
Chapter 9
Viscoelastic Finite Element Formulation

The finite element method is the most popular numerical procedure for the analysis
of solids and structures, including those with time dependent properties. In this
chapter, we present an incremental viscoelastic finite element formulation for
problems with geometrical nonlinearity characterized by large displacements and
rotations with small strains. The formulation is based on a total Lagrangian
kinematic description. We begin with a brief presentation on the principle of
virtual displacements for geometrically nonlinear problems. Procedures used for
the computational implementation of the nonlinear viscoelastic model are also
presented. We assume that the reader has a basic knowledge of the finite element
method and of nonlinear continuum mechanics.

9.1 Principle of Virtual Displacements

Let us consider the motion of a body with arbitrary large displacements and
rotations. Figure 9.1 shows the body configurations C 0, Ct and Ct+Dt at instants s0,
t and t ? Dt, respectively, and the fixed coordinate system used as reference for
the static and kinematic variable. We are interested in evaluating the body equi-
librium in a finite sequence of configurations corresponding to times t1, t2,…,tn
within the analysis time range. As strategy used in this evaluation, we assume that
the variable fields in the configuration Ct+Dt can be completely determined if the
solutions at times s B t are already known.

The equilibrium condition of the body at time t ? Dt can be established by the
principle of virtual displacements, as follows
Z

X
tþDt

r
tþDt

: dedX
tþDt ¼

Z
XtþDt

btþDt
� �T

dudXtþDt þ
Z

CtþDt
ttþDt
� �T

dudC
tþDt ð9:1Þ

S. P. C. Marques and G. J. Creus, Computational Viscoelasticity,
SpringerBriefs in Computational Mechanics, DOI: 10.1007/978-3-642-25311-9_9,
� The Author(s) 2012

77



where the first member is the virtual work of the internal forces, whereas the
second member represents the virtual work of the external forces, i.e., body forces
b and surface forces t. In (9.1), de represents a variation in the infinitesimal strains
associated to the virtual increment du in the displacement ut+Dt. The superscripts
stand for the instant of time at which the quantities are determined. The integrals
appearing in (9.1) are evaluated over the domain Xt+Dt and its boundary CtþDt

corresponding to configuration Ct+Dt.
For geometrically nonlinear analyses different definitions of stress and strain

tensors are used depending on the characteristics of the problem. In the present
development we use the second Piola–Kirchhoff stress tensor S and the
Green–Lagrange strain tensor E (see Appendix B) that are energetically conju-
gated (1), i. e.,
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where the index 0 is used to indicate that the quantities are referred to the initial
configuration C0. Substituting (9.2) into (9.1), we have
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As the Second Piola–Kirchhoff stress tensor and the Green–Lagrange strain
tensor are independent from the rigid body rotations, we may write

StþDt
0 ¼ St

0 þ DS0 ð9:4Þ

EtþDt
0 ¼ Et

0 þ DE0 ¼ Et
0 þ De0 þ Dg0

where DS0 and DE0 are the increments of the stress and strain measures between
t and t ? Dt, respectively. In (9.4), DE0 is decomposed in a linear part De0 and
nonlinear part Dg0, which in index notation are defined by
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1
2
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where Du = ut+Dt-ut is the displacement increment vector and X = (X1,X2,X3) is
the particle position in the initial configuration.

Substituting (9.4) into (9.3) and considering that the external loading is inde-
pendent of the deformation, we obtain the total Lagrangian formulation of the
incremental principle of virtual displacements as
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being btþDt
0 and ttþDt

0 the body and surface forces at time t ? Dt, respectively,
measured with respect to the initial configuration.

9.2 Linearization of the Principle of Virtual Displacements

We consider a viscoelastic body subjected to both mechanical and hygrothermal
loads. For this case the total increment of the Green–Lagrange strain tensor at time
interval [t,t ? Dt] is given by

DE0 ¼ DEe
0 þ DEV

0 þ DEHT
0 ð9:7Þ

where the superscripts e, V and HT are used to indicate the elastic, viscoelastic and
hygrothermal contributions, respectively. Neglecting the effect of the nonlinear
part Dg0 as an approximation to obtain the increment of the second Piola–Kir-
chhoff stress tensor, we may write

DS0 ffi CeðDe0 � DeV
0 � DeHT

0 Þ ð9:8Þ

where Ce is the 4th order elastic stiffness tensor of the material. Thus, using (9.8),
the incremental principle of virtual displacements (9.6) can be rewritten in the
form
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Equation (9.9) is the linearized form of the incremental principle of virtual
displacements which will be used to derive the nonlinear finite element
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formulation in Sect. 9.3. It is worth noticing that to obtain (9.9) the approximation
d DE0ð Þ ffi d De0ð Þwas used.

From relations (9.5), we may show that
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9.3 Nonlinear Viscoelastic Finite Element Formulation

In an incremental geometrically nonlinear analysis, the total displacements in the
current configuration ut+Dt are obtained by adding the displacement increments
Du to the point coordinates xt corresponding to the last configuration

utþDt ¼ xt þ Du ð9:11Þ

This is why it is convenient to use the same interpolation functions for dis-
placement and coordinates (or geometry). The same interpolation functions used in
the linear isoparametric finite element formulation can be employed for the non-
linear approach. Thus, for the three-dimensional case, the coordinate vector

X ¼ ½X1 X2 X3 �T of a finite element, with N nodal points, are in general defined
in the initial configuration as

XðeÞ ¼ HðnÞ~XðeÞ ð9:12Þ
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k
the coordinate vector of the element k-node. In

(9.12), HðnÞ represents the interpolation function matrix which has the general
form

HðnÞ ¼ ½H1ðnÞ H2ðnÞ . . . HNðnÞ � ð9:13Þ

with the diagonal submatrices

HkðnÞ ¼ NkðnÞ
1 0 0
0 1 0
0 0 1

2
4

3
5 ð9:14Þ

where Nk(n), (k = 1,2,…,N), indicate the element interpolation functions whose
argument is the natural coordinates n.
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Similarly, the element displacement vector uðeÞ ¼ uðeÞ1 uðeÞ2 uðeÞ3

h iT
is given

by the approximation

uðeÞ ¼ HðnÞ~uðeÞ ð9:15Þ
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placement vector and its components ~u
ðeÞ
k ¼ ~uðeÞ1 ~uðeÞ2 ~uðeÞ3

h iT

k
are the nodal

displacement of the element k-node.
To simplify the finite element equations we use in this section Voigt notation.

Then, for the three-dimensional case, the second Piola–Kirchhoff stress vector is
given by

Ŝ ¼ S11 S22 S33 S23 S13 S12½ �T ð9:16Þ

and the Green–Lagrange strain vector by

Ê ¼ E11 E22 E33 2E23 2E13 2E12½ �T ð9:17Þ

In Voigt notation, the shear components in (9.17) are doubled to allow writing

the internal virtual work per volume unit as ŜTdÊ. Then, the equilibrium equation
(9.9) is expressed as
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where Ĉ is the elastic constitutive matrix and the strain increment vectors are
defined by

Dê0 ¼ De011 De022 De033 2De023 2De013 2De012½ �T ð9:19Þ

Dĝ0 ¼ Dg011 Dg022 Dg033 2Dg023 2Dg013 2Dg012½ �T

with DÊ0 ¼ Dê0 þ Dĝ0. Similar definitions are employed for the viscoelastic and
hygrothermal strain increment vectors Dêv

0 and DêHT
0 . Using the interpolation

functions to express the displacements and increment displacements in (9.10), we
obtain the variations

dðDê0Þ ¼ BLd D~uðeÞ
� 	

dðDĝ0Þ ¼ BNLd D~uðeÞ
� 	

ð9:20Þ

where BL and BNL are the linear and nonlinear strain–displacement matrices [1, 7].
d D~uðeÞ
� �

is the variation in the nodal displacement increment vector of the element.
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Introducing the strain–displacement relations into (9.18) and using the inter-
polation functions to express the displacements appearing in this equation, we
obtain the following incremental equilibrium relationship for an element (3)

kt
L þ kt

NL

� �
D~uðeÞ ¼ rtþDt � f t

0 þ DfV þ DfHT ð9:21Þ

being D~uðeÞand rt+Dt the vector of nodal displacement increments and the vector of
external nodal loading at time t ? Dt respectively, and
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Z

XoðeÞ
Bt

L

� �T
ĈDêV dXoðeÞ ðviscoelastic load increment vectorÞ ð9:25Þ

DfHT ¼
Z

XoðeÞ
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� �T
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In these last equations, the integrals are determined on the element domain in
the initial configuration X0(e). The matrices Bt

L and Bt
NL are the linear and nonlinear

strain displacement matrices at time t, respectively. The present approach, for
which the kinematic and static variables and integration domains are referred to
the initial configuration, is known as total Lagrangian formulation. An alternative
and equivalent approach consists of the updated Lagrangian formulation that, for
each incremental step t ? Dt, adopts Ct as reference configuration [1].

For the case of small displacements, the incremental equilibrium equation
(9.21) becomes

kt
LD~uðeÞ ¼ rtþDt�rt þ DfV þ DfHT ð9:27Þ

9.4 Numerical Solution of the Equilibrium Equation

The numerical solution of the geometrically nonlinear problem (9.21) can be
obtained using an iterative procedure in which the element equilibrium equation at
time t ? Dt is given by
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k
tþDtði�1Þ
L þ k

tþDtði�1Þ
NL
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D~uðeÞðiÞ ¼ rtþDtðiÞ � f

tþDtði�1Þ
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where the superscripts i and i-1 indicate iterative steps. In this iterative approach,
the element viscoelastic and hygrothermal load increment vectors, DfV(i) and
DfHT(i), are taken as null for i C 2. For the first iteration i = 1, this last vector is
computed by using (9.26), with

DêHTð1Þ ¼ aDHð1Þ þ bDHð1Þ ð9:29Þ

being a and b the vectors of the temperature expansion and hygroscopic expansion
coefficients, respectively. DH(1) and DH(1) are the temperature and moisture
changes, respectively, for the first iterative step at time t ? Dt. The element vis-
coelastic load increment vector DfV(1) is obtained for the first iteration at time
t ? Dt using the viscoelastic strains computed by the equilibrated stresses corre-
sponding to time t (see Chap. 3).

For an assemblage of finite elements, the global equilibrium equation can be
written as

K
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NL

� 	
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tþDtði�1Þ
0 þ DFVðiÞ þ DFHTðiÞ ð9:30Þ

where the variables have analogous meanings to those appearing in element
equilibrium equation (9.28), but referred to the global coordinates. An alternative
form of writing this global equilibrium equation is

K
tþDtði�1Þ
L þK

tþDtði�1Þ
NL

� 	
D~UðiÞ ¼ DkðiÞ�Pþ F
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d þ DFVðiÞ þ DFHTðiÞ ð9:31Þ

where Dk(i) is the loading factor corresponding to the iteration i at time t ? Dt, �P is

the reference load vector and F
tþDtði�1Þ
d is the unbalanced force vector at the

iteration (i-1) of the step t ? Dt. Using (9.30), the vector DFHT(i), for each time

step, must be computed for the temperature and moisture increments Dkð1Þ �H and

Dkð1Þ �H, being �Hand �H reference temperature and moisture values, respectively.
As solution algorithm to solve (9.31) we may use, for instance, the well-known

Newton–Raphson method [2]. In this method, the loading factor value Dk(i) is
adopted in the beginning of the first iteration (i = 1) of each incremental step and
is null for i C 2. One limitation of the Newton–Raphson method is the numerical
instability that occurs near the limit points. To overcome this problem, we may use
a displacement control algorithm, such as the Generalized Displacement Control
Method [6]. The application of this method to viscoelastic problems can be found
in Pavan et al. [5] and Oliveira and Creus [4].
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9.5 Procedures of the Viscoelastic Finite Element Analysis

The implementation of the above geometrically nonlinear finite element formu-
lation for the analysis of viscoelastic problems consists of the following main
steps:

(1) Input the data for geometry, control parameters, mesh discretization,
boundary conditions;

(2) Input the mechanical loads, temperature and moisture changes in each
loading stage;

(3) Input the material properties corresponding to the temperature and moisture
values;

(4) Assemble the strain–displacement matrices (BtðiÞ
L ,BtðiÞ

NL ) in the integration
points of the elements;

(5) Assemble the element stiffness matrices (ktðiÞ
L ,ktðiÞ

NL ) and global stiffness

matrices (KtðiÞ
L ,KtðiÞ

NL );
(6) If there are temperature and moisture changes in the current loading stage

and i = 1, assemble the element and global hygrothermal load increment
vectors (DfHT(1),DFHT(1)). For i C 2, DfHT(i) = 0 and DFHT(i) = 0;

(7) If the external loading was already applied at the current loading stage,
assemble the element and global viscoelastic load increment vectors corre-
sponding to the time interval of the incremental step (DfV(1),DFV(1)). The
viscoelastic strains can be computed by the state variables approach, as seen
in Chaps. 3 and 4. For i C 2, DfV(i) = 0 and DFV(i) = 0;

(8) Compute the nodal displacement increments D~Uðiþ1Þ;
(9) Update the nodal displacement ~Utðiþ1Þ ¼ ~UtðiÞ þ D~Uðiþ1Þand nodal

coordinates;

(10) Assemble the strain–displacement matrices (Btðiþ1Þ
L ,Btðiþ1Þ

NL ) for the integra-
tion points of the elements in the updated configuration;

(11) Compute the stresses in the element integration points and vectors of nodal

forces equivalent to these stresses (9.24), F
tðiþ1Þ
0 , for the updated

configuration;

(12) Determine the unbalanced force vector F
tðiþ1Þ
d ;

(13) If the convergence criterion is not satisfied, then, do i = i+1 and return to
step 4;

(14) If the convergence criterion is satisfied, two additional conditions must be
checked: (a) if the time interval corresponding to the current loading stage is
not complete, do t ? Dt, i = 1 and go to step 4; (b) if the time interval is
complete, then return to the new loading stage (step 2), if it exists,
continuing the analysis.
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Applications of these procedures to the analysis of viscoelastic laminated plates
and shells may be found in Marques and Creus [3] and applications to viscoelastic
thin-walled composite beams in Oliveira and Creus [4].
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