point; the third step is to quantize those
distances and orientation differences in to predefined number of bins. [9] is an
early approach of feature extraction algorithms which are based on measuring
object similarities with regard to certain distance metrics.

In [1], the authors introduced an approach to measure similarities between
objects with a local descriptor, the descriptor is called Local Self-similarities
(LSS). The LSS is based on matching internal self-similarities. That is, only
the internal layout is correlated across images (or video sequences). Because
the attributes for visual tasks (color, texture and illumination) within an image
is relatively uniform compared to that of other images, exploring internal self-
similarities can better capture the pattern of the visual entity. The LSS feature
extraction process can be regarded as two steps, the first step is calculating
correlation surface, this step is achieved by matching a smaller image patch from
an image with a larger image region within the same image; the second step is
translating the correlation surface intoa binned log-polar representation, this step
is similar to the final step of the Shape Context feature extraction. In [1], the
CIE L*a*b space is used instead of the RGB color space to calculated the Sum
of Squared Distances (SSDs) between patch colors. The LSS is a state-of-the-art
feature descriptor based on self-similarity.

In [2], the authors introduced a new feature termed as Color Self-similarity
(CSS), the CSS is based on the observation that objects such as a human do
exhibit some structure in which colors are locally similar (e.g. the skin color
of a specific person is similar on their two arms and face). In CSS, a positive
sample (i.e. sample images which tightly bounds the object of interest) is first
labeled with different semantic patches, such as arms, legs, upper body and
background, then each semantic patch (of size 8 × 8 pixels) is used to measure
the color similarity between the patch and the whole sample, the authors used
HSV color space because it works best compared to RGB, HLS, CIE Luv, and
etc. Each semantic patch will generate a similarity sample, in such similarity
samples, the homogeneous region (for its corresponding similarity patch) will
have a higher similarity score. Self-similarities between those similarity samples
are then explored and utilized to construct a SVM classifier. In [2], the CSS is
integrated with other features for object detection. It is one of the latest object
detection approach using self-similarity measurement.

Motivated by the self-similarity feature being introduced in [1] and [2]. We
propose a method that is capable of bring significant improvement over the
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saliency of the original weak feature such that a SVM classifier can be used
to substitute the original AdaBoost classifier. Our feature extraction algorithm
is composed of three steps, sub blocking, histogram binning, and correlating.
Details will be given in Section 2.

Our contributions in this paper can be summarized as follows.
Firstly, by exploring its self-correlation, we transform a weak feature (HDHR)

into a strong feature, we term it Correlation based Histogram Distance (COHD),
this transformation is similar to the self-similarity features being proposed in [1].
As a strong feature, COHD enables the use of a SVM classifier for object detec-
tion, this saves a lot of time in comparison with having to train an AdaBoost
classifier for the original weak HDHR feature.

Secondly, the newly proposed self-correlation feature based on histogram dis-
tances can be quickly calculated with the method proposed in [7], this is a
precious computational advantage.

Thirdly, different from [1], which explores self-similarities from raw image
level, we seek self-correlations from feature descriptor (i.e. Intensity Histogram)
level, this can greatly reduce the computational cost and still well preserve the
feature saliency.

The rest of this paper will be organized as follows, Section 2 introduces the
formulation of a strong feature, we follow a typical object detection framework
by replacing the original feature with the newly formed feature. Section 3 gives
experimental results. Section 4 concludes this paper.

2 Weak Feature and Self-correlations

In this section, we will first introduce two types of weak feature, they are Density
Variance feature and Histogram Distance of Haar Regions (HDHR) feature (nei-
ther of them can be directly combined with a SVM classifier for object detection
task due to their weak saliency), then we introduce our proposed correlation
feature derived from those two features mentioned above.

The Density Variance Feature was introduced in [5], such feature can be rep-
resented by

VG =
∑n

i=1 |Gi − G|
n · G (1)

In (1), i is the index for the sub blocks as illustrated in Fig. 1, G is defined
as the mean value of the gradient strength for the whole sample, and Gi is the
mean value of the gradient strength for sub block i, n is the total number of
sub blocks in a sample. In [5], the Density Variance feature was simply used as
a global statistical filter to speed up the detection process for a license plate
detector.

The Histogram of Haar Regions (HDHR) feature was first proposed in [4],
the HDHR feature was introduced because of two reasons. Firstly, in order to
differentiate two adjacent regions in a more suitable way, histograms provides
more detailed information than classical Haar features. Secondly, Histograms can
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be computed linearly, which is a precious computational advantage. The HDHR
feature descriptor is represented by

D(f, g) =

∑N
j=1 (f [j] − g[j])2∑N
j=1 (f2[j] + g2[j])

(2)

In (2), D is defined as the Distance between the histogram f [·] and histogram
g[·], as f [·] and g[·] each corresponding to a histogram constructed from image
regions f and g, respectively. The number of bins in f [·] equals to the number
of bins in g[·] and both equal to N , hence the distance calculation is a division
of two summations over the bin index j. In [4], the HDHR feature was used
together with AdaBoost supervised learning algorithm for airplane detection.

As mentioned in Section 1, our feature extraction method is composed of
sub blocking, histogram binning, and correlating. Our sub blocking method was
motivated by [5], our histogram binning method was motivated by [4], and mo-
tivated by [2], we use correlating to increase the feature salience.

In our approach, instead of considering the distance between two adjacent
Haar-like Regions, we divide the sample image region into sub blocks of p × q,
in each sub block, a histogram can be constructed, hence the total number of
histograms can be used to calculate D is p · q. Given p · q histograms, we will
consider the pairwise correlation between each pair of histograms, hence the
total number of histogram distances can be measured is represented by

C2
p·q =

(p · q) × (p · q − 1)
2

(3)

Finally, the Correlation based Histogram Distance feature, we term it Correlation
Histogram Distance (COHD) feature descriptor is represented by

SD = {D(f, g)} (4)

which is a vector of length C2
p·q.

With COHD feature, an object detection framework can be easily constructed
by train a Support Vector Machine (SVM) Classifier.

Moreover, we propose two variants based on different normalization schemes,
the L1 − norm for COHD feature is represented by

E1(f, g) =
N∑

j=1

|f [j] − g[j]| (5)

The corresponding L2 − norm is represented by

E2(f, g) =

√√√√ N∑
j=1

(f [j] − g[j])2 (6)

In (5) and (6), the definitions for f [·], g[·], j and N are the same as those of (2).
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By substitute D with E1, the COHD L1 − norm feature descriptor is repre-
sented by

SE1 = {E1(f, g)} (7)

Similarly, the COHD L2 − norm feature descriptor is represented by

SE2 = {E2(f, g)} (8)

Details of the Correlation of Histogram Distance features (i.e. SD, SE1 , and SE2)
are illustrated in Fig. 1. In Fig. 1, f corresponding to the sub block from where
histogram f [·] is constructed, and g corresponding to the sub block from where
histogram g[·] is constructed.

Fig. 1. Extracting Correlation of Histogram Distance features

The input image is first divided into p · q sub blocks, for each sub block f ,
a histogram f [·] can be obtained, f [·] is then compared with another histogram
g[·] resulted from region g. The distance between f [·] and g[·] is one dimension
of the C2

p·q-Dimensional feature vector.

3 Experimental Results

As one of the most representative strong feature, Histogram of Oriented Gradient
(HOG) has attracted numerous attention of various researchers. As a result, we
compare the descriptive power of HOG with our newly proposed correlation
feature by replacing the HOG feature within the HOG and SVM framework
with the correlation feature [10].
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We use the MIT CBCL Dataset for our experiments, in particular, we evaluate
the performance of the framework using Face, Human and Car [11][12][13]. The
MIT CBCL Dataset is composed of four types of Data, they are, face, human,
car, and scenario. More details of the Dataset can be found from Table 1.

Table 1. Details of the MIT CBCL Dataset

Face Human Car

# of Positive Training Samples 2429 924 516
# of Negative Training Samples 4548 - -
# of Positive Testing Samples 472 - -
# of Negative Testing Samples 23573 - -
Sample Size(Width×Height) 19 × 19 64 × 128 128 × 128

Some of the examples being used in our experiments can be found from Fig. 2.

(a) Face (b) Human (c) Car

Fig. 2. Some Examples from MIT CBCL Dataset

Detailed parameter settings can be found from Table 2.
As mentioned in [2], block normalization proven to be crucial, we use the same

normalization scheme as provided in the MATLAB implementation of HOG and
SVM framework by [10] to normalize the COHD feature descriptor.

A quantitative measure of the experimental results can be observed from
Fig. 3. From Fig. 3, we can see that before sub block normalization, the newly
proposed correlation feature based on HDHR can out perform HOG by approxi-
mately 4% on the MIT CBCL Face Dataset. However, the HOG feature remains
extremely competitive on the MIT CBCL Human Dataset and MIT CBCL Car
Dataset. Those results can be observed from Fig. 4 and Fig. 5, respectively. Yet
our newly proposed feature (COHD with L1-norm) can achieve a detection rate
of 97% at a false positive rate of approximately 2% on the Human dataset and
90% detection rate at 2% false positive rate on the Car dataset.

As we can see from Fig. 3b, Fig. 4b, and Fig. 5b, normalization can signifi-
cantly improve the experimental results. The ROC curve for the human dataset
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Table 2. Detailed parameter settings in our experiments1

Face Human Car

# of Sub blocks (W×H)2 3 × 3 5 × 4 5 × 5
Scaled sample size (Width×Height) 19 × 19 32 × 64 32 × 32
# of Bins for COHD 32 32 32
# of Bins for COHD(L1) 32 32 32
# of Bins for COHD(L2) 32 32 32
# of Bins for HOG 9 9 9
# of Training Positive 2429 800 400
# of Training Negative 4548 1600 881
# of Testing Positive 472 124 116
# of Testing Negative 23573 195 160

1The negative samples for Human and Car Dataset was randomly cropped from
background images which contains neither human nor car.

2W: the number of sub blocks in each row, H: the number of sub blocks in each
column.
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Fig. 3. ROC Curves on MIT CBCL Face Dataset

and car dataset is more rough than than that of the face dataset due to a smaller
number of testing samples.

Those experimental results indicate that by exploring self-correlations, an
original weak feature can be significantly improved to a strong feature, this ap-
proach of exploring intra-feature self-correlations is similar to the self-similarity
features being proposed in [1][2][3], the difference is that the self-correlation is
extracted from the feature descriptor level instead of the raw image data level,
hence there will be some information loss to degrade the quality of the feature
descriptor, but the computational complexity is also greatly reduced compared
to that of self-similarity features and there is always a weight of balance between
the computational cost and performance gain.
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Fig. 4. ROC Curves on MIT CBCL Human Dataset
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Fig. 5. ROC Curves on MIT CBCL Car Dataset

The proposed correlation method does not require matrix convolution dur-
ing the feature extraction process, comparing with HOG, which needs gradient
magnitude computation and arc tangent computation, the feature extraction
process is much simpler. Although to extract Haar-like feature is also very sim-
ple, the computational cost (especially time complexity) for AdaBoost training
is very high, this computational advantage is especially important for devices
with limited computational power, such as wireless sensors.

The computational cost (in terms of time complexity) to measure a pair-
wise histogram distances for a detection window that is partitioned into k sub
windows is k×(k−1)

2 . Without using Integral Histogram, the computational cost
needed to calculate the histogram feature of a detection window of size n× n is
O(n2), the Integral Histogram can reduce this cost to O(1). As reported by [3],
to calculate the LSS descriptor for one pixel with patch size ω×ω and block size
N×N requires N2ω2 operations, the authors for [3] also mentioned that although
Fast Fourier Transform(FFT) can speed up the process with 3N2logN2 + N2

operations, the speed up is marginal as N > ω.
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In our experiments, we also compared the execution speed of the COHD
feature extraction algorithms with that of the HOG feature extraction algorithm
on the same platform, details are listed in Table 3. For the implementation of
HOG feature extraction, we use the code provided by [10]. Depending on each
particular sample, the speed of feature extraction varies, hence we compare the
total time needed to convert the entire training dataset to corresponding feature
descriptors. Details about each dataset is given in Table 2. Using Matlab 2009b
with a Windows XP(32bit) environment, on a computer with 3.16GHz CPU and
3.25GB of RAM, we obtained the results in Table 3.

Table 3. Speed Comparison for Feature Extraction

Face Human Car

HOG [10] 16.42 seconds 10.88 seconds 11.70 seconds
COHD 11.98 seconds 7.85 seconds 6.28 seconds
COHD(L1) 11.99 seconds 7.84 seconds 6.28 seconds
COHD(L2) 12.04 seconds 7.98 seconds 6.38 seconds

4 Conclusion

In this paper, we have proposed a self-correlation method to improve the saliency
of a weak feature, by dividing the detection window into sub blocks, we have pro-
posed three different normalization schemes for self-correlated features derived
from intensity histograms. The experimental results on MIT CBCL Dataset
proved that those self-correlated features can dramatically increase the feature
saliency. In particular, for MIT CBCL Face Dataset, the self-correlated feature
outperform one classical strong feature object detection framework. However,
this method is not limited to one particular type of feature, other weak features
can be enhanced by this self-correlation method as well.

References

1. Shechtman, E., Irani, M.: Matching Local Self-similarities across Images and
Videos. In: Proc. CVPR, Minneapolis, pp. 1–8 (2007)

2. Walk, S., Majer, N., Schindler, K., Schiele, B.: New Features and Insights for
Pedestrian Detection. In: Proc. CVPR, San Francisco, pp. 1030–1037 (2010)

3. Deselaers, T., Ferrari, V.: Global and Efficient Self-similarity for Object Classifi-
cation and Detection. In: Proc. CVPR, San Francisco, pp. 1633–1640 (2010)

4. Perrotton, X., Sturzel, M., Roux, M.: Automatic Object Detection on Aerial Im-
ages Using Local Descriptors and Image Synthesis. In: Gasteratos, A., Vincze, M.,
Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 302–311. Springer, Heidelberg
(2008)

5. Zhang, H., Jia, W., He, X., Wu, Q.: Learning-Based License Plate Detection Using
Global and Local Features. In: Proc. ICPR, Hong Kong, pp. 1102–1105 (2006)



More on Weak Feature: Self-correlate Histogram Distances 223

6. Viola, P., Jones, M.: Rapid Object Detection Using A Boosted Cascade of Simple
Features. In: Proc. CVPR, Kauai, pp. 511–518 (2001)

7. Porikli, F.: Integral Histogram: A Fast Way to Extract Histograms in Cartesian
Spaces. In: Proc. CVPR, San Diego, pp. 829–836 (2005)

8. Kovesi, P.: University of Western, Australia, http://www.csse.uwa.edu.au/
9. Belongie, S., Malik, J.: Matching with Shape Contexts. In: Proceedings of the IEEE

Workshop on Content-based Access of Image and Video Libraries, Hilton Head, pp.
20–26 (2000)

10. Ludwig, O., Delgado, D., Goncalves, V., Nunes, U.: Trainable Classifier-Fusion
Schemes: An Application to Pedestrian Detection. In: Proceedings of the 12th
International IEEE Conference on Intelligent Transportation Systems, St. Louis,
pp. 432–437 (2009)

11. Weyrauch, B., Huang, J., Heisele, B., Blanz, V.: Component-based Face Recogni-
tion with 3D Morphable Models. In: Proceedings of the First IEEE Workshop on
Face Processing in Video, Washington, D.C, pp. 85–89 (2004)

12. Papageorgiou, C., Evgeniou, T., Poggio, T.: A Trainable Pedestrian Detection Sys-
tem. In: Proceedings of the IEEE International Conference on Intelligent Vehicles,
Stuttgart, pp. 241–246 (1998)

13. Oren, M., Papageorgiou, C.P., Sinha, P., Osuna, E., Poggio, T.: Pedestrian Detec-
tion Using Wavelet Templates. In: Proc. CVPR, San Juan, pp. 193–199 (1997)

14. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In:
Proc. CVPR, San Diego, pp. 886–893 (2005)

http://www.csse.uwa.edu.au/


Mid-level Segmentation and Segment Tracking
for Long-Range Stereo Analysis

Simon Hermann1,�, Anko Börner2, and Reinhard Klette1

1 The .enpeda.. Project, Department of Computer Science
The University of Auckland, New Zealand

2 DLR (German Aerospace Center), Berlin-Adlershof, Germany

Abstract. This paper presents a novel way of combining dense stereo and mo-
tion analysis for the purpose of mid-level scene segmentation and object tracking.
The input is video data that addresses long-range stereo analysis, as typical when
recording traffic scenes from a mobile platform. The task is to identify shapes of
traffic-relevant objects without aiming at object classification at the considered
stage. We analyse disparity dynamics in recorded scenes for solving this task.
Statistical shape models are generated over subsequent frames. Shape correspon-
dences are established by using a similarity measure based on set theory. The
motion of detected shapes (frame to frame) is compensated by using a dense mo-
tion field as produced by a real-time optical flow algorithm. Experimental results
show the quality of the proposed method which is fairly simple to implement.

1 Introduction

The classification of traffic-relevant objects (e.g. vehicles, bicyclists, pedestrians, or
traffic signs) is a common goal in vision-based driver assistance systems (DAS). If an
object is potentially dynamic, then it is important to understand its current state (e.g.,
currently static, or moving with a particular trajectory). This task requires solutions
for scene segmentation, object detection and tracking, and eventually also for object
classification.

Monocular or stereo vision, LIDAR, or infrared cameras are sensors considered
for solving such tasks. We apply one pair of grey-level cameras for stereo vision that
records the space in front of the ego-vehicle (i.e. the vehicle the cameras operate in).
Given a 3D world coordinate system, stereo analysis provides depth information about
the traffic scene in form of a cloud of 3D points. After ground manifold estimation and
possibly its removal [14,22], subsequent tasks are free-space estimation [2], obstacle
detection using occupancy grids [16], or object segmentation by point clustering [17].
A tracking process involves motion analysis [4,15], e.g. using particle filters [6,17].

A recent approach [20] uses disparity information for the purpose of real-time 3D
scene flow computation. Object motion in the 3D world is calculated using ego-motion
estimation [1]. A motion likelihood is assigned to each pixel and a binary graph-cut
segmentation algorithm identifies independently moving objects [21].

� The first author thanks the German Academic Exchange Service (DAAD) for financial support.

Y.-S. Ho (Ed.): PSIVT 2011, Part I, LNCS 7087, pp. 224–235, 2011.
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Fig. 1. Upper left: input data at t and t + 1. Upper right: disparity maps. Middle and lower right:
optical flow map and segmentation results. Lower left: a final result showing enclosing rectangles
(the bounding boxes) for tracked segments.

This paper proposes a new technique of mid-level scene segmentation and segment
tracking. The key feature of our approach is that both, segmentation and tracking are
entirely performed within the disparity data generated by dense stereo algorithms. Our
approach has the advantage that DAS tasks are solved before reprojecting disparity val-
ues into the 3D world. This eliminates one source of errors, and supports the design of
2D algorithms for segmentation and tracking on disparity maps. The resulting imple-
mentation, as outlined below, is of great simplicity.

Disparity-based segmentation is already extensively used for pedestrian detection
[7,27] by identifying back- and foreground areas in an image [27], before applying
intensity-based segmentation.

Ground-manifold approximation [14] and scene-flow computation [20] can be solved
in disparity space.

In [11] the problems that occur by tracking 3D data is highlighted and the authors
argue on the benefits of performing these task in disparity space. However, they evaluate
their proposed method only on synthetic data and do not provide any result image. In
[24] segmentation and and tracking is performed in disparity space, but with a different
approach.

To the best knowledge of the authors, the proposed method constitutes a novel ap-
proach for scene segmentation and tracking in disparity space. Our implementation was
evaluated on three real-world traffic sequences of 400 or 250 stereo frames. Segmenta-
tion results are also compared with available ground truth.

At this stage we purposely do not consider intensity information from the input im-
ages for segmentation. The reason is that we want to highlight the segmentation and
tracking quality that is possible by exploiting disparity information only. Of course,



226 S. Hermann, A. Börner, and R. Klette

future work should incorporate intensity information into the proposed segmentation
and tracking process.

The Proposed Method. Figure 1 sketches the workflow of our approach. The input are
two stereo pairs at times t and t + 1. A stereo matcher computes for each stereo pair
a dense disparity map. (The left image is our reference frame). Each disparity map is
segmented according to a three-step segmentation process:

First, we post-process the disparity map with a mode-based filter that removes ‘noisy
disparities’ (e.g. in occluded areas, or in irrelevant areas such as the sky). Second, a
road or ground manifold is estimated and subtracted from the stereo map. This prevents
objects from being connected by similar disparities at road level. Third, the resulting
disparity map is segmented by employing a simple region-growing algorithm.

The segmentation process is described in detail in Section 3. Results during the seg-
mentation process are shown in Fig. 1. Final patches are very similar in shape and loca-
tion at t and t+1. A human would easily identify corresponding patches in segmentation
maps ft and ft+1. A set-theoretical metric is applied for quantifying correspondences
between 2D patches.

The metric encodes the ratio between overlap and total area of both patches, and thus
also the similarity in 2D shape. The latter can be assumed because it is reasonable to
neglect roll or tilt of objects in vision-based DAS.

We expect invariance of projected 2D object shape between subsequent frames (at
least for rigid objects) recorded at 25 Hz or more, but aim at handling (minor) changes
in object size due to varying distances to the ego-vehicle, and translational changes
in positions due to recording highly dynamic scenes. To compensate for translational
changes we calculate a dense motion field using a real-time state-of-the-art optical flow
algorithm. Calculated motion vectors are used to shift pixels (of an object) from seg-
mentation map ft into new positions in ft+1. So far we do not rescale a patch before we
apply the metric because different objects cannot occupy the same image region, and a
change in size did not appear to be very crucial for identifying corresponding patches.

After correspondence analysis, a temporal filter calculates the size of the current
patch. This size is used for rescaling the bounding box. Correspondences between
patches define the tracking history.

Outline of the Paper. Section 2 presents the used stereo and motion analysis algorithms
with comments about their parametrization. Section 3 explains ground manifold estima-
tion, the mode filter used for stereo post-processing, and the proposed segmentation for
one stereo pair into objects (or patches). Section 4 establishes correspondences between
patches in subsequent frames using a known shape metric, and describes the proposed
tracking mechanism that works on image sequences and uses shape priors. Section 5
summarizes experiments about segmentation and tracking. Section 6 concludes.

2 Stereo and Motion Analysis

Semi-global Stereo Matching. For generating a dense disparity map D, we follow the
original semi-global stereo matching algorithm [9] that minimizes the energy

E(D) = C(D) + S(D) (1)
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where C(D) refers to the dissimilarity or data cost and S(D) to the smoothness cost
which incorporates a first-order data prior.

For the data term we apply the census cost function which calculates the Hamming
distance of two binary signature vectors which are assigned to corresponding pixels; see
the census transform in [25]. It has been shown [10] that this function is very descriptive
and robust, even under strong illumination variations, which is crucial for real-world
applications. In our implementation we use a 9 × 3 window as we work on a 32-bit
machine and favour a stronger data contribution along the epipolar line.

The semi-global smoothness constraint integrates multiple optimal 1D energies along
different accumulation paths using a dynamic programming approach. Since the num-
ber of paths is very limited (usually not more than eight paths) it is referred to as semi-
global matching (SGM).

Our implementation uses four accumulation paths (up, down, left, right). Subpixel
accuracy is obtained using equiangular interpolation [18]. To enforce uniqueness, two
disparity maps are calculated and a left-right consistency check is performed. A dispar-
ity passes this test if corresponding disparities do not deviate by more than 0.7 disparity
levels. The consistency check is performed to invalidate occluded areas and to remove
ill-defined disparity values. Figure 2 shows a calculated disparity map. The colour code
runs from “hot” (large disparities) to “cold” (small disparities).

Dense Motion Estimation. We considered methods published in [4,26] for dense mo-
tion field calculation. Both methods are based on the total variation approach by Horn-
Schunck, but instead of minimizing a global energy based on the L2 norm (as in the
original work), they minimize an energy that uses the L1 norm as data term. Although
performance between both methods is rather similar, the numerical schemes of both
methods are quite different. While [4] uses a fixed point iteration procedure to solve La-
grange equations, [26] employs a duality-based approach. Both algorithms are suitable
for parallel implementation and can achieve real-time performance. The implementa-
tion reported in this paper follows [4]. Figure 3 shows a result for this algorithm. The
rectangular frame also shows the used colour key.

Fig. 2. Result of the SGM algorithm with the proposed settings. Enlarged windows show cases to
be processed by our mode filter.
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Fig. 3. Result of the used pyramidal optical flow implementation following [4]

3 Segmentation in Disparity Space

Mode Filtering. [9] proposed to apply a median filter to disparity maps before
performing the consistency check. The filter removes disparity outliers and performs
edge-preserving local smoothing of disparity values. As a result, more pixels pass the
consistency check, thus increasing the denseness of the final disparity map.

However, for the purpose of segmentation, denseness is not the primary goal. On
the contrary, enhancing occluded areas or invalidating disparities close to object bound-
aries helps in the stereo segmentation process. Since occluded areas have a low disparity
denseness, a filter that supports the segmentation process should identify this charac-
teristic and invalidate remaining pixels in that area. Additionally, the filter should in-
validate image regions where disparity information is rather undefined. Such areas are
quite often affected by noise. The enlarged window in Fig. 2, left, shows disparity values
which correspond to the disparity level of the car; they are propagated into the occluded
area. The enlarged window on the right shows a noisy disparity region on the road.

Intuitively, we are looking for a filter which generates both, a disparity value that
is statistically dominant within a local neighbourhood, and an index that indicates the
support or likelihood for this dominant value. If the corresponding disparity value of a
neighbourhood is close enough to the identified dominant disparity, and the support is
sufficiently high, then the disparity value should remain unchanged. Otherwise it should
be discarded.

Computing the mode of a neighbourhood fulfils both needs. The mode identifies one
dominant value that corresponds to the highest occurrence of a value in a domain with
a fixed number of elements. The ratio of occurrences to the number of elements in the
domain serves as index for the support. Since we work on sub-pixel disparity levels we
need to count occurrences of disparities within intervals. The centre of the interval that
contains the most disparities represents the dominant disparity value η.
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Let Np be the pixel neighbourhood of a pixel p. The ordered sequence S of disparity
values within this neighbourhood is S = 〈s0, s1, ..., sn〉. We define for ξ ≥ 0 and each
disparity si in S a subset

Ii = {s : s in S ∧ si ≤ s < si + ξ} (2)

of all disparity values in Np. Assume that the maximum

cm = max
i=0,1,...,n

card(Ii) (3)

is for set Im. The centre

η = sm +
ξ

2
(4)

of the corresponding interval defines the mode of the neighbourhood Np. The support
ν is the ratio of the number of elements in Im to the number of elements within the
neighbourhoodNp:

ν =
cm

card(Np)
(5)

Let Dp be the disparity value at pixel p in disparity map D. We define our mode filter
by the following rule:

Dp =

{
Dp if |Dp − η| < ξ ∧ ν > ψ

invalid otherwise
(6)

This filter has two input parameters. ξ defines the disparity range of considered intervals
and ψ defines the percentage how many disparities need to be in the mode interval.
Choosing ψ > 0.5 avoids ambiguous cases when a maximum cardinality is taken by
more than just one set Im. Figure 4 shows the result of this filter.

Ground Manifold Removal. It is common practice to approximate the ground man-
ifold by a planar surface. A simple and fast, yet very robust method [14] uses a v-
disparity map defined as follows:

Let {0, 1, . . . , dmax} be the disparity range of an M × N disparity map D in the
ij-plane. This 2D array is projected into a 2D v-disparity array V in the dj-plane:

V (d, j) =
M∑
i=1

Ψ(Dij = d) (7)

for 0 ≤ d ≤ dmax and 1 ≤ j ≤ N , where Ψ(true) = 1 and equals zero otherwise. In
[14], a dominant straight line is detected by Hough transform after binarization of V .

We approximate a dominant straight line by linear regression, where those points
are iteratively discarded whose residues lie above the convergence threshold. For the
initial point cloud, one representative is chosen for each disparity d, namely the second
largest1 j-value to where a value is projected. This line has the property of ‘rising from
below’ towards the scattered points in the v-disparity map and it is ‘resting’ at a stable
position. Disparities close to this ground manifold are removed prior segmentation.

1 The origin of map V is in the top-left corner.
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Fig. 4. Left: Disparity map after applying the mode filter. Right: The corresponding v-disparity
map with calculated ‘lower straight envelope’.

Figure 4 shows a result for our regression method. For better visibility, we just project
the disparity values and not their frequencies. The initial point cloud is marked by black
squares; points contributing to the final regression line have a red dot inside of their
square.

The Segmentation Algorithm. After stereo post-processing and ground manifold re-
moval we segment the disparity map into consistent regions called patches: a patch is a
4-connected component such that any two pixels in this region can be connected by a
4-path inside the region such that the disparity difference between two consecutive dis-
parity values is always less than a defined threshold. This segmentation rule is entirely
defined in disparity space.

In other words, we decompose the disparity image into smooth stereo patches which
can be adjacent but they are separated due to different disparity levels. Advantages of
this segmentation method are that it is easy to implement, fast in execution, and results
in a unique decomposition.

4 Correspondence Analysis and Tracking

Let At = {P0, P1, ..., Pn}, At+1 = {Q0, Q1, ..., Qm} be the sets of patches obtained
from two consecutive disparity images at times t and t + 1. In the following, symbol P
refers always to a patch extracted from frame ft, and Q to a patch from frame ft+1. We
search for corresponding patches such that each P corresponds to one Q at most, and
each Q to at most one P . Some P ’s or Q’s may not have corresponding patches.

Dissimilarity Measure. For measuring the dissimilarity of two patches P and Q, both
given as sets of pixels in the same ij-plane, we apply a metric [13] defined by the ratio
of the cardinality of the symmetric difference of P and Q to the cardinality of their
union:

Γ (P, Q) =
card(P ∪ Q) − card(P ∩ Q)

card(P ∪ Q)
(8)

This metric equals zero if and only if both sets are equal, and equals one if both sets
have no pixel (i, j) in common.
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Fig. 5. Left: Result after mode filtering and ground manifold removal. Right: Result of the seg-
mentation algorithm.

Fig. 6. Results of our segmentation experiment. Top: Silhouettes available as ground truth. Bot-
tom: our segmentation results.

Two-Frame Correspondences. Because the position of patch P can change from frame
ft to frame ft+1 we use the relative motion as obtained by a dense optical flow algo-
rithm (as specified above) to compensate for a translational component. Let (up, vp)T

be the flow at pixel p. We calculate the mean flow in the region occupied by P in ft as

(uP , vP )T =
1

card(P )

∑
p∈P

(up, vp)T (9)

We shift the pixels in set P by (uP , vP )T into a new set P .
For each Pi ∈ At we identify now the index j such that Γ (Pi, Qj) is minimal for all

j = 0, ..., m.

Temporal Tracking. In order to track corresponding stereo patches over multiple
frames we apply the two-frame correspondence procedure repeatedly. As for all track-
ing algorithms, incorporating a-priori knowledge improves the robustness of the track-
ing results. Therefore, a very simple statistical filter is incorporated into our framework.

The filter stores for each tracked patch its history of τ corresponding patches at
previous time slots. For experiments reported below we used τ = 6, thus less than a
quarter of a second.

For keeping the history of patches, we shift the positions of pixels in all patches of
the history by the mean flow calculated from the current motion map. This means that
the τ -th patch is shifted τ times when keeping track of the history.
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Fig. 7. Left to right: Bounding boxes of tracked patches for the sequences intern on bike,
cyclist and motorway

To incorporate the prior knowledge of the history, a weight ωt is assigned to each
pixel of all patches based on the time instance t when it was added. The weights are then
accumulated at each pixel location of the image domain over all patches of the current
history. Thus we generate a new patch that represents the accumulated ‘knowledge’ of
its history, and we use actually this generated patch for the two-frame correspondence.

Two-frame correspondence is now based on all pixels inside the M × N image
domain where we have that ωΣ > 0.5 for the accumulated weight. Naturally, weights
should decrease as t decreases, such that pixels from more recently added patches yield
a higher contribution. For the six pixel sets in a history we use the weights (0.1, 0.1,
0.15, 0.15, 0.2, 0.3).

If there are patches Q ∈ At+1 after the two-frame correspondence procedure that
were not matched, then they are added as potentially new patches for the next time
instance If these patches are matched in the next time instance then they are confirmed
as being a new patch, otherwise they are discarded. A confirmed patch is considered to
be identified if it is tracked at least over three frames. Its occupied area is defined by the
accumulated weights from the history. If a patch is lost for more than τ frames then it
is removed from the tracked object list.

5 Experiments and Results

We show that segmentation and tracking in the disparity domain is of adequate quality
to support common DAS tasks. A comparison with other segmentation and tracking
methods needs to be left to a future paper.

Used Data for Evaluation. We have chosen three image sequences from a public
benchmark site [5] that provides experimental data for traffic-related applications. The
first two sequences (from Set 4, see [12]) are called cyclist and motorway and
consists of 400 frames each, the name of the third sequence (from Set 1, see [19]) is
intern on bike and it has 250 frames. We run the proposed approach on those
sequences and perform a visual evaluation. We are especially interested in stability of
the segmentation and over how many frames an object is tracked. We focus our brief
discussion on objects that are relevant for a traffic situation.
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Segmentation Experiment. In [3] a method for segmentation and tracking of indepen-
dently moving objects (IMO) is presented. The segmentation is based on evaluating prob-
abilities at pixels whether they are in motion in real world coordinates or static, based on
using scene flow and ego-motion information. Although this approach is not comparable
to the approach presented here, we use the ground truth image provided by [3] (publicly
available in Set 7 of [5]) as indication for the quality of the segmentation part of our al-
gorithm. After incorporating ego-motion analysis into our framework (at a later stage),
segmented objects can be labelled ‘static’ or ‘in motion’, as in a scene flow approach.

Results and Discussion. Figure 6 shows resulting stereo maps of two traffic scenes pro-
vided by the study [3] as generated by our SGM implementation with subsequent mode
filtering and ground manifold removal. On the right of both maps, contours are shown
that correspond to moving objects within the scene. Contours on the top are colour-
coded ground truth segmentations. Below are results obtained with our segmentation
procedure. Black pixels are caused by invalid disparities. The results indicate in general
that prominent objects are segmented within reasonable DAS quality limits.

In the scene shown on the left of Fig. 6, the umbrella of the baby buggy is segmented
as an individual object in our method. The reason is that fine structures like these are
rarely reconstructed by stereo algorithms which results in disconnected smaller seg-
ments. A motion based segmentation is here of benefit, because umbrella and baby
buggy should show a similar motion pattern.

In the scene shown on the right of Fig. 6, the two cars which are close to the ego-
vehicle are clearly segmented. The two cars further away, however, are connected due
to disparity noise. Again, a motion based approach should in theory cope with this
situation by identifying different motion patterns. However, the immediately relevant
objects closer to the ego-vehicle are segmented with very high accuracy.

Figure 7 shows Frame 141 from the intern on bike sequence, Frames 60 from
the cyclist sequence, and Frame 20 from the motorway sequence. Bounding boxes
enclose all pixels belonging to the tracked patches. The number in the top right corner
indicates a mean estimate of the distance between ego-vehicle and object (in metres in
the 3D world). Each object obtains an ID and a unique colour for its bounding box. If
a tracked object is discarded and later picked up again, the colour will differ. For better
visibility, we removed a few tracked objects in the visualization of results, but not in
the tracking algorithm (e.g. all objects higher than 6 m and in cases of the cyclist
sequence, everything left of the cyclist).

Reliable detection is possible up to 100 m when objects are in clear sight, mean-
ing objects are lost only after a distance of 100 m or more, and are picked up by the
tracking module before coming close to the 100 m mark. This range depends on camera
parameters (e.g. baseline, focal length).

In the cyclist sequence we track cyclist, car, the van in the background, and
the approaching truck robustly during the whole sequence. The truck is picked up at a
distance of 137 m, and the van is lost at a distance of 130 m. The car is lost after 80 m,
but this is mainly due because it vanishes at a corner behind a tree.

In the intern on bike sequence the program picked up all relevant objects until
they disappear from the video. The bike is picked up at a distance of 89 m, the first
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approaching car at 121 m and the second approaching car at 95 m. In the motorway
sequence all the numerous objects are tracked with a good robustness.

6 Conclusions

The main contribution of our work is to propose a concept and an implementation for
solely disparity-based segmentation and tracking. Further contributions are the proposal
of a mode filter for stereo post-processing which we found is crucial for an efficient
flood flow segmentation algorithm. Or the application of a metric for set correspon-
dences in the DAS context.

Methods and filters designed for 3D data analysis (see upper row in Fig. 1) could be
applied to our method. Subsequent processing steps after disparity re-projection, such
as 3D shape models or particle filters, will help to increase reliability. Another way of
interpretation is, of course, that our presented approach can be considered as additional
source of information for standard DAS methods.

Our results indicate the possibility of reliable segmentation and tracking in the dis-
parity domain. It is difficult to compare our results with those provided by other meth-
ods, and more ground-truth data such as Set 7 on [5] would help.

Issues with our proposed segmentation approach: First, segmented objects may, de-
pending on the stereo map, be connected in one frame and disconnected in the next;
there is a need to generate a filter that resolves this behaviour based on prior knowledge.
Second, small objects close to larger objects may not be segmented into independent
objects because of insufficient disparity dynamics. Note that this applies in 3D data pro-
cessing in general: Only if objects are moving then motion-based segmentation is able
to identify different objects.

For the next stage we consider to include standard temporal filters to improve the sta-
bility and robustness such that more challenging traffic scenarios can also be processed
with the same quality as for the sequences used in this paper.

Acknowledgments. The authors thank James Milburn for his implementation of the
used dense optical flow algorithm.
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Abstract. “Is the brain ’wiring’ different between groups of popula-
tions?” is an increasingly important question with advances in diffu-
sion MRI and abundance of network analytic tools. Recently, automatic,
data-driven and computationally efficient framework for extracting brain
networks using tractography and epsilon neighborhoods were proposed
in the diffusion tensor imaging (DTI) literature [1]. In this paper we pro-
pose new extensions to that framework and show potential applications
of such epsilon radial networks (ERN) in performing various types of neu-
roimage analyses. These extensions allow us to use ERNs not only to mine
for topo-physical properties of the structural brain networks but also to
perform classical region-of-interest (ROI) analyses in a very efficient way.
Thus we demonstrate the use of ERNs as a novel image processing lens
for statistical and machine learning based analyses. We demonstrate its
application in an autism study for identifying topological and quantita-
tive group differences, as well as performing classification. Finally, these
views are not restricted to ERNs but can be effective for population studies
using any computationally efficient network-extraction procedures.

Keywords: DTI, brain connectivity, tractography, brain networks, net-
work measures, classification, toplogical group differences, autism.

1 Introduction

Population studies on brain connectivity networks are commonly performed us-
ing resting state functional magnetic resonance imaging (fMRI). These networks
are called default mode networks (DMNs) and represent functional correlations be-
tween regions of the brain under rest [2]. These networks may not directly reflect
the underlying structural organization of the brain white matter (WM). Diffusion
tensor imaging (DTI) is a modality of MR imaging that is an exquisitely sensi-
tive, non-invasive method to map and characterize the microstructural properties
and macroscopic organization of the WM [3]. Streamline tractography methods
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on DTI data, albeit with limitations, are very useful for mapping major con-
nections in the brain faithfully [4]. They have been used to develop in vivo
dissection atlases [5] and build whole structural brain networks (e.g., Fig 1. of
[6]). T1-weighted images are typically used for obtaining node regions for these
networks. For example in [6], the cortex was parcellated into various regions
using FreeSurfer1 on a T1-weighted image. The main challenge in population
studies using such brain networks is a DTI-T1 image co-registration since the
problem of DTI to T1 co-registration is ill-posed and quite challenging: although
there is contrast between white and grey matter in the T1-weighted images the
contrast within white matter is not specific enough. More discussion on this can
be found in Fig. 1 of the supplementary material2. This inter-modality image
registration step forms a non-trivial hindrance for scalable studies of structural
brain connectivity networks in population studies. Without a detailed evalua-
tion study of such inter-modality registrations the connectivity analyses can be
intricately confounded. Hence one of the key challenges in studying brain con-
nectivity patterns in neuro-pathologies using DTI, short of the limitations of
DTI, is efficient and unbiased designation of nodes and edges in the brain.

Recently a scalable framework that avoids the inter-modality registration has
been proposed where, relying on well-validated tensor-based normalization meth-
ods, nodes are identified on the average DTI of a population using ε neighbor-
hoods of end points of tracts obtained on the whole brain [1]. Some of the
methods used kd-tree based search algorithms to identify the ε-radial nodes [7]
while the others used a sequential elimination of tracts [1]. Except for the bias
introduced from tractography, which is present in all streamline based meth-
ods, such a node generation does not introduce any bias from the ill-posed
image registration processes. These methods are also computationally efficient:
they can identify nodes and edges in a few seconds on a typical modern day
computer [7].

The key extensions presented in this paper are: (1) We generate the nodes by
first ordering the tracts by their length. Since the ε-neighborhood approaches
depend on the sequence of tracts this is an important change as this removes
the bias due to ordering of the tracts. (2) We enhance the edge properties by
using geodesic information of the tracts and not just the count of the tracts.
Such enhancements can result in increased sensitivity for statistical analyses.
(3) Using the enhanced edge matrices we perform novel physio-topological as
well as tract specific quantitative ROI analyses both in the setting of classical
voxel based analyses (VBA) as well as classification.

2 Epsilon Radial Networks

Brain networks (BNs) are modeled similar to other network models that is as a
collection of vertices (V) and edges (E). That is BN = {V, E}. Tabel 1 summarizes

1 http://surfer.nmr.mgh.harvard.edu
2 http://brainimaging.waisman.wisc.edu/~adluru/ERN/supplementary.pdf

http://surfer.nmr.mgh.harvard.edu
http://brainimaging.waisman.wisc.edu/~adluru/ERN/supplementary.pdf
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different modeling of the vertices and edges for contrasting with the epsilon ra-
dial networks (ERNs). In the default mode networks (DMNs) using resting fMRI,
the vertices (node regions) are a function of blood oxygen level (BOLD) acti-
vations and the edges are based on temporal correlations between them. In the
anatomical parcellation networks (APNs), the node regions are based on anatom-
ical parcellation/segmentation [6]. In contrast, the nodes in ERNs are identified
based on tracts themselves. This allows for identification of vertices (node re-
gions) that have potential structural connectivity. Thus ERNs are completely DTI
data-driven.

Table 1. Different models of brain networks

DMNs APNs ERNs

V f(BOLD activations) f(segmentation ± registration) f(tractography)

E f(temporal correlations) f(tractography) f(tractography)

The ERNs are undirected and weighted networks and are constructed by adapt-
ing the framework and algorithms introduced in [7]. Briefly, the method uses the
end points of the tracts to define the nodes by clustering neighboring tract end
points into a set of spheres of ε radius which form the nodes for constructing
connectivity matrices. Let Tij denote the set of tracts connecting two vertices
i, j ∈ V. The original proposal defined E = {|Tij |}i,j∈V. We propose that in ad-
dition to using tract counts as the edge strength, using the quantitative and
physical properties using the geodesic pathway information of the tracts can
enhance the ERNs.

That is we define E = {|Tij |, quant(Tij), physical(Tij)}i,j∈V. These enhanced
ERNs can be more sensitive to group differences in population studies. In this
paper we store the average fractional anisotropy (FA), mean diffusivity (MD)
and axial diffusivity (AD) along tracts and the geodesic lengths of the tracts.
Other diffusion based measures like radial diffusivity (RD), skewness, planarity,
linearity and sphericalness may also be stored. In typical voxel based analyses
an FWHM of 8mm smoothing is used to compensate for errors in spatial normal-
ization. Hence we use an ε = 4 to match the smoothing amount. The ERN nodes
on the average template are shown in Fig. 1. As can be seen, the nodes have a
good coverage of the brain regions and are generally in the grey/white matter
boundaries as discussed in [7].

2.1 Properties of the ERNs

The nodes and edges of ERNs provide two fold advantages: (1) Provide an efficient
way to extract various quantitative measures such as average FA, MD along the
WM tracts and node regions. This is possible by extracting ROI masks using V
and {Tij}i,j∈V. (2) Provide an efficient way to extract various topological prop-
erties of WM organization such as Rentian scaling, characteristic path length
and clustering coefficient which are described next.
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Fig. 1. The ε-radial nodes on the average DTI template are shown in random colors

(1) Rentian scaling: Imagine we can partition the vertices (V) of an ERN into
n or physical partitions (e.g. cubes in a brain volume). Then it is likely that the
following power law [8] holds for most of those partitions:

E = kN r (1)

where E is the number of connections crossing a partition and N is the number
of nodes in that partition. k is called the Rent coefficient and 0 ≤ r ≤ 1, the
Rent exponent. When k = 1 and r is estimated using all the partitions from the
log− log relationships as:

log(E) = r log(N ) (2)

the estimated r is called Rentian scaling. If it is statistically significant for a given
distribution of E and N , that is the connections only scale linearly in the log− log
space, the network is considered efficient in terms of ”wiring cost” and physical
embedding. Such features have been studied in the context of neuroimaging
[9,10]. Following [8] the brain volume is partitioned into n = 5000 cubes in our
experiments.

(2) Characteristic path length: The characteristic path length (CPL) of a
network is defined as the average shortest path (SP) between all pairs of N
vertices [11]:

CPL =

∑
(i,j) SP(i, j)

N(N − 1)
(3)

It roughly indicates the efficiency of connectivity between regions in the network.
The smaller the path length the more efficient the reachability is in a network. We
would like to note the difference between this efficiency and the rentian scaling:
the rentian scaling tries to characterize the efficiency in terms of resources needed
to build the network while the characteristic path length tries to characterize
the efficiency of the network in terms of connectivity/reachability and reflects
“small worldness” of a network [11].

(3) Clustering coefficient: The clustering coefficient of a node (ν ∈ V) in a
network is defined as the proportion of connections that it has to the rest of the
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network, i.e. the ratio of the number of edges connecting the node to the total
number of possible edges that can connect the node [11]:

CCν =
|Eν |

N(N − 1)/2
(4)

where Eν = {eνi}i∈V\ν and eνi is the edge strength for e.g. in ERNs it would
be |Tνi|. The clustering coefficient of an ERN is defined as the average clustering
coefficient of a node in that network, i.e. CCERN = (

∑
ν∈V CCν)/N . The CC indi-

cates the redundancy of connections in a network. Thus higher CC reflects the
robustness of connectivity in a network. This is because the network can afford
to lose some edges without losing connectivity to regions.

(4) Node-Strength: The strength of a node is a generalization of the degree of
a node for weighted networks. It is defined as the sum of the weights of all edges
connecting a node, i.e. Sν =

∑
i∈V\ν eνi. The strength of a network can be defined

as the average strength of all nodes in that network, i.e. SERN = (
∑

ν∈V Sν)/N .
Thus ERNs are very useful in extracting different “views” of the DTI data for

better sensitivity in neuroimage analyses. We use the implementations available
in [12] to extract these measures on the ERNs.

3 ERN Analyses in Autism

In this section we present various statistical analyses performed using different
properties and measures extracted from ERNs. The details of the data and pre-
processing can be found in the supplementary material 2. First we look into
three types of group differences: (1) Differences between average properties of the
individual ERNs of the two groups. (2) Differences between the properties of the
average ERNs of the two groups. (3) Differences between quantitative measures
of the tissue extracted using individual ERNs, which involves quant(Ti,j). (4)
Then using various features of the ERNs we perform classification using support
vector machines [13]. (5) Finally we examine abnormal long vs. short range
and hemispheric connectivity hypotheses in autism [14,15], which involves using
physical(Ti,j).

(1) Differences between individual ERNs: The distribution of subjects in the
two groups according to CCERN, CPLERN, SERN and Rentian scaling are shown in Fig.
2. We can observe that there are no statistically significant differences between
the two groups. This can be expected since the two groups are matched for age,
IQ and handedness3. This also shows that our ’network-extraction process’ does
not introduce any bias into identifying group differences.

(2) Differences between the average ERNs: Let V denote the ε-radial nodes
on the template and Ei

ERN denote the edges of ERN of subject i. Then ASDERN =
{V, avg(Ei

ERN)i∈ASD} denotes the average ERN for the ASD group and TDCERN can be

3 Please see Fig. 2 of the supplementary material2 for the matching information.
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(a) (b)

(c) (d)

Fig. 2. The distribution of subjects in two groups according to different properties of
their corresponding ERNs. (a) Average clustering coefficient, (b) Characteristic path
length, (c) Average node-strength, (d) Rentian scaling. We can see that there is no
statistically significant difference between the two groups in this sample-set using ERNs.

Fig. 3. Group differences using properties of the average ERNs. (a) Cumulative distribu-
tion function (CDF) of the nodes vs. clustering coefficient, (b) CDF of nodes vs. their
strength. The significances of the differences are computed using Kolmogorov-Smirnov
tests. (c) Rentian scaling with the corresponding log− log distribution of nodes in the
partitions and their connections.

similarly defined. Fig. 3 shows the differences between the distributions of clus-
tering coefficients of nodes, strengths of nodes and rentian scalings of ASDERN and
TDCERN. Since the distributions (showed in insets) are skewed we use Kolmogorov-
Smirnov test [16], instead of two-sample t tests, to compare the significance of
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Fig. 4. Group differences using average quantitative measures (left - FA, right - MD)
of the tissue masks obtained from V and {Tij}i,j∈V in the individual ERNs. Top row:
Significant edges. The nodes in the left and right hemispheres are colored red and blue
respectively. Bottom row: Significant nodes. The size of the edges and nodes are
proportional to the − log(p) values.

the differences between their corresponding cumulative distribution functions
(CDFs). We can observe that there is decreased clustering coefficients and node
strength in the ASD relative to the TDC. These two suggest under-connectivity
of white matter in autism. There is no significant difference in the rentian scaling
of the two average networks. This can also be expected as we do not expect a
huge difference between the “wiring costs” of the brains of high-functioning ASD
and TDC.

(3) Differences between quantitative measures: Here we perform classical
ROI analyses using the masks obtained from V on the template and {Tij}i,j∈V
in the individual ERNs. The group differences using average FA and average MD
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Fig. 5. Classification performance metrics as a function of the ADOS cut off used for
the inclusion of ASD subjects. The ACC and AUROC are stable and peak at a cut off of
14. The other metrics show increase and saturate around 14. The right figure shows
the change in the ASD sample size as the cut off increases.

(a) (b)

(c) (d)

Fig. 6. Different kernels (features) and their effect on the SVM classification perfor-
mance metrics. The highlighted red boxes show intra-class similarities for ASD (top-
left) and TDC (bottom-right). In an ideal situation the similarities within the boxes
should be higher than the similarities outside the boxes. The improvement in classifi-
cation metrics due to addition ERN features is shown in (d).
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(a) (b)

(c) (d)

Fig. 7. (a) Distribution of subjects according to ADOS. (b) Distribution of subjects
according to SVM output. In an ideal situation it should be as similar to (a) as possible.
(c) SVM output for different subjects. The misclassified ones are encircled in green.
(d) The ROC curve for the leave-one-out cross-validation.

in those masks are shown in Fig. 4. These differences can be attributed purely
to the tissue property differences and are not confounded by network extraction
procedure as shown by the failure to reject null-hypotheses using individual
ERNs (Fig. 2). Thus using ERNs one can look into tissue differences by holding
the topological properties constant when possible.

(4) Classification: Classification is a very challenging problem in autism studies
especially using DTI. General leave-one-out cross-validation accuracies reported
are in the high 70% to 80% [17,7,18]. An accuracy of 90% on an independently
chosen test sample was reported in [19]. In this paper we report the performance
of SVM classification using features extracted from ERNs (ERN1 and ERN2) as well
as basic voxel based features of the WM (VBM).

– ERN1: Average FA, MD, AD on the node-regions in V.
– ERN2: FA, MD, AD at all the voxels in the mask obtained from all the node-

regions in V.
– VBM: FA, MD, AD at all the voxels in the white matter mask on the template.
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(a) (b)

(c) (d)

Fig. 8. Top row: Differences between long vs. short range connectivities using geodesic
(a) as well as euclidean (b) distances between nodes. The empirical CDFs and the dis-
tributions of the edges (connections) are shown as insets. Although the differences are
statistically not very significant ((a): p = 0.0941, (b): p = 0.8723), the encircled regions
indicate support for the increased short-range and decreased long-range connectivities
in ASD. Bottom row: Differences between intra and inter hemispheric connectivities
between average ERNs of ASD and TDC. (c) Although the difference is not statistically
significant (p = 0.2443), the encircled regions indicate support for the increased intra-
hemispheric connectitvity for small and strong connections. (d) The inter-hemispheric
connectivity is consistently lower for the ASD group (p = 0.0624) and is consistent
with the finding in functional connecitvity [15].

For each of the above set of features we use both linear and radial-basis kernels
for SVM classification. To measure the discriminative capacity of the features,
we report classification performance metrics in the leave-one-out cross-validation
setting, for different bootstraps of the data. The different metrics are accuracy
(ACC), specificity (SPEC), sensitivity (SENS) and area under receiver operating
characteristic (ROC) curve (AUROC). For the various bootstraps, we include all
the TDC subjects with ADOS < 1 and include ASD subjects for different lower
thresholds of ADOS as shown in Fig. 5. As the lower threshold of the ADOS
increases the classification task becomes easier as the goal becomes separating
extreme cases of ASD from TDC. Figs. 6 and 7 show the classification outputs
for a particular bootstrap with TDC (n = 15) and ASD (n = 11) with ADOS >
14 where the ACC and AUROC reach a maximum as shown in Fig. 5. Fig. 6 shows
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the sum of the kernels for VBM, ERN1 and ERN2 as well as the the improvement
in classification metrics by the addition of ERN based features.

(5) Differences in long vs. short range and hemispheric connectivi-
ties: Such differences are one of the important hypotheses investigated in ASD.
Indirect ways of characterizing these connectivities were proposed in the liter-
ature, e.g. using cortical thickness [20,21] and white matter volumes [14]. ERNs
can provide a more direct way by looking at both the connectivities based on
geodesic as well as euclidean distances between the node regions. Figs. 8 (a,b)
show the group differences between these connectivities on ASDERG and TDCERG. It
has been indicated that ASD group has decreased inter-hemispheric functional
connectivity [15]. ERNs can also be effectively used to investigate hemispheric
structural connectivity differences, both intra and inter. Group differences be-
tween intra and inter hemispheric connectivities by plotting the distribution
of the edges (connections) across different edge strengths are shown in Figs. 8
(c,d). We can observe decreased inter-hemispheric connectivity and increased
intra-hemispheric connectivity in the ASD group. We would like to note that
intra and inter hemispheric connections can also be thought of as a proxy to the
short and long range connections respectively. To be sensitive to the changes,
the same “easy” bootstrap sample (i.e. ADOS > 14 for ASD and ADOS < 1 for
TDC) that was used for classification was also used for these two analyses.

4 Discussion

In this paper we extend recently proposed automatic, data-driven network ex-
traction frameworks. These enhanced networks could potentially be more sen-
sitive for network based analyses in population based neuroimaging studies.
Such methods in addition to avoiding the bias of ill-posed inter-modality im-
age registration (Fig. 1 of the supplementary material2) are computationally
very efficient. However there are several limitations to be considered: (1) Trac-
tography in the spatially normalized tensors needs to be validated against the
tractography in the tensors native/acquired space. This is part of our on-going
work. (2) The ε-radial nodes although cover important regions in the grey/white
matter boundary, do not cover all possible regions of interest and can lead to
false-negatives in group differences. Investigating potential extensions using tech-
niques like Vietoris-Rips complex [22] are part of our future work. (3) The spatial
normalization needed here may constrain the white matter topology to be too
similar between subjects. The normalization causes the brain anatomy to have
more consistent shape and size in the normalized space than they would in the
native/acquired space. Hence, although the quantitative measures like FA, MD
along the edges and node-regions might be preserved, this method may lose some
sensitivity to individual differences of topology. Performing topological group dif-
ferences without needing spatial normalization is also potentially an interesting
line of work.
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Abstract. While the bag-of-words models are popular and powerful method for
generic object recognition, they discard the context information for spatial layout.
This paper presents a novel method for road image segmentation and recognition
using a hierarchical bag-of-textons method. The histograms of extracted textons
are concatenated to regions of interest with multi-scale regular grid windows.
This method can learn automatically spatial layout and relative positions between
objects in a road image. Experimental results show that the proposed hierarchical
bag-of-textons method can effectively classify not only the texture-based objects,
e.g. road, sky, sidewalk, building, but also shape-based objects, e.g. car, lane,
of a road image comparing the conventional bag-of-textons methods for object
recognition. In the future, the proposed system can combine with a road scene
understanding system for vehicle environment perception.

Keywords: road image segmentation, hierarchical bag-of-textons, multi-scale.

1 Introduction

Intelligent Transport Systems (ITS) have developed significantly in the last few decades,
and vehicle safety has been a particularly active research area [1]. The latest driving as-
sistance systems include many vision-based applications such as lane detection, road
detection, and pedestrian detection, which provide drivers with useful information [2].
Current vision-based intelligent vehicles are mostly focused on the detection of obsta-
cles such as cars, bicyclists, and pedestrians.

However, an advanced driving assistance system may in the future be focused on
analysis or understanding of a road scene than the detection of obstacles in road image.
The scene understanding system requires integrated and/or advanced vision procedures,
which are particularly relevant to image classification, object detection, and semantic
segmentation. Among of them, semantic segmentation is a more complete image un-
derstanding system.

The role of semantic segmentation is central to visual interpretation and understand-
ing to improve the effectiveness for vehicle environment perception. For example, by
segmenting a road image, we can detect hazards or blind spots on the road. Such de-
tection should consider the difference in potential risk for pedestrians standing on the
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road, on a crosswalk, or on the sidewalk. The probability of collision with a particu-
lar obstacle and the potential risk associated with a covert hazard can be estimated by
segmenting a road image.

Therefore, automatically classifying pixels and parting meaningful regions in a road
image is particularly helpful instance in vehicle safety field. This process is referred
to as image labeling procedure, since its goal is to associate each pixel in the image
with a label denoting a semantically meaningful part. In this paper, we investigate the
problem of achieving recognition and segmentation of object classes in road image
using hierarchical bag-of-textons method.

The bag-of-features method is one of the most popular and efficient for object recog-
nition and image segmentation. It considers an object in an image as a set of unordered
features extracted from local patches. The features are quantized into discrete visual
words, with sets of all visual words referred to as a dictionary. Among various features,
textons are representative dense visual words and they have been proven effective in
categorizing materials as well as generic object classes [3-5]. In addition, textons are
utilized in both object segmentation and recognition thanks to their high density and
efficient [6].

However, the major drawback of the bag-of-features model is that it discards the
spatial layout of visual words, which causes a serious problem for segmentation and
recognition. In order to overcome the drawback, many researchers devote to develop
the extension of the bag-of-feature model. Lazebnik et al. [7] proposed spatial pyramid
matching (SPM) that utilizes the aggregated statistics of the local features on fixed
sub-regions. SPM embeds a part of the spatial information over the whole image by
partitioning an image into a sequence of sub-regions, so that they showed the good
performance in scene categorization and object recognition.

In this paper, we propose a hierarchical bag-of-textons method that uses pairs of
regular grid windows and neighborhood textons combined with multiple resolutions.
Some objects in a road scene have a particular relation with other objects, e.g., cars are
on the road, the road is below the sky, lanes surround the road, and so on. It is important
to learn spatial layout and relative position between objects from the surrounding image.
We uses a sequence of multi-scale grids and then computes a bag-of-textons histogram
for each sub-region with different scale. Thus, the representation of the an object is the
concatenation vector of all the histograms.

To classify the features of multi-class objects based on localized frequency of tex-
tons, we employ the Joint Boosting algorithm. We evaluate on our datasets including
the variety road environment scenes and objects, e.g., road, tree, lane, sky, pole, side-
walk, car, and building. To assess how much a hierarchical bag-of-textons method helps
with image segmentation and object recognition in road images, we have compared the
recognition accuracy of conventional bag-of-textons methods. The experimental results
show the proposed method improves the segmentation and recognition accuracy com-
pared with the conventional bag-of-textons methods. As future work, we are interested
in integrating the system into motion and semantic segmentation for vehicle environ-
ment perception. The proposed method can expand into a dynamic 3D scene analysis
system in the near future.
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The paper is organized as follows: Section 2 explain the filter bank and textonization
process for road input image. Section 3 describes the feature extraction module for the
hierarchical bag-of-textons method and the boosted classifier. Experimental results on
performance and our conclusions are presented in the final two sections, respectively.

2 Textonization Process

In driving assistance system, infrared images are particularly useful for pedestrian de-
tection of night vision systems and driver monitoring. The infrared is divided into near,
far, and mid infrared, however, in this paper, we referred only to the near infrared. Near
infrared is defined by water absorption, and the effect is formed by strongly reflecting
off a person’s exterior layer, and foliage, such as tree leaves and grass. Thus, in this
paper, the near infrared and color image are available for road image segmentation and
recognition. Input image has four bands consisting of a band of near infrared and three
bands of color.

Convolving the four band image with a bank of linear spatial filters provides a good
local descriptor of image patches and an effective statistical representation. Textons are
typically a compact representation of filter bank responses for texture classification [9],
image segmentation [10], and generic object recognition [11]. Kang et al. [8] com-
pared the performance of various filter banks for the multiband image segmentation.
Among the various filter banks, the 17-D set, which is proposed by Winn et al. [11],
led to the best performance. The 17-D set consists of three Gaussians, four Laplacian of
Gaussians (LoG), and four first-order derivatives of Gaussians. In order to implement
the convolution of four bands image, we increase filter responses by adding the in-
frared intensity as a color intensity. We utilized the CIE Lab color space for three color
bands. Fig. 1 shows how to expand the feature vectors of the 17-D set to 20-D set for a
multiband image. The multiband images are convolved with a 20-D filter bank, and the
cluster centers of the 20-D filter responses are utilized to generate image textons.

 (a) LoG and Gaussian derivative filters  

20-dimensional feature vector from 17D set for multiband image 

Ir channel 

(b) Gaussian filters  

(a) + (b)

L* channel a* channel b* channel 

(b) (b)

8 dimensions 3 dimensions 

(b)

Fig. 1. The 20-D filter bank for a multiband image. The 17-D set filter banks are expanded to
20-D set for a multiband image.
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Texton map

TextonTexton
T1

Color Image

Infrared Image

Fig. 2. Textonization image using 20D filter bank. Textons are represented by grayscale from
1 to T.

The road images are convolved with a 20-D filter bank and 20-D responses for all
training pixels that are whitened to give zero mean and unit covariance. The K-means
clustering is performed to quantize 20-D filter bank responses using a kd-tree algorithm
[12]. We accomplished the textonization process using the code of Calssification.NET
and TextonBoost [13] implemented by Shotton et al. [14]. Finally, each pixel in each
image is textonized in the nearest cluster center, producing the texton map. Fig. 2 shows
the texton map which is extracted from color and near-infrared image.

The filter responses are aggregated in the entire training set independently from class
labels and clustered using K-means method to generate textons, which represent the
visual words in a codebook of images. When a histogram of textons is created over a
region of interest, we concatenate the histograms by using regular grids with multi-scale
so as to learn automatically spatial relationship.

3 Hierarchical Bag-of-Textons

The bag-of-words models treat an object class as an unordered collection of visual
words, sampling a representative set of image patches. However, it is important to
extract the spatial configuration of an object and the contextual information from the
surrounding image. It allows categorization and image segmentation algorithm to im-
prove the performance by considering the context information of spatial layout. In road
environment scene, there are spatial ordering constraints such as a car above a road
and lanes are surrounded with road. It is necessary to order structural information
between objects from the surrounding image. Therefore, we proposed a hierarchical
bag-of-textons method using a spatial layout filter with multi-scale. The spatial lay-
out filter with multi-scale is a pair (R, T ) of a pyramid grid window R, and neighbor
textons T . Our technique based on a bag-of-textons is capable of coping with spatial
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Histogram of hierarchical bag of textons
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Fig. 3. The histogram of hierarchical bag of textons. Textons are represented by grayscale. The
histogram of hierarchical bag of textons are normalized with window size.

ordering constraints of objects. The extracted features are sufficiently general to allow
us to automatically learn the context informations for spatial layout and ordering con-
strain.

Fig. 3 illustrates how the hierarchical bag-of-textons are extracted to features using
a multi-scale spatial layout filter. The original bag-of-textons method is computed over
local rectangular regions from whole image. As illustrated in Fig. 3, the histogram of
hierarchical bag-of-textons is extracted from grid windows increasing its resolution. At
first, a set ω0

s of a candidate window with a center pixel p0 are chosen as a 3s−1(n×n)
window. The histogram of ω0

s concatenate from a top-left (ω1
s) to bottom-right (ω8

s)
windows covering about 3s(n × n) the pixel area. The variable s indicates the step of
multi-scale. At next, we increase scale step s to expand the features with multi-scale.
The multi-scale windows method is effective combined with feature extraction module.
We determined the scale step s from 1 to 3 and the initial window n to 3. At last, the
size of multi-scale grid windows is normalized to generate a feature vector for object
recognition.

A feature vector consists of the grid point’s coordinates within the image as a lo-
cation cue. We concatenated histogram consisting the multi-scale bag-of-texton to the
feature vector. Outside the image boundary there is zero contribution to the feature
response. We employ the Joint Boost algorithm [15] to select discriminative features
of hierarchical bag-of-textons. Random feature selection and sub-sampling improve
training time to generate several thousand weak learners. The learned strong classi-
fier is an additive model of the form H(c, i) =

∑M
m=1 hm(c, i), summing the classifi-

cation confidence of M weak classifiers. This confidence value can be reinterpreted as a
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Fig. 4. Multiband Image Dataset Example training images: The first, second, third rows show
color images, near-infrared images, and ground truth images, respectively. The assigned classes
and colors were: road-black, lane-yellow, sky-blue, tree-green, car-red, trunk and pole-brown,
sidewalk-gray, building-magenta, redundancy-white.

probability distribution using the soft-max[17] transformation to give the energy for
optimal labeling. Thus, the confidence becomes:

P (c|x, i) = log
exp H(c, i)∑
c exp H(c, i)

(1)

At last, the optimal labeling is found by applying the energy minimization algorithm
based on the graph cuts [16]. The goal is to find a labeling f which minimizes some
energy function. A standard form of the energy function is

E(f) =
∑
p∈P

Dp(fp) +
∑

p,q∈N

Vp,q(fp, fq) (2)

where N ⊂ P × P is a neighborhood system on pixels. The Dp(fp) is a data function
derived from the probabilities of Joint Boost assigning the label fp to the pixel p. The
Vp,q(fp, fq) is a smoothness function that measures the cost of assigning the labels fp,
fq to the adjacent pixels p, q :

Vp,q(fp, fq) =

{
C if fp �= fq

0 if fp = fq

(3)

where C is a constant.

4 Experimental Results

This section presents our experimental results for road scene labeling by using the pro-
posed hierarchical bag-of-textons method. We investigated the performance of our sys-
tem on road image datasets. Input images were captured using a prism-based multiband
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TreeSkyRoad Lane Car Pole BuildingSidewalk

21%
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Fig. 5. The proportion of the training pixels in ground truth images

camera (JAI Inc., AD-080CL) mounted on a moving vehicle. The multiband camera
can simultaneously obtain both images of color and near-infrared wavelengths. We pro-
ceeded to film 3 minutes of daytime footage and made labeled image for each sequence
at one fps. In the case of video, each labeled frame could have potentially many other
temporally related images associated with it. Each train and test set were captured from
90 video frames at 1.5 minutes. Our dataset contained 8 object classes and assigned a
color as shown in Fig. 4. We extracted the features from ahead sequences to get the
training patterns and the behind sequences were utilized for the test, which were not
used in training image.

We compared the proposed method to conventional bag of texton method, which use
single window size (15 × 15 pixels). The amount of training data is biased towards
certain classes in our datasets so that we sampled the feature according to proportion
of pixels of training set as shown in Fig. 5. We take training and test examples only at
pixels lying on a 5 × 5 grid due to exhaustive memory and process time. However, the
20-D filter bank responses and texton map are calculated at full resolution (1024×768)
for accurate pixel-wise segmentation. The texton number is T = 297 for train and test
set. At boosting time, we have 10% random feature selection proportion with M =
6000 rounding. The constant C of the alpha-expansion algorithm of graph cuts is 0.3
for optimal labeling.

Fig. 6 shows example images for road scene labeling results. In Fig. 7, the table
shows the overall recognition rate of the proposed method from total test images. Ac-
curacy is computed by comparing the ground truth pixels to the inferred labeling. Seg-
mentation performance is measured as both the category average accuracy (the average
proportion of pixels correct in each category) and the global accuracy (total proportion
of pixels correct). The category average is fairer and more rigorous, as it normalizes for
category bias in the test set.

The average and the global segmentation accuracy of the proposed method are 80.6%
and 84.6%, however, the average and the global of the conventional bag of textons
method are 78.3% and 81.6%, respectively. Experimental results showed that the pro-
posed method effectively segments road images and recognize objects in a road envi-
ronment. The training and test datasets were real video sequences from a multiband
camera mounted on a moving vehicle. However, we selected only daytime datasets for
the experiments in this paper. If the lighting and weather conditions such as nighttime,
snow, and rain are included, our system will struggle. Since robustness is essential for
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(a)

(b)

(c)

Fig. 6. Experimental results of test images (a) Ground truth images (b) Labeling results of the
conventional bag of textons method (c) Labeling results of the proposed method

GlobalRoad TreeSky Car BuildingLane Pole Sidewalk

Conventinal BoT

Bag of Textons method

81.689.7    91.1      90.6    74.6   85.6     54.3      83.9      57.2

Average

78.3

Hierarchical BoT 84.693.5    93.1      92.7    77.6   86.8     53.9      84.5      62.9 80.6

Fig. 7. Total results in pixel-wise percentage accuracy on test sequences

ITS, we will attempt to integrate more reasonable features such as appearance features,
motion and structural features, and lidar data. However, we have confirmed that the
proposed system can play an important role in complex scene understanding for road
environment perception. An optimized implementation of our system could be used as
an advanced driving assist system.

5 Conclusion

This paper presented a new framework of semantic segmentation scheme for road en-
vironment perception using a hierarchical bag of textons method. Experimental results
showed that the proposed method can be recognized more accurately than the con-
ventional bag of textons method leading to a considerably better recognition of some
objects such as road, tree, and building. Therefore, we can confirm that the proposed
system is expected to play an important role in the complex road scene understanding
system. In the future, by integrating the algorithm of shape-based objects recognition,
we will use the proposed system to expand the road environment perception.
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Abstract. Watermarking schemes allow a cover image to be embedded
with a watermark, for diverse applications including proof of ownership
and covert communication. In this paper, we present attacks on water-
marking scheme proposed by Huang and Guan. This scheme is hybrid
singular value decomposition (SVD) based scheme in the sense that they
employ both SVD and other techniques for watermark embedding and
extraction. By attacks, we mean that we show how the designers’ secu-
rity claim, related to proof of ownership application can be invalidated.
Our results are the first known attacks on this hybrid SVD-based water-
marking scheme.

Keywords: singular value decomposition, watermarking, attacks, proof
of ownership, ambiguity, discrete cosine transform.

1 Introduction

Nowadays, information is mostly stored in digital format. This results in wide-
spread duplication of digital content and as a consequence, infringement of
copyrighthas become an important issue that needs to be addressed.Digital water-
marking has emerged as an efficient method to curb copyright protection issue. A
digital watermarking scheme works by embedding the content owner’s watermark
into the content without significantly degrading the quality of the content. This
watermark could be company’s logo or any other text that identifies the owner.
Once the case of copyright infringement is found, the owner takes the case of own-
ership claim to the authority, and proves ownership by performing the watermark
extraction process on the claimed content to extract his watermark. Therefore,
robustness of the watermarking scheme is an important factor, i.e. it should be
infeasible for an attacker to remove, modify or prevent the extraction of an em-
bedded watermark without visible distortions of the image.

In this paper, we concentrate on singular value decomposition(SVD)-based
watermarking schemes. SVD is a linear algebra scheme that can be used for
many applications, particularly in image compression [1], and subsequently for
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image watermarking [2–13]. For an N -by-N image matrix A with rank r ≤ N,

the SVD of A is defined as A = USV T =
r∑

i=1

uisiv
T
i where S is an N -by-N

diagonal matrix containing singular values (SVs) si satisfying s1 ≥ s2 ≥ . . . ≥
sr > sr+1 = . . . = sN = 0, and U and V are N -by-N orthogonal matrices. V T

denotes the adjoint (transpose and conjugate) of the N -by-N matrix V. Since
the SVs are arranged in decreasing order, the last terms will have the least affect
on the overall image.

In past years, several SVD-based watermarking schemes [2–13] have been pro-
posed. The most popularly cited scheme is due to Liu and Tan [12] that makes
sole use of SVD for watermarking. They proposed to insert the watermark into
the SVs of the cover image and demonstrated its high robustness against image
distortion. However, Zhang and Li [14] and Rykaczewski [15] proved that the
Liu-Tan scheme suffers from false-positive detection problem, i.e. the case where
a watermarked image I∗W does not contain a particular watermark WA and yet
it can be shown by an attacker that the watermarked image I∗W does contain
the watermark WA. Therefore, the Liu-Tan scheme was not suitable to be used
for proof of ownership application. In 2008, Mohammad et al. [13] proposed an
improved variant of the Liu-Tan scheme and claimed that the improved version
was able to solve the false-positive detection problem in the Liu-Tan scheme.
However, their scheme was fundamentally flawed as proven by Ling et al. [16].
Other attacks on SVD-based watermarking schemes were found in [17–21].

In this paper, we furthermore show attacks on the hybrid SVD-based wa-
termarking scheme proposed by Huang and Guan [9] that uses not just SVD
but also discrete cosine transform (DCT) and local peak signal-to-noise ratio
(LPSNR). By attacks, we mean that we show how the designers’ security claim,
related to proof of ownership application can be invalidated.

In Sect. 2, we recall the basics of the scheme proposed by Huang and Guan.
We then present attacks on the scheme in Sect. 3 that invalidate the security
claim of the designers. Experimental results verifying our attacks are given in
Sect. 4, and Sect. 5 proposes countermeasure to the scheme. Finally, Sect. 6
concludes the paper.

2 Hybrid SVD-Based Watermarking Scheme

Huang and Guan [9] proposed a hybrid watermarking method that employs
singular value decomposition (SVD), discrete cosine transform (DCT) and local
peak signal-to-noise ratio (LPSNR). The SVD transform is performed on the
watermark to get its singular values which are then embedded into selected
DCT coefficients of the cover image based on Logistic mapping [22]. LPSNR
is then applied to the watermarked image to exclude the block artifacts. The
watermark embedding steps of the scheme are as follows:

E1. Denote cover image I as an N -by-N matrix and watermark W as an M -
by-M matrix. I is divided into non-overlapping 8 × 8 sub-blocks Ik (1
≤ k ≤ N

8 × N
8 ).
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E2. Perform SVD on watermark W as:

W = USV T . (1)

E3. Select sub-blocks for watermark embedding using Logistic mapping [22],
Xn+1 = μXn (1 - Xn) which maps the unit interval into itself for μ ∈ [0,
4]. Select initial value X0 ∈ (0, 1) as the key and then drop the first 100
iterations to get a chaotic sequence

X101, X102, ..., X100+ N
8 ×N

8
. (2)

where N
8 × N

8 is the length of the chaotic sequence (i.e. the number of 8 ×
8 sub-blocks of cover image I).

E4. Construct another sequence m1, m2, ..., mN
8 ×N

8
from the sequence of (2) to

index the sub-blocks in which the S in (1) is going to be embedded. If
X100+i is the jth bigger number in the sequence of (2), then mi = j where
(1 ≤ i ≤ N

8 × N
8 ).

E5. Only sub-blocks with indices mi are selected for embedding. DCT is per-
formed on these sub-blocks as:

Fmi(u, v) = DCT (Imi(r, c)). (3)

where 1 ≤ i ≤ M , 1 ≤ u, v ≤ 8, 1 ≤ r, c ≤ 8. Fmi(u,v) is the coefficient
value at position (u,v) in DCT domain, whereas Imi(r,c) is the coefficient
value at position (r,c) in spatial domain.

E6. In each sub-block, one position (ue,ve) is selected for embedding S in (1)
as:

F ∗mi(ue, ve) = Fmi(ue, ve) + αmisi. (4)

where (1 ≤ i ≤ M). Position (ue,ve) is chosen under the following rules:
• If si belongs to group A (which contains most energy of watermark),

then (ue,ve) = (1,1).
• If si belongs to group B (which contains remaining energy of water-

mark), then (ue,ve) is chosen from
set C = {(u, v) | 1 ≤ u ≤ 3, 1 ≤ v ≤ 3, u + v ≤ 3}.

αmi is a scaling factor that determines the watermark strength, and it is
determined by LPSNR value given in the following equation.

LPSNR = 10 log10
(L − 1)2

1
82

8∑
r=1

8∑
c=1

[I∗mi
(r, c) − Imi(r, c)]

2

(5)

where L is the number of gray levels, I∗mi
(r, c) and Imi(r, c) are the spatial

coefficient values of the unwatermarked sub-block and the corresponding
watermarked sub-block at the position (r, c), respectively.
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E7. Perform inverse DCT on all the watermarked sub-blocks and substitute
them for the corresponding sub-blocks in the cover image I to obtain the
watermarked image IW .

In order to perform the watermark extraction from the possibly distorted wa-
termarked image I∗W , the content owner needs to keep U and V (from Step E2),
μ and X0 (from Step E3) and αmi (from Step E6). The watermark extraction
steps are as follows:

X1. Denote the possibly distorted watermarked image I∗W as an N -by-N matrix.
I∗W is divided into non-overlapping 8 × 8 sub-blocks I∗Wk (1 ≤ k ≤ N

8 × N
8 ).

X2. Repeat Steps E3 till E5 using μ and X0 to find watermarked image’s sub-
blocks in which the SVs of watermark are embedded.

X3. Based on (4), the SVs of the watermark are extracted by:

s∗i =
(F ∗mi(ue, ve) − Fmi(ue, ve))

αmi
. (6)

The extracted sequence is described as s∗1, s∗2,...,s∗M . F ∗mi(ue, ve) and
Fmi(ue, ve) are the DCT coefficient values of watermarked image’s and cover
image’s sub-blocks at position (ue, ve) of index mi respectively.

X4. The watermark is restored by:

W ∗ = US∗V T . (7)

where S∗ = diag(s∗1, s∗2,...,s∗M ).

Note that in the watermark embedding Step E2, the content owner needs to
keep U and V so that he can use it later in the extraction Step X4.

2.1 On the Security Claim of the Huang-Guan Scheme

Huang and Guan claimed that their scheme was robust since the bigger singular
values (SVs) which comprised most energy of the watermark were embedded into
the DC components of the sub-blocks of the original cover image and LPSNR
method was used. Therefore, their scheme was claimed to be usable in proof of
ownership application. Nevertheless, in the next section, we present attacks on
this scheme that violate the designers’ claims.

3 Attacks on the Huang-Guan Scheme

We show in this section, how attacks can be mounted that invalidate the security
claim made by Huang and Guan [9], namely that the scheme can be used for
proof of ownership application. For the rest of the section, we will use Alice as
the content owner and Bob as the attacker.
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3.1 Attack 1

Our first attack invalidates the designers’ claim that the Huang-Guan scheme
can be used for proof of ownership application. We first recall the fact that in
the embedding steps, Alice needs to keep the orthogonal matrices U and V of
her watermark W , the parameters μ and X0 and the scaling factor αmi so that
she can use it later in the extraction steps.

In order to launch the attack, Bob needs to obtain the watermarked image
I∗W and performs the embedding Steps E1 - E7 with I∗W , his own watermark
WB, his own parameters μB and XB0 and his own scaling factor αBmi to obtain
the watermarked image O. Both watermarked images I∗W and O are perceptu-
ally correlated with each other since the same embedding steps are repeated. A
dispute arises when Bob claims that he is the owner of O since he can extract
his watermark WB from O by supplying his own parameters μB and XB0, and
orthogonal matrices UB and VB of his watermark WB . Alice could also lay equal
claim to O since she too can extract her own watermark W from O by supplying
her own parameters μ and X0, and orthogonal matrices U and V of her water-
mark W . This leads to ambiguity because Bob lays equal claim as Alice, and
therefore, no one can prove who the real owner of image O is.

This attack works because for an image I, its orthogonal matrices U and V
due to SVD can preserve major information of the image [14, 15]. Therefore, if
Bob uses his own UB and VB regardless of what the extracted singular matrix
S∗ is (as in (7)), he can still obtain a good estimate of the watermark WB during
the extraction process.

Besides that, the parameters μ and X0 do not actually influence the robust-
ness against this ambiguity attack. Their purpose is just to determine the cover
image’s sub-blocks that are used to embed the SVs of the watermark. Therefore,
Bob can use his own parameters μB and XB0 to determine the sub-blocks that
can be used to embed the SVs of his own watermark. Furthermore, Bob can use
his own scaling factor αBmi to determine the strength of his embedded water-
mark in the watermarked image O.

This attack shows that the Huang-Guan scheme cannot be used for proof of
ownership claim, directly invalidating the designers’ claim that it can.

3.2 Attack 2

The second attack is another type of ambiguity attack described in Sect. 3.1.
In this attack, an attacker can directly prove that the watermarked image I∗W
belongs to him also. The steps of our attack are as follows:

C1. Denote the possibly distorted watermarked image I∗W as an N -by-N ma-
trix and watermark WB as an M -by-M matrix. I∗W is divided into non-
overlapping 8 × 8 sub-blocks I∗Wk (1 ≤ k ≤ N

8 × N
8 ).

C2. Perform SVD on watermark WB as:

WB = UBSBV T
B . (8)
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C3. Repeat Steps E3 - E6 using Bob’s parameters μB and XB0, his scaling factor
αBmi and his SVD components from Step C2. However, in Step E6, modify
F ∗mi(ue, ve) as follows:

F ∗mi(ue, ve) = Fmi(ue, ve) − αBmisi. (9)

The major change here is that the ‘+’ operation in (4) is being replaced
with the ‘−’ operation.

C4. Perform inverse DCT on all the watermarked sub-blocks and substitute
them for the corresponding sub-blocks in the image I∗W to obtain the fake
watermarked image O.

Now, instead of using O as the watermarked image, it is used as the cover image
in the extraction process. The watermark extraction steps are as follows:

D1. Denote watermarked image I∗W as an N -by-N matrix. I∗W is divided into
non-overlapping 8 × 8 sub-blocks I∗Wk (1 ≤ k ≤ N

8 × N
8 ).

D2. Repeat Steps E3 - E5 using μB and XB0 to find I∗W ’s sub-blocks in which
the SVs of watermark are embedded.

D3. The SVs of the watermark are extracted by:

s∗i =
(F ∗mi(ue, ve) − Fmi(ue, ve))

αBmi
. (10)

The extracted sequence is described as s∗1, s∗2,...,s∗M . F ∗mi(ue, ve) and
Fmi(ue, ve) are the DCT coefficient values of watermarked image I∗W ’s and
cover image O’s sub-blocks at position (ue, ve) of index mi respectively.

D4. The watermark is restored by:

W ∗
B = UBS∗V T

B . (11)

where S∗ = diag(s∗1, s∗2,...,s∗M ).

In this attack, Bob uses the fake watermarked image O as the cover image,
and proves that the watermarked image I∗W belongs to him by extracting his
watermark WB from I∗W . Alice, on the other hand, is also able to extract her
watermark W from I∗W . Therefore, a deadlock has resulted and no one can prove
more than the others.

One may argue that Alice can also extract her watermark W from the fake
watermarked image O because I∗W is used as the cover image during the embed-
ding steps and it contains Alice’s watermark W . However, Bob can also extract
his watermark WB from Alice’s original cover image I due to the properties of
SVD [14, 15] as discussed in Sect. 3.1. Bob can just supply his watermark WB

and his fake watermarked image O to extract his watermark from Alice’s original
cover image I. This is illustrated in the experimental results section.

In either Attack 1 or Attack 2, Huang and Guan concentrated on ensuring
that false negatives do not occur, i.e. the case where the watermarked image does
indeed contain a watermark and yet it has been modified (while still maintain-
ing perceptual similarity) such that the watermark can no longer be extracted.
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Unfortunately, the designers did not treat the case of false positives, i.e. the case
where the watermarked image does not contain a particular watermark and yet
it can be shown by an attacker that the watermarked image does contain that
particular watermark, which has never been embedded in the first place.

4 Experimental Results

In this section, we describe experiments that are carried out to further support
our attacks in Sect. 3. Figure 1 shows a cover image, an owner’s watermark, the
watermarked image after going through the embedding Steps E1 - E7 and the
extracted watermark, respectively. The values μ and X0 used in Step E3 are 3.8
and 0.5 respectively.

Attack in Sect. 3.1 is carried out using the attacker’s watermark in Fig. 2(a)
and the watermarked image in Fig. 1(c). The values μB and XB0 used in Step
E3 are 3.9 and 0.8 respectively. Figure 2(b) shows the watermarked image after
the attack. The peak signal-to-noise ratio (PSNR) and the correlation coefficient
(CC) between the watermarked image in Figs. 2(b) and 1(a) are 42.488 dB and
0.999 respectively. The closer the CC value is to either 1 or -1, the stronger the
correlation between both images. This shows that both images are perceptually
correlated, and the quality of the watermarked image after the attack is still in
a very good condition. When no attack is introduced, the PSNR and the CC
values between the cover image and the watermarked image are 45.389 dB and
0.999 respectively.

Fig. 1. (a)Original cover image with the size 200 × 200 (b)Owner’s watermark with
the size 100 × 100 (c)Watermarked image (d)Extracted watermark

Extraction process is then carried out on Fig. 2(b). Figures 2(c) and 2(d)
show the extracted watermarks using the attacker’s parameters and the owner’s
parameters respectively. Both attacker’s watermark (PSNR = 25.665 dB, CC
= 0.991) and owner’s watermark (PSNR = 25.563 dB, CC = 0.985) can be ex-
tracted successfully.

Attack in Sect. 3.2 is then carried out, and Fig. 3(a) shows the watermarked
image after the attack (PSNR = 42.488 dB, CC = 0.999). This watermarked
image will then be used as the cover image in the extraction process. The result
of the extraction process is that the attacker’s watermark as shown in Fig. 3(b)



264 H.-C. Ling, R.C.-W. Phan, and S.-H. Heng

Fig. 2. (a)Attacker’s watermark (b)Modified watermarked image after attack.
(c)Extracted watermark using attacker’s parameters (d)Extracted watermark using
owner’s parameters

(PSNR = 25.665 dB, CC = 0.991) can also be extracted out, besides the owner’s
watermark.

One may argue that Alice can also extract her watermark from Fig. 3(a)
because the watermarked image in Fig. 1(c) is used as the cover image dur-
ing the embedding steps and it contains Alice’s watermark. However, Bob can
also extract his watermark from Alice’s original cover image in Fig. 1(a) due to
the properties of SVD [14, 15]. In other words, Bob can just supply his water-
mark’s UB and VB components and his modified watermarked image in Fig. 3(a)
to extract his watermark from Alice’s original cover image. This arguement is
demonstrated and Figs. 3(c) and 3(d) show the results, where Alice’s watermark
and Bob’s watermark can be extracted successfully.

Therefore, the Huang-Guan scheme is not suitable for protection of rightful
ownership.

Fig. 3. (a)Modified watermarked image after the attack in Sect. 3.2 (b)Extracted wa-
termark (c) Owner’s extracted watermark from Fig. 3(a) (d) Attacker’s extracted wa-
termark from Fig. 1(a)

5 Countermeasure

One of the possible countermeasures is to embed the whole watermark into
the DC coefficient of cover image’s sub-blocks instead of using the SVs of the
watermark. This will solve the dependant of orthogonal matrices U and V that
influence the watermark being extracted from the watermarked image, at the
expense of dropping the SVD in the embedding stage. Huang [23] has proposed
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a similar block-based watermarking scheme as in Huang and Guan scheme [9]
using DCT and LPSNR. He suggested that other block-based transform domain,
such as DFT, DWT and SVD can be used in the proposed scheme. However, as
illustrated in the attacks in Sect. 3, it is not feasible to use SVD in the proposed
scheme [23].

6 Conclusions

We have presented attacks on a watermarking scheme which is based on a hybrid
use of SVD, DCT and LPSNR. These attacks work due to designers’ oversight
related to properties of the SVD, further supported by our experimental results.
Huang and Guan [9] have neglected the fact that an image’s orthogonal matrices
U and V due to SVD can preserve major information of the image [14, 15]. Our
attacks directly invalidate the security claim made by the scheme designers,
namely use for proof of ownership application. Our results are the first known
attacks on this scheme.
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Abstract. Since a block-based frequency transform is applied to residual data in 
lossy coding, it can reduce the spatial correlation efficiently. However, since 
residual data obtained from prediction is directly encoded without transform 
and quantization in lossless coding, there are some differences of the statistical 
properties in residuals between lossy and lossless coding. Based on the 
statistical characteristics of residuals in the spatial domain, we proposed an 
efficient context-based adaptive binary arithmetic coder (CABAC) for lossless 
residual coding. Experimental results show that the proposed CABAC provided 
approximately 19% bit saving, compared to the conventional CABAC. 

Keywords: context-based adaptive binary arithmetic coding (CABAC), 
H.264/AVC, lossless coding, intra coding. 

1  Introduction 

Since H.264/AVC improves coding performance over previous video coding 
standards such as H.263 and MPEG-4 by using the state-of-the-art coding tools, it is 
currently the most powerful coding standard [1] [2]. Moreover, since H.264/AVC is 
known to provide high coding efficiency for lossy video coding, it has been used for a 
wide range of applications, including broadcast, storage, and video telephony. 

Lossless compression has long been recognized as an important part for application 
areas that require high quality such as source distribution, digital cinema, and medical 
imaging. Recently, as the number of services for higher quality video representation is 
expanding, the importance for lossless coding is also increasing. However, since the 
majority of research pertaining to H.264/AVC has focused on lossy coding, it is not 
suitable for lossless coding. 

In order to enhance coding performance for lossless coding, H.264/AVC included 
a transform-bypass lossless mode which uses prediction and entropy coding for 
encoding sample values, in the fidelity range extensions (FRExt) [3]. Although the 
new lossless mode of FRExt became a fairly efficient method for lossless video coder, 
it was not the best method for lossless coding. Therefore, more efficient coding 
techniques for prediction and entropy coding in lossless coding are still required. 

Recently, new intra prediction methods, referred to as sample-wise differential 
pulse-code modulation (DPCM) [4] [5] were introduced for lossless intra coding. 
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However, since they still employed the conventional entropy coders, originally 
designed for discrete cosine transform (DCT) based lossy coding, new intra prediction 
methods have limited functionality. 

The statistical characteristics of residual data are different between lossy and 
lossless coding; in lossy coding, residual data are the quantized transform coefficients 
in the frequency domain, whereas in lossless coding, residual data are just prediction 
residuals in the spatial domain without transform and quantization. Thus an improved 
context-based adaptive variable length coding (CAVLC) method was proposed for 
lossless coding [6]. In this paper, we proposed an improved context-based adaptive 
binary arithmetic coding (CABAC) method [7] for lossless intra coding based on the 
observed statistical properties of residual data in the spatial domain.  

This paper is organized as follows. In Section 2, after we show an overview of 
H.264/AVC lossless coding, we present the CABAC encoder framework and the 
structure of CABAC for residual data coding. In Section 3, we explain our proposed 
CABAC method for lossless residual coding in the spatial domain. Experimental 
results are given in Section 4, and we draw our conclusion in Section 5. 

2  Overview of H.264/AVC Lossless Coding and CABAC 

2.1  H.264/AVC Lossless Coding 

A typical encoding algorithm for lossy coding proceeds as follows. An input picture is 
split into macroblock and then each macroblock is encoded in intra or inter mode. The 
residual of the intra or inter prediction is transformed by a frequency transform. 
Finally the transform coefficients are quantized, entropy coded, and transmitted 
together with the side information. Fig. 1 shows the conventional H.264/AVC 
encoder structure. 

 

Fig. 1. Flowchart of CAVLC 

However, an encoder structure for lossless coding is different from that for lossy 
coding. Since lossless data compression allows the exact original data to be 
reconstructed from the compressed bitstream, transform and quantization processes 
which cause a data loss are not included in the lossless encoder; the gray shaded 
stages in Fig. 1 are not included. Therefore, the residual obtained from prediction is 
directly encoded by the entropy coder. As a result, the residual data is handled only in 
the spatial domain during the entire lossless encoding process. 



 Improved Entropy Coder in H.264/AVC for Lossless Residual Coding 269 

 

2.2  CABAC Framework and CABAC for Residual Data Coding 

The encoding process of CABAC consists of four coding steps: binarization, context 
modeling, binary arithmetic coding, and probability update. In the first step, a given 
non-binary valued syntax element is uniquely mapped to a binary sequence; when the 
binary valued syntax element is given, the first step is bypassed. In the regular coding 
mode, each binary value of the binary sequence enters the context modeling stage, 
where a probability model is selected based on the previously encoded syntax 
elements. Then, the arithmetic coding engine encodes each binary value with its 
associated probability model. Finally, the selected context model is updated according 
to the actual coded binary value. Alternatively, in the bypass coding mode, each 
binary value is directly encoded via the bypass coding engine without using an 
explicitly assigned model. 

Fig. 2 illustrates the CABAC encoding structure for a 4×4 sub-block of the 
quantized transform coefficients. First, the coded block flag is transmitted for each 
sub-block if the coded block pattern or the macroblock mode indicates that the 
specific sub-block has non-zero coefficients. If the coded block flag is zero, no further 
information is transmitted and the encoding process is terminated for the current sub-
block; otherwise, the significance map and level information are sequentially 
encoded.  

 

Fig. 2. Encoding structure of CABAC for residual data coding 

Second, if coded_block_flag indicates that a sub-block has significant coefficients, 
a binary-valued significance map is encoded. For each coefficient, a 1-bit syntax 
element significant_coeff_flag is encoded in scanning order. If significant_coeff_flag 
is one, i.e., if a non-zero coefficient exists at this scanning position, a further 1-bit 
syntax element last_significant_coeff_flag is encoded. This syntax element states 
whether the current significant coefficient is the last coefficient or not.  

After the encoded significance map determines the locations of all significant 
coefficients inside a sub-block, the values of the significant coefficients are encoded 
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by using two syntax elements: coeff_abs_level_minus1 and coeff_sign_flag. The 
syntax element coeff_sign_flag is encoded by a 1-bit symbol, whereas the Unary/0th 
order Exponential Golomb (UEG0) binarization method is used to encode the values 
of coeff_abs_level_minus1 representing the absolute value of the level minus 1. The 
values of the significant coefficients are encoded in reverse scanning order. 

3   Proposed CABAC Method for Lossless Coding 

3.1  Analysis of the Statistical Properties of Residual Data in the Spatial Domain 

In lossy coding, residual data represent the quantized transform coefficients in the 
frequency domain. The statistical characteristics of residual data in lossy coding are as 
follows. In a given sub-block, the probability of a non-zero coefficient existing is 
likely to decrease as the scanning position increases. 

In lossless coding, however, residual data do not represent the quantized transform 
coefficients, but rather the differential pixel values between the original and predicted 
pixel values in the spatial domain. Therefore, the statistical characteristics of residual 
data in lossless coding are as follows. First, the probability of a non-zero differential 
pixel existing is independent of the scanning position, and the number of non-zero 
differential pixels is generally large, compared with the number of non-zero 
coefficients in the frequency domain.  

Fig. 3 represents the probability distribution of non-zero residuals existing 
according to the scanning position. As expected, significant difference can be seen in 
the statistical characteristics between the residual data of the frequency (average value 
for the quantization parameter (QP) = 12, 24, and 36) and spatial domains. 
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Fig. 3. Probability distribution of non-zero residuals according to the scanning position 

Therefore, based on the above statistical characteristics of residual data in the 
spatial domain, we propose an efficient CABAC method for lossless coding in 
H.264/AVC by modifying the relevant coding parts of the conventional CABAC. In 
Fig. 2, the gray-shaded processes are modified in the proposed method for lossless 
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coding. The coding procedure of the proposed CABAC can be summarized in the 
following steps. 

Step 1: Encode whether the current sub-block contains non-zero differential pixel 
values (coded_block_flag). 

Step 2: Encode whether the differential pixel value at each scanning position is 
non-zero up to the last scanning position (significant_diff_pixel_flag). 

Step 3: Encode the absolute value of a differential pixel minus 1 with the modified 
binarization and context modeling methods (abs_diff_pixel_minus1). 

Step 4: Encode the sign of a differential pixel (diff_pixel_sign_flag). 

3.2  Significance Map Coding 

In lossy coding, the occurrence probability of a non-zero coefficient is likely to 
decrease as the scanning position increases because residual data are the quantized 
transform coefficients, as shown in Fig. 3. Therefore, the significant coefficient tends 
to be located at earlier scanning positions. In this case, last_significant_coeff_flag 
plays an important role in the early termination of significance map coding. 

However, in lossless coding, since neither transform nor quantization is performed, 
the occurrence probability of a non-zero differential pixel is independent of the 
scanning position, as shown in Fig. 3. Thus, the last non-zero differential pixel is 
located at the end of the scanning position. From the extensive experiments on the 
location of the last non-zero residual in a sub-block, we observed that the average 
position of the last non-zero residual data in lossy and lossless coding are 
approximately 14.71 and 7.75 (average value for the quantization parameter (QP) = 
12, 24, and 36), respectively. In this case, it is meaningless to encode 
last_significant_coeff_flag to indicate the position of the last significant differential 
pixel. Therefore, we remove the last_significant_coeff_flag coding process and 
directly encode significant_diff_pixel_flags at all scanning positions from 1 to 16 in 
the proposed significance map coding. 

Scanning position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Transform coefficient level 8 -6 3 0 13 4 -9 1 0 11 -7 -2 5 -4 6 0

significant_coeff_flag 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1

last_significant_coeff_flag 0 0 0 0 0 0 0 0 0 0 0 0 1
 

(a) Original method in lossy coding 

Scanning position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Differential pixel value 8 -6 3 0 13 4 -9 1 0 11 -7 -2 5 -4 6 0

significant_diff_pixel_flag 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0
 

(b) Proposed method in lossless coding 

Fig. 4. Example of significance map coding 
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3.3  Binarization for Differential Pixel Value 

For the absolute value of the quantized transform coefficient (abs_level) in the 
frequency domain, the Unary/kth order Exponential Golomb (UEGk) binarization 
method is applied. The design of the UEGk binarization method is motivated by the 
fact that the unary code is the simplest prefix-free code in terms of implementation cost 
and it permits the fast adaptation of individual symbol probabilities in the subsequent 
context modeling stage [7]. These observations are only accurate for small abs_levels; 
however, for larger abs_levels, adaptive modeling has limited functionality. Therefore, 
these observations have led to the idea of concatenating an adapted truncated unary 
(TU) code as a prefix and a static Exp-Golomb code [8] as a suffix. 

The UEGk binarization of abs_level has a cutoff value S = 14 for the TU prefix 
and the order k = 0 for the Exponential Golomb (EG0) suffix. Previously, Golomb 
codes have been proven to be optimal prefix-free codes for geometrically distributed 
sources [9]. Moreover, EG0 is the optimal code for a probability density function 
(pdf) as follows: 

0)1(2/1)( 2 ≥+⋅= − xwithxxp                      (1) 

The statistical properties of the absolute value of the differential pixel (abs_diff_pixel) 
in the spatial domain are quite different from those of abs_level in the frequency 
domain, as shown in Fig. 5. The statistical distribution of abs_level in the frequency 
domain is highly skewed on small values; however, in the spatial domain, the 
statistical distribution of abs_diff_pixel is quite wide. Moreover, in the figure, we can 
also observe that the TU code is a fairly good model for the statistical distribution of 
abs_level in the frequency domain; whereas, it is not appropriate for the statistical 
distribution of abs_diff_pixel in the spatial domain. 
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Fig. 5. Probability distribution of the absolute value and the optimal pdf of the TU code 

In order to efficiently encode abs_diff_pixel in the spatial domain, we adjusted the 
cutoff value S of the TU prefix in UEG0 binarization. In Fig. 5, the optimal pdf curve 
for the TU code and the statistical distribution curve for abs_diff_pixel in the spatial 
domain intersect at an absolute value of 5. Moreover, as the absolute value increases, 
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the statistical difference between the TU code and abs_diff_pixel becomes larger. 
Based on this observation, we determined a new cutoff value S = 5 for the TU prefix 
in the proposed binarization method. 

In order to provide a good prefix-free code for lossless coding, we also determined 
an appropriate parameter k for the EGk code. The prefix of the EGk codeword 

consists of a unary code corresponding to the value  )12/(log)( 2 += kxxl . The suffix 

is then computed as the binary representation of )21(2 )(xlkx −+  using )(xlk +  
significant bits. Consequently, for EGk binarization, the number of symbols having 
the same code length of 1)(2 ++ xlk  grows geometrically. Then, by inverting 
Shannon’s relationship between the ideal code length and the symbol probability, we 
can find each pdf corresponding to an EGk having an optimal code according to a 
parameter k. 

0)12/(2/1)( 21 ≥+⋅= −+ xwithxxp kk
k                 (2) 

where )(xpk  is the optimal pdf corresponding to the EGk code for a parameter k. 

This implies that for an appropriately chosen parameter k, the EGk code represents a 
fairly good prefix-free code for tails of typically observed pdfs. 

Fig. 6 presents the probability distribution of )(xpk  for k = 0, 1, 2, and 3 and the 

occurrence probability distribution of abs_diff_pixel from 6 to 20, where 
abs_diff_pixels up to 5 are specified by the TU code. In the figure, the probability 
distribution of )(xpk  for k = 3 is well matched to the occurrence probability 

distribution of abs_diff_pixel in the spatial domain. This result implies that the EG3 
code represents a fairly good approximation of the ideal prefix-free code for encoding 
abs_diff_pixel in the spatial domain. 
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Fig. 6. Probability distribution of the optimal pdf of EGk code and abs_diff_pixel 

Based on these observations, we designed an efficient binarization algorithm to 
encode abs_diff_pixel in the spatial domain. In the proposed algorithm, UEGk 
binarization of abs_diff_pixel is specified by new cutoff value S = 5 for the TU prefix 
and the order k = 3 for the EGk suffix. 



274 J. Heo and Y.-S. Ho 

 

4   Experimental Results and Analysis 

In order to verify coding performance of the proposed method, we performed 
experiments on several test sequences for QCIF, CIF, and HD resolutions. We 
implemented our proposed method in the H.264/AVC reference software version JM 
16.2 [10]. The encoding parameters for the reference software were as follows: 

1) ProfileIDC = 244 (High 4:4:4) 
2) IntraPeriod = 1 (only intra coding) 
3) QPISlice = 0 (lossless) 
4) SymbolMode = 1 (CABAC is used) 
5) ContextInitMethod = 1 (adaptive) 
6) LosslessCoding = 1 (lossless) 

In order to evaluate coding performance of each proposed method, our experiment 
included two sections, based on the following settings: 

1) Method I: modify significance map coding 
2) Method II: Method I + modify binarization for differential pixel value coding 

To verify efficiency of the proposed method, we performed two kinds of experiments. 
In the first experiment, six YUV420 format test sequences with QCIF, CIF, and HD 
resolutions were tested, as shown in Table 1. In the second experiment, we encoded 
only one frame (first frame) for each test sequence using our proposed method 
(Method II) and a well-known lossless coding technique, lossless joint photographic 
experts group (JPEG-LS) [11], used as a comparison for coding performance of our 
proposed method, as shown in Table 2. 

Comparisons were made in terms of bit-rate percentage differences (Table 1) and 
compression ratio differences (Table 2) with respect to H.264/AVC CABAC and 
JPEG-LS, respectively. These changes were calculated as follows: 

100(%)
/264.

/264. ×−=Δ
AVCH

MethodAVCH

Bitrate

BitrateBitrate
BitsSaving               (3) 

MethodBitrate

sizeimageOriginal
RationCompressio =                     (4) 

In Table 1, we confirmed that the proposed method provided a better coding 
performance of approximately 18.9% bit saving via the QCIF, CIF, and HD resolution 
sequences, compared to the conventional CABAC. Table 2 presents the experimental 
results comparing JPEG-LS in terms of lossless intra coding, which again shows that 
the proposed method displayed the better coding performance in lossless coding. 

In general, since video sequences contain more redundancy in time than in space, 
the accuracy of inter prediction is better than that of intra prediction. Thus, there are 
significant statistical differences between lossless intra and lossless inter coding. In 
other words, it is not easy to determine the best CABAC method that can generally be 
used for lossless video coding (for both intra and inter coding). Therefore, in this 
paper, we focused on the improvement of an appropriate CABAC for lossless intra 
coding. 
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Table 1. Comparison of the Performance Measures 

Sequence 
Image size 

(bits) 
Method 

Encoding bits 
(bits) 

Saving bits 
(%) 

Foreman 
(QCIF) 

100 frames 
30412800 

H.264/AVC CABAC 14344176 0 
Method I 12857928 10.361 
Method II 12572368 12.352 

Container 
(QCIF) 

100 frames 
30412800 

H.264/AVC CABAC 14482016 0 
Method I 13034368 9.996 
Method II 11913968 17.733 

Mobile 
(CIF) 

100 frames 
121651200 

H.264/AVC CABAC 91371512 0 
Method I 85034984 6.935 
Method II 68152408 25.412 

Tempete 
(CIF) 

100 frames 
121651200 

H.264/AVC CABAC 79063136 0 
Method I 72756080 7.977 
Method II 60830560 23.061 

Crowdrun 
(HD) 

100 frames 
2488320000 

H.264/AVC CABAC 1250235376 0 
Method I 1120777696 10.355 
Method II 1047171240 16.242 

Parkjoy 
(HD) 

100 frames 
2488320000 

H.264/AVC CABAC 1283550664 0 
Method I 1155350512 9.988 
Method II 1043186200 18.727 

Average  
H.264/AVC CABAC  0 

Method I  9.269 
Method II  18.921 

Table 2. Comparison of the Performance Measures 

Sequence Method Compression ratio 
Foreman 
(QCIF) 

JPEG-LS 1.8179 
Method II 2.4190 

Container 
(QCIF) 

JPEG-LS 1.9030 
Method II 2.5527 

Mobile 
(CIF) 

JPEG-LS 1.4865 
Method II 1.7850 

Tempete 
(CIF) 

JPEG-LS 1.6556 
Method II 1.9998 

Crowdrun 
(HD) 

JPEG-LS 1.6802 
Method II 2.3762 

Parkjoy 
(HD) 

JPEG-LS 1.8664 
Method II 2.3853 

Average 
JPEG-LS 1.7349 
Method II 2.2530 
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5   Conclusions 

In this paper, we proposed an improved context-based adaptive binary arithmetic 
coding (CABAC) method for H.264/AVC lossless residual coding in the spatial 
domain. Considering the statistical differences in residual data between the frequency 
and spatial domains, we modified the CABAC method based on the observed 
statistical characteristics of residual data in the spatial domain. Experimental results 
show that the proposed method provided an approximately 19% bit saving, compared 
to the H.264/AVC CABAC. 
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Abstract. We propose a method of predicting human egocentric visual attention
using bottom-up visual saliency and egomotion information. Computational mod-
els of visual saliency are often employed to predict human attention; however, its
mechanism and effectiveness have not been fully explored in egocentric vision.
The purpose of our framework is to compute attention maps from an egocentric
video that can be used to infer a person’s visual attention. In addition to a stan-
dard visual saliency model, two kinds of attention maps are computed based on a
camera’s rotation velocity and direction of movement. These rotation-based and
translation-based attention maps are aggregated with a bottom-up saliency map
to enhance the accuracy with which the person’s gaze positions can be predicted.
The efficiency of the proposed framework was examined in real environments
by using a head-mounted gaze tracker, and we found that the egomotion-based
attention maps contributed to accurately predicting human visual attention.

Keywords: Visual saliency, visual attention, first-person vision, camera motion
estimation.

1 Introduction

Visual attention can be an important cue to infer the internal states of humans. Tech-
niques to predict human visual attention have been employed in various applications in
the area of, e.g., attentive user interfaces and interactive advertisements. One of the most
direct ways of inferring visual attention is to measure the human gaze [7]; however, it
is still a difficult task to measure our gaze in casual and unconstrained settings.

An alternative way of estimating the visual focus of attention is to use a visual
saliency map model. Inspired by psychological studies on visual attention [24], Koch
and Ullman proposed the concept of the saliency map model [17]. Itti et al. subse-
quently proposed a computational model [15] of visual saliency to identify image re-
gions that attract more human attention. Following their study, many types of saliency
map models have been proposed through the years [14,1,2,8,3,25]. Studies using gaze
measurements [5,12,20] have also demonstrated that the saliency maps agree well with
actual distributions of human attention.

Y.-S. Ho (Ed.): PSIVT 2011, Part I, LNCS 7087, pp. 277–288, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Egocentric vision refers to a research field analyzing dynamic scenes seen from ego-
centric perspectives, e.g., taken from a head-mounted camera. Egocentric perspective
cameras are suited for monitoring daily ego-activities, and hence accurate predictions
of egocentric visual attention will be useful in various fields including health care, ed-
ucation, entertainment, and human-resource management. There has been much work
on video attention analysis [18,21,13]; however, methods of analyzing egocentric vi-
sual attention have yet to be sufficiently explored. Saliency maps in these studies were
computed from images shown to human subjects using monitors, and their effectiveness
was evaluated against the gaze points given on the monitors. Hence, it still remains an
unresolved question as to how we can predict visual attention accurately in egocentric
videos that include visual motions caused by human head motion.

We propose a new framework in this paper to compute attention maps from ego-
centric videos using bottom-up visual saliency and egomotion information. Two kinds
of egomotion-based attention maps, i.e., rotation-based and translation-based maps are
computed in our framework and they are aggregated with the bottom-up saliency maps
to produce accurate attention maps.

Camera motion has been employed to analyze attention in home videos [18,21].
Intentional human head motion in egocentric videos can have a stronger relationship
with attention directed. Hillair et al. proposed a method of predicting egocentric visual
attention in virtual reality environments based on the rotation factor of head move-
ment [10,11]. Fukuchi et al. discussed the effect that focus of expansion (FOE) of mov-
ing pictures had in attracting human attention and they provided some experimental
evaluations of FOE-enhanced saliency maps [6]. Although the basic idea behind our
work was similar to that in these studies, we applied the framework to real egocen-
tric scenes and motion-based maps were computed purely using input video without
requiring additional sensors.

It is a well-known fact that humans tend to look at the center of images and a simple
centering bias map can also contribute to enhancing the accuracy of saliency maps [16].
Our proposed attention maps can be seen as improved centering bias maps that are well-
suited to egocentric vision. The effect of using motion-based attention maps is examined
in a real setting using a mobile gaze tracker, and a comparison with a centering map is
also discussed in Section 3.

2 Prediction of Visual Attention Using Saliency and Egomotion

The goal of this work was to predict visual attention by only using an egocentric video.
Fig. 1 outlines the flow for our proposed framework. While bottom-up visual saliency
maps are computed from input egocentric video, motion maps are computed using a per-
son’s egomotion. These additional motion maps are integrated into the visual saliency
maps, and the resulting map achieves higher accuracy in predicting human attention.
Details on the computations for the visual saliency maps and the motion maps are de-
scribed in the following sections.
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Fig. 1. Flow for our proposed framework. While bottom-up visual saliency maps are computed
from input egocentric video, motion maps are computed using person’s egomotion. These addi-
tional motion maps are integrated into visual saliency maps, and resulting map achieves higher
accuracy in predicting human attention.

2.1 Computation of Visual Saliency Maps

We used the graph-based visual saliency (GBVS) model proposed by Harel et al. [8]
in this work to compute the bottom-up saliency maps. Since it has previously been re-
ported that saliency maps using dynamic features (motion and flicker) reduce the accu-
racy of saliency maps in egocentric scenes [26], we only employed static features, i.e.,
color, intensity and orientation to compute the saliency maps. As discussed above, the
core concept in computational visual saliency is extracting regions with vastly different
image features than their surrounding regions. Saliency maps in the GBVS model are
generated by computing the equilibrium distributions of Markov chain graphs. Graphs
are defined with nodes corresponding to pixels, and higher transition probabilities are
assigned between dissimilar nodes (=pixels). Higher values are given in this way to
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nodes with distinctive image features in their equilibrium distribution and these can be
used as saliency maps. Readers should refer to [8] for more details. Saliency maps are
computed from each of the three features, and combined with equal weights to generate
the final saliency map.

2.2 Computation of Attention Maps from Egomotion

Motion-based attention maps were computed using a person’s egomotion in addition to
the above visual saliency maps. We employed two kinds of attention maps in this work:
rotation-based and translation-based. The computation consisted of three steps: 1) we
estimated camera motion from the egocentric video, 2) estimated angular velocity and
generating rotation-based attention maps, and 3) estimated the direction of movement
and generated translation-based attention maps. We assumed that the camera’s intrinsic
parameters were known in this work and the lens distortion would be corrected through
calibration. The camera was also assumed to be attached to the person’s head so that its
coordinates were identical to his/her visual field. Details on the three steps are described
in what follows.

Estimation of Camera Motion. First, camera motion between two consecutive frames
was computed using epipolar geometry, and rotation matrix R and translation vector t
were obtained. Feature flows between the two frames were acquired using the Kanade-
Lucas-Tomasi feature tracker [23,22], and an eight-point algorithm [9] was then applied
to compute the fundamental matrix, F . RANSAC [4] was used to robustly select the
eight points without being affected by outliers caused by items such as moving objects.
Since the intrinsic parameters were known, R and t could be obtained from F .

Rotation-Based Attention Map. The rotation angle around each axis was computed
from R in the second step, and the rotation-based attention map was generated using
horizontal and vertical angular velocities. Let us denote the horizontal and vertical axes
of the egocentric video as x and y, the camera’s optical axis as z, and the rotation angles
around these axes as θx, θy, θz . Since it is assumed that the camera and the person’s
visual field share the same coordinates, the horizontal and vertical rotation angles of
the head correspond to θy and θx. Given rotation matrix R and if we assume a x-y-
z rotation order, θx and θy can be uniquely determined (θz is set to 0 if θy = ±π

2 ).
By denoting the frame rate of the video as f [fps], the horizontal and vertical angular
velocities can be written as ωx = 180fθx/π and ωy = 180fθy/π.

We drew a 2-D Gaussian circle based on the angular velocities with a fixed variance
to generate rotation-based attention maps. Hillair et al. [10] reported a strong correlation
between gaze positions and angular velocities when the velocity was less than about
100[deg /s]. With larger velocity, Gaze positions tend to be almost fixed. According to
their report, we define the center of the Gaussian (x, y) as illustrated in Fig. 2:

x =

⎧⎪⎨⎪⎩
ωy

100 · w
k (|ωy| ≤ 100)

w
k (ωy > 100)
−w

k (ωy < −100)
(1)
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Attention map Definition of the center position

Fig. 2. Rotation-based attention map. 2-D Gaussian circle is drawn with fixed variance to gen-
erate rotation-based attention maps based on angular velocities. According to report by Hillair
et al. [10], center of Gaussian is defined so that it is proportional to angular velocity within the
range of 100[deg /s].

and

y =

⎧⎪⎨⎪⎩
− ωx

100 · h
l (|ωx| ≤ 100)

−h
l (ωx > 100)

h
l (ωx < −100),

(2)

where w, h indicate the width and height of the attention map and k, l are parameters
according to the camera’s angle of view.

Translation-Based Attention Map. Another attention map is generated in the third
step based on the direction of the person’s movement. The FOE of the input visual
stimuli during translatory movements indicates the direction of movement. Similarly
to [6], we generate the motion-based attention map based on the assumption that sur-
rounding regions of the FOE attract more attention. We calculate the FOE of the input
video as follows.

Egocentric videos usually contain independently moving objects and the person can
also perform rotational movements. Therefore, the intersecting point of their feature
flows does not always correspond to the FOE as illustrated in Fig. 3. We first rejected
feature flows in this work that were identified as outliers when computing fundamental
matrix F and only inlier flows were used in further processing.

Next, the rotational and translational components of the flow were separated. Let
us denote the current image as I(t) and the previous image as I(t−1). If we can rotate
I(t−1) using the previously computed rotation matrix, R, the relationship between the
rotated image, I(t−1)

R , and I can be described by the translation vector, t. If we denote

the camera’s intrinsic matrix as A, pixel coordinates m(t−1) and m
(t−1)
R of the feature

point in I(t−1) and I(t−1)
R can be written in homogeneous coordinates as

m(t−1) ∼ Ax(t−1), (3)

m
(t−1)
R ∼ Ax

(t−1)
R , , (4)
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  (a) Feature flows

  (b) Translational flows   (c) Flows of moving objects

   

  (d) Rotational flows

FOE

Fig. 3. Components of feature flows. Intersection point of translational flow (b) corresponds to
Focus of Expansion (FOE) and it indicates direction of camera movement. However, feature flows
computed from egocentric video (a) include flows caused by independently moving objects (c)
and rotational movements (d). Components corresponding to (c) and (d) must first be separated
from computed flow (a) to estimate FOE of input frame.

where x(t−1) and x
(t−1)
R indicate the normalized image coordinates of the feature point.

As discussed above, the following relationship also holds:

x
(t−1)
R ∼ Rx(t−1), (5)

and hence m
(t−1)
R can be written as

m
(t−1)
R ∼ ARA−1m(t−1). (6)

By applying Eq. (6) to all coordinates m(t−1) of inlier flows, the translational compo-
nents of flow m(t) −m

(t−1)
R can be computed. The FOE is computed as the point with

the minimum Euclid distance to all the translational flows. Fig. 4 shows a example of
all feature flows and the separated translational flows. The bright rectangles indicate
feature positions in current frame m(t), and the dark rectangles indicate feature posi-
tions in original image m(t−1) (a) and rotated image m

(t−1)
R . The circles overlaid in

the images indicate the computed FOE.
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(a) Raw feature flows (b) Translational flows

Fig. 4. Separation of translational flows. By rotating previous frame using rotation matrix R,
translational flows (b) can be obtained from raw feature flows (a). Each image shows current
frame I(t). Bright rectangles indicate feature positions in current frame m(t), and dark rectan-
gles indicate feature positions in original image m(t−1) (a) and rotated image m

(t−1)
R . Circles

overlaid in images indicate FOEs that are computed as point with minimum Euclid distance to all
translational flows.

The above process computes the FOE based only on two successive frames; however,
using multiple video frames will lead to more accurate computation of the moving
direction. For this reason, we computed the FOEs between all K pairs of I(t) and I(t−k)

(k = 1, 2, . . . , K , and K = 15 in this work). A motion-based attention map is generated
from the K FOEs by Gaussian kernel density estimation.

2.3 Aggregation of Maps

The bottom-up visual saliency maps and the egomotion-based attention maps are then
aggregated to compute the final attention map. All maps are summed with equal weights,
and the summed map is then normalized to have fixed maximum and minimum values.
Fig. 5 shows some examples of visual saliency maps, attention maps, and the final ag-
gregated map. We evaluated three combinations of the maps in this work: A) saliency
+ rotation + translation, B) saliency + rotation, and C) saliency + translation. This is
further discussed in Section 3.

3 Experiments

Here, we describe the details on the experiments we carried out to evaluate what effect
using motion-based attention maps had. We used a head-mounted gaze tracker to cap-
ture real egocentric videos and ground-truth gaze points. The prediction accuracy of the
attention maps was assessed with the receiver operating characteristic (ROC) curves of
the maps similarly to evaluating visual saliency maps. The prediction accuracy of our
maps was also compared with a simple centering bias map to further demonstrate the
efficiency of our method.



284 K. Yamada et al.

Imput images

Attention maps

Saliency

Rotation

Translation

Saliency + Rotation + Translation

Saliency + Rotation

Saliency + Translation

Saliency

Rotation

Translation

Saliency + Rotation + Translation

Saliency + Rotation

Saliency + Translation

Fig. 5. Examples of attention maps. Top row shows input images, and other images show exam-
ples of visual saliency maps (saliency), motion-based attention maps (rotation and translation),
and three different types of their combinations.

3.1 Experimental Settings

A mobile gaze tracker, the EMR-9 [19] developed by NAC Image Technology, was used
in the experiments. A scene camera was installed on the EMR-9 as seen in Fig. 6(a),
and it captured egocentric video of the subject at 30 [Hz]. The horizontal field of view
of the scene camera was 121◦, and the resolution of the egocentric video was 640×480
[pixels]. EMR-9 also had two eye cameras and two infrared light sources, and recorded
the ground-truth gaze points on the egocentric video at 240 [Hz].
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Scene camera

Eye camerasEye cameras

IR light sourcesIR light sources

(a) (b)

Fig. 6. (a) Mobile gaze tracker employed in experiments. Scene camera is installed and it captures
egocentric video of subject at 30 [Hz]. Two eye-cameras and two infrared light sources can record
ground-truth gaze points on egocentric video at 240 [Hz]. (b) Example frame of egocentric video.
Horizontal field of view of scene camera was 121◦ , and resolution of egocentric video was 640×
480 [pixels].

Egocentric videos and gaze points of five test subjects were recorded under three
different settings in which the subjects were: seated indoors, walking indoors, and
walking outdoors. Free head movements were allowed in all the settings. Fig. 6(b)
shows some examples of the recorded scenes. After rejecting frames with unreliable
gaze data caused by actions such as blinking and fast eye movements, the same number
of 8, 000 gaze points was selected in each of the 5 × 3 datasets we used for
evaluation.

3.2 Results

To assess how accurately the attention maps predicted a persons’ visual attention, we
analyzed the correspondence between the maps and the ground-truth gaze points. Fig. 7
shows the ROC curves of the attention maps generated by our framework that were
drawn by sweeping the threshold value across all maps. The vertical axis indicates true
positive rates, i.e., the rates of gaze points that have higher values than the threshold
in the corresponding maps. The horizontal axis indicates false positive rates, i.e., rates
of map regions without gaze points that have higher values than the threshold. There-
fore, this indicates that the maps can predict gaze points more accurately if the curve
approaches the top-left corner.

The area under the curve (AUC) values of the ROC curves are listed in Table 1, where
results using a simple centering bias map (centering) have also been listed in addition to
the maps (saliency, rotation, and translation) discussed above. It can be seen from these
results that our proposed framework can predict actual gaze points more accurately than
the standard visual saliency maps and the centering bias maps in egocentric videos. The
combination of the visual saliency map and the rotation-based attention map achieved
the highest AUC, and thus the highest accuracy.
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True Positive Rate

False Positive Rate

All
Saliency + Rotation
Saliency + Translation
Saliency

(a) Seated indoors

 

 
True Positive Rate

False Positive Rate

All
Saliency + Rotation
Saliency + Translation
Saliency

(b) Walking indoors
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(c) Walking outdoors
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Fig. 7. ROC curves of attention maps. Curves were drawn by sweeping threshold value across all
maps in four datasets ((a) seated indoors, (b) walking indoorsC(c) walking outdoors, and (d) all
combined). Vertical axis indicates true positive rates, i.e., rates of gaze points that have higher
value than threshold in corresponding maps. Horizontal axis indicates false positive rates, i.e.,
rates of map regions without gaze points that have higher value than threshold.
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Table 1. Prediction accuracy of attention maps. Each row lists area under curve (AUC) values of
ROC curves using bottom-up visual saliency maps (saliency), rotation-based attention maps (ro-
tation), translation-based attention maps (translation), centering bias maps (centering) and their
combinations.

Method AUC

Proposed (saliency + rotation) 0.900

Proposed (saliency + translation) 0.841

Proposed (saliency + rotation + translation) 0.893

Saliency 0.809

Rotation 0.892

Centering 0.884

Saliency + centering 0.890

4 Conclusion

We proposed a framework for computing human visual attention maps based on bottom-
up visual saliency and egomotion. Rotation-based and translation-based attention maps
were generated only using egocentric videos without requiring additional sensors. The
effect of using egomotion-based maps was quantitatively evaluated using real egocen-
tric videos, and we demonstrated that the combination of visual saliency maps and
rotation-based attention maps could achieve the most accurate predictions of human
attention.

Attention prediction using our framework can be done just by using egocentric videos.
This has widespread possibilities for applications including casual gaze trackers and
attention-based life-log systems. More sophisticated mechanisms for human egocentric
visual perception will be investigated in future work to achieve more accurate prediction
of visual attention.
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Abstract. This paper introduces a process where fusion features assist
matching scale invariant feature transform (SIFT) image features from
high contrast scenes. FAW defines the order for extracting features: fea-
tures, alignment then weighting. The process uses three quality measures
to select features from a series of differently exposed images and select a
subset of the features in favour of those areas that are defined as well ex-
posed from the different images. The results show an advantage in using
these features over features extracted from the common alternative tech-
niques of exposure fusion and tone mapping which extract the features
as AWF; alignment, weighting then features. This paper also shows that
the process allows for a more robust response when using misaligned or
stereoscopic image sets.

Keywords: feature fusion, SIFT, HDR, LDR, tone mapping, exposure
fusion, stereo.

1 Introduction

Feature matching is a common computer vision application. In high contrast
lighting conditions it can be difficult to extract features in all areas of a scene
with a single exposure image as areas can be over or under exposed. As such, vital
information about a scene can be missed. The problem that this paper solves is
how to best utilise multiple exposure images to match features in scenes with
a large dynamic range. The main contribution of this paper is a feature fusion
process using the scale invariant feature transform (SIFT) within sets of images
taken of the same scene with varied exposures. These features cover a larger
dynamic range in a scene and are extracted in a way which improves match
accuracy when compared to extracting features directly from high dynamic range
image types. FAW defines the recommended order for extracting fusion features;
Features extraction, image Alignment then pixel Weighting. This is opposed to
AWF, the order for generating tone mapped and exposure fusion images and
extracting featrues from them; Alignment of the images, pixel Weighting and
image merging and then Features extraction.

The concept is based on exposure fusion [14,15] and its purpose is to create
an improved set of features which represent a higher dynamic range then a
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set of features extracted from a single image. A key component is that areas
which contain information unseen in one exposure can utilise the features from a
differently exposed image. The process selects from the best exposed areas of each
exposure image using three different measures given in Sect. 2. This generates
a new set of features which cover a larger dynamic range. This process can be
applied to aligned images, as with exposure fusion, but can also be extended to
misaligned and stereoscopic images as shown in Sect. 3.

1.1 Scale Invariant Feature Transform

The SIFT feature detection algorithm, developed by David Lowe [9,10], is a four
stage process that extracts highly descriptive features from an image. The fea-
tures are invariant to rotation and robust to changes in scale, illumination, noise
and small changes in viewpoints. The features can be used to indicate if there
is any correspondence between areas. The four stages of the SIFT algorithm are
as follows:

1. Scale-space extrema detection. 2. Feature localisation and selection.
3.Orientation assignment of features. 4. Creation of the descriptor vector.

To match features the Euclidean distance between two feature vectors is used to
find the nearest neighbour. The ratio between the best and second best match
is used to confirm a match.

1.2 High Dynamic Range Images

Dynamic range is the ratio between the brightest and darkest pixels in a scene.
High dynamic range (HDR) images often consist of three 32-bit floating point
numbers [17], one per channel, whereas low dynamic range (LDR) images use
8-bits per channel. Data outside the range is truncated to the nearest value so
information may be lost. For LDR photography an exposure must be selected to
attempt to capture the most important information within the limited dynamic
range of the camera which is not always possible. In terms of SIFT features, it
has been shown [12] that extracting the information from the dark and bright
areas as well means that there is a higher likelihood of locating the object of
interest due to the higher number of stable features available.

HDR images are generally generated from multiple bracketed LDR images
of the same scene taken in quick succession at different exposures [1,11]. The
response function of the camera is computed, which maps the pixel value stored
in an image to the radiance in a scene. Using this and a weighting function,
which reduces the contribution of points at the edges of the dynamic range of
the LDR image, a HDR image can be created. The HDR image contains the best
exposed areas displaying high detail from the most appropriate LDR images.

1.3 Tone Mapping

It is impossible to display HDR images on most displays as the dynamic range of
the average monitor is only 2 orders of magnitude [17]. Tone-mapping has been
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developed to convert a HDR image into an 8-bit LDR format so that they can
be viewed on a conventional display.

Techniques have been proposed for both global and local tone mapping. Global
operators apply a uniform remapping of the pixel intensity values to compress
the dynamic range [2,3,7]. They can be faster than local operators but can fail
to produce a visually pleasing image due to their inability to take account the
varying responses to the algorithm on different parts of an image.

Local tone mapping algorithms [4,5,8,18,16,21,22] work by reducing the gra-
dient magnitude in the areas of high gradient while preserving the areas of low
gradient. The human visual system is insensitive to absolute brightness but re-
sponds to local contrast, meaning that global differences in brightness can be
reduced so long as the darker parts of the image remain darker and the brighter
parts remain brighter. These methods can preserve more detail but sometimes
result in unrealistic final images.

1.4 Exposure Fusion

Exposure fusion [14,15,19] is a technique for fusing a bracketed exposure sequence
into a high-quality, tone-map like image, without converting to HDR first. Its
advantages over tone mapping include the fact that no HDR image needs to be
computed often making the process faster and simpler. Also the process is more
robust as the exposure values are not needed and a flash can be used with the
camera.

The process uses weighted averages of the images where the weightings are cal-
culated based on certain properties of the image; Contrast, saturation and well-
exposedness (see Sect. 2). These are each weighted, combined and normalised
and then used to calculate a weighted average of the exposure images’ pixels to
create a fusion image.

Multi-resolution fusion [14,15] is a continuation of this technique to reduce the
appearance of seams in the final image. Each of the input images is decomposed
into a Laplacian pyramid and the corresponding weight map is decomposed into
a Gaussian pyramid. The Laplacian pyramid of the fusion image is determined
by the weighted average of the input Laplacian pyramid, where the weights
are given by the corresponding scale in the Gaussian weight map. Finally the
fused output image can be reconstructed from its Laplacian pyramid by using
an inverse transform.

2 Fusion Feature Selection

The process of selecting fusion features utilises the main measures of exposure
fusion [14,15]. A set of images of varying exposures are taken and for each of
these images a set of features are extracted using SIFT as shown in Fig. 1.
These features are then used to accurately align the images using RANSAC
[20]. The feature locations are also transformed to match the transformation
of the images. For each pixel in the aligned images weightings are generated



292 M. May, M. Turner, and T. Morris

Fig. 1. An example of two aligned input images taken at different exposures. The
arrows represent the scale, orientation and position of the SIFT features. The bounding
box in each shows the areas within which SIFT features have been matched between
the images using RANSAC during the alignment process [20].

using some or all of the three measures outlined below. The weightings for each
pixel indicate the exposure image in which each pixel is best exposed. This is
then used to select which features are added to the set of fusion features using
a Gaussian weighting at the scale and radius of the feature. FAW defines this
order; Features extraction, image Alignment and then pixel Weighting. This is
opposed to AWF; Alignment of the images, pixel Weighting and merging the
images and then Features extraction. This is used for matching tone mapping
and exposure fusion images. This process has been briefly outlined previously
by May et al. [12] using only the contrast measure (C).

Contrast Measure C: The gradient magnitude m (x, y) is calculated across
the image, F , for each greyscale pixel location:

m (x, y) =
√

(F (x + 1, y) − F (x − 1, y))2 + (F (x, y + 1) − F (x, y − 1))2 (1)

This gives larger values for textured areas and this indicates if an area of the
image is well exposed as over or under exposed areas will have small gradient
values. Using the absolute values returned by a Laplacian filter as suggested by
the Mertens et al. [14,15] has been replaced by the gradient magnitude. Using
a zero crossing, second derivative, function to calculate the weighting means
that the edge peaks will return a value of zero. Thus, two edges, one with a
large magnitude and one which is much smaller in magnitude will both have a
value of 0 at their apex and a weighting based on this will weight both pixel
values equally. If they are slightly misaligned then one edge pixel will get the full
weighting in its favour at a point when the other image may have larger edge. A
first derivative function returning the gradient magnitude allows edge gradients
values to be compared and weighted accordingly.

Satuaration Measure S: As an image is exposed for a longer period of time it
becomes desaturated. The less saturated the image, the more washed-out it ap-
pears until finally, when saturation is at zero, the image becomes a monochrome



FAW for Multi-exposure Fusion Feature Extraction 293

or greyscale image. This is used as another measure of how well exposed the
image is. The standard deviation of the three RGB values is calculated at each
pixel to generate this measure.

Well-Exposedness Measure E: This is a measure to weight the value based
on its closeness to the maximum or minimum pixel values. Well exposed parts of
an image will consist of pixel values close to 0.5 and as values get closer to zero
or one they indicate under and over exposed areas. A Gaussian function is used
to calculate a weighting w for each colour channel intensity i independently at
each pixel and the values are multiplied to generate the final weighting E. A σ
value of 0.2 is used as suggested by Mertens et al. [14].

w = exp
(
− (i − 0.5)2

2σ2

)
(2)

Fig. 2. The normalised weightings generated from the exposure measures for the images
in Fig 1. Darker values indicate a higher weighting and indicate the areas from each
image which are better exposed.

A subset of all of the image measures can be used to select a preferred set
of features. If more than one measure is used they are combined by multiplying
and each can be weighted to vary the effect of each measure. For this paper all
three measures are used and weighted equally. Each aligned exposure image will
then have its own set of pixel value weightings. The weighting are normalised to
the range of 0 to 1 for the corresponding pixels in each exposure image as shown
in Fig. 2.

To select the features for the final set the weightings at each feature location
are used. Only the features from the best exposed locations will be preserved.
The selection takes place over the area and scale that the feature was originally
extracted. At each location at the scale of the feature, σ is used to calculate an
approximate radius of the feature; 6σ [10]. A Gaussian weighting of that radius
and with a standard deviation corresponding to the scale of the feature σ is then
applied to the weights centred on the feature position. The resultant values are
summed across the total feature area and used to select the feature. A feature
is selected if the summed value is greater than that for the same location in all
the other images. The final set of features is shown in Fig. 3.
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Fig. 3. The set of fusion features displayed on a rough exposure fusion image on the
left and on a binary fusion image on the right. The binary image shows which areas
are best exposed in each image and relate to the feature colours used in Fig. 1. The
yellow arrows indicate features selected from image 1 and the turquoise features are
selected from image 2. The blue and green arrows are from the features which match
between the images and have been blended for the final feature set.

2.1 Feature Blending

The image alignment process uses RANSAC [20] to register matched features
and calculate a transform to align the images. The features which are successfully
aligned between images can be merged for the final fusion feature set by averaging
their vectors as they both must be in well exposed areas for them to match. The
alternative is to treat these features like any other and select one based on their
weightings.

2.2 Evaluation

The scenario for testing the feature fusion process is as follows:
A high contrast scene is obtained by using a spotlight in a darkened room or

locating an area of shadow. Two aligned exposures of the scene are captured,
each exposed correctly for the different parts of the scene. A third, target image,
is captured. This is done by taking a picture of the scene after the scene lighting
has been changed by turning on a larger brighter light source (the camera flash
or ceiling light) which allows the whole scene to be captured in a single LDR
exposure. Neither exposure image will match to all of the areas of the target
image but a high dynamic range image created from both images should. This
scenario relates to a real world scenario in which a well-lit target image has been
captured under controlled circumstances and an attempt is being made to locate
an object or scene where the dynamic range is large.

The two exposure images are used to create a tone mapped image using De-
vlin’s [4] and Reinhard’s [16] techniques and an exposure fusion [14] image is
also generated as shown in Fig. 4. If the exposure images are misaligned they
are aligned first to get the best possible results [20]. A set of SIFT features are
extracted from each resultant HDR representation. These processes represents
the AWF paradigm as they are ordered; alignment, weighting and then features.
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(a) Exposure image 1 (b) Exposure image 2 (c) Target Image

(d) Tone Map (e) Exposure Fusion

Fig. 4. Example set of high contrast images used for testing

(a) Exposure image 1 (330) (b) Exposure image 2 (297) (c) Fusion features (442)

Fig. 5. Feature matching examples represented by the parallel lines. The number in
brackets gives the number of matches. Note that there are more fusion features matches.

The two exposure images are used to create a set of fusion features. The three
sets of features are matched to the target image using the nearest and second
nearest neighbour technique described by Lowe [10]. All the features from both
LDR exposure images are also matched for comparison as shown in Fig. 5.

2.3 Results

Thirty one aligned exposure pairs were used and Tab. 1 shows the average results
of matching to the target images. They show that fusion features perform better
than the synthetic images generated from exposure fusion and tone mapping in
high contrast scenarios. FAW has an advantage over AWF.

For the aligned image tests Tab. 1 shows that a higher percentage of the
features match from the fusion feature set. The correspondence ratio [13] is 40%

Table 1. The mean results for 31 test exposure image pairs showing the num-
ber of features extracted, the matched features and the correspondence ratio
(number of matches/total features) [13].

Fusion Features Tone Map Exposure Fusion All Features
Total Features 1165 1848 1690 2470

Matched Features 170 138 183 302
Correspondence Ratio 0.14 0.08 0.10 0.12
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greater than for exposure fusion, 75% greater than for tone mapping and 16%
greater than if all the features are matched. The correspondence ratio provides a
good indication of whether the images match well. Using the number of matched
features as an indicator is unreliable as one image may have more matches but
if it has a higher number of total features then there is an increased chance of
false positives.

The results show that the feature set for feature fusion is generally smaller and
there are fewer superfluous features. Exposure fusion generates, on average, 45%
more features but only generates 8% more feature matches therefore the extra
features provide little advantage. Of the 31 test cases the exposure fusion had
the highest correspondence ratio in 23 cases, the tone mapped images in 4 cases
and the exposure fusion images in 3 cases. In 1 case matching was unsuccessful
in matching any features for all three feature types.

3 Stereo Fusion Features

Stereoscopic systems are common in computer vision applications. To utilise
this and extend the dynamic range of such systems it is proposed that the two
cameras have different exposures values (EVs) resulting in a lower quality 3D
reconstruction but increasing the dynamic range for feature matching. This may
be preferable in some circumstances where an increased feature matching range is
desirable over high quality 3D. Stereo fusion features is the process of generating
fusion features from misaligned stereo images of varied exposure.

When using stereo images to create tone maps often, after warping, the images
do not align correctly. This is due to the absence of a homography which will
correctly warp all areas of the image and leads to ghosting and edge effects
which means that features extracted from a synthetic image generated from
these pairs may contain erroneous features. Fig. 6 demonstrates the problem.
Since the fusion feature process doesn’t generate new images or features this
problem is negated.

A compromise can be made between good 3D and good HDR images by
varying the exposure difference and baseline of the stereo images. A stereo pair
with a small baseline will generate a poor 3D representation but will allow the

Fig. 6. A pair of stereo images at 10◦ and a 2 EV difference, the second is warped to
align with the first. The tone map image generated on the right hand side demonstrates
the ghosting and other artefacts generated by tone mapping stereo images. Selecting
SIFT features directly from the tone map can therefore generate unreliable features.



FAW for Multi-exposure Fusion Feature Extraction 297

images to more easily registered for HDR. A large baseline has the opposite
effect. The exposure difference between the stereo cameras has an effect as a
large difference will make the dynamic range of the features increase but make
it more difficult to match features between the images. This is shown in Fig. 7.

Fig. 7. A graph showing the number of feature that are used to create a set of 3D points
from stereo pairs at various angles and exposures. The exposure axis values represent
the change in EV between the image pair. The data has been generated from 12 pairs
of images, similar to those in Fig. 8, using Bundler [6]. As the exposure and angle
difference increases the number of features that can be matched to create the cloud
decrease. This demonstrates the trade-off between the number of reliable 3D features
and the dynamic range captured.

Bundler [6], a structure from motion tool which utilises bundle adjustment,
can be used to generate a 3D model of the features and indicate which features
can be aligned, Fig. 8. This subset can be used for the projective transformation
from one image to the other. If the 3D data is not required RANSAC alone
[20] can be used for alignment as in the initial example. The second image
is transformed to align with the first. Features which can be aligned with an
projective transformation are surrounded by a bounding box, Fig. 8, and features

Fig. 8. The set of features selected from two stereo input images in Fig. 6. A lower
quality 3D point cloud is generated than if the EV values were the same but the
dynamic range of the feature set is higher. Features have been selected from the second
image on the toe area of the shoe which is over exposed in the first image because of
the light shining on it.
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outside this area may be inaccurate. This area decreases as the EV or baseline
increase. The fusion features process is then completed as before. The features
produced using stereo images will provide information about the presence of that
object in a scene. Features outside the bounding box are unreliable in their exact
location due to the lack of an projective transformation which will accurately
transform all the feature locations from the second image to the first. Localisation
can then rely solely on the features which match from the first image and those
within the aligned area.

3.1 Results

The evaluation has been conducted in a similar manner to the standard fusion
feature tests. A set of twenty eight stereo images have been used are the full set
of images shown in Fig. 6. They consist of the stereo pairs taken at measured
exposures and angles. The second image and its feature positions are warped
to best align to the first before exposure fusion takes place. The results are
shown in Fig. 9. In all cases the greater correspondence ratio [13] for feature
fusion demonstrates the advantages over the exposure fusion and tone mapped
techniques.

4 Analysis

The results clearly show the advantages of using the fusion features and FAW
over the synthetic images and AWF for these test cases. This is due to the arte-
facts, compression and changes in luminance which occurs when the synthetic
images are created. Any slight misalignment can affect the resultant SIFT fea-
tures whereas the fusion features are more robust to these errors. The fact that

Fig. 9. A graph showing the correspondence ratio (number of matches/total features)
for fusion features and features extracted from exposure fusion images generated from
28 pairs of stereo images. The x-axis shows the stereo pair disparity in degrees (plus
or minus refers to left or right of the first image) and the EV of the two images. The
features are all matched to a single target image taken at 0◦ and 0 EV at approximately
1 foot away from the shoe. The images used are the same as those used for Fig. 7 and
resemble those shown in Fig. 6.
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the fusion feature process relies on features which have been extracted from
scene images with fewer processing stages. The weighted pixel averaging that
takes place in the exposure fusion and tone mapping processes effects the qual-
ity of the pixel values as poorly exposed areas can still negatively affect the final,
average, pixel values.

The difference between the feature fusion and other results for the stereo test
cases is because of the substantial ghosting effects which are exaggerated as the
stereo baseline is increased. The advantage of the stereo tests is more useful
in the lower baseline examples where the images align well with an projective
transformation and as such the use of the feature fusion technique is valid. As the
angle increases the 3D object cannot be satisfactorily aligned with a projective
transformation and as such aligned areas of the images which represent the same
positions in space become smaller thus the fusion feature technique becomes less
reliable. As such the area from which fusion features are selected can be limited
to a bounding box.

5 Conclusion

The process introduced in this paper allows sets of features to be generated
which allow matching to take place in high contrast environments. This is ad-
vantageous as it allows objects to be detected using features which may otherwise
be hidden in a single exposure image. The performance advantage of using the
fusion feature technique has been demonstrated over extracting features from
exposure fusion or tone mapped images. This is due to the artefacts and changes
that are introduced to these synthetic images which create features which do not
always match to features taken from images captured directly from a scene. The
advantages of FAW over AWF are clear as FAW reduces artefacts introduced in
the image processing stages.

Other advantages of using the process include the robustness to misaligned
3D images at small changes for non-projective scenes. Misaligned images will
make noisy tone maps and exposure images but using the fusion as a way of
selecting features is better than trying to generate new ones. The process gener-
ates a subset of the total features and generally generates fewer features then the
synthetic techniques so faster matching can take place. Fusion features doesn’t
require a HDR image to be generated therefore doesn’t require as many, resource
consuming, intermediate steps.

Future work will include comparison to other tone mapping operators and
testing other combinations of fusion feature quality measures.
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Abstract. In this paper, we propose an efficient stereo image rectification 
method using the horizontal baseline. Since the stereo camera is generally 
manually arranged, there are geometric errors due to the camera misalignment 
and the differences between the camera internal characteristics. Although the 
conventional calibration-based stereo image rectification method is simple, it 
has an opportunity to provide the results that have some visual distortion such 
as image skewness. Therefore, the proposed method calculates the baseline for 
stereo image rectification, which is parallel to the horizontal line in the real 
world. Using this baseline, we estimate the camera parameters and the 
rectification transform. By applying the transform to the original images, we 
obtain the rectified stereo images. Experimental results show that the results of 
the proposed method provide the better rectified stereo image without visual 
distortion. 

Keywords: Image rectification, stereo image, stereo camera, 3DTV. 

1   Introduction 

Three-dimensional (3D) TV provides us more realistic video contents than the current 
two-dimensional (2D) television broadcasting. Since the input signal of 3DTV is 
composed of more than single viewpoint images or videos, users can watch the scene 
with immersive feeling. In recent years, much research on 3DTV and 3D content 
generation has been investigated to satisfy the increasing demands for realistic multi-
media services in the world [1]. 

In order to generate 3D contents for 3DTV, at least two view images are required 
basically. Two cameras, called the stereo camera, capture a 3D scene or object in the 
real world from two different positions. Users watch this stereo image with 3D sense 
with stereoscopic displays. Moreover, from this stereo image, we can estimate the 
scene’s depth information using stereo matching [2], and also generate novel view 
images based on the depth. 

However, there is a constraint to use stereo images for 3D applications. Two image 
planes of the stereo camera determine their epipolar geometry that satisfies the 
epipolar constraint between two images. Epipolar constraint is that a point in one 
image has its corresponding points in the other image along an epipolar line. 
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rectified stereo image based on the baseline. Finally, we obtain the rectified stereo 
image by applying the rectification transform to the captured images. This transform 
is computed using both of the original and estimated camera parameters. 

 

Fig. 3. Procedure of the proposed method 

3.1   Baseline Calculation 

After obtaining camera the parameters by camera calibration, we calculate the baseline. 
Baseline calculation begins with the initial line which is obtained by connecting the 
two camera centers. From this initial line, we can calculate the baseline. The baseline 
must satisfy the following two conditions. First, this baseline and the initial line are on 
the same plane that has its normal vector as the direction of the new principal axis. 
The new principal axis is determined as the direction orthogonal to both of the initial 
line and the average direction of all the original vertical axes. It means that the 
baseline can preserve the orientation of the camera array which is obtained based on 
camera positions. 

The second condition is that the baseline is parallel to the horizontal line in the real 
world. It guarantees that the rectified stereo image according to this baseline does not 
have the skew problem. In order to obtain such a baseline, we use a line image 
projection algorithm that requires an image containing a short and non-tilted line like 
Fig. 4(a). Through the line image projection, we can measure the slope of the initial 
line, and then we can calculate a suitable correction vector to make the baseline 
parallel to the real horizontal line. 

 

Fig. 4. Line image projection 
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In order to measure the slope of the initial line, we assume that the line image is 
left of the stereo view. We then project this image so that the horizontal axis of the 
image plane is parallel to the initial line. As a result, the projected image has the line 
tilted as the slope of the initial line as indicated in Fig. 4(b). We can measure the slope 
of this line by counting the number of pixels between the start-point and the end-point 
of the line. This measured value means the slope of the initial line. 

After measuring the slope of the initial line, we need a correction vector to obtain 
the baseline that satisfies the second condition. Figure 5 shows how to calculate the 
correction vector. The cross product between the new principal axis and the initial 
line vector makes the orthogonal vector. The correction vector is then calculated as 
the sum of the initial line vector and the orthogonal vector. 

 

Fig. 5. Correction vector calculation 

 

Fig. 6. Baseline calculation 

In order to calculate the baseline, we measure the slope of the correction vector. By 
using the line image projection again, the projected image in accordance with the 
correction vector has an opposite slope to the initial line like Fig. 4(c). Finally, we can 
calculate the baseline which is parallel to the real horizontal line by summing the 
initial line vector and the correction vector with a proper scale factor. Let i and c be  
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the slopes of the initial line vector and the correction vector, respectively. The scale 
factor s is defined as the ratio of i and c. The baseline vector  is then calculated as 
Eq. 1 where  and  mean the initial line vector and the correction vector, 
respectively. Figure 4(d) shows the baseline that is parallel to the real horizontal line. 
This process is indicated in Fig. 6. 

(1)

3.2   Camera Parameter Estimation 

After calculating the baseline, we estimate the rectified camera parameters. We firstly 
find the new camera centers. In the proposed method, the left camera center is 
considered as the reference and we estimate the new camera center of the right 
camera. Then the new camera center of the right camera is defined as a point that is 
apart with the user-input camera distance along the direction of the baseline. 

After that, we consider the camera rotation matrices. We estimate each camera 
rotation matrix that satisfies the following conditions. The horizontal axis of every 
image plane becomes parallel to the baseline vector. All the principal axes are defined 
in common as the direction perpendicular to both of the baseline vector and the 
average of all the original vertical axes. Then, the vertical axis of each image plane is 
orthogonal to both of the new principal axis and the baseline vector. Thus, the rotation 
matrix for the rectified stereo camera R’ has the form shown in Eq. 2, where  and 

 mean the directions of the baseline vector and the average of all the original 
vertical axes, respectively. 

 

(2)

Then, we estimate the common camera intrinsic parameters. The focal length and the 
principal point are obtained as the averages of their original values, respectively. The 
same focal length of each camera makes all image planes coplanar. There are also 
uniform horizontal displacement between corresponding points and few vertical 
mismatches in pixels between corresponding points due to the same principal point of 
each camera. Finally, we obtain the rectified camera projection matrices which are 
composed of the estimated camera parameters like Eq. 3. 

 
(3)
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Abstract. Mosaicing is a classical application of image registration
where images from the same scene are stitched together to generate a
larger seamless image. This paper presents a real-time incremental mo-
saicing method that generates 2D mosaics by stitching video key-frames
as soon as they are detected. The contributions are three-fold: (1) we
propose a “fast” key-frame selection procedure based solely on the dis-
tribution of the distance of matched feature descriptors. This procedure
automatically selects key-frames that are used to expand the mosaics
while achieving real-time performance; (2) we register key-frame images
by using a non-rigid deformation model in order to “smoothly” stitch im-
ages when scene transformations can not be expressed by homography:
(3) we add a new constraint on the non-rigid deformation model that
penalizes over-deformation in order to create “visually natural” mosaics.
The performance of the proposed method was validated by experiments
in non-controlled conditions and by comparison with the state-of-the-art
method.

Keywords: mosaic, non-rigid, registration, feature based, real-time.

1 Introduction

Mosaicing is a classical application of image registration. Typically, a set of
images is stitched together to simulate a camera with a larger field of view.
Real-time mosaicing can be useful for medical imaging, augmented reality, digital
camera panorama generation, etc. Online registration, i.e., stitching key-frames
as soon as they are detected, is necessary for real-time processing.

In this work, we propose a method of online mosaicing that can generate 2D
mosaics from video inputs acquired beyond homography assumptions. Classi-
cal mosaicing methods work under the assumption that the input images are
related to each other by homography (projective transformation). This assump-
tion holds true when the images are acquired under some limited conditions
(camera rotatation around its optical center or scene lying on a planar surface).
Unless these conditions are satisfied, the images can not be perfectly aligned by
registration and the results may be very poor. This problem may be alleviated
by the application of non-rigid registration [5].

Y.-S. Ho (Ed.): PSIVT 2011, Part I, LNCS 7087, pp. 311–322, 2011.
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A naive approach to online mosaicing is to register and stitch the current
key-frame into the previous key-frame. The process will accumulate registration
error, which will grow with each new image added to the sequence.

This paper presents a method which uses a very efficient feature based non-
rigid registration model in order to align images with high precision. At the
same time, the over-deformation of the mosaic is avoided during the online mo-
saic creation. These two objectives are achieved by formulating the registration
problem by enforcing smoothness while keeping the original proportions of the
captured frame. Additionally, in order to achieve real-time processing, the key-
frames are efficiently extracted from the video by a procedure which uses the
distance distribution of matched feature descriptors.

In Sect. 2, the related methods are presented. Section 3 presents the proposed
method. Section 4 shows the result of experimental validations. Finally, Sect. 5
shows the conclusions of this research and future research subjects.

2 Related Work

For the reader who is not familiar with mosaicing, Szeliski [13] presents a com-
prehensive tutorial about a variety of methods of registration and mosaic com-
position.

Since mosaic is a well studied area of computer vision, there are many ap-
proaches to 2D mosaicing. These works can be grouped in 3 classes: (1)
offline methods that use homography or lower degree transformations, (2) of-
fline methods that use higher degree transformations, and (3) online meth-
ods. The group (1) includes the works, [2,9,12,7], which are based on global
transformations such as homography. The group (2) includes the works [4,3],
which model the deformation as quadratic functions. The group (3), which is
the most related to the proposed method, includes the works of [6,10]. The
work in [6] uses 3D information for registering aerial images using a non real-
time algorithm. The method in [10] is online and avoids the problem of over
deformation by using fixed camera movements (e.g. translation, forward mo-
tion).

Although most of the presented works dealing with mosaicing make use of
global transformations such as homography, there are more general registration
methods that use non-rigid deformation. Some of them use feature based meth-
ods, e.g. [5,11,14]. Feature based methods are generally more computationally
efficient than area based methods [13], specially in the case of non-rigid reg-
istration. The method in [14] can register correctly pairs of images even in the
presence of a large ratio of outliers in real-time. However, this method is designed
for pairs of images only.

On top of the state of the art, the contributions of the proposed method
are: real-time performance, use of non-rigid registration, prevention of over-
deformation of the mosaic, and less restrictions on camera movement.
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3 Proposed Method

The mosaicing procedure consists of four steps: frame selection, feature match-
ing, registration, and mosaic displaying. The frame selection module reads the
input video and selects which key-frames will be used to create the mosaic. The
feature matching module matches the feature points in the newly selected frame
to the features in the previously selected frame. The pairwise registration module
receives the set of matched features and registers the newly selected frame into
the previously selected frame. The registered frame is then sent to the mosaic
creation module, where it is added to the mosaic and displayed. The procedure
is repeated again, until the end of the video. The modules are explained in more
details in the following sections.

3.1 Frame Selection

In order to create mosaics efficiently, only a small subset of the video frames
must be selected. This key-frame set must be as sparse as possible, to reduce
the number of registrations performed. At the same time, it must contain over-
lapping key-frames so that a mosaic can be composed out of them. To fulfill
these requirements, it is necessary to estimate the overlap of pairs of frames. To
do so, the following algorithm is proposed: (1) the features in both frames be-
ing compared are detected using SURF descriptors [1]); (2) the nearest-neighbor
matching of the features is computed; (3) a histogram of the matched descriptors
is computed; (4) the overlap measure (OM) is computed. The OM was defined
as follows:

OM(H) =
nBin∑
j=1

G ((j − 0.5)hsize, ς)Hj , (1)

where nBin is the number of bins in the histogram, hsize is the size of each
bin, (j − 0.5)hsize is the average range of the bin j, G is a Gaussian weighting
function with 0 mean and standard deviation ς. This weighting function assigns
larger weights to values near zero, and the weight decays quickly, so that the
bins which probably contain correct matches receive a larger weight than the
bins with wrong matches. So, using the OM, the key-frames are selected by the
following algorithm: (1) the first video frame is selected and used as reference;
(2) the next frame whose OM (comparing with the reference frame) is smaller
than a given threshold is selected and becomes the new reference. Step (2) is
repeated until the end of the video.

It was experimentally observed that the probability distribution of the de-
scriptor distances changes according to the intersection size between the image
pair. Fig. 1(a) shows two frames with a small overlap. The descriptor distance
has a bell-shape like distribution (fig. 1(b)). Fig. 1(c) shows two frames with a
larger overlap. The distribution becomes bimodal (fig. 1(d)). The smaller peak
represents the inliers among the matched features. Fig. 1 shows the variation of
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OM over time, in a video recorded by a translating camera. The value of OM
decreases as the intersection becomes smaller and rises again when a new frame
is selected.

(a) (b) (c) (d)

Fig. 1. (a): pair of frames with a large overlap; (b): pair of frames with a small overlap;
(c): histogram of the distance of matched descriptors; the blue bars represent pair (a)
and the red bars the pair (b); (d): variation of the overlap measure over time

3.2 Registration

This section explains the registration model used in the proposed method. Two
constraints must be met: the mosaic must be as seamless as possible and as
similar as possible to the original captured frame (i. e., over-deformation must
be avoided). For doing so, the proposed method applies a non-rigid deformation
model that uses triangle meshes and a registration algorithm that uses feature
points obtained by the frame selection procedure and pruned by RANSAC [8].

Deformation Model for Image Registration. A 2D mesh model is used
to implement the non-rigid transformations. Each vertex (or control point) vj is
represented by its coordinates (xj , yj). The entire mesh is written as S = (X, Y ),
where X is a vector containing the x coordinates of the control points and Y the
vector containing the y coordinates. The warp of any point p inside a mesh trian-
gle defined by the vertices vi, vj , and vk can be calculated using the barycentric
coordinates of p: w (p, S) =

∑
l∈{i,j,k} B (p, vl) [xl, yl]

T, where B (p, vl) is the
barycentric coordinate of p in relation to vl ∈ {vi, vj , vk} (computed in relation
to the identity mesh S0). Fig. 2 illustrates the basic principle of this kind of
transformation.

Problem Formulation. The initial model of pairwise non-rigid registration
was drawn from Zhu et al.’s work [14], which was based on Pilet et al.’s work
[11]. It is summarized by the equation below:

E (S) = EC (S) + λESm (S) , (2)

where EC is the correspondence energy function and ESm is the smoothness
energy. The constant λ balances the compromise between precision and mesh
smoothness. The registration is solved by finding the mesh S which minimizes
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(a) (b)

Fig. 2. Deformation using a mesh model: (a) shows the identity mesh, (b) shows the
mesh S warped to reduce the projection error of the matched features

E (S). The correspondence energy is proportional to the projection error of
warped features, while the smoothness energy measures the discontinuities on
S; this energy is important to remove outlier feature matchings. The initial for-
mulation described by (2) is suitable for pairwise image registration, however.
The registration of sequences of images poses some additional problems. If only
pairwise registration is used to align a sequence of images, over-deformation due
to error accumulation may occur (fig. 3).

(a) (b)

Fig. 3. Error accumulation using homography: (a) rendered mosaic , (b) projected
frame borders. The last frame is the most deformed.

To avoid error accumulation, a modified version of the previous energy func-
tion is presented. The new term, ERef(S−SRef) is named reference mesh energy.
The mesh SRef represents a model of how the mesh S should look like without
over-deformation. Alternatively, it is how the user of the mosaic system would
expect the image (warped by S) to look like. The constant μ regulates the ref-
erence mesh energy weight. The new formulation is presented below:

E′(S) = EC (S) + λESm (S) + μERef
(
S − SRef

)
. (3)

Correspondence Energy. The correspondence energy EC (S) is a function of
the projection error of the matched features. The matched feature set is rep-
resented by M . The matched feature pair c ∈ M is composed of two features
(c0, c1), where c0 is a feature found in the target image and c1 is its paired feature
found in the image being warped. The warp function w (c1, S). The function υ
is the same robust estimator used by Zhu et al.[14]. It is defined below:

EC (S) =
∑
c∈M

υ (c0 − w (c1, S) , σ) ; υ (δ, σ) =

⎧⎨⎩
||δ||2
σn if ||δ|| ≤ σ

σ2−n otherwise
(4)
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The function υ has two parameters: the projection error δ and the radius of
tolerance σ. The matches whose projection error are greater than the radius of
tolerance are considered outliers and penalized. The radius of tolerance σ dictates
which matched feature pairs will be considered outliers, conferring robustness to
the registration procedure.

Smoothness Energy. The correspondence energy, if used alone, is sensitive
to outliers among the matched features. A smoothness constraint is added to
the model in order to avoid this problem. The proposed method uses the same
smoothness constraint found in Zhu et al.[14] and Pilet et al.[11]. This energy is
the sum of the approximate second derivative of the mesh S. Let E be the set of
all collinear control points in S that define two adjacent edges. The smoothness
energy is defined below:

ESm(S) =
∑

i,j,k∈E

(−xi + 2xj − xk)2 + (−yi + 2yj − yk)2 = XTKX + Y TKY ,

(5)
where K = K ′TK ′, and K ′ is a matrix containing one row per triplet in E and
one column per mesh vertex. The row corresponding to the triplet (i, j, k) has
all of its values zero except by values in columns i, j, and k, that have values
−1, 2, and −1, respectively [11].

Reference Mesh Energy. The registration using the energy function in (2) is
only suited for pairwise registration, because registration error may accumulate,
as shown in fig. 3. The role of the reference mesh energy is to alleviate this
problem. This energy is proportional to the L2 distance between the mesh S
and the reference mesh SRef. The former is the registration solution and the
latter is an approximation of how S should be if it has no over-deformation. The
criteria selected to generate SRef was to make SRef look similar to the original
captured image. SRef is defined as the similarity transformation (i.e., rotation,
translation and scaling) that minimizes the correspondence energy. This mesh
can be computed efficiently by reducing the projection error using the similarity
transformations combined with RANSAC. The reference mesh energy is defined
below:

ERef
(
S − SRef

)
=

1
2
||S − SRef||2 . (6)

During the optimization process, the reference mesh energy is stronger in the
regions of the mesh S where there are no features. While the region with features
is deformed to minimize the projection error, the region without features is de-
formed by similarity transformations. These local differences in the deformation
are not possible for global registration models.

Optimization Routine. As pointed in [14], the projection error δ can be
written as a linear system. Given that: c0 = (c0x, c0y), c1 = (c1x, c1y):

||δ||2 =
(
c0x − tTx

)2 +
(
c0y − tTy

)2
, (7)
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where x and y are the coordinates of the mesh and tc1 ∈ RN is a vector (N is the
number of control points) representing the barycentric coordinates of the feature
point c1, which is inside the triangle defined by vi, vj , vk ∈ S0, (calculated in the
identity mesh). The vector tc1 has all its values 0, except in the coordinates i, j,
and k, where the barycentric coordinates of c1 in relation to vi, vj , and vk are
set, respectively. Using (5) and (6), the energy E′ (S) in (3) can be rewritten as:

E′ (S) = 1
σn

∑
c∈MInl

(
c2
0x + c2

0y − 2
[
c0xt
c0yt

]T
S + ST

[
ttT 0

0 ttT

]
S

)
+

|MOut|σ2−n + λ
(
XTKX + Y TKY

)
+ μ

2 ||S − SRef||2 ,

(8)

where MInl is the set of inlier matches, MOut is the set of outlier matches.
The following definitions are done for simplification: A = 1

σn

∑
c∈MInl

ttT, and

b =
[

bx

by

]
= 1

σn

∑
c∈MInl

[
c0xt
c0yt

]
. Computing the gradient of E′ and setting it to

zero, the mesh S can be found by solving a linear system:

S =
[

λK + A + μI 0
0 λK + A + μI

]−1 (
b + μSRef

)
. (9)

The optimization is repeated varying the value of σ, which decreases during
the optimization procedure. In the beginning, σ is large, allowing many possible
outliers to influence the result of the optimization process. However, since the
module of the derivative of the EC is small when σ is large, ESm and ERef
have a larger weight and they initially guide the optimization. As the value of σ
decreases, the weight ofEC increases, guiding the optimization to minimize the
projection error of the remaining inliers. In this way, this registration method is
robust to outliers. The process stops when σ is smaller than a given threshold.

In order to display the results, the mosaics are created by warping the regis-
tered frames one over the other. In order to avoid using regions without features,
that may have large registration errors, only the convex hull of the correctly
aligned feature points is warped.

4 Experiments

The objective of the experiments is to demonstrate four points: the proposed
method has a smaller projection error comparing to the classical approaches,
the mosaics created by the proposed method have less over-deformation, the
proposed method can run in real-time, and that the results obtained by the pro-
posed method are more robust than the results obtained by classical approaches
in the kind of video considered.

4.1 Experimental Setup

The project was run in a computer with Intel(R) Core(TM) i7 CPU (2.93 GHz)
and 4GB of RAM. The proposed method was implemented using the OpenCV
library. The parameter setting is presented in Table 1.
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Table 1. Parameter settings for the proposed method

Param. Value Description

ϑ 0.4 Frame selection threshold.

ς 1.0 Frame selection weight function std. deviation.

λ 10−6 Smoothness energy parameter.

μ 10−7 Reference mesh energy parameter.

n 4 Correspondence energy parameter.

σ0 32 Registration parameter; initial radius of tolerance.

σmin 3 Minimum radius of tolerance; i.e., projection error.

η 0.5 Radius of tolerance decay rate.

For the reference mesh computation, the precision of RANSAC is set to 99%
in the presence of 70% of outliers. The size of the mesh was 19 × 28 control
points. The videos used on the experiments had a resolution of 720× 480.

4.2 Registration Precision

This experiment presents the comparison between homography and non-rigid
transformations concerning precision by means of mean appearance error, de-
fined as the mean absolute difference between between all aligned pixels. The
experiments were conducted by registering of pairs of images. Fig. 4(a) shows
the results of the average error of pair-wise registration over different video se-
quences. Fig. 5 shows a detail of a pair of registered frames (the averaged image).
As can be seen, the results achieved by the registration method used by the pro-
posed method are always more precise than the results using homography. This
happens because the deformation field between the pairs of images can not be
precisely described by a global transformation like projection, since the displace-
ment field depends on the geometry of the scene.

(a) (b)

Fig. 4. (a): appearance error with homography and non-rigid transformations. The
error is measured as the mean absolute difference between pixel gray-scale values of
aligned pixels, in a set of videos. The red boxes show the results obtained by homogra-
phy, and the green boxes represent the results of the proposed method; (b): execution
time (seconds) in relation to number of control points.
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(a) (b) (c)

Fig. 5. Detail of a pair of registered frames, showing the average of the superposition
of the frames, aligned by: (a) shows the original frame from the video, (b) proposed
method and (c) homography

4.3 Over-Deformation Avoidance

This set of experiments compares mosaics done by the proposed method and
non-rigid registration as described by [14]. The comparisons are done regarding
over-deformation. Figure 6 shows the results. Both methods use the same set of
frames. As previously showed in fig. 3, using homography, the registration error
tends to build up and cause the frames to over-deform. When using only non-rigid
registration, without the reference mesh energy, error accumulation also happens,
even though the alignment error is small when compared to homography. The
proposed method, using the reference mesh energy, minimizes these amount of
over-deformation. This result may be achieved by related methods using bundle
adjustment, but the proposed method achieves the same by only doing pair-wise
registration.

(a) (b) (c)

Fig. 6. Mosaicing results, regarding overdeformation; (a) detail of the city model used
in the experiments, showing an expected undeformed frame; (b) shows the result ob-
tained by the proposed method; and (c) shows the results obtained using only non-rigid
registration without the reference mesh energy
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4.4 Comparison with a Standard Method

In this set of experiments, the proposed method was compared to a standard
method, implemented by Microsoft Image Composite Editor (ICE), version 1.3.5.
Using ICE, the user can choose different camera movements. The one which
yielded the best result was selected. The proposed method used the parameters
described in section 4.1. ICE and the proposed method used the same set of
key-frames. Fig. 7 shows the mosaic created from a video taken by a camera
moving over a city model. The results can be seen below.

(a) (b)

Fig. 7. Comparison between the proposed method and a standard method; (a) shows
the result of the proposed method; (b) shows the result of the standard method. The
proposed method created a more complete mosaic since it can handle more complex
camera movements.

Fig. 7(a) shows the results obtained by the proposed method. Fig. 7(b) shows
the results obtained by ICE. As can be seen, the results obtained by the proposed
method are more complete than the results given by ICE. This happens because
of the complex camera movement and the non-planar surface, which violate the
projection constraints used by ICE.

4.5 Computational Complexity

The current implementation of the proposed method runs in about 32 frames
per second with a tax of of 2 frames selected per second, what is reasonable for
videos where the camera movement is not excessively fast.

Each iteration of frame selection takes approximately 0.031 seconds, so the
frame rate is about 32 frames per second, enough for most videos. Fig. 4(b)
shows runtime regarding only the registration procedure. It was executed 10
times for each quantity of control points (the computation of the reference mesh
is included). As can be seen from the experiments, registration runtime grows
slowly. This happens because the implementation that uses sparse matrices to
represent the registration model. The runtime of the frame selection and mosaic
creation procedure were also computed. Using approximately 1000 triangles, the
registration can be done in about 3 frames per second. Regarding the mosaic
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creation, each frame takes on average 0.4 seconds to be added into the mosaic,
a tax of nearly 2 frames per second.

The conclusion is that the proposed method can run in real time, given the
conditions above. Further optimization on the method may be performed in the
future.

5 Conclusions and Future Work

This paper presented a new mosaicing technique based on feature based non-rigid
registration. The proposed method can be used to create mosaics of non-planar
surfaces in real-time. This model deals with the problem of over-deformation
using only pairwise registration, and creates mosaics with smaller alignment
error when comparing with standard approaches. For this purpose, the reference
mesh energy was presented. An efficient method of key-frame selection, created
to achieve real-time performance, was also presented. The proposed method
has some restrictions. First, since there is no bundle adjustment, the generated
mosaic is prone to error if a region of the scene is recorded twice (loop). This
will require efficient loop closing method able to run in real-time. The proposed
method also fails when sharp discontinuities in the optical flow are present, due
to the smoothness constraint. These limitations will be tackled in our future
research.
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Abstract. Sharpness enhancement and noise reduction play crucial roles
in computer vision and image processing. The problem is to enhance the
appearance and reduce the noise of the digital images without causing
halo artifacts. In this paper, we propose an adaptive guided image filtering
(AGF) able to perform halo-free edge slope enhancement and noise reduc-
tion simulaneously. The proposed method is developed based on guided
image filtering (GIF) and the shift-variant technique, part of adaptive bi-
lateral filtering (ABF). Experiments showed the results produced from our
method are superior to those produced from unsharp masking-based tech-
niques and comparable to ABF filtered output. Our proposed AGF out-
performs ABF in terms of computational complexity. It is implemented
using a fast and exact linear-time algorithm.

Keywords: Edge-preserving smoothing, guided image filter, sharpness
enhancement, noise reduction.

1 Introduction

Enhancing the sharpness and reducing the noise of the digital images have at-
tracted much interest during the last decades. These pre-processing techniques
play crucial roles in computer vision and image processing. However, how to si-
multaneously reduce noise and increase the slope of edges without creating halo
artifacts is still a challenging issue.

Conventional linear filter effectively smooths noise in homogeneous regions,
however, blurring the edges of an image. Conversely, edge-preserving smoothing
techniques only filter noise, while preserving edge structures. Existing techniques
that feasibly perform this kind of operation include anisotropic diffusion (AD)
[14], bilateral filtering (BLF) [17] and guided image filtering (GIF) [9]. However,
� This research was supported by the MKE (The Ministry of Knowledge Economy),

Korea, under the ITRC (Information Technology Research Center) support program
supervised by the NIPA (National IT Industry Promotion Agency)” (NIPA-2011-
(C1090-1121-0008)), and by Priority Research Centers Program through the Na-
tional Research Foundation of Korea (NRF) funded by the Ministry of Education,
Science and Technology(2011-0018397).

Y.-S. Ho (Ed.): PSIVT 2011, Part I, LNCS 7087, pp. 323–334, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://micro.skku.ac.kr


324 C.C. Pham, S.V.U. Ha, and J.W. Jeon

none of them can be directly applied to achieve sharpness enhancement and
noise reduction simultanenously, as is our stated goal.

Anisotropic diffusion is able to preserve and sharpen edges, but both noise
and fine details are unexpectedly removed due to its over-smooth characteristic.
Although BLF is widely used and has become the de facto standard for computer
vision and image processing, its ability to enhance the sharpness of an image is
limited. While GIF proposed in [9] outperforms BLF in a variety of computer
vision applications, it shares the same limitation as does BLF.

In terms of image sharpening, the unsharp masking technique (USM) is pop-
ularly used due to its simplicity. A high-pass filter (HPF) is applied to the input
image under the guidance of the unsharp mask, obtained by subtracting the in-
put image and its blurred version. Thus, the contrast along the edges is increased
in the sharpened output. However, as discussed in [3,10,19], USM has two major
drawbacks. First, the overshoot and undershoot artifacts occur around the edges
of the sharpened image due to the large boost of high contrast areas. Second,
HPF not only enhances the edges but also significantly amplifies the noise in the
input image. This reduces image quality.

Investigations have been conducted to improve these two limitations of USM
[3,10,15]. Especially, Kim et al. proposed the optimal unsharp mask (OUM) [10]
to reduce noise in the homogeneous regions, while achieving the equivalent level
of sharpness as USM does. The Laplacian of Gaussian (LoG) filter is used to
determine the locally adaptive optimal λ value, instead of a fixed λ for HPF.
However, the halo artifacts have not been overcome completely.

In summary, state-of-the-art edge-preserving smoothing techniques cannot be
used to achieve the goal directly, while unsharp masking-based approaches create
overshoot and undershoot artifacts during the sharpening process. In a notable
recent work, Zhang et al. [19] made use of the shift-variant technique to propose
an adaptive bilateral filter (ABF) able to enhance the sharpness and remove the
noise simultaneously. Unfortunately, the introduction of locally adaptive optimal
parameters make this approach infeasible to fully adapt with the existing BLF
acceleration schemes. It must be implemented using the two nested loops brute-
force approach, whose computational complexity is O(|w|2), where |w| is the size
of the filter kernel.

In this paper, we present adaptive guided image filtering (AGF) for image
sharpening and de-noising. Our proposed AGF method is based on GIF and the
shifting technique proposed in [19]. The optimal training parameters produced
from [19] are slightly modified and reused in our method to visually compare
to ABF and OUM. However, we will prove the participation of these adaptive
parameters does not corrupt the acceleration scheme of GIF - the O(N) time
exact algorithm can still be applied to achieve the speed up. Experiments show
the results produced from our method are superior to those produced from USM
and OUM and comparable to ABF filtered results.

The remainder of this paper is organized as follows. Section 2 presents the
connection between bilateral filter and guided image filter. Section 3 examines
the adaptive bilateral filter with the shift-variant technique and adaptive optimal
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parameters. Section 4 presents the adaptive guided image filtering using the
shift-variant technique. Section 5 presents the experimental results to compare
our method to methods from the literature. Finally, this paper is drawn to a
conclusion and future work outlined in Section 6.

2 Bilateral and Guided Image Filtering

In this section, we present the relationship between BLF and GIF in terms of
the filter kernel. These two edge-preserving smoothing techniques play a central
role in ABF and our proposed AGF.

2.1 Bilateral Filtering

As we briefly mentioned above, BLF is widely used due to its appealing char-
acteristics. The name bilateral filter was first termed in [17] based on the work
[1,16]. It is a non-iterative, non-linear filter that smooths low gradient regions,
while preserving strong edges. Each output pixel is computed as a weighted mean
of its neighbors. The weight is computed based on the spatial domain, like other
linear filters, and on the intensity range domain. Let Ip be the intensity value at
pixel p, wk be the kernel window centered at pixel k, BLF is given by:

BLF (I)p =
1∑

q∈wk

WBLFpq(I)

∑
q∈wk

WBLFpq(I)Iq (1)

where the division term normalizes the weights sum to 1 and the kernel weights
function WBLFpq(I) can be expressed by:

WBLFpq(I) = exp

(
−‖p − q‖2

2σ2
s

)
exp

(
−|Ip − Iq|2

2σ2
r

)
(2)

where the standard deviations parameters σs and σr control the decrement of
weights in the spatial and intensity range domains, respectively. Each domain
is represented by a Gaussian function. The spatial domain gives higher weight
to pixels closer to the center pixel, whilst lower weight is assigned to distant
pixels. Correspondingly, the same rule can be applied to the intensity range
domain. Higher or lower weight will be assigned to the pixels that are similar
to or different from the center pixel in terms of intensity value. The degree of
smoothing can be adjusted by changing the value of σr. In most applications, this
value must be sufficiently small to avoid filtering meaningful features, because
BLF becomes equivalent to the Gaussian filter when σr increases.

Excessive time consumption is one of BLF’s disadvantages, although it is
efficient to implement. The brute-force approach consists of two nested loops.
The computational complexity is O(|w|2), where |w| is the size of the spatial
domain. Studies have investigated reducing the time-taken [5,7,11,13]. The main
concepts of these acceleration schemes can be found in [12]. Notably, the fast
approximation approach proposed in [11] has been proved to be a very useful
technique. It has been applied to a variety of bilateral-based applications [12].



326 C.C. Pham, S.V.U. Ha, and J.W. Jeon

2.2 Guided Image Filtering

He et al. [9] proposed GIF to overcome the gradient reversal artifacts occurring,
using BLF in detail manipulation technique that is not mentioned in this paper.
Instead, we focus on its ability of edge-preserving and fast implementation. It
has been analyzed and proved that GIF shares the good edge-preserving charac-
teristic compared to BLF. Furthermore, its fast and exact linear-time algorithm
outperforms BLF in terms of computational complexity.

The filtering process of GIF is originally done under the guidance of an image
G that can be another image or the input image I itself. It is similar to the joint
bilateral filter [12] which is used to denoise the no-flash image I using the flash
image G. When I and G are identical, joint bilateral filter becomes bilateral
filter naturally. We first express GIF in terms of the filter kernel to establish the
connection between BLF and GIF. Let Ip and Gp be the intensity value at pixel
p of the input and guided image, wk be the kernel window centered at pixel k,
to be consistent with BLF. GIF is then formulated by:

GIF (I)p =
1∑

q∈wk

WGIFpq(G)

∑
q∈wk

WGIFpq(G)Iq (3)

where the kernel weights function WGIFpq(G) can be expressed by:

WGIFpq(G) =
1

|w|2
∑

k:(p,q)∈wk

(
1 +

(Gp − μk) (Gq − μk)
σ2

k + ε

)
(4)

where μk and σ2
k are the mean and variance of guided image G in local window

wk, |w| is the number of pixels in this window. The key to understanding the
edge-preserving ability of GIF lies in the term 1+[(Gp − μk) (Gq − μk)]

/(
σ2

k + ε
)

in this equation. When both Gp and Gq are concurrently on the same side of
an edge (smaller or larger than the mean), the weight assigned to pixel q is
large. Conversely, a small weight will be assigned to pixel q when they are on
different sides (one is smaller and one is larger than the mean). Some further
computations in [9] confirm the normalization term in equation (3) equals 1. The
filter kernel of GIF can be shortened as follows:

GIF (I)p =
∑

q∈wk

WGIFpq(G)Iq (5)

The degree of smoothing of GIF is adjusted via parameter ε. The larger the
value of ε is, the smoother the filtered image will be. It plays an equivalent role
to σr in BLF. Some further experiment and demonstration in [9] prove that BLF
and GIF yield approximately equivalent smoothing results, by setting ε = σ2

r

in the normalized [0; 1] intensity range value. Of course, the guided image G is
identical to the input image I in this relation. This property is crucial, because
it is going to be used to convert the optimal parameters of ABF to our proposed
AGF, as shown in Section 4.



AGF for Sharpness Enhancement and Noise Reduction 327

The O(N) exact algorithm of GIF is performed by applying a chain of box
filters using the O(N) time integral image technique [6]. The linear translation-
variant takes the place of the filter kernel (4) when computing this fast and exact
linear-time algorithm. We will discuss this issue in more detail in Section 4.2.

3 Adaptive Bilateral Filtering

In this section, we examine ABF for sharpness enhancement and noise removal.
We mainly focus on the shift-variant technique, because it will be applied to our
method. This method was proposed in [19] based on the work [18]. The main
differences of ABF compared to BLF is the introduction of the shifting technique
and locally adaptive optimal parameters. These modifications make ABF out-
performs conventional BLF in terms of image sharpening and de-noising. The
filter kernel and weighting function of ABF are expressed by:

ABF (I)p =
1∑

q∈wk

WABFpq(I)

∑
q∈wk

WABFpq(I)Iq (6)

WABFpq(I) = exp

(
−‖p − q‖2

2σ2
s

)
exp

(
−|(Ip + ξp) − Iq|2

2σ2
r

)
(7)

where ξp is the introduced offset that enables ABF to sharpen the image. The
näive strategy for choosing this value is guided by:

ξp =

⎧⎨⎩
MAX(wk) − Ip if Δp > 0
MIN(wk) − Ip if Δp < 0

0 if Δp = 0
(8)

where Δp = Ip − μk is the intensity difference between pixel p and the mean of
local window wk. While MAX(wk) and MIN(wk) are the maximum and minimum
values of local window wk, respectively.

This strategy is due to the histogram analysis, as shown in Fig. 1. For an
input image shown in Fig. 1(a), the histogram and 3-D visualization of its en-
larged window (Fig. 1(b)) are shown in Fig. 1(c) and 1(d), respectively. For the
conventional BLF, the intensity range domain normally computes the affinities
between the center pixel p and its neighbors q. This center value Ip is represented
by the dotted-red line in the histogram. Thus, the slope of the edge in the fil-
tered output is only just preserved, but not sharpened. The second row of Fig.
1 represents the corresponding conventional BLF output. In contrast, the edge
is extremely enhanced by applying ABF with the näive offset choosing strategy.
The center value Ip has been shifted to MAX(wk) (red line), because its intensity
value (dotted-red line) is larger than the mean μk (green line). However, as we
can see in the third row, the aliasing effect and unexpected outliers occur in the
sharpened output.

Zhang et al. proposed a more reliable strategy for choosing offset value to
overcome this problem. They estimated both the offset ξ and standard deviation
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(a) Input (b) Enlarged (c) Histogram (d) 3D Visualization

(e) BLF (f) Enlarged (g) Histogram (h) 3D Visualization

(i) Näive ABF (j) Enlarged (k) Histogram (l) 3D Visualization

Fig. 1. Illustration of the effect of ABF (σs = 1.0, σr = 20) with the näive offset
choosing strategy compared to conventional BLF (σs = 1.0, σr = 20)

σr of the intensity range domain via a training procedure. Given the N sets of
training images, where each set S consists of a high-quality original image I, a
degraded image J and its restored output Ĵ , the optimal parameters are obtained
by solving the following minimum mean squared error estimation problem:

{
ξ∗i , σ∗

r,i

}
= arg min

{ξi,σr,i}

N∑
n=1

∥∥∥In,p − Ĵn,p

∥∥∥2
S(n)

(9)

where i = 1, 2, . . . , T is the pixel classified number obtained by applying a 9× 9
Laplacian of Gaussian filter (LoG) with σLoG = 1.5. The resultant parameters
are locally adaptive, making ABF more robust. Zhang et al. [19] show how to
find these parameters; we refer the reader to their paper for further details.

The main concern when applying ABF with optimal parameters is the large
computational cost of its brute-force implementation. The standard deviation
σr must be fixed in order to accelerate it using the method [11]. Otherwise,
it will degrade the 3-D convolution model of method [11] when applying both
adaptive offset and standard deviation parameters. Our proposed AGF with the
use of these optimal parameters can achieve comparable results to ABF, while
still keeping the generality of the linear translation-variant of the GIF. That is,
the exact and linear-time algorithm is easily applied to achieve the acceleration.
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4 Proposed Adaptive Guided Image Filtering for Image
Sharpening and De-noising

4.1 Proposed Adaptive Guided Image Filtering

In this section, we present our proposed method using the shifting technique.
As we have seen when we analyzed the relationship between BLF and GIF in
terms of the filter kernel in Section 2, the main difference between them lies
in their weighting functions of the filter kernel, as shown in equation (2) and
(4). However, the intensity range domain of BLF and kernel function of GIF
are similar in principle, because each of them takes the intensity value of center
pixel p, local neighbors q and a smoothing parameter (σr in BLF, ε in GIF) in
the computation process.

This is based on the shifting technique of ABF, in which the offset ξp is added
to the intensity value of center pixel p in the intensity range domain of BLF.
The same strategy is applied to our proposed AGF - the offset is added to the
intensity value of center pixel p in the kernel weights function of GIF. Formally,
the filter kernel and weighting function of our proposed AGF are given by:

AGF (I)p =
∑

q∈wk

WAGFpq(G)Iq (10)

WAGFpq(G) =
1

|w|2
∑

k:(p,q)∈wk

(
1 +

((
Gp + ξ′p

)− μk

)
(Gq − μk)

σ2
k + ε

)
(11)

where ξ′p is the added offset and ε is the smoothing parameter. The näive offset
choosing strategy is also applied to our proposed AGF, as does ABF. That is:

ξ′p =

⎧⎨⎩
MAX(wk) − Gp if Δ′

p > 0
MIN(wk) − Gp if Δ′

p < 0
0 if Δ′

p = 0
(12)

where the intensity difference is defined by Δ′
p = Gp − μk.

The same histogram analysis is applied to GIF and our proposed AGF, as
shown in Fig. 2. GIF only preserves the edges during the smoothing process,
while the sharpened result produced from our proposed AGF with the näive
offset choosing strategy contains the aliasing effect and unexpected outliers, as
did näive ABF. In order to achieve the better result by applying the adaptive
optimal parameters produced from [19], the values of ε in AGF need to be
computed based on the corresponding optimal values of σr in ABF. In Section
2, we showed these two parameters can be converted by the following expression:

ε = σ2
r

/
255 (13)

where both ε and σr are in the range [0; 255] intensity value. Fig. 3 shows the
corresponding offset and converted epsilon values we will use in AGF. The offset
tends to be unchanged. However, to make sure the term Gp + ξ′p is still within
the range [MIN(wk); MAX(wk)], it is constrained by the following equation:
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(a) GIF (b) Enlarged (c) Histogram (d) 3D Visualization

(e) näive AGF (f) Enlarged (g) Histogram (h) 3D Visualization

Fig. 2. Illustration of the effect of our proposed AGF (ε = 1.5686) with the näive offset
choosing strategy compared to conventional GIF (ε = 1.5686)

(a) Offset ξ (b) Epsilon ε

Fig. 3. Optimal offset and converted epsilon correspoding to each LoG class

ξ′p =

⎧⎨⎩MAX(wk) − Gp if Ap > MAX(wk)
MIN(wk) − Gp if Ap < MIN(wk)

ξp otherwise
(14)

where ξp is the optimal offset obtained from [19] and Ap = Gp + ξp. It’s noted
that, each pixel p is classified by the corresponding LoG class number obtained
by applying a LoG filter. The rounded LoG class is limited within the range
[−60; 60] as does ABF.

4.2 Linear Transform Model of AGF

In this section, we present AGF in terms of the linear translation-variant, because
the O(N) time exact algorithm takes advantage of this model to implement it.
First, we will show the linear transform model of GIF, and then apply it to the
proposed AGF. As described in [9], the filtered output Î of GIF is represented
by a linear transform of guided image G within a local window wk centered at
pixel k as follows:

Îp = akGp + bk, ∀p ∈ wk (15)



AGF for Sharpness Enhancement and Noise Reduction 331

where ak and bk are constant linear coefficients determined by solving the opti-
mization problem that seeks to minimize the difference between the output and
input image. Formally, it is expressed by:

E(ak, b) =
∑

p∈wk

(
(akGp + bk − Ip)

2 + εka2
k

)
(16)

where εk is unchanged over the entire image. It controls the degree of smooth-
ing of GIF. These coefficients are formally determined using linear regression
method:

ak =
1
|w|
∑

p∈wk
GpIp − μk Īk

σ2
k + εk

(17)

bk = Īk − akμk (18)

where Īk is the mean of I in wk. To ensure the value of Îp does not vary when
computed in different windows, the final output is computed by:

Îp =

⎛⎝ 1
|w|
∑

k∈wp

ak

⎞⎠Gp +

⎛⎝ 1
|w|
∑

k∈wp

bk

⎞⎠ (19)

For our proposed AGF, the question is how to include the adaptive optimal
parameters into the linear transform-variant of the GIF. First, we can clearly
see the varying adaptive ε∗ obviously fits well to equation (17) when computing
linear coefficient ak. Second, the function

Îp =

⎛⎝ 1
|w|
∑

k∈wp

ak

⎞⎠(Gp + ξ′p
)

+

⎛⎝ 1
|w|
∑

k∈wp

bk

⎞⎠ (20)

is the linear transform model of AGF with the participation of the adaptive
offset. The appendix presented at the end of this paper shows the correspondence
between this linear transform model and its filter kernel expressed in equation
(10) and (11). Hence, the algorithm can be implemented by applying a chain of
box filters using O(N) integral image technique, as does GIF.

(a) Input text (b) USM (c) OUM (d) ABF (e) Our AGF

Fig. 4. Scanned text image rendered by our proposed AGF and existing methods.
Parameters are configured as follows: (b) USM: r = 5, λ = 4; (c) OUM: r = 5; (d)
ABF: r = 3, σs = 1.0, rLoG = 4; (e) AGF: r = 3, rLoG = 4.
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5 Experimental Results

We evaluate the performance of AGF and existing methods with a scanned text
image and the Lena image. The text image scanned at 600 dpi was obtained
from [19] and cropped due to space limitations. For the text image, as shown in
Fig. 4, the contrast of restored outputs produced from USM and OUM increase;
but visible halos occur around the edges. Conversely, restored texts produced
from ABF and our AGF do not suffer such artifacts, and the contrast is nearly
identical to that of the input image. For the Lena image, the difference between
these methods can be seen more clearly, as shown in Fig. 5. USM produces
visible halos around the edges, and the noise is also significantly enhanced. OUM
reduces noise but suffers from the artifacts. Both ABF and our AGF with the
use of optimal adaptive parameters effectively remove noise and significantly
enhance the sharpness. We used a PC with an AMD Athlon 64 X2 Dual Core
Processor 3800+ 2.00 Ghz to measure the processing time of both AGF and
ABF with a kernel radius r = 5. Our proposed AGF takes about 1.4s to process
a 1-megapixel gray-scale image, while the O(|w|2) time ABF [19] takes about
12.7s to process it.

(a) Input (b) USM (c) OUM (d) ABF (e) Our AGF

(f) Input (g) USM (h) OUM (i) ABF (j) Our AGF

(k) Input (l) USM (m) OUM (n) ABF (o) Our AGF

Fig. 5. Lena image rendered by our proposed AGF and existing methods. Parameters
are configured as follows: (b), (g), (l) USM: r = 5, λ = 4; (c), (h), (m) OUM: r = 5;
(d), (i), (n) ABF: r = 3, σs = 1.0, rLoG = 4; (e), (j), (o) AGF: r = 3, rLoG = 4.



AGF for Sharpness Enhancement and Noise Reduction 333

6 Conclusion

In this paper, we presented an adaptive guided image filtering (AGF) for sharp-
ness enhancement and noise reduction. The proposed method is developed based
on guided image filtering and the shift-variant technique. The relationship be-
tween the conventional bilateral filter and the guided image filter is presented to
convert optimal parameters from ABF to our proposed AGF.

Experiments showed the results produced from our method to be superior
to those produced from unsharp masking-based techniques and comparable to
ABF filtered output. It effectively removes noise and sharpens the edges simul-
taneously, without producing overshoot and undershoot artifacts as the ideal
approach. Our method outperforms ABF in terms of computation cost, where
the computational complexity is O(N) compared to O(|w|2) of ABF.
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Appendix: Derivative of the AGF Filter Kernel

This is based on the proof that shows the filter kernel of GIF corresponds to its
linear translation-variant in [9], we shortly present the correspondence between
the filter kernel and linear transform model of AGF with the introduction of
optimal offset ξ∗ and ε∗ in this part.

First, we rewrite equation (10) by Îp =
∑

q∈wk
WAGFpq(G)Iq . So, the filter

kernel WAGFpq(G) is computed by taking the partial derivative of Îp with respect
to Iq. Formally, it is expressed by:

WAGFpq(G) =
∂Îp

∂Iq
(21)

Replacing bk in (20) by (18), we have:

Îp =
1
|w|
∑

k∈wp

[
ak

((
Gp + ξ′p

)− μk

)
+ Īk

]
(22)

So, the partial derivative of Îp with respect to Iq is formulated by:

∂Îp

∂Iq
=

1
|w|
∑

k∈wp

[
∂ak

∂Iq

((
Gp + ξ′p

)− μk

)
+

∂Īk

∂Iq

]
(23)

From [9], we already had:

∂ak

∂Iq
=

1
σ2

k + εk

(
1
|w|Gq − 1

|w|μk

)
δk∈wq (24)

∂Īk

∂Iq
=

1
|w|δq∈wk

=
1
|w|δk∈wq (25)

where δq∈wk
equals 1 when q is in wk, and equals 0 otherwise.

Placing (24) and (25) into (23), we get:

∂Îp

∂Iq
=

1
|w|2

∑
k:(p,q)∈wk

(
1 +

((
Gp + ξ′p

)− μk

)
(Gq − μk)

σ2
k + εk

)
(26)

This is exactly the filter kernel WAGFpq(G) that we expressed in equation (11).
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Abstract. Depth from defocus (DFD) is a technique to recover the scene depth
from defocusing in images. DFD usually involves two differently focused images
(near-focused and far-focused) and calculates the size of the depth blur in the
captured images. In recent years, the coded aperture technique, which uses a spe-
cial pattern for the aperture to engineer the point spread function (PSF), has been
used to improve the accuracy of DFD estimation. However, coded aperture sac-
rifices an incident light and loses a SNR of captured images which is needed for
the accurate estimation. In this paper, we propose a new computational imaging,
called half-sweep imaging. Half-sweep imaging engineers PSFs for improving
DFD and maintaining the SNR of captured images. We confirmed the advantage
of the imaging in comparison with conventional DFD and coded aperture in ex-
periments.

Keywords: computational photography, depth from defocus, image deblurring.

1 Introduction

There are many methods, referred to as depth from defocus (DFD) techniques [9], [11],
for estimating scene depths using a single camera. The methods use depth blurs (i.e.,
blurring that depends on the scene depth) that appear in captured images. DFD usually
employs a pair of images one being near-focused and the other being far-focused to de-
termine differences in sizes of depth blurs resulting from depth differences in a scene.
However, the circular shape of the aperture of a regular camera is not beneficial for
DFD estimation, since the aperture moderately affects depth blurring. For more robust
DFD estimation, many researchers have investigated coded aperture techniques [3], [5],
[13]. Such techniques use special patterns for the camera aperture to control the shape
of the point spread function (PSF). Additionally, it is well known that the shape of the
PSF directly affects the frequency response of an imaging system, which is described
by the optical transfer function in the field of optics. We can select aperture patterns
that drastically change the PSF shape in the image domain or its frequency response
in the Fourier domain according to scale changes of the PSF due to object depth dif-
ferences, thus achieving more accurate DFD estimation in discriminating scene depths.
However, the use of a coded aperture attenuates the intensity of captured images, since
incident light from the scene is blocked in engineering the PSFs. The attenuation de-
creases the signal-to-noise ratio (SNR) of the images and limits the improvement of
DFD estimation.

Y.-S. Ho (Ed.): PSIVT 2011, Part I, LNCS 7087, pp. 335–347, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In this paper, we propose a new imaging operation called half-sweep imaging for
DFD estimation. DFD has sometimes ignored the quality of the recovering image. We
focus to realize high quality of all-in-focus image reconstruction as well as robust DFD
estimation for considering to visualization in computational photography. The tech-
nique is inspired by focus sweeping [7], [4] and is extended to DFD applications. Half-
sweep imaging obtains two images by sweeping the focus during the image exposure
time. It has the advantage of a higher SNR for captured images, since we can engineer
the image PSFs even if a camera aperture is open. The operation requires the continuous
changing of the lens focus or sweeping of an image sensor, which is easy to implement
since we can utilize an auto-focusing mechanism or an actuator for image stabilization
that current commercial cameras already possess. Moreover, the method has complete
compatibility with regular imaging and adaptivity to scene depth when we stop the
sweeping motion or freely adjust the sweeping length and positions. Employing the
proposed method, we integrate multiple PSFs with different focus settings obtained by
focal sweeping to control the frequency responses of imaging PSFs. We split a sweep
into half regions to capture images. The two obtained images are captured for the same
scene, but using different PSFs (i.e., transfer functions of imaging). As a result, one of
the PSFs and captured images has zero-crossing in its frequency response, which helps
with depth estimation, and the sum of PSFs has a broadband spectrum, which allows
recovery of a better all-in-focus image.

2 Related Work

Many researchers have proposed PSF engineering methods to improve DFD estimation.
As an early work on coded apertures, Hiura and Matsuyama [3] used three or four pin
holes as the aperture of a multiple-focus camera. They used three differently focused
images captured by the camera and realized robust depth estimation. However, this
aperture coding was far from optimal.

Levin et al. [5] proposed using an aperture with a pattern more distinguishable than
that of a conventional circular aperture. They defined K-L divergence as a metric of the
PSF scale difference due to depth difference and found an optimal pattern for DFD es-
timation by maximizing the metric. The Fourier spectrum of the pattern contains many
zero-crossings and their positions are displaced when the blur size changes owing to
the depth difference. If we use a different size of the PSF for deconvolution, the re-
covered image has severe artifacts from the disagreement with the true PSF spectrum.
The artifacts increase the penalty for misrecognizing the depth and improve the stabil-
ity of DFD estimation. As a result, they allow DFD estimation from a single image,
while common DFD methods require at least two differently focused images to solve
ambiguity in the blurred image due to texture. However, the aperture is not suited to
recovering an all-in-focus image through deconvolution, since the frequency response
of a zero-crossing point is such that we have zero information at that frequency.

Zhou et al. [13] proposed a coded aperture pair to recover a high-quality focused
image and estimate depth. It is well known that a broadband PSF in the Fourier do-
main is favorable for blurred-image recovery through deconvolution, since it provides
image information through the entire frequency range even though the captured image
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is blurred [12], [14]. However, as mentioned for Levin et al.’s work [5], zero-crossings
are favorable for depth estimation. These properties are not compatible with each other
when only using a single aperture pattern. There is a dilemma in practical DFD appli-
cations that it is necessary to recover the true texture for accurate depth estimation, but
recovering the texture requires knowledge of the correct depth information. Therefore,
Zhou et al. [13] proposed the use of a pair of coded apertures that optimize image re-
construction and depth estimation simultaneously. In the case of their proposed aperture
pair, the frequency response of a single PSF has zero-crossings, but the sum of PSFs
has a broadband since the PSFs have complementary responses. The need to replace
two lenses with the coded aperture pair remains a difficult problem in image capturing.

A programmable-aperture camera that can quickly switch aperture patterns has been
developed [8]. Green et al. [2] proposed a multiple-aperture camera that uses special
mode mirrors. There are examples of implementations that have realized easy capturing
and increasing flexibility for multiple coded apertures. However, PSF engineering using
a coded aperture has an intuitive problem that the SNR of the image is lower than
that of the conventional DFD measurement, since the aperture blocks incident light in
controlling the PSF shape. Therefore, there is the limitation that noise in the image
destabilizes depth estimation and contaminates the recovered image.

Wavefront coding engineers the PSF without blocking incident light unlike the case
for a coded aperture. Employing this method, a special optical element called a phase
plate is placed at the position of the camera aperture. The phase plate controls the wave-
front of rays according to the positions in aperture open. Dowski et al. [1] proposed a
phase plate for DFD estimation whose PSF spectrum has many zero-crossings. Levin et
al. [6] theoretically analyzed the upper bound of the PSF response for image deblurring
and designed optics called a lattice focus lens to realize the PSF. The lens can be used to
estimate the scene depth and achieve optimal defocus deblurring, since the PSF of the
lattice focus lens is depth-variant. Wavefront coding engineers the PSF with an open
aperture and realizes image acquisition with a higher SNR. However, the cost of the
phase plate is expensive and its property is not adaptive to a scene.

Nagahara et al. [7], [4] proposed focus sweep imaging that moves focus points during
the image integration time to capture a single image. This method integrates different
scales of PSFs to realize PSFs that have broadband frequency response and invariant
shapes through the entire scene depth. They proposed applying this imaging operation
to an extended depth of field by deblurring without any depth estimation or knowledge.
The advantages of the focal sweep are a higher SNR of captured image, compatibility of
regular photograph and flexibility for scene. Hasinoff et al. [10] discussed the optimal
number of focal stack images across a scene depth for various imaging systems. They
applied focal sweep imaging to acquire focal stack (multiple) images to obtain a best all-
in-focused image. They showed it in simulation and did not compaired DFD accuracy
in the paper.

3 Half-Sweep Imaging

Focus sweep imaging [7], [4] sweeps the focal plane through a scene during the im-
age exposure time. It is achieved by moving the lens or image sensor position along
the optical axis. We can manipulate the PSF by controlling the range or speed of the
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Fig. 1. Projective geometry of lens

sweeping. In this paper, we propose an extension of focal sweep imaging called half-
sweep imaging for DFD application. Full-sweep imaging [7], [4] sweeps the focal plane
through the entire depth of the target scene in the exposure time to realize the extended
depth of field. Our half-sweep imaging splits the sweep range into two regions and cap-
tures two images corresponding to the front half and back half of the sweeping regions.
Consequently, we capture two images that have depth-variant blurs (PSFs) for DFD es-
timation, while the original full sweep obtains depth-invariant blurs for deblurring. In
this section, we present the properties and advantages of PSFs in half-sweep imaging.

Figure 1 shows the projective geometry where the image sensor is at a distance p
from a lens with focal length f , and the aperture diameter is a. Incident rays from a
scene point M at the distance u converge to the focused point m at a distance v from
the lens. The relation between u and v is described by the Gaussian lens law:

1
f

=
1
u

+
1
v
. (1)

As shown in the figure, if an image sensor is placed at a distance p from the lens, M is
imaged to m′ with blur on the sensor. The diameter of the blurred circle b is given by

b(p) =
a

v
|(v − p)|. (2)

The PSF is a function of the distribution of light energy within the blurred circle. We
consider here r to be the distance of an image point from the center m′ of the blurred
circle, and the PSF is denoted P (r, u, p). The PSF is often modeled as a pillbox func-
tion:

P (r, u, p) =
4

πb2

∏
(
r

b
), (3)

where
∏

(x) is the rectangle function, which has a value 1 if |x| < 1/2 and 0 otherwise.
This is the PSF function of an object placed at u when the sensor position is fixed at p
as in regular imaging with a common camera.

In half-sweep imaging, the sensor moves from p0 to p2 along the optical axis of the
camera as shown in Figure 2-a. We assume that focus points of all objects in a scene
lie between p0 and p2. The half-sweep imaging captures two images f1 and f2 with
exposures e1 and e2 as shown in Figure 2-b. The sensor motion is modeled as a function
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of time p(t) = st + p0 if the sensor moves with constant speed s. The relation between
the sensor motion and exposure time is shown in Figure 2-b. This figure describes that
the exposures e1 and e2 for capturing the images f1 and f2 correspond to sweep regions
from p0 to p1 and from p1 to p2 respectively. Hence, we obtain two images with different
integrations of different blurred images focusing at positions between p0 and p1 or p1

and p2. It is easy to realize half sweeping by simply changing the shutter timings and
the exposure time from those for full sweeping. An imaging process can be modeled by
convolution of the PSF function:

fi = hi ⊗ f0 + ξ, i = 1, 2, (4)

where fi is the observed image, hi is the half-sweep PSF, f0 is the latent in-focus
image and ξ is the image noise, which is assumed to be Gaussian white noise N(0, σ2).
Normally, the shape of a PSF is determined by the aperture size and object depth as
described by Equation 3. Meanwhile, the half-sweep PSF hi is modeled by integration
of PSFs at multiple sensor positions p through the sweeping regions during the exposure
time. This is described by

hi(r, u) =
∫ pi

pi−1

P (r, u, p)dp, i = 1, 2, (5)

where pi (i = 0, 1, 2) is the position of the image sensor. The sensor moves from pi−1

to pi during exposure time ei. If we assume that the integrated blur model is a pillbox
function as described in Equation 3, the half-sweep PSF is modeled by

hi(r,u) =
uf

(u − f)πaspi

(
λpi−1 + λpi

r
− 2λpi−1

b(pi−1)
− 2λpi

b(pi)

)
, i = 1, 2, (6)

where b(p) is the diameter of the blurred circle at position p, and λp = 1 if b(p) ≥ 2r
and 0 otherwise.

Figure 3-a shows simulated half-sweep PSFs h1, h2 modeled by Equation 6 and their
average PSF hall at four different scene depths. The four different depth positions u are
decided by the relation of the lens law so that the corresponding focal position v is at
constant intervals on the sensor side. The average PSF hall is simply derived according
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Fig. 3. Half sweep PSF

to hall = (h1 + h2)/2. Therefore, we consider hall to be the same as the full sweep
PSF [7], [4], since the sum of h1 and h2 is an integration of different focal images
through the entire swept region. The figure shows that PSF shapes h1 and h2 change
according to the depth difference, while shape of the average PSF hall does not vary
visually. Figure 3-b shows the logarithms of power spectrums of these three PSFs with
different scene depths in the frequency domain, where H1, H2 and Hall are the discrete
Fourier transforms of h1, h2 and hall respectively. This plot corresponds to Figure 3-a.
The spectrums of H1 and H2 change according to depth. We also see zero-crossings in
one of the spectrums. On the other hand, Hall has a broadband spectrum. Levin et al.
[5] and Zhou et al. [13] claimed that PSFs having zero-crossings are a useful property of
the DFD measurement and improve depth discrimination. Additionally, it is well known
that broadband PSFs are beneficial for defocus deblurring [12], [14], [7], [4], [13] and
allow the generation of good quality all-in-focus images in DFD application.

4 DFD Algorithm for Half-Sweep Imaging

In this section, we propose a method for estimating a depth map and an all-in-focus im-
age from two images captured by half-sweep imaging. Half-sweep imaging is expressed
as Equation 4. This can be written in the Fourier domain as

F
(d)
i = F0 · H(d)

i + N, i = 1, 2, (7)

where F
(d)
i is the Fourier transform of a captured images (i = 1, 2) at depth d, F0 is the

Fourier transform of a latent all-in-focus image, H(d)
i (i = 1, 2) is the Fourier transform

of a half-sweep PSFs at depth d and N is the Fourier transform of noise. We consider
here the problem in which we estimate the all-in-focus image F0 and unknown scene
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depth d from Equation 7. Generally, the image F0 is given by deconvolution. We use
the Wiener deconvolution:

F̂0 =
F · H

|H2| + |C|2 , (8)

where H̄ is a complex conjugate of H and |H |2 = H · H̄ . C represents σ/A
1
2 , where

A is defined over the power distribution of natural images according to the 1/f law.
The original Wiener deconvolution was designed to deblur one blurred image, and we
propose to use the extended method in our half-sweep imaging. As shown in section 3,
hall, which is the average of h1 and h2 kernels, has a broadband frequency response for
each depth. Additionally, fall, which is the average image of f1 and f2, has broadband
image information, since we can assume that the image fall is captured by the hall

kernel. The property of addition is maintained over the Fourier transform. Hence, we
obtain the Fourier transforms of the average kernel and the image as

Fall =
F1 + F2

2
, H

(d)
all =

H
(d)
1 + H

(d)
2

2
. (9)

We can extend Wiener deconvolution to half-sweep imaging by substituting Equation 9
into Equation 8:

F̂0
(d)

=
(F1 + F2)(H

(d)
1 + H

(d)
2 )

|H(d)
1 + H

(d)
2 |2 + 4|C|2

. (10)

We consider that the error between observed images and estimated observed images
must be minimum when the estimated depth d is correct. Therefore, we defined a cost
function to estimate depth d is expressed as

W (d) =
∑

i=1,2

|IFFT (F̂0
(d) · H(d)

i − Fi)|, (11)

where IFFT is the 2D inverse Fourier transform and F̂0 is derived from Equation 10.
The cost function W (d) represents the error between the reconstructed images and the
captured images; therefore, W (d) is a measure of how close d is to the actual scene
depth d∗. We estimate depths to find the minimum W (d) for each pixel (x, y) using

U(x, y) = argmin
d∈D

W (d)(x, y). (12)

We also obtain an all-in-focus image I from the estimated depth map U as

I(x, y) = F̂0
(U(x,y))

(x, y). (13)

5 Performances Analysis

We carried out simulation experiments to evaluate the performance of our half-sweep
imaging. In this section, we denote the object position as u, the focal point v and sensor
position p as shown in Figure 1. We assumed that the scene is a synthetic staircase
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Table 1. Correspondence among step number, object depth and focus position (f = 9 mm)

Depth step Step1 Step5 Step10 Step15 Step20 Step25 Step30 Step35 Step40
Object:u[mm] 2034 321 160 109 83.6 68.6 58.5 51.4 46.1
Focus: v[mm] 9.040 9.260 9.535 9.810 10.085 10.360 10.64 10.91 11.185
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Fig. 4. Estimated depth map
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Fig. 5. Error map of deblurred image

scene as shown in Figure 4-a. These depth maps have false-color representation with
red indicating locations far (step 1) from the camera and blue locations near (step 20)
the camera. The scene has two textures, one with strong and dense patterns and the other
of natural wood with weak texture as shown in Figure 5-a. The physical object depths u
are from 2034 to 83.6 mm from a camera lens. The corresponding focal point v varies
from 9.04 to 10.085 mm behind the lens according to the lens law of Equation 1. We
divided the possible range of the focal position v into 20 uniform steps (Δv =0.055
mm) so that the depth blur must change by a similar ratio (0.5 pixels for each step) in
an image. Table 1 gives the conversion among a step number, the corresponded object
depth u and the focal position v for easy understanding of the relations. The focal
length and F-number of a lens are taken as f = 9 mm and f/1.4 in our setting. Under
these settings, we simulated captured images through convolution with theoretical PSFs
modeled by the pillbox function described by Equation 6. We set integration intervals
to half by half of the target depth range for half-sweep DFD. When the depth range
is 20 steps in this case, the intervals are 1 to 10 and 11 to 20 steps. The corresponding
sensor positions are p0=9.04 mm, p1=9.945 mm and p2=10.085 mm for equation 5. The
conventional DFD used far-focused (step 1, p = 9.04 mm) and near-focused (step 20, p
= 10.085 mm) images with an open circular aperture. The coded aperture used two far-
focused (step 20, p = 9.04 mm) images captured by an aperture pair [13](i.e., aperture
difference is the depth key). We estimated scene depth maps and all-in-focus images
using the proposed DFD algorithm as mentioned in Section 4. For the conventional and
coded-aperture DFD estimation, we used Zhou’s DFD algorithm [13] for comparison.
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Fig. 6. Simulation results

Figure 4 shows the depth estimation results. The figure shows the depth maps of
(a) the ground truth, (b) the conventional DFD method, (c) Zhou’s coded aperture pair
and (d) our proposed method by capturing half-sweep imaging. We see that the strong
texture on the left side of the scene does not differ greatly among the methods. However,
there are large differences for the weak texture on the right side, with our proposed half-
sweep imaging having the best performance. Figure 4-b, the result for conventional
DFD estimation, shows large error around the central depth, and Figure 4-c, the result
for coded-aperture-pair DFD estimation, shows error for the entire depth range. On the
other hand, Figure 4-d, the result for our method, shows greater robustness, although the
scene has weak texture. Figures 5-b, c, d show difference images between the estimated
images and the true texture as shown in Figure 5-a, since it is difficult to recognize
the error in the estimated images. The figures are shown by false color representation
and the color bar indicates the errors in normalized intensity (i.e., maximum intensity
is 1.0). Figure 5-b shows large reconstruction errors for the center of the image, since
captured images have large blurs and high-frequency information was lost in the center
of the image in conventional DFD estimation. Figure 5-c shows that the recovery errors
increase where the object depth approaches a far position. It is difficult to distinguish the
difference between the coded aperture pair where the size of blur is small or in focus,
since the method of the coded aperture pair employs the shape difference between the
apertures as a depth key. Figure 5-d shows that the proposed recovery method produces
errors that are smaller and more uniform.

We also compared numerical qualities among these methods. In this experiment, we
used similar setting to Figure 4, but we changed the object depth range (the number
of stairs) from 2 to 40 steps. Table 1 also shows the conversion of the object depth.
We used arbitrary 30 images downloaded from flickr as scene textures for generating
simulated images. Figure 6-a and b show the root-mean-square (RMS) of the estimated
depth errors and the peak signal-to-noise ratios (PSNR) of the recovered images against
the object ranges. In these figures, line plots indicate the average values of the RMS
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error or PSNR, and the error bars indicate the standard deviations of 30 variations of
the textures. The standard deviations imply that the each result is deviated depending on
the texture difference. Figure 6-a shows that all of the methods are getting worse if the
depth range are enlarged, since bigger size of blur must be used for estimating larger
depth range and it is difficult to estimate the blur size when the size is larger. Half sweep
DFD is still better performance for estimating the depth than the others. Figure 6-b also
shows the similar results that PSNR is getting worse when the depth range is enlarged
among the all methods. Yet, it is obvious that the PSNR of the proposed method is far
better than that of the others. We can also see that the standard deviation of the proposed
method is smaller than the others. It means that half sweep DFD is more robust to
recover the images independent to the scene texture variety. These figures show that the
proposed method outperforms both depth estimation and the recovered image quality.

We confirm that the proposed method of half-sweep imaging has the best perfor-
mance in terms of estimating the scene depth and recovering an all-in-focus image.
This is due to one of the proposed half-sweep imaging PSFs having zero-crossings and
their sum having a broadband spectrum in the Fourier domain.

6 Real Implementation and Experiments

We evaluated our half-sweep imaging for real images captured by a prototype camera.
Figure 7 shows the prototype camera for realizing half-sweep imaging. The camera
consists of a 1/3” Sony CCD (with 1032×776 pixels) mounted on a Physik Instrument
P-628.1CL translation stage. This stage is driven by a piezoelectric actuator and the
range of translation is 800 microns. We attached a Tokina 12.5 mm lens and the F-
number was set to f/1.4 in this experiment. The shutter of the CCD and the actuator
were controlled with by signals generated by PC. They were completely synchronized
for realizing half-sweep imaging.

A target scene that we captured in this experiment is shown in Figures 8 and 9. There
are four objects at different depths in front of a wall in the scene. The range of scene
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depth was 340 to 750 mm from the camera lens. The actuator needed to translate 225
microns from start to end positions to covering the entire scene depth. Figure 9-a shows
the images captured using the prototype camera with half-sweep imaging. The images
f1 and f2 were captured by the front half and back half of the sensor sweeping. Figures
8-a show images again captured using the prototype camera but with near-focus and
far-focus positions (not sweeping) for conventional DFD. We captured measured PSFs
for both half-sweep imaging and conventional DFD estimation at ten depths using a
point light source before the experiments.

We estimated the object depths and recovered all-in-focus images using the input
images and measured PSFs. Figures 9-b, c show the results of the recovered all-in-focus
images and the depth map of the scene. We employed the proposed DFD method as
mentioned in Section 4. Figures 8-b, c show the results of conventional DFD estimation
for comparison. Comparing Figures 9-d and 8-d, we see that both depth maps show
the depth differences among the objects and we cannot see a strong advantage for one
method over the other. It was caused by that the scene has relatively strong texture
unlike the scene in the simulation. Hence, the difference was not appeared between the
methods.

Comparing Figures 9-b and 8-b, we see that the recovered focused images have large
differences. The image obtained through conventional DFD estimation has many arti-
facts such as enhanced noise and ringging artifacts. We also see that some portion of
the texture is still blurred even after deconvolution because of depth estimation errors.
Figures 10 clearly show the differences for magnified portions of the images. Figure
10-c shows the ground truth textures captured for the same scene with a small aperture
setting of f/16. The proposed method does not provide an image that is identical to the
ground truth but has far better performance than the conventional DFD approach. The
experiments confirm that our proposed method has an advantage over the conventional
DFD and works in a real implementation.

7 Conclusion

This paper proposes a new computational imaging technique called half-sweep imaging
and a processing method for DFD estimation. The sensor sweeps during the exposure
time to capture two images. We show that PSFs of the proposed half-sweep imaging
simultaneously have zero-crossings and broadband properties in the Fourier domain.
We realized robust depth estimation and high-quality image recovery from the contri-
bution of the PSF properties. We confirmed the advantage of our half-sweep imaging
over previous methods in simulation and real experiments. We implemented a proto-
type camera that incorporates a piezoelectric actuator to sweep an image sensor in real
experiments. However, the sweeping operation can be more easily implemented for
commercial cameras; e.g., utilizing the auto-focusing mechanism. Half-sweep imaging
has the advantages of obtaining a higher SNR for images, having flexibility such that
it can adapt to the scene depth, and having complete compatible with regular imaging.
Hence, it is applicable for a wide range of products such as digital still cameras.
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Fig. 10. Zoom up potion of images
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Abstract. In this paper we study the beverage package recognition problem for 
mobile applications. Unlike products such as books and CDs that are primarily 
packaged in rigid forms, the beverage labels may be attached on various forms 
including cans and bottles. Therefore, query images captured by users may have 
a wide range or variations in appearance. Furthermore, similar visual patterns 
may appear on distinct beverage packages that belong to the same series. To 
address these challenges, we propose a fast, hierarchical approach that can be 
used to effectively recognize a beverage package in real-time. A weighting 
scheme is introduced to enhance the recognition accuracy rate when the query 
beverage is among flavor varieties in a series. We examine the development of 
a practical system that can achieve a fairly good recognition performance (93% 
accuracy rate using an evaluation set of 120 images) in real-time. 

Keywords: Product recognition, mobile application, sub-image retrieval. 

1   Introduction 

A technology that enables customers get product information in an easy, fast, and 
intuitive manner is essential for cost-conscious shopping [9]. With developments in 
handsets that have increased the computing and communication capabilities, content-
based product recognition is a complementary approach to existing technologies such 
as Barcodes [14] and Radio Frequency Identification (RFID) [10], in which a tag is 
required to be attached to each item for identification. A primary advantage of the 
content-based approaches over tag-based approaches is the fact that recognition can 
be performed directly from any part of the content—not necessarily barcodes or RFID 
tags—with a device that may not be equipped with a tag reader.  

Among many products of interest, we study the beverage package recognition 
problem in this paper as the beverage industry has been continuing to be an economic 
powerhouse [4]. The beverage package recognition problem can be considered a 
simplified object recognition problem because the patterns of beverage packages are 
more structured and rigid comparing to those of other objects such as human faces. 
However, query photos captured by users can still have a wide range of variations in 
appearance because beverages can be packed in various forms, e.g. boxes, can, and 
bottles, and a package can be arranged in any angle to users. Figure 1 (a) illustrates 
three examples of a Coke can. The most recognizable part (e.g. the brand logo) could 
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be fully or partially captured, or totally invisible on the query image. Moreover, it is 
common in package design that distinct beverage products in the same series share 
similar visual features. In Fig. 1 (b), these images have identical visual patterns, e.g. 
brand names printed with the same font. However, they should be considered distinct 
beverages as they are differently flavored, and the price and calorie information may 
be different. These factors make the beverage package recognition a challenging task. 

Motivated by recent successes in sub-image retrieval [11][16], we formulate the 
beverage package recognition problem as a sub-image retrieval problem where two 
images are matched even if only a portion of them are similar. The query is compared 
to a collection of panoramic images which are unrolled and scanned beverage labels 
extracted from various package forms. For example, Fig. 2 (a) shows the panoramic 
image for a Coke can. By using panoramic images, we need only one reference image 
for each beverage item. The recognition of query images can then be performed by 
finding the most similar image in the reference dataset based on a similarity 
measurement that aggregates patch-to-patch similarities. Thus, two partially similar 
images can be considered matched. 

To solve the problem where two distinct beverage packages share similar visual 
features, we propose a query-dependent reweighting scheme of local features to 
cumulate similarities between two images only from critical regions. This is derived 
from the observation that a keypoint’s discriminative power may vary given different 
contexts. For example, the brand name Fanta in Fig 1 (b) is useful for recognizing 
Fanta series, but is not discriminative for identifying the beverage among flavor 
varieties in the same series. 

In the remainder of the paper, we first describe related work in this field. Section 3 
presents a new dataset for beverage package recognition. We then present the coarse-
to-fine filtering approach for recognizing beverage packages in Section 4 and, finally, 
demonstrate the performance and conclude the paper with a short discussion 
summarizing our findings. 

 

Fig. 1. Characteristics of the beverage package recognition problem. (a) Three examples of a 
Coke can. The most recognizable part (e.g. the brand logo) may be fully or partially captured, 
or totally invisible on the query image. (b) Beverages in a series: they have common visual 
elements in the package design. 

2   Related Work 

Recent works have shown some successes of product recognition using local feature 
based visual searches [15][17][18]. For recognizing products such as books and CD 
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covers, there are some mobile image recognition systems on the market [1][2][3]. For 
local-feature-based methods, a query image is represented by a set of local features 
and a reference image is retrieved if it has sufficient matches of local features with the 
query image. More specifically, two major components—local features and image 
matching—are crucial to the product recognition performance. 

Robust and invariant local features such as Scale-Invariant Feature Transform 
(SIFT) [13] and Speeded Up Robust Features (SURF) [5], are applicable for mobile 
search applications. These descriptors are in general high dimensional feature vectors, 
e.g. a SIFT feature has 128 elements. Recently, Chandrasekar et al. proposed the 
Compressed Histogram of Gradients (CHoG) [7] which captures gradient statistics 
from local patches in a histogram and applies tree coding techniques to compress the 
histograms into low bit-rate feature descriptors. In [6], an experimental study on local 
feature descriptors for mobile visual search compares MPEG-7 image signatures, 
CHoG, and SIFT and concludes that SIFT and CHoG outperform MPEG-7 image 
signatures greatly in terms of feature-level and image-level matching. Since our 
beverage package recognition system is a client-server based visual search system and 
the main recognition task—the computational intensive part—is performed on a 
server, we develop both the SIFT and SURF representations and will compare their 
effectiveness in the experiments. 

To accelerate the matching process, the dataset is usually organized and indexed. 
When searching for similar instances for a query, only a small fraction of the dataset 
needs to be examined. Since features have a high dimensionality, classical methods 
such as KD-trees and its variants [8] often suffer from the “curse of dimensionality”. 
More recently, vector quantization and local-sensitive hashing (LSH) techniques have 
been popularly adopted to build a visual vocabulary of image features or to partition 
the feature space [15][12]. In this work, we adopt a LSH-based method [12] because 
of its simplicity in concept and its effectiveness for speeding up the recognition 
process. 

3   Beverage Image Dataset 

We introduce a beverage package image dataset which currently contains 60 reference 
images. The dataset will continue to grow. Each is a panoramic image by manually 
unrolled and scanned beverage labels extracted from various package forms. Figure 2 
(a) shows a few examples in the dataset. The reason why we built our own dataset in 
this manner is because unlike other products, the beverage packages have various 
forms (e.g. bottles, cans, and boxes). Therefore, most of the beverage package images 
available on the web cannot meet our requirement, i.e. the label must be fully expanded 
and captured. Although the use of panoramic images compresses information of a 3D 
object into a 2D image, as we will shown in the experiment, the point correspondences 
can still be built by using robust local features. Furthermore, unlike the case in the 
general object recognition tasks where one category has multiple images, we require 
only one reference image for each beverage. 

These beverage package images are essentially different from general images. The 
following differences are observed from our samples. Firstly, one or multiple text 
lines are present on the container which gives an indication related to the content of 
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the package, such as the brand name, the product name, nutrition table, and etc. The 
texts are usually highlighted with a distinguishing appearance from the background. 
Secondly, symbolic patterns and cartoon-like figures are commonly used for the 
graphics design to deliver the look of freshness and delicacy. These observations are 
useful for identifying the visual elements for beverage package design, and upon 
which we illustrate why a SIFT-based representation is effective for beverage package 
recognition.  

 

Fig. 2. (a) Three examples of our reference images. We have one reference image for each 
beverage; (b) Testing images. A package is captured in three different settings. Please refer to 
texts for details. 

 

Fig. 3. The framework of our beverage package recognition system. Using a client application 
on a smartphone, video frames are sampled and sent to a processing server that recognizes the 
query image. 

4   Approach 

4.1   The Hierarchical Framework 

Our beverage package recognition system is a client-server based visual search 
system as illustrated in Fig. 3. As described in Section 1, we formulate the beverage 
package recognition problem as a sub-image retrieval problem given a query image  
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captured from a cell phone and a set of reference beverage package images. Since the 
query image may be similar to only a portion of its reference image, global feature 
based methods is not applicable in our application. Instead, the retrieval can be 
achieved by matching two images represented by local keypoints and their descriptors. 
Pairwise comparison among local keypoints can further measure the degree of 
overlapping between two images. Due to intensive computations of the feature 
extraction and matching processes, the recognition task is usually performed on a 
server. 

However, not every local keypoint has equal discriminative power. For example, 
keypoints that capture the recycling symbol are informative, but may not be 
discriminative as the symbol would appear on various product containers. More 
importantly, a keypoint’s discriminative power may vary given different contexts. For 
example, keypoints that describe the brand name “Fanta” are useful to differentiate 
Fanta soft drinks from others. However, these keypoints are not discriminative for 
identifying a particular flavor among the Fanta series. These observations are valid 
especially in beverage package recognition as products in the same series tend to 
share some common visual patterns. 

Therefore, we propose a hierarchical approach which firstly performs a coarse 
recognition and determines the context for a refinement search. This can be achieved 
by using conventional keypoint matching techniques. If the coarse search returns 
more than on potential matches—it usually happens when the query belongs to a 
series, we then apply a refinement step that adjusts weights of local features under 
comparison to refine similarities from those matched keypoints. We now describe the 
approach in details. 

4.2   Coarse Recognition 

The first step in the hierarchical approach is designed to identify potential matches 
and to filter irrelevant images. Conventional image matching approaches for 
recognizing rigid objects (e.g. books, CD covers) [15][17][18] can be applied. For 
image representation, we particularly choose SIFT-like descriptors because they are 
constructed by summarizing the gradient information within a local region. They can 
capture unique edge patterns and unique local neighborhoods. These characteristics 
are suitable for describing symbolic patterns and cartoon-like figures which are 
widely used in beverage packaging design. 

We now show an analysis of the SIFT and the SURF descriptor distributions of our 
reference image dataset using the visualization approach described in [12]. The 
approach aims to sketch the space of high dimensional local features by using an 
approximate nearest neighbor probing scheme based on 2-stable locality-sensitive 
hashing. Each feature is indexed to a bucket by the hashing scheme and the indexing 
result yields a visualization of the distribution of feature vectors—a distribution that is 
peaked or has a small entropy value implies that the feature is less descriptive. Figure 
4 shows the SIFT and the SURF feature distributions extracted from our beverage 
package image dataset. The entropy values 5.9 (SIFT) and 4.18 (SURF) of the 
distributions indicate that both features’ descriptiveness is fairly good. For example, 
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the entropy value of the SIFT distribution extracted from the Berkeley natural images 
is 4.11, and the entropy value is 2.38 when SIFT features are extracted from noise 
patches, as reported in [12].  

We identify the potential matches by examining if the number of patch 
correspondences between a query and a reference image exceeds a pre-defined 
threshold. If more than one reference images are returned in this step—mostly when 
the query belongs to a beverage series—we proceed to the refinement search step. 

 

Fig. 4. The feature vector distribution over buckets: (a) SIFT (b) SURF. The entropy values 5.9 
and 4.2 imply that SIFT-like local features yield a more informative feature space for beverage 
package images. 

4.3   Refinement Search 

As beverages in a series usually share common visual elements in packaging design, 
the similarity between the query and the candidates indexed by k returned in the 
previous step should be re-calculated from only the discriminative regions. We now 
assign a weight w(pi) to each keypoint pi that estimates the likelihood of belonging to 
a particular beverage package: ∑ , ,  (1)

where N is the number of candidates, and ti,k is a binary variable that represents the 
presence of absence of a keypoint in the k-th candidate image that matches pi. 
Intuitively, w(pi) relates to the occurrence frequency of pi in candidate images. For 
example, w(pi) = 1 if pi is matched to keypoints that exactly appear on only one 
candidate image, and w(pi) = 0 if all candidate images have matched keypoints. Figure 
5 shows three query examples with distinct flavors. The weights of each keypoint are 
coded in red dots.  Light color indicates more discriminative power. It is interesting 
to observe that most discriminative keypoints are located at their unique regions (fruit 
patterns in the example) while the weights of common parts, e.g. the beverage name, 
are assigned with a smaller value (represented with dark dots). 

The weights are assigned in a similar manner to the term frequency–inverse 
document frequency (tf-idf) approach. However, we did not use a visual vocabulary, 
and, more importantly, the weights were not pre-computed from the whole reference 
image dataset. To save the computation, we applied a LSH based fast matching 
approach [12] to build the keypoint correspondences, and identified the beverage if 
the ratio of the top two weighted similarities is above a threshold. 
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Fig. 5. Keypoints and their weights. Light color indicates more discriminative power. 

5   Experiments 

We present two experiments to evaluate the effectiveness of the proposed approach in 
recognizing beverage packages. The first experiment evaluates the overall recognition 
performance. To mimic the scenario how the approach will be used in practice, we 
captured the query images in a popular chain of convenience stores using an iPhone. 
Note that these query images were collected in a very different way than that of the 
reference images. We took three images for 40 randomly selected beverages, resulting 
in a testing set of 120 images. If a beverage is packed in a can or a bottle, the images 
were snapped with the brand name (or logo) fully, partial visible or totally invisible. For 
boxes, we adjusted the zoon-in factor and obtained one that contains only a portion of 
the box, one that captures the full box, and one that contains the box under recognition 
and parts of its nearby beverage packages. Figure 2 (b) illustrates a few examples. 

Each image in the testing set is used as a query, and at most one beverage is 
retrieved. Table 1 summarizes the recognition performance. Our recipe that combines 
a keypoint matching method with a query-dependent weighting scheme achieves 
promising performance in both accuracy rate and computational speed. In particular, 
SIFT features achieve 15.8% higher accuracy than SURF features. We believe this is 
due to the fact that the manner how SURF integrates the gradient information within a 
patch loses some discriminative power. This leads to a worse matching result where a 
patch may be matched to dissimilar ones. Table 1 also lists the average runtime1 (in 
seconds) for recognizing a query image. By using the LSH technique, the proposed 
method has a runtime of about 0.1s, and, thus, is a viable solution to applications that 
require real-time processing. 

Figure 6 shows the images that failed in the experiment using SIFT—they are 
rejected by the system. As the images on the top row have a very simple design—
mainly texts and color blocks—very few keypoints are available on those images. 
Furthermore, the camera flash creates an unnatural shininess on drink can images that 
may deteriorate the matching results. The number of matched keypoints thus does not 
exceed the threshold in the coarse recognition step. For the images on the bottom row, 
the system cannot differentiate the green tea and the black tea as their package 
designs in the “try-it” series are very similar. They differ only on portions of the 
                                                           
1  The reported runtime includes all processing time between snapping a picture and the 

showing the relevant information on screen. 
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background color. Since the SIFT-based representation does not take color 
information into account, this difference unfortunately cannot be identified in the 
refinement search process. 

We conducted the second experiment and examined only the beverage packages 
that belong to a series in order to evaluate the proposed weighting scheme. We 
collected additional beverage package images from the web—24 images among 9 
series in which there is a corresponding reference image in our dataset, and 8 images 
in which there isn’t. The images have 33 distinct flavors. We try to mimic the 
situation when a new flavor variety is launched in market while the dataset is not yet 
updated to include the new example. The system should have the ability to reject 
these queries. 

Except the black tea and the green tea packages in the “try-it” line, others are correctly 
recognized. We examined the matching results and observed that the similarities between 
a query and its reference image are neatly accumulated from the discriminative regions. 
Furthermore, the system can successfully reject the 8 images that represent new flavor 
varieties. Note that the 8 images could be retrieved as a false positive by conventional 
systems because they have similar patterns with those packages in the same line of 
products. The refinement search step is essential to identify the existence of critical 
regions that differentiate the query from others in the same series. 

The proposed system has a graphical user interface as shown in Fig. 7. It streams a 
video and displays frames when the application is activated. It then samples frames, 
performs recognition and shows relevant information if the beverage package is 
recognized. The phone would be used as a “scanner” for checking out product 
information and the usage should be easy and intuitive.  

Table 1. Comparison of SIFT and SURF features for beverage package recognition. Runtime is 
reported in seconds.  

Feature Recognition 
Accuracy 

Runtime 
(Exhaustive) 

Runtime  
(LSH) 

Speedup 

SIFT (128-d) 92.5% 17.8905 (5.5385) 0.1289 (0.0368) 167.73x 
SURF (64-d) 76.7% 11.0793 (2.3183) 0.1086 (0.0372) 150.50x 

 

Fig. 6. Testing images for which our method failed 
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Fig. 7. Example outcome of our system. The beverage is automatically recognized and 
annotated with product information such as price and calorie count. 

6   Conclusions 

In this paper we propose an approach for practical beverage package recognition for 
mobile application. We examine the challenges faced in the design and the 
development of a practical system that can achieve a fairly good recognition 
performance. There are a few directions we may explore to further enhance the 
approach. For example, the current representation is based on SIFT descriptors that 
describe the gray-level images alone. However, as we observed from our reference 
image dataset, the color design of beverage packages seems to follow certain rules. 
For example, the similar, contrast, or complementary hues are commonly used in the 
same serious of products. A representation that encodes both the shape and color 
information should be more effective. Furthermore, once an image is described by 
more than one type of descriptors, an indexing approach that can enable fast retrieval 
of visual instances described by multiple cues would be desired. 
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Abstract. Due to unsatisfactory segmentation results when images con-
tain noise by the Otsu’s thresholding method. Two-dimensional (2D)
and three-dimensional (3D) Otsu’s methods thus were proposed. These
methods utilize not only grey levels of pixels but also their spatial in-
formations such as mean and median values. The 3D Otsu’s methods
use both kinds of spatial information while 2D Otsu’s methods use only
one. Consequently the 3D Otsu’s methods more resist to noise, but also
require more computational time than the 2D ones. We thus propose a
method to reduce computational time and still provide satisfactory re-
sults. Unlike the 3D Otsu’s methods, our method selects each threshold
component in the threshold vector independently instead of one thresh-
old vector. The experimental results show that our method is more robust
against noise, and its computational time is very close to that of the 2D
Otsu’s methods.

Keywords: Image segmentation, Thresholding, 3D Otsu’s method,
Three-dimensional histogram.

1 Introduction

Thresholding is considered as one low-level segmentation method since it uses
only pixel information. The method is typically simple and computationally ef-
ficient. Different thresholding methods are described and compared based on
different error measurements in [1]. One popular thresholding method is Otsu’s
[2] due to its fast computation and reasonable results in many applications. How-
ever, it uses only a one-dimensional (1D) histogram of an image, which cannot
express spatial relation between image pixels, it is difficult to obtain accurate
results when images contain noise. Lui et al. [3] thus proposed two-dimensional
(2D) Otsu’s method. This method selects an optimal threshold vector on a 2D
histogram. The 2D histogram consists of the gray levels of the image pixels and
the mean values of their neighborhood. Since the 2D histogram represents the
relation of the original and mean-filtered images, this method gives more sat-
isfactory results. However this method uses an exhaustive search to find the
optimal threshold vector, the time complexity of this method is O(L4), where L
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is the number of gray levels. Gong et al.[4] thus proposed a fast recursive method
of the 2D Otsu’s method which can reduce the time complexity from O(L4) to
O(L2). Ningbo et al. [5] proposed a method, which projects a 2D histogram onto
a diagonal line to compose a new 1D histogram. The method uses a 1D Otsu’s
method to select a point that splits this histogram into object and background
regions, and applies a 2D Otsu’s method to select an optimal threshold vector.
This method can enhance execution time, but it requires a large space for three
look-up tables. Yue et al. [6] proposed a decomposition of the 2D Otsu’s method
that calculates the optimal threshold by using two 1D Otsu’s computations in-
stead of one 2D Otsu’s computation. This method is robust against noise, and
the time complexity is reduced from O(L2) to O(L). Chen et al. [7] pointed out
the weakness of region division by a threshold vector in the 2D Otsu’s method
that some object and background regions are assigned to edge and noise regions,
and vice versa. They proposed the 2D Otsu’s method on a gray level-gradient
histogram, however, an appropriate initialization is required.

In addition to 2D Otsu’s methods, Jing et al. [8] proposed a three-dimensional
(3D) Otsu’s method that selects an optimal threshold vector on a 3D histogram.
This 3D histogram contains the median values of neighborhood pixels as the
third feature. The 3D Otsu’s method provides better results than the 2D Otsu’s
methods, but its time complexity is O(L3). Wang et al. [9] proposed a group
of new recurrence formula of the 3D Otsu’s method. This method thus removes
redundant computation and calculates a look-up table by iteration. The method
has the same thesholding results as the traditional 3D Otsu’s method, however,
its time complexity is still O(L3). Dongju et al. [10] proved that the objective
function of K-means is equivalent to that of the Otsu’s method, K-means thus can
be extended to 2D and 3D thesholding methods. and performs more efficiently
than Otsu’s.

Notice that the time complexity of the 2D’s Otsu methods can be reduced
from O(L4) to O(L) while the time complexity of the 3D Otsu’s methods is
still at O(L3). Even though K-means can be used instead of Otsu’s methods, its
execution time depends on the number of iterations. In this paper, we propose
a fast and robust thresholding method, which selects and uses three optimal
thresholds independently instead of one threshold vector of 3D’s Otsu methods.
Our method can reduce the time complexity from O(L3) to O(L), and it still
provides satisfactory results in noisy conditions.

2 3D Otsu’s Method

Given an image f(x, y) represented by L gray levels and the number of pixels
in the image, N . The mean and the median of gray values of pixels in the k × k
neighborhood regions centered at the coordinate (x, y) are denoted as g(x, y)
and h(x, y), respectively, which are defined as

g(x, y) =
1
k2

k/2∑
i=−k/2

k/2∑
j=−k/2

f(x + i, y + j) (1)
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(a) (b) (c) (d)

Fig. 1. Three-dimensional histogram

h(x, y) = med

{
f(x + i, y + j) : i = −k

2
, . . . ,

k

2
; j = −k

2
, . . . ,

k

2

}
(2)

In this paper, we use k = 3. For each pixel in the image, we can obtain a triple
(i, j, k), where i is the original gray level appeared in f(x, y), j is the grey level
of the mean value appeared in g(x, y), and k is the gray level of the median value
appeared in h(x, y). All the triples of the image define a 3D histogram within a
cube of L×L×L as shown in Fig.1(a). Let cijk denote the frequency of a triple
(i, j, k). Its joint probability can be expressed as

pijk =
cijk

N
, (3)

where 0 ≤ i, j, k ≤ L − 1 and
∑L−1

i

∑L−1
j

∑L−1
k pijk = 1

Given an arbitrary threshold vector (s, t, q). This threshold vector divides the
3D histogram into eight rectangular volumes as shown in Fig. 1(b)-1(d). Let
C0 and C1 represent the object and the background, respectively, or vice versa;
mx, ωx, and μx represent the summation vector, the probability, and the mean
vector of the rectangular volume x (Rx), respectively, where x is the rectangular
volume number; and μT represent the total mean vector. mx can be expressed
as

mx = ωxμx = (mxi, mxj, mxk)T

=

⎛⎝ ∑
(i,j,k)∈Rx

ipijk,
∑

(i,j,k)∈Rx

jpijk,
∑

(i,j,k)∈Rx

kpijk

⎞⎠T

(4)

The three elements in the triple are very close to each other for the interior
pixels of either the object or the background regions while they are very different
for the pixels that are edges and noise. Therefore, the rectangular volumes 2-7
can be considered as noise and edges; and rectangular volumes 0 and 1 can be
considered as object and background regions, respectively, or vice versa. In most
cases, the edge and noise pixels are very small fraction of the overall pixels in an
image, hence the probabilities of the rectangular volumes 2-7 can be negligible.
It can easily verify the relations,

ω0 + ω1 ≈ 1 ω0μ0 + ω1μ1 ≈ μT (5)
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The probabilities of C0 and C1 thus can be denoted as

ω0 =
∑

(i,j,k)∈R0

pijk =
s∑

i=0

t∑
j=0

q∑
k=0

pijk (6)

ω1 =
∑

(i,j,k)∈R1

pijk =
L−1∑

i=s+1

L−1∑
j=t+1

L−1∑
k=q+1

pijk (7)

The mean vectors of C0 and C1 can be expressed as

μ0 = (μ0i, μ0j , μ0k)T =
(

m0i

ω0
,
m0j

ω0
,
m0k

ω0

)T

=

⎛⎝ ∑
(i,j,k)∈R0

ipijk

ω0
,
∑

(i,j,k)∈R0

jpijk

ω0
,
∑

(i,j,k)∈R0

kpijk

ω0

⎞⎠T

(8)

μ1 = (μ1i, μ1j , μ1k)T =
(

m1i

ω1
,
m1j

ω1
,
m1k

ω1

)T

=

⎛⎝ ∑
(i,j,k)∈R1

ipijk

ω1
,
∑

(i,j,k)∈R1

jpijk

ω1
,
∑

(i,j,k)∈R1

kpijk

ω1

⎞⎠T

(9)

The total mean vector of 3D histogram is

μT = (μiT , μjT , μkT )T

=

⎛⎝L−1∑
i=0

L−1∑
j=0

L−1∑
k=0

ipijk,

L−1∑
i=0

L−1∑
j=0

L−1∑
k=0

jpijk,

L−1∑
i=0

L−1∑
j=0

L−1∑
k=0

kpijk

⎞⎠T

(10)

The between-class discrete matrix is defined as

SB(s, t, q) = ω0[(μ0 − μT )(μ0 − μT )T ] + ω1[(μ1 − μT )(μ1 − μT )T ] (11)

The trace of discrete matrix can be expressed as

tr(SB(s, t, q)) = ω0[(μ0i − μTi)2 + (μ0j − μTj)2 + (μ0k − μTk)2] +
ω1[(μ1i − μTi)2 + (μ1j − μTj)2 + (μ1k − μTk)2] (12)

The optimal threshold vector (s′, t′, q′) is

(s′, t′, q′) = arg max
0≤s,t,q≤L−1

(tr(SB(s, t, q))) (13)
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3 Proposed Method

From (5), we can see that ωx ≈ 0 and ωxμx = mx ≈ 0, where x = 2, . . . , 7. From
these conditions, we can conclude as follows.

ω0 ≈ ω0i = ω0 + ω3 + ω5 + ω7 =
s∑

i=0

L−1∑
j=0

L−1∑
k=0

pijk =
s∑

i=0

Pi (14)

ω1 ≈ ω1i = ω1 + ω2 + ω4 + ω6 =
L−1∑

i=s+1

L−1∑
j=0

L−1∑
k=0

pijk =
L−1∑

i=s+1

Pi (15)

ω0 ≈ ω0j = ω0 + ω2 + ω3 + ω4 =
L−1∑
i=0

t∑
j=0

L−1∑
k=0

pijk =
t∑

j=0

Pj (16)

ω1 ≈ ω1j = ω1 + ω5 + ω6 + ω7 =
L−1∑
i=0

L−1∑
j=t+1

L−1∑
k=0

pijk =
L−1∑

j=t+1

Pj (17)

ω0 ≈ ω0k = ω0 + ω2 + ω5 + ω6 =
L−1∑
i=0

L−1∑
j=0

q∑
k=0

pijk =
q∑

k=0

Pk (18)

ω1 ≈ ω1k = ω1 + ω3 + ω4 + ω7 =
L−1∑
i=0

L−1∑
j=0

L−1∑
k=q+1

pijk =
L−1∑

k=q+1

Pk (19)

m′
0i = m0i + m3i + m5i + m7i =

s∑
i=0

L−1∑
j=0

L−1∑
k=0

ipijk =
s∑

i=0

iPi (20)

m′
1i = m1i + m2i + m4i + m6i =

L−1∑
i=s+1

L−1∑
j=0

L−1∑
k=0

ipijk =
L−1∑

i=s+1

iPi (21)

m′
0j = m0j + m2j + m3j + m4j =

L−1∑
i=0

t∑
j=0

L−1∑
k=0

jpijk =
t∑

j=0

jPj (22)

m′
1j = m1j + m5j + m6j + m7j =

L−1∑
i=0

L−1∑
j=t+1

L−1∑
k=0

jpijk =
L−1∑

j=t+1

jPj (23)

m′
0k = m0k + m2k + m5k + m6k =

L−1∑
i=0

L−1∑
j=0

q∑
k=0

kpijk =
q∑

k=0

kPk (24)

m′
1k = m1k + m3k + m4k + m7k =

L−1∑
i=0

L−1∑
j=0

L−1∑
k=q+1

kpijk =
L−1∑

k=q+1

kPk (25)

where

m0i ≈ m′
0i, m1i ≈ m′

1i, m0j ≈ m′
0j , m1j ≈ m′

1j , m0k ≈ m′
0k, m1k ≈ m′

1k.
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Thus, we can define the new mean vectors as

μ0 ≈ μ′
0 = (μ′

0i, μ
′
0j , μ

′
0k)T =

(
m′

0i

w0i
,
m′

0j

w0j
,
m′

0k

w0k

)T

=

(∑s
i=0 iPi∑s
i=0 Pi

,

∑t
j=0 jPj∑t
j=0 Pj

,

∑q
k=0 kPk∑q
k=0 Pk

)T

(26)

μ1 ≈ μ′
1 = (μ′

1i, μ
′
1j , μ

′
1k)T =

(
m′

1i

w1i
,
m′

1j

w1j
,
m′

1k

w1k

)T

=

(∑L−1
i=s+1 iPi∑L−1
i=s+1 Pi

,

∑L−1
j=t+1 jPj∑L−1
j=t+1 Pj

,

∑L−1
k=q+1 kPk∑L−1
k=q+1 Pk

)T

(27)

where Pi =
∑L−1

j=0

∑L−1
k=0 pijk, Pj =

∑L−1
i=0

∑L−1
k=0 pijk, and Pk =

∑L−1
i=0

∑L−1
j=0 pijk.

Notice that Pi, Pj , and Pk are equivalent with the 1D histogram of of original,
mean-filtered, and median-filtered images, respectively. From (14)-(19) and (26)-
(27), we can rewritten (12) as

tr(SB(s, t, q)) ≈
A︷ ︸︸ ︷

[ω0i(μ′
0i − μTi)2 + ω1i(μ′

1i − μTi)2] +
B︷ ︸︸ ︷

[ω0j(μ′
0j − μTj)2 + ω1j(μ′

1j − μTj)2] + (28)
C︷ ︸︸ ︷

[ω0k(μ′
0k − μTk)2 + ω1k(μ′

1k − μTk)2]

The values of terms A, B, and C depend on the values of s, t, and q, respectively.
We can define each term as

σBi(s) = ω0i(μ′
0i − μTi)2 + ω1i(μ′

1i − μTi)2 (29)
σBj(t) = ω0j(μ′

0j − μTj)2 + ω1j(μ′
1j − μTj)2 (30)

σBk(q) = ω0k(μ′
0k − μTk)2 + ω1k(μ′

1k − μTk)2 (31)

The optimal threshold (s′, t′, q′) is

(s′, t′, q′) = arg max
0≤s,t,q≤L−1

(tr(SB(s, t, q)))

≈ arg max
0≤s,t,q≤L−1

(σBi(s) + σBj(t) + σBk(q)) (32)

which can be splited into

s′ = arg max
0≤s≤L−1

σBi(s) (33)

t′ = arg max
0≤t≤L−1

σBj(t) (34)

q′ = arg max
0≤q≤L−1

σBk(q) (35)
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Equations (33), (34), and (35) are 1D Otsu’s methods that select the optimal
threshold of the original, mean-filtered, and median-filtered images, respectively.
Notice that we select the optimal threshold from three 1D histograms instead of
one 3D histogram. Therefore, the time complexity of this method is only O(L)
instead of O(L3). We then apply each threshold element as a classifier to classify
each image pixel into either the object or the background independently. A pixel
(x, y) is assigned to the class, which is mostly selected by the thresholds s′, t′,
and q′ in the original, mean-filtered, and median-filtered images, respectively.

4 Experimental Results

We performed all experiments on a personal computer with 2.0 GHz Intel(R)
Core(TM)2 Duo CPU and 4 GB DDR II memory. We implemented the pro-
posed method in Visual C++ with OpenCV. Scilab was used to generate noised
added images for noise tolerant tests. We tested on two kinds of noise including
Salt&Pepper noise and Gaussian noise. Salt&Pepper noise is represented by noise
density (δ), the probability of swapping a pixel. Gaussian noise is represented
by mean (μ) and variance (σ2). In our experiments, we used only μ = 0.

We compared our method with the 1D Otsu’s method [2], Gong’s method
[4] as the 2D Otsu’s method, Wang’s method [9] as the 3D Otsu’s method, K-
means [10] based methods for both 2D and 3D ones, Ningbo’s method [5], and
Yue’s method [6] because they are based on Otsu’s. For each experiment that
the ground truth is available, we use misclassification error (ME) to present the
number of background pixels wrongly assigned to the foreground, and vice versa;
and we use modified Hausdorff distance (MHD) to measure the shape distortion
of each result image compared with its corresponding ground truth. ME and
MHD are defined as [1]

ME = 1 − |BO ∩ BT | + |FO ∩ FT |
|BO| + |FO| , (36)

MHD = max(dMHD(FO, FT ), dMHD(FT , FO)), (37)

where

dMHD(FO, FT ) =
1

|FO|
∑

fO∈FO

min
fT ∈FT

‖fO − fT ‖,

dMHD(FT , FO) =
1

|FT |
∑

fT ∈FT

min
fO∈FO

‖fT − fO‖.

Fi and Bi denote the foreground and background pixels, respectively, of an
image i, which includes the ground truth (O) and thresholded (T ) images. |.| is
the cardinality of the set. ‖fO − fT ‖ is the Euclidean distance between the two
corresponding pixels of the ground truth and thresholded images. Notice that
ME varies from 0 (a perfectly classified image) to 1 (a totally incorrect binarized
image).
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(a) Original (b) Gaussian (c) Salt&Pepper

Fig. 2. Lena images w/o noise added

Table 1. Optimal thresholds of Lena images w/o noise added

Methods
Fig.

2(a) 2(b) 2(c)

1D Otsu’s 117 119 117

2D Otsu’s (123,117) (123,126) (117,192)

3D Otsu’s (130,125,117) (132,122,121) (130,126,117)

2D K-means (117,117) (118,118) (117,117)

3D K-means (117,117,117) (118,118,118) (117,117,117)

Ningbo’s (117,117) (117,119) (117,117)

Yue’s (117,117) (119,118) (117,117)

Proposed (117,117,117) (117,117,117) (117,117,117)

In the first experiment, we compared the optimal threshold selected by each
method. We segmented Lena images consisting of the original one, and two noise
added images. The first noise added image was generated by adding Salt&Pepper
noise with δ = 0.01 to the original image, and the other one was generated
by adding Gaussian noise with σ2 = 0.005 to the original image as shown in
Fig. 2. Optimal thresholds are shown in Table 1. It can be seen that the optimal
threshold of the proposed method is close to the optimal threshold of the other
methods.

In the second experiment, we tested the robustness of each method in the
presence of noise. We selected two images as our test images from Segmentation
evaluation database[11]. Fig. 3(a) and 3(b) show the first test image and its
ground truth, respectively. Fig. 4(a) and 4(b) show the second test image and
its ground truth, respectively. We added noise to each test image to generate
new 51 images with Salt&Pepper noise using δ that are vary from 0 to 0.1,
and the other 51 images with Gaussian noise using σ2 that are vary from 0
to 0.01. Fig. 3(c) and 3(d) show example noise added images of the first test
image. Fig. 4(c) and 4(d) show example noise added images of the second test
image. Both test images show difficulties for thresholding when some amount of
noise is added. Fig. 5(a) shows the histogram of the first test image that clearly
presents bimodal, while Fig. 5(c) shows the histogram of the second test image
that does not clearly presents bimodal. Fig. 5(b) and 5(d) show histograms of
two images with Gaussian noise added. Both of them present a single modal
with a jagged curve. The second test image itself can be challenged to segment
such that some background pixels present similar gray levels as the object. We
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(a) Original (b) Ground
truth

(c) Gaussian
(σ2 = 0.01)

(d) Salt&Pepper
(δ = 0.1)

Fig. 3. The first image set with sample noise added images in the second experiment

(a) Original (b) Ground
truth

(c) Gaussian
(σ2 = 0.01)

(d) Salt&Pepper
(δ = 0.1)

Fig. 4. The second image set with sample noise added images in the second experiment
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(d) Histogram
of Fig.4(c)

Fig. 5. Histograms of the test images in the second experiment

segmented these 204 noise added images. We evaluated the performance of each
method based on ME and MHD. Fig. 6 and 7 show the evaluation results of
the first test images. Fig. 8 and 9 show the evaluation results of the second test
images. From the evaluation results in the presence of Salt&Pepper noise shown
in Fig. 6 and 8, both ME and MHD values of our method are lower than those of
the other methods except MHD values on the first test images, MHD values of
our method are higher than the 3D K-means method. The thresholding results
of the 3D K-means and our methods are shown in Fig. 10. The 3D K-means
method gives higher number of mistaken pixels in the object region, and lower
number of mistaken pixels in the background region, however, our method gives
lower number of mistaken pixels in the object region, and higher number of pixels
in the background region. MHD of our method is thus higher than of the 3D K-
means. From the evaluation results in the presence of Gaussian noise shown in
Fig. 7 and 9, both ME and MHD values of our method on the second test images
are lower than those of the other methods. ME values of our method on the
first test images are very close to that of the 3D Otsu’s method and lower than
those of the other methods. MHD values of our method on the first test images
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Fig. 6. Comparison of ME and MHD for thresholding of the first test images with
Salt&Pepper noise added at various δ in the second experiment
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Fig. 7. Comparison of ME and MHD for thresholding of the first test images with
Gaussian noise added at various σ2 in the second experiment
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Fig. 8. Comparison of ME and MHD for thresholding of the second test images with
Salt&Pepper noise added at various δ in the second experiment

are a little higher than those of the other methods except the 1D Otsu’s and
2D Otsu’s methods. The average computational time on all noise added images
are 0.08, 12.05, 1891.63, 27.21, 1259.54, 11.39, 6.29, and 13.19 ms, for the 1D
Otsu’s, 2D Otsu’s, 3D Otsu’s, 2D K-means, 3D K-means, Ningbo’s, Yue’s, and
our proposed methods, respectively. It can be seen that our method performs
faster than the other 3D methods. Our average execution time is nearly the same
as that of the other 2D methods except Yue’s method. Our method always gives
low error measurements in both classification and shape evaluations.
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Fig. 9. Comparison of ME and MHD for thresholding of the second test images with
Gaussian noise added at various σ2 in the second experiment

(a) Original (b) 3D K-means (c) proposed

Fig. 10. The original image and thresholded images of 3D K-means and proposed
methods when σ2=0.01

In the last experiment, we tested our method and the others with 200 real im-
ages from the Segmentation evaluation database [11], where the ground truth of
each image is provided. The average error measurements (ME and MHD) and the
average compuational time (T) over 200 test images of each method are shown
in Table 2. Segmentation results can be seen at http://give.cpe.ku.ac.th/
thresholding/equivalent-3D-thresholding.php. From the results, it can be
seen that the average computational time of our method is lower than that of
the other 3D methods and is almost the same as that of the other 2D methods
except the Yue’s method. The average ME and MHD values of our method is
lower than that of the other methods. It indicates that our method shows the
best matching of the object and the background, and also gives the smallest
amount of shape distortion.

Table 2. ME, MHD, and T over 200 real images

Method ME MHD T (ms)

1D Otsu’s 0.217102 19.545244 0.32

2D Otsu’s 0.214391 19.580417 11.99

3D Otsu’s 0.213022 19.569091 2151.03

2D K-means 0.228411 19.603090 20.60

3D K-means 0.228340 19.616353 1027.13

Ningbo’s 0.214194 19.627783 12.92

Yue’s 0.214962 19.408089 6.66

Proposed 0.211341 19.199144 12.59

http://give.cpe.ku.ac.th/thresholding/equivalent-3D-thresholding.php
http://give.cpe.ku.ac.th/ thresholding/equivalent-3D-thresholding.php
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5 Conclusions

We presented an improved thresholding method to overcome the shortcoming of
the 1D, 2D, and 3D Otsu’s method. The method calculates each optimal thresh-
old from the original, mean-filtered, and median-filtered images independently;
and uses the most selected class by each threshold on the corresponding images
as the thresholding results. We tested our method on real images and images
with noise added. The results show that our method gives satisfactory results,
and it is robust against noise. Moreover, it requires less computational time than
the other 3D methods, and also gives better or comparable results.
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Abstract. This paper presents a novel approach to tracking articulated
human motion with monocular video. In a conventional tracking system
based on particle filters, it is very challenging to track a complex human
pose with many degrees of freedom. A typical solution to this problem is
to track the pose in a low dimensional latent space by manifold learning
techniques, e.g., the Gaussian process dynamical model (GPDM model).
In this paper, we extend the GPDM model into a graph structure (called
GPDM graph) to better express the diverse dynamics of human motion,
where multiple latent spaces are constructed and dynamically connected
to each other appropriately by an unsupervised learning method. Basi-
cally, the proposed model has both intra-transitions (in each latent space)
and inter-transitions (among latent spaces). Moreover, the probability of
inter-transition is dynamic, depending on the current latent state. Us-
ing the proposed GPDM graph model, we can track human motion with
monocular video, where the average tracking errors are improved from
the state-of-the-art methods in our experiments.

Keywords: motion tracking, monocular video, manifold learning, Gaus-
sian process dynamical model, motion graph.

1 Introduction

In the computer vision community, much effort has been put into inferring the
human pose or 3D articulated human body parts from videos [6,11]. Basically,
there are two kinds of approaches: on one side, discriminative approaches em-
ploy a parametric model mapping directly from image observation to the pose
space [1,15]. Although recent techniques are developed with promising perfor-
mance [15], it is generally quite difficult to learn of such mapping because the
mapping itself is generally ambiguous, e.g. two different poses may have almost
the same observation. On the other side, the inverse problem of generating image
observations by a given pose is well defined, leading the generative approaches
to optimize the pose (or pose distribution). As a typical technique of genera-
tive approaches, particle filters are widely adopted to track human motion from
videos [7,13,16] and are also employed in this paper.

Y.-S. Ho (Ed.): PSIVT 2011, Part I, LNCS 7087, pp. 370–383, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In most papers [1,7,13,14,15,16], the human pose is represented as articulated
human body parts in a tree structure with many degrees of freedom [6,11]. There-
fore, the human pose is very difficult to track directly in the high dimensional
pose space due to the curse of dimensionality with such techniques as the par-
ticle filters [7]. Fortunately, recent studies demonstrate that human motion can
essentially be described in a much lower dimensional space (called latent space)
[9,16,17], given that targeted motion has regular dynamics. In this paper, the
Gaussian process dynamical models (GPDM) proposed by Wang et al. [17] is
employed because of the good performance as reported by Quirion et al. [12] for
many applications in tracking human motion [7,16]. However, it is unsatisfac-
tory for a single GPDM to express complicated motion that has several motion
patterns [7].

Our basic idea is to separate complicated motion into simple segments, where
a GPDM model (i.e., latent space) is learned for each segment. Naturally, those
latent spaces should be transited with a probability. Moreover, the transition
probability among latent spaces (called inter-transition) should depend on the
current state of the current latent space. For example, the probability of inter-
transitions is much higher at the landing state than that at the flight state from
the jumping space to walking space. Generally speaking, it is very challenging to
learn such a complicated latent model in a reasonable way. For this purpose, we
combine the techniques of the motion graph [3,8,10] and GPDM to construct our
novel model GPDM graph. As far as we know, it is the first latent dynamics model
with a graph structure. In addition, our approach is a completely unsupervised
learning method by the data-driven scheme.

Although monocular approaches are much more challenging than multi-view
approaches due to incomplete information, such as the occlusion problem [6,11],
a single camera is more ubiquitous and cheaper, thus making it suitable for
non-professional users. Moreover, a single camera solution can open up a new
possibility to capture motion from video archives such as past Olympic games.
In both cases, currently, we do not require real time processing, targeting to the
applications for entertainment, coaching, etc.

The rest of this paper is organized as follows. Section 2 presents a brief survey
on related work. Section 3 describes the proposed algorithm in detail. Section 4
discusses our experimental results on the HumanEva dataset [13]. The conclu-
sions and future work are addressed in section 5.

2 Related Work

A plethora of literature is reported on video-based human motion tracking. See
the comprehensive reviews in previous surveys [6,11]. In this section, we focus on
dimension reduction and particle filter techniques for human motion tracking,
which are the categories of our core techniques.

Although principle component analysis (PCA) is widely used for dimension
reduction in human motion [2], linear mapping has poor ability to reduce the di-
mensions because human motion is highly non-linear. As a non-linear approach,
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the Gaussian process latent variable model (GPLVM) can learn the latent space
and the mapping function [9]. GPLVM is an efficient tool for modeling distribu-
tion in a high dimensional space with a compact low dimensional representation.
Wang et al. extend GPLVM to GPDM [17], which models the dynamics in the
learned latent space. GPDM and its variants, including BGPDM [16], are widely
employed in tracking human motion because it simultaneously models the latent
space, the dynamics in the latent space, and the mapping from latent space to
the pose space. GPDM is an unsupervised method and only needs a minimum
of learning data [17]. However, Chen et al. [7] have reported that GPDM cannot
model complicated motion. They introduce a switching GPDM model that is
successfully used in human motion tracking [7]. In their model, the transition
probability of switching states is static. Moreover, labels of switching states in the
learning data are usually required, which means that it is a supervised learning
method. The essential difference between our GPDM graph and the switching
GPDM is whether to learn dynamic switching probability with an unsupervised
method, which is very challenging but important in real applications.

On the other hand, particle filters and variants are successfully applied to track
objects in video because of the compatibility of non-linear and non-Gaussian
elements [4]. However, the workable dimensionality for particle filters is small as
pointed out by Chen et al. [7]. With the above dimension reduction methods,
it is possible to track human motion using particle filters in a low dimensional
latent space. In this paper, we employ a particle filter technique similar to Sigal
et al. [13]. Our experimental results show that performance is further improved
from the state-of-the-art methods [7,14,17]. See the details in Section 4.

3 Proposed Method

Our system includes learning the GPDM graph and inference with GPDM graph.
To learn the GPDM graph, training motion data are divided into several short
segments, and a GPDM model is simultaneously learned for each segment. At
the same time, the candidates for inter-transitions among GPDM models are
detected using the short-term principle component analysis, originally proposed
by Xu et al. [19]. With the learned GPDM graph, which includes the mapping
function from latent space to pose space, the human pose is inferred with the
low dimensional latent space by particle filters. In this stage, inter-transitions
are dynamically determined by the similarity of human poses. In Section 3.1, we
will first describe the concept of the GPDM graph in detail.

3.1 Concept of GPDM Graph

The basic hypothesis is that a complicated motion consists of a sequence of
elemental motions, and each elemental motion, originally in many degrees of
freedom, is essentially controlled by low dimensional latent space as shown in
Eq. (2) [7,17]. At the same time, the first-order Markov dynamics is assumed
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for simplicity in latent spaces as shown in Eq. (1). Furthermore, we connect
the latent spaces with a dynamic probability as shown in Fig. 1 (called inter-
transitions).

zk
t = f(zk

t−1;A) + nz,t (1)

xt = g(zk
t ;B) + nx,t (2)

where zk
t ∈ R

d denotes the d-dimensional coordinates at time-t in the k-th latent
space, xt ∈ R

D denotes the D-dimensional coordinates at time-t in pose space
(D >> d), f and g are non-linear mappings parameterized by A and B, and nz,t

or nx,t denotes zero-mean, isotropic, white Gaussian noise processes. Note that
our model has multiple latent spaces but a single pose space while the original
GPDM has a single latent space and a single pose space. Therefore, our model
is more general and suitable for complex motions.

One of the unique characteristics in our model is that the inter-transition
probability depends on the current state of the current latent space, which in-
fers that probability changes dynamically. The example in Fig. 1 explains the
reasonableness of our model, where two kinds of elemental motions exist in-
cluding “walking” and “jumping”. As shown in Fig. 1(b), it is natural that the
transition probability at the landing state is much higher than at the flight state
when transiting from “jumping” to “walking”. Similarly, the transition probabil-
ity must be dynamic when transiting from “walking” to “jumping” as shown in
Fig. 1(c). Surely, besides the inter-transitions, we have intra-transitions in each
latent space as the original GPDM did [17]. Note that our model is designed
for not only the above scenario that clearly has two motions but also the com-
plex motion with multiple short phases that can transit in-between such as the
gesture motion in Table 2.

S1 S2
p2

q2

q1

p1 walkingjumping

S1, S2 Latent spaces

p1 q1

�me
(a) (b) (c)

landing state

�me

Fig. 1. Concept of the proposed GPDM graph model (a): multiple latent spaces are
connected in a probability depending on the current state of the current latent space.
Naturally, the probability of inter-transition is much higher at the landing state than
that at the flight state from the jumping space to walking space in (b). Similarly, the
transition probability is dynamic when transiting from walking to jumping in (c).

Specifically, when using GPDM to learn latent space, the above model can
be further represented as Eqs. (3) and (4) through Gaussian process regression,
where the dynamics of the latent space is the former, and the mapping from
latent space to pose space is the latter. Note that both are probability functions,
which are desirable for particle filters. For more details, please refer to [17].
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p(Zk | ᾱk) =
p(zk

1)√
(2π)(N−1)d | KZk |d exp

(
−1

2
tr(K−1

ZkZ2:N
kZk T

2:N )
)

(3)

p(X | Zk, β̄k,Wk) =
| Wk |N√

(2π)ND | KXk |D exp
(
−1

2
tr(K−1

XkXWk2
XT )
)

(4)

where Zk ≡ Zk
1:N ≡ {zk

1 , zk
2 , ..., zk

N} denotes all the coordinates in the k-th
latent space, X ≡ {xt : t = 1, ..., N} denotes all coordinates in the pose space,
ᾱk denotes kernel hyperparameter vector for dynamics in latent space, which is
used in calculating the kernel function (KZk)ij ≡ kZk(zk

i , zk
j ) in Eq. (5), β̄k and

Wk ≡ diag(wk
1 , ..., wk

D) are hyperparameters for the mapping function, where
the kernel function (KXk)ij ≡ kXk(xi,xj) is calculated by Eq. (6). In a word, a
GPDM model is represented as {Zk, ᾱk, β̄k,Wk}, which is learned in a segment
of motion data.

kZk(zk
i,z

k
j )=exp

(
−βk

1

2
‖zk

i −zk
j ‖2

)
+(βk

2 )−1δzk
i ,zk

j
(5)

kXk(xi,xj)=αk
1exp
(
−αk

2

2
‖xi−xj ‖2

)
+αk

3x
T
i xj +(αk

4)−1δxi,xj (6)

The probability of an inter-transition is intuitively calculated according to the
distance between two poses that are transited as Eq. (7), where the principle
in the so-called motion graph technique is adopted [3,8,10]. Basically, the more
similar the poses are, the higher the transition probability is.

− log p(zk
t → zk′

t′ ) ∝ dist(xt,xt′) (7)

where zk
t denotes the departure coordinates in the k-th latent space, where the

mean of the mapping function is xt in the pose space, and zk′
t′ denotes the des-

tination coordinates in the k′-th latent space, where the mean of the mapping
function is xt′ in the pose space. The function dist is a distance function be-
tween two poses. See an implementation by Wang et al. [18], where the weighted
difference of joint orientations is calculated as Eq. (8).

dist(xt,xt′) =
m∑

n=1

wk ‖ log(q−1
t′,nqt,n) ‖2) (8)

where m denotes the number of joints in the human pose, and qt,n denotes the
orientation of joint n in the t-th frame, expressed as quaternion.

3.2 Learning of GPDM Graph

Given human motion, the proposed GPDM graph will be learned with an unsu-
pervised method.

Inter-transition Candidate Detector: It is necessary to detect the possible
inter-transitions in the training motion data, e.g. the time instants for hitting
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the ground in walking motion, where a short-term principal component analysis
(short-term PCA) method [19] is employed. The basic idea in short-term PCA
is piece-wise linear approximation for non-linear human motion because motion
data are almost linear in the short term due to strong temporal coherence. Short-
term PCA is executed in a sliding window in the joint position space. And the
peaks and valleys of the coordinates in the first principal component are regarded
as candidates for inter-transitions {bi : i = 1, ..., I}. The detected candidates for
inter-transitions are stored as potential time instants to transit to other motions.
See the detailed procedure in [19].

Construction of GPDM Graph: We simultaneously segment training motion
data and learn a sequence of GPDM models. The basic idea is to use the trial
and error approach iteratively with a sliding window as shown in Table 1. The
motion in a window is called a motion clip, which is empirically set as 60 frames
or 0.5 seconds in our implementation. We merge the motion clips when the
reconstruction error, calculated as Eq. (9), is smaller than the threshold as shown
in Table 1. Here, the threshold is set as 1.0. Otherwise, it is divided into two
segments at the boundary of additional motion clip as shown in Fig. 5(b). In
concept, a segment for a motion pattern is desired. In practice, the real concern
in the inference is the reconstruction error.

error(t) = dist(xt, x̂t) (9)

x̂t = g(ẑk
t ) (10)

where x̂t is the t-th reconstructed pose from the t-th coordinates ẑk
t of a so

called mean prediction sequence in the current latent space, generated from zk
1

by simulating the dynamical process one frame at a time [17].
Now, our GPDM graph is composed of the GPDM models {Zk, ᾱk, β̄k,Wk :

k = 1, 2, ..., K} and all the candidates for inter-transitions {bi : i = 1, ..., I},
which will be used in the next section. An example is shown in Fig. 2, where a
walking motion in Section 4 is used.

Table 1. Procedure for learning a sequence of GPDM models

while training data are not finished
do add a motion clip

merge the current clip
learn the GPDM for merged motion
if error(t) < TH for any t

then continue
else learn the GPDM without the added clip

output the learned GPDM
reset the start point as the head of current clip
break
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Fig. 2. An example of the proposed GPDM graph model for a walking motion in Table
2, where the circles denote the learned coordinates in latent space and the crosses denote
the predicted coordinates in latent space.

3.3 Inference with GPDM Graph

As mentioned before, particle filters are used to infer the human pose from the
input video, where the main difference from conventional particle filters [13] is
that the particles are generated in the latent spaces instead of the pose space,
reducing the space dimension greatly. Later, the particles in the latent space are
called latent particles zk

t (1 : P k), which denotes the P k coordinates in the k-th
latent space for time t. The corresponding particles in the pose space are called
pose particles xt(1 : P ), which denotes the P (=

∑
P k) coordinates in the pose

space for time t and is calculated by the mean of GP regression in Eq. (6) as
Wang et al. [17] reported.

Similar to conventional particle filters [13], the initialization is specially pro-
cessed. In detail, the ground truth of the first frame is used to generate particles.
First, we search the human poses in the training motion data to find pose can-
didates, which are required to be similar to the first frame (i.e. satisfied by Eq.
(11)). The corresponding coordinates in the learned latent space are the seeds
for latent particles zk

1(1 : P c) with P c particles. P c is determined by Eqs. (12)-
(14) given P particles in total. With the seeds and particle number, the latent
particles zk

1(1 : P c) for the first frame are generated by a Gaussian distribu-
tion. Those latent particles are further mapped to the pose particles x1(1 : P )
(P =

∑
P c is the total particle number). The importance weights wt(1 : P ) are

equally set as 1/P .
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dist(xgt
1 ,x∗

t ) < dist and
d(dist(xgt

1 ,x∗
t ))

dt
< 0 (11)

− log q(c) = dist(xgt
1 ,x∗

t (c))/
∑

i

dist(xgt
1 ,x∗

t (i)) (12)

p(c) = q(c)/
∑

i

q(i) (13)

P c = p(c) ∗ P (14)

where xgt
1 denotes the ground truth of the first frame, x∗

t (c) denotes a pose
candidate, and dist denotes the average distance for all the pose candidates.

Then, the human pose is inferred by the following steps iteratively. Note that
this scheme can easily be extended to variants of the particle filters, such as the
annealed particle filter [13].

1. Likelihood calculation: With the pose particles xt(1 : P ) and video frame
yt, the importance weights ŵt(1 : P ) are updated by the same likelihood
functions as [13], which includes the edge and silhouette features in the
video frame.

2. Resampling: According to the updated importance weights, resample the
latent particles ẑk

t (1 : P k), which is similar to [13].
3. Prediction by inter-transition: This step is unique for our GPDM graph

model. The above latent particles are checked whether they should be tran-
sited to other latent spaces. By this step, the particles are adaptively dis-
tributed among the latent spaces. Since all possible inter-transitions are
learned in section 3.2, the distances are calculated between {bi : i = 1, ..., I}
and each pose particle xt(p), which is mapped from a latent particle ẑk

t (p).
If the distance with bi and xt(p) is smaller than the threshold, the latent
particle ẑk

t (p) will be transited to the k′-th latent space corresponding to the
human pose bi. The transited particle number is determined by the distances
and the original particle number, which is similar to Eq. (14).

4. Prediction by intra-transition: Although this step exists in conventional
particle filters, much more advanced dynamics is available in the latent space
using GPDM models [7,16]. The purpose of this step is to generate latent
particles at the next time instant zk

t+1(1 : P k), which is calculated by the
learned dynamics in Eq. (5).

5. Mapping to pose particles: With the above latent particles zk
t+1(1 : P k),

the pose particles xt+1(1 : P ) are obtained by the mapping function in Eq.
(6). Now go to Step (1) for tracking human pose in the next frame.

4 Experimental Results

Experimental Conditions: In Section 4, we evaluate our algorithm in both
the learning and inference stages using the HumanEva dataset [13], where the
training and test data from S1 subject are used as shown in Table 2.
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Fig. 3. Comparison of reconstruction error

Evaluation of GPDM Graph Learning: We compare our GPDM graph with
the original GPDM model [17] for the three motions in Table 2. The reconstruc-
tion errors are shown in Fig. 3, where the average errors are reduced to 9.7%,
61.5%, and 2.5% in the three motions, respectively. As expected, the model pre-
cision is much improved. Basically, the more complex the motion is, e.g. gesture
motion, the more benefit the proposed method provides.

Figure 4 shows the inter-transition candidates for training data. The frame
distance, which means the probability of inter-transition in our method, changes
a lot in Fig. 4, requiring that the transition probability should dynamically
depend on the current state. Similar results were reported in motion graph tech-
nique [3,8,10]. At the same time, the inter-transition candidates should locate
the similar poses with short distances in those cyclic motions. The experiments
show our inter-transition candidate detector works well, which detects the local
extreme values by short-term PCA [19] as shown by the crosses in Fig. 4.

Table 2. Experimental data used in the learning and inference stages

motion description training data test data (C1 camera)

walking cyclic motion 1∼480 481∼600

jogging cyclic motion 1∼180 531∼650

gesture multiple patterns 1∼420 421∼570
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(a) Results from walking mo�on (c) Results from gesture mo�on(b) Results from jogging mo�on

Fig. 4. Frame distances and detected candidates for inter-transitions from a walking
motion (a), a jogging motion (b), and a gesture motion (c). Blue color denotes the
low distance and deep red color denotes the high distance. Crosses denote the detected
candidates for inter-transitions.

An interesting observation from Figs. 2 and 3 is that there are multiple pat-
terns in a semantically simple walking motion. This is due to the following fact
that the signals in two cycles are rather different. Figure 5 (a) shows the learned
latent space from the first two cycles (frame #1∼#150) of the walking motion
in Table 2. It is clear that the predicted latent coordinates (crosses, generated
by the GPDM model) are almost the same in two cycles while the learned latent
coordinates (circles, learned directly from the training data) are quite different,
which infers that the learned GPDM model cannot confidently generate correct
latent coordinates and leads to the reconstruction errors become rather large
in the second cycle as shown in Fig. 5(b). By segmenting into two models, the
reconstruction ability is greatly improved as shown in Fig. 2.

(a) GPDM learned by 150 frames (b) Reconstruc�on error with (a)
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Fig. 5. Learned latent space from frame #1∼#150 of the walking motion (about two
cycles), where the circles denote the learned coordinates in latent space and the crosses
denote the predicted coordinates in latent space. A single GPDM model may fail to
model a semantically simple motion.

Evaluation of Pose Inference: We compare the GPDM graph model with
the original GPDM model [17] and the switching GPDM model [7] where the
probability of inter-transitions is constant (i.e. independent of the latent state
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Table 3. Average errors of tracking human motion by different methods

motion original GPDM switching GPDM GPDM graph

walking 44.16 mm 56.09 mm 40.88 mm

jogging 57.21 mm 57.55 mm 53.26 mm

gesture 17.80 mm 16.33 mm 13.23 mm

in GPDMs). In all the methods, the total particle number is set as 1000. For
evaluation, the tracking error is calculated by the inferred pose and the ground
truth as described by Sigal et al. [13].

Figure 6 shows the tracking errors of the above three methods respectively,
whose average error is listed in Table 3. In the above experiments, the proposed
GPDM method achieves the best performance by combining the merits of orig-
inal GPDM and switching GPDM1. As Fig. 6 shows, the GPDM graph method
basically has the errors similar to the lower ones of the original GPDM and the
switching GPDM. When the motion is in a single pattern, the particles in parti-
cle filter are preferred to stay in a GPDM model. On the other hand, when the
motion transits to a new pattern, the particles are preferred to transit to another
GPDM model. Our experimental results infer that neither the original GPDM
nor the switching GPDM deals with the situations well. In this meaning, by the
adaptive probability of inter-transitions, the efficiency of using particles in the
particle filter is improved in the proposed GPDM graph model, leading to better
performance. Figure 7 shows the particles are transited among different GPDM
models by GPDM graph and switching GPDM respectively. As the dashed line
in Fig. 7 (a) shows, the particles are transited properly with the motion patterns
in GPDM graph while they are equally transited in switching GPDM as Fig. 7
(b) shows. Basically, in the proposed GPDM graph, the particles can automati-
cally follow the changes of motion patterns by the adaptive transition probability
among different GPDM models, which is the essential advantage of our method.

(a) Tracking error of a walking mo�on (c) Tracking error of a gesture mo�on(b) Tracking error of a jogging mo�on

Fig. 6. Tracking errors by the proposed GPDM graph (red dotted curves), the original
GPDM (black solid curves), and the switching GPDM (blue dashed curves) in a walking
video (a), a jogging video (b), and gesture video (c) of the S1 subject from the C1
camera

1 As a latest result on walking motion of S1 subject in HumanEva dataset, Taylor et
al. reported an average error of 47.29 mm by a sixth-order model of Implicit Mixture
of Conditional Restricted Boltzmann Machines in a similar condition [14].
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Fig. 7. Particle transitions among different GPDM models by GPDM graph (a) and
switching GPDM (b) from the gesture motion. The dashed line shows the transition
trace of most particles in GPDM graph. The particles are transited properly with the
motion patterns in GPDM graph (a) while they are equally transited in switching
GPDM (b). The color of points denotes the particle ID.

Finally, we show two samples in Fig. 8 where the proposed method tracks the
pose correctly while other methods may fail to track the legs.

(a) GPDM graph

(b) Original GPDM (c) Switching GPDM

(b) Original GPDM (c) Switching GPDM

(a) GPDM graph

GPDMGPDMSwitchingSwitching

GPDMGPDMSwitchingSwitching

Fig. 8. Tracking result of frame #56 and #98 by GPDM graph (a), original GPDM
(b), and switching GPDM (c) in the test video of walking motion. The colored cylinders
show the tracking results and the black cylinders denote the ground truth.
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5 Conclusions and Future Work

In this paper, our main contribution is to propose a novel model for tracking
human motion from a monocular video, where the novelties are as follows.

– It is the first latent dynamics model with graph structure. With inter-
transitions in the graph, the long-term correlation is possible to be used.
We simultaneously segment the training motion and learn the GPDM mod-
els by the trial and error approach.

– Our data-driven approach is a completely unsupervised learning method.
For this purpose, we employ the short-term PCA method to search the can-
didates for inter-transitions. In the inference stage, the connections (inter-
transitions) are dynamically determined by the similarity of human poses,
which is inspired by the motion graph technique [3,8,10].

In the future, we plan to improve the likelihood function in the tracking stage us-
ing more advanced features, such as robust local and global appearance features
[5,16].

Acknowledgment. The HumanEva dataset and baseline codes are provided by
Brown University. Part of GPDM codes are downloaded from Toronto University.
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Abstract. For the high quality three-dimensional broadcasting, depth maps are 
important data. Although commercially available depth cameras capture high-
accuracy depth maps in real time, their resolutions are much smaller than those 
of the corresponding color images due to technical limitations. In this paper, we 
propose the depth map up-sampling method using a high-resolution color image 
and a low-resolution depth map. The proposed method is appropriate to match 
boundaries between the color image and the depth map. Experimental results 
show that our method enhances the depth map resolution successfully. 

Keywords: 3D broadcasting, multi-view video, FTV, TOF cameras, depth map, 
interpolation, random walk. 

1   Introduction 

Three-dimensional (3-D) video currently attracts public attention in a variety of 
multimedia applications. The current 3-D videos provide 3-D effects using the 
stereoscopic images which are based on binocular depth cues. In the near future, users 
will be able choose their viewpoints of themselves in the immersive visual scenes 
created by 3-D videos.  

Since we cannot transmit videos of all viewpoints, we synthesize the viewpoint’s 
video using transmitted video-plus-depth data for 3-D TV [1]. To provide the high 
quality synthesized view, accurate depth information is important. In general, depth 
estimation methods are classified into two categories: active depth estimation and 
passive depth estimation. The active depth estimation method directly obtains the 
depth map using physical sensors. On the contrary, the passive depth estimation 
method calculates the depth values using acquired 2-D images. 

The passive depth estimation method uses two or more 2-D images. Typical 
examples are shape from focus [2] and stereo matching [3]. The passive depth 
estimation method can be performed at a low price because it needs only 2-D images. 
However it does not guarantee quality of depth map because the performance of 
passive depth estimation depends on image properties. Active depth estimation uses 
the physical sensor such as lasers, infrared rays (IR), or light patterns. There are 
structured light patterns [4] and depth cameras [5]. If we use physical equipment, we 
can obtain more accurate depth values. However, depth cameras are expensive and 
they capture low-resolution depth maps only. To get accurate depth maps, the hybrid 



 Depth Map Up-Sampling Using Random Walk 385 

 

camera system was proposed [6]. To overcome problems of previous depth estimation 
methods, the hybrid camera system consists of the multi-view color cameras and the 
depth cameras. Thus, it can perform both active depth estimation and passive depth 
estimation. 

Although depth estimation methods have been researched continually, more 
accurate depth estimation method remains an unsolved problem. We obtain more 
accurate depth values when we use the active depth estimation method. However, we 
need the up-sampling process due to the difference between color images and depth 
maps. Besides, depth up-sampling can be used for the depth encoding algorithm. We 
improve coding efficiency by transmitting the down-sampled depth map which is 
represented much fewer bits than that of original depth information. In the decoder, 
the transmitted depth map can be used through the up-sampling process. Thus if 
accuracy of up-sampled depth values is higher, coding efficiency will be improved. In 
this paper, we propose the efficient depth map up-sampling method. 

Section 2 explains the previous depth up-sampling methods. In Section 3, we 
describe the proposed up-sampling method. Then, Section 4 demonstrates the 
experimental results. We conclude in Section 5. 

2   Related Works 

The hybrid camera system also has the problem that resolution of depth maps 
captured by depth cameras is smaller than that of the corresponding color images due 
to technical limitations of the depth cameras [7]. Figure 1 shows the resolution 
difference between the color image and the depth map of the hybrid camera system.  

 

Fig. 1. Resolution of the color image and the depth map 

Since the inaccurate depth information deteriorates the quality of synthesized 
views and 3-D video, the quality of depth maps is very important for an image-based 
rendering. Thus the accurate enhancement method of the low-resolution depth map is 
required. To obtain accurate depth information, we need to keep following properties 
of depth maps. 
 

1. Boundaries of depth maps match corresponding color image boundaries. 
2. Depth values of neighboring pixels in the same object are similar. 
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To solve this problem, various methods have been proposed. In the beginning of the 
research, general image interpolation methods were used such as bilinear, nearest-
neghbor, and bicubic interpolations [8]. However, they do not guarantee the depth 
map properties. So, the Markov random field probability model and the bilateral filter 
are proposed. 

2.1   Markov Random Field 

Diebel et al. interpolated depth values using the Markov random field probability 
model (MRF) and the designed the adaptive weighting function according to the color 
gradient [9]. The MRF is composed of 5 node types. Figure 2 shows the designed 
MRF. 

 

Fig. 2. Node types of MRF 

The MRF is defined through thefollowing conditional probability. 
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where Ψ  is depth measurement potential and it represents the difference between the 
laser range measurement and the reconstructed range. Φ  is depth smoothness term. 
As computing the optimization problem of Eq. (1), we obtain the depth values. 

2.2   Joint Bilateral Up-Sampling 

Kopf et al. proposed the post-processing step using the bilateral filter [10]. The 
bilateral filter is an edge-preserving filter. The idea is to apply a spatial filter to the 
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( qp IIg − is color distances between pixel p and q in full resolution I
~

. And 

)( ↓↓ − qpf represents the spatial distance.  

After releasing the joint bilateral filter, many up-sampling methods which use 
modified bilateral filter are proposed. Yang et al. proposed the post-processing step 
using the bilateral filter [11]. This method enhances the low-resolution depth map by 
refining iteratively initial depth values.  

3   Proposed Depth Up-Sampling 

We generate the new depth value using the initial depth values. We warp the pixel 
from low-resolution depth map to color image. We define the initial values as warped 
depth values.  

3.1   Initial Value 

Camera Calibration. To match a depth map and a color image of different cameras, 
it is important to find out relative camera information through camera calibration [12]. 
We apply a camera calibration algorithm [13] to each camera and obtain projection 
matrices.  

]tK[RP = . (3)

where P is the projection matrix of each camera. It is consist of the intrinsic matrix K, 
the rotation matrix R, and translation vector t.  

3-D Warping. The camera parameter represents the relative position of the camera 
and world coordinates. Since we have position information and depth information of 
cameras, we can find the any position of the depth map in the world coordinate using 
Eq. (4) which is consist of camera parameter R, K, t. 

.tR)(xdxKRX r
1

rrrr
1

r
1

rr ⋅−⋅⋅⋅= −−−  (4)

where Xr means the position in the real world coordinates of a pixel xr in the depth 
map, and dr(xr) is the return value of the corresponding depth value of xr. After 
finding position in the world coordinates, we then reproject the 3-D points into the 
color image. Equation (5) represents reporjection equation which is composed of 
camera parameter of the color camera and the geometric position of the depth map.  

rtt XPx = . (5)

where xt is the corresponding position of xr in the depth map. All pixels of the depth 
map have the position corresponded a color image through 3-D warping. However the 
3-D warping technique cannot guarantee perfectly matching positions of the depth 
map and the color image. 
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3.2   Depth Up-Sampling Using Random Walk 

We classify pixels as seed pixels and unknown pixels. If pixels have initial depth 
values, they are seed pixels and other pixels are unknown pixels. We assume that 
depth values of neighboring pixels which have similar color values are similar. Thus, 
we copy the depth values of unknown pixels from the depth values of a seed pixel 
which has similar color values and the low distance cost. Figure 3 shows the concept 
of our up-sampling method. 

 
    (a) Initial depth value                      (b) Example of depth interpolation 
 

Fig. 3. Depth map interpolation 

We calculate the random walk probability of each seed pixels. Figure 4 is an 
example of the random walk probability of seed pixels. After calculation of the 
probability, unknown pixels have the probability values corresponded with each seed 
pixels. Thus we copy depth values of unknown pixels from that of a seed pixel which 
has the largest probability values.    

 

Fig. 4. Example of random walk probability 

To calculate random walk probability each path between neighboring pixels has 
the cost. The cost between pixel i and pixel j represents 
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where ji zz − represents the Euclidean color distance and σ means the variance. If 

unknown pixel is far from the seed pixel, random walk probability decreases as cost 
between two pixels. However since there are many path between the seed pixel and 
the unknown pixel, random walk probability depends on the path between pixels. 
Figure 5 shows the random walk probability corresponding paths. 

 

Fig. 5. Random walk probability of each path 

We define the random walk probability as the largest probability among each 
path’s probability. The largest probability means that the sum of path cost is the 
smallest. Thus random walk probability is  

.)(argmin ))(( =
→ ji

ijwiseedjP  (7)

i is seed pixel and j is unknown pixel. 
To find minimum cost there several methods. Graph-Cut is widely used in variety 

field for optimization. Graph-Cut method minimizes weight of connections between 
groups. However it only considers external cluster connections. It does not consider 
internal cluster density. 

We solve this minimum cost path problem using spectral graph theory [14]. It 
solves the problem using simple matrix calculation. The graph is made of edges and 
vertices. The vertices mean the pixels and the edges mean the connectivity 
information. As a neighborhood system (4-neighbor or 8-neighbor), the number of 
edges and the shape of graph are different. We select 4-neighbor system. As shown in 
Figure 5, each pixel is the vertex and the connected lines are edges. All edges have  
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cost values as defined in Eq. (6), represented as Gaussian weighting color distribution. 
The variance of Eq. (6) controls weighting of color and distance. Large variance 
increases color weighting. If variance is small, the distance weighting is larger than 
color weighting. 

The desired random walk problem has the same solution as combinatorial Dirichlet 
problem [15], [16]. The Dirichlet integral is defined as 

.
2

1
][

2 Ω∇=  duuD  (8)

The harmonic function satisfies the Laplace equation. Since the Laplace equation is 
the Euler-Lagrange equation for the Dirichlet integral, the harmonic function 
minimizes the Dirichlet integral [17]. Finally, the Dirichlet integral is the same and it 
is defined as 
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Equation (7) is substituted matrix calculation LxxT in Eq. (9). L represents the 
Laplacian matrix. Equation (10) represents the Laplacian matrix. ijw is cost between 

each neighboring pixel and id is sum of cost between pixel i and neighboring pixels. 
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where B is a combination of the seed matrix and the unknown matrix. Since we 
minimize Eq. (11), we find the critical point. To find critical point, we differentiate 
the Eq. (11). 

.Label
T

UnknownUnknown xBxL −=  (12)

Because we know B, Seedx , and UnknownL , we can find the probability Unknownx  from 

Eq. (12) and fill the unknown pixel with the depth value of the seed pixel which has 
maximum probability. Because the Laplacian matrix is too large, solving the Eq. (12) 
is difficult. However since the Laplacian matrix is symmetric and sparse, it is easily 
solved. 
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4   Experimental Results 

4.1   Depth Map Interpolation 

To evaluate the objective performance of the proposed interpolation method, we use 
the data set of Middlebury website [18]. We apply the proposed method with the 
down-sampled depth maps. The down-sampled depth map consists of pixels which 
are on positions of multiples of up-sampling rate in the original depth map. To 
improve accuracy we interpolate the depth value of a block unit. Block based 
interpolation method is efficient because it considers only near values and positions of 
initial value is regular. As comparing the interpolated depth values to the original 
depth values, we find the error percentage which is used by Middlebury. In addition, 
we compare the error percentage with other interpolation method such as MRF 
refinement [9] and iterative joint bilateral filter [11]. Table 1 shows the comparison of 
all error percentage.  

Table 1. Comparison of all error percentages 

 Tsukuba Venus Teddy Cone 

Up-sampling 
rate 

2 4 8 2 4 8 2 4 8 2 4 8 

MRF 2.51 5.12 9.68 0.57 1.24 2.69 2.78 8.33 14.5 3.55 7.52 14.4 

Bilateral filter 1.16 2.56 6.95 0.25 0.42 1.19 2.43 5.95 11.5 2.39 4.76 11.0 

Proposed 
method 

0.69 1.23 2.33 0.18 0.27 0.31 2.92 3.91 5.98 3.01 3.67 5.37 

 
In the low up-sampling rate, the error percentage is similar to the bilateral filter 

method. However as the up-sampling rate is higher, the proposed algorithm shows the 
much better performance than that of previous methods. Figure 6 shows the up-
sampled depth map.  

 

(a) Teddy 

(b) Venus 

Fig. 6. Double, quadruple, octuple interpolated images 
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4.2   Boundary Noise Remove 

We obtain the depth map (176×144) using SR-4000 of the hybrid camera system. To 
interpolate the depth values of TOF cameras, we must consider the wrong initial 
values which are caused by 3-D warping error and depth map noise. When depth 
maps of TOF cameras are up-sampled, depth maps have noise. The depth map noise 
is caused by camera parameter errors, 3-D warping errors, and non-discontinuity 
depth value on boundary. Figure 7 shows the boundary noise of warped depth values. 

 

Fig. 7. Initial value noise 

To overcome the problem, we redefine the depth values neighboring edges using 
the proposed depth hole filling method. Figure 8 shows the up-sampled depth map, 
color image (800×600), and boundary redefined depth map. To improve the clarity we 
reverse the depth values. Figure 9, 10 represent the up-sampled depth from 176×144 
to 1190×950 using proposed method and 3-D rendering result.  

 

 
(a) Color image (b) Up-sampled depth map 

  

 
(c) Edge remove (d) Redefined depth map 

Fig. 8. Up-sampled depth map 
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(a) Color image (1190×950) (b) Depth map 
  

 
(c) Up-sampled depth map (d) Rendering result 

Fig. 9. Up-sampled depth map and rendering result 

 

 
 
 

 
 

(a) Color image (1190×950) (b) Depth map (c) Rendering result 

Fig. 10. Rendering result using the up-sampled depth map 

5   Conclusion 

To render the 3-D scene, depth information is essential data. Depth maps which are 
captured by the depth camera cannot match color images due to resolution difference. 
In this paper, we propose the random walk probability model for depth up-sampling. 
We objectively evaluate proposed method by up-sampling Middlebury data sets. The 
proposed method enhances the accuracy of up-sampled depth maps. As the block 
based up-sampling rate is larger, quality variations of the proposed method is smaller 
than that of previous methods. Besides we enhance the depth map which is captured 
by TOF cameras. We interpolate the depth map using global method. And we apply 
the post processing to overcome problem of 3D-warping and global method. The 
result of proposed method shows accuracy improvement of discontinuity regions 
neighboring object boundary.  
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Evaluation of a New Coarse-to-Fine Strategy

for Fast Semi-Global Stereo Matching
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Abstract. The paper considers semi-global stereo matching in the con-
text of vision-based driver assistance systems. The need for real-time
performance in this field requires a design change of the originally pro-
posed method to run on current hardware. This paper proposes such a
new design; the novel strategy first generates a disparity map from half-
resolution input images. The result is then used as prior to restrict the
disparity search space for full-resolution computation. This approach is
compared to an SGM strategy as employed currently in a state-of-the-
art real-time FPGA solution. Furthermore, trinocular stereo evaluation
is performed on ten real-world traffic sequences with a total of 4,000
trinocular frames. An extension to the original evaluation methodology
is proposed to resolve ambiguities and to incorporate disparity density
in a statistically meaningful way. Evaluation results indicate that the
novel SGM method is up to 40% faster when compared to the previous
strategy. It returns denser disparity maps, and is also more accurate on
evaluated traffic scenes.

Keywords: Semi-global matching, driver assistance systems, coarse-to-
fine stereo.

1 Introduction

Stereo correspondence analysis by semi-global stereo matching (SGM), as pro-
posed by Heiko Hirschmüller [7], is a popular choice for real-time applications
that require dense disparity maps at high frame rates. For example, vision-based
driver assistance systems (DAS) favour the SGM strategy; see Rabe et al. [11].
A major constraint for real-time SGM implementation is the available mem-
ory throughput in current hardware. Because SGM integrates along multiple
1-dimensional (1D) energy paths, a large memory block needs to be updated in
off-chip memory.

Current literature on real-time SGM proposes to alter the design to the orig-
inal method for ensuring high frame rates for image resolutions equivalent to
the VGA norm (i.e. 640×480). For example, Hirschmüller [7] recommends to

� The first author thanks the German Academic Exchange Service (DAAD) for finan-
cial support.
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integrate at least along eight directions to obtain satisfactory results. But Nede-
vschi et al. [5] propose to integrate only along horizontal and vertical directions,
leaving out diagonal energy paths. They justify their approach with the argu-
ment that objects recorded from a moving vehicle are usually aligned along the
main axis, such that diagonal directions do not contribute as much to the final
solution. But by omitting 50% of the accumulation procedure, the requirements
on data processing are eased and real-time performance is achieved.

A research group at Daimler A.G. uses another design concept for their FPGA
implementation that was proposed by Gehrig et al. [4]. They keep the recom-
mended eight accumulation paths, but calculate a disparity image on a down-
scaled image pair first. The result is then scaled-up to full resolution and serves
as a disparity prior. In a consecutive step they calculate a disparity map for a
specified region-of-interest with SGM on full resolution images, but using only
half of the disparity search space. They generate the final result by replacing
disparities in the prior image with disparities from the full resolution map, if the
prior suggests that a disparity lies inside the reduced search space. Otherwise
the prior disparity is taken as the final result. This is based on the argument
that sufficient disparity accuracy for close objects can be obtained when comput-
ing half-resolution disparity images only. But, as the re-projection error increases
quadratically when disparities get smaller and boundaries of objects further away
may become vague due to downscaling, it is required to calculate disparities at
full resolution to minimize distance uncertainties for those objects.

The SGM design as proposed in this paper follows the Daimler approach and
calculates a disparity prior on half-resolution images. However, in contrast we
use the prior to actively determine the search space for the full-resolution SGM,
instead of having an indication how to merge independently calculated disparity
maps. Our approach therefore follows the standard coarse-to-fine concept, where
results from lower-resolution images are used to initialize the same algorithm
operating on the next higher resolution level. Such coarse-to-fine approaches are
nowadays standard in variational motion estimation algorithms to achieve faster
convergence; see, for example, the work by Brox et al. [1] or Zach et al. [18].

Fig. 1. Disparity results from the new SGM design (left) and the standard SGM de-
sign (right). The new design is 60% faster and is much denser especially inside the
challenging road area.
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To the best of our knowledge, no coarse-to-fine concept as described in the
previous paragraph has been proposed so far in combination with SGM, and
therefore has not been evaluated either. For the evaluation we propose an ex-
tension to an existing methodology [9] that can be used for stereo performance
evaluation in the absence of ground truth and employ it on a reasonably large
database of real-world traffic sequences. Of course, coarse-to-fine strategies are
already employed to improve the performance of stereo matching algorithms in
general. For example, a recent publication by Sizintsev and Wildes [14] employs
a coarse-to-fine strategy to a block-matching algorithm. Also, in the original
SGM design by Hirschmüller [7], a coarse-to-fine strategy is used, but only to
support the mutual information (MI) cost function. The author recommends to
calculate the disparities with SGM at each pyramid level from scratch. So, the
prior information is just used to improve the quality of the MI cost function
and not to improve the run-time performance of SGM. This defines the place
where this paper is positioned, namely somewhere between the original SGM [7]
and the SGM design proposed by Gehrig et al. [4]. We use design considerations
from the latter work to select a method to be compared with our novel strategy,
because of the shared goal to improve the run-time performance of SGM while
maintaining stereo accuracy on real-world traffic scenes.

The rest of this paper is organized as follows. In Section 2, relevant details of
the SGM algorithm are recalled and parameter settings of the used implementa-
tion are given. We present the design consideration as proposed by Gehrig et al.,
followed by our proposed coarse-to-fine approach. We also provide a discussion
about run-time performance. The trinocular evaluation concept as proposed by
Morales and Klette [9] is outlined in Section 3; we propose alterations and fur-
ther extensions to the original method. In Section 4 we present ten real-world
sequences, each of 400 trinocular frames, and outline the methodology of our
experiments using trinocular evaluation. The results of this study are discussed
in detail in Section 5. The paper concludes with a summary in Section 6.

2 Semi-Global Matching

We first recall the SGM algorithm and explain our alterations to the original
configuration as reported in [7]. We then compare two SGM design consideration
of this reference implementation. The first, called SGMG , is our implementation
following the design concept as proposed by Gehrig et al. [4], and this serves as
the method of comparison. The second implements our coarse-to-fine approach.
We discuss the run-time and disparity analysis performance of both methods.

Cost Accumulation and Cost Function. We introduce the notation for defin-
ing the cost accumulation procedure. For a cost accumulation path La with di-
rection a, processed between image border and pixel p, we consider the segment
p0, p1, . . . , pn of that path, with p0 on the image border, and pn = p. The cost at
pixel position p for a disparity d ∈ {0, . . . , D} ⊂ N on the path La is recursively
defined as follows, for i = 1, 2, . . . , n:

La(pi, d) =C(pi, d) + Mi − min
Δ

La(pi−1, Δ) (1)
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with

Mi =min

⎧⎪⎪⎨⎪⎪⎩
La(pi−1, d)

La(pi−1, d − 1) + c1

La(pi−1, d + 1) + c1

minΔ La(pi−1, Δ) + c2(pi)

(2)

where C(p, d) is the similarity cost of pixel p for disparity d, and c1 and c2 are the
penalties of the smoothness term. The second penalty c2 is individually adjusted
at each pixel pi to c2(pi). The magnitude of the forward difference in direction
a scales the penalty for each pi with

c2(pi) =
c2

|I(pi−1) − I(pi)| (3)

where I(·) refers to the intensity at a pixel. For disparities d = 0 and d = D,
the terms La(pi−1, d − 1) + c1 and La(pi−1, d + 1) + c1 are removed from Mi,
respectively.

The standard SGM algorithm uses eight paths for accumulation (up, down,
left, right, and the four in-between angles). To enforce uniqueness, two disparity
maps are calculated to perform a left-right consistency check. A disparity passes
this test if corresponding disparities do not deviate by more than one disparity
level. To identify an occlusion or mismatch, a unique invalid label is assigned to
pixels whose disparities failed this test. Disparities are calculated with sub-pixel
accuracy using the equiangular interpolation method proposed by Shimizu and
Okutomi [13]. The penalties are set to c1 = 30 and c2 = 150 for an intensity
domain of [0, 255]. The input images are smoothed with a small 3 × 3 mean
kernel. As similarity cost, we employ the census cost function which is based on
the census transform. Several studies [8,6] found that this function is very ‘de-
scriptive’ and robust, even under strong illumination variations, which is crucial
for real-world applications.

The census transform [16] assigns to each pixel in the left and right image a
signature vector, which is stored as a bit string (i.e. as an integer). This trans-
formation is performed once prior to cost calculation, and signatures are stored
in an integer matrix of the dimension of the image. The signature sequence is
generated as follows:

censussig =
[
Ψ(Ii,j ≥ Ii+x,j+y)

]
(x,y)∈N

(4)

where Ψ(·) returns 1 if true, and 0 otherwise. N denotes a neighbourhood (e.g.
8-neighbourhood) centred at the origin.

The census cost is the Hamming distance of two signature vectors and can
be calculated very efficiently [15]. In fact, the cost of calculating the Hamming
distance is proportional to the actual Hamming distance and not to the length
of the signature string. This is useful in GPU implementations: calculating the
cost from scratch is here cheaper than accessing the global memory [3].

Design Considerations. First we introduce some terminology. A standard
SGM implementation was described in the previous subsection. We now describe
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the design consideration reported by Gehrig et al. [4], denoted by SGMG . Our
new approach is denoted by SGMF , where subscript F stands for ”fast”.

Both programs, SGMG and SGMF , calculate a dense disparity map applying
standard SGM on half-resolution input images. The images were scaled down
using a 5 × 5 Gauss kernel with σ = 1. The half-resolution disparity maps
are scaled up; in-between pixels are linearly interpolated if both neighbours
have a valid disparity assigned to them. When identifying (by the left-right
consistency check) a case of occlusion or mismatch, we assign an invalid label to
the corresponding 3×3 neighbourhood. This calculated half-resolution disparity
map P serves in both methods as prior for subsequent calculations.

In case of SGMG , a second disparity map F is calculated on full-resolution
input images. However, the maximum disparity D is reduced to D/2 to reduce
the memory to be processed. The final disparity map R is created as follows

Ri,j =

{
Pi,j if Pi,j > D/2 − 1
Fi,j otherwise

(5)

In case of SGMF , the prior P is used to define the search space for every in-
dividual pixel. For a valid disparity δ in P , we process Equation (1) not for
d ∈ {0, . . . , D} ⊂ N but only for d ∈ {δ − 4, δ − 3 . . . , δ + 3, δ + 4} ⊂ N.

In other words we restrict the disparity search space to nine pixels around the
prior. In case of disparities close to 0 or D, we do not reduce the search space but
shift it accordingly. In case of invalid pixels we simply assign the default search
space which would be d ∈ {0, . . . , D} ⊂ N, to allow for all possible disparities.

Run-Time Performance. We analyse the approximate run-time performance
on images with resolution W×H. We assume that the maximum possible dispar-
ity is D. This means that a memory block of W×H×D has to be processed, which
resides in off-chip memory. Because one individual integration step consists of
a constant number of operations [see Equation (1)], the run-time performance
can be related to the size of the memory that needs to be processed. The ad-
vantage of this model is its independence from any hardware consideration or
implementation.

The memory block used in standard SGM serves as reference to define a
coefficient �X that indicates the ratio of memory needed in SGMX . Without
alterations, we have �S = 1 in standard SGM.

In case of SGMG , we have to process a memory block of size W/2×H/2×D/2
for the half resolution image, and W×H×D/2 for the full resolution image.
Adding those two quantities results in 5

8×W×H×D, which gives a coefficient
�G = 5

8 . We can now measure the performance gain of SGMG compared to
standard SGM, taking into account that

1 − �G
�S

=
3
8

= 37.5% (6)

In case of SGMF , the individual run-time depends on the density of the half-
resolution disparity map, because the whole search space is considered at occlu-
sions in the full-resolution run. We denote the density of this map by ϕ. The
total memory to be processed equals
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[W/2×H/2×D/2] + [W/2×H/2× (9ϕ + (1− ϕ)D)] != �F ×W ×H ×D (7)

A few algebraic operations lead to

�F =
9
8
− ϕ

D − 9
D

(8)

The gain compared to SGMG equals

1 − �F
�G

= 1 − 8
5

[
9
8
− ϕ

D − 9
D

]
(9)

We see that in case of the new design, the run-time performance can actually
be worse compared to the standard SGM in cases where the prior disparity map
is very sparse. However, in practice this is almost never the case; if it occurs
then full-resolution SGM is well justified (i.e. the stereo data is ‘challenging’).
Consider on the other hand a perfectly dense prior map (i.e. ϕ = 1). To obtain
the same run time as with SGMG , the minimum disparity range has to be at
least D = 18. As ϕ = 1 is also unlikely, the performance advantage only occurs
for larger values of D. For example, a common value such as D = 128 defines
a possible run-time gain of up to 68%. We measure performance advantages
in our experiments by applying Equation (9). Results below show an expected
performance gain of about 40%.

3 Trinocular Stereo Evaluation

A predicted-error technique was first employed by Morales and Klette [9] for
evaluating stereo analysis on long real-world stereo sequences. It requires at
least stereo triples of the same scene, recorded at the same time instance by three
calibrated cameras. Two of the three images (i.e reference and match image) are
used to calculate a disparity map by the stereo matching algorithm of choice.
Each pixel of the reference image is then projected into the position in which it
would be located in the third (i.e. control) image C. This virtual image V is then
compared to the control image C by calculating the normalized cross-correlation
(NCC) index as follows:

NCC(V, C) =
1
|Ω|

∑
(i,j)∈Ω

[V (i, j) − μV ][C(i, j) − μC ]
σV σC

(10)

where μV and μC denote the means, and σV and σC the standard deviations of
the control and virtual images, respectively. The domain Ω contains only non-
occluded pixels (i.e. pixels which are successfully mapped from the reference
image to the virtual image domain).

Generating the Virtual Image. In the original work by Morales and Klette [9]
it is proposed to use a forward mapping to generate the virtual image. In other
words, intensities of the reference image are mapped to positions in the control
image and assigned to the closest pixel position. The problem here is that dur-
ing the mapping process more than one intensity value may be mapped to the
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same pixel location. Discarding any of these mappings would cause a bias in the
evaluation, as the final index is affected by removing potentially wrong or correct
disparities. To avoid this bias we do not calculate a virtual image but rather cal-
culate a control intensity by means of bilinear lookup from the calculated position
in the control image that is compared with the intensity of the reference image.

To make this process as easy as possible and to avoid any bias from an oth-
erwise required de-rectification step, we recorded with a horizontally aligned
trinocular camera system and rectified the images with respect to the left-most
camera. This way we obtain three rectified images where corresponding epipolar
lines in all three images are running along the same image row. Thus, a pixel
position in the control image has the same y-coordinate as the corresponding
pixel in the reference image.

Fig. 2. Setup for the trinocular stereo experiment in this paper, showing one example
frame from the experimental database

The x-coordinate is then calculated as the current location in the reference
image plus an offset, which is the product of the current disparity and the ratio
of the baselines from the reference image to the control and to the match image.
Figure 2 shows the setup in our experiments. The stereo camera has a 30 cm
baseline and a disparity map is calculated with the centre image as reference.
Then the virtual image is generated and compared with the control image. The
scale factor to multiply the disparities with is here 50

30 . Remember that in practice
we warp the control image to the image plane of the reference camera as discussed
before, but we will stick with the previous terminology as it makes it easier when
proposing the following alteration to the original index.

Comparing Two Stereo Algorithms. The basic idea of trinocular stereo
evaluation is, of course, to have a quality measure to compare the performance of
different stereo algorithms in the absence of ground truth. Following the original
approach, the difference of the NCC index at each frame for each stereo algorithm
is evaluated. In case of only two stereo algorithms, we introduce a measure
ΔNCC that calculates the signed difference of two indices. This makes it easy
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to compare very similar results as the sign already gives an indication which
algorithm performs better.

However, there is a bias in this evaluation. The density of a disparity map
is not reflected. Therefore, a sparse stereo algorithm that calculates disparities
only at pixels that respond to a robust feature detector would very likely perform
much better in this index than a dense algorithm which also assigns disparities
in case of weak confidence. The question is how to incorporate the density in the
index in a meaningful way. For that, we first introduce some further notation.

We think of images as being random variables X and Y that take intensity
values as events. The NCC value can be interpreted as the correlation coefficient
ρX,Y = Cov(X, Y )/(σXσY ) with

Cov(X, Y ) = E[(X − EX)(Y − EY )] (11)

So the index reflects a mean of some distribution, and it is possible to calculate
the standard deviation of it, referred to by Covσ(X, Y ).

We consider two disparity images D1 and D2 that generate two virtual images
V1 and V2, respectively, both to be compared with a control image C. For the
evaluation we consider all pixels of the domain Ω1 ∪ Ω2. The total number of
this domain is n = |Ω1∪Ω2|. We determine for each disparity image the number
of invalid pixels as k1 = n − |Ω1 \ (Ω1 ∩ Ω2)| and k2 = n − |Ω2 \ (Ω1 ∩ Ω2)|.
We propose for l = {1, 2} the following index for the comparison of two stereo
algorithms:

NCCσ =
1
n

⎛⎝⎡⎣ ∑
(i,j)∈Ω1

K
σVl

σCl

⎤⎦+
[
k1 + k2

2
(NCC − Covσ)

]⎞⎠ (12)

where K = [Vl(i, j)−μV ][Cl(i, j)−μC ]. We omit the arguments (Vi, C) in NCCσ,
NCC, and Covσ for better readability.

The index works as follows. Consider Ω1 = Ω2, which results in k1 = k2 = 0.
In this case this index will be identical to the original NCC index as proposed in
Equation (10). Now consider the symmetric case that k1 > k2 and Covσ(V1, C) =
Covσ(V2, C) = υ. Again, the index will be identical, because we only add terms
that correspond to the pre-calculated mean. However, since we can assume that
υ > 0, we add terms such that the final index decreases. If the first term is
identical for both images, the index that corresponds to the denser disparity
map increases. If, on the other hand, υ1 > υ2, k1 = k2 and the first term is again
identical in both cases, then the index that corresponds to the smaller standard
deviation wins. This is reasonable, as we can assume that a smaller standard
deviation refers to a ‘more consistent’ disparity result.

To summarize,withEquation (12)weproposed an alteration to the original eval-
uation index. It slightly adjusts the original index such that a higher disparity den-
sity has a positive impact on the index. We propose to use the standard deviation
of the covariance for the index adjustment. This is useful because it relates to the
underlying data and therefore gives also an additional quality measure (see eval-
uation below). But, the main motivation is that it can annihilate the benefit of a
higher disparity density in case that ’‘additional’ disparity values, which do not
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positively contribute to the index, increase the standard deviation and therefore
have a negative affect on the final result. Thus, we regulate the NCC adjustment
by two parameters, which can have a compensating or amplifying effect.

4 Evaluation Methodology and Datasets

We evaluate on ten trinocular sequences that show urban and rural environ-
ments. Each sequence consists of 400 frames. Figure 3 shows some frame sam-
ples. We refer to them by numbers only as we do not discuss them in the context
of the scene they are showing, but the sample frames may help to ‘read’ Table 1.

Fig. 3. From left to right: Example frames of sequence, 3, 5, 9, 10, 6

We evaluated SGMF and SGMG on each frame of all sequences using the
trinocular evaluation as proposed in Section 3. We calculated the signed differ-
ence of several values except the performance where values relating to SGMF
constitute the first summand. This list describes the results provided in Tab. 1:

– ΔNCC: difference of the original index.
– ΔNCCσ: difference of the adjusted index.
– Δσ: difference of calculated Covσ

– Δdensity: difference of the disparity density over the whole image.
– perf. gain: the run-time gain of SGMF compared to SGMG.

Table 1. Table of evaluation results

Seq. # Δ NCC Δ NCCσ Δ σ Δ density perf. gain

1 0.73 0.33 2.13 1.29 -16.0 8.30 3.70 1.82 49.2 5.20
2 0.24 0.14 0.79 0.27 3.79 3.80 6.69 1.79 50.5 2.58
3 0.20 0.38 1.00 0.40 4.75 2.11 6.37 0.65 35.8 2.58
4 0.48 0.42 1.62 0.80 6.06 4.19 7.95 0.83 31.4 6.72
5 1.14 0.46 3.19 1.20 -6.42 8.93 4.66 0.62 44.1 4.37
6 0.25 0.40 -0.04 0.39 8.76 4.70 3.19 1.19 42.1 2.94
7 0.32 0.13 1.40 0.73 -3.63 1.97 8.25 1.73 58.9 1.64
8 0.24 0.23 1.54 1.17 -2.17 5.49 6.99 3.25 40.7 8.90
9 0.10 0.22 0.40 0.49 0.37 3.28 4.38 2.51 48.4 7.19
10 0.85 0.21 5.79 1.39 -12.7 8.53 14.8 2.01 45.6 1.60

Mean 0.46 0.27 1.78 0.81 -1.71 5.13 6.70 1.64 44.7 4.37

StdDev 0.34 0.15 1.67 0.42 8.15 2.62 3.34 0.85 7.81 2.54

Median 0.28 0.28 1.47 0.77 -0.9 4.45 6.53 1.76 44.9 3.67
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Fig. 4. Results of Sequence 8. Top: ΔNCC and Δσ. Bottom: ΔNCCσ and Δdensity.

The left entry for each item is the mean over the whole image sequence; the
right entry is the standard deviation. At the bottom of the table, mean standard
deviation and median are given for each item. A positive value favours SGMF
except for Δσ where a negative Δσ defines ‘better’.

Highlighted entries show relatively better performances for SGMG (red / se-
quence 6), and for SGMF (green / sequence 10). For a more detailed illustration
of one sequence, see frame-by-frame results for Sequence 8 in Fig. 4; values for
this sequence are close to medians and thus ‘kind of representative’

Disparities of these images increase to up to 84, but we decided to run the
algorithms on D = 128, for two reasons: First, this disparity limit is the current
standard for real-time DAS stereo systems; second, the fact that this way most
of the disparity map is taken from the full resolution disparity image in case
of SGMG is considered beneficial according to Gehrig et al. (page 136,[4]) who
state that ”Ideally, SGM would be computed everywhere at full resolution”.

5 Results

Looking at performance indices ΔNCC and ΔNCCσ at Tab. 1 a clear tendency in
favour for SGMF is obvious. All index differences are positive with one exception
in Sequence 6. However, since these values refer to percentage point differences,
the performance quality of both methods is very similar. But this result comes
with a mean run-time improvement of 40% over all sequences for SGMF . Along
with that the new design return 5% to 6% denser disparity maps than SGMG .

To summarize, our compressed results over 4000 real-world traffic stereo frames
suggest that we get slightly denser disparity maps and a positive tendency in stereo
performance with a run time improvement of 40% over the method of comparison,
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which already has a run-time advantage of 37.5% to the standard SGM design. As
we already mentioned, we defined the disparity range D = 128 but find actual
disparities only up to 84. Therefore, the major part of the disparity map generated
by SGMG consists of the full resolution SGM. Thus, qualitative conclusion most
likely hold against the standard SGM design. Different configurations and designs
will be evaluated in the future, the scope of this paper only allows to introduce the
new design and compare it with one design that follows a similar approach and is
state-of-the-art.

We can also use the table to check the new evaluation index for consistency. See
Sequence 6, where SGMG performs best w.r.t. the new index. In this sequence we
also have a low density advantage for SGMF which is well below the mean and we
have a very high Covσ . These three values are consistent with our motivation for
this index. Also, Sequence 10 where SGMF performs best has a very low Covσ and
a high disparity density compared to SGMG . This also supports our argument.

For further analysis and to give an example, we picked sequence 8. for frame-
by-frame analysis. We choose this sequence as it is close to the median perfor-
mance (compare with final row of Tab. 1). The graphs for the first four evaluation
differences of Tab. 1 can be seen in Fig. 1.

Consider the part from Frame 1-150. The old and the new index follow the
same pattern, but the new index pushes SGMF on a higher index level. Looking
at Δσ and Δdensity we get the explanation. We have a much higher density
and lower Covσ than SGMG . Here both factors work in combination. Between
Frames 150 and 250 the original index stays constant and even increases a little.
The new index however, slightly decreases. Looking again to the right side of the
figure we see that also the density decreases and the Covσ increases. Again, this
effect is visible in the new index. Between Frame 250 and 350 we have a positive
impact for the method of comparison. The Δσ is here in favour for SGMG . There
is a slightly higher disparity density for SGMF that has a small compensation
affect. However, this again shows, that the new index works as intended and that
results are conform with the expectations. We could not find an example in our
results that has a contradicting tendency.

6 Conclusions

We proposed a new design for SGM that employs a coarse-to-fine strategy to
reduce computational complexity. We compared this new method to a design
that follows a similar approach but with a very different implementation. The
common goal of both designs is to reduce the run-time of the algorithm while
keeping the quality of results of the original algorithm. We evaluated both de-
signs on 4,000 real-world traffic sequences. For the evaluation we extended an
existing trinocular evaluation approach. Our experiments support that the pro-
posed design results in a slightly higher density, has an overall tendency to more
accurate results and also has an average run-time advantage of 40% over the
other method. Furthermore, we evaluated a novel evaluation index and found
that results are conform with out motivation for defining this index. This new
index is of benefit for stereo evaluation when ground truth is missing.
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Abstract. We analyzed a light-field super-resolution problem in which,
with a given set of multi-view images with a low resolution, the 3-D scene
is reconstructed with a higher resolution using super-resolution (SR) re-
construction. The arrangement of the multi-view cameras is important
because it determines the quality of the reconstruction. To simplify the
analysis, we considered a situation in which a plane is located at a certain
depth and a texture on that plane is super-resolved. We formulated the
SR reconstruction process in the frequency domain, where the camera
arrangement can be independently expressed as a matrix in the image
formation model. We then evaluated the condition number of the matrix
to quantify the quality of the SR reconstruction. We clarified that when
the cameras are arranged in a regular grid, there exist singular depths in
which the SR reconstruction becomes ill-posed. We also determined that
this singularity can be avoided if the arrangement is randomly perturbed.

Keywords: multi-view cameras, super-resolution, camera arrangement,
condition number.

1 Introduction

The reconstruction of a 3-D scene from multi-view images is a challenging prob-
lem and currently the focus of active research. To improve the quality of re-
construction, recent methods [3,4,9] use the framework of super-resolution (SR)
reconstruction, which is a process of restoring an underlying high-resolution
(HR) image from multiple low-resolution (LR) images. The quality of SR recon-
struction is determined by the number, the point spread function (PSF), and
the arrangement of cameras. The last factor, which has rarely been discussed, is
the main focus of this paper.

The arrangement of the cameras determines disparities (pixel shifts) between
the camera images given a certain depth. These disparities affect the stability
of the SR reconstruction; for example, the SR reconstruction is ill-posed if all
the disparities are integers. Therefore, the cameras should be arranged in such
a way to avoid this ill-posed situation and improve the well-posedness of the SR
reconstruction.

The purpose of this study is to analyze the relation between the arrangement
of cameras and the well-posedness of an SR reconstruction. A general framework

Y.-S. Ho (Ed.): PSIVT 2011, Part I, LNCS 7087, pp. 407–420, 2011.
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Fig. 1. Framework of LFSR

in which a high-resolution 3-D scene is reconstructed from multi-view images
with a lower resolution is referred to as light-field super-resolution (LFSR). To
simplify the analysis, we consider a situation in which a target plane is located
at a certain depth and a texture on that plane is super-resolved, as illustrated in
Fig. 1. Although we only consider a single plane at a certain depth, our analysis
is applicable to general scenes with multiple objects placed at various depths
because the target plane can be placed at an arbitrary depth. Our theoretical
model is constructed in the frequency domain, where the camera arrangements
are independently expressed as a matrix in the image formation model of the
SR reconstruction. The condition number of that matrix is used to measure the
well-posedness of the SR reconstruction. We determined that when the cameras
are placed on a regular grid, some depths are singular, meaning that the SR
reconstruction at these depths is ill-posed. Singular depths can be avoided by
randomly perturbing the cameras, which is a key finding in our study.

This paper is organized as follows. Section 2 introduces related works. We
formulate the SR reconstruction process in Sect. 3, followed by some descrip-
tions of the condition number in Sect. 4. In Sect. 5, we evaluate specific camera
arrangements based on our theory. Section 6 concludes the paper.

2 Related Works

SR reconstruction generally consists of two steps [5]: the registration of LR
images and the reconstruction of an HR image from the registered LR images.
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In this paper, we assume that registration has been done in advance and hence
we focus on the reconstruction step.

The numerical performance of SR reconstruction is mainly affected by three
factors: the number of LR images, subpixel shifts between LR images, and the
PSF of LR images. The first and second factors are closely related; if we have
a greater number of images, we are more likely to have more varied subpixel
shifts, resulting in more stable SR reconstruction. However, SR reconstruction
is ill-posed if all the pixel shifts are integers, no matter how many images are
available.

The pixel-shifts factor has been analyzed in several other works. Robinson
et al. [6] evaluated the numerical performance of SR reconstruction using the
Cramér-Rao lower bound and demonstrated that reconstruction quality is
maximized when the sampling points of the LR images are evenly distributed.
Champagnat et al. [2] used Monte Carlo simulations to analyze the quality of
SR reconstruction when fractional parts of shifts are distributed uniformly in
0–1 pixel. They found that the reconstruction quality with random pixel shifts
is moderate on average and comparable to that of optimal pixel shifts. In this
study, we also analyzed the pixel shifts, but they were bounded by the cam-
era arrangement and the depth of the scene in our problem. We used Monte
Carlo simulations to analyze the arrangement of the cameras because analytical
optimization is difficult for our problem.

The PSF factor is also studied using the condition number, which is widely
used in linear algebra to measure the well-posedness of linear equations. Baker et
al. [1] analyzed box-shaped PSFs and discovered a relation between the condition
number and the magnification ratio. Tanaka et al. [8] derived condition numbers
for general space-invariant PSFs assuming that an infinite number of LR images
are available. Inspired by these works, we also used the condition number as a
measure of the well-posedness of the SR reconstruction, although we focused on
the arrangement of cameras rather than the PSF.

3 Formulation of Super-Resolution Reconstruction

We formulated an SR reconstruction in the frequency domain. Our formulation
is equivalent to [7], although some parameters were rearranged to fit to our
problem.

3.1 Configuration

See Fig. 2 for the configuration. Let (x, y, z) be the spatial coordinate. We assume
that K cameras that capture LR images are placed on the camera plane at
z = 0. The position of the k-th camera is denoted as (xk, yk, 0). We also assume
that all the cameras have the same focal length, pixel size, and PSF. A target
plane is placed at z = zd in parallel to the camera plane. The goal of the SR
reconstruction is to obtain a texture on the target plane with a resolution higher
than the input LR images. We assume that the magnification ratio is 2, but our
analysis can easily be extended to more general cases.
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Fig. 2. Configuration analyzed in this study

Let (u, v) be the image coordinate on the target plane. The texture on it is
denoted by h(u, v) as a continuous 2-D signal. The HR image, which we want to
synthesize by SR reconstruction, is denoted by gH(u, v). The LR image captured
by the k-th camera is denoted as gL,k(u, v). Both gH(u, v) and gL,k(u, v) are the
discrete signals sampled from h(u, v). The pixel pitches are written as Δ and
Δ/2 for the LR and HR images, respectively.

3.2 Image Formation Model

The k-th LR image gL,k(u, v) is generated by sampling the light-rays on the
focal plane. This process is equivalent to sampling the continuous texture on the
target plane z = zd with intervals Δd(zd), where Δd(zd) is defined as

Δd(zd) =
zd

f
Δ, (1)

where f is the focal length of the cameras, as shown in Fig. 2. Note that Δd(zd)
depends on the depth of the target plane zd. To simplify the notations, we
abbreviate Δd(zd) as Δd in this section.

Using Δd, the k-th LR image gL,k(u, v) is defined as

gL,k(u, v) = (h(u, v) ∗ bL(u, v)) δΔd
(u − xk, v − yk) + nk(u, v), (2)

where ∗ denotes convolution, bL(u, v) is a camera PSF, and nk(u, v) is the ob-
servation noise. δΔ′(u, v) represents the sampling grid that is defined as

δΔ′(u, v) =
∑

(m,n)∈Z

δ(u − mΔ′, v − nΔ′), (3)

where δ(u, v) is the Dirac delta function.
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Since the resolution of the HR image is double that of the LR images, the
sampling interval of the HR image is Δd/2. Therefore, the HR image gH(u, v),
whose origin is set to (u, v) = (0, 0), is defined as

gH(u, v) = (h(u, v) ∗ bH(u, v)) δΔd/2 (u, v) , (4)

where bH(u, v) denotes a PSF of the HR image.

3.3 Super-Resolution in the Frequency Domain

Assume that the underlying continuous image h(u, v) is band-limited within
(−2π/Δd, 2π/Δd). In other words, the sampling interval of the HR image satis-
fies the Nyquist condition. This situation is illustrated in Fig. 3(a). The circular
region in the figure represents the spectral support of the underlying continu-
ous image ĥ(û, v̂), where ˆdenotes the frequency-domain representation of the
corresponding symbol.

Here, we want to obtain the Fourier transform of (4) and (2). First, we obtain
the Fourier transform of (3) as

δ̂Δ′(û, v̂) =
4π2

Δ′
∑

{m,n}∈Z

δ

(
û − 2mπ

Δ′ , v̂ − 2nπ

Δ′

)
. (5)

This equation represents a spectral replication in the frequency domain caused
by discretization. For the case of the HR image, where Δ′ = Δd/2, the repeating
cycle is (4π/Δd, 4π/Δd), as shown in Fig. 3(b). Since the original signal ĥ(û, v̂)
is band-limited within (−2π/Δd, 2π/Δd), no overlapping occurs in the frequency
domain. Consequently, for the frequency û, v̂ ∈ (−2π/Δd, 2π/Δd), ĝH(û, v̂) can
be written as

ĝH(û, v̂) =
16π2

Δ2
d

ĥ(û, v̂)b̂H(û, v̂). (6)

Meanwhile, for the case of the LR image, where Δ′ = Δd, the repeating cycle is
(2π/Δd, 2π/Δd). As shown in Fig. 3(c), four spectral components overlap in the
range û, v̂ ∈ (0, 2π/Δd). Therefore, for this range, ĝL,k(û, v̂) is described as
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ĝk(û, v̂) =
4π2

Δ2
d

ĥ (û, v̂) b̂L(û, v̂) ∗
∑

m,n∈{0,1}
δ

(
û − 2mπ

Δd
, v̂ − 2nπ

Δd

)
e−j(xkû+ykv̂)

+n̂(û, v̂). (7)

Using (6), we obtain

ĝk(û, v̂) =
1
4

ĝH (û, v̂)
b̂L(û, v̂)
b̂H(û, v̂)

∗
∑

m,n∈{0,1}
δ

(
û − 2mπ

Δd
, v̂ − 2nπ

Δd

)
e−j(xkû+ykv̂)

+ n̂(û, v̂). (8)

Equation (8) can be rearranged into a linear equation:

ĝL = Ŵ ĝH + n̂, (9)

where ĝL represents the spectra of all LR images and ĝH represents the four
overlapping components of the HR image:

ĝL =

⎛⎜⎜⎜⎝
ĝL,1(û, v̂)
ĝL,2(û, v̂)

...
ĝL,K(û, v̂)

⎞⎟⎟⎟⎠ , ĝH =

⎛⎜⎜⎝
ĝH(û , v̂ )
ĝH(û − 2π

Δd
, v̂ )

ĝH(û , v̂ − 2π
Δd

)
ĝH(û − 2π

Δd
, v̂ − 2π

Δd
)

⎞⎟⎟⎠ . (10)

Ŵ represents the image formation model, expressed as

Ŵ = M̂B̂ , (11)

where M̂ =

⎛⎜⎜⎜⎝
1 e−2jπx1/Δd e−2jπy1/Δd e−2jπ(x1+y1)/Δd

1 e−2jπx2/Δd e−2jπy2/Δd e−2jπ(x2+y2)/Δd

...
...

...
...

1 e−2jπxK/Δd e−2jπyK/Δd e−2jπ(xK+yK)/Δd

⎞⎟⎟⎟⎠ , (12)

B̂ = diag

⎛⎜⎜⎜⎝
b̂L(û, v̂ ) /b̂H(û, v̂ )
b̂L(û − 2π

Δd
, v̂ ) /b̂H(û − 2π

Δd
, v̂ )

b̂L(û, v̂ − 2π
Δd

) /b̂H(û, v̂ − 2π
Δd

)
b̂L(û − 2π

Δd
, v̂ − 2π

Δd
) /b̂H(û − 2π

Δd
, v̂ − 2π

Δd
)

⎞⎟⎟⎟⎠ . (13)

M̂ is a K × 4 matrix and represents the camera arrangement. The k-th row of
M̂ corresponds to the position of the k-th camera. We refer to this matrix as a
camera arrangement matrix. B̂ is a 4 × 4 matrix and represents the PSF. We
call this matrix a PSF matrix. n̂ represents the observation noises.

n̂ =

⎛⎜⎜⎜⎝
n̂1(û, v̂)
n̂2(û, v̂)

...
n̂K(û, v̂)

⎞⎟⎟⎟⎠ . (14)

The SR reconstruction is formulated as the problem of estimating ĝH given Ŵ
and ĝL in (9), where Ŵ determines the well-posedness.
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4 Condition Number of the SR Reconstruction

Given a coefficient matrix of a linear equation, the condition number of the
matrix determines the stability of the solution. When the condition number is
low, the linear equation is well-posed and is robust to noises. In contrast, if the
number is high, the system is ill-posed and is sensitive to noises. The linear
system is singular when the condition number is infinite.

The condition number of Ŵ is defined as

cond(Ŵ) = ‖ Ŵ ‖ · ‖ Ŵ+ ‖ =

√
λmax(Ŵ∗Ŵ)
λmin(Ŵ∗Ŵ)

, (15)

where ‖ · ‖ denotes operator norm, ∗ denotes conjugate transpose, + denotes
Moore-Penrose pseudoinverse, and λmax(Ŵ∗Ŵ) and λmin(Ŵ∗Ŵ) are the max-
imum and minimum eigenvalues of Ŵ∗Ŵ, respectively.

The condition number gives the upper bound of the relative errors as

‖ ê ‖2

‖ ĝH ‖2
≤ cond(Ŵ)

‖ n̂ ‖2

‖ ĝL ‖2
, (16)

where ê is the estimation error of ĝH . This equation shows that the condition
number can be used to estimate the reconstruction quality.

A key feature of our formulation is that Ŵ is expressed as the product of M̂
and B̂, as shown in (11). This enables us to evaluate the camera arrangement
by using the condition number of M̂ separately from the PSFs represented by
B̂. The condition number of Ŵ is upper-bounded by the condition numbers of
M̂ and B̂ as

cond(Ŵ) = ‖ M̂B̂ ‖ · ‖ (M̂B̂)+ ‖
≤
(
‖ M̂ ‖ · ‖ B̂ ‖

)(
‖ M̂+ ‖ · ‖ B̂−1 ‖

)
=
(
‖ M̂ ‖ · ‖ M̂+ ‖

)(
‖ B̂ ‖ · ‖ B̂−1 ‖

)
= cond(M̂) · cond(B̂) (17)

using sub-multiplicativity of the operator norm. We also use the inverse condition
number for convenience.

5 Analyses of Camera Arrangements

In this section, we analyze some specific camera arrangements using the condition
number. In subsection 5.1, we analyze regular grid arrangements and show that
the condition number becomes infinite at periodic depths. In subsection 5.2, we
analyze grid-and-perturbation arrangements using Monte Carlo simulation.
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5.1 Analysis on Regular Grid Arrangement

Assume that four cameras are placed on a 2 × 2 regular grid. Let the camera
positions be (±A/2,±A/2, 0), where the distance between the cameras is A, as
illustrated in Fig. 4.

Using (12), the camera arrangement matrix M̂ is written as

M̂ =

⎛⎜⎜⎝
1 e−jπA/Δd e−jπA/Δd e−2jπA/Δd

1 e−jπA/Δd ejπA/Δd 1
1 ejπA/Δd e−jπA/Δd 1
1 ejπA/Δd ejπA/Δd e2jπA/Δd

⎞⎟⎟⎠ , (18)

whose condition number (see appendix for derivation) is

cond(M̂) =
1 +
∣∣∣cosπ A

Δd(zd)

∣∣∣
1 −
∣∣∣cosπ A

Δd(zd)

∣∣∣ . (19)

We also analyzed a case in which 16 cameras were arranged on a 4 × 4 regular
grid. The condition number of M̂ (see appendix for derivation) is

cond(M̂) =
1 +
∣∣∣cos 2πA

Δd(zd) cos πA
Δd(zd)

∣∣∣
1 −
∣∣∣cos 2πA

Δd(zd) cos πA
Δd(zd)

∣∣∣ . (20)

Figure 5 shows the inverse condition number of the camera arrangement matrix
for the regular grid arrangement of 4 cameras and 16 cameras. The horizontal
axis represents the value of A/Δd(zd). Note that A/Δd(zd) is inversely pro-
portional to the depth of the target plane zd and corresponds to the disparity
between the input LR images.

As shown in the figure, the inverse condition number takes zero at periodic
depths where A/Δd(zd) is an integer. When the target plane is located at these
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Fig. 6. An example of grid-and-perturbation arrangements of 4 cameras

depths, the sampling points of all input cameras coincide with each other. We
refer to these depths as singular depths. It should be noted that the singular
depths exist regardless of the number of cameras as long as they are arranged
in regular grids.

It is obvious that the inverse condition number takes the maximum value at
periodic depths, where the disparity is a half-integer in the case of the 2×2 grid
and a quarter-integer in the case of the 4 × 4 grid. These depths, where the SR
reconstruction is the most stable, are referred to as the best depths.

To summarize, when the cameras are arranged in a regular grid, SR recon-
struction becomes ill-posed at some depths yet well-posed at other depths. This
situation is undesirable in terms of reconstructing an entire 3-D scene.

5.2 Analysis on Grid-and-Perturbation Arrangement

The periodic structure of the condition number along A/Δd comes from the regu-
larity of the camera arrangement. Thereby, randomizing the camera arrangement
should decrease the periodicity and might be helpful to avoid the singular depth
problem. In this subsection, we analyze a case where the camera arrangement is
randomly perturbed from the regular grid.

For this case, analytical derivation of the condition number is difficult, so
we used Monte Carlo simulations. We randomly generated many camera ar-
rangements and numerically computed the condition numbers of the camera
arrangement matrices M̂.

Monte Carlo Simulations. The number of cameras was set to either 4 or
16. The cameras were shifted from the 2 × 2 or 4 × 4 regular grid arrange-
ments, as shown in Fig. 6. The shift of the k-th camera is denoted as (ζk, ηk, 0),
where ζk and ηk were independently sampled from the uniform distribution over
(−rA, rA). r > 0 is the parameter that defines the range of the distribution and
was used to control the randomness of the camera arrangement.

We exponentially varied r from 10−10 to 1 and generated 1000 shifts for each r
value. We then numerically computed the condition number of each arrangement
for the range of 0 < A/Δd(zd) ≤ 10.
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(a) Varying r (b) Varying the number of cameras

Fig. 7. Inverse condition number of a grid-and-perturbation arrangement

Relation between Depth and Condition Number. For each r value, we
computed the geometric average of the inverse condition numbers over 1000
arrangements. The results with r = 6.3 × 10−3, 2.5 × 10−2, and 0.1 are shown
in Fig. 7(a). Note that the horizontal axis is A/Δd(zd). When we set r > 0, the
inverse condition number became higher than zero for the depths where they were
singular with the original regular grid arrangement. As r increased, the inverse
condition number also increased at these depths. For instance, when A/Δd(zd) =
2, the inverse condition numbers for r = 6.3 × 10−3, 2.5 × 10−2, and 0.1 were
10−4.5, 10−2.5, and 10−1.5, respectively. Meanwhile, as r increased, the inverse
condition number decreased at best depths. For instance, when A/Δd(zd) = 3.5,
the inverse condition numbers for r = 6.3 × 10−3, 2.5 × 10−2, and 0.1 were 1,
10−0.5, and 10−1, respectively. This tendency indicates that there is a trade-off
between the improvement at the singular depths and the decline at the best
depths. Randomizing the arrangement is likely to flatten the performance of the
inverse condition number over the depths. This trade-off is discussed in more
detail in the next subsection.

We also analyzed the relation between the number of cameras and the inverse
condition number. Figure 7(b) shows the results when the number of cameras was
4 or 16 and r = 6.3 × 10−3 or 0.1. The grid-and-perturbation arrangement was
effective for both 4 and 16 cameras. As a whole, the inverse condition numbers
with 16 cameras were larger than those with 4 cameras.

Relation between Randomness and Overall Image Quality. As men-
tioned above, randomizing the camera arrangements raised the inverse condi-
tion numbers at singular depths, but lowered them at best depths. Therefore,
we introduced a new measure, referred to as overall image quality, which is the
geometric average of the inverse condition numbers over the range of the entire
3-D scene. The range was set to 0 < A/Δd(zd) ≤ 5 in this experiment. Note that
the overall image quality is zero for regular grid arrangements, since there are
singular depths.
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We tested 1000 random arrangements for each r. Figure 8 shows the relation
between the randomness parameter r and the overall image quality. The maxi-
mum, average, and minimum values of the overall image quality are plotted in
this figure. Note that the vertical axis is logarithmic.

The average and minimum values are not plotted on the left side of the graph
because their values were zero due to the machine precision. This indicates that
when r is very small and the arrangement is very close to the regular grid
arrangement, some depths become nearly singular. Therefore, r should not be
very small.

When the number of the cameras was four, the overall image quality gradually
increased when r < 10−3 but gradually decreased when r > 10−3. Improvements
around the singular depth and degradation around the best depths seem to have
balanced around r = 10−3. When the number of the cameras was 16, the overall
image quality monotonically increased in the range of 10−10 ≤ r ≤ 1. This result
indicates that randomizing the camera arrangement is more effective when more
cameras are used.

The difference between the maximum and minimum overall image quality
became bigger as r increased. This tendency indicates that a very large r should
be avoided to control the overall image quality. It should also be noted that the
worst overall image quality is still more than zero when r > 10−8. Therefore,
we can expect the overall image quality to improve by randomizing the camera
arrangement even in a worst-case scenario.

6 Conclusion

In this paper, we considered the arrangement of multi-view cameras for light-field
super-resolution. We formulated an SR reconstruction in the frequency domain
and derived the relation between the camera arrangement and the stability of
the SR reconstruction using the condition number. Based on this relation, we
showed that the singular depths, where the reconstruction becomes ill-posed,
periodically appear in the case of regular grid arrangements. We also revealed
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that randomizing the camera arrangement can prevent the singular depths and
improve the stability of the SR reconstruction for the entire 3-D scene. Our future
work is to verify the correctness of our theoretical analysis by experiments. We
also plan to analyze more general camera arrangements.

Acknowledgments. This research is supported by the Strategic Information
and Communication R&D Promotion Programs (SCOPE) of the Ministry of
Internal Affairs and Communications, Japan.

References

1. Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE
Transactions on Pattern Analysis Machine Intelligence 24(9), 1167–1183 (2002)

2. Champagnat, F., Besnerais, G.L., Kulcsár, C.: Statistical performance modeling for
superresolution: a discrete data-continuous reconstruction framework. Journal of the
Optical Society of America A 26(7), 1730–1746 (2009)

3. Fukushima, N., Ishibashi, Y.: Free viewpoint image generation with super resolution.
In: Picture Coding Symposium, pp. 1–4 (2010)

4. Mudenagudi, U., Gupta, A., Goel, L., Kushal, A., Kalra, P., Banerjee, S.: Super
Resolution Of Images of 3D Scenecs. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H.
(eds.) ACCV 2007, Part II. LNCS, vol. 4844, pp. 85–95. Springer, Heidelberg (2007)

5. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a tech-
nical overview. IEEE Signal Processing Magazine 20(3), 21–36 (2003)

6. Robinson, D., Milanfar, P.: Statistical performance analysis of super-resolution.
IEEE Transactions on Image Processing 15(6), 1413–1428 (2006)

7. Takahashi, K., Naemura, T., Tanaka, M.: Rate-distortion analysis of super-
resolution image/video decoding. In: International Conference on Image Processing
(2011)

8. Tanaka, M., Okutomi, M.: Theoretical analysis on reconstruction-based super-
resolution for an arbitrary PSF. In: IEEE Computer Vision and Pattern Recog-
nition, vol. 2, pp. 947–954 (2005)

9. Tung, T., Nobuhara, S., Matsuyama, T.: Simultaneous super-resolution and 3d
video using graph-cuts. In: IEEE Computer Vision and Pattern Recognition, pp.
1–8 (2008)

Appendix: The Condition Number of Regular Grid
Arrangements

See Fig. 9 for the configuration.

A. 2 × 2 Cameras

Here, we derive (19). First, we compute M̂∗M̂, which is written as

M̂∗M̂ = 4

⎛⎜⎜⎝
1 α α α2

α 1 α2 α
α α2 1 α
α2 α α 1

⎞⎟⎟⎠ , (21)



Theoretical Analysis of Multi-view Camera Arrangement and LFSR 419

x

y

-3A/2 -A/2 A/2 3A/2

Fig. 9. Configuration. The triangles and circles represents the positions of the cameras
in 2 × 2 and 4 × 4 regular grid arrangements, respectively.

where

α =
ejπA/Δd + e−jπA/Δd

2
(22)

= cos
πA

Δd
. (23)

By analytically solving the eigenequation of M̂∗M̂, we obtain

λ = 4(1 ± |α|)2, 4(1 − |α|2). (24)

Note that λ = 4(1 − |α|2) is a double root.
Since 0 ≤ |α| ≤ 1, these eigenvalues satisfy the relation

4(1 − |α|)2 ≤ 4(1 − |α|2) ≤ 4(1 + |α|)2. (25)

The left equality holds when |α| = 0, 1, and the right equality hold when |α| = 0.
Using (25), the maximum and minimum eigenvalues are

λmax(M̂∗M̂) = 4(1 + |α|)2, (26)

λmin(M̂∗M̂) = 4(1 − |α|)2. (27)

By substituting (23), (26), (27) into (15), we obtain (19).
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B. 4 × 4 Cameras

We derive (20). Similar to the previous derivation, we compute eigenvalues of
M̂∗M̂. In this case, M̂∗M̂ becomes

M̂∗M̂ = 16

⎛⎜⎜⎝
1 α α α2

α 1 α2 α
α α2 1 α
α2 α α 1

⎞⎟⎟⎠ , (28)

where

α =
e3jπA/Δd + ejπA/Δd + e−jπA/Δd + e−3jπA/Δd

4

= cos
2πA

Δd
cos

πA

Δd
. (29)

The form of M̂∗M̂ is the same as (21) except for the value of α and multiplication
by a constant value, Therefore, the maximum and minimum eigenvalues are
similary computed as

λmax(M̂∗M̂) = 16(1 + |α|)2, (30)

λmin(M̂∗M̂) = 16(1 − |α|)2. (31)

By substituting (29), (30), (31) into (15), we obtain (20).
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