
Chapter 10
The Boundary Element Method
for Viscoelasticity Problems

The Boundary Element Method (BEM) is derived through the discretization of an
integral equation (the classical Somigliana identity, first published in 1886).
An interesting account of BEM early development may be found in [2]. This
formulation can only be derived for certain classes of problems and hence, is not as
widely applicable as the finite element method. However, when applicable, it often
results in numerical methods that are easier to use and computationally more
efficient. The advantages of the BEM arise from the fact that only the boundary of
the domain requires sub-division. In cases where the domain is exterior to the
boundary (e.g. the atmosphere surrounding an airplane, the soil surrounding a
tunnel, the material surrounding a crack tip) the advantages of the BEM are even
greater as the equation governing the infinite domain is reduced to an equation
over the (finite) boundary. In this chapter we shortly review two alternative
procedures for the solution of problems in linear viscoelasticity: the solution in the
Laplace transformed domain and the use of a general inelastic formulation. For the
latter, we make reference to the use of the Dual Reciprocity Method (DRM) that
allows a pure boundary formulation.

10.1 Linear Elastic Problems and Somigliana Identity

We begin with a short summary of the classical boundary element formulation [1].
The boundary element method for linear elasticity may be established beginning
with the Somigliana identity. Let us consider a body of volume X and surface C
subjected to body forces bk and surface forces pi (following a tradition in the area,
p in place of t will be used in this Chapter to denote tractions). Then, the
Somigliana identity
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gives the value of the displacements at any internal points in terms of the boundary
values of uk and pk, the domain forces bk and the fundamental solutions u�lk and p�lk.
p�lk are the tractions in the k direction due to a unit force at i acting in the
l direction, and u�lk are the displacements in the k direction due to a unit force at
i on the l direction. An updated derivation of the Somigliana identity may be found
in [1], where (10.1) is obtained by reciprocity with a singular solution of the
Navier equation for body force components modeled as unit point loads

Gu�l;kk þ
G

1� 2m
u�k;kl þ Diel ¼ 0 ð10:2Þ

where Di represents the Dirac delta function at i. For a boundary point, (10.1)
transforms to
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where the integrals are in the sense of Cauchy principal value. For C smooth at
point i it is ci

lk ¼ dlk=2.

10.1.1 Boundary Element Formulation for the Linear Elastic Case

In order to obtain a numerical procedure, the boundary is discretized in elements,
over which displacements and tractions are expressed in terms of their values at
the nodal points. Using now matrix notation,

u ¼ Uuj p ¼ Upj ð10:4Þ

where u j and p j are the element nodal displacements and tractions and the
interpolation functions U are the standard finite element type functions. Then,
writing (10.3) in matrix form we have
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and using (10.4)
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The sum from j = 1 to N indicate summation over all the N elements, Cj is the
surface of element j and u j and p j the corresponding displacements and tractions.
The domain was divided into M internal cells of volume Xs over which the body
forces integral have to be computed. After integration we have for a given node i

ciuiþ
XNE

j¼1

Hiju j ¼
XNE

j¼1

Gijp j þ
XM

s¼1

Bis ð10:7Þ

The contribution for all the NE nodes may be written in matrix form

HU ¼ GPþ B ð10:8Þ

After the boundary conditions are introduced, all unknowns are set into a vector
X leading to a system of equations

AX ¼ F ð10:9Þ

10.2 Viscoelastic Solutions in the Laplace Transform Domain

If the correspondence principle (see Chap. 5) is applied to the quasi-static problem,
the relevant boundary integral equation in the Laplace transformed domain is
written
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where now u�lkðsÞ and p�lkðsÞ are the elastic fundamental solutions for displacements
and tractions in which the elastic constants have been replaced by the corre-
sponding functions in the transformed space according to Sect. 5.2. A discussion of
this type of approach may be found in Syngellakis [9], Gaul and Schanz [3]. The
main difficulty is the inversion from the Laplace to the real (time) domain.

10.3 Formulation Considering Inelastic Strains

The general boundary integral equation including the effect of inelastic strains may
be written in incremental form as [1]
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where
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v
kl ð10:12Þ

and ev
ij is the deferred part of strain as defined in Chap. 2. Equation (10.11) is

known as the pseudo-surface traction, pseudo-body force approach; the inelastic
forces are included adding _pv

k to _pk in the surface traction boundary integral and _bv
k

to _bk in the body force domain integral. This formulation has been applied to time-
dependent problems by a series of authors; see for example Brebbia et al. [1]. The
domain integral has to be computed using cells defined over the domain. There are
alternatives that avoid the domain integration, one of which is the Dual Reci-
procity Formulation (DRM) [6].

10.3.1 DRM Applied to Viscoelasticity

With reference to (10.11), we define _wv so that _wv
;i ¼ _bv

j . Using the DRM strategy, we
expand _wv as the sum of known approximating functions with initially unknown
coefficients

_wv ’
XM
j¼1

f m _am ð10:13Þ

where M is the number of DRM collocation points. Differentiating (10.13) we
obtain

_wv
;j ¼ _bv

j ’
XM
j¼1

f m
;j _am ð10:14Þ

Considering (10.11) and making the regular body forces bj ¼ 0, we can now

substitute _bv
j given by (10.14) obtaining
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The DRM particular solutions ûj should satisfy the Navier equation

Gû j
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G

1� 2m
û j

l;lk ¼ f j
;k ð10:16Þ

Taking the domain term to the boundary with DRM we obtain
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After discretization and approximation of the above equation to all boundary
nodes, the following system of equations is obtained

H _U�G _P ¼ ðHÛ�GP̂Þ _a ð10:18Þ

or, substituting from (10.13) _a ¼ F�1 _w

H _U�G _P ¼ ðHÛ�GP̂ÞF�1 _wm ð10:19Þ

or

H _U�G _P ¼ _D ð10:20Þ

Applying the usual BEM procedure we set the system of equations in the form

A _X ¼ _Yþ _D ð10:21Þ

From its solution we obtain _ui; _pi, and we can determine the boundary and internal
stress tensors and advance in time. Additional and numerical examples may be
found in [8].

10.4 Other Procedures

Other different and complementary procedures may be seen in Liu and Antes [4];
Mesquita and Coda [5]; Schanz and Antes [7].
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