
Non-local Diffusions, Drifts and Games

Luis Caffarelli

Abstract This is a brief discussion of the properties of solutions to several non-
linear elliptic equations involving diffusive processes of non-local nature. These
equation arise in several contexts: from continuum mechanics and phase transition,
from population dynamics, from optimal control and game theory. The equations
coming from continuum mechanics exhibit a variational structure and a theory par-
allel to the De Giorgi–Nash–Moser was necessary to show existence of regular solu-
tions. Population dynamics suggests “porous media like equations” with a non-local
pressure, and from optimal control we obtain fully non-linear equations that require
methods of the type of the Krylov–Safonov–Evans theory. Finally, we discuss some
non-local p and infinite Laplacian models coming from game theory.

1 Introduction

We are interested in integral diffusion equations:

ut (x, t) = [L(u)](x, t)

where the operator L takes the form

L(u(x, t)) =
∫

[u(y) − u(x)]K(x,y) dy

for some positive kernel (or measure) K(x,y) (or Kx(y)).
We call the equation a diffusion equation because solutions try to revert to some

sort of “integral average” of u.
Indeed, if u(x0) is “smaller than” its surrounding values, as weighted by K(x,y),

u(x0, t) will tend to increase, if “bigger”, to decrease (i.e., ut > 0 or ut < 0).
We may think of the heat equation as an infinitesimal version of this process.
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Indeed the Laplacian, Δu, is the limit of

Δu(x0) = lim
r→0

1

r2

∫
�

Br (x0)

u(x) − u(x0) dx.

In fact, if

Kε(x, y) = 1

ε2

(
1

εn
ϕ

(
x − y

ε

))
= 1

ε2
ϕε(x − y)

for ϕ a probability density (a mollifier), the corresponding solutions uε should con-
verge to a solution u0(x, t) of

(u0)t = aijDiju0

where aij are the second moments of ϕ.
These types of equations (and the associated non-linear ones that we will dis-

cuss shortly) have roots in different phenomena and, as their second order counter-
part, they naturally divide between those with variational structure and those coming
from probabilistic considerations.

A familiar example for the first case is prescribing Neumann boundary data (for
instance zero). Insulating a wall implies some temperature diffusivity along the sur-
face, expressed by inverting the Dirichlet to Neumann map. A non-local related
equation is the quasi-geostrophic equation that describes the evolution of tempera-
ture on the ocean surface, due to the (one-side) atmospheric conditions.

On the probabilistic side let us recall the Levy–Khintchine formula. In an infor-
mal “black-box” approach suppose we can observe the transition probability of a
distribution of particles, for any sequence of times tk , and we realize that the transi-
tion from t1 to t2 only depends on t1 and t2, in fact on t2 − t1.

Then, for any k, we can write the transition probability from t1 to t2 as the com-
position (convolution) k times of the transition from t = 0 to t = 1

k
(t2 − t1). This

suggests the possibility, as δt goes to zero, of describing the process through a “heat
equation”—as a properly scaled infinitesimal limit of the δt transition.

This is what the Levy–Khintchine formula asserts: That the probability density
evolves according to a heat equation

ut = · · ·
consisting of a continuous part

· · · = aijDiju + bj∇u + · · ·
a symmetric jump process

∫
[u(x + y) + u(x − y) − 2u(x)]dμ(y)

+· · · an asymmetric part that we will discuss later

dμ“ = ”K(y)dy.
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Here, it is required to make sense for a C2, bounded u, i.e.,
∫

B1(0)

‖y‖2 dμ(y) < ∞

and ∫
C (B1(0))

dμ(y) < ∞.

Between divergence and non-divergence lie the equations invariant under trans-
lations, i.e., where the kernel K(x,y) = K̃(x − y). In this case, the equation can be
thought of as having both divergence and non-divergence structure and also, being
of convolution type, they enjoy the advantage of allowing for methods of harmonic
analysis.

That is the case, for instance, with the family of fractional Laplacians: For 0 <

α < 1

“Δα”(x) = C(α)

∫
[u(y) − u(x)] 1

|x − y|n+2α
, dy = (û(ξ)|ξ |2α)v.

The constant C(α) ∼ (1 − α) to recuperate the standard Δu, as α goes to one.
Notice that the range of α’s is such that it makes these kernels satisfy the Levy–

Khintchine condition to be an infinite divisible distribution.
In fact the fractional Laplacians are also called “stable processes”.
On the other hand, the fractional Laplacians is what we obtain as an Euler–

Lagrange equation for the energy integral corresponding to the Wα,2 (the L2 norm
of the “alpha” fractional derivatives of u):

“Dαu(x) =
∫

[u(y) − u(x)] 1

|x − y|n+α
dy”.

And finally, convolution with the Δα kernel corresponds after Fourier transform
to the multiplier

( Δ̂2) = −|ξ |2α.

In that sense, the fractional Laplacian serves as a basic model for the three clas-
sical methods of second order PDE’s.

• Superposition (potential theory, harmonic analysis)
• Energy method (calculus of variations, DeGiorgi–Nash–Moser)
• Probabilistic (optimal control-Krylov–Safonov)

Since we are interested in regularity properties of solutions to such an “elliptic”
or “parabolic” equation, the kernel K(x) should be singular at the origin to force
u to be somewhat “special” in order to satisfy the equation: To know that after
convolution with a smooth function u is smooth does not reflect so much on the
regularity of u, at least at first glance.

In that sense, the fractional Laplacians provide a natural comparison scale of
“order of differentiation” of the operator to help us develop a general setting.
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2 Divergence Structure

Equations with “divergence” structure arise from continuum mechanics and calculus
of variations.

A rough characterization would be that the kernel K(x,y) is symmetric.
That makes the equation

∫
[u(y) − u(x)]K(x,y) dy = 0

the Euler–Lagrange equation of

E(u)T (u) =
∫∫

[u(x) − u(y)]2K(x,y) dx dy

and thus puts the problem in the framework of weak variational solutions test func-
tions methods, etc.:

For a test function ϕ(x), the bilinear form

B(u,ϕ) =
∫∫

[u(y) − u(x)]K(x,y)[ϕ(y) − ϕ(x)],

depending on the problem at hand, must be zero, or prescribed or equal to
∫

ϕ(y)ut (x, t)

in the parabolic setting.
The general “non-linear calculus of variations” framework becomes then the

study of the minimizers of the form:
∫

φ(u(x) − u(y))K(x − y)dx dy

with φ convex (quadratic for “uniform” fractional ellipticity).
The first, natural problem to study is that of regularity of local minimizers (the

equivalent of the DeGiorgi solution of the Hilbert problem and the development of
the DeGiorgi–Nash–Moser theory of regularity of solutions). Let us recall that in
the second order case, the theory proceeds as follows:

A local minimizer, u, of the functional

E(w) =
∫

F(∇w)dx

satisfies the Euler–Lagrange equation

Dxi
Fi(∇u) = 0

or, in non-divergence form:

Fij (∇u)Dxixj
u = 0.
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If we would known that ∇u is continuous Shauder estimates would allow us to
bootstrap the solution to higher regularity. In turn, first derivatives Deu = w satisfy

Dxi
Fij (∇u)Dxj

w = 0.

But at this point we only know that ∇u is in L2 and, from the uniform convexity of
F , that the matrix Fij (·) = Aij (x) is strictly positive:

λI ≤ Fij (·) ≤ ΛI.

But then, the celebrated DeGiorgi theorem establishes that solutions of an elliptic
equation

Diaij (x)Djw = 0

with no regularity assumption on aij are Hölder continuous.
In particular, ∇u is Hölder continuous and higher regularity follows.
In this context, with Chan and Vasseur [9], we develop the DeGiorgi regularity

theory for the parabolic case:
Let u(x, t) be the solution of

ut (x, t) =
∫

φ′(u(x) − u(y))K(x − y)

with “φ symmetric and quadratic” (i.e., λ ≤ φ′′ ≤ Λ) and

(1 − α)m|z|−(n+2α) ≤ K(z) ≤ (1 − α)M|z|−(n+2α).

Then u becomes instantaneously smooth.
As in the second order case, the central step is to prove that first derivatives,

w = Dxu, satisfy a “rough equation” and are Hölder continuous:

wt(x, t) =
∫

[w(y, t) − w(x, t)]φ′′(u(y, t) − u(x, t))K(x − y)︸ ︷︷ ︸
“symmetric, measurable
fractional Laplacian like

kernel” K(x,y,t)

dy

(see also related articles by Barlow, Bass, Chen, Kassman, and of Komatsu [1, 3,
14, 15]).

The study of non-local, non-linear equations with “variational structure” has sev-
eral motivations:

• What we could call surface diffusion: the quasigeostrophic equation that models
ocean atmosphere interaction, the theory of semi-permeable membranes, planar
fracture dynamics (see [5, 11]).

• Problems in statistical mechanics, like phase transition problems with long range
interactions (as opposed to neighbor to neighbor). See for instance the work of
Giacomin–Lebowitz and of Presutti [12].

• Material sciences, for instances polymers where many scales interact.
• Image processing, see for instance the work of Gilboa and Osher [13].
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3 Non-divergence Equations

“Non-divergence” equations arise instead from probability (Levy processes), opti-
mal control and game theory.

Suppose for instance that particles generate at some point x0 of a domain Ω and
bounce randomly until they exit Ω .

At that moment they release an amount of energy u(y) depending on the point y

where they land.
In principle to find out the expectation for future released energy u(x0) when

starting at x0, we should just solve Lu = 0 in Ω with external data u(y) and the
diffusion associated to the process.

In the case of optimal control we are able to “design” the jump process (the
media) to maximize the expected value u(x0).

That is: We have a family of possible diffusion processes given by the kernels

Lαu(x) =
∫

[u(x + y) − u(x)]Kα(y)dy

and at each x we want to chose the optimal jump distribution

Lα(x) =
∫

[u(x + y) − u(x)]Kα(x)(y) dy.

In order to achieve that we have to find a solution u0 of the equation

F(u0) = sup
α

Lαu0 = 0

with exterior data u(y).
Indeed, this equation means that “u0 is a supersolution of all the admissible op-

erators, and at each point is the solution of at least one of the Lα .” Therefore on one
hand it is better than any choice and at the same time is an admissible distribution.

In the case of second order equations, the central result of the theory is the Evans–
Krylov theorem:

In that case, the family of operators are second order

Lα(u) =
∑

aα
ijDiju,

the non-linear equation is

F(D2u) = sup
α

∑
aα
ijDiju

and the Evans–Krylov theorem asserts that solutions to F(D2u) = 0 are C2,β and
thus classical (i.e., the derivatives involved are continuous).

In collaboration with Silvestre, we reproduce their theory for the corresponding
non-local equations [6–8].
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If the kernels Kα are all comparable to the s-Laplacian:

λ(1 − s)|y|−(n+2s) ≤ Kα(y) ≤ Λ(1 − s)|y|−(n+2s)

and they are symmetric in y (no “drift”), then solutions to F(u) = 0 are C2s+β that
makes the corresponding integrals convergent and the solutions “classical”.

One of the main features of the work is the proof of a theorem equivalent to the
Krylov–Safonov Harnack inequality for “bounded measurable” kernels:

If w is for every x a solution of a different equation

Lx(w) =
∫

[w(x + y) − w(x)]Kx(y)dy = 0

with Kx changing discontinuously with x “bounded measurable coefficients”, w is
still Hölder continuous.

4 Drifts

What I want to discuss now is the relation, or interaction between diffusion and drift
in the optimal control context:

For second order equations, when addressing gradient dependence of an equa-
tion, we have two different issues. On one hand semilinear equations, say, for in-
stance

Δu = g(u,∇u)

with an associated idea of drift or transport and on the other quasilinear equations:

aij (∇u)Diju = 0

for instance those coming from the calculus of variations.
Semilinear equations with fractional diffusions arise for instance in the case of

the quasigeostrophic equation:

“ut − Δsu = g(u,∇u)”

and assuming nice dependence on u, there is here a clear competition between dif-
fusion and transport that becomes critical where s = 1/2.

But there is a second, implicit form of drift in the asymmetry of the kernel for a
Levy process:

The most general “heat equation” for an infinite divisible distribution, leaving
aside the continuous part and the standard drift is

ut = 1

2

∫
[u(x + y) + u(x − y) − 2u(x)]dμ(y)

+ 1

2

∫ ([u(x + y) − u(x − y)] − 2(∇u(x), y)χB1 dμ
)
dμ

= symmetric + antisymmetric.
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Note that the antisymmetric part has in it an extra cancellation to ensure that the
process does not drift to infinity.

For quasilinear equations, one equivalent framework to the second order case is,
of course, through the calculus of variations.

For instance, one defines the p- (s-Laplacian), i.e., s-derivatives in Lp , as the
Euler–Lagrange equation of the Lp norm of the s-derivatives of a function

‖u‖p
Ws,p =

∫∫ [u(x) − u(y)]p
|x − y|n+sp

dx dy.

This p-fractional Laplacian is naturally studied through “energy” and “test functions
methods” (see [10]). But the p-Laplacian also can also be written in non-divergence
form as

(p − Δ)u = |∇u|p−2(Δu + (p − 2)unn)

where unn denotes the second derivative in the direction of the gradient of u.
And this has a game-theoretical interpretation (Peres–Sheffield [16]): Let us go

back to the example of expected energy release u(x) of the random particle.
Suppose that as before the random process has the (“almost continuous”) diffu-

sion equation (δt ∼ ε2)

δtu(x, t) =
∫

[u(y + x)(y, t) − u(x, t)] 1

ε2
ϕε(y) dy

i.e., the particle at position x at time t , jumps, by time t + ε2, to a position epsilon-
away, according to the radially symmetric probability density ϕε(y) = 1

εn ϕ(y/ε).
Then, as discussed before, when ε goes to zero, we would get the standard “heat”

equation.
But, assume now that competing players P1,P2 are able to impose on the jump

an epsilon-drift in their preferred direction, randomly in time, trying to maximize,
respectively minimize, the expected value u.

That is, depending on which player has the input, the particle at x will jump to
the position (x + y), with probability density (τi = τ1 or τ2, a unit vector)

ϕε(y + λτi) = 1

εn

(
ϕ

(
y + λτi

ε

))
.

As a consequence, the jump probability density ϕε has drifted in the direction τ1 or
τ2 depending on which player imposed the drift. Here λ is the intensity of the drift
and the expected value u will then satisfy the Isaac’s equation

inf
τ1∈S1

sup
τ2∈S1

[
1

2ε2

∫
[u(x + y) − u(x)]ϕε(y + λτ1) + ϕε(y + λτ2) dy

]
= 0.

The natural choice for τ2 is to push the drift in the direction of ∇u, and for τ1 in that
of −∇u. Therefore, if both players use the optimal strategy, the combination of

ϕε(y + λτ1) + ϕε(y + λτ2)
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will shift the mass of ϕε symmetrically in the directions of ±∇u, increasing the
second moment in that direction so that the limiting equation, as epsilon goes to
zero becomes

Δu + C(λ)unn

i.e., the non-divergence form of the fractional Laplacian.
A similar argument can be made for jump processes:
In work with Bjorland and Figalli, we have studied existence and regularity prop-

erties of this “tug of war” game for jump processes. Let me start by pointing out that
there are different ways to “influence the drift” that give rise to structurally different
mathematical problems. A possible one is for shifted kernels:

That is, for kernels of the form

Ke1(y) = K0(y)[1 + A(y1)]
with K0(y) a symmetric kernel of the size of a fractional Laplacian, and A(y1) a
smooth odd function, |A(y1)| ≤ 1 − δ.

That is, we look at the Isaac’s equation:

inf
ν1

sup
ν2

1

2

∫
[u(x + y) − u(x)]K0(y)[2 + A(y · ν1) + A(y · ν2)]dy

(i.e., each player adds the implicit drift A(y · ν) in his optimal direction ν1 or ν2).
Another possible way is that the player chooses a direction and it is this direction

that suffers a random deviation (an “unsteady hand”). In that case the corresponding
basic kernel Ke1(y) should be of the form

Ke1(y) = K0(y)η(σ · e1)

where η may vanish outside a neighborhood of e1.
The final operator is as before, the inf sup over all rotations of Ke1(y).
In both cases, it follows from the non-local Harnack inequality and ABP theorem

[6] that solutions are Cα for some α.
In fact, let me take this opportunity to discuss informally the non-local ABP

theorem, that is central to many of the developments for non-local optimal control.
The local version of the ABP theorem needed for the Harnack inequality (as

presented in [4]) is the following:

Theorem 1 u ≥ 0 in B1, Lu = aij (x)Diju ≤ 0, u(0) ≤ 1. Then, ∃ε0, such that
|{u < 2}| ≥ ε0(λ,Λ) > 0.

Proof We add to u a negative paraboloid in B1:
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and construct its convex envelope in B1:

We will estimate |{w = Γ (w)}| by below.
Indeed, in this set w is negative and

u = w − a ≤ 0 + 2.

For this purpose, we use the classical A-B-P argument, i.e., we estimate the volume
of the image of the gradient map: ∇Γ : B1 → R

n. To do that, we lift from minus
infinity a plane with generic slope v:

If �(x) = t + 〈v, x〉 with |v| ≤ h/3, for some value t0, � is a supporting plane of
Γ (w−) at some interior point x0 ∈ {Γ = w}. Thus “the image of {w− = Γ (w)} by

the map: x → ∇Γ (x) contains the ball of “v’s” of radius h
3 = supw−

3 ≥ 1
3 , i.e.,

(
1

3

)n

≤ C Vol[∇Γ ({w− = Γ (w)})].

We now “change variables”, from v to x

1 ≤ C Vol[∇Γ ({w− = Γ w})] =
∫

1dv =
∫

{w=Γ (w)}
|detD∇Γ |dx.

But D∇Γ = D2Γ , a non-negative matrix, since Γ is convex, so(
1

3

)n

≤
∫

{w=Γ (w)}
detD2Γ ≤

∫
{w=Γ (w)}

detD2w ≤
∫

{w=Γ w}
[μmax(D

2(w))]n

with μ the largest eigenvalue of D2w (at a contact point w = Γ (w), D2w ≥ D2Γ ≥
0). Since all max eigenvalues of D2w ≥ 0,

Lw ∼= λμmax, but also Lw ≤ Lh ≤ 2nΛ.

We then get

1 ≤ C

(
Λ

λ

)n ∫
{w=Γ (w)}

1 = C

(
Λ

λ

)n

|{w = Γ (w)}|.

This is “almost” the proof of the ABP version we need for the Harnack inequality.
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What we are missing is the localization property:

“{w = Γ (w)} ∩ Q1/4(y) for |y| ≤ 1/4” instead of {w = Γ (w)},

i.e., we need the extra fact that we can get the contact set to be inside of any cube of
size 1/4 close to the origin in order to make a C-Z decomposition. For that, all we
need is to change h by an h′ with: Lh′ ≤ 0 outside Q1/4 (so that Lw ≤ 0 outside
Q1/4 and contact cannot occur), h′(0) ≤ −2 so infw ≤ −1, and Lh′ still bounded
above, so Lw is bounded above. �

5 The Corresponding ABP for Integral Diffusions [6]

As before, we assume u ≥ 0 in B3, Lu ≤ 0, u(0) ≤ 1. Now

Lu(x) =
∫

[u(x + y) + u(x − y) − 2u(x)]Kx(y)dy =
∫

δ2u(x, y)Kx.

For simplicity we will truncate Kx :

λ(2 − s)|y|−n+sχB1(y) ≤ Kx(y) ≤ Λ(2 − s)|y|−(n+s)χB1(y)

and restrict ourselves to x ∈ B1(0), so L is well defined.
We want to show:

“∃M,ε > 0, M,ε(λ,Λ, s), such that |{u < M} ∩ B1| ≥ ε”

M,ε deteriorate with s only for s → 0 .

We proceed as before. Consider w = u+a, with a = 2(|x|2 −1)∧0 and construct
the convex envelope Γ (w−) in B3

As before

Vol ∇Γ ({w = Γ (2)}) ≥
( | infw|

4

)n

.

The problem is how to relate |{w = Γ (w)}| with its image (no good change of
variables formula).
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Consider a point x0 in w = Γ (w). We have the following local geometry

We are going to prove the following family of steps. Consider x0 as above.

(a) For some small diadic ring Rk = B2−k \ B2−(k+1) w̃ “grows quadratically on
average” in the sense that

∫
�

Rk

w̃ ≤ C1(rk)
2 (rk = 2−k).

(b) Of course, this does not imply that w̃ ≤ c1r
2
k , but since 0 ≤ Γ̃ (w̃) ≤ w̃, and Γ̃

is convex. (a) does imply that

Γ̃ |B2−(k+1)
≤ C22−2k and ∇Γ̃ |B2−(k+2)

≤ C22−k

(k = k(x0) of course).
(c) In particular:

Vol∇Γ (B . . .) = Vol∇Γ̃ (B2−(k+2) (x0)) ≤ C|B2−(k+2) (x0)|.
We now extract a covering of {w = Γ (w)} with the family of these balls Br(x)(x)

and we have

1 ≤ Vol∇Γ ({w = Γ }) ≤ C
∑

|Br(xj )(xj )|.
But in each Brj , (·)w̃ differs from Γ by at most (rj )

2 in a large portion of Br(xj )

since

u ≤ w + 2; |{u ≤ 3}| ≥ C
∑

|Br(xj )| ≥ 1.

We divide the integration in diadic rings around x0
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Since w̃(x0) = 0, and w̃ ≥ 0, the integrand in all of the rings is positive and

Lw ∼ (2 − s)
∑

(rk)
−(n+s)

∫
Rk

w̃ ≤ C.

(a) We first show that if C1 = MC is a large multiple of C there is at least one ring
where ∫

�

Rk

w̃ ≤ C1r
2
k .

If not

C ≥ Lw̃ = (2 − s)
∑

r
−(n+s)
k

∫
w̃ ≥ (2 − s)

∑
r−s
k

∫
� w̃ ≥ C1

2 − s

1 − 2(s−2)

∼ C1, a contradiction.
In fact, if M is large, we can start the sum from k = k0 and we get

C ≥ C1
(2 − s)

1 − 2(s−2)
· 2(2−s)k0

still a contradiction.
Of course, w̃ may still be highly oscillatory but

(a) In 99% of the rings, w̃ ≤ 100C1r
2
k , that is, in the original configuration w stays

close to its convex envelope Γ .
(b) Further, since 0 ≤ Γ̃ ≤ w̃ ∫

�

Rk

Γ̃ ≤ C1r
2
k .

But Γ̃ is convex, so this implies a bound Γ̃ ≤ C2r
2
k in Bk+1 and ∇Γ ≤ rk in

Bk+2.

Let t0 = r2
k

In turn, this implies that supBk+2
∇Γ̃ < C r2

k .



50 L. Caffarelli

Finally, it is a general fact that
If Γ is convex in Br ,

A covering lemma completes the proof.
This proof, of course, requires in principle that the kernels be symmetric (some

asymmetry is “tolerated” by the fact that the gradient of Γ is bounded, as in the
second order case).

But the nature of the “game” symmetrizes the kernel:
From the “inf sup” property, for any x0, there exists a direction ν+ so that

0 ≤
∫

[u(x + y) + u(x − y) − 2(u(x))]Kν+ + Kμ

for any μ (in particular −ν+) and vice versa, a ν− so that

0 ≥
∫

[u(x + y) + u(x − y) − 2u(x)]Kν− + Kμ

for any μ, and this property is all that’s needed.
Going back to the two possible “integral drifts”, in the first case it is also possible

to prove that solutions are in fact C2s+σ , i.e., the integrals converge and the solution
is classical (see [7]).

This is because the nature of the drift is such that, as the problem is rescaled the
perturbation term A(x1) drifts to infinity.

6 Non-local Infinite Laplacian

Finally, I would like to discuss briefly the “tug of war” non-local “infinite Lapla-
cian”.

The Infinite Laplacian appears in the case when there is no diffusion left, i.e.,
when it is just the players taking random turns in choosing the direction of the drift
(tug of war).

For the infinitesimal case, when the length of the jump is predetermined you
formally get “unn = 0”, n the direction of the gradient (Peres–Schramm–Sheffield–
Wilson [17]).
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Also, in collaboration with Bjorland and Figalli [2], we consider the case in
which the jump of the particle follows the distribution of the s-Laplacian

inf
ν1∈s1

sup
ν2∈s2

∫
u(x + ν1t) + u(x + ν2t) − 2u(x)

t1+2s
dt = 0.

(That is, each player pulls in the directions ν1 and ν2.)
Formally, for s > 1/2, the direction of the jump is given by ∇u: Since the inte-

grals diverge, each players is “forced” to take that choice.
We prove existence, uniqueness and (some) regularity, under a monotone geom-

etry, for s > 1/2.

We assume that the domain Ω is “strip like”, i.e., between bounded Lipschitz
graphs with uniform separation and pay off is respectively 1 and −1. We show that
there exists a unique viscosity solution (the least supersolution and larger subsolu-
tion coincide), and it is C2s−1.

(|x|2s−1 are the “cones” for this problem, note that for s = 1/2 the theory breaks
down.)

We end up with some comments:

• The case s < 1/2 seems very interesting since “∇u” does not fix the direction of
the jump any more, and players will choose to jump in “non-opposite directions”
most of the time.

• Instead of prescribing boundary values, it seems more natural to prescribe upper
and lower obstacles where it would be optimal for one of the players to stop
playing (execute an option).
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We can prove in this case similar results as to the boundary value problem discussed
before [2].
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