
Chapter 3
State Variables Approach

The State Variables approach is an alternative to the history dependent integral
representation given in Chap. 2. It has a physical basis because of its origin in
thermodynamic formulations and shows computational advantages. The creep and
relaxation functions are approximated by exponential series. The introduction of
state variables leads to n differential equations of first order in place of the
differential equation of order n linked to a generalized model. This formulation
leads to exponential expressions that make incremental integration easier, allowing
the determination of the viscoelastic strains at time t ? Dt as a function of the
viscoelastic strains and stresses at time t. Then, there is no need to store the whole
history of stress or strain. In this chapter, we introduce the basic formulation that is
later extended to 3D, aging and nonlinear situations.

3.1 Basic Formulation

We have already seen (Chap. 2) that for each rheological model, we may have an
integral as well as a differential relation. We shall see now how to obtain, through
the State Variables approach, a new general form convenient for computational
applications.

In some important commercial computer codes (i.e. Abaqus, Ansys) the theo-
retical formulation is introduced in the integral form. Then, reference is made to a
rheological model (generalized Maxwell) and Prony series are introduced as its
representation. The State Variables approach [1, 3] presented here helps us to
understand better the relation among these formulations.
Let us begin with the general form of the integral representation (see (2.6))
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eðtÞ ¼ rðtÞ
E0
þ
Z t

s0

dðt � sÞrðsÞds ð3:1Þ

where E0 = E(s0).
We may approximate the function d(t - s) by means of an exponential series

(called Dirichlet-Prony series by mathematicians)

dðt � sÞ ¼
Xn

i¼1

die
�ðt�sÞ

hi ð3:2Þ

Such an approximation is complete (i.e. can be as good as we like, depending
on the number of terms included). We introduce then the n values

qiðtÞ ¼
Z t

s0

die
�ðt�sÞ

hi rðsÞds i ¼ 1; . . .; n ð3:3Þ

and notice that, by taking the differential of (3.3) with relation to t (using Leibnitz
rule, Appendix A) we obtain

_qiðtÞ þ
qiðtÞ
hi
¼ dirðtÞ i ¼ 1; . . .; n ð3:4Þ

which is a system of n uncoupled linear differential equations of the first degree
that, with the adequate initial conditions (e.g. qi = 0 for t = s0) allows us to
determine the state variables. Then, with

eðtÞ ¼ rðtÞ
E0
þ
Xn

i¼1

qiðtÞ ð3:5Þ

that results from (3.1), (3.2) and (3.3) the strain can be determined.
Moreover, we notice that:

(i) Equations (3.4) and (3.5) correspond in this case to a generalized Kelvin Model
with springs of constants 1/dihi and dashpots with constants 1/di and an isolated
spring of constant E0.

(ii) From (3.4) and (3.5) we see also that, when the values qi are known at a given
instant tr, then e(t) may be determined for t C tr if r(t) is known for t C tr.
Thus, if the strains are measured for t C tr with respect to the configuration at tr,
the material behavior in the interval (tr, tf) with tf [ tr will depend only on the
value of the stresses in (tr, tf) and the value of qi at time tr. The observations
above justify the name state variables representation.

(iii) This representation is very general and can be extended to aging and non-
linear problems as well (see Chaps. 7 and 8).

(iv) State variables may also be related to the material microstructure [5].
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(v) Finally, this formulation is convenient for the numerical solution of visco-
elastic problems (using for example the Finite Element Method).

Alternatively, we may begin with the relation

rðtÞ ¼
Z t

s0

Eðt � sÞ_eðsÞds ð3:6Þ

and expand

EðtÞ ¼ E1 þ
Xn

i¼1

Eie
�t=Ti ð3:7Þ

Introducing the n quantities

qiðtÞ ¼
Z t

s0

e�
ðt�sÞ

Ti _eðsÞds i ¼ 1; . . .; n ð3:8Þ

and taking the derivative of (3.8) with respect to t we obtain

_qiðtÞ þ
qiðtÞ

Ti
¼ _eðtÞ i ¼ 1; . . .; n ð3:9Þ

A combination of (3.6), (3.7) and (3.8) provides the equation

rðtÞ ¼ E1eðtÞ þ
Xn

i¼1

EiqiðtÞ ð3:10Þ

Equations (3.9) and (3.10) together with the initial conditions qi = 0 when
t = s0 correspond to a Maxwell generalized model with springs Ei, dashpots TiEi

and an isolated spring E?. Here qi represents the strains in the springs of the
Maxwell elements.

3.2 Incremental Determination of State Variables

We may integrate system (3.4) in a variety of ways.

1. The use of the simple Euler process gives us, for a step increment Dt, the
algorithm

DqiðtÞ ¼ �
qiðtÞ
hi
� dirðtÞ

� �
Dt

qiðt þ DtÞ ¼ qiðtÞ þ DqiðtÞ
ð3:11Þ
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2. Better results are obtained writing

qiðt þ DtÞ ¼
Z t

s0

die
�ðtþDt�sÞ=hirðsÞdsþ

ZtþDt

t

die
�ðtþDt�sÞ=hirðsÞds ð3:12Þ

The first integral is equal to qi exp ( - Dt/hi); the second one may be written,
assuming r(t) constant over the interval[t, t ? Dt], as

dirðtÞe�ðtþDtÞ=hi

ZtþDt

t

es=hi ds ¼ dihirðtÞð1� e�Dt=hiÞ ð3:13Þ

so that

qiðt þ DtÞ ¼ e�Dt=hi qiðtÞ þ dihirðtÞð1� e�Dt=hiÞ ð3:14Þ

Expressions of this type are used in some viscoelastic computer codes (e.g.
Ansys). Simo and Hughes [6] propose an alternative of the same accuracy. The
value of a state variable at a given time may be determined directly from its
value at the previous time step and the history of stress or strain; this incre-
mental procedure is more accurate than the Euler integration procedure and is
more efficient than the direct numerical calculation of the integral in (3.3).

3. A more efficient algorithm may be obtained considering the relation r(s) to
vary linearly in the interval [t, t ? Dt]

rðsÞ ¼ rðtÞ þ DrðtÞðs� tÞ; t� s� t þ Dt ð3:15Þ

where

DrðtÞ ¼ rðtÞ � rðt � DtÞ
� �

=Dt ð3:16Þ

and Dt is the time interval in the preceding step. Then, (3.16) takes the form

qiðt þ DtÞ ¼ e�Dt=hi qiðtÞ þ rðtÞdihi 1� e�Dt=hi
� �

þ
rðtÞ � rðt � DtÞ
� �

dihi

Dt
Dt � hi 1� e�Dt=hi

� �� � ð3:17Þ

The determination of the value of the state variable q(t ? Dt) in an incremental
process requires the knowledge of qðtÞ;Dt; rðtÞ and rðt � DtÞ: A similar
algorithm is used in Abaqus. Other algorithms may be found in [7].
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3.3 Physical Grounds and Extensions

Many inelastic properties of solids can be explained qualitatively in terms of
various micro-structural rearrangements. In polymers, for example, the existence
of long-chain molecules, which may straighten or crumple, in addition to sliding
relatively to each other in response to sustained loads, provides the material with
instantaneous elasticity as well as with nonlinear viscosity. During these processes,
a certain amount of mechanical energy is lost into thermal energy. Additionally,
the micro-structural changes give rise to macroscopic history-dependent material
properties [2].

Explicit representations of history dependence may be formulated on purely
mathematical assumptions and expressed as integrals of stress or strain history, as
shown in Chap. 2, 7 and 8. Alternatively, a state variables representation may be
used with some advantages in viscoelasticity as well as in plasticity and damage
mechanics.

Then, the effect of the microscopic structural rearrangements is accounted for
by the introduction of additional n state variables called internal variables or
hidden coordinates, denoted collectively by qiði ¼ 1; . . .; nÞ which, in a certain
average global sense, represent the internal changes. The optimal selection of
suitable internal variables, minimum in number, which provide maximum infor-
mation, is an important problem [4].

Once the internal variables are chosen, we may define stress and internal energy
as

r ¼ rðe;H; qiÞ
W ¼ Wðe;H; qiÞ

ð3:18Þ

where stress and free energy are expressed as functions of current values of strain
(stress), temperature and other variables, including the internal state variables.

Rate effects are introduced through evolution or growth laws, in terms of the
history of external quantities like the stress or strain tensors and temperature, as
follows:

_qiðtÞ ¼ f ðqi;H; eÞ ð3:19Þ

From this set of equations one may explicitly eliminate the internal variables
from the constitutive equations, thus obtaining a result similar to that from the
functional theory in which stress (strain) is expressed as a functional of strain
(stress).

An advantage of the state variable approach is that physical theories, and micro-
structural information, may be introduced directly in the formulation of the evolution
equations. Another one is that it leads to more efficient numerical procedures. This
formulation will be extended to nonlinear viscoelasticity in Chap. 8. In the finite
strain situations it is important to take account of rigid rotations and the related
concepts of State and Orientation [5].
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