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Preface

This volume contains the papers presented at APLAS 2011, the 9th Asian Sym-
posium on Programming Languages and Systems held during December 5–7,
2011 in Kenting, Taiwan. The symposium was sponsored by the Asian Associ-
ation for Foundation of Software (AAFS), Academia Sinica (Taiwan), and Na-
tional Taiwan University. We are grateful for the administrative support from
the Institute of Information Science, Academia Sinica (Taiwan), and the Depart-
ment of Information Management and the Yen Tjing Ling Industrial Research
Institute at National Taiwan University.

APLAS is a premier forum for the discussion of a wide range of topics re-
lated to programming languages and systems. Although it is based in Asia,
APLAS has been an international forum that serves the worldwide program-
ming language community. The past APLAS symposiums were successfully held
in Shanghai (2010), Seoul (2009), Bangalore (2008), Singapore (2007), Sydney
(2006), Tsukuba (2005), Taipei (2004) and Beijing (2003) after three informal
workshops. Proceedings of the past symposiums were published in Springer Ver-
lag’s LNCS series as volumes 6461, 5904, 5356, 4807, 4279, 3780, 3302, and 2895
respectively.

Following the initiative from the previous year, APLAS 2011 solicited sub-
missions in two categories, regular research papers and system and tool presenta-
tions. There were 64 submissions from 22 countries (62 regular research papers
and 2 system and tool presentations). Each submission was reviewed by at least
2, and on average 3.2, Program Committee members with the help of external
reviewers. The Program Committee meeting was conducted electronically over a
period of two weeks in August 2011. The Program Committee decided to accept
22 regular research papers (35%) and 1 system and tool presentation (50%).
Among the 22 accepted papers, there was one whose initial verdict was condi-
tional acceptance. To have their paper accepted, the authors were requested to
address specific concerns raised by the Program Committee. The revised ver-
sion of the paper was checked by the Program Committee, before it was finally
accepted. I would like to thank all the Program Committee members for their
hard work in reviewing papers, participating in online discussions, volunteering
to shepherd submissions, and sometimes finding and fixing technical errors in
submissions. I also want to thank all the external reviewers for their invaluable
contributions.

In addition to contributed papers, this volume contains the full paper or the
extended abstracts of of four distinguished invited speakers: Nikolaj Bjørner (Mi-
crosoft Research Redmond), Ranjit Jhala (University of California, San Diego),
Peter O’Hearn (Queen Mary University of London) and Sriram Rajamani (Mi-
crosoft Research India). I would like to thank all of these speakers for accepting
our invitation and contributing papers or abstracts.



VI Preface

The General Chair, Tyng-Ruey Chuang, helped me so much from the very
beginning while I prepared the technical program of APLAS 2011. I am truly
grateful for his support and guidance, and also for making our symposium in
Kenting possible and enjoyable. I would like to thank Shin-Cheng Mu for lo-
cal arrangements, and Yih-Kuen Tsay for serving as the Finance Chair. Noam
Rinetzky was an excellent Publicity Chair for APLAS 2011, who had several
creative ideas for increasing the awareness of the conference, and Mike Dodds
worked very hard to organize the poster session. I greatly appreciate their help
and efforts. EasyChair made the handling of submissions and the productions
of the proceedings extremely smooth and efficient. Finally, I would like to thank
the members of the AAFS Executive Committee for their advice. In particular,
Kazunori Ueda, the Program Chair of APLAS 2010, gave me invaluable tips and
suggestions, without which I would not have been able to prepare the technical
program and the proceedings of APLAS 2011.

September 2011 Hongseok Yang
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Program Analysis and Machine Learning:

A Win-Win Deal

Aditya V. Nori and Sriram K. Rajamani

Microsoft Research India
{adityan,sriram}@microsoft.com

We give an account of our experiences working at the intersection of two fields:
program analysis and machine learning. In particular, we show that machine
learning can be used to infer annotations for program analysis tools, and that
program analysis techniques can be used to improve the efficiency of machine
learning tools.

Every program analysis tool needs annotations. Type systems need users to
specify types. Program verification tools need users to specify preconditions,
postconditions and invariants in some form. Information flow analyzers require
users to specify sources and sinks for taint, and sanitizers, which cleanse taint.
We show how such annotations can be derived from high level intuitions using
Bayesian inference. In this approach, annotations are thought of as random vari-
ables, and intuitions of the programmer are stated as probabilistic constraints
over these random variables. The Bayesian framework models and tolerates un-
certainty in programmer intuitions, and Bayesian inference is used to infer most
likely annotations, given the program structure and programmer intuitions. We
give specific examples of such annotation inference for information flow [5] and
ownership types [1]. We also describe a generic scheme to infer annotations for
any safety property.

Machine learning algorithms perform statistical inference by analyzing volu-
minous data. Program analysis techniques can be used to greatly optimize these
algorithms. In particular, statistical inference tools [3,6] perform inference from
data and first-order logic specifications. We show how Counterexample Guided
Abstraction Refinement (CEGAR) techniques, commonly used in verification
tools and theorem provers can be used to lazily instantiate axioms and improve
the efficiency of inference [2]. This approach also enables users of these tools to
express their models with rich theories such as linear arithmetic and uninter-
preted functions. There is a recent trend in the machine learning community to
specify machine learning models as programs [4]. Inspired by this view of models
as programs, we show how program analysis techniques such as backward analy-
sis and weakest preconditions can be used to improve the efficiency of algorithms
for learning tasks such as the computation of posterior probabilities given some
observed data.

In summary, we believe that these cross fertilization of ideas from program
analysis and machine learning have the potential to improve both fields, resulting
in a mutual win-win deal. We speculate on further opportunities for mutually
beneficial exchange of ideas between the two fields.

H. Yang (Ed.): APLAS 2011, LNCS 7078, pp. 1–2, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Software Verification with Liquid Types�

Ranjit Jhala

University of California, San Diego
jhala@cs.ucsd.edu

Abstract. Traditional software verification algorithms work by using a
combination of Floyd-Hoare Logics, Model Checking and Abstract Inter-
pretation, to check and infer suitable program invariants. However, these
techniques are problematic in the presence of complex but ubiquitous
constructs like generic data structures, first-class functions. We observe
that modern type systems are capable of the kind of analysis needed
to analyze the above constructs, and we use this observation to develop
Liquid Types, a new static verification technique which combines the
complementary strengths of Floyd-Hoare logics, Model Checking, and
Types. As a result, we demonstrate how liquid types can be used to
statically verify properties ranging from memory safety to data struc-
ture correctness, in higher-order languages like ML. This presentation is
based on joint work with Patrick Rondon and Ming Kawaguchi.

� This work was supported by NSF grants CCF-0644361, CNS-0720802, CCF-0702603,
and gifts from Microsoft Research.

H. Yang (Ed.): APLAS 2011, LNCS 7078, p. 3, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Engineering Theories with Z3

Nikolaj Bjørner

Microsoft Research
nbjorner@microsoft.com

Abstract. Modern Satisfiability Modulo Theories (SMT) solvers are
fundamental to many program analysis, verification, design and testing
tools. They are a good fit for the domain of software and hardware engi-
neering because they support many domains that are commonly used by
the tools. The meaning of domains are captured by theories that can be
axiomatized or supported by efficient theory solvers. Nevertheless, not
all domains are handled by all solvers and many domains and theories
will never be native to any solver. We here explore different theories that
extend Microsoft Research’s SMT solver Z3’s basic support. Some can be
directly encoded or axiomatized, others make use of user theory plug-ins.
Plug-ins are a powerful way for tools to supply their custom domains.

1 Introduction

This paper surveys a selection of theories that have appeared in applications
of Z3 [7] and also in recent literature on automated deduction. In each case we
show how the theories can be supported using either existing built-in theories
in Z3, or by adding a custom decision procedure, or calling Z3 as a black box
and adding axioms between each call. The theme is not new. On the contrary,
it is very central to research on either encoding (reducing) theories into a sim-
pler basis or developing special solvers for theories. Propositional logic is the
most basic such basis e.g., [13]. In the context of SMT (Satisfiability Modulo
Theories), the basis is much richer. It comes with built-in support for the the-
ory of equality, uninterpreted functions, arithmetic, arrays, bit-vectors, and even
first-order quantification. The problem space is rich, and new applications that
require new solutions keep appearing. We don’t offer a silver bullet solution, but
the “exercise” of examining different applications may give ideas how to tackle
new domains.

Z3 contains an interface for plugging in custom theory solvers. We exemplify
this interface on two theories: MaxSMT (Section 3) and partial orders (Sec-
tion 4). This interface is powerful, but also requires thoughtful interfacing. To
date it has been used in a few projects that we are aware of [17,2,15]. Some of
our own work can also be seen as an instance of a theory solver. The quantifier-
elimination procedures for linear arithmetic and algebraic data-types available
in Z3 acts as a special decision procedure [3]. The OpenSMT solver also supports

H. Yang (Ed.): APLAS 2011, LNCS 7078, pp. 4–16, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

nbjorner@microsoft.com


Engineering Theories with Z3 5

an interface for pluggable theories [5]. We feel that the potential is much bigger
an we conclude with some speculation where the pluggable interface could be
used elsewhere.

Z3 also allows interfacing theories in simpler ways. The simplest is by encoding
and Section 5 discuss a simple theory with two encodings. Something between
encoding and a user theory, is by calling Z3 repeatedly. Whenever Z3 returns
a satisfiable state, then add new axioms that are not satisfied by the current
candidate model for the existing formulas. Section 6 discusses how HOL can be
solved using this method.

The case studies discussed in this paper are available as F# code samples.

2 SMT, DPLL(T ), and Z3

2.1 SMT

We will not survey SMT here, but refer the reader to [8] for an introduction.

2.2 DPLL(T )

Modern SMT solvers are mostly based on the DPLL(T ) architecture. In this
context, an efficient propositional SAT solver is used to produce a truth assign-
ment to the atomic sub-formulas of the current goal. Let us use M to refer to
a partial assignment. It can be represented as a stack of literals �1, �2, . . . , �n.
The partial assignment is updated by adding new literals to the stack to indi-
cate their values, and by shrinking the stack. We use F for the current goal.
The DPLL(T ) architecture uses two main methods for interacting with a theory
solver.

T -Propagate. Given a state M ||F , such that � or ¬� occurs in F , � is unassigned
in M , C ⊆ M (the negation of the literals in C are already assigned in M),
and T � C ∨ �, then � must be true under the current assignment M . It is
then sound to propagate �.

External theory solvers in Z3 can force this propagation by asserting the
clause (C ∨ �). Then � gets assigned by propositional propagation. How-
ever, the asserted clause has no value if � does not participate in a conflict.
So the default behavior in Z3 is to garbage collect the asserted clause on
backtracking.

T -Conflict. Given a state M ||F such that C ⊆ M , T |= C. That is, there is a
subset C of the literals in M that are inconsistent from the point of view of
T , or dually the clause C is T -valid, then assert the valid clause C. The new
clause is in conflict with the current assignment M , because all literals in
C are false under M . The propositional engine detects the resulting conflict
and causes backtracking.
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The clause C may also be useless beyond serving the role of signaling
the conflict. It is therefore also by default garbage collected during Z3’s
backtracking.

2.3 Z3’s Theory Solver API

Z3 exposes a programmatic API for interfacing with the theory solver. It includes
hooks for user theories to add callbacks so that they can implement the effect
of T -Propagate and T -Conflict. As we saw, the effect of the rules is communi-
cated by asserting a new clause to the current state. The corresponding method
is called AssertTheoryAxiom over the .NET API. On the other hand, the state
changes to the partial model M are exposed to the user solver using callbacks.
When a literal is added to M (is assigned to either true or false), then a call-
back (called NewAssignment(atom,truth value)) is invoked with the underlying
atomic formula and the truth value it is assigned to. There are other special-
ized callbacks when new equalities and dis-equalities are discovered. Equalities
and dis-equalities don’t have to correspond to existing atoms. Finally, a callback
(called FinalCheck in .NET) is invoked when the current assignment fully sat-
isfies the current formula F from the point of view of the built-in theories in
Z3. The user theory solver can inspect its own state and compare the assign-
ment it learned from NewAssignment to determine if the resulting assignment
is satisfiable. When the solver performs a new case split or backtracks through
states it calls into the theory solver with callbacks Push and Pop. Any side-effects
made in a user-theory inside the scope of a Push need to be undone when receiv-
ing a matching call to Pop. For example, if a user-theory performs an update
c ← c + wi, where wi is a constant, then it can undo the effect of the operation
by executing c ← c− wi during a Pop.

3 Weighted MaxSMT

Weighted MaxSMT is the following problem. Given a set of numeric weights
w1, . . . , wn and formulas F0, F1, . . . , Fn, find the subset I ⊆ {1, . . . , n} such that

1. F0 ∧
∧

i/∈I Fi is satisfiable.
2. The cost : Σi∈Iwi is minimized.

In other words, the weight wi encodes the penalty for a formula Fi to not be
included in a satisfying assignment. The paper [14] develops a theory solver for
weighted MaxSMT. An important point is that the theory evolves as search pro-
gresses: once a satisfiable state is reached with a given cost c, then assignments
that meet or exceed c are useless.

According to [14], weighted MaxSMT can be encoded in Z3 in the following
way: Initially we assert F0 and Fi∨pi for each i, where pi is a fresh propositional
variable. We also maintain a cost c that is initialized to 0, and a min cost that
is set to nil. Then, repeat the following steps until the asserted formulas are
unsatisfiable:
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1. When some pi is assigned to true, then update c ← c + wi.
2. If nil �= min cost ≤ c, then block the current state by calling

AssertTheoryAxiom(
∨
{¬pi | pi is assigned to true}).

3. When receiving the FinalCheck callback, it must be the case that c < min cost
or min cost is nil. So it is safe to set min cost ← c. To block this current
cost call AssertTheoryAxiom(

∨
{¬pi | pi is assigned to true}).

It was tempting to make fuller use of theory support in Z3 for MaxSMT. We also
tried an encoding that used extra variables v1, . . . , vn and axioms pi =⇒ vi = wi,
¬pi =⇒ vi = 0, 0 ≤ vi for each i = 1, . . . , n and Σivi < B. The idea would
be to add assertions B ≤ c every time a new satisfying state with cost c is
encountered. This encoding was counter-productive on the benchmarks used
in [14], it taxes Z3’s arithmetic solver in contrast to relatively cheap propagation
using the blocking propositional clauses.

It can be highly domain dependent whether a particular solution applies.
An example of constraints where the proposed MaxSMT solver performs poorly
comes from constraints used to tune parameters for the Vampire [12] theorem
prover. There, a formula F0[v1, . . . , vn] is asserted and the goal is to minimize
Σivi. The domain of the variables is bounded and the so-far best encoding ap-
pears to be to use bit-vectors for the variables. We can convert the problem to
MaxSMT by adding the following soft clauses: vi[k] = 0 with weight 2k for each
variable vi of bit-width N and 0 ≤ k < N . Nevertheless, we found that this
encoding is inferior to the best technique known so far: a binary search over
constraints of the form Σivi > c, where c is a candidate lower bound.

4 Theories for Partial Orders and Class Inheritance

A partial order is a binary relation that is reflexive, anti-symmetric, and transi-
tive. In other words, 
 is a partial order if for every x, y, z:

x 
 x, x 
 y ∧ y 
 x =⇒ x = y, x 
 y ∧ y 
 z =⇒ x 
 z

When there are no other non-ground properties of 
, it is relatively straight-
forward to support the theory using axioms that get instantiated fully during
search. Unfortunately, the theory is expensive. When n is the number of terms
in the goal that occur in either side of 
, the axiom for transitivity causes up
to O(n3) clauses and generates up to O(n2) instantiations of 
. The (quantifier-
free) theory of partial orders can be solved using graph search procedures. Let
us illustrate two theory solvers in the context of partial orders.

4.1 A Basic Solver for Partial Orders

We present a basic decision procedure for the theory of partial orders. It main-
tains a directed graph D and a set N of pairs of terms. They are both initially
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empty. Assert F , the original formula to satisfy and check for satisfiability with
the following theory solver actions:

1. When t 
 t′ is asserted to true, then add the edge t→ t′ to D.
2. When t = t′ is asserted, then add edges t→ t′ → t to D.
3. If D contains a cycle with edges t1 → t2 → t3 → ..tn → t1, for terms that

are not yet asserted equal, then call

AssertTheoryAxiom(t1 
 t2 
 t3 . . . tn 
 t1 →
n−1∧
i=1

ti = ti+1)

4. When t 
 t′ is asserted to false , then add the pair (t, t′) to N .
5. If for some pair (t, t′) in N there is a path in D from t to t′ (the path can

be empty and t = t′), then assert

AssertTheoryAxiom(t 
 t1 
 t2 . . . tn 
 t′ → t 
 t′)

Correctness of the algorithm is straight-forward: The graph D is a model: every
term in strongly connected components are forced equal, and every constraint
t �
 t′ is checked. It is critical that the algorithm has access to the current
equalities between terms and it takes part of equality propagation as well.

A basic implementation of the corresponding solver is to defer all processing
to FinalCheck. Tarjan’s ubiquitous linear time algorithm for finding strongly
connected components in a graph will identify implied equalities, and each pair
in N can be checked in time |D|.

4.2 Sub-typing Closure

The object inheritance hierarchy of classes in object oriented programs forms
a partial order. A special class of partial order constraints are relevant in this
context, and [16] develops a specialized decision procedure. In the context of
object inheritance we can assume there is a fixed set of constants cls1, . . . , clsn

that are (1) all distinct and (2) covers the universe of types that are used in the
query. The type hierarchy among cls1, . . . , clsn is fixed once and the queries are
Boolean formulas over atoms of the form x = clsi and x 
 clsi, where x is a
variable (it is equal to one of cls1, . . . , clsn, but the concrete value is not known
yet.

The theory can be handled using a specialized solver that tracks satisfiability
of assignments to the atoms: For each variable x, initialize the set of candidates
cand(x) to {cls1, . . . , clsn}, and dependencies dep(x) to ∅.

1. The state is updated upon asserting a literal � as follows:
(a) x = clsi: set cand(x) ← cand(x) ∩ {clsi}.
(b) x �= clsi: set cand(x) ← cand(x) \ {clsi}.
(c) x 
 clsi: intersect cand(x) with the descendants of clsi.
(d) x �
 clsi: subtract the descendants for clsi from cand(x).



Engineering Theories with Z3 9

2. The asserted literal � is also added to dep(x).
3. The state is unsatisfiable if cand(x) = ∅. To block it, call:

AssertTheoryAxiom(
∨
{¬� | � ∈ dep(x)})

The interesting problem is implementing the updates to cand(x) efficiently. The
assumption that the type hierarchy is fixed can be exploited. The Type Slic-
ing [10] structure was developed in the context of fast dispatch tables for object
oriented programs, and it was used in [16] for making the updates to cand(x)
efficient. The data-structure represents a partial order (directed acyclic graph)
using a set of colored nodes that are ordered. The data-structure satisfies the
following condition: For every node n and color c, the set of descendants of n of
color c are contiguous with respect to the ordering. The contiguity requirement
allows to represent descendants using the first and last element only of the inter-
val. We will not review this data-structure and the methods for building it here,
but note that the sketched solver integration with Z3 allows writing only the
theory solver, while efficient handling of Boolean case splitting comes for free.

Remark 1. When detecting a conflict we suggested to include the negation of all
literals from dep(x) in the asserted theory axiom. The resulting axiom may have
redundancies. For example if we assert x = string followed by x 
 System.Object
followed by x = bool, we obtain a conflict by just producing the clause x �=
string ∨ x �= bool. The constraint x 
 System.Object is redundant. A simple
method is to minimize the conflicting dependencies for x by temporarily remov-
ing each literal from dep(x) and check if there is still a conflict. Generating
minimal conflicts is important for efficient search.

5 A Theory of Object Graphs

There are many cases where a new theory can already be encoded using existing
built-in theories. There is then no need for special purpose procedures. Still there
may not be a unique way to encode these theories. We here give an example of
this situation.

The theory of object graphs uses elements from the theory of algebraic and
co-algebraic data-types, yet it is not possible to directly use one or the other.
The theory is also non-extensional. The theory of object graphs occurs naturally
in the context of Pex [11]. Pex is a state-of-the-art tool for unit-test case genera-
tion. It applies to typed .NET code. Let us here consider the following program
fragment:
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class O {

public readon ly D d ;
public readon ly O l e f t ;
public O r igh t ;

public O(D data ,
O l e f t ,
O r i gh t ) {

this . data = data ;
this . l e f t = l e f t ;
this . r i gh t = r i gh t ;

}
}

void f (O n0 ) {

Assert ( n0 == null | |
n0 . l e f t != n0 ) ;

O n1 = new O(1 , null , null ) ;
O n2 = new O(2 , n1 , null ) ;
O n3 = new O(2 , n1 , null ) ;

Assert ( n2 != n3 ) ;

n1 . r i gh t = n2 ;
n2 . r i gh t = n1 ;

. . .

Program 5.1:

Objects of type O are created using a constructor that we also call O . Each
allocation creates a different object (the default equality method is reference
equality), so in the program n2 is different from n3. We can use a heap, here
called H , to track the state of objects. So access and updates to objects is done
through the heap. The signature that is relevant for O is:

sorts: O,
constructors: null : O,O : H ×D ×O ×O → H ×O,
accessors: data : H ×O → D, left : H ×O → O, right : H ×O → O,
modifiers: update right : H ×O ×O → H

The sort is O and there is a distinguished constant null . There are three ac-
cessors, the data accessor retrieves a data field from objects of type O, and left
and right access left and right children. The read-only declared attributes of O
cannot be updated, so there is only a single modifier for the right attribute.

The theory of O is characterized as follows:

(h′, o) = O(h, d, l, r) =⇒ o �= null
(h′, o) = O(h, d, l, r) =⇒ data(h′, o) = d

(h′, o) = O(h, d, l, r) =⇒ left(h′, o) = l

(h′, o) = O(h, d, l, r) =⇒ right(h′, o) = r

left(null) = right(null) = null
h′ = update right(h, o, r) ∧ o �= null =⇒ right(h′, o) = r

h′ = update right(h, o, r) ∧ o′ �= o =⇒ right(h′, o′) = right(h, o′)
h′ = update right(h, o, r) =⇒ left(h′, o′) = left(h, o′)
h′ = update right(h, o, r) =⇒ data(h′, o′) = data(h, o′)
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The read-only field constrains what objects are possible in a valid heap state. In
particular all formulas of the form

o �= null =⇒ left(h1, left(h2, left(. . . left(hn, o)))) �= o (1)

are valid. The restriction is similar to the occurs check (well-foundedness) of
recursive data-types. On the other hand, the attributes following paths using
right need not be well-founded.

The question we will now address is: How can we equip a decision procedure
for reasoning about ground formulas over the theory of O?

5.1 An Encoding Using Arrays

A direct encoding of objects is to use one array per field. To enforce well-
foundedness of left-access (see (1)) one can use a time-stamp. We use O ⇒ D
for the sort of arrays that map O to D, and encode the sort O as the set N of
natural numbers. The sort H is a tuple with one array for data, other arrays for
left and right , and finally a clock that we will increment when allocating new
objects.

O = N

H = 〈data : O ⇒ D , left : O ⇒ O , right : O ⇒ O , clock : N〉

The constant null is set to 0 and object allocation modifies the arrays maintained
in H . The initial heap h0 uses the value 0 for clock , such that allocated objects
are different from null .

null = 0
left0 = store(left0,null ,null)

right0 = store(right0,null ,null)
h0 = 〈data , left0, right0, 0〉

O(〈data , left , right , clock〉, d, l, r) =

⎛⎝ let o = clock + 1
(〈store(data , o, d), store(left , o, l),
store(right , o, r), clock + 1〉, o)

⎞⎠
data(〈data , left , right , clock 〉, o) = select(data , o)
left(〈data , left , right , clock 〉, o) = select(left , o)

right(〈data , left , right , clock 〉, o) = select(right , o)
update right(〈data , left , right , clock 〉, o, r) = 〈data , left , store(right , o, r), clock 〉

To enforce well-foundedness in models produced by Z3 it suffices to enforce that
the time-stamp (here it is the same as the natural number used to identify
objects) on non-null objects is smaller on their left children. It suffices to assert
an axiom that gets instantiated for every use of left(h, o)1

∀h : H , o : O . o �= null =⇒ 0 ≤ left(h, o) < o .

1 The mechanism for achieving this in Z3 is to annotate quantified formulas using this
term as a pattern.
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5.2 An Encoding Using Recursive Data-Types and Arrays

Another option is to encode the read-only fields using the theory of algebraic
data-types. We use a unique identifier field id to make sure allocated objects are
distinct.

O = null | O(id : N, data : D, left : O)
H = 〈right : O ⇒ O , clock : N〉

right0 = store(right0,null ,null)
h0 = 〈right0, 0〉

O(〈right , clock 〉, d, l, r) =

⎛⎝ let clock ′ = clock + 1
let o = O(clock ′, d, l)
(〈store(right , o, r), clock ′〉, o)

⎞⎠
data(h, O(id , d, l)) = d

left(h, O(id , d, l)) = l

left(h,null) = null
right(〈right , clock 〉, o) = select(right , o)

update right(〈right , clock 〉, o, r) = 〈store(right , o, r), clock 〉

5.3 Not All Encodings are Equal

The advantage of using the built-in algebraic data-types becomes highly visible
when the heap gets updated multiple times. For example, in one test we created
1000 objects and then verified that the left child of the first object remained un-
changed after the 1000 updates. It takes Z3 18 seconds to instantiate 600,000+
array axioms and establish the equality using the array-based encoding. The
second encoding can prove the same theorem in a small fraction of a second.
Establishing (1) requires also about 18 seconds and 232,582 quantifier instantia-
tions using the first encoding, and is establish instantaneously using the second
encoding.

6 HOL

Sattalax [4] is a theorem prover for Church’s Higher-Order Logic (HOL) [1]
that is based on simple type theory with Hilbert’s choice operator. It won the
CASC division for higher-order logic in 2011. The main idea in Sattalax is to
reduce problems in HOL to a sequence of SAT problems. Sattalax uses the
MiniSAT SAT solver. This, apparent unsophisticated method, has an edge over
current competing tools thanks to the highly tuned SAT solver MiniSAT, and
a judicious combination of strategies in Sattalax. The Sattalax reduction uses
several components: It searches for quantifier instances for quantified formulas.
It then encodes satisfiability of quantifier-free formulas into propositional logic.
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The purpose of this section is very straight-forward. It is to show how to leverage
an SMT solver for handling the encoding of ground formulas into propositional
logic. The other much more profound challenge remains, and we don’t address
it here: sophistication and tuning for finding useful quantifier instantiations.

There is a set of variables V with elements x, y, z, . . .. The theory HOL is
based on simply typed λ calculus. It includes a special sort o of propositions and
i of individuals. Types are of the form:

σ ::= i | o τ ::= σ | τ → τ

Furthermore, we use the notation τ as a shorthand for τ1, . . . , τn and τ → σ as
a shorthand for τ1 → . . .→ τn → σ. Terms are of the form:

M, N ::= λx : τ . M | (M N) | x

We assume also a fixed set of interpreted constants:

false : o, =⇒: o→ o → o,

ε : (τ → o) → τ, ∀ : (τ → o) → o, =: τ → τ → o for each type τ

As usual, terms are assumed simply and well-typed: (M N) can only be formed
if M has type τ → τ ′ and N has type τ . We write M τ for a term M with type
τ (under a type environment Γ ). Simply typed terms are strongly normalizing,
so they admit βη normal forms that we denote M ↓. Equality under α-renaming
can be dealt with by using de-Bruijn indices. HOL is generally highly incomplete
(it can encode Peano arithmetic) but it is complete under Henkin [12] seman-
tics. Under the Henkin term-based semantics the set of values in every type τ
comprises of the all the closed terms of type τ . This set is non-empty for every
τ because we can always include ε(λx : τ.false). The interpreted constants are
characterized by

(∀ (λx : τ .¬(M x))) ∨ (M (ε M)) for every M : τ → o (2)
M = N ⇔ (∀λx : τ . (M x) = (N x)) for every M, N : τ → τ ′ (3)

(∀ M) =⇒ (M N) for every M : τ → o, N : τ (4)

together with the usual congruence properties of equality and the Boolean con-
nectives =⇒ and false (and the definitions for derived abbreviations ¬,⇔,∨, and
∧). Furthermore, M↓ = M for every M . The main idea of Sattalax is to saturate
a goal F under these properties. Since Sattalax is based on a SAT solver it also
has to saturate with respect to the theory of equality. The main point made
here is that this part of the theory propagation is already taken care of by SMT
solvers that provide ground equality reasoning as a built-in feature. Saturation
causes the properties to be instantiated by every constructable terms M, N . Two
challenges arise, the first is to find a way to enumerate all constructable terms,
the second is to enumerate the terms in an order that is useful for finding short
proofs. In general, one must fairly enumerate every type τ and every term of
type τ . We sketch a construction of sets of terms with free variables from the
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typing context Γ and of type τ as the set T [Γ ; τ ]. It is the least fixed-point under
the membership constraints:

(λx : τ . M) ∈ T [Γ ; τ → τ ′] if M ∈ T [Γ, x : τ ; τ ′]
(x M1 . . . Mk) ∈ T [Γ ; σ] if (x : τ → σ) ∈ Γ, Mi ∈ T [Γ ; τi]

The constructed terms are in βη long normal form. We here assume that Γ is pre-
populated with the constants false and =⇒ and for every type τ a corresponding
instance of ∀, ε, =. A useful approach for enumerating the terms is to fix a depth
towards the number of times one is willing to use either of the saturation rules
above and then enumerate all terms and types up to the fixed depth.

6.1 Leveraging Theories

[[(∀ M)]] = �(∀M)�
[[(ε M)]] = �(ε M)�

[[M =⇒ N ]] = [[M ]] =⇒ [[N ]]
[[M = N ]] = [[M ]] = [[N ]]
[[(M N)]] = select([[M ]], [[N ]])

[[λx : τ . M ]] = �λx : τ . M�
[[f ]] = f for constant f

The translation of λ-terms into first-order
terms can exploit the support for equality
and propositional logic that already exists
in the context of SMT solvers. We give the
translation function [[ ]] to the right. It creates
quoted terms �M� for λ-terms that don’t cor-
respond to Z3-expressible terms. The quoted
terms are treated as uninterpreted constants
from Z3’s point of view. The theory of exten-
sional arrays furthermore lets us enforce that application is extensional without
having to expand axioms for extensionality ourselves. In other words, the func-
tion select satisfies (∀x : τ . select(M, x) = select(N, x)) =⇒ M = N . We can
therefore replace (3) with only the left-to-right implication.

We are now ready to outline the basic saturation loop for HOL. Initialize the
depth d ← 0. Assert [[F ↓]]. Then repeatedly apply the following steps until [[F ↓]]
is ground unsatisfiable:

1. F contains the sub-term �(ε M)�, then add [[(2) ↓]] to F .
2. F contains the sub-term [[M τ→τ ′

= N ]], then add [[(3) ↓]] to F .
3. F contains the sub-term �(∀ M τ→o)�, then for every N ∈ T [ε; τ ] of depth

less than d add [[(4) ↓]] to F .
4. d← d + 1.

Remark 2. We can in principle retain even more of the structure of λ-terms when
interpreting them in the context of Z3. The support for the theory of arrays [6]
in Z3 includes native handling of combinators K : τ → (τ ′ ⇒ τ) (the constant
array), and map : (τ ⇒ τ ′) → (τ ′′ ⇒ τ) → (τ ′′ ⇒ τ ′) (a map combinator),
besides the function store : (τ ⇒ τ ′) → τ → τ ′ → (τ ⇒ τ ′) that updates an
array at a given index. The ground theory with these combinators is decidable
(satisfiability is NP complete). We call the theory CAL for combinatory array
logic. We could therefore in principle extend [[ ]] with the cases [[λx . M ]] =
(K [[M ]]) if x �∈ FV (M), and [[λx . (M (N x))]] = map([[M ]], [[N ]]) when x �∈
FV (M) ∪ FV (N). It would be interesting to explore to which extent CAL can
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be leveraged for solving HOL formulas. We could for instance prove f ◦ g =
g ◦ f ⇒ f ◦ g ◦ g = g ◦ g ◦ f using the decision procedure for CAL.

We implemented a light-weight HOL theorem prover based on the presented
method using Z3. It is not tuned, but can (given some patience) for instance
prove that injective functions have inverses: (∀x, y : i . (fx) = (fy)) =⇒ ∃g :
i → i . ∀x : i . (g (f x)) = x by synthesizing the instantiation g := λx : i . (ε (λy :
i . (f y) = x)).

7 Conclusions

We examined a number of theories. The theories were not native to Z3, but
could be either encoded using existing theories, be supported by saturating with
theory axioms, or be supported efficiently using custom solvers that work in tan-
dem with core solver. Other constraint satisfiability problems can be encoded
as custom theory solvers. This includes both thoroughly and partially explored
applications, such as custom constraint propagators for scheduling domains, the-
ories with transitive closure and fixed-point operators, local theory extensions,
separation logic and answer set programming.

Thanks to Chris Brown, Albert Oliveras, Nikolai Tillmann, Andrei Voronkov
and Matt Dwyer for their inspiration and input on the theories and examples
used here.
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Algebra, Logic, Locality, Concurrency

Peter W. O’Hearn

Queen Mary University of London

This talk reports on ongoing work – with Tony Hoare, Akbar Hussain, Bernhard
Möller, Rasmus Petersen, Georg Struth, Ian Wehrman, and others – on models
and logics for concurrent processes [10,6,5]. The approach we are taking abstracts
from syntax or particular models. Message passing and shared memory process
interaction, and strong (interleaving) and weak (partial order) approaches to
sequencing, are accomodated as different models of the same core axioms. Rules
of program logic, related to Hoare and Separation logics, flow at once from the
algebraic axioms. So, one gets a generic program logic from the algebra, which
holds for a range of concrete models.

The most notable amongst the algebra laws is an ordered cousin of the ex-
change law of 2-categories or bicategories, which here links primitives for sequen-
tial and parallel composition

(p ‖ r); (q ‖ s) � (p; q) ‖ (r; s).

This law was was noticed in work on pomsets and traces in the 1980s and
1990s [4,1], and emphasized recently in the formulation of Concurrent Kleene
Algebra [5]. An important observation of [5] is that by viewing the pre/post
spec {p} c {q} as a certain relation in the algebra – there are actually two such,
p; c � q and c; q � p – one obtains a number of rules for program logic. The use
of ; to separate the precondition and program, or program and postcondition,
has an interesting consequence: if the sequential composition is a ‘weak’ one that
allows statement re-ordering (as in weak or relaxed memory models that do not
guarantee sequentially consistent behaviour, or more generally as available in
partial order models such as pomsets or event structures [11,9]) then we still
obtain rules of sequential Hoare logic. And when combined with ‖ using the
exchange law, it results in very general versions of the rules

{P1}C1 {Q1} {P2}C2 {Q2}
{P1 ∗ P2}C1‖C2 {Q1 ∗Q2}

Concurrency
{P}C {Q}

{P ∗ F}C {Q ∗ F} Frame

which in Concurrent Separation Logic support modular reasoning about concur-
rent processes [7], where ∗ is the separating conjunction (which holds when its
conjuncts holds of separate resources).

A remarkable fact is that the initial conception of these rules from Concur-
rent Separation Logic is strongly based on an idea of ‘locality of resource access’
[8,2,3], where such intuitions do not seem to be present in the algebraic the-
ory. For instance, in the frame rule we understand that {P}C {Q} implies that
command C only accesses those resources described by precondition P , and
this justifies tacking on a description of separate resources that will thus not

H. Yang (Ed.): APLAS 2011, LNCS 7078, pp. 17–18, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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be altered (the ∗F part). Similarly, in the concurrency rule we understand that
processes started in separate states will not trample on one another’s resources,
because of locality. The notion of ‘locality of resource access’ is a semantic notion
that underlies the semantics of Separation Logic: the soundness of the Frame and
Concurrency has been proven by validating properties of the semantics of pro-
grams that express locality of resource access (properties which incidentally are
independent of the syntax of the logic) [12,3]. However, such forms of justification
are not needed at all in the algebra.

The understanding of this point – how locality and the algebra are related – is
a particular focus of the talk. We start from a standard model of resources, and
construct an algebra from it, making a link between the intuitions concerning lo-
cality of resource access and the axioms in the algebra. Perhaps surprisingly, the
algebra is seen to contain a general account of locality, which strictly generalizes
the modular reasoning of Concurrent Separation Logic [5].

On the other hand, the algebra has as instances concrete models that are far
removed conceptually from the resource models at the basis of Separation Logic
(e.g., models based on interleaving and independence of events), and this leads
to the question of whether it is possible to uniformly obtain effective modular
reasoning techniques for a wide range of models of concurrency.
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Abstract. We wish to abstract nodes in a reactive programming lan-
guage, such as Lustre, into nodes with a simpler control structure, with
a bound on the number of control states. In order to do so, we compute
disjunctive invariants in predicate abstraction, with a bounded number
of disjuncts, then we abstract the node, each disjunct representing an ab-
stract state. The computation of the disjunctive invariant is performed
by a form of quantifier elimination expressed using SMT-solving.

The same method can also be used to obtain disjunctive loop
invariants.

1 Introduction

Our goal is to be able to compute sound abstractions of reactive nodes, with
tunable precision. A reactive node in a language such as Lustre,1 or Scade,2

Sao,3 or even Simulink,4 has input streams, output streams, and an (optional)
internal state: at each clock cycle, the value on each output is a function of the
values on the inputs and the state; and so is the next value of the state.

If the state consists in a finite vector of Booleans, or other finite values, then
the node is a finite automaton, with transitions guarded according to the current
values of the inputs, and for each state a relation between the current values of
the inputs and the current values of the outputs. This is often referred to as the
control structure of the reactive program. The problem with that representation,
which exposes the full internal state, is that the number of states grows expo-
nentially with the number of state variables, making it unwieldy for analysis.
� This work was partially supported by ANR project “ASOPT”.
1

Lustre is a synchronous programming language, which gets compiled into C. [2].
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Scade is a graphical synchronous programming language derived from Lustre. It is
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Sao is an earlier industrial graphical synchronous programming language. It has been
used, for instance, for implementing parts of the Airbus A340 fly-by-wire systems.

4
Simulink is a graphical data-flow modeling tool sold as an extension to the Matlab

numerical computation package. It allows modeling a physical or electrical environ-
ment along the computerized control system. A code generator tool can then provide
executable code for the control system for a variety of targets, including generic C.
Simulink is available from The Mathworks.
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The problem is even more severe if the control conditions are not directly ex-
posed as Boolean state variables, but as predicates over, say, integer or real
variables (see example in Sec. 4).

The main contribution of this article is a method for constructing a more
abstract automaton, with a bounded number of states (≤ n), whose behaviors
still over-approximate the behaviors of the node. In order to do so:

1. We compute an over-approximation of the set of reachable states of the node,
in an unspecified context, as a union of at most n “abstract states”, each
defined by a conjunction of constraints (these abstract states need not be
disjoint).

2. We compute the most precise transition relation between these abstract
states.

This automatic abstraction maps a reactive node into another, more abstract
(and, in general, nondeterministic) reactive node. This enables modular and
compositional analysis: if a node is composed of several nodes, then one can
replace each of these nodes by its abstraction, and then analyze the compound
node.

As a secondary contribution, the analysis method at step 1 can also be used to
obtain disjunctive loop invariants for imperative programs (or, more generally,
invariants for arbitrary control flow graphs), given a precondition and an optional
postcondition. We describe this algorithm for obtaining invariants in disjunctive
normal form, but it in fact also works for other templates.

Our algorithms use satisfiability modulo theory (SMT) solving as an essential
subroutine; see e.g. [3] for an introduction.

2 Invariants by Predicate Abstraction

Predicate abstraction abstracts program states using the truth value of a given
finite set of predicates {π1, . . . , πm}: each state σ is abstracted by a m-tuple of
Booleans(π1(σ), . . . , πm(σ)). The most precise abstract transition relation be-
tween such vectors of Booleans is (B1, . . . , Bm) →π (B′

1, . . . , B
′
m) if and only if

there exist σ |=
∧

(πi = Bi), σ′ |=
∧

(πi = B′
i), and σ → σ′ where → is the

transition relation of the program. Then, given an abstract initial state, the set
of reachable states of the abstract transition relation can be computed within
finite time (in general, exponential in m) by Kleene iterations (equivalently, by
computing the transitive closure of →π).

Such an approach is, however, unworkable in general because of the expo-
nential number of states generated, and thus all current predicate abstraction
schemes use some stronger form of abstraction [7]; for instance, they may sim-
ply compute a conjunction of the πi that holds inductively at a given program
point. Conjunctive invariants are however fairly restrictive; in this article, we
consider the problem of obtaining invariants as disjunctions of a fixed number
of conjunctions of the chosen predicates.

The set of reachable states of a reactive node, in an unspecified environment,
is the strongest invariant of an infinite loop:
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while ( true ) {
i = i n p u t s ( ) ;
o = ou tpu t s ( s t a t e , i ) ;
s t a t e = n e x t s t a t e ( s t a t e , i ) ;

}
We shall therefore investigate the problem of automatically finding disjunctive
inductive loop invariants (or, more generally, invariants for predicate abstraction
following a fixed template), using predicate abstraction, given a precondition and
an optional postcondition. These invariants shall be minimal with respect to the
inclusion ordering: there shall be no stronger inductive invariant definable by
the same template.

2.1 Solution of a Universally Quantified Formula

Let us assume a finite set Π = {π1, . . . , πm} of predicates over the state space
of the variables of the program. Let n ≥ 1 be an integer. We are looking for
invariants of the form C1 ∨ · · · ∨Cn where the Ci are conjunctions of predicates
from Π (most of our techniques are not specific to this template form, see Sec. 2.5
for extensions).

Any such invariant can be obtained by instantiating the Booleans bi,j in the
following template:

T �
=
∨
i

∧
bi,j ⇒ πj︸ ︷︷ ︸

Ci

(1)

Setting bi,j to true(respectively, false) in that template means that predicate πj

appears (respectively, does not appear) in the i-th disjunct Ci. For instance, if
Π = {x > 0, x < 1, y > 0} and n = 2, then b1,1 = true, b1,2 = true, b1,3 = false,
b2,1 = false, b2,2 = false, b2,3 = true correspond to (x > 0 ∧ x < 1) ∨ y > 0.

The problem of finding an invariant reduces to finding suitable values for these
Booleans. There is therefore a search space for invariant candidates of a priori
size 2mn. We impose that the invariant I obtained be minimal within that search
space with respect to the inclusion ordering; that is, there is no I ′ expressive
using the template such that I ′ � I.

Our algorithm can in fact apply to any control-flow graph. For the sake of
simplicity, we shall describe it on a single loop.

In Hoare logic, the conditions for proving that a postcondition P holds after
a while loop whose condition is C, whose transition relation is T and whose
precondition is S using loop invariant I are:

– I must contain the precondition, otherwise said ∀σ S ⇒ I.
– I must be inductive, otherwise said ∀σ, σ′ I ∧C ∧ T ⇒ I ′, with I ′ denoting

I where all state variables have been primed.
– I ∧ ¬C must imply the postcondition, otherwise said ∀σ I ∧ ¬C ⇒ P .

If we impose I to be an invariant of the required form, that is, an instantiation
T [B/b] of T obtained by setting the bi,j variables to certain values Bi,j , these
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conditions boil down to the values Bi,j of the bi,j variables must satisfy certain
formulas universally quantified over the state σ or on the couple of states σ, σ′.

We now make an additional assumption: the states σ or σ′ comprise a fixed,
finite number of variables5 expressible in a theory T for which there exists a
satisfiability testing algorithm, in which the predicates π1, . . . , πm can be ex-
pressed, and which allows propositional variables. Thus, the problem boils down
to finding a solution to a conjunction of universally quantified formulas of that
theory such that the only free variables are the bi,j Booleans.

In the following sections, lowercase σ and σ′ stand for states (thus stand
for a finite number of variables in the theory T), uppercase Σ and Σ′ stand
for values of these state variables. Similarly, lowercase b stands for the matrix of
propositional variables (bi,j)1≤i≤m,1≤j≤n, and uppercase B stands for the matrix
of Booleans (Bi,j)1≤i≤m,1≤j≤n. F [B/b] thus stands for the formula F where the
propositional values b have been replaced by the corresponding Booleans in B,
and F [Σ/σ] stands for the formula F where the state variable σ has been replaced
by the state value Σ.

2.2 Naive Algorithm for a Given Postcondition

In this section, we shall explain how to compute an invariant suitable for proving
the Hoare triple of a loop, given a precondition, a postcondition (which may be
true), a loop condition and a transition relation.

Let us first give an intuition of the algorithm. A universally quantified formula
∀σF with free Boolean variables b can be understood as specifying a potentially
infinite number of constraints F [Σ/σ] over b, where Σ ranges all possible values
for σ (in this section, we will lump together σ and σ′ as a single σ). The idea is
to “discover” such constraints one at a time, when they are violated.

Let us now examine the algorithm in more detail; see Sec. 3 for a complete
algorithm run. The Hk sequence of propositional formulas over the b variables
will express successive refinements of the constraints during the search of a suit-
able assignment. Initially, we do not know anything about possible solutions, so
we set H1

�
= true.

We start by taking any initial assignment B(1) (since any will satisfy H1) and
check whether ¬F [B(1)/b] is satisfiable, that is, whether one can find suitable
values for σ. If it is not, then B(1) |= ∀σ F . If it is satisfiable, with example value

Σ1, we add F [Σ1/σ] as a constraint — that is, we take H2
�
= H1 ∧ F [Σ1/σ];

note that this constraint excludes B(1) and possibly other values for b. Now find
an assignment B(2) satisfying H2, check whether ¬F [B(2)/b] is satisfiable. If it
is not, then B(2) |= ∀σ F . If it is satisfiable, with example value Σ2, we take
H3 = H2∧F [Σ2/σ]; note that H3 excludes B(1) and B(2). The process continues
until a suitable assignment is found or the constraints exclude all assignments.
Note that one Boolean assignment at least is excluded at each iteration, and
5 These variables are not necessarily scalar variables. It is for instance possible to

consider uninterpreted functions from the integers to the integers, which stand for a
countably infinite number of integers.
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that the number of Boolean assignments is finite (exponential in the number of
propositional variables in b).

More formally: recall that we have reduced our problem of finding an invariant
to finding Boolean values Bi,j such that (Bi,j)1≤i≤m,1≤j≤n |= ∀σ F for a certain
quantifier-free formula F whose free variables are (bi,j)1≤i≤m,1≤j≤n. Let us now
assume we have a SMT-solver for theory T, a function SMT(G) which given a
formula G answers sat(M) when G is satisfiable, where M is a model, that is,
a suitable instantiation of the free variables in G, or unsat otherwise. We shall
also assume a SAT-solver SAT with similar notations, for purely propositional
formulas. We run the following algorithm, expressed in pseudo-ML:

H := true
loop

match SAT (H) with
| unsat → return “no solution”
| sat((Bi,j)1≤i≤m,1≤j≤n) →

match SMT(¬F [B/b]) with
| unsat → return “solution B”
| sat(Σ) → H := H ∧ F [Σ/σ].

This algorithm always terminates, since the main loop iterates over a finite set
of size 2|b| where |b| = mn is the size of the matrix b of propositional variables:
the number of models of the propositional formula H decreases by at least one
at each iteration, since model B is excluded by the F [Σ/σ] condition. The loop
invariant is ∀σ F =⇒ H . This invariant is maintained: whatever we choose
for Σ, if ∀σ F =⇒ H , ∀σ F =⇒ H ∧ F [Σ/σ]. If the algorithm answers
“no solution” for H , because of the invariant, there is no solution for ∀σ F .
If the solution answers “solution B”, the “unsat” answer for SMT(¬F [B/b])
guarantees that B |= ∀σ F .

Note the use of two solvers: one SAT for the propositional variables b, and one
SMT for the state variables σ (or σ, σ′). The SAT solver is used incrementally:
one only adds new constraints. The SMT solver is always used with the same
set of predicates, enabling it to cache theory lemmas.

2.3 Performance Improvements

The algorithm in the preceding subsection is sound, complete and terminating.
Yet, experiments have shown that it tends to generate useless iterations. One
reason is that the system may iterate across instances B that yield the same
formula T [B/b] up to a permutation of the Ci disjuncts. Another is that the
system may generate empty disjuncts Ci, or more generally disjuncts that are
subsumed by the other disjuncts (and are thus useless). We shall explain how to
deal with those issues.

Removal of Permutations. We impose that the disjunction C1 ∨ · · · ∨ Cn

follows a unique canonical ordering. For this, we impose that the vectors of m
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Booleans (B1,j)1≤j≤m, . . . , (Bn,j)1≤j≤m are in strict increasing order with re-
spect to the lexicographic ordering ≺L induced by false < true. This corresponds
to n−1 constraints (bi,j)1≤j≤m ≺L (bi+1,j)1≤j≤m, each of which can be encoded
over the propositional variables (bi,j) as formula Li,1 defined as follows:

– Li,j0 is a formula whose meaning is that (bi,j)j0≤j≤m ≺L (bi+1,j)j0≤j≤m

– Li,m+1 is false
– Li,j0 for 1 ≤ j0 ≤ m is defined using Li,j0+1 as follows: (¬bi,j0 ∧ bi+1,j0) ∨

((bi,j0 ⇒ bi+1,j0) ∧ Li,j0+1).

All such constraints can be conjoined to the initial value of H .

Removal of Subsumed Disjuncts. We can replace the SAT-solver used to
find solutions for (bi,j) by a SMT-solver for theory T, in charge of finding solu-
tions for (bi,j) and for some auxiliary variables σ1, . . . , σn (we actually shall not
care about the actual values of σ1, . . . , σn). The following constraint expresses
that the disjunct Ci0 is not subsumed by the disjuncts (Ci)1≤i≤n,i�=i0 :

∃σi0 Ci0 [σi0/σ] ∧
∧

1≤i≤n,i�=i0

¬Ci[σi/σ] (2)

It therefore suffices to conjoin to the initial value of H the following constraints,
for 1 ≤ i0 ≤ n: Ci0 [σi0/σ] ∧

∧
1≤i≤n,i�=i0

¬Ci[σi/σ].
A variant consists in simply imposing that each of the Ci is satisfiable, thus

eliminating useless false disjuncts. For this, one imposes 1 ≤ i0 ≤ n, the con-
straint Ci0 [σi0/σ]. Equivalently, one can pre-compute the “blocking clauses” over
the bi0,j propositional variable that constrain these variables so that Ci0 is satis-
fiable, and add them as purely propositional constraint. This is the method that
we used for the example in Sec. 3 (we wanted to keep to propositional constraints
for the sake of simplicity of exposition).

2.4 Iterative Refinement of Invariants

We have so far explained how to compute any invariant, with or without im-
posing a postcondition. If we do not impose a postcondition, the formula true,
for instance, can denote a wholly uninteresting invariant; clearly we would like
a smaller one. In this section, we shall explain how to obtain minimal invariants
within the search space.

For a Fixed Disjunction Size. Let us now assume we have the postcondi-
tion P (if we do not have it, then set P to true). A natural question is whether
one can get a minimal inductive invariant of the prescribed form for the inclu-
sion ordering; that is, an invariant T [B0/b] such that there exists no B such
that T [B/b] ⊆ T [B0/b], by which we denote ∀σ T [B/b] ⇒ T [B0/b]. We shall
now describe an iterative algorithm that first obtains any inductive invariant of
the prescribed form, and then performs a downwards iteration sequence for the
inclusion ordering, until a minimal element is found.
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Let us first note that it is in general hopeless to find a global minimum B0,
that is, one such that ∀B T [B0/b] ⊆ T [B/b], for there may exist incomparable
minimal elements. For instance, consider the program:

f loat i = 0 ;
while ( random ( ) ) {

i = i +1;
i f ( i > 2) i = 0 ;

}
The least inductive invariant of this loop, for variable i, is the set of floating-point
numbers {0, 1, 2}. Now assume our set of predicates is {i ≤ 0, i ≥ 0, i ≥ 1, i ≤
1, i ≤ 2, i ≥ 2}, and take n = 2; we thus look for disjunctions of two intervals.
Two minimal incomparable invariants are (i ≥ 0 ∧ i ≤ 1) ∨ (i ≥ 2 ∧ i ≤ 2), that
is, [0, 1] ∪ {2}, and (i ≥ 1 ∧ i ≤ 2) ∨ (i ≤ 0 ∧ i ≥ 0), that is, [1, 2] ∪ {0}.

Let us now assume we have already obtained an invariant T [B′/b] and we
wish to obtain a better invariant T [B/b] � T [B′/b]. This last constraint can be
written as the conjunction of:

1. T [B/b] ⊆ T [B′/b], otherwise said ∀σ T [B/b] ⇒ T [B′/b]; such a universally
quantified constraint can be handled as explained in Sec. 2.2.

2. ∃σ T [B′/b]∧¬T [B/b]. Again, as explained in Sec. 2.3, one can treat such an
existentially quantified constraint by using a SMT-solver instead of a SAT-
solver and adding to H an extra variable σ and the constraint T [B′/b] ∧
¬T [B/b]. When an invariant T [B/b] is found, the value Σ of σ is a witness
that this invariant is strictly included in T [B′/b].

It is possible to compute a downward iteration sequence until a minimal element
is reached: compute any initial invariant B(0), then B(1) � B(0) etc. until the sys-
tem fails to provide a new invariant satisfying the constraints; one then takes the
last element of the sequence. The termination condition is necessarily reached,
for the (B(k)

i,j )1≤i≤m,1≤j≤n Boolean matrices can never be twice the same within
the sequence (because of the strict descending property). Furthermore, one can
stop at any point B(k) within the sequence and get a (possibly non minimal)
inductive invariant.

One can replace point 2 above by a weaker strategy, but with the advan-
tage of operating only on propositional formulas. Note that B(k+1) has at least
one component higher than B(k) for the standard ordering false < true on the
Booleans, for if all components are lower or equal, then B(k+1) ⊇ B(k), which is
the opposite direction of what we wish. The strategy is to enforce this condition
using

∨
i,j(bi,j ∧ ¬b′i,j). This is what we used in Sec. 3.

For Varying Disjunction Sizes. The algorithms described above work for a
given disjunction size n. The method for preventing subsumed disjuncts of part
Sec. 2.3 imposes that all n disjuncts are truly needed: it is thus possible that no
solution should be found for n = n0 while solutions exist for n = n0 − 1.

We therefore suggest that, once a minimal invariant In0 is obtained for n = n0

fixed, one looks for an invariant strictly included in In0 for n = n0 + 1. One can
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choose to stop such iterations when no solutions are found for a given n, or when
a limit on n or a timeout is reached.

2.5 Extensions

Prohibition of Overlapping Modes. Our algorithmsproduce disjunctions that cover
all reachable states, but that do not define partitions: distinct abstract states may
be overlapping. This may be somewhat surprising and counterintuitive.

It is possible to impose that disjuncts should be pairwise disjoint. For any i
and j, one can impose that Ci and Cj are disjoint by the universally quantified
formula ∀σ¬Ci ∨ ¬Cj . We have explained in the preceding sections how to deal
with such universally quantified formulas.

Other Template Forms. We have described our algorithm for templates of the
form C1 ∨ · · · ∨ Cm where the Ci are conjunctions constructed from the chosen
predicates, but the algorithm is not specific to this template shape. Instead of
disjunctive normal form, one could choose conjunctive normal form, for instance,
or actually any form [23], though reductions of the search space such as those
from Sec. 2.3 or 2.3 may be more difficult to define.

Predicate Choice. Our method is based on predicate abstraction; so far we
have not discussed methods for obtaining the predicates, beyond the obvious
syntactic detection. In many systems based on predicate abstraction, one uses
counterexample-based abstraction refinement (CEGAR): from an abstract trace
violating the specification, but not corresponding to a concrete trace violating the
specification, one derives additional predicates for refining the system. Because
we did not implement such refinement, we shall only give a rough description of
our CEGAR method.

If there is no inductive invariant built from the requested template that can
prove the desired postcondition, the algorithm from Sec. 2.2 will end up with an
unsatisfiable constraint system. This system is unsatisfiable because of the post-
condition constraints (otherwise, in the worst case, one would obtain a solution
yielding the true formula); relevant postcondition constraints can be obtained
from an unsatisfiable core of the constraint system. One can then try remov-
ing such constraints one by one until the constraint system becomes satisfiable
again. Any solution of this relaxed constraint system defines an inductive invari-
ant, but one that does not satisfy the postcondition. As with the usual CEGAR
approach, one could try generating test traces leading from the initial states to
the complement of the postcondition and staying within the invariant; if the
postcondition holds, such searches are unsuccessful and yield interpolants from
which predicates may be mined.

3 Step-by-Step Example of Invariant Inference

For the sake of simplicity of exposition, in this section we have restricted our-
selves to pure propositional constraints on the bi,j, and satisfiability modulo the
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theory of linear integer arithmetic for the combination of the bi,j and the state
variables. We consider the following simple program.

int b , i =0, a ; /∗ precond i t i on a > 0 ∗/
while ( i < a ) {

b = random ( ) ;
i f (b )

i = i + 1 ;
}

The predicates are {π1, . . . , π8}
�
= {i = 0, i < 0, i > 0, i = a, i < a, i > a, b,¬b}.

The state variable σ stands for (i, a, b). For the sake of simplicity, we model i
and a as integers in Z, and b as a Boolean. We assume the loop precondition
S

�
= i = 0 ∧ a ≥ 1. The loop condition is C

�
= i < a, and the transition relation

is T
�
= (b′ ∧ i′ = i + 1) ∨ (¬b′ ∧ i′ = i). We choose n = 2.

We shall now run the algorithm described in Sec. 2.2 with the iterative refine-
ment of Sec. 2.4. For the sake of simplicity, we shall use none of the improvements
described in the preceding sections that need the Hi to contain non propositional
variables: no removal of subsumed disjuncts as described in Sec. 2.3 and no strict
inclusion enforcement as described in Sec. 2.4.

We initialize H as follows: H1 contains Boolean constraints on (bi,j)1≤i≤2,1≤j≤8

– That prevent C1 and C2 from being unsatisfiable, using blocking clauses as
explained in Sec. 2.3: one cannot have both i = 0 and i > 0, and so on.

– That force (b1,j)1≤j≤8 ≺L (b2,j)1≤j≤8 for the lexicographic ordering ≺L on
Boolean vectors (this avoids getting the same disjunction twice with the
disjuncts swapped).

Let us now see the constraint solving and minimization steps.

1. We perform SAT-solving on H1 and obtain a satisfying assignment B
(1)
1,1 =

true, B
(1)
1,2 = false, B

(1)
1,3 = false, B

(1)
1,4 = true, B

(1)
1,5 = false, B

(1)
1,6 = false, B

(1)
1,7 =

true, B
(1)
1,8 = false, B

(1)
2,1 = true, B

(1)
2,2 = false, B

(1)
2,3 = false, B

(1)
2,4 = true, B

(1)
2,5 =

false, B
(1)
2,6 = false, B

(1)
2,7 = false, B

(1)
2,8 = true. This corresponds to the invariant-

candidate T [B(1)/b], that is, (i = 0 ∧ i = a ∧ b) ∨ (i = 0 ∧ i = a ∧ ¬b).
Now is this invariant-candidate truly an inductive invariant? It is not,

because it does not contain the whole of the set of initial states. SMT-
solving on S ∧ ¬T [B(1)/b] gives a solution Σ1

�
= (i = 0, a = 1, b = false). We

therefore take H2
�
= H1 ∧ F [Σ1/σ].

2. A satisfying assignment B(2) of H2 yields the invariant candidate (i = 0∧i =
a∧ b)∨ (i = 0∧ i < a∧ b). Again, SMT-solving shows this is not an invariant

because it does not contain the initial state Σ2
�= (i = 0, a = −1, b = false).

We therefore take H3
�
= H2 ∧ F [Σ2/σ].

3. A satisfying assignment B(3) of H3 yields the invariant candidate (i = 0∧i =
a ∧ b) ∨ (i = 0 ∧ i < a). SMT-solving shows this is not inductive, since it is
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not stable by the transition Σ3
�
= (i = 0, a = 1, b = false, i′ = 1, b′ = true).

We therefore take H4
�
= H3 ∧ F [Σ3/σ].

4. A satisfying assignment B(4) of H4 yields the invariant candidate (i = 0∧i <
a∧¬b)∨ b. SMT-solving shows this is not inductive, since it is not stable by

the transition Σ4
�
= (i = 1, a = 3, b = true, i′ = 1, b′ = false). We therefore

take H5
�
= H4 ∧ F [Σ4/σ].

5. A satisfying assignment B(5) of H5 yields the invariant candidate (i = 0∧i <
a) ∨ (i > 0 ∧ i = a ∧ b). SMT-solving shows this is not inductive, since it is

not stable by the transition Σ5
�
= (i = 0, a = 2, b = false, i′ = 1, b′ = false).

We therefore take H6
�
= H5 ∧ F [Σ5/σ].

6. A satisfying assignment B(6) of H6 yields the invariant candidate I1
�
= (i =

0 ∧ i < a) ∨ i > 0. SMT-solving shows this is an inductive invariant, which
we retain. We however would like a minimal inductive invariant within our
search space. As described at the end in Sec. 2.4, we take H7 the conjunction
of H6 and a propositional formula forcing at least one of the bi,j to be true

while B
(6)
i,j is false. Furthermore, as described in point 1 of Sec. 2.4, we now

consider F2
�
= F ∧ (T ⇒ I1), which ensures that we shall from now on only

consider invariants included in I1.
7. A satisfying assignment B(7) of H7 yields the invariant candidate (i > 0 ∧

i = a ∧ b) ∨ i < a. SMT-solving shows this is not included in I1, using

Σ7
�
= (i = −47, a = 181, b = true). We therefore take H8

�
= H7 ∧ F2[Σ7/σ].

8. H8 has no solution. I1 is thus minimal and the algorithm terminates.

A postcondition for this loop is thus I1 ∧ ¬(i < a), thus i > 0 ∧ i = a. Note
that the method did not have to know this postcondition in advance in order to
prove it.

4 Construction of the Abstract Automaton

We can now assume that the set of reachable states is defined by a formula
I = I1 ∨ · · · ∨ In, with each formula Ii meant to define a state qi of the abstract
automaton.

To each couple of states (qi, qj) we wish to attach an input-output relation
expressed as a formula τi,j with variables I, ranging over the set of possible
current values of the inputs and O over the set of possible current values of the
outputs.

Recall that T is a formula expressing the transition relation of the reactive
node, over variables I (inputs), σ (preceding state), σ′ (next state) and O (out-
puts). Then the most precise transition relation is:

τi,j
�
= ∃σ, σ′ Ii ∧ Ij [σ′/σ] ∧ T (3)

Any over-approximation of this relation is a sound transition relation for the
abstract automaton. If we have a quantifier elimination procedure for the theory
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in which T and the Ii are expressed, then we can compute the most precise
τi,j as a quantifier-free formula; but we can also, if needed, use an approximate
quantifier elimination that yields an over-approximation.

Let us consider, as an example, the following Lustre node. It has a single
integer input dir and a single integer output out. If dir is nonzero, then it is
copied to out; else out decays to zero by one unit per clock cycle:

node c l i c k e r ( d i r : i n t ) returns ( out : i n t ) ;
l e t

out = i f d i r ≥ 1
then d i r
else i f d i r ≤ −1

then d i r
else 0 → i f pre out ≤ −1

then (pre out ) + 1
else i f pre out ≥ 1

then (pre out ) − 1
else 0 ;

te l .

In mathematical notation, let us denote dir by d, pre out by o and out by o′.
The state consists in a single variable o, thus σ is the same as o. The transition
relation then becomes

T
�
=
{

(d �= 0 ∧ o′ = d) ∨ (d = 0 ∧ o ≥ 1 ∧ o′ = o− 1)
∨(d = 0 ∧ o ≤ −1 ∧ o′ = o + 1) ∨ (d = 0 ∧ o′ = o = 0) (4)

Suitable predicates are {o ≤ −1, o = 0, o ≥ 1}, thus defining the set of reachable

states as a partition I−1 ∨ I0 ∨ I1 where I−1
�
= o ≤ −1, I0

�
= o = 0, I1

�
= o ≥ 1.

Let us compute τ0,1
�
= ∃o, o′ I0∧I1[o′/o]∧T , that is, ∃o, o′o = 0∧o′ ≥ 1∧T : we

obtain d > 0. More generally, by computing τi,j for all i, j ∈ {−1, 0, 1}, we obtain
the automaton below; the initializers (left hand side of the Lustre operator →)
define the initial state q0.

q0q−1 q1 d ≥ 0d ≤ 0
d > 0d < 0

d = 0d = 0

d < 0

d > 0

Note that the resulting automaton is nondeterministic: in state q1 (respec-
tively, q−1), representing o > 0 (resp. o < 0), if d = 0, then one can either
remain in the same state or return to the initial state q0.
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5 Related Work

There have been many approaches proposed for finding invariants and proving
properties on transition systems. [21] surveys earlier ones.

The problem of finding the control structure of reactive nodes written in e.g.
Lustre has been studied previously, most notably by B. Jeannet [12,13,14], but
with respect to a property to prove: the control structure is gradually refined
until the property becomes provable. This supposes that we know the desired
property in advance, which is not always the case in a modular setting: the
property may pertain to another module, and may not be easy to propagate back
to the current module. The NBac tool performs such an analysis using convex
polyhedra as an abstract domain. More recent methods for refining the control
structure of reactive nodes include [1]. We have already proposed some modular
abstractions for reactive nodes, but these targeted specific filters with no control
structure [15] or needed some precomputation of the control structure [16].

The problem of finding disjunctive invariants has been much studied especially
in the context of convex numerical domains, such as polyhedra: if the property
to prove is not convex, or relies on a non-convex weakest precondition, then
any analysis inferring convex invariants will fail. A number of methods have
been proposed to infer invariants consisting in finite disjunctions of elements
of an abstract domain: some distinguish states according to the history of the
computation, as in trace partitioning [19], some recombine elements according to
some affinity heuristics [20,18], or decompose the transition relation according
to some “convexity witness” [10]. Other methods select predicates with which to
split the control state [22]. Some recent methods leverage the power of modern
SMT-solvers to impose convex invariants only at a limited subset of program
points, and distinguish all execution paths between them, therefore acting as
applying a complete trace partitioning between the points in the distinguished
subset [16,5]; the method in the present article also considers a limited subset
of program points (e.g. loop heads), but can infer disjunctive invariants at these
points too.

Both polyhedral abstraction and predicate abstraction search for an inductive
invariant I; then, in order to prove that a certain property P always holds, one
shows that I is included in P . In all static analyzers by abstract interpretation
known to the authors, some form of forward analysis is used: the set of initial
states influences the invariant I obtained by the system. In contrast, with k-
induction, as in the Kind tool [11] the initial states play a very limited role
(essentially, they invalidate P if there exists a trace of k states starting in an
initial state such that one of them does not satisfy P ). A known weakness of pure
k-induction is that it may fail to prove a property because it bothers about bad,
but unreachable, states. If one has obtained an invariant I by other methods,
one can use it to constrain the system and get rid of these bad, unreachable
states. Thus, abstraction-based methods and k-induction based methods nicely
combine.

The algorithms presented in this article can be seen as a form of minimization
constrained by a universally quantified formula ∀σ F , achieved by maintaining
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a formula H such that ∀σ F ⇒ H , H being a conjunction of an increasingly
large number of constraints generated from F “on demand”: a constraint is
added only if it is violated by the current candidate solution. This resembles
quantifier elimination algorithms we have proposed for linear real arithmetic [17];
one difference is that the termination argument is simpler: with a finite number
n of Booleans as free variables, a new added constraint suppresses at least one
of the 2n models, thus there can be at most 2n iterations; in comparison the
termination arguments for arithmetic involve counting projections of polyhedra.

Reductions from invariant inferences to quantifier elimination, or to minimiza-
tion constrained by a universally quantified formula, have already been proposed
for numerical constraints, where the unknowns are numerical quantities, in con-
trast to the present work where they are Booleans [16].

Reductions from loop invariant inference in predicate abstraction to Boolean
constraint solving were introduced in [9], but that work assumed a postcondition
to prove, as opposed to minimizing the result. The problem we solve is the same
as the one from the later work [23, Sec. 5], but instead of concretely enumerating
the (potentially exponential) set of paths inside the program (corresponding to
all disjuncts in a disjunctive normal form of the transition relation), each path
corresponding to one constraint, we lazily enumerate witnesses for such paths.
Unfortunately, we do not have an implementation of the algorithm from [23] at
our disposal for performance comparisons.

More generally, a number of approaches for invariant inference based on con-
straint solving have been proposed in the last years, especially for reducing nu-
merical invariant inference to numerical constraint solving [8,4] or mathematical
programming [6]. One difference between these constraint approaches and ours,
except that our variable are Boolean and theirs are real, is that we use a lazy
constraint generation scheme: we generate constraints only when a candidate so-
lution violates them, a method long known in mathematical programming when
applying cuts. We applied a similar technique for quantifier elimination for lin-
ear real arithmetic, using lazy conversions to conjunctive normal form [17]. A
recent max-policy iteration considers each path through the loop as a constraint,
and lazily selects a combination of paths, using SMT-solving to point the next
relevant path [5].

6 Conclusion

We have given algorithms for finding loop invariants, or, equivalently, invariants
for reactive nodes, given as templates with Boolean parameters. Using disjunc-
tive invariants for reactive nodes, one obtains an abstraction of the reactive node
as a finite automaton with transitions labeled with guards over node inputs.

If a system consists of a number of nodes, then some of these nodes may be
replaced by their abstract automaton, resulting in a more abstract system whose
behaviors include all behaviors of the original system. This new system can in
turn be analyzed by the same method. Thus, our method supports modular and
compositional analysis.
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We provide the Candle tool, built using the Yices SMT-solver and the
Mjollnir quantifier elimination procedure, which computes abstractions of
Lustre nodes.
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Abstract. Computing over-approximations of all possible time trajectories is an
important task in the analysis of hybrid systems. Sankaranarayanan et al. [20]
suggested to approximate the set of reachable states using template polyhedra.
In the present paper, we use a max-strategy improvement algorithm for comput-
ing an abstract semantics for affine hybrid automata that is based on template
polyhedra and safely over-approximates the concrete semantics. Based on our
formulation, we show that the corresponding abstract reachability problem is in
co−NP. Moreover, we obtain a polynomial-time algorithm for the time elapse
operation over template polyhedra.

1 Introduction

Motivation. Hybrid systems have become widely accepted as a mathematical model
appropriate for embedded systems and cyber-physical systems since they allow to de-
scribe the mixed discrete-continuous dynamics resulting from integrations of compu-
tations and physical processes. Verification is one of the most important questions in
the design of such systems. For safety properties, this often leads to reachability anal-
ysis. The essential idea of many existing reachability computation techniques could be
roughly described as tracking the evolution of the reachable set under the continuous
flows using some set represention (such as polyhedra, ellipsoids, level sets, support
functions)1. Since exact computation is possible only for restrictive classes of contin-
uous dynamics, reachable sets are often approximated using time discretization. Such
step-by-step tracking processes can be expensive when time steps should be small for
accuracy reasons, and moreover discrete transitions can significantly increase the ge-
ometric complexity of reachable sets. This is a reason, besides undecidability of the
reachability problem for general hybrid systems, why unbounded time reachability
computation remains a challenge. Another category of techniques aim at finding ap-
proximations which might not be precise but good enough to prove a property of in-
terest. Among such techniques, we can mention the works on barrier certificates [18],
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polynomial invariants [23] and polyhedral invariants [20]), and various discrete abstrac-
tion techniques [3–5, 22]). The work we present in this paper is close to the techniques
of the second category, in particular to the work by Sankaranarayanan et al. [20].

Sankaranarayanan et al. [20] suggested to approximate the set of reachable states
by template polyhedra. Their work is focused on studying the time elapse operation
for affine hybrid automata over template polyhedra, since this is a challenging prob-
lem in hybrid systems verification. They in particular adapted the min-strategy iteration
approach of Costan et al. [6] in order to compute a small template polyhedron that
safely over-approximates the set of states reachable by continuous evolution. at a sin-
gle location. Each min-strategy improvement step can be performed in polynomial time
through linear programming. The approximation of the set of reachable states their al-
gorithm computes can be used to improve an existing flowpipe construction technique
using Taylor series [20]. However, their approach for performing the time elapse oper-
ation has disadvantages: (1) Their min-strategy iteration algorithm does not guarantee
minimality of the computed template polyhedron. In fact, its accuracy heavily depends
on the staying conditions (also called location invariants). If there are no restrictions due
to staying conditions, then their algorithm will return too conservative approximations
in many cases. (2) The number of min-stratgies is double exponential and a polyno-
mial upper bound for the number of min-strategy improvement steps their algorithm
performs is not known.

Contributions. In this paper we propose a remedy for the mentioned disadvantages of
the approach of Sankaranarayanan et al. [20]. Moreover, instead of only focusing on
the time elapse operation, we study the more general problem of computing abstract
semantics for affine hybrid automata w.r.t. given linear templates — a problem which is
useful for unbounded time verification. We emphasize that we provide a max-strategy
improvement algorithm that precisely computes these abstract semantics and not just
safely over-approximates it, as it is often done when using the widening/narrowing
approach of Cousot and Cousot [7].

To this end, we firstly reduce our problem to the problem of computing least so-
lutions of systems of inequalities of the form xi ≥ f(x1, . . . ,xn), where x1, . . . ,xn

are variables that take values from R = R ∪ {−∞,∞} and f is an operator of a
special structure that is in particular monotone and concave (cf. Gawlitza and Seidl
[10, 11, 12, 14, 15]). Our max-strategy improvement algorithm for solving these sys-
tems of inequalities performs at most exponentially many strategy improvement steps,
each of which can be performed in polynomial-time through linear programming. Al-
though only an exponential upper bound is known, the hope is that only a few strategy
improvement steps are required for typical examples. As a byproduct of our consid-
erations, we show that the corresponding abstract reachability problem is in co−NP.
When we apply our method to perform just the time elapse operation, our max-strategy
improvement algorithm will perform at most polynomially many strategy improvement
steps. Hence, we provide a polynomial-time algorithm for the time elapse operation for
affine hybrid automata over template polyhedra.

Related Work. The concepts we present in this paper, strictly generalize the concepts
studied by Gawlitza and Seidl [10]. This is no surprise, since affine hybrid automata
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are a strict generalization of the affine programs considered by Gawlitza and Seidl [10].
The additional challenge comes from the time elapse operation. The approach of Gawl-
itza and Seidl [10] and the approach we present in this paper are both based on max-
strategy iteration. Costan et al. [6] were the first who suggested to use strategy iteration
for computing numerical invariants (for instance w.r.t. to template polyhedra). Strategy
iteration can be seen as an alternative to the traditional widening/narrowing approach of
Cousot and Cousot [7]. For more information regarding these approaches see Adjé et al.
[1, 2], Costan et al. [6], Gaubert et al. [9], Gawlitza and Seidl [10, 11, 12], Gawlitza and
Monniaux [13], Gawlitza and Seidl [14, 15].

Corresponding Technical Report. Omitted proofs and reports on our proof-of-concept
implementation can be found in the corresponding technical report [8].

2 Basics

Notations. The set of real numbers is denoted by R. The complete linearly ordered set
R ∪ {−∞,∞} is denoted by R. The transposed of a matrix A is denoted by A	. We
denote the i-th row (resp. j-th column) of a matrix A by Ai· (resp. A·j). Accordingly,
Ai·j denotes the component in the i-th row and the j-th column. We also use this nota-
tion for vectors and functions f : X → Y k, i.e., fi·(x) = (f(x))i· for all x ∈ X and
all i ∈ {1, . . . , k}. For x, y ∈ R

n
, we write x ≤ y iff xi· ≤ yi· for all i ∈ {1, . . . , n}.

R
n

is partially ordered by ≤. We write x < y iff x ≤ y and x �= y. The elements x and
y are called comparable iff x ≤ y or y ≤ x.

Let D be a partially ordered set. We denote the least upper bound and the greatest
lower bound of a set X ⊆ D by

∨
X and

∧
X , respectively, provided that they exist.

Their existence is in particular guaranteed if D is a complete lattice. The least element∨
∅ (resp. the greatest element

∧
∅) is denoted by ⊥ (resp. !), provided that it exists.

We define the binary operators∨ and ∧ by x∨ y :=
∨
{x, y} and x∧ y :=

∧
{x, y} for

all x, y ∈ D, respectively. If D is a linearly ordered set (for instance R or R), then ∨ is
the maximum operator and ∧ the minimum operator.

A function f : D1 → D2, where D1 and D2 are partially ordered sets, is called
monotone iff x ≤ y implies f(x) ≤ f(y) for all x, y ∈ D1. The fixpoint theorem of
Knaster/Tarski [21] states that any monotone self-map f : D → D on a complete lattice
D has a least fixpoint μf =

∧
{x ∈ D | x ≥ f(x)}.

A mapping f : R
n → R

m
is called affine iff there exist A ∈ Rm×n and b ∈ R

m

such that f(x) = Ax + b for all x ∈ R
n

. Observe that f is monotone, if all entries
of A are non-negative. Here, we use the convention −∞ + ∞ = −∞. A mapping
f : R

n → R is called weak-affine iff there exist a ∈ Rn and b ∈ R such that f(x) =
a	x + b for all x ∈ R

n
with f(x) �= −∞. Accordingly, a mapping f : R

n → R
m

is called weak-affine iff there exist weak-affine mappings f1, . . . , fm : R
n → R such

that f = (f1, . . . , fm). Every affine mapping is weak-affine, but not vice-versa. In the
following we are in particular interested in mappings that are point-wise minimums of
finitely many monotone weak-affine mappings.

Hybrid Automata. In this paper, we study affine hybrid automata. Here, the continuous
consecution at each location l is given by an affine vector field V and a staying condition
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I that is a convex polyhedron. A vector field V over Rn is just an operator on Rn. Hence,
it can be defined by V (x) = Ax + b for all x ∈ Rn, where A ∈ Rn×n and b ∈ Rn. A
staying conditions I is simply a subset of Rn. We say that a differentiable time trajectory
τ : [0, δ] → Rn (δ ∈ R≥0) evolves from τ(0) to τ(δ) according to the vector field V
over Rn while satisfying the staying condition I ⊆ Rn iff (1) τ̇ (t) = V (τ(t)) for all
t ∈ [0, δ), and (2) τ(t) ∈ I for all t ∈ [0, δ].

Example 1 (Sankaranarayanan et al. [20]). We consider the affine vector field V :
R2 → R2 that is defined by

V (x) = Ax + b for all x ∈ R2, where A =
(
−1 0
0 0

)
and b =

(
5
1

)
and the staying condition I = (−∞, 2.5] × R that is a convex polyhedron. The poly-
hedron P = {x ∈ R2 | x1· ≤ 2.5, x2· ≤ 2.5, and x2· ≤ x1·} is an invariant in the
following sense: each differentiable trajectory that starts in P and evolves according to
V while satisfying I stays in P . The situation is illustrated in Figure 1. "#
A hybrid automaton Ψ = (n,L, T , Θ,D, I, l0) consists of the following components:

– n is the number of continuous variables.
– L is a finite set of locations.
– l0 ∈ L is the initial location.
– T is a finite set of discrete transitions. Each transition (l1, Ξ, l2) ∈ T consists of a

move from the location l1 ∈ L to the location l2 ∈ L, and an assertion Ξ ⊆ (Rn)2.
– Θ ⊆ Rn is the set of possible initial values of the continuous variables at l0.
– D is a mapping that maps each location l ∈ L to a vector field D(l) : Rn → Rn.
– I is a mapping that maps each location l ∈ L to a staying condition I(l) ⊆ Rn.

At each location l ∈ L, the values of the continuous variables evolve according to D(l)
while satisfying I(l). The assertion Ξ ⊆ (Rn)2 of a discrete transition (l, Ξ, l′) ∈ T
combines a guard with an assignment.

A hybrid automaton Ψ = (n,L, T , Θ,D, I, l0) is called affine iff the following state-
ments are fulfilled: (1) The initial condition, location invariants and transition relations
are all convex polyhedra.2 (2) The dynamics D(l) at each location l ∈ L is an affine
vector field.

We now introduce our running example. We choose a simple example without dis-
crete transitions, since the main challenges stem from the time elapse operation on
which we want to focus in this paper.

Example 2. An affine hybrid automaton is given by Ψ = (n,L, T , Θ,D, I, l0}, where
n = 2, L = {1}, T = ∅, Θ = {x ∈ R2 | x1·, x2· ≤ 1 and x2· ≤ x1·}, D(1) = V ,
I(1) = I , and l0 = 1. V and I are defined in Example 1. "#
A computation of a hybrid automaton is a possibly infinite sequence (l0, x0), (l1, x1),
. . ., where x0 ∈ Θ and, for all i ∈ N, one of the following statements hold: (Discrete
Consecution) There exists a discrete transition (li, Ξ, li+1) ∈ T such that (xi, xi+1) ∈
Ξ . (Continuous Consecution) li = li+1 and there exists a δ ∈ R>0 and a differentiable
time trajectory τ : [0, δ] that evolves from xi to xi+1 according to the vector field D(li)
while satisfying the staying condition I(li).

2 Here, we identify (Rn)2 with R2n.
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Template Polyhedra. As an abstract domain [7] we use template polyhedra as intro-
duced by Sankaranarayanan et al. [19]. For that we fix a template constraint matrix
T ∈ Rm×n, where we w.l.o.g. assume that Ti· �= (0, . . . , 0) for every i ∈ {1, . . . , m}.
Each row of T represents a linear template. Each template relates n variables. The con-
cretization γ : R

m → 2R
n

and the abstraction α : 2R
n → R

m
are defined as follows:

γ(d) := {x ∈ Rn | Tx ≤ d} ∀d ∈ R
m

, α(X) :=
∧
{d ∈ R

m | γ(d) ⊇ X} ∀X ⊆ Rn,

As shown by Sankaranarayanan et al. [19], α and γ form a Galois connection, i.e., for
all X ⊆ Rn and all d ∈ R

m
, α(X) ≤ d iff X ⊆ γ(d). Hence, α ◦ γ is a downwards

closure operator, and γ ◦ α is an upwards closure operator3. This in particular implies
that α◦γ and γ ◦α are monotone. In order to simplify notations, we denote α◦γ by cl.
The abstract elements from α(2R

n

) = cl(R
m

) are called closed. The convex polyhedra
from the set γ(R

m
) = γ(α(2R

n

)) are called template polyhedra.

x1·

x2·

Fig. 1. Illustration for Example 1. The dotted region represents the convex polyhedron P . The
wall represents the region that is not allowed, because of the staying condition I . The arrows
illustrate the directions of the vector field V . Observe that any trajectory that starts in P and
evolves according to V while satisfying I will stay in P .

Example 3. Let the template constraint matrix T ∈ R3×2 and d ∈ R
3

be defined by

T =

⎛⎝ 1 0
0 1
−1 1

⎞⎠ , and d =

⎛⎝2.5
2.5
0

⎞⎠ .

Then γ(d) = P , where P is defined in Example 1 (see Figure 1). "#

The following properties of the operator cl will be crucial for the algorithms we present
in this paper:

Lemma 1. For all i ∈ {1, . . . , m} and all d ∈ R
m

, we have:

1. cli·(d) = sup {Ti·x | x ∈ Rn and Tx ≤ d}
2. cl is a point-wise minimum of finitely many monotone weak-affine mappings.

3 An operator f : D → D on a partially ordered set D is called downwards (resp. upwards)
closure operator iff (1) f is monotone, (2) f is idempotent (i.e. f2 = f ), and (3) f(x) ⊆ x
(resp. f(x) ⊇ x) for all x ∈ D.
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Proof. For the first statement see Sankaranarayanan et al. [19]. In order to show that cl
is a point-wise minimum of finitely many monotone weak-affine mappings, we use the
strong duality theorem for linear programming as follows: cli·(d) = sup {Ti·x | x ∈
Rn and Tx ≤ d} = inf {d	y | y ∈ Rm

≥0, T	y = T	
i· } for all d with γ(d) �= ∅. This

gives us the statement. "#

Invariants and Positive Invariants. Let V : Rn → Rn be a vector field and I ⊆ Rn

a staying condition. A set X ⊆ Rn is called an invariant of (V, I) iff every trajectory
that starts in X and evolves according to V while satisfying I stays in X . Before going
further, we introduce the following notation: For all d ∈ R

m
and all R ⊆ {1, . . . , m},

we define d|R ∈ R
m

by

(d|R)i· =

{
di· if i ∈ R

∞ if i /∈ R
for all i ∈ {1, . . . , m}.

Assume now that the affine vector field V is affine, and the staying condition I is a
template polyhedron, i.e., I ∈ γ(R

m
). A template polyhedron P ∈ γ(R

m
) is called a

positive invariant of (V, I) iff there exists some R ⊆ {1, . . . , m} such that the following
statements hold:

1. Ti·V (x) ≤ 0 for all x ∈ P with Ti·x = αi·(P ) and all i ∈ R with αi·(P ) < αi·(I).
2. P = γ(α(P )|R).

Our notion of positive invariants slightly differs from the notion of positive invariants
of Sankaranarayanan et al. [20]. However, observe that every positive invariant in the
sense of Sankaranarayanan et al. [20] is a positive invariant in our sense.

Every positive invariant is an invariant. However, there exist template polyhedra that
are invariants without being positive invariants. Indeed due to the presence of stay-
ing conditions, for a template polyhedron P to be an invariant, the above condition
Ti·V (x) ≤ 0 does not need to be satisfied at all the points x ∈ P on the face corre-
sponding to Ti·x = αi·(P ), when αi·(P ) < αi·(I). However, because of lack of space
and additionally for clarity of presentation, we do not consider this in the present paper.

Example 4. We continue our running example (see Figure 1), i.e., the affine vector field
V and the staying condition I are defined in Example 1, and the template constraint
matrix T is defined in Example 3. The staying condition I is a template polyhedron,
since I = γ((2.5,∞,∞)	). The template polyhedron P = γ(d) is an invariant as well
as a positive invariant of (V, I). If we choose R = {1, 3}, then the requirements of the
definition can be verified easily (cf. Figure 1). "#

Our Goals: Time Elapse Operations and Abstract Semantics. We are interested
in computing abstract semantics for affine hybrid automata w.r.t. template polyhedra.
Performing the time elapse operation w.r.t. to template polyhedra is just the special
case, where the affine hybrid automaton has no discrete transitions.

The abstract semantics for the affine hybrid automaton Ψ = (n,L, T , Θ,D, I, l0)
(w.r.t. the template polyhedra domain) is the point-wise minimal mapping V �

� that maps
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every location l ∈ L to a template polyhedron V �
�[l] ∈ γ(R

m
) and fulfills the follow-

ing constraints: (1) V �
�[l0] ⊇ Θ. (2) V �

�[l] is a positive invariant of (D(l), I(l)) for

every location l ∈ L. (3) x′ ∈ V �
�[l′] for all discrete transitions (l, Ξ, l′) ∈ T and

all (x, x′) ∈ Ξ with x ∈ V �
�[l]. The existence of such a point-wise minimal mapping

will be ensured by our findings. The abstract semantics safely over-approximates the
concrete semantics.

In order to verify safety properties, a problem one is interested in is abstract reach-
ability, which is the following decision problem: Decide whether or not, for a given
template constraint matrix T ∈ Rm×n, a given affine hybrid automaton Ψ = (n,L, T ,
Θ,D, I, l0), and a given location l ∈ L, the statement V �[l] �= ∅ holds.

In this paper, we will adapt the max-strategy improvement algorithm of Gawlitza
and Seidl [10, 11, 12, 14, 15] for computing V �

�. We will find that abstract reachability
is in co−NP. Whether or not it is also in P is an open question. However, we at least
know that it is a hard problem in the following sense: a polynomial-time algorithm
for abstract reachability would give us a polynomial-time algorithm for computing the
winning regions of mean-payoff games (see [12]). The latter problem is in UP∩co−UP
(see Jurdzinski [16]) and it is a long outstanding and fundamental question whether or
not it is in P.

The problem of performing the time elapse operation over template polyhedra is the
following computational problem: Compute, for a given template constraint matrix T ,
a given affine vector field V : Rn → Rn and given template polyhedra Θ and I with
Θ ⊆ I , the least positive invariant of (V, I) which is a superset of Θ. We will show that
the latter computational problem can be solved in polynomial time.

3 Our Approach: Getting into the Corset of the Monotone
Framework

We aim at adapting the max-strategy improvement algorithms of Gawlitza and Seidl
[10, 11, 12, 14, 15] in order to obtain an algorithm for computing abstract semantics.
For that we have to formulate the problem as a problem of finding the least fixpoint of
a self-map that is a maximum of finitely many monotone and concave self-maps (cf.
Gawlitza and Seidl [10, 14]). The challenge is to get the time elapse operation into the
corset of this monotone framework.

The Time Elapse Operation. Let V : Rn → Rn be an affine vector field. Firstly, we
define the operator ΔV on R

m
by

ΔV
k·(d) := sup {Tk·V (x) | x ∈ Rn, Tx ≤ d, Tk·x ≥ dk·}

for all k ∈ {1, . . . , m} and all d ∈ R
m

with dk· < ∞. Note that ΔV
k·(d) = −∞,

whenever {x ∈ Rn | Tx ≤ d, Tk·x ≥ dk·} = ∅. This is in particular fulfilled, if there
exists some i ∈ {1, . . . , m} with di· = −∞. Moreover, we set ΔV

k·(d) := 0 for all
k ∈ {1, . . . , m} and d ∈ R

m
with dk· = ∞. Intuitively, ΔV

k·(d) > 0 iff there exists
some point x on the face F := {x ∈ Rn | Tx ≤ d, Tk·x ≥ dk·} such that V (x) points
to the outside.
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For all ε ∈ Rm
>0, we define the operator fV,ε on R

m
by

fV,ε(d) := d + ε	ΔV (d) for all d ∈ R
m

.

An application of the operator fV,ε corrects the bounds to the templates according to the
vector field V , ignoring the staying condition I . In order to take the staying condition I
into account, we assume w.l.o.g. that I is a template polyhedron, i.e., I ∈ γ(R

m
). For

all ε ∈ Rm
>0, we define the operator FV,I,ε on R

m
as follows:

FV,I,ε(d) := fV,ε(d) ∧ α(I) for all d ∈ R
m

x1·

x2·

(a) γ((1, 1, 0)�)

x1·

x2·

(b) γ(F V,I,( 1
8 , 1

8 , 1
8 )�((1, 1, 0)�)) = γ((1.5, 1.125,−0.375)�)

Fig. 2. The Running Example: An Application of F V,I,ε for ε = ( 1
8
, 1

8
, 1

8
)�

How the operator FV,I,ε modifies a template polyhedron is shown in Figure 2 for our
running example. Positive invariants can now be characterized as follows:

Lemma 2. Let ε ∈ Rm
>0. For all d ∈ R

m
the following holds: The template polyhedron

γ(d) is a positive invariant of (V, I) iff d ≥ cl(cl(d) ∨ FV,I,ε(cl(d))). "#

In order to use the above lemma within a monotone framework, we have to ensure that
FV,I,ε ◦ cl is monotone. Then F := cl ◦ (cl ∨ FV,I,ε ◦ cl) is monotone, too, and the
fixpoint theorem of Knaster/Tarski [21] can be applied.4 Observe that by construction
FV,I,ε ◦ cl is monotone, whenever fV,ε ◦ cl is monotone. The operator fV,ε ◦ cl is
monotone on R

m
, whenever the operator fV,ε is monotone on cl(R

m
).5 If we choose ε

small enough, then we enforce the monotonicity of fV,ε on cl(R
m

) and thus finally the
monotonicity of FV,I,ε ◦ cl and F :

Lemma 3 (Monotonicity of fV,ε). Assume V (x) = Ax + b for all x ∈ Rn. From A
and T , we can compute an ε(0) ∈ Rm

>0 in polynomial time such that fV,ε is monotone
on cl(R

m
), whenever ε ≤ ε(0). For every ε ≤ ε(0), fV,ε ◦ cl is a point-wise minimum of

finitely many monotone weak-affine self-maps. "#

Because of the above lemma, we from now on assume that we have chosen an ε ∈ Rm
>0

such that fV,ε ◦ cl and thus finally cl ◦ (cl ∨ FV,I,ε ◦ cl) = cl ◦ (id ∨ FV,I,ε) ◦ cl
is monotone. Therefore, for all sets Θ ⊆ Rn of values, there exists a least positive
invariant P of (V, I) which is a superset of Θ. It is given by

γ(μ(α(Θ) ∨ cl ◦ (cl ∨ FV,I,ε ◦ cl)))

4 For mappings f, g : X → D, f ∨ g denotes the mapping that is defined by (f ∨ g)(x) :=
f(x) ∨ g(x) for all x ∈ X.

5 It is not always possible to choose an ε such that fV,ε is monotone on R
m

.
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However, we do not use this formulation. We want to have a simpler formulation that
will allow us to perform the time elapse operation in polynomial time. For that we use
the following fixpoint transfer lemma:

Lemma 4. Let ε ∈ Rm
>0 be chosen such that FV,I,ε ◦ cl is monotone. For all closed

θ ∈ cl(R
m

), we have γ(μ(θ ∨ cl ◦ (cl ∨ FV,I,ε ◦ cl))) = γ(μ(θ ∨ FV,I,ε ◦ cl)).6 "#

Putting everything together, we obtain our main result for the time elapse operation:

Theorem 1 (The Time Elapse Operation). Let V : Rn → Rn be an affine vector
field, and Θ, I ∈ γ(R

m
) template polyhedra. Assume that ε ∈ Rm

>0 is chosen such that
FV,I,ε ◦ cl is monotone. The template polyhedron γ(μ(α(Θ) ∨FV,I,ε ◦ cl)) is the least
positive invariant of (V, I) which is a superset of Θ.

Proof. The existence of ε is ensured by Lemma 3. The existence of the least fixpoint
is ensured by the fixpoint theorem of Knaster/Tarski. Lemmata 2 gives us that P :=
γ(μ(α(Θ) ∨ cl ◦ (cl ∨ FV,I,ε ◦ cl))) is the least positive invariant of (V, I) which is a
superset of Θ. Lemma 4 finally gives us P = γ(μ(α(Θ) ∨ FV,I,ε ◦ cl)). "#

Abstract Semantics. So far, we have ignored the discrete transitions. In order to take
them into account, we define an abstract semantics for discrete transitions (l, Ξ, l′) ∈
T . Recall that the assertion Ξ ⊆ R2n is a convex polyhedron. In the following we will
always assume that the convex polyhedron Ξ is given by a matrix AΞ ∈ Rl×2n and a
vector bΞ ∈ Rl such that Ξ = {x ∈ R2n | AΞx ≤ bΞ}. The collecting semantics �Ξ�
of Ξ is defined by �Ξ�(X) := {y ∈ Rn | ∃x ∈ X . (x, y) ∈ Ξ} for all X ⊆ Rn. The
abstract semantics �Ξ�� of Ξ is defined by �Ξ�� := α◦ �Ξ�◦γ. The abstract semantics
safely over-approximates the collecting semantics and the concrete semantics. For all
k ∈ {1, . . . , m} and all d ∈ R

m
, we have:

�Ξ��
k·(d) := sup

{
Tk·y

∣∣∣∣ x ∈ γ(d),
(

x
y

)
∈ Ξ

}
(1)

= sup
{

Tk·y

∣∣∣∣ (x
y

)
∈ R2n, Tx ≤ d, AΞ

(
x
y

)
≤ bΞ

}
(2)

If we consider the dual of the above linear programming problem, we get that also the
operator �Ξ�� on R

m
has nice properties (cf. Gawlitza and Seidl [10, 14]):

Lemma 5 (The Abstract Semantics �Ξ��). The following holds for every convex poly-
hedron Ξ ⊆ R2n: (1) �Ξ�� = �Ξ��◦cl = cl◦�Ξ��. (2) �Ξ�� is the point-wise minimum
of finitely many monotone weak-affine operators. "#

We are now going to define an abstract semantics V � for an affine hybrid automata Ψ =
(n,L, T , Θ,D, I, l0) that corresponds to the abstract semantics V �

� of Ψ (cf. Section 2).
W.o.l.g. we assume that the initial condition Θ, the location invariants I(l), l ∈ L, and
the transition relations are all template polyhedra. The abstract semantics V � of Ψ is the
least solution of the following constraint system:

V�[l0] ≥ α(Θ) (3)

6 Here, θ denotes the function that returns θ for every argument.
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V�[l] ≥ FD(l),I(l),ε(l)(cl(V�[l])) for all l ∈ L (4)

V�[l′] ≥ �Ξ��(V�[l]) for all (l, Ξ, l′) ∈ T (5)

The variables V�[l], l ∈ L take values from R
m

. The existence of the least solution is
ensured by the fixpoint theorem of Knaster/Tarski, since we assume that, for all loca-
tions l ∈ L, ε(l) ∈ Rm

>0 is chosen such that FD(l),I(l),ε(l) is monotone. The existence
of such an ε(l) is again ensured by Lemma 3.

Constraint (3) takes all possible initial values of the continuous variables at the initial
location l0 into account. Constraint (4) ensures that the template polyhedron γ(V �[l])
is a positive invariant of (D(l), I(l)) (cf. Lemma 2). Constraint (5) ensures that the
template polyhedron γ(V �[l′]) contains at least all values that can come through the
discrete transition (l, Ξ, l′). By construction, we have:

Theorem 2. V �
�[l] = γ(V �[l]) for all locations l ∈ L. "#

Because of the above theorem, we should now aim at computing V �.

4 Adapting the Max-Strategy Approach

Notations. In this section, we consider systems C of inequalities of the form x ≥ e
(resp. x ≤ e), where x is a variable that takes values form R and e is an expression over
R. The set of variables of C is denoted by XC , where we omit the subscript, whenever
it is clear from the context. The semantics �e� : (X → R) → R of an expression e is
defined by �x�(ρ) := ρ(x) and �f(e1, . . . , ek)�(ρ) := f(�e1�(ρ), . . . , �ek�(ρ)), where
x ∈ X, f is a k-ary operator on R, e1, . . . , ek are expressions, and ρ : X → R is a
variable assignment.

For a system C of constraints of the form x ≥ e (resp. x ≤ e), we define the operator
�C� : (X→ R)→ X→ R by

�C�(ρ)(x) :=
∨
{�e�ρ | x ≥ e belongs to C}

(resp. �C�(ρ)(x) :=
∧
{�e�ρ | x ≥ e belongs to C}) for all variable assignments ρ :

X → R and all variables x ∈ X. Hence, ρ is a solution of C iff ρ ≥ �C�(ρ) (resp.
ρ ≤ �C�(ρ)). The least (resp. the greatest) solution of C is μ�C� (resp. ν�C�). For a
system C of inequalities of the form x ≥ e and a pre-fixpoint ρ of the operator �C� (i.e.,
ρ ≤ �C�(ρ)), μ≥ρ�C� denotes the least solution of C that is greater than or equal to ρ.

Rewriting the Abstract Semantic In-Equations. We now rewrite the abstract se-
mantic in-equations (3) - (5) into a system C(Ψ) of in-equations of the form x ≥
f(x1, . . . ,xk), where the variables take values from R and the operator f is a maxi-
mum of finitely many monotone weak-affine operators. The set X of variables of the
system C(Ψ) of in-equations we are going to construct is X = {dl,i | l ∈ L and i ∈
{1, . . . , m}}. Corresponding to constraint (3) we add the following in-equations:

dl0,i ≥ αi·(Θ) for all i ∈ {1, . . . , m} (6)
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Corresponding to constraint (4), for every location l ∈ L, we add the following in-
equations that will deal with the time elapse operation:

dl,i ≥ F
D(l),I(l),ε(l)
i· (cl((dl,1, . . . ,dl,m)	)) for all i ∈ {1, . . . , m} (7)

Corresponding to constraint (5), for every discrete transition (l, Ξ, l′) ∈ T , we add the
following in-equations that will deal with the discrete transition (l, Ξ, l′):

dl′,i ≥ �Ξ��
i·
(
(dl,1, . . . ,dl,m)	

)
for all i ∈ {1, . . . , m} (8)

By construction we have:

Lemma 6. Let ρ∗ : X→ R be the least solution of C(Ψ). Then, for all locations l ∈ L
and all i ∈ {1, . . . , m}, we have (V �[l])i· = ρ∗(dl,i). "#

Example 5. We continue our running example, i.e., we aim at computing the abstract
semantics V � of the hybrid automaton Ψ from Example 2, where we use the template
constraint matrix T introduced in Example 3. For that we choose ε(1) = (1, . . . , 1)	.
Then fD(1),ε(1) and thus FD(1),I(1),ε(1) are monotone. The system C(Ψ) consists of the
following in-equations:

d1,1 ≥ 1 d1,1 ≥ F
D(1),I(1),ε(1)
1· (cl((d1,1,d1,2,d1,3)	))

d1,2 ≥ 1 d1,2 ≥ F
D(1),I(1),ε(1)
2· (cl((d1,1,d1,2,d1,3)	))

d1,3 ≥ 0 d1,3 ≥ F
D(1),I(1),ε(1)
3· (cl((d1,1,d1,2,d1,3)	))

Example 6 shows how we can compute the least solution of this constraint system. "#

The Max-Strategy Improvement Algorithm. Let C be a system of inequalities of
the form x ≥ e, where �e� is a point-wise minimum of finitely many monotone weak-
affine operators. We aim at computing the least solution μ�C� of C that exists due to
monotonicity.

A subset σ of C is called a max-strategy of C iff it contains exactly one constraint
x ≥ e for every variable x occurring in C. For simplicity, we assume that in C there
exists a constraint x ≥ −∞ for every variable x occurring in C. Then {x ≥ −∞ | x ∈
X} is a max-strategy. This will be the max-strategy the algorithm starts with.

The max-strategy improvement algorithm maintains a current max-strategy σ and
a current approximate ρ : X → R to the least solution μ�C� of C. The max-strategy
algorithm can be written as follows:

Algorithm 1. The Max-Strategy Improvement Algorithm

σ ← {x ≥ −∞ | x ∈ X}; ρ ← {x 
→ −∞ | x ∈ X};
while (ρ is not a solution of C) {σ ← improvement of σ w.r.t. ρ; ρ ← μ≥ρ�σ�; }
return ρ;

We have to define the term improvement. Let σ be a max-strategy of C and ρ be a pre-
solution of �σ�, i.e., ρ ≤ �σ�ρ. A max-strategy σ′ of C is called an improvement of σ
w.r.t. ρ iff the following conditions hold:
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1. �σ′�ρ ≥ �σ�ρ.
2. If x ≥ e belongs to σ and x ≥ e′ belongs to σ′ with e �= e′, then �e′�ρ > �e�ρ.

The second condition ensured that a max-strategy is only changed at variables where
we have a strict improvement. This is important for the correctness of the algorithm (cf.
Gawlitza and Seidl [10, 11, 12, 14, 15]).

It is obvious that the algorithm returns the least solution of C, whenever it terminates.
From the considerations in the next subsection, it will follow that it terminates at the
latest after considering every max-strategy at most once. In the next subsection, we
will also explain how we can compute μ≥ρ�σ� for a max-strategy σ and a variable
assignment ρ that occurs during the run of the algorithm. Before doing so, we will use
our algorithm for computing the abstract semantics of our running example.

Example 6. We apply the max-strategy improvement algorithm to the system C of con-
straints defined in Example 5. After the first max-strategy improvement step we may
get the max-strategy σ1 that consists of the following constraints:

d1,1 ≥ 1 d1,2 ≥ 1 d1,3 ≥ 0

We have to find the least solution ρ1 of σ1 that is greater than of equal to ρ0 = {x $→
−∞ | x ∈ X}. Hence, obviously ρ1 = μ≥ρ0�σ1� = {d1,1 $→ 1,d1,2 $→ 1,d1,3 $→ 0}.
However, ρ1 is not a solution of C. Hence, we can improve the current max-strategy σ1

w.r.t. ρ1. We may obtain the max-strategy σ2 that consists of the following constraints:

d1,1 ≥ F
D(1),I(1),ε(1)
1· (cl((d1,1,d1,2,d1,3)	))

d1,2 ≥ F
D(1),I(1),ε(1)
2· (cl((d1,1,d1,2,d1,3)	)) d1,3 ≥ 0

We get ρ2 = μ≥ρ1�σ1� = {d1,1 $→ 2.5,d1,2 $→ 3.5,d1,3 $→ 0}. How we can com-
pute ρ2 will be explained in Example 7. ρ2 solves the constraint system C. Hence,
the algorithm terminates and returns ρ2, which is the correct least solution of C. Thus,
we have V �[1] = (2.5, 3.5, 0)	. By Theorem 2, we get V �

�[1] = γ((2.5, 3.5, 0)	) =
{(x1, x2)	 ∈ R2 | x1 ≤ 2.5, x2 ≤ 2.5, x2 ≤ x1} (cf. Figure 1). "#
In the above example, we have 3 inequality constraints for each variable after introduc-
ing the constraints d1,i ≥ −∞, i = {1, 2, 3}. Hence, we have 33 = 9 max-strategies.
However, since the sequence of approximates is strictly increasing until it stabilizes, the
constraint d1,1 ≥ −∞ will not be considered after considering the constraint d1,1 ≥ 1.
Similar, the constraint d1,1 ≥ 1 will not be considered after considering the constraint

d1,1 ≥ F
D(1),I(1),ε(1)
1· (cl((d1,1,d1,2,d1,3)	)). Hence, the maximal number of max-

strategies considered by our max-strategy improvement algorithm is 1 + 2 · 3 = 7.
This is not by accident. Whenever the affine hybrid system has exactly one location

and no discrete transitions, the number of max-strategies the algorithm considers is at
most 1 + 2m. If we start the algorithm with the max-strategy that corresponds to the
set Θ of all possible initial values, then we can reduce this number to 1 + m. Thus, we
have:

Lemma 7. If we apply our max-strategy improvement algorithm for performing the
time elapse operation, then the number of max-strategy improvement steps is bounded
by m, where m is number of templates. "#
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Evaluating a Single Max-Strategy. Let σ be a max-strategy for C(Ψ) and ρ be a vari-
able assignment that occurs during a run of the max-strategy improvement algorithm
(the constraint system C(Ψ) is defined in Subsection 4). We are aiming at computing
μ≥ρ�σ�. For that, we firstly remove all constraints x ≥ −∞ from σ and replace the
corresponding variables with the constant −∞. For simplicity, we denote the resulting
system again by σ. Since the algorithm only improves max-strategies at positions where
there are strict improvements, we have μ≥ρ�σ�(x) > −∞ for all variables x ∈ X.

From the results of Gawlitza and Seidl [10, 14] it follows that μ≥ρ�σ� equals the
variable assignment ρσ : X→ R which is defined as follows:

ρσ(z) := sup {ρ(z) | ρ : X→ R, ρ(x) ≤ �e�(ρ) for all constraints x ≥ e of σ} (9)

for all z ∈ X. Observe that the variable assignment ρσ = μ≥ρ(σ) only depends on the
max-strategy σ and not on the variable assignment ρ. This is an important observation.
Since the max-strategy improvement algorithm generates a strictly increasing sequence
of variable assignments, each of which only depends on the current max-strategy, it
follows that the max-strategy algorithm terminates at the latest after considering each
max-strategy at most once.

In order to compute ρσ, we set up the system σ′ of linear inequalities as follows:
We start with an empty system of linear inequalities. For every inequality of the form
d ≥ c, where c ∈ R ∪ {∞}, we add the linear constraint d ≤ c. For every bunch of
inequalities of the form

d1 ≥ FV,I,ε
1· (cl((d1, . . . ,dm)	)) · · · dm ≥ FV,I,ε

m· (cl((d1, . . . ,dm)	)),

where V (x) = Ax + b for all x ∈ Rn and I ∈ γ(R
m

), we add (according to Lemma 1
and the definition of FV,I,ε) the following linear constraints

di≤d′
i + εi·Ti·(A(xi,1, . . . ,xi,n)	 + b) ∧ αk·(I) ∀i ∈ {1, . . . , m}

Ti·(xi,1, . . . ,xi,n)≥d′
i ∀i ∈ {1, . . . , m}

Tj·(xi,1, . . . ,xi,n)≤d′
j ∀i, j ∈ {1, . . . , m}

d′
i≤Ti·(x′

i,1, . . . ,x
′
i,m)	 ∀i ∈ {1, . . . , m}

Tj·(x′
i,1, . . . ,x

′
i,n)≤dj ∀i, j ∈ {1, . . . , m}

where d′
i, xi,j , x′

i,j are fresh variables for all i, j ∈ {1, . . . , m}.
For every inequality constraint d ≤ �Ξ��

k·(d1, . . . ,dm), where Ξ = {(x, y)	 ∈
R2n | Ax ≤ b} with A ∈ Rl×2n and b ∈ Rl, we add (according to Equation (2)) the
following linear constraints:

d ≤ Tk·(y1, . . . ,yn)	 Ti·(x1, . . . ,xn)	 ≤ di ∀i ∈ {1, . . . , m}
Ai·(x1, . . . ,xn,y1, . . . ,yn)	 ≤ bi· ∀i ∈ {1, . . . , l}

Here, x1, . . . ,xn and y1, . . . ,yn are fresh variables. Finally, we get

ρσ(z) = sup {ρ(z) | ρ : X→ R and ρ(x) ≤ �e�ρ for all constraints x ≤ e of σ′}

for all z ∈ X. Hence, for all z ∈ X, ρσ(z) can be computed by solving a linear
programming problem that can be constructed in polynomial time:
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Lemma 8. For every max-strategy σ of C(Ψ), the variable assignment ρσ defined by
Equation (9) can be computed in polynomial time through linear programming. When-
ever the max-strategy algorithm must compute μ≥ρ�σ�, we have μ≥ρ�σ� = ρσ . "#

Example 7. We consider the max-strategy σ2 from Example 6, i.e., we aim at com-
puting μ≥ρ1�σ2� which equals ρσ2 as defined in Equation (9). Therefore, for all i ∈
{1, . . . , m}, we aim at solving the following optimization problem:

sup d1,i d1,1 ≤ F
D(1),I(1),ε(1)
1· (cl((d1,1,d1,2,d1,3)	))

d1,2 ≤ F
D(1),I(1),ε(1)
2· (cl((d1,1,d1,2,d1,3)	)) d1,3 ≤ 0

We are now going to simplify the constraints that define the feasible space. By unfolding
the definition of cl and the definition of F

D(1),I(1),ε(1)
i· for all i ∈ {1, 2}, we obtain:

d1,1 ≤ d′
1,1 + 5 + sup {−x1 | x1 = d′

1,1, x2 ≤ d′
1,2, x2 − x1 ≤ d′

1,3}
d1,1 ≤ 2.5
d1,2 ≤ d′

1,2 + 1 + sup {0 | x1 ≤ d′
1,1, x2 = d′

1,2, x2 − x1 ≤ d′
1,3}

d1,3 ≤ 0
d′

1,1 ≤ sup {x1 | x1 ≤ d1,1, x2 ≤ d1,2, x2 − x1 ≤ d′
1,3}

d′
1,2 ≤ sup {x2 | x1 ≤ d1,1, x2 ≤ d1,2, x2 − x1 ≤ d′

1,3}
d′

1,3 ≤ sup {x2 − x1 | x1 ≤ d1,1, x2 ≤ d1,2, x2 − x1 ≤ d′
1,3}

After eliminating the supremums in the right-hand sides, we get:

d1,1 ≤ d′
1,1 + 5− x1,1,1 x1,1,1 = d′

1,1 x1,1,2 ≤ d′
1,2 x1,1,2 − x1,1,1 ≤ d′

1,3

d1,1 ≤ 2.5
d1,2 ≤ d′

1,2 + 1 x1,2,1 ≤ d′
1,1 x1,2,2 = d′

1,2 x1,2,2 − x1,2,1 ≤ d′
1,3

d1,3 ≤ 0
d′

1,1 ≤ x′
1,1,1 x′

1,1,1 ≤ d1,1 x′
1,1,2 ≤ d1,2 x′

1,1,2 − x′
1,1,1 ≤ d1,3

d′
1,2 ≤ x′

1,2,2 x′
1,2,1 ≤ d1,1 x′

1,2,2 ≤ d1,2 x′
1,2,2 − x′

1,2,1 ≤ d1,3

d′
1,3 ≤ x′

1,3,2 − x′
1,3,1 x′

1,3,1 ≤ d1,1 x′
1,3,2 ≤ d1,2 x′

1,3,2 − x′
1,3,1 ≤ d1,3

When we solve the corresponding linear programming problems that aim at maximizing
d1,1, d1,2, and d1,3, respectively, we get d1,1 = 2.5, d1,2 = 3.5, and d1,3 = 0. Observe
that, instead of solving three linear programming problems, we could solve just one,
where we aim at maximizing the sum d1,1 + d1,2 + d1,3. Any optimal solution then
gives us the values for d1,1, d1,2, and d1,3. "#

The Final Results. Putting everything together, we finally get:

Theorem 3. The abstract semantics of an affine hybrid automaton Ψ = (n,L, T , Θ,
D, I, l0) can be computed through the presented max-strategy improvement algorithm.
This algorithm performs at most exponentially many strategy improvement steps, each



48 T. Dang and T.M. Gawlitza

of which can be performed in polynomial time through linear programming. The num-
ber of max-strategy improvement steps is bounded by

m · |L| ·
∏

l∈L max{1, |{(l1, ρ, l2) ∈ T | l2 = l}|m},

where m denotes the number of linear templates. The time elapse operation for affine
hybrid automata w.r.t. template polyhedra can be performed in polynomial time. "#

Theorem 4. Abstract reachability for affine hybrid systems w.r.t. template polyhedra is
in co−NP.

Proof. Let Ψ = (n,L, T , Θ,D, I, l0) be an affine hybrid system, l ∈ L, and T ∈ Rm×n

a template constraint matrix. We have to provide an non-deterministic algorithm that has
an accepting run iff μ�C(Ψ)�(dl,i) = −∞ for all i ∈ {1, . . . , m}, i.e., l is unreachable.

The algorithm firstly chooses a max-strategy σ for C(Ψ) non-deterministically. Note
that there exists a max-strategy σ′ for C(Ψ) such that ρσ′

= μ�C(Ψ)�. According to
Lemma 8, we then compute ρσ as defined by Equation (9) in polynomial time. If
ρσ solves C(Ψ) (this can be checked in polynomial time), then we know that ρσ ≥
μ�C(Ψ)�. Hence, the algorithm accepts iff ρσ(dl,i) = −∞ for all i ∈ {1, . . . , m}. "#

5 Conclusion

In this paper we showed how the max-strategy improvement algorithm of Gawlitza and
Seidl [10, 11, 12, 14, 15] can be utilized to compute abstract semantics of affine hybrid
automata w.r.t. template polyhedra — an problem that can be used for unbounded time
verification. This gives us a polynomial-time algorithm for the time elapse operation
over template polyhedra. Moreover, we showed that the corresponding abstract reacha-
bility problem is in co−NP. For future work, it would be interesting to see in how far
this approach can be generalized to non-linear templates and non-linear dynamics (cf.
Gawlitza and Seidl [14]). It also remains to evaluate the proposed approach in prac-
tice. We report on our proof-of-concept implementation in the corresponding technical
report Dang and Gawlitza [8].
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Access-Based Localization with Bypassing

Hakjoo Oh and Kwangkeun Yi

Seoul National University

Abstract. We present an extension of access-based localization tech-
nique to mitigate a substantial inefficiency in handling procedure calls.
Recently, access-based localization was proposed as an effective way of
tightly localizing abstract memories. However, it has a limitation in han-
dling procedure calls: the localized input memory for a procedure con-
tains not only memory locations accessed by the procedure but also those
accessed by transitively called procedures. The weakness is especially
exacerbated in the presence of recursive call cycles, which is common
in analysis of realistic programs. In this paper, we present a technique,
called bypassing, that mitigates the problem. Our technique localizes
input memory states only with memory locations that the procedure di-
rectly accesses. Those parts not involved in analysis of the procedure
are bypassed to transitively called procedures. In experiments with an
industrial-strength global C static analyzer, the technique reduces the
average analysis time by 42%. In particular, the technique is especially
effective for programs that extensively use recursion: it saves analysis
time by 77% on average.

1 Introduction

Memory localization is vital for reducing global analysis cost [12,14,3,23,22]. The
performance problem of flow-sensitive global analysis is that code blocks such
as procedure bodies are repeatedly analyzed (often needlessly) with different
input memory states. Localization of input abstract memories, which removes the
irrelevant memory entries that will not be used inside called procedure bodies,
alleviates the problem by increasing the chance of reusing previously computed
analysis results. For example, consider a code x=0;f();x=1;f(); and assume
that x is not used inside f. Without localization, f is analyzed twice because the
input state to f is changed at the second call. If x is removed from input states
(localization), the analysis result for the first call can be reused at the second
call without re-analyzing the procedure body.

Access-based technique provides an effective way of realizing memory local-
ization [14]. Because localization must be done before analyzing a procedure, it
is impossible to exactly compute to-be-used parts of input memory. Thus, some
approximation must be involved, so that the localized state can contain some
spurious entries that will not be actually used by the procedure. The conventional
approximation methods are reachability-based techniques: from input memory,
only the abstract locations reachable from actual parameters and global loca-
tions are collected. However, the technique is too conservative in practice because

H. Yang (Ed.): APLAS 2011, LNCS 7078, pp. 50–65, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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only few reachable locations are actually accessed [14]. Access-based technique,
on the other hand, trims input memory states more aggressively: locations that
are reachable but may not be accessed are additionally removed. The access in-
formation is computed by a conservative pre-analysis. Thus, access-based local-
ization more effectively reduces global analysis cost than the reachability-based
technique does [14].

However, the localization has a source of inefficiency in handling procedure
calls. In access-based localization1, the localized input state for a procedure
involves not only the abstract locations that are accessed by the called procedure
but also those locations that are accessed by transitively called procedures. For
instance, when procedure f calls g, the localized state for f contains abstract
locations that are accessed by g as well as abstract locations accessed by f .
Those locations that are exclusively accessed by g are, however, irrelevant to the
analysis of f because they are not used in analyzing f . Even so, those locations
are involved in the localized state (for f), which sometimes leads to unnecessary
computational cost (due to re-analyses of procedure body).

Such inefficiency is especially exacerbated with recursive call cycles. Consider
a recursive call cycle f → g → h → f → · · · . Because of the cyclic dependence
among procedures, every procedure receives input memories that contain all
abstract locations accessed by the whole cycle. That is, access-based localization
does not help any more inside call cycles. Moreover, recursive cycles (even large
ones) are common in real C programs. For example, in GNU open source code,
we noticed that a number of programs have large recursive cycles and a single
cycle sometimes contains more than 40 procedures. This is the main performance
bottleneck of access-based localization in practice (Section 4.2).

In this paper, we extend access-based localization technique so that the afore-
mentioned inefficiency can be relieved. With our technique, localized states for a
procedure contains only the abstract locations that are accessed by the procedure
and does not contain other locations that are exclusively accessed by transitively
called procedures. Those excluded abstract locations are “bypassed” to the tran-
sitively called procedures, instead of passing through the called procedure. In this
way, analysis of a procedure involves only the memory parts that the procedure
directly accesses (even inside recursive cycles), which results in more tight lo-
calization and hence reduces analysis cost more than access-based localization
does. The following example illustrates how our technique saves cost.

Example 1. Consider the following code.

1: int a=0, b=0;
2: void g() { b++; }
3: void f() { a++; g(); }
4: int main () {
5: b=1; f(); // first call to f
6: b=2; f(); } // second call to f

1 In fact, any localization techniques suffers from similar problems. In this paper, we
discuss the problem in the context of access-based localization.
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Procedure main calls f, and f calls g. Procedures f and g update the value
of a and b, respectively. Procedure main calls f two times with the value of b
changed.

– With access-based localization: Both f and g are analyzed two times. The
localized input memory for f at the first call (line 5) contains locations a
and b because both are (directly/indirectly) accessed while analyzing f. The
localized state at the second call (line 6) contains the same locations. Because
the value of b is changed, f (as well as g) is re-analyzed at the second call.

– With our technique: f is analyzed only once (though g is analyzed twice).
Localized memories for procedure f contain only the location that f directly
accesses, i.e., a. The value of a is not changed and the body of f is not
re-analyzed at the second call. However, procedure g is re-analyzed because
we propagate the changed value of b to the entry of g.

In experiments with an industrialized abstract interpretation-based static ana-
lyzer, our technique saved 9–79%, on average 42%, in analysis time in compar-
ison with the access-based localization technique for a variety of open-source C
benchmarks (2K–100K). In particular, for those benchmark programs that ex-
tensively use recursion and have large recursive call cycles, our technique is more
effective: it reduces the analysis time for those programs by 77% on average. The
technique does not compromise the analysis precision.

Contributions. This paper makes the following contributions.

– We report on a substantial performance degradation of localization and
present a technique to mitigate the problem. Our technique is meaningful
because real C programs often have complex procedural relationships such
as large recursive cycles that significantly exacerbate the problem. Though
we focus on access-based localization, any localization schemes (including
reachability-based ones) suffer from similar (basically the same) problems.
To the best of our knowledge, these aspects of localization techniques have
not been adequately addressed in the literature.

– We prove the effectiveness of our technique by experiments with an industrial-
strength C static analyzer [8,9,10,13,14,15].

Overview. We illustrate how our technique works with examples. Fig. 1 shows
example call graphs. There are three procedures: f, g and h. Suppose F (re-
spectively, G and H) denotes the set of abstract locations that procedure f
(respectively, g and h) directly accesses. We describe how the problem occurs
and then how to overcome the problem.

Access-based localization has inefficient aspects in analyzing procedure calls.
We first consider the case for non-recursive call chains (Fig. 1(a)). With the
localization, the input memory M to f is localized so that the procedure f
is analyzed only with a subpart M |F∪G∪H (M with projected on locations set
F ∪G∪H) rather than the entire input memory. Similarly, the input memory M1

to g is localized to M |G∪H , and h’s input memory M2 is localized to M2|H . The
inefficiency comes from the fact that not the entire localized memory is accessed
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M M1 M2

M |F∪G∪H

f g

M1|G∪H M2|H

h
M M1 M2

M |F∪G∪H M1|F∪G∪H M2|F∪G∪H

f g h

(a) Non-recursive call chain (b) Recursive call cycle

Fig. 1. Problem of localization. F (respectively, G and H) denotes the set of abstract
locations that procedure f (respectively, g and h) directly accesses. M |F denotes the
memory state M with projected on abstract locations F .

M |F

M |F C

(M1 � M |F C )|G

M1 M2

(M1 � M |F C )|GC

((M1 � M |F C )|GC � M2)|H

M
f g h

M |F

M |F C

(M1 � M |F C )|G

M1 M2

(M1 � M |F C )|GC

((M1 � M |F C )|GC � M2)|H

(M1 � (M |F C )|GC � M2)|HC

M

M
f g h

(a) Non-recursive call chain (b) Recursive call cycle

Fig. 2. Illustration of our technique. With our technique, each procedure is analyzed
with its respective directly accessed locations, and others are bypassed (dashed line)
to the subsequent procedure.

by each procedure. For example, abstract locations G ∪H are not necessary in
analyzing the body of f .

The problem becomes severe when analyzing recursive call cycles. Consider
Fig. 1(b). As in the previous case, the input memory M to f is localized to
M |F∪G∪H . However, in this case, the input memory M1 to g is also projected on
F ∪G∪H , not on G∪H , because f can be called from g through the recursive
cycle. Similarly, input memory M2 to h is localized to M |F∪G∪H . In summary,
localization does not work any more inside the cycle.

Fig. 2 illustrates how our technique works. We first consider non-recursive
call case (Fig. 2(a)). Instead of restricting f ’s input memory to F ∪G ∪H , we
localize it with respect to only the directly accessed locations, i.e., F . Thus,
f is analyzed with M |F . The non-localized memory part (M |F C ) is directly
bypassed (dashed line) to g. Then, the output memory M1 from f and the
bypassed memory M |F C are joined to prepare input memory M1 # M |F C for
procedure g. The input memory is localized to (M1#M |F C )|G and g is analyzed
with the localized memory. Again, the non-localized parts (MF C #M1)|GC ) are
bypassed to the subsequent procedure h. In this way, each procedure is analyzed
only with abstract locations that the procedure directly accesses.

The technique is naturally applicable to recursive cycles (Fig. 2(b)). With
our technique, even procedures inside recursive call cycles are analyzed with
memory parts that are directly accessed by each procedure. Hence, in Fig. 2(b),
the localized memory for f (resp., g and h) only contains locations F (resp., G
and H).
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2 Setting: Analysis Framework

We describe our analysis framework. The analysis basically performs flow-
sensitive and context-insensitive global analysis, and an abstract memory state
is represented by a map from abstract locations to abstract values. In Section
3, we present our technique on top of this framework. Section 2.1 shows the
intermediate representation of programs, and Section 2.2 defines the analysis in
terms of abstract domain and semantics.

2.1 Graph Representation of Programs

We assume that a program is represented by a supergraph [17]. A supergraph
consists of control flow graphs of procedures with interprocedural edges connect-
ing each call-site to its callee and callees to the corresponding return-sites. Each
node n ∈ Node in the control flow graph has one of the four types :

entry | exit | call(fx, e) | return | set(lv , e)

Each control flow graph has entry and exit nodes. A call-site in a program
is represented by a call node and its corresponding return node. A call node
call(fx, e) indicates that it invokes a procedure f , its formal parameter is x, and
the actual parameter is e. For simplicity, we assume that there are no function
pointers in the program and consider only one parameter. Node type return indi-
cates a return node of a call node. set(lv , e) represents an assignment statement
that assigns the value of e into the location that l-value expression lv denotes.
In this paper, we do not restrict expression (e) and l-value expression (lv ) to
specific ones. We assume that edges in flow graphs are assembled by function
succof ∈ Node→ 2Node, which maps each node to its successors.

2.2 Static Analysis

We consider static analyses, in which the set of (possibly infinite) concrete mem-
ory states are represented by an abstract memory state:

ˆMem = ˆAddr → V̂al

That is, ˆMem is a map from abstract locations ( ˆAddr) to the abstract values
(V̂al). We assume that ˆAddr is a finite set and V̂al is an arbitrary cpo (com-
plete partial order). We assume further that abstract values and locations are
computed by two functions V̂ and L̂, respectively. Given an expression e and an
abstract memory state m̂, V̂(∈ e → ˆMem → V̂al) evaluates the abstract value
that e denotes under m̂. Similarly, L̂(∈ lv → ˆMem → 2 ˆAddr ) evaluates the set
of abstract locations of lv under m̂.

With V̂ and L̂, we define semantic function f̂ : Node→ ˆMem → ˆMem . Given
a node n and an input memory state m, f̂(n)(m) computes the effect of the
command in node n on the input state :
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f̂(n)(m̂) =

⎧⎨⎩ m̂{V̂(e)(m̂)//L̂(x)(m̂)} if n = call(fx, e)
m̂{V̂(e)(m̂)//L̂(lv)(m̂)} if n = set(lv , e)
m̂ otherwise

where, m̂{v//{l1, . . . , lk}} means m̂{l1 $→ (m̂(l1) # v)} · · · {lk $→ (m̂(lk) # v)}.
The effect of node set(lv , e) is just to (weakly) assign the abstract value of e into
the locations in L̂(lv )(m̂).2 The call node command call(fx, e) binds the formal
parameter x to the value of actual parameter e. Please note that the output of the
call node is the memory state that flows into the body of the called procedure, not
the memory state returned from the call.

Then, the analysis is to compute a fixpoint table T ∈ Node → ˆMem that
maps each node in the program to its (input) abstract memory state. The map
is defined by the least fixpoint of the following function F̂ :

F̂ : (Node → ˆMem)→ (Node → ˆMem)
F̂ (T ) = λn.

⊔
p∈predof(n) f̂(n)(T (p))

The fixpoint is computed by a worklist algorithm. The worklist consists of nodes
of the control flow graph of the program whose abstract state has to be re-
computed. When a computed memory state for n is changed, we add successors
of n into the worklist. The algorithm uses widening operation [2] to guarantee
termination. Fig. 4(a) shows the algorithm.

3 Access-Based Localization with Bypassing

In this section, we describe our technique on top of the analysis framework
(Section 2). Our technique is an extension of the access-based localization. In
Section 3.1, we describe the access-based localization. Then, we extends the
localization technique to derive our bypassing technique.

3.1 Access-Based Localization: Previous Approach

In access-based localization [14], the entire analysis is staged into two phases: (1)
a pre-analysis conservatively estimates the set of abstract locations that will be
accessed during actual analysis for each procedure; (2) then, the actual analysis
uses the access-set results and, right before analyzing each procedure, filters out
memory entries that will not be accessed inside the procedure’s body.

The pre-analysis is a further abstraction of the original analysis. The pre-
analysis must be safe in that the estimated access information should be conser-
vative with respect to the actual access set that would be used during the actual
analysis. Moreover, to be useful, the estimation should be efficient enough to
compensate for the extra burden of running pre-analysis once more. In [14],

2 For brevity, we consider only weak updates. Applying strong update is orthogonal to
our technique we present in this paper.
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such a pre-analysis is obtained by applying conservative abstractions (such as
ignoring statement orders, i.e., flow-insensitivity) to the abstract semantics of
original analysis. During the pre-analysis, the access-sets for each program point
are collected. Let A ∈ Node → 2 ˆAddr be the access information. That is, all the
abstract locations that are accessed during the analysis at node n are represented
by A(n).

The actual analysis is the same as the original analysis except for localizing
operation. Because actual analysis additionally performs localizations using the
access-set information, the abstract semantics for call node is changed. Thus,
in actual analysis, non-accessed memory locations are excluded from the input
memories of procedures: given an input memory state m̂ to a call node call(fx, e),
the semantic function f̂ for the call statement call(fx, e) is changed as follows:

f̂ call(fx, e) m̂ = m̂ ′|access(f) where m̂ ′ = m̂{V̂(e)(m̂)//{x}}

That is, after parameter binding (m̂ ′) the memory is restricted on access(f),
where access(f) is defined as follows: (callees(f) denotes the set of procedures,
including f , that are reachable from f via the call-graph and nodesof(f) the set
of nodes in procedure f .)

access(f) =
⋃

g∈callees(f)(
⋃

n∈nodesof(g)A(n))

access ∈ ProcId → 2 ˆAddr maps each procedure to a set of abstract locations
that are possibly accessed during the analysis of callee procedures. Note that we
consider all the transitively called procedures as well, instead of just considering
the directly called procedure.

3.2 Access-Based Localization with Bypassing: Our Approach

Definition 1 (directly/indirectly(transitively) called procedure). When
a procedure f is called from a call-site, we say that f is a directly called procedure
from the call-site, and procedures that are reachable from f via the call-graph are
indirectly (or transitively) called procedures.

Example 2. Consider a call chain f → g → h. When f is called from a call-site,
f is the directly called procedure, and g and h are indirectly called procedures.

Definition 2 (directly/indirectly accessed locations). When a procedure f
is called from a call-site, we say that a location is directly accessed by procedure
f if the location is accessed inside the body of f . We say that the location is
indirectly accessed by f if the location is not accessed inside f ’s body but accessed
by indirectly called procedures.

Example 3. Consider a call chain f → g, and assume that locations l1 is accessed
inside the body of f and l2 is accessed inside the body of g. We say l1 is directly
accessed by f and l2 is indirectly accessed by f (l2 is directly accessed by g).
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Our technique is an extension of access-based localization. Thus, we also separate
the entire analysis into two phases: pre-analysis, and actual analysis.

Pre-analysis is slightly changed. Pre-analysis is exactly the same with the one
that would be used in access-based localization, except that we use its result
in a different way. In access-based localization, we compute access(f), which
includes abstract locations directly accessed by f as well as locations indirectly
accessed by f . Instead, our technique computes direct ∈ ProcId → 2 ˆAddr that
maps each procedure to a set of abstract locations that are directly accessed by
the procedure, excluding indirectly accessed locations. Given A : Node → 2 ˆAddr

from pre-analysis, the set direct(f) is defined as follows:

direct(f) =
⋃

n∈nodesof(g)A(n)

Major changes are in actual analysis. With access-based localization, actual anal-
ysis performs localization using the access information from pre-analysis. Now,
the actual analysis is changed in two ways: the analysis performs the localiza-
tion in a different way, and it additionally performs another technique, called
bypassing. When analyzing a procedure, we localize the input memory state so
that only the abstract locations directly accessed by the procedure are passed
to the current procedure. The non-localized parts, which contains indirectly ac-
cessed locations, are not passed to the directly called procedure but bypassed to
indirectly called procedures. In this way, every procedure is analyzed with input
memory state that is more tightly localized than access-based localization. In
terms of analysis on control flow graphs, these operations work as follows:

– Localization: Localization is performed at nodes where memory states flow
into the nodes from other procedures. These nodes include entry and return
nodes: when a procedure is called from a call-site, the input memory from
the call-site flows into entry of the called procedure, and when a procedure
returns, the memory state returned from the procedure flows into its caller
via a return node. Hence, the memory states at entry and return nodes of a
procedure are localized so that the procedure is analyzed with the directly
accessed locations. We call such nodes, where localization occurs, bypassing
sources.

Example 4. Consider the Fig. 3. Fig. 3(a) shows a call-graph, where proce-
dure f calls g, and Fig. 3(b) shows the control flow graph for f . Let F and G
be the set of abstract locations that are directly accessed by procedure f and
g, respectively. There are three bypassing sources: entry, node 3, and node 9.
Nodes 3 and 9 are return nodes. At entry, the input memory M is restricted
on F . Hence, node 1 is analyzed with the localized memory M |F . At node 3
and 9, the memory returned from procedure g, M1 and M2 are restricted on
the location set F , and hence, the body of procedure f is always analyzed
with the local memory M |F . By contrast, with access-based localization, f
is analyzed with the localized memory M |F∪G, which is strictly bigger than
M |F .
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M gf
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M |F M |F C
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M2|F C

g

g
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2 : g()

3 : rtn

4 5

6

7

8 : g()

9 : rtn

exit

entry

(a) call-graph (b) control flow graph of f

Fig. 3. Example: (a) a call-graph, where f is called with input memory state M and
g is called from f (b) inside view (control flow graph) of f , where solid lines represent
control flow edges and dashed lines represent bypassing edges

– Bypassing: Bypassing happens between bypassing sources and targets. The
non-localized parts at bypassing sources (entry or return nodes) should be
delivered to nodes where memory states flow into other procedures. These
nodes include procedure exit and call nodes: at procedure exit, the out-
put memory state of the procedure is propagated to the caller, and at call
nodes, memory states flow into called procedures. Thus, after performing
localization at a bypassing source, the non-localized parts are bypassed to
“immediate” call or exit nodes that are reachable without passing through
other call nodes. We call such call and exit nodes as bypassing targets.

Example 5. Consider the Fig. 3(b) again. The solid lines represent control
flow graphs of procedure f and dashed lines shows how bypassing happens.
There are three bypassing sources: entry, 3, and 9. The bypassing target for
entry is the call node 2. Another call node 8 or exit node are not bypassing
target for entry because they are not reachable from entry without passing
through the call node 2. And, bypassing targets for node 3 are 8 and exit.
Similarly, bypassing targets for node 9 are 8 and exit. At entry node, the non-
localized memory parts (M |F C ) are bypassed to entry’s bypassing target,
node 2. Similarly, at nodes 3 and 9, the non-localized memory M1|F C and
M2|F C are bypassed to their bypassing targets, node 8 and exit.

Fig. 4(b) shows our technique integrated in the worklist-based analysis algo-
rithm. In order to transform access-based localization into our technique, only
shaded lines are inserted; other parts remain the same. Predicate bypass source ∈
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(01) : W ∈ Worklist = 2Node (01) : W ∈ Worklist = 2Node

(02) : T ∈ Table = Node → Mem (02) : T ∈ Table = Node → Mem

(03) : f̂ ∈ Node → Mem → Mem (03) : f̂ ∈ Node → Mem → Mem

(04) : FixpointIterate (W,T ) = (04) : FixpointIterate (W,T ) =
(05) : repeat (05) : repeat
(06) : n := choose(W) (06) : n := choose(W)

(07) : m := f̂(n)(T (n)) (07) : m := f̂(n)(T (n))

(08) : if bypass source(n) then

(09) : (ml, mb) := project(m, procof(n))

(10) : for all t ∈ bypass target(n) do

(11) : if mb � T (t)

(12) : T (t) := T (t) � mb

(13) : W := W ∪ {t}
(14) : m := ml

(15) : for all n′ ∈ succof(n) do (15) : for all n′ ∈ succof(n) do
(16) : if m � T (n′) (16) : if m � T (n′)
(17) : W := W ∪ {n′} (17) : W := W ∪ {n′}
(18) : T (n′) := T (n′) � m (18) : T (n′) := T (n′) � m
(19) : until W = ∅ (19) : until W = ∅

(a) The worklist-based algorithm (b) The algorithm with bypassing

Fig. 4. Comparison of the normal analysis algorithm and our bypassing algorithm: our
technique is a simple addition of the traditional algorithm

Node→ bool checks whether a node is a bypass source or not. Function procof ∈
Node→ ProcId gives name of the procedure that encloses the given node. Func-
tion project takes a memory state and a procedure and partitions the input
memory into directly accessed and indirectly accessed parts:

project(m, f) = (m|direct(f), m|access(f)\direct(f))

Function bypass target ∈ Node → 2Node maps each bypass source to its bypass
targets. If the current node n is a bypass source (line 8), the memory state m is
divided into a local memory ml and the rest part mb (line 9). The local memory
ml is propagated to the successors of n as in the case of the normal algorithm
(line 14). The non-localized memory (mb) is updated to the input memories of
bypassing targets of n (line 10–13).

3.3 Delivery Points Optimization

Bypassing operation induces additional join operations, one of the most expen-
sive operation in semantic-based static analyses [1,9]. At bypassing targets, the
bypassed memory from the bypassing source should be joined with the memory
propagated along usual control flows. For example, consider Fig. 3. At node 2,
two input memories, one propagated from node 1 and another bypassed from
entry, are joined. Similarly, at the other bypassing targets (node 8 and exit),
additional join operations take place.
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if (cond1) f1 ();

if (cond2) f2 ();

...

if (condk) fk ();

1

2

k − 1

f1()

f2()

fk()

entry

exit

1

2

k − 1 fk()

f2()

f1()entry

exit

Fig. 5. Example of common code patterns that increases bypassing overhead

We noticed that the number of additional joins is sometimes unbearable. For
example, Fig. 5 shows a common programming pattern: the left-hand shows the
code pattern, and the middle shows its control flow graph with bypassing edges
(dashed lines). Procedures f1, f2,· · · ,fk are sequentially called after respective
condition checks (cond1, cond2,· · ·, condk). For this code, bypassing happens
as follows (as dashed lines in Fig. 5 show):

– From entry to f1, f2, f3, . . . , fk, exit
– From f1 to f2, f2, f3, . . . , fk, exit
– · · ·
– From fk to exit

Thus, the total number of bypassing edges for this code fragment is (k + 1)
(k + 2)/2 when k is the number of branches.

We mitigate the overhead by making bypassing pass through some particular
nodes that reduces the total number of bypassing edges. These nodes, we call
them “delivery points”, include some join points and loop heads. For example,
in Fig. 5, we use nodes {1, 2, · · · , k−1} as delivery points and let bypassing drop
by those nodes. As a result, bypassing happens as shown in the rightmost graph
in Fig. 5. Bypassing from entry to call1 takes place as in before, but Instead of
bypassing from entry to {f2, · · · , fk, exit}, we pass through node 1, 2, · · · , k−1,
which reduces the total number of bypassing edges from (k + 1)(k + 2)/2 to 3k.
In order to select such delivery points, we use a simple heuristic that uses join
points or loop heads as delivery points when the selection actually reduces the
total number of bypassing edges.

4 Experiments

We check the performance of our technique by experiments with Airac, a global
abstract interpretation engine in an industrialized bug-finding analyzer Spar-
row [8,9,10,13,14,15].
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Fig. 6. Comparison of analysis time between access-based localization and bypassing

4.1 Setting Up

Airac is an interval-domain-based abstract interpreter. The analyzer performs
flow-sensitive and context-insensitive global analysis: it computes a map T ∈
Node → ˆMem from program points (Node) to abstract memories ( ˆMem). An
abstract memory is a map ˆMem = ˆAddr → V̂al where ˆAddr denotes abstract
locations that are either program variables or allocation sites, and V̂al denotes
abstract values including interval values, addresses, array blocks, and structure
blocks. The details of abstract domain and semantics are described in [14].

From our baseline analyzer Airac, we have made two analyzers: AiracAccLoc and
AiracBypass that respectively use the access-based localization and our technique.
AiracBypass is exactly the same as AiracAccLoc except that AiracBypass additionally
performs the bypassing operation. Hence, performance differences, if any, be-
tween them, are solely attributed to the bypassing technique. The analyzers are
written in OCaml.

We have analyzed 10 software packages. Fig. 1 shows our benchmark pro-
grams. LOC indicates the number of lines of code before preprocessing. Proc in-
dicates the number of procedures in each program. LRC represents the size of
largest recursive call cycle contained in each program. For example, the program
screen have 589 procedures and, among them, 77 procedures belong to a single
recursive cycle. We analyzed each program globally: the entire program is ana-
lyzed starting from the entry of the main procedure. All experiments were done
on a Linux 2.6 system running on a Pentium4 3.2GHz box with 4 GB of main
memory.

We use two performance measures: (1) time is the CPU time (in seconds) spent
during the analysis; (2) MB is the peak memory consumption (in megabytes)
during the analysis.

4.2 Results

Fig. 6 compares the time of AiracAccLoc and AiracBypass. Table 1 shows the raw
analysis results. Overall, AiracBypass saved 8.9%–78.5%, on average 42.1%, of the
analysis time of AiracAccLoc. There are some noteworthy points.
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Table 1. Program properties and analysis results. Lines of code (LOC) are given
before preprocessing. The number of procedures (Proc) is given after preprocess-
ing. LRC represents the size of largest recursive call cycle contained in each pro-
gram. time shows analysis time in seconds. MB shows peak memory consumption in
megabytes. AiracAccLoc uses access-based localization for procedure calls and AiracBypass

uses our technique. time for AiracAccLoc and AiracBypass are the total time that in-
cludes pre-analysis time. Save shows time savings in percentage of AiracBypass against
AiracAccLoc.

Program LOC Proc LRC AiracAccLoc AiracBypass Save
time(sec) MB time(sec) MB (time)

spell-1.0 2,213 31 0 2.4 10 1.6 10 31.6%
gzip-1.2.4a 7,327 135 2 51.9 65 37.7 64 27.4%
parser 10,900 325 3 571.6 206 319.4 245 44.1%
bc-1.06 13,093 134 1 496.9 131 318.4 165 35.9%
twolf 19,700 192 1 509.5 212 389.9 212 23.5%
tar-1.13 20,258 222 13 2,407.9 294 1,503.2 338 37.6%
less-382 23,822 382 46 14,720.8 490 4,906.4 427 66.7%
make-3.76.1 27,304 191 61 14,681.9 695 5,248.0 549 64.3%
wget-1.9 35,018 434 13 6,717.5 544 4,383.4 552 34.7%
screen-4.0.2 44,734 589 77 310,788.0 2,228 66,920.6 1,875 78.5%
bash-2.05a 105,174 959 4 1,637.6 272 1,492.4 265 8.9%

– Some programs contain large recursive call cycles. One common belief for C
programs is that it does not largely use recursion in practice. However, our
finding from the benchmark programs is that some programs extensively use
recursion and large recursive cycles unexpectedly exist in a number of real
C programs. For example, from Table 1, note that program less, make, and
screen have recursive cycles (scc) that contain more than 40 procedures.

– AiracAccLoc is extremely inefficient for those programs. For other programs
that have small (or no) recursive cycles, the analysis with access-based lo-
calization is quite efficient. For example, analyzing bash (the largest one in
our benchmark) takes 1,637s. However, analyzing those programs that have
large recursive cycles takes much more time: less and make take more than
10,000s and screen takes more than 310,000s to finish the analysis, even
though they are not the largest programs.

– AiracBypass is especially effective for those programs. For programs less,
make, and screen that contain large recursive cycles, our technique reduces
the analysis time by 66.7%, 64.3%, and 78.5%, respectively.

– AiracBypass is also noticeably effective for other programs. For programs,
which have small cycles (consisting of less than 20 procedures), AiracBypass

saved 8.9%–44.1% of the analysis time of AiracAccLoc. For example, in ana-
lyzing parser, AiracAccLoc took 572 seconds but AiracBypass took 319 seconds.

Our technique is also likely to reduce peak memory cost. Because our technique
localizes memory states more aggressively than the access-based localization,
the peak memory consumption must be reduced. However, in the experiments,
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memory cost for analyzing smaller programs (gzip, parser, bc, twolf, tar)
slightly increased. This is because AiracBypass additionally keeps bypassing in-
formation on memory. But, for larger programs (less, make, wget, screen,
bash), the results show that our technique reduces memory costs. For exam-
ple, AiracAccLoc required 2,228MB in analyzing screen but AiracBypass required
1,875MB.

AiracBypass is at least as precise as AiracAccLoc. In principle, more aggressive
localization improves our analysis because unnecessary values are not passed
to procedures and hence avoids needless widening operations. In experiments
(similar to one performed in [13,15], the precision of AiracBypass was the same as
AiracAccLoc.

5 Related Work

In static analysis, localization has been widely used for reducing analysis cost
[23,22,3,18,19,11,7,12,14], but previous localization methods have a common
limitation as described in this paper. Previous localization schemes are clas-
sified into reachability-based and access-based. For example, in shape analysis,
called procedures are only passed with reachable parts of the heap, which im-
proves the scalability of interprocedural shape analysis [18,19,11,3,23,22]. Simi-
lar reachability-based techniques, which removes unreachable bindings, are also
popular in higher-order flow analyses [6,7,12]. Access-based localization [14] re-
fines reachability-based approach so that reachable but non-accessed memory
locations are additionally removed. The technique was successfully applied to
interval-domain-based global static analysis [14]. These localization methods
have a common limitation in handling procedure calls. The inefficient aspect,
however, has not been well addressed in the literature. We believe the reason
is two-folds: (1) because localization itself greatly improves global analysis per-
formance, such ‘small’ inefficiency is often neglected; (2) the inefficiency only
comes to the fore when we analyze programs that have complex procedural
features such as large recursive call cycles. In this paper, we show that the prob-
lem is one key reason for why localization sometimes does not have satisfactory
performance in practice, and propose a solution that extends the access-based
localization technique.

Our technique can be considered as a lightweight sparse analysis. While tra-
ditional flow-sensitive analysis propagates information along control flow paths,
sparse analysis [20,21,16] uses def-use chains and directly propagate data from
definition point to its use points, by which unnecessary computational cost is
reduced. Our technique is similar to sparse analysis in that we sometimes by-
pass data, not propagating them along usual control flow paths. Moreover, the
concept of delivery points in section 3.3 is similar to φ-functions of SSA-based
sparse analysis [4,5] in that both reduces the number of additional join opera-
tions. However, we do not require def-use chains to be computed in both analysis
and computing delivery points, which is the main challenge of sparse analysis in
the presence of pointers [4,5].
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6 Conclusion

We presented a new technique to mitigate a performance problem of access-
based localization technique. Our technique enables access-based localization to
efficiently handle complex procedure calls such as recursive cycles. Our technique
is general in that it is applicable to any analysis problems that use access-based
localization. We proved the effectiveness of our technique by experiments with
a realistic global C static analyzer on a variety of open-source benchmarks.
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Abstract. This paper introduces Datalog Educational System (DES),
a deductive database which supports both Datalog and SQL as query
languages. Since its inception, this system is targeted to educational
purposes rather to develop an efficient, competitive system with respect
to other existing systems. As distinguishing features, it is free, open-
source, multiplatform, interactive, portable, GUI-enabled, implemented
following ISO-Prolog and supports extensions to pure Datalog in the
form of stratified negation, strong constraints, types, metapredicates,
and duplicates. Also, test case generation for SQL views and declarative
debugging for Datalog programs and SQL views are supported. SQL
statements, following ISO standard, are compiled to Datalog programs
and solved by its inference engine. Nonetheless, ODBC connections are
also supported, which enables access to external DBMSs and benefit from
their solving performance, persistency and scalability.

Keywords: Deductive Databases, Relational Databases, Datalog, SQL,
DES.

1 Introduction

We have witnessed recently the advent of new interest on deductive databases
and emerging companies promoting deductive technologies. Datalog, as a de-
ductive query language, has been extensively studied and is gaining a renowned
interest thanks to their application to ontologies [5], semantic web [7], social
networks [16], policy languages [2], and even for optimization [9]. In addition,
current companies as LogicBlox, Exeura, Semmle, and Lixto embody Datalog-
based deductive database technologies in the solutions they develop.

This paper presents the Datalog Educational System (DES), which born from
the need to teach deductive concepts to postgraduate students. As by that time
there was no open-source, free, multiplatform, and interactive system, we decided
to start this project. It was first released in 2004 and since then, many releases
have been published including features as:
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– Tabling-based deductive engine implementing stratified negation.
– Datalog and SQL query languages sharing the same database.
– Nulls and outer join operations.
– Duplicates and duplicate elimination.
– Text-based interactive system with commands for changing and examining

its state, logging, batch execution, and many more.
– Source-level tracers and declarative debuggers for both Datalog and SQL.
– Strong constraints including types, primary and foreign keys, functional de-

pendencies, and user-defined constraints.
– ODBC connections to seamlessly access external databases.

DES has been developed to be used via an interactive command shell. Nonethe-
less, more appealing environments are available. On the one hand, DES has been
plugged to the multi-platform, Java-based IDE ACIDE [17]. It features syntax
colouring, project management, interactive console with edition and history, con-
figurable buttons for commands, and more. On the other hand, Markus Triska
contributed with an Emacs environment.

The system is implemented on top of Prolog and it can be run from a state-of-
the-art Prolog interpreter (currently, last versions of Ciao, GNU Prolog, SWI-
Prolog and SICStus Prolog) on any OS supported by such Prolog interpreter
(i.e., almost any HW/SW platform). Portable executables (i.e., they do not need
installation and can be run from any directory they are stored) has been also
provided for Windows, Linux, and Mac OS X.

Datalog as supported by DES mainly follows Prolog ISO standard [10], whilst
SQL follows SQL:2008 ISO standard [11]. DES provides several metapredicates
as well, some of them are included to add support for SQL operations:

– Negation. not(Goal) computes the negation of Goal by means of negation
as failure (closed world assumption (CWA) [20]). Goal is located at a higher
strata than the predicate it occurs [20]).

– Aggregates. group by(Relation,Grouping Variables,Condition) creates
groups from Relation w.r.t. Grouping Variables and compute aggregate
data with Condition, which can include expressions with aggregate functions
such as sum(Variable), which returns the running sum of Relation w.r.t.
Variable. If no grouping is needed or it is left to be done automatically, ag-
gregate predicates are also available, as sum(Relation,Variable,Result).

– Duplicate elimination. Metapredicate distinct(Relation) computes dis-
tinct tuples of Relation when duplicates are enabled (with the command
/duplicates on). Also, distinct(Projecting Variables,Relation)per-
forms the same but finding distinct tuples for its first argument, which is a
subset of variables of the second.

– Outer join operations. Nulls and null-related operations coming from the
database community are allowed, as, e.g.: lj(L,R,C), which computes the
left outer join of relations L and R w.r.t. the join condition C [18].

As a running example, we consider a flight database, which can be defined al-
ternatively from either SQL or Datalog:
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% SQL:
CREATE TABLE flight(origin STRING,destination STRING,duration INT);
INSERT INTO flight VALUES (’Madrid’,’Paris’,90);
INSERT INTO flight VALUES (’Paris’,’Oslo’,100);
INSERT INTO flight VALUES (’Madrid’,’London’,110);
% Datalog:
:-type(flight(origin:string,destination:string,duration:int)).
flight(’Madrid’,’Paris’,90).
flight(’Paris’,’Oslo’,100).
flight(’Madrid’,’London’,110).

Each SQL statement above can be interactively introduced at the system prompt
or stored in a file and processed with the command /process FileName. The
Datalog program can be also stored in a file and consulted with the com-
mand /consult FileName. For inserting tuples (or rules, in general) in Dat-
alog, the command /assert Rule is provided. Whilst types are mandatory
in table definition, in Datalog they are optionally declared with the assertion
:-type(Relation,[ColumnType]), where its second argument is a list of col-
umn names and its types (ColumnName:Type). Once one of the programs above
has been consulted, queries can be submitted from the system prompt, as:

DES> SELECT destination FROM flight WHERE origin=’Madrid’
answer(flight.destination) -> { answer(’London’), answer(’Paris’) }
DES> flight(’Madrid’,Destination,Duration)
{ flight(’Madrid’,’London’,110), flight(’Madrid’,’Paris’,90) }

However, while the first query returns the tuples of flight projected by the
argument destination, the second does not. To get a similar output relation,
temporary Datalog views are provided, which allow defining both the projection
of columns and renaming of relations:

DES> dest(Destination) :- flight(’Madrid’,Destination,Duration)
{ dest(’London’), dest(’Paris’) }

For the consulted program, a predicate dependency graph (PDG) [20] is built,
which relates each predicate in the program with all the predicates used to
compute its meaning. From this graph, a stratification [20] is computed, if it
exists, so that negation and aggregate predicates are not involved in cycles. For
solving a query, a subgraph restricted to the predicates occurring in the query
is computed, so that only the meaning of relevant predicates are computed,
following a top-down driven approach rather than a bottom-up. Even when a
given PDG is non-stratifiable, it is possible that the subgraph for a given query
could be as long as this subgraph does not involve such offending cycles.

2 System Architecture

Figure 1 barely depicts the system architecture of DES. Datalog programs are
stored in an in-memory Prolog database. Datalog queries are solved by the de-
ductive engine relying on a cache to store results from fixpoint computations.
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These are computed by using a tabling technique [6], which finds its roots in dy-
namic programming. The data structure holding these results is called extension
table (ET). Displaying the results for a Datalog query amounts to inspect ET
for entries matching the query after its solving. In turn, SQL views and tables
are stored in two alternative repositories.

DES

Datalog SQL

Deductive Engine

Cache

In-memory
Prolog

DB

ODBC
(MySQL, Access, 
 SQL Server, 
 Oracle, DB2,...) 

Fig. 1. System Architecture

First alternative for dealing with SQL state-
ments is to use the very same Prolog DB. For this,
views are translated into Datalog programs and ta-
bles into predicates consisting only of facts. SQL
row-returning statements are compiled to and ex-
ecuted as Datalog programs (basics can be found
in [20]), and relational metadata for DDL state-
ments are kept. For solving such a query, it is
compiled to a Datalog program including the re-
lation answer/n with as many arguments as ex-
pected from the SQL statement. Then, this program
is stored in the Prolog DB, and the Datalog query
answer(X1, . . . , Xn), where Xi : i ∈ {1, . . . , n} are
n fresh variables, is submitted. Results are cached in ET and displayed eventu-
ally from this table. After its execution, this Datalog program is removed. On
the contrary, if a data definition statement for a view is submitted, its translated
program and metadata do persist. This allows Datalog programs to seamlessly
use views created at the SQL side (also tables since predicates are used to im-
plement them). The other way round is also possible if types are declared for
predicates (further work may include an automatic type assertion via type in-
ferencing). In order to maintain consistency, the cache is cleared whenever the
database is updated via asserting Datalog rules, creating SQL views or modifying
base tables via INSERT, DELETE or UPDATE SQL statements.

Second alternative is to use the ODBC bridge to access external databases
therefore taking advantage from their solving performance, persistency and scal-
ability. Submitting a CREATE VIEW SQL statement amounts to forward it to the
external database through the ODBC connection. This statement is processed
by the external database and operation success is returned to DES, which does
not use the Prolog DB for SQL statements anymore. A SQL row-returning state-
ment is also submitted through the bridge, which returns result tuples that are
cached by DES. Datalog programs and queries can refer to SQL data because
the bridge provides a view to external data sources as Datalog predicates. How-
ever, in this second alternative, the other way round is not possible yet, as the
external data engine is not aware of the deductive data.

3 Source-to-Source Program Transformations

Asserting a Datalog rule involves several steps. First, parsing builds a syntactic
tree for valid rules. If errors are found, an exception is raised with error location
and source data. Otherwise, a preprocessing stage is performed, consisting of:
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– Simplify successive applications of not(Goal) to avoid more strata than
strictly needed. As well, applications of this predicate to comparison built-ins
(as =, <, . . . ) are translated to the complemented versions (\=, >=, . . . , resp.)
Finally, a compound goal is also allowed and it is defined as the body of a rule
for a brand new predicate where its arguments are the relevant variables in
Goal. The single argument of not is replaced by a straight call to this predi-
cate (e.g., the goal not((p(X),q(X))) is translated into not(’$p1’(X)) and
the rule ’$p1’(X):-p(X),q(X) is added to the program).

– Aggregate predicates can include compound goals as aggregate relations.
These relations are computed before the aggregation itself (sum, average,
etc.) following a similar, stratified approach as for computing negation.
Therefore, compound goals are also translated as for negation.

– Since disjunctive bodies are allowed, a rule containing a disjunction is trans-
formed to as many rules as needed (e.g., p(X):-q(X);r(X) is translated
into p(X):-’$p1’(X) and the rules ’$p1’(X):-q(X) and ’$p1’(X):-r(X)
are added to the program).

– Program simplification can be enabled with the command /simplify on,
which amounts to remove true goals, unify variables, simplify Boolean con-
ditions, and evaluate arithmetic expressions.

– Program transformation for safe rules can also be enabled with the command
/safe on, which reorder goals in a rule if this rule is unsafe (Section 4).

– Finally, outer joins are translated, first, in order to be solved without re-
sorting to metapredicates as described in [18] and, second, so that rela-
tions to be joined are not compound by adding as many predicates as
needed (e.g., lj(rj(p(X),q(Y),X>Y),r(Z),Z>=X) would be translated into
lj(’$p1’(X,Y)),r(Z),Z>=X) and rule ’$p1’(X,Y):-rj(p(X),q(Y),X>Y)
added to the database).

4 Compile-Time Analyses

DES conducts compile-time analysis to detect unsafe rules. Classic safety [20,22]
refers to built-in predicates that can be source of infinite relations, in con-
trast to user-defined predicates, which are always finite. For instance, the rule
less(X,Y):-X<Y is unsafe since the built-in < can be source of infinite data (its
meaning must include any pair such that its first argument is less than its sec-
ond one). Negation requires its argument to have no unsafe variables, i.e., those
which are not bound by a former data provider (as a call to a user-defined pred-
icate). Built-in X is Expr evaluates the arithmetical expression Expr, so that
Expr is also demanded to be ground and, thus, all its variables must be safe.

Another source of unsafety, departing from the classical notion, resides in
metapredicates as distinct/2 and aggregates. A set variable is any variable
occurring in a metapredicate such that it is not bound by the metapredicate.
For instance, Y in the goal distinct([X],t(X,Y)) is a set variable, as well as in
group by(t(X,Y),[X],C=count). Because computing a goal follows SLD order,
if a set variable is used after the metapredicate, as in distinct([X],t(X,Y)),
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p(Y), then this is an unsafe goal as in the call to distinct, Y is not bound,
and all tuples in t/2 are considered for computing its outcome. Swapping both
subgoals yields a safe goal. So data providers for set variables are only allowed
before their use in such metapredicates.

Along program transformation, unsafe rules can be automatically generated,
as in the translations of outer joins. However, they are safe because of their
use: unsafe arguments of such rules are always given as input in goals. So, mode
information for predicates is handled throughout program compilations to detect
truly unsafe rules, avoiding to raise warnings about system generated rules.

The analysis allows deciding whether a rule is safe and, if so, it is transformed
by reordering the goals in order to make it computable. An error is raised when
a rule or query is actually unsafe (e.g., the rule p(X):-X<Y is unsafe because
of Y), whereas a warning is issued if the rule might be safely computed (e.g.,
less(1,2) can be safely computed since its arguments are ground).

5 Strong Constraints

Consistency constraints over data are known as strong integrity constraints in the
deductive database area. Examples of such integrity constraints in the relational
field are primary keys and foreign keys, to name a few. As well, constraints
in deductive systems as DLV [14] or XSB [19] implementing stable model [8]
and well-founded model semantics [21], respectively, are otherwise understood
as model filters. In these cases, since a database can have several models, only
those fulfilling constraints are included in the answer, therefore discarding unfea-
sible models from the answer. In DES, instead, we focus on integrity constraints
as understood in the relational field in order to provide a means to detect in-
consistent data with respect to user requirements, including types, primary and
foreign keys, functional dependencies, and user-defined constraints.

As an example of constraint, in addition to the type constraint in Section 1,
let’s consider :-pk(flight,[origin,destination]), which defines the column
pair in the list to be a primary key for flight. Also, assuming:

connected(O,D,T) :- flight(O,D,T).
connected(O,D,T) :- flight(O,A,T1),connected(A,D,T2),T is T1+T2.

Then, :-group by(connected(O,D,T),[O,D],S=sum(T)),S>=300 is a user con-
straint limiting the duration from an origin to a destination to be less than 300
minutes. Notice that, as usual in the deductive field and contrary to the norm
in SQL, an integrity constraint specifies unfeasible values rather than feasible.

6 Tracing and Debugging

In contrast to imperative programming languages, deductive and relational data-
base query languages feature solving procedures which are far from the query
languages itself. Whilst one can trace an imperative program by following each
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statement as it is executed, along with the program state, this is not feasible in
declarative (high abstraction) languages as Datalog and SQL.

Similarly, SQL represents a true declarative language which is even farthest
from its computation procedure than Prolog. Indeed, the execution plan for
a query include transformations considering data statistics to enhance perfor-
mance. These query plans are composed of primitive relational operations (such
as Cartesian product) and specialized operations for which efficient algorithms
have been developed, containing in general references to index usage.

Therefore, instead of following a more imperative approach to tracing, here
we focus on a (näıve) declarative approach which only take into account the out-
comes at some program points. This way, the user can inspect each point and
decide whether its outcome is correct or not. This approach will allow examining
the syntactical graph of a query, which possibly depends on other views or pred-
icates (SQL or Datalog, resp.) In the case of Datalog queries, this graph contains
the nodes and edges in the dependency graph restricted to the query, ignoring
other nodes which do not take part in its computation. In the case of SQL, the
graph shows the dependencies between a view and its data sources (in the FROM
clause). Available commands for tracing Datalog and SQL are /trace datalog
Goal and /trace sql View, respectively.

Algorithmic debugging is also applied to both Datalog and SQL, following
[3] and [4], respectively. Similar to how tracing traverses the dependency graph,
the debugger in addition prunes paths in the graph by asking the user about
validity of its nodes. Available commands for enabling this kind of debugging
are /debug datalog Goal and /debug sql View.

7 Conclusions

This paper has presented DES, a deductive system used in many universities
(http://des.sourceforge.net/des_facts) for which its downloading statis-
tics (http://des.sourceforge.net/statistics) reveal it as a live project (a
new release is expected every two or three months). Statistical numbers show
a notable increasing number of downloads, amounting up to more than 1,500
downloads a month, more than 35,000 downloads since 2004.

Features that, as a whole, distinguish DES from other existing systems as
DLV [14], XSB [19], bddbddb [13], LDL++ [1], ConceptBase [12], and .QL [15]
include null support and outer join operations, duplicates, strong constraints,
full-fledged arithmetic, multi-platform, interactiveness, multi-language support,
freeness, and open-sourcing, among others. In particular, no one supports outer
join operations and full support for duplicates (not only for base relations as
LDL++ but also for any rule).
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Views. In: Ershov Informatics Conference (PSI 2011). Springer, Heidelberg (2011)

5. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: Datalog±: a unified approach to ontologies
and integrity constraints. In: ICDT 2009: Proceedings of the 12th International
Conference on Database Theory, pp. 14–30. ACM, New York (2009)

6. Dietrich, S.W.: Extension tables: Memo relations in logic programming. In: IEEE
Symp. on Logic Programming, pp. 264–272 (1987)

7. Fikes, R., Hayes, P.J., Horrocks, I.: OWL-QL - a language for deductive query
answering on the Semantic Web. J. Web Sem. 2(1), 19–29 (2004)

8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP, pp. 1070–1080. MIT Press (1988)

9. Greco, S., Trubitsyna, I., Zumpano, E.: NP Datalog: A Logic Language for NP
Search and Optimization Queries. In: International Database Engineering and Ap-
plications Symposium, pp. 344–353 (2005)

10. ISO/IEC. ISO/IEC 132111-2: Prolog Standard (2000)
11. ISO/IEC. SQL:2008 9075(1-4,9-11,13,14) Standard (2008)
12. Jarke, M., Jeusfeld, M.A., Quix, C. (eds.): ConceptBase V7.1 User Manual. Tech-

nical report, RWTH Aachen (April 2008)
13. Lam, M.S., Whaley, J., Livshits, V.B., Martin, M.C., Avots, D., Carbin, M.,

Unkel, C.: Context-sensitive program analysis as database queries. In: Li, C. (ed.)
Proceedings of the Twenty-fourth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS), pp. 1–12. ACM (2005)

14. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The DLV system for knowledge representation and reasoning. ACM Tran. on Com-
putational Logic 7(3), 499–562 (2006)

15. Ramalingam, G., Visser, E. (eds.): Proceedings of the Workshop on Partial Eval-
uation and Semantics-based Program Manipulation. ACM (2007)

16. Ronen, R., Shmueli, O.: Evaluating very large Datalog queries on social networks.
In: EDBT 2009: Proceedings of the 12th International Conference on Extending
Database Technology, pp. 577–587. ACM, New York (2009)
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Abstract. The well-known third list homomorphism theorem states
that if a function h is both an instance of foldr and foldl , it is a list
homomorphism. Plenty of previous works devoted to constructing list
homomorphisms, however, overlook the fact that proving h is both a
foldr and a foldl is often the hardest part which, once done, already pro-
vides a useful hint about what the resulting list homomorphism could
be. In this paper we propose a new approach: to construct a possible
candidate of the associative operator and, at the same time, to trans-
form a proof that h is both a foldr and a foldl to a proof that h is a list
homomorphism. The effort constructing the proof is thus not wasted,
and the resulting program is guaranteed to be correct.

1 Introduction

A function h on lists is called a list homomorphism [1] if it satisfies

h (xs ++ ys) = h xs � h ys , (1)

for some associative operator (�). We wish to identify list homomorphisms due
to potential chances of parallelisation: to compute h, one may arbitrarily split
the input list into xs ++ ys , compute h xs and h ys in parallel, and combine the
results using (�).

The well-known third list-homomorphism theorem [7] says that a function is a
list homomorphism if it can be described as an instance of both foldr and foldl .
That is, there exists (�) satisfying (1) if

h = foldr (�) e = foldl (�) e, (2)

for some (�) and (�). For example, sum = foldr (+) 0 = foldl (+) 0 and, indeed,
there exists an (�) such that sum (xs ++ ys) = sum xs � sum ys — for this simple
example, (�) happens to be (+) as well. The proof presented by Gibbons [7]
showed that (1) can be satisfied by picking x� y = h (h−1 x ++ h−1 y), where h−1

is a weak inverse of h, that is, one such that h−1 (hx) = x, which always exists
if we assume a set-theoretic semantics.

One naturally wonders whether list homomorphisms can be mechanically con-
structed. Hu et al. [8] proposed to construct list homomorphisms by fusion with
existing ones. Geser and Gorlatch [6] applied term rewriting techniques to con-
struct a definition of (�) from that of (�) and (�). More recent developments at-
tempt to apply the third list-homomorphism theorem to mechanical construction
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of list homomorphisms. Morita et al. [10] proposed to automatically construct
(�) by picking some weak inverse h−1 and simplifying h (h−1 x++h−1 y). For sum,
one might pick sum−1 x = [x], and the system simplifies sum (sum−1 x++sum−1 y)
to x + y. For the method to work, it is preferred that h−1 has a simple, non-
recursive definition, such that h (h−1 x ++ h−1 y) can be easily simplified. The
method may even be generalised to trees [9].

Elegant as the approach is, when put into practice, however, one cannot help
feeling that we have been solving the wrong problem. In all but the most simple
cases, efforts are needed to prove (2), that the foldr and foldl definitions of h
do define the same function. It occurs often that one of (�) or (�) is picked as
the definition of h, while the other is much harder to find. If the two definitions
coincide so obviously that a proof is not necessary, like in the case of sum, the
choice of (�) is often equally trivial that a calculation/proof would be merely
stating the obvious.

Once we have both (�) and (�), the operator (�) can often be constructed
in an ad-hoc but effective manner: we may have a fairly good guess of (�) by
mixing fragments of code of (�) and (�). We are still left with proving (1), but
the proof often turns out to be very similar to that of (2). For a number of
examples we fail to see the weak inverse approach applicable: we may have (�)
constructed, but cannot find any simple h−1 that “explains” its discovery.

For such problems, one may turn to the approach of Geser and Gorlatch [6]. An
inherent disadvantage of term rewriting, however, is the lack of semantic concerns
— having produced some (�) offers no direct guarantee that it is correct. One
would still like to have a proof of (1).

The way to go, we propose, is to transform the proof of (2), which we have to
provide anyway, to a proof of (1), after assembling a possible definition of (�)
from that of (�) and (�).

Program Construction: Syntax v.s. Semantics. In program calculation one trans-
forms a problem specification to a program through algebraic manipulation,
thereby guaranteeing its correctness. The program and its correctness proof are
developed at the same time.

During the process one is often encouraged to think formally, that is, to think
in terms of the syntax rather than the semantics. Rather than focusing on the
particular problem domain, the development of the program is ideally driven by
syntatical guidelines such as achieving symmetry of expressions, matching the
expression against certain forms, and exploiting algebraic properties such as a
fusion theorem or the associativity of certain operators. The wish is to relieve
programmers of the burden of the complexity in the problem domain through
syntactical means — just like how we manipulate arithmetic expressions, using
well-designed algebraic rules, without thinking what they “mean.” As the slogan
says, “let the symbols do the work” [5].

One of the main aims of researchers is therefore to develop convenient no-
tations and theorems that apply generically to a wide range of problems. Such
a style, however, could unfortunately have an unhealthy effect when taken to
the extreme. Plenty of works on program calculation claim to have discovered
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generic theorems that, once the problem specification is put into a certain form
or shown to satisfy certain properties, can be applied formally and mechanically
to construct an algorithm. Swept under the carpet, however, is the fact that
molding the problem into the form or proving the required properties could be
hard to carry out formally without domain specific, semantic knowledge. If it
can be done, the programmer might have got hold of sufficient knowledge of
the problem to just write up the program and, if still necessary at all, prove it
correct afterwards.

This shall not be taken as a defect of the methodology. Instead, the value of
program calculation is to separate the mechanical, routine process from those
critical components that require insight into individual problems. Particularly
when we face interesting problems, parts of the development have to be “seen”
with the help of the programmer’s semantical intuition of the problem, which is
then formally proved afterwards. We wish, however, that the efforts doing the
proof are not wasted.

Constructing list homomorphisms provides plenty of such examples. As we
will see in the forthcoming sections, constructing (�) from (�) in a purely for-
mal manner could be rather hard. The programmer might find it much easier
to speculate a possible candidate for (�), which requires insight into the specific
problem, and prove it correct afterwards. Once it is done, however, the construc-
tion of (�) is relatively mechanical. Our wish is that the effort constructing and
proving (�) is not wasted — it can be used to guide the process finding (�).
Contributions. While plenty of previous work devoted to the construction of (�)
from the definitions of (�) and (�), the novelty of our approach lies in expoiting
the information in the proof of that foldr (�) e equals foldl (�) e. The effort
proving (2) is thus not wasted. We find that this approach works for a number
of problems that cannot be handled by previous approaches.

After giving a brief review of the concepts needed for this paper in Section
2, we demonstrate our method using three examples: the steep list problem,
parallel scan, and a program returning the indexes of those elements in a list
that satisfies a given predicate, in Section 3, 4, and 5, before we conclude in
Section 6.

2 Preliminaries

We assume a set theoretic model for total functional programming, where a
function A� B is a subset of A�B that is total (every value in A is mapped to
something in B) and simple (every value in A is mapped to at most one value
in B).

2.1 Folds and List Homomorphisms

As is well-known, given e �� B and (�) �� A � B � B, the following equations
have a unique solution for h �� [A] � B:

h [ ] = e
h (x � xs) = x � h xs,
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which is denoted foldr (�) e. The foldr -fusion law is among the most important
theorems one needs to know about foldr :

f � foldr (�) e = foldr (ll) (f e) 	 f (x � z) = xll f z.

Not all functions are foldr s. Let 
h, k�x = (hx, k x). For all function h taking a
list as its input, 
h, id� can always be defined in terms of a foldr . It is also often
the case that 
h, k� could be implemented, as a foldr , more efficiently than h
alone. The technique of finding the right k to tuple with h is called tupling and
is now a well-known functional programming technique [8].

Symmetrically, foldl (�) e is the unique solution for h given the equations:

h [ ] = e
h (xs ++ [x]) = h xs � x,

where (�) �� B � A� B. Like foldr , given h, we can often compute it faster in a
foldl by tupling it with another function.

A function h is called a list homomorphism if it satisfies the following equations
for some e, f , and (�):

h [ ] = e
h [x] = f x
h (xs ++ ys) = h xs � h ys .

The equations imply that (�) is associative with identity e. If the equations
hold, we denote h by hom (�)f e. For any function h on lists, 
h, id� is always
a list homomorphism [4]. The equations form a terminating definition if xs and
ys in the last clause are restricted to non-empty lists. When h is also defined as
a foldr or a foldl , the cases for h [ ] and h [x] are determined and often omitted
in this paper.

2.2 From Duality to Homomorphism

The second duality theorem of Bird [2, page 128] states that foldr (�) e = foldl (�
) e if

z � e = e � z � (x � y) � z = x � (y � z). (3)

When (3) holds, (�) and (�) are said to associate with each other.1 We present
here a quick proof of the theorem. Let h = foldr (�) e. To show that h = foldl (�) e
it is sufficient to prove that h (xs ++ [z]) = h xs � z, which, written point-free, is
h � (++[z]) = (� z) � h. We perform foldr -fusion on both sides:

h � (++[z])

= { foldr -fusion, since (++[z]) = foldr (�) [z] }
1 By Bird [2]. One could argue that (3) is commutivity: (� z) � (x �) = (x �) � (� z).
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foldr (�) (h [z])
= { foldr -fusion (backwards), see below }
(� z) � foldr (�) e

= (� z) � h.

The fusion conditions of the first foldr -fusion trivially holds, while those for the
second fusion are h [z] = (� z) e and (� z)(x � y) = x � ((� z) y), which expands
to (3).

To show that h is a list homomorphism, we have to construct (�) such that
h (xs ++ ys) = h xs � h ys . The calculation is very similar to the one above. The
equation can be written in point-free style as h � (++ys) = (�h ys) � h. To find
out conditions under which the equality holds, we perform foldr -fusion on both
sides:

h � (++ys)
= { foldr -fusion, since (++ys) = foldr (�) ys }

foldr (�) (h ys)
= { foldr -fusion (backwards), see below }
(�h ys) � foldr (�) e

= (�h ys) � h,

which follows a pattern similar to the calculation above. The conditions we need
for the second fusion are h ys = (�h ys) e and (�h ys) (x � y) = x � ((�h ys) y),
that is,

h ys = e� h ys � (x � y) � h ys = x � (y � h ys). (4)

Since (�) is in essence a special case of (�), it is not surprising that a proof of
(3) can be generalised to a proof of (4). In fact, inspecting the proof of (3) may
give us useful hints what (�) could be.

Our aim, therefore, is to come up with a definition of (�), together with its
correctness proof, given e, (�), (�), and a proof of their associativity.

There is no reason to bias on one side, though. With a symmetric development,
one can show that h is a list homomorphism if

h xs = h xs � e � h xs � (y � z) = (h xs � y) � z. (5)

Both directions will be handy in this paper.

3 The Steep List Problem

A list of numbers is said to be steep if it descends (or ascends, if read right-to-
left) so rapidly that each number is larger than the sum of the numbers to its
right. Formally:

steep �� [Int] � Bool
steep [ ] = True
steep (x � xs) = x  sum xs � steep xs.
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The problem has been used as an introductory example to tupling: definition
of steep above is a quadratic time program, while the function steepsum =

steep, sum� can be computed in linear time in a foldr [3].

Can we determinine the steepness of a list in a foldl and, thereby, in a list
homomorphism? It turns out that steep does not carry enough information to be
computed in a foldl and we have to generalise further. Let cap xs , the capacity
of xs, be a (non-inclusive) upper-bound of values we can attach to the right of xs
and still keep it steep. That is, for all y, xs ++[y] is steep if and only if y < cap xs .
For example, cap [9,5,3] = 1, since 9 � 5 + 3 + x for x  1; also, cap [9,4,2] = 2,
since 4 � 2 + x for x  2.

Definition of cap is generalised from that of steep:

cap �� [Int] � Int
cap [ ] = �
cap (x � xs) = (x − sum xs) � cap xs,

where (�) returns the minimum of its two arguments. Some intuition for the
inductive case: for x � xs ++ [y] to be steep, we need x  sum xs + y, and thus the
“margin” x−sum xs is an upper-bound for y. Furthermore, xs++[y]must be steep
as well. Therefore, inductively, cap xs is another bound for y. By formalising the
argument one easily comes up with an inductive proof that steep xs � cap xs  0.

Since sum and cap are both foldr s, so is capsum xs = (cap xs, sum xs):

capsum �� [Int] � (Int , Int)
capsum [ ] = (�,0)
capsum (x � xs) = let (c2, s2) = capsum xs in ((x − s2) � c2, x + s2).

Can cap be computed in a foldl? As we will see in Section 3.1, it is rather difficult
to construct, purely by formal calculation, a foldl definition of cap from the foldr
definition (and vice versa). By thinking semantically, one might guess that

cap (xs ++ [z]) = (cap xs − z) � z.

The rationale is that cap (xs ++[z]) is the minimum of two upper-bounds: firstly,
having z on the right-end lowers the upper-bound cap xs by z, and secondly, z
itself is a upper-bound. We may thus also define capsum as a foldl :

capsum [ ] = (�,0)
capsum (xs ++ [z]) = let (c1, s1) = capsum xs in ((c1 − z) � z, s1 + z).

Without a proof, however, one cannot be confident that the two definitions of
cap (and thus capsum) do define the same function. Once the proof of their
equivalence is done, however, we would be taking an unnecessarily long route
if we abandon all the efforts above, start from scratch, and try to construct
(c1, s1) � (c2, s2) = capsum (capsum−1 (c1, s1) ++ capsum−1 (c2, s2)) — for this
example, in fact, we have failed to come up with a simple capsum−1.

Instead, it turns out that the homomorphic definition of capsum is assembled
from parts of its foldr and foldl definitions:

capsum (xs ++ ys) = let � (c1, s1) = capsum xs; (c2, s2) = capsum ys �
in ((c1 − s2) � c2, s1 + s2).
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Still, one needs a proof that the definition above does coincide with the foldr
definition. The proof highly resembles the proof of the associativity. One thus
wonders whether it is possible to somehow reuse the definitions and proofs, which
will be done in Section 3.2.

3.1 Constructing (�) Formally

In the opening of this section we have argued, semantically, that capsum =
foldr (�) (�,0) = foldl (�) (�,0), where

x � (c2, s2) = ((x − s2) � c2, x + s2),
(c1, s1) � z = ((c1 − z) � z, s1 + z).

Before we proceed with constructing the homomorphic definition of capsum ,
we show in this section that it is hard to construct (�) from (�) in a purely
syntactical manner. This echos our observation in the next subsection that the
proof of (x � y) � z = x � (y � z), which has to be done if (�) is not derived,
already provides plenty of information necessary to construct (�). Finding (�)
is thus where all the hard work is.

Here is an attempt. We assume that (c, s) � z = (f1 c s z, f2 c s z) for some
f1 and f2, which we shall try to construct such that z � (�,0) = (�,0) � z and
(x � (c, s)) � z = x � ((c, s) � z). We start from the left-hand side of the latter:

(x � (c, s)) � z

= { definition of (�) }
((x − s) � c, x + s) � z

= { definition of (�) }
(f1 ((x − s) � c) (x + s) z, f2 ((x − s) � c) (x + s) z).

Now that we are stuck, we expand the right-hand side:

x � ((c, s) � z)

= { definition of (�) }
x � (f1 c s z, f2 c s z)

= { definition of (�) }
((x − f2 c s z) � f1 c s z, x + f2 c s z).

We shall try to somehow unify the two resulting expressions.
The simplest choice of f2 such that f2 ((x − s) � c) (x + s) z = x + f2 c s z

would be f2 c s z = s, which unfortunately fails the requirement that z � (�,0) =
(�,0) � z, which expands to

(z, z) = (f1 � 0 z, f2 � 0 z). (6)

It may be the next logical choice to try f2 c s z = s + z, which turns out to be
correct. Having found f2, we shall then unify

f1 ((x − s) � c) (x + s) z and (x − (s + z)) � f1 c s z.
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Which is no easy task. The simplest choice is f1 c s z = c − z, which unifies the
two expressions,

f1 ((x − s) � c) (x + s) z = ((x − s) � c) − z

= (x − s − z) � (c − z) = (x − (s + z)) � f1 c s z,

but again turns out to be wrong because it fails the requirement in (6) that
f1 � 0 z = z. It takes some creativity to come up with f1 c s z = (c � z) − z,
which is best explained by the semantical view in the beginning of this section.

3.2 Computing Capacity by a List Homomorphism

Return to the problem of constructing capsum as a list homomorphism. From the
discussion in Section 2.2, to prove that capsum = foldr (�) (�,0) = foldl (�) (�,0)
we need to prove that

z � (�,0) = (�,0) � z � (x � y) � z = x � (y � z),

where x � (c2, s2) = ((x − s2) � c2, x + s2) and (c1, s1) � z = ((c1 − z) � z, s1 + z).
While we have have seen in Section 3.1 that it is hard to construct (�) in a
purely syntactical manner, once we have somehow conjectured (�), the proof of
its correctness is routine. To show that (�) and (�) associate, we reason:

(x � (c, s)) � z

= { definition of (�) }
((x − s) � c, x + s) � z

= { definition of (�) }
((((x − s) � c) − z) � z, x + s + z)

= { (−z) distributes over (�) }
(((x − s − z) � (c − z)) � z, x + s + z)

= { arithmetics }
(((x − (s + z)) � ((c − z) � z), x + s + z)

= { definition of (�) }
x � ((c − z) � z, s + z)

= { definition of (�) }
x � ((c, s) � z).

The proof will be referred to as the “proof of associativity”. The aim now is to
construct a definition of (�) and generalise the proof above to a proof of

(c2, s2) = (�,0) � (c2, s2) � (x � y) � (c2, s2) = x � (y � (c2, s2)),

for all (c1, s1) in the range of capsum .
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Since (�) is a generalisation of (�), we start with replacing the occurrences
of z in (�) by metavariables. Our first guess is

(c1, s1) � (c2, s2) = ((c1 −X1) �X2, s1 +X3).

To prove that (x � y) � (c2, s2) = x � (y � (c2, s2)) we copycat the steps in the
proof of associativity. Starting from (x � (c, s)) � (c1, s1), we reason:

(x � (c, s)) � (c2, s2)

= { definition of (�) }
((x − s) � c, x + s) � (c2, s2)

= { definition of (�) }
((((x − s) � c) −X1) �X2, x + s +X3)

= { (−X1) distributes over (�) }
(((x − s −X1) � (c −X1)) �X2, x + s +X3)

= { arithmetics }
(((x − (s +X1)) � ((c −X1) �X2), x + s +X3).

In the next step we are supposed to fold back the definition of (�). To be able
to do so, however, (s +X1) and (s +X3) have to be the same term and we thus
have to unify X1 and X3. The last two steps go:

(((x − (s +X1)) � ((c −X1) �X2), x + s +X1)

= { definition of (�) }
x � ((c −X1) �X2, s +X1)

= { definition of (�) }
x � ((c, s) � (c2, s2))

Thus the definition of (�) is now refined to

(c1, s1) � (c2, s2) = ((c1 −X1) �X2, s1 +X1),

for some X1 and X2. Notice that any choice of X1 and X2 would allow the
proof to go through. In a sense, we have exploited all information from the proof
above; it could tell us no more about X1 and X2!

To figure out X1 and X2 we turn to the base case, where to have to show that
(c2, s2) = (�,0) � (c2, s2). Expanding the right-hand side, we get

(c2, s2) = ((�−X1) �X2,0 +X1).

An obvious choice would be X1 = s2 and X2 = c2. We have thus discovered that
(c1, s1)�(c2, s2) = ((c1−s2)�c2, s1+s2). This (�) has got to be correct, because
we have the proof already!

As a remark, similar principles can be applied to derive a list-homomorphic
solution of the maximum segment sum problem. We will need a four-tuple whose
components respectively store the maximum segment sum, prefix sum, suffix
sum, and the total sum. The calculation is tedious, but not essentially harder.
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4 Parallel Scan

Constructing the list-homomorphic definition of scanr is dealt with in Hu et
al. [8] and Geser and Gorlatch [6], but notably not in Morita et al [10]. In this
section we present our solution. The function scanr (�) e applies foldr (�) e
to every tail of its input list. It is well known that scanr (�) e = foldr (�) [e] =
foldl (�) [e] if (�) is associative with unit e, where

x � ys = (x� head ys) � ys ,
ys � z = map (� z) ys ++ [e].

The proof of associativity of (�) and (�) is given below, where ys , being in the
range of scanr (�) e, is a non-empty list.

(x � ys) � z

= { definition of (�) }
((x� head ys) � ys) � z

= { definition of (�) }
map (�z) ((x� head ys) � ys) ++ [e]

= { definition of map }
((x� head ys) � z) �map (�z) ys ++ [e]

= { associativity of � }
(x� (head ys � z)) �map (�z) ys ++ [e]

= { f(head xs) = head (map f xs) }
(x� head (map (�z) ys)) � map (�z) ys ++ [e]

= { head xs = head (xs ++ ys) if xs non-empty }
(x� head (map (�z) ys ++ [e])) � map (�z) ys ++ [e]

= { definition of (�) }
x � (map (�z) ys ++ [e])

= { definition of (�) }
x � (ys � z).

We aim to construct (�) and generalise the proof above to a proof of

zs = [e] � zs � (x � ys) � zs = x � (ys � zs),

where zs is also an non-empty list. One possible candidate of (�) is obtained by
replacing the sole occurrence of z in (�) by a metavariable:

ys � zs = map (�X1) ys ++ [e].

We may proceed with it and show that it indeed satisfies every step in the proof,
that is, for such a choice it is true that (x � ys)�zs = x � (ys�zs), whatever X1 is.
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This candidate fails, however, when we consider the base case zs = [e]�zs, which
expands to zs = X1 � [e] and restricts zs to lists having exactly two elements.
Apparently our (�) is not general enough.

To allow zs to be of arbitrary length, one possibility is to generalise [e] to X2

— an instance of the common technique to generalise occurrences of constants
to metavariables. The proof goes:

(x � ys) � zs
= { definition of (�) }
((x� head ys) � ys) � zs

= { conjecture: ys � zs =map (�X1) ys ++X2 }
map (�X1) ((x� head ys) � ys) ++X2

= { definition of map }
((x� head ys) �X1) � map (�X1) ys ++X2

= { associativity of (�) }
(x� (head ys �X1)) � map (�X1) ys ++X2

= { f (head xs) = head (map f xs) }
(x� head (map (�X1) ys)) �map (�X1) ys ++X2

= { head xs = head (xs ++ ys), if xs non-empty }
(x� head (map (�X1) ys) ++X2) � map (�X1) ys ++X2

= { definition of (�) }
x � (map (�X1) ys ++X2)

= { definition of (�) }
x � (ys � zs).

Thus another possible choice is ys � zs = map (�X1) ys ++X2, which also allows
the proof of (x � ys)�zs = x � (ys�zs) to go through. The base case zs = [e]�zs ,
this time, expands to

zs = map (�X1) [e] ++X2 =X1 � X2.

We may pick X1 = head zs and X2 = tail zs, and have thus discovered (�),

ys � zs = map (� head zs) ys ++ tail zs.

5 Reasoning with Conditionals

Our last example is chosen to demonstrate calculation involving conditional ex-
pressions, and the symmetric property that h is a list homomorphism if (5)
holds, which is repeated here,

h xs = h xs � e � h xs � (y � z) = (h xs � y) � z.
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Given a predicate p �� a � Bool , the function pos p �� [a] � [Int] returns
the indexes of elements in the input list that satisfy p. For example, pos (�
5) [6,8,4,2,0,10] = [0,1,5]. For a definition,

pos �� (a � Bool) � [a] � [Int]
pos p [ ] = [ ]
pos p (x � xs) = let ys = pos p xs

in if p x then 0 � map (1+) ys else map (1+) ys .

To compute pos in a foldl , we have to tuple it with length. Let poslen =
pos , length�,
we claim that poslen = foldr (�) ([ ],0) = foldl (�) ([ ],0), where

x � (ys , n) = (if p x then 0 � map (1+) ys else map (1+) ys ,1 + n),
(ys , n) � z = (if p z then ys ++ [n] else ys , n + 1).

When we construct a proof of (4) in Section 3.2, the step where we fold back the
definition of (�), due to repeated occurrences of s2, is the step that triggered
unification of metavariables. For poslen , we could construct (�) and a proof
of (4), but more guesswork is involved. Since (�) for poslen shares one more
variable, n, in both components of the pair, it could be, and indeed is, easier to
try the other direction — to generalise the proof of associativity to a proof of
(5). That way we will be folding (�) instead of (�), which possibly allows more
unification to happen.

That z � ([ ],0) = ([ ],0) � z can be easily verified. The proof that (�) and
(�) associate is given below. To adapt to (5), the proof starts from a different
side. For brevity we use the Bird-Meertens notation denoting map f by f�, and
denote if p then e1 else e2 by �p� e1, e2�.

x � ((ys , n) � z)

= { definition of (�) }
x � (�p z � ys ++ [n], ys�, n + 1)

= { definition of (�) }
(�px � 0 � (1+)� �p z � ys ++ [n], ys�,

(1+)� �p z � ys ++ [n], ys��,
1 + n + 1)

= { transposition of nested-if }
(�p z � �px � (0 �) � (1+)�, (1+)�� (ys ++ [n]),

�px � (0 �) � (1+)�, (1+)�� ys�,
1 + n + 1)

= { �b � f1 a, f2 a� = �b� f1, f2� a }
(�p z � �px � 0 � ((1+)� ys), (1+)� ys� ++ [1 + n],

�px � 0 � ((1+)� ys), (1+)� ys��,
1 + n + 1)
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= { definition of (�) }
(�px � 0 � (1+)� ys , (1+)� ys�,1 + n) � z

= { definition of (�) }
(x � (ys , n)) � z.

The rule “transposition of nested-if” states that

�p � �q � f1, f2� x1, �q � f1, f2� x2�

= �q � f1 �p � x1, x2�, f2 �p � x1, x2��.

The next step is to construct a definition of (�) together with a proof of h xs�(y �
z) = (h xs � y) � z from the proof of associativity. A possible candidate of (�) is
generalised from the definition of (�):

(ys1, n1) � (ys2, n2) = (�X1 � X2 ++ (X3+)
� ys2, (X4+)

� ys2�,X5 + n).

Applying the lessons learnt in previous sections, we replace subterms involving
x to metavariables, and replace constants by metavariables in a way that allows
flexibility in length.

Now we try to construct a proof of (x � ys)� zs = x � (ys � zs). We follow the
steps of the proof of associativity:

(ys1, n1) � ((ys , n) � z)

= { definition of (�) }
(ys1, n1) � (�p z � ys ++ [n], ys�, n + 1)

= { definition of (�) }
(�X1 � X2 ++ (X3+)

� �p z � ys ++ [n], ys�,
(X4+)

� �p z � ys ++ [n], ys��,
X5 + n + 1)

= { transposition of nested-if }
(�p z � �X1 � (X2++) � (X3+)

�, (X4+)
�� (ys ++ [n]),

�X1 � (X2++) � (X3+)
�, (X4+)

�� ys�,
X5 + n + 1),

Unification happens in the next two steps. In the first step, to move ys into the
conditional while leaving n outside, X3 and X4 must be unified. In the second
step, X5 and X3 are unified to allow the definition of (�) to fold:

(�p z � �X1 � (X2++) � (X3+)
�, (X4+)

�� (ys ++ [n]),
�X1 � (X2++) � (X3+)

�, (X3+)
�� ys�,

X3 + n + 1)
= { �b � f1 a, f2 a� = �b� f1, f2� a }
(�p z � �X1 � X2 ++ ((X3+)

� ys), (X3+)
� ys� ++ [X3 + n],
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�X1 � X2 ++ ((X3+)
� ys), (X3+)

� ys��,
X3 + n + 1)

= { definition of (�) }
(�X1 � X2 ++ (X3+)

� ys , (X3+)
� ys�,X3 + n) � z

= { definition of (�) }
((ys1, n1) � (ys , n)) � z.

Therefore, one possible candidate of (�) is

(ys1, n1) � (ys2, n2) = (�X1 � X2 ++ (X3+)
� ys2, (X3+)

� ys2�,X3 + n2),

which satisfies (x � ys) � zs = x � (ys � zs) for any choice of X1, X2, and X3.
Now we turn to the base case to figure out the rest of the metavariables.

Expanding the base case,

(ys1, n1) = (ys1, n1) � ([],0) = (�X1 � X2, [ ]�,X3),

one bold choice is letting X1 = true, X2 = ys1, and X3 = n1. This completes our
search for (�):

(ys1, n1) � (ys2, n2) = (ys1 ++ (n1+)
� ys2, n1 + n2).

6 Conclusions

Previous discussions on constructing list homomorphisms using the third list
homomorphism theorem often overlook the fact that, for even slightly non-trivial
problems, it is not an easy task to construct one of (�) and (�), given another, in
a constructive, formal manner, and thus an associativity proof is often needed.
The (�) operator, on the other hand, is a generalisation of (�) and (�), whose
proof of correctness also generalises from the proof of associativity. It is thus a
waste throwing the proof away.

We have proposed and demonstrated a novel approach to constructing (�).
Starting with a trivial generalisation of either (�) or (�), we exploit the con-
straint enforced by the proof of associativity to refine (�). Once we have con-
structed (�), we have its correctness proof too. It also explains the phenomena
that in practice, (�) often consists of fragments of code from (�) and (�) —
it can be constructed by generalising from one of them before being refined by
another.
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Abstract. We investigate how to add coercive structural subtyping to a
type system for simply-typed lambda calculus with Hindley-Milner poly-
morphism. Coercions allow to convert between different types, and their
automatic insertion can greatly increase readability of terms. We present
a type inference algorithm that, given a term without type information,
computes a type assignment and determines at which positions in the
term coercions have to be inserted to make it type-correct according to
the standard Hindley-Milner system (without any subtypes). The algo-
rithm is sound and, if the subtype relation on base types is a disjoint
union of lattices, also complete. The algorithm has been implemented in
the proof assistant Isabelle.

1 Introduction

The main idea of subtype polymorphism, or simply subtyping, is to allow the pro-
grammer to omit type conversions, also called coercions. Inheritance in object-
oriented programming languages can be viewed as a form of subtyping.

Although the ability to omit coercions is important to avoid unnecessary clut-
ter in programs, subtyping is not a common feature in functional programming
languages, such as ML or Haskell. The main reason for this is the increase in
complexity of type inference systems with subtyping compared to Milner’s well-
known algorithm W [7]. In contrast, the theorem prover Coq supports coercive
subtyping, albeit in an incomplete manner. Our contributions to this extensively
studied area are:

– a comparatively simple type and coercion inference algorithm with
– soundness and completeness results improving on related work (see the be-

ginning of §3 and the end of §4), and
– a practical implementation in the Isabelle theorem prover. This extension is

very effective, for example, in the area of numeric types (nat, int, real etc),
which require coercions that used to clutter up Isabelle text.

Our work does not change the standard Hindley-Milner type system (and hence
leaves the Isabelle kernel unchanged!) but infers where coercions need to be
inserted to make some term type correct.

The rest of this paper is structured as follows. In §2 we introduce terms,
types, coercions and subtyping. §3 presents our type inference algorithm for

H. Yang (Ed.): APLAS 2011, LNCS 7078, pp. 89–104, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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simply-typed lambda calculus with coercions and Hindley-Milner polymorphism.
In §4, we formulate the correctness and completeness statements and discuss
restrictions on the subtype relation that are necessary to prove them. An outline
of related research is given in §5.

2 Notation and Terminology

2.1 Terms and Types

The types and terms of simply-typed lambda calculus are given by the following
grammars:

τ = α | T | C τ . . . τ

t = x | c[α�→τ ] | (λx : τ. t) | t t

A type can be a type variable (denoted by α, β, . . . ), a base type (denoted by
S, T , U , . . . ), or a compound type, which is a type constructor (denoted by
C, D, . . . ) applied to a list of type arguments. The number of arguments of a
type constructor C, which must be at least one, is called the arity of C. The
function type is a special case of a binary type constructor. We use the common
infix notation τ → σ in this case. Terms can be variables (denoted by x, y, . . . ),
abstractions, or applications. In addition, a term can contain constants (denoted
by c, d, . . . ) of polymorphic type. All terms are defined over a signature Σ that
maps each constant to a schematic type, i.e. a type containing variables. In every
occurrence of a constant c, the variables in its schematic type can be instantiated
in a different way, for which we use the notation c[α�→τ ], where α denotes the
vector of free variables in the type of c (ordered in a canonical way), and τ
denotes the vector of types that the free variables are instantiated with. The
type checking rules for terms are shown in Figure 1.

x : τ ∈ Γ

Γ � x : τ
Ty-Var

Σ(c) = σ

Γ � c[α�→τ ] : σ[α 
→ τ ]
Ty-Const

Γ, x : τ � t : σ

Γ � λx : τ. t : τ → σ
Ty-Abs

Γ � t1 : τ → σ Γ � t2 : τ

Γ � t1 t2 : σ
Ty-App

Fig. 1. Type checking rules

2.2 Subtyping and Coercions

We write τ <: σ to denote that τ is a subtype of σ. The subtyping relation that
we consider in this paper is structural : if τ <: σ, then τ and σ can only differ in
their base types. For example, we may have C T <: C U , but not C T <: S. Type
checking rules for systems with subtypes are often presented using a so-called
subsumption rule
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Γ � t : τ τ <: σ

Γ � t : σ

allowing a term t of type τ to be used in a context where a term of the supertype σ
would be expected. The problem of deciding whether a term is typable using the
subsumption rule is equivalent to the problem of deciding whether this term can
be made typable without the subsumption rule by inserting coercion functions
in appropriate places in the term. Rather than extending our type system with
a subsumption rule, we therefore introduce a new judgement Γ � t � u : τ
that, given a context Γ and a term t, returns a new term u augmented with
coercions, together with a type τ , such that Γ � u : τ holds. We write τ <:c σ
to mean that c is a coercion of type τ → σ. Coercions can be built up from
a set of coercions C between base types, and from a set of map functions M
for building coercions between constructed types from coercions between their
argument types as shown in Figure 2. The sets C and M are parameters of our
setup. We restrictM to contain at most one map function for a type constructor.

Definition 1 (Map function). Let C be an n-ary type constructor. A function
f of type

τ1 → · · · → τn → C α1 . . . αn → C β1 . . . βn

where τi ∈ {αi → βi, βi → αi}, is called a map function for C. If τi = αi → βi,
then C is called covariant in the i-th argument wrt. f , otherwise contravariant.

τ <:id τ
Gen-Refl

Σ(c) = T → U c ∈ C
T <:c U

Gen-Base

T <:c1 U U <:c2 S

T <:λx:T.c2 (c1 x) S
Gen-Trans

mapC : (δ1 → ρ1)→ · · · → (δn → ρn)→ C α1 . . . αn → C β1 . . . βn ∈M
θ = {α 
→ τ, β 
→ σ} ∀1 ≤ i ≤ n. θ(δi) <:ci θ(ρi)

C τ1 . . . τn <:θ(mapC c1 ... cn) C σ1 . . . σn

Gen-Cons

Fig. 2. Coercion generation

For the implementation of type checking and inference algorithms, the subsump-
tion rule is problematic, because it is not syntax directed. However, it can be
shown that any derivation of Γ � t : σ using the subsumption rule can be trans-
formed into a derivation of Γ � t : τ with τ <: σ, in which the subsumption
rule is only applied to function arguments [12, §16.2]. Consequently, the coer-
cion insertion judgement shown in Figure 3 only inserts coercions in argument
positions of functions by means of the Coerce-App rule.
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x : τ ∈ Γ

Γ � x� x : τ
Coerce-Var

Σ(c) = σ

Γ � c[α�→τ ] � c[α�→τ] : σ[α 
→ τ ]
Coerce-Const

Γ, x : τ � t� u : σ

Γ � λx : τ. t� λx : τ. u : τ → σ
Coerce-Abs

Γ � t1 � u1 : τ11 → τ12 Γ � t2 � u2 : τ2 τ2 <:c τ11

Γ � t1 t2 � u1 (c u2) : τ12

Coerce-App

Fig. 3. Coercion insertion

2.3 Type Substitutions and Unification

A central component of type inference systems is a unification algorithm for
types. Implementing such an algorithm for the type expressions introduced in
§2.1 is straightforward, since this is just an instance of first-order unification. We
write mgu for the function computing the most general unifier. It produces a type
substitution, denoted by θ, which is a function mapping type variables to types
such that θα �= α for only finitely many α. We will sometimes use the notation
{α1 �→ τ1, . . . , αn �→ τn} to denote such substitutions. Type substitutions are
extended to types, terms, and any other data structures containing type variables
in the usual way. The function mgu is overloaded: it can be applied to pairs of
terms, where θτ = θσ if θ = mgu(τ, σ), to (finite) sets of equality constraints,
where θτi = θσi if θ = mgu{τ1

.= σ1, . . . , τn
.= σn}, as well as to (finite) sets of

types, where θτ1 = · · · = θτn if θ = mgu{τ1, . . . , τn}.

3 Type Inference with Coercions

In a system without coercions, type inference means to find a type substitution
θ and a type τ for a given term t and context Γ such that t becomes typable,
i.e. θΓ � θt : τ . In a system with coercions, type inference also has to insert
coercions into the term t in appropriate places, yielding a term u for which
θΓ � θt� u : τ and θΓ � u : τ holds. A naive way of doing type inference in this
setting would be to compute the substitution θ and insert the coercions on-the-
fly, as suggested by Luo [6]. The idea behind Luo’s type inference algorithm is to
try to do standard Hindley-Milner type inference first, and locally repair typing
problems by inserting coercions only if the standard algorithm fails. However,
this approach has a serious drawback: the success or failure of the algorithm
depends on the order in which the types of subterms are inferred. To see why
this is the case, consider the following example.

Example 1. Let Σ = {leq : α → α → B, n : N, i : Z} be the signature containing a
polymorphic predicate leq (e.g. less-or-equal), as well as a natural number constant n
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and an integer constant i. Moreover, assume that the set of coercions C = {int : N → Z}
contains a coercion from natural numbers to integers, but not from integers to natural
numbers, since this would cause a loss of information. Then, it is easy to see that the
terms leq [α�→β] i n and leq [α�→β] n i can both be made type correct by applying the
type substitution {β 
→ Z} and inserting coercions, but the naive algorithm can only
infer the type of the first term. Since the term is an application, the algorithm would
first infer (using standard Hindley-Milner type inference) that the function denoted by
the subterm leq [α�→β] i has type Z → B with the type substitution {β 
→ Z}. Similarly,
for the subterm n the type N is inferred. Since the argument type Z of the function
does not match the type N of its argument, the algorithm inserts the coercion int to
repair the typing problem, yielding the term leq [α�→Z] i (int n) with type B. In contrast,
when inferring the type of the term leq [α�→β] n i, the algorithm would first infer that
the subterm leq [α�→β] n has type N → B, using the type substitution {β 
→ N}. The
subterm i is easily seen to have type Z, which does not match the argument type N of
the function. However, in this case, the type mismatch cannot be repaired, since there
is no coercion from Z to N, and so the algorithm fails.

The strategy for coercion insertion used in the Coq proof assistant (originally
due to Säıbi [15], who provides no soundness or completeness results) suffers
from similar problems, which the reference manual describes as the “normal”
behaviour of coercions [3, §17.12]. Our goal is to provide a complete algorithm
that does not fail in cases such as the above.

3.1 Coercive Subtyping Using Subtype Constraints

The algorithm presented here generates subtype constraints first, and postpones
their solution as well as the insertion of coercions to a later stage of the algorithm.
The set of all constraints provides us with a global view on the term that we are
processing, and therefore avoids the problems of a local algorithm.

The algorithm can be divided into four major phases. First, we generate sub-
type constraints by recursively traversing the term. Then, we simplify these con-
straints, which can be inequalities between arbitrary types, until the constraint
set contains only inequalities between base types and variables. The next step is
to organize these atomic constraints in a graph and solve them, which means to
find a type substitution. Applying this substitution to the whole constraint set
results in inequalities that are consistent with the given partial order on base
types. Finally, the coercions are inserted by traversing the term for the second
time. A visualization of the main steps of the algorithm in form of a control flow
is shown in Figure 4.

3.2 Constraint Generation

The algorithm for constraint generation is described by a judgement Γ � t : τ�S
defined by the rules shown in Figure 5. Given a term t and a context Γ , the
algorithm returns a type τ , as well as a set of equality and subtype constraints
S denoted by infix “ .=” and “<:”, respectively. The equality constraints are
solved using unification, whereas the subtype constraints are simplified to atomic
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Input

term t,
context Γ

Constraint
generation

Γ � t : τ � S

Weak unification test

S weakly unifiable?

Constraint simplification

(S, ∅) =⇒!
simp (S′, θsimp)

Build constraint graph

(G(S′), θsimp) =⇒!
cyc (G, θcyc)

Constraint resolution

(G, θcyc) =⇒!
sol (G′, θsol)

Unification

(G′[TV (G′)], θsol) =⇒!
unif ((∅, ∅), θ)

Coercion genera-
tion and insertion

θΓ � θt � u : θτ

Output

term u,
type θτ ,

context θΓ

Fig. 4. Top-level control flow of the subtyping algorithm

constraints and then solved using the graph-based algorithm mentioned above.
The only place where new constraints are generated is the rule SubCT-App for
function applications t1 t2. It generates an equality constraint ensuring that the
type of t1 is actually a function type, as well as a subtype constraint ensuring
that the type of t2 is a subtype of the argument type of t1.

x : τ ∈ Γ

Γ � x : τ � ∅ SubCT-Var

Σ(c) = σ

Γ � c[α�→τ] : σ[α 
→ τ ]� ∅ SubCT-Const

Γ, x : τ � t : σ � S

Γ � λx : τ. t : τ → σ � S
SubCT-Abs

Γ � t1 : τ � S1 Γ � t2 : σ � S2 α, β fresh

Γ � t1 t2 : β � S1 ∪ S2 ∪ {τ .
= α → β, σ <: α} SubCT-App

Fig. 5. Constraint generation rules

Note that as a first step not shown here, the type-free term input by the user
is augmented with type variables: λx. t becomes λx : β. t and c becomes c[α�→β],
where all the βs must be distinct and new.

3.3 Constraint Simplification

The constraints generated in the previous step are now simplified by repeat-
edly applying the transformation rules shown in Figure 6. The states that the
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transformation operates on are pairs whose first component contains the cur-
rent set of constraints, while the second component is used to accumulate the
substitutions computed during the transformation. As a starting state of the
transformation, we use the pair (S, ∅). The rule Decompose splits up inequa-
tions between complex types into simpler inequations or equations according to
the variance of the outermost type constructor. For this purpose, we introduce
a variance operator, which is defined as follows.

Definition 2 (Variance operator). Let mapC be a map function for the type
constructor C of arity n in the set M. We use the abbreviation

var i
C(τ, σ) =

{
τ <: σ if C is covariant in the i-th argument wrt. mapC

σ <: τ if C is contravariant in the i-th argument wrt. mapC

for 1 ≤ i ≤ n. If there is no such mapC , then we define for 1 ≤ i ≤ n:

var i
C(τ, σ) = τ

.= σ.

Thus, if no map function is associated with a particular type constructor, it is
considered to be invariant, causing the algorithm to generate equations instead of
inequations. Equations are dealt with by rule Unify using ordinary unification.
Since our subtyping relation is structural, an inequation having a type variable on
one side, and a complex type on the other side can only be solved by instantiating
the type variable with a type whose outermost type constructor equals that of
the complex type on the other side. This is expressed by the two symmetric rules
Expand-L and Expand-R. Finally, inequations with an atomic type on both
sides are eliminated by rule Eliminate, provided they conform to the subtyping
relation.

We apply these rules repeatedly to the constraint set until none of the rules
is applicable. Therefore, we use the notation =⇒!

simp .

Definition 3. (Normal form) For a relation =⇒ we write

X =⇒! X ′

if X =⇒∗ X ′ and X ′ is in normal form wrt. =⇒.

Definition 4 (Atomic constraint). We call a subtype constraint atomic if it
corresponds to one of the following constraints (α, β are type variables, T is a
base type):

α <: β α <: T T <: α

If none of the rules is applicable, the algorithm terminates in a state (S′, θsimp),
where S′ either consists only of atomic constraints, or S′ contains an inequation
C1 τ <: C2 σ with C1 �= C2 or an inequation T <: U for base types T and U
such that T is not a subtype of U or an equation τ

.= σ such that τ and σ are
not unifiable. In the latter three cases, the type inference algorithm fails.
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Decompose

({C τ1 . . . τn <: C σ1 . . . σn} � S, θ) =⇒simp

({
var i

C (τi, σi) | i = 1 . . . n
} ∪ S, θ

)
Unify

({τ .
= σ} � S, θ) =⇒simp (θ′S, θ′ ◦ θ)

where θ′ = mgu(τ, σ)

Expand-L

({α <: C τ1 . . . τn} � S, θ) =⇒simp (θ′ ({α <: C τ1 . . . τn} ∪ S) , θ′ ◦ θ)

where θ′ = {α 
→ C α1 . . . αn}
and α1 . . . αn are fresh variables

Expand-R

({C τ1 . . . τn <: α} � S, θ) =⇒simp (θ′ ({C τ1 . . . τn <: α} ∪ S) , θ′ ◦ θ)

where θ′ = {α 
→ C α1 . . . αn}
and α1 . . . αn are fresh variables

Eliminate

({U <: T} � S, θ) =⇒simp (S, θ)

where U, T are base types
and U <: T

Fig. 6. Rule-based constraint simplification =⇒simp

An interesting question is whether such a state or a failure is always reached
after a finite number of iterations. It is obvious that the simplification of the
constraint α <: C α will never terminate. Bourdoncle and Merz [2] have pointed
out that checking whether the initial constraint set has a weak unifier is sufficient
to avoid nontermination. Weak unification differs from standard unification in
that it identifies base types, which is necessary since two types τ and σ with
τ <: σ need to be equal up to their base types.

Definition 5 (Weak unification). A set of constraints S is called weakly
unifiable if there exists a substitution θ such that 
θτ� = 
θσ� for all τ <: σ ∈ S,
and θτ = θσ for all τ

.= σ ∈ S, where


α� = α

T � = T0


C τ1 . . . τn� = C 
τ1� . . . 
τn�
and T0 is a fixed base type not used elsewhere.

Weak unification is merely used as a termination-test in our algorithm before
constraint simplification (see Figure 4).

3.4 Solving Subtype Constraints on a Graph

An efficient and logically clean way to reason about atomic subtype constraints
is to represent the types as nodes of a directed graph with arcs given by the
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constraints themselves. Concretely, this means that a subtype constraint σ <: τ
is represented by the arc (σ, τ). This allows us to speak of predecessors and
successors of a type.

Definition 6 (Constraint graph). For a constraint set S, we denote by

G(S) = (
⋃
{{τ, σ} | τ <: σ ∈ S}, {(τ, σ) | τ <: σ ∈ S})

the constraint graph corresponding to S.

Given a graph G = (V, E), the subgraph induced by a vertex set X ⊆ V is
denoted by G[X ] = (X, (X×X)∩E). The set of type variables contained in the
vertex set of G is denoted by TV (G).

In what follows, we write σ �: τ for the subtyping relation on base types
induced by the set of coercions C, which is defined by

�: = {(T, U) | c : T → U ∈ C}∗

Graph Construction. Building such a constraint graph is straightforward. We
only need to watch out for cycles. Since the subtype relation is a partial order
and therefore antisymmetric, at most one base type should occur in a cycle. In
other words, if the elements of the cycle are not unifiable, the inference will fail.
Unifiable cycles should be eliminated with the iterated application of the rule
Cycle-Elim shown in Figure 7.

Cycle-Elim

((V, E) , θ) =⇒cyc ((V \K ∪ {τK}, E′ ∪ P × {τK} ∪ {τK} × S) , θK ◦ θ)

where K is a cycle in (V, E)
and θK = mgu(K)
and {τK} = θKK
and E′ = {(τ, σ) ∈ E | τ /∈ K, σ /∈ K}
and P = {τ | ∃σ ∈ K. (τ, σ) ∈ E} \K
and S = {σ | ∃τ ∈ K. (τ, σ) ∈ E} \K

Fig. 7. Rule-based cycle elimination =⇒cyc

Figure 8 visualizes an example of cycle elimination. We call the substitution
obtained from cycle elimination θcyc .

Constraint Resolution. Now we must find an assignment for all variables
that appear in the graph G = (V, E). We use an algorithm that is based on the
approach presented in [20]. First, we define some basic lattice-theoretic notions.

Definition 7. Let S, T, T ′ denote base types and X a set of base types. With
respect to the given subtype relation �: we define:
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Fig. 8. Collapse of a cycle in a graph

– T = {T ′ | T �: T ′}, the set of supertypes
– T = {T ′ | T ′ �: T }, the set of subtypes
– T � S ∈ T ∩ S and ∀U ∈ T ∩ S. T � S �: U , the supremum of S and T
– T � S ∈ T ∩ S and ∀L ∈ T ∩ S. L �: T � S, the infimum of S and T
–
⊔

X ∈
⋂

T∈X

T and ∀U ∈
⋂

T∈X

T .
⊔

X �: U , the supremum of X

–
�

X ∈
⋂

T∈X

T and ∀L ∈
⋂

T∈X

T . L �:
�

X, the infimum of X.

Note that, depending on �:, suprema or infima may not exist.
Given a type variable α in the constraint graph G = (V, E), we define:

– PG
α = {T | (T, α) ∈ E+}, the set of all base type predecessors of α

– SG
α = {T | (α, T ) ∈ E+}, the set of all base type successors of α.

E+ is the transitive closure of the edges of G.

The algorithm assigns base types to type variables that have base type successors
or predecessors until no such variables are left using the rules shown in Figure 9.
The resulting substitution is referred to as θsol .

The original algorithm described by Wand and O’Keefe [20] is designed to be
complete for subtype relations that form a tree. It only uses the rules Assign-

Inf and Fail-Inf without the check if SG
α is empty. It assigns each type variable

α the infimum
�

SG
α of its upper bounds, and then checks whether the assigned

type is greater than all lower bounds PG
α . If

�
SG

α does not exist, their algorithm
fails. If SG

α is empty, its infimum only exists if there is a greatest type, which
exists in a tree but not in a forest. In order to avoid this failure in the absence
of a greatest type, our algorithm does not compute the infimum/supremum of
the empty set, and is symmetric in successors/predecessors.

After constraint resolution, unassigned variables can only occur in the
resulting graph in weakly connected components that do not contain any base
types. As we do notwant to annotate the term with unresolved subtype constraints,
all variables in a single weakly connected component should be unified. This is
done by the rule Unify-WCC shown in Figure 10 and produces the final
substitution θ.
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Assign-Sup

(G, θ) =⇒sol

({α 
→ ⊔
P G

α }G, {α 
→ ⊔
P G

α } ◦ θ
)

if α ∈ TV (G) ∧ P G
α �= ∅ ∧ ∃⊔P G

α ∧ ∀T ∈ SG
α .

⊔
P G

α �: T

Fail-Sup

(G, θ) =⇒sol FAIL

if α ∈ TV (G) ∧ P G
α �= ∅ ∧ (�

⊔
P G

α ∨ ∃T ∈ SG
α .

⊔
P G

α ��: T )

Assign-Inf

(G, θ) =⇒sol

({α 
→ �
SG

α }G, {α 
→ �
SG

α } ◦ θ
)

if α ∈ TV (G) ∧ SG
α �= ∅ ∧ ∃

�
SG

α ∧ ∀T ∈ P G
α . T �:

�
SG

α

Fail-Inf

(G, θ) =⇒sol FAIL

if α ∈ TV (G) ∧ SG
α �= ∅ ∧ (�

�
SG

α ∨ ∃T ∈ P G
α . T ��:

�
SG

α )

Fig. 9. Rule-based constraint resolution =⇒sol

Unify-WCC

(G, θ) =⇒unif (G[V \W ],mgu(W ) ◦ θ)

where W is a weakly connected component of G = (V, E)

Fig. 10. Rule-based WCC-unification =⇒unif

Example 2. Going back to Example 1, we apply our algorithm to the term leq [α�→α3] n i.
According to the inference rules from Figure 5, we obtain Γ � leq [α�→α3] n i : β1 �
{α3 → α3 → B

.
= α2 → β2, β2

.
= α1 → β1, N <: α2, Z <: α1}. Simplifying the generated

constraints yields the substitution θsimp = {α1 
→ α3, α2 
→ α3, β1 
→ B, β2 
→ α3 → B}
and the atomic constraint set {N <: α3, Z <: α3}. This yields the constraint graph
shown in Figure 11. The constraint resolution algorithm assigns α3 the least upper
bound of {N, Z}, which is Z. The resulting substitution is θsol = {α1 
→ Z, α2 
→
Z, α3 
→ Z, β1 
→ B, β2 
→ Z → B}. Since there are no unassigned variables in the
remaining constraint graph, Unify-WCC is inapplicable and θ, the final result, is θsol .

N

α3

Z

Fig. 11. Constraint graph of leq [α�→α3] n i
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In §4 we will see that the constraint resolution algorithm defined in this subsec-
tion is not complete in general but is complete if the partial order on base types
is a disjoint union of lattices.

3.5 Coercion Insertion

Finally, we have a solving substitution θ. Applying this substitution to the initial
term will produce a term that can always be coerced to a type correct term by
means of the coercion insertion judgement shown in Figure 3. We inspect this
correctness statement and the termination of our algorithm in §4.

4 Total Correctness and Completeness

To prove total correctness, we need to show that for any input t and Γ , the
algorithm either returns a substitution θ, a well-typed term u together with
its type θτ or indicates a failure. Failures may occur at any computation of a
most general unifier, during the weak unification test, or explicitly at the re-
duction steps Fail-Sup and Fail-Inf in the constraint resolution phase. Below
we discuss correctness and termination. Due to space limitations, all proofs and
supporting lemmas had to be omitted and can be found in the full version of this
paper [19]. Since the reduction rules in each phase are applied nondeterministi-
cally, the algorithm may output different substitutions for the same input term
t and context Γ . By AlgSol(Γ , t) we denote the set of all such substitutions.

Theorem 1 (Correctness). For a given term t in the context Γ , assume θ ∈
AlgSol(Γ, t). Then there exist a term u and a type τ , such that θΓ � θt� u : τ
and θΓ � u : τ .

Thus, we know that if the algorithm terminates successfully, it returns a well-
typed term. Moreover, it terminates for any input:

Theorem 2 (Termination). The algorithm terminates for any input t and Γ .

4.1 An Example for Incompleteness

So far, we have only made statements about termination and correctness of our
algorithm. It is equally important that the algorithm does not fail for a term
that can be coerced to a well-typed term. An algorithm with this property is
called complete. As mentioned earlier, our algorithm is not complete for arbitrary
posets of base types.

Example 3. Figure 12 shows a constraint graph and base type order where our algo-
rithm may fail, although {α 
→ C, β 
→ N} is a solving substitution. If during constraint
resolution the type variable α is assigned first, it will receive value R. Then, the as-
signment of β will fail, since the infimum R�N does not exist in the given poset. The
fact that our algorithm does find the solution if β is assigned before α is practically
irrelevant because we cannot possibly exhaust all nondeterministic choices.
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R

α

β

N

N R

C

Constraint graph Partial order on base types

Fig. 12. Problematic example without type classes

We see that the problem is the non-existence of a supremum or infimum. The
solution to this problem is to require a certain lattice structure for the partial
order on base types. Alternatively we could try and generalize our algorithm,
but this is unappealing for complexity theoretic reasons.

4.2 Complexity and Completeness

Tiuryn and Frey [18,4] showed that the general constraint satisfaction problem
is PSPACE-complete. Tiuryn [18] also shows that satisfiability can be tested in
polynomial time if the partial order on base types is a disjoint union of lattices.
Unfortunately, Tiuryn only gives a decision procedure that does not compute
a solution. Nevertheless, most if not all approaches in the literature adopt the
restriction to (disjoint unions of) lattices, but propose algorithms that are ex-
ponential in the worst case. This paper is no exception. Just like Simonet [17]
we argue that in practice the exponential nature of our algorithm does not show
up. Our implementation in Isabelle confirms this.

All phases of our algorithm have polynomial complexity except for constraint
simplification: a cascade of applications of Expand-L or Expand-R may pro-
duce an exponential number of new type variables. Restricting to disjoint union
of lattices does not improve the complexity but guarantees completeness of
our algorithm because it guarantees the existence of the necessary infima and
suprema for constraint resolution.

Therefore, we assume in the following that the base type poset is a disjoint
union of lattices.

To formulate the completeness theorem, we need some further notation.

Definition 8 (Equality modulo coercions). Two substitutions θ and θ′ are
equal modulo coercions wrt. the type variable set X, if for all x ∈ X there exists
a coercion c such that either θ(x) <:c θ′(x) or θ′(x) <:c θ(x) holds. We write
θ ≈X θ′.

Definition 9 (Subsumed). The substitution θ′ is subsumed modulo coercions
wrt. to the type variable set X by the substitution θ, if there exists a substitution
δ such that θ′ ≈X δ ◦ θ. We write θ �X θ′.

Let TV (τ) and TV (t) be the sets of type variables that occur in τ and the type
annotations of t. For a context Γ = {x1 : τ1, . . . , xn : τn}, we denote by TV (Γ )

the set
n⋃

i=1

TV (τi).
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Theorem 3 (Completeness). If θ′Γ � θ′t� u : τ ′, then AlgSol(Γ, t) �= ∅ and
for all θ ∈ AlgSol(Γ, t) it holds that θ �TV (Γ )∪TV (t) θ′.

It is instructive to consider a case where our algorithm is not able to reconstruct
a particular substitution but only a subsumed one.

Example 4. Let Σ = {id : α→ α, n : N, sin : R → R} be a signature and let C = {int :
N → Z, real : Z → R} be a set of coercions. Now consider the term sin (id [α�→α1] n) in
the empty context. The constraint resolution phase will be given the atomic constraints
{N <: α1, α1 <: R} and will assign α1 the tightest bound either with respect to its
predecessors or its successors: AlgSol(∅, sin (id [α�→α1] n)) = {{α1 
→ N}, {α1 
→ R}}.

The substitution {α1 
→ Z} is also solution of the typing problem, i.e. {α1 
→ Z}∅ �
{α1 
→ Z}(sin (id [α�→α1] n)) � sin (real (id [α�→Z] (int n))) : R. It is itself not a pos-
sible output of the algorithm, but it is subsumed modulo coercions by both of the
substitutions that the algorithm can return.

The completeness theorem tells us that the algorithm never fails if there is a solu-
tion. The example shows us that the algorithm may fail to produce some particular
solution. The completeness theorem also tells us that any solution is an instance
of the computed solution, but only up to coercions. In practice this means that
the user may have to provide some coercions (or type annotations) explicitly to
obtain what she wants. This is not the fault of the algorithm but is unavoidable
if the underlying type system does not provide native subtype constraints.

Compared with the work by Säıbi we have a completeness result. On the
other hand he goes beyond coercions between atomic types, something we have
implemented but not yet released. Luo also proves a completeness result, but
his point of reference is a modified version of the Hindley-Milner system where
coercions are inserted on the fly, which is weaker than our inference system. In
most other papers the type system comes with subtype constraints built in (not
an option for us) and unrestricted completeness results can be obtained.

5 Related Work

Type inference with automatic insertion of coercions in the context of functional
programming languages was first studied by Mitchell [8,9]. First algorithms for
type inference with subtypes were described by Fuh and Mishra [5] as well as
Wand and O’Keefe [20]. The algorithm for constraint simplification presented
in this paper resembles the MATCH algorithm by Fuh and Mishra. However, in
order to avoid nontermination due to cyclic substitutions, they build up an extra
data structure representing equivalence classes of atomic types, whereas we use
a weak unification check suggested by Bourdoncle and Merz [2]. The seemingly
simple problem of solving atomic subtype constraints has also been the subject
of extensive studies. In their paper [5], Fuh and Mishra also describe a second
algorithm CONSISTENT for solving this problem, but they do not mention
any conditions for the subtype order on atomic types, so it is unclear whether
their algorithm works in general. Pottier [13] describes a sound but incomplete
simplification procedure for subtype constraints. Simonet [17] presents general
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subtype constraint solvers and simplifiers for lattices designed for practical ef-
ficiency. Benke [1], as well as Pratt and Tiuryn [14] study the complexity of
solving atomic constraints for a variety of different subtype orders. Extensions
of Haskell with subtyping have been studied by Shields and Peyton Jones [16],
as well as Nordlander [11].

5.1 Conclusion

Let us close with a few remarks on the realization of our algorithm in Isabelle.
The abstract algorithm returns a set of results because coercion inference is
ambiguous. For example, the term sin(n+n), where + : α→ α → α, sin : R → R
and n : N has two type-correct completions with the coercion real : N → R:
sin(real(n + n)) and sin(real n + real n). Our deterministic implementation
happens to produce the first one. If the user wanted the second term, he would
have to insert at least one real coercion. Because Isabelle is a theorem prover
and because we did not modify its kernel, we do not have to worry whether
the two terms are equivalent (this is known as coherence): in the worst case the
system picks the wrong term and the proof one is currently engaged in fails or
proves a different theorem, but it will still be a theorem.

To assess the effectiveness of our algorithm, we picked a representative Isabelle
theory from real analysis (written at the time when all coercions had to be
present) and removed as many coercions from it as our algorithm would allow
— remember that some coercions may be needed to resolve ambiguity. Of 1061
coercions, only 221 remained. In contrast, the on-the-fly algorithm by Säıbi and
Luo (see the beginning of §3) still needs 666 coercions. The subtype lattice in
this theory is a linear order of the 3 types nat, int, real.

Isabelle supports an extension of Hindley-Milner polymorphism with type
classes [10]. In the full version of this paper [19], we cover type classes, too,
and show how to extend our algorithms soundly; completeness seems difficult to
achieve in this context.

We have not mentioned let so far because it does not mesh well with coercive
subtyping. Consider the term t = let f = s in u where u = (Suc(f(0)), f(0.0)),
0 : N, Suc : N → N, 0.0 : R, and s is a term that has type α → α under the
constraints {α �: R, α �: β, N �: β}. For example s = λx. if x = 0 ∧ sin(x) =
0.0 then x else x) where = : α → α → B and sin : R → R. Constraint
resolution can produce the two substitutions {α �→ N, β �→ N} and {α �→ R, β �→
R}, i.e. s can receive the two types N → N and R → R. A simple-minded
extension of our algorithm to let might choose one of the two substitutions to
type u and would necessarily fail. However, if we consider u[s/f ] instead of
t, our algorithm can insert suitable coercions to make the term type correct.
Unfortunately this is not a shortcoming of the hypothetical extension of our
algorithm but of coercive subtyping in general: there is no way to insert coercions
into t to make it type correct according to Hindley-Milner. If you want subtyping
without extending the Hindley-Milner type system, there is no complete typing
algorithm for let terms that simply inserts coercions. You may need to expand
or otherwise transform let first.
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Abstract. Multi-stage programming (MSP) is a means for run-time code gener-
ation, and has been found promising in various fields including numerical com-
putation and domain specific languages. An important problem in designing MSP
languages is the dilemma of safety and expressivity; many foundational calculi
have been proposed and proven to be type safe, yet, they are not expressive
enough. Taha’s MetaOCaml provides us a very expressive tool for MSP, yet, the
corresponding theory covers its purely functional subset only.

In this paper, we propose a polymorphic multi-stage calculus with delimited-
control operators. Kameyama, Kiselyov, and Shan proposed a multi-stage cal-
culus with computation effects, but their calculus lacks polymorphism. In the
presence of control effects, polymorphism in types is indispensable as all pure
functions are polymorphic over answer types, and in MSP languages, polymor-
phism in stages is indispensable to write custom generators as library functions.
We show that the proposed calculus satisfies type soundness and type inference.
The former is the key to guarantee the absence of scope extrusion - open codes are
never generated or executed. The latter is important in the ML-like programming
languages. Following Calcagno, Moggi and Taha’s work, we propose a Hindley-
Milner style type inference algorithm to obtain principal types for given expres-
sions (if they exist).

1 Introduction

Writing a code generator as a metaprogram is a vital means to achieve efficiency and
maintainability simultaneously. Typed multi-stage (multi-level) programming languages
help us write code generators easily and intuitively. The merit of typed multi-stage cal-
culus over its untyped cousin, the quasiquote and unquote mechanism in Scheme, is the
static assurance of type soundness: it subsumes not only type safety of code generators,
but also that of generated codes, which in turn subsumes the absence of scope extrusion:
a closed code generator never generates open codes (codes with free variables).

Many researchers have addressed the problem of assuring type soundness for multi-
stage calculi; foundational calculi based on modal logic include λ� by Davies and
Pfenning [5], λ© by Davies [4], and λ©� by Yuse and Igarashi[17]. More expressive
calculi have been proposed such as λ α by Taha and Nielsen [13], λ i by Calcagno,
Moggi and Taha [2], λ sim

open by Kim, Yi and Calcagno [8], and the calculus by Tsukada
and Igarashi [15].

Our goal is to extend the applicability of multi-stage programing so that one can
write efficient code generators naturally, while keeping static type soundness. This is a
challenging goal as efficient code generation (such as let-insertion) often needs impure

H. Yang (Ed.): APLAS 2011, LNCS 7078, pp. 105–120, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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(effectful) operations, while existing theories guarantee type soundness for purely func-
tional subcalculi only. A recent hot topic is to add computational effects into multi-stage
languages [7,10,16]. All of them remain monomorphic setting, though.

In this paper, we introduce ML-like polymorphism into multi-stage languages with
computational effects, and in particular, we propose a polymorphic multi-stage calcu-
lus with delimited-control operators which satisfies type soundness. We think polymor-
phism is necessary in this kind of calculi by the following reasons:

– Many useful combinators for code generation are polymorphic functions1, and,
therefore, we need polymorphism to build a useful library for code generation.

– In the presence of computational effects, a type system of MSP calculi necessarily
becomes so called a type-and-effect system. Then, all the pure functions (with-
out effects) in existing libraries should be polymorphic over effects. In the case
of delimited-control operators, the effects are expressed as the answer types, and,
therefore, polymorphism in effects boils down to polymorphism in (answer) types.

– In MSP calculi based on Taha and Nielsen’s λ α or Calcagno et al.’s λ i, polymor-
phism in environment classifiers2 is necessary to write code generators as libraries.
The staged power function is the simplest example for MSP, which already needs
polymorphism in classifiers, if written as a library function (that is, not inlined).

Introducing ML-like let-polymorphism is not as trivial as one might expect. The value
restriction used in ML families is too restrictive, as we want to generate polymor-
phic functions as the result of code generation. Other syntactic conditions do not seem
suitable, either. Our solution for this problem is to revisit the semantic notion of pu-
rity, proposed by Asai and Kameyama [1] for the unstaged polymorphic calculus with
delimited-control operators. A term is called pure if it does not have computational ef-
fects observable from outside. Asai and Kameyama have shown that a pure term can
be made polymorphic. Following them, we allow polymorphism only for pure terms in
this paper. Surprisingly, this simple idea works: it rules out all dangerous terms, while
we retain the expressivity.

The proposed calculus extends Kameyama, Kiselyov, and Shan’s calculus in the
sense that we add let-polymorphism and the run-construct (for code execution) to their
calculus. We prove type soundness of our calculus under the purity restriction, which
implies that open codes are never generated or executed. We also show Hindley-Milner’s
style type inference algorithm for our calculus, which gives principal types if they exist.

The rest of this paper is organized as follows: Section 2 shows several example pro-
grams using multi-stage calculi and control operators, which need polymorphism. Sec-
tion 3 explains the key idea of introducing polymorphism safely. Section 4 introduces
our calculus λ DC

let and operational semantics, and Section 5 introduces its type system.
Then we show several useful properties such as type soundness in Section 6 and the
existence of principal types in Section 7. Section 8 states concluding remarks.

1 We will see an example of code generation combinators in Section 2.
2 Environment classifiers are identifiers for stages, first introduced by Taha and Nielsen [13].
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2 Preliminaries

This section is an example-based introduction to MSP and delimited-control operators.
A comprehensive introduction to this subject may be found in the literature [11,12,7].
We use MetaOCaml to write concrete programs3 in this section. It has three constructs
for code generation: brackets, escape, and run. We do not treat CSP (cross-stage persis-
tence) in this paper.

Staged Power Function. The first, canonical example of MSP is the staged version of
the power function:

let rec s_power n x =
if n = 1 then x
else < ~x * ~(s_power (n-1) x)>

The expression <e> (bracket expression) represents a code which is not executed at the
present stage, but executed at the future (next) stage. We can splice a code fragment
into another code by an escape expression ∼e. In the expression <∼x∗ · · ·>, the subex-
pression x is executed, and its value is spliced in this code. For instance, if we evalu-
ate (fun x-> <~x * 2>) <3 + 4>, we get <(3 + 4) * 2>. For those familiar with
Scheme macros, brackets and escape, resp, correspond to quasiquote and backquote
(unquote), resp.

By executing the expression <fun x -> ~(s_power 5 <x>)>, we get
<fun x_1 -> (x_1*(x_1*(x_1*(x_1*x_1))))

as its value. Note that the bound variable x has been renamed to x_1 during the com-
putation, which means that variables in codes are lexically bound unlike the template
mechanisms in C++ and Haskell. We can run the resulting code internally by the run
construct (!). The computation of the expression:

let power5 = ! <fun x -> ~(s_power 5 <x>)>
yields a function equivalent to

fun x_1 -> (x_1*(x_1*(x_1*(x_1*x_1))))
which can be used at the present stage, rather than the future stage.

Let us consider the type of s_power. Intuitively, it has type int→ <int>→ <int>
where <int> is the type of codes for integer expressions. Calcagno et al.’s λ i

let , the un-
derlying calculus of MetaOCaml, assigns to each future stage an environment classifier
(classifier for short), in order to distinguish different next stages from each other. Hence
s_power has type int→ <int>� → <int>� where � is a classifier. Since s_power
is polymorphic over stages (it is not specific to any environment classifiers), its type
should be polymorphic over classifiers as: ∀�.(int→ <int>� → <int>�).

Code Generation Combinators. Combinators provide us useful patterns of generating
and manipulating code fragments. One of the simplest, but widely used combinators is
the following eta:

let eta f = <fun x -> ~(f <x>)>
in eta (fun y -> <fun z -> z + ~y>)

3 We use slightly simplified notation for multi-stage constructs: we write <e> for the MetaOCaml
notation .<e>. and we suppress type variables corresponding to environment classifiers.
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which, when executed, yields <fun x -> fun z -> z + x>. It is easy to see that
eta should have the polymorphic type: ∀�.∀σ .∀τ.(<σ>� → <τ>�)→ <σ → τ>�.

The staged power function may be generalized to an arbitrary binary function:

let rec s_iterate n f x =
if n = 1 then x
else < ~f ~x ~(s_iterate (n-1) f x)>

in let s_iterate5 =
eta (fun f -> eta (s_iterate 5 f))

which, when executed, returns <fun f -> fun x -> f x (f x (f x (f x x)))>.
MetaOCaml assigns a monomorphic type to this expression, but we hope to assign a
polymorphic type: ∀�.∀σ .<(σ → σ → σ)→ σ → σ>� to this expression. Here, poly-
morphism is necessary both at the present stage and the future stage.

Delimited-Control Operators. Control operators in functional languages are constructs
for changing the order of execution, causing computational effects. Typical control op-
erators are catch/throw (Lisp), exception (ML, Java), and call/cc (Scheme, SML/NJ).
While call/cc provides an access to unlimited continuations, delimited-control opera-
tors provide an access to part of the current continuations (delimited continuations).

The following examples use Danvy and Filinski’s delimited-control operators shift
and reset [3]:

1 + reset (10 + 20) yields 31
1 + reset (10 + (shift k -> 20)) yields 21
1 + reset (10 + (shift k -> (k (k 20)))) yields 41

We sometimes write shift and reset, resp., as Sk.e and {e}, resp.4 reset denotes a
delimiter, and does nothing if there is no shift as shown in the first line. In the second
and third lines, shift captures the continuation (an evaluation context) up to the nearest
reset operator, and binds the variable k to it. In the example, the captured continuation
is reset (10 + [ ]) where [ ] is a hole. It is bound to k and may be used later. In
the third line, k (k 20) evaluates to reset (10 + (reset (10 + 20))).

In the presence of delimited-control operators, the type system should take into ac-
count control effects (thus becomes a type-and-effect system). If we execute the follow-
ing program:

let f = fun x -> shift k -> (k 10) + 20
in reset (f 30 >= 40)

the continuation captured by shift is reset ([ ] >= 40). Then we evaluate
(reset (10 >= 40)) + 20, which raises a run-time type error.

The computational effect caused by shift and reset can be described by an an-
swer type, the return type of a delimited continuation. In the above program, the shift
expression expects the answer type to be int (since the captured continuation k is ex-
pected to return an integer), while the reset expression provides bool as its answer

4 In the literature, a reset expression is denoted by <e>. We write {e} to avoid conflict with a
bracket expression.
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type. In the type-and-effect system, a function type takes the form σ → σ ′/β , where
β represents the answer type. This change of type system makes all pure functions to
be polymorphic over effects: for instance, the function fun x -> x + 10 should have
type int→ int/β for any type β .

Delimited-control operators such as shift and reset have been found rather ex-
pressive: Filinski [6] proved that they can express any monadic effect, and Kiselyov,
Shan and Sabry have shown a concise encoding of dynamic binding and local states in
terms of them [9]. Kameyama, Kiselyov and Shan [7] have introduced control opera-
tors to type-safe multi-stage calculi, and shown that memoization in code generators is
expressible as let-insertion in the calculus. In this paper, we proceed one step further, to
introduce polymorphism into their calculus.

3 Introducing Polymorphism Safely

In this section, we investigate the problem of introducing let-polymorphism into a multi-
stage calculus with effects, and informally show our ideas to solve the problem.

Value Restriction. As is well known, unrestricted combination of computational effects
(such as states and control) and polymorphism leads to type unsoundness, and the value
restriction is the standard solution for this problem: for an expression let x = e1 in e2,
e1 must be a (syntactic) value for x to have a polymorphic type in e2.

Unfortunately the value restriction is too restrictive in multi-stage calculi: in un-
staged calculi we only define polymorphic functions, but in staged calculi we want to
generate (the codes of) polymorphic functions, while value restriction prohibits run-
time code generation of such polymorphic functions. Let us consider the following
example:

let iterate5 = ! s_iterate5
in
iterate5 (fun x y -> x * y) 3;
iterate5 (fun x y -> x ^ y) "abc"

In this program snippet, the expression ! s_iterate5 is not a value, and, therefore,
iterate5 cannot have a polymorphic type under the value restriction.

The Problem. We need a better criterion as to which terms can be polymorphic. This
is not a trivial problem as one might expect. To see the problem, let us consider the pro-
gram let y = e in <let x = ~y in e2>. Then we have different situations de-
pending on the expression e:

– if e evaluates to a code of a value, say, <fun z-> z>, then x can be polymorphic.
– if e evaluates to a code of an effectful computation (say, <shift k -> 10>), then
x cannot be polymorphic.

In summary, it is not possible to decide the condition by simply looking at the expres-
sion e1 in let x = e1 in e2. In other words, the condition must be context sensitive.

Purity Restriction in Unstaged Calculus. Asai and Kameyama [1] have proposed a
more liberal condition for let-polymorphism, called the purity restriction, for the (un-
staged) calculus with the delimited-control operators shift and reset.
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An expression is pure if there are no computational effects that are observable from
outside. In the calculus with shift and reset, the only observable effect (other than
termination) is the control effect caused by shift, so an expression is pure if all the
calls to shift are captured within this expression, and is not pure otherwise. A pure
expression is polymorphic in the answer types [14], and we can determine if a given
expression is pure or not by tracking its answer type. However, type inference for such
a type system is hard, and they replaced it by its conservative approximation as:

Definition 1 (Syntactic Purity [1]). An (unstaged) expression is syntactically pure if it
is a value or a reset expression {e}.

The syntactic purity is a stronger (more restrictive) notion than purity, since a pure
expression is not necessarily syntactically pure, for instance, Sk.k 10. However, there is
no loss of expressivity by choosing syntactic purity, since, for any pure e, we can add a
superfluous reset as {e} while preserving typability and operational behavior. Asai and
Kameyama have proven type soundness as well as other desirable properties for their
calculus under the syntactic purity restriction.

Purity Restriction in Multi-stage Calculus. We borrow their idea to formulate the no-
tion of (syntactic) purity in multi-stage calculi, and apply it to let-polymorphism. Since
a level-0 expression (present stage expression) cannot have level-1 effects (computation
effects of future stage), we formulate (semantic) purity as follows:

– A level-0 expression (an expression at the present stage) is pure if and only if it
does not have observable computational effects of level-0.

– A level-1 expression (an expression at the future stage) is pure if and only if it does
not have observable computational effects of level-0 and level-1.

As in the case of unstaged calculus, this semantic notion of purity is hard to decide, and
we replace it by syntactic purity as follows:

– For a level-0 let-expression let x = e1 in e2, the expression e1 must be a syntactic
value or in the form {e′1}.

– For a level-1 let-expression let x = e1 in e2, the expression e1 must be a syntactic
value or in the form {∼{<e′1>}}.

The former is the same as syntactic purity in the unstaged calculus. As for the latter, for
a level-1 expression e′1, the expression {∼{<e′1>}} introduces a level-0 reset, and then
the outer most reset is of level-1. In summary, this expression has resets of both levels.

Syntactic Purity in Action. When we introduce the syntax of our calculus, we need
one more twist. Rather than directly treating the (syntactically) pure expressions in the
above forms, we instead use polymorphic let expression plet x = e1 in e2, which
intuitively means let x = {e1} in e2 for level-0, and let x = {∼{<e1>}} in e2 for
level-1. This change of syntax greatly simplifies our formulation and it is called the
implicit-delimiter method.

The implicit-delimiter method was also used in the literature for a different purpose;
Kameyama, Kiselyov and Shan [7] regarded a level-1 binder as a delimiter for level-0,
advocating that future-stage binders delimit present-stage control effects. For instance,
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the level-1 expression λ x.e is intuitively equivalent to λ x.∼{<e>} which has a level-0
delimiter (reset).5

In fact, we need both techniques in our calculus – one for ensuring syntactic pu-
rity and the other for regarding binders as delimiters. We list all the uses of implicit
delimiters below.

(level 0) run e ≡ run <{∼{e}}>
plet x = e1 in e2 ≡ plet x = {e1} in e2

(level-1) λ x.e ≡ λ x.∼{<e>}
Sk.e ≡ Sk.∼{<e>}

plet x = e1 in e2 ≡ plet x = {∼{<e1>}} in ∼{<e2>}

Note that one should understand the above equivalences (denoted by ≡) as informal
ones. They will help us understand some reduction rules in Section 4 and the type
system in Section 5, but they are not formal entities.

Summary and Discussion. We introduce the syntactic approximation of the notion of
purity in the multi-stage calculus. The notion of syntactic purity meets all our needs
for let-polymorphism: it is liberal so that we can generate the codes of polymorphic
functions in run-time. It is safe in the sense that type soundness holds for our calculus.
It is easy to decide if a given expression is pure or not.

We believe that disallowing uncaptured calls to shift in polymorphic functions is
reasonable and our implicit-delimiter approach relies on this assumption. In our ex-
perience, polymorphism and computational effects in MSP languages are completely
separated, and, therefore, our purity restriction is not problematic. However, this is not
at all a final word, and a further study is left for future work.

4 The Calculus

This section introduces the polymorphic multi-stage calculus λ DC
let , which is based on

λ i by Calcagno et al., and λ�1 by Kameyama et al. The former has polymorphism,
more than two levels, CSP, but no control operators. The latter has control operators but
no polymorphism, no run constructs and no CSP, and is restricted to two levels. Our
calculus λ DC

let has control operators, polymorphism, run constructs, but currently does
not have CSP, and restricted to two levels. The principles of our design are simplicity
and essence: the combination of control operators, polymorphism, and run constructs
are the usual sources of type unsoundness, thus leading to scope extrusion, while adding
more than two stages and CSP seems orthogonal to these problems. It is desirable to
have all these features, but in this paper, to avoid clutter, we present a minimal calculus
which exposes the subtle problems in the design of multi-stage calculi. Extension to
more expressive calculi are left for future work.

We restrict the computational effects to those caused by shift and reset, and
their answer types be invariant through the computation (no answer-type modification).
Danvy’s type-safe printf is a typical example which needs the effect of answer-type

5 We inserted brackets and escape to make the reset be of level 1.
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e0 ::= v0 | e0e0 | e0 +e0 | plet x = e0 in e0 | {e0} | Sk.e0 | <e1> | run e0

e1 ::= v1 | e1e1 | e1 +e1 | plet x = e1 in e1 | {e1} | Sk.e1 |∼e0

v0 ::= x | i | λx.e0 | <v1>

v1 ::= x | i | λx.v1 | v1v1 | v1 +v1 | plet x = v1 in v1 | {v1} | Sk.v1

Fig. 1. Syntax of Expressions

modification if written in direct style, so it is not typable in our calculus. However, this
restriction is only for presentation; we can develop the calculus with answer-type mod-
ification, although it doubles the number of answer types in the judgment. We believe
that our calculus provides a useful information on how to introduce polymorphism into
multi-stage calculus with computational effects.

Syntax. We define the syntax of λ DC
let . We assume to have an infinite number of envi-

ronment classifiers (or classifiers) �,�1, �2, · · · . They are abstract entities; variables for
classifiers are quantified by ∀, but there are no constants for classifiers. The stage-level
L is either 0 (for the present stage), or a single classifier � (for the next, or future stage).
In general a level is a finite sequence of classifiers, but we restrict the number of levels
to two, so the maximum length of levels is 1. When the names of classifiers do not
matter, all stage-levels �i are simply called “level 1”.

Fig. 1 defines the type-free expressions where en and vn, resp., are a level-n expres-
sion and a level-n value, resp., for n = 0,1.

A level-0 expression e0 is either a variable x, an integer literal i, λ -abstraction λ x.e0,
addition e0 + e0, a polymorphic let expression plet x = e0 in e0, a reset expression
{e0}, a shift expression Sk.e0, a bracket expression <e1>, or a run expression run e0.
Note that, a level-1 expression e1 should come inside a bracket expression.

A level-1 expression e1 contains an escape expression ∼e0, but since the maximum
level is one, there are no expressions like <e2> or run e1.

A level-0 value v0 is standard except that a bracket expression <v1> constitutes a code
value. Note that we will introduce call-by-value operational semantics. The definition
of a level-1 value v1 contains all kinds of expressions except an escape expression.

The variable x in λ x.e and plet x = e′ in e, k in Sk.e are bound in each e. We
identify α-equivalent expressions as usual, and FV(e) denotes the set of free variables
in e. Given an expression e, a variable x and a value v of the same level as x, e[v/x]
denotes the result of substitution of v for x in e.

Operational Semantics. We define the call-by-value operational semantics. Fig. 2 de-
fines evaluation contexts of various levels. Ei j denotes an evaluation context such that
its hole (denoted by •) will be filled by a level- j expression, and then the whole context
will become a level-i expression. An interesting one is E01[λ x.•], which means that we
evaluate under lambda abstraction.

We also define a pure evaluation context F0 j for j = 0,1. Intuitively, this context
does not have resets which enclose the hole. In our calculus, certain expressions have
implicit resets, and they cannot constitute pure evaluation contexts.
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E00 ::= • | E00[•e0] | E00[v0•] | E00[•+e0] | E00[v0 +•]
| E00[plet x = • in e0] | E00[{•}] | E00[run •] | E01[∼•]

E01 ::= E01[•e1] | E01[v1•] | E01[•+e1] | E01[v1 +•] | E01[λx.•]
| E01[plet x = • in e1] | E01[plet x = v1 in •]
| E01[Sk.•] | E01[{•}] | E00[<•>]

F00 ::= • | F00[•e0] | F00[v0•] | F00[•+e0] | F00[v0 +•] | F01[∼•]
F01 ::= F01[•e1] | F01[v1•] | F01[•+e1] | F01[v1 +•] | F00[<•>]

Fig. 2. Evaluation Contexts

E00[i+ j]� E00[m] if i+ j = m E00[{v0}]� E00[v0]

E00[(λx.e0)v0]� E00[e0[v0/x]] E01[∼<v1>]� E01[v1]

E00[plet x = v0 in e0]� E00[e0[v0/x]] E00[run <v1>]� E00[v1]

E00[{F00[Sk.e0]}]� E00[{e0[λx.{F00[x]}/k]}]

Fig. 3. Reduction Rules

Fig. 3 gives the reduction rules in the evaluation-context style.
The first three rules are integer addition, β reduction in call-by-value, and let-reduction

as usual. The next two rules are the ones for control operators. shift captures the contin-
uation delimited by the nearest delimiter. In the rule, F00 is an evaluation context which
does not have resets around the hole, which means that the reset displayed in the rule
is the nearest one. After capturing the delimited context {F00}, we convert it to a func-
tional form λ x.{F00[x]}, and bind k to it, and continue the evaluation. For the next rule,
if the body of a reset expression is a level-0 value, the delimiter is simply discarded.

The last two rules are the reduction rules for multi-stage constructs. In the second last
rule, the evaluation context E01 signifies that the hole in E01 is of level-1, which means
that there are brackets enclosing the hole. Hence the subexpression ∼<v1> appears in a
code, and thus we are splicing the code v1 into the code. Then it is easy to understand the
reduction rule. The last rule defines the code execution. If the body of the run expression
is <v1>, then we extract the content v1 of the code expression, and start evaluating v1.
In the right-hand side of this rule, a level-1 value v1 is plugged in to the level-0 hole
in E00.

Reductions for Implicit Delimiter. One may notice that reduction rules Fig. 3 are too
weak. In fact, there are closed, non-value expressions that may not be reduced by any
reduction rules. For instance, {<λ x.∼(Sk.e)>} gets stuck, since the obvious candidate
for reduction is E00[{F00[Sk.e0]}]� · · · , but the definition of F00 does not allow level-1
abstraction λ x.e. Our calculus rules out some of such kinds of expressions, but not all of
them. Some expressions in the above form typecheck in our type system, and thus, we
need additional reduction rules for those safe patterns, to take into account the implicit
delimiters.
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Auxiliary definition for pure evaluation contexts:

F10 ::= F10[•e0] | F10[v0•] | F10[•+e0] | F10[v0 +•] | F11[∼•]
F11 ::= • | F11[•e1] | F11[v1•] | F11[•+e1] | F11[v1 +•] | F10[<•>]

Additional reduction for level-0 implicit resets:

G[F00[Sk.e0]]� G[{e0[λx.{F00[x]}/k]}] where G ::= E00[plet x = • in e0]

| E00[run •]

Additional reduction for level-1 implicit resets:

H[F10[Sk.e0]]� H[∼{e0[λx.{<F10[x]>}/k]}]
where H ::= E01[λx.•] | E01[Sk′.•] | E01[plet x = • in e1] | E01[plet x = e1 in •]

Fig. 4. Reduction rules for implicit resets

Fig. 4 gives the reduction rules corresponding to implicit resets.
Although the reduction rules look complicated, they are in fact simply derived from

the informal reading for implicit resets, stated earlier.

5 Type System

In this section, we define a polymorphic type system for the calculus λ DC
let . We first

define types:

σ ,τ,α,β ::= t | int | σ → τ/β | <σ/β>� monomorphic type

T ::= σ | ∀t.T | ∀�.T polymorphic type

where t is a type variable, and int is the type for integers. The type σ → τ/β is the func-
tion type with effects, which are determined by the answer type β . The type <σ/β>� is
the type for codes of level � where σ is the type of the code, and β is a level-1 answer
type.

The polymorphic type T is a monomorphic type with universal quantification. Fol-
lowing Calcagno et al. [2], we have two kinds of quantification: ∀t.T represents uni-
versal quantification over types, and ∀�.T universal quantification over environment
classifiers. We sometimes write ∀t.∀�.σ for the type σ quantified over sequences of
type variables t1, · · · ,tn and environment classifiers �1, · · · , �m.

For a type T , FC(T ) and FTV(T ), resp., are the set of free classifiers in T , and the set
of free type variables in T , resp. In the following, we sometimes write FV(Γ ) and so on,
which has obvious meaning.

A general form of a judgment is Γ �L e : σ ;β0 ;β1 where the type context Γ is
a (possibly empty) finite sequence of the form (x : T )L where T is a polymorphic type
and L is a level. The level L in (x : T )L means that the variable x can be used in level
L. The above judgment means that, under the type context Γ , e is a level-L expression
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of type σ with the level-0 answer type β0 and the level-1 answer type β1. When L = 0,
the level-1 answer type β1 is not significant (a level-0 expression cannot contain level-1
effects), and therefore we often write − for β1.

Typing rules of λ DC
let are defined as follows.

(i is an integer constant)

Γ �L i : int ;β0 ;β1
int

(τ ≤ T )

Γ ,(x : T )L �L x : τ ;β0 ;β1
var

Γ �L e1 : int ;β0 ;β1 Γ �L e2 : int ;β0 ;β1

Γ �L e1 + e2 : int ;β0 ;β1
plus

Γ ,(x : σ)0 �0 e : τ ;β0 ;−
Γ �0 λ x.e : σ → τ/β0 ;α0 ;− λ 0

Γ ,(x : σ)� �� e : τ ;<τ/β1> ;β1

Γ �� λ x.e : σ → τ/β1 ;α0 ;α1
λ 1

Γ �0 e1 : σ → τ/α0 ;α0 ;−
Γ �0 e2 : σ ;α0 ;−

Γ �0 e1e2 : τ ;α0 ;−
app0

Γ �� e1 : σ → τ/α1 ;α0 ;α1

Γ �� e2 : σ ;α0 ;α1

Γ �� e1e2 : τ ;α0 ;α1
app1

Γ �0 e1 : σ ;σ ;−
t ⊆ FTV(σ)−FTV(Γ ), �⊆ FC(σ)−FC(Γ )

Γ ,(x : ∀t.∀�.σ)0 �0 e2 : τ ;β0 ;−
Γ �0 plet x = e1 in e2 : τ ;β0 ;− let0

Γ �� e1 : σ ;<σ/σ>� ;σ
t ⊆ FTV(σ)−FTV(Γ )

Γ ,(x : ∀t.σ)� �� e2 : τ ;<τ/β1>
� ;β1

Γ �� plet x = e1 in e2 : τ ;<τ/β1>
� ;β1

let1

Γ ,(k : ∀t.(σ → β0/t))0 �0 e : β0 ;β0 ;−
Γ �0 Sk.e : σ ;β0 ;− shift0

Γ �0 e : β0 ;β0 ;−
Γ �0 {e} : β0 ;α0 ;− reset0

Γ ,(k : ∀t.(σ → β1/t))� �� e : β1 ;<β1/β1>
� ;β1

Γ �� Sk.e : σ ;α0 ;β1
shift1

Γ �� e : β1 ;β0 ;β1

Γ �� {e} : β1 ;β0 ;α1
reset1

Γ �� e : σ ;β0 ;β1

Γ �0 <e> : <σ/β1>
� ;β0 ;− brackets0

Γ �0 e : <σ/β1>
� ;β0 ;−

Γ �� ∼e : σ ;β0 ;β1
escape1

Γ �0 e : <σ/σ>� ;<σ/σ>� ;− (� �∈ FC(Γ ,σ))

Γ �0 run e : σ ;α0 ;− run0

Let us explain the typing rules briefly.
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The var rule is the standard one in polymorphic type systems where τ ≤ T means that
τ is an instance of polymorphic type T . More precisely, if T = ∀t.∀�.σ for a monomor-
phic type σ , then τ = σ [α/t][�′/�] for some α1, · · · ,αn, �

′
1, · · · , �′k.

The λ 0 rule is also standard except that it retrieves the level-0 answer type β0 into
the function type σ → τ/β0. Since a function does not have computational effects,
its level-0 answer type can be an arbitrary type α0. The λ 1 rule is the key to avoid
scope extrusion as studied by Kameyama, Kiselyov and Shan [7]. As we explained in
Section 3, the level-1 expression λ x.e has an implicit level-0 reset beneath this lambda,
namely, its intuitive meaning is λ x.∼{<e>}. In order to type this expression, we need
to require the level-0 answer type for e be <τ/β1>

�. The app rules can be understood
easily.

The level-0 polymorphic let expression plet x = e1 in e2 should be understood
as let x = {e1} in e2, hence the answer type of e1 must be the same as the type
of e1 itself. (See also the reset rule below.) The level-1 polymorphic let expression
plet x = e1 in e2 is slightly more complex. First, due to the purity restriction for e1, it is
understood as let x = {∼{<e1>}} in e2. But since this level-1 let expression is a binder
for e2, it must not have level-0 effects, and therefore, let x = {∼{<e1>}} in ∼{<e2>}
is the final meaning of polymorphic let expression. The type rule reflects this reading.

The shift rules are adaptation from the standard typing rules for them in the litera-
ture of delimited continuations. For instance, level-0 shift captures a delimited context
whose answer type is β0. Thus the type of k must be a function type whose return type is
β0. Since the delimited continuation is a pure function (no control effects are involved),
it is polymorphic in the answer type, and thus we quantify t in σ → β0/t. The shift1 rule
is more complex, as it binds level-1 variables k, and again we have an implicit level-0
reset. (Note the level-0 answer type for e is <β1/β1>

�.)
The reset rules are also adaptation of the type rule in the literature. For a level-0

expression {e}, its type must be the same type as that of e and also the level-0 answer
type of e. Since {e} has no observable control effects, its level-0 answer type can be
arbitrary type α0. The level-1 reset rule can be understood similarly.

The rules for brackets and escapes are the same as those in λ α and λ i except that we
need to memoize the level-0 effect (β1) in the code type as <σ/β1>

�. Brackets turn a
level-1 expression to a level-0 expression, and escape does the converse.

Finally, the run rule is one of the most interesting ones. The run construct is to exe-
cute the code (inside brackets) at the present stage, and thus it is important to ensure it
is a closed code. The calculi λ α and λ i ensure this closedness condition in terms of the
eigen-variable condition for the classifier �: it must not appear at any other place in the
judgment for e. If the condition is met, e does not depend on the stage �, so we can run
(and compile) it at the present stage. In addition to this condition, we need to rule out,
for instance, an expression like run <shift k -> ..>. In general we need to ensure
level-0 and level-1 purity of e in this rule. Thus we implicitly introduce resets of both
levels.

The following figure shows a type derivation for λ x.∼(Sk.<x + 10>) where Γ = (x :
int)�,(k : ∀t.<int/int>� → <int/int>�/t)0.
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Γ �� x + 10 : int ;<int/int>� ;int

Γ �0 <x + 10> : <int/int>� ;<int/int>� ;−
(x : int)� �0 Sk.<x + 10> : <int/int>� ;<int/int>� ;−
(x : int)� �� ∼(Sk.<x + 10>) : int ;<int/int>� ;int

�� λ x.∼(Sk.<x + 10>) : (int→ int/int) ;β1 ;β2

6 Type Soundness

In this section we prove type soundness of λ DC
let , which consists of the subject reduction

property (type preservation) and the progress property. Due to lack of space, we do not
give complete proofs, and, instead state important lemmas in this paper.

Lemma 1 (Values do not have effects). If Γ �0 v0 : σ ;β0 ;− is derivable, then
Γ �0 v0 : σ ;α ;− is derivable for any α . If Γ �� v1 : σ ;β0 ;β1 is derivable, then
Γ �� v1 : σ ;α ;β1 is derivable for any α .

This lemma can be proven immediately. We then state two lemmas about substitution,
which are used in the proof of subject reduction.

Lemma 2 (Substitution for monomorphic variable). If Γ1 �0 v : σ ;α0 ;− and
Γ1,Γ2,(x : σ)0 �L e : τ ;β0 ;β1 are derivable, Γ1,Γ2 �L e[v/x] : τ ;β0 ;β1 is deriv-
able.

Lemma 3 (Substitution for polymorphic variable). If Γ1 �0 v : σ ; [ ] and Γ1,Γ2,(x :
∀t.∀�.σ)0 �L e : τ ;β0 ;β1 are derivable, t1, · · · , tn ∈ FTV(σ)−FTV(Γ1) and �1, · · · , �k ∈
FC(σ)−FC(Γ ), then Γ1,Γ2 �L e[v/x] : τ ;β0 ;β1 is derivable.

These lemmas can be proven by structural induction on the second derivation, resp. The
next lemma is necessary to prove subject reduction for the case of the run construct.
First, we introduce an auxiliary definition ⇓� for elements of typing contexts, defined
as:

(x : σ)0 ⇓�
def= (x : σ)0

(x : υ)� ⇓�
def= (x : υ)0

(x : υ)�
′ ⇓�

def= (x : υ)�
′

if �′ �= �

The definition extends to Γ ⇓� straightforwardly.

Lemma 4. Suppose Γ1,Γ2 �� v1 : σ ;β0 ;β1 is derivable such that � �∈ FC(Γ1,σ ,β0,β1),
and Γ2 consists of the form (xi : τi)� such that � �∈ FC(τi). Then we can derive Γ1,Γ2 ⇓��0

v1 : σ ;β1 ;−.

This lemma is proven by induction on the derivation of Γ1,Γ2 �� v1 : σ ;β0 ;β1. As its
corollary, we obtain:
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Corollary 1. Suppose Γ �� v1 : σ ;β0 ;β1 is derivable such that � �∈ FV(Γ ,σ ,β0,β1),
then we can derive Γ �0 v1 : σ ;β1 ;−.

Finally, we state the subject reduction property.

Theorem 1 (Subject Reduction). If Γ �0 e : τ ;β0 ;− is derivable and e�∗ e′, then
Γ �0 e′ : τ ;β0 ;− is derivable.

Proof. (very brief sketch) We prove the theorem by induction on the number of reduc-
tion steps, and case analysis of reductions.

For the reduction rules of shift (when shift captures a continuation up to the nearest
reset), we have the important observation: for any type derivation of a pure context Fi j

(i, j = 0,1), there are no (explicit or implicit) level-0 resets and no level-0 binders which
enclose the hole. Moreover, there are no binders of the same level. Then by induction on
Fi j, we can prove that the level-0 answer type does not change through this derivation.
By using this fact, we can prove the subject reduction property for this case.

The cases for β and let reductions are handled by Lemmas 2 and 3. Other cases are
proven straightforwardly.

The progress property states that a closed well-typed express does not get stuck.

Theorem 2 (Progress). If �0 e : τ ;τ ;− is derivable, there exists an expression e1

such that {e}� e1.

Proof. (sketch) We first prove by induction that, for any typable expression e, it is a
value, a reducible expression, or a stuck expression E00[Sk.e′].

Then, we can prove that {e} is always a redex.

7 Principal Type and Type Inference

Type inference is an important feature for ML-like languages, and it is even more im-
portant for our calculus, since we need to keep track of the effects of an expression
as type annotation. In this section we briefly mention the type inference algorithm for
λ DC

let .
Calcagno, Moggi and Taha [2] proposed the calculus λ i and its polymorphic version

λ i
let , which is slightly less expressive than the earlier calculus λ α by Taha and Nielsen,

but has principal typing (or principal type for λ i
let). λ i is suitable as the foundation of

multi-stage programming languages, as demonstrated by the success of the MetaOCaml
language.

Our calculus λ DC
let also has the principal type property, and a sound and complete

type inference algorithm similar to the algorithm W.
Given an expression e, a type context Γ and a level L, we say (θ ,σ ,α,β ) is a solution

for these data if and only if θ is a substitution for type variables and classifiers, σ , α , β
are types, and Γ �L e : σ ;α ;β is derivable.

Proposition 1 (Principal Type). Suppose there is a solution for an expression e, a type
context Γ , and a level L. Then there exists a principal solution (θ0,σ0,α0,β0) for them,
namely, for any solution (θ1,σ1,α1,β1) for the same input, there exists a substitution φ
such that θ1 = θ0φ , σ1 = σ0φ , α1 = α0φ and β1 = β0φ .
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Here we slightly generalized the statement of the theorem than the standard form so
that the inductive proof goes through.

Proof. (sketch) We can construct a Hindley-Milner’s style type inference algorithm for
λ DC

let . This is due to the “implicit reset” approach, since we no longer have to infer the
(semantic) purity in the process of type inference.

The only difficulty in constructing the algorithm is the case for the run rule, which
has the negative side condition � �∈ FV(Γ ,σ). To see how our algorithm handle this case,
let us consider the expression run e under the context Γ and the level L. We first infer
the type of e under Γ and L. Suppose we get (θ0,σ0,α0,β0) as the answer. Then we
unify σ0 with <σ ′/σ ′>� for a fresh σ ′ and so on. We check if the classifier � appears in
the results or not. The algorithm fails to infer a type if � appears in a wrong place of the
results, and continues otherwise. In the latter case, the future process of type inference
does not unify � to other classifiers, so the side condition � �∈ FV(Γ ,σ) will remain valid.

Hence we can build a W-like type inference algorithm. The proof of soundness and
completeness of the algorithm is as standard.

8 Conclusion

We have designed a polymorphic type system for multi-stage calculus with delimited-
control operators where polymorphism in types and that in classifiers are expressible.
The calculus in this paper extends Kameyama, Kiselyov and Shan’s calculus in that
(besides polymorphism) we have the run construct. The key idea of integrating these
conflicting concepts into one calculus is to relax the value restriction to the syntactic
purity restriction, and then introduce the notion of implicit resets. We have proven type
soundness and the existence of principal types, both of which are essential to make our
language usable.

The success of this combination strongly owes to the local nature of computational
effects by shift and reset: we can represent, in particular, mutable variables in terms of
shift and reset, but their scope is local to a certain block in a program. By placing a
sufficiently many resets (on the borders of polymorphism and run), we have obtained a
type-safe polymorphic calculus.

We mention other approaches to design type-safe multi-stage calculi with control
effects. Kim, Yi and Calcagno [8] proposed a polymorphic modal type system for Lisp-
like languages. Since their calculus has quite different flavors in nature (for instance,
α-equivalence is not admissible in their calculus, while it is built in our calculus), it is
left for future work to compare these two different lines of works.

Recently Westbrook et al. [16] designed a multi-stage programming language Mint
as an extension of Java. To ensure type safety, they introduced the notion of weak sepa-
rability. Despite the difference of underlying languages, it will be interesting to compare
their conditions with ours so that we can build an even more powerful, and type-safe
calculus.
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Abstract. Application Specific Instruction Set Processors (ASIPs) have
become popular in the development of embedded systems. For these
processors easily-retargetable, high-performance compilers play a key
role in the development process, improving productivity and reducing
time-to-market. We propose a novel, object-based architecture descrip-
tion language (ADL) OpenDL, as well as a well-structured Rule Library
to automatically retarget compiler backends. OpenDL is a succinct and
high-quality ADL with object-based inheritance features, while the Rule
Library applies instruction templating in order to allow detailed instruc-
tion specification to handle complex rule patterns. We use these tools
to automatically retarget the open source industrial-strength compiler
Open64 to the high-performance embedded processor PowerPC. A re-
liable version of auto-retargetable industrial-strength compiler is gen-
erated which achieves comparable performance to gcc 4.5 for both the
EEMBC and SPEC CPU 2000 benchmarks.

Keywords: ADL, automatic retarget, code generator generator.

1 Introduction

Power and energy consumption are ever-growing concerns, especially for embed-
ded domains, and this has resulted in custom instruction processors becoming
a trend. Correspondingly, application-specific instruction set processors (ASIPs)
have become more and more popular [17] for the development of embedded ap-
plications and systems.

ASIPs put forward new challenges to the implementation of compiler retar-
geting since they greatly increase the number of back-end targets. For these
processors, customizing dedicated optimal instruction sets play an important
role in performance. To produce high performance applications, the designers
need powerful development tools such as compilers, assemblers and simulators
to build efficient and low energy processors. In this procedure, easily-retargetable
high performance compilers play a key role in the design and development, im-
proving productivity and reducing time-to-market. One of the more pressing
challenges in this area is the need for easy-retargetability within the wide range
of processors of the same processor family. This occurs due to the continual
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upgrading of instruction sets, as well as the fact that some processor families
within the same architecture have incompatible instruction sets, such as occurs
between the Power Family and PowerPC processors of the Power architecture.

The problem is further increased by the growing complexity of powerful and
high-performance embedded processors. For instance, the high-performance em-
bedded processor PowerPC, widely used in communication and aviation, has
more than 200 instructions, and writing an architecture description language
(ADL) for them requires handling significant complexity. This situation re-
quires expressive, concise and high-quality architecture description languages
for compilers. Unfortunately, most of the industrial-strength compilers lack easy-
retargetability. Their retargeting work demands massive and error-prone mod-
ification of source code of the compilers which can take tremendous time, and
also brings about expensive development costs.

Generating an auto-retargetable backend for a industrial-strength compiler
is certainly difficult. There is auto-retargeting work for gcc [4], based on an
ADL and tree-pattern matching [1], but it is limited to compiling medium-sized
benchmarks, such as MiBench and MediaBench. There are also auto-retargetable
compiler systems such as CoSy [17] and Tensilica [29], but we have not seen any
published results of large-scale applications such as SPEC CPU on these com-
pilers. Moreover, the architectures they worked on were simpler than PowerPC.

This paper proposes a novel, object-based ADL OpenDL and a well-structured
Rule Library to automatically retarget compiler backends, ensuring efficient han-
dling of complex instruction sets and rule patterns. With the introduction of
object-based inheritance features, OpenDL not only is succinct and flexible, but
also leads to a high-quality description that tends to have fewer bugs. With the
concept of instruction template, the well-structured Rule Library allows detailed
specification of instructions to handle complex rule patterns.

We use OpenDL and the Rule Library to automatically retarget the open
source, industrial-strength compiler Open64 to the high performance embed-
ded processor PowerPC. By introducing a well-defined intermediate represen-
tation interface AutoAST we generate a reliable version of an auto-retargeting,
industrial-strength compiler for large-scale practical applications. It passes about
the same number of gcc-torture cases as the newest gcc 4.5, and also achieves
comparable performance to gcc 4.5 for both the embedded benchmark EEMBC
and the general purpose benchmark SPEC CPU 2000. For one SPEC CPU
benchmark program, it can generate 20% faster code than gcc.

2 Design Overview

2.1 Background

Open64. Open64 is a well-structured industrial-strength high performance open
source compiler released under the GNU General Public License (GPL) target-
ing IA-32, x86-64 and IA-64 architectures. It originates with the SGI Pro64
open source compiler suite, evolving from SGI’s product compiler MIPSPro. Re-
cently, Open64 has been retargeted to MIPS [28], PowerPC [21], NVISA [25]
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and Simplight [23] platforms, and has been used for development of an efficient
DSP compiler [7].

Open64 has some powerful functional components to analyze and optimize
programs [22]. Inter-procedural analysis (IPA) uses local dataflow information
to construct the call graphs and perform alias analysis, dead code elimination,
constant propagation, function inlining and global variable optimization. Loop-
nest optimization (LNO) performs loop distribution, automatic vectorization and
parallelization, etc.. Global optimization (WOPT) converts the main intermedi-
ate representation (WHIRL, an AST representation) to a hashed SSA form and
performs optimizations such as partial redundancy elimination, pointer analysis,
copy propagation and induction-variable recognition. Finally, the code generator
(CG) performs instruction selection and scheduling, software pipelining, register
allocation, architecture-dependent optimization and finally emits the assembly.

The different components of the compiler such as IPA, LNO, WOPT and CG
communicate through the WHIRL AST. WHIRL has 5 levels of representation:
Very High (VH), High (H), Mid (M), Low (L) and Very Low (VL). VH WHIRL
contains all the semantic information in the source code; VL WHIRL only exists
in code generators.

Olive. Code selectors of most auto-retargeting work use tree-pattern matching
and dynamic programming techniques, first introduced in twig by Aho, et al. [12].
Fraser, et al. [9] put forward burg, applying bottom-up rewrite system (BURS)
theory [27] to move the execution of dynamic programming to compile-compile
time. This has functional limitations, and is difficult to understand and debug.
Fraser, et al. [8] then proposed iburg which directly uses switch and if statements
to perform pattern matching instead of applying BURS theory.

After comparing the merits of twig, burg and iburg, Steve Tjiang improved
upon twig and created Olive [13]. Olive implements a similar powerful grammar
to twig while performing pattern matching directly using switch and if, as is
done in iburg. To the best of our knowledge, Olive is so far the most powerful
code generator generator (CGG). As a result, we adopt Olive for automatic code
generation in our auto-retargetable Open64 backend.

2.2 Design Goals

We have several design goals for the automatically retargetable compiler: usabil-
ity, generality and performance.

To achieve superior usability, we use OpenDL to handle the complexity of
writing and maintaining the architecture description. As OpenDL has object-
based inheritance mechanisms, there is little redundancy in the description and
most of the copy-paste work common in ADL editing is reduced. It is easy to au-
tomatically retarget the compiler to a new architecture using the Rule Library.
By relying on instruction templates, it can handle the detailed instruction speci-
fication and complex rule patterns that typically confront automatic retargeting
work necessary to direct industrial-strength compilers at powerful processors.
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We introduce a well-defined intermediate representation interface AutoAST
as a solution to our generality objective. It bridges the gap between the Open64
intermediate representation and the code generator generator (CGG) Olive [13].
AutoAST makes it easy to integrate Olive into the Open64 intermediate repre-
sentation and into other compilers.

For the aim of high performance, we chose to automatically retarget the
Open64 compiler, which is a powerful, industrial-strength high-performance com-
piler with many elaborate analysis and optimization components. Currently, it is
the fastest compiler for SPEC CPU report on AMD processors. However, it was
not designed to be easily retargetable, and retargeting work requires consider-
able effort for even similar architectures [6]. We chose to automatically retarget
Open64 to utilize its strong high level optimizers as well as to facilitate its
retargeting efforts.

2.3 Design Framework

The auto-retargetable code generator is illustrated in Figure 1. We maintain the
Rule Library which contains instruction templates and grammar rule templates
that will be discussed in section 4.4. OpenDL Analyzer reads the OpenDL de-
scription of the target architecture and then selects suitable rule templates from
the Rule Library and generates corresponding grammar rules according to the
OpenDL description, after which it outputs the grammar rules source file.

VL WHIRL 

CGIR 

AutoAST 

AST converter 

Optimize and Emit Assembler 

Olive Grammar rulesAutoCG 
Input Output 

OpenDL 
Analyzer OpenDL 

Output

Rule Library 
Input

CG 

Fig. 1. Auto-Retargetable Code Generator

After the grammar rules are generated for the specified target, the code gener-
ator generator Olive compiles the grammar source file and generates source code
for the code generator AutoCG. Finally AutoCG is compiled into the backend
of the compiler.

When the auto-retargeted compiler compiles a source language, the AST con-
verter transforms VL WHIRL to AutoAST at the code generation phase. Sub-
sequently AutoCG applies tree-pattern matching and dynamic programming on
AutoAST to perform optimized code generation.
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3 OpenDL

OpenDL is an object-based ADL with XML-like grammar. By introducing the
inheritance mechanisms of Common Information Extraction, Instruction Sharing
and Pattern Abstraction, it leads to a concise and high-quality description of
instructions.

3.1 Instruction Description

Figure 2(a) demonstrates the definition of an instruction. In the operand section,
the operands of the instructions are listed in order, and the type field specifies
the operand machine type. The action section describes the semantics of the
instruction. In this case it describes a kind of addition instruction, with the
semantics that the destination operand is assigned the sum of the two source
operands. The assembly part describes how the instruction is written in the as-
sembly language: “%name” represents the name of the instruction (“addi” in this
case), and each “%s” is a given operand in order. The encoding section specifies
how the instruction is binary encoded for the processor. The specification is in
a concise segmented form. Each segment is comprised of two parts, where the
first represents the content of the segment and which can be a fixed number or
the encoding of an operand, and the second is the occupied bits of the segment,
presented in brackets.

3.2 Common Information Extraction

Though there are a number of instructions in modern embedded processors,
many of them are similar and can be sorted into only a few classes. For example,
many architectures supply integer and floating-point arithmetic instructions, bit-
operation instructions, memory access instructions, control instructions such as
data move into and out of control registers, SIMD instructions, etc. For example,
bit-operations such as and, or, nand (not and), nor (not or) and xor have both
logical and practical similarities. The common information can be extracted into
separate classes and instruction descriptions can then reuse the same classes. In
this way, the description can be much more succinct and the design is more
flexible and easier to modify.

The common information extraction inheritance mechanism is illustrated in
Figure 2(b), where the class keyword defines the class inherited by these instruc-
tions, here “BitOperation,” and the base attribute denotes the super-class, in
this case the built-in class “InstructionSet.”

3.3 Instruction Sharing

There are also instructions which act like each other, but with some variation
in routine behaviors. An example is the PowerPC instruction syntax form. Most
instructions have two or four syntax forms which affect flag registers. Instructions
such as add, addc and mul have four syntax forms, i.e. add, add., addo, addo.,
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<InstructionSet> 
<addi> 

<operand> 
<result type=”GPR” /> 
<src1 type=”GPR” /> 
<src2 type=”simm16” /> 

</operand> 
 <action> result = ADD(src1, src2) </action> 
   <assembly pattern="%name %s, %s, %s" /> 
 <encoding> 
   14 [0-5] result [6-10] src1 [11-15] src2 [16-31]
 </encoding> 
 … 

</addi> 
… 

</InstructionSet> 

<class name=”BitOperation"  
base=”InstructionSet”  
operator=”op”> 

<action> result = op(src1, src2) </action> 
<assembly pattern="%name %s, %s, %s" /> 
… 

</class> 
<and inherit=”BitOperation” operator=”AND” /> 
<or inherit=”BitOperation” operator=”OR” /> 

(a) Instruction Description      (b) Common Information Extraction 
<class name=”Syntax4”, 
    base=”InstructionGroupGenerator”> 
<form suffix=”” /> 
<form suffix =”.”> 

<action> 
   $action(%instruction) 
   testset CR0[LT, GT, EQ, SO] 
 </action> 
 <encoding> 1 [31] </encoding> 

</form> 
… 

</class> 
<add syntax=”Syntax4”> 

… 
</add> 

<class name=”ImmediateDecorator”  
base=”Decorator” suffix=”i”> 

<operand> 
 <src2 type=”simm16” /> 

</operand> 
</class> 
<class name=”ExtendedDecorator”  

base=”Decorator” suffix=”e”> 
<action> 

 result = ADD($action(%instruction), CARRY) 
 testset CARRY 

</action>  
</class> 
<add> 

<decorator name=”” syntax=”Syntax4” /> 
<decorator name=”ExtendedDecorator”  

syntax=”Syntax4” /> 
<decorator name=”ImmediateDecorator” /> 
… 

</add> 
(c) Instruction Sharing        (d) Pattern Abstraction 

Fig. 2. OpenDL Description

etc.. The “*.” form affects the LT, GT, EQ, SO of the CR0 register, “*o” form
affects SO, OV of the fixed-point exception register (XER), “*o.” form affects
all the above, and “*” form affects none.

In order to describe the group of instructions, traditionally we need to define
all the four instructions, which is redundant and painstaking. In OpenDL we
can define the syntax form class which is an instruction group generator that
automatically generates the four instructions; afterwards we need just define the
primitive instruction once and designate the syntax form to the instruction. This
shrinks the description, and has less redundancy.

Figure 2(c) illustrates instruction sharing. The syntax attribute indicates the
syntax form class, and “$action(%instruction)” tells the generator to perform
the instruction’s own action first.



Compiler Backend Generation for ASIPs 127

3.4 Pattern Abstraction

For most architectures, several instructions may perform the same type of op-
eration, forming a decorator design pattern. One instruction may have several
decorators and one pattern may apply to many types of instructions. Take the
instructions performing add operations in PowerPC for example: add, addc (add
carrying), adde (add extended), addi (add immediate), addic (add immediate
carrying), addis (add immediate shifted). The carrying decorator means setting
the CARRY bit, the extended decorator using and setting CARRY bit, and the
shifted decorator logically shifting left the immediate value by 16 bits. The car-
rying and extended decorators also apply to subf instructions and the immediate
and shift decorators are employed in mul, and, or, etc. We can abstract the dec-
orators as semantic classes, and then all we need to do is define one instruction
and give it the decorators to describe these instructions.

Figure 2(d) illustrates the combination of instruction sharing and pattern
abstraction. Decorators are defined in their own classes and can be applied to
instructions, each with independent syntax forms.

4 Rule Library

The Rule Library contains two parts: abstract machine instructions which are
defined as instruction templates, and grammar rule templates which specify how
the Open64 VL WHIRL AST maps to lists of abstract machine instructions.
This section introduces the definition of rule templates and then presents the
techniques used in rule mappings.

4.1 Terminal Declaration

Each WHIRL operation is specified by an opcode which consists of three com-
ponents: operator, result type and descriptor type. Operator specifies the kind
of the operation, while result type and descriptor type qualify the data type of
the result and operands of the operation respectively.

We define terminals according to the opcode of the WHIRL node. Take the
32-bit integer add as an example, the opcode is OPC I4ADD, and we define
a terminal I4ADD for it. We generally define different terminals for different
opcodes, but for opcodes of some operators such as load/store operations, we
are not concerned with the descriptor type of the opcode, and thus define the
same terminal for them to make the rules simpler. For example, we define the
same terminal I4LDBITS for OPC I4I1LDBITS, OPC I4I2LDBITS, etc.

4.2 Nonterminal Declaration

We define nonterminals according to the result type of the semantic actions
of the production. As the target is a RISC processor whose memory access
operations are implemented by load and store instructions, the operands of other
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instructions are all registers and/or immediates. We invoke external functions
for load and store operations which simplifies the definition for nonterminals.
Except for the start symbol, chief nonterminals are sorted into two categories
of registers and immediates. Since 8-bit and 16-bit registers in CISC processors
do not exist in our target, the register category consists of reg, reg64, f4reg and
f8reg, while imm16 and imm32 comprise the immediate category.

4.3 Grammar Rules

A grammar rule contains two parts: a cost specification and an action specifi-
cation. Currently, we use the sum of the clock cycles needed by the executed
instructions of the semantic action as the cost. Other indicators can also be used
for the cost function, such as the generated code size of the semantic action. For
different scenarios, weighted sum of these indicators is still an alternative.

One production rule is illustrated in Figure 3. I4INTCONST, U4INTCONST,
etc. are terminals discussed in section 4.1. The production claims that imm16
can be reduced by any of these terminals.

imm16 : I4INTCONST, U4INTCONST, I8INTCONST, U8INTCONST 
      { 
          CHECK(Has_Immediate_Operand($1->parent, $1->wn)); 
          CHECK(IN_RANGE(WN_const_val($0->wn), SIMM16)); 
          $cost[0].cost = 0; 
      } 
      = { 
          $0->result = Gen_Literal_TN(WN_const_val($1->wn), 4); 
      }; 

Fig. 3. A Grammar Rule

The cost is specified in the first brace. The dynamic programming algo-
rithm calculates the minimum-cost match by the cost statements. The function
CHECK checks if the production is valid, and if not, ignores the production.
As shown in this production, Has Immediate Operand is an Open64 defined
function which tests whether the parent WHIRL node can accept an immedi-
ate operand. “CHECK(IN RANGE( WN const val($0->wn), SIMM16))” checks
if the constant operand in the node is a 16-bit integer. After passing these
two tests, it is assured that using this production for reduction to imm16 is
safe. The semantic action is the statement in the second brace “$0->result =
Gen Literal TN(WN const val ($1->wn), 4);”, which directly builds an imme-
diate TN node with no instruction generation needed. The “$cost[0].cost=0;”
declaration tells Olive the cost is 0 and using this production is encouraged.

4.4 Mapping Rules

Figure 4 illustrates grammar rules mapping. The production shows that reg can
be reduced to a 32-bit integer subtraction, in which the minuend is imm16 and
the subtrahend is reg64t.
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To map the grammar rules, we introduce instruction templates which are de-
fined before the rule templates. An instruction template consists of a placeholder
for an instruction and a specification of the characteristics of the instruction. In
figure 4, the “subfic” after the “<%” is the placeholder name, and the instruc-
tion template can represent any instruction that has compatible operands and
actions with those specified by the template.

The concept of instruction template in our rule mapping approach splits
instruction specification and analysis from the rule templates. This is a well-
structured approach that allows more detailed specification of instruction tem-
plates without introducing much complexity.

After instruction templates are defined, the grammar rule templates are pro-
vided. Each rule template as an annotation to specify the mapping, which is
the placeholder name of an instruction template. The annotation indicates that
the rule template refers to the corresponding instruction template. The semantic
action thus can use the specified instruction.

One-to-many mapping, i.e. multiple IR operations mapping to one single in-
structions, can already be handled by the Olive grammar. If a rule needs more
than one instructions, then all the instruction templates are annotated. In this
way we can handle various cases, including many-to-one or even many-to-many
mappings.

If the OpenDL Analyzer finds that a target processor supplies an instruction
compatible with the instruction template then the rule template is selected and
the instruction placeholder is replaced with the real instruction.

<% subfic 
<operand> 

<result type=”GPR” /> 
<src1 type=”GPR” /> 
<src2 type=”imm16” /> 

</operand> 
<action> result = SUB(src2, src1) testset CARRY </action> 

%> 
… 
reg  : I4SUB(imm16, reg64t), U4SUB(imm16, reg64t) 
    { 
        $cost[0].cost = 1 + $cost[3].cost; 
    } 
    = { <% subfic %> 
        $action[2](ops); 
        $action[3](ops); 
        Build_OP(subfic, $0->result, $3->result, $2->result, ops); 
    }; 

Fig. 4. Rule Mapping

5 AutoAST

AutoAST is a well-defined intermediate representation interface isomorphic to
the WHIRL tree, which is comprised of an AST converted from Open64 VL
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WHIRL and attributes and methods utilized by AutoCG. AutoCG executes
tree-pattern matching and uses a dynamic programming algorithm on AutoAST
to perform automatic code generation.

Olive performs the tree-pattern matching according to an attribute terminal of
each node of the AST. If an AST satisfies the requirement of having the following
4 methods, it can be used by Olive for automatic semantics generation: (1)
set state(burm state* s), set state s to the node. (2) burm state* state label(),
return the state of the node. (3) NODEPTR get kids(), return the pointer array
containing the kids of the node. (4) int op label(), return the terminal of the
node. Other needed data fields and methods may be added to implement the
function of code generation.

As the CGG Olive requires and maintains the attributes kids, state and label,
they are stored and made accessible to Olive through its interface. The interme-
diate variable result computed by semantic action of the corresponding sub-tree
should also be stored. To access the WHIRL data, the corresponding WHIRL
node wn is saved. The parent WHIRL node is also saved as it is required by the
code generator. Commonly used data such as the opcode and operator of the
WHIRL node are also saved in the node.

Before being transformed to CGIR, VL WHIRL is converted to AutoAST
by the AST converter. Each node is allocated and visited in a preorder traver-
sal, where we also assign its attributes to their corresponding values. Once the
traversal is completed, the AutoAST is constructed.

6 Experimental Results

We have implemented two Open64 backends on the PowerPC architecture. One
is the auto-retargeted version and the other is a manually retargeted one. So
far both these implementations have achieved sound correctness and fine perfor-
mance. Our effort is approximately 4 person-years of work and over 0.2 million
lines of code.

The experiments are performed on an Apple iBook G4 computer with Pow-
erPC 7447A processor of a frequency of 1.33GHz and 1 GB memory. The oper-
ating system is Ubuntu 8.04, with kernel 2.6.24-23-powerpc and gcc 4.5.

6.1 OpenDL

In the common instruction set of the PowerPC architecture there are 24 in-
structions with 4 syntax forms, 44 instructions with 2 syntax forms and 109
instructions with 1 syntax form. Using a traditional description, we need to
write 24 ∗ 4 + 44 ∗ 2 + 109 = 293 instructions. However, merely by using the
simplest inheritance mechanism of instruction sharing the number sharply de-
creases to 24 + 44 + 109 = 177, a compression rate of 177/293 = 60.4%. With
a combination of instruction sharing and pattern abstraction, the required in-
struction number can be further reduced to 100, resulting in a compression rate
up to 100/293 = 34.1%. Finally, if the common information extraction is also
utilized, the rate is reduced to below 25%. The result is illustrated in Figure 5.
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Fig. 5. OpenDL Compression Results

6.2 Reliability

We first test the correctness of the retargeted backends. The test suite we select
is gcc-torture 3.3.6 which is used by gcc as an important evaluation of reliability.
The results are shown in Table 1. The number of test cases we have passed is
comparable to that of gcc. Although for some cases we fail due to non-standard
gcc extensions, we feel this is substantial evidence that the retargeted compilers
are reliable for a wide range of situations.

Table 1. Gcc-torture Results

Good
cases

backend
Build
passed

Build
failed

Run
cases

Run
passed

Run
failed

O0
1525

Auto 1428 97 741 677 64
Manual 1428 97 741 677 64

Gcc 1480 45 769 710 59

O2
1525

Auto 1434 91 746 663 83
Manual 1434 91 746 663 83

Gcc 1465 60 753 687 66

O3
1525

Auto 1433 92 744 675 69
Manual 1433 92 744 675 69

Gcc 1465 60 753 687 66

6.3 Performance of Embedded Benchmarks

For performance we experiment on the well-known embedded EEMBC bench-
mark suite. The running time of some of the Consumer and Telecom benchmarks
are shown in Figure 6(a). The auto bars represent the results of the automatic
retargeted backend, the manual bars present the results of the manually imple-
mented version, and the gcc bars show the gcc results.

For O2 and O3, most of the programs achieve similar performance to the
gcc versions. It also shows that the automatic retargeted backend generates
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Fig. 6. Performance Results

faster code than the manual implementation for many programs. For rgbhpg01,
the auto-retarget backend beats the manual implementation for all optimization
levels and we think instruction selection optimizations are more essential to it.

6.4 Performance of Large-Scale Applications

We have also measured performance on large-scale applications, using SPEC
CPU 2000. Figures 6 (b) and (c) present a comparison of the benchmark scores
of the two retargeted implementations of the Open64 compiler and gcc.

It can be seen that the performance of the auto-retarget implementation is
close to the manual implementation, with a difference of less than 5%. We note
that the manually retargeted backend has undergone substantial optimization,
and thus we consider the performance of the auto-retargeting to be satisfactory.

From the results shown in the figures, for large applications, the retargeted
compilers also achieve performance close to gcc for most programs. Furthermore,
for the FP program 179.art, both implementations produce much faster code
than gcc.
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6.5 Case Study: Design Space Exploration of ASIPs

As a final case study, we experiment with the common scenario of design space
exploration in ASIPs. For ASIP design, often a basic processor and the corre-
sponding compiler is readily available, yet tailoring the processor and compiler is
required for specific applications. In this process there are usually many rounds
of adding and removing some accelerating instructions and experimenting with
the results.

We suppose to have an ASIP processor A with PowerPC instruction set yet
without the compound arithmetic instructions. We want to accelerate special
floating point applications, and therefore we attempt to produce a processor B
that adds some of the compound floating point arithmetic instructions of fmadd,
fmsub, fnmadd, fnmsub, fmadds, fmsubs, fnmadds, fnmsubs, and perform some
experiments on the processors using the tailored compilers.

The rule maintenance work is simple. If rule templates for these instructions
are in the Rule Library, no additional work is needed. However, if these instruc-
tions are comparatively new and are absent from the Rule Library, to utilize
the special instructions we supply additional rule templates for these compound
arithmetic instructions. The work is just addition of one rule template for each
tree pattern corresponding to the compound arithmetic instructions; that is, a
total of 8 grammar rules and some dozens of lines-of-code.

The retarget time is merely the time for modification of the OpenDL descrip-
tion, which is negligible, and the time needed to recompile the code generator and
link the compiler—several minutes on our experimental machine. In contrast, for
a traditional compiler we need large-scale and error-prone modification to the
compiler’s source code, as well as extensive regression testing. In our case, since
no rule templates contain more than one of these instructions, we can easily re-
target the compiler to processors with any combination of these instructions—a
total of 28 = 256 targets—with just small changes to the OpenDL description
of the target architecture, a trivial process that requires no modifications to the
Rule Library.

We then run the SPEC2000 benchmark on the two processors and compare
the results. Figure 6(d) shows the scores given by the SPEC FP programs on
the basic processor A and a new processor B equipped with the 8 compound
floating point arithmetic instructions. We can see that the new processor runs
faster than the basic processor for these applications, as expected.

The auto-retargetable compiler can produce correct code for target processors
with the guarantee that instructions not specified in the ADL are never emitted,
without potentially introducing bugs to other parts of the compiler. Processor
designers can securely remove instructions from processors, and are assured these
processors will behave correctly with no performance reduction for applications
without floating point operations. This has the additional benefit that a compact
instruction set makes the processor more energy efficient and may even get faster
by being able to otherwise exploit the space saved by removing the redundant
instructions.
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7 Related Work

There have been many existing attempts to provide compiler descriptions and
facilities to aid in retargeting. MIMOLA [3], for instance, is an HDL-like archi-
tecture description language used in the MSSQ [20] compiler. Brander, et al. [4]
put forward another structural ADL following a component based paradigm to
retarget the gcc compiler with iburg. nML [10] and ISDL [11] use an attribute
grammar to describe the instruction set. CHESS [19] used nML to describe fixed-
point DSPs and ASIPs. ISDL was primarily designed for VLIW architectures and
has been used in the AVIV [16] compiler’s retargetable code generator.

MDes [14] and EXPRESSION [15] have been primarily targeted at design
space exploration. MDes has been used to describe the HPL-PD machine in Tri-
maran compilation and performance monitoring infrastructure [30]. EXPRES-
SION was employed for software toolkit generation for architectural exploration
of programmable SOCs [24]. ArchC [2] is an ADL focused on SystemC users. Sim-
ulators and assemblers of some architectures have been generated using ArchC.

LISA [26] was designed primarily for compiled cycle- and bit-accurate fast
simulators. However, LISA lacks the high-level semantics required by compiler
retargeting since it is generally unable to extract this information from the ar-
bitrary C statements. Ceng, et al. [5] extended the LISA description by adding
instruction semantics for the compiler which was used to retarget the CoSy
compiler’s code selector [17]. An instruction scheduler was extracted from cycle-
true LISA processor models in [31]. Hohenauer, et al. [18] retargeted the CoSy
compiler with a GUI-based semi-automatic approach using LISA description.

Lin, et al [21] retargeted Open64 to PowerPC with Olive, passing half of the
SPEC2000 CINT benchmarks, and this provided a basis for our work. We use
OpenDL to automatically retarget the compiler and generate the first reliable
version of Open64 on PowerPC architecture.

8 Conclusion

In this paper we proposed OpenDL, an object-based ADL, along with a well-
structured Rule Library to automatically retarget compilers, efficiently handling
complex architecture description and rule patterns. By applying novel, object-
based inheritance features, OpenDL not only is succinct and flexible, but also
leads to a high-quality description that tends to have fewer bugs. With the con-
cept of an instruction template, the well-structured Rule Library allows detailed,
rule-based specification of instructions.

As a proof of concept, we automatically retargeted the open source industrial-
strength compiler Open64 to the high performance embedded processor Pow-
erPC using OpenDL and the Rule Library, and compared results with manual
retargeting. Experimental results show that both manually and automatically
retargeted compilers are sound, reliable and efficient, passing about the same
number of gcc-torture cases as the newest gcc 4.5. The performance of the code
generated by the compilers are also comparable to gcc 4.5 for most applications.
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For one SPEC CPU benchmark program, the compilers can generate code that
is 20% faster than gcc.

In future work, we will strengthen OpenDL with more features. We will also
automatically retarget the Open64 compiler to other RISC processors or other
architectures such as DSP and VLIW processors. We may also use different
cost calculations, combining performance and code size to make multi-objective
optimizations.
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Abstract. We revisit the problem of computing liveness sets (the sets
of variables live-in and live-out of basic blocks) for programs in strict
static single assignment (SSA). In strict SSA, aka SSA with dominance
property, the definition of a variable always dominates all its uses. We
exploit this property and the concept of loop-nesting forest to design
a fast two-phases data-flow algorithm: a first pass traverses the control-
flow graph (CFG), propagating liveness information backwards, a second
pass traverses a loop-nesting forest, updating liveness sets within loops.
The algorithm is proved correct even for irreducible CFGs. We analyze
its algorithmic complexity and evaluate its efficiency on SPECINT 2000.
Compared to traditional iterative data-flow approaches, which perform
updates until a fixed point is reached, our algorithm is 2 times faster
on average. Other approaches are possible that propagate from uses to
definitions, one variable at a time, instead of unioning sets as in data-flow
analysis. Our algorithm is 1.43 times faster than the fastest alternative on
average, when sets are represented as bitsets and for optimized programs,
which have non-trivial live-ranges and a larger number of variables.

1 Introduction

Static single assignment (SSA) is a popular program representation used by most
modern compilers. Initially developed to facilitate the development of high-level
program transformations, SSA has gained much interest due to its properties that
often lead to simpler algorithms and reduced computational complexity. Today,
SSA is even adopted for the final code generation phase [26]. For instance, several
industrial and academic compilers, static or just-in-time, use SSA in their back-
ends, e.g., LLVM [28], Java HotSpot [25], LAO [17], LibFirm [27,14], Mono [31].
Recent research on register allocation [10,18,33] showed that SSA form can even
be retained until the very end of the code generation process.

This work explores the use of SSA properties to simplify and accelerate
liveness analysis, which determines, for each basic block, the variables whose
values are eventually used by subsequent operations. This information is essen-
tial to solve storage assignment problems, eliminate redundancies, and perform
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code motion. Optimizations like software pipelining, trace scheduling, register-
sensitive redundancy elimination, if-conversion, and register allocation heavily
rely on liveness information. Traditionally, liveness is obtained by data-flow anal-
ysis: liveness sets are computed for all basic blocks, all variables treated together,
by solving a set of data-flow equations [3]. These equations are usually solved by
an iterative algorithm, propagating information backwards through the control-
flow graph (CFG) until a fixed point is reached. The number of iterations depends
on the CFG structure and on the order in which basic blocks are evaluated.

We show that, for SSA-form programs, it is possible to design a fairly simple,
two-passes, data-flow algorithm to compute liveness sets that does not require to
iterate to reach a fixed point. Its first pass, very similar to the initialization phase
of traditional data-flow analysis, computes partial liveness sets by traversing the
CFG backwards. Its second pass refines the partial liveness sets within loops
by traversing a loop-nesting forest, as defined by Ramalingam [35]. Such a loop
hierarchy is already available in modern compilers for other optimizations that
exploit the structure of loops. For the sake of clarity, we first present our algo-
rithm for reducible CFGs, then we show that irreducible CFGs can be handled
with a slight variation, with no need to modify the CFG itself.

Other approaches are possible, for example as proposed by Appel [3] or
McAllester [29], that propagate liveness from uses to definitions, one variable at
a time, instead of unioning sets as in standard data-flow analysis. For a broader
comparison with state of the art, we designed optimized implementations of this
path-exploration principle (improved to work at the granularity of basic blocks
instead of instructions as in the original versions) and compared the efficiency
of the resulting algorithms with our non-iterative data-flow algorithm.

Our experiments using the SPECINT 2000 benchmark suite demonstrate that
the non-iterative data-flow algorithm outperforms the standard iterative data-
flow algorithm by a factor of 2 on average. By construction, our algorithm is
best suited for a set representation, such as bitsets, favoring operations on whole
sets. In particular, for optimized programs, which have non-trivial live-ranges
and a larger number of variables, our algorithm achieves a speed-up of 1.43 on
average in comparison to the fastest alternative based on path exploration.

2 Related Work

Liveness information is usually computed with iterative data-flow analysis, which
goes back to Kildall [24]. The algorithms are, however, not specialized to the
computation of liveness sets and may incur overhead. Several strategies are pos-
sible, leading to different worst-case complexities and performance in practice.
Round-robin algorithms propagate information according to a fixed block order-
ing derived from a depth-first spanning tree and iterate until it stabilizes. The
complexity of this scheme was analyzed by Kam et al. [23], see Section 3.4. Work-
list algorithms focus on blocks that may need to be updated because the liveness
sets of their successors (for backward problems) changed. Empirical results by
Cooper et al. [15] indicate that the order in which basic blocks are processed
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is critical and directly impacts the number of iterations. They showed that, in
practice, a mixed solution, called “single stack worklist”, based on a worklist ini-
tialized with a round-robin order, is the most efficient one for liveness analysis.
In contrast, our non-iterative data-flow algorithm requires at most two passes
over the basic blocks, in all cases. In practice, for strict SSA programs, it is on
average twice as fast as the “single stack worklist” approach (see Section 5).

An alternative way to solve data-flow problems is interval analysis [2] and
other elimination-based approaches [36]. The initial work on interval analysis [2]
demonstrates how to compute liveness information using only three passes over
the intervals of the CFG. However, the problem statement involves, besides the
computation of liveness sets, several intermediate problems, including separate
sets for reaching definitions and upward-exposed uses. Furthermore, the number
of intervals of a CFG grows with the number of loops. Also, except for the
Graham-Wegman algorithm, interval-based algorithms require the CFG (resp.
the reverse CFG) to be reducible for a forward (resp. backward) analysis [36].
In practice, irreducible CFGs are rare, but liveness analysis is a backward data-
flow problem, which frequently leads to irreducible reverse CFGs. In contrast,
our algorithm does not require the reverse CFG to be reducible. If the CFG is
irreducible, care must be taken when propagating liveness information backward
in the CFG, but with no modification of the CFG itself (see Section 4.2).

Another approach to compute liveness was proposed by Appel [3, p. 429].
Instead of computing the liveness information for all variables at the same time,
variables are handled individually by exploring paths in the CFG starting from
variable uses. An equivalent approach using logic programming was presented
by McAllester [29], showing that liveness analysis can be performed in time
proportional to the number of instructions and variables. However, his theoretical
analysis is limited to a restricted input language with simple conditional branches
and instructions. A more generalized analysis will be given later, both in terms
of theoretical complexity (Section 3.4) and of practical evaluation (Section 5).

Liveness analysis for strict SSA programs was first addressed by Boissinot et
al. [9], but with a different perspective. They showed that queries such as “is
variable v live at program point p?” can be performed quickly, thanks to a pre-
processing step depending on the CFG structure only. Wimmer et al. [39] gave an
algorithm, specialized to linear scan register allocation, to build the “intervals”
of basic blocks where each variable is live. Although a possible extension to
irreducible CFGs is sketched, the algorithm restricts itself to reducible CFGs or
to a form of SSA where live-ranges are cut at loop-entry blocks with φ-functions.
The algorithm we propose is a generalization1 for computing liveness sets: it uses
the concept of loop-nesting forest and is proved correct with no restriction on
the CFG, on the strict SSA form, or on the loop-nesting forest as long as it
respects the minimal properties stated by Ramalingam [35]. As a by-product,
this proves the correctness of the algorithm of [39] and how a suitable order
of basic blocks can be chosen thanks to a loop-nesting forest. Such orders were

1 Actually, we designed this algorithm in 2009-2010 independently of [39].
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also exploited for liveness analysis in static single information (SSI) [8]. The
live-check algorithm of [9] was also reformulated using loop-nesting forests [6].

3 Foundations

This section recalls the concepts of control-flow graphs, loop-nesting forests,
dominance, and SSA form. Readers familiar with them can skip this section.

3.1 Control-Flow Graph and Loop Structure

A control-flow graph G = (V, E, r) is a directed graph, with nodes V , edges E,
and a distinguished root r ∈ V from which there is a path to any other node.
Usually, the CFG nodes represent the basic blocks of a procedure or function,
every block is in turn associated with a list of operations or instructions.

Dominance. A node x in a CFG dominates a node y if every path from the
root r to y contains x. The dominance is strict if x �= y. The transitive reduction
of the dominance relation forms a tree, the dominator tree.

Loop-Nesting Forest. To discuss previously-proposed constructions, Rama-
lingam [35] gave a minimal definition of loop-nesting forest by a recursive
process:

1. Partition the CFG into its strongly connected components (SCCs). Every
non-trivial SCC, i.e., with at least one edge, is called a loop.

2. For each loop L, select a non-empty set of nodes in L among those that
are not dominated by any other node in L: its elements are called the loop-
headers of L. (Different choices may lead to different forests.) Remove all
edges in L that lead to a loop-header of L and call them the loop-edges of L.

3. Repeat this partitioning recursively for every SCC, after its loop-edges have
been removed. The process stops when only trivial SCCs remain.

This decomposition can be represented by a forest whose leaves are the nodes
of the CFG, while internal nodes, labeled by loop-headers, correspond to loops.
The children of a loop’s node represent all inner loops (i.e., all non-trivial SCCs)
it contains as well as the regular basic blocks of the loop’s body. The forest can
easily be turned into a tree by introducing an artificial root node, corresponding
to the entire CFG. Note also that a loop-header cannot belong to any inner loop
because all edges leading to it are removed before computing inner loops. In the
rest of this paper, we make no other assumption on the way the loop-nesting
forest is built: any of the algorithms analyzed in [34,35] can be applied.

Reducible Control-Flow Graphs. A CFG is reducible if every loop has a
single node that dominates all other nodes of the loop [20]. In other words, the
only way to enter a loop is through its unique loop-header. Because of its struc-
tural properties, the class of reducible CFGs is of special interest for compiler
writers. Indeed, most programs exhibit reducible CFGs. Also, as pointed out
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earlier, unlike other approaches that compute liveness information, we only need
to discuss the reducibility of the original CFG, not of the reverse CFG.

Computing a Loop-Nesting Forest. A loop-nesting forest can be computed
in “almost linear time” O(|E|α(|E|, |V |)) [34]. Unlike reducible CFGs, the loop-
nesting forest of an irreducible CFG is not unique as some loops have several
nodes not dominated by any other node in the loop. A simple-to-engineer con-
struction algorithm is the generalization of Tarjan’s algorithm [38] proposed by
Havlak [19], later improved by Ramalingam [34] to fix a complexity issue. It
identifies a loop as a set of descendants of a back-edge target that can reach
its source. In that case, the set of loop-headers is restricted to a single entry
node, the target of a back-edge. Also, while identifying loops, whenever an en-
try node that is not the loop-header is encountered, the corresponding incoming
edge (from a non-descendant node) is replaced by an edge to the loop-header.

3.2 Static Single Assignment Form

Static single assignment (SSA) [16] is a popular program representation. In SSA,
each scalar variable is defined only once textually. To build SSA, variables having
multiple definitions are replaced by several new SSA variables, one for each
definition. When a use in the original program was reachable from multiple
definitions, the new variables are disambiguated by introducing φ-functions at
control-flow joins. Each φ-function defines a new SSA variable by selecting the
right SSA variable whose definition was traversed in the actual execution flow.

We require the program to be in strict SSA, i.e., every path from the root r
to a use of a variable contains a definition of this variable. Because there is only
one (static) definition per variable, strictness is equivalent to the dominance
property, which states that each use of a variable is dominated by its definition.
This is true for all uses including a use in a φ-operation by considering that such
a use actually takes place in the predecessor block from where it originates.

3.3 Liveness

Intuitively, a variable is live at a program point when its value is used later by
any dynamic execution. Statically, liveness can be approximated by following
paths of the CFG, backwards, from the uses of a given variable to its definitions
(unique definition in SSA). The variable is live at all program points along these
paths. For a CFG node q, representing an instruction or a basic block, a variable v
is live-in at q if there is a path, not containing the definition of v, from q to a
node where v is used. It is live-out at q if it is live-in at some successor of q.

The computation of live-in and live-out sets at the entry and the exit of basic
blocks is usually termed liveness analysis, i.e., algorithms operate at the granu-
larity of blocks. It is indeed sufficient to consider only these sets since liveness
within a block can be recomputed from its live-out set, either by traversing the
block or by precomputing the variables defined and the variables upward-exposed
in the block. A variable is upward-exposed in a block B when it is used in B
and not defined earlier in B – in strict SSA, this simply means not defined in B.
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However, the special behavior of φ-operations often causes confusion on where
their operands are actually used and defined. Their liveness should be considered
with care, especially when dealing with SSA destruction [11,37,5]. To make the
description of algorithms easier, we follow the definition by Sreedhar [37]. For a
φ-function a0 = φ(a1, . . . , an) in block B0, where ai comes from block Bi, then:
– a0 is live-in for B0, but, w.r.t this φ-function, not live-out for Bi, i > 0.
– ai, i > 0, is live-out of Bi, but, w.r.t this φ-function, not live-in for B0.

This semantics, which corresponds to placing a copy of ai to a0 on each edge
from Bi to B0, can be expressed by the following data-flow equations:

LiveIn(B) = PhiDefs(B) ∪UpwardExposed(B) ∪ (LiveOut(B) \Defs(B))
LiveOut(B) =

⋃
S∈succs(B)(LiveIn(S) \ PhiDefs(S)) ∪ PhiUses(B)

where PhiDefs(B), resp. PhiUses(B), denotes the variables defined, resp. used, by
φ-operations at entry of B, resp. a successor block of B. The algorithms presented
hereafter follow this semantics. They require minor modifications when other φ-
semantics are desired. We will come back to these subtleties in Section 4.1.

3.4 Complexity of Liveness Algorithms

The running times of liveness algorithms depend on several parameters. Some can
only be evaluated by experiments, e.g., the locality in data structures, the cost
of function calls instead of inlined operations, etc. This is discussed in Section 5.

Complexity Parameters. Usually, liveness algorithms consider only the set W
of non-local variables, i.e., the variables whose live-ranges cross some basic block
boundary. The complexity of set operations is then measured in terms of |W |,
the cardinality of W . However, to identify non-local variables, to identify uses
and definitions, all instructions of the program P need to be visited. Traversing
its internal representation is costly and not directly linked to |W | as it involves
all variables. Thus, any liveness algorithm requires at least |P | operations to
read the program and, in practice, it is better to read it only once.

After possibly some precomputations in O(|P |) operations, liveness algorithms
work on the CFG G = (V, E, r). The number of operations can then be evaluated
in terms of |V | and |E|, i.e., the number of times blocks and control-flow edges are
visited. Hereafter, we assume |V |−1 ≤ |E| ≤ |V |2. The costs of these operations
depend on the data structures used – e.g., lists, bitsets, or sparse sets [12] –
both for intermediate results (e.g., uses of a variable or upward-exposed uses in
a block) and for the final results, i.e., the live-in and live-out sets. Here, we will
mainly discuss the case of bitsets, as explained in Section 5.

Standard Data-Flow Approaches. The data-flow equations of Section 3.3
can be solved using a simple iterative worklist algorithm that propagates liveness
information among the basic blocks of the CFG. The liveness sets are refined
until a fixed point is reached. When the worklist contains CFG edges, the number
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of set operations can be bounded by O(|E||W |) [32], as each set can be modified
(grow) at most |W | times. As recalled in Section 2, another bound can be derived
for the round robin algorithm [21,23], based on the loop connectedness d(G, T )
of the reverse CFG G, i.e., the maximal number of back edges (with respect to a
depth-first spanning tree T ) in a cycle-free path in G. The algorithm traverses the
complete CFG on every iteration, at most (d(G, T ) + 3) times, and thus results
in O(|E|(d(G, T ) + 3)) set operations. These operations are mainly unions of
sets, which can be performed in O(|W |) for bitsets or ordered lists.

In addition, both need to precompute the upward-exposed uses and definitions
of each basic block. This requires visiting every instruction once, thus in time
O(|P |) where |P | is the size of the program representation. Thus, for bitsets, the
overall complexity is either O(|P | + |E||W |2) or O(|P | + |E||W |(d(G, T ) + 3))
depending on the update strategy. Experiments indicate that a mixed approach
combining the worklist and the round-robin principles performs best in prac-
tice [15]. In comparison, our liveness data-flow algorithm for strict SSA has
complexity O(|P |+ |E||W |), thus is near-optimal as it includes the time to read
the program, O(|P |), and the time to propagate/generate the output, O(|E||W |).

Path-Exploration Approaches. As Appel’s path exploration [3, p. 429], the
bottom-up logic approach of McAllester [29] works at the granularity of in-
structions, each variable considered independently. Its complexity is O(|N ||W |),
for |N | instructions, assuming that instructions have at most two successors, i.e.,
|E| ≤ 2|N |, and at most two uses and one definition, thus |P | is O(|N |). With
such assumptions, our complexity bound O(|P |+|E||W |) is thus also O(|N ||W |).
But the converse is not true if |N | is not O(|E|), i.e., working at the granularity
of basic blocks gives a better complexity when basic blocks are large (E � N).

A direct generalization of McAllester’s result to programs appearing in actual
compilers – e.g., with Horn formulae expressed at the granularity of instructions
and solved by the algorithm exposed by Minoux [30] – would lead to a sub-
optimal complexity O(|P ||W |). Actually, it is important to avoid traversing the
program multiple times to get O(|P |) and not O(|P ||W |), or, even worse, a
complexity that depends on the total number of variables, and not just non-local
variables. In [7], we showed how to design optimized algorithms based on path
exploration, operating at the basic block level, with complexity O(|P |+ |E||W |).
Due to space limitations, we do not detail them here but we compare them to
our novel data-flow algorithm in the experimental section (Section 5). In brief,
compared to such path-exploration algorithms, the main interest of our loop-
forest algorithm is that it operates directly on sets, i.e., all live variables at the
same time, which leads to better locality and faster operations using bitsets.

4 Computing Liveness Sets Using Loop-Nesting Forests

Instead of computing a fixed point, we now show that liveness information can
be derived in two passes over the blocks of the CFG by exploiting properties of
strict SSA. The first version of the algorithm requires the CFG to be reducible.
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We then show that arbitrary CFGs can be handled elegantly and with no addi-
tional cost, except for a cheap preprocessing step on the loop-nesting forest.

4.1 Liveness Sets on Reducible Control-Flow Graphs

The algorithm proceeds in two steps. This will be true for irreducible CFGs as
well, with a slight modification described in Section 4.2. These two steps are:
1. A backward pass propagates partial liveness information, bottom up, using

a postorder traversal of the CFG.
2. The partial liveness sets are then refined by traversing the loop-nesting forest,

propagating liveness from loop-headers down to all basic blocks within loops.
Algorithm 1 shows the initialization to compute liveness in two passes.

Algorithm 1. Two-passes liveness analysis: reducible CFG
1: function Compute_LiveSets_SSA_Reducible(CFG)
2: for each basic block B do
3: mark B as unprocessed
4: DAG_DFS(R) � R is the CFG root node (denoted r in Section 3.1)
5: for each root node L of the loop-nesting forest do
6: LoopTree_DFS(L)

The postorder traversal is shown by Algorithm 2, which performs a simple
depth-first search and associates every basic block of the CFG with partial live-
ness sets. The algorithm roughly corresponds to the precomputation step of the
traditional iterative data-flow analysis. Loop-edges are not considered during this
traversal (Line 2). The next phase, traversing the loop-nesting forest, is shown
by Algorithm 3. The live-in and live-out sets of all basic blocks in a loop are uni-
fied with the liveness sets of its loop-header. This is sufficient to compute valid
liveness information because a variable whose live-range crosses a back-edge of
the loop is live-in and live-out in all blocks of the loop (see Section 4.1).

Algorithm 2. Partial liveness, with postorder traversal
1: function DAG_DFS(block B)
2: for each S ∈ succs(B) if (B,S) is not a loop-edge do
3: if S is unprocessed then DAG_DFS(S)
4: Live = PhiUses(B) � Variables used by φ-functions in B’s successors.
5: for each S ∈ succs(B) if (B,S) is not a loop-edge do
6: Live = Live ∪ (LiveIn(S) \ PhiDefs(S))

7: LiveOut(B) = Live
8: for each program point p in B, backward do
9: remove variables defined at p from Live

10: add uses at p in Live

11: LiveIn(B) = Live ∪ PhiDefs(B)
12: mark B as processed
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Algorithm 3. Propagate live variables within loop bodies
1: function LoopTree_DFS(node N of the loop forest)
2: if N is a loop node then
3: Let BN = Block(N) � The loop-header of N
4: Let LiveLoop = LiveIn(BN ) \ PhiDefs(BN )
5: for each M ∈ LoopTree_children(N) do � Visit children in the loop forest
6: Let BM = Block(M) � Loop-header or block
7: LiveIn(BM ) = LiveIn(BM ) ∪ LiveLoop
8: LiveOut(BM ) = LiveOut(BM ) ∪ LiveLoop
9: LoopTree_DFS(M)

Complexity. In contrast to iterative data-flow algorithms, our algorithm has
only two phases. The first traverses the CFG once, the second traverses the loop-
nesting forest once. The CFG traversal of Algorithm 2 performs O(|V | + |E|)
unions of sets and O(|P |) set insertions. Thus, assuming |V | − 1 ≤ |E|, the
complexity of the first phase is O(|E||W |+|P |) for bitsets. The size of the forest is
at most twice the number of basic blocks |V | in the CFG, because every loop node
in the loop-nesting forest has at least one child node representing a basic block
(a forest leaf). Thus, the loop-forest traversal in Algorithm 3 induces O(|V |) set
(union) operations. Since |V | − 1 ≤ |E|, this phase does not change the overall
complexity mentioned above. The same is true for the unmark initialization
phase. Our non-iterative data-flow algorithm has thus the expected near-optimal
complexity O(|P |+|E||W |), as claimed before. It avoids the multiplicative factor
that bounds the number of iterations in standard iterative data-flow algorithm.

Correctness. The previous algorithms were specialized for the case where φ-
functions are interpreted as parallel copies at the preceding CFG edges. For
the correctness proofs, we resort to the following, more generic, φ-semantics. A
φ-function a0 = φ(a1, . . . , an) at basic block B0, receiving its arguments from
blocks Bi, i > 0, is represented by a fresh variable aφ, a copy a0 = aφ at B0,
and copies aφ = ai at Bi, for i > 0. Now, with respect to this φ-function, ai,
i > 0, is not live-out at Bi and a0 is not live-in at B0 anymore. As for aφ,
since it is not an SSA variable, it is not covered by the following lemmas. But
its live-range is easily identified: it is live-in at B0 and live-out at Bi, i > 0,
and nowhere else. Other φ-semantics extend the live-ranges of the φ-operands
with parts of the live-range of aφ and can thus be handled by locally refining
the live-in and live-out sets. This explains why, in Algorithm 2, PhiUses(B) is
added to LiveOut(B) (Line 4), PhiDefs(B) is added to LiveIn(B) (Line 11),
and PhiDefs(S) is removed from LiveIn(S) (Line 6). This ensures that the vari-
able defined by a φ-function is marked as live-in and its uses as live-out at the
predecessors. A similar adjustment appears on Line 4 of Algorithm 3.

The first pass propagates the liveness sets using a postorder traversal of
the reduced graph FL(G), obtained by removing all loop-edges2 from G. The
2 Again, for a reducible CFG, the loop forest and the loop-edges are uniquely defined.
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following two lemmas characterize the variables that may not be marked as live-
in to a block after this pass. Detailed proofs are provided in a research report [7].

Lemma 1. Let G be a reducible CFG, v an SSA variable, and d its definition.
If L is a maximal loop not containing d, then v is live-in at the loop-header h
of L iff there is a path in FL(G), not containing d, from h to a use of v.

Lemma 2 covers the case when no loop L satisfies the conditions of Lemma 1.

Lemma 2. Let G be a reducible CFG, v an SSA variable, and d its definition.
Let p be a node of G such that all loops containing p also contain d. Then v is
live-in at p iff there is a path in FL(G), from p to a use of v, not containing d.

Algorithm 2, which propagates liveness information along the DAG FL(G), can
only mark live-in variables that are indeed live-in. Moreover, if, after this prop-
agation, a variable v is missing in the live-in set of a CFG node p, Lemma 2
shows that p belongs to a loop that does not contain the definition of v. Let L
be such a maximal loop. According to Lemma 1, v is correctly marked as live-in
at the header of L. The next lemma shows that the second pass (Algorithm 3)
correctly adds variables to the live-in/live-out sets where they are missing.

Lemma 3. Consider a reducible CFG, L a loop, and v an SSA variable. If v is
live-in at the loop-header of L, it is live-in and live-out at every CFG node in L.

This lemma proves the correctness of the second pass, which propagates the
liveness information within loops. Every CFG node, which is not yet associated
with accurate liveness information, is properly updated by this second pass.
Moreover, no variable is added where it should not.

Example 1. Figure 1a shows a pathological case for iterative data-flow analysis.
The precomputation does not mark variable a as live throughout the two loops.
An iteration is required for every loop-nesting level until the final solution is
found. In our algorithm, after the CFG traversal, the traversal of the loop forest
(Figure 1b) propagates the missing liveness information from the loop-header
of L2 within the loop’s body and all inner loops, i.e., blocks 3 and 4 of L3. ��

4.2 Liveness Sets on Irreducible Control-Flow Graphs

It is well-known that every irreducible CFG can be transformed into a seman-
tically equivalent reducible CFG, for example, using node splitting [22,1]. The
graph may, unfortunately, grow exponentially during the processing [13]. How-
ever, when liveness information is to be computed, a relaxed notion of equivalence
is sufficient. We first show that every irreducible CFG can be transformed into a
reducible CFG, without size explosion, such that the liveness in both graphs is
equivalent. Actually, there is no need to transform the graph explicitly. Instead,
the effect of the transformation can be directly emulated in Algorithm 2, with a
slight modification, so as to handle irreducible CFGs.
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Fig. 1. Bad case for iterative data-flow analysis

For every loop L, EntryEdges(L) denotes the set of entry-edges, i.e., the edges
leading, from a basic block that is not part of the loop L, to a block within L.
Entries(L) denotes the set of L’s entry-nodes, i.e., the nodes that are target
of an entry-edge. Similarly, PreEntries(L) denotes the set of blocks that are
the source of an entry-edge. The set of loop-edges is given by LoopEdges(L).
Given a loop L from a graph G = (V, E, r), we define the graph ΨL(G) =
(V ′, E′, r) as follows. The graph is extended by a new node δL, which represents
the (unique) loop-header of L after the transformation. All edges entering the
loop from preentry-nodes are redirected to this new header. The loop-edges of L
are similarly redirected to δL and additional edges are inserted leading from δL

to L’s former loop-headers. More formally:

E′ = E \ LoopEdges(L) \ EntryEdges(L) ∪ {(s, δL) | s ∈ PreEntries(L)}
∪{(s, δL) | ∃(s, h) ∈ LoopEdges(L)} ∪ {(δL, h) | h ∈ LoopHeaders(L)}

Repeatedly applying this transformation yields a reducible graph, slightly larger
than the original graph, in which each node is still reachable from the root r.
Depending on the order in which loops are considered, entry-edges may be up-
dated several times during the processing in order to reach their final positions.
But the loop-forest structure remains the same.

Ramalingam proposed a similar transformation [35, p. 473], which is intended
to build an acyclic graph while preserving dominance. It is easy to see that his
transformation does not preserve liveness and is thus not suited for our purpose.

Example 2. Figure 2c shows a loop forest for the CFG of Figure 2a, where node 5
was selected as loop-header for L5, the loop containing the nodes 5 and 6. As both
nodes are entry-nodes, via the preentry-nodes 4 and 9, the CFG is irreducible.
The transformed reducible graph ΨL5(G) in Figure 2b might not reflect the
semantics of the original program during execution, but it preserves the liveness
of the original CFG, for a strict SSA program, as Theorem 1 will show. ��

To avoid building this transformed graph explicitly, an elegant alternative is to
modify the CFG traversal (Algorithm 2). To make things simpler, we assume



148 B. Boissinot et al.

1

2

103

8

9

4

5

6

7

(a) G: Irreducible

1

2

103

8

9

4

δL5

5
6

7

(b) ΨL(G): Reducible

Lr

1 L2 10

2 3 4 L5 7L8

5 68 9

(c) A loop-nesting forest

Fig. 2. Transformation of an irreducible CFG using a loop-nesting forest

that the loop forest is built so that, as in Havlak’s loop forest construction [19],
each loop L has a single3 loop-header, which can thus implicitly be fused with δL.
It is then easy to see that, after all CFG transformations, an entry-edge (s, t)
is redirected from s to HnCA(s, t) the loop-header of the highest non common
ancestor of s and t, i.e., of the highest ancestor of t in the loop forest that is
not an ancestor of s. Thus, whenever an entry-edge (s, t) is encountered dur-
ing the traversal, we just have to visit HnCA(s, t) instead of t, i.e., to visit the
representative of the largest loop containing the edge target, but not its source.
To perform this modification, we replace all occurrences of S by HnCA(B, S) at
Lines 3 and 6 of Algorithm 2, in order to handle irreducible flow graphs.

Complexity. The changes to the original forest algorithm are minimal and only
involve the invocation of HnCA to compute the highest non common ancestor.
This function solely depends on the structure of the loop-nesting forest of G.
Assuming that HnCA is precomputed, the complexity results obtained previously
still hold as the number of edges |E| does not change. The highest non common
ancestors can easily be derived by propagating sets of basic blocks from the leaves
upwards to the root of the loop-nesting forest using a depth first search. This
enumerates all basic block pairs exactly once at their respective least common
ancestor. Since the overhead of traversing the forest is negligible, the worst case
complexity can be bounded by O(|V |2). More involved algorithms, as for the
lowest common ancestor problem [4], are possible, which process the tree in
O(|V |), so that subsequent HnCA queries may be answered in constant time per
query. In other words, modifying the algorithm with HnCA to handle irreducible
CFGs does not change the overall complexity.
3 To handle loop forests with loops having several loop-headers, we can select one

particular loop-header to be the loop representative (BN in Algorithm 3). But then
we need to add edges from this loop-header to any other loop-header.
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Correctness. We now prove that, in strict SSA, the liveness of the resulting
reducible CFG is equivalent to the liveness of the original one. The following
results hold even for a loop forest whose loops have several loop-headers. First,
to be able to apply the lemmas and algorithms of Section 4 to the reducible CFG
ΨL(G), we prove that any definition of a variable still dominates its uses.

Lemma 4. If d dominates u in G, d dominates u in ΨL(G).

It remains to show that, for every basic block present in both graphs, the live-in
and live-out sets are the same. This is proved by the following theorem.

Theorem 1. Let v be an SSA variable, G a CFG, transformed into ΨL(G) when
considering a loop L of a loop forest of G. Then, for each node q of G, v is live-in
(resp. live-out) at q in G iff v is live-in (resp. live-out) at q in ΨL(G).

5 Experiments

As previously shown, the theoretical complexity of our non-iterative liveness al-
gorithm is near-optimal: it includes the time to read the program, O(|P |), and
the time to propagate/generate the output, O(|E||W |). Moreover, variables are
added to liveness sets only when actually needed. However, it is still important
to evaluate the runtime of the algorithm in practice. We thus compared our algo-
rithm with state-of-the-art approaches, namely an optimized iterative data-flow
algorithm, following the “single stack worklist” approach of Cooper et al. [15], and
two variants based on path exploration (see end of Section 3.4). The first variant,
called use-by-use, traverses the program backwards and, for every encountered
variable use, starts a backward depth-first search to find the variable’s definition.
The variable is added to the live-in and live-out sets along the discovered paths.
The other variant, called var-by-var, processes one variable after the other and
relies on precomputed def-use chains to find the variable’s uses. Both variants
are optimized to exploit SSA properties, achieving the near-optimal complexity
O(|P |+ |E||W |) – for details consult the accompanying report [7].

The algorithms were implemented using the production compiler for the STMi-
croelectronics ST200 VLIW family, based on GCC as front-end, the Open64 op-
timizers, and the LAO code generator [17]. We computed liveness relatively late
during code generation in the LAO optimizer, shortly before prepass scheduling.
For this evaluation, we used bitsets to represent liveness sets, which offer faster
accesses, but are often considered to be less efficient in terms of memory con-
sumption and are expected to degrade in performance as the number of variables
increases, due to more cache misses and memory transfers. We also investigated
the use of ordered pointer-sets, which promise reduced memory consumption at
the expense of rather costly set operations. But, as our experiments indicate
that bitsets are overall superior [7], we limit our discussion to bitsets.

We applied the various algorithms to the C programs of the SPECINT 2000
benchmark suite to measure the time to compute liveness information. To obtain
reproducible results, the execution time was measured using the instrumentation
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and profiling tool callgrind. These measurements include the number of instruc-
tions executed and the memory accesses via caches. Using them, a cycle estimate
is computed for the liveness computation only, which minimizes the impact of
other compiler components and other running programs on the measurements.
As the number of non-local variables depends largely on the compiler optimiza-
tions performed before liveness calculation, we investigated the behavior of the
various algorithms for optimized and unoptimized programs using the compiler
flags -O2 and -O0 respectively. All measurements are given relative to the itera-
tive data-flow approach, which performed the worst in all our experiments.

Since most variables are kept in memory at optimization level -O0, the number
of non-local variables is low (at most 19 in our experiments) and their live-ranges
are short. The results (see [7] for details) thus mainly reveal the intrinsic overhead
of the different implementations, including artifacts stemming from the host
compiler and the host machine. The var-by-var algorithm, which simply iterates
over the small set of non-local variables, performs best, as it is the least impacted
by the number of basic blocks and operations in the program. The measurements
account for the precomputation of the def-use chains, which appears to be less
costly than the explicit traversal in the use-by-use algorithm. Our loop-forest
algorithm cannot reach the performances of the two path-exploration solutions,
which show an average speed-up of 1.80 for the var-by-var algorithm and 1.63 for
the use-by-use variant (2.19 and 1.99 compared to iterative data-flow). However,
we already observe a speed-up of 1.22 on average in comparison to the state-of-
the-art iterative data-flow analysis.

The characteristics of optimized programs are different. The structure of the
live-ranges is more complex and the liveness sets are larger. Table 1 shows
the number of non-local variables, basic blocks, and operations for the opti-
mized benchmarks. For such programs, the iterative data-flow analysis is still
the worst but, now, the var-by-var algorithm is performing worse than the
two others, see Figure 3. Our loop-forest approach clearly outperforms both

Table 1. Characteristics of optimized programs

# Variables # Blocks # Operations
Benchmark min avg max min avg max min avg max

164.gzip 11 104 586 2 32 212 22 226 1312
175.vpr 10 84 573 2 33 492 21 224 1734
176.gcc 10 119 36063 2 37 1333 11 282 41924
181.mcf 12 52 118 2 18 52 24 135 439

186.crafty 11 147 1048 2 67 2112 22 547 9836
197.parser 10 58 1076 2 21 343 21 126 1942

253.perlbmk 10 61 1947 2 28 731 16 180 4876
254.gap 10 95 6472 2 31 778 13 244 9169

255.vortex 10 51 645 2 26 667 21 166 3361
256.bzip2 10 73 972 2 22 282 21 163 1931
300.twolf 10 186 3659 2 53 715 12 458 8691
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Fig. 3. Speed-up relative to iterative data-flow on optimized programs, with bitsets

path-exploration algorithms, with, on average, speed-ups of 1.69 (= 2.00/1.18)
and 1.43 (= 2.00/1.40) respectively. This is explained by the relative cost of
the fast bitset operations, in particular set unions, in comparison to the cost of
traversing the CFG. Furthermore, the locality of memory accesses becomes a
relevant performance factor. Both the use-by-use and our loop-forest algorithms
operate locally on the bitsets surrounding a given program point. The inferior
locality, combined with the necessary precomputation of the def-use chains, ex-
plains the poor results of the var-by-var approach in this experimental setting.

More detailed results in comparison to the iterative data-flow approach are
given in [7] on a per-module basis, using one data point for every source file. The
loop-forest and the use-by-use algorithms on average outperform the iterative
one by a factor of 2 and 1.5. Some extreme cases, showing speed-ups by a factor
higher than 8, are caused by unusual, though relevant, loop structures in source
code generated by the parser generator bison (c-parse.c of gcc, perly.c of
perlbmk), which increase the number of iterations of the iterative algorithm. On
the other hand, all cases where the iterative algorithm outperforms the other
algorithms are due to implementation artifacts: the analyzed functions do not
contain any non-local variables thus slight variations in the executed code, its
placement, and the cache state become relevant. The var-by-var approach is often
even slower than the iterative one but on average shows a speed-up of 1.18.

Our new algorithm spends most of the time on the backward phase, which
amounts to 68% and 53% of the analysis time for unoptimized and optimized
programs respectively. The forward phase is almost negligible and contributes
only 3% and 6% respectively (with a maximum of 19%). Setting up and initial-
izing data structures, by contrast, takes a large share of 27% and 36% respec-
tively. It is interesting to see that this share increases for optimized programs,
due to the large number of variables. The time to construct the loop forest was
excluded from these statistics, because loop information is needed for other opti-
mizations anyway, e.g., register allocation, code motion, if-conversion. The naive
(quadratic) loop-forest construction available in our framework takes only about
15% of the time of our new liveness algorithm, for optimized programs.
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6 Conclusion

Liveness analysis is the basis for many compiler optimizations. However, code
transformations often invalidate this information, which has to be repeatedly
recomputed. Fast algorithms are thus required to minimize its overhead.

This work proposes an improvement to the traditional iterative data-flow
analysis for programs in strict SSA form, which consists of only two phases.
The first phase resembles the precomputation phase of the standard approach
providing partial liveness sets. The second pass replaces the traditional iterative
refinement by a single traversal of a loop-nesting forest of the control-flow graph.

Our algorithm has the same theoretical complexity as optimized techniques
based on path exploration that we developed for comparison. But it operates
directly on sets, i.e., all live variables at the same time, and thus is more likely
to offer better locality and faster operations using bitsets. As our experiments
show, our loop-forest algorithm outperforms the iterative method by a factor
of 2 on average for the SPECINT 2000 benchmark suite. Also, for optimized
codes, having a large number of non-local variables and complex control flow, our
loop-forest approach outperforms by a factor at least 1.43 the path-exploration
techniques we proposed, whereas, for unoptimized codes, having very few non-
local variables, the path-exploration algorithms appear to be suited best.
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Abstract. We present a new SPAS (ScalablePAth-Sensitive)framework
for resolving points-to sets in C programs that exploits recent advances in
pointer analysis. SPAS enables intraprocedural path-sensitivity to be ob-
tained in flow-sensitive and context-sensitive (FSCS) techniques scalably,
by using BDDs to manipulate program paths and by performing pointer
analysis level-by-level on a full-sparse SSA representation similarly as
the state-of-the-art LevPA (the FSCS version of SPAS). Compared with
LevPA using all 27 C benchmarks in SPEC CPU2000 and CPU2006,
SPAS incurs 18.42% increase in analysis time and 10.97% increase in
memory usage on average, while guaranteeing that all points-to sets are
obtained with non-decreasing precision.

1 Introduction

There have been great advances in pointer analysis performed flow-sensitively
[9,10,14], context-sensitively [19,16,17] or with both combined [23,11]. As re-
ported recently [10,11,23], insensitive analysis can be leveraged to bootstrap
sensitive analysis, thereby leading to significant improvements in scalability and
precision. In particular, it is shown by LevPA [23] that flow-sensitive and context-
sensitive (FSCS) analysis becomes substantially more scalable when performed
on full-sparse SSA, level by level (in order of their decreasing points-to levels),
with each level being analyzed with an inclusion-based flow-insensitive algo-
rithm. However, little progress [20,15] has been made when path-sensitivity is
also considered. Exploiting recent advances in FSCS pointer analysis, we describe
a SPAS (Scalable PAth-Sensitive) framework that enables intraprocedural path-
sensitivity to be obtained scalably for C programs on top of the state-of-the-art
LevPA (the FSCS version of SPAS). SPAS obtains all points-to sets with non-
decreasing precision by adding small analysis overhead in both time and space,
as validated using SPEC CPU2000 and SPEC2006.

Equipped with path-sensitivity, a FSCS pointer analysis is equally as or more
precise, as illustrated in Figure 1. With such path-sensitive precision, the quality
of many software tools and techniques in program optimization, analysis and
verification can be significantly improved. Examples include bug hunting [13],
memory leak analysis [20] and software vulnerability detection [15,21].

A major hindrance to path-sensitive pointer analysis is the lack of scalability.
We tackle it by tracking program paths using Binary Decision Diagrams (BDDs)

H. Yang (Ed.): APLAS 2011, LNCS 7078, pp. 155–171, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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int *q, v, w, z;

void main() {
int **a, *f = &z;
a = &f; q = &v;
foo(a);

}
void foo(int **x) {

int *g = &z;
if (∗) {

x = &g; q = &w;
}
*x = q;

}
(a) Original code

B1

B2 (if)

B3

Path P1 : B1 → B2 → B3

Path ¬P1 : B1 → B3

(b) CFG of foo

f

z

v

g w

¬P1

P1

P1

¬P1

(c) Points-to rela-
tions in foo with
path-sensitivity (each
points-to relation is
labeled with the path
along which it holds)

f

z

v

g w

(d) Points-to relations
in foo without path-
sensitivity (the two
depicted in dashed
arrows are spurious)

Fig. 1. Effects of path-sensitivity on indirect updates at a store ∗x=q in FSCS analysis

and by infusing path-sensitivity into FSCS pointer analysis seamlessly on full-
sparse SSA. Our generalization is simple, drops easily on a full-sparse FSCS
pointer analyzer like LevPA [23], and retains the scalability of the underlying
FSCS analysis (by adding small overhead in analysis time and memory usage).

Presently, SPAS captures path correlation only without ruling out infeasible
paths. In summary, this paper makes the following contributions:

– SPAS is the first full-sparse path-sensitive FSCS pointer analysis;
– SPAS is the first to encode program paths using BDDS on full-sparse SSA;
– SPAS obtains (intraprocedural) path-sensitivity efficiently on full-sparse SSA,

level by level, with each level being analyzed flow-insensitively; and
– SPAS has compatible performance as the state-of-art FSCS analyzer LevPA

(the FSCS-version of SPAS). With both implemented in Open64, SPAS adds
small average overhead (18.42% more in time and 10.97% more in space) for
all the 27 C programs in SPEC CPU2000 and CPU2006, while ensuring that
all points-to sets are obtained with non-decreasing precision. To the best of
our knowledge, SPAS is the fastest path-sensitive FSCS pointer analysis for
C reported in the literature.

2 Related Work

There is not much reported on performing whole-program pointer analysis flow-,
context- and path-sensitively. We review some solutions using sparse SSA and
BDDs and some limited amount of prior work on path-sensitive pointer analysis.

Sparsity. Unlike iterative dataflow-based pointer analysis [12,3,7], SSA-based
pointer analysis [9,10,23] is sparse and thus more scalable, as SSA allows points-
to information to flow directly from variable definitions to their uses only.

In [9], Hardekopf and Lin presented a semi-sparse flow-sensitive analysis. By
putting top-level pointers in SSA, their def-use information can be exposed di-
rectly. Lately [10], they generalized their work by making it full-sparse. This is
done by using a flow-insensitive inclusion-based pointer analysis to compute the
required def-use information in order to build SSA for all variables. However,
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their algorithms are not context-sensitive. Yu et al. [23] introduced LevPA for
performing FSCS pointer analysis on full-sparse SSA. In LevPA, points-to reso-
lution and SSA construction are performed together, level by level, in decreasing
order of their points-to levels. Our SPAS framework is a scalable generalization
of FSCS pointer analyzers like LevPA to obtain intraprocedural path-sensitivity.

BDDs. Berndl et al. [1] proposed to use BDDs to encode points-to relations
and also studied the impact of BDD variable ordering on analysis performance.
Later, BDDs were also used to encode transfer functions [24] and contexts [19,23]
in context-sensitive analysis. In [21], Xie and Aiken discussed to use BDDs to
represent program paths and simplify paths heuristically in SATURN, a SAT-
based bug detection tool. In our SPAS pointer analyzer, BDDs are used to encode
paths (and contexts) on full-sparse SSA using a standard BDD library. This
enables the pointers to be resolved using a guarded inclusion-based insensitive
analysis on full-sparse SSA, where the guards are contexts and program paths.

Path-Sensitivity. We are unaware of any prior FSCS pointer analyzer sup-
porting path-sensitivity on sparse SSA. In some bug-hunting tools like Prefix [2],
path-sensitivity was exploited to look for bugs in some selected paths. A recent
sound and complete generalization for SATURN [6] can compute various pro-
gram properties using a SAT solver with even interprocedural path-sensitivity.
However, it is not suited for whole-program points-to resolution.

SPAS and bug analysis aim to achieve different goals. Some bug detection
tools rule out some infeasible paths based on branch conditions to reduce false
positives but SPAS presently does not. However, SPAS can already provide more
precise points-to information to make these tools more effective. Finally, Gutz-
mann et al. [8] discussed how to filter out spurious points-to relations flowing
out of a branch node but their approach neither captures path correlation as
SPAS does nor rules out infeasible paths.

3 The Basic Idea

SPAS analyzes all features of C by considering four types of assignments:
x = y (copy), x = &y (address), ∗x = y (store) and x = ∗y (load). SPAS is field-
insensitive for arrays (by not distinguishing array elements) but field-sensitive
for structs (by flattening and replacing them with separate variables, one for
each field). SPAS names abstraction heap objects by their allocation sites.

The following sets and functions are used in some definitions given below.

– O: set of abstract memory locations representing the variables in a program.
– L : O → {0, . . . , L}: a level map giving each variable a points-to level. If q

may be modified by operations on p (possibly indirectly), then L(p) ≥ L(q).
– C: set of contexts represented as Boolean expressions over the set O ×O of

points-to relations. The notation p → o means that p may point to o.
– D: set of paths represented as Boolean conditions over the set of decision

variables (encoding the branches in a CFG to be introduced in Section 5.1).
– C : C × D: set of combined context and path conditions used to specify under

which condition in C a pointer may point to a memory object in O.
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Definition 1 (Formal-Ins). Given a method m, Fm
in ⊆ O denotes the set of its

formal-ins, i.e., its formal parameters and non-local variables accessed in m.

Definition 2 (Formal-Outs). Given a method m, Fm
out ⊆ O denotes the set of

its formal-outs, i.e., its return parameter (a special local variable of m containing
its return value) and non-local variables that may be modified in m.

In flow-sensitive analysis, we speak of the points-to sets of a pointer p at program
points, which are identified by the versions of p at those points in SSA.

Definition 3 (Points-to Sets). The points-to set of a pointer p at a program
point, PtrSet(p) ⊆ O, is a set of locations in O possibly pointed to by p.

SPAS achieves context-sensitivity by traversing the call graph of a program bidi-
rectionally. During a bottom-up traversal, the points-to sets of a pointer p at
a point may be related to those of some formal-ins in terms of points-to maps
(Definition 4). During a top-down traversal, p is resolved once the points-to sets
of all its dependent formal-ins have been found (Definition 3).

Definition 4 (Points-to Maps). The points-to map of a pointer p at a pro-
gram point in a method m is given by:

PtrMap(p) = (Loc(p), Dep(p)) (1)

where Loc(p) ⊆ O × C contains each tuple (v, Cv, Pv) such that p may point to
v in context Cv along path Pv within method m and Dep(p) ⊆ Fm

in × C contains
each tuple (f, Cf , Pf ) such that p may point to what formal-in f points to in
context Cf along path Pf within method m.

SPAS is intraprocedurally path-sensitive. Thus, the transfer functions (MOD
and USE ) of a formal-out in a method m are predicated by m’s calling contexts
(without m’s path conditions). Similarly, the path conditions in their specified
side effects are also ignored (and hence, the ∗’s). To support strong updates, we
distinguish MAY-DEFs and MUST-DEFs at stores.

Definition 5 (MOD). The transfer function MOD of a formal-out fout ∈ Fm
out

in a method m describes its interprocedural modification side effect:

MOD(m, fout) = (Loc(fout), Dep(fout), C
may
fout

, Cmust
fout

) (2)

indicating that fout may be modified, i.e., MAY-DEF’ed in context Cmay
fout

∈ C
to point to either (a) v for each (v, Cv, ∗) ∈ Loc(fout) when Cv holds or (b)
whatever f points to for each (f, Cf , ∗) ∈ Dep(fout) when Cf holds. If Cmust

fout
∈ C

also holds, then the MAY-DEF is actually a MUST-DEF.

Definition 6 (USE). The transfer function USE of a formal-in fin ∈ Fm
in in a

method m describes its MAY-USE, i.e., interprocedural read side effect:

USE(m, fin) = (PtrSet(fin), Cfin) (3)

indicating that what is pointed to by fin may be read in context Cfin ∈ C. (If m
is a formal parameter, it does not need a USE function as m is local.)

The basic idea behind SPAS is simple. The pointers are resolved in order of their
decreasing points-to levels by maintaining the invariant stated below.
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Property 1 (Level-Wise Invariant). Just before level � is analyzed, (a) all
(direct and indirect) accesses to the pointers at higher levels are in SSA, with
the indirect accesses via pointer dereferencing and calls being expressed using
μ (MAY-USE) and χ (MAY/MUST-DEF) operations [4], (b) all pointers at
higher levels have been soundly resolved, and (c) all indirect accesses made by
dereferencing the pointers at level � are exposed using μ and χ operations.

The analysis performed at level � is to ensure that this invariant holds at the
beginning of � − 1. This is done by traversing the call graph of a program first
bottom-up and then top-down iteratively. During bottom-up analysis, SPAS an-
alyzes each method m by (B1) building its SSA (doable as Property 1(c) holds
for �) and (B2) computing the points-to maps for its pointers at � (Definition 4).
Prior to (B1), SPAS inserts μ and χ operations for each of its call sites, c, to
expose the MAY-USEs and MAY/MUST-DEFs made by c’s callees to every
pointer at �. This is done by applying the callees’ transfer functions at call site
c. After (B2) is done, the transfer functions of method m are computed. During
top-down analysis, SPAS (T1) resolves the points-to sets of the pointers at � by
propagating the dependent points-to sets to formal-ins (Definition 3) and (T2)
annotates the dereferences to these pointers with μ and χ operations.

4 A Motivating Example

We describe how SPAS improves FSCS pointer analysis by refining Figure 1(d)
into Figure 1(c). This program may look complex but it appears to be one of
the smallest examples that we can come up with in order to illustrate all key
aspects of SPAS. The variables are partitioned into three levels: {a, x} at level
2, {q, f, g} at level 1 and {v, w, z} at level 0. We examine the top two levels only.

Level 2. The pointers a and x are considered. The input is Figure 1(a), for
which Property 1 holds trivially at this level. The output is given in Figure 2(a).

– Bottom-Up. When foo is analyzed, all accesses to x are first put in SSA.
During points-to resolution, the points-to maps for its three definitions are
found. In particular, x0 is recorded to point to what formal-in x points to.
By analyzing the φ node for x path-sensitively, x2 is found to point to g in
context true (i.e., any context) along path P1 and what x points to in context
true along ¬P1. When main is analyzed, the points-to map of a0 is found.

– Top-Down. In main, a0 has been resolved locally. Binding a0 with formal-in
x at the call site to foo reveals that PtrSet(x0) = {f}. When foo is processed,
the MAY-DEF to f (g) via ∗x2 is exposed by a χ operation, where context
condition x → f (true) indicates that the MAY-DEF occurs when formal
parameter x points to f (in any context). Like LevPA, SPAS uses points-to
relations holding at a call site to represent and distinguish calling contexts.

Level 1. The pointers q, f and g are considered. The input is Figure 2(a), for
which Property 1 holds at this level. The output is given in Figure 2(b).
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int *q, v, w, z;
void main() {

int **a, *f = &z;
a0 = &f; q = &v;
foo(a0);

}
void foo(int **x) {

x0 = x; // formal-in x identified as x0 (ver 0)
int *g = &z;
if (∗) {

x1 = &g; q = &w;
}
x2 = φ(x0, x1);
*x2 = q;

f = χ(f, x → f , ¬P1, MAY);
g = χ(g, true, P1, MAY);

}

main:
PtrMap(a0)=({(f, true, true)}, ∅)

foo:
PtrMap(x0)=(∅, {(x, true, true)})
PtrMap(x1)=({(g, true, P1)}, ∅)
PtrMap(x2)=({(g, true, P1)}, {(x, true,¬P1)})
PtrSet(x0)={f}

int *q, v, w, z;
void main() {

q0 = q; // formal-in q identified as q0 (ver 0)
int **a, *f0 = &z;
a0 = &f; q1 = &v;
μ(q1, true, true);

foo(a0);
f1= χ(f0, true, true, MAY);

}
void foo(int **x) {

x0 = x; // formal-in x identified as x0 (ver 0)
q0 = q; // formal-in q identified as q0 (ver 0)
f0 = f; // formal-in f identified as f0 (ver 0)
int *g0 = &z;
if (∗) {

x1 = &g; q1 = &w;
}
x2 = φ(x0, x1);
q2 = φ(q0, q1);
*x2 = q2;

f1 = χ(f0, x → f , ¬P1, MAY);
g1 = χ(g0, true, P1, MAY);

}
main:

PtrMap(f0)=({(z, true, true)}, ∅)
PtrMap(q1)=({(v, true, true)}, ∅)
PtrMap(f1)=({(z, true, true), (v, true, true)}, ∅)

foo:
PtrMap(q0)=(∅, {(q, true, true)})
PtrMap(q1)=({(w, true, P1)}, ∅)
PtrMap(q2)=({(w, true, P1)}, {(q, true,¬P1)})
PtrMap(f0)=(∅, {(f, true, true)})
PtrMap(f1)=(∅, {(q, x→ f,¬P1), (f, x → f, P1)})
PtrMap(g0)=({(z, true, true)}, ∅)
PtrMap(g1)=({(z, true,¬P1), (w, true, P1)}, ∅)
PtrSet(f0)={z}
PtrSet(q0)={v}

(a) After level 2 is analyzed (b) After level 1 is analyzed

Fig. 2. Level-wise SSA construction and path-sensitive pointer analysis for Figure 1(a)

– Bottom-Up. When foo is analyzed, all accesses to the three pointers (in-
cluding the two MAY-DEFs) are first put in SSA. Like x, q0 = q and f0 = f
are inserted for the formal-ins q and f . Here, q is a global and f is an invisible
[12] accessed via pointer dereferening. The points-to resolution for q is done
similarly as x with the points-to maps obtained as shown. We now consider
how store ∗x2 = q2 is analyzed together with its two MAY-DEFs to resolve
f1 and g1. By capturing path correlation, SPAS deduces that f1 points to
whatever formal-in q does along path ¬P1 and whatever formal-in f does
along P1 and that g1 points to z along ¬P1 and w along P1. The transfer
functions relevant for computing the side effects of the call to foo are:

MOD(foo, f) = ({Loc(f1), Dep(f1), x → f, false)
USE(foo, q) = (PtrSet(q0), true) (4)

When main is analyzed, a MAY-DEF for f is added since context Cmay
f =

x → f in MOD(foo, f), once mapped to a → f at the call site, holds.
However, this is not a MUST-DEF since Cmust

f = false. In addition, a MAY-
USE for q is added. Then the SSA form is built. Finally, by performing the
points-to resolution for f and q with the modification side effects of foo on
f being accounted for, we obtain their points-to maps as shown.
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– Top-Down. When main is analyzed, its pointers at this level are already
resolved. Propagating the points-to sets of q1 and f0 at the call site to foo,
we find PtrSet(f0) = {z} and PtrSet(q0) = {v} in foo. When foo is processed
next, all its pointers at this level can be resolved by Definition 4. As a result,
the points-to relations for f1 and g1 are obtained as shown in Figure 1(c).

SPAS obtains such improved precision with a slight increase in analysis overhead.
There are several reasons for SPAS to achieve this level of scalability:

Program Paths Manipulated as BDDs. Like contexts [23], program paths
are also represented and operated on using BDDs in a compact and canonical
fashion, resulting in fast operations on program paths.

Full-Sparse SSA (at All Points-to Levels). As in LevPA [23], pointers are
resolved, level by level, in order of their decreasing points-to levels. At the
same time, the full-sparse SSA form is being built incrementally. The points-to
relations of a pointer at a particular level cannot be propagated to lower-level
pointers unless it has fully been resolved. Thus, the number of repropagations
is reduced, leading to faster convergence for the points-to resolution.

Flow-Insensitive Points-to Resolution. SSA is ideal for enabling sparse
analysis because it makes def-use information explicit. Like contexts [23],
program paths are also used to guard what points-to information can be
propagated across an pointer assignment. Thus, our path-sensitive pointer
analysis is sped up with a guarded inclusion-based flow-insensitive pointer
analysis.

5 The SPAS Framework

SPAS is a summary-based FSCS pointer analyzer with intraprocedural path-
sensitivity being supported. In particular, SPAS builds MOD and USE functions
for each method and applies them to all its calling contexts.

Section 5.1 discusses how to encode program paths using BDDs. Section 5.2
examines the χ and μ operators added to the classic SSA form. To ease under-
standing, we introduce SPAS in two stages. In Section 5.3, we focus on capturing
path correlation without performing strong updates. In Section 5.4, we discuss
briefly but precisely how to extend it to perform path-sensitive strong updates.

5.1 Encoding Program Paths as BDDs

SPAS does not presently distinguish the paths inside a loop-induced cycle but
can analyze the first few iterations of a loop path-sensitively via loop peeling.

All branch nodes are assumed to be binary. We use decision variables to
encode branch nodes to express program paths. The edges and blocks in a CFG
(with cycles collapsed) are associated with paths as follows. The path for the
incoming edge of the entry block is initialized to true (representing the set of all
paths). Let B be a block with n incoming edges associated with paths P1, . . . , Pn.
The path for B is P1 ∨ · · · ∨ Pn. If B is a branch node encoded with decision
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variable Q, the paths for its two outgoing edges are (P1∨· · ·∨Pn)∧Q and (P1∨
· · ·∨Pn)∧¬Q, respectively. Otherwise, its unique outgoing edge is P1∨· · ·∨Pn.

Our BDD encoding has three advantages. First, the number of BDD variables
used is kept to a minimum. Second, it plays up the strengths of BDDs by exposing
opportunities for path redundancy elimination. Third, the paths combined at a
join node are effectively simplified (e.g., with P1 ∨¬P1 being reduced into true),
resulting in fast propagation of path conditions during points-to resolution.

5.2 Extended SSA Form

The classic SSA representation [5] is mainly useful for scalars without aliases.
Following [23], we extend the classic SSA form by using the μ and χ operators [4]
to make explicit all potential uses and definitions at loads/stores and call sites, as
shown in Figure 2. A load or call site is annotated with a μ(v, Cv, Pv) operation
to indicate a MAY-USE of v in context Cv along path Pv. A store or call site
is annotated with a v = χ(v, Cv, Pv, Mv) operation to indicate a MAY-DEF
(MUST-DEF) of v in context Cv along path Pv if Mv is MAY (MUST).

5.3 Capturing Path Correlation

This section focuses on capturing path correlation without strong updates. We
consider functions with return statements in Section 5.4. As we do not distinguish
MAY-DEFs and MUST-DEFs for now, the last entry Cmust

out in a MOD function
(Definition 5) is ignored and the last entry in a χ operation is always a MAY.
For Figure 2, all points-to maps are unchanged except for f1 and g1 in foo:

PtrMap(f1) = (∅, {(q, x→ f,¬P1), (f, x → f, true)})
PtrMap(g1) = ({(z, true, true), (w, true, P1)}, ∅) (5)

Without path-sensitive strong updates, the old points-to sets (i.e., PtrMap(f0)
for f1 and PtrMap(g0) for g1 in Figure 2(b)) must be preserved along path “true”
as above and cannot be killed path-sensitively as in Figure 2(b).

To account for the read and modification side effects at a call site, the binding
between the actual and formal parameters is performed in the standard manner.

Definition 7 (Mappings of Formal-Ins and Formal-Outs). For a formal-
in fin ∈ Fn

in of method n invoked at call site c, Callee2Callerin(c, n, fin) denotes
the corresponding actual parameter of fin at c if fin is a formal parameter of n
and fin itself otherwise (i.e., if fin is a nonlocal). For a formal-out fout ∈ Fm

out

of n invoked at c, Callee2Callerout(c, n, fout) denotes the variable at c that is
assigned from fout if fout is a return parameter of n and fout itself otherwise.

In Figure 2, Callee2Callerin(c, foo, x) = a, Callee2Callerin(c, foo, q) = q, and
Callee2Callerin(c,foo,f)=Callee2Callerout(c,foo,f)=f , where c is the call to foo.

Conceptually, SPAS proceeds in the following two sequential stages:
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Stage 1. L = Partition(O) We compute L by using some fast flow-insensitive
pointer analysis for the pointers in O. For example, we can apply Steensgaard’s
algorithm [18] to obtain a points-to graph, merge all predecessors of each node,
and finally, make the points-to graph acyclic by collapsing SCCs, as in [23]. The
points-to level of a variable is its longest length over {0, . . . , L} to a sink node.

Stage 2. Δ−1 = Analyze(L, ΔL, G) We build SSA and resolve pointers, level
by level, from L to 0. ΔL is the initial SSA that satisfies vacuously Property 1 for
L and G is the initial call graph constructed when function pointers are not yet
resolved. Analyze is restarted whenever new points-to relations are discovered
for a function pointer. G is always a directed acyclic graph. In the presence of
recursive calls, G is made acyclic by collapsing all SCCs. The analysis within
each SCC is performed iteratively until a fixed-point is reached to obtain full
context sensitivity for all the methods in the SCC. Once Analyze has run to
completion, Δ−1 is the full-sparse SSA obtained that satisfies Property 1 for
level −1 (excluding its Part(c)) and all pointers have been fully resolved.

When analyzing level �, Analyze starts with Δ�, i.e., the SSA form that
satisfies Property 1 for � and ends with producing Δ�−1, i.e., the SSA form that
satisfies Property 1 for �− 1. The call graph G is traversed twice, first bottom-
up (reversal topologically) and then top-down (topologically). When points-to
cycles are detected, level � is re-reanalyzed until Δ�−1 is completely built. Thus,
the contexts in a transfer function may comprise the points-to relations of some
formal-ins discovered earlier at higher levels and the current level �.

A context used in a callee is mapped to a caller in the standard manner by
applying the context mapping introduced in Definition 8 below.

Definition 8 (Context Mapping). Let C be a context used in a callee n in-
voked at a call site c in a method m. Callee2Callerctx(c, n, C) denotes the map-
ping of C from callee n to call site c by performing a formal-to-actual parameter
mapping. It is understood that every points-to relation in Callee2Callerctx(c, n, C)
that is not dependent on any of m’s contexts is fully evaluated (to true or false).

Figure 3 gives our algorithm for analyzing a method m at level �. We describe
the bottom-up phase first but both phases may have to be understood together.

To soundly capture path correlation, the path assigned to a variable at any
of its definition site must not under-approximate the scope of its definition.

1 BottomUp: Add μ χ Callsites. Due to Property 1(c), SPAS proceeds to expose
the MAY-USEs and MAY-DEFs for each pointer at level � that is accessed at
a call site c. This is done by simply examining the context condition Cmay

fout

of MOD(n, fout) (Definition 5) and the context condition Cfin of USE(n, fin)
(Definition 6) of each callee n invoked at c, which were computed earlier during
the same bottom-up phase. In line 13, the path for a χ operation is safely over-
approximated as Pc, i.e., the path of call site c, where fout may be defined.
As SPAS tracks path-sensitivity intraprocedurally, the path condition for a μ
operation at a call site is irrelevant and thus marked with a ‘∗’.
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1 BottomUp (Method: m, Level �)
2 Step 1 : Add μ χ Callsites(m, �)
3 Step 2 : Build SSA(m, �)
4 Step 3 : Pointer Inference(m, �)
5 Step 4 : Comp MOD USE Funs (m, �)

6 1 Add μ χ Callsites(Method: m, Level: �)
7 for each call site c in method m
8 Let Pc be the path allocated to call site c
9 for each callee n invoked at call site c

10 for each formal-out fout ∈ Fn
out of n,

L(fout) = �, that is not a return parameter
11 Let MOD(n, fout) = (∗, ∗, Cmay

fout
)

12 if (Cmay
fout

=Callee2Callerctx(c, n, Cmay
fout

))�=false

13 Add fout = χ(fout, C
may
fout

, Pc, MAY) for c

14 for each formal-in fin ∈ Fn
in of n,

L(fin) = �, that is not a formal parameter
15 Let USE(n, fin) = (∗, Cfin)
16 if (Cfin =Callee2Callerctx(c, n, Cfin)) �= false
17 Add μ(fin, Cfin , ∗) for c

18 2 Build SSA(Method: m, Level: �)
19 Apply the SSA construction algorithm [5]

20 3 Pointer Inference(Method: m, Level: �)
21 Perform a guarded inclusion-based flow-insensitive

pointer analysis using the rules in Table 1

22 4 Comp MOD USE Fun(Method: m, Level: �)
23 See text (Section 5.3)

24 TopDown (Method: m, Level �)
25 Step 5 : Resolve PointsToSets(m, �)
26 Step 6 : Add μ χ Derefs(m, �)

27 5 Resolve PointsToSets(Method: m, Level: �)
28 for each call site c in method m
29 for each callee n invoked at call site c
30 for each variable version pi in m, L(p) = �,

such that pi reaches call site c and p =
Callee2Callerin(c, n, fin), where fin∈Fn

in

31 for each (v, Cv , Pv) ∈ Loc(pi)
32 PtrSet(fin) ∪= {v}
33 for each (f, Cf , Pf ) ∈ Dep(pi)
34 PtrSet(fin) ∪= PtrSet(f)

35 6 Add μ χ Derefs(Method m, Level: �)
36 for each store “∗pi = . . . ” in m, L(p) = �
37 Let PtrMap(pi) = (Loc(pi), Dep(pi))
38 for each (v, Cv , Pv) ∈ Loc(pi)
39 Add v = χ(v, Cv, Pv, MAY)
40 for each (fin, Cfin , Pfin) ∈ Dep(pi)
41 for each v ∈ PtrSet(fin)
42 Add v=χ(v, Cfin∧fin→v, Pfin , MAY)
43 for each load “· · · = ∗pi” in m, L(p) = �
44 Let PtrMap(pi) = (Loc(pi), Dep(pi))
45 for each (v, Cv , Pv) ∈ Loc(pi)
46 Add μ(v, Cv , Pv)
47 for each (fin, Cfin , Pfin) ∈ Dep(pi)
48 for each v ∈ PtrSet(fin)
49 Add μ(v, Cfin∧fin → v, Pfin , MAY)

Fig. 3. Bottom-up and top-down analysis of method m at level �

Let us see how the MAY-USE and MAY-DEF are added for the call site
cfoo to foo in main in Figure 2(b), given the transfer functions of foo in (4). In
line 12, Cmay

f = Callee2Callerctx(cfoo, foo, Cmay
f ) = true since by Definition 8,

Cmay
f = x→ f is mapped to a → f at the call site, which is generated locally in

main. So the MAY-DEF, f = χ(f, true, true, MAY), is added. The MAY-USE,
μ(q, true, ∗), is added since Cq = true in USE(foo, q).

2 BottomUp: Build SSA. Once all MAY-USEs and MAY-DEFs are exposed
for the pointers at level � accessed, they can be put in SSA by applying the
classic SSA construction algorithm [5], as illustrated in Figure 2.

3 BottomUp: Pointer Inference. Table 1 lists the seven rules for resolving the
points-to maps for the pointers at level � in a method m. The first six rules are
illustrated in Figure 2 and the last partially when Add μ χ Callsites is discussed.

The propagation of points-to information across an assignment may be
guarded by both a context condition and a path condition. We define P(x) ×
Cx × Px = {(v, Cv ∧ Cx, Pv ∧ Px) | (v, Cv, Pv) ∈ P(x)}. P(x) ∪ P(y) includes
all and only elements in P(x) and P(y) such that if (v, Cx

v , P x
v ) ∈ P(x) and

(v, Cy
v , P y

v ) ∈ P(y), then both are merged as (v, Cx
v ∨ Cy

v , P x
v ∨ P y

v ).
Loc-Init is self-explanatory. As SPAS is intraprocedurally path-sensitive, the

path Ppi=&a is generated locally in method m. Dep-Init is applied to a copy of
the form p0 = p, where p is a formal-in of method m. Such copies are added at
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Table 1. Rules for resolving points-to maps PtrMap(x) = {Loc(x), Dep(x)} in method
m for level �. Each of the last five is applied once for P = Loc and once for P = Dep.

Rule Statement Constraints Inference Operations

Loc-Init pi = &a (on path Ppi=&a) pi ⊇ {a} Loc(pi) = {(a, true, Ppi=&a)}
Dep(pi) = ∅

Dep-Init p0 = p (a formal-in) p0 ⊇ p
Loc(p0) = ∅
Dep(p0) = {(p, true, true)}

Assn pi = qj (on path Ppi=qj ) pi ⊇true×Ppi=qj
qj P(pi) = P(qj)× true× Ppi=qj

Mu μ(vk, Cvk
, Pvk

) pi ⊇Cvk
×Pvk

vk P(pi) ∪= P(vk) × Cvk
× Pvkpi = ∗qj

Chi ∗pi = qj vs ⊇Cvs×Pvs
qj P(vs) ∪= P(qj) × Cvs × Pvs

vs = χ(vt, Cvs , Pvs , MAY) vs ⊇ vt P(vs) ∪= P(vt)

Phi

pi=φ(pj , pk)
(Ppφ

j
(Ppφ

k
) is the path of the

incoming edge along which the
value of pj (pk) flows into pi)

pi ⊇true×P φ
pj

pj

pi ⊇true×P φ
pk

pk

P(pi) = P(pj) × true× Pφ
pj

P(pi) = P(pk) × true× Pφ
pk

Call

call site c invoking callee n

vs = χ(vt, Cvs , Pvs , MAY)

(Pvs is the path Pc of c
inserted in line 13 in Figure 3)

C1 v = Callee2Callerout(c, n, fout)
C2 Let MOD(n, fout) = (Loc(fout), Dep(fout), ∗)
C3 for every (o, Co, ∗) ∈ Loc(fout)
C4 Generate vs ⊇Callee2Callerctx(c,n,Co)×Pvs

{(o, true, true)}
C5 for every (fin, Cfin , ∗) ∈ Dep(fout)
C6 w = Callee2Callerin(c, n, fin) such that wi reaching c
C7 Generate vs ⊇Callee2Callerctx(c,n,Cfin )×Pvs

wi

C8 Generate vs ⊇ vt

the entry of m for all its formal-ins. The path condition is over-approximated as
true since p0 may point to whatever p point to on entry of the method considered.

Assn applies to every other copy assignment. The points-to relations at the
RHS are propagated to the LHS, guarded by the path of the assignment.

Rules Mu and Chi are also easy to understand. The context and path con-
ditions in a χ or μ operation serve as the guards to enforce context- and path-
sensitivity. According to the second constraint for Chi, the old points-to relations
of v are weakly updated, i.e., simply propagated from vt to vs unchanged.

Let us consider Rule Phi. For each operand, we use the path along which its
value flows into the result as the guard to propagate its points-to relations into
the result. In a FSCS pointer analyzer that does not consider path-sensitivity,
the two unguarded constraints pi ⊇ pj and pi ⊇ pk are generated. Applying
these two would yield the two spurious points-to relations shown in Figure 1(d).

Finally, Rule Call is applied to a call site c in the standard manner. In lines C4
and C7, constraints are generated to propagate the points-to relations created
by a callee n in Loc(fout) and Dep(fout) to vs, guarded by the (mapped) context
conditions Co and Cfin , respectively; but the paths created inside the callee are
ignored (and hence, the ∗’s). In line C8, v is weakly updated as in Rule Chi.

4 BottomUp: Comp MOD USE Funs. For each formal-out fout ∈ Fm
out at

level �, we write fmax
out for its last SSA version in method m. Let PtrMap(fmax

out ) =
(Loc(fmax

out ), Dep(fmax
out )), which is already available. Then MOD(m, fout) is de-

fined to be (Loc(fmax
out ), Dep(fmax

out ), Cmay
fout

), where Cmay
fout

is set as true if fout is
directly modified in method m and set otherwise as a disjunction of the context
conditions in all its MAY-DEF sites, i.e., all χ operations of fmax

out in method m.
For a formal-in fin ∈ Fm

in at level �, we write f0
in for its first SSA version in m.

Thus, USE(m, fin) = (PtrSet(fin), Cfin), where Cfin is true if f0
in is directly used
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in method m and otherwise as a disjunction of the context conditions at all MAY-
USE sites, i.e., μ operations of f0

fin
in m. PtrSet(fin) is computed later by Re-

solve PointsToSets and subsequently used in lines 41 and 48 of Add μ χ Derefs.
In Figure 2(b), the MOD and USE functions of foo are given in (4).

5 TopDown: Resolve PointsToSets. The points-to sets of the pointers at level
� in method m can now be obtained by resolving all formal-ins (lines 32 and 34).

6 TopDown: Add μ χ Derefs. We annotate all dereferences to the pointers at
level � with MAY-USEs and MAY-DEFs. The points-to relations in Loc(pi) are
generated locally in method m and handled straightforwardly. To deal with those
generated by m’s callers in Dep(pi) in lines 42 and 49, new context conditions are
generated. If pi points to v, because a formal-in fin does, then Cfin is strength-
ened to include fin → v to indicate the context condition under which the
MAY-USE/MAY-DEF occurs (Figure 2).

SPAS soundly tracks path correlation on top of a FSCS pointer analyser.

Theorem 1. PtrSet(p) contains all possible targets for p during any execution.

Proof sketch. In a FSCS pointer analyser without considering path-sensitivity,
the path/scope for a variable definition is taken as true. SPAS refines but never
under-approximates it at a call site (lines 8 and 13 in Figure 3) and in Rules Loc-
Init, Dep-Init, Assn and Phi (Table 1). So the soundness of SPAS follows from
that of the underlying FSCS analyser, which preserves Property 1 level-wise.

The following theorem states a well-known fact about path-sensitivity.

Theorem 2. Let PtrSetSPAS(p) (PtrSetLevPA(p)) be the points-to set of p found by
SPAS (a FSCS pointer analyser like LevPA). Then PtrSetSPAS(p) ⊆ PtrSetLevPA(p).

Proof sketch. Compared to LevPA, as argued in the proof of Theorem 1, the path
condition at a variable definition site in SPAS is either the same or strengthened.

5.4 Supporting Strong Updates

In Table 1, a χ operation vs = χ(vt, Cvs , Pvs , MAY) represents a MAY-DEF,
where Pvs safely overapproximates the scope where vs is defined (Theorem 1).
In Rules Chi and Call, vs ⊇ vt is always used as only weak updates are allowed.

To support strong updates, we consider a χ operation, vs = χ(vt, Cvs , Pvs , Mvs),
associated with a store “∗pi = . . . ” residing on a path Pχ in method m. Let this χ
operation be referred to as χop. In χop, Mvs ∈ {MAY, MAY+, MUST}. So MAY+

is now identified as a special case of MAY introduced in Section 5.2. Mvs is set
as MUST when χop is a MUST-DEF. This is both context-sensitive and path-
sensitive, meaning that pi must point to v along path Pvs in context Cvs . How-
ever, in the other contexts, pi → v may not hold, i.e., Pvs may not be exact. Mvs

is MUST when UniqueTarget(m, pi, v) is true, which is defined to hold when (a)
pi points to v uniquely whenever method m is invoked at a call site such that pi

points to v and (b) v is a concrete object in Singletons. Following [14], Singletons is
the subset of locations in O with arrays, heap objects and locals inside recursion
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cycles being removed. Mvs is set as MAY+ or MAY when χop is a MAY-DEF, in
which case, dereferencing pi may yield more than one target. Mvs is set as MAY+

when Cvs = true and Pvs is exact, meaning that pi must point to v whenever the
program is executed along Pvs . Otherwise, Mvs is set as MAY, in which case, pi

may or may not point to v as described in Section 5.3.
Now, constraint vs ⊇ vt used in Table 1 is augmented with the guards:

vs ⊇Cold×Pold vt, where(Cold, Pold) =

{
(¬Cvs , true) if Mvs = MUST

(true, Pχ ∧ ¬Pvs) if Mvs = MAY+

(true, true) if Mvs = MAY
(6)

The base version of our algorithm, shown in Figure 3, performs weak updates
only as it treats MUST and MAY+ conservatively as MAY. In our fully-fledged
algorithm, SPAS obtains improved precision since all-path strong updates, much
like Dead Code Elimination (DCE), are enabled when Mvs is MUST. In this case,
the old points-to relations of vt at all incoming paths of the store pi = . . . are
killed if they are in the same context Cvs . In addition, SPAS improves analysis
precision further since some-path strong updates, must like Partial DCE [22], are
also performed when Mvs is MAY+. In this case, the old points-to relations of vt

in any context are killed along Pvs but allowed to flow into vs along Pχ ∧ ¬Pvs .
We only need to make small changes to our algorithm in Figure 3. Only the

path conditions for the points-to relations of pi established intraprocedurally in
Loc(pi) may be considered as being exact conservatively.

Line 8. Insert a MUST-DEF, r = χ(r, true, Pc, MUST), between lines 8 and 9
to handle the assignment of a return parameter in a function invoked at the
call site c to a locally-defined pointer r in method m (Definition 2).

Line 11. Use MOD(m, fout) given in Definition 5, where its fourth component
Cmust

out is a conjunction of context conditions, one condition CP for every
possible path P from the entry to the exit of method m, such that CP is
true if fout is directly modified on P and a disjunction of context conditions
in all χ’s representing MUST-DEFs on P otherwise.

Line 13. Mvs is MUST if Callee2Callerctx(c,n,Cmust
out ) holds for every callee n

checked in line 9 and MAY otherwise.
Line 39. Mvs is MAY+ if v ∈ Singletons and pi is not defined in a cycle in the

CFG of method m (decided in Pointer Inference), and MAY otherwise.
Line 42. Mvs is MUST if UniqueTarget(m, pi, v) holds and MAY otherwise.

(This overwrites MAY+ set for v in line 39 if UniqueTarget(m, pi, v) holds.)

The points-to maps for f1 and g1 are thus refined from (5) to those in Figure 2.

Theorem 3. With strong updates thus specified, Theorems 1 and 2 remain valid.

Proof sketch. Follows simply from the definitions of MUST, MAY+ and MAY.

6 Experimental Evaluation

We have implemented SPAS in the Open64 compiler (v4.2). We use the
CUDD2.4.2 library for representing points-to relations, contexts and paths. As in
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Table 2. Percentage increases of analysis overhead under SPAS w.r.t. LevPA

Benchmark
Analysis Overhead SPAS

Time (secs) Memory (MBs)
D-Vars

Time Breakdown (secs)
LevPA SPAS(%) LevPA SPAS(%) Comp. Levels Gen. Paths Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

164.gzip 0.42 9.52 20.97 9.31 269 0.09 0.02 0.07 0.22 0.02 0.00 0.04 0.00
175.vpr 1.11 12.00 55.78 9.62 639 0.34 0.03 0.09 0.50 0.15 0.01 0.08 0.04
176.gcc 1230.76 23.62 6576.05 9.91 16043 4.05 1.02 129.99 346.20 926.12 15.70 95.73 2.71
177.mesa 8.21 19.01 247.29 12.41 6242 2.84 0.25 0.48 2.90 0.83 0.11 0.23 2.13
179.art 0.08 0.00 5.28 10.51 47 0.03 0.00 0.00 0.03 0.01 0.00 0.00 0.01
181.mcf 0.13 0.00 5.74 7.52 34 0.03 0.00 0.00 0.05 0.01 0.00 0.01 0.03
183.equake 0.09 22.20 5.62 10.47 50 0.04 0.01 0.00 0.05 0.00 0.01 0.00 0.00
186.crafty 3.65 62.73 136.44 11.33 1517 0.55 0.06 0.48 3.06 1.55 0.11 0.07 0.06
188.ammp 2.28 35.53 58.94 5.93 804 0.03 0.09 1.11 1.54 0.03 0.06 0.20 0.03
197.parser 15.31 13.46 133.60 10.60 570 0.27 0.03 0.23 1.99 13.44 0.04 1.20 0.17
254.gap 21.71 12.16 440.50 4.90 7482 1.91 0.31 4.92 7.43 4.20 0.51 4.23 0.84
255.vortex 19.37 27.36 624.01 5.24 6019 1.91 0.33 4.88 8.69 3.67 0.44 4.30 0.45
256.bzip2 0.20 0.00 13.29 10.45 144 0.06 0.00 0.03 0.07 0.01 0.02 0.01 0.00
300.twolf 1.65 21.82 64.22 7.94 520 0.52 0.03 0.09 0.80 0.37 0.00 0.08 0.12
400.perlbench 971.20 24.75 4111.17 9.11 13218 2.98 0.87 105.84 277.65 680.99 13.01 125.60 4.67
401.bzip2 0.79 36.71 24.52 16.68 530 0.17 0.02 0.03 0.66 0.07 0.01 0.01 0.11
429.mcf 0.11 18.18 4.95 24.45 37 0.03 0.00 0.00 0.03 0.03 0.00 0.00 0.04
433.milc 0.87 0.00 45.05 10.23 469 0.32 0.02 0.17 0.19 0.08 0.01 0.04 0.04
445.gobmk 14.66 12.21 682.00 16.64 3680 1.45 0.23 3.14 5.83 2.95 0.22 2.26 0.37
456.hmmer 2.71 18.15 45.97 14.00 1673 0.86 0.05 0.12 1.30 0.50 0.03 0.10 0.86
458.sjeng 1.39 21.58 55.78 11.93 1060 0.27 0.06 0.24 0.65 0.34 0.01 0.10 0.02
462.libquantum 0.32 12.50 0.00 10.41 141 0.07 0.02 0.10 0.11 0.03 0.00 0.02 0.01
464.h264ref 5.77 39.86 247.29 11.06 2457 1.44 0.16 0.80 2.97 1.37 0.16 0.47 0.70
470.lbm 0.07 14.29 5.28 11.52 19 0.04 0.00 0.01 0.02 0.00 0.00 0.00 0.01
482.sphinx3 1.76 2.84 5.74 11.98 835 0.53 0.07 0.13 0.65 0.16 0.02 0.08 0.17

[23], parameterised spaces are used to reduce analysis overhead and improve pre-
cision. We evaluate the scalability of SPAS in handling (intraprocedural) path-
sensitivity by integrating it with a state-of-the-art FSCS pointer analyser, LevPA
[23], which already performs all-path strong updates (for MUST-DEFs). Despite
this, SPAS obtains points-to information with non-decreasing precision with im-
provements at stores/loads that are amenable to path-sensitive pointer analysis,
at a small increase in analysis overhead. We have used all 27 C benchmarks from
SPEC CPU2000 and CPU2006 and carried out our experiments on a 3.0GHz
quad-core Intel Xeon system running Redhat Enterprise Linux 5 (kernel version
is 2.6.18) with 16GB memory. Benchmarks 253.perlbmk and 403.gcc run out
of memory under both analyzers and are thus excluded in further discussions.

6.1 Analysis Overhead

As shown in Table 2, SPAS uses 18.42% more time and 10.97% more memory
than LevPA on average. To the best of our knowledge, SPAS is the fastest path-
sensitive pointer analysis reported. Benchmarks 176.gcc and 400.perlbench
are the most costly to analyze due to many iterations required for handling func-
tion pointers and recursion cycles. From the statistics in the last nine columns,
we can see the extra analysis overhead incurred by SPAS. Column “D-Vars” gives
the number of decision variables used to encode the paths in a program using
BDDs, resulting in a slight increase in the total memory usage by SPAS for each
benchmark (measured using the memory tracing tool available in Open64).

In the last eight columns, the analysis time for a benchmark is broken down
into eight parts on computing points-to levels, generating paths (Section 5.1),
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Table 3. Percentages of variables at χ’s and μ’s with more accurate points-to sets

Benchmark

χ’s (MAY/MUST-DEFs at Stores) μ’s (MAY-USEs at Loads)
LevPA SPAS (More Precise) LevPA SPAS (More Precise)
(Total) Traditional Path-Sensitive (Total) Traditional Path-Sensitive

Total % Total % Total % Total %
164.gzip 144 6 4.17 115 79.86 165 4 2.42 128 77.58
175.vpr 232 6 2.59 135 58.19 184 7 3.80 106 57.61
176.gcc 3710 132 3.56 1356 36.55 11843 506 4.27 4701 39.69
177.mesa 3780 16 0.42 1101 29.13 5200 60 1.15 1375 26.44
179.art 6 0 0.00 6 100.00 6 0 0.00 6 100.00
181.mcf 76 0 0.00 26 34.21 144 0 0.00 65 45.14
183.equake 29 0 0.00 2 6.90 55 0 0.00 5 9.09
186.crafty 343 23 6.71 291 84.84 1007 62 6.16 860 85.40
188.ammp 475 20 4.21 418 88.00 694 46 6.63 615 88.62
197.parser 374 14 3.74 296 79.14 403 19 4.71 260 64.52
254.gap 297 6 2.02 188 63.30 5466 32 0.59 3311 60.57
255.vortex 801 11 1.37 120 14.98 3651 36 0.99 469 12.85
256.bzip2 51 0 0.00 13 25.49 109 0 0.00 33 30.28
300.twolf 106 3 2.83 33 31.13 265 17 6.42 111 41.89
400.perlbench 2938 146 4.97 1045 35.57 17084 641 3.75 7027 41.13
401.bzip2 601 13 2.16 96 15.97 1380 11 0.80 184 13.33
429.mcf 77 3 3.90 29 37.66 162 2 1.23 45 27.78
433.milc 153 0 0.00 29 18.95 287 0 0.00 34 11.85
445.gobmk 1123 58 5.16 382 34.02 2957 139 4.70 1795 60.70
456.hmmer 568 37 6.51 305 53.70 1680 119 7.08 1239 73.75
458.sjeng 343 13 3.79 268 78.13 748 32 4.28 706 94.39
462.libquantum 5 0 0.00 0 0.00 7 0 0.00 0 0.00
464.h264ref 1994 68 3.41 477 23.92 7654 121 1.58 1522 19.89
470.lbm 8 0 0.00 0 0.00 13 0 0.00 0 0.00
482.sphinx3 220 8 3.64 66 30.00 782 13 1.66 208 26.60

and performing the six steps of SPAS in Figure 3. In 13 out of 25 benchmarks,
Step 2 (Build SSA) and Step 3 (Pointer Inference) consume most of the analysis
time in a benchmark. These are also the very steps where SPAS spends more
analysis time than LevPA as it does extra work in handling program paths. For
186.crafty, 188.ammp, 401.bzip2 and 464.h264ref, the analysis times under
LevPA are small. SPAS adds relatively high overheads mainly in Steps 2 and 3.

6.2 Path-Sensitive Precision

Table 3 shows that SPAS can obtain more precise points-to sets than LevPA at
certain loads/stores in most benchmarks. We consider only the loads/stores that
reside beyond the first branch in the CFG of a method after all its SCCs (strongly
connected components) have been collapsed. The pointers accessed indirectly at
their associated χ and μ operations (MAY/MUST-DEFs and MAY-USEs) are
the ones whose points-to information may be improved by SPAS.

We measure the number of χ’s and μ’s with improved points-to information in
two ways, indicated by their Traditional and Path-Sensitive columns. Note that
by Theorem 2, PtrSet(p)SPAS ⊆ PtrSet(p)LevPA holds for any pointer p. With the
traditional metric, the points-to set of p is said to be more precise under SPAS if
|PtrSet(p)SPAS| < |PtrSet(p)LevPA|. With the path-sensitive metric, the path, i.e.,
the scope information governing each points-to target is also taken into account.
For LevPA, the path guarding a χ or μ operation is always true. Thus, the points-
to set of p is more precise under SPAS if either |PtrSet(p)SPAS| < |PtrSet(p)LevPA|
or the guarding path for a χ or μ operation is not true (i.e., more restricted).
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As shown in Table 3, SPAS has improved points-to information in most bench-
marks. Under “Traditional” for χ’s, the percentage improvements range from 0%
to 6.71% with an average of 2.61%. Under “Traditional” for μ’s, the percentages
are within 0 to 7.08% with an average of 2.49%. Under “Path-Sensitive”, the im-
provements are more significant with an average of 42.38% for χ’s and 41.07% for
μ’s. These results should be understood with some caveats. First, what SPAS is
compared with is a state-of-the-art FSCS pointer analyser that already performs
all-path strong updates. Second, SPAS obtains such improved path-sensitive pre-
cision at small analysis overhead. Finally, such improvement can be critical for
some client applications (e.g., bug detection).

Let us look at some benchmarks in detail. In the case of 164.gzip, 176.gcc
197.parser, 400.perlbench, 429.mcf,464.h264ref, 482.sphinx3, 458.sjeng
the improvements are mostly over 3% for both χ’s and μ’s. Path-sensitive analy-
sis provides little benefits for seven benchmarks: 179.art,181.mcf,183.equake,
256.bzip2, 433.milc, 462.libquantum and 470.lbm. They are small programs
with few pointers but mostly scalar-to-array assignments. For other benchmarks
on scientific computations, such as 177.mesa, and 255.vortex , the improve-
ments are below 2%. In contrast, benchmarks such as 186.crafty, 445.gobmk
and 456.hmmer exhibit much better precision improvements. They each have a
relatively high number of decision variables, giving rise to more opportunities
for capturing path correlation.

7 Conclusion

We have presented SPAS, a path-sensitive pointer analysis that extends a recent
flow- and context-sensitive pointer analysis LevPA. Our experimental evaluation
shows that SPAS incurs reasonable analysis overhead over LevPA (on average
18.42% increase in analysis time and 10.97% increase in memory usage) and
computes more precise points-to information. Our results are expected to provide
insights for developing client-driven pointer analysis techniques.

Acknowledgement. This work is supported by the Australian Research Coun-
cil Grant DP0987236.
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On the Strength of Owicki-Gries for Resources

Alexander Malkis and Laurent Mauborgne

IMDEA Software Institute

Abstract. In multithreaded programs data are often separated into lock-
protected resources. Properties of those resources are typically verified by mod-
ular, Owicki-Gries-like methods. The modularity of the Owicki-Gries method
has its price: proving some properties may require manual introduction of auxil-
iary variables. What properties can be proven without the burden of introducing
auxiliary variables? We answer this question in the abstract interpretation frame-
work. On one hand, we reveal a lattice structure of the method and supply a
syntax-based abstract transformer that describes the method exactly. On the other
hand, we bound the loss of precision from above and below by transition-relation-
independent weakly relational closures. On infinitely many programs the closures
coincide and describe the precision loss exactly; in general, the bounds are strict.
We prove the absence of a general exact closure-based fixpoint characterization
of the accuracy of the Owicki-Gries method, both in the collecting semantics and
in certain trace semantics.

1 Introduction

The paper will characterize the accuracy of a popular verification method for proving
safety properties of concurrent programs that operate on resources.

A program operating on resources is a multithreaded program in which threads com-
municate via sequentially consistent shared memory and in which all shared variables
are partitioned into disjoint resources. Each resource may be available or busy. To ac-
cess a variable belonging to a resource, a thread waits until the resource gets available
and then starts a critical section for that resource, thus making the resource busy. While
staying in the critical section, the thread can read and write the resource data, and no
other thread can enter a critical section for the same resource, so no other thread can
access the resource data. After the thread finishes accessing the resource, it exits the
corresponding critical section, making the resource available.

Simple safety properties of such programs can be proven modularly. A modular proof
of a program consists of an annotation per control flow location and an annotation per
resource. Roughly, an annotation of a control flow location describes the valuations of
the variables that the thread may access at that location. An annotation of a resource
describes, roughly, the state of the resource when it is available. The annotations of
locations have to be sequentially consistent similarly to the standard Hoare-style asser-
tional logic, but with two changes: when a thread acquires a resource, the proof may
assume that the invariant of the acquired resource holds, and on releasing a resource the
resource invariant should be reestablished.

Such modularity incurs a loss of precision: for many programs, too strong but valid
properties cannot be proven by the method. To prove such properties, the program can

H. Yang (Ed.): APLAS 2011, LNCS 7078, pp. 172–187, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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be manually augmented with so-called auxiliary variables. A set of variables is called
auxiliary if, intuitively, projecting the traces of the program to the other variables gives
the same result as removing all the statements involving the auxiliary variables and
projecting afterwards. A modular proof is created for the augmented program, then the
proven property is projected onto the original variables. The ability to use auxiliary vari-
ables makes the proof system complete. So far, auxiliary variables have been introduced
purely manually, while the construction of the remaining proof can be automated.

We will estimate the loss of precision inherent to the core of the Owicki-Gries
method, which consists of all the proof rules of the Owicki-Gries logic except the ability
to use auxiliary variables, in abstract interpretation.

We will show a rich lattice structure of the Owicki-Gries-core proofs and a syntax-
based abstract transformer describing the Owicki-Gries core exactly.

We will observe that there is no transition-relation-independent approximation op-
erator that exactly characterizes the loss of precision of the Owicki-Gries core in the
collecting semantics. We will also note the absence of equivalent trace-based character-
izations of certain kinds.

We will find an approximation operator that induces a useful upper bound on this
set, i.e., that will describe how much precision the Owicki-Gries core always loses.
This approximation operator depends only on the syntactic structure of the program,
but not on its exact transition relation. If a property is provable by the Owicki-Gries
core, it is provable by abstract interpretation with this approximation.

We will present an approximation operator inducing a lower bound on the set, i.e.,
describing how much precision the Owicki-Gries core always retains. This approxima-
tion operator also depends only on the syntactic structure of the program, but not on
its exact transition relation. If a property is provable by abstract interpretation with this
approximation, it is provable by the Owicki-Gries core.

In passing, we will demonstrate an infinite class of simple programs for which both
bounds are equal and a program on which both bounds are strict.

In short, the main results and their position are depicted in Fig. 1.

Less properties

Coarser

Potentially
cheap

More properties

Finer

Potentially
expensive

Section 7 Section 4 Section 6

Abst. int.
with ρc

Abst. int.
with ρ̄

Owicki-Gries
core

Abst. int.
with ρ

Fig. 1. Precision of analyses. The upper bound is ρ , the lower bound is ρ̄ . In addition to ρ̄ , we
will consider a simpler lower bound ρc, which is coarser than ρ̄ , but easier to understand.

The rigorous formalization, computations, proofs, recommendations for practition-
ers, and comparison to abstract interpretations for general programs are found in the
appendix of the technical report [12] appendix of the technical report [12].
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2 Resource-Manipulating Language and Its Semantics

2.1 Language RPL

Now we briefly recall the parallel language RPL (Restricted Parallel Language, rigor-
ously defined in [15]) in which shared data are separated into resources and access to a
resource is granted exclusively.

Let threads be indexed by the elements of the set Tid and, without loss of generality,
start their executions together. Threads operate on data variables from the set DataVar.
A resource is a set of data variables; the resources are disjoint. Let Res be the set of all
resources.

A statement is either
– an atomic statement, i.e., an assignment or an “assume φ” (which skips if the ar-

gument expression evaluates to true and blocks otherwise),
– a sequential composition of two statements, an if-then-else, or a while loop,
– a critical section with r when φ do C endwith where r is a resource, φ a formula

over data variables and C some statement. We write with r do C endwith when φ
is true.

A thread executes a statement.
A data variable is called local to thread t if all the assignments to the variable are

syntactically in t. If a variable appears in thread t, it should belong to a resource or be
local to t. If a variable belongs to a resource r, it can appear only inside a critical section
for r, i.e., inside a “with r...” statement.

Each resource r is associated with a set of proof variables ProofVar(r), which are
all data variables that are not assigned except maybe in critical sections for r. All our
examples will satisfy ProofVar(r) = r (in general, ProofVar(r) ⊇ r).

An RPL program is described by a set of threads, a set of resources and an initial
condition on the variables.

2.2 Semantics of RPL

To connect to abstract interpretation, we describe programs in RPL as transition sys-
tems.

For each thread t we introduce a fresh non-data program counter variable pct , which
– is local to thread t, but not to any other thread, and
– doesn’t belong to any resource, and
– takes values from the set of control flow locations PL (Program Location).

Let PCVar be the set of all program counter variables and Var = DataVar∪̇PCVar.
We associate each control flow point p ∈ PL with a set rsc(p) of resources r such

that p is inside a with r... statement.
We allow the same control flow location, say, p, to occur in different threads.
A state of a program is a map from Var to the set of values Val that includes PL and

the ranges of all data variables. We are going to speak about consistent states only:
those are states that

– map program counters to elements of PL and
– satisfy mutual exclusion: the sets of resources held by different threads are disjoint.
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A thread t holds a resource r in a consistent state v if r ∈ rsc(v(pct)). A resource r is
busy in a consistent state v if some thread holds it in v, otherwise r is available in v.

Each statement of thread t induces a set of transitions v→t v′ where v,v′ are con-
sistent states. The transitions induced by the non-with statements are straightforward.
The statement with r when φ do C blocks when r is busy or when φ does not hold,
otherwise it changes the control flow location to the initial control flow location of C;
going out of the critical section is an unconditional change of the control flow location.

Let init be the set of initial states corresponding to the initial condition and let the
successor map

post(S) = {v′ | ∃ v ∈ S, t ∈ Tid : v→t v′}
return the set of all one-step successors of a set of consistent states.

The syntactic structure of an RPL program is given by: thread identifiers, control
flow locations, values, resources, locals and program counter variables of the threads,
proof variables, map rsc. A syntactic structure is just a tuple of basic mathematical
objects (sets, variables, maps). It also exists independently of an RPL program.

3 Owicki-Gries-Core Proofs

3.1 Lattice of Owicki-Gries-Core Proofs

Now we formalize the core of the Owicki-Gries proof system. We abstract away from
the details of logic, handling sets of variable valuations instead of formulas.

Fix an arbitrary syntactic structure.
A program annotation (I,M) consists of

– a resource invariant Ir for each resource r, which is a set of valuations of proof
variables of r,

– a control flow annotation Mp,t for each control flow location p and each thread
t, containing valuations of data variables which are local to t or which are proof
variables of a resource held at p.

We say that a consistent state v satisfies Ir (resp. Mp,t ), if the projection of v to
ProofVar(r) (resp. to local data variables of t and all proof variables of all resources
in rsc(p)) is in Ir (resp. in Mp,t ).

A program annotation (I,M) denotes the set of all consistent states v such that
– for each resource r which is available in v, the state v satisfies Ir, and
– for each thread t, the state v satisfies Mv(pct ),t .

We define γOG(I,M) as the set of all consistent states denoted by (I,M).
Now fix an arbitrary RPL program obeying the given syntactic structure.
An Owicki-Gries-core proof of the program is a program annotation that satisfies the

following conditions.
– It is sequentially consistent, which means the following: consider any transition

v→t v′ from a control flow location p to a control flow location p′ such that v
satisfies Mp,t . There are three cases.
• The transition does not cross the border of a critical section. Then v′ should

satisfy Mp′,t .
• The transition starts a critical section of a resource r. Additionally, assume that

v satisfies Ir. Then v′ should satisfy Mp′,t .
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• The transition finishes a critical section of a resource r. Then v′ should satisfy
both Mp′,t and Ir.

– It admits the initial states, i.e., denotes a superset of init.
These Hoare-style rules treat critical sections specially. First, on entering a critical
section, we additionally assume the resource invariant. Second, on leaving a critical
section, we should prove the resource invariant.

Every Owicki-Gries-core proof denotes an inductive invariant. A set of consistent
states S is Owicki-Gries-core provable if there is an Owicki-Gries-core proof that de-
notes a subset of S.

Interestingly, the set of program annotations of a fixed program forms a complete
lattice with respect to componentwise inclusion order. Restricting this order to the
set of Owicki-Gries-core proofs gives a complete lattice of Owicki-Gries-core proofs,
even a Moore family. So each program has a unique smallest Owicki-Gries-core proof.
This proof denotes the strongest Owicki-Gries-core-provable property. To investigate
the power of the method, we will look at the smallest Owicki-Gries-core proofs and
strongest Owicki-Gries-core-provable properties.

3.2 Examples

Now we will look at examples of programs with their smallest Owicki-Gries-core proofs.
On Readers-Writers, as well as for a whole class of similarly simple programs, all proof
methods will have the same precision, on Upper all proof methods will have different
precision and on the class SepThreads no precision loss will be observed at all.

We’ll use Owicki-style notation. In particular, “resource control(ww,ar,aw)”
means that the resource named control contains exactly ww, ar and aw.

Example 1 (Readers-Writers). A number of threads share a file simultaneously: n > 1
need reading access and m > 1 writing access. Any number of readers may access
the file simultaneously, but a writer must have exclusive access. In Fig. 2, all the data
variables range over nonnegative integers by default, subtracting a positive value from
0 blocks.

The strongest Owicki-Gries-core-provable property is

{v ∈ ConsState | v(ww),v(ar) ∈ N0 ∧ v(aw) ∈ {0,1}
∧ ∀ i ∈ {1, . . . ,n} :

(v(pcreaderi
) ∈ {xready,read | x ∈ {start,finish}

∧ y ∈ {A,B,C}})
∧(v(pcreaderi

) = startreadB⇒ v(ww) = 0)
∧(v(pcreaderi

) = startreadC⇒ v(ww) = 0 < v(ar))
∧ ∀ j ∈ {1, . . . ,m} :

(v(pcwriter j
) ∈ {xwritey,write | x ∈ {ask,start,finish}

∧ y ∈ {A,B,C}})
∧(v(pcwriter j

) = askwriteC⇒ v(ww) > 0)
∧(v(pcwriter j

) = startwriteB⇒ v(ar) = v(aw) = 0)
∧(v(pcwriter j

) = startwriteC⇒ v(ar) = 0 < v(aw))
∧(v(pcwriter j

) = finishwriteC⇒ v(aw) = 0)} .
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initially ww = ar = aw = 0
resource control(ww,ar,aw)

reader1 ‖ ... ‖ readern ‖ writer1 ‖ ... ‖ writerm

// readeri: // writer j:

while true do while true do

startreadA: {true} askwriteA: {true}
with control with control do

when ww = 0 do askwriteB: {aw≤ 1}
startreadB: {ww = 0∧aw ≤ 1} ww := ww+1

ar := ar +1 askwriteC: {aw≤ 1≤ ww}
startreadC: {ww = 0∧aw ≤ 1≤ ar} endwith;

endwith; startwriteA: {true}
read: {true} with control

; when ar = aw = 0 do

finishreadA: {true} startwriteB: {ar = aw = 0}
with control do aw := aw +1

finishreadB: {aw≤ 1} startwriteC: {ar = 0∧aw = 1}
ar := ar−1 endwith;

finishreadC: {aw≤ 1} write: {true}
endwith ;

endwhile finishwriteA: {true}
with control do

finishwriteB: {aw≤ 1}(
aw
ww

)
:=

(
aw−1
ww−1

)
finishwriteC: {aw = 0}

endwith

endwhile

Icontrol = {aw≤ 1}

Fig. 2. Program Readers-Writers and its smallest Owicki-Gries-core proof

There are states in this set in which more than one writer is at write. Thus no Owicki-
Gries-core proof can show that a writer has exclusive access. The smallest Owicki-
Gries-core proof can prove a slightly weaker property, namely that the value of aw,
which tracks the number of writers, never exceeds 1.

Example 2 (progUpper). The program Upper in Fig. 3 will be used for showing dif-
ferences between the Owicki-Gries-core proofs and the upper bound later. The range
of the data variables is {0,1}. The computation is trivial: no thread can make a step.
The majority of the program text serves to create a particular distribution of vari-
ables into locals and resources. There are exactly two reachable states, namely the
initial ones. The smallest Owicki-Gries-core proof denotes many more states, e.g.,
[u �→ 0,z �→ 1,x �→ 0,y �→ 1, l �→ 0,pc1 �→ A,pc2 �→ O].

Example 3 (Simple). A program belongs to the class Simple if it has at most one re-
source, and if the resource exists, then it contains no local variables and all its proof
variables belong to the resource. Readers-Writers is a family of programs from Simple.



178 A. Malkis and L. Mauborgne

initially u �= z = x = y = l
resource r(u,z), r′(x,y)

// Thread 1 // Thread 2

A: {l = x} O: {y = z}
with r when l = u do assume false;

B: {l = x = u �= z} P: with r′ do
with r′ do Q: y := 0

C: {y ≥ l = x = u �= z} R: endwith;

x := 0 S: with r do

D: {y ≥ l = u �= z∧ x = 0} T: u := 0;
endwith; U: z := 0

E: {l = u �= z∧ x = 0} V: endwith;

assume false W:

F: endwith;

G: with r′ do
H: x := 0
I: endwith;

J: with r do

K: u := 0
L: endwith;

M: l := 0
N:

Ir = {u �= z}, Ir′ = {x≤ y}

Fig. 3. Program Upper and its smallest Owicki-Gries-core proof. Control flow locations following
“assume false” are annotated by {false} by default.

Example 4 (SepThreads). The class SepThreads (Separate Threads) consists of all
programs that have no resources and whose initial states are exactly those that satisfy
the initial conditions of all the threads (a proper subset of such states is disallowed). For
such programs the smallest Owicki-Gries-core proof denotes the set of reachable states.

4 Owicki-Gries Core as Abstract Interpretation

4.1 Owicki-Gries-Core Proofs are the Post-Fixpoints of a Sound Abstract
Successor Map

Our first step to try to give a measure of the precision of the Owicki-Gries core will
be to cast it in the abstract interpretation framework. An Owicki-Gries-core proof is
clearly an abstraction of the set of reachable states of a program. So we will give a
characterization of Owicki-Gries core as a post-fixpoint of a sound abstraction of the
successor map post of an RPL program. The map mimics the application of the Owicki-
Gries-core proof conditions.

For a program annotation (I,M), we define the sound Owicki-Gries-core abstract
successor map post#OG(I,M) = (I′,M′), which applies the sequential consistency once:

– I′r is the smallest superset of Ir that contains all valuations w of proof variables of r
such that there is a transition v→t v′ (for some thread t) that exits a critical section
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for r, v satisfies Mv(pct),t and w equals the projection of v′ on the proof variables
of r;

– M′
p′,t is the smallest superset of Mp′,t that contains all valuations w of local data

variables of thread t and proof variables of resources held at location p′ such that
there is a transition v→tv′ such that v satisfies Mv(pct),t , v satisfies Ir if the transition
starts a critical section for r, v′(pct)=p′, and w equals the projection of v′ to local
data variables of t and to the proof variables of resources held at p′.

This operator is, as the name says, sound with respect to the successor map.
Let (Iinit,Minit) be the annotation describing the initial states only:

– Iinit
r is the set of all valuations of proof variables of r in the initial states;

– Minit
p,t is the set of valuations of local data variables of thread t in the initial states.

The Owicki-Gries-core abstract transformer F#
OG(I,M) is constructed as the pointwise

union of (Iinit,Minit) and post#OG(I,M). The set of post-fixpoints of F#
OG coincides with

the set of Owicki-Gries-core proofs; thus the following theorem holds.

Theorem 5 (Equivalence). The least fixpoint of F#
OG is the smallest Owicki-Gries-core

proof.

4.2 Characteristic Closures for Owicki-Gries Core?

An elegant way of describing the precision of an approximation of a semantics given in
fixpoint form is through the use of closures. A closure ρ is a monotone operator that is
idempotent (ρ(ρ(x))= ρ(x)) and extensive (ρ(x)≥ x). Given a concrete domain (D,≤)
and a monotone function F : D→D, the closure ρ on D defines an approximation of the
concrete semantics lfp(F) in the sense that lfp(F)≤ lfp(ρ ◦F). Such a description shows
the actual loss of information, as the fixpoints of the closure are exactly the abstract
elements that describe the approximation, and applying the closure to one concrete
element exactly shows what information is lost for that element.

In our case, we have a concrete domain of sets of consistent states ordered by in-
clusion, and the semantics is given as the least fixpoint of the successor map post over
the initial states. Then we exhibited an approximation post#OG of that successor map. In
order to describe its precision, it would be nice to find a closure ρ such that post#OG is
exactly the best transformer for ρ ◦ post. Finding one closure for each program is not
difficult (just take the closure with two fixpoints, one being the strongest Owicki-Gries-
core-provable property and the other the set of all consistent states), but this would not
be very informative. Instead, because the concrete domain is entirely fixed by the syn-
tactic structure of the program, we would like to find a ρ that would be fixed for a given
syntactic structure. Alas, the next section shows that it is not possible in general.

5 Absence of Equivalent Characterizations by Closures

The main result of this section is unfortunately negative: assuming we start from a
reachable state semantics, there is no way to describe the strongest Owicki-Gries-core
proof for a given syntactic structure using closures.
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Theorem 6 (No Equivalence). There is a syntactic structure such that for consistent
states defined through the syntactic structure and the concrete domain being the pow-
erset of consistent states, there is no closure ρ on the powerset of consistent states such
that for any multithreaded program having the given syntactic structure and for any
property S of consistent states we have

S is Owicki-Gries-core provable ⇔ lfp(λ x.ρ(init∪post(x)))⊆ S.

One such syntactic structure is given by program Upper from Example 2.
In fact, we can prove an even stronger property, as the proof requires only that ρ

is monotone. Even more, the same proof holds even if we restrict the validity of the
equivalence to a given transition relation:

Theorem 7. Under the same syntactic structure as in Thm. 6, there is no family of
monotone maps Ξ indexed by transition relations, such that Ξ preserves least fixpoints
(∀ transition relations τ1,τ2 : lfp(τ1) = lfp(τ2)⇒ lfp(Ξτ1) = lfp(Ξτ2)), and

S is Owicki-Gries-core provable ⇔ lfp(Ξλ x.init∪post(x))⊆ S.

Theorem 6 shows that if we start by approximating traces by states and wish to describe
the Owicki-Gries-core proof system using closures, we can only hope for bounds fram-
ing the proof system. We will provide such bounds in the next two sections. If we are
willing to work with closures on sets of traces instead of sets of states, it might be
possible to find some equivalence. But such an equivalence cannot be obtained directly
by collecting the states of traces obtained from abstract interpretation with a closure.
Let α̃ be the abstraction which associates to a set of traces the set of consistent states
appearing in the traces.

Theorem 8. Under the same syntactic structure as in Thm. 6, there is no monotone
operator ρ̃ on the powerset of traces of consistent states such that for any multithreaded
program having the given syntactic structure, set of initial traces ĩnit and the trace
extension operator p̃ost, and for any property S of consistent states we have

S is Owicki-Gries-core provable ⇔ α̃(lfp(λ x. ρ̃(ĩnit∪ p̃ost(x)))) ⊆ S.

6 Upper Bound on Precision

Now we will show a closure operator such that the best abstract interpretation of the
program with this approximation allows proving a larger set of properties than those
provable by the Owicki-Gries core. The approximation will depend only on the syntac-
tic structure, but not on the exact transition relation of a program.

Definition 9 (Owicki-Gries-core annotation closure). For a given syntactic structure,
let ρ(Q) be the approximation defined as the set of consistent states v such that:

– if a resource r is available in v, then there is some other state in Q
• that coincides with v on the proof variables of r and
• in which r is available;



On the Strength of Owicki-Gries for Resources 181

– and for any thread t there is a state in Q that coincides with v on local variables
(including the program counter) of t and on the proof variables of the resources
held by t in v.

Then ρ is a closure on the powerset of consistent states. We call it the Owicki-Gries-
core annotation closure.

The reason why we call this closure an Owicki-Gries-core annotation closure is because
it is the closure corresponding to the Galois connection defined by γOG (which gives the
set of consistent states denoted by a program annotation).

Now fix an arbitrary program and let ρ be defined by its syntactic structure.

Theorem 10 (Upper bound). Abstract interpretation with ρ is at least as strong as the
Owicki-Gries core. Formally:

lfp(λ x.ρ(init∪post(x))) ⊆ the strongest Owicki-Gries-core-provable property.

From the high-level view, the best transformer using this closure is capable of taking
into account global computation instead of local successor computation in the Owicki-
Gries core. It is as if before checking sequential consistency we take into account anno-
tations not only of one thread, but of all the threads, gaining precision.

Furthermore, the Owicki-Gries-core annotation closure shows where the information
is always lost. For instance, if a syntactic structure says that locals are disjoint among
themselves and from all the proof variables of the resources, and if two states outside
of critical sections are given, then any combination of the locals and resource variables
of those states is in the approximation of those two states.

Example 11 (Readers-Writers). For the program Readers-Writers from Example 1
the least fixpoint of lfp(λ x.ρ(init∪post(x))) coincides with the strongest Owicki-Gries-
core-provable property. This property is coarser than the set of reachable states. For ex-
ample, in one execution writer1 can reach write, in another execution writer2 can
reach write, and the initial state satisfies ww = ar = aw = 0, so ρ produces a com-
bined state where both writers are at write, other threads are at their initial locations
and all data variables have value 0. Thus, no Owicki-Gries-core proof can restore the
dependency between the threads and prove mutual exclusion between the writers.

Example 12 (Upper). For the program Upper from Example 2 abstract interpreta-
tion with ρ produces the set of reachable states, which is properly included into every
Owicki-Gries-core-provable property. The reason for this discrepancy is that locals of
one thread and resources held by a different thread overlap. Such an overlap constrains
the output of ρ , but not an Owicki-Gries-core proof. Considering such overlaps actually
improves precision!

Example 13 (Simple). For the programs of the class Simple abstract interpretation
with ρ produces the same result as the smallest Owicki-Gries-core proof. The reason,
as we will see, is that abstract interpretation with the lower bound will produce the same
result as abstract interpretation with the upper bound.

Example 14 (SepThreads). For the programs of the class SepThreads of Example 4
abstract interpretation with ρ produces the same result as the smallest Owicki-Gries-
core proof. The reason is that the smallest Owicki-Gries-core proof already denotes the
set of reachable states.
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7 Lower Bound on Precision

Now we will show a nontrivial Cartesian-like closure such that abstract interpretation
with this closure can prove only properties weaker than or equal to the strongest Owicki-
Gries-core-provable property. In fact, we will even show two such closures. One closure
(namely ρ̄) will describe a better lower bound, while the other one (namely ρc) is easier
to comprehend.

The definitions of both bounds require some preparation.
For a family of sets X = {X1, . . . ,Xn}, let Part(X ), called partition of X , be the

set of all nonempty Y1∩ . . .∩Yn where each Yi is either Xi or its complement (
⋃

X )\Xi

(1≤ i≤ n). Elements of a partition are called blocks.
Let us fix an arbitrary syntactic structure. Our lower bounds will depend on the syn-

tactic structure but be the same for all the programs that obey this syntactic structure.
Let RL be the family of sets containing all resources r and all sets of locals Localt for
all threads t as elements. Let R̃L be the partition of RL.

For example, for the syntactic structure of Upper the set RL has exactly four ele-
ments: the locals of the first thread {l,x,pc1}, the locals of the second thread {y,z,pc2},
the resource r = {u,z}, and the resource r′ = {x,y}. The corresponding partition has
exactly six blocks: {u}, {x}, {y}, {z}, {l,pc1}, {pc2}.

7.1 Simple Cartesian Closure

The simpler approximation is defined as follows.

Definition 15 (Cartesian closure). Given a set of consistent states Q, the Cartesian
approximation ρc returns all the consistent states from the product of projections of Q
onto the blocks in R̃L.
In other words, ρc(Q) contains exactly those consistent states v such that for each block
there is a state ṽ in Q that agrees with v on the variables of the block.

As the name says, ρc is a closure.
This approximation breaks all the dependencies between the blocks and retains all

dependencies inside a block.
For example, for the syntactic structure of the program Upper the variables l and pc1

belong to the same block. Thus, if in a set of states every state at some fixed control
flow location satisfies l = 0, each state from the Cartesian approximation of this set will
also satisfy l = 0 for that control flow location.

Abstract interpretation with ρc generates a property which is always weaker than or
equal to the strongest Owicki-Gries-core-provable property.

7.2 More Precise Lower Bound Closure

The following definition strengthens ρc in two ways. Firstly, we impose restrictions on
ṽ from the definition of ρc. Such restrictions will depend on the block. Secondly, we
look at the prophecy variables: those are variables which are never written and which
don’t belong to a resource. Prophecy variables form a separate block; now we restore all
the dependencies between this block and those locals of any thread that are not resource
variables.
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Definition 16 (Lower Bound closure). Given a set of consistent states Q, its approx-
imation ρ̄(Q) contains exactly those consistent states v such that both of the following
conditions are satisfied.

– For every block in R̃L that is contained in a resource,
• if the resource is available in v, then there is some ṽ ∈ Q

∗ in which the resource is also available
∗ and which coincides with v on the block;

• if some thread holds the resource in v, then there is some ṽ∈Q which coincides
with v on all the variables
∗ that are local to this thread but do not belong to any resource, or
∗ that belong to the block.

– For every thread there is a state in Q that coincides with v on each variable
• that is a local variable of the thread but
• does not belong to any resource.

As the name says, ρ̄ is a closure. It is at least as precise as ρc. Both closures do not
depend on the exact transition relation of a program. The closure ρ̄ induces the tight-
est lower bound we could prove. It shows the dependencies that are always retained,
creating a basis for the construction of future refinement algorithms (possibly follow-
ing [11]).

Now fix an arbitrary RPL program that has the assumed syntactic structure.
The proof of the lower bound relies on several claims about the strongest property

provable by abstract interpretation with ρ̄ . The following claim is the most important
one.

Lemma 17. Let Q be the strongest property provable by abstract interpretation with ρ̄ .
Consider a transition of a thread t from a consistent state v to a consistent state v′, let
the transition start a critical section. Let ṽ ∈ Q such that v agrees with ṽ on the locals
of t and on the variables of the resources held by t before the transition. Let v̂ ∈ Q such
that v agrees with v̂ on the variables of the resource being acquired. Then there is a state
in Q that agrees with v′ on the locals of thread t and on the variables of the resources
held by the thread after the transition.

The lower bound theorem follows from the lemma.

Theorem 18 (Lower bound). The core of Owicki-Gries can prove at least as many
properties as abstract interpretation with ρ̄ or ρc. Formally:
the strongest Owicki-Gries-core–provable property ⊆ lfp(λ x. ρ̄(init∪post(x)))
⊆ lfp(λ x.ρc(init∪post(x))) .

Example 19 (Readers-Writers). For the program Readers-Writers from Example 1
abstract interpretation with ρc produces the set of all consistent states where readers
are at . . .read . . ., writers are at . . .write . . ., and ww, ar, aw are nonnegative. Owicki-
Gries-core and abstract interpretation with ρ̄ can prove stronger properties, e.g., that at
location askwriteC the value of ww is positive. Intuitively, when a resource is busy,
Cartesian abstraction always breaks the dependency between the resource variables and
the control flow, while the Owicki-Gries core sometimes retains the dependency.



184 A. Malkis and L. Mauborgne

Example 20 (Upper). For the program Upper from Example 2 abstract interpretation
using either ρc or ρ̄ produces the same result: the set of all states such that the first thread
is at any location between A and E, the second thread is at O and all data variables take
arbitrary values from {0,1}. The Owicki-Gries core can prove stronger properties; for
instance, it can show that at location E the value of x is zero. Intuitively, the dependency
between resource variables and control flow is always broken in Cartesian abstraction
but is sometimes retained in the Owicki-Gries core.

Example 21 (Simple). For the programs from the class Simple from Example 3 the
approximations ρ̄ and ρ are so close to each other that abstract interpretations with
both produce the same property. Since they define the lower and upper bounds on the
precision of the Owicki-Gries core, the Owicki-Gries core can prove exactly the same
properties as those provable by abstract interpretation with any of the two approxima-
tions. If a program from Simple does not have the empty resource, then ρ̄ and ρ coincide
exactly, approximating a set of states Q by the set of all consistent states v such that both
of the following conditions hold.

– If there is a resource and it is available in v, there is some state in Q that coincides
with v on the resource and in which the resource is available.

– For each thread there is a state in Q which coincides with v on the variables of the
thread and, if the resource is present and is held, on the variables of the resource.

Example 22 (SepThreads). For the programs from the class SepThreads from Ex-
ample 4 the approximations ρ̄ and ρ coincide. Since they define the lower and upper
bounds on the precision of the Owicki-Gries core, the Owicki-Gries core can prove ex-
actly the same properties as those provable by abstract interpretation with any of the
two approximations. Due to the absence of any thread interactions and independence
of initial states of the threads, the mentioned methods can prove the strongest inductive
property, namely the set of states reachable from the initial ones. Informally spoken, all
dependencies between the locals of each thread are retained.

8 Related Work

Historically, conditional critical regions were introduced in [8]. The thesis [15] of Ow-
icki and her paper with Gries [16] describe the original proof method for RPL. Modular
reasoning about RPL has not been characterized in terms of abstract interpretation via
closures [5] so far.

For general multithreaded programs (i.e. without separation of data into resources),
Owicki-Gries-style reasoning without auxiliary variables is equivalent to multithreaded
Cartesian abstraction. The result was first mentioned without proof in [6], and the proof
appears in [11].

Clarke [3] has considered a subset of integer RPL programs with only one resource,
where, roughly, only additions of constants inside the critical sections are allowed, and
the property to be checked is either mutual exclusion of PV-semaphores or deadlock
freedom. With a predefined choice of integer auxiliary variables, the least fixpoint of
a particular functional is a resource invariant that precisely tells whether the property
holds or not. Two overapproximations are given: a fixed-formula resource invariant
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and an invariant computed by a polyhedral analysis with widening. Our work, on the
contrary, does not impose any restrictions on the program form. Our results hold for
even more programs than the RPL ones, e.g., where the critical sections are not well-
nested.

The work of Owicki on RPL is the basis of a variety of modular programming lan-
guages equipped with proof methods of different degrees of completeness and
automation.

Concurrent separation logic (CSL) [14] equips RPL with separation logic as a for-
mula language. CSL is also incomplete without the rule of auxiliary variables, so the
question of precision arises. Removing secondly important features of CSL for the sake
of clarity (as in [2]) and considering variables in the heap makes our lower bound also
apply to such CSL versions.

Chalice [10] is a language for verification of object-oriented concurrent programs
with heap, equipped with an RPL-like proof system. Due to the powerful permission
system, the proof system is in general stronger than that of Owicki, so our lower bound
on precision carries over to Chalice for programs that can be directly represented both
in RPL and in Chalice.

VCC [13] is a verifier for multithreaded C. When accessing structures in a lock-based
manner, VCC requires the user to provide invariants of C structs. On obtaining own-
ership of a structure, the resource invariant is assumed; on relinquishing ownership,
the resource invariant has to be reestablished. Ghost contracts of lock-manipulating
functions control the ownership transfer. Our lower bound applies to VCC as well.

9 Discussion

9.1 Challenges

Discussing the precision loss reveals several open problems.
Example 20 shows a gap between the accuracy of the Owicki-Gries core and the

lower bound. Can the lower bound closure be strengthened?
The main inequivalence result assumes that the concrete domain is the powerset of

consistent states. For the powerset of traces, we only know inequivalence for a subclass
of abstract interpretations. Is there an exact characterization of the Owicki-Gries core
by abstract interpretation on the powerset of traces?

We have shown what variable dependencies does the Owicki-Gries core break. Can
these dependencies be restored on demand? Is there an automatic counterexample-
guided abstraction refinement of the Owicki-Gries core, perhaps based on auxiliary
variables [4], unions of Cartesian products [11], or abstract threads [9]?

Can one characterize the precision loss of the Owicki-Gries core by completeness
notions of [7]?

Can one formalize CSL in abstract interpretation in a way that would reveal the
involved approximation?

9.2 Conclusion

We have examined a modular method (Owicki-Gries core) for proving safety properties
of a widely-used class of multithreaded programs.
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The considered class contains structured programs in which shared data are parti-
tioned into resources and are accessed only in critical sections that ensure mutually
exclusive access to resources. The method provides a clean basis for other more so-
phisticated proof methods like Concurrent Separation Logic, Chalice, or VCC. The
Owicki-Gries core is polynomial in the number of threads, but without manually adding
auxiliary variables it cannot prove many properties of concurrent programs.

The Owicki-Gries core is, intuitively, expected to succeed for properties whose
dependence on thread coupling is low, and is expected to fail if complicated thread
interactions have to be analyzed. We have made this notion precise, providing a charac-
terization of the set of Owicki-Gries-core-provable properties. We have demonstrated
an abstract transformer corresponding to the Owicki-Gries core: the least fixpoint of
the abstract transformer denotes exactly the strongest Owicki-Gries-core-provable
property. To quantify the loss of precision inherent to modularity, we have provided
a superset and a subset of Owicki-Gries-core-provable properties, described by abstract
interpretations with closure operators that depend on the syntactic structure of the pro-
gram only. These bounds coincide for a class of simple programs. We have also shown
a principal inability to provide an exact characterization of the set of properties in terms
of closures that depend only on the syntactic structure.
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Abstract. Verification of programs with procedures, multi-threaded
programs, and higher-order functional programs can be effectively au-
tomated using abstraction and refinement schemes that rely on spurious
counterexamples for abstraction discovery. The analysis of counterexam-
ples can be automated by a series of interpolation queries, or, alterna-
tively, as a constraint solving query expressed by a set of recursion free
Horn clauses. (A set of interpolation queries can be formulated as a single
constraint over Horn clauses with linear dependency structure between
the unknown relations.) In this paper we present an algorithm for solving
recursion free Horn clauses over a combined theory of linear real/rational
arithmetic and uninterpreted functions. Our algorithm performs resolu-
tion to deal with the clausal structure and relies on partial solutions to
deal with (non-local) instances of functionality axioms.

1 Introduction

Constraint solving is a vehicle of software verification that provides symbolic
reasoning techniques for dealing with assertions describing program behaviors. In
particular, abstraction and refinement techniques greatly benefit from applying
constraint solving, where interpolation techniques [1, 2, 3, 5, 6, 11, 12, 13, 16,
17, 18, 19] play a prominent role today. Roughly, interpolation computes an
assertion that separates two mutually unsatisfiable assertions and only refers to
their shared symbols.

Certain abstraction refinement tasks cannot be directly expressed as an in-
terpolation question. For example, abstraction refinement for imperative pro-
grams with procedures [12] and for higher order functional programs [14, 20],
require additional pre-processing that splits discovered spurious counterexam-
ples in multiple ways and applies interpolation on each splitting. Alternatively,
as exemplified by an abstraction refinement procedure for multi-threaded pro-
grams [9], this preprocessing and series of interpolation computations can be
expressed using a single constraint that consists of a finite set of recursion-free
Horn clauses interpreted over the logical theory that is used to describe program
behaviors.

In this paper, we present an algorithm for solving Horn clauses over a com-
bination of linear rational/real arithmetic, uninterpreted functions and queries.

H. Yang (Ed.): APLAS 2011, LNCS 7078, pp. 188–203, 2011.
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Our algorithm opens new possibilities for the development of abstraction re-
finement schemes by providing the verification method designer an expressive,
declarative way to specify what the refinement procedure needs to compute us-
ing Horn clauses. Several existing abstraction refinement schemes can directly
benefit from our algorithm, e.g., for programs with procedures [11, 12], for multi-
threaded programs [9], and for higher-order functional programs [14, 20, 21].

Related Work. In [9] we presented an algorithm that deals with recursion-free
Horn clauses over linear real/rational arithmetic. Here, we present an extension
with uninterpreted functions.

Technically, our treatment of uninterpreted functions can be seen as a gener-
alization of partial interpolants [17] to partial solutions for recursion-free Horn
clauses, i.e., clauses that do not have cyclic dependencies between the occur-
ring queries. Our algorithm follows a general scheme of combining interpolation
procedures for different theories [8, 22].

The following example illustrates the relation to interpolation. First, we con-
sider an interpolation question for a pair of mutually unsatisfiable assertions
a(x, y) and b(y, z) in a logical theory. An interpolant is an assertion I(y) such
that I(y) is a logical consequence of a(x, y), I(y) and b(y, z) are mutually unsat-
isfiable, and I(y) only contains non-theory constants that are shared by a(x, y)
and b(y, z), which is y in our example. Now, we present our re-formulation of
interpolation as a constraint solving question for constraints given by recursion-
free Horn clauses. We introduce a relation QI(y) that represents an interpolant
that we want to compute. We represent the interpolation conditions by the fol-
lowing two Horn clauses: a(x, y) → QI(y) and QI(y) ∧ b(y, z) → false. Any
interpretation of QI(y) that only refers to y (and theory constants) is an inter-
polant for a(x, y) and b(y, z). In Section 6, we discuss the relation of this paper
with [17] in more detail.

Horn clauses with more that two unknown queries in the body do not directly
correspond to interpolation problems. For example, we consider two relations
QI(y) and QJ(y) that represent assertions we want to compute together with
the Horn clauses a(x, y) → QI(y), b(y, z) → QJ(y), and QI(y) ∧ QJ(y) →
false. Solving these clauses using interpolation requires two invocations of an
interpolation procedure (i.e., interpolation between a(x, y) and b(y, z) determines
QI(y) interpolation between b(y, z) and QI(y) determines QJ(y)) that we would
like to avoid for efficiency considerations. Furthermore, by computing QI(y) and
QJ(y) one after the other it is not evident how to compute solutions satisfying
certain preference conditions, e.g., where all constrants are within predefined
bounds (such conditions are useful for abstraction refinement, as shown by the
FOCI procedure [15]).

Organization. Section 2 illustrates our algorithm. Section 3 provides formal defi-
nitions. We present the solving algorithm in Section 4 and discuss its correctness
and complexity in Section 5. Section 6 concludes and clarifies the connection of
our algorithm to interpolation procedures.

We also provide an extended version of this paper [10]. In this extended
version, Appendix A illustrates how Horn clauses can be used for abstraction
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refinement of procedural and multi-threaded programs, Appendix B contains a
complete example execution of our algorithm, and Appendix C presents proofs
of the key theorems.

2 Illustration

In this section, we shall illustrate our proposed algorithm by solving an exam-
ple set of Horn clauses. The example set of Horn clauses HC is presented in
Figure 1(a) and consists of three clauses. Our algorithm is looking for solutions
to the two symbols S(t, u, v) and E(t, u) that we name queries. To obtain so-
lutions over the domain of linear arithmetic and uninterpreted functions, our
algorithm proceeds following three steps.

Resolution Tree. Our solving algorithm starts by constructing from HC a reso-
lution tree R shown in Figure 1(b). We label nodes of R with indices for easy
reference. From the first clause, the algorithm constructs the subtree rooted at
label 2. In this subtree, we have edges between the node corresponding to the
head of the clause (labeled 2) and the nodes corresponding to the body of the
clause (labeled 3–6). A second subtree rooted at the node labelled 7 is con-
structed from the second clause. With the appearance of the queries S(t, u, v)
and E(t, u) in the body of the third clause from HC , the two previously con-
structed subtrees are extended in a tree with the root labeled corresponding to
the clause head, (1 : false) . The extension of the subtrees leads to the variables
occurring in these subtrees to be renamed to a common set of variables p, q, c .
Note that, the set of clauses HC is satisfiable, and, consequently, the conjunction
of the predicates from the leaves of the resolution tree is unsatisfiable.

Proof Tree. Next, our algorithm constructs a proof tree that proves unsatisfi-
ability of the constraints from the leaves of the resolution tree. For the resolu-
tion tree from Figure 1(b), our algorithm computes the proof tree P shown in
Figure 1(c). A linear combination rule is applied to derive the constraint
(c − d ≤ 0) from the premises (c − q ≤ 0) and (q − d ≤ 0) . The linear com-
bination rule is also used to derive (d − c ≤ 0) from the premises (p − c ≤ 0)
and (d − p ≤ 0) . A congruence rule is used to relate function symbols applied
to equivalent arguments. This rule derives (f(c) − f(d) ≤ 0) from the premises
(c − d ≤ 0) and (d − c ≤ 0) . Lastly, (1 ≤ 0) is derived by applying the lin-
ear combination rule on three premises, (f(d) ≤ 0) , (f(c) − f(d) ≤ 0) , and
(−f(c) + 1 ≤ 0) .

Partial and Final Solutions. The proof tree P explicates the inference rules
and the order in which to apply them to derive the false constraint (1 ≤ 0) .
The main idea behind our solving algorithm is to apply corresponding inference
rules in the same order to derive a solution for the Horn clauses. We obtain
an annotated proof tree (see Figure 1(d)) where for each of the premises used
in P , our algorithm creates one tree with the same number of nodes as R .
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HC = { ∀p, q, c : p ≤ c ∧ c ≤ q ∧ −f(c) + 1 ≤ 0 ∧ f(c)− 1 ≤ 0 → S(p, q, c),

∀r, s, d : s ≤ d ∧ d ≤ r ∧ f(d) ≤ 0 ∧ −f(d) ≤ 0→ E(r, s),

∀t, u, v : S(t, u, v) ∧ E(t, u)→ false }

(a)

1 : false

2 : S(p, q, c) 7 : E(p, q)

3 : p− c ≤ 0

4 : c− q ≤ 0 5 : −f(c) + 1 ≤ 0

6 : f(c)− 1 ≤ 0 8 : q− d ≤ 0

9 : d− p ≤ 0 10 : f(d) ≤ 0

11 : −f(d) ≤ 0

(b)

f(d) ≤ 0

c− q ≤ 0 q− d ≤ 0

c− d ≤ 0

p− c ≤ 0 d− p ≤ 0

d− c ≤ 0

f(c) − f(d) ≤ 0 −f(c) + 1 ≤ 0

1 ≤ 0

(c)

f(d) ≤ 0[. . . ]

c− q ≤ 0[Π1] q− d ≤ 0[Π2]

c− d ≤ 0[Π3]
. . .

f(c)− f(d) ≤ 0[. . . ] −f(c) + 1 ≤ 0[. . . ]

1 ≤ 0[Π ]

(d)

Fig. 1. (a) A set of Horn clauses HC . (b) Corresponding resolution tree R . (c) Proof
of unsatisfiability P for the constraints from the leaves of the resolution tree. For
abbreviation, we did not mark nodes of subtree of f(c) − f(d) ≤ 0 with the applied
proof rules. (d) A part of the annotated proof tree. The partial solutions Π1, Π2, Π3,
and Π are presented in Figure 2.

We call these trees, which are annotated with formulas that will be explained
next, partial-solution trees.

The tree Π1 corresponds to the premise (c − q ≤ 0) , Π2 corresponds to
the premise (q − d ≤ 0) and both trees are shown in Figure 2. Two or more
premises are used to derive a new fact in the proof tree and, likewise, two or
more corresponding partial-solution trees are used to derive a new tree using a
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1 : c− q ≤ 0

2 : c− q ≤ 0 7 : 0 ≤ 0

3 : 0 ≤ 0

4 : c− q ≤ 0 5 : 0 ≤ 0

6 : 0 ≤ 0 8 : 0 ≤ 0

9 : 0 ≤ 0 10 : 0 ≤ 0

11 : 0 ≤ 0

Π1

1 : q− d ≤ 0

2 : 0 ≤ 0 7 : q− d ≤ 0

3 : 0 ≤ 0

4 : 0 ≤ 0 5 : 0 ≤ 0

6 : 0 ≤ 0 8 : q− d ≤ 0

9 : 0 ≤ 0 10 : 0 ≤ 0

11 : 0 ≤ 0

Π2

1 : c− d ≤ 0

2 : c− q ≤ 0 7 : q− d ≤ 0

3 : 0 ≤ 0

4 : c− q ≤ 0 5 : 0 ≤ 0

6 : 0 ≤ 0 8 : q− d ≤ 0

9 : 0 ≤ 0 10 : 0 ≤ 0

11 : 0 ≤ 0

Π3

1 : 1 ≤ 0

2 : (p− q ≤ 0) ∧ (q− p ≤ 0 → 1 ≤ f(p)) 7 : (q− p ≤ 0) ∧ (p− q ≤ 0 → f(q) ≤ 0)

3 : . . .

4 : . . . 5 : . . .

6 : . . . 8 : . . .

9 : . . . 10 : . . .

11 : . . .

Π

Fig. 2. Four partial-solution trees Π1 , Π2 , Π3 , and Π . Π1 and Π2 are derived from
the nodes (c − q ≤ 0) and (q − d ≤ 0) from the proof tree P from Figure 1(d). Π3 is
obtained by applying a combination rule to Π1 and Π2. Π annotates the false constraint
(1 ≤ 0) from P and the final solution of HC can be derived from Π . In particular, the
nodes labeled “2” and “7” contain the solutions for S(p, q, c) and E(p, q), respectively.
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specific inference rule. The two trees Π1 and Π2 shown in the top part of Figure 2
are combined using a rule corresponding to the arithmetic combination rule. The
rule takes a pair of corresponding nodes, one from Π1 and one from Π2 , and
computes a node in the resulting tree Π3 . For the node labeled ( 2 : c− q ≤ 0 )
from Π1 and the node labeled ( 2 : 0 ≤ 0 ) from Π2, the algorithm adds the two
constraints and creates a node labeled ( 2 : c − q ≤ 0 ) in Π3 . Similarly, the
nodes labeled ( 1 : c − q ≤ 0 ) and ( 1 : q − d ≤ 0 ) are used to obtain a node
labeled ( 1 : c− d ≤ 0 ) in Π3 .

Following the derivation of the proof tree P , inference rules are used to com-
bine partial-solution trees until a final-solution tree corresponding to the rule
applied at the bottom of the proof tree. The final-solution tree is Π and is
shown in Figure 2. The node labeled “2” contains the solution for S(p, q, c) and
it can be simplified to S(p, q, c) = (p < q∨p ≤ q∧f(p) ≥ 1) . The solution from
the node labeled “7” can be simplified to E(p, q) = (p > q ∨ p ≥ q ∧ f(p) ≤ 0) .
The solutions obtained for S(p, q, c) and E(p, q) indeed satisfy the set of Horn
clauses HC from Figure 1(a).

3 Recursion-Free Horn Clauses

This section presents auxiliary definitions together with the syntax and semantics
of recursion-free Horn clauses over linear arithmetic, uninterpreted functions,
and queries.

Syntax. We assume countable sets of variables V , with v ∈ V , function symbols
F , with f ∈ F , and predicate symbols P , with p ∈ P . Let the arity of function
and predicate symbols be encoded in their names. In addition, we assume a set
of number symbols N , with {0, n} ⊆ N , and an inequality symbol ≤. Then, we
define:

terms # t ::= n | nv | t + t | f(t, . . . , t)
atoms # a ::= t ≤ 0
queries # q ::= p(v, . . . , v)

bodies # b ::= a | q | b ∧ b

heads # h ::= a | q | false
Horn clauses # s ::= b → h

Without loss of generality, as justified later, we assume that all variables that
occur in a query are distinct.

A set of Horn clauses defines a binary dependency relation on predicate sym-
bols. A predicate symbol p ∈ P depends on a predicate symbol pi ∈ P if there is
a Horn clause · · · ∧ pi(. . . ) ∧ · · · → p(. . . ) , i.e., when p appears in the head of a
clause that contains pi in its body. A set of Horn clauses is recursion-free if the
corresponding dependency relation does not contain any cycles. A set of Horn
clauses is tree-like if the corresponding dependency relation defines a tree-like
graph, i.e., when 1) each predicate symbol appears at most once in the set of
bodies and at most once in the set of heads of the given clauses, 2) there is no
clause with an atom in its head, 3) there is one clause whose head is false. For
example, the set of clauses {p(v1) ∧ p(v2) → q(v1, v2), q(v3, v4) → false} is not
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tree-like since the predicate symbol p appears more than once in the body of the
first clause.

For the rest of the presentation, we consider a finite set of Horn clauses HC
that satisfies the following conditions. First, we assume that each variable occurs
in at most one clause and that all variables occurring in a query are distinct.
These assumptions simplify our presentation and can be established by an appro-
priate variable renaming and additional (in)equality constraints. Furthermore,
we assume that HC is recursion-free and tree-like. The recursion-free assumption
is critical for ensuring termination of the solving algorithm presented in this
paper. The tree-like assumption simplifies our presentation without imposing
any restrictions on the algorithm’s applicability. Any finite set of recursion-free
clauses can be transformed into the tree-like form. The solution for the computed
tree-like form can be translated into the solution for the original set of clauses.

Finally, we define constraints together with a conjunctive constraint fragment
below.

constraints # c ::= a | ¬c | c ∧ c | c ∨ c conjunctive constraints # ĉ ::= a | ĉ ∧ ĉ

Auxiliary Definitions. We assume the following standard functions. For deal-
ing with trees, let nodes(T ) be the nodes of a tree T , root(T ) be the root node of
T , leaves(T ) be the leaves of T , and subtree(o, T ) be the subtree of T rooted in its
node o. Furthermore, let subterms(C) be the subterms occurring in a constraint
C and atoms(C) be the atoms occurring in C. Let sym(t) be the variables and
uninterpreted function symbols occurring in a term t.

Let match(p(v1, . . . , vn), p′(v′1, . . . , v
′
m)) return a substitution {v1 �→

v′1, . . . , vn �→ v′m} if p = p′ (and hence n = m). Thus, if a substitution
σ is the result of match(p′(v1, . . . , vn), p′(v′1, . . . , v′m)) then p′(v1, . . . , vn)σ =
p′(v′1, . . . , v

′
m), i.e., by applying the substitution we equate the queries. For ex-

ample, match(p1(v1), q(v2, v3)) is not defined, and match(q(v1, v2), q(v3, v4)) =
{v1 �→ v3, v2 �→ v4}. We assume a canonical extension of the unifier application
to constraints and their combination into sequences and sets.

Given two substitutions σ1 = {v1 �→ v′1, . . . , vn �→ v′n} and σ2 = {w1 �→
w′

1, . . . , wm �→ w′
m} over disjoint domains, i.e., {v1, . . . , vn} ∩ {w1, . . . , wm} = ∅,

we define a combined substitution σ1 + σ2 = {v1 �→ v′1, . . . , vn �→ v′n, w1 �→
w′

1, . . . , wm �→ w′
m}.

Semantics. Let |= be the (logical) satisfaction relation for our constraints in the
combined theory of linear real/rational arithmetic and uninterpreted functions.
We write |= c when c is a valid constraint.

Let Σ be a function from queries to constraints. We assume that in the domain
of Σ no two queries have an equal predicate symbol, all queries have disjoint
variables, and each query is mapped to a constraint whose free variables occur
in the query. For example, consider Σ = {p(v1) �→ (v1 ≥ 0), q(v2, v3) �→ (v2 ≤
f(v3))}.

We use Σ function to transform the set of Horn clauses containing queries
into a set of query-free clauses as follows. In each clause s ∈ HC we replace
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each query q in s with the constraint Σ(q′)σ where q′ is in the domain of Σ,
queries q′ and q have an equal predicate symbol, and σ = match((q′, q)). For
example, the above Σ transforms the clause x ≤ f(y) ∧ p(x) ∧ q(y, z) → false
into x ≤ f(y) ∧ (x ≤ 0) ∧ (y ≤ f(z))→ false .

Let HCΣ be the set of query-free clauses obtained by applying Σ. Σ is a
solution for HC if each clause cΣ in HCΣ is a valid implication, i.e, |= cΣ , and
the following condition holds for the uninterpreted function symbols occurring
in the range of the solution function. An uninterpreted function symbol f can
occur in the solution Σ(q) for a query q if f appears in the atoms of a Horn
clause from HC whose head depends on q and in the atoms of a Horn clause
from HC, whose head does not depend on q. For example, given the clauses
{f(v1) = 0 → p(v1), f(v2) = 1 → q(v2), v3 = v4 ∧ p(v3) ∧ q(v4) → false} the
function symbol f can appear in the solution of each query. A set of clauses is
satisfiable if it has a solution.

4 Algorithm

Our goal is an algorithm for computing solutions for recursion-free Horn clauses
over linear arithmetic, uninterpreted functions, and queries. This section presents
our solving algorithm SolveHorn(li+uif).

See Figure 3. The algorithm SolveHorn(li+uif) consists of the following
main steps. First, we compute a resolution tree R on the given set of Horn
clauses. Next, we take a conjunction C of the leaves of the resolution tree and
attempt to find a proof of its unsatisfiability. If no such proof can be found, then
we report that there is no solution for the given set of Horn clauses. Otherwise,
we proceed with the given proof by annotating its steps. Each intermediate atom
derived by proof is annotated by a function that assigns constraints to nodes of
the resolution tree. Finally, the annotation of the root of the proof yields a
solution for the given set of Horn clauses.

In the rest of this section we provide a detailed presentation of the main steps
of SolveHorn(li+uif).

4.1 Resolution Tree

We put together individual Horn clauses from HC by applying resolution infer-
ence. A resolution tree keeps the intermediate results of this computation. An
edge of a resolution tree is a sequence of queries and atoms that is terminated by
a query or false. Each edge consists of n > 2 elements. The first n− 1 elements
represent the children nodes and the n-th element represents the parent node.

Given the set of Horn clauses HC, we compute the corresponding resolution
tree by applying the inference rules shown in Figure 4. Each rule takes as a
premise a set of resolution trees and a Horn clause and infers an extended reso-
lution tree.

The rule RInit initiates the resolution tree computation by inferring a tree
from each clause that does not have any queries in its body. The atoms a1, . . . , am
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1
2
3
4
5
6
7
8
9
10
11

algorithm SolveHorn(li+uif)
input
HC : Horn clauses

vars
R : resolution tree
C : conjunctive constraint
P : proof tree
A : annotated proof tree

output
Σ : solution

begin
R := exhaustively apply RInit and RStep on HC
C :=

∧
leaves(R)

if exists P inferred from C by PHyp, PComb, and PCong

such that |= (root(P )→ 1 ≤ 0)
then

A := exhaustively apply AHyp, AComb, and ACong on P
false [ Π ] := root(A)
Σ := {(o, π) | (o, π) ∈ Π ∧ o �∈ (leaves(R) ∪ {false})}
return Σ

else
return “no solution exists”

end.

Fig. 3. Solving algorithm SolveHorn(li+uif). Line 7 extracts the partial solution Π
annotating the root node of A. Line 8 obtains Σ by restricting the domain of Π to
intermediate nodes of R, i.e., to the nodes that are labeled by queries.

RInit

a1 ∧ · · · ∧ am → h

{(a1, . . . , am, h)}

RStep

R1 . . . Rn

q1 ∧ · · · ∧ qn ∧ a1 ∧ · · · ∧ am → h

R1σ ∪ · · · ∪Rnσ ∪
{(q1, . . . , qn, a1, . . . , am, h)}σ

σ = (match(q1, root(R1))+
· · ·+ match(qn, root(Rn)))

Fig. 4. Resolution tree inference rules RInit and RStep

become the children of the node h. The rule RStep performs the extension of a
set of trees computed so far using a Horn clause. The extension is only possible
if the root nodes of the respective trees can be unified with the queries occurring
in the body of the clause. This condition is formalized by the side condition
requiring the existence of the most general unifier σ. The computed unifier is
applied on the trees and the clause before they are combined into an extended
resolution tree.

The resolution tree computation terminates since HC is recursion-free. Let R
be the resulting tree. We consider the set of leaves of the tree, and take their
conjunction C =

∧
leaves(R).
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PHyp

t ≤ 0
t ≤ 0 ∈ atoms(C) PComb

t1 ≤ 0 . . . tn ≤ 0

λ1t1 + · · ·+ λntn ≤ 0
λ1, . . . , λn > 0

PCong

t1 − s1 ≤ 0 s1 − t1 ≤ 0
...

...
tn − sn ≤ 0 sn − tn ≤ 0

f(t1, . . . , tn)− f(s1, . . . , sn) ≤ 0
f(t1, . . . , tn), f(s1, . . . , sn) ∈ subterms(C)

Fig. 5. Standard, complete proof rules PHyp, PComb, and PCong for combination
of linear rational/real arithmetic and uninterpreted functions. C is the conjunction of
leaves of the resolution tree R obtained from the Horn clauses HC.

For a node o of the resolution tree, we define insym(o) to be variables and
uninterpreted function symbols that occur in atoms in the leaves of the subtree
of o, and let outsym(o) be variables and uninterpreted function symbols that
occur in the leaves outside of the subtree of o. Formally, we have

insym(o) =
⋃
{sym(o′) | o′ ∈ leaves(subtree(o, R))} ,

outsym(o) =
⋃
{sym(o′) | o′ ∈ (leaves(R) \ leaves(subtree(o, R)))} .

The following proposition allows a transition from the clausal structure to the
conjunction of atoms.

Proposition 1. The set of Horn clauses HC is satisfiable if and only if the
conjunction C is not satisfiable.

The proof of Proposition 1 follows directly by applying induction over the reso-
lution treee and relying on the definitions of RInit and RStep.

4.2 Proof Tree

The algorithm SolveHorn(li+uif) relies on unsatisfiability proofs. We use a
standard set of proof rules for the combination of linear rational/real arithmetic
and uninterpreted functions [17]. The implementation of the corresponding proof
search procedure is irrelevant for our algorithm, yet we assume that this proce-
dure is complete and use an existing tool for this task, e.g. [4, 7].

See Figure 5 for the proof rules, which we apply to the conjunction of atoms C.
The rule PHyp states that atoms appearing in C are provable from C. The
rule PComb infers that a set of inequalities implies a non-negatively weighted
sum thereof. The congruence rule PCong represents a form of the functionality
axiom, which states that equal inputs to a function lead to equal results. We
are only interested in one inequality part of this axiom. The side condition of
PCong is taken from the interpolating proof rules of [17], and simplifies the
proof tree annotation in a way similar to [17].

We assume that there exists a mechanism that uniquely identifies the nodes of
the proof tree, even in the presence of nodes that are labeled by equal inequalities,
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AHyp

t ≤ 0 [ MkHyp(t ≤ 0) ]

AComb

t1 ≤ 0 [ Π1 ] . . . tn ≤ 0 [ Πn ]

λ1t1 + · · ·+ λntn ≤ 0 [ MkComb(Π1, . . . , Πn, λ1, . . . , λn) ]

ACong

t1 − s1 ≤ 0 [ Π1 ] s1 − t1 ≤ 0 [ Π ′
1 ]

...
...

tn − sn ≤ 0 [ Πn ] sn − tn ≤ 0 [ Π ′
n ]

f(t1, . . . , tn)− f(s1, . . . , sn) ≤ 0 [ MkCong(f(t1, . . . , tn), f(s1, . . . , sn),
Π1, . . . , Πn, Π ′

1, . . . , Π
′
n) ]

Fig. 6. Annotation rules. The function MkHyp, MkComb, and MkCong are shown
in Figure 7.

for example by numbering them. For clarity of exposition, we omit any details of
such mechanism and assume that the node label carries all necessary information.

If no proof can be found then our algorithm reports that no solution exists.
Otherwise, let P be the discovered proof. We assume that P is represented by a
tree where nodes are atoms and the children of a node are defined by the rules
PHyp, PComb, and PCong. Furthermore, we assume that each edge is labeled
by the name of the proof rule that created it.

4.3 Annotated Proof Tree

We construct a solution for the given Horn clauses through an iterative process,
where the intermediate results are called partial solutions. Each partial solution
is parameterized by a constraint c. A c-partial solution Π for the resolution tree
R is a function from nodes of the resolution tree, nodes(R), to constraints that
satisfies the following conditions.

(∀o ∈ leaves(R) : (|= o → Π(o))) ∧ (PS1)

(∀(o1, . . . , om, o) ∈ R : |= Π(o1) ∧ · · · ∧Π(om)→ Π(o)) ∧ (PS2)

(|= Π(false)→ c) ∧ (PS3)

(∀o ∈ nodes(R) : sym(Π(o)) ⊆ (insym(o) ∩ outsym(o)) ∪ sym(c)) (PS4)

Our annotation uses constraints of the following form, called solution constraints.

solution constraints # π ::= t ≤ 0 | ĉ ∧ (ĉ → π)

To simplify the presentation, we represent a solution constraint

C1 ∧ (D1 → (. . . Cr ∧ (Dr → p ≤ 0)))
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as a pair consisting of a corresponding sequence and a
term 〈( (C1, D1), . . . , (Cr , Dr) ), p〉. A solution constraint p ≤ 0 is represented
by 〈[], p〉.

Given the proof tree P , we annotate its nodes with partial solutions using
the rules shown in Figure 6 and auxiliary functions shown in Figure 7. The rule
AHyp annotates each leaf of the proof tree with the result of applying the func-
tion MkHyp. The annotation is enclosed by a pair of square brackets. The rule
AComb shows how to annotate a parent node when provided with an annotation
of its children in case when the parent was obtained by a non-negatively weighted
sum. The parent annotation is computed by MkComb. Similarly, the rule ACong

annotates parent nodes obtained by the congruence rule.
For each node of R at line 6, ACong has four cases that deal with the difficulty

of solving Horn clauses over uninterpreted functions, i.e., a sub term may contain
variables that are not allowed to appear in the partial solutions. The proof of
theorem 3 explains how these cases avoid such variables in the partial solutions.

We annotate P and obtain an annotated proof tree A. Our algorithm Solve-

Horn(li+uif) uses the annotation of the root of A to derive a solution to the
Horn clauses HC.

5 Correctness and Complexity

This section presents the correctness and complexity properties of our algo-
rithm. The corresponding proofs are in Appendix C of extended version of this
paper [10].

The correctness of our algorithm follows from Proposition 1 and Theorems 1–3
below. First, we establish that a (1 ≤ 0)-partial solution, which satisfies Equa-
tions (PS1)–(PS4), defines a solution for the given Horn clauses.

Theorem 1. (1 ≤ 0)-partial solution defines a solution of the Horn clauses.

Now, we show that the annotations computed by the rules in Figure 6 satisfy
the partial solution conditions in Equations (PS1)–(PS4). This step relies on the
following inductive invariant.

Definition 1 (t ≤ 0-annotation invariant). Π is t ≤ 0-annotation invariant
for the resolution tree R if there exists r ≥ 0 such that for each o ∈ nodes(R)
the following conditions hold.

– Π(o) is a solution constraint such that

Π(o) = 〈((C1, D1), . . . , (Cr, Dr)), p〉. (AI-1)

– If o ∈ leaves(R) then(
∀i ∈ 1..r : |= o ∧

i−1∧
k=1

Dk → Ci

)
∧ (AI-2a)

(
|= o ∧

r∧
k=1

Dk → p ≤ 0

)
. (AI-2b)
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1
2
3
4
5
6

function MkHyp

input
t ≤ 0 : inequality term/node in R

begin
for each o ∈ nodes(R) do

if t ≤ 0 ∈ leaves(subtree(o, R)) then
Π(o) := 〈[], t〉

else
Π(o) := 〈[], 0〉

return Π
end

1
2
3
4
5
6
7

function MkComb

input
Π1, . . . , Πn : partial solutions
λ1, . . . , λn : constants

begin
for each o ∈ nodes(R) do

for each i ∈ 1..n do
〈Li, ti〉 := Πi(o)

L := L1 • · · · • Ln

t := λ1t1 + · · ·+ λntn

Π(o) := 〈L, t〉
return Π

end

1
2
3
4
5
6
7

8

9

10

11

12

13

14

15

16

function MkCong

input
f(t1, . . . , tn), f(s1, . . . , sn) : terms
Π1, . . . , Πn, Π ′

1, . . . , Π
′
n : partial solutions

begin
for each o ∈ nodes(R) do

for each i ∈ 1..n do
〈Li, pi〉 := Πi(o)
〈L′

i, p
′
i〉 := Π ′

i(o)
(C, D, p) :=

match sym(f(t1, . . . , tn)) ⊆ outsym(o),
sym(f(s1, . . . , sn)) ⊆ outsym(o) with

| true , true -> (
∧n

i=1(pi ≤ 0 ∧ p′
i ≤ 0), true , 0)

| true , false -> (
∧n

i=1 pi + p′
i ≤ 0,

∧n
i=1−pi − p′

i ≤ 0,

f(s1 + p1, . . . , sn + pn)− f(s1, . . . , sn))

| false, true -> (
∧n

i=1 pi + p′
i ≤ 0,

∧n
i=1−pi − p′

i ≤ 0,

f(t1, . . . , tn)− f(t1 + p′
1, . . . , tn + p′

n))

| false, false -> (true ,
∧n

i=1(ti − si − pi ≤ 0 ∧ si − ti − p′
i ≤ 0),

f(t1, . . . , tn)− f(s1, . . . , sn))

Π(o) := 〈L1 • · · · • Ln • L′
1 • · · · • L′

n • (C, D), p〉
return Π

end

Fig. 7. Computation of partial solutions to annotate nodes of the proof tree, as shown
in Figure 6. We use • to denote concatenation of sequences.
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– If (o1, . . . , om, o) ∈ R and ∀j ∈ 1..m : Π(oj) = 〈((Cj
1 , Dj

1), . . . , (C
j
r , Dj

r)), p
j〉

then (
∀i ∈ 1..r : |=

(
i∧

k=1

m∧
l=1

Cl
k

)
∧

i−1∧
k=1

Dk → Ci

)
∧ (AI-3a)

⎛⎝ ∀i ∈ 1..r
∀j ∈ 1..m

: |=

(∧
l∈1..m\{j} Cl

i

)
∧(∧i−1

k=1

∧m
l=1 Cl

k

)
∧
∧i

k=1 Dk → Dj
i

⎞⎠ ∧ (AI-3b)

(
|=

(
r∧

k=1

m∧
l=1

Cl
k

)
∧

r∧
k=1

Dk → p− p1 − · · · − pm ≤ 0

)
. (AI-3c)

– If o = false then

p = t ∧ ∀i ∈ 1..r : Di = Ci = true. (AI-4)

– Conditions on symbol appearance:

sym({C1, . . . , Cr, D1, . . . , Dr, p ≤ 0}) ⊆ insym(o) ∧ (AI-5)

sym({C1, . . . , Cr, D1, . . . , Dr, t− p ≤ 0}) ⊆ outsym(o). (AI-6)

The above definition act as an intermediate step. In theorem 2, we show that a
t ≤ 0-annotation invariant satisfies all the conditions for being a t ≤ 0-partial
solution.

Theorem 2. Each t ≤ 0-annotation invariant is a t ≤ 0-partial solution.

Now, we show that the presented algorithm computes the partial solutions that
satisfies the invariant.

Theorem 3. The annotation rules in Figure 6 compute annotation invariants.

Theorem 4 (Complexity). The application of the annotation rules from Fig-
ure 6 takes time proportional to the product of the size of the proof tree and the
size of the resolution tree. The size of the resolution tree is linear in the size of
the corresponding set of recursion-free, tree-like Horn clauses.

Note that we present the complexity of our algorithm in terms of the size of the
proof tree. Since the size of a resolution tree can also be exponential in the size
of the set of Horn clauses, the size of a proof tree can be exponential.

6 Conclusion

We presented an algorithm for computing solutions for recursion-free Horn
clauses over the combination of linear rational/real arithmetic, uninterpreted
functions, and queries.
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Connection to Interpolation. The interpolation algorithm presented in [17] is a
special case for the algorithm presented in this paper. As illustrated in the intro-
duction, an interpolation problem can be reduced to solving a set of recursion-free
Horn clauses. The set of Horn clauses resulting from an interpolation problem
has only one unknown query. Therefore, the corresponding resolution tree ob-
tained from the set of Horn clauses contains only one internal node. The partial
solution of this internal node in the (1 ≤ 0)-partial solution will be the inter-
polant. In this special case, we only need to track partial solutions of the internal
node in the annotated proof tree. We can transform our algorithm for this case
such that nodes of the proof tree are annotated with a formula corresponding
to the partial solution of this internal node. The resulting algorithm will be the
algorithm presented in [17].

Our algorithm can be directly applied to support abstraction and refinement
tasks for the verification of programs with procedures, threads and higher order
functions.

Acknowledgment. Ashutosh Gupta was supported in part by the DFG
Graduiertenkolleg 1480 (PUMA), FWF NFN Grant No S11407-N23 (RiSE), and
the ERC Advanced Grant QUAREM.
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Abstract. This paper studies parallel evaluation of tree transforma-
tions, in particular accumulative ones. Accumulation is a ubiquitous
programming pattern. However, since accumulation usually imposes re-
strictions on evaluation orders, accumulative tree transformations appear
to be unsuitable for parallel evaluation. We propose a parallel evaluation
method for a large class of tree-to-tree recursive functions, which may
contain accumulations, higher-order terms, and function compositions.
Our parallel evaluation method achieves optimal parallel speedup if the
transformation is of linear size increase, namely, the size of each output
is linearly bounded by the size of the corresponding input. Our result is
based on the theory of macro tree transducers and that of parallel tree
contractions. The main contribution is to reveal a good collaboration
between them.

1 Introduction

Recent popularization of parallel computers has introduced an additional diffi-
culty to programming. Now we cannot achieve good performance without writing
parallel programs. However, there are a lot of programming patterns that ap-
pear to be not suitable for parallel evaluation. One such is accumulation. As
an example, consider the following accumulative function, flatten, which gathers
values in a tree.

flatten t = flat t [ ]
flat (Tip v) acc = v : acc
flat (Bin(l, v, r)) acc = flat l (v : flat r acc)

It seems impossible to evaluate flatten in parallel. Auxiliary function flat forces
right-to-left traversals and prohibits parallel processing. Accumulation usually
imposes restrictions on evaluation orders and thereby makes parallel evalua-
tion difficult. Yet, accumulation is a really ubiquitous programming pattern. We
would like to discover and exploit parallelism from accumulative programs.

In fact, flatten can be evaluated in parallel, because it is equivalent to the
following flattenpara, in which ++ denotes the list concatenation and we regard
it as an O(1) operation.

flattenpara (Tip v) = [v]
flattenpara (Bin(l, v, r)) = flattenpara l ++ [v] ++ flattenpara r

H. Yang (Ed.): APLAS 2011, LNCS 7078, pp. 204–219, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Since flattenpara does not use any accumulative parameters, we can process in-
dependent subtrees in parallel.

We have seen that accumulative programs are usually hard to evaluate in
parallel but some of them may possess hidden parallelism. It is natural to wonder
what class of accumulative programs does. The subject of this paper is to answer
this question—in fact, we answer a more generic question that is not restricted
to accumulations. Informally speaking, we will show the following.

A class of tree-to-tree transformations, which may contain accumula-
tions, higher-order terms, and function compositions, can be efficiently
evaluated in parallel if they do not output a tree significantly larger than
its corresponding input.

To model possibly accumulative tree transformations, we employ macro tree
transducers [1,2], abbreviated to MTTs. Roughly speaking, MTTs are first-order
structural recursive functions that concern only constructors.

The notion of “efficient” is ambiguous. We seek for tree transformations that
can be evaluated in time O(n/p + log p), where p and n respectively denote
the number of processors and the size of the input tree. It is cost optimal for
p ∈ O(n/ logn): in comparison to O(n) sequential evaluation, the parallel eval-
uation, which takes O(n/p) time, shows asymptotically linear parallel speedup.
Cost optimal is difficult to achieve. For instance, the naive divide-and-conquer
parallel evaluation of flattenpara is not sufficient because of its poor parallel
speedup for monadic, list-like input trees. We make use of parallel tree contrac-
tion algorithms [3] to achieve cost-optimal parallelism.

First, we prove that two variants of MTTs, top-down relabelings with regular
lookaheads and strongly single-use restricted MTTs, can be efficiently evaluated
based on parallel tree contraction algorithms (Section 4). Then, we consider
tree transformations of linear size increase, namely those for which the size of
each output is linearly bounded by the size of the corresponding input. Our
parallel evaluation method can deal with a lot of tree transformations of linear
size increase by transforming them to a composition of a strongly single-use
restricted MTT and a top-down relabeling with regular lookaheads (Section 5).

It should be noted that our result is rather straightforward from the theory of
MTTs and that of parallel tree contraction algorithms. Our main contribution
is a discovery of a good collaboration between them, which would open a new
vista of parallel programming.

2 Preliminary

2.1 Trees

Ranked alphabet Σ is a finite set of ranked symbols. Σ(k) denotes the set of
k-ranked symbols in Σ. Given ranked alphabet Σ and finite set of variables
X , TΣ(X) denotes the set of trees that are constructed from Σ and X in the
standard manner. We abbreviate TΣ(∅) to TΣ. We may call a tree a context if it



206 A. Morihata

�

� �� �

Rake−→
�

� � �

��

�

Compress−→
�

�

Fig. 1. Primitive contraction operations applied to the gray nodes

contains variables. We denote |t| to mean the size of tree t, namely the number
of symbols in t. Given t1, t2 ∈ TΣ(X) and x ∈ X , t1[x �→ t2] ∈ TΣ(X) denotes
a tree obtained by substituting all occurrences of x in t1 by t2. We may write
t1[xi �→ ti]i∈I to denote a series of substitutions indexed by I. We assume that
t1[x �→ t2] can be calculated in time O(1) if x appears at most once in t1. This
can be easily achieved by preparing a pointer for each variable occurrence.

2.2 Parallel Tree Contraction

Our computation model is EREW PRAM (Exclusive-Read Exclusive-Write Par-
allel Random Access Machines), in which each processor can read/write each
memory address in O(1) time if no other ones simultaneously read/write there.
p and n respectively denote the number of processors and the size of the input.

Parallel tree contraction algorithms [3] collapse a tree through simultaneous
applications of primitive contraction operations called Rake and Compress. As
depicted in Fig. 1, a Rake operation removes a leaf, and a Compress operation
removes an internal node that has no sibling.

Several efficient parallel tree contraction algorithms are known. Here we just
state the result.

Theorem 1 ([3]). A tree of n nodes can be collapsed to a leaf by Rake and
Compress operations in time O(n/p + log p). ��

Parallel tree contraction can implement several tree operations. For example,
consider a parallel evaluation of an expression that consists of integers and +
and × operators. We can regard each internal node as a closure whose operands
are missing. From this viewpoint, Rake is a (possibly partial) application and
Compress is a function composition. In this case, parallel tree contraction pro-
vides efficient expression evaluation, because partial applications will result in
closures of the form (λx. a× x + b), where a and b are some integers, and their
compositions do not result in larger closures: (λx. a1×x+b1)◦(λx. a2×x+b2) =
(λx. (a1 × a2)× x + (a1 × b2 + b1)).

We generalize and formalize the idea described above. We consider evaluation
of a tree-structured circuit. Let Ak be the set of all k-tuples of A elements.

A bottom-up circuit is a triple (t, h, A): t ∈ TΣ is the input tree and gives an
underlying structure; h associates each t’s node σ ∈ Σ(0) with initial input value
hσ ∈ A and σ ∈ Σ(k) (k ≥ 1) with gate hσ :Ak → A that takes its inputs from its
children and sends the calculated value to its parent. The expression evaluation
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considered above is an example of a bottom-up circuit, which consists of adder
and multiplier gates.

A top-down circuit is a quadruple (t, h, A, a0): t ∈ TΣ is the input tree; h
associates each t’s node σ ∈ Σ(k) (k ≥ 1) with gate hσ : A → Ak that takes its
inputs from its parent and sends the calculated values to its children; a0 ∈ A is
the initial input given to the root; σ ∈ Σ(0) corresponds to an output gate.

It is known that both bottom-up and top-down circuits can be implemented
by parallel tree contraction under certain requirements.

Theorem 2 ([4,3]). The output of the root of a bottom-up circuit (t, h, A) can
be calculated in time O(n/p + log p), if there exists a set of functions, say F ,
that satisfies the following conditions.

– For every 1 ≤ i ≤ k, σ ∈ Σ(k), and {a1, . . . , ai−1, ai+1, . . . , ak} ⊆ A, function
f defined by f(x) = hσ(a1, . . . , ai−1, x, ai+1, . . . , ak) is in F .

– Every element of F can be evaluated in constant time.
– For every f1, f2 ∈ F , we can calculate f3 ∈ F in constant time such that

f1 ◦ f2 = f3. ��

Theorem 3 ([4,5]). All the outputs of the gates of a bottom-up circuit (t, h, A)
can be calculated in time O(n/p + log p), if we can duplicate each element of A
in constant time and the premise of Theorem 2 holds. ��

Theorem 4 ([4,5]). All the outputs of the gates of a top-down circuit (t, h, A, a)
can be calculated in time O(n/p + log p), if we can duplicate each element of A
in constant time and there exists a set of functions, say F , that satisfies the
following conditions.

– Let πi be the function that extract the i-th element from a tuple. For every
1 ≤ i ≤ k and σ ∈ Σ(k), πi ◦ hσ ∈ F .

– Every element of F can be evaluated in constant time.
– For every f1, f2 ∈ F , we can calculate f3 ∈ F in constant time such that

f1 ◦ f2 = f3. ��

Roughly speaking, the premises require that a series of Rake operations eventu-
ally results in one in F and their compositions and applications can be performed
efficiently. Because we duplicate calculated values for calculating all the outputs
of the gates, efficient duplication is additionally required in Theorems 3 and 4.

3 Tree Transducers

3.1 Macro Tree Transducers

We study parallel evaluation of macro tree transducers [1, 2].

Definition 1. A (total deterministic) macro tree transducer (abbreviated to
MTT) is tuple (Q, Σ, Δ, q0, R): Q, Σ, and Δ are ranked alphabets, which respec-
tively characterize the recursive functions, the input, and the output; q0 ∈ Q(1) is
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the initial function; R is a set of equations. For each q ∈ Q(m+1) and σ ∈ Σ(k),
R contains exactly one rule, called the 〈q, σ〉-rule, of the following form.

q(σ(x1, · · · , xk), y1, . . . , ym) = expr

The syntax of expr is defined as follows, where 1 ≤ i ≤ k, 1 ≤ j ≤ m, p ∈ Q(n+1),
and δ ∈ Δ(l).

expr ::= p(xi, expr1, . . . , exprn) | yj | δ(expr1, . . . , expr l)

The class of tree transformations realized by MTTs is denoted by MTT. ��
We regard MTT M = (Q, Σ, Δ, q0, R) as a functional program. Given input
t ∈ TΣ, the output of M , denoted by M(t), is a tree in TΔ calculated by re-
ducing q0(t) based on standard reduction semantics. Since we deal with total,
deterministic, and terminating MTTs, the choice of reduction strategies is not
important. We may omit rules that are never used.

From the perspective of functional programs, MTTs have two major restric-
tions. First, we cannot use function parameters. Second, an MTT should dis-
tinguish the input and the output and cannot traverse or destruct more than
one tree. In particular, an MTT cannot traverse trees that are outputted from
functions. We will loosen these restrictions in Section 5.

Examples. The flatten seen in the introduction can be described as an MTT.

Flatten = ({flatten,flat}, {Bin, Tip}, {Cons, Nil},flatten, R)

R =

⎧⎪⎪⎨⎪⎪⎩
flatten(Tip(v)) = Cons(v, Nil),
flatten(Bin(x1, v, x2)) = flat(x1, Cons(v,flat(x2, Nil))),
flat(Tip(v), y) = Cons(v, y),
flat(Bin(x1, v, x2), y) = flat(x1, Cons(v,flat(x2, y)))

⎫⎪⎪⎬⎪⎪⎭
Note that, for simplicity, this program slightly violates the definition of MTTs:
The variable v cannot be directly used in right-hand side expressions. This is
not harmful for our objective. It is sufficient to regard v as a 0-ary constructor.

Another example is the following Exp that yields 2n for given n.

Exp = ({exp0, exp}, {S, Z}, {S, Z}, exp0, R)

R =
{

exp0(Z) = S(Z),
exp0(S(n)) = exp(n, exp(n, Z)),

exp(Z, y) = S(y),
exp(S(n), y) = exp(n, exp(n, y))

}
The third example, A2B , extracts the longest consecutive subsequence that
starts from A and ends with B.
A2B = ({f0, fA, hasB}, {A, B, N}, {A, B, N}, f0, R)

R =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f0(N) = N,
f0(A(x)) = hasB(x, N, A(fA(x))),
f0(B(x)) = f0(x),

fA(N) = N,
fA(A(x)) = A(fA(x)),
fA(B(x)) = hasB(x, B(N), B(fA(x))),

hasB(N, y1, y2) = y1,
hasB(A(x), y1, y2) = hasB(x, y1, y2),
hasB(B(x), y1, y2) = y2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
Function hasB is important. It takes two additional parameters, and returns the
first if the sequence does not contain B, and the second otherwise.
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3.2 Strongly Single-Use Restricted MTTs

Parallel evaluation of MTTs seems difficult in general, and therefore, we consider
its subclass, namely strongly single-use restricted MTTs [6], which use arguments
and results of functions at most once.

Definition 2. MTT (Q, Σ, Δ, q0, R) is said to be single-use restricted in the
parameters if for every 〈q, σ〉-rule (q ∈ Q(m+1)) in R, its right-hand side contains
at most one occurrence of each yi (1 ≤ i ≤ m).

Definition 3. MTT (Q, Σ, Δ, q0, R) is said to be strongly single-use restricted
in the input if for every p ∈ Q(m+1), σ ∈ Σ(k), and xj (1 ≤ j ≤ k), the 〈q, σ〉-
rules in R contain at most one occurrence of the form p(xj , expr1, . . . , exprm).

Definition 4. An MTT is said to be strongly single-use restricted (abbreviated
to SSUR) if it is both single-use restricted in the parameters and strongly single-
use restricted in the input. The corresponding class of tree transformations is
denoted by MTT ssur. ��

3.3 Top-Down Relabeling with Regular Lookahead

Top-down relabeling [6] is another class of tree transformations. We use a variant
that has regular lookaheads. Lookaheads, specified by tree automata, require
subtrees to be in a certain shape. We refer readers who are not familiar with
tree automata to the text [7]. For deterministic bottom-up tree automaton A,
we write s ∈ A to mean that s is a state of A, and write s = A(t) to mean that
the run of A for tree t yields state s ∈ A.

Definition 5. A (total deterministic) top-down relabeling with regular looka-
heads (abbreviated to TR-REL) is tuple (Q, Σ, Δ, q0, R,A): Q is a finite set
of recursive function names; Σ and Δ are ranked alphabets, which respectively
characterize the input and the output; q0 ∈ Q is the initial function; A is a de-
terministic bottom-up tree automaton. R is a set of equations. For each q ∈ Q,
σ ∈ Σ(k), and si ∈ A (1 ≤ i ≤ k), R contains exactly one rule of the following
form, where δ ∈ Δ has the same rank as σ.

q(σ(x1, . . . , xk)) 〈s1, . . . , sk〉 = δ(q1(x1), . . . , qk(xk))

The class of tree transformations realized by them is denoted by TR-REL. ��
TR-RELs rename some constructors. The lookaheads are analogous to guards.
Given rule q(σ(x1, · · · , xk)) 〈s1, . . . , sk〉 = ξ, q(σ(t1, . . . , tk)) is reduced to ξ[xi �→
ti]1≤i≤k if and only if A(ti) = si holds for all 1 ≤ i ≤ k. We may omit lookaheads
if it is not necessary.

Examples (Continued). Flatten is not SSUR. Both of the 〈flatten, Bin〉-rule
and the 〈flat , Bin〉-rule contain a function call of flat for x1, and thus, it violates
the strongly single-use restriction in the inputs. Yet, it can be decomposed to a
TR-REL and an SSUR MTT, Flatten(t) = Flattenssur(FlattenREL(t)), defined
as follows.
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FlattenREL = ({rel0, rel}, {Bin, Tip}, {Bin, Bin0, Tip}, rel0, R)

R =

⎧⎪⎪⎨⎪⎪⎩
rel0(Tip(v)) = Tip(v),
rel0(Bin(x1, v, x2)) = Bin0(rel(x1), v, rel(x2)),
rel(Tip(v)) = Tip(v),
rel(Bin(x1, v, x2)) = Bin(rel(x1), v, rel(x2))

⎫⎪⎪⎬⎪⎪⎭
Flattenssur = ({flatten,flat}, {Bin0, Bin, Tip}, {Cons, Nil},flatten, R)

R =

⎧⎪⎪⎨⎪⎪⎩
flatten(Tip(v)) = Cons(v, Nil),
flatten(Bin0(x1, v, x2)) = flat(x1, Cons(v,flat(x2, Nil))),
flat(Tip(v), y) = Cons(v, y),
flat(Bin(x1, v, x2), y) = flat(x1, Cons(v,flat(x2, y)))

⎫⎪⎪⎬⎪⎪⎭
FlattenREL renames the root constructor to Bin0. This enables us to distinguish
the node processed by flatten (therefore, we omit the 〈flatten, Bin〉-rule and the
〈flat , Bin0〉-rule, which are unnecessary) and thereby makes Flattenssur SSUR.

Similarly, we can decompose A2B as A2B(t) = A2B ssur(A2BREL(t)). We use
tree automaton A such that A(t) = s1 if t contains B and A(t) = s2 otherwise.

A2BREL = ({rel0, relA}, {A, B, N}, {A, A′, B, B′, N}, rel0, R,A)

R =

⎧⎪⎪⎨⎪⎪⎩
rel0(N) = N,
rel0(A(x)) 〈s1〉 = A(relA(x)),
rel0(A(x)) 〈s2〉 = A′(rel0(x)),
rel0(B(x)) = B(rel0(x)),

relA(N) = N,
relA(A(x)) = A(relA(x)),
relA(B(x)) 〈s1〉 = B(relA(x)),
relA(B(x)) 〈s2〉 = B′(relA(x))

⎫⎪⎪⎬⎪⎪⎭
A2B ssur = ({f0 , fA}, {A, A′, B, B′, N}, {A, B, N}, f0 , R)

R =

⎧⎪⎪⎨⎪⎪⎩
f0(N) = N,
f0(A(x)) = A(fA(x)),
f0(A′(x)) = N,
f0(B(x)) = f0(x),

fA(N) = N,
fA(A(x)) = A(fA(x)),
fA(B(x)) = B(fA(x)),
fA(B′(x)) = B(N)

⎫⎪⎪⎬⎪⎪⎭
A2BREL marks constructors whose subtrees do not contain B. Then, A2B ssur

can avoid performing additional traversals like hasB.
Exp is not SSUR; moreover, we cannot express Exp by any compositions of

TR-RELs and SSUR MTTs. This can be proved by the height property of TR-
RELs and SSUR MTTs [6].

4 Parallel Evaluation of Tree Transformations

Apart from accumulative parameters, there are two major difficulties in parallel
evaluation of MTTs. First, it is in general difficult to predict how an MTT per-
forms recursive calls. For example, Exp causes 2k recursive calls for the subtree
whose depth is k. This makes it difficult to determine how we simultaneously
process each substructure of the input tree. Secondly, MTTs may duplicate trees,
which could be a source of inefficiency.

We consider SSUR MTTs so as to avoid the difficulties. The drawback is that
their expressiveness is really weak and cannot describe any interesting programs.
TR-RELs resolve this drawback. They significantly improve expressiveness be-
cause they can tell SSUR MTTs what functions should be applied for each



LSI MTTs Achieve Cost-Optimal Parallelism 211

subtree; indeed, as we will see in Section 5, a TR-REL followed by an SSUR
MTT can capture a wide range of tree transformations. Furthermore, efficient
parallel evaluation of TR-RELs is fairly straightforward from Theorems 3 and 4.

4.1 Parallel Evaluation of Top-Down Relabeling with Regular
Lookaheads

Our parallel evaluation of TR-RELs consists of three steps. First, based on The-
orem 3, we associate each node with states of the tree automata for lookaheads;
then, based on Theorem 4, we associate each node with the recursive function
that take charge of the node. Finally, we rename all constructors in parallel.

Consider A2BREL as an example.
First, for each node, we calculate whether its child results in s1 or s2. We can

naturally express the run of the automaton by defining mapping h in Theorem 3
as hA(s) = s, hB(s) = s1, and hN = s2. Then, it satisfies the premise of Theorem 3
by taking F = {s1, s2} → {s1, s2}. Note that each element in F is a constant-
time function.

Next, based on Theorem 4, we calculate which function takes charge for each
node. In this case, the initial value is rel0 and mapping h is h(A,s1)(rel) = relA,
h(A,s2)(rel) = rel , and h(B,s)(rel) = rel , where s is either s1 or s2. Then, the
premise of Theorem 4 holds by taking F = {rel0, relA} → {rel0, relA}.

Now that we know that how each node should be processed, we can re-
name each constructor in parallel. In this case, we rename (A, s2, rel0) to A′,
(B, s2, relA) to B′, and so on.

As seen, parallel evaluation of TR-RELs is possible if the premises of Theo-
rems 3 and 4 are satisfied. In fact, they always hold because we consider finite-
state transitions and any transition from a constant-size domain to a constant-
size range can be performed in constant time.
Theorem 5. TR-RELs can be evaluated in time O(n/p + log p).

Proof. As discussed, the evaluation mainly contains a bottom-up and a top-down
steps. We consider the latter; the former is similar.

Let (Q, Σ, Δ, q0, R,A) be the TR-REL. We apply Theorem 4. The initial value
is q0. Mapping h is defined by h(σ,s1,...,sk)(q) = (q1, . . . , qk) for σ ∈ Σ(k) if
q(σ(x1, . . . , xk)) 〈s1, . . . , sk〉 = δ(q1 x1, . . . , qk xk) is in R. Note that s1, . . . , sk

have been associated in the preceding bottom-up step. This computation satisfies
the premise by taking F = Q → Q because the size of Q is constant. ��
Skillicorn [8] used a similar method for parallel evaluation of XML path queries;
yet, he only considered the top-down step.

4.2 Parallel Evaluation of Strongly Single-Use Restricted Macro
Tree Transducers

It is more difficult to deal with SSUR MTTs. In order to obtain an intuition, we
borrow data-flow diagrams from attribute grammars [9]. Figure 2 shows a data-
flow diagram for Flattenssur. The up and the down arrows respectively denote
return values and accumulative arguments.
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Fig. 2. A data-flow diagram for Flattenssur with Tip and Bin. yf denotes the accumu-
lative argument for function f , and f denotes the return value of function f . Cons(v, •)
means an operation (λx. Cons(v, x)).
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[a1, a2, b1, •]

Fig. 3. A Compress operation for Flattenssur. [a1, . . . , an, •] means an operation
(λx. Cons(a1, Cons(· · · (an, x) · · ·))).

A diagram can be seen as a circuit. For example, the diagram for Tip takes
one input, yflat , and outputs two values, flat and flatten. flatten results in
Cons(v, Nil). The result of flat is calculated by adding v to the value given from
yflat .

Well, consider applying Theorem 2. We use mapping h that results in the
data-flow diagram for each node. Each primitive contraction operation connects
diagrams. A Rake operation fills a missing part of a diagram. A Compress op-
eration, as depicted in Fig. 3, connects two diagrams each of which has exactly
two missing parts, one is the parent and the other is a child.

We shrink the diagrams (i.e., circuits) while connecting them. For example,
consider the up-arrows in Fig. 3. Originally, each diagram contains a gate that
updates the given value of flat and passes it to its parent: the lower adds b, and
the upper adds a2 and a1. After connecting the diagrams, we can see that these
consecutive gates are equivalent to a gate that adds b2, a2, and a1. In this way,
we can keep diagrams simple. Each diagram consists of O(1) gates each of which
represents an O(1) operation.

This approach is applicable for all SSUR MTTs. Since each recursive call
occurs at most once, we can easily translate an SSUR MTT to a data-flow
diagram. It is not the case in those that are not SSUR. For instance, function
exp does two recursive calls with different accumulative parameters, making it
impossible to describe it as a data-flow diagram. The SSUR property also ensures
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that the arrows do not fork. Moreover, each gate in the diagrams represents an
application of a context, and thus we can efficiently merge consecutive gates.

Theorem 6. SSUR MTTs can be evaluated in time O(n/p + log p).

Proof. Let (Q, Σ, Δ, q0, R) be the SSUR MTT, m + 1 and k be the maximum
rank of symbols in Q and Σ, respectively, Qk = {qi | q ∈ Q ∧ 1 ≤ i ≤ k}, Xk =
{xi | 1 ≤ i ≤ k}, Ym = {yi | 1 ≤ i ≤ m}, Y Q

m = {yq
i | yi ∈ Ym ∧ q ∈ Q}, and

Y Q
m,k = {yq

i,j | yq
i ∈ Y Q

m ∧ 1 ≤ j ≤ k}. Given term t ∈ TΔ∪Q(Xk ∪ Ym), which
is a subterm of a right-hand-side expression in R, let 
t�q ∈ TΔ(Qk ∪ Y Q

m ) be
the term obtained by replacing each subterm of t of the form q′(xi, e1, . . . , em′)
(q′ ∈ Q(m′+1)) by q′i and yi by yq

i .
We define set Sσ (σ ∈ Σ), which corresponds to the data-flow diagram for

σ, as follows. For each q(σ(x1, . . . , xk′ ), y1, . . . , ym′) = e in R, Sσ contains q :=

e�q; besides, for each occurrence of q′(xi, e1, . . . , em′) in the right-hand side
of q(σ(x1, . . . , xk′ ), y1, . . . , ym′′) = e in R, Sσ contains each of yq′

j,i := 
ej�q
(1 ≤ j ≤ m′). Thus, Sσ consists of terms of the form v := t, where v ∈ Q ∪
Y Q

m,k and t ∈ TΔ(Qk ∪ Y Q
m ). It is worth noting that they exactly correspond

to attribute grammars: Q and Y Q
m are the sets of synthesized and inherited

attributes, respectively, and Sσ is the semantic rule for σ.
We apply Theorem 2. Mapping h is defined by hσ = Sσ. For each prim-

itive contraction operation, we merge the associated sets, i.e., the term rep-
resentations of the data-flow diagrams, as follows. Assume that a contraction
operation is applied to the n-th child. Let Sp and Sc be the sets associated
with the parent and the child, respectively. Let ⇒p and ⇒c be a rewriting by
the sets of rewrite rules, {qn → e1[y

q
i �→ e2](yq

i,n:=e2)∈Sp
| (q := e1) ∈ Sc} and

{yq
i → e1[pn �→ e2](p:=e2)∈Sc

| (yq
i,n := e1) ∈ Sp}, respectively. Let NF(⇒∗, e) to

be the normal form of e under the rewriting by ⇒∗, where ∗ is either p or c. We
associate the node left after the contraction operation with the following S∗:

S∗ = {q := NF(⇒p, e) | (q := e) ∈ Sp} ∪
{yq

i,j := NF(⇒p, e) | (yq
i,j := e) ∈ Sp ∧ j �= n} ∪

{yq
i,n := NF(⇒c, e) | (yq

i,j := e) ∈ Sc}

After the tree contraction is finished, we extract an element of the form q0 := t
from the associated set, and return t as the output. This procedure calculates
the correct result in the required time bound. Note that the calculation of the
normal form can be done in constant time. The SSUR property ensures that
during the rewriting, the right-hand-side of v := t contains no v and at most one
occurrence of each variable. ��

The parallel evaluation described above may calculate trees that are to be dis-
carded. Such cases occur when accumulating parameters or return values of some
functions are not used. As seen in the top-down step of the parallel evaluation
of TR-RELs, a preprocessing can determine which function should be evaluated
for each node. Then, we can estimate variables that will not contribute the final
result and thereby reduce construction of useless trees.
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5 Parallel Evaluation of Complicated Tree
Transformations of Linear Size Increase

We can enjoy parallelism if we write our programs by TR-RELs and SSUR
MTTs. One may feel that TR-RELs and SSUR MTTs are too weak; however,
and surprisingly, they cover a large class of interesting tree transformations.

In the following, we use the power notation: for class of tree transformation
F , F 1 = F and Fn+1 = {f ◦ f ′ | f ∈ F ∧ f ′ ∈ Fn}.

The key notion is the linear size increase [10, 11].

Definition 6. Tree transformation f ∈ T1 → T2 is said to be of linear size
increase (abbreviated to LSI) if there exists constant c such that |f(t)| ≤ c · |t|
holds for all t ∈ T1. The class of LSI tree transformations is denoted by LSI . ��

LSI implies that the transformation will not result in a significantly larger tree
than the input. For example, Flatten and A2B are LSI, while Exp is not.

Most tree operations that we would like to evaluate in parallel seem to fall
into LSI. A typical case is that the input tree is huge. Then, it is impossible to
achieve the transformation if its output is much larger than the input. Therefore,
capturing LSI tree transformations would be meaningful.

5.1 Macro Tree Transformations

It is possible to check whether a composition of MTTs is LSI (Theorem 2 of [11]).
Moreover, our theorems, in combination with those by Engelfriet and Maneth [6,
10, 11], enable us to evaluate them efficiently in parallel.

Theorem 7. Any tree transformation in MTT n∩LSI (n ∈ N) can be evaluated
in time O(n/p + log p).

Proof. In the following, MSOTT denotes the set of monadic second-order logic
definable tree transformations [12].

MTTn ∩ LSI = { Theorem 1 of [11] }
MTT ∩ LSI

= { Theorem 7.2 of [10] }
MSOTT

= { Theorems 5.10 and 7.1 of [6] }
MTT ssur ◦ TR-REL

Note that, for each equation, we can effectively construct the corresponding
instance. Therefore, we are able to obtain an SSUR MTT and a TR-REL, and
then Theorems 5 and 6 enable us to perform their parallel evaluation. ��

This theorem leads to parallel evaluation of a lot of tree transformations. It is
worth stressing that, as mentioned in the proof, we are really able to construct
an SSUR MTT and a TR-REL from a program described by MTTs.
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5.2 Higher-Order Tree Transformations

MTTs are first-order. It cannot take tree-generating function as a parameter.
High level tree transducers [13] extend MTTs in such a way that their accumu-
lative parameter may retain contexts.

Informally, high level tree transducers are defined as follows. Trees are 1-
level values. A context that takes and results in k-level values is (k + 1)-level
value. A k-level tree transducer is an obvious extension of MTTs and could have
accumulative parameters that retain values whose levels are at most k.

We can evaluate high level tree transducers in parallel if they are LSI.

Theorem 8. Any high level tree transducer can be evaluated in time O(n/p +
log p) if it is LSI.

Proof. It is immediate from Theorem 7 and the fact that the class of tree trans-
formations realized by k-level tree transducers is MTT k (Corollary 4.13 of [1]
and Theorem 8.2 of [13]). ��

5.3 Primitive Recursive Tree Transformations

An MTT can only describe an iteration over the input. Therefore, it cannot
express, for instance, flatpara discussed in the introduction, in which a recursive
function, ++, repeatedly traverses the output of flat ′. Modular tree transduc-
ers [14] extend MTTs. They allow this kind of nested recursions and thereby
compute exactly the class of primitive recursive functions on trees.

Unfortunately, modular tree transducers are strictly more expressive than fi-
nite compositions of MTTs. Yet, Engelfriet and Vogler [14] proved that modular
tree transducers can be described by MTTs if they are calling-restricted. Infor-
mally, a calling-restricted modular tree transducer consists of functions each of
which has a module number that is larger than those of functions that generate
its first argument. For example, f(σ(x1, . . . , xk)) = · · · g(h(e)) · · · satisfies the
restriction only if the module number of g is larger than that of h.

Theorem 9. Any calling-restricted modular tree transducer can be evaluated in
time O(n/p + log p) if it is LSI.

Proof. It is immediate from Theorem 7 and the fact that each calling-restricted
k-modular tree transducer is in MTT k+1 (Corollary 7.8 of [14]). ��

5.4 Tree-Walking Transformations with Pebbles

A possible application of our result is XML processing. Since XML data could
be very large, parallel processing would be useful. Pebble tree transducers [15]
are introduced so as to model XML transformations, and they can express most
of the practical XML transformations expressible without joins.

A k-pebble tree transducer generates its output by walking (i.e., going
either up or down) in the input with putting and lifting k pebbles on nodes.
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It can determine its behavior depending on whether pebbles are on the current
node. In spite of their rather complicated definition, Engelfriet and Maneth [16]
proved that pebble tree transducers can be expressed by compositions of MTTs.
Therefore, we obtain the following theorem.

Theorem 10. Any pebble tree transducer can be evaluated in time O(n/p +
log p) if it is LSI.

Proof. It is immediate from Theorem 7 and the fact that each k-pebble tree
transducer is in MTT k+1 (Theorem 35 of [16]). ��

5.5 Other Classes of Tree Transformations

In addition to those we have mentioned, there are several classes of tree
transformations that we can perform parallel evaluation if they are LSI. For ex-
ample, we can deal with attributed tree transducers [17], which describe attribute-
grammars-like tree transformations, because each attributed tree transducer is
in MTT [2]. MSO tree transducers [12] transform trees by using queries writ-
ten in monadic second-order logic formulae. MSO tree transducers are proved
to be equivalent to MTT ∩ LSI [6] and thus parallelizable. Our method is also
applicable to macro forest tree transducers [18], which provide another model of
XML transformations, because each macro forest transducer is in MTT 2 [18].

Moreover, we can deal with those that are described by compositions of tree
transformations in these classes. The following corollary summarizes our results.
We omit MTTs because some other classes, such as high-level tree transducers
and calling-restricted modular tree transducers, include them.

Corollary 1. Any tree transformation that is described by a composition of
high-level tree transducers, calling-restricted modular tree transducers, pebble tree
transducers, attributed tree transducers, MSO tree transducers, and macro forest
transducers can be evaluated in time O(n/p + log p) if it is LSI. ��

6 Concluding Remarks

We have discussed parallel evaluation of tree transformations and shown that a
large class of LSI tree transformations can be efficiently evaluated in parallel.
Though our initial motivation was to develop a parallel evaluation method for
accumulative functions, known facts enable us to deal with more functions in-
cluding a large subset of the primitive recursions on trees. Our result is based
on the theory of parallel tree contraction and that of MTTs. To the best of the
author’s knowledge, this is the first study that connects them.

There have been several studies on parallel evaluation of accumulative tree-
operating functions [4, 5, 19, 8, 20, 21, 22]. They are based on two computation
patterns, called upward accumulations and downward accumulations [5], which
respectively correspond to Theorems 3 and 4. They are useful for describing
bottom-up and top-down accumulative computations, but not for left-to-right,
right-to-left, or more complicated tree traversals.
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In order to deal with complicated tree traversals, we have borrowed intuitions
from attribute grammars and combined them with parallel tree contraction.
This is the technical contribution of this paper. Parallel evaluation of attribute
grammars has been discussed [23, 24, 25, 27, 26, 28, 29]. Most studies consider
simultaneously evaluating values of independent attributes, whereas we consider
merging partially calculated results, namely contexts or more generally semantic
rules. A notable exception is scan grammars by Reps [28]. Scan grammars have a
special instruction called scan. The scan instruction specifies that an attribution
is calculated by an associative operator and enables us to compute the value
efficiently in parallel. Our method is related to scan grammars in the sense that
it relies on the associativity of substitution. The crucial difference is that our
method can deal with complicated tree traversals, while scan grammars can only
describe simple left-to-right or right-to-left traversals.

We believe that usefulness of the combination of attribute grammars and
parallel tree contraction is not restricted to tree transformations. It could be a
useful method for parallel evaluation of accumulative functional programs that
may consist of operations besides constructors. This is a future work.

Another future work is to improve practical efficiency. Our result may not
be practical because derivation of an SSUR MTT and a TR-REL from given
programs could result in unreasonably complicated functions and thereby will
introduce very large constant factors. A possible solution is deriving a series of
SSUR MTTs and TR-RELs each of which are sufficiently simple. This approach
might work well if the given programs are well structured, such as XPath-based
XML processing.

Lastly, we briefly discuss efficient implementation. The balanced-tree-based
implementation of parallel tree contraction [30] would be best suitable for our
purpose. The method translates parallel tree contraction to bottom-up or top-
down sweeps on self-balancing trees. Since the self-balancing nature keeps the
height of the tree O(logn), each bottom-up or top-down sweep can be performed
in time O(n/p + log p). The method has several advantages. It avoids destruc-
ting or reconstructing the original tree, is easier to implement downward and
upward accumulations, and its ability of rebalancing is useful for further par-
allel operations on calculated trees. Moreover, it indicates that by distributing
independent subtrees to processors, our method could be adapted for distributed-
memory environments. If we neglect the time required for distributing the input
and gathering the output, our method runs in the same asymptotic time com-
plexity. This approach works well especially when we distribute the input in
advance, as distributed XML databases, and results of tree transformations are
kept to be distributed to each machine until gathering is explicitly required. Yet,
we should be careful that even though all processors originally retain nearly the
same number of nodes, the sizes of the output fragments may be quite different.
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Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (2007),
http://www.grappa.univ-lille3.fr/tata

8. Skillicorn, D.B.: Structured Parallel Computation in Structured Documents.
J. UCS 3(1), 42–68 (1997)

9. Knuth, D.E.: Semantics of Context-Free Languages. Math. Syst. Theor. 2(2), 127–
145 (1968)

10. Engelfriet, J., Maneth, S.: Macro Tree Translations of Linear Size Increase Are
MSO Definable. SIAM J. Comput. 32(4), 950–1006 (2003)

11. Maneth, S.: The Macro Tree Transducer Hierarchy Collapses for Functions of Lin-
ear Size Increase. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS,
vol. 2914, pp. 326–337. Springer, Heidelberg (2003)

12. Bloem, R., Engelfriet, J.: A Comparison of Tree Transductions Defined by Monadic
Second Order Logic and by Attribute Grammars. J. Comput. Syst. Sci. 61(1), 1–50
(2000)

13. Engelfriet, J., Vogler, H.: High Level Tree Transducers and Iterated Pushdown Tree
Transducers. Acta Inf. 26(1/2), 131–192 (1988)

14. Engelfriet, J., Vogler, H.: Modular Tree Transducers. Theor. Comput. Sci. 78(2),
267–303 (1991)

15. Milo, T., Suciu, D., Vianu, V.: Typechecking for XML Transformers. J. Comput.
Syst. Sci. 66(1), 66–97 (2003)

16. Engelfriet, J., Maneth, S.: A Comparison of Pebble Tree Transducers with Macro
Tree Transducers. Acta Inf. 39(9), 613–698 (2003)
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Abstract. Decentralization is a major challenge for secure computing. In a de-
centralized setting, principals are free to distrust each other. The key challenge is
to provide support for expressing and enforcing expressive decentralized policies.
This paper focuses on declassification policies, i.e., policies for intended infor-
mation release. We propose a decentralized language-independent framework for
expressing what information can be released. The framework enables combina-
tion of data owned by different principals without compromising their respective
security policies. A key feature is that information release is permitted only when
the owners of the data agree on releasing it. We instantiate the framework for a
simple imperative language to show how the decentralized declassification poli-
cies can be enforced by a runtime monitor and discuss a prototype that secures
programs by inlining the monitor in the code.

1 Introduction
Decentralization is a major challenge for secure computing. In a decentralized setting,
principals are free to distrust each other. The key challenge is to provide support for ex-
pressing and enforcing expressive decentralized policies. Decentralization is of major
concern for language-based information-flow security [42]. Information-flow security
ensures that the flow of data through program constructs is secure. Information-flow
based techniques are helpful for establishing end-to-end security. For example, a com-
mon security goal is noninterference [16, 21, 42, 48] that demands that public output
does not depend on secret input. There has been much progress on tracking information
flow in languages of increasing complexity [42], and, consequently, information-flow
security tools for languages such as Java, ML, and Ada have emerged [36, 38, 47].

A particularly important problem in the context of information-flow security is de-
classification [46] policies, i.e., policies for intended information release. These poli-
cies are intended to allow some information release as long as the information release
mechanisms are not abused to reveal information that is not intended for release. Re-
vealing the result of a password check is an example of intended information release,
while revealing the actual password is unintended release. Similarly, the average grade
for an exam is an example of intended information release, while revealing the individ-
ual grades of all students is unintended release. Abusing the underlying declassification
mechanism for unintended release constitutes information laundering.

Decentralization makes declassification particularly intriguing. When is a piece of
data allowed to be released? The answer might be simple when the piece of data orig-
inates from a single principal and needs to be passed to another one. However, when
the piece of data originates from several sources, data release needs to satisfy security
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requirements of all parties involved. Despite a large body of work on declassification
(discussed in Section 5), providing a clean semantic treatment for decentralized declas-
sification has been so far out of reach. Concretely, the unresolved challenge we address
is prevention of information laundering in decentralized security policies.

Consider a scenario of a web mashup. A web mashup is a web service that integrates
a number of independent services into a single web service. A common example is a
mashup that combines information on available apartments and a map service (such
as Google Maps) in an interactive service that displays apartments for sale on a map.
Components of a mashup typically originate from different Internet domains.

A crucial challenge when building secure mashups [17] is hitting the sweet spot
between separation and integration. The components need to communicate with each
other but without stealing sensitive information. For example, a mashup that displays
trucks with dangerous goods on a map might reveal the corner points of a required map
to the map service but it must not reveal sensitive information about displayed objects
such as the type of dangerous goods [26].

Collaboration in the presence of mutual distrust requires solid policy and enforce-
ment support. Pushing the mashup scenario further, consider two web services (say,
Gmail and Facebook) that are willing to swap sensitive information under the condition
that both provide their share. For example, this might be a client-side mashup that allows
cross-importing Gmail’s and Facebook’s address books. We want the policy framework
to support the swap but prevent stealing Gmail’s address book by Facebook.

A prominent line of work on declassification in a decentralized setting is the decen-
tralized label model (DLM) [32]. This model underlies the security labels tracked by
the Java-based information-flow tracker Jif [36]. DLM labels explicitly records own-
ers. Owners are allowed to introduce arbitrary declassification on the part of labels they
own. However, no soundness arguments for Jif’s treatment of the labels are provided.

While inspired by DLM, our goal is precise semantic specification of decentralized
security and its sound enforcement. Our focus is on exactly what can be released, which
prevents information laundering. Unlike the DLM enforcement as performed by Jif, we
do distinguish between programs that reveal the result of matching against a password
from programs that reveal the password itself.

Combining the decentralization in the fashion of DLM and the laundering prevention
in the fashion of delimited release [43], this paper proposes a decentralized language-
independent framework for expressing what information can be released. The frame-
work enables release of combination of data owned by different principals without
compromising their respective security policies. A key feature is that information re-
lease is permitted only when the owners of the data agree on releasing it.

To illustrate that the framework is realizable at language level, we instantiate the
framework for a simple imperative language to show how the decentralized declassi-
fication policies can be enforced by a runtime monitor. We resolve the challenge of
respecting decentralized policies while at the same time preventing laundering. Further,
the monitor allows on-the-fly addition of new declassification polices by different prin-
ciples. The monitor provides a safe approximation for the security policy. As it is often
the case with automatic enforcement of nontrivial policies, the monitor is incomplete in
the sense that some secure runs are blocked.
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Further, we have implemented a prototype for a small subset of JavaScript that se-
cures programs by inlining the information-flow monitor in the code. The inlining trans-
formation transforms an arbitrary, possibly insecure, program into one that performs
inlined information-flow checks, so that the result of the transformation is secure by
construction.

2 Decentralized Delimited Release

Principals and Security Levels. Our model is built upon a notion of decentralized
principals which we denote via p, q. We assume that principals are mutually distrusting
and that there are no “actsfor” or “speaks-for” relations [23, 33] between them.

We consider a lattice of security levels L and denote by & the ordering between
elements of the lattice. A simple security lattice consists of two elements L and H , such
that L & H i.e., L is no more restrictive than H . The structure of the security lattice
does not have to be connected to principals in general, though they may be related as
illustrated in Section 2.2.

We assume that different parts of global state (or memory) are labeled with different
security levels: the higher the security level, the more sensitive the information which
is labeled with that level. We also associate every security level in our model with an
adversary that may observe memory states at that level: the higher the security level, the
more powerful the adversary associated with that level. For two-level security lattice, an
adversary corresponding to level L can observe only low (or public) parts of the state,
while adversary corresponding to level H can observe all parts of the state.

Policies as Equivalence Relations. Our model uses partial equivalence relations
(PERs) over memories for use in confidentiality policies [1, 45]. The PER representa-
tion allows for fine granularity in individual policies. We believe that intentional models
of security such as DLM [33] or tag-based models [12, 19, 22, 49] can be easily inter-
preted using PERs. Section 2.2 is an example of one such translation for a simple subset
of DLM.

Intuitively, two memories m and m′ are indistinguishable according to an equiva-
lence relation I if m I m′. Two particular relations that we use are Id and All intro-
duced by the following definition:

Definition 1 (Id and All relations). Assuming that M ranges over all possible mem-
ories, define Id � {(m, m) |m ∈ M} and All � {(m, m′) |m, m′ ∈ M}

Assume an extension of memory mappings from variables to expressions, so that m(e)
corresponds to the value of expression e in memory m. We also introduce an indistin-
guishability induced by a particular set of expressions.

Definition 2 (Indistinguishability induced by E). Given a set of expressions E , define
indistinguishability induced by E as Ind(E) � {(m, m′) | ∀e ∈ E . m(e) = m′(e)}.

In set-theoretical terminology, operator Ind(E) is the kernel of the function that maps
memories to values according to a given expression. When E consists of a single
expression e we often write Ind(e) instead of Ind({e}).
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Restriction. We define an operator of restriction induced by a set of variables. The
operator is handy in the following examples and in the translation in Section 2.1.

Definition 3 (Restriction induced by variables X). Given a set of variables X , define
restriction induced by X to be a relation S(X) � Ind({y | y �∈ X}) i.e., indistinguisha-
bility relation for all variables y that are different from the ones in X .

It can be easily shown that for disjoint sets of variables X and Y it holds that S(X ∪
Y ) = S(X) ∪ S(Y ). We often omit the set notation and write S(x, y) for S({x, y}).
Example: Consider memory with three variables x, y and z, and relation S(z). Accord-
ing to Def. 3, S(z) = Ind({x, y}) = {m, m′ | m(x) = m′(x) ∧ m(y) = m′(y)}.
Here S(z) relates memories that must agree on all variables but z. In particular, given
memories m1 in which x �→ 1, y �→ 1, z �→ 1, m2 in which x �→ 1, y �→ 1, z �→ 0, and
m3 in which x �→ 1, y �→ 2, z �→ 1 we have that m1 S(z) m2 but not m1 S(z) m3.

Confidentiality Policies. Confidentiality policy is a mapping from security levels in
L to corresponding indistinguishability relations. Consider an example security lattice
consisting of three security levels L, M, H , such that L & M & H . Assume also that
our memory contains two variables x and y, and consider a confidentiality policy I such
that I(L) = All , I(M) = S(x), and I(H) = Id

According to this policy, an attacker at level L can observe no part of the state, which
is specified by I(L) = All . An attacker at level M can not observe the value of x but
may observe the value of y. This is specified by using a restriction induced by x for
I(M). Finally, I(H) establishes that an attacker at level H can observe all variables.

Say that a confidentiality policy I is well-formed when I(') = Id , where ' is
the most restrictive element in L. Moreover, for any two labels � & �′ it must hold
that I(�) ⊇ I(�′). Our example policy above is well-formed. Indeed, I(H) = Id and
I(L) = All ⊇ I(M) = S(x) = Ind(y) ⊇ I(H) = Id . It is also easy to show that
a policy obtained from point-wise union and intersection of well-formed policies is
well-formed. The rest of the paper assumes that all policies are well-formed.

2.1 Decentralized Policies

In a decentralized setting every principal provides its confidentiality policy. We denote
a confidentiality policy of principal p as Ip. In particular, Ip(�) is a relation specifying
what memories must be indistinguishable at levels � and below according to principal p.
Given two principals p and q with policies Ip and Iq , the combination of these policies is
policy I ′ s.t. for all � we have I ′(�) = Ip(�)∪Iq(�). Note that I ′ combines restrictions of
both p and q and is as restrictive as both Ip and Iq . The following definition generalizes
combination of trusted policies.

Definition 4 (Combination of confidentiality policies). Given a number of principals
p1 . . . pn with policies Ipi , 1 ≤ i ≤ n, the combination of these policies is a policy I ′

such that for all � it holds that I ′(�) =
⋃

i Ipi(�).

Example: Consider a lattice with three levels L, M , and H as before and a memory
with two variables x and y. Consider two principals p and q with the policies Ip(L) =
All , Ip(M) = Ind(x), Ip(H) = Id , Iq(L) = All , Iq(M) = Ind(y), Iq(H) = Id .
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According to these policies p and q have different views on what can be observable
at level M . Combining these two policies, we obtain a policy I ′, such that I ′(L) =
All , I ′(M) = All , and I ′(H) = Id . Combining restrictions of both p and q means
I ′(M) allows an attacker at level M to observe neither x nor y.

Declassification. Declassification corresponds to relaxing individual policies Ip. We
assume that every principal provides a set of escape hatches [43] that correspond to
that principal’s view on what data can be declassified.

Definition 5 (Escape hatches). An escape hatch is a pair (e, �) where e is a declassi-
fication expression, and � is a level to which e may be declassified.

Given a set of escape hatches Ep for principal p and an initial indistinguishability policy
of this principal Ip we can obtain a less restrictive indistinguishability policy as follows.

Definition 6. Given a confidentiality policy I and a set of escape hatches E , let declas-
sification operator D return a policy that relaxes I with E . We define D pointwise for
every level � so that D(I, E)(�) � I(�) ∩ Ind(E�) where E� = {e | (e, �′) ∈ E ∧ �′ & �}
is the selection of escape hatches from E that are observable at �.

Example: Consider Ip as in Section 2.1 and escape hatch (y, L). Let us assume I ′ =
D(Ip, {(y, L)}). We have I ′(L) = Ind(x), I ′(M) = Id , and I ′(H) = Id .

� Ip(�) Iq(�) D(Ip, Ep)(�) D(Iq , Eq)(�)
H Id Id Id Id
L S(x) All S(x) ∩ Ind(x) Ind(x + y)

Fig. 1. Declassification and composite policies

Example: declassification and compos-
ite policies. Consider again memory with
two variables x and y, a simple two-level
security lattice with security levels L and
H such that L & H , and two principals
p and q. Assume that p’s policy speci-
fies that a low attacker cannot observe x,
and that q specifies that low observer cannot observe any parts of the memory. The
corresponding security policies can be given by the second and third columns of
Figure 1, where S(x) = Ind(y). The combination of policies of both p and q at level L
is Ind(y) ∪ All = All . That is, principals agree on no information being observable to
an adversary at the level L.

Assume principal p declassifies the value of x to L, and principal q declassifies the
value of x + y to L, i.e., Ep = {(x, L)} and Eq = {(x + y, L)}. The corresponding
policies are given by the last two columns of Figure 1. The result of combining policies
at level L is captured by the relation (Ind(y)∩ Ind(x))∪ Ind(x+ y) which is equivalent
to Ind(x + y). That is, both principals allow x + y to be observed at level L.

Security. Our security condition is based on decentralized confidentiality policies. For
generality, this section uses an abstract notion of a system with memory, denoted by
S(·). A transition of system S(m) with memory m to a final state with memory m′ is
written as S(m) ⇓ m′. Section 3 instantiates this abstraction with standard program
configurations. We call our security condition decentralized delimited release (DDR).

Definition 7 (Batch-style DDR). Assume principals p1, . . . , pn with confidentiality
policies I1 . . . In and declassification policies given by escape hatch sets E1 . . .En. Say
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that a system with memory S(·) satisfies decentralized delimited release when for every
level � and for all memories m1, m2 for which m1

⋃
1≤i≤n D(Ii, Ei)(�) m2 it holds

that whenever S(m1) ⇓ m′
1 and S(m2) ⇓ m′

2 it must be that m′
1

⋃
i Ii(�) m′

2.

DDR borrows its intuition from the original definition of delimited release [43], and
generalizes it to the case of several principles. In fact, in case of a single principal this
definition matches the original definition in [43].

The key element of this definition is that it prevents laundering attacks. To see an
example of a laundering attack, consider the following examples. Assume a memory
with three variables x, y, z and individual policies of two principals p and q, as shown
in the second and third columns of Figure 2. Here S(x, y) is restriction induced by x
and y, and S(x, y) = Ind(z), i.e., this relation allows only variable z to be observable.

Assume escape hatch sets where p declassifies x + y to L, i.e., Ep = {(x + y, L)},
and q declassifies both x and y individually to L, i.e., Eq = {(x, L), (y, L)}. Taking
the escape hatches into account we obtain the relations shown by the last two columns
of Figure 2. According to these policies the program z := x + y is secure. On the
other hand the program x := y; z := x + y is insecure. To see this consider two
memories m1 and m2 where in m1 we have x �→ 1, y �→ 1, z �→ 0 and in m2 we have
x �→ 0, y �→ 2, z �→ 0. We have that m1 D(Ip, Ep)(L) ∪ D(Iq , Eq)(L) m2, but not
m′

1 Ip(L) ∪ Iq(L) m′
2.

DLM0 . We adopt the Decentralized Label Model (DLM) [32] as our model of ex-
pressing security policies sans actsfor relation, that we dub DLM0 . We nevertheless,
retain top and bottom principals⊥ and' that allow us to express the most and the least
restrictive security policies. In DLM a security level of a variable records policy owners,
reviewed below. On the intuitive level policy owner is a principal who cares about the
sensitivity of the data. This is more than simply a principal who can read data — not
every principal who reads data is necessarily interested in preserving its confidentiality.

DLM policies are the basic building blocks for expressing security restrictions by
principals. A (confidentiality) policy is written o→ r1, . . . , rn, where o is the owner of
the policy, and r1, . . . , rn is the set of readers. Here principal o restricts the flow of data
to the principals in the readers set. For example, in the policy Alice → Bob,Carol Al-
ice constraints the set of readers to only Bob, Carol, and herself (the owner is implicitly
a reader). Similarly, a policy Carol → Carol restricts all but Carol from reading data.

Security labels, denoted by �, are either DLM policies or are composed from other
labels in one of the two ways: (i) conjunction of two labels, written �1 � �2, is a label
that enforces restrictions of both �1 and �2. (ii) disjunction of two labels, written �1��2,
is a label that enforces restrictions of either �1 or �2. An example of a conjunction label
is {Alice → Bob,Carol} � {Carol → Carol}. Carol is the only reader; because of

� Ip(�) Iq(�) D(Ip, Ep)(�) D(Iq, Eq)(�)

H Id Id Id Id
L S(x, y) S(x, y) S(x, y) ∩ Ind(x + y) S(x, y) ∩ Ind(x) ∩ Ind(y)

Fig. 2. Policies for example laundering attack
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the Carol’s policy, this label restricts either Alice or Bob from reading data. Disjunction
label {Alice → Alice} � {Bob → Bob} allows both Alice and Bob to read data.

Labels can be ordered by the “no more restrictive than” [14, 34] relation: �1 & �2

when �1 restricts data no more than �2 does. We use {⊥ → ⊥} to denote the least
restrictive label (also denoted simply ⊥), i.e., for all � it holds that {⊥ → ⊥} & �. For
example, {Alice → Alice,Bob} & {Alice → Alice}, because in the right label, Alice
imposes stricter restrictions by allowing only her to be the reader. However (assuming
there is no actsfor relationship between Alice and Bob), {Alice → Bob} �& {Bob →
Alice}. Here Alice’s constraints are not satisfied. Her label on the left restricts the flow
to Bob, but there are no Alice’s policies on the right.

2.2 From DLM0 to Families of Indistinguishability Relations

This section shows how DLM0 labels can be translated to confidentiality policies. The
translation is parametrized by the principals. We define two operators in this translation
— the top level translation operator T̃p and a helper operator Tp. The top level transla-
tion operator T̃p, that returns a confidentiality policy for principal p, takes the variable
environment Γ as a single argument. It is defined so that when Γ = ∅ then in the
resulting confidentiality policy T̃p(Γ ), the corresponding indistinguishability relation
for all labels � is Id . This indeed matches the DLM intuition that no restrictions imply
the most permissive confidentiality policy. To translate restrictions that are captured by
DLM labels, we define a helper operator Tp(Ip, �, x).

Definition 8 (Translation of a single label Tp). Given a principal p with an initial
policy Ip, label �, and variable x, define Tp(Ip, �, x) inductively based on the structure
of �.

case � is an empty label Return Ip.
case � is �′ � {q → r} such that q �= p and q �= ' Return Tp(Ip, �′, x).
case � is �′ � {q → r} such that q = p or q = ' Define policy I ′p, where for all �′′ let

I ′p(�
′′) =

{
Ip(�′′) ∪ S(x) if {q → r} �& �′′

Ip(�′′) otherwise
and return Tp(I ′p, �

′, x).

case � is �′ � {q → r} such that q = p or q = ' Define policy I ′p where for all �′′ let

I ′p(�′′) =

{
Ip(�′′) ∪ S(x) if {q → r} �& �′′ ∧ �′ �& �′′

Ip(�′′) otherwise
and return Tp(I ′p, �′, x).

With the definition of Tp at hand we define the top-level translation operator T̃p.

Definition 9 (Translation of DLM0 policies). Assume that Γ maps variables to DLM0

labels. Define an operator T̃p that translates restrictions recorded in Γ to confidential-
ity policies as follows. We let T̃p(∅) = Ĩd , when Γ = ∅, and otherwise T̃p(x �→
�; Γ ′) = Tp(T̃p(Γ ′), �, x). Here Ĩd is a policy s.t. for all levels � it holds Ĩd(�) = Id .

Example: Consider memory consisting of four variables x, y, z and w. Assume two
principals p and q, and variable environment Γ , s.t. Γ (x) = {p → p}, Γ (y) = {q →
q}, Γ (z) = {p → p, q} � {q → p, q}, and Γ (w) = {p → p} � {q → q}. Translation
of labels in Γ is represented by the second and third columns in the table below.
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� T̃p(Γ )(�) T̃q(Γ )(�) D(T̃p(Γ ), Ep)(�) D(T̃q(Γ ), Eq)(�)
{' → '} Id Id Id Id
{p→ p} Id S(y) Id S(y) ∩ Ind(x + y)
{q → q} S(x) Id S(x) ∩ Ind(x + y) Id
{p→ p, q} � {q → p, q} S(x) S(y) S(x) ∩ Ind(x + y) S(y) ∩ Ind(x + y)
{p→ p} � {q → q} S(x) S(y) S(x) S(y)
{⊥ → ⊥} S(x) S(y) S(x) S(y)

Here S(x) = Ind(y) ∩ Ind(z) ∩ Ind(w) and S(y) = Ind(x) ∩ Ind(z) ∩ Ind(w). Con-
sider escape hatches provided by each principals such that Ep = Eq = {(x + y, {p →
p, q} � {q → p, q})}. Taking escape hatches into account the policies obtained from
declassification operator are illustrated in fourth and fifth columns of the table above.

3 Enforcement

This section illustrates the realizability of our framework for a simple imperative lan-
guage. We formalize the language along with a runtime enforcement mechanism that
ensures security.

Language and Semantics. The syntax of the language is displayed in Figure 3. Ex-
pressions e operate on values n and variables x and might involve composition with
operator op. Commands c are standard imperative commands. The only nonstandard
primitive in the language is a declassification primitive declassify(p, e, �) that de-
clares an escape hatch (e, �) of principal p.

Figure 4 contains the semantic rules for evaluating commands. A memory is a map-
ping from variables to values, where values range over some fixed set of values (say,
without loss of generality, the set of integers). We assume an extension of memories
to expressions that is computed using a semantic interpretation of constants as values
and operators as total functions on values. This allows us writing m(e) for the value of
expression e in memory m. A configuration has the form 〈c, m〉 where c is a command

in the language and m is a memory. A transition has the form 〈c, m〉 β−→〈c′, m′〉 rep-
resenting a computation step from configuration 〈c, m〉 to 〈c′, m′〉. Events β are there
to communicate relevant information about program execution to an execution monitor
(this style of presenting monitors follows recent work on information-flow monitor-
ing, e.g., [5, 44]). When events are unimportant, we may omit explicitly writing them
out as in 〈c, m〉−→〈c′, m′〉. The meaning of the particular events is spelled out in the
description of the monitor below.

Monitor. Our enforcement mechanism is a runtime monitor. Listening to a given pro-
gram event, the monitor either grants execution (possibly updating its internal state)
or blocks it. Following the idea sketched in [26], we obtain security by requiring two
conditions on declassification (in addition to standard tracking “regular” flows orthog-
onal to declassification). The first condition is to check that all declassifications are
allowed. The second condition ensures that the value of an escape hatch expression
has not changed since the start of the program. The former is in charge of the who
dimension of declassification, preventing release to unauthorized principals, whereas
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e ::= n | x | e op e

c ::= skip | x := e | c; c | declassify(p, e, �) | if e then c1 else c2 | while e do c

Fig. 3. Syntax

〈declassify(p, e, �),m〉d(p,e,
)−→ 〈stop, m〉
m(e) = v

〈x := e, m〉a(x,e,m)−→ 〈stop, m[x 
→ v]〉
m(e) = n n �= 0 =⇒ i = 1 n = 0 =⇒ i = 2

〈if e then c1 else c2, m〉 b(e)−→〈ci; end , m〉
〈end , m〉 f−→〈stop, m〉

Fig. 4. Monitored semantics: selected rules

〈st , i, E , Γ 〉 b(e)−→〈lev(e) : st , i, E , Γ 〉 〈hd : st , i, E , Γ 〉 f−→〈st , i, E , Γ 〉

〈st , i, E , Γ 〉d(p,e,
)−→ 〈st , i, E [p 
→ Ep ∪ {(e, �, lev(st))}], Γ 〉

lev(st) � Γ (x) � � substEH(lev(e), x, e, E , Γ ) lev(e) �� � =⇒ m(e) = i(e)

〈st , i, E , Γ 〉a(x,e,m)−→ 〈st , i, E , Γ [x 
→ lev(st) � �]〉

substEH({o → r̃}, x, e, E ,Γ) � {o → r̃} � {� | (e, �, pc) ∈ Eo ∧ pc � Γ (x)}
substEH(�1 � �2, x, e,E , Γ ) � substEH(�1, x, e, E , Γ ) � substEH(�2, x, e, E , Γ )

substEH(�1 � �2, x, e,E , Γ ) � substEH(�1, x, e, E , Γ ) � substEH(�2, x, e, E , Γ )

Fig. 5. Monitor semantics: selected rules

the latter controls the what dimension, preventing information laundering. Section 5
discuses these and other dimensions of declassification [46] in further detail.

Figure 5 presents selected monitor rules. Monitor configurations have the form
〈st , i, E , Γ 〉, where st is a stack of security levels, i stores the initial program mem-
ory, E is an indexed collection of sets of escape hatches, and Γ is the current security
environment. Escape hatches are also extended to the form (e, �, pc), where pc records
the level of the monitor stack when that escape hatch has been added. The monitor fea-
tures a form of flow-sensitivity: security level of a variable Γ (x) can be updated, but
only when the decision to update does not give away secret information [6].

Assume an overloaded function lev (·) that returns the least upper bound on the se-
curity level of components in the argument. For expressions, the components are the
subexpressions and for lists the components are the list elements. When monitor stack
is empty lev (·) is the least restrictive label ⊥ → ⊥.

The event b(e) is generated by conditionals and loops when branching on an ex-
pression e. This is interesting information for the monitor because it introduces risks
for implicit information flow [18] through control-flow structure of the program. For
example, program if h then l := 1 else l := 0 leaks whether the initial value of
(secret) variable h is (non)zero into the final value of (public) variable l. The essence
of an implicit flow is a public side effect in a secret computation context. To record the
computation context, we keep track of the security levels of the variables branched on.
Thus, the monitor always accepts branching on an expression, pushing the level of the
expression on the stack. The event f is generated by conditionals and loops on reach-
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ing a joint point of branching. The monitor always accepts this event, popping the top
security level from the stack. The event d(p, e, �) is generated upon declassification of
expression e to level � by principal p. In response, the monitor includes the newly de-
clared escape hatch in its environment and records the current level of the stack lev (st).

The event a(x, e, m) is generated by assignment of an expression e to a variable x in
memory m. First, the monitor blocks implicit flows by requiring that the level of the x
is at least as restrictive as the least upper bound of the security levels on the stack. Next,
the monitor checks if this assignment can be treated as a declassification. The operator
substEH performs a label substitution and returns the least restrictive label that can be
obtained by using declassifications in E . Note that all information used by substEH
check is bounded by Γ (x) — we only look up escape hatches that syntactically agree
on expression e and that were updated in the contexts with pc & Γ (x). If expression
can be declassified to a level that is more permissive than lev(e), the monitor checks
that the escape-hatch expression must be the same in the initial and current memories.
This prevents information laundering as in declassify(p, h, p → ⊥); h := h′; l := h
where h is declared to be declassified whereas h′ is actually leaked. Finally, the monitor
updates the level of Γ (x), featuring flow-sensitivity mentioned earlier in this Section.

The monitor accepts program l := x+ y, if both A’s and B’s escape hatches contain
x + y, and rejects it if either A or B do not explicitly list x + y in their escape hatches.

While, as we will show, the enforcement is sound, it is obviously incomplete. In the
setting of the example above, the program is rejected when A’s escape-hatch set is {x}
and B’s is {y}. A and B are willing to release all of their data, and so the program is
rightfully accepted secure by the security definition. However, the monitor rejects the
program because expression x + y is not found in the escape-hatch sets.

Soundness. The monitor guarantees secure execution in the presence of mutual dis-
trust. We instantiate the notion of system with memories of Definition 7 with mon-
itored program configurations (〈c, m〉, 〈st , i, E , Γ 〉). Assume all declassification poli-
cies are expressed in E and c contains no further declassify statements. This is con-
sistent with our implementation (cf. Section 4) in which escape hatches are collected
at parse time. We write (〈c, m〉, 〈st , i, E , Γ 〉) ⇓ m′, Γ ′ when (〈c, m〉, 〈st , i, E , Γ 〉)
−→∗(〈stop, m′〉, 〈st ′, i, E , Γ ′〉), where−→∗ is a transitive closure of−→. Assume prin-
cipals p1, . . . , pn with individual declassification policies Epi . Formally, we have:

Theorem 1 (Soundness). Assume principals p1, . . . , pn with initial DLM0 policies ex-
pressed in the environment Γ and declassification policies expressed by the collection
of sets of escape hatches E , indexed by pi. Consider program c free of declassify
statements. Then for all levels � and memories m1, m2 s.t. m1

⋃
p D(T̃p(Γ ), Ep)(�)

m2 if (〈c, m1〉, 〈ε, m1, E , Γ 〉) ⇓ m′
1, Γ

′
1, and (〈c, m2〉, 〈ε, m2, E , Γ 〉) ⇓ m′

2, Γ
′
2, then⋃

p T̃p(Γ ′
1)(�) =

⋃
p T̃p(Γ ′

2)(�) and m′
1

⋃
p T̃p(Γ ′

1)(�) m′
2.

The proof of Theorem 1 is available in the accompanying technical report [27].

Example: We revisit the example with aggregate computation from Section 2.1.
Consider variable environment consisting of three variables x, y and z. Assume two
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principals p and q s.t. Γ (x) = {p → p}, Γ (y) = {q → q}, and Γ (z) = {p → p, q} �
{q → p, q}. and escape hatch sets for every principal s.t. Ep = Eq = {(x + y, {p →
p, q} � {q → p, q},⊥ → ⊥)}. Then basic declassification of the form z := x + y is
accepted, while laundering as in the program x := y; z := x + y is rejected.

4 Experiments

Next, we present the experiments conducted on enforcement of the monitor in practice.
The inlining transformation converts a program in a language from Section 3 into a pro-
gram in JavaScript with inlined security checks. In this experiment we have successfully
implemented two scenarios in a restricted subset of JavaScript.

Experiment Setup. To implement runtime source transformation we need functional-
ity for parsing and rewriting of JavaScript code, written in JavaScript. We use ANTLR [2]
to generate such a parser/rewriter from a JavaScript grammar. The generated parser
is 7650 LOC of JavaScript, not counting additional 165 LOC for the user-defined
JavaScript and 6139 LOC in the runtime library. For performance, the code can be fur-
ther reduced using JavaScript compression tools. All sources are available on demand.

The monitor must be inlined before the code is parsed by the browser, or else the code
is executed unmonitored. The Opera browser [37] allows the user to include privileged
JavaScript called “User JavaScript”. User JavaScript can access functions and events
not accessible to ordinary JavaScript, including the event “BeforeScript”, that enables
rewriting the script source before the source reaches the browser’s parser. This allows
us to inline the monitor whenever a new script is loaded.

This approach introduces two sources of runtime overhead. The first is the pars-
ing and rewriting, performed once per code segment. The second is the execution of the
inlined monitor. Previous work [29] shows the total overhead of 2–10 times the untrans-
formed runtime, depending on the code structure of, the browser, and the system used.

One alternative to implementing the monitor is using aspect-oriented techniques
along the lines of, e.g., [28]. However, such an implementation would demand low-
level access to program operations. For example, performing an assignment or reaching
a joint point must be observable events in order to serve as pointcuts.

Transformation. The generated parser parses and, in the process, rewrites the code,
transforming it on the fly. If the parser cannot parse the input it throws an error and the
code is not evaluated by the browser. The monitored code is hence limited by the parser.

The source language is a subset of JavaScript, as described in Section 3. The target
language is full JavaScript. This means there are no restrictions on the monitor itself,
only on the code being monitored. We identify different stages in the transformation
that are closely related to the stages of the browser as it requests content. While other
JavaScript-specific features, such as prototyping and objects, would make an interesting
complement, more research on how such features affect information-flow analysis is
required before extending the language and incorporating them in the framework.

Transformation in Stages. Based on information available at a given moment, only
certain actions can be taken. Thus, we distinguish between parse-time and run-time.
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Parse-Time. As scripts are encountered we enumerate their origins and for each origin
load the associated escape hatches and initial levels for variables. The scripts are parsed
on the fly. During parsing, when a security critical part of the source is encountered, we
rewrite the source inlining the monitor according to a set of rules. Because JavaScript
lacks a declassification primitive, unlike the monitor in Section 3, escape hatches are
defined at parse-time. Note that while it is clear at parse-time which variables are used
in an expression, their run-time values are unknown. This is crucial for declassification
as it relies on which variables are used in expressions to determine which information
to declassify. This transformation is detailed below.

var x; // User variable
var _x_; // Level of x
var __x; // Initial value of x
var _pc; // Special variable

Listing 1.1. Naming convention

Run-Time. At run-time, as the program is eval-
uated, all variables have their actual values, but
when following an execution path we lose informa-
tion about the control-flow structure of the program.
Thus, the inlining transformation needs to encode
necessary control-flow structure information for the
monitor. As the transformed script is executed, the monitor validates the inlined checks.

Shadow Variables. To track information flow in the program we use shadow variables.
Two kinds of shadow variables are used: one for the level of the variable, and one
for its initial value. The shadow variables that hold the initial values are set when the
corresponding variable is declared, while the shadow variable that hold the level are
updated whenever the corresponding variables are initially assigned. The set of shadow
variables corresponds to Γ in the formal monitor. Also, a small set of monitor specific
variables is described below.

To prevent the code being monitored from interfering with state of the monitor, the
shadow variables must be isolated. One could create a separate namespace for shadow
variables, with minimal impact on the source program. The drawback is mimicking
the scoping and variable lookup mechanisms of JavaScript, to prevent clashes between
equally named variables from different scopes. Implementing this can be non-trivial.

Antoher possibility is to reserve an infrequently used character, such as “ ”, for
shadow variables, thereby excluding it from the set of allowed characters for identi-
fiers in the source language. This would prevent valid code, according to the parser,
from referring to variables using this character. The benefit in this case is that we can
piggy-back on JavaScripts built in scoping mechanism. The drawback is that we mod-
erately restrict the set of valid programs. As a design choice, we chose this option. The
chosen naming convention can be seen below in Figure 1.1.

Special Variables. A few special variables exist to store the state of the monitor at
run-time. For tracking implicit informations flows, the level of the cusrrent execution
context is stored in the special variable _pc. The _pc works like a stack and is up-
dated whenever a new execution context is entered. The variable _E stores all escape
hatches and their associated levels. Finally the variable _init stores all initial levels of
variables as defined by the owner of each variable.

Transformation Rules. We focus on the interesting cases of the transformation:
assignment, declassification, and branching.
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// Implicit flow check
while(!_pc.leq(_x_));
if (’y+z’ in _E) {
// Laundering check

while((__y+__z)!=(y+z));
_x_=_pc.join(_E[’y+z’]);

} else {
_x_=_pc.join(_y_,_z_)

}
x=y+z;

Listing 1.2. Assignment rule

Assignment and Declassification. Following the se-
mantics in Figure 4, the transformed code updates both
the value of variable being assigned and the level of the
corresponding shadow variable. Which level it updates
to depend on whether the assignment expression is in
the set of escape hatch expressions or not. In the case
of declassification, the level is determined from the es-
cape hatch, otherwise the new level is determined from
the variables used in the expression. When determining
the level, the current level of the execution context (the
_pc) is also considered.

Insecure upgrade refers to assignment of a lower level variable in a higher level con-
text, implying an information leak [40]. Insecure upgrade is prevented by checking that
the _pc is less than or equal to the level of the variable [6]. If it is not, the program gets
stuck. Information laundering through declassification is prevented by checking that the
current value is the same as the initial value of the expression. If this check fails, the
program gets stuck. Listing 1.2 gives an example of an assignment after transformation.

Branches. To prevent implicit information flows, the monitor tracks the level of the
context in each branch. When a branch is encountered, the current level of the _pc

is stored. The _pc is updated with the join of its current level and the level of the
expression that is branched upon. Each of the two alternative code paths are transformed
and after the two branches join again, the level of the _pc before the branch is restored.
In the implementation, management of the _pc is done through helper methods, e.g.
_pc.branch(_x_); if(x){...}; _pc.joinPoint();.

while(!_pc.leq(_d_));
if (’orderOf(f)/p’ in _E) {

while((orderOf(__f)/__p)!=
(orderOf(f)/p));

_d_=_pc.join(_E[’orderOf(f)/p’]);
} else

_d_=_pc.join(_f_,_p_);
d=orderOf(f)/(10*p);

Listing 1.3. Scenario 1 transformed

while(!_pc.leq(_a_));
if (’a.concat(b)’ in _E) {

while((__a.concat(__b))!=
(a.concat(b)));

_a_=_pc.join(_E[’a.concat(b)’]);
} else

_a_=_pc.join(_a_,_b_);
a = a.concat(b);

Listing 1.4. Scenario 2 transformed

Scenarios. We have applied the transforma-
tion to two simple yet illustrative scenarios.
We believe that the approach of using inline
transformation and escape hatches for track-
ing information flow scales to more complex
scenarios: no matter how complex the lan-
guage is, the secure use of escape hatches is
restricted to simple patterns (with no modifi-
cation of data involved in them).

Social E-Commercing. In this scenario we
have an e-commerce site (A) and a social
networking site (B) who have an agreement
that the users of the social networking site
get a discount (d) on the products of the e-
commerce site if they recommend the store
to their friends. The size of the discount is
determined by the price (p) and the number
of friends (f ) that the user recommends the
site to. To protect the privacy of the user, the social networking site does not want
to release the exact number of friends so the discount is calculated by the following
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formula: d = e(f, p) = orderOf (f)
10∗p . For declassification the A specifies the escape

hatch E(A) = {(e(f, p),⊥)}. An example of the transformed code for this scenario is
available in Listing 1.3. In this scenario A could maliciously try to find the exact number
of friend recommendations, e.g. using either var x=f; or while(x<f)x++;. Regard-
less, since both explicit and implicit information-flows are tracked this information is
labeled as belonging to B.

Contact Swap. Consider a mashup where the user can synchronize his contact lists on
several social networking sites. In this scenario we have a truly distributed and collab-
orative release of information. The sites need to collaborate on which contacts to share
and whom to share them with. That is, the user might be unwilling to share the contacts
marked as business associates across networks, but still want to share contacts marked
as friends. A sample of the transformed scenario code is available in Listing 1.4. Here
both A and B would need to declassify the expression a.concat(b) to the other. As
can be seen in this sample, the rewritten code prevents potential attacks. Malicious code
could try to launder some other information by assigning it to either a or b, as such b=

secret; a=a.concat(b);. However, the transformation of this code gets stuck in
the initial value check since the value of b no longer matches its initial value.

5 Related Work

There is a large body of work on declassification, much of which is discussed in
Sabelfeld and Sands’ recent overview [46]. The overview presents dimensions and prin-
ciples of declassification. The identified dimensions correspond to what data is released,
where and when in the program and by whom. The what and where dimensions and their
combinations have been studied particularly intensively [4, 5, 8, 9, 30].

Our approach integrates the what and who dimensions. It is the who dimension that
has received relatively little attention so far. The precursor to work on the who dimen-
sion in the language-based setting is the decentralized label model (DLM) [32]. DLM
allows principals expressing ownership information as well as explicit read/write access
lists in security labels. Chen and Chong [11] generalizes DLM to describe a range of
owned policies from information flow and access control to software licensing.

Work on robustness [3, 35], addressed the who dimension by preventing attacker-
controlled data from affecting what is released. Lux and Mantel [24] investigate a
bisimulation-based condition that helps expressing who (or, more precisely, what in-
put channels) may affect declassification.

Our approach builds on the composite release [26] policy that combines the what
and who dimensions. The escape hatches express the what and the ownership of the
principals of the escape-hatch policies expresses the who. However, for composite re-
lease to be allowed, the principals have to syntactically agree on escape hatches. This
paper removes this limitation and generalizes the principal model to handle DLM. The
experimental part is another added value with respect to the previous work [26].

Broberg and Sands [10] describe paralocks, a knowledge-based framework for ex-
pressing declassification and role-based access-control policies. Broberg and Sands
show how to encode DLM’s actsFor relation using paralocks. However, paralocks do
not address the what dimension of declassification.
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Our enforcement draws on the ideas sketched by us earlier [26], where we present
considerations for practical enforcement of composite release. The formalization of the
enforcement fits well into the modular framework [5, 44] for dynamic information-
flow monitoring where the underlying program and monitor communicate through the
interface of events. The what part of declassification is enforced similarly to [5], by
ensuring that the values of escape-hatch expressions have not been modified. The paper
extends the formalization of the enforcement with the who part.

Recent efforts approach inlining for information flow. Chudnov and Naumann [15]
inline a flow-sensitive hybrid monitor by Russo and Sabelfeld [40]. The monitor does
not offer support for declassification. As in this work, Magazinius et al. [29] concentrate
on inlining purely dynamic monitors under the no-sensitive-upgrade discipline. The
distinct feature is inlining on the fly, which allows a smooth treatment of dynamic code
evaluation. While the inlining rules [29] offer no support for declassification, it is still a
useful starting point for our experiments in Section 4.

In the web setting, work on language-based sadboxing such as object capabilities
(e.g., [25, 31]) is less related because separation does not allow information flow and
intended release. The most closely related project is the Mozilla project FlowSafe [20]
that aims at extending Firefox with runtime information-flow tracking, where dynamic
information-flow monitoring [6, 7] lies at its core.

6 Conclusion

We have presented a framework for specitying and enforcing decentralized information-
flow policies. The policies express possibilities of collaboration in the environment of
mutual distrust. By default, no information flow is allowed across different principals.
Whenever principals are willing to collaborate, the policy framework ensures that a
piece of data is revealed only if all owners of the data have provided sufficient authoriza-
tion for the release. While the policy framework is independent, we have demonstrated
that is realizable with language support. We have showed how to enforce security by
runtime monitoring for a simple imperative language.

A major direction of future work is integrating support for decentralized security
policies into the line of work on information-flow controls in a web setting, where
we have already investigated the treatment of dynamic code evaluation [5], timeout
events [39], and interaction with the DOM tree [41].

Another intriguing avenue for integration is with Chong’s required release [13] pol-
icy. This policy ensures that if a principal promises to release a piece of data, then this
piece of data must be released. Such a policy is an excellent fit for thwarting attempts
of cheating. For example, suppose three principals have agreed on releasing the average
of their three pieces of data to each other. However, a cheating principal might attempt
to withdraw its escape hatch or declassify to a level that is not sufficient for the other
principals to be able to access the result. These attempts can be prevented by required
release, where principals must release data according to the declared policies.
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Abstract. Cost analysis aims at automatically approximating the re-
source consumption (e.g., memory) of executing a program in terms of its
input parameters. While cost analysis for sequential programming lan-
guages has received considerable attention, concurrency and distribution
have been notably less studied. The main challenges (and our contribu-
tions) of cost analysis in a concurrent setting are: (1) Inferring precise
size relations for data in the program in the presence of shared memory.
This information is essential for bounding the number of iterations of
loops. (2) Distribution suggests that analysis must keep the cost of the
diverse distributed components separate. We handle this by means of a
novel form of recurrence equations which are parametric on the notion of
cost center, which represents a corresponding component. To the best of
our knowledge, our work is the first one to present a general cost analysis
framework and an implementation for concurrent OO programs.

1 Introduction

Distribution and concurrency are now mainstream. The Internet and the broad
availability of multi-processors radically influence software. Many standard desk-
top programs have to deal with distribution aspects like network transmission
delay and failure. Furthermore, many chip manufactures are turning to multi-
core processor designs as a way to increase performance in desktop, enterprise,
and mobile processors. This brings renewed interest in developing both new con-
currency models and associated programming languages techniques that help in
understanding, analyzing, and verifying the behavior of concurrent programs.

One of the most important features of a program is its resource consumption.
By resource, we mean not only traditional cost measures (e.g., memory con-
sumption) but also concurrency-related measures (e.g., tasks spawned, requests
to remote servers). The goal of this paper is to develop a cost analysis [22]
(a.k.a. resource usage analysis) for concurrent OO programs. Cost analysis aims
at statically inferring approximations of the resource consumption of executing
the program. Automatically inferring the resource usage of concurrent programs
is challenging because of the inherent complexity of concurrent behaviors.

In addition to traditional applications (e.g., optimization [22], verification
and certification of resource consumption [7]), cost analysis opens up interest-
ing applications in the context of concurrent programming. In general, having
anticipated knowledge on the resource consumption of the different components
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which constitute a system is useful for distributing the load of work. Upper
bounds (UBs) can be used to predict that one component may receive a large
amount of remote requests, while other siblings are idle most of the time. Also,
our framework allows instantiating the different components with the particular
features of the infrastructure on which they are deployed. Then, analysis can be
used to detect the components that consume more resources and may introduce
bottlenecks. Lower bounds (LBs) on the resource usage can be used to decide if
it is worth executing locally a task or requesting remote execution.

In order to develop our analysis, we consider a concurrency model based on
the notion of concurrently running (groups of) objects, similar to the actor-
based and active-objects approaches [18, 20]. These models take advantage of the
concurrency implicit in the notion of object in order to provide programmers with
high-level concurrency constructs that help in producing concurrent applications
more modularly and in a less error-prone way. It is recognized that performing
the analysis on a high-level concurrency model makes verification more feasible.
This is because analysis in concurrent systems often needs to consider too many
interleavings and thus ends up being limited to very small programs in practice.

We propose a static cost analysis for concurrent OO programs, which is para-
metric w.r.t. the notion of resource that can be instantiated to measure both
traditional and concurrency-related resources. The main contributions of this
work are: (1) We introduce a sound size analysis for concurrent execution. The
analysis is field-sensitive, i.e., it tracks data stored in the heap whenever it is
sound to do so; (2) We lift the definition of cost used in sequential programming
to the distributed setting by relying on the notion of cost centers [17], which
represent the (distributed) components and allow separating their costs; (3) We
present a novel form of cost recurrence relations, which is parametric w.r.t. cost
centers, but still can be solved to closed-form UBs/LBs using standard solvers
for cost analysis of sequential programs; (4) We increase the accuracy of the field-
sensitive size analysis by means of class invariants [16] which contain information
on the shared memory; and (5) We report on a prototype implementation.

2 A Language with Concurrent Objects

The concurrency model of Java and C# is based on threads which share mem-
ory and are scheduled preemptively, i.e., they can be suspended or activated
at any time. To avoid undesired interleavings, low-level synchronization mecha-
nisms such as locks are used. Thread-based programs are error-prone, difficult
to debug, verify and maintain. In order to overcome these problems, several
concurrency models that take advantage of the inherent concurrency implicit in
the notion of object have been developed [8, 14, 16, 18, 20]. They provide sim-
ple language extensions which allow programming concurrent applications with
relatively little effort. In this work we focus on the ABS language [13] which
inherits the concurrency model of Creol [8, 14] and extends it with the possibil-
ity of grouping objects together, as in JCoBoxes [18]. For simplicity, we do not
consider object groups and assume that objects are independent, and we exclude
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data List〈A〉=Nil | Cons(A,List〈A〉);
data Set〈A〉=EmptyS | Insert(A,Set〈A〉);
data Pairs〈A,B〉=Pair(A,B);
data Map〈A,B〉=EmptyM |

Assoc(Pairs〈A,B〉,Map〈A,B〉);
type FN, Packet=String;
type FNs=Set〈String〉;
type File=List〈Packet〉;
type Catalog=List〈Pairs〈Node,FNs〉〉;
def B lookup〈A,B〉(Map〈A,B〉 ms, A k)=

case ms { Assoc(Pair(k,y),_) ⇒ y;
Assoc(_,tm) ⇒ lookup(tm,k);}

def Bool contains〈A〉(Set〈A〉 s,A e)=
case s {

EmptyS ⇒ False;
Insert(e, _) ⇒ True;
Insert(_, xs) ⇒ contains(xs, e);}

def Node findServer(FN f, Catalog c)=
case c {

Nil ⇒ null;
Cons(Pair(s, fs), r) ⇒

case contains(fs, f) {
True ⇒ s;
False ⇒ findServer(f, r); };}

Fig. 1. Functional Sequential Part of ABS Implementation of P2P Network

interfaces and inheritance. However, we handle them in our implementation. An
ABS program consists of a functional, sequential part (data-type and function)
and an imperative, concurrent part (interfaces, classes, and a main method).
This distinction allows combining encapsulation and data transfer between ob-
jects such that: objects are passed by reference and used for asynchronous calls,
and functional data is used to transfer information between objects. In order to
illustrate our approach, we use a peer-to-peer (P2P) distributed application [14].

Fig. 1 shows (part of) the functional fragment of the P2P program which
includes type definitions (String and Int are predefined) and functions which
can be executed in a standard way. FN defines a file name as a String, and the
content of a File is defined as a list of Packets. Fig. 2 shows the imperative part of
the program. Class Node reflects that peers can act as clients and servers. A P2P
network is formed by a set of interconnected peers which make the files stored in
their database (an object of class DB) available to other peers, without central
coordination. The only coordination is by means of an object of class NetWork,
whose code is not shown due to space limitations. It is enough to know that nodes
learn who their neighbors are by invoking getNeighbors. A node acting as client
triggers computations with searchFile, which first finds a neighbor node s that
can provide the file and then requests the file using reqFile, which in turn makes
a number of activations of the remote method getPacks on s. Whenever possible,
size packets are transferred at a time. The field size is set by the constructor of
class Node and remains constant. Fig. 2 shows also a main method that creates
a configuration with three nodes, two databases and one administrator.

The central concept of our concurrency model is that of concurrent object.
Conceptually, each object has a dedicated processor and encapsulates a local
heap which is not accessible from outside this object, i.e., fields are always ac-
cessed using the this object, and any other object can only access such fields
through method calls. Concurrent objects live in a distributed environment with
asynchronous and unordered communication by means of asynchronous method
calls. Thus, an object has a set of tasks (i.e., calls) to execute and, among them,
at most one task is active and the others are suspended on a task queue.
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1 : db = Assoc(Pair(”a.txt”, Cons(”x”,Nil)),Assoc(Pair(”b.txt”,Cons(”y”,Nil)),EmptyM))
2 : db1 = new DB(EmptyM) ; db2 = new DB(db);
3 : n1 = new Node(db1, 2) ; n2 = new Node(db1, 1) ; n3 = new Node(db2, 1);
4 : admin = new NetWork(n1, n2, n3);
5 : n1 ! setAdmin(admin) ; n2 ! setAdmin(admin) ; n3 ! setAdmin(admin);
6 : n1 ! searchFile(”a.txt”) ; n2 ! searchFile(”b.txt”);

Fig. 2. Concurrent Part of ABS Implementation of P2P Network, and the main method

Process scheduling is by default non-deterministic, but controlled by processor
release points and future variables in a cooperative way. After asynchronously
calling f := o ! m(e), the caller may proceed with its execution without blocking
on the call. Here f is a future variable which refers to a return value which has
yet to be computed. There are two operations on future variables, which control
external synchronization. First, await f? suspends the active task (allowing
other tasks in the object to be scheduled) unless the future variable f has been
assigned a value. Second, the value stored in f can be retrieved using f.get,
which blocks all execution in the object until f gets a value (in case it has not
been assigned a value yet). An unconditional release instruction (not used in
the example) suspends the current task and lets a pending task in.

2.1 A Rule-Based Intermediate Language

We develop our analysis on an intermediate representation (IR) similar to those
for Java bytecode and .NET [3, 9, 19, 21]. The IR of a method (or function) is
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obtained by translating each basic block in its control flow graph (CFG) into a
procedure, defined by means of rules that adhere to the following grammar:

r ::= m(this, x̄, ȳ)← g, b1, . . . , bn.
b ::= x:=e | this .f :=e |x:=new C |call(ct , m(rec, x̄ , ȳ)) | await g | release | x :=y .get
g ::= true | g ∧ g | x? | e op e | match(x, t) | nonmatch(x, t)
e ::= null | a | t | this .f a ::= x | n | a−a | a+a | a∗a | a/a t ::= x | Co(t̄)

where op∈{>, =,≥}, m(this , x̄, ȳ) is the head of the rule, this is the identifier
of the object on which the method or function is executing, g specifies the con-
ditions for the rule to be applicable and b1, . . . , bn is the rule’s body. Calls are
of the form call(ct ,m(rec, x̄ , ȳ)) where ct ∈ {m, b, f} in order to distinguish
between calls to methods, intermediate blocks and functions; rec is a variable
that refers to the receiver object; the variables x̄ (resp. ȳ) are the formal pa-
rameters (resp. return values). For blocks and functions, rec is always this . For
methods, ȳ is either empty or contains a single output variable. Future variables
can be used in await instructions but not in rule guards. Guards match(x, t)
and nonmatch(x, t) simulate case-expressions. We assume x �∈ vars(t). Note
that match(x, t) modifies vars(t) when it succeeds. Terms are constructed using
Co(t̄), where Co is a data symbol and t̄ are the arguments, e.g., Cons(x, y). An
instruction new C(̄t) in ABS is represented in the IR by new C followed by a call
to the class constructor with the corresponding parameters t̄. The translation
from ABS to IR is (almost) identical to that in [3]. A program in the IR consists
of classes, functions, and a main method from which the execution starts. A class
C consists of a set of methods and a set of fields f̄C . A method C.m is defined by
a set of rules with a single rule named C.m (the method entry). The other rules
are intermediate procedures that are used only within the method, with ct = b.
A function is a (global) set of rules that is accessible from any method (with
ct = f) and, therefore, it cannot access nor modify fields. The main method does
not belong to any class. We illustrate the IR by means of the following example.

Example 1. Fig. 3 depicts the IR (left) and the CFG (right) of method reqFile.
Loops are extracted in separate CFGs to enable compositional cost analysis. The
method is represented by four procedures, reqFile, loop, if and if c, each of them
defined by means of guarded rules. inp stands for 〈this , s , fn, f , ps , i , incr , l2 〉 and
out for 〈f , ps , l2 , i , incr 〉. Guards in rules state the conditions under which the
corresponding blocks in the CFG can be executed. When there is more than one
successor in the CFG, we create a continuation procedure and a corresponding
call in the rule. Blocks in the continuation will in turn be defined by means
of (mutually exclusive) guarded rules. As a result of the translation, all forms
of iteration in the program are represented by means of recursive calls. The
parameters of the procedure reqFile are as in the corresponding method, plus
the reference to the this object. When calling a block, we pass as arguments all
local variables that are needed in the block. The heap remains implicit.
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reqFile(〈this , s, fn〉, 〈〉)← 1© f := Nil ,
2© ps := Nil , 3© i := 0 ,
4© incr := 0 ,
5© call(m, lengthNode(〈s, fn〉, 〈l1 〉)),
6© await l1?, 7© i := l1 .get,
8© call(b, loop(inp, out)),

thisDB = this.db;
9© call(m, storeFile(〈thisDB , fn, f 〉, 〈〉)).

loop(inp, out)← i ≤ 0.
loop(inp, out)← i > 0, call(b, if (inp, out)).
if (inp, out)← this .size > i , incr := i ,

call(b, if c(inp, out)).
if (inp, out)← this .size ≤ i , incr := this.size,

call(b, if c(inp, out)).
if c(inp, out)← 10© i := i − incr ,
11© call(m, getPacks(〈s, fn, incr , i〉, 〈l2 〉)),
12© await l2?, 13© ps := l2 .get,
14© call(f, app(〈this , ps, f 〉, 〈f 〉)),

call(b, loop(inp, out)).

1© File f = Nil;
2© Packet ps = Nil;
3© Int i = 0 ;

Fut<List<Packet>> l2 ;

5© l1 = s!lengthNode(fn);
6© await l1?;

0© Fut<Int> l1 ;

7© i = l1.get

4© Int incr = 0 ;

8© loop(i, incr , fn, l2 , ps, f );
9© db!storeFile(fn, f );

yes

i > 0

size > iyes no

no

incr = i incr = size

11© l2 = s!getPacks(fn, incr , i);

10© i = i − incr ;

12© await l2?; 13© ps = l2.get;
14© f = app(ps, f );

Fig. 3. The IR and CFG for method reqFile

3 Cost and Cost Models for Concurrent Programs

We now define the notion of cost we aim at approximating by static analysis.
For this, we need an operational semantics for our language. A state is denoted
by S and includes information on the current state of all objects, including their
heaps, active tasks, etc. Each object in S has a unique identifier. An execution
step takes the form S �b

o S′, in which we move from a state S to a state S′ by
executing instruction b in object o. Thus, we assume a concurrent interleaving
semantics. Traces take the form t ≡ S0 �b0

o0
· · ·�bn−1

on−1 Sn, where S0 is an initial
state in which only the main method is available. Note that from a given state
there may be several possible execution steps that can be taken (since we have
no assumptions on scheduling). In order to quantify the cost of an execution
step, we use a cost model M : Ins �→ R which maps instructions built using the
grammar in Sec. 2.1 to real numbers. Below we discuss several cost models. The
cost of an execution step is defined as M(S �b

o S′) =M(b).
In the execution of sequential programs, the cumulative cost of a trace is ob-

tained by applying a given cost model to each step of the trace. In our setting,
this has to be extended because, rather than considering a single machine in which
all steps are performed, we have a potentially distributed setting, with multiple
objects possibly running concurrently on different CPUs. Thus, rather than ag-
gregating the cost of all executing steps, it is more useful to treat execution steps
which occur on different computing infrastructures separately. With this aim, we
adopt the notion of cost centers [17], proposed for profiling functional programs.
Since the concurrency unit of our language is the object, cost centers are used to
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charge the cost of each step to the cost center associated to the object where the
step is performed. For a given set of objects identifiers O and a trace t, we use
t|O = {Si �bi

oi
Si+1 | Si �bi

oi
Si+1 ∈ t, oi ∈ O} to denote the set of execution

steps that are performed on objects from O. The cost of t w.r.t. a cost model M
and a cost center O is C(t, O,M) =

∑
e∈t|O M(e). Observe that it is also possible

to apply different cost models to different cost centers.
Cost Models. We consider platform independent cost models (e.g., worst-case
execution time is excluded). The following are cost models for approximating
the number of executed instructions (left) and memory consumption (right):

Mi(b)=

⎧⎨⎩
0 b ≡ call(b, _)
Mi(g1) +Mi(g2) b ≡ g1 ∧ g2

1 otherwise
Mm(b)=

⎧⎨⎩
|Co(t̄)| b ≡ x := Co(t̄),

0 otherwise

Mi assigns cost 1 to all instructions except calls to blocks, as they do not appear
in the original program. For memory consumption,Mm measures the size of con-
structed terms where |x| = 0 if x is a variable, |Co(t̄)| = size(Co) + Σti∈t̄|ti|,
and size(Co) denotes the memory required by the data constructor Co. Recall
that objects are meant to be the concurrency units, while data structures are
constructed using terms. A cost model that counts the total number of objects
created along the execution can be define as Mo(b) = 1 if b ≡ new C and
Mo(b) = 0 otherwise. It provides an indication on the amount of parallelism
that might be achieved. A cost model that counts call(m, _), can be used to
infer the task-level of the program [4], i.e., the number of tasks that are spawned
along an execution. This can be used, for example, for finding optimal deploy-
ment configurations. We can also count the number of calls to specific methods
or objects, e.g., by counting call(m, _(o, _, _)) we obtain bounds on the num-
ber of requests to a remote component o. This is useful for approximating the
components’ load. Note that by ’_’ we mean any (valid) expression. The above
cost models can also be used to prove termination of the program by setting the
underlying solver [1] to only bound the number of iterations in loops.

4 The Basic Cost Analysis Framework

Our starting point is a powerful field-sensitive cost analysis framework for se-
quential OO programs [2, 3]. When lifting such framework to the concurrent
setting, the main two difficulties and novelties are: (1) it is widely recognized
that, due to the possible interleaving between tasks, tracking values of data
stored in the heap is challenging. In Sec. 4.1, we present the basic, novel, field-
sensitive size analysis for the concurrent setting, and in Sec. 5 we discuss how
to further improve its precision; and (2) standard recurrence relations (in the
sequential setting) assume a single cost center which accumulates the cost of
the whole execution. In Sec. 4.2, we propose a novel form of recurrence relations
which are parametric on the cost centers to which cost must be assigned.
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4.1 Field-Sensitive Size Analysis for Concurrent OO Programs

The objective of size analysis is to infer size relations which allow reasoning on
how the size of data changes along a program’s execution, which is fundamental
for bounding the number of iterations that loops perform. E.g., if a loop traverses
a list, and we infer that the length of the list decreases at each iteration, then
we can bound the number of iterations by the length of the list. We present the
size analysis in three steps: recall the notion of size measure that maps data
structures to their sizes; present an abstraction which compiles instructions into
size constraints, trying to keep as much information on global data (i.e., fields) as
possible, while still being sound in concurrent executions; and infer input-output
size relations for increasing precision of inter-procedural analysis.

Size Measures. When a program manipulates terms, its cost usually depends
on the size of the terms. E.g., the cost of traversing a list often depends on
its length. We rely on the notion of norms [5] to define the size of a term.
Norms are functions that map terms to their sizes. Any norm can be used in the
analysis, depending on the nature of data structures used in the program. They
can also be synthesized automatically from the program’s type definitions. In
what follows, w.l.o.g., we use the term-size norm, which counts the number of
type constructors in a given term, defined as:

∣∣Co(t1 , . . . , tn)
∣∣
ts

= 1+Σn
i=1

∣∣ ti ∣∣ts
and

∣∣x ∣∣
ts

= x. Note that the size of a variable x is defined as x. In this way, we
account for the size of the term to which x is bounded at runtime. For example,
after executing y = Cons(0, x), the size of x will be 2 plus the size of x. This is
captured by abstracting this instruction to y = 2 + x.

In addition to terms and numerical values, our language includes reference
variables (that point to objects) and future variables. In our context, objects are
intended to simulate concurrent computing entities and not data structures, it is
hence not common that they directly affect loop iterations. Therefore, ignoring
their sizes is sound and precise enough in most cases. A slightly more precise
abstraction distinguishes between the case in which a reference variable points
to an object (size 1) or to null (size 0). The size of a future variable is the same
as the size of the value it holds. This is sound since such variables can be used
only through get, which blocks until the variable has a value.

Abstract Compilation. Modeling shared memory is a main challenge in static
analysis of OO programs. Our starting point is [2], which models fields as local
variables when the field to be tracked satisfies: (1) its memory location does not
change; and (2) it is always accessed through the same reference (i.e., not through
aliases). Both conditions can often be proven statically and the transformation
of fields into local variables can then be applied for many fragments of the
program. If we ignore concurrency, this approach could be directly adopted for
our language. However, concurrency introduces new challenges.

Example 2. Consider the loop in the reqFile method in Fig. 2. Ignoring the await
instruction, the above soundness conditions hold for field size, and hence, we can
track it as if it were a local variable. In a concurrent setting, however, while reqFile
is executing another task in the same object may modify size. Therefore, when
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b αρ(b) ρ′

1 e op e op ∈ {∧, >,≥, =, +,−} αρ(e) op αρ(e) ρ′=ρ
2 e op e op ∈ {∗, /} _ ρ′=ρ
3 t

∣∣ t[x 
→ ρ(x)]
∣∣
ts

ρ′=ρ

4 null | x | this .f | match(x, t) 0 | ρ(x) | ρ(f) | ρ(x)=αρ(t) ρ′=ρ
5 release true ρ′=ρ[f̄C 
→ ρ(f̄C)′]
6 await g αρ′(g) ρ′=ρ[f̄C 
→ ρ(f̄C)′]
7 x := y.get | x := e ρ′(x)=ρ(y) | ρ′(x)=αρ(e) ρ′=ρ[x 
→ ρ(x)′]
8 this .f := e ρ′(f)=αρ(e) ρ′=ρ[f 
→ ρ(f)′]
9 x := new C ρ′(x)=1 ρ′=ρ[x 
→ ρ(x)′]

10 call(b, q(rec, x̄, ȳ)) q(ρ(rec), ρ(x̄·f̄C), ρ′(ȳ·f̄C)) ρ′=ρ[ȳ·f̄C 
→ρ(ȳ·f̄C)′]
11 call(m/f, q(rec, x̄, ȳ)) q(ρ(rec), ρ(x̄), ρ′(ȳ)) ρ′=ρ[ȳ 
→ ρ(ȳ)′]
12 otherwise true ρ′=ρ

Fig. 4. Abstract compilation. ABST(bk:i, ρ)=〈αρ(bk:i), ρ
′〉

analyzing reqFile, we cannot assume that the value of size is locally trackable.
E.g, reqFile may not terminate if method void p() {size = size− 2; } is executing
in parallel, since when await is executed inside the loop, p may change the value
of size to a non-positive value, and thus the loop counter i may not decrement.

Handling fields requires identifying program points in which the shared memory
might be modified by other tasks. This can happen when: (1) release or await
are explicitly executed, and thus allow other tasks (of the same object) to run;
and (2) an asynchronous invocation is issued, and until the called method starts
to execute, the fields of the called object might be changed by other tasks. We
refer to such program points as release points. The above observation suggests
that in a sequence of instructions not including release or await, the shared
memory can be tracked locally. However, the values in the shared memory when
a method starts to execute may not be identical to those when it was called. We
first present a safe abstraction which loses all information at release points and
at method entries. In a second step we handle these points.

An abstract state is a set of linear constraints whose solutions define pos-
sible concrete states. This representation allows describing relations which are
essential for inferring cost and proving termination, e.g., the size of x decreases
by 1 in two consecutive states. The building blocks for this representation are
constraints that describe the effect of each instruction b on a given state. We
refer to such constraints as the abstraction of b. Fig. 4 depicts these abstractions.
In order to abstract an instruction b, we use a mapping ρ from variables and
field names to constraint variables that represent their sizes in the state before
executing b. The result of abstracting b w.r.t ρ is the constraints αρ(b), and a
new mapping ρ′ that refers to the sizes in the state after executing b.

Let us describe the abstraction of some instructions. In Line 7, the instruction
x := e is abstracted into the equality ρ′(x) = αρ(e), where αρ(e) is the size of e
w.r.t. ρ. E.g., if e ≡ Cons(x, y), then Line 3 abstracts e to 1 + ρ(x) + ρ(y). Note
that ρ′(x) (resp. ρ(x)) refers to the size of x after (resp. before) executing the
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instruction. The abstraction of release at Line 5 “forgets” sizes of the fields f̄C .
This is because they might be updated by other methods that take the control
when the current task suspends. The abstraction of await is similar, though
we add to the abstract state the information that the guard g is satisfied upon
completion of await g. When abstracting a call to a block in Line 10, the class
fields are added as arguments in order to track their values. However, when
abstracting calls to methods and functions (Line 11) the fields are not added.
For methods, they are not added because their values at call time might not
be the same as when the method actually starts to execute. For functions, they
are not added since functions are not class members and cannot access fields.
Since we use linear constraints only, non-linear arithmetic expressions (Line 2)
are abstracted to a fresh constraint variable “_” that represents any value. A
program P is transformed into an abstract program Pα, that approximates its
behavior w.r.t. a size measure, by abstracting its rules as follows.

Definition 1 (Abstract Compilation). Given r≡m(this , x̄, ȳ)← g, b1, . . . , bn ∈
P , and an identity map ρ0 over vars(r) ∪ f̄C , the abstract compilation of r is
rα ≡ m(this , Ī, ρn+1(Ō)) ← gα, bα

1 , . . . , bα
n where:

- 〈gα, ρ1〉=ABST(g, ρ0), 〈bα
i , ρi+1〉=ABST(bi, ρi) ; and

- Ī=x̄·f̄C and Ō=ρn+1(ȳ·f̄C) if m is a block; otherwise Ī=x̄ and Ō=ρn+1(ȳ).

Example 3. The following is the abstract compilation of reqFile of Fig. 3 where
the tuple F denotes the fields 〈db,file, catalog,myNeighbors , admin, size 〉:

reqFile(〈this, s, fn〉, 〈〉)← ρ0

f ′ = 1, ρ1 = ρ0[f 
→ f ′]
ps ′ = 1, ρ2 = ρ1[ps 
→ ps′]
i ′ = 0, ρ3 = ρ2[i 
→ i′]
incr ′ = 0 ρ4 = ρ3[incr 
→ incr′]

3© lengthNode(〈s, fn〉, 〈l ′1 〉), ρ5 = ρ4[l1 
→ l′1]
1© true, ρ6 = ρ5[F 
→ F ′]

i ′′ = l ′1 , ρ7 = ρ6[i 
→ i′′]
2© loop(〈this, s, fn, f ′, ps ′, i ′′, incr ′, l2 ,F

′〉, ρ8 = ρ7[f 
→ f ′′, ps 
→ ps′′, l2 
→ l′2,
〈f ′′, ps′′, l′2, i

′′′, incr′′,F
′′〉), i 
→ i′′′, incr 
→ incr′′, F 
→ F

′′
]

thisDB ′ = db′′, ρ9 = ρ8[thisDB 
→ thisDB ′]
4© storeFile(〈thisDB ′, fn, f ′′〉, 〈〉). ρ10 = ρ9

Note that at 1© await is abstracted to true and the information on fields is lost, at
2© the fields are added to the call in order to keep track of their values, however,
when calling a method at 3© and 4©, the abstraction “forgets” this information.

Input-Output Relations. There are relations between variables which cannot
be observed at the rule level. E.g., at 3© above, the relation between the output
variable l′1 of lengthNode and its input variables is not explicit, as it depends
on the functionality of lengthNode. We refer to these relations as input-output
(size) relations, IO relations for short. They describe post-conditions that hold,
upon return, between the sizes of the input and output variables. They can
be essential for bounding loops and the values to which an expression can be
evaluated. The abstract program Pα can be used to infer such relations. For
this, we use techniques developed for sequential programs [5], slightly modified
in order to guarantee that non-terminating computations are approximated with
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true rather than false, since in our setting method calls are asynchronous, and
thus execution immediately returns to the calling site. In what follows, we assume
that IP is the set of such relations for all procedures. The elements of IP take
the form 〈m(this , x̄, ȳ), ψ〉 where ψ is a set of constraints over x̄∪ ȳ. If executing
m on input of size v̄1 results in output of size v̄2, then x̄=v̄1∧ȳ=v̄2|=ψ. We also
require that ψ does not restrict the input, i.e., ∀v̄1∈Z.∃v̄2∈Z.x̄=v̄1∧ȳ=v̄2 |= ψ.

Example 4. In method lengthDB in Fig. 2, the output of lookup is an input to
length. Thus, in order to infer the cost of lengthDB, we need IO relations for
lookup. Using the techniques of [5], we infer that the size of lp is smaller than
that of ms , i.e., 〈lookup(〈this ,ms , k〉, 〈lp〉), {2+lp+k≤ms}〉 ∈ IP .

4.2 Cost Relations Based on Cost Centers

The next step is to generate Cost Relation Systems (CRS) which define the cost
of executing each method as a function of its parameters and the initial state of
the fields when the method starts to execute. The main novelty is that CRS use
cost centers to track the resource usage of the different components separately.
Given a finite set of cost centers c0, . . . , cn, where c0 denotes the cost center of
the main method, we assume the existence of a function CC(o) which returns
statically a set of possible cost centers of object o at a given program point.
This allows instantiating our analysis with different deployment strategies. In
particular, when a group of objects share the processor, as in JCobox [18], then
they belong to the same cost center. In the examples, for simplicity, we assume
that objects of the same class belong to the same cost center, i.e., CC(o) returns
the class of o. For this case, CC is computed automatically using class analysis.

Definition 2 (CRS). Let r ≡ m(this , x̄, ȳ) ← g, b1, . . . , bn ∈ P , and rα ≡
m(this , Ī, Ō) ← gα, bα

1 , . . . , bα
n ∈ Pα. The cost equation of r w.r.t. a cost model

M is m(D0, Ī) = e + q1(D1, x̄1) + . . . + qm(Dm, x̄m), ϕ where:
1. e = c(D0) ∗M(g) + Σn

i=1c(D0) ∗M(bi);
2. ϕ≡gα∧(

∧n
i=1ϕi), s.t. if bα

i ≡ q(rec, x̄, ȳ) then 〈bα
i , ϕi〉 ∈ IP ; otherwise ϕi≡bα

i ;
3. each qi(rec, x̄i, ȳi)∈rα defines qi(Di, x̄i) s.t. Di=D0 if rec≡this, else Di=CC(rec).

The CRS of P , denoted P crs , is the set of cost equations of its rules. The gen-
erated equations are similar to those for sequential programs [4] in that: (i) the
cost is a function of the input; (ii) they are obtained by applying the cost model
M to each instruction in the body of r (point 1); (iii) the size relations gathered
in ϕ define the applicability constraints (point 2); and (iv) a call in the program
induces a call in the CR (point 3). The generated equations are different from
those of sequential programs in that: (a) they contain a cost center parameter
D0 representing the set of cost centers to which the cost will be assigned. The
cost of calls (point 3) is assigned to the cost centers of the calling object; (b) the
cost expressions we accumulate (point 1) are multiplied by c(D), which allow us
to obtain the cost for a particular cost center ci by setting c(D) to 1 if ci ∈ D,
and to 0 otherwise. Given a cost expression e, we let e|D′ be the result of re-
placing c(D) by 1 if D ∩D′ �= ∅ and 0 otherwise. Note that since the generated



Cost Analysis of Concurrent OO Programs 249

CRS does not include concurrency constructs, it can be solved to closed-form
UBs/LBs using existing solvers [1] developed for the sequential setting.

Example 5. The following are selected equations from the CRS resulting from
applying Def. 2 to reqFile and its reachable methods w.r.t. Mi , assuming that
CC(o) returns the class of o. For readability, we have removed all arguments and
intermediate constraints that do not affect the cost and implicitly assumed that
x ≥ 1 for any variable x containing a term (i.e., its size is positive). The first
parameter in the equations is instantiated to the cost center to which the cost
will be assigned. When a method call on an object is performed (annotated as
1©), the cost center gets instantiated with the actual class.

reqFile(Node, s, fn)=c(Node) ∗ 15 + 1©lengthNode(Node, fn)+
loop(Node, fn, i ′′, size) + 1©storeFile(DB) {i′′ ≥ 0}

loop(Node, fn, i , size)=c(Node) ∗ 3 {i ≤ 0}
loop(Node, fn, i , size)=c(Node) ∗ 4 + if (Node, fn, i , size) {i > 0}

if (Node, fn, i , size)=c(Node)∗3+if c(Node, fn, i , incr , size) {i<size, incr=i}
if (Node, fn, i , size)=c(Node)∗3+if c(Node, fn, i , incr , size) {i≥size, incr=size}

if c(Node, fn, i , incr , size)=c(Node) ∗ 10 + 1©getPacks(Node, fn, incr , i)+
app(Node, ps, f )+loop(Node, fn, i ′, size ′)
{ ps+f−1=f ′, i ′=i−incr}

2©lengthDB(DB, fn)=c(DB) ∗ 2 + lookup(DB, dbf , fn) + length(DB, lp)
{lp ≥ 1 , 3 + lp + fn ≤ dbf }

The first equation defines the cost reqFile in terms of those of lengthNode, loop
and storeFile. The expression c(Node)∗15 corresponds to the cost of the instruc-
tions in reqFile which are outside the loop. The second (resp. third) equation
corresponds to the case when i≤0 (resp. i>0) of the while loop condition. The
equations of if correspond to the then (i<size) and else (i≥size) branches where
incr is assigned to i or size and it continues to if c. The equation if c corresponds
to the loop’s body, it accumulates the cost of getPacks and app, and recursively
calls loop. Note that i is decremented by incr units, and that the value of the
field size is lost (we use size ′) due to the await. The accuracy of the analysis
shows up when solving the CRS into closed-forms. None of the above equations
is solvable. Using [1], we only obtain UBs for functions, e.g.:

length(D0 , list) = c(D0) ∗ 3 + nat( list−1
2

) ∗ c(D0) ∗ 6
lookup(D0 ,ms, k) = c(D0) ∗ 2 + nat(ms−1

2
) ∗ c(D0) ∗ 4

The failure in solving the CRS of all methods is due to the loss of information
in the abstract compilation. Let us focus on lengthDB . Substituting the above
UBs in equation 2© results in (with the size relation as above):

lengthDB(DB, fn) = c(DB) ∗ 7+nat( dbf−1
2

)∗c(DB)∗4+nat( l−1
2

)∗c(DB)∗6
The problem is that we cannot bound the value of dbf , since information on
fields has been lost. Therefore, we cannot find the maximal cost of lengthDB .

The next theorem guarantees that an UB (resp. LB) of the CRS is a correct UB
(resp. LB) on the actual cost. Given an equation m and a set of cost centers
D, Ans(m(D, v̄)) denotes all possible answers for m(D, v̄) in the corresponding
CR [1]. The elements of Ans(m(D, v̄)) are symbolic expressions over c(D).
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lengthDB(DB, fn) = c(DB)∗(7+nat( dbfmax−1
2

)∗4+nat( dbfmax−fn
2

−2 )∗6 )

getFile(DB, fn) = c(DB)∗(3+nat( dbfmax−1
2

)∗4 )

lengthNode(Node, fn) = c(Node)∗4+c(DB)∗(7+nat( dbfmax−1
2

)∗4+nat( dbfmax−fn
2

−2 )∗6 )

getPacks(Node, fn, ps, n) = c(Node)∗13+

c(DB)∗(3+nat( dbfmax−1
2

)∗4)+c(Node)∗nat(ps)∗(18+nat(ps+n−1 )∗9 )

reqFile(Node, s, fn) = a© c(Node)∗15+
b© c(Node)∗4+c(DB)∗(7+nat( dbfmax−1

2
)∗4+nat( dbfmax−fn

2
−2 )∗6 )+

c© nat( dbfmax−fn
2

− 2)∗(
d© 17∗c(Node)+

e©
{
c(Node)∗13+c(DB)∗(3+nat( dbfmax−1

2
)∗4 )+

c(Node)∗nat(sizeinit )∗(18+nat( dbfmax−fn
2

− 3 ))∗9+
f© c(Node)∗(2+5∗nat( dbfmax−1

2
)))+ g© c(DB)∗3

Fig. 5. Upper Bounds for Selected Methods using Class Invariants

Theorem 1 (Soundness). Given a program P , a cost model M, and a set of
cost centers D. Then for any trace t starting from an initial configuration, there
exists e ∈ Ans(main({c0})) such that e|D = C(t, D,M).

5 Class Invariants in Cost Analysis

In this section, we propose a generalization of class invariants (see, e.g., [16])
which allows highly improving the accuracy of the size analysis in Sec. 4.1. As
discussed in Sec. 4, release points are problematic since at these points other
task(s) may modify the values of shared fields. However, it is often possible to
gather useful information about shared variables, in the form of class invariants,
which must hold at those points. In sequential programs, class invariants have
to be established by constructors and must hold on termination of all (public)
methods of the class. They can be assumed at (public) method entry but may
not hold temporarily at intermediate states not visible outside the object. In
our context, we need that such invariants hold on method termination and also
at all release points of all methods. This way, we can use them to improve the
abstraction at the release points. In the following, given a class C, ΨC denotes
the class invariant for class C, which is a set of linear constraints over the fields
of C and possibly some constant symbols.

Definition 3. We extend Def. 1 as follow: (1) when abstracting a method rule,
we add ΨC to the abstract rule (just before gα); and (2) we abstract release
(resp. await) to ΨC [f̄C �→ ρ′(f̄C)] (resp. αρ(g) ∧ ΨC [f̄C �→ ρ′(f̄C)]).

Example 6. The following invariants are required to solve the equations in Ex. 5:
(1) In class DB, we need an invariant 0 ≤ dbf ≤ dbfmax , where dbfmax is a
constant symbol which bounds the value of dbf ; and (2) In class Node, we need
an invariant which establishes that size = sizeinit , i.e., field size is initialized
in the constructor and it is never modified. By applying Def. 3 using the first
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invariant, the equations for lengthDB is like that annotated as 2© in Ex. 5 but
including the additional constraint {0 ≤ dbf ≤ dbfmax}. This allows obtaining
the UBs in Fig. 5 for lengthDB , as well as for getFile, lengthNode and getPacks ,
whose costs depend on them. The second invariant is essential in order to obtain
an UB for reqFile. In particular, it is needed in the equation if c in Ex. 5, which
corresponds to the cost of the block that contains the await instruction (and that
introduced inaccuracy in the analysis). By applying Def. 3 using such invariant,
the solver [1] obtains the UB for reqFile in Fig. 5. Let us explain the different
parts of this UB: a© is the cost of the instructions of reqFile excluding those of
the loop; b© is the cost introduced by lengthNode; c© is the number of iterations
of the loop; d©− f© is the cost of each iteration of the loop, where d© is the cost
of the loop’s instructions, e© is the cost of calls to getPacks , and f© is the cost of
calls to app; and g© is the cost of storeFile. As expected, the number of executed
instructions has an asymptotic bound O(dbf 2

max ∗ sizeinit ). The cost on the cost
center Node is O(dbf 2

max ∗ sizeinit ) while that on DB is O(dbf 2
max ). For getPacks

the cost on the cost center DB is O(dbfmax ) while on Node it is O(ps2 ).

6 Experiments: The COSTABS System

We have developed COSTABS, a cost analyzer of ABS programs. It uses [1]
for solving the resulting CR. The system can be tried out online at: http://
costa.ls.fi.upm.es/costabs. Experimental evaluation has been carried
out using several typical concurrent applications: PeerToPeer, our running exam-
ple; BookShop, a web shop client-server application; BBuffer, a classical bounded-
buffer for communicating several producers and consumers; DistHT, a distributed
hash-table, and PingPong, a simple communication protocol.

Table 1 summarizes our experiments. They have been performed on an In-
tel Core i5 at 3.2GHz with 3.1GB of RAM, running Linux. Each program is
analyzed for proving termination and for obtaining an UB on the number of
executed instructions (Mi). For each benchmark, columns #F and #M show,
resp., the number of functions and methods that have been analyzed. Regarding
functions, we have proved termination and found UBs of all of them, without
using class invariants. Column #Mt (resp. #Mub) show the number of meth-
ods for which COSTABS proves termination (resp. finds UBs), without using
invariants. Column #It shows the number of class invariants needed to prove

Table 1. Statistics about the Analysis Process (times are in milliseconds)

Bench #F #M #Mt #Mub #It #Iub Tir Tac Tio Tterm Tub

P2P 11 17 14 6 1 2 9 17 69 1494 1886
BookShop 28 11 11 6 0 3 11 18 66 802 1520
BoundedBuffer 4 8 8 4 0 1 1 2 7 70 86
DistHT 7 8 8 1 0 2 3 5 12 82 100
PingPong 0 6 6 6 0 0 3 3 7 22 22

http://costa.ls.fi.upm.es/costabs
http://costa.ls.fi.upm.es/costabs
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termination. Note that only one invariant (number 2 of Ex. 6) is required. Sim-
ilarly, #Iub is the number of class invariants needed to find UBs. They are all
similar to number 1 in Ex. 6. Note that the whole process is fully automatic.

Columns Tir , Tac , and Tio show, resp., the times taken to build the interme-
diate representation, abstract compilation and inference of IO relations. Columns
Tterm and Tub show, resp., the times taken by [1] to solve the CRS for proving
termination and for obtaining an UB w.r.t.Mi . Proving termination requires less
work than finding UBs, thus, Tterm < Tub. Although the anlyzer is still proto-
typical, we argue that the experiments show that our approach is promising.

7 Conclusions and Related Work

We have presented, to the best of our knowledge, the first cost analysis frame-
work for concurrent programs. To develop the analysis, we have considered an
OO language based on the notion of concurrent objects which live in a distributed
environment with asynchronous communication. Most of our techniques would
be also applicable to other concurrent programming languages. In particular,
the idea of having equations parametric on the cost centers is of general ap-
plicability. The size analysis is tailored for the concurrency primitives of our
language, but similar abstractions could be developed for other languages by
finding correspondences between their concurrency primitives.

Our work is closely related to other resource usage analysis frameworks [11,
12]. Most of such frameworks assume a sequential execution model and thus do
not deal with the main challenges addressed in this paper. Notable exceptions are
[10, 15]. In [15], a live heap space analysis for a concurrent language is proposed,
but for a simple model of shared memory which only considers a particular
type of resource (memory). [10] introduce dynamic matrices for modeling cost
analysis of concurrent programs. The use of cost centers has been proposed in
the context of profiling, but to our knowledge, its use in the context of static
analysis is new. The termination of multi-threaded programs presented in [6], is
based on inferring conditions on the global state which are sufficient to guarantee
termination and are similar to our class invariants. Observe that such conditions
are only one component within our cost analysis framework, which additionally
requires the generation of a new form of recurrece relations and the definion of
cost models for the concurrent setting. When considering cumulative cost models,
as we do in this paper, asynchronous calls can be handled exactly as synchronous
calls without sacrifying precision. This is because, in such cost models, what is
important is to approximate the number of times a method is executed (i.e.,
called), and not how many of them might be running in parallel. In contrast,
when considering noncumulative cost models, information on the lifetime of each
task is important, since it might directly affect the peak consumption of the
corresponding resource. As future work, we plan to integrate in our framework
cost models that are noncumulative [4].
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Static Object Race Detection

Ana Milanova and Wei Huang

Rensselaer Polytechnic Institute

Abstract. We present a novel static object race detection analysis. Our
analysis is data-centric in the sense that dominance and ownership, as
well as object-based reasoning about control, play a crucial role. Our
empirical results show that the analysis scales well and has relatively low
false-positive rate. In some cases, our analysis outperforms the leading
static race detector Chord.

1 Introduction

A multithreaded program contains an object race when two threads invoke meth-
ods on the same object “simultaneously” (i.e., without ordering constraints be-
tween them). An object race is a generalization of a data race [15]. It may or
may not lead to a data race; however, an object race is necessary in order for
a data race to occur. Reasoning about object races is valuable in several ways.
First, it entails reasoning about object structure, in particular dominance-based
ownership structure [3], which may facilitate localization and correction of con-
currency bugs. Second, it complements data race detection because object races
may expose hidden data races (e.g., data races on internal objects of library
classes, which typically are not reported by data race detectors).

In this paper we present a novel static analysis for object race detection.
Dominance, as well as object-based reasoning about control, play a crucial role.

Dominance is defined in terms of the notion of object graph. Nodes in the
object graph are objects, and edges capture references between those objects.
An edge links object i to object j if i has a field that refers to j, or a variable
in a method invoked on receiver i, refers to j. Object i dominates (or owns)
j if all paths from the root of the object graph to j go through i. Dominance
plays an important role in object race detection. Namely, synchronization on a
dominator i protects all objects j internal to i’s dominance boundary. Conversely,
lack of synchronization on i may expose object races deep in the boundary of
i. Fig. 1 shows a program and Fig. 2 shows an abstract object graph for this
program. In this example, allocation sites j, m, b, t and w are executed many
times, resulting in many concrete objects. A typical static abstraction scheme
maps every concrete object to its allocation site, thus these concrete objects are
mapped to the same abstract objects j, m, b, t, and w.

Additionally, we define the notion of the call graph. Nodes in the call graph
are tuples i.m where i is an object and m is a method name; the tuple denotes
that method m executes on receiver object i. The edges represent calls: there
is an edge from i.m to j.n if method m executing on receiver i calls method

H. Yang (Ed.): APLAS 2011, LNCS 7078, pp. 255–271, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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n on receiver j. This object-based call graph is natural for object-oriented lan-
guages where objects and control are inherently intertwined and synchronization
is naturally object-based. It facilitates object race detection. For example, when
control descends into i.m, if m holds the lock on i, this lock protects not only
i but all objects j dominated by i, that are accessed along the call chain from
i.m. Fig. 2 shows the abstract call graph for the example program.

class J extends Thread {
static C c; int wId;
static void main(String[] arg) {
c = new C(); c

for (int num=1; num<=3; num++) {
c.inc();
for (int wID=0; wID<num; wID++) {
J j = new J(); j

j.wId = wID;
j.start();

}
}
}
public void run() {
M m = new M(); m

m.init(c,whId); c.addThread(m);
m.go();

}
}

class C {
W[] a = new W[10]; a

int num = 0;
synchronized void inc() {
W w = new W(); w

a[num++] = w;
}
synchronized void addThread(M m) { ... }
synchronized W getW(int i) {
W w = a[i]; return w;

}
}

class W {
int count = 0; S s = ...;
void update(H h) {
this.count++; s.put(h);

}
synchronized get() {
return s;

}
}

class M {
int wId; C c;

T[] b = new T[10]; b

void init(int wID, C c) {
this.wId = wID; this.c = c;

}
void go() {
T t = new T() t

b[0] = t; t.init(wId,c); t.process();
}

}

class T {
int wId; C c; W w;
void init(int wID, C c) {
wId = wID; this.c = c;
w = c.getW(wId);

}
void process() {
S s = w.get(); ... w.update(new ...);

}
}

Fig. 1. Example program

Our analysis classifies objects as distributed or owned. A distributed object is
dominated only by the root of the object graph. In contrast, an owned object
is dominated by at least one object (owner). The analysis first identifies races
on distributed objects, and then descends into the dominance boundary of each
object to identify races on owned objects. The main intuition is that in order



Static Object Race Detection 257

rroot 

j c 

m 

a 

j

w 

t 

b 

j

tttt
bbbb

ttttt

aaaaaa

cccccccc

wwww

mmmmmmmmmmmm

… 

… 

… 

cc

rroot.main 

j.run c.inc 

j run
ncccc

a.wr 

m.go mmmmm.g

c.getW 

w.get 

m.init niiiiittt

t.init t.process t.proccccccceeeeees

c ge

w.get

p

niiiittttt

t.innittttttb.wr 

a.rd a.rrrrd
w.update 

Fig. 2. Abstract object and call graphs for example program

to have a race on an owned object, we must first have a race on its dominator
(owner). The analysis is best illustrated by an example. Consider Fig. 1 (modeled
after benchmark SPECjbb). Method main forks multiple threads that act on the
C (Company) object stored in static field c. Each thread creates a M (Transac-
tionManager) object which in turn creates multiple T (Transaction) objects each
accessing the C object and the W (Warehouse) objects. Our analysis identifies
objects w, c and m as distributed (they are circled in the object graph in Fig. 2).
There are two object races on w: 〈w, get, update〉 and 〈w, update, update〉. There
are no races on c because all accesses to c are synchronized, and there are no
races on m because each m is accessed only by its creating thread. The analysis
proceeds to identify races in the boundary of w that are triggered by the two
object races on w, 〈w, get, update〉 and 〈w, update, update〉. The lack of races on
c entails that there are no races on a — a is owned by c and all accesses to a are
protected by the lock on owner c. The lack of races on m entails that there are
no races on owned t and b.

We have implemented the analysis and present results on several benchmarks.
Our analysis presents relatively low false-positive rate and runs in less than 1
minute on all but one benchmark. On most benchmarks our analysis performs
comparably to Chord [9], the leading static data race detector. On several bench-
marks our analysis outperforms Chord, in some cases significantly.

The rest of the paper proceeds as follows. Section 2 formalizes the notions of
object graph and call graph and presents a static analysis (abstract interpreta-
tion [4]) that infers safe abstract object and call graph. Section 3 describes the
dominance inference analysis. Section 4 presents the object race detection anal-
ysis. Section 5 describes our implementation and experience with the analysis,
Section 6 discusses related work and Section 7 concludes the paper.

2 Formal Account of Object Graphs

We explain our algorithm in terms of a core Java-like calculus. Throughout the
paper we will use the following notation for graphs. An object graph G is a pair
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cd ::= class C extends D {fd md} class
fd ::= τ f field
md ::= τ m(τ x){τ z s; return y} method
s ::= s; s | x = new C() | x = this.f statement

| this.f = y | x = y.m(z)
τ ::= C type

T ::= tS thread
H ::= [] | H[i �→ o] heap
S ::= ε | 〈m F s〉S stack
F ::= [] | F [y �→ i] frame
o ::= C(i) object

Fig. 3. Syntax

(N, E) where N is a set of objects ranged over by variables i, j, k, l and E
is a set of directed edges written i � j. We write i ∈ G and i � j ∈ G to test,
respectively node and edge membership. A call graph C is a pair (N, E) where
N is a set of tuples written i.m, where i is an object and m is a method, and E
is a set of directed edges written i.m � j.n . The meaning of a call graph edge is
that method m invoked on receiver object i calls method n on receiver object j.
Again, we write i.m ∈ C and i.m � j.n ∈ C to test membership.

2.1 Concrete Semantics

For brevity, we restrict our formal attention to a core calculus in the style of [14]
whose syntax appears in Fig. 3. The language models Java with a syntax in A-
normal form. Fields are strongly private. Array accesses are modeled by special
methods rd and wr — array read x=y[i] is treated as method call x = y.rd() and
array write x[i]=y is treated as x.wr(y); index i is irrelevant for our purposes and
is omitted. Throughout the paper, metavariables m and n range over all method
names and rd and wr. Features not strictly necessary are omitted.

The concrete semantics operates over configurations of the form H ; T ; G; C; P
where H is a single heap, T is a collection of threads, G is a summary object
graph, C is a summary call graph and P holds auxiliary information necessary
to construct C. A heap is a mapping from indices, ranged over by meta-variables
i, j, k, l, to objects. Each thread T has its own stack S and a unique thread
identifier t. A stack is a sequence of frames 〈m F s〉 consisting of a method
name m, a mapping F from variables to locations and a statement s. An object
o = C(i) consists of a class C and values i for the object fields. An object graph
G summarizes all references between objects. A call graph C summarizes all
method calls between objects.

We write i to denote a sequence of indices, τ z for a sequence of local variable
declarations, etc. We write 0 to denote the null reference.

Following [14], a multi-threaded Java program is modeled as a fixed set of
threads T , each of which starts with a call to a run method, and terminates
when the run method returns. The reduction relation l−→t represents a step
in the semantics; l is an action label and t is the identifier of the thread that
executed that action. We use action labels on methods calls →i.m (call), and
on method returns ←i.m (return), as well as the empty label ε. Later in the
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paper, labels are used to define traces and object races. Thread scheduling is
modeled as a non-deterministic choice where each step picks one of the threads
for reduction (see [14] for the rule). Due to space constraints, the rules of the
concrete semantics are not shown here.

2.2 Abstract Semantics

We assume a may points-to analysis that computes a safe approximation of
the heap Ĥ , collection of threads T̂ , and each stack Ŝ. The abstract semantics
computes safe approximations of G and C, denoted Ĝ and Ĉ respectively. As
Ĥ and Ŝ are conservative approximations, the semantics operates on sets of
abstract objects. Thus, F̂ (x) evaluates to a set of abstract objects, not to a single
object. Similarly, fields of an object in Ĥ are sets of references (denoted I). We
assume that all allocation sites are labelled with an unique identifier.

The abstraction function α is specific to our points-to analysis and is chosen
so that α(i) = i′ where i′ is the index of the allocation site that created i. The
abstraction applies to threads as well: α(t) = t′ where t′ is the index of the
allocation site that created the java.lang.Thread object that started t’s run. α
acts on G in the obvious way: α(G) = (N, E), where N = {α(i) | i ∈ G} and
E = {α(i) � α(j) | i � j ∈ G}. Similarly, α acts on C: α(C) = (N, E) where
N = {α(i).m | i.m ∈ C} and E = {α(i).m � α(j).n | i.m � j.n ∈ C}.

As the points-to analysis is safe, the following two conditions hold at every
step. The first condition ensures the safety of variables, and the second ensures
the safety of fields.

F (x) = i ⇒ α(i) ∈ F̂ (x)
H(i) = C(...kf ...) ⇒ Ĥ(α(i)) = C(...If ...) ∧ α(kf) ∈ If

The rules of the abstract semantics use Ĥ and F̂ and compute Ĝ and Ĉ. We
write Ĝ += i � j to denote the addition i and j to the nodes of Ĝ and i�j to the
edges of Ĝ. Similarly, we write Ĉ += i.m � j.n to denote the addition of i.m and
j.n to the nodes of Ĉ, and i.m�j.n to the edges of Ĉ. Auxiliary function dispatch
takes as argument the class of the receiver C and the call site id c and returns
the run-time target n.

Fig. 4(a) (left column) shows the rules for constructing object graph Ĝ.
(anew) adds new edges to Ĝ from every abstract receiver i of current frame
m, to the abstract object j created at allocation site j. Rule (acall) adds new
edges to Ĝ from every abstract object k in the points-to set of y, to every j in
the points-to set of an actual argument z, and from each abstract receiver i of
method m, to each j in the points-to set of the return variable of n, retn. Note
that calls through this, e.g., this.n(z), do not add edges to Ĝ. This is correct
because when the call is through this the relevant abstract edges are already in
Ĝ and there is no need to add them again.

Fig. 4(b) (right column) shows the rules for constructing call graph Ĉ. The
first two rules compute sets P̂k.n, the set of caller tuples for k.n. (acall) adds
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(anew)

x = newj C() in method m ⇒
Ĝ += {k � j|k ∈ F̂ (thism)}

(acall)

c: x = y.n(z), y �= this, in method m ⇒
foreach k ∈ F̂ (y)

Ĥ(k) = C(...) n = dispatch(C, c)

Ĝ += {k � j | j ∈ F̂ (z) ∧ j ∈ j}
Ĝ += {i � j | i ∈ F̂ (thism) ∧ j ∈ F̂ (retn)}

(a) Object graph Ĝ.

(acall)

c: x = y.n(z), y �= this, in method m ⇒
foreach k ∈ F̂ (y)

Ĥ(k) = C(...) n = dispatch(C, c)

P̂k.n += {i.m | i ∈ F̂ (thism)}
(acallthis)

c: x = this.n(z) in method m ⇒
foreach k ∈ F̂ (y)

Ĥ(k) = C(...) n = dispatch(C, c)

P̂k.n += P̂k.m

(acall) and (acallthis)

c: x = y.n(z) in method m ⇒
foreach k ∈ F̂ (y)

Ĥ(k) = C(...) n = dispatch(C, c)

Ĉ += {i.m � k.n | i.m ∈ P̂k.n}

(b) Call graph Ĉ.

Fig. 4. Ĝ, Ĉ, and each P̂k.n are initialized to ∅. The rules (i.e., transfer functions) are
applied iteratively until they reach fixpoint.

i.m, where i is an abstract receiver of m, to P̂k.n. Rule (acallthis) adds P̂k.m,
the set of caller tuples for k.m to P̂k.n. The last rule, applied to both (acall)

and (acallthis), adds edges to Ĉ from each tuple i.m in P̂k.n to k.n. Edges
i.m � k.n reflect that m, called on receiver i, calls n on receiver k (the edges
“bypass” chains of calls on k through this). As it is customary with abstract
interpretations, the rules (i.e., transfer functions) are applied repeatedly until
P̂k.n and Ĉ reach fixpoint.

Note the explicit distinction of (acall) and (acallthis). A naive analysis
will treat them identicaly, i.e., y.n() in method m would lead to edges from every
tuple i.m where i ∈ F̂ (thism) to every tuple j.n, where j ∈ F̂ (y) regardless of
whether y is this or not. F̂ (thism) typically refers to a set of abstract objects.
For example, if F̂ (thism) is {i, j} and the call is this.n(), the naive analysis would
lead to edges i.m� i.n, i.m� j.n, j.m� i.n and j.m� j.n, when clearly, only the first
and the last are feasible. A less naive analysis may make the distinction between
(acall) and (acallthis), and at (acallthis) only create edges i.m�i.n, where
i ∈ F̂ (thism). This is not sufficient, because abstract edge i.m�i.n may represent
a call through this on the same concrete object, or a call from one concrete object
i′ to a different concrete object i′′ where both i′ and i′′ are mapped to the same
abstract i. Our analysis must capture transfer of control between distinct objects
(i.e., inter-object transfer of control); by propagating the tuple that starts the
chain of calls through this, it captures all inter-object transfer of control.
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3 Dominance Inference Analysis

This section outlines dominance inference analysis and states its correctness
results. This analysis is at the heart of object race detection (Section 4), but its
details are beyond the scope of this paper. More details are available in [7].

We begin the description with several definitions. Let G be any directed graph.
A path is written as p = n0 �n1 �n2 � . . . nm−1 �nm; the trivial path is written as
n0 and a self-loop is written as n0 � n0. A root for G is a node r ∈ G such that
for all nodes n ∈ G there is a (possibly trivial) path from r to n. A boundary for
a node n ∈ G is any graph Bn ⊆ G such that n is a root of Bn. We assume that
G has root root. A node n ∈ G dominates node n′ ∈ G if all paths from root
to n′ go through n. The dominance boundary for a node n ∈ G is the maximal
boundary Bn such that for all nodes n′ ∈ Bn, n dominates n′ in G. We denote
the dominance boundary of n ∈ G as Dn.

3.1 Dominance Boundary

Dominance boundary analysis takes as input the abstract object graph Ĝ and
abstract object i, and computes B̂i ⊆ Ĝ, the abstract dominance boundary of i.
The following theorem holds for B̂i:

Theorem 1. Let G be any object graph and i be any object in G. Let B′
i be any

boundary of i in G. If α(B′
i) ⊆ B̂α(i) then B′

i ⊆ Di.

The theorem states that the computed B̂α(i) safely approximates the dominance
boundary of i. That is, for any concrete boundary B′

i whose abstract represen-
tative is included in B̂α(i), B′

i is included in Di, or in other words, i dominates
in G all of B′

i’s nodes. Consider our running example. The abstract dominance
boundary of object m, B̂m, includes edges m � b , m � t and b � t . The theorem
states that every concrete m dominates the b and t objects it refers to.

3.2 Minimal Boundaries

Minimal boundary analysis takes as input an abstract object graph Ĝ and an
edge i � j ∈ Ĝ, and returns a set of objects, which we denote by m̂inBi�j . Each
node k ∈ m̂inBi�j is a root of a dominance boundary B̂k containing i�j. In our
running example m̂inBb�t equals {m}. Edge b� t is contained in the boundary of
root as well; however, the boundary of m is the minimal boundary. As another
example, m̂inBt�w equals {root}.

Let G be any concrete object graph. We say that k ∈ G covers j ∈ G if for
every path p from k to j, p = k � · · · � j, α(p) ∈ B̂α(k). The following theorem
ensures the safety of m̂inB:

Theorem 2. Let G be any concrete object graph and let i � j ∈ G be any edge.
There exists k ∈ G, k �= j, such that (1) α(k) ∈ m̂inBα(i�j) and (2) k covers j.
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The theorem guarantees the safety of the minimal boundary analysis. It states
that m̂inBi�j “covers” every concrete edge represented by i � j. In other words,
for every concrete edge, we consider at least one root (and its boundary) that
abstracts a dominator of that concrete edge (although not necessarily the im-
mediate dominator). The theorem below ensures the minimality of m̂inB:

Theorem 3. Let i � j ∈ G be any edge. Let k ∈ G, k �= j be such that (1)
α(k) ∈ m̂inBα(i�j) and (2) k covers j. For every k′ if k dominates k′ and k′

covers j, then α(k′) ∈ m̂inBα(i�j).

Informally, the theorem states that if there is a dominator k′ which is closer than
k, and k′ covers j, then α(k′) will be contained in m̂inB.

4 Object Race Detection

We begin with the definition of an object race. In the style of [14], the execution
of the program is viewed as a trace Tr of events Tr = e1, e2 · · · en performed by
different threads. As in [14], an event is a tuple e = (H, T , l, t) which consists of
a partial configuration H ; T , an action label l and a thread id t. An object race
occurs when an event with a method call→j.n occurs, and there is an outstanding
call j.n′ on the same receiver j made by a different thread (essentially, this is
the complement of atomic set serializability as defined in [14]).

Definition 1. There is an object race, denoted by 〈j, n, n′〉, when trace Tr con-
tains event e = (H, T , j.n, t), such that ∃t′S ∈ T where t′ �= t and 〈n′ F s〉 ∈ S
and F (this) = j.

For convenience, we extend the above notation for events with calls to include
the caller tuple. Namely, let event e correspond to step H ; T ; G; C; P

→j.n−−−→t

H ′; T ′; G′; C′; P ′. Instead of e = (H, T ,→ j.n, t) we write e = (H, T , i.m � j.n, t)
where i.m = P ′ (i.e., i.m started the chain of calls through this on receiver j).

An object race 〈j, n, n′〉 entails that there are paths p = t.run � · · · � j.n ∈
C and p′ = t′.run � · · · � j.n′ ∈ C, where t′ �= t. Our object race detection
analysis (Section 4.3) traverses pairs of abstract paths p=t.run� · · ·�j.n ∈ Ĉ and
p′=t′.run� · · ·�j.n′ ∈ Ĉ, where abstract t and t′ are not necessarily different, and
discovers object races. The analysis uses reentrancy analysis (Section 4.1), and
lock analysis (Section 4.2) to avoid infeasible races. Non-reentrancy of edge i � j
guarantees (informally) that no two threads can execute events on i � j; thus,
i.m � j.n ∈ p and i.m′ � j.n′ ∈ p′ does not contribute an object race on j. Lock
analysis associates locksets with events; non-empty intersection of two locksets
guarantees (again informally) that events are executed serially.

4.1 Reentrancy Analysis

Reentrancy analysis computes predicate reentrant : i�j ∈ Ĝ→ {true, false} with
the following properties. Let i�j be any concrete edge, in any G. If reentrant(α(i�
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j)) equals false, then (a) i creates j due to (dnew) and (b) trace Tr does not
contain a pair of events e = (H, T , i.m � j.n, t) and e′ = (H ′, T ′, i.m′ � j.n′, t′)
such that t′ �= t. Informally, if an edge is not reentrant, no two distinct threads
can execute events on it.

We compute reentrant by first computing two sets of edges, Fields and Flows .
Set Fields contains all abstract field edges:

Ĥ(i) = C(...If ...) ∧ j ∈ If ⇒ Fields += i � j

Set Flows contains all edges that capture object flow (i.e., object transfer from
one object to another). Set Flows is computed during the construction of Ĝ;
specifically, rule (acall) in Fig. 4(a) (left column) is augmented with the fol-
lowing two lines after the last line Ĝ += ...:

Flows += {k � j | j ∈ F̂ (z) ∧ j ∈ j}
Flows += {i � j | i ∈ F̂ (thism) ∧ j ∈ F̂ (retn)}

Objects j passed as arguments or returned at calls x = y.m(z), y �= this, are
transferred, and the resulting edges are added to Flows . We now define reentrant :

reentrant(i � j) =
{

true if i � j ∈ Fields ∨ i � j ∈ Flows
false otherwise

In our running example, edge j �m is not reenetrant. In every call to run, thread
j creates a new m object; m is not stored as a field of j and m does not flow
back to j. It is impossible for one thread j to access another thread’s m. Note
that the m objects are not thread-local, because they escape to a field of static
object c.

One can show that reentrant(α(i � j)) = false implies properties (a) and (b)
stated at the beginning of this section. To show (b), suppose that there exists
an edge i � j in some G, such that reentrant(α(i � j)) = false, and the trace
contains events on i � j e = (H, T , i.m � j.n, t) and e′ = (H ′, T ′, i.m′ � j.n′, t′)
such that t′ �= t. Let thread t create j, and consider thread t′ and method m′.
Roughly, m′ can obtain a reference to j through object creation (rule (dnew)),
flow (rules (dcall) and (dret)) or field read (x = this.f); object creation is
impossible because t created j, flow is impossible as well because then we would
have had α(i�j) ∈ Flows and therefore reentrant(α(i�j)) would have been true,
and field read is impossible, because then we would have had α(i � j) ∈ Fields
and again, reentrant(α(i � j)) would have been true.

4.2 Lock Analysis

The lock analysis computes a map L̂ from abstract call graph edges to locksets.
L̂ has the following property. Consider a pair of events with calls on object j:
e = (H, T , i.m � j.n, t) and e′ = (H ′, T ′, i′.m′ � j.n′, t′) such that t′ �= t. L̂(α(i.m �

j.n)) ∩ L̂(α(i′.m′ � j.n′)) �= ∅ implies that j.n and j.n′ must be executed serially,
or in other words, that events e and e′ do not contribute an object race 〈j, n, n′〉.
Informally, a non-empty intersection of two locksets guarantees serializability of
the represented concrete events.
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Source and Target Locksets. The first part of the lock analysis associates
two sets, Slc (source lockset), and Tl c (target lockset) to every call site c. Source
lockset refers to the source tuple i.m, and target lockset refers to the target
tuple k.n in the call graph edge due to c. For example, call c in synch (this) {
...c: y.n(z)...} in method m, leads to this being in Slc. this refers to the receiver
of m; thus, for every edge i.m � k.n due to c, the executing thread holds the lock
on i before descending into the execution of k.n.

All sets Slc and Tlc are initialized to ∅ and updated as follows. If c occurs in
a method m declared synchronized, then this is added to Slc. If the target at c is
declared synchronized, then this is added to Tlc. Additionally, we consider four
patterns of usage of synchronized blocks. We note, however, that even without
considering synchronized blocks, the lock analysis will be reasonably powerful,
because synchronization in Java is naturally object-based (i.e., it is achieved by
declaring methods as synchronized).

Self locking occurs when the lock variable is this. We add this to Slc when the
receiver variable y �= this; we add this to Tlc when the receiver variable is this.

synch (this) {...c: x = y.n(z)...} ∧ y �= this ⇒ Slc += this
synch (this) {...c: x = this.n(z)...} ⇒ Tlc += this

Global locking occurs when the lock variable lock is a static field, which is ini-
tialized exactly once during class initialization: static C lock = new C(); l .

synch (lock) {...c: x = y.n(z)...} ⇒ Tlc += l

Local-object locking occurs when the lock variable lock is an instance field, which
is initialized exactly once during object initialization: there is a field C lock; and
lock = new C(); l occurs in the constructor. We have:

synch (lock) {...c: x = y.n(z)...} ∧ y �= this ⇒ Slc += l

Client-side locking occurs when the lock variable y is the receiver at the call.

synch (y) {...c: x = y.n(z)...} ⇒ Tlc += this

When y is a local variable, the addition of this is safe because stack locations
in Java do not have aliases. When y is an instance field, however, the addition
of this is not necessarily safe. In bytecode synch (f) {...x = f.n(z)...} becomes
z = this.f; synch (z) {...w = this.f; w.n(...)...} and there could have been a write to
f between the two reads. We add this to Tlc only when our analysis proves that
it is safe (e.g., f is initialized once in the constructor and is readonly afterwards).

Fig. 5 illustrates the above patterns of usage of synchronized blocks.

Map L̂. The second part of the lock analysis computes L̂, a map from call
graph edges to locksets. The elements of a lockset are abstract objects plus
this. For example, suppose that L̂(i.m � j.n) = {l, this} where l is a global lock.
The analysis guarantees that for every concrete edge i′.m � j′.n represented by
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class Account
AccountImpl acc = ...;
void update(int amt) {

synch (this) {
c: x = acc.get();

acc.put(amt+x);
}

}
(a) Self locking:
Slc = {this},Tl c = ∅

class Account
AccountImpl acc = ...

Object lock = ... l

void update(int amt) {
synch (lock) {

c: x = acc.get();
acc.put(amt+x);

}
}

(b) Local-object locking:
Slc = {l}, Tl c = ∅

class Account
AccountImpl acc = ...
void update(int amt) {

synch (acc) {
c: x = acc.get();

acc.put(amt+x);
}

}
(c) Client-side locking:
Slc = ∅,Tlc = {this}

Fig. 5. Patterns of usage of synchronized blocks

(acall)

c: x = y.n(z), y �= this, in method m ⇒
foreach k ∈ F̂ (y)

Ĥ(k) = C(...) n = dispatch(C, c)

P̂k.n += {(i.m, Slc,Tlc) | i ∈ F̂ (thism)}
(acallthis)

c: x = this.n(z) in method m ⇒
foreach k ∈ F̂ (y)

Ĥ(k) = C(...) n = dispatch(C, c)

P̂k.n += {(i.m′,Sl ∪ Slc,Tl ∪ Tlc) |
(i.m′,Sl , Tl) ∈ P̂k.m}

(acall) and (acallthis)

c: x = y.n(z) in method m ⇒
foreach k ∈ F̂ (y)

Ĥ(k) = C(...) n = dispatch(C, c)

foreach (i.m,Sl ,Tl) ∈ P̂k.n

lockset = Tl ∪ Tlc
if i � k /∈ Flow ∨ i � k ∈ B̂i

if this ∈ Sl ∪ Slc
lockset += i

lockset += (Sl ∪ Slc)\{this}
Ĉ += {i.m � k.n | (i.m, Sl ,Tl) ∈ P̂k.n}
L̂′ = L̂[i.m � k.n 	→ S], where

S = L̂(i.m � k.n) ∩ lockset

Fig. 6. Lock analysis. L̂(i.m � j.n) are initialized to the maximal set of locks. The rules
are applied iteratively until they reach fixpoint.

i.m � j.n, the thread executing the edge holds the lock of l and the lock of j′

before descending into the execution of j′.n.
The analysis (Fig. 6) extends P̂k.n to hold caller tuples i.m and the source

and target locksets associated with i.m. (acall) records Slc and Tlc with i.m.
(acallthis) propagates the locksets of caller tuples down the this-call chain.
For example, consider a method m which contains synch (lock) {... c: y.n ()...},
where lock is a global lock that points to l, and, in turn, n contains a call c′:
this.n′(). The analysis creates call graph edges i.m � j.n′ where i is an abstract
receiver of m, and j′ is a receiver at call site c′. The lock analysis propagates
Slc = ∅ and Tl c = {l} to c′ with i.m; clearly, the call to j.n′ from i.m is protected
by the global lock.

The last rule (right column in Fig. 6) associates locksets to call graph edges.
When adding an edge to Ĉ, it also computes a lockset, lockset , for that edge.
The most interesting aspect of this rule is that Sl is propagated to lockset only if
i�k is not in Flows or it is in the boundary of i. This is necessary to ensure safety
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of the analysis. If i�k is in Flows and i � k is not in the boundary of i, abstract
object i may refer to different concrete objects, say i′ and i′′, with concrete edges
i′ � k and i′′ � k both represented by the same abstract edge; thus, at runtime,
this would refer to i′ along edge i′�k, and to i′′ along edge i′′�k; if one thread
executes events along the first edge, and another thread executes events along
the second edge, k remains unprotected. Analogous reasoning applies when Sl
contains a local-object lock l. For example, consider Fig. 5(b). Let update be
called with abstract receivers i and j, and let k be the abstract AccountImpl
object. Assuming i � k ∈ B̂i, we have L̂(i.update � k.get) = {l}.

The lock analysis is safe but not complete. It exploits the fact that synchro-
nization in Java is naturally object-based (i.e., through this), and focuses on the
“specialness” this. The special handling of this is what sets our analysis apart
from other lock analyses such as [8] and [10] which aim at generality and appear
to treat this as a regular reference variable. Our analysis is able to handle the
vast majority of cases handled by the more complex analyses such as [8]. The
empirical results confirm this conjecture. Furthermore, our analysis is extensible,
as one can easily add new patterns of synchronized blocks.

4.3 Object Race Detection Analysis

The object race detection analysis is shown in Fig. 7. For ease of presentation,
we make the following simplifying assumptions. First, there is a single static
thread-fork site y.start, and it is located in main, second, the points-to set of y
contains a single abstract object t, and three, run contains no calls through this.
The analysis can be extended to handle arbitrarily many and arbitrarily located
thread-fork sites, arbitrary points-to sets of y, and run methods that contain
calls through this. Our implementation handles all cases.

The analysis computes a set of abstract races R. The following holds for R.

Theorem 4. For every object race 〈j, n, n′〉 in trace Tr, 〈α(j), n, n′〉 ∈ R.

Procedure AllRaces is the main driver. First, it identifies races on distributed
objects (line 1); second, it descends into the boundary of each i to identify
races on owned objects (lines 3-6). Procedure DistributedRaces maintains sets
St and St′ , which represent the accesses made by an arbitrary pair of threads
t and t′. Note that each access is recorded with its lockset. Lines 3-12 traverse
Ĉ starting at t.run (i.e, the single thread-fork site y.start). The interesting part
of this traversal is that j.n is added to St′ only if i�j is reentrant; if i�j is not
reentrant, then threads cannot race on j along this edge (recall Section 4.1).
In addition, DistributedRaces traverses Ĉ starting at root.main and discovers
accesses due to the main thread (lines 13-20). Finally, it computes and returns
the set of races on distributed objects (line 21-22).

Procedure Reach takes as input a tuple k.m′ and records all accesses j.n
reachable from k.m′ within the dominance boundary of k, B̂k. j.n is recorded
in S only if k is a minimal boundary of i�j (recall minimal boundaries form
Section 3.2). If k is not a minimal boundary, then there exists a smaller boundary,
say of k′. The analysis will first discover races on the “closer dominator” k′;
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procedure DistributedRaces(Ĝ, Ĉ)
output R
[1] R = ∅, W = {t.run}
[2] St = ∅, St′ = ∅
[3] while W �= ∅
[4] remove i.m from W , mark i.m visited

[5] foreach i.m � j.n ∈ Ĉ

[6] if root ∈ m̂inB i�j

[7] if reentrant (i � j)

[8] St += (j.n, L̂(i.m � j.n))

[9] St′ += (j.n, L̂(i.m � j.n))
[10] else

[11] St += (j.n, L̂(i.m � j.n))
[12] if j.n not visited then W += j.n

[13] W = {root.main}
[14] while W �= ∅
[15] remove i.m from W , mark i.m visited
[16] if i.m = t.run continue

[17] foreach i.m � j.n ∈ Ĉ

[18] if root ∈ m̂inB i�j

[19] St′ = += (j.n, L̂(i.m � j.n))
[20] if j.n not visited then W += j.n

[21] R += {〈j, n, n′〉 | (j.n, ls) ∈ St∧
(j.n′, ls′) ∈ St′∧
ls ∩ ls′ = ∅}

[22] return R

procedure Reach(k.m′, Ĝ, Ĉ)
output S
[1] S = ∅, W = {k.m′}
[2] while W �= ∅
[3] remove i.m from W , mark i.m visited

[4] foreach i.m � j.m ∈ Ĉ s.t. i � j ∈ B̂k

[5] if k ∈ m̂inB i�j

[6] S += (j.n, L̂(i.m � j.n))
[7] if j.n not visited then W += j.n
[8] return S

procedure AllRaces(Ĝ, Ĉ)
output R

[1] R = DistributedRaces(Ĝ, Ĉ)
[2] while R changes
[3] foreach new race 〈i, m, m′〉 ∈ R

[4] St = Reach(i.m, Ĝ, Ĉ)

[5] St′ = Reach(i.m′, Ĝ, Ĉ)
[6] R += {〈j, n, n′〉 | (j.n, ls) ∈ St∧

(j.n′, ls′) ∈ St′∧
ls ∩ ls′ = ∅}

[7] return R

Fig. 7. Object race detection

eventual races with j.n will be discovered when the analysis descends into the
boundary of k′.

5 Implementation

The object and call graph analyses, dominance analysis, and object race detec-
tion analysis are implemented in Java using Soot 2.2.3 [13] and Spark [5]. We
performed whole-program analysis with the Sun JDK 1.4.1 libraries. All experi-
ments were done on a MacBook Pro laptop with a 2GHz Intel Core i7 processor
and 4GB of RAM. The implementation, which includes Soot and Spark, was run
with a max heap size of 1400MB; however, all benchmarks ran within a mem-
ory footprint of 800MB. Native methods are handled by utilizing the models
provided by Soot. Reflection is handled by manually specifying the dynamically
loaded classes. Our underlying points-to analysis analyzes constructors object-
sensitively in the style of [6]. As a result, the running times reported for points-to
analysis are approximately twice the running times of Spark.
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Table 1. Results

Program #Meth

ObjRace Chord Time[sec]
Distributed Owned

False Real
Race-free

Racy
Race-free

Racy Points-to Race
False Real False Real

tsp 3414 5 2 0 2 0 0 2 0 35 1

hedc 3749 8 2 14 1 0 3 2 2 40 6

sor 3403 4 2 0 0 0 0 0 0 35 1

SPECjbb 4640 19 0 19 69 0 8 30 16 50 4

weblech 4461 3 0 8 3 0 0 0 2 52 3

jdbm 4331 1 0 4 25 0 0 0 2 45 3

jdbf 3994 90 0 20 0 0 2 2 4 55 5

commons 3551 0 1 8 13 0 0 0 7 42 2

jtds 5044 64 0 87? 10 0 63? oom oom 61 86

Our suite consists of benchmarks used in previous work on concurrency
[15,9,14]. Column #Meth in Table 1 gives the size of the benchmarks in terms
of the number of methods (user and library) reachable by Spark. Benchmarks
tsp through weblech are whole-programs, and jdbm through jtds are libraries.
For the libraries, we converted the single-threaded harnesses from [9] to the
multithreaded model described in Section 4.3.

We compared our analysis with Chord [9], the leading static race detector.
Chord’s data race report includes a field-based view and an object-based view
of data races. The object-based view groups data races per abstract object (dis-
tinguished by allocation site as in our analysis) and for each abstract object, the
view provides a set of read/write access pairs. We counted each abstract object
reported in the object-based view as a racy object. We used reports available
at http://berkeley.intel-research.net/mnaik/research/pldi06 results.html for tsp and
hedc. We ran Chord 2.0 and generated reports for the rest of the benchmarks,
except for jtds, for which Chord ran out of memory with a max heap size 2GB.
Both Chord and our analysis suppress race reports due to constructors and
methods called within constructors.

Column ObjRace in Table 1 shows the number of non-thread-local (accord-
ing to the escape analysis from [11]) objects, reported as race-free or racy by our
analysis. Column Chord shows the number of racy objects reported by Chord.
Our analysis classifies objects as Distributed or Owned. An object j is classi-
fied as Distributed when the test at line 6 in DistributedRaces fires true; it is
classified as Owned otherwise. Note that, in general, an abstract object may be
classified as both Distributed and Owned. When race-free, a distributed object
is typically protected by its own lock (e.g., all methods called on that object
are declared synchronized). In general, although there are race-free distributed
objects, distributed objects tend to be racy. For owned objects (column Owned),
when race free, an owned object is most often protected by synchronization on
its owner. We observed many cases when synchronized methods access inter-
nal owned objects and the owned objects stay protected by their owner’s lock.
Although there are racy owned objects, owned objects tend to be race-free.
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The authors examined the objects reported as racy by both our analysis and
Chord, and classified those object races as false-positive (columns False), and
feasible (columns Real). All feasible races reported by Chord were reported by
our analysis as well. Our analysis reports more feasible races than Chord. One
reason why feasible object races are not reported by Chord, is that although
there is an object race, there is no immediate data race on the object’s instance
fields. In the majority of cases, an object race leads to calls that change state on
internal unsynchronized library objects. The object races are symptoms not only
of potential data races deeper in the boundary of the object, but of higher-level
concurrency bugs such as atomicity errors and atomic serializability errors. We
believe that it is valuable to report all object races. Another reason why feasible
object races are not reported by Chord may be that Chord’s lock analysis is
unsafe [9], while our analysis is safe. There is a large number of racy objects
reported on jtds, and we were unable to confirm with certainty whether those
races were false or feasible; however, jtds is undersynchronized and it appears
that the majority of the reported races are feasible.

6 Related Work

Concurrency is a large and active area of research and we cannot include a
complete listing of related works. Below, we focus on the work closest to ours.

Von Pruan and Gross introduce the concept of the object race [15]. Their
object race detection is dynamic. In fact, a primary goal is to optimize dynamic
lockset- based race detection [12]; the higher-level concept of object race entails
fewer dynamic checks and therefore lower overhead. In later work, von Praun and
Gross introduce the concept of the Object Use Graph (OUG) [16] which allows
reasoning about the temporal relation of object accesses, and further reduces the
amount of dynamic checks in the lockset-based detector. Despite its name, the
OUG is unrelated to the object graph from ownership types [3] that we infer.
Our analysis reasons about object races as well. However, our analysis is entirely
static. Furthermore, although [15] and [16] make use of “ownership”, their notion
of ownership is very different from ours. They refer to thread ownership, not
dominance-based object ownership as we do. Similarly to [16], Choi et al. use
static analysis as well as dynamic happens-before analysis, to optimize a dynamic
lockset-based data race detector [2].

Chord [9] is the most advanced static race detector. Our work is similar in
its goal: we wanted to build an effective static object race detector for Java. It
is different from Chord in several ways. First, it focuses on object races while
Chord focuses on data races. Second, our analysis uses a different algorithmic
approach: it relies on dominance analysis at its heart, while Chord relies on
context-sensitive points-to analysis. Dominance analysis entails a cheaper object
abstraction — objects are represented by allocation site — which may lead to
better scalability of our analysis. Our experiments indicate that our analysis is
effective and that it complements Chord.

Work by Vaziri et al. [14] is most closely related to ours. It explores a type
system for data-centric synchronization, and as in our work, dominance-based
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ownership plays an important role. An object is viewed as an atomic set of
fields, and the lock of that object protects its fields as well as internal (owned)
objects. Work by Boyapati et al. [1] explores dominance-based ownership for safe
multithreaded programming as well. In [14] and [1] ownership is specified by the
programmer and checked by the type system. In contrast, we infer ownership
and object races automatically.

7 Conclusions

We have presented a novel static object race detection analysis. We have shown
its effectiveness by implementing a prototype, applying it to several large multi-
threaded Java benchmarks and comparing its results to the results of the leading
static race detector Chord.
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Abstract. Modern multi-core microprocessors implement weak memory
consistency models; programming for these architectures is a challenge.
This paper solves a problem open for ten years, and originally posed by
Rinard: we identify sufficient conditions for a data flow analysis to be
sound w.r.t. weak memory models. We first identify a class of analyses
that are sound, and provide a formal proof of soundness at the level of
trace semantics. Then we discuss how analyses unsound with respect to
weak memory models can be repaired via a fixed point iteration, and
provide experimental data on the runtime overhead of this method.

1 Introduction

Modern computing systems frequently employ multiple CPU cores, generating
strong demand for concurrent software that exploits multiple threads of execu-
tion for better performance. However, the concurrency model implemented by
these architectures is a formidable challenge for the programmer: with a goal of
improving throughput, modern multi-core or multiprocessor architectures such
as Intel’s x86 series or IBM’s PowerPC relinquish the standard execution model
known as Sequential Consistency (SC) [1], in favour of much weaker models [2,3].
Multiprocessors featuring a weak memory model permit execution traces that do
not correspond to any interleaving of the program’s instructions, that is, the ar-
chitecture does not implement SC.

Init: x=0; y=0;
P0 P1

(a) x← 1 (c) y← 1
(b) r1← y (d) r2← x

Observed? r1=0; r2=0;

Fig. 1. Litmus test illustrating
store buffering

Program bugs that relate to weak memory
consistency are often difficult to reproduce and
to diagnose. Fig. 1 shows a standard example to
illustrate the problem. At line (a), processor P0

writes the value 1 into memory address x; then
at line (b) it reads from memory address y and
writes the result into the processor-local register
r1. Similarly, at line (c), processor P1 writes the
value 1 into memory address y; then at line (d)
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it reads from memory address x and writes the result into processor-local regis-
ter r2. We underline the fact that registers are private to the processor holding
them, e.g., r1 is private to P0, whereas the memory addresses, e.g., x and y,
are shared. Assuming SC, at least one of the registers has to hold 1 after the
execution of the four statements. However, when executing this program on a
multi-core x86 or PowerPC machine, traces are observed in which both registers
hold 0 in the final state [4]. This outcome can be caused by the store buffers im-
plemented in these architectures. The situation is exacerbated by the fact that
this non-SC observation only occurs in a small fraction of the executions. For
instance, execution of the code of Fig. 1 using the litmus tool presented in [5]
on an x86 system results in 99.13% SC-conforming traces among one billion
executions.

These relaxations permitted in weak memory models affect the semantics of
high-level languages such as Java [6] or C++ [7]. One way to address this issue is
to restrict program analyses to programs that are guaranteed to only exhibit SC
executions such as programs free of data races [8], or programs where memory
barriers have been inserted to ensure that they only have SC executions [9,10].

Yet we cannot restrict ourselves to this limited view on programs: engineers of-
ten choose to retain non-SC executions for performance reasons. In other terms,
we do not restrict our study to data-race free programs. Consequently, effects
relating to weak memory consistency need to be modelled appropriately in pro-
gram analysis algorithms for concurrent software. The issue of soundness of pro-
gram analyses w.r.t. weak memory models has been identified, among others, by
Rinard, who wrote ten years ago in [11]:

“We suspect that many existing analyses are sound for programs with
weak consistency models [...], but this soundness is clearly inadvertent,
in some cases a consequence of the imprecision in the analysis, and not
necessarily obvious to prove formally.”

As an example, we first perform an interval analysis [12] on Fig. 1, to deter-
mine the possible values of r1 and r2. We compute an interval for each variable.
The join of two intervals yields the smallest interval that contains both of them.
We consider all possible interleavings of statements of the two threads and com-
pute the join over all these traces. For instance, for the traces (a); (b); (c); (d) and
(c); (d); (a); (b) we obtain the intervals [0, 0]× [1, 1] and [1, 1]× [0, 0], respectively.
The join [1, 1]× [0, 0]� [0, 0]× [1, 1] yields the box [0, 1]× [0, 1], already including
the result that can be derived from the other interleavings, i.e., [1, 1]×[1, 1]. More
interestingly, this overapproximation also includes the additional value that one
can observe on a weak memory model, i.e., (0, 0).

As a second example of a program analysis, we consider the octagon abstract
domain [13], which is a relational domain that describes (octagonal) faces of
polyhedra. Joining two polyhedra in this abstraction consists in computing the
smallest polyhedron which contains these polyhedra. For the two traces given
above we obtain {1} × {0} � {0} × {1} = {r1 + r2 ≤ 1, −r1 − r2 ≤ −1, r1 ≤
1, −r1 ≤ 0}, which concretizes to the diagonal line segment going from (0, 1) to
(1, 0). No join of interleavings, however, will include the point (0, 0).
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r1

r2

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(a) Box abstraction

r1

r2

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(b) Octagon abstraction

var x,y:int ; // shared memory

initial x==0 and y==0;

thread P0:

var r1:int; // P0 register

begin

x = 1;

r1 = y;

end

thread P1:

var r2:int; // P1 register

begin

y = 1;

r2 = x;

end

(c) Implementation of Fig. 1 for
ConcurInterproc

Fig. 2. Running interval and octagon on Fig. 1 to compute the values of (r1, r2)

Fig. 2 provides a comparison of the results of intervals and octagons. In
Fig. 2(c) we furthermore provide the code for reproducing these results using
ConcurInterproc

1 [14]. The octagon domain is thus unsound w.r.t. weak
memory models, whereas the (less precise) interval domain belongs to a class of
analyses sound for weak memory models, as we show in this paper.

Few proofs of soundness of program analyses for weak memory models exist.
In addition, existing proofs are usually tailored to a particular analysis and a
particular memory model [15,16]. These proofs thus offer only limited general
insight into what makes an analysis sound for weak memory models.

Contributions. We establish sufficient conditions for a data flow analysis to
be sound w.r.t. weak memory models. We identify a large class of data flow
analyses—the non-relational ones—that satisfy these conditions. These are guar-
anteed to be sound for a wide range of modern architectures, namely all those
that respect the uniproc axiom as defined in [17,4] and recalled in Sec. 2. Our
results use trace semantics, hence are independent of the programming lan-
guage and the specific representation of the concurrent program used in the
analysis. Our classification confirms recent research results for specific analy-
ses [15,16,18,19] as part of a broader result. It also simplifies existing ad-hoc
proofs, and provides proofs that new analyses are sound w.r.t. weak memory
models.

We furthermore address the question of repairing an analysis that is unsound
for weak memory models. We provide a general method to extend a sequentially
sound forward analysis to an analysis for concurrent programs that is sound for
weak memory models. We illustrate the method with the octagon domain.

1 http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi

http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi
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Init: x=0; y=0;

P0 P1

(a) x ← 1 (c) y ← 1

(b) r1 ← y (d) r2 ← x

Observed? r1=0; r2=0;

(a) Wx1

(b) Ry0

(c) Wy1

(d) Rx0

po:1po:0

(c) Wy1

(b) Ry0

(d) Rx0

(a) Wx1

po:0

fr

po:1

fr

(a) Program
(b) Events (and program

order)
(c) An execution witness

Fig. 3. A program and a candidate execution

We omit the proofs for brevity, but they can be found together with the details
of our experiments at http://www.cprover.org/wmm/.

2 Background

To apply program analyses to concurrent programs running on modern multi-
core processors or multiprocessors, we need to prove that these analyses are
actually sound w.r.t. weak memory models. To describe weak memory models,
we use the generic framework of Alglave et al. [4,17], which covers a wide range
of existing architectures, in particular x86-TSO [20] and a fragment of Power.
We summarise the relevant parts of this framework.

2.1 Weak Memory Models

Events. Instead of dealing directly with programs, we reason in terms of the
events occurring in a program execution. An event e is a memory access, com-
posed of a direction R (read) or W (write), an address addr(e), a value val(e), a
processor proc(e), and a program location loc(e). We will use registers, which are
processor-local (thread-local) variables, in place of values when the actual valua-
tion is not known a priori. Note that an address always refers to shared memory,
and thus never to a register. We represent each instruction by the events it issues.
In Fig. 3, we associate the store (a) x← 1 on P0 with the event e =(a)Wx1. For
this example we have addr(e) = x, val(e) = 1, proc(e) = P0, and loc(e) =(a).We
write E for the set of events. We write w (resp. r) for a write (resp. read), and
e when the direction of the event is irrelevant.

http://www.cprover.org/wmm/
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Executions. We associate a program with an event structure E � (E,
po→),

composed of its events E and the program order
po→, a per-processor total order

over E. In Fig. 3, the store (a) to x on P0 is in program order with the read (b)
from y on P0, i.e., (a)Wx1

po→ (b)Ry0.
Given an event structure E, we represent an execution witness X � (ws→,

rf→)
of the corresponding program by two relations over E: the write serialisation ws→
is a per-address total order on writes, linking a write w to all other writes w′

to the same address hitting the memory after w; the read-from map rf→ links
a single write w to a read event r that reads from the address that w writes
to. The relations ws→ and rf→ are the key objects for defining the validity of an
execution, as explained below. We derive the from-read map fr→ from ws→ and rf→.
A read r is in fr→ with a write w when r reads from the address of some write w′

that hits the memory before w does: r
fr→ w � ∃w′. w′ rf→ r ∧ w′ ws→ w.

The observable result, r1=r2=0, shown in Fig. 3(a) corresponds to the execu-
tion of Fig. 3(c) if each address and register initially holds 0. If r1=0 in the end,
the read (b) obtained its value from the initial state, hence before the write (c)
on P1, thus (b) fr→ (c). Similarly, if r2=0, then (d) fr→ (a).

Uniprocessor Behaviour. The condition uniproc(E, X) � acyclic(ws→ ∪ fr→ ∪ rf→
∪ po-loc→ ) (where po-loc→ is the program order restricted to events with the same
address) forces a processor in a multiprocessor context to respect the memory
coherence widely assumed by modern architectures [21,22,2,3].

P0 P1

(a) x← 1 (b) r1← x
(c) x← 2

Forbidden: x=1; r1=1;
(c) Wx2

(b) Rx1

(a) Wx1

rf

po:1 po-loc

ws

Fig. 4. An invalid execution, violating the
uniproc condition.

This means that if a processor
writes, e.g., the value v to the memory
location � and then reads v′ from �,
then the associated writes w and w′

should be in this order in the write se-
rialisation, i.e., w′ should not precede
w. In Fig. 4, we have (c) ws→ (a) (by x

final value) and (a) rf→ (b) (by r1 fi-
nal value). The cycle (a) rf→ (b) po-loc→
(c) ws→ (a) invalidates this execution: (b) cannot read from (a) as it is a future
value of x in ws→. In every model of our framework, there is no valid execution
which ends up with x = 1, r1 = 1.

The uniproc condition actually corresponds to checking that SC holds per
address [17]. We rely heavily on this axiom in the proofs of this paper2.

Architectures; Validity of Executions. We define formally in [4,17] the notions of
architecture and validity of an execution w.r.t. an architecture, but we abstract
them away in the present paper, for two reasons. First, the exposition of this
2 All the results presented here hold with a weaker version of uniproc, that allows us

to embrace Sun’s RMO in our framework. We omit this restriction for clarity and
brevity, but more details can be found in [17, p.47-48].
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paper does not need to detail them. Second, and more importantly, our results
only require the architecture that we consider to respect the uniproc axiom.

Thus, in the following, we consider an abstract notion of architecture, which
acts as a filter over executions. Given an architecture A, an event structure E
and an execution witness X , we write validA(E, X) when the execution (E, X)
is valid on A. We only impose that validA(E, X) implies uniproc(E, X), i.e.,
that a valid execution should pass the uniproc check.

We also abstract the notion of comparison over architectures of [4,17]. Intu-
itively, an architecture A1 is weaker than another one A2 when the executions
valid on A2 are valid on A1. Thus, SC is stronger than any other architecture.

2.2 Programs vs. Event Structures

Event structures describe programs in terms of their trace semantics. In the pro-
grams considered above, each right hand side of a store was a single concrete
value, which immediately translated to a (concrete) event. To derive event struc-
tures from a description of general high-level programs, however, we proceed in
two steps. Each control flow path at program level first translates to an abstract
event structure, where events take the form of a direction and two variables. This
allows us to translate, e.g., a store (a) x← σ to the (abstract) event (a)Wxσ.

We write E for the set of all abstract event structures, A for the set of all
addresses, and V for the set of all values. We define the type R of results (or
valuations) as R � ℘ (A× V), i.e., a result is a set of pairs (x, v) where x is an
address and v a value (we denote the powerset with ℘ (·)).

Given a specific language L, we write PL for the set of all the programs
which can be written in this language. We introduce α : PL → ℘ (E ×R), which
maps a program P to corresponding abstract event structures and initial values,
respecting the semantics of the language L. Each event created by α is labelled
by the program counter of the corresponding statement in P .

Each abstract event structure induces multiple concrete event structures under
a given set of initial valuations. That is, an abstract event (a)Wxσ with R =
{(σ, 0), (σ, 1)} translates to concrete events (a)Wx0 and (a)Wx1. The set of
all sets of concrete event structures is denoted by Econc. We use the mapping
conc : E → R → Econc to translate abstract to concrete event structures. We
require conc to yield a set of concrete event structures such that at least for each
execution witness valid on an architecture A there is a concrete event structure.

We distinguish abstract from concrete event structures as follows: program
analyses will be applied to abstract event structures, but reasoning about actual
values will be performed in concrete event structures.

3 Soundness of Analyses on Weak Memory Models

We define an analysis �·� as mapping abstract event structures and initial valu-
ations to sets of pairs (i, r) where i is a program location (of type L) and r is a
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result as defined in the preceding section. We make explicit the initial state of
values of type R, commonly being the empty set or the set of all possible values:

�·� : E → R → ℘ (L×R)

Note that our definition captures relational analyses [23]; indeed the result type
℘ (L×R) can be rewritten as L→ ℘ (A→ ℘ (V)).

Consider an abstract event (a)Wxσ with initial valuations R = {(σ, 0), (σ, 1)}.
We track the concrete values of x and the relation between x and σ as follows:

�(a)Wxσ, {(σ, 0), (σ, 1)}� = {((a), {(x, 0), (σ, 0)}), ((a), {(x, 1), (σ, 1)})}

3.1 Definition of Soundness

Rinard and Rugina define in [24, A.3] an analysis to be sound

“[. . . ] if it is at least as conservative as the result obtained by using
the standard pointer analysis algorithm for sequential programs on all
the interleavings of the legal executions.”

A legal execution corresponds to the execution of one thread. Thus their work
assumes SC (i.e., the interleaving semantics) as the execution model. We gen-
eralise their idea to weak memory models. Given an architecture A, we write
valuesA(E, R) for the set of values that execution witnesses X can yield on
A, where X is an execution witness associated to a concrete event structure
E′ ∈ conc(E, R), i.e., obtained from concretizing E with initial valuations R.

We write <X for the order on program locations induced by an execution X .
We omit the formal definition of <X for brevity; it corresponds to A.ghb(E, X)
as defined in [17,4]. Intuitively, it describes the order in which the memory events
of X hit the memory. For example in Fig. 3(c), on an architecture A 
= SC—
for otherwise the execution X depicted would not be valid—<X corresponds to
{((d), (a))} ∪ {((b), (c))}.

We write last(r, i, x) when the location of x is less than (or unrelated to) (i) in
<X , and x is one of the last elements in the relation r, i.e., there is no element x′

such that (x, x′) ∈ r. If a given write w = (i)Wxv is the last element in ws(X)
at location (i), then the value v is the current value of x at location (i). For
example in Fig. 4, the current value of x at line (c) (resp. (a)) is 1 (resp. 2), for
the last write to x at line (c) (resp. (a)) is the write (c)Wx2 (resp. (a)Wx1).

Thus, we define valuesA(E, R) as the set of possible results, i.e., mappings
of each address to its current value, at each location. In other words, the set
valuesA(E, R) collects all the possible values in memory addresses that can arise
in an execution (E, X) that is valid on A:

valuesA(E, R) � {(i, r) | ∃X. validA(conc(E, R), X) ∧ ∀x, v. (x, v) ∈ r ⇒
∃w. (last(ws(X), i, w) ∧ addr(w) = x ∧ val(w) = v)}

For example in Fig. 3, valuesSC(E, R) contains, for program location (a), the
result ((a), {(r1, 0), (r2, 0), (x, 1), (y, 0)}). Formally, we define soundness of over-
approximating analyses for a weak architecture A as follows:
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Definition 1. An analysis �·� is A-sound iff the result of �·� on an abstract
event structure E with initial values R describes a state space at least as large
as that of valuesA(E, R) (with U  V iff ∀(i, r) ∈ U. ∃r′.(i, r′) ∈ V ∧ r′ ⊆ r):

soundA(�·�) � ∀E, R. valuesA(E, R)  �E, R�
We have, e.g., {((a), {(r1, 0), (r2, 0), (x, 1), (y, 0)})}  {((a), {(r1, 0), (r2, 0)}).
This means that we consider an analysis result to be A-sound if it is at least as
conservative as taking all the values yielded by all valid executions on A.

Note that under-approximating analyses for SC are also under-approximating
for all weak memory models, since for all weak architectures A, the values valid
on SC are also valid on A, i.e., valuesSC(E, R)  valuesA(E, R). We therefore
focus the presentation on showing soundness of over-approximating analyses.

3.2 SC-Soundness Entails A-Soundness for Non-relational Analyses

We now define a particular class of program analyses by restricting the signature
of the output of the analysis. We only consider analyses �̂·� that map abstract
event structures to pairs (i, r) where i is a program location and r a result, with
the additional constraint that r is a singleton:

�̂·� : E → R → ℘ (L× (A× V))

This type can be rewritten as L→ (A→ ℘ (V)). In practice, we apply a projec-
tion to our general type of analyses to obtain non-relational ones [23]:

projection(�·�)(E, R) � {(i, {(x, v)}) | ∃r. (x, v) ∈ r ∧ (i, r) ∈ �E, R�}

We restrict the type of valuesA similarly by computing valuesA and then us-
ing the projection abstraction given above. We write ̂valuesA(E, R) to indicate
this, i.e., ̂valuesA(E, R) is of type L→ (A→ ℘ (V)). In the example of Fig. 3,

̂valuesSC(E, R) contains {((a), (r1, 0)), ((a), (r2, 0)), ((a), (x, 1)), ((a), (y, 0))}.
We want to determine when a given analysis, although designed with SC in

mind, is sound for a weak architecture A. For example, for the program given
in Fig. 3, we have ̂valuesx86(E, R) = ̂valuesSC(E, R) (with the initial state R
mapping all variables to 0). Hence in this case, an analysis that computes at
least ̂valuesSC(E, R) is also sound for x86, since it also computes all the values
that this specific program can yield on an x86 machine. We show that any
analysis �̂·� with (1) matching signature and (2) that is SC-sound as defined
above satisfies this requirement. This means that collecting the values produced
by the SC executions (i.e., ̂valuesSC(E, R)) suffices to obtain the values yielded
by a weaker model A. This property is guaranteed by the uniproc check as
defined in Sec. 2, since uniproc means that SC holds per location. To prove this
claim, we first show the inclusion of value sets:
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Lemma 1. ∀E, R. ̂valuesA(E, R) ⊆ ̂valuesSC(E, R)

The lemma is sufficient to show our main theorem, which states that for a non-
relational analysis �̂·�, its SC-soundness (i.e., ∀E, R. ̂valuesSC(E, R) ⊆ �̂E, R�)
entails its A-soundness on any architecture A. That is to say, we show in Thm. 1
that a non-relational analysis, though defined with SC in mind, is sound on a
weaker architecture A when this analysis collects at least all the values yielded
by all the executions valid on SC. We formalise this as follows.

Theorem 1. ∀�̂·� : E → R → ℘ (L× (A× V)). soundSC(�̂·�)⇒ soundA(�̂·�)
The result is obtained by reasoning over traces, which is the most precise, yet not
necessarily computable, representation for program executions. Hence our results
are independent of (1) programming language specifics such as locks or dynamic
synchronization primitives and hold for all other program representations, such
as (concurrent) control flow graphs or Petri nets, for they are overapproximations
of the sets of traces (cf. [25] for a discussion of representations for concurrent
programs); (2) analysis specifics such as fixed point iteration strategies and
sources of imprecision.

Note that for a relational analysis, its SC-soundness would not, in general,
entail its A-soundness, for the weaknesses of multiprocessors’ execution models
is precisely observable via relations over variables, as shown in Fig. 3. We discuss
means of obtaining an A-sound analysis from a relational analysis in Sec. 4.

Octagon and Box. As seen in Sec. 1, the octagon abstract interpretation is not
sound on weak memory models. Indeed, this analysis reasons over conjunctions
of statements, e.g., for Fig. 3, it computes values that r1 and r2 can have at
the same time. More formally, in [13], Miné defines the octagon concretization
function with D+ : DBM → ℘ (A→ V), where DBM is the set of difference-
bound matrices m+. There is one matrix m+

i per line i, and the concrete domain
computation takes the form λi.D+(m+

i ) : L→ ℘ (A→ V). We have ℘ (A× V) �
℘ (A→ V) � ℘ (℘ (A× V)), hence octagon analyses cannot be represented with
the non-relational analysis type, E → R → ℘ (L× (A× V)), but always with
the relational analysis type, i.e., E → R → ℘ (L× ℘ (A× V)).

As we show in the introduction, the interval abstraction, however, collects
along the way the values that r1 and r2 can have on a weak memory model.
This is a non-relational analysis, expressible with E → R → L → ℘ (A× V),
and we can deduce from Thm. 1 that it is sound for weaker memory models if
originally implemented for SC.

3.3 Proving Soundness of Analyses over Programs

Thm. 1 gives sufficient conditions for an analysis over event structures to be
A-sound. We explain here how this result transfers to programs.

Let P be a program written in a language L. To express the soundness of
a program analysis �·�L, we require valuesA(E, R) and �P�L to have the same
type ℘ (L×R), with L being the program counters of statements in program P .
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As above, we define ṽaluesA(P) as the values yielded by executions of P on A,
i.e., ṽaluesA(P) �

⋃
(E,R)∈α(P) valuesA(E, R) (recall that α : PL → ℘ (E ×R)

maps a program P to corresponding abstract event structures and initial values,
w.r.t. the semantics of the language L).

Hence the A-soundness of a program analysis is merely a lifting of the A-
soundness of the corresponding event structure analysis:

s̃oundA(�·�L) � ∀P . ṽaluesA(P)  �P�L
Therefore, the A-soundness of SC-sound non-relational program analyses holds
as a corollary of Thm. 1:

Corollary 1. ∀�·�L : PL → ℘ (L× (A× V)). s̃oundSC(�·�L)⇒ s̃oundA(�·�L)

Rugina and Rinard’s Pointer Analysis. Rugina and Rinard define in [24] a non-
relational analysis (denoted RR in the following) for a subset of C with basic
pointer assignments and control flow instructions. They prove that RR(P) con-
tains all the values appearing in the interleavings of the program P , i.e., RR is
SC-sound. Thus by Cor. 1, RR is sound for memory models weaker than SC.

4 Repairing Unsound Analyses

We have shown that a non-relational analysis is A-sound if it is SC-sound. Yet
some analyses, such as the octagon one, cannot be defined in the non-relational
framework. Using the projection abstraction defined in Sec. 3.2, we may turn a
relational analysis into a non-relational one. Thus, projecting an unsound anal-
ysis makes it sound (providing it is SC-sound) by Thm. 1.

Yet, this projection is very coarse, as it breaks all the relations over variables
maintained by the analysis (cf. [13] for an example of the projection from octagon
to interval). We present in the following a method to ensure the soundness of
an analysis w.r.t. weak memory models, which preserves the relational type of
the analysis, and conserves some of its precision. This method, which we call
repair loop, is already implemented in several existing analyses, for performance
reasons. Its consists of analysing each thread separately to capture the values
the memory locations get, then feeding back the collected possible values to each
of the other threads to simulate the effects of thread interference (cf. Sec. 6 for
a discussion of several approaches already following this idea). We choose to
simulate the process by:

1. building enough concatenations of the threads of a program;
2. analysing each of these as a sole thread without killing any values.

Concatenations of Threads. We now assume that our event structures are finite,
i.e., have an arbitrary large yet finite number of events. We say that an event
structure is a thread when all of its events belong to the same processor. Given
an event structure E, a thread corresponds to the restriction of E to the events
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that run on processor p, written Ep. The sequence of two threads Ei and Ej

is itself a thread, in the sense that it has only one processor; it gathers both
the events of Ei and Ej , and its program order corresponds to the program
order of Ei followed by the program order of Ej . We write ei (resp. ej) for
the last (resp. first) event in program order on Ei (resp. Ej). We write evts(E)
(resp. procs(E)) for the events (resp. processors) of a given event structure E:

Ei; Ej �
(
evts(Ei) ∪ evts(Ej), po(Ei) ∪ po(Ej) ∪ {(ei, ej)}

)
We further define the concatenation of n threads of an event structure E as:

concat(E, n) � {Ebig | ∃T1, . . . , Tn. Ebig = T1; . . . ; Tn∧
∀i. ∃p ∈ procs(E). Ti = Ep}

We prove that for a finite E there exists an integer nSC (bounded by the cardinal-
ity of evts(E)) such that each interleaving (an SC-valid execution) can be found
as a subsequence of some Ebig in concat(E, nSC). For example in Fig. 3, we simu-
late the interleaving (a), (b), (c), (d) by building the concatenation P0; P0; P1; P1.
Note that, since the Ebig are themselves threads, we can analyse them with a
sequential analysis. Thus, analysing all the Ebig of concat(E, nSC) gives us all
the possible values yielded by the interleavings of E.

Analyse without Killing. We define here what it means to analyse one thread
without killing any values. We give in Alg. 1 the code of the recursive function
awk. The function applies the analysis on the thread and propagates its relations
to collect all the results.

awk (�·�) (E,V ) � if evts(E) = ∅ then ∅ else
let e = first(evts(E)) in

let S = �e, V � in
let SR = {R | ∃i. (i, R) ∈ S} in

S ∪⋃
R∈SR

awk (�·�) (succ(E, e), (V ∪ R))

Algorithm 1: awk function

This analysis is performed one event at a time (note that an event can change
at most one value in memory). To keep the values which might get killed by a
new event, at any given iteration, we do not only propagate the resulting relation
R, but the union of this new result with the previous one V . This means that a
future event will have access to the values of some previous result V computed
during the analysis of the thread.

For example, the non-SC result {(r1, 0), (r2, 0)} of Fig. 1 is not generated
by octagon (written Oct in the following). Indeed, if we perform Oct on P0,
starting with V = {(x, 0), (y, 0), (r1, 0), (r2, 0)}, the only value that x can hold
at line (b) is 1. Yet, the non-SC result is covered by awk(Oct) applied to the
interleaving (a), (b), (c), (d) of the code of Fig. 1. Indeed, if we apply awk(Oct)
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(a) (b) (c) (d)

0000 1000 *000

1000

0000

*000

...

1100

0100

**00

1101

1001

0000

0100

Fig. 5. Call graph of awk (Oct) ((a); (b); (c); (d), 0000)

with the same initial result V , we get R = {{(x, 1), (y, 0), (r1, 0), (r2, 0)}} as
the result of Oct((a), V ) for the first event. Then, we compute V ′ = R ∪ V and
propagate it to line (b), i.e., we compute Oct((b), V ′). This means that the event
at line (b) has access to the value (x, 0), for it appears in V ′.

Fig. 5 gives a call graph of awk(Oct), on the interleaving (a), (b), (c), (d) of the
code of Fig. 1. A sequence vxvyv1v2 represents (x, y, r1, r2) = (vx, vy, v1, v2). The
non-framed sequences are the ones that we propagate at every call of awk(Oct),
and the framed ones are the results that we return for every event.

Observe that we obtain the results 0000 and 0100 (in the ellipses) for event
(d), both of them representing (r1, r2) = (0, 0), i.e., the non-SC behaviour.
Indeed, when awk (Oct) ((d) : r2 ← x, V ) is executed, we not only have access
to the previously computed result—as we would if we were directly applying Oct
to the program—but rather to the union of all the previous results, including
the initial one, where x holds 0.

Repair Loop. Finally, we define the repair loop as a transformation of an analysis
of type A to a new analysis. The repair loop builds nSC concatenations of the
threads of E to simulate all the interleavings of E, then analyses them without
killing any values, and finally takes the union of the results:

repair-loop(�·�)(E, V ) �
⋃

Ebig∈concat(E,nSC)

awk(�·�)(Ebig, V )

Revisiting the above example, applying repair-loop(Oct) to the code of Fig. 1 will
simulate all the interleavings of the program. In particular, as we explained two
paragraphs above, it simulates the interleaving (a), (b), (c), (d) by the concate-
nation P0; P0; P1; P1. Then, it runs awk(Oct) on this concatenation, and since
awk does not kill any value, we obtain the non-SC result (r1, r2) = (0, 0), as
explained in the preceding paragraph, and shown in Fig. 5.
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5 Specification vs. Implementations of the Repair Loop

We gave in Sec. 4 a specification of the repair loop. Actual implementations are
likely to use more scalable techniques such as fixed point computations. We leave
the proof that such an implementation matches the specification of Sec. 4 for
future work. Yet, we performed experiments to see how much an implementation
of the repair loop would impair the performance of an analysis.

Experimental Cost of the Repair Loop. We showed that the points-to analysis
of Rugina and Rinard is sound w.r.t. weak memory models even if performed
with trace semantics, where the most precise results would be obtained. Yet,
the analysis is implemented using a fixed point computation over the concurrent
control flow graph instead of reasoning over all possible traces. As we showed
above, the imprecision incurred by this fixed point iteration can be used to repair
otherwise unsound analyses. A crucial question is, however, how many iterations
are needed to arrive at a fixed point. We have shown that there exists a finite
upper bound. It remains to be seen whether fewer iterations suffice in practice.

A similar study of the cost of such a fixed point iteration has recently been
undertaken by Miné [16], and our experiments confirm his results: we use three
sets of benchmarks that were previously used as case studies on the analysis of
concurrent software: (1) concurrency bug patterns from the Apache web server
as used in [26] (atom001, atom001a, atom002, atom002a, banking/av, bank-
ing/no av, banking/some av), (2) the banking and indexer examples from [27]
(banking and indexer), and (3) several Linux device drivers together with nonde-
terministic environments as generated by DDVerify [28]. The detailed results and
the source code of all experiments together with our implementation of Rugina
and Rinard’s points-to analysis is available at http://www.cprover.org/wmm/.

For several benchmarks of different origin our results confirm the findings of
Miné: the typical number of iterations to reach a fixed point is very low, in fact it
is always 2 in our samples. To study the overhead of repair iterations we summed
up the time spent in all but the first iteration for each thread. We observe that
this time overhead is very small with at most 0.034 seconds.

6 Related Work and Conclusion

We refer the reader to [29,30] for an overview of the issues related to weak
memory models. Program analyses for concurrent programs running on weak
architectures have recently been considered by Ferrara [15] and Miné [16].

To the best of our knowledge, however, there is no general result on the
soundness of program analyses for weak memory models. Both Ferrara and Miné
describe extensions of the abstract interpretation framework to concurrent pro-
grams. In contrast to our work, which is generic, [15] explicitly focuses on an
over-approximation of the Java memory model. Soundness w.r.t. the memory
model is achieved by a fixed point iteration that implements the repair loop
described in our paper. Miné [16] describes an extension of abstract interpreta-
tion to programs with a fixed number of threads and shared memory. He uses

http://www.cprover.org/wmm/


Soundness of Data Flow Analyses for Weak Memory Models 285

Analysis Soundness w.r.t. weak memory models

Knoop et al. [33] yes (separable)
Chugh et al. [34] yes (if no datarace)
Steensgaard [35] yes (flow-insensitive)

Miné [16] yes
Rugina and Rinard [24] yes

Jeannet [14] no
Ferrara [15] yes on Java Memory Model

Farzan and Kincaid [25] yes (separable)
Khedker and Dhamdhere [36] separable: yes; non-separable: not in general

Constant propagation [32] yes (non-relational)

Fig. 6. Soundness of some concurrent analyses w.r.t. weak memory models

a fixed point iteration that is similar to the approach described by Rugina and
Rinard [24] to compute a safe over-approximation of all possible interleavings.
Furthermore Miné proves these results to be sound for a class of weak memory
models specified as program transformations. Unlike our work, which is based on
a framework for weak memory models that provably embraces several existing
models, the modelling power of these transformations is unclear. With the re-
sults presented in the present paper it follows immediately that Miné’s analysis
extends from sequential consistency to weak memory models by the repair loop.

Sevcik and Vafeiadis et al. [18,19] prove the correctness of a compiler for
concurrent C programs towards x86 assembly, targeting the TSO model of [31].
Thus, they have to prove that analyses such as constant propagation [32] preserve
the semantics from the source to the target program, which requires proving
properties similar to ours. Since constant propagation is non-relational, we not
only showed its soundness for TSO, but also for a large class of other models.

Several other analyses have been extended from sequential programs to the
concurrent setting without explicitly discussing the effect of weak memory mod-
els. In the following, we survey their soundness w.r.t. weak memory models in
the light of the results presented here. We summarise this discussion in Fig. 6.

We already discussed Rugina and Rinard’s analysis [24] in Sec. 3.
Jeannet [14] presents the stack abstraction underlying ConcurInterproc,

which can be combined with data abstraction domains such as octagons [13]
or convex polyhedra [37] to apply abstract interpretation to parallel programs
with a fixed number of threads. This approach is not generally sound for weak
memory models as shown in the introduction.

Khedker and Dhamdhere [36] give a definition of separability for data flow
analyses, i.e., analyses where each data flow fact may be tracked in isolation,
independently of the valuations of other data flow facts. Although separability
is a concept independent of an analysis being (non-)relational, all separable
problems can be expressed with the type that we proved to be sound in Thm. 1.
For non-separable problems, we are unable to make such a general statement.

Most notably, bit-vector analyses are separable data flow analysis problems.
Therefore the approaches described by Knoop et al. [33] and Farzan and Kin-
caid [25], who present methods of adapting a unidirectional bit-vector analysis
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designed with sequential programs in mind for use with multi-threaded programs,
are immediately sound for weak memory models if sound for SC.

As another well-established classification of analyses consider flow sensitive
vs. flow insensitive analyses. Rinard observes in [11] that flow insensitive analyses
such as Steensgaard’s pointer analysis [35] are SC-sound. Hence by Thm. 1, we
conclude that they are also sound for weak memory models.

The provable soundness of both bit-vector analyses and flow insensitive anal-
yses is of uttermost practical importance as analyses of these kinds are used
in optimizing compilers. Although today’s compilers do not yet implement op-
timizations for multi-threaded programs in a concurrency aware fashion, our
results show that it would be safe to add such extensions.

Future Work. While we already have a strong result for non-relational analyses,
we would like to further refine our results for relational ones, e.g., by lifting
the restriction on the analysis being forward. Moreover, we intend to exercise
our specification of the repair loop as given in Sec. 4, by proving that existing
implementations, e.g., Rugina and Rinard’s, actually satisfy this property.

Acknowledgements. We thank Vijay D’Silva, Peter Sewell, Viktor Vafeiadis
and Thomas Wahl for invaluable discussions and comments.

References

1. Lamport, L.: How to Make a Correct Multiprocess Program Execute Correctly on
a Multiprocessor. IEEE Trans. Comput. 46(7), 779–782 (1979)

2. Intel: Intel 64 and IA-32 Architectures Software Developer’s Manual, vol. 3A,
rev. 30. (March 2009), intel.com/products/processor/manuals

3. IBM: Power ISA Version 2.06B (July 2010),
power.org/resources/downloads/PowerISA_V2.06B_V2_PUBLIC.pdf

4. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Fences in Weak Memory Models.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 258–272.
Springer, Heidelberg (2010)

5. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Litmus: Running Tests Against
Hardware. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605,
pp. 41–44. Springer, Heidelberg (2011)

6. Manson, J., Pugh, W., Adve, S.V.: The Java Memory Model. In: POPL (2005)
7. Boehm, H.J., Adve, S.V.: Foundations of the C++ concurrency memory model.

In: PLDI (2008)
8. Adve, S.V., Hill, M.D.: Weak ordering – A new definition. In: ISCA (1990)
9. Burckhardt, S., Alur, R., Martin, M.K.: Checkfence: Checking consistency of con-

current data types on relaxed memory models. In: PLDI (2007)
10. Alglave, J., Maranget, L.: Stability in Weak Memory Models. In: Gopalakrishnan,

G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 50–66. Springer, Heidelberg
(2011)

11. Rinard, M.: Analysis of Multithreaded Programs. In: Cousot, P. (ed.) SAS 2001.
LNCS, vol. 2126, pp. 1–19. Springer, Heidelberg (2001)

12. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.
In: International Symposium on Programming, Dunod (1976)

intel.com/products/processor/manuals
power.org/resources/downloads/PowerISA_V2.06B_V2_PUBLIC.pdf


Soundness of Data Flow Analyses for Weak Memory Models 287
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Abstract. Barbed bisimilarity is a widely-used behavioural equivalence
for interactive systems: given a set of predicates (denoted “barbs”, and
representing basic observations on states) and a set of contexts (repre-
senting the possible execution environments), two systems are deemed
to be equivalent if they verify the same barbs whenever inserted inside
any of the chosen contexts. Despite its flexibility, this definition of equiv-
alence is unsatisfactory, since often the quantification is over an infinite
set of contexts, thus making barbed bisimilarity very hard to be verified.

Should a labelled operational semantics be available for our system,
more efficient observational equivalences might be adopted. To this end,
a series of techniques have been proposed to derive labelled transition
systems (LTSs) from unlabelled ones, the main example being Leifer and
Milner’s reactive systems. The underlying intuition is that labels are the
“minimal” contexts that allow for a reduction to be performed.

We introduce a framework that characterizes (weak) barbed bisimilar-
ity via transition systems whose labels are (possibly minimal) contexts.
Differently from other proposals, our theory is not dependent on the way
LTSs are built, and it relies on a simple set-theoretical presentation. To
provide a test-bed for our formalism, we instantiate it by addressing the
semantics of mobile ambients and HoCore, recasting the (weak) barbed
bisimilarities of these calculi via label-based behavioural equivalences.

Keywords: Barbed bisimilarity, contexts as labels, reactive systems.

1 Introduction

The operational semantics of process calculi was usually given in terms of labelled
transition systems (LTSs), i.e., a set of possible states, plus a labelled transition
relation among them, describing the possible evolutions of the computation. The
labels express some kind of basic statement about the evolutions themselves, and
thus they allow for an easy and fruitful way to provide meaningful behavioural
semantics based on observations, i.e., basically looking at the labels of the state
evolutions available for a calculus.
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More recently, however, the growing syntactical complexity of these calculi
made almost customary to present their behaviour by a reduction semantics: an
unlabelled relation, defined modulo a congruence that equates those processes
intuitively representing the same system specification. This paradigmatic shift
stimulated the adoption of barbed equivalences [13]: behavioural semantics based
on a family of state predicates, called barbs, intended to capture the ability of a
process of performing an interaction with the environment.

The trade-off to the relative easiness in defining barbed congruences even for
operationally rich calculi is given by the difficulty of formally checking them:
indeed, the verification usually requires to evaluate the barbs of a system with
respect to all the contexts it can be possibily inserted in. Hence, the ingenuity
of the researcher focussed on devising suitable labelled semantics from reduction
ones, cases at hand being the calculus of mobile ambients (MAs) [7] and the
core calculus for higher-order concurrency (HoCore) [10]. Indeed, a series of
techniques [9,17,8,1,16] have been proposed to address the automatic derivation
of an LTS starting from a reduction semantics, in order to distill behavioural
equivalences that are congruences. Among these proposals, the most renowned
one is Leifer and Milner’s theory of reactive systems (RSs): the underlying intu-
ition is that the labels of the derived transition system (called IPO LTS) are the
“minimal” contexts that allow for a reduction to be performed, where minimality
is captured by the categorical notion of relative pushout [11].

Our paper moves from Leifer and Milner’s seminal work: our aim is to identify
suitable conditions under which (weak) barbed bisimilarity can be characterized
in terms of a behavioural equivalence over a suitably labelled transition system.
Differently from the original theory of RSs, though, as well as from more re-
cent contributions, the present work does not focus on devising novel techiques
for distilling an adequate LTS, possibly for open systems [9], or for identify-
ing what the “right” notion of barbs should be [14]: on the contrary, it tries
and identifies a class of transition systems (with contexts as labels) that may
represent a meaningful abstraction of an underlying reduction semantics. Here,
we assume that “meaningful abstraction” precisely means that we may recast
barbed bisimilarity using the bisimulation game in the LTS.

To this end, we introduce context LTSs, a general notion of which IPO LTSs
are an instance. We then present weak context bisimilarity as the equivalence
for these LTSs adopting the standard bisimulation game, and provide conditions
ensuring that it is a congruence. We also use contexts as labels to define weak
L-bisimilarity. It adopts a bisimulation game that is asymmetric with respect to
a set L of contexts, yet it is a congruence and, depending on L, it may represent
an efficient characterisation for barbed bisimilarity, which avoids to consider
all contexts. Finally, in order to properly establish the adequacy of our theory,
we check it against suitable case studies. So, we instantiate our proposal over
MAs and HoCore, addressing their weak semantics: the former has a notably
complex barbed bisimilarity, resilient until recently to a labelled characterization
[12]; and only the strong semantics was so far considered for the latter. Their
complementary features allow for testing the expressiveness of our framework.
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Related Works. Our theory should be considered as an outcome of the stream
of research born out of Leifer and Milner’s theory [11], part of the contexts
as labels approach for LTSs. However, the emphasis is not on the procedure for
distilling the right class of contexts to be chosen as labels, but in the identification
of a family of LTSs that are able to characterize barbed bisimilarity. Thus, our
sound and complete context LTSs (Definition 10) are a general notion of which
IPO LTSs are an instance [11], in the same way that Definition 13 subsumes the
property of having redex RPOs. Similarly, Theorem 2 extends the congruence
result for RSs [11, Theorem 1] to the new setting and for the weak semantics.
The notion of (weak) barbed semantics for RSs was presented in [4], and strong L-
bisimilarity discussed in [3]. Properties (1) and (2) of Definition 10 were exploited
in [5] under the name of soundness and completeness for an LTS.
Synopsis. § 2 summarizes the main notions concerning our case studies, namely
MAs (§ 2.1) and HoCore (§ 2.2). § 3 introduces our framework: the standard
notions of RSs (albeit recast in a novel, set-theoretical way) and of weak barbed
semantics (with a new result on non-discriminating contexts, § 3.1), while the
labelled semantics that we propose (weak context bisimilarity, § 3.2) exploits
instead the original notion of sound and complete context LTS. § 4 proposes weak
L-bisimilarity, the proof that (under mild conditions on L) it is a congruence,
and its correspondence with weak barbed semantics. § 5 and 6 show how our
theory captures weak bisimilarity for MAs and HoCore, respectively. Finally,
§ 7 draws some conclusions and outlines directions for further research.

2 Two Case Studies

2.1 Mobile Ambients

This section introduces the finite, communication-free fragment of Mobile Am-
bients (MAs): its reduction semantics and behavioural equivalence [7], and the
labelled transition system (LTS) for the calculus proposed in [2].

The syntax is shown in Fig. 1(a). We assume a set N of names ranged over
by m, n, o, . . . and we let P, Q, R, . . . range over the set PM of processes. The free
names of a process P (denoted by fn(P )) are defined as usual. Processes are
taken up to a structural congruence, axiomatised in Fig. 1(b) and denoted by ≡.
The reduction relation �M , describes process evolution: it is the least relation
�M : PM × PM closed under ≡ and generated by the rules in Fig. 1(c).

A strong barb o is a predicate over processes, with P ↓o denoting that P
satisfies o. In MAs, P ↓n denotes the presence at top-level of an unrestricted
ambient n. Formally, P ↓n if P ≡ (νA)(n[Q]|R) and n 
∈ A, for some processes
Q and R and a set of restricted names A. A process P satisfies the weak barb n
(denoted as P ⇓n) if there exists a process P ′ such that P �∗

M P ′ and P ′ ↓n,
where �∗

M is the transitive and reflexive closure of �M .
Strong and weak barbs are exploited to define the standard equivalence for

MAs: weak reduction barbed congruence, of which a labelled characterization is
in [12]. Before presenting it, we introduce MAs contexts : they are MAs processes
with a hole −, formally generated by the following grammar (for R ∈ PM )
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(a) P ::= 0, n[P ], M.P, (νn)P, P1|P2 M ::= in n, out n, open n

(b)

P |Q ≡ Q|P (νn)(P |Q) ≡ P |(νn)Q if n /∈ fn(P )
(P |Q)|R ≡ P |(Q|R) (νn)m[P ] ≡ m[(νn)P ] if n �= m
P |0 ≡ P (νn)M.P ≡ M.(νn)P if n /∈ fn(M)
(νn)(νm)P ≡ (νm)(νn)P (νn)P ≡ (νm)(P{m/n}) if m /∈ fn(P )

(c)

n[in m.P |Q]|m[R]�M m[n[P |Q]|R] if P �M Q then (νn)P �M (νn)Q
m[n[out m.P |Q]|R]�M n[P |Q]|m[R] if P �M Q then n[P ]�M n[Q]
open n.P |n[Q] �M P |Q if P �M Q then P |R�M Q|R

Fig. 1. (a) Syntax, (b) structural congruence and (c) reduction relation of MAs

C[−] ::= −, n[C[−]], M.C[−], (νn)C[−], C[−] | R.

Definition 1 (Weak Reduction Barbed Congruence). Weak reduction
barbed congruence ≈M is the largest symmetric relation B s.t. P BQ implies

– if P ↓n then Q ⇓n;
– if P �M P ′ then Q�∗

M Q′ and P ′ BQ′;
– ∀C[−], C[P ]BC[Q].

An LTS for MAs. In Fig. 2 we present the LTS M for MAs proposed in [2], and
obtained by a suitable application of Leifer and Milner’s theory [17] (hence, its
transition labels are the “minimal” contexts allowing a reduction to occur). Note
that we assume that the LTS is closed with respect to structural congruence.

The rule Tau represents the τ -actions modeling reduction of the process. The
rule ExtRed represents three rules, one for each axiom of the reduction relation
(see Fig. 1(c), left): the process L of the label represents the left hand side of
the axiom and the process R of the target state represents the right hand side
(thus, ExtRed model the reduction performed by the environment).

The other rules instead model the interactions of a process with its environ-
ment. Note that in the conclusions of some rules there are names and processes
(denoted by o, S1, S2) that do not appear in the premises. These represent am-
bient names and processes that are provided by the environment and thus we
must always assume that ({o}∪fn(S1)∪fn(S2))∩A = ∅. For instance, the rule
Open enables a proces to open an ambient provided by the environment, while
the rule CoOpen allows the environment to open an ambient of the process. For
a description of the other rules, we refer the reader to [2].
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(Tau)
P�M Q

P
−−→Q

(ExtRed)
L�M R

P
−|L−−→P |R

(Out)
P≡(νA)(out m.P1|P2) m	∈A

P
m[o[−|S1]|S2]−−−−−−−−−→(νA)(m[S2]|o[P1|P2|S1])

(In)
P≡(νA)(in m.P1|P2) m	∈A

P
o[−|S1]|m[S2]−−−−−−−−−→(νA)m[o[P1|P2|S1]|S2]

(OutAmb)
P≡(νA)(n[out m.P1|P2]|P3) m	∈A

P
m[−|S1]−−−−−→(νA)(m[P3|S1]|n[P1|P2])

(InAmb)
P≡(νA)(n[in m.P1|P2]|P3) m	∈A

P
−|m[S1]−−−−−→(νA)(m[n[P1|P2]|S1]|P3)

(Open)
P≡(νA)(open n.P1|P2) n	∈A

P
−|n[S1]−−−−−→(νA)(P1|P2|S1)

(CoIn)
P≡(νA)(m[P1]|P2) m	∈A

P
−|o[in m.S1|S2]−−−−−−−−−−→(νA)(m[o[S1|S2]|P1]|P2)

(CoOpen)
P≡(νA)(n[P1]|P2) n	∈A

P
−|open n.S1−−−−−−−−→(νA)(P1|S1|P2)

Fig. 2. The LTS M , for L�M R ranging over the three axioms of �M

2.2 HoCore

HoCore [10] has been introduced as a core language for higher-order concur-
rency (where processes may exchange messages containing processes). Its main
peculiarities consist in the fact that (1) several different notions of strong be-
havioural equivalence coincide, and (2) they are all computable, even if the
formalism is Turing complete. We consider here weak equivalence: it was not
studied before, even if it is immediate to note that (1) does not hold anymore.

The syntax is shown in Fig. 3(a). We assume a set N of names ranged over
by a, b, c, . . . and a set V of process variables ranged over by x, y, z, . . ., requiring
N and V to be disjoint. The set of names of a process P (denoted by n(P )) is
defined as usual. The input a(x).P binds the free occurrences of the variable x
in P . We write fv(P ) for the set of free variables of P , and we identify processes
up-to the renaming of bound variables. A process is closed if it does not have
free variables. To make the presentation lighter, we say process to mean closed
process, and we write open process whenever we mean process that might not
be closed. We let P, Q, R, . . . range over the set PH of closed processes.

HoCore contexts are closed processes with a hole −, formally generated by
the following grammar (for Q ∈ PH)

C[−] ::= −, a(x).C[−], C[−] | Q.

The structural congruence ≡ is the smallest congruence induced by the axioms
in Fig. 3(b). The behaviour of a process P is then described as the reaction
relation �H over processes up to ≡, obtained by the rules in Fig. 3(c).

Barbs are defined as follows: P ↓ā if P ≡ aP1|P2, for processes P1 and P2. A
process P satisfies the weak barb ā (denoted as P ⇓ā) if there exists a process P ′

such that P �∗
H P ′ and P ′ ↓ā, where �∗

H is the transitive and reflexive closure
of �H . The notion of barb is used in [10] to give the definition of asynchronous
barbed congruence. Here we straightforwardly extend it to the weak case.

Definition 2 (Weak Asynchronous Barbed Congruence). Weak asyn-
chronous barbed congruence ∼B

H is the largest symmetric relation B s.t. P BQ
implies
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(a) P ::= 0, aP, a(x).P, x, P1|P2 (b) P |0 ≡ P (P |Q)|R ≡ P |(Q|R) P |Q ≡ Q|P

(c) aQ|a(x).P �H P{Q/x} if P �H Q then P |R�H Q|R

Fig. 3. (a) Syntax, (b) structural congruence and (c) reduction relation of HoCore

– if P ⇓ā then Q ⇓ā;
– if P �∗

H P ′ then Q�∗
H Q′ and P ′ BQ′;

– ∀C[−], C[P ]BC[Q].

For instance, a(x).ax ∼B
H 0. This is intuitively understood by observing that the

former process can interact only with a context of the shape −|aP1|P2. Moreover,
the interaction of a(x).ax with −|aP1|P2 reduces to the process aP1|P2, which
is clearly equivalent to 0|aP1|P2 (i.e., 0 inside the context −|aP1|P2).

Concerning the equalities above, it is worth noting that a(x).ax and 0 are not
equivalent with respect to the strong asynchronous barbed congruence (obtained
by replacing ⇓ā with ↓ā and �∗ by � in the above definition).
Two LTSs for HoCore. Fig. 4 shows the LTS semantics of HoCore intro-
duced in [10] for open processes (the symmetric variants of the two rightmost
rules are omitted). We let α denote any label of a transition and bv(α) the set
of its bound variables (for bv(a(x)) = {x} and bv(α) = ∅ for α 
= a(x)).

This LTS is used in [10] to define a few alternative notions of equivalence
that (when restricted to closed processes) are shown to coincide with strong
asynchronous barbed congruence. What is noteworthy is that these equivalences
avoid the quantification over all contexts of asynchronous barbed congruence,
and they are thus proved to be computable.

These behavioural equivalences (making use of the LTS) cannot be straight-
forwardly extended to the weak case, and indeed their “naive weak extension”
would not coincide with ∼B

H . This can be straightforwardly observed by noting
that all the definitions in [10] are “synchronous”, i.e., they require that every
input transition is matched by another input transition. On the contrary, any
equivalence defined in such a manner would never equate the processes a(x).ax
and 0, which instead are related, as discussed before, by ∼B

H .
At the end of this paper, we will apply our theoretical framework to derive a

labelled characterization of ∼B
H . We will make use of the LTS H shown in Fig. 5

where, once more, labels are (minimal) contexts, as in the LTS for MAs in Fig. 2.
The Tau rule models internal computations. The In rule models the com-

munication over a channel a, where the environment send a process S to
the process P . Vice versa, in the Out rule the process P send a process P1

to the the environment: the sent process P1 is substituted in the continuation S
of the inputting environment. The rule ExtRed models transitions where the
redex is fully offered by the environment. It represents the axiom of the reduc-
tion relation (see Fig. 3(c), left): the process L of the label and the process R
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(Out) aQ
aQ−→ 0 (In) a(x).P

a(x)−→ P (Com)

P1
aQ−−→P ′

1 P2
a(x)−−−→P ′

2

P1|P2
τ−→P ′

1|P ′
2{Q/x} (Par)

P1
α−→P ′

1 bv(α)∩fv(P2)=∅
P1|P2

α−→P ′
1|P2

Fig. 4. The ordinary LTS of HoCore

(Out)
P≡aP1|P2

P
−|a(x).S−−−−−−→P2|S{P1/x})

(In)
P≡(a(x).P1)|P2

P
−|aS−−−→P1{S/x}|P2

(Tau)
P�HQ

P
−−→Q

(ExtRed)
L�HR

P
−|L−−→P |R

Fig. 5. The LTS H , for L�H R ranging over the three axioms of �H

of the target state represent the left-hand and the right-hand side of the axiom,
respectively.

Even if we do not state it formally, it is immediate to note the tight correspon-
dence between the ordinary LTS (Fig. 4) and our own H , modulo the structural
congruence: if P

τ−→ Q then P
−−→ Q, and vice versa if P

−−→ Q there exist P ′, Q′

s.t. P ′ τ−→ Q′ and P ≡ P ′, Q ≡ Q′ (and similarly for P
a(x)−→ Q and P

aP1−→ Q with

respect to P
−|aS−−→ Q{S/x} and P

−|a(x).S−−−−→ Q|S{P1/x}, respectively).

Remark 1. It is worth remarking here that the ordinary LTS is finite, while H is
not because S represents any possible process provided by the environment. This
kind of problem occurs also for the LTS M that we have shown for MAs and
for other LTSs that have been proposed in analogous works (see e.g. [15,16]). It
is challenging to devise a general solution to this problem, but some suggestions
come from open reactive systems [9]: instead of considering only closed process
and contexts, one might take into account open processes, contexts and variable
substituions. In the special case of HoCore, it would be interesting to develop
(for the weak case) a technique analogous to the normal bisimulation of [10]:

instead of considering all the possible S in the transitions P
−|aS−−→ and P

−|a(x).S−−−−→,
we might take only S = m0 and S = m(y).x, respectively, for a fresh name m.
This is out of the scope of the present paper and is left for future work.

3 Reactive Systems and Context LTSs

This section introduces a framework that encompasses MAs and HoCore, aim-
ing at a general theory for modeling the weak (barbed) semantics of interactive
formalisms. After providing the (set-theoretical) definition of reactive system,
we introduce a barbed (§ 3.1) and a labelled semantics for these systems (§ 3.2),
showing that the latter is, under suitable conditions, a congruence (§ 3.3).

We first define a notion of system theory, denoting how the states of a system
are built. Recall that a monoid M = (M,⊗, 1) consists of a setM, an associative
binary operator ⊗ : M×M → M, and the identity element 1 ∈ M. Given a
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monoid M and a set X , a monoid action of M on X is an operation · :M×X → X
compatible with the monoid operation, i.e., such that for each m1, m2 ∈ M and
x ∈ X , m1 · (m2 · x) = (m1 ⊗m2) · x and for each x ∈ X , 1 · x = x.

Definition 3 (System Theory). A system theory is a triple S = 〈P , C, ·〉 such
that P is a set of processes, ranged over by P, Q, R, . . . , C = (C, ◦,−) a monoid
of contexts, ranged over by C[−], C1[−], . . ., and · : C×P → P a monoid action.

We usually denote context composition C1[−]◦C2[−] as C2[C1[−]] and the action
C[−] · P as C[P ]. The chosen notation supports the intuition that the monoid
operation represents the functional composition of unary contexts, while the
action is just the insertion of a process into a context. It allows for an easier
comparison with the process calculi notation adopted in later sections.

Definition 4 (Reactive System). A reactive system (RS) is a triple R =
〈S,�, O〉 where S is a system theory, �⊆ P × P a transition relation and O a
set of predicates on P.

We write P � Q to mean 〈P, Q〉 ∈�, and we denote by �∗ the reflexive and
transitive closure of �. The predicates in O are called barbs and they represent
basic observations on the state of a system. We write P ↓o if P satisfies o ∈ O.
Analogously, the state P satisfies the weak barb o (written P ⇓o) if there exists
a state P ′ such that P �∗ P ′ and P ′ ↓o.

3.1 Barbed Saturated Semantics

With the ingredients offered by our theory, we can define a behavioural equiva-
lence which equates two processes if these cannot be distinguished by an observer
that can insert a process into any context and check the exposed barbs.

In the following, we fix an RS R = 〈S,�, O〉, with S = 〈P , C, ·〉.

Definition 5 (Weak Barbed Saturated Bisimilarity). Weak barbed sat-
urated bisimilarity ≈BS (for R) is the largest symmetric relation B such that
P BQ implies ∀C[−] ∈ C

– if C[P ] ⇓o then C[Q] ⇓o;
– if C[P ]�∗ P ′ then C[Q]�∗ Q′ and P ′ BQ′.

Weak barbed saturated bisimilarity (which is a congruence) is general enough to
encompass the standard behavioural equivalences of many process calculi. The
main drawback of this kind of definition is the quantification over all contexts
that makes hard the proofs of equivalence. In this paper, we provide a general
proof technique for ≈BS that avoids the quantification over all possible contexts
by relying on LTSs like those derived by Leifer and Milner’s theory [11].

It is sometimes possible to restrict the set of contexts to be checked against,
so obtaining again the same barbed equivalence. This can be accomplished by
identifying those contexts whose presence does not really influence ≈BS .
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Definition 6 (Non-Discriminating Context). Let E[−] ∈ C be a context. It
is non-discriminating (for R) if ∀P ∈ P, ∀C[−] ∈ C and ∀o ∈ O

1. if C[E[P ]] ↓o then ∀Q ∈ P . C[E[Q]] ↓o;
2. if E[P ]� P ′ then P ′ = E′[P ] and ∀Q ∈ P . E[Q]� E′[Q].

For instance, the context M.− of MAs is non-discriminating, since it hides the
strong barbs of the process that is inserted inside it, and it inhibits its transitions.
For the same reason, the context a(x).− of HoCore is non-discriminating as
long as it is applied to closed processes (thus, no variable is actually bound).

Now, starting from an RS R we can build a new reactive system R′ by remov-
ing some (possibly all) non-discriminating contexts. The following proposition
ensures that the barbed saturated bisimilarity in the two systems coincide.

Proposition 1. Let C′ be a submonoid of the context monoid C, S′ = 〈P , C′, ·〉
the system theory derived from S, and R′ = 〈S′,�, O〉 the RS derived from R.
If all contexts in C but not in C′ are non-discriminating in R, then ≈BS

R =≈BS
R′ .

3.2 Weak Context Bisimilarity

In order to equip RSs with a labelled equivalence, we need to introduce a more
basic notion, identifying those contexts that always allow a reaction.

Definition 7 (Reactive Context). Let C[−] ∈ C be a context. It is reactive
(for R) if ∀P ∈ P, if P � P ′ then C[P ]� C[P ′]. The set (actually, submonoid)
of reactive contexts is denoted R.

For instance, the contexts −|R and (νa)− of MAs and −|R of HoCore are
reactive, while the prefixes (a(x).− in HoCore and M.− in MAs) are not.

Definition 8 (Context LTS). A context LTS is a triple D = 〈R,D,→D〉 such
that D ⊆ C and →D⊆ P ×D × P.

As usual, we write P
C[−]−→D Q to mean that 〈P, C[−], Q〉 ∈→D. Note moreover

that the set of labels D is a subset of the set of all contexts C. For instance, the
LTSs M and H (in Figs. 2 and 5) are two context LTSs. The set of labels of H
is {−,−|aS,−|a(x).S | a ∈ N and S ∈ PH}.

In order to characterize the class of LTSs on which the labelled semantics for
RSs is based, we need to introduce the following definition.

Definition 9 (Decomposition Pair). Let 〈C1[−], C2[−]〉 a pair belonging to
D×R. It is a decomposition pair for C[P ]� P ′ if there exists a process P ′′ such

that P
C1[−]−→D P ′′, C2[C1[−]] = C[−] and C2[P ′′] = P ′.

For instance, consider the MAs process P = open n.P1 and the context C[−] =
−|n[P2]|P3. A decomposition pair for C[P ] �M P1|P2|P3 is 〈−|n[P2],−|P3〉.
Indeed, it is easy to check that P

−|n[P2]−−−−−→ P1|P2; moreover, if we compose −|n[P2]
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with −|P3 we exactly obtain C[−], and finally the composition between P1|P2

and −|P3 gives P1|P2|P3.
Now we can characterize the class of LTSs we are interested in: they are

context LTSs satisfying suitable soundness and completeness properties.

Definition 10 (Sound and Complete Context LTS). A context LTS is
sound and complete if it satifies the properties

1. if P
C[−]−→D P ′ then C[P ]� P ′;

2. each C[P ]� P ′ has a decomposition pair 〈C1[−], C2[−]〉.

The LTS M for MAs and the LTS H for HoCore are both sound and complete,
as we discuss later in § 5 and § 6, respectively.

In the following, we fix a sound and complete context LTS D. Moreover, we

use P
C[−]
→ ∗D P ′ to denote P �∗ • C[−]−→D •�∗ P ′.

Definition 11 (Weak Context Bisimilarity). Weak context bisimilarity ≈D

(for D) is the largest symmetric relation B such that P BQ implies

– if P
C[−]
→ ∗D P ′ then Q

C[−]
→ ∗D Q′ and P ′ BQ′.

Note that the definition above requires that when P performs what is intuitively
a τ -transition, i.e., when P

−−→D P ′, then a bisimilar process Q has to reply
either with one or more τ -moves. Usually, the process Q might instead reply
with zero or more τ -moves. This fact is discussed at the end of § 4.1.

3.3 Congruence Property

We now focus on adding constraints over D in order to make ≈D a congruence.

Definition 12. Let 〈C1[−], C2[−]〉 be a decomposition pair for C′[C[P ]] � P ′.

It is universal if ∀Q. Q
C1[−]−→D Q′′ ⇒ C[Q]

C′[−]−→D Q′ ∧Q′ = C2[Q′′].

Consider the MAs process P = open n.P1 and the context C[−] = −|P3 and
C′[−] = −|n[P2]. The decomposition pair 〈−|n[P2],−|P3〉 of C′[C[P ]] �M

P1|P2|P3 is universal: for all Q s.t. Q
−|n[P2]−−−−−→ Q′′ it holds Q|P3

−|n[P2]−−−−−→ Q|P3.

Definition 13. A context LTS D is decomposable if whenever C[P ]
C′[−]−→D P ′

there exists a universal decomposition pair 〈C1[−], C2[−]〉 for C′[C[P ]]� P ′.

The decomposition property introduced above is only required to prove the con-
gruence property of the context bisimilarity (Proposition 2) and of the weak
L-bisimilarity introduced in the next section (Proposition 3). The main result of
our theory (namely, the labelled characterization of barbed bisimilarity stated
in Theorem 1) just requires that the LTS is sound and complete.

Proposition 2. If all contexts in C are reactive and D is decomposable, then
≈D is a congruence.
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Unfortunately, ≈D is often too fine-grained. Consider e.g. HoCore and the
associated LTS H : ≈D is too discriminating for H . Indeed, as shown in § 2.2,
the HoCore processes a(x).ax and 0 are asynchronously barbed congruent but
they are obviously distinguished by ≈D.

The right semantics is often represented by the barbed saturated one, whose
flexibility allows for recasting a wide variety of observational, bisimulation-based
equivalences. The main drawback of this semantics is the fact that in an equiv-
alence proof all contexts must be tackled. For this reason, the next section in-
troduces an alternative bisimilarity that efficiently characterizes the barbed sat-
urated one, since it allows reasoning about it without considering all contexts.

4 Weak L-Bisimilarity

This section introduces weak L-bisimilarity, the weak counterpart of the bisim-
ilarity proposed in [3]. It is parametric with respect to a set of contexts (also
referred to as labels) L and it is a congruence, should L satisfy a closure property.
More importantly, it can be used as an alternative proof technique of ≈BS .

Definition 14 (Weak L-Bisimilarity). Let L ⊆ D be a set of contexts. Weak
L-bisimilarity ≈L (for D) is the largest symmetric relation B s.t. P BQ implies

if P
C[−]−→D P ′ then

{
Q

C[−]
→ ∗D Q′ and P ′ BQ′, if C[−] ∈ L;

C[Q]�∗ Q′ and P ′ BQ′, otherwise.

Note that ≈L generalizes ≈D. Indeed, it is easy to prove that they coincide,
when L is actually the whole set D. In § 4.1 we show that for some L, weak
L-bisimilarity also coincides with weak barbed saturated bisimilarity. We now
show that ≈L is a congruence, under suitable conditions on L.

Definition 15. A set of contexts L ⊆ D in a decomposable D is closed under
decomposition if whenever 〈C1[−], C2[−]〉 is a universal decomposition pair for
C′[C[P ]]� P ′ (see Definition 13) and C′[−] ∈ L then C1[−] ∈ L.

Proposition 3. Let L be a set of contexts in a decomposable D. If all contexts
in C are reactive and L is closed under decomposition, then ≈L is a congruence.

4.1 Weak Barbed Saturated Bisimilarity via Weak L-Bisimilarity

Here we show that weak L-bisimilarity can characterize weak barbed saturated
bisimilarity. It generalizes the correspondence between the strong version of the
semantics, as it holds for Leifer and Milner’s RSs [3]. This result is later used to
prove that L-bisimilarity captures the right equivalences for MAs and HoCore.

The following definitions are needed to ensure that ≈L⊆≈BS.

Definition 16 (Weak Contextual Barbs). A barb o is a weak contextual
barb if whenever P ↓o implies Q ⇓o then ∀C[−], C[P ] ↓o implies C[Q] ⇓o.
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Definition 17. Let L be a set of contexts. We say that L is O-capturing (for
D) if for each barb o ∈ O there exists a context C[−] ∈ L such that for each

process P we have P ↓o if and only if P
C[−]−→D P ′.

The next two definitions are instead needed to ensure that ≈BS⊆≈L.

Definition 18. Let B be a relation on processes. A predicate P(X, Y ) on pro-
cesses is stable under B (for D) if for any two processes P , Q whenever PBQ
and P(P, P ′) there exists Q′ such that P(Q, Q′) and P ′BQ′. A context C[−] is

weakly stable under B (for D) if P(X, Y ) = X
C[−]
→ ∗D Y is stable under B.

In § 5 and 6, we show some contexts of MAs and HoCore that are weakly stable
under ≈BS . Note that the identity context − is usually not stable under ≈BS :
for P ≈BS Q and P

−−→ P ′ (i.e., P � P ′), it is not guaranteed that Q
−−→.

We may now state one of the main correspondence results for our theory,
witnessing the usefulness of L-bisimilarity.

Theorem 1. Let O be a set of weak contextual barbs and L ⊆ D a set of contexts
in a sound and complete D. If L is O-capturing and all its contexts are reactive
and weakly stable under ≈BS (for D), then ≈BS =≈L.

Theorem 1 requires that only the context of a subset L of D are reactive. How-
ever, sometimes it may be useful to consider only reactive contexts (like done
implicitly in the graphical encodings of process calculi, see e.g [6]). This can be
easily done, by observing that, as hinted above for MAs and HoCore, in most
process calculi those contexts that are not reactive are also non-discriminating.

Remark 2. Note that weak L-bisimilarity coincides with weak context bisimilar-
ity (Definition 11) when taking L = D. Thus, as a consequence of the previ-
ous theorem, weak context bisimilarity coincides with weak barbed bisimilarity,
whenever all the contexts in D are O-capturing and weakly stable under ≈BS .
However, this is usually not the case because, as discussed above, the identity
context − is not weakly stable. Indeed, in standard weak bisimilarities (e.g., the
one for CCS), when one process perform one internal τ -transition (corresponding
to −−→), the equivalent process is not forced to perform any transition. By taking
L = D \ {−}, we capture exactly these standard weak bisimilarities (it suffices
to observe that if P ≈L Q and P

−−→D P ′ then Q �∗ Q′, since − /∈ L) and via
Theorem 1 we can check when they coincide with saturated barbed bisimilarity.

5 Labelled Characterization for MAs Weak Semantics

This section proposes a labelled characterization of the weak reduction barbed
congruence for MAs by means of the weak L-bisimilarity over the LTS M .

First of all, we show that MAs fit in the theory of § 3. We consider the system
theory SM = 〈PM , CM , ·〉, where CM is the monoid (CM , ◦,−), with CM the set
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of unary MAs contexts presented in § 2.1. The calculus can thus be seen as an
RS RM = 〈S,�M , OM 〉, where OM represents the set of MAs barbs.

It is easy to see that barbed saturated semantics for RM coincides with the
weak reduction barbed congruence for MAs.

Proposition 4. ≈M=≈BS
M

(for RM ).

The equivalence is thus a congruence with respect to all MAs contexts. However,
in order to exploit the L-bisimilarity, we also have to show that M is a sound and
complete context LTS. Instead of proving it directly, we consider a simpler RS,
distilled in [2] by exploiting Leifer and Milner’s theory. It differs from RM only
with respect to the monoid of contexts: C′M contains the unary MAs contexts
generated by the following grammar (for R ∈ PM )

C[−] ::= −, C[−]|R, (νn)C[−], n[C[−]].

We therefore consider the MAs system theory S′
M = 〈PM , C′

M , ·〉, where C′
M is

the monoid (C′M , ◦,−). The RS modelling MAs is now R′
M = 〈S′,�M , OM 〉 and

M is a sound and complete context LTS based on R′
M : its labels are “minimal”

contexts, according to Leifer and Milner’s terminology, and this fact ensures that
both Property 1 (thanks to [11, Proposition 3]) and Property 2 (thanks to [11,
Proposition 1]) of Definition 10 are satisfied.

Now, since the contexts of the shape M.C[−] are non-discriminating, thanks
to our Propositions 1 and 4, we can state the proposition below.

Proposition 5. ≈M=≈BS
M

(for R′
M ).

As shown in § 4.1, we can characterize the weak barbed semantics on a set of
weak contextual barbs O through a sound and complete context LTS and a set
of reactive contexts L. As required by Theorem 1, L must be O-capturing and
each C[−] ∈ L must be weakly stable under weak barbed saturated bisimilarity.

Proposition 6. Let LM be the set of labels having the shape −|open n.T1, for n
an ambient name and T1 an MAs process. Then, LM is OM -capturing. Moreover
all the barbs in OM are weak contextual.

The proof of the proposition above occurs in [3, Proposition 8] (“LM is OM -
capturing”) and [4, Proposition 5] (“OM are weak contextual”). It is easy to
note that the contexts in LM are reactive: it is now needed to prove that they
are weakly stable under ≈BS

M . To this end, we exploit the predicate in Fig. 6

that is equivalent to P(X, Y ) = X
C[−]
→ ∗D Y and we show that it is stable under

≈BS
M .

Lemma 1. Let P−|open n.T1(X, Y ) be the predicate on MAs processes shown in
Fig. 6, for n ambient name and T1 a process. Then, for any two processes P and

P ′ we have P−|open n.T1(P, P ′) if and only if P
−|open n.T1−−−−−−→∗M P ′.

Proposition 7. All labels in LM are weakly stable under ≈BS
M .

From the previous results, the following theorem follows immediately.

Theorem 2. ≈BS
M =≈LM (for R′

M ).



302 F. Bonchi et al.

6 Labelled Characterizations for HoCore Semantics

As for MAs, we first show that HoCore fits in the theory of §3. We consider
the HoCore system theory SH = 〈PH , CH , ·〉, where CH is the monoid context
(CH , ◦,−), with CH the set of unary HoCore contexts presented in § 2.2. The
calculus can thus be seen as an RS RH = 〈SH ,�H , OH〉, where OH is the set
of HoCore barbs defined in § 2.2.

It is easy to see that the weak barbed saturated semantics for RH coincides
with the weak asynchronous barbed congruence (Definition 2).

Proposition 8. ∼B
H=≈BS

H
(for RH).

The LTS H (Fig. 5) is a sound and complete context LTS. Indeed, as for MAs, its
labels are minimal contexts, according to Leifer and Milner’s theory. For the sake
of space we do not report the distillation procedure, but it is analogous to the
one for CCS shown in [6]. However, as for MAs, the RS employed for distilling
H slightly differs from RH , since there is no context of the shape a(x).C[−].

We thus define C′H as the set of contexts generated by C[−] ::= −, C[−]|R
(for R ∈ PH) and we consider the system theory S′

H = 〈PH , C′
H , ·〉, where

C′
H is the monoid context (C′H , ◦,−). Therefore, the RS modelling HoCore

is now R′
H = 〈S′

H ,�H , OH〉. Since contexts of the shape a(x).C[−] are non-
discriminating, Propositions 1 and 8 allow to state the following result.

Proposition 9. ∼B
H=≈BS

H (for R′
H).

We now characterize ∼B
H via the LTS H (in Fig. 5) by choosing a set of contexts

LH and showing that the barbs in OH are weak contextual and that LH is OH

capturing and its contexts are reactive and weakly stable under ≈BS
H

.
In order to capture the barbs in OH (defined as P ↓ ā iff P ≡ aP1|P2) it

suffices to take as set of contexts

LH = {− | a(x).S s.t. a ∈ N , S ∈ PH}.

Indeed, by definition of the LTS H , P
−|a(x).S−−−−→ iff P ↓ ā.

Proposition 10. LH is OH-capturing and the barbs in OH are weak contextual.

It is easy to note that the contexts in LH are reactive, so it only remains to
prove that they are weakly stable under ≈BS

H
. To show this, we make use of the

predicate in Fig. 7 and of the following lemma.

Lemma 2. Let P−|a(x).S(X, Y ) be the predicate on HoCore processes shown
in Fig. 7, for a name a and a process S. Then, for any two processes P and P ′

we have P−|a(x).S(P, P ′) if and only if P
−|a(x).S
−−−→∗H P ′.

P−|open n.T1(X, Y ) ∃m �∈ fn(X). X | open n.open m.T1 | m[0]�∗ Y ∧ Y �⇓m

Fig. 6. Predicate for the labels −|open n.T1
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Proposition 11. All labels in LH are weak stable under ≈BS
H

.

Theorem 3. ≈BS
H =∼LH (for H′

M).

It is interesting to remark that those contexts of the shape −|aQ (intuitively
corresponding to the labels a(x) in the ordinary LTS in Fig. 4) are not stable

under ≈BS
H . Indeed, a(x).ax

−|aQ−−→ and 0 
−|aQ−−→, even if a(x).ax ≈BS
H 0. The latter

equivalence can now be formally proved by employing ∼LH : since the context

−|aQ does not belong to LH , whenever a(x).ax
−|aQ−−→ aQ, the process 0 can reply

with 0|aQ�∗ 0|aQ and clearly aQ ∼LH 0|aQ.

P−|a(x).S(X, Y ) ∃i /∈ n(X) s.t. X|a(x).(S|i(x).0|)|i0�∗ Y �⇓ī

Fig. 7. Predicates for the labels −|a(x).S

7 Conclusions and Future Work

Our paper investigates the notion of weak barbed semantics for RSs. More pre-
cisely, it proposes a general approach for the identification of suitable conditions
under which weak barbed saturated bisimilarity can be characterized in terms
of a behavioural equivalence over a suitably labelled transition system.

Weak barbed saturated bisimilarity generalizes the standard equivalences of
calculi such as MAs and HoCore. Indeed, both case studies fall in our frame-
work. In particular, for MAs we proved that our proposal captures its weak
reduction barbed congruence, giving an alternative labelled characterization via
weak L-semantics. For HoCore, after introducing the weak variant of the strong
barbed semantics proposed in the original paper [10], we show that it can be cap-
tured via weak L-bisimilarity.

The two case studies also show an interesting problem of our approach that
provides guidelines for future research. The LTSs M and H (in Figs. 2 and 5)
are infinite, because the environment may provide infinitely many different S,
S1, S2. Similar problems arise with different approaches (see e.g. [15,16]) and
also for even more basic calculi. For instance, for the CCS shown in [6], to an
ordinary input transition a−→ correspond infinitely many contextual transitions
−|ā.S−−→ and to an output ā−→ correspond

−|a.S−−→. However, in this simple case it suffices
to take only the contexts where S = 0. The case of HoCore is slightly more
complex but, similarly to CCS, one can check only few S, as in [10] with normal
bisimulation. While for MAs, we are not aware of any “finite characterization”
of its behavioural equivalence. This is also the case of many new-generation
calculi featuring higher-order communication and hierarchical localities, such as
the Kell [18]. Devising a general solution to this problem is a challenging task,
that we would like to face with open reactive systems, in the style of [9].
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Abstract. A successful approach in the semantics of programming languages is
to model programs by interaction dialogues. While dialogues are most often con-
sidered abstract mathematical objects, it has also been argued that they are useful
for actual computation. A manual implementation of interaction dialogues can
be complicated, however. To address this issue, we consider a general method
for extending a given language with a metalanguage that supports the implemen-
tation of dialogues. This method is based on the construction by Dal Lago and
the author of the programming language INTML, which applies interaction dia-
logues to sublinear space computation. We show that only few assumptions on
the programming languages are needed to implement a useful INTML-like meta-
language. We identify a weak variant of the Enriched Effect Calculus (EEC) of
Egger, Møgelberg & Simpson as a convenient setting for capturing the structure
needed for the construction of the metalanguage. In particular, function types are
not needed for the construction and iteration by means of a Conway operator is
sufficient. By using EEC we show how computational effects can be accounted
for in the implementation of interaction dialogues.

In game semantics and related areas of programming language semantics there is a
long tradition of modelling programs by interaction dialogues. Programs are modelled
as entities that may engage in a dialogue with their environment. The interpretation of
a program explains what kinds of queries it can receive and how it may answer. Large
programs are composed of smaller ones that interact with each other, so that the whole
execution of a program may be considered an interaction process. The question/answer
dialogues that make up such models tend to have very concrete nature, which has lead
to interesting applications, for example in algorithmic game semantics.

The premise of this paper is that interaction dialogues are useful not only for inter-
preting programming languages, but also as an actual implementation method. There
are many examples where dialogues have been used for the implementation of pro-
grams, e.g. [17,6,13]. Two recent examples provide the main motivation for the work
reported here. First, Ghica introduces the Geometry of Synthesis [6] as a method of
hardware synthesis. His approach is to construct a game model by implementing inter-
action dialogues by digital circuits and then to interpret a variant of Idealized Algol in
the thus constructed game model. With this approach one can write a program in an
high-level language (Idealized Algol) and by interpretation in the game model have it
translated to a low-level language for digital circuits (Verilog). In this way, the imple-
mentation of dialogues is used as a method for hardware synthesis.

A similar example has been studied by Dal Lago and the author in the context of
computation with sublinear space [13]. There the problem is how to write programs

H. Yang (Ed.): APLAS 2011, LNCS 7078, pp. 305–321, 2011.
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that operate on data too large to fit into memory. To access values that do not fit into
memory one needs to query them piece by piece. Such computation can naturally be
organised into question and answer dialogues. This observation has lead to the design
of the programming language INTML for writing programs that can access and manip-
ulate large data [13]. The approach is to start from a simple low-level language, whose
programs can be evaluated using limited space, and use it to implement dialogue-based
computation. The implementation of dialogues is considered as the construction of a
game model, which is then used to interpret the language INTML. The result is that one
can use the higher-order functional language INTML to implement dialogues in a simple
low-level language that allows easy analysis of space usage.

These examples can be seen as game semantics turned around. Rather than interpret-
ing a given programming language in a game model, one implements a game model in
a given language. In the thus constructed model one can then interpret a new program-
ming language. As the game model has been implemented in the original language, this
new language may then be seen as a metalanguage for programming dialogues in the
original language. The value of this approach is that even weak low-level languages
suffice to construct rich game models that can interpret sophisticated metalanguages.

Having argued that it is useful to implement computation by question and answer
dialogues, we turn to the problem of implementing dialogues in a given programming
language. Motivated by the examples above, we focus in particular on weak languages
that allow circuit synthesis or simple resource analysis or the like. From game seman-
tics it is known that the concrete details of interaction dialogues can be complicated,
so that in theoretical work it is standard practice to identify useful structure abstractly,
e.g. products or function spaces, and to work with this abstract structure. Here we con-
sider how a similar abstraction can be attained for the implementation of interaction
dialogues.

We do this by reconsidering the ideas of INTML [13] in a more general context. The
approach is to extend a given programming language with constructs that support the
implementation of dialogues. These extensions are definitional in the sense that any
program written with them could have been written without them, only perhaps in a
more complicated way. The approach is thus to extend a given language with a language
for metaprogramming. Previous evidence suggests that INTML captures useful language
constructs for the implementation of interaction dialogues [14].

We show that very little structure is needed to carry out the construction of an INTML-
like metalanguage and that computational effects can be allowed without affecting the
metalanguage. Computational effects are interesting in this context, as can be seen from
the examples above. Ghica’s Geometry of Synthesis uses stateful circuits, while for sub-
linear space programming it is interesting to consider nondeterminism, perhaps in an
effort to characterise the complexity class NLOGSPACE by a programming language. Be-
yond those examples, recent work on quantum λ-calculus [9] is based on computation
by interaction with a quantum effect. Other effects, such as name generation, may be
useful in the context of nominal game semantics [20]. There also seems to be a relation
to Levy’s Jump-with-Argument [16], which we intend to study in future work.

To give a rough idea of the metalanguage, assume given some programming lan-
guage in which we want to implement the dialogues of a game model, e.g. PCF. The
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metalanguage extends this language with a new class of types for interactive program-
ming by dialogues. The new interaction types are formed by the grammar X, Y ::=
[A] | 1 | X⊗Y | B ·X � Y, in which A and B range over types from the original lan-
guage. Such an interaction type specifies an interface that tells which kinds of questions
one may ask of programs of this type and which kinds of answer one may receive. The
type [A] specifies thunks that may be asked the single question ‘please compute a value’
and that may reply with any value of type A. The type X ⊗ Y contains pairs of values;
it combines the interfaces of X and Y so that one may interact with either component
of the pair as if one had two values of type X and Y side by side. The type B ·X � Y
contains functions from X to Y . These functions are evaluated in an interactive manner,
i.e. information about the function argument is obtained by sending questions according
to its interface.

The type B · X � Y imposes a linearity restriction on the use of its argument:
it may be used B-many times, which means that there is one copy for each value of
type B. The values of type B thus serve as addresses for the copies of X . The linearity
constraint allows us to construct the metalanguage even in weak low-level languages
that can only represent a limited number of addresses, e.g. languages with only finite
types, as one would use for circuits. In strong languages like PCF, full copying can be
allowed.

Some words are in order about why we study language extensions for metaprogram-
ming as opposed to deriving completely new languages from the game models. While
computation by dialogue is a useful mode of computation, it seems that not necessarily
all computations should be done in this way. With a metalanguage one has the option
of mixing computation by interaction with the usual computation of a given language.
For example, it should be useful to have two function types, one that is evaluated using
dialogues as in game semantics and the other one using standard call by value, say.

1 Weak Effect Calculus

Before describing the metalanguage in the next section, we define a weak effect calculus
to capture the assumptions we make on the base programming language. An effect
calculus suggests itself, as for the construction of the metalanguage we need possibly
non-terminating loops and so must account for the effect of non-termination at least.

We define the Weak Effect Calculus (WEC), a weak variant of the Enriched Ef-
fect Calculus (EEC), which was introduced by Egger, Møgelberg & Simpson [4] as a
type theory for studying computational effects. The Enriched Effect Calculus develops
Moggi’s computational metalanguage [19] and can also be understood as a reformula-
tion and extension of Levy’s Call-by-Push-Value (CBPV) [16]. The choice of (a variant
of) EEC as a basis for the construction of the metalanguage is motivated mainly by its
clean separation of values and computations as well as the presence of copower types,
which are particularly useful.

The Weak Effect Calculus (WEC) is obtained by taking the fragment of EEC without
function types and products of computation types and adding sum types for values and
a Conway operator for iteration:
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Value types A, B ::= α | 0 | A + B | 1 | A×B | A
Computation types A, B ::= α | 0 | A⊕B | A ·B | !A

It may be useful to think of value types simply as sets and computation types as sets
with an additional element ⊥ intended to represent non-termination.

For value types we choose the usual sum and product types. For computation types
we take sums (0 and A⊕B), copowers A ·B and computations !A. The type A ·B can
be thought of as a type of pairs of a value of type A and a computation of type B. The
computation type !A consists of computations that when executed may return a value
of type A. It plays the role of TA in Moggi’s computational λ-calculus. Further types
could be added without affecting the results in this paper.

Like the Enriched Effect Calculus, WEC has two kinds of judgements, Γ | − � f : A
and Γ | x : B � g : C. Both contain a context Γ that assigns value types to variables.
In addition there is a stoup that may either be empty or that may consist of a single
variable declaration of computation type. The first judgement declares f to be a value
of value type A. The second judgement declares g to be a computation. The term g
therein may be thought of as an evaluation context whose hole is identified by x. An
operational intuition is that the evaluation of g starts with the complete evaluation of x
and then continues to evaluate g. In the above-mentioned interpretation of computation
types as sets with an element⊥ for non-termination, g appears as a strict function.

The terms and typing rules for WEC are given in Fig. 1. Therein, Δ ranges over
stoups and may be either empty − or a variable declaration x : B. The rules are subject
to the condition that only judgements of one of the two forms above can be derived.
For example, in the elimination rule for 0 the stoup Δ can only be empty if A is a
computation type.

In addition to the usual terms for the various types from EEC, WEC also contains a
term (let x = f loop g) for iteration. The operational intuition is that first f is evaluated,
its result is bound to x and then g is evaluated. If the result is inl(h), then h is the
result of (let x = f loop g). If the result is inr(f ′), then the computation continues
as (let x = f ′ loop g). In this way, the term (let x = f loop g) represents a looping
computation that may, in particular, fail to terminate.

This form of iteration will be enough to support the construction of a metalanguage
in the next section. For example for the space usage analysis results in [13] it is essential
that such a form of iteration suffices and full recursion is not needed.

In WEC the meaning of terms is explained by an equational theory. Except for the
term (let x = f loop g) the equations of WEC are just as for EEC, see [4,5]. The
equations for the term (let x = f loop g) are those of a uniform Conway operator [21].
A Conway operator is a mapping (−)† that takes a morphism A → B ⊕ A in some
category, where ⊕ denotes the coproduct, to a morphism A→ B in the same category,
subject to a number of equations1. The term (let x = f loop g) is syntax for such a
Conway operator, for given a term Γ | x : A � g : B ⊕ A one can form Γ | y : A �
let x = y loop g : B.

There are six equations for such a Conway operator: the fixpoint property, naturality,
dinaturality, diagonal and uniformity. The fixpoint property is expressed by:

1 In loc. cit. Conway operators studied in the dual setting, taking B × A → A to B → A.
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Γ, x : A | − � x : A Γ | x : A � x : A Γ | − � ∗ : 1

Γ | − � f : A Γ | − � g : B

Γ | − � 〈f, g〉 : A × B

Γ | − � f : A × B

Γ | − � fst(f) : A

Γ | − � f : A × B

Γ | − � snd(f) : B

Γ | − � f : 0

Γ | Δ � image(f) : A

Γ | − � f : A

Γ | − � inl(f) : A + B

Γ | − � f : B

Γ | − � inr(f) : A + B

Γ | − � f : A + B Γ, x : A | Δ � g : C Γ, y : B | Δ � h : C

Γ | Δ � case f of inl(x) ⇒ g | inr(y) ⇒ h : C

Γ | Δ � f : 0

Γ | Δ � image(f) : A

Γ | Δ � f : A

Γ | Δ � inl(f) : A ⊕ B

Γ | Δ � f : B

Γ | Δ � inr(f) : A ⊕ B

Γ | Δ � f : A ⊕ B Γ | x : A � g : C Γ | y : B � h : C

Γ | Δ � case f of inl(x) ⇒ g | inr(y) ⇒ h : C

Γ | − � f : A Γ | Δ � g : B

Γ | Δ � f · g : A · B
Γ | Δ � f : A · B Γ, x : A | y : B � g : C

Γ | Δ � let x · y = f in g : C

Γ | − � f : A

Γ | − � !f : !A

Γ | Δ � f : !A Γ, x : A | − � g : B

Γ | Δ � let !x = f in g : B

Γ | Δ � f : A Γ | x : A � g : B ⊕ A

Γ | Δ � let x = f loop g : B

Fig. 1. Typing Rules of the Weak Effect Calculus

Γ | Δ � f : A Γ | x : A � g : B ⊕ A

Γ | Δ � (let x = f loop g) = case g[f/x] of

{
inl(x) ⇒ x
inr(y) ⇒ let x = y loop g

: A

The other four equations are just syntactic formulations of the corresponding equations
in [21]. We omit them, as they are needed only to construct a uniform trace [7]. We
could have added a uniform trace to WEC directly, but Conway operators appear more
natural in the syntax, for example for giving an operational semantics.

1.1 Implementing Interaction

Suppose now we want to implement in WEC a way of computation by interaction, where
the interface of an entity is given by a pair (X−, X+) of computation types. Think of
X− as the type of questions that may be asked of the entity and X+ as the type of
possible answers.

A term of type Γ | z : Y − ⊕ X+ � f : Y + ⊕ X− then implements a strategy of
answering questions for an entity with interface Y = (Y −, Y +) when given the ability
to ask questions of an entity with interface X = (X−, X+). For, suppose we have a
term Γ | x : X− � e : X+ that answers questions for X . Then we can define a term
Γ | x : Y − � g : Y + that answers questions for Y . Concretely, we can define g to be
the term let z = inl(y) loop case f of inl(y)⇒ inl(y) | inr(x)⇒ inr(inl(e)). Of course,



310 U. Schöpp

this term is not very easy to read, nor are such terms easy to write. The metalanguage
in the next section provides language constructs for writing such programs.

2 A Metalanguage for Interactive Computation

We now introduce INTML[WEC], a metalanguage for implementing interactive compu-
tation in WEC. Formally we do this by introducing a new class of interaction types as
well as a new typing judgement for interactive computations. We will then show that
these extensions are in fact definitional, i.e. can be implemented in the original calculus.
In this way, the new constructs can be seen as constructs for metaprogramming WEC.

As outlined in the Introduction, we add four kinds of interaction types:

Interaction type X, Y ::= [A] | 1 | X ⊗ Y | A ·X � Y

Each interaction type X represents a pair (X−, X+) of computation types that specifies
the interface the value of type X :

1− = 0 [A]− = !1 (X ⊗ Y )− = X− ⊕ Y − (A · X � Y )+ = A · X− ⊕ Y +

1+ = 0 [A]+ = !A (X ⊗ Y )+ = X+ ⊕ Y + (A · X � Y )− = A · X+ ⊕ Y −

Interaction sequents have the form Γ | x1 : A1·X1, . . . , xn : An·Xn �i t : Y . The
context Γ maps variables to value types, as before. In the second part of the context,
each variable xi appears with multiplicity Ai, which is a value type. This means that xi

represents Ai-many copies of Xi, one for each value of Ai. The term t explains how to
answer questions for Y given the ability to ask questions of the various copies of Xi.

The typing rules are given in Figs. 2, 3 and 4. In the rules we write A · Φ for the
context obtained by replacing each declaration x : B·X in Φ with x : (A × B)·X . In
rule (STRUCT) we use a relation A ≤ B that informally expresses that B-many copies
of X are more than A-many copies. Since A and B are value types, we formalise this
by requiring there to exist a section-retraction pair between A and B.

VAR
Γ | x : 1·X �i x : X

Γ | Φ, x : A·X �i t : Y
STRUCT A ≤ B

Γ | Φ, x : B·X �i t : Y

Γ | Φ �i t : Y
WEAK

Γ | Φ, x : 1·X �i t : Y

Γ | Φ, x : A·X, y : B·Y, Ψ �i t : Z
EXCH

Γ | Φ, y : B·Y, x : A·X, Ψ �i t : Z

Γ | Φ �i s : X Γ | Ψ, x : A·X, y : B·X �i t : Z
COPY

Γ | Ψ, (A + B) · Φ �i copy s as x, y in t : Z

Fig. 2. Typing Rules of INTML[WEC]: Structural Rules

The terms of INTML[WEC] represent strategies for computation by interaction. For
most part the typing rules define a simply-typed λ-calculus with restricted copying.
This λ-calculus interacts with the base language WEC by the rules ([ ]I) and ([ ]E). The
operational intuition for the latter is: when asked to compute an answer in [B], first
ask s for its value. Upon receipt of an answer, which must be a value of type A, bind
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Γ | − � f : !A
[ ]I

Γ | − �i [f ] : [A]

Γ | Φ �i s : [A] Γ, x : A | Ψ �i t : [B]
[ ]E 1 ≤ A

Γ | Φ, A · Ψ �i let [x] = s in t : [B]

Γ | Φ �i s : X Γ | Ψ �i t : Y⊗I
Γ | Φ, Ψ �i 〈s, t〉 : X ⊗ Y

Γ | Φ �i s : X ⊗ Y
Γ | Ψ, x : A·X, y : A·Y �i t : Z

⊗E
Γ | Ψ, A · Φ �i let 〈x, y〉 = s in t : Z

Γ | Φ, x : A·X �i t : Y
�I

Γ | Φ �i λx. t : A · X � Y

Γ | Ψ �i s : X
Γ | Φ �i t : A · X � Y

�E 1 ≤ A
Γ | Φ, A · Ψ �i t s : Y

1I
Γ | − �i ∗ : 1

Γ | x : X− � f : X+

DIRECT
Γ | − �i direct(x.f) : X

Fig. 3. Typing Rules of INTML[WEC]: Introductions, Eliminations and Direct Definition

Γ | − � f : 0
0Ei

Γ | Φ �i image(f) : X

Γ | − �i s : [A] Γ, x : A | − � f : B
[ ]Ec

Γ | − � let [x] = s in f : B

Γ | − � f : A + B Γ, x : A | Φ �i s : X Γ, y : B | Φ �i t : X
+Ei

Γ | Φ �i case f of inl(x) ⇒ s | inr(y) ⇒ t : X

Fig. 4. Typing Rules of INTML[WEC]: Cross-Eliminations

the result to x and query t. The answer, a value of type B, is then passed on to answer
the initial request.

In this way the computational effects from WEC become available in INTML[WEC].
The term let [x] = [f ] in t represents a computation that first executes the computa-
tion f : !A thus performing its effects and then continues with the execution of t.

That INTML[WEC] allows only restricted copying is important in order to be able to
include weak low-level languages as base languages. With further assumptions about
the base language, it is possible to allow full copying. Indeed, if there exists a value
type G with G × G ≤ G and G + G ≤ G and A ≤ G for any other value type A,
then INTML[WEC] allows full copying. For instance, one could take for G a type of
natural numbers that can encode the values of all value types. This approach is familiar
from Geometry of Interaction Situations [1]. Another option, naturally suggested by the
requirements G×G ≤ G and G + G ≤ G, is to use for G a type of trees. Such a type
of trees is used by Mackie [17] in an interactive implementation of PCF.

However, fine-grained control of copying is an important feature of INTML[WEC].
This form of copying works even when there is no type G as above. In particular,
the metalanguage is well-behaved even for very basic base languages, for example
ones having only finite types. For applications such as programming with sublinear
space or circuit synthesis it is essential to be able to account for such weak languages.
Furthermore, while the multiplicity annotations A · (−) in the types complicate the
type system, previous experience with INTML suggest that the type system nevertheless
remains manageable [14], as type inference is possible.
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(1-β) Γ | Φ �i s = ∗ : 1 if Γ | Φ �i s : 1
(⊗-β) Γ | Φ, Ψ �i (let 〈x1, x2〉 = 〈t1, t2〉 in xk) = tk : Xk for k = 1, 2

if Γ | Φ �i t1 : X1 and Γ | Ψ �i t2 : X2

(⊗-η) Γ | Φ, A · Ψ �i (let 〈x, y〉 = s in t[〈x, y〉/z]) = t[s/z] : Z

if Γ | Φ �i s : X ⊗ Y and Γ | Ψ, x : A·X, y : A·Y �i t : Z
(�-β) Γ | Φ, A · Ψ �i (λx. s) t = s[t/x] : Y

if Γ | Φ, x : A·X �i s : Y and Γ | Ψ �i t : X

(�-η) Γ | Φ �i (λx. t x) = t : A · X � Y if Γ | Φ �i t : A · X � Y and x �∈ Φ.
([ ]-β) Γ | A · Φ �i (let [x] = [!v] in t) = t[v/x] : [B],

Γ | − � (let [x] = [!v] in f) = f [v/x] : C
if Γ | − � v : A and Γ, x : A | Φ �i t : [B] and Γ, x : A | − � f : C

(0i-β) Γ | Φ �i image(f) = s[f/x] : X if Γ | − � f : 0 and Γ, x : 0 | Φ �i s : X
(+i-β) Γ | Φ �i (case inl(f) of inl(x) ⇒ s | inr(y) ⇒ t) = s[f/x] : X,

Γ | Φ �i (case inr(f) of inl(x) ⇒ s | inr(y) ⇒ t) = t[f/y] : X
if Γ | − � f : A and Γ, x : A | Φ �i s : X and Γ, y : B | Φ �i t : X

(CP) Γ | Ψ) �i copy s[t/x] as y, y′ in u = copy t as x, x′ in u[s/y, s[x′/x]/y′] : Z

if
{
Γ | Φi �i ti : Xi

}n

i=1
and Γ | x1 : A1·X1, . . . , xn : An·Xn �i s : Y and

Γ | Ψ, y : B·Y, y′ : C·Y �i u : Z and Ψ = (B + C) · (A1 · Φ1, . . . , An · Φn)

Fig. 5. Equations of INTML[WEC]

INTML[WEC] improves over INTML not only in generality but also in terms of its
equational theory. While in INTML only equations between closed terms are given and
justified by a semantic interpretation, here we include equations between open terms,
as one would expect from a well-behaved type theory, see Fig. 5.

A simply-typed λ-calculus alone is not very expressive as a programming language,
of course. The intention in INTML[WEC] is that further constructs can be added by the
programmer by direct implementation of combinators. Rule (DIRECT) allows a pro-
grammer to define combinators directly by implementing a strategy for it in the base
language. Game semantics is a rich source of such strategies. For example, it is pos-
sible to implement combinators for loops, for control operators, or for locally scoped
state:

loop : α · (γ · [α]� [α + β])� [α]� [β]
callcc :

(
γ · ([α]� [β])� [α]

)
� [α]

newvar : α ·
(
δ ·

(
(γ · [α]� [1])⊗ [α]

)
� [β]

)
� [β]

These and other combinators can be implemented by direct definition, e.g. loop =
direct(x.f), for suitable f . The definitions of loop and callcc are described in [13],
In essence, callcc implements a game semantic strategy described also by Laird [15].
The combinator newvar represents a memory cell of type α. It is intended to be used
as newvar(λ〈write, read〉. t). In t the memory cell can be read by means of let [x] =
read in s and written with value v by let [∗] = (write [v]) in s.

Other than congruences there are no equations for direct in INTML[WEC], as this
term allows one to implement arbitrary strategies. Equations for specific direct-terms
such as loop, callcc or newvar have to be considered on a case-by-case basis.

The above combinators are good examples why it is useful to have value types as
bounds for copying, as opposed to natural numbers, say. In newvar, for example, the



Computation-by-Interaction with Effects 313

content of the memory cell is encoded in the number of the argument. Hence, there are
α-many copies of the argument, as indicated by the type.

Example. To give a simple concrete example of the use of the metalanguage, we con-
sider the Kierstead terms, which are often used to illustrate the need for justification
pointers in Hyland-Ong games [10] for modelling higher-order λ-calculus. With explicit
copying, these terms can be given the following types, where α can be any nonempty
value type:

t1 = λf. copy f as f1, f2 in f1 (λx. f2 (λy. y)) : (1 + α) · (α · (1 · X � X)� X)� X

t2 = λf. copy f as f1, f2 in f1 (λx. f2 (λy. x)) : (1 + α) · (α · (α · X � X)� X)� X

What is encoded by the justification pointers in Hyland-Ong games is here, as in
Abramsky-Jagadeesan-Malacaria games, encoded in the copy of the function argument.

That these two terms do indeed implement different strategies can be shown by con-
structing an argument for which t1 and t2 give different results. To do this, define the
value type bool = 1 + 1 with abbreviations tt and ff for its two elements. It is easy
to define in WEC a term x : bool, y : bool | − � nor(x, y) : !bool that returns tt
when both x and y are ff and ff otherwise. If we then define the function f of type
(1 + bool) · (β · [bool] � [bool]) � [bool] to be λg. copy g as g1, g2 in let [x1] =
g1 [ff] in let [x2] = g2 [tt] in [nor(x1, x2)], then we have t1 f = [tt] and t2 f = [ff].

3 Models of the Weak Effect Calculus

Having defined INTML[WEC] as a metalanguage for interaction, our goal is now to show
that the Weak Effect Calculus from Sec. 1 can implement this language. We shall do
so by a semantic argument, showing that from any model of WEC we can construct a
model for INTML[WEC]. A translation from INTML[WEC] to WEC follows by applying
this result to a term model of WEC.

We briefly define the semantic structure needed to model WEC. These definitions are
a straightforward adaptation of those for EEC in [4]. The notion of a model of WEC uses
basic enriched category theory [12].

Values are modelled in a small category V in a standard way. To account for the in-
dexing of computations over value contexts, computations are modelled in a V̂-enriched
category C, where V̂ = SetV

op
is the category of presheaves over V [18]. The V̂-

enrichment of C accounts for the indexing over value contexts, as the hom-object
C(A, B) is now a presheaf, i.e. a functor from Vop to Set. For each value type Γ
we have a set C(A, B)(Γ ). The terms of type Γ | x : A � f : B appear as elements of
this set.

The category V itself can also be seen as a V̂-enriched category by V(A, B) =
(yB)(yA), where yA = V(−, A) is the Yoneda embedding. Using the Yoneda lemma
one can see that this enrichment can be spelled out as V(A, B)(Γ ) � V(Γ ×A, B).

A model for WEC then consists of a V̂-enriched adjunction F � U : V→ C with the
following structure:

1. In V: finite products and finite coproducts which distributive over products; this
induces V̂-enriched finite products and V̂-enriched finite coproducts in V.
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2. In C: V̂-enriched finite coproducts and copowers indexed by representables. The
latter means that for each object A in V and each object B in C there is an object
A · B in C and an isomorphism C(B, C)yA � C(A · B, C) that is V̂-natural in C .
As in the syntax of WEC, we write ⊕ and 0 for binary coproducts and initial object.

3. In Cop: a uniform parametrised Conway operator in the sense that there is a map
(−)† : C(A, B ⊕ A) → C(A, B) in V̂ that when considered as a map of type
Cop(B ⊕ A, A) → Cop(B, A) satisfies the equations of a uniform Conway op-
erator [21]. Note that ⊕ is a product in Cop.

4. We require this structure to be such that the canonical maps C(X, Y )y0 → 1 and
C(X, Y )y(A+B) → C(X, Y )yA×C(X, Y )yB are isomorphisms. This requirement
is used to model the elimination of 0 and A + B over computations.

Value and computation types are interpreted in this structure as objects of V and C
respectively. If a computation type is used as a value type, then this is modelled by an
application of the functor U . In the other direction, the type !A is interpreted by FA. A
value sequent Γ | − � f : A is interpreted as an element of V(1, A)(Γ ). A computation
sequent Γ | x : A � g : B appears in the model as an element of C(A, B)(Γ ). While
value sequents Γ | − � f : B defining a term of computation type are interpreted as
elements of V(1, UB)(Γ ), by the adjunction F � U their interpretation is in one-to-one
correspondence with C(F1, B)(Γ ), so that they may also be seen a computations.

A simple example of a model can be obtained by letting V be the category of finite
sets and C be the V̂-category of finite pointed sets and strict functions, i.e. an object
of C is a finite set A with a distinguished element ⊥ and C(A, B)(Γ ) consists of all
functions f : Γ ×A→ B that satisfy f(γ,⊥) = ⊥ for any γ ∈ Γ .

A second example is a term model. The objects of V and C are the value types and
computation types respectively. The morphisms from A to B in V are terms x : A |
− � f : B, identified up to equality. Likewise, C(A, B)(C) consists of terms x : C |
y : A � g : B identified up to provable equality.

As the notation suggests, we use the copower to interpret copying in INTML[WEC].
We have found that the copower identifies just the right structure for this purpose. For
any object A define CA to be the V̂-category with the same objects as C and with hom-
objects CA(B, C) = C(B, C)yA. Just as C models sequents of the form Γ | y : B �
f : C , CA models sequents of the form Γ, x : A | y : B � f : C. There is a canonical
V̂-functor WA : C → CA, that amounts to weakening. Then, the copower extends to
a V̂-functor A · (−) : CA → C that is left adjoint to WA (in a V̂-enriched sense). As
a left adjoint, A · (−) preserves sums. Moreover, we have a canonical isomorphism
A · FB � F (A × B), as A × (−) is a copower in V and copowers, being a particular
form of colimit, are preserved by the left adjoint F .

Lemma 1. In C there are the isomorphisms 1 ·C � C and (A×B) · C � A · (B ·C)
and 0 ·C � 0 and (A + B) · C � A ·C + B · C, which are all natural in A, B and C .

To establish the last two isomorphisms we use the assumption in point 4 of the definition
of a model above.
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3.1 Trace and Int-Construction

The first step in constructing a model of INTML[WEC] from a model of WEC is to apply
the Int-construction [11] to the category of computations. This construction is well-
known in the context of game semantics; it has been used by Abramsky and Jagadeesan
to model AJM-games [2].

Lemma 2. The V̂-category C has a uniform trace with respect to coproducts as
monoidal structure, in the sense that there is a map TrB,C,D : C(B ⊕ C, D ⊕ C) →
C(B, D) in V̂ that satisfies the usual equations for a uniform trace [7].

Such a uniform trace can be constructed from a uniform Conway operator, as has been
shown (in a dual setting) by Hasegawa [7].

Lemma 3. If C has a uniform trace with respect to coproducts then so does CA and
both V̂-functors WA : C→ CA and A · (−) : CA → C preserve the trace.

For the proof that A · (−) preserves the trace we need the assumption of uniformity.
It is useful to use a graphical notation for working with the traced monoidal cate-

gory C. We denote an element f ∈ C(B ⊕ C, D ⊕ C)(Γ ) as in the box on left below
and use similar standard notation for the traced monoidal structure. For example, the
result of applying the trace to f is shown next to f below. However, note that these
diagrams are now used to work in V̂, so that care is needed to verify, e.g., naturality
conditions.

For the copower functor we use a box-notation as shown in the equation on the right
below. In that equation g ∈ CA(B ⊕ C, D ⊕ E)(Γ ) � C(B ⊕ C, D ⊕ E)(Γ × A).
The equation expresses that A · (−) preserves the trace. The box-notation is justified,
as A · (−) is a monoidal functor with respect to coproducts.

g

A · −

=g

A · −

f

DB

CC

f

DB

C

The Int-construction then defines a V̂-category Int(C) as follows. An object X is a
pair (X−, X+) of C-objects. The hom-objects for Int(C) are defined by Int(C)(X, Y )
= C(Y − ⊕X+, Y + ⊕X−). The definition of the identity 1→ Int(C)(X, X) and the
composition Int(C)(Y, Z)× Int(C)(X, Y )→ Int(C)(X, Z) are best understood when
given as graphical diagrams in C:

Y +

X+ X−
Z− Z+

t
s

Y −
X+

X−

X−
X+

Lemma 4. Int(C) is a V̂-category with a monoidal closed structure (I,⊗,�) with
I = (0, 0), X ⊗ Y = (X− + Y −, X+ + Y +) and X � Y = (X+ + Y −, X− + Y +).

The structure in this lemma is well-known, see e.g. [8].
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To model copying in INTML[WEC] we use in addition a functor X⊗A that informally
captures an A-fold tensor X ⊗ · · · ⊗ X . To define it formally, define a category Vsr

of all section-retraction-pairs in V, i.e. a morphism from A to B is a pair 〈s, r〉 ∈
V(A, B)× V(B, A) with r ◦ s = id . Note that Vsr is again canonically V̂-enriched.

We define the object X⊗A to be (A ·X−, A ·X+). This definition can be extended
to a functor in each argument, i.e. to (−)⊗A : Int(C)→ Int(C) and X⊗(−) : (Vsr)

op →
Int(C). That Vsr consists of section-retraction pairs ensures functoriality of this defini-
tion. We note that these two functors do not combine to a bifunctor (−)⊗(−).

As X⊗A amounts to repeated multiplication, there are isomorphisms that correspond
to well-known rules of high-school arithmetic:

X⊗1�X X⊗(A×B) �
(
X⊗A

)⊗B
I⊗A � I

X⊗0 � I X⊗(A+B) � X⊗A ⊗X⊗B (X ⊗ Y )⊗A � X⊗A ⊗ Y ⊗A
(1)

These isomorphisms follow from Lemma 1. They are natural in A, B, X and Y .

4 Interpreting the Metalanguage in WEC

Starting from Int(C), we now build a model that can interpret INTML[WEC]. While the
terms of INTML[WEC] can already be interpreted in Int(C), this interpretation validates
only equations between closed terms. For example, given Σ | Φ �i s : X and Σ |
Ψ �i t : Y it does not have to be the case that Σ | Φ, Ψ �i let 〈x, y〉 = 〈s, t〉 in x : X
and Σ | Φ, Ψ �i s : X receive the same denotation. This is because we may start a
dialogue with these terms by sending messages to the variables of t, i.e. those in Ψ .
In the first term these messages are processed by t, while in the second term they are
just discarded. We would like to discount such differences, as they appear only if one
answers questions that have never been asked.

Another reason why Int(C) does not justify open equations is that in the interpre-
tation of rule (STRUCT) an arbitrary section-retraction pair between A and B may be
chosen and different such choices can be observed in Int(C). However, different choices
cannot affect the final result of computations, so that we would like to consider them
implementation details that should not be taken into account when considering program
equality.

In order to explain in which sense we consider the behaviour of programs equal,
we now take a quotient of the model with respect to a form of logical relations. This
quotient is similar to the ones taken in AJM-games [2], but with WEC with unspecified
effects as a basis, we cannot use an equivalence relation on traces of values as in [2].

The following definition is to be understood internally in the presheaf topos V̂. In it
we denote by |C| the discrete category with the same objects as C.

Definition 1. A Kripke partial equivalence relation with arity I : |C| → Int(C) over an
object X in Int(C) is a family of partial equivalence relations(

R(A) ⊆ Int(C)(IA, X)× Int(C)(IA, X)
)
A∈|C| .
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In the following we use such Kripke partial equivalence relations with respect to the ar-
ity I defined by I(A) = (A, 0). Notice that an element of Int(C)(IA, X) corresponds
to a map in C(X−, X+ ⊕ A). We use such maps, as opposed to just C(X−, X+) in
order to avoid making the quotient too strong. Without the presence of A a morphism
modelling callcc would be ruled out, for example.

We fix some notation. First note that, for any A, there is a canonical morphism
ΔA : I(A)→ I(A)⊗ I(A). Similarly, there is a canonical morphism Δ⊗B

A : I(A)→
I(A)⊗B . Given e : IA→ X we write short e⊗B for e⊗B ◦Δ⊗B

A : IA→ X⊗B.

Given a small model of WEC, we construct a V̂-category I, which can model
INTML[WEC]. The construction works by restricting and quotienting Int(C) in the style
of models based on partial equivalence relations.

The objects of I are pairs (X, RX) of an underlying object X in Int(C) and a Kripke
partial equivalence relation over X . The V̂-object I(X, Y ) of morphisms from X to Y
consists of the quotient of Int(C)(X, Y ) under the partial equivalence relation∼ defined
as follows in the internal logic of V̂:

f ∼ g ⇐⇒ ∀A. ∀(e, e′) ∈ RX(A). (f ◦ e, g ◦ e′) ∈ RY (A)

We define in I objects 1, [B], X ⊗ Y , X � Y and X⊗A as follows. The underlying
object of 1 is I and the underlying objects of the others are the Int(C)-object of the
same name. The relations are defined by:

R1(A) = �
R[B](A) = {(e, e) | e ∈ Int(C)(IA, [B])}

RX⊗Y (A ⊕ B) = {(e1 ⊗ e2, e
′
1 ⊗ e′2) | (e1, e

′
1) ∈ RX(A) ∧ (e2, e

′
2) ∈ RY (B)}

RX�Y (A) = {(f, f ′) | ∀B.∀(e, e′) ∈ RX(B). (ε ◦ 〈f, e〉, ε ◦ 〈f ′, e′〉) ∈ RY (A ⊕ B)}
RX⊗B (A) = {(e1

⊗B , e2
⊗B) | (e1, e2) ∈ RX(A)}

We use these constructions for the interpretation of INTML[WEC] in I. The types 1, [A]
and X⊗Y are interpreted by the corresponding objects. The function type A ·X � Y
is interpreted by the object (X⊗A) � Y . A term Γ | x1 : A1·X1, . . . , xn : An·Xn �i

t : Y is interpreted as an element of I(X1
⊗A1 ⊗ · · · ⊗Xn

⊗An , Y )(Γ ).

Lemma 5. [−] is a V̂-functor from Kl(T ) to I, where Kl(T ) is the V̂-category with
same objects as V and with Kl(T )(A, B) = C(FA, FB).

Lemma 6. (1,⊗,�) defines a symmetric monoidal closed structure in I whose unit 1
is terminal.

The definition of X⊗A in I is such that it informally represents A-many copies of the
same element of X . As reordering such tuples of several copies of the same element
has no effect, we may replace Vsr by a preorder≤ on V-objects. It is defined such that
A ≤ B holds if and only if there is a morphism from A to B in Vsr. We write V≤ for
the category arising from this preorder.



318 U. Schöpp

Lemma 7. The definition of X⊗B extends to a V-functor (−)⊗(−) : I× Vop
≤ → I and

there are morphisms that are natural in A, B, X and Y .

X⊗1 �−→ X X⊗(A×B) �−→
(
X⊗A

)⊗B
1⊗A �−→ 1

X⊗0 �−→ 1 X⊗(A+B) → X⊗A ⊗X⊗B (X ⊗ Y )⊗A �−→ X⊗A ⊗ Y ⊗A

The next lemma follows immediately from the definition of the morphisms of I as equiv-
alence classes under ∼.

Lemma 8. The functor U : I → V̂ that maps an object X to the V-set of equivalence
classes of

⋃
A RX(A) and a morphism [f ]∼ : X → Y to the function [e] !→ [f ◦ e] is

faithful and maps the monoidal structure (1,⊗,�) to (1,×,⇒).

Note in particular that U sends X and X⊗A to isomorphic objects. The isomorphisms
from Lemma 7 are all mapped to the identity; X⊗(A+B) → X⊗A⊗X⊗B is mapped to
the diagonal. When reasoning about the identity of maps in I we therefore do not need
to consider the explicit duplication by means of X⊗A.

The next two lemmas capture the structure needed to interpret rules ([ ]I), ([ ]E) and
the β-equation (let [y] = [!x] in t) = t[x/y].

Lemma 9. There is an isomorphism ϕ : I(1, [B]) �−→ Kl(T )(1, B) that is natural in B.

Proof. Note that I(1, [B]) is isomorphic to Int(C)(1, [B]), which by definition is iso-
morphic to C(0⊕ F1, FB ⊕ 0). By definition of Kl(T )(1, B) the result follows. "�

Lemma 10. There exists a map ψ : I(X, [B])yA → I(X⊗A ⊗ [A], [B]) that is natural
in X and that any square of the following form commutes.

I(X, [B])yA
〈i◦ψ,r〉 ��

〈id ,l〉
��

I(X⊗A ⊗ [A], [B])yA × I(1, [A])yA

��
I(X, [B])yA × I(X⊗A, X)yA �� I(X⊗A, [B])yA

Therein r and l are the canonical composites r : 1 → Kl(1, A)yA → I(1, [A])yA and
l : 1 → V(1, A)yA = Vsr(1, A)yA → I(X⊗A, X⊗1)yA � I(X⊗A, X)yA and the
unlabelled maps are the canonical maps of their type.

We spell out the proof since it gives a good example of how to work with I and because
it illustrates that the copower fits in very well with the string diagrams.

Proof. Since morphisms in I are equivalence classes, we define ψ on representatives
and observe that the definition does not depend on the choice of representative. Given
f ∈ Int(C)(X, [B])yA(Γ ), define ψ(f) to be the equivalence class of the following
morphism in Int(C)(X⊗A ⊗ [A], [B])(Γ ).

f
FBF1

X−X+

A · −

FB

ε�
A ·X−
F1

A ·X+

A · F1
FA

F1
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Here η and ε denote the unit and counit of the adjunction A · (−) � WA. The box
labelled with � denotes the canonical isomorphism arising as F preserves copowers.

To show that the square in the lemma commutes, let f ∼ f ′ be two representatives
of an equivalence class in I(X, [B])yA(Γ ). The two composites in the square then give
the following two maps in I(X⊗A, [B])yA(Γ ).

A · F1

A ·X−
A · FBF1

A ·X+

FB
f

A · −

εη f ′

A ·X−
F1

X−A ·X+ X+

FB

ηε

We have to show that they are ∼-related, which amounts to showing that (e, e′) ∈
R′

X(C) implies the following equality:

A · F1

A ·X−
A · FB

F1

A ·X+ FB
fe

A · −

A · −
εη

f ′

A · −

ε η=

ε
C

ε
e

C

FB

F1

We can simplify the left morphism left by joining the two A · (−)-boxes, using functo-
riality and naturality of the trace. We obtain the morphism on the left below. By noting
that the adjunction A ·(−) �WA gives us WA(ε)◦WA(A ·h)◦η for any h by naturality
of η and the triangular identity, we obtain the equality below (in which WA is implicit).

F1

FBf
e

A · −

η ε
F1

f
e=

C
ε

FB

C

The right morphism in the equation that we have to show can similarly be simplified.
We obtain the same result with f ′ instead of f . The result then follows from f ∼ f ′. "�

For the interpretation of +-cross-elimination we use the following lemma.

Lemma 11. The canonical I(X, Y )y(A+B) → I(X, Y )yA× I(X, Y )yB is isomorphic.

The interpretation of INTML[WEC] is now defined such that the types and terms of WEC

are interpreted in V and C, as in [4]. The terms of the metalanguage are interpreted in I.

Theorem 1 (Soundness). The construction of I as quotient of Int(C) yields a model
of INTML[WEC]. That is, INTML[WEC] can be soundly interpreted in I, given that rule
(DIRECT) is restricted to define only morphisms in I.

The proof uses standard lemmas for substitution and for showing that two derivations
of the same sequent have the same interpretation. A translation of INTML[WEC] to WEC

is obtained by starting the construction of I with the term model of WEC.
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5 Conclusion

We have shown that a simple variant of the enriched effect calculus provides enough
structure to support the construction of a metalanguage INTML[WEC] for interaction.
This improves on the previous construction of INTML in a number of ways. We show
that any computational effect that justifies the equations of WEC can be added to the base
language. We justify equations between open terms in INTML[WEC], not just closed
equations as in [13], by means of a quotient in Int(C). In contrast to the construction
in [13], we do not need to consider an operational semantics of the base language and
make the construction using an equational theory only. Finally, we show that the struc-
ture of INTML can be accounted for in an enriched setting by a relatively simple model
construction. In particular the copower type from EEC turns out to be the right structure
for modelling bounded copying in the metalanguage.

Acknowledgments. Rasmus Møgelberg first noticed a similarity of EEC and INTML and
suggested to study their relationship. INTML was developed with Ugo Dal Lago [13]. I
thank the anonymous referees for their interesting comments and suggestions.
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Abstract. Petri nets are widely used in the domain of automated ver-
ification through model-checking. In this approach, a Petri Net model of
the system of interest is produced and its reachable states are computed,
searching for erroneous executions. Model compilation can accelerate this
analysis by generating code to explore the reachable states. This avoids
the use of a fixed exploration tool involving an “interpretation” of the
Petri net structure. In this paper, we show how to compile Petri nets
targeting the LLVM language (a high-level assembly language) and for-
mally prove the correctness of the produced code. To this aim, we define
a structural operational semantics for the fragment of LLVM we use.

Keywords: explicit model-checking, model compilation, LLVM, SOS.

1 Introduction

Verification through model-checking [1] consists in defining a formal model of
the system to be analysed and then using automated tools to check whether the
expected properties are met or not. We consider here more particularly the widely
adopted setting in which models are expressed using coloured Petri nets [9] and
there states are explored using explicit model-checking that enumerates them
all (contrasting with symbolic model-checking that works with sets of states).
Model compilation is one of the numerous techniques to speedup explicit model-
checking, it relies on generating source code (then compiled into machine code)
to produce a high-performance implementation of the state space exploration
primitives. For instance, this approach is successfully used in the well known
SPIN tool [7], or in Helena coloured Petri net model-checker [14,3].

In this paper, we propose a way to prove the correctness of such an approach.
More precisely, we focus on the produced code and prove that the object com-
puted by its execution is an actual representation of the state space of the com-
piled model. We consider the Low-Level Virtual Machine (LLVM ) language as
our target language for compilation, which reconciles two otherwise contradictory
objectives: on the one hand, this is a typed language with reasonably high-level
operations allowing to express algorithms quite naturally; on the other hand, it
is a low-level language that can be equipped with a formal semantics allowing to
formally prove the programs correctness. To do so, we define a structural oper-
ational semantics of the fragment of LLVM we need and use it to establish the
properties of the programs generated by our compiler.

H. Yang (Ed.): APLAS 2011, LNCS 7078, pp. 322–336, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Towards a Certified Petri Net Model-Checker 323

To the best of our knowledge, this is the first attempt to provide a formal
semantics for LLVM. Moreover, if model-checkers are widely used tools, there
exists surprisingly few attempts to prove them at the implementation level [19],
contrasting with the domain of proof assistants [2,15] for which “proving the
prover” is a common expectation.

The rest of the paper is organised as follows. We first recall the main notions
about coloured Petri nets. Then, we present the LLVM framework, in particu-
lar the syntax of the language and its intuitive semantics, and how it can be
embedded LLVM into a Petri net as a concrete colour domain. In section 4, we
present algorithms and data structures for state space exploration. We then for-
mally define an operational semantics for LLVM, including an explicit memory
model. Finally we present our correctness results. Due to the limited number
of pages, many definitions and intermediary results have been omitted, as well
as the detailed proofs. This material can be found in [5,4]. Notice also that our
compilation approach is evaluated from a performance point of view in [6].

2 Coloured Petri Nets

A (coloured) Petri net involves objects defined by a colour domain that provides
data values, variables, operators, a syntax for expressions, possibly typing rules,
etc. Usually, elaborated colour domains are used to ease modelling; in particular,
one may consider a functional programming language [9,17] or the functional
fragment (expressions) of an imperative programming language [14,16]. In this
paper we will consider LLVM as a concrete colour domain.

All these can be seen as implementations of a more general abstract colour
domain providing D the set of data values, V the set of variables and E the set of
expressions. Let e ∈ E, we denote by vars(e) the set of variables from V involved
in e. Moreover, variables or values may be considered as (simple) expressions,
i.e., we assume D ∪ V ⊆ E.

At this abstract level, we do not make any assumption about the typing or
syntactical correctness of expressions; instead, we assume that any expression
can be evaluated, possibly to ⊥ /∈ D (undefined value) in case of any error. More
precisely, a binding is a partial function β : V→ D∪{⊥}. Then, let e ∈ E and β
be a binding, we denote by β(e) the evaluation of e under β; if the domain of β
does not include vars(e) then β(e) df= ⊥. The application of a binding to evaluate
an expression is naturally extended to sets and multisets of expressions.

Definition 1 (Petri nets). A Petri net is a tuple (S, T, �) where S is the finite
set of places, T , disjoint from S, is the finite set of transitions, and � is a
labelling function such that:

– for all s ∈ S, �(s) ⊆ D is the type of s, i.e., the values that s may contain;
– for all t ∈ T , �(t) ∈ E is the guard of t, i.e., a condition for its execution;
– for all (x, y) ∈ (S×T )∪ (T ×S), �(x, y) is a multiset over E and defines the

arc from x toward y.



324 L. Fronc and F. Pommereau

A marking of a Petri net is a map that associates to each place s ∈ S a multiset
of values from �(s). From a marking M , a transition t can be fired using a
binding β and yielding a new marking M ′, which is denoted by M [t, β〉M ′, iff:

– there are enough tokens: for all s ∈ S, M(s) ≥ β(�(s, t));
– the guard is validated: β(�(t)) = true;
– place types are respected: for all s ∈ S, β(�(t, s)) is a multiset over �(s);
– M ′ is M with tokens consumed and produced according to the arcs: for all

s ∈ S, M ′(s) = M(s)− β(�(s, t)) + β(�(t, s)).

Such a binding β is called a mode of t at marking M .
For a Petri net node x ∈ S ∪ T , we define •x

df= {y ∈ S ∪ T | �(y, x) 
= ∅} and
x• df= {y ∈ S ∪ T | �(x, y) 
= ∅} where ∅ is the empty multiset. Finally, we extend
the notation vars to a transition by taking the union of the variable sets in its
guard and connected arcs.

In this paper, we assume that the considered Petri nets are such that, for all
place s ∈ S and all transition t ∈ T , �(s, t) is either ∅ or contains a single
variable x ∈ V. We also assume that vars(t) =

⋃
s∈S vars(�(s, t)), i.e., all the

variables involved in a transition can be bound using the input arcs. The second
assumption is a classical one that allows to simplify the discovery of modes. The
first assumption is made without loss of generality to simplify the presentation.

3 LLVM

The LLVM project (Low Level Virtual Machine) [11] is a modern and modular
toolkit for compiler development used by a wide variety of commercial and open
source projects as well as academic researches [13,12]. The LLVM-IR (LLVM
Intermediate Representation) [10] is a part of the LLVM project and is a low-
level, platform-independent, intermediate language. Every program written in
this language can be run in a virtual machine or compiled to native code on all
the platforms supported by the LLVM project. Importantly, the LLVM compiler
runs a variety of optimisation passes on the LLVM-IR, which allows us to produce
simple source code knowing it will be optimised by LLVM.

3.1 Syntax and Intuitive Semantics

A LLVM program is composed of a set of blocks (i.e., sequences of instruc-
tions) identified by labels. Entering or leaving a block is always explicit through
branching instructions (jumps), subprograms calls or return instructions.

To define the syntax, we consider the following pairwise disjoint sets:

– P is the set of pointers ;
– T is the set of types, defined inductively as the smallest set containing the

primitive types in T0
df= {int , bool , . . . } (integers, Boolean values and other

types defined by LLVM but not needed here) and such that if t0, . . . , tn ∈ T
then struct(t0, . . . , tn) ∈ T, which represents a data structure with n + 1
fields of types t0 to tn;
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– L is the set of labels, it contains arbitrary names as well as some specific
labels like f� a1, . . . , an �, where ai ∈ V for 1 ≤ i ≤ n, that correspond to
subprograms entry points (including the formal parameters). We define a set
L⊥

df= L ∪ {⊥} where ⊥ /∈ L stands for an undefined label.

A program is represented as a partial function P from L to the set of blocks,
i.e., that associates each label in its domain to a sequence of instructions.

For our purpose, we need to consider a fragment of LLVM that is formed by
three main syntactic classes: sequences in seq, commands in cmd (i.e., instruc-
tions) and expressions in expr . A sequence is a list of commands which may end
with an expression, in which case it is considered as an expression itself (which
is not reflected on the grammar in figure 1 to keep it simpler).

We assume that programs are syntaxically correct and well typed, so that
we can simplify the syntax by forgetting all types in LLVM source code. The
resulting syntax is presented in figure 1. To allow for writing one-line sequences,
we introduce the sequencing operator “;” that corresponds to the line endings.
We also introduce the skip command that denotes the empty sequence. It may
be noted that pcall (procedure call) and fcall (function call) do not exist in
LLVM but are different instances of the call instruction. This distinction can
be easily made in LLVM because the instruction contains the return type of
the subprogram (function or procedure). Instruction store (resp. load) is the
action of storing (resp. loading) data into (resp. from) the memory through a
pointer. Instruction icmp compares two integers. Instruction phi is used to access
variables assigned in previously executed blocks. Instruction gep corresponds to
pointer arithmetic, we freeze the second argument to 0, which is enough to access
fields in structures by their indexes.

3.2 LLVM-Labelled Petri Nets

To compile Petri nets as defined previously into LLVM programs, we need to
consider a variant where the colour domain explicitly refers to a LLVM program.

Definition 2 (LLVM labelled Petri nets). A LLVM labelled Petri net is a
tuple N

df= (S, T, �, P ), where P is a LLVM program, and such that (S, T, �) is a
coloured Petri net with the following changes:

– for all place s ∈ S, �(s) is a LLVM type in T, interpreted as a subset of D;
– for all transition t ∈ T , �(t) is a call to a Boolean function in P whose

parameters are the elements of vars(t);
– for all s ∈ t•, �(t, s) is a singleton multiset whose unique element is a call to

a �(s)-typed function in P whose parameters are the elements of vars(t).

We assume that all the functions involved in the annotations terminate.

With respect to the previous definition, we have concretized the place types
and each expression is now implemented as a LLVM function called from the
corresponding annotation. To simplify the presentation, we have also restricted
the output arcs to be singleton multisets, but this can be easily generalised.
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seq ::= cmd (statement)
| expr (expression)
| cmd ; seq (sequence of instructions)

cmd ::= br label (unconditional branching)
| br rvalue , label , label (conditional branching)
| pcall label(rvalue , . . . , rvalue) (procedure call)
| ret (return from a procedure)
| var = expr (variable assignment)
| store rvalue , rvalue (assignment through a pointer)
| skip (empty sequence)

expr ::= add rvalue , rvalue (addition)
| load rvalue (read a value through a pointer)
| gep rvalue , 0, nat (get a pointer to a structure field)
| icmp op, rvalue , rvalue , (integers comparison)
| phi (rvalue , label), . . . , (rvalue, label) (get a value after branching)
| fcall label(rvalue , . . . , rvalue) (function call)
| alloc type (memory allocation)
| ret rvalue (return a value from a function)
| rvalue (variable or value)

Fig. 1. Our fragment of the LLVM syntax, where label ∈ L, rvalue ∈ D∪P∪V, var ∈ V,
type ∈ T, nat ∈ N and op ∈ {<,≤, =, �=,≥, >}

Moreover, the definitions of binding and modes are extended to LLVM. A LLVM
binding is a partial function β : V → D ∪ P that maps each variable from its
domain to a pointer or a value, and that is widened to D by the identity function.
B is the set of all LLVM bindings. A LLVM mode is thus a LLVM binding
enabling a transition in a LLVM labelled Petri net.

4 Implementing State Space Exploration

Given an initial marking M0, the state space we want to compute in this paper
is the set R of reachable marking, i.e., the smallest set such that M0 ∈ R and,
if M ∈ R and M [t, β〉M ′ then M ′ ∈ R also. The correctness and termination of
the implementation presented in this section are addressed in section 6.

Our algorithms are implemented on the basis of data structures (multisets,
places, markings, and sets) that must respect some interfaces. An interface is
presented as a set of procedures or functions that manipulates a data structure
through a pointer (C-like interfaces). Moreover, each such subprogram has a
formal specification of its behaviour that relies on an explicit interpretation of
the data structure before and after the subprogram call. Precise examples are
given in section 5.3, after the definition of LLVM formal semantics.

A multiset structure to store values from a type d is assumed and we call
the set of values from d having non-zero occurrences in the multiset its domain.
The multiset interface contains in particular: two procedures addmset� pmset , elt �
and remmset � pmset , elt � to respectively add or remove an element elt in pmset ; a
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function sizemset� pmset � to return the domain size; a function nthmset� pmset , n �
to return the nth element from the domain (for an arbitrary fixed order).

As a container of tokens, a place can be basically implemented as a multiset
of tokens. So the place interface is exactly the multiset interface but annotated
by the place name, for instance add s is like addmset but for place s.

The markings interface contains for each place s a function gets� pmrk � that
returns a pointer to the corresponding place structure, as well as a function
copymrk � pmrk � that returns a copy of the marking structure.

Finally, the set interface contains a function consset � � that builds a new empty
set and a procedure add set� pset , elt � that adds an element elt to pset .

Transitions Firing. Let t ∈ T be a transition such that •t = {s1, . . . , sn} and
t• = {s′1, . . . , s′m}. Then, function firet, that computes the marking M ′ reachable
from M by firing t given a valuation of its variables, can be expressed as shown
on the left of figure 2. This function simply creates a copy M ′ of M , removes from
it the consumed tokens and adds the produced tokens before to return M ′. One
could remark that it avoids a loop over the Petri net places but instead it executes
a sequence of statements. This is generally more efficient (no branching penalties,
no loop overhead, no lookup of functions ft,s′

j
, . . . ) and the code is simpler to

generate. Let now xmrq be a pointer to a marking structure implementing M .
The firing algorithm can be implemented as shown on the right of figure 2.

Successors Computation. To discover all the possible modes for transition t,
function succt enumerates all the combinations of tokens from the input places. If
a combination corresponds to a mode then the suitable transition firing function
is called to produce a new marking. This algorithm is shown in figure 3. Note the
nesting of loops that avoids an iteration over •t, which saves from querying the
Petri net structure and avoids the explicit construction of a binding. Moreover,
since gt is written in the target language, we avoid an interpretation of the

firet : M, x1, . . . , xn → M ′

M ′ ← copy(M)
M ′(s1) ← M(s1) − {x1}
· · ·
M ′(sn) ← M(sn) − {xn}
M ′(s′1) ← M(s′1) + ft,s′1(x1, . . . , xn)
· · ·
M ′(s′m) ← M(s′m) + ft,s′m(x1, . . . , xn)

return M ′

P (firet� xmrq , x1, . . . , xn �) df
=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

// copy the structure marking
x′

mrq = fcall copymrq(xmrq)
// consume tokens

xsi = fcall getsi (x
′
mrq)

pcall remsi (xsi , xi)

}
1≤i≤n

// produce tokens
xs′

j
= fcall get s′j

(x′
mrq)

os′j = fcall ft,s′j (x1, . . . , xn)

pcall add s′
j
(xs′

j
, os′

j
)

⎫⎪⎬⎪⎭1≤j≤m

// return the new marking
ret x′

mrq

Fig. 2. On the left, the transition firing algorithm, where xi is the variable in �(si, t)
for all 1 ≤ i ≤ n, and ft,s′

j
is the function called in �(t, s′j) for all 1 ≤ j ≤ m. On the

right, its LLVM implementation.
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corresponding expression. For the LLVM version, let xmrq be a pointer to a
marking structure and xnext be a pointer to a marking set structure. Then, the
algorithm from figure 3 can be implemented as shown in figure 4. Each iteration
over xk is implemented as a set of blocks subscribed by t, k (for n ≥ k ≥ 1);
blocks subscribed by t, 0 corresponds to the code inside the innermost loop. Note
the phi instruction to update the value of index isi (used to enumerate the tokens
in place si): when the program enters block loopt,i for the first time, it comes
from block header t,i, so we initialise the value of isi to the last index in the
domain of si; later, the program comes back to block loopt,i from block footer t,i,
so it assigns i′si

to isi that is the value of isi − 1 (i.e., the previous index).
A function succ is also defined to compute the set of all the successors of a

marking, which is made by calling all the transition specific successor functions
and accumulating the discovered markings into the same set. This algorithm and
its translation in LLVM are shown in figure 5.

5 A Formal Semantics of LLVM

5.1 Memory Model

To start with, we define a memory model for LLVM, including heaps to store
dynamically allocated pointers as well as stacks to store local variables and
arguments for subprograms calls.

A heap is a partial function H : P→ T× (D∪P∪{⊥})∗ with a finite domain.
Each heap maps every pointer in its domain to a type and a tuple of values or
pointers. The set of all heaps is H. A heap is well formed if every pair in its image
is type-consistent, for instance if H(p) = (int , d) then d is indeed an integer or
is ⊥ (uninitialised).

The set of all the pointers accessible starting from a pointer p in a heap H is
denoted by p↓H and is defined for all p in P as:

p↓H df= {} if p /∈ dom(H)
p↓H df= {p} if H(p) = (t, v) and t ∈ T0

p↓H df= {p} ∪ p0↓H ∪ · · · ∪ pn↓H if H(p) = (struct(t0, . . . , tn), (p0, . . . , pn))

In can be shown that if a heap H is well formed then p↓H⊆ dom(H) for every
p ∈ dom(H), and more generally that dom(H) =

⋃
p∈P

p↓H .
Then, we need to access and update the data stored onto a heap. For each

heap H , we define a data structure traversal function ·[·]H : P× N→ P ∪ D as:

p[i]H
df=

{
pi if H(p) = (struct(t0, . . . , tn), (p0, . . . , pn)) and 0 ≤ i ≤ n
undefined otherwise

The overwriting function ⊕ : H × H → H represents the writing into memory
and is defined for each p ∈ P as:

(H ⊕H ′)(p) df=

⎧⎨⎩H ′(p) if p ∈ dom(H ′)
H(p) if p /∈ dom(H ′) ∧ p ∈ dom(H)
undefined otherwise
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succt : M, next → ⊥
for xn in M(sn) do

. . .
for x1 in M(s1) do

if gt(x1, . . . , xn) then
next ← next ∪ {firet(M, x1, . . . , xn)}

endif
endfor
. . .

endfor

Fig. 3. Transition specific successors computation algorithm, where gt is the function
that evaluates the guard �(t)

P (succt�xmrq , xnext � df
=

{
br header t,n

P (header t,k)
df
=

⎧⎨⎩
xsk = fcall get sk (xmrq)

ssk = fcall sizesk (xsk)
br loopt,k

P (loopt,k)
df
=

⎧⎨⎩
isk = phi (ssk , header t,k), (i′sk

, footer t,k)
csk = icmp >, isk , 0
br csk , body t,k, footer t,k+1

P (bodyt,k)
df
=

{
xk = fcall nthsk (xsk , isk )
br header t,k−1

P (footer t,k)
df
=

{
i′sk

= add isk , −1
br loopt,k

P (header t,0)
df
=

{
cg = fcall gt (x1, . . . , xn)
br cg , body t,0, footer t,1

P (bodyt,0)
df
=

⎧⎨⎩
x′

mrq = fcall fire t(xmrq , x1, . . . , xn)
pcall add set (xnext , x

′
mrq)

br footer t,1

P (footer t,n+1)
df
=

{
ret

Fig. 4. LLVM transition specific successor function, for 1 ≤ k ≤ n

succ : M → next

next ← ∅
succt1(M ,next)
succt2(M ,next)
. . .
succtn(M ,next)
return next

P (succ�xmrq �) df
=⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

xnext = fcall consset ()
pcall succt1 (xmrq, xnext)
pcall succt2 (xmrq, xnext)
. . .
pcall succtn (xmrq, xnext)
ret xnext

Fig. 5. Computation of all successors (left) and its LLVM implementation (right),
where xmrq is a pointer to a structure marking
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In order to compare heaps, a notion of structural equivalence needs to be
defined. This relation ensures that two heaps contain the same data, accessi-
ble from distinct sets of pointers but with the same layout. More precisely we
consider two heaps H , H ′ and two pointers p, p′ and write (H, p) =st (H ′, p′)
whenever H(p) and H ′(p′) are structurally the same values.

We also need to define an operation new : H × T → H × P to build new
heaps, which corresponds to a pointer allocation, using a helper function alloc :
2P × P× T→ H as follows:

new(H, t) df= (alloc(dom(H) ∪ {p}, p, t), p)
for p /∈ dom(H) a “fresh” pointer

alloc(d, p, t) df= {p !→ (t,⊥)} for t ∈ T0

alloc(d, p, struct(t0, . . . , tn)) df= {p !→ (struct(t0, . . . , tn), (p0, . . . , pn))}
⊕ alloc(d ∪ {p0, . . . , pn}, p0, t0)
⊕ · · ·
⊕ alloc(d ∪ {p0, . . . , pn}, pn, tn)

for p0, . . . , pn /∈ d “fresh” pointers

It can be shown that new always returns a well formed heap, and that calling
new using equivalent heaps always returns equivalent heaps.

To define subprogram calls, our memory model also defines stacks that con-
tain frames implicitly pushed onto the stack by the inference rules in the se-
mantics. A frame is a tuple F ∈ F df= L⊥ × L × B whose elements are denoted
by (lp,F , lc,F , βF ), where lp,F is the label the block the program comes from
(or undefined), lc,F is the label of the block currently executed, and βF is a
LLVM binding representing the current evaluation context. We widen the bind-
ing functional notation to the frames, so we denote by F (x) the binding βF (x)
of x by βF .

Like for heaps we need operations to update frames. The same operator ⊕
is used because the operations are very similar, but on distinct objects. The
binding overwriting operation ⊕ : B×B→ B and the frame binding overwriting
operation ⊕ : F× B→ F are defined as:

(β ⊕ β′)(p) df=

⎧⎨⎩β′(p) if p ∈ dom(β′)
β(p) if p /∈ dom(β′) ∧ p ∈ dom(β)
undefined otherwise

(l, l′, β)⊕ β′ df= (l, l′, β ⊕ β′)

The structural equivalence can be widened to pairs of heaps and frames and
is denoted by (H, F ) =st (H ′, F ′) for two heaps H , H ′ and two frames F ,
F ′. Intuitively, it checks that all data accessible from the frame bindings are
structurally equivalent. This holds also for values stored directly in the bindings
(i.e., without pointers) since the heap equivalence reduces to the equality on D.
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5.2 Inference Rules

The operational semantics is defined for a fixed and immutable program P ,
which means that no function nor block can be created nor modified during
the execution. We denote the result of a computation by · , for example 2 + 3
is 5. The main objects handled by our inference rules are configurations that
represent a state of the program during its execution. A configuration is a tuple
(seq , H, F ), denoted by

(
seq

)
H,F

, where seq is a sequence of instructions, H is
a heap and F is a frame.

The inference rules for expressions are shown in figure 6; expressions evalu-
ate to values in the context of a frame. The inference rules for sequence and
commands are shown in figure 7; sequences and commands evaluate to other
sequences or commands in the context of a heap and a frame. One can remark
how a frame is pushed onto the stack in pcall and fcall rules, a new frame F0

is actually replacing the current frame F in the subsumption of these rules and
used to execute the body of the called subprogram. This semantics mixes up
small-step and big-step reductions. Indeed, most of the rules are small-step ex-
cept for pcall and fcall rules in which we link the computation to its result by
making a sequence of reductions in the rule subsumption.

5.3 Data Structures Interpretation

The link between Petri nets and their LLVM implementation is formalised with a
family of interpretation functions for all data structures. This allows to formalise
the behavioural requirements on the interfaces presented in section 4.

An interpretation is a partial function which maps a pair formed by a heap
and a pointer to a Petri net object: a marking, a set of markings, a multiset of
tokens or a single token, depending on the interpreted object. Interpretations are
denoted by �H, p��, where H ∈ H, p ∈ P ∪ D and � is an annotation describing
the interpreted object (for instance we use mset(t) instead of � to interpret a
multiset over a type t). Whenever p is a pointer, we assume that the interpreta-
tion depends only on data that is accessible from p, i.e., p ↓H . Moreover every
interpretation function has to respect the following consistency requirement.

Requirement 1 (Consistency) . Let H, H ′ be two heaps, �·, ·�� an interpre-
tation function, and p, p′ two pointers or values. If (H, p) =st (H ′, p′) then
�H, p�� = �H ′, p′��.

As presented in section 4, we use data structures and functions as basic blocks
for constructing our algorithms, they are either predefined or produced by the
compilation process. Each of these functions and data structures is specified
(actually, axiomatized) by a formal interface. In particular, this helps to ensure
independence and modularity between components both in a programmatic and
formal way. Specifying an interface leads to define a set of primitives that respect
given derivations and interpretations. For example, let H be a heap and F a
frame such that, F (xmset) = pmset is a pointer on a multiset structure storing
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F (x) = p H(p) = (t, v)(
load x

)
H,F
�

(
v
)

H

load
F (x) = p p[i]H is defined(
gep x, 0, i

)
H,F
�

(
p[i]H

)
H

gep0

F (x1) + F (x2) = v(
add x1, x2

)
H,F
�

(
v
)

H

add
(H ′, p) = new(H, t)(

alloc t
)

H,F
�

(
p
)

H⊕H′
alloc

F (x1) op F (x2) = v op ∈ {<,≤, =, �=,≥, >}(
icmp op, x1, x2

)
H,F
�

(
v
)

H

icmp

1 ≤ i ≤ n li �= ⊥(
phi (x1, l1), . . . , (xn, ln)

)
H,(li, lc, β)

�
(
β(xi)

)
H

phi

f� a1, . . . , an � ∈ dom(P )
F0 = (⊥, f� a1, . . . , an �, {a1 �→ F (r1), . . . , an �→ F (rn)})(

P (f� a1, . . . , an �) )
H,F0

�∗ ( v
)

H′(
fcall f (r1, . . . , rn)

)
H,F
�

(
v
)

H′
fcall

(
ret r

)
H,F
�

(
F (r)

)
H

ret

Fig. 6. Rules for expressions

(
cmd

)
H,F
�

(
seq ′ )

H′,F ′(
cmd ; seq

)
H,F
�

(
seq ′; seq

)
H′,F ′

seq

(
skip; seq

)
H,F
�

(
seq

)
H,F

skip

(
br l

)
H,(lp, lc, β)

�
(
P (l)

)
H,(lc, l, β)

branch1

(β(r) = true ∧ l = l1) ∨ (β(r) = false ∧ l = l2)(
br r, l1, l2

)
H,(lp, lc, β)

�
(
P (l)

)
H,(lc, l, β)

branch2

f� a1, . . . , an � ∈ dom(P )
F0 = (⊥, f� a1, . . . , an �, {a1 �→ F (r1), . . . , an �→ F (rn)})(

P (f� a1, . . . , an �) )
H,F0

�∗ ( ret
)

H′,F ′(
pcall f (r1, . . . , rn)

)
H,F
�

(
skip

)
H′,F

pcall

(
expr

)
H,F
�

(
v
)

H′(
x = expr

)
H,F
�

(
skip

)
H′,F⊕{x �→ v}

assign

F (rp) = p H(p) = (t, d) H ′ = {p �→ (t, F (rnew ))}(
store rnew , rp

)
H,F
�

(
skip

)
H⊕H′,F

store

Fig. 7. Rules for sequences and commands
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elements of type t. Under these conditions, procedure addmset is specified by:(
pcall addmset(xmset , x)

)
H,F
�

(
skip

)
H⊕H′,F (1)

dom(H) ∩ dom(H ′) ⊆ pmset ↓H (2)

�H ⊕H ′, pmset�mset(t) = �H, pmset�mset(t) + {�H, F (x)�t} (3)

Condition (1) describes by a reduction the result of the call, condition (2) re-
strict the updates to be localised in the heap and condition (3) interprets the
computation in terms of Petri nets objects. Similarly, any implementation of the
marking structures has to respect the two following requirements.

Requirement 2 (Soundness) . Let H, H ′ be two heaps, F , F ′ two frames,
pmrq ∈ dom(H) a pointer to a marking structure, and ps a pointer to a place
nested in pmrq ( i.e., ps ∈ pmrq ↓H). If �H, pmrq�mrq (s) = �H, ps�s,

(
seq

)
H,F
�(

seq′
)
H⊕H′,F ′ and pmrq /∈ dom(H ′) then

�H ⊕H ′, pmrq�mrq (s) = �H ⊕H ′, ps�s

Requirement 3 (Separation) . Let pmrq be a pointer on a structure marking
in a heap H. If ps and ps′ are pointers to distinct places in this structure then
we have ps↓H ∩ ps′ ↓H= ∅.

The soundness property ensures that any update of a place through a pointer
returned by gets is actually made on the marking (not on a copy). The separation
property ensures that places do not share memory so that updating a place does
not have side effects on other places.

6 Correctness and Termination Results

We present now the two main results proving the correctness of functions firet
(theorem 1) and succt (theorem 2). Both these results are shown in a minimal
context, i.e., a heap that just contains the required pointers. An auxiliary the-
orem (not presented here) allows to generalise both results to any context that
includes the minimal one.

Theorem 1. Let M be a marking, H a heap and pmrq a pointer on a marking
structure such that dom(H) = pmrq ↓H and �H, pmrq�mrq = M . Let β

df= {x1 !→
v1, . . . , xn !→ vn} be a LLVM mode for transition t, which implies that each vi

is a value or a pointer encoding a token in place si: �H, vi��(si) ∈ M(si). Let F
be a frame such that βF

df= β ⊕ {xmrq !→ pmrq}. If

M [t, β〉M ′ and
(
fcall firet (xmrq , x1, . . . , xn)

)
H,F
�

(
p′mrq

)
H⊕H′

then �
H ⊕H ′, p′mrq

�mrq = M ′ and dom(H) ∩ dom(H ′) = ∅
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Proof (sketch). This theorem is the direct application of two lemmas showing the
correctness of tokens consumption and production respectively. Both are proved
by induction on the number of places in the marking structure. �

Corollary 1. Under the same hypothesis, the call to firet terminates. �

Theorem 2. Let F be a frame and pmrq a pointer in a heap H such that
pmrq ↓H= dom(H), �H, pmrq�mrq = M , βF (xmrq) = pmrq and βF (xnext ) = pnext .
If (

fcall succt(xmrq , xnext)
)
H,F
�∗ (pnext

)
H⊕H′ and �H, pnext�set = E

where E si a set of markings, then

dom(H) ∩ dom(H ′) = ∅

�H ⊕H ′, pnext�set = E ∪ {M ′ | ∃β, M [t, β〉M ′}

Proof (sketch). The first result is a consequence of the formal interfaces of the
called functions. The second result is proved as two inclusions:

⊇. This is the consequence of two lemmas:
– by applying reduction rules, we show that if execution goes through a

block header t,k then it will necessarily reach a block footer t,k+1, and
every block annotated by an index greater than k must be executed
also;

– consequently, all combinations of tokens for the input places are actually
enumerated, which implies that all potential modes of t are considered.

⊆. To prove that only actual successor markings are added, we first remark that
if a marking is added into the set, then this happens in block body t,0. So it is
enough to prove that this block is executed only if the binding is actually a
mode for t, which can be proved using the reduction rules backward to show
that the guard necessarily evaluated to true. �

Corollary 2. Under the same hypothesis, the call to succt terminates. �

7 Conclusion

We have shown how a Petri net can be compiled targeting a fragment of the
LLVM language. This compilation produces code that provides the primitives to
compute the state space of the compiled Petri net model. Then we have defined
a formal semantics for the fragment of the LLVM language we use. To produce a
readable and usable system of inference rules, we have defined a memory model
based on explicit heaps and stacks. Finally we have proved the correctness of
the code generated by our compiler. The full proofs provided in [5,4] are quite
long because they are very much detailed to improve our confidence into their
correctness and to ease there later validation using a proof assistant. But notice
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also that they are at the same time quite easy to follow. It is worth noting also
that our proofs are modular thanks to clearly defined interfaces with appropriate
axiomatisation. As a consequence, we should avoid issues when parts of the
generated code are replaced, for instance, to use a more efficient data structure,
or alternative state space exploration approaches (like in [8]).

The fragment of LLVM we have considered is rather limited with respect to
the number of instructions. However, it is at the same time quite representative
of the full language. Indeed, it includes the necessary to handle the stack and
the heap which are conceptually the most complicated parts of the language.
Extending our fragment to include all the LLVM computational instructions
(like arithmetic) would be an easy but tedious work. Adding the instructions to
manipulate the stack (like unwind for exception handling) looks quite straight-
forward. The most complicated is probably adding full support for pointers,
which would required to refine our heap model (in particular, pointer arithmetic
would have to be defined).

In this paper, we have considered an “optimistic” approach in that we assume
that the LLVM code provided in the model annotations is correct and terminates.
Moreover, we did not make any assumption about the finiteness of the state
space or the boundedness of integer values that are assumed not to overflow.
In practice, this are however important issues. Approaches based on abstract
interpretation of assembly code like [18] may be helpful to prove such properties
on the compiled model before to start the state space exploration, ensuring that
it will run safely (and allowing to avoid implementing checks in the generated
code).

Future works will address a generalisation of the presented approach to com-
pile a wider variety of coloured Petri nets, in particular nets embedding annota-
tion languages easier to use for the modeller than LLVM. Moreover, we would
like to refine requirement 3 to allow for a logical separation instead of a physi-
cal separation as it is currently defined. This would enable us for implementing
memory sharing and thus saving a lot of memory during a state space explo-
ration. We are also interested in particular in exploiting remarkable structures of
Petri net models that allow to optimise the code generated by the compiler. Such
optimisations also need to be formally proved and preliminary results about this
can be found in [4]. A longer term goal is to prove the whole compilation chain to
obtain the core (i.e., state space exploration) of a certified explicit model-checker
for coloured Petri nets. A complementary aspect is to evaluate the performance
of the state space generation, which is of course another important motivation
when working on a model-checker. As shown in [6], the current implementation
is efficient and can outperform state-of-the-art tools. So, certification is not an
objective that contradicts efficiency.
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Abstract. Elementary linear logic is a simple variant of linear logic,
introduced by Girard and which characterizes in the proofs-as-programs
approach the class of elementary functions, that is to say computable in
time bounded by a tower of exponentials of fixed height.

Our goal here is to show that despite its simplicity, elementary linear
logic can nevertheless be used as a common framework to characterize
the different levels of a hierarchy of deterministic time complexity classes,
within elementary time. We consider a variant of this logic with type fix-
points and weakening. By selecting specific types we then characterize
the class P of polynomial time predicates and more generally the hierar-

chy of classes k-EXP, for k ≥ 0, where k-EXP is the union of DTIME(2ni

k ),
for i ≥ 1.

1 Introduction

Implicit Computational Complexity. This line of research promotes inves-
tigations to delineate classical complexity classes by programming languages
or logics, without refering to explicit bounds on resources (time, space . . . ) but
instead by restricting the primitives or the features of the languages. Various ap-
proaches have been used for that, primarily in logic and in functional languages:
restrictions of the comprehension scheme in second-order logic [Lei91, Lei02];
ramification in logic or in recursion [Lei94, BC92]; read-only functional programs
[Jon01]; variants of linear logic [Gir98, Laf04]. . . to name only a few.

Note that the programming disciplines induced by these systems are quite
restrictive, but some of these characterizations have in a second step led to
more flexible criteria for statically checking complexity bounds on programs:
ramification and safe recursion have inspired the work on interpretation methods
for complexity [BMM11] on the one-hand, and linear type systems for non-
size-increasing computation [Hof03] on the other, which itself has led to typing
methods for amortized complexity analysis [HJ06, HAH11].

Linear Logic. The linear logic approach to implicit complexity fits in the
proofs-as-programs paradigm. It stems from the observation that as duplication
is controlled in linear logic by the modality !, weaker versions of this modality can
define systems with a complexity-bounded normalization procedure: elementary

H. Yang (Ed.): APLAS 2011, LNCS 7078, pp. 337–352, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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linear logic (ELL) [Gir98, DJ03] characterizes in this way the class of Kalmar
elementary functions (computable in time bounded by a tower of exponentials
of fixed height), while light linear logic (LLL) [Gir98] and soft linear logic (SLL)
[Laf04] characterize functions computable in polynomial time. These logical sys-
tems have then enabled the design of type systems for λ-calculus or functional
languages ensuring that a well-typed program has a polynomial time complexity
bound [BT09, GR07, BGM10].

Note that initially ELL does not sound as interesting as LLL and SLL since it
corresponds to elementary complexity, which is not very relevant from a program-
ming point of view. However it has nice logical properties, a simpler language of
formulas than LLL (no § modality) and allows for a more natural programming
style than SLL. It has also been studied for its remarkable properties concerning
λ-calculus optimal reduction [ACM04].

Calibrating Complexity. One might however deplore a lack of homogene-
ity in these characterizations of complexity classes by variants of linear logic:
indeed some common deterministic complexity classes like EXP have not yet
been characterized, a different system is needed for each complexity class, and
these various systems are not easy to compare.

By contrast, other methods in implicit complexity have provided frameworks
that can be calibrated to delineate different complexity classes inside the (large)
Kalmar elementary class:

– Jones considers in [Jon01] a read-only functional programming language and
characterizes in it the classes k-EXP, for k ≥ 0, by considering, for each k,
programs using only arguments of type-order at most k;

– Leivant investigates in [Lei02] second-order logic with comprehension (quan-
tifier elimination) restricted to various families of first-order formulas: the
functions provably total in this logic with comprehension restricted to for-
mulas of type-order at most k are precisely the functions of k-EXP.

Note that even if these two frameworks fit in different computational approaches,
they both use as parameter the type-order (or implicational rank) of formulas.

Objective and Contribution. A goal of the present work is to provide an
analogous framework in linear logic, allowing to characterize in a single logic a
hierarchy of complexity classes by calibrating a certain parameter. We will use
elementary linear logic, which offers the advantage of simplicity. A key parameter
in this system, as in LLL, is the number of nested modalities (!) and this will be
the value calibrating our complexity bounds.

For technical reasons we will actually consider an extension of ELL obtained
by adding to it type fixpoints. It had been observed from the beginning [Gir98]
that this feature does not modify the dynamics of ELL and its complexity
bounds. We will also allow unrestricted weakening, which is innocuous and com-
mon practise since [AR02]. Given some types W for binary words and B for
booleans, we will then show that for k ≥ 0, the proofs of conclusion !W� !k+2B,
where !i stands for a sequence of i !s, correspond to the predicates of k-EXP. In
particular this gives, in the case where k = 0, a characterization of the class P
in an elementary logic, with the type !W� !2B.
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Note that a distinctive point of our characterization is that it does not rely
on a restriction of a particular operation inside the proof-program, like the
application of a function to an argument in [Jon01] or the comprehension rule
in [Lei02]. Instead it only imposes a condition on the conclusion of the proof
(or type of the program), that its to say on its interface. In this sense it is more
modular than these previous characterizations. Observe also that our system
is a second-order logic, as the one of [Lei02], but here comprehension is not
restricted.

Because of space constraints we had to omit some proofs; they can be found
in [Bai11].

2 Characterization of the Classes P and k-EXP

We consider intuitionistic affine elementary logic with type fixpoints that we
denote by EALμ. Actually for our purpose it is sufficient to consider its multi-
plicative fragment. The grammar of types is:

A ::= α | A� A | A⊗A | !A | ∀α.A | μα.A

We will represent functions by proofs, but as often it will be convenient to use
λ-calculus to denote the algorithmic content of proofs. For that we will consider
an extension of λ-calculus with a ⊗ construction:

t, u ::= x | λx.t | (t u) | t⊗ u | let t be x⊗ y in u

Its reduction rule is obtained by the context-closure of the usual β-reduction
rule and of the following one:

let t1 ⊗ t2 be x⊗ y in u→ u[t1/x, t2/y].

The rules of EALμ are now given on Fig. 1, as a sequent calculus decorated
with λ-terms. This system only differs from the intuitionistic version of elemen-
tary linear logic without additive connectives [Gir98, DJ03] by the fact that we
have added the fixpoint construction (rules Lμ and Rμ) and allowed for general
weakening (rule (Weak)). Observe that some rules do not have any effect on the
term (!, Lμ, Rμ, L∀, R∀): this is because we want to keep the term calculus as
simple as possible, and the current calculus is anyway sufficient to represent the
functions denoted by the proofs.

Observe that the formulas !A� A and !A� !!A are not provable, which is
the distinctive feature of elementary linear logic with respect to ordinary linear
logic.

Finally, note that if we added the fixpoint rules to intuitionistic logic or linear
logic cut elimination would not be normalizing anymore, but strong normaliza-
tion does hold for EALμ (see [Gir98]).

Let us denote the following types respectively for booleans, n-ary finite types,
tally integers and binary words, which are adapted from system F:

B = ∀α.α� α� α, Bn = ∀α.α� . . .� α, with n + 1 occurrences of α
N = ∀α.!(α� α)� !(α� α), W = ∀α.!(α� α)� !(α� α)� !(α� α)
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Axiom and Cut.

x : A � x : A
Ax

Γ � t : A Δ, x : A � u : B

Γ, Δ � u[t/x] : B
Cut

Structural Rules.

Γ � t : A
Γ, x : B � t : A

Weak
Γ, x1 :!A, x2 :!A � t : B

Γ, x :!A � t[x/x1, x/x2] : B
Contr

Multiplicative Rules.

Γ � t : A Δ, x : B � u : C

Γ, Δ, y : A� B � u[(y t)/x] : C
L�

Γ, x : A � t : B

Γ � λx.t : A� B
R�

Γ, x1 : A,x2 : B � t : C

Γ, x : A ⊗ B � let x be x1 ⊗ x2 in t : C
L⊗

Γ � t1 : A Δ � t2 : B

Γ, Δ � t1 ⊗ t2 : A ⊗ B
R⊗

Exponential Logical Rule.

Γ � t : A
!Γ � t :!A

!

Second Order Rules

Γ, x : C[A/α] � t : B

Γ, x : ∀α.C � t : B
L∀

Γ � t : C α /∈ FV (Γ )

Γ � t : ∀α.C
R∀

Fixpoint Rules

Γ, x : A[μα.A/α] � t : B

Γ, x : μα.A � t : B
Lμ

Γ � t : A[μα.A/α]

Γ � t : μα.A
Rμ

Fig. 1. The system EALμ

Recall that these data-types admit some coercions [Gir98]. For W for instance,
one can give a proof of type W � !W which, as a λ-term, acts as an identity
on the terms encoding binary words.

We denote: 2n
0 = n, 2n

k+1 = 22n
k . Recall that elementary functions are the

functions computable on a Turing machine in time O(2n
k ), for some k.

The standard results of elementary linear logic [DJ03] still hold in the setting
of EALμ:

– for any integer d, any proof of N� !dN represents an elementary function
(complexity soundness);

– for any elementary function f : N→ N there exists an integer d and a proof
of N� !dN representing it (extensional completeness).

Now, by considering alternative types we will be able to delineate more com-
plexity classes:

Theorem 1. We consider the system EALμ.
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– The functions representable by proofs of !W � !2B (resp. !W � !3B) are
exactly the class P (resp. EXP);

– More generally, for any k ≥ 0, the functions representable by proofs of con-
clusion !W� !k+2B are exactly the class k-EXP, where:
k-EXP = ∪i∈NDTIME(2ni

k ), EXP = 1-EXP.

Remark 1. Note that we do not use fixpoints in the final types involved. However,
technically speaking the fixpoints are used in the proofs of completeness, in order
to simulate polynomial time (resp. k-exponential time) Turing machines, as we
will see in Sect. 4.

Observe that as in [Jon01] we are characterizing here predicates and not general
functions. We will come back to this point later, in Remark 5.

In the rest of the paper we will prove Theorem 1: Sect. 3 will establish the
complexity soundness (proofs with these types represent predicates of the given
complexity classes) and Sect. 4 will prove the extensional completeness (all pred-
icates of these complexity classes can be computed by suitable proofs).

3 Proof-Nets and Complexity Soundness

In order to prove the complexity bound we study the cut elimination process
and take advantage of the assumption that the conclusion of the proof is of type
!W � !k+2B in order to derive a sharper bound. For that, as usual in linear
logic it is convenient to use proof-nets to analyse cut elimination as proof-net
reduction. The proof-nets will use formulas of classical elementary linear logic
with fixpoints:

A ::= α | α⊥ | A⊗A | A℘A | !A | ?A | μα.A | μα.A | ∀α.A | ∃α.A

The connectives (modalities) ! and ? are called exponentials and ⊗/℘ are multi-
plicatives.

Formulas of EALμ are translated in this grammar by using A� B ≡ A⊥℘B
and the usual linear logic De Morgan laws for linear negation:

(A⊗B)⊥ ≡ A⊥℘B⊥, (!A)⊥ ≡?A⊥,

(μα.A)⊥ ≡ μα.A⊥, (∀α.A)⊥ ≡ ∃α.A⊥, A⊥⊥ ≡ A.

In order to handle weakening we will use proof-nets with polarities, following
[AR02]. Note that proof-nets with polarities had been considered before, e.g. in
[Lam96], but here we will follow the conventions and notations of [AR02]. The
nodes are described on Fig. 2:

– nodes have ports which are positive (dark bullet) or negative (white bullet);
an edge can link together either two positive or two negative ports; we say
that an edge is positive (resp. negative) if it is connected to a positive (resp.
negative) port;
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– as the system is affine, the proof-nets use, beside the weakening w-node, also
an h-node;

– two nodes μ and μ are added, corresponding resp. to the fixpoint rules Rμ

and Lμ;
– each node ! or ? comes with a !-box, as shown on Fig. 3; two boxes are either

disjoint or one is included in the other; the !-node is called the principal door
of the box and the ?-nodes are its auxilliary doors.

One will translate an EALμ proof π of conclusion x1 : A1, . . . , xn : An � t : B

by a graph π∗ with conclusions A1
⊥, . . . , An

⊥, B where the edges of the Ai
⊥

(1 ≤ i ≤ n) are negative and the edge of B is positive. This translation is
standard [Gir87] and we only describe a couple of illustrative cases:

– if π is obtained by an Ax rule, then π∗ is an ax-node;
– if π is obtained by a Cut rule between π1 and π2, then π∗ is obtained by

linking π1
∗ and π2

∗ by a cut-node;
– if π is obtained by a !-rule on π1, then π∗ is obtained by applying a !-box on

π1
∗ (see Fig. 3),

and so on. On Fig. 2 below each node we have indicated the sequent calculus
rule it corresponds to. Note that the h-node is not used for this translation; it
will only appear during normalisation. Now, a graph R is called a proof-net if
there exists a proof π such that R = π∗.

A cut-node between an ax-node (resp. w-node) and another node (resp. an-
other node which is not an ax-node) is called an axiom cut (resp. a weakening
cut). A cut between a ⊗-node and a ℘-node is called a multiplicative cut. A cut
between a !-node and a ?-node or ?c-node (resp. a ?c-node) is called an exponen-
tial cut (resp. a contraction cut). Quantifier cuts and μ-cuts are defined in an
analogous way.

In a proof-net, a maximal tree with ?-nodes, ax-nodes and w-nodes (of type
?A⊥) as leaves, and ?c-nodes as internal nodes, is called an exponential tree.

Now, given R, the depth of a node is the number of exponential boxes con-
taining it, and the depth d(R) of R is the maximal depth of its nodes. Let |R|i
denote the number of nodes at depth i which are not cut nodes, w-nodes or
h-nodes. We denote |R| = Σ

d(R)
i=0 |R|i.

Reduction. The reduction procedure on proof-nets consists in eliminating
cuts. Because of space constraints we do not give here all reduction rules, but
only the most important ones, described on Fig. 4, 5, 6:

– Fig. 5 shows the reduction of exponential cuts (contraction step and box-box
step);

– Fig. 6 gives a sample of reduction rules for weakening cuts (notice that one
of these steps introduces h-nodes) and cuts on h-nodes; the remaining rules
are similar and can be found in [Bai11].

Observe that during a reduction step the depth of an edge does not change,
hence the depth of the proof-net does not increase. This is called the stratification
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cut

ax
A⊥ A⊥AA

Ax Cut

⊗ ℘ ℘

R⊗

BA

A⊗ B

A

L� R⊗ R�

⊗

A⊥℘B⊥ A⊥℘B

B⊥A⊥ B⊥ BA⊥

A⊗ B⊥

∀ !∃ μ μ ?

A⊥

R∀

∀α.A

A

L∀ Rµ Lµ

A⊥ A⊥[μα.A/α] A

∃α.A⊥ μα.A !A ?A⊥

! !

A[μα.A/α]

μα.A⊥

w h?c

?A⊥ ?A⊥

A⊥ A

Weak

?A⊥

Contr

Fig. 2. Nodes of the proof-nets

? ? !

!A

A

?B1
⊥

. . .B1
⊥

?Bn
⊥

Bn
⊥

Fig. 3. !-box

property [DJ03] and it is a key ingredient for the complexity properties. It is not
valid in ordinary linear logic, and it comes from the fact that during reduction
a !-box is not opened and does not enter another box (see Fig. 5).
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ax

cut

ax

cut

cut

cut
cut

⊗ ℘

cut
cut

cut

⊗℘

cut

cut

μμ

cut

cut

∀ ∃

∀α.A ∃α.A⊥

A A⊥[B/α]

R[B/α]

A⊥[B/α] A[B/α]

R

Fig. 4. Reduction steps (1/3)

We say that an exponential cut c is a special cut if the box B corresponding to
the ! node does not have any cut below its auxilliary doors. The following fact can
be easily verified by examining each reduction step other than the contraction
reduction step:

Lemma 1. Let R be a proof-net and R′ be obtained from R by reducing a cut at
depth i which is not a contraction cut. Then we have |R′|i < |R|i and |R′| < |R|.

Now let us briefly recall the method used in [Gir98] to establish complexity
bounds on proof-net reduction in light linear logic and elementary linear logic.
It uses a specific reduction strategy, obtained by the two following ideas:

– reduce the cuts level-by-level, that is to say first at depth i (round i) for i
successively equal to 0, 1, . . . , d(R);

– at a given depth i, proceed in two phases:
• first reduce cuts that make the size decrease, so in the case of ELL all

cuts but the exponential cuts,
• then reduce the exponential cuts, by repeatedly reducing a special cut.
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cut

cut

cut

!

?c

?c

!

!

?

R1

?

?c
?

R1

?

?

R1

?

?A⊥

?A⊥

?Bn

. . .
!A

A

. . .
!A

A

?B1

. . .
!A

A

. . .

?B1

?Bn

cut

cut

!!! ???

A⊥

??

R2

?

R1

?

A⊥

?A⊥

R1 R2

. . .. . .

A

. . .. . .

A

!A

Fig. 5. Reduction steps (2/3)

Let us denote by Ri the proof-net at the beginning of round i. In order to bound
the number of steps of this reduction strategy, the proof proceeds by, for i = 0
to d(R):

– bounding the number of steps of round i by using |Ri|i,
– bounding the size increase, that is to say bounding |Ri+1|i+1 by using |Ri|i.

Now, here we will essentially adapt the same reduction strategy and methodology
for obtaining the bound, with the following modifications:

– on the strategy: we will not perform the reduction until obtaining a normal
form (proof-net without cut), but we will stop when we can extract the
result;

– on the methodology for obtaining the bound: we will use the assumption that
the proof has a conclusion !W � !k+2B and we will make a finer analysis
of the size increase.

Now let us state the key Lemma that we will use:

Lemma 2 (Size bound). Let R be a proof-net with:

– only exponential and weakening cuts at depth 0,
– k cuts at depth 0.

Let R′ be the proof-net obtained by reducing R at depth 0. Then we have:

|R′|1 ≤ |R|k0 · |R|1.
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cut cut

cut

w

w℘

h

cut

wh

cut

w? ? ! w w. . .

. . .

cut cut

cut

h ⊗

w h

cut
cut

cut

h

h h

?c

cut

!h w w. . . h

. . .

? ?

Fig. 6. Reduction steps: sample of weakening and h-steps (3/3)

So if we have a bound on the number k of cuts, we obtain a polynomial bound on
the size of the proof-net R′ after reduction at depth 0. In any case we can bound
k by |R|0, but then we basically recover the usual exponential bound [Gir98].

Proof. We say a contraction node of R at depth 0 is active if it is above a cut
node. We denote by |R|a the number of active nodes of R at depth 0. Observe
that we have |R|a +1 ≤ |R|0. We will prove the following statement by induction
on k: |R′|1 ≤ (|R|a + 1)k · |R|1.
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If k = 0 the result is trivial. Assume now the result valid for k and consider
R with k + 1 exponential cuts at depth 0.

First let us consider the case where there is a weakening cut among these k+1
cuts. We then reduce it persistently, following the weakening steps and h-steps
of Fig. 6, and we end up with a proof-net R′ such that: |R′|a ≤ |R|a, |R′|1 ≤ |R|1
and R′ has k cuts at depth 0. We can then apply the induction hypothesis to R′

and easily conclude.
Now, consider the case where we have k + 1 exponential cuts. Using the

correctness criterion one can check (e.g. as in [BP01]) that R admits a special
cut c, that is to say an exponential cut for which the box B corresponding to
the ! node does not have any cut below its auxilliary doors. We completely
reduce the cut c, that is to say we reduce c and hereditarily all the cuts of its
exponential tree until performing box-box or axiom reduction steps. The increase
of size at depth 1 is due to the duplications of the box B , which is copied at
most |R|a times. Note that no active node is created during these reduction
steps, because c is a special cut. We obtain in this way a proof-net R′ such that:
|R′|1 ≤ (|R|a + 1) · |R|1, |R′|a ≤ |R|a and R′ has k cuts at depth 0.

Besides, by induction hypothesis we have that R′ can be reduced to R′′ which
is normal at depth 0 and: |R′′|1 ≤ (|R′|a +1)k · |R′|1. Combining the inequalities
we thus get: |R′′|1 ≤ (|R|a + 1)k+1 · |R|1. We conclude by using the fact that
|R|a + 1 ≤ |R|0. "�

We will need another result:

Lemma 3 (Readback). Let R be a proof-net of conclusion B which only has
exponential cuts at depth 0. Given R, one can in constant time decide whether
it reduces to true or false.

The proof of this Lemma takes advantage of the restricted exponentials rules of
EALμ; it can be found in [Bai11].

Finally we get:

Proposition 1 (P soundness). Let R be a normal proof-net of conclusion
!W � !2B. Then there exists a polynomial P such that: any proof-net obtained
by cutting R with a proof-net representing a word of length n can be evaluated
in time bounded by P (n).

Proof. First, note that there exists a constant a such that for any n, for any
binary word w of length n, w can be represented by a proof-net Rw of size
|Rw| ≤ a · n.

Now, let us examine the structure of R at depth 0. If ?W⊥ is obtained by a
weakening it is trivial. Otherwise there is an integer k ≥ 1 and a proof-net S
of conclusion �W⊥, . . . ,W⊥, !B with k formulas W⊥ such that: R is obtained
from S by applying a !-box and a certain number k′ of contraction rules on ?W⊥

formulas.
Now let Rw be a proof-net representing a word w, and let T be the proof-

net obtained by cutting R with a box enclosing Rw. The proof-net T can be
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reduced in at most 2k′ steps (at depth 0) into a proof-net T ′ consisting in a box
containing S cut with k copies of Rw. Therefore |T ′| ≤ |R|+ k · |Rw|.

Then, since W = ∀α.!(α � α) � !(α � α) � !(α � α), by applying k
quantification reduction steps and 2k multiplicative reduction steps (at depth
1) we get a proof-net T ′′ with not cut at depth 0 and only exponential and
weakening cuts at depth 1. Note that there are at most 3k exponential cuts at
depth 1 and that |T ′′| ≤ |T ′| ≤ |R|+ k · |Rw|.

Now by applying Lemma 2 to T ′′ at depth 1, we get that by reducing T ′′

at depth 1 we obtain T (3) with no cut at depths 0, 1 and such that |T (3)|2 ≤
|T ′′|3k

1 · |T ′′|2 ≤ (|R|+ k · |Rw|)3k+1. The important point to notice here is that
(3k + 1) does not depend on n.

Finally we perform on T (3), at depth 2, reduction of all cuts but exponential
cuts. These only make the size decrease, by Lemma 1, and so the number of
steps is bounded by |T (3)|2. We obtain in this way a proof-net T (4) of conclusion
!2B, which: (i) does not have any cut at depths 0 and 1, (ii) only has exponential
cuts at depth 2.

By Lemma 3, applied here at depth 2, the result can then be computed in
constant time. So on the whole the computation has been carried out in a number
of steps which is polynomial in |Rw|, hence polynomial in n.

Moreover, as the size of each intermediary proof-net in the reduction sequence
is polynomially-bounded w.r.t. n, each reduction step can be performed in poly-
nomial time (on a Turing machine), hence the whole reduction is performed in
polynomial time. "�

Proposition 2 (k-EXP soundness). Let R be a normal proof-net of conclusion
!W � !k+2B. Then there exists a polynomial P such that: any proof-net obtained
by cutting R with a proof-net representing a word of length n can be evaluated
in time bounded by 2P (n)

k .

The proof of Prop. 2 is based on a generalization of the proof of Prop. 1, and
needs an extra Lemma. See [Bai11] for more detail.

4 Extensional Completeness

To prove the extensional completeness results we will need another datatype
using type fixpoints, that of Scott binary words :

WS = μβ.∀α.(β � α)� (β� α)� (α� α).

Scott words have already been used in several works on implicit complexity
[DLB06, BT10, RV10]. One can easily define terms for the basic operations on
binary words over the type WS:

consi = λw.λs0.λs1.λx.(si w) : WS�WS for i = 0, 1
nil = λs0.λs1.λx.x : WS

tail = λw.(w id id nil) : WS�WS
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where id = λx.x.
For this datatype we can define a term for case distinction on words:

case : ∀α.(WS � α)� (WS � α)� α� (WS � α)
case = λF0.λF1.λa.λw.(w F0 F1 a)

Remark 2. Actually Scott words can also be typed in elementary affine logic,
without fixed points, e.g. with the following type: ∀P.(P � ∀X.((P � X �
P ) � P ) � P ). However it is not clear if one could define a case function in
this setting.

We define the following type representing the configurations of a one-tape Turing
machine over a binary alphabet, with n states:

Config = WS ⊗B⊗WS ⊗Bn

Given an element of this type: the first component represents the left part of the
tape, in reverse order; the second component represents the symbol scanned by
the head ; the third component represents the right part of the tape; the fourth
part represents the current state.

Lemma 4. Let q be a polynomial of N[X ]. We have:

1. there exists a proof of !N� !N representing the function q(n);
2. for any k ≥ 1, there exists a proof of !N� !k+1N representing the function

2q(n)
k .

Lemma 5. LetM be a one-tape deterministic Turing machine. One can define:

init : WS � Config, step : Config� Config, accept? : Config� B,

such that:

– given a binary word, init produces the corresponding initial configuration of
the machine,

– the term step computes one step of the machine on a given configuration,
– given a configuration, the term accept? returns true (resp. false) if its state

is accepting (resp. rejecting).

The terms init and accept? are easy. The term step can be constructed based on
the transition function of M, by doing a case distinction, using the term case,
as in [DLB06] (Sect.7, Lemma 4).

Remark 3. The configuration type of (Asperti Roversi 2002) in LAL does not use
type fixpoints and can be directly adapted in EAL (replacing the § connective
by !). Let us denote here this EAL type by ConfigC, as it is defined by using
a Church encoding of binary words, while Config is defined by using the Scott
encoding:
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ConfigC = ∀α.!(α� α)� !(α� α)� !(α� α� (α⊗ α⊗Bn)),

where Bn is for representing the state of the machine.
Note that ConfigC allows to define a function stepC with the analogous

type ConfigC� ConfigC. However the corresponding term accept?C has type
ConfigC� !B. It does not seem possible to give a term for this purpose of type
ConfigC� B.

This is why we are considering here EALμ with type fixpoints, so as to be
able to use Scott binary words.

Proposition 3 (Extensional completeness)

1. Let f be a function representing a predicate of P. There exists a proof of
conclusion !W � !2B representing f .

2. Consider k ≥ 1 and let f be a function representing a predicate of k-EXP.
There exists a proof of conclusion !W � !k+2B representing f .

The proof of this Proposition is based on simulations of Turing machines with
the corresponding complexity bounds, using the results of Lemmas 4 and 5. See
[Bai11] for more detail.

Finally, together the results of Propositions 1, 2 and 3 establish Theorem 1.

Remark 4. Observe that proofs of type !W � !2W do not correspond to polyno-
mial time functions. Indeed, one can easily define a proof wdouble of conclusion
W�W which doubles the length of a word. By using iteration on words, ap-
plied here to this wdouble proof, one gets a proof wexp of conclusion W � !W,
which, given a word of length n, produces a word of length 2n. Applying the !
rule one thus obtains a proof of !W � !2W with the same behaviour.

To characterize the complexity class FP of polynomial time functions, one
could use the type !W � !2WS, where WS is the type of Scott binary words.
However a drawback of this characterization is that the proofs representing these
functions could not be composed, because of the mismatch on the input and
output types.

Remark 5. The proof of the previous theorem could be adapted in EAL (without
fixpoint) instead of EALμ, by using the type ConfigC of Remark 3, instead of
Config. But as we have the type accept?C : ConfigC� !B, we would thus get
in the end the type !W� !3B for the simulation of a polynomial time machine.
This in turn would not provide a P soundness result.

5 Conclusion and Future Work

Elementary linear logic was up to now considered as a simple variant of ele-
mentary linear logic with good structural properties but of limited interest for
complexity. We have shown here that, provided one adds to it type fixpoints,
it is expressive enough to characterize P, EXP and a time hierarchy inside the
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elementary class. An interesting feature is that this provides a single type sys-
tem in which one characterizes different complexity classes with the same term
calculus, simply by considering terms of different types.

Several questions remain open. Is it possible to obtain the same result with-
out type fixpoint? Could one also characterize in this system PSPACE and other
space complexity classes in a way similar to [Lei02]? It would also be inter-
esting to examine whether one could re-prove in this purely logical framework
some classical hierarchy results, like P 
= EXP, by carrying out a diagonalisation
argument.
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343. Birkhäuser (1994)

[Lei02] Leivant, D.: Calibrating computational feasibility by abstraction rank.
In: Proceedings LICS 2002, pp. 345–353. IEEE Computer Society (2002)

[RV10] Roversi, L., Vercelli, L.: Safe Recursion on Notation into a Light Logic
by Levels. In: Proceedings of International Workshop on Developments
in Implicit Computational complexity (DICE 2010). EPTCS, vol. 23,
pp. 63–77 (2010)



A Proof Pearl with the Fan Theorem

and Bar Induction

Walking through Infinite Trees
with Mixed Induction and Coinduction

Keiko Nakata1, Tarmo Uustalu1, and Marc Bezem2

1 Institute of Cybernetics, Tallinn University of Technology,
Akadeemia tee 21, 12618 Tallinn, Estonia

{keiko,tarmo}@cs.ioc.ee
2 Institutt for Informatikk, Universitet i Bergen,

Postboks 7800, 5020 Bergen, Norway
bezem@ii.uib.no

Abstract. We study temporal properties over infinite binary red-blue
trees in the setting of constructive type theory. We consider several fa-
miliar path-based properties, typical to linear-time and branching-time
temporal logics like LTL and CTL∗, and the corresponding tree-based
properties, in the spirit of the modal μ-calculus. We conduct a system-
atic study of the relationships of the path-based and tree-based versions
of “eventually always blueness” and mixed inductive-coinductive “almost
always blueness” and arrive at a diagram relating these properties to each
other in terms of implications that hold either unconditionally or under
specific assumptions (Weak Continuity for Numbers, the Fan Theorem,
Lesser Principle of Omniscience, Bar Induction).

We have fully formalized our development with the Coq proof
assistant.

1 Introduction

In this paper, we study temporal properties over infinite binary red-blue trees
in the setting of constructive type theory. We consider several familiar path-
based properties, typical to linear-time and branching-time temporal logics like
LTL and CTL∗, and the corresponding tree-based properties, in the spirit of
the modal μ-calculus. Classically, some of these properties coincide, but in our
more discerning setting they come out generally inequivalent. We then look
for weak assumptions under which they imply each other. It turns out that
some implications are in fact equivalent to principles well known in constructive
mathematics and others follow from such principles.

We are primarily interested in path-based and tree-based variations of the
properties of “eventually always blueness” and “almost always blueness” of a tree
where the latter is defined by mixing induction and coinduction. We conduct a
systematic study of the relationships of these properties and arrive at a diagram
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where we describe how these properties relate to each other in terms of im-
plications that hold either unconditionally or under specific assumptions (Weak
Continuity for Numbers, the Fan Theorem, Lesser Principle of Omniscience, Bar
Induction). This way, we learn about the relative constructive strength of these
properties in terms of the computational content of the assumptions used (cf.,
[11,12]) and conversely we get some intuition about the significance of these
principles from a programmer’s viewpoint.

The paper proceeds as follows. After setting up the basic framework in Sect. 2,
we first study universal properties over paths in a tree and compare the path-
based and tree-based variations. In Sect. 3.1, we examine trees that are always
blue and, in Sect. 3.2, we also look at trees that are eventually red. In Sect. 4.1,
we study eventually always blue trees. In Sect. 4.2, we consider trees that are
almost always blue in the sense of a mixed inductive-coinductive definition.

We then continue with always eventually and infinitely often red trees (Sect. 5).
Our journey ends with a short discussion of existential properties over paths in
a tree (Sect. 6). We discuss related work in Sect. 7 to conclude in Sect. 8.

In regards to the various non-constructive principles we employ we use the
terminology of Troelstra and van Dalen [22]. We use Latin lower case letters
to represent finite objects, and Greek lower case letters for infinite objects. We
present the definitions of both inductive and coinductive types and predicates in
terms of sets of rules. The rules of inductive definitions are denoted by a single
line and the rules of coinductive definitions are marked by a double line.

We have fully formalized our development in Coq. The Coq development is
available at http://cs.ioc.ee/~keiko/cypress.tgz.

2 Preliminaries

In this section, we set up a basis for our development in the paper.
We have two colors, red (R) and blue (B). We also have steps, represented by

bits, 0 for left and 1 for right. Namely,

R : color B : color 0 : step 1 : step

Streams α : Aω over a set A are infinite sequences over A defined coinductively
by

a : A α : Aω

a α : Aω

Bisimilarity on streams, α ∼ α′, is also defined coinductively by

α ∼ α′

a α ∼ a α′

Our trees τ : tree are infinite binary trees with colored nodes, defined coinduc-
tively by

c : color τ0 : tree τ1 : tree
τ0 c τ1 : tree

http://cs.ioc.ee/~keiko/cypress.tgz
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with bisimilarity on them, τ ∼ τ ′, defined coinductively by

τ0 ∼ τ ′
0 τ1 ∼ τ ′

1

(τ0 c τ1) ∼ (τ ′
0 c τ ′

1)

Note that a tree has no leaves, hence all the paths are infinite.
The relations ∼ (for both streams and trees) are straightforwardly seen to be

equivalences. We take bisimilarity as the equality on streams (resp. trees), i.e.,
type-theoretically we treat streams (resp. trees) as a setoid with bisimilarity as
the equivalence relation. Accordingly, we have to ensure that all functions and
predicates we define on streams (resp. trees) are setoid functions and predicates
(i.e., respect our notions of equality for them).

Lists � : A∗ over a set A are finite sequences over A defined inductively by

〈〉 : A∗
a : A � : A∗

a � : A∗

The notation 〈a〉 denotes singletons, i.e., 〈a〉 = a 〈〉. For �, �′ : A∗, we denote by
� ∗ �′ the concatenation � and �′.

Concatenation can be extended to concatenation of a finite sequence � : A∗

and an infinite one α : Aω:

〈〉 ∗ α = α (a �) ∗ α = a (� ∗ α)

Non-empty lists � : A+ over a set A are inductively defined by

a : A
〈a〉 : A+

a : A � : A+

a � : A+

When necessary, we tacitly coerce non-empty lists to lists.
The function flatten : (A+)ω → Aω flattens the given stream of non-empty

lists over A. Formally, we define it by mutual corecursion together with an aux-
iliary function flattenseq:

flatten ((〈a〉 α) = a (flatten α) flatten ((a �) α) = a (flattenseq α �)

flattenseq α 〈a〉 = a (flatten α) flattenseq α (a �) = a (flattenseq α �)

The initial segment of length n of a stream α is denoted by αn. Formally

α0 = 〈〉 (a α)(n + 1) = a (αn)

The suffix of a stream α at n, α@n, is defined by

α@0 = α (a α)@(n + 1) = α@n

The subtree of a tree τ : tree at a position p : step∗ is denoted by τ@p. Formally,

τ@〈〉 = τ (τ0 c τ1)@(0 p) = τ0@p (τ0 c τ1)@(1 p) = τ1@p
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For a tree τ : tree and a path π : stepω, �τ�π returns the stream of colors in τ
along π. Formally,

�τ0 c τ1�0 π = c �τ0�π �τ0 c τ1�1 π = c �τ1�π

Analogously, for a position p : step∗, �τ�p returns the list of colors in τ along p.
Formally,

�τ�〈〉 = 〈〉 �τ0 c τ1�(0 p) = c �τ0�p �τ0 c τ1�(1 p) = c �τ1�p

It is convenient to introduce some predicates on streams of colors, typically
written σ : colorω, and trees as primitives into our language for them. We define

red (R σ) blue (B σ) red (τ0 R τ1) blue (τ0 B τ1)

For streams of colors, we also define

X σ
F X σ

F X σ
F X (c σ)

X (c σ) GX σ

GX (c σ)

Here, F and G are the “sometime in the future” (“finally”) and “always in the
future” (“globally”) modalities of linear-time temporal logic. They are predicates
on streams of colors parameterized over predicates X on streams of colors.1

Analogously, we define “eventually” and “always” predicates on trees:

X τ
F X τ

F X τ0 F X τ1

F X (τ0 c τ1)

X (τ0 c τ1) GX τ0 GX τ1

GX (τ1 c τ1)

Again, F and G are predicates on trees parameterized over predicates X on trees.
In section 6, we will consider variations of GX τ and F X τ which pick up one
of the subtrees at every node as they go down through τ .

3 Always Blue and Eventually Red Trees

3.1 Always Blue Trees

A stream of colors σ : colorω is always blue, if σ is “globally” blue, or G blue σ.
Similarly, a tree τ : tree is always blue, if every node of τ is blue, or G blue τ .

A tree is always blue if and only if every path of the tree is always blue:

Proposition 1. ∀τ : tree.G blue τ ⇔ (∀π : stepω.G blue �τ�π).

1 There is no need to see them as “first-class” predicate transformers, as there is no
real impredicativity involved: the argument of F is constantly X in the definition of
F , and the same is true of the definition of G.
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3.2 Eventually Red Trees

A stream of colors σ is eventually red if σ is red at some position, or, F red σ.
An infinite tree τ is eventually red if a finite initial fragment of it has all leaves
red, or F red τ .

Constructively, we have neither that a stream of colors is either always blue
or eventually red, ∀σ.G blue σ ∨ F red σ, nor that a stream of colors not being
always blue implies that it is eventually red, ∀σ.¬G blue σ ⇒ F red σ. The former
is equivalent to the Lesser Principle of Omniscience (LPO), saying that (∀n. P n∨
¬P n)⇒ ∀n.¬P n∨ ∃n. P n, the latter to Markov’s Principle (MP), saying that
(∀n. P n ∨ ¬P n) ⇒ ¬∀n.¬P n ⇒ ∃n. P n where P is a predicate on natural
numbers. Both LPO and MP are important principles that are neither valid
nor inconsistent constructively, but are valid classically. LPO is a special case
of the Principle of the Excluded Middle (PEM). MP, which is a special case
of the Double Negation Elimination, is even computationally meaningful, being
realizable by search that we know cannot diverge.

If a tree is eventually red, then every path of the tree is eventually red:

Proposition 2. ∀τ : tree.F red τ ⇒ ∀π : stepω.F red �τ�π.

To obtain the tree-based formulation from the path-based one, we invoke the Fan
Theorem for a decidable bar (FAND). Let P and Q be predicates on positions.
Then FAND can be expressed as

(∀p. P p ∨ ¬P p)⇒ FAN

where FAN (the general Fan Theorem) is

(∀π. ∃n. P (πn))⇒ (∀p. P p⇒ Q p)⇒ (∀p. Q (p∗〈0〉)⇒ Q (p∗〈1〉)⇒ Q p)⇒ Q 〈〉

FAND is not valid in basic constructive logic. It is the classical contrapositive of
Weak König’s Lemma2, which is valid classically. In fact, Weak König’s Lemma
implies FAND even constructively [14].

FAND is both sufficient and necessary for path-based eventual redness to
imply tree-based eventual redness.

Proposition 3. FAND ⇔ (∀τ : tree. (∀π : stepω.F red �τ�π)⇒ F red τ).

Proof. ⇒: The claim is an instance of FAND by taking P and Q as follows. For
any p : step∗, P p holds if the subtree of τ at p is red, or red (τ@p). For any
p : step∗, Q p holds if the subtree of τ at p is eventually red, or F red (τ@p).
⇐: We define a tree τP by corecursion such that red (τP @p) if and only

if P p. Then the assumption ∀π. ∃n. P (πn) is equivalent to ∀π.F red �τP �π .
The assumption ∀τ. (∀π.F red �τ�π)⇒ F red τ therefore gives us F red τP . Now
Q 〈〉 follows from ∀p.F red (τP @p) ⇒ Q p proved by induction on the proof of
F red (τP @p) using ∀p. P p⇒ Q p and ∀p. Q (p ∗ 〈0〉)⇒ Q (p ∗ 〈1〉)⇒ Q p.

2 Weak König’s Lemma states that every infinite binary tree has an infinite path.
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4 Eventually Always vs. Almost Always Blue Trees

In this section we look at path-based and tree-based concepts of eventually
always and almost always blue trees.

4.1 Eventually Always Blue Trees

A stream of colors σ is eventually always blue, if, from some position on, σ is
always blue, or F (G blue)σ. A tree τ is eventually always blue if all nodes beyond
some finite initial fragment of it are blue, or F (G blue) τ .

Again, the tree-based formulation is stronger than the path-based one:

Proposition 4. ∀τ : tree.F (G blue) τ ⇒ ∀π : stepω.F (G blue) �τ�π.

To obtain the tree-based formulation from the path-based one, we invoke Weak
Continuity for Numbers (WC-N) and the general Fan Theorem (FAN). Let P be
a predicate on pairs of a path and natural number. Then WC-N can be expressed
as

(∀π. ∃n. P (π, n))⇒ ∀π. ∃m. ∃n. ∀π′. πm = π′m⇒ P (π′, n)

While FAN is valid classically, WC-N contradicts classical logic, but is nonethe-
less consistent with basic constructive logic.

We derive the tree-based formulation from the path-based one in two steps, to
highlight the use of each of the two principles separately. We therefore introduce
an intermediate step that is half path-based, half tree-based.

For any given path π, a tree τ is eventually always blue along π if the subtree
of τ at some point along π is all blue, or ∃n.G blue (τ@πn).

If we accept WC-N, then we have that if every path of a tree is eventually
always blue, then the tree is eventually always blue along every path:

Proposition 5. Assuming WC-N, ∀τ : tree. (∀π : stepω.F (G blue) �τ�π) ⇒
∀π : stepω. ∃n.G blue (τ@πn).

Proof. For any given τ , we suppose that, ∀π.F (G blue) �τ�π . By WC-N, we have
that, ∀π. ∃m. ∃n. ∀π′. πm = π′m⇒ G blue (�τ�π′@n), by taking P (π, n) to mean
G blue (�τ�π@n). This gives us that, ∀π. ∃n. ∀π′.G blue �τ@πn�π′ . We conclude
that ∀π. ∃n.G blue (τ@πn) by Prop. 1, as required.

If we accept FAN, then we have that if a tree is eventually always blue along
every path, then the tree is eventually always blue:

Proposition 6. Assuming FAN, ∀τ : tree. (∀π : stepω . ∃n.G blue (τ@πn)) ⇒
F (G blue) τ .

Proof. The claim is an instance of FAN by taking P and Q as follows. For any p :
step∗, P p holds if G blue (τ@p). For any p : step∗, Q p holds if F (G blue) (τ@p).

With the above two propositions, we derive the tree-based formulation from the
path-based one:
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Fig. 1. The tree t1 = (t0 R t0) B t1

Corollary 1. Assuming WC-N and FAN, ∀τ : tree. (∀π : stepω.F (G blue) �τ�π)
⇒ F (G blue) τ .

The concepts introduced are well illustrated by the following example.
Let t0 be an always blue tree, defined by corecursion by

t0 = t0 B t0

(this is in fact the only always blue tree, up to bisimilarity).
Our example of interest, t1, is defined by corecursion by

t1 = (t0 R t0) B t1

so that t1 is red exactly at positions of the form 1∗0, i.e., it is red the first time
a 0-step is taken. The tree is depicted in Fig. 1.

It is clear that F (G blue) t1 is false, since it is impossible to carve out an finite
initial fragment of t1 such that the rest of the tree would be all blue. Similarly,
∀π. ∃n.G blue (t1@πn) is false: the path 1ω refutes it: there are red nodes beyond
all positions on it.

At the same time ∀π.F (G blue) �t1�π is neither true nor false in basic con-
structive logic. Its truth is equivalent to every path either containing a turn to
the left or always going to the right, which is LPO. With WC-N, however, one
can conclude that the formula is false: this follows, e.g., from Prop. 5 and falsity
of ∀π. ∃n.G blue (t1@πn).

4.2 Almost Always Blue Trees

We proceed to two concepts of almost always blue trees. We obtain them by
mixing induction and coinduction, more precisely, by nesting coinduction into
induction in the style of [18].

We start with streams of colors that are almost always blue. They are defined
as the least fixed point of a weak until operator in linear-time temporal logic.
An equivalent definition is also found in the thesis of C. Raffalli [19]. The weak
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until operator,W X , is parameterized over any predicate X on streams of colors
and is defined coinductively by

WX σ

W X (B σ)
X σ

WX (R σ)

so that W X σ holds if, whenever the first occurrence of red in σ is encountered,
X holds on the suffix after the occurrence. Classically it is equivalent to that σ
is either always blue or it is eventually red and X holds on the suffix after the
first occurrence of red (which is guaranteed to exist as σ is eventually red). Our
definition of W X avoids upfront decisions of LPO, i.e., whether the stream of
colors is always blue or eventually red.

We then take the least fixed point of W X . Define μW inductively in terms
of W X by the (Park-style) rule:

W μW σ

μW σ

As WX is monotone in X , the above definition makes sense. For the purpose of
proof, in particular to avoid explicitly invoking monotonicity of the underlying
predicate transformerW , it is however convenient to use the Mendler-style rule:

∀σ. X σ ⇒ μW σ WX σ

μW σ

The Park-style rule is derivable from the Mendler-style rule. We can also re-
cover the inversion principle for μW , thanks to the monotonicity of W X in X .
We use the Mendler-style rule in our Coq formalization, as Coq’s guardedness
condition for coinduction nested into induction (as well as induction nested into
coinduction) is often too weak to work with the Park style. The Mendler-style
rule however requires impredicativity.

The statement μW σ does not give a clue as to where to find the red positions
in σ or how many they are. Nonetheless it refutes that the stream of colors is
infinitely often red (to be formulated below). We have previously scrutinized the
definition of μW σ, placed in a hierarchy of alternative definitions of streams
of colors being finitely red, from the viewpoint of constructive mathematics [4].
In the remainder of the paper we refer to μW as mixed inductive-coinductive
almost always blueness.

If a stream of colors is eventually always blue, then it is almost always blue:

Proposition 7. ∀σ : colorω.F (G blue)σ ⇒ μW σ.

Analogously, we define trees that are almost always blue, μW τ , by taking the
least fixed point of a weak-until operator for trees. This time, we only give the
Park-style rule:

X τ0 X τ1

WX (τ0 R τ1)
W X τ0 WX τ1

W X (τ0 B τ1)
W μW τ

μW τ

If a tree is eventually all blue, then it is almost always blue:
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Fig. 2. The tree t′1 = g 0, with the subtrees f 0, f 1, f 2 fully expanded

Proposition 8. ∀τ : tree.F (G blue) τ ⇒ μW τ .

Our example tree, t1, is almost always blue.

Lemma 1. μW t1.

Proof. We have W μW t0, proved by coinduction, therefore μW t0, which yields
W μW (t0 R t0).

We then proveW μW t1 by coinduction: we already know thatW μW (t0 R t0)
and by the coinduction hypothesis W μW t1, hence μW ((t0 R t0) B t1) as re-
quired.

To show another proof of almost always blueness, let us also consider a more
reddish tree, t′1, where the number of red nodes increases in proportion to the
depth at which a 0-step is taken for the first time. The tree t′1, depicted in
figure 2, is defined as g 0, where the functions f, g : nat → tree are defined by
corecursion by

f 0 = t0 f (n + 1) = (f n) R t0 g n = (f n) B (g (n + 1))

The tree t′1 is almost always blue.

Lemma 2. μW t′1.

Proof. We prove ∀n.W μW (f n) by induction on n. We then prove
∀n.W μW (g n) by coinduction, which yields μW (g 0), namely μW t′1, as
required.

As usual, the tree-based formulation is stronger than the path-based one. We
give the proof here to demonstrate the use of the Mendler-style induction.

Proposition 9. ∀τ : tree. μW τ ⇒ ∀π : stepω. μW �τ�π .

Proof. By induction on the proof of μW τ . We are given as the induction
hypothesis that, ∀τ. X τ ⇒ ∀π. μW �τ�π for some predicate X on trees. We
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also have W X τ . We have to prove that, ∀π. μW �τ�π . We do so by proving
that, ∀τ.W X τ ⇒ ∀π.W μW �τ�π by coinduction, using the main induction
hypothesis.

In contrast to the earlier considered case of eventually always blue streams of
colours, a proof that a stream of colors is almost always blue does not give us
a position at which the suffix of the stream is all blue. Indeed, knowing it, i.e.,
∀σ. μW σ ⇒ F (G blue)σ, is equivalent to LPO [4].

Lemma 3. (∀σ.F red σ ∨ G blue σ)⇔ (∀σ. μW σ ⇒ F (G blue)σ).

Our proof to obtain the tree-based formulation from the path-based formulation
is sketched as follows. We build infinitely branching trees from binary trees
(the function t2T defined below). We then find a decidable bar condition for
these infinitely branching trees (Lemma 5). We know that, if every path of a
binary tree τ is almost always blue, then a bar exists in the infinitely branching
tree θ corresponding to τ (Cor. 2), therefore we can apply Bar Induction on θ
(Lemma 7). This in turn proves that the original tree τ is almost always blue
(Lemma 8). Below we will make this argument formal.

Our infinitely branching trees, θ : Tree, have nodes labeled by binary trees
and edges labeled by non-empty lists of steps. They are defined coinductively by

τ : tree f : step+ → Tree
(τ, f) : Tree

A path in θ : Tree is characterized by a stream of non-empty lists of steps. For
a tree θ : Tree and a position q : (step+)∗, θ@q : Tree and �θ�q : (color+)∗ are
defined naturally by

(τ, f)@〈〉 = (τ, f) (τ, f)@(p q) = (f p)@q

�(τ, f)�〈〉 = 〈〉 �(τ, f)�(p q) = (�τ�p) (�(f p)�q)

For ρ : (step+)ω, �θ�ρ : (color+)ω is defined analogously.
We define a function, t2T : tree → Tree, from binary trees to infinitely branch-

ing trees by corecursion by

t2T τ = (τ, λp : step+.t2T τ@p)

so that, for any position q : (step+)∗, the label of t2T τ at q is the subtree of τ
at flatten q (assuming flatten is extended to finite sequences of non-empty lists
in an obvious way). In particular, the streams of colors in t2T τ and τ along a
path ρ : (step+)ω agree up to flattening. This is what the next lemma proves.

Lemma 4. ∀τ : tree, ρ : (step+)ω.flatten �t2T τ�ρ ∼ �τ�(flatten ρ).

A non-empty list of colors s : color+ is good, good s, if s is of the form B∗R.
Formally,

good 〈R〉
good s

good (B s)

The predicate good is decidable:
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Lemma 5. ∀s : color+. good s ∨ ¬good s.

We will use ¬good as the bar condition.
A stream over non-empty lists of colors α : (color+)ω , is wellfounded, wf α, if

α contains a color list that is not good. Formally,

¬good s

wf (s α)
good s wf α

wf (s α)

Then we have that, for any α : (color+)ω, if flatten α is almost always blue, then
α is wellfounded:

Lemma 6. ∀α : (color+)ω . μW (flatten α)⇒ wf α.

As a corollary to Lemmata 4 and 6, we obtain that, if every path of a tree τ is
almost always blue, then every path of t2T τ is wellfounded:

Corollary 2. ∀τ : tree. (∀π : stepω. μW �τ�π)⇒ ∀ρ : (step+)ω.wf �(t2T τ)�ρ.

We lift wellfoundedness on streams of nonempty lists of colors to trees:

∀p : step+. good �τ�p ⇒ wf (f p)
wf (τ, f)

Now we are to apply Bar Induction (BI) (the generalization of FAND from
binary trees to infinitely branching trees) to obtain wellfounded trees from trees
whose paths are wellfounded. Let P and Q be predicates on lists of nonempty
lists of steps. Noticing the isomorphism between natural numbers and nonempty
lists of steps, Bar Induction can be expressed as

(∀q : (step+)∗. P q ∨ ¬P q)⇒ (∀ρ : (step+)ω . ∃n. P (ρn))⇒
(∀q : (step+)∗. P q ⇒ Q q)⇒ (∀q : (step+)∗. (∀p : step+. Q (q ∗ 〈p〉))⇒ Q q)⇒

Q 〈〉

If we accept BI, we have that, if every path of a tree θ : Tree is wellfounded,
then θ is wellfounded:

Lemma 7. Assuming BI, ∀θ : Tree. (∀ρ : (step+)ω.wf �θ�ρ)⇒ wf θ.

Proof. The claim is an instance of BI by taking P and Q as follows. For any
q : (step+)∗, P q holds if �θ�q = u ∗ 〈s〉 and ¬good s. For any q : (step+)∗, Q q
holds if P q or wf (θ@q).

The following lemma says that, for any tree τ : tree, if t2T τ is wellfounded then
τ is almost always blue:

Lemma 8. ∀τ : tree.wf (t2T τ)⇒ μW τ .

Finally, putting the above lemmata together, we have that if every path of a tree
τ : tree is almost always blue, then τ is almost always blue:

Proposition 10. Assuming BI, ∀τ : tree. (∀π : stepω. μW �τ�π)⇒ μW τ .
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Fig. 3. Relations between the different concepts of almost always blue

For our example tree, we have μWt1 but not F (G blue) t1, hence tree-based
almost always blueness does not imply tree-based eventually always blueness.

Proposition 11. ∃τ : tree. μWτ ∧ ¬F (G blue) τ .

We can now take stock. The four properties ∀π.F (G blue) �τ�π , F (G blue) τ ,
∀π. μW �τ�π , and μW τ are interrelated as depicted in the diagram in Fig. 3.
The implications that are annotated require additional assumptions as shown.
The figure also displays the status of the example t1 wrt. each property. (The
example t′1 has the same status as t1 in each case.)

5 Always Eventually Red vs. Infinitely Often Red Trees

We proceed to always eventually red and infinitely often red trees.
We define always eventually redness of a stream of colors σ as G (F red)σ (cf.

[3, Ch. 13]). This definition is (classically) dual to the definition of streams of
colors that are eventually always blue, F (G blue)σ. The modalities G and F are
flipped and so are the colors red and blue.

The definition of infinitely often redness of a stream of colors is obtained by
dualizing the definitions of W X and μW , yielding

U X σ
U X (B σ)

X σ
U X (R σ)

U νU σ

νU σ

The strong until operator U X , parameterized over any predicate X on streams
of colors, is dual to the weak until operatorWX : The statement U X σ says that
the suffix of σ after the first occurrence of red must satisfy X and the occurrence
must exist. Then νU takes the greatest fixed point of U X , whereas μW was the
least fixed point of W X .

The two properties of streams of colors are equivalent:

Proposition 12. ∀σ : colorω. νU σ ⇔ G (F red)σ.

Classically, a stream of colors is almost always blue or infinitely often red:

Lemma 9. Assuming PEM, ∀σ : colorω. μW σ ∨ νU σ.
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Analogously, we define tree-based always eventually redness of τ as
G (F blue) τ and tree-based infinitely often redness as νU τ defined by

U X τ0 U X τ1

U X (τ0 B τ1)
X τ0 X τ1

U X (τ0 R τ1)
U νU τ

νU τ

Again, the two properties are equivalent:

Proposition 13. ∀τ : tree. νU τ ⇔ G (F red) τ .

The tree-based property implies the path-based property:

Proposition 14. ∀τ : tree. νU τ ⇒ (∀π : stepω. νU �τ�π).

For the converse implication, we assume FAND:

Proposition 15. Assuming FAND, ∀τ : tree. (∀π : stepω. νU �τ�π)⇒ νU τ .

6 Existential Properties

So far, we have been looking at universal properties over all paths of a tree.
In this section, we turn them into existential properties. It turns out that the
path-based and tree-based formulations are then necessarily equivalent.

We introduce two new primitives, F∃ X and G∃ X , parameterized over tree
predicates X , into our language for trees:

X τ

F∃ X τ

F∃ X τ0

F∃ X (τ0 c τ1)
F∃ X τ1

F∃ X (τ0 c τ1)

X (τ0 c τ1) G∃ X τ0

G∃ X (τ0 c τ1)

X (τ0 c τ1) G∃ X τ1

G∃ X (τ0 c τ1)

In contrast to F X τ and GX τ , the new primitives F∃ X τ and G∃ X τ step
down through the tree, picking up one of the two subtrees at every node.

The path-based and tree-based properties that we have considered coincide,
with the exception of “always eventually red”, for which the path-based property
is stronger. That the converse implication does not hold is witnessed by our
example tree t1. The reason for the failure is that G∃ (F∃ red) τ does not require
the red nodes to be on the same path.

Proposition 16. 1. ∀τ : tree. (∃π : stepω.G blue �τ�π)⇔ G∃ blue τ .
2. ∀τ : tree. (∃π : stepω.F red �τ�π)⇔ F∃ red τ .
3. ∀τ : tree. (∃π : stepω.F (G blue) �τ�π)⇔ F∃ (G∃ blue) τ .
4. ∀τ : tree. (∃π : stepω.G (F red) �τ�π)⇒ G∃ (F∃ red) τ .
∃τ : tree.G∃ (F∃ red) τ ∧ ¬(∃π : stepω.G (F red) �τ�π).

For a tree having a path that is almost always blue or infinitely often red, we
introduce corresponding weak until and strong until operators:
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X τ0

W∃ X (τ0 R τ1)

X τ1

W∃ X (τ0 R τ1)

W∃ X τ0

W∃ X (τ0 B τ1)

W∃ X τ1

W∃ X (τ0 B τ1)
W∃ μW∃ τ

μW∃ τ

X τ0

U∃ X (τ0 R τ1)
X τ1

U∃ X (τ0 R τ1)
U∃ X τ0

U∃ X (τ0 B τ1)
U∃ X τ1

U∃ X (τ0 B τ1)
U∃ νU∃ τ

νU∃ τ

The path-based and tree-based properties are equivalent for both almost always
blueness as well as infinitely often redness.

Proposition 17. ∀τ : tree. (∃π : stepω . μW �τ�π)⇔ μW∃τ .

Proposition 18. ∀τ : tree. (∃π : stepω . νU �τ�π)⇔ νU∃ τ .

Lemma 10. Assuming PEM, ∀τ : tree. μW τ ∨ νU∃ τ and ∀τ : tree. νU τ ∨
μW∃ τ .

7 Related Work

Dam [8] gave a direct translation from CTL∗ into the modal μ-calculus in a
classical setting. Classically, the problem reduces to translation of formulae of
the form Eφ where φ is a linear-time formula, i.e., φ does not contain path
quantifiers. Then the translation is given by carefully analyzing the tableau
representing Eφ and thereby characterizing infinite paths in the tableau by least
or greatest fixpoints.

Formalizations of LTL, CTL∗ and the modal μ-calculus in Coq have been
given by several authors (cf. [17,21,20,7,3]). These works study either LTL (or
CTL∗, which subsumes LTL) or the modal μ-calculus, and focus on different
issues from ours, e.g. issues in encoding modal μ-calculus formulae in higher-
order abstract syntax [17] or machine verification of a model checker for the
modal μ-calculus [20]. Moreover, our use of mixed induction and coinduction for
formalizing almost always bluemess and infinitely often redness appears new.

It is known that the Weak König’s lemma, WKL, constructively implies
FAND [13,14]. Moreover, a weakened from of WKL, which additionally requires
that the tree under consideration has at most one infinite path, is equivalent to
FAND [1]. A recent account of the computational content of the principles we
use can be found in, e.g., [11,12] in that FAN is realized by the fan functional
and bar induction is realized (in some sense) by bar recursion.

In our recent work [4] we studied alternative definitions of streams of colors
being finitely red, including F (G blue)σ and μW σ, and characterized their dif-
ferences in strength in a precise way by weak instances of PEM. Coquand and
Spiwack [6] introduced four notions of finiteness of sets in Bishop’s set theory [5].
The two works exhibit a pleasant correspondence [4].

Mixed inductive-coinductive definitions seem to be quite fundamental in
applications (e.g., infinitely often red, subtyping [9], the stream processors of
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Hancock et al. [15], uniformly continuous functions on a compact real inter-
val [2], weak bisimilarity and delay-free operational semantics of interactive pro-
grams [18]). Mendler-style (co)recursion [16] uses that a monotone (co)inductive
definition is equivalent to a positive one, via a syntactic left (right) Kan extension
along identity (e.g., instead of μX. F X one works with μX. ∃Y. (Y → X)×F Y ).
We exploited this fact to enable Coq’s structural recursion for an inductive
definition with a nested coinductive definition and vice versa, at the price of
impredicativity.

8 Conclusion

We analyzed several temporal operators from the point of view of constructive
logic. We observed that, with operators like “eventually always” and “almost
always”, various classically equivalent definitions become inequivalent. Which
one is more adequate in any actual application depends on the purpose at hand.
It is also plausible that some of them have a smoother metatheory—more likely
the tree-based ones, especially the tree-based “almost always”.

We chose to treat streams and infinite trees as coinductive data, defined the
temporal properties of interest in terms of inductive and coinductive predicates,
and reasoned about them with induction and coinduction. We are pleased with
the concision and elegance this approach offered, compared with more “low-level”
arithmetized concepts as is more common in works on constructive mathematics.

We witnessed that the differences between the variations correspond to well-
known principles from constructive mathematics, e.g., the implication from the
path-based “eventually” operator to tree-based “eventually” is exactly the de-
cidable Fan Theorem etc.

This demonstrates, to our mind, that the studies into constructive mathemat-
ics, which were initiated by Brouwer and elaborated by Bishop and others, and
are not particularly well-known in the programming languages community, are
not without significance for modern formalized programming theory or depen-
dently typed programming.

In future work, we wish to reach a deeper understanding of the computational
aspects in our results and their implications for programming and reasoning
about interactive and concurrent systems.
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Abstract. This paper explores the semantics of the meta-notation used in the
style of operational semantics introduced by Felleisen and Hieb. Specifically, it
defines a formal system that gives precise meanings to the notions of contexts,
decomposition, and plugging (recomposition) left implicit in most expositions.
This semantics is not naturally algorithmic, so the paper also provides an algo-
rithm and proves a correspondence with the declarative definition.

The motivation for this investigation is PLT Redex, a domain-specific pro-
gramming language designed to support Felleisen-Hieb-style semantics. This
style of semantics is the de-facto standard in operational semantics and, as such,
is widely used. Accordingly, our goal is that Redex programs should, as much as
possible, look and behave like those semantics. Since Redex’s first public release
more than seven years ago, its precise interpretation of contexts has changed sev-
eral times, as we repeatedly encountered reduction systems that did not behave
according to their authors’ intent. This paper describes the culimation of that ex-
perience. To the best of our knowledge, the semantics given here accommodates
even the most complex uses of contexts available.

1 Introduction

The dominant style of operational semantics in use today has at its heart the notion of
a context that controls where evaluation occurs. These contexts allow the designer of
a reduction semantics to factor the definition of a calculus into one part that specifies
the atomic steps of computation and a second part that controls where these steps may
occur. This factoring enables concise specification, e.g., that a language is call-by-value
or call-by-name or call-by-need (Ariola and Felleisen 1997), that if expressions must
evaluate the test position before the branches, and even that exceptions, continuations,
and state (Felleisen and Hieb 1992) behave in the expected ways, all without cluttering
the rules that describe the atomic steps of computation.

Unfortunately, the precise meaning of context decomposition has not been nailed
down in a way that captures its diverse usage in the literature. Although an intuitive
definition is easy to understand from a few examples, this intuition does not cover the
full power of contexts. For example, which terms match the pattern from this
language, in which values and contexts are mutually referential?

H. Yang (Ed.): APLAS 2011, LNCS 7078, pp. 369–383, 2011.
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And which terms match this bizarre, small language?

To remedy this lack, we have developed a semantics for matching and reduction that
not only supports these exotic languages but also captures the intuitive meanings of
countless existing research papers. This semantics does not assume explicit language-
specific definitions of plugging and decomposition, since most expositions leave these
concepts implicit.

Our motivation for studying context-sensitive matching is its implementation in the
domain-specific programming language Redex (Felleisen et al. 2010; Matthews et al.
2004). Redex is designed to support the semantics engineer with a lightweight toolset
for operational semantics and related formalisms. Specifically, Redex supports rapid
prototyping of context-sensitive operational semantics, random testing, automatic type-
setting, and, via its embedding in Racket, access to a large palette of standard program-
ming tools. Redex is widely used, having supported several dozen research papers as
well as the latest Scheme standard (Sperber et al. 2007) and a number of larger models,
including one of the Racket virtual machine (Klein et al. 2010).

In keeping with the spirit of Redex, we augment a standard proof-based validation
of our work with testing. More concretely, in addition to proving a correspondence
between a specification of context-sensitive matching and an algorithm for that spec-
ification, we have conducted extensive testing of the semantics, using a Redex model
of Redex (there is little danger of meta-circularity causing problems, as the embedding
uses a modest subset of Redex’s functionality—notably, no contexts or reduction rela-
tions). This model allows us to test that our semantics gives the intended meanings to
interesting calculi from the literature, something that would be difficult to prove.

The remainder of this paper builds up an intuitive understanding of what contexts are
and how they are used via a series of examples, gives a semantics for Redex’s rewriting
system, and discusses an algorithm to implement the semantics.

2 Matching and Contexts

This section introduces the notion of contexts and explains through a series of examples
how matching works in their presence. Each example comes with a lesson that informs
the design of our context-sensitive reduction semantics semantics.

In its essence, a pattern of the form

Fig. 1. Arithmetic Expressions

matches an expression when the expression can
be split into two parts, an outer part (the context)
that matches and an inner part that matches

. The outer part marks where the inner part
appears with a hole, written . In other words,
when thinking of an expression as a tree, match-
ing against finds some subtree of the ex-
pression that matches , and then replaces that
sub-term with a hole to build a new expression in such a way that the new expression
matches .
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To get warmed up, consider figure 1. In this language matches addition expressions
and matches contexts for addition expressions. More precisely, matches an addi-
tion expression that has exactly one hole. For example, the expression matches

three ways, as shown in figure 2. Accordingly, the reduction relation given in fig-
ure 1 reduces addition expressions wherever they appear in an expression, e.g., reducing

to two different expressions, and .
This example tells us that our context matching semantics must support multiple de-
compositions for any given term.

A common use of contexts is to restrict the

= =
= =
= =

Fig. 2. Example Decomposition

places where reduction may occur in order to
model a realistic programming language’s or-
der of evaluation. Figure 3 gives a definition of

that enforces call-by-value left-to-right order
of evaluation. For example, consider this nested
set of function calls, , in which the
result of is passed to the result of . It decomposes into the context ,
allowing evaluation in the first position of the application. It does not, however, decom-
pose into the context , since the grammar for allows the hole to appear in
the argument position of an application expression only when the function position is
already a value. Accordingly, the reduction system insists that the call to happens be-
fore the call to . This example tells us that our semantics for decomposition must be
able to support multiple different ways to decompose each expression form, depending
on the subexpressions of that form (application expressions in this case).

Contexts can also be used in clever ways to

Fig. 3. λ-calculus

model the call-by-need λ-calculus. Like call-by-
name, call-by-need evaluates the argument to a
function only if the value is actually needed by
the function’s body. Unlike call-by-name, each
function argument is evaluated at most once. A
typical implementation of a language with call-
by-need uses state to track if an argument has been evaluated, but it is also possible to
give a direct explanation, exploiting contexts to control where evaluation occurs.

Figure 4 shows the contexts from Ariola and

Fig. 4. Call-by-need Contexts

Felleisen (1997)’s model of call-by-need. The
first three of ’s alternatives are standard, al-
lowing evaluation in the argument of the
primitive, as well as in the function position of
an application (regardless of what appears in the
argument position). The fourth alternative allows
evaluation in the body of a -expression that is in the function position of an applica-
tion. Intuitively, this case says that once we have determined the function to be applied,
then we can begin to evaluate its body. Of course, the function may eventually need its
argument, and at that point, the final alternative comes into play. It says that when an
applied function needs its argument, then that argument may be evaluated.
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As an example, the expression reduces by simplifying the
body of the -expression to , without reducing the argument, because it decomposes
into this context using the fourth alternative of . In contrast,

reduces to because the body of the -
expression decomposes into the context with in the hole, and thus the entire
expression decomposes into the context . This use of contexts tells
us that our semantics must be able to support a sophisticated form of nesting, namely
that sometimes a decomposition must occur in one part of a term in order for a decom-
position to occur in another.

When building a model of first-class

Fig. 5. Continuations

continuations, there is an easy connec-
tion to make, namely that an evaluation
context is itself a natural representation
for a continuation. That is, at the point
that a continuation is grabbed, the con-
text in which it is grabbed is the
continuation. Figure 5 extends the left-
to-right call-by-value model in figure 3 with support for continuations. It adds ,
the operator that grabs a continuation, and the new value form that represents
a continuation and can be applied to invoke the continuation.

For example, the expression reduces by grabbing a
continuation. In this model that continuation is represented as , which
is then applied to ’s argument in the original context, yielding the expression

. The next step is to substitute for , which yields
the expression . This expression has a continuation value in
the function position of an application, making the next step invoke the continuation. So,
we can simply replace the context of the continuation invocation with the context inside
the continuation, plugging the argument passed to the continuation in the hole, yielding

. This reduction system tells us that our context decomposition semantics must
be able to support contexts that appear in a term that play no part in any decomposition
(and yet must still match a specified pattern, such as ).

Generalizing from ordinary continuations to

Fig. 6. Delimited Continuations

delimited continuations is simply a matter of fac-
toring the contexts into two parts, one that may
contain prompts and one that may not. Figure 6
shows one way to do this, as an extension of the
call-by-value lambda calculus from figure 3.

The non-terminal matches an arbitrary
evaluation context and matches an evalua-
tion context that does not contain any prompt
expressions. Accordingly, the rule for grabbing
a continuation exploits this factoring to record
only the portion of the context between the call to and the nearest enclos-
ing prompt.
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The interesting aspect of this system is how refers to and how that makes it
difficult to support an algorithm that matches . For all of the example systems in this
section so far, a matching algorithm can match a pattern of the form by attempting
to match against the entire term and, once a match has been found, attempting to
match what appeared at the hole against . With , however, this leads to an infinite
loop because expands to a decomposition that includes in the first position.1

A simple fix that works for the delimited con-

Fig. 7. Wacky Context

tinuations example is to backtrack when encoun-
tering such cycles; that fix, however, does not
work for the first definition of given in fig-
ure 7. Specifically, would match only with
an algorithm that treats that cycle as a failure to
match, but the context should match ,
and more generally, the two definitions of in figure 7 should be equivalent.

3 A Semantics for Matching

This section formalizes the notion of matching

Fig. 8. Patterns and Terms

used in the definitions of the example reduction sys-
tems in section 2. For ease of presentation, we stick
to the core language of patterns and terms in figure 8.
Redex supports a richer language of patterns (notably
including a notion of Kleene star), but this core cap-
tures an essence suitable for explaining the semantics
of matching.

Ignoring embedded contexts, a term is simply a
binary tree where leaf nodes are atoms and inte-
rior nodes are constructed with . A context is
similarly a binary tree, but with a distinguished path
(marked with and ) from the root of the con-
text to its .

Contexts are generated by decomposition and rep-
resent single-holed contexts. Although the can
appear multiple times in a single term, such terms
represent expressions that contain multiple, indepen-
dently pluggable contexts.

Patterns take one of six forms. Atomic patterns and the pattern match only
themselves. A pattern binds the pattern variable to the term matched
by . Repeated pattern variables force the corresponding sub-terms to be identical.

1 Some find the equivalent, non-problematic grammar clearer. At least
one author of the present paper (who has spent a considerable amount of time hacking on
Redex’s implementation, no less), however, does not and was surprised when Redex failed to
terminate on a similar example. We have also received comments from Redex users who were
surprised by similar examples, suggesting that Redex should support such definitions.
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A pattern matches terms that match any of the alternatives of the non-terminal
(defined outside the pattern). We write decomposition patterns p1[p2] using a separate
keyword for clarity: . Finally, interior nodes are matched by the pattern

, where and match the corresponding sub-terms.
For example, the left-hand side of the reduction rule in figure 1 corresponds to the

following pattern, where the literal is used for the empty sequence and the
pattern matches literal numbers:

Figure 9 gives a semantics for patterns via the judgment form , which
defines when the pattern matches the term . The grammar is a finite map from
non-terminals to sets of patterns. The bindings is a finite map from pattern variables
to terms showing how the pattern variables of can be instantiated to yield . The

judgment relies on an auxiliary judgment that per-
forms decompositions. Specifically, it holds when can be decomposed into a context

that matches and contains the sub-term at its hole.
Many of the rules for these two judgment forms rely on the operator . It combines

two mappings into a single one by taking the union of their bindings, as long as the
domains do not overlap. If the domains do overlap, then the corresponding ranges must
be the same; otherwise is not defined. Accordingly, rules that use apply only when

is well-defined.
The rules are organized by the structure of . The atom and hole rules

produce an empty binding map because those pattern contain no pattern variables. The
rule matches with and produces a map extended with the binding .

The rule applies if any of the non-terminal’s alternatives match. The scope of an
alternative’s pattern variables is limited to that alternative, and consequently, the rule
produces an empty binding map. The rule matches the sub-terms and combines
the resulting sets of bindings. The rule uses the decomposition judgment form
to find a decomposition and checks that the term in the hole matches .

The rules for the form are also organized around the pattern.
The decomposition rule decomposes any term into the empty context and
itself. The first of two decomposition rules applies when a decomposition’s focus
may be placed within a pair’s left sub-term. This decomposition highlights the same
sub-term as the decomposition of does, but places it within the larger context

. The second of the decomposition rules does the same for the pair’s
right sub-term. The decomposition rule propagates decompositions but, as in the
corresponding matching rule, ignores binding maps.

The decomposition rule performs a nested decomposition. Nested decom-
position occurs, for example, when decomposing according to call-by-need evaluation
contexts (see the last production in figure 4). The rule decomposes into a
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Fig. 9. Matching and Decomposition
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composed context and a sub-term , where and match and re-
spectively. The definition of context composition (figure 9, bottom-right) follows the
path in . The decomposition rule is similar to the corresponding matching
rule, but it introduces a binding to the context that is matched, not the entire term.

4 An Algorithm for Matching

The rules in figure 9 provide a declarative definition of context-sensitive matching, but
they do not lead directly to a tractable matching algorithm. There are two problems.
First, as reflected in the two decomposition rules, an algorithm cannot know a
priori whether to match on the left and decompose on the right or to decompose on the
left and match on the right. An implementation that tries both possibilities scales ex-
ponentially in the number of nested patterns matched (counting indirect nesting
through non-terminals). Second, the rules provide no answer to the question of whether
to proceed in expanding a non-terminal if none of the input term has been consumed
since last encountering that non-terminal. This question arises, for example, when de-
composing by the non-terminal from the grammar in figure 6, since ’s second
alternative causes the rule to decompose the same term by . This second
problem is the manifestation of left recursion in the form of grammars we consider.

The first problem can be solved by matching and decomposing simultaneously. Since
these tasks differ only in their treatment of patterns, much work can be saved by
sharing intermediate results between the tasks. Figure 10 demonstrates this approach
with a function that returns a set of pairs representing possible ways to match
or decompose the input term. In a pair representing a match, is the marker ; in a
pair representing a decomposition, is a pair such that the input term can be
decomposed into a context and a sub-term occurring in ’s hole.

The first two cases handle the pattern . If the term in question is also ,
then it may be considered either to match or to decompose into in the empty
context. If the term is not , then only decomposition is possible. The third case
handles atomic patterns by producing a match result only if the given term is identical
to the atom.

The (meta) context in which a call to appears may eventually discard some or
all of the results it receives. For example, consider the fourth clause, which handles

patterns. If the term is also a pair (constructed with any of , , or ),
then this case makes two recursive calls and examines the cross product of the results
using the helper function. For each result pair, the case merges their bindings
and checks that the results are not both decompositions. If neither is a decomposition,

combines the pair into a match result; if exactly one is a decomposition, it
extends the decomposition with the term matched by the non-decomposition. If both
are decompositions, then the match fails.

The next case, for patterns , recurs with and the input term, ex-
pecting to receive decompositions. For each one, it makes another recursive call, this
time with and the sub-term in the decomposition’s focus. Each of the latter call’s
results is combined with the decomposition’s context, yielding a match result if is
a match and a larger context if is a decomposition.
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Fig. 10. Core matching algorithm (cases apply in order)
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The remaining three cases are straightforward. The case recurs on the sub-
pattern and extends the bindings of each of the results with either the matched term
or the context carved out by the decomposition. The case tries each alternative,
discarding the binding component of each result. The final case, a catch-all, applies
when the pattern does not match or decompose the input term.

Putting aside the problem of left recursion, the call computes the set
of such that or for some and , and the top-
level wrapper function restricts this set to the bindings associated with match
derivations.

To make this precise, we first give a definition of left-recursion. Intuitively, a gram-
mar is left-recursive if there is a way, in a straight-forward recursive parser, to get from
some non-terminal back to that same non-terminal without consuming any input. So,
our definition of left-recursion builds a graph from the grammar by connecting each
pattern to the other patterns that might reached without consuming any input, and then
checks for a cycle in the graph. The most interesting case is the last one, where an

pattern is connected to its second argument when the first argument can gen-
erate .

Definition. A grammar G is left recursive if p →∗
G p for some p, where →∗

G is the
transitive (but not reflexive) closure of →G ⊆ p × p, the least relation satisfying the
following conditions:

1. (nt n)→G p if p ∈ G(n),
2. (name n p)→G p.
3. (in-hole p p′)→G p,
4. (in-hole p p′)→G p′ if G � hole : p | b, and

Theorem. For all G, p, and t, if G is not left recursive, then b ∈ matches�G, p, t� ⇔
G � t : p | b.

The complete proof is available at eecs.northwestern.edu/~robby/plug/.
Parsing algorithms that support left recursive context-free grammars go back nearly

fifty years (Kuno 1965). We refer the reader to Frost et al. (2007, section 3) for a sum-
mary. We have implemented an extension of the packrat parsing algorithm (Warth et
al. 2008) that dynamically detects left recursion and treats the choice leading to it as
a failure. If the other choices for the same portion of the input make any progress at
all, the algorithm repeats the parse attempt, in hopes that the entries added to the memo
table during the failed attempt will cause a second attempt to succeed. This process con-
tinues as long as repeated attempts make additional progress. Extending the algorithm
in figure 10 with a similar iterative phase allows matching of terms from left recursive
grammars, such the ones in figure 6 and figure 7.

5 A Semantics for Reduction

We now put the notion of matching from section 3 to work in a formalization of the
standard notation for context-sensitive reduction rules. As with patterns, we consider
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Fig. 11. A semantics for reduction (function cases apply in order)



380 C. Klein et al.

a core specification language that lacks many of the conveniences of a language like
Redex but nevertheless highlights the principal ideas.

Figure 11 shows our definition. A user of Redex specifies a grammar and rules of
the shape , each consisting of a pattern and a term template . Redex uses the
judgment form in the upper-left corner of the figure to determine if a particular term
reduces to by the given rule. The grammar in the figure’s top-right gives the syntax for
term templates, which include atoms, the context , references to variables bound by
the left-hand side, applications of meta-level functions (e.g., substitution), hole-filling
operations, and pairing operations.

The rest of the figure defines template instantiation. Atoms and instantiate to
themselves, variables instantiate to their values, and meta-applications instantiate to the
result of applying the meta-function to the instantiated argument template.

The instantiation of templates makes use of a generic function that ac-
cepts a context and a term and returns the result of plugging the context with the term.
When ’s second argument is a context, it constructs a larger context by concatenat-
ing the two contexts, preserving the path to the hole. The path extension is necessary,
for example, to support the following rule for an unusual control operator:

When ’s second argument is some non-context term, it replaces the or
constructor with , producing a non-context term.

Insistence that ’s first argument be a context creates a potential problem for
rules which extend contexts, like this one for another unusual control operator:

Although the rule does not explicitly define a path for the extended context ,
one can be safely inferred, since the term paired with has no pluggable sub-terms.

The case of the function for templates performs this inference via the
function . When given a context and a term containing no contexts, extends
the context’s path through the extra layer. When both arguments contain contexts,
combines the terms with , preventing possible ambiguity in a subsequent plugging
operation.

Note, however, that the embedded contexts themselves remain pluggable by reduc-
tion rules and meta-functions that later pick apart the result term. For example, consider
the rule for yet another unusual control operator:

This rule calls with a pair of continuation values. The term denoting this pair is not
itself pluggable, but the embedded contexts can be plugged by subsequent reduction
steps, after they are extracted by the reduction rules for projecting components.

In addition to these contrived reduction rules, the semantics in figure 11 supports all
of the systems in section 2, as well as the most sophisticated uses of contexts we have
encountered in the literature, specifically:
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– Ariola and Felleisen (1997)’s core call-by-need calculus. Their extension of this
calculus to letrec uses decomposition in fundamentally the same way, but the
particular formulation they choose makes use of pattern-matching constructs or-
thogonal to the ones we describe here, namely associative-commutative matching
and a Kleene star-like construct that enforces dependencies between adjacent terms.
The examples directory distributed with Redex shows one way to define their le-
trec evaluation contexts without these constructs, which Redex does not currently
support.

– Flatt et al. (2007)’s semantics for delimited control in the presence of dynamic
binding, exception handling, and Scheme’s dynamic-wind form.

– Chang and Felleisen (2011)’s call-by-need calculus, which defines evaluation con-
texts using a heavily left-recursive grammar.

6 Related Work

Barendregt (1984) makes frequent use of a notion of contexts specialized to λ-terms.
Like ours, these contexts may contain multiple holes, but plug’s behavior differs in that
it fills all of the context’s holes. Felleisen and Hieb (1992) exploit the power of a selec-
tive notion of context to give equational semantics for many aspects of programming
languages, notably continuations and state. The meaning of multi-holed grammars does
not arise in their work, since the grammar for contexts restricts them to exactly one hole.

Lucas (1995) later explored an alternative formulation of selective contexts. This for-
mulation defines contexts not by grammars but by specifying, for each function symbol,
which sub-term positions may be reduced. Because the specification depends only on
the function symbol’s identity (i.e., and not on its sub-terms), this formulation cannot
express common evaluation strategies, such as left-to-right, call-by-value evaluation.
Follow-up work on this form of context-sensitive rewriting focuses on tools for prov-
ing termination, generally a topic of limited interest when studying reduction systems
designed to model a programming language since these systems are not expected to
terminate.

As part of their work on SL, a meta-language similar to Redex, Xiao et al. (2001)
define a semantics for Felleisen-Hieb contexts by translating grammars into their own
formalism, an extension of finite tree automata. This indirect approach allows SL to
prove decomposition lemmas automatically using existing automata algorithms, but it
is considerably more complicated than our approach and does not allow for multi-holed
grammars like the ones in figure 5 and figure 6.

Dubois (2000) develops the first formulation of a Felleisen-Hieb reduction seman-
tics in a proof assistant, as part of a mechanized proof of the soundness of ML’s type
system. Her formulation encodes single-hole contexts as meta-level term-to-term func-
tions (restricted to coincide with the usual grammar defining call-by-value evaluation)
and therefore models plug as meta-application. The formulation does not use an explicit
notion of decomposition; instead, the contextual closure reduction rule applies to terms
that may be formed using the plug operation.

Berghofer’s, Leroy’s, and Xi’s solutions to the POPLmark Challenge (Aydemir et al.
2005) use Dubois’s encoding for the challenge’s reduction semantics. Vouillon’s solu-
tion uses a first-order encoding of contexts and therefore provides an explicit definition
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of plugging. The other submitted solutions use structural operational semantics, do not
address dynamic semantics at all, or are no longer available online.

Danvy and Nielsen (2004) and Sieczkowski et al. (2010) provide an axiomatization
of the various components of a Felleisen-Hieb reduction semantics, such as a decom-
position relation, that together define the semantics. This axiomatization is not an ap-
propriate basis for Redex for two reasons. First, it requires users to specify plugging
and decomposition explicitly. Common practice leaves these definitions implicit, and
one of our design goals for Redex is to support conventional definitions. Second, the
axiomatization requires decomposition to be a (single-valued) function, ruling out the
semantics in figure 1 and, more problematically, reduction semantics for multi-threaded
programs and programs in languages like C and Scheme, which do not specify an order
of evaluation for application expressions.

More broadly speaking, there are hundreds2 of papers that use evaluation context
semantics to model programming languages for just as many different purposes. Al-
though we have not implemented anywhere near all of them in Redex, we have sought
out interesting and non-standard ones over the years to try them out and to build our
intuition about how a semantics should behave.

Acknowledgments. Thanks to Stephen Chang for his many interesting examples of
contexts that challenged our understanding of context-sensitive matching. Thanks also
to Matthias Felleisen and Matthew Flatt for helpful discussions of the work.

A version of this paper can be found online at:

http://www.eecs.northwestern.edu/~robby/plug/

That web page contains the final version of the paper as it appears in the proceedings
and the Redex models for all of the figures in this paper.
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Findler, Robert Bruce 369
Fronc, Lukasz 322

Gadducci, Fabio 289
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