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Preface

This book develops a presentation of viscoelasticity theory oriented toward
numerical applications. It is our hope that it will be useful both as a textbook for
graduate courses and as a reference volume for engineers and researchers.The
book is structured in twelve chapters. The first eight chapters introduce basic
concepts and theoretical ideas about the viscoelastic response of solids. They
cover constitutive relations in integral and differential form, influence of tem-
perature, age and finite strain. These topics were selected aiming to make the
access to the computational viscoelastic formulations easier. It is assumed that
the reader has a background in mathematics and mechanics at the undergraduate
level. In the last five chapters a more advanced experience may be needed.

The remaining chapters address the numerical formulation of viscoelastic
problems using finite element, boundary element and finite volume methods.
Chapter 9 presents viscoelastic finite element procedures formulated on a total
Lagrangian description for large displacements and rotations with small
strains. Two alternative boundary element procedures for the solution of problems
in linear viscoelasticity are reviewed in Chap. 10: the solution in the Laplace
transformed domain and the use of a general inelastic formulation. Chapter 11
presents a two-dimensional approach for linear viscoelastic solids using a finite
volume framework. Together with the theoretical formulations, worked examples
are presented throughout the text. Finally, in Chap. 12, further examples, to
be solved with the software Abaqus, are proposed and developed. The
book concludes with three Appendices which contain auxiliary expressions
in mathematics and mechanics.

Several colleagues and students provided essential help. We mention here
professors L. A. B. Cunda (FURG), B. F. Oliveira (UFRGS) and Paul Partridge
(UnB). D. La Porta, D. Palmer and R. Sprunger (SIMULIA) helped with the
Abaqus examples, Litha Bacci draw the figures and Joice de Brito e Cunha
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checked the English text. This work is the result of collaboration between the
Federal University of Alagoas (UFAL) and the Federal University of Rio Grande
do Sul (UFRGS) with the financial support of the Brazilian Agency CAPES
through PROCAD program. The continuous support of our research by the
Brazilian Agency CNPq is also gratefully acknowledged.

Federal University of Alagoas-Brazil Severino P. C. Marques
Federal University of Rio Grande do Sul-Brazil Guillermo J. Creus
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Chapter 1
Introduction

1.1 Historical Context

First studies. It took time to discover that the properties of important materials lay
outside the classical limits of Hookean elastic solids and Newtonian viscous fluids.
Tests on the mechanical properties of silk threads, performed in 1835 by Wilhelm
Weber, showed that solid behavior could have viscous components. Later, in
1867, James Clerk Maxwell introduced elastic properties in the description of
fluids. Boltzmann developed in 1874 the formulation for linear viscoelasticity.
Using the superposition of effects, he showed that the strain at time t in response to
a general time-dependent stress history r(t) can be written as the sum (or integral)
of terms that involve the strain response to a step loading. The mathematician Vito
Volterra [7] developed the theory of functional and integral equations adequate to
model viscoelastic phenomena. Differential and integral representations of vis-
coelasticity [2, 3, 6] are addressed in Chap. 2.
Further developments and problems. The developments in the first half of the
twentieth century were slow and important advances in theoretical and experi-
mental rheology took place only after World War II. New materials, such as
polymers and composite materials [1, 5] posed new problems, particularly the need
to solve boundary value problems in varying conditions of temperature and
humidity. Chapter 3 introduces the state variables formalism, important for effi-
cient computation and Chap. 4 extends the viscoelastic formulation to three
dimensional situations. The effect of temperature is studied in Chap. 6, and the
Laplace transform technique, used to solve boundary value problems, is reviewed
in Chap. 5. In the analysis of materials such as rubber, soft polymers and biological
tissues strains are large and it is necessary to dispense with the infinitesimal strain
theory. To maintain objectivity in the presence of large rotations, measures like the
Cauchy-Green tensor for strain and the Piola–Kirchhoff tensors for stress are
introduced. This formulation is reviewed in Chap. 8. Biological tissues [4],
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polymers and other important materials show a mechanical behavior that depends
on age. This subject is introduced in Chap. 7.
Computational viscoelasticity. Digital computers revolutionized the practice of
many areas of engineering and science, and solid mechanics was among the first
fields to use them. Many computational techniques have been used in this field, but
the one that emerged in the 1970s as the most widely adopted is the Finite Element
Method. This method was developed and put to practical use for the analysis of
aeronautical structures by Ray W. Clough and J. H. Argyris. In the most common
version of the Finite-Element Method, the domain to be analyzed is divided into
elements, and the displacement field within each element is interpolated in terms
of the displacements at the nodes. From the displacements, strains and stresses are
calculated in terms of nodal displacements. The equilibrium equations expressed
through the principle of virtual work generate a system of simultaneous equations
to be solved by the computer. With the Finite Elements Method, for the first time,
real problems could be analyzed considering the actual geometry and material
properties. First bar structures and small strain elasticity and then geometrical and
physical nonlinear problems were addressed and solved. Lately, both the Boundary
Element Method, that reduces the dimension of the problems and provides very
precise results, and the Finite Volume Method, which seems to be very efficient for
the study of non-homogeneous solids, were developed. These numerical proce-
dures are analyzed in the second part of this book, Chaps. 9, 10, 11. In Chap. 12
some computational examples and exercises are included, using Abaqus software.

1.2 Basic Experimental Results

The characteristic feature of viscoelastic behavior is the essential role played by time.
Viscoelastic materials under constant stress increase their deformation with time,
while, under constant strain, show stresses that decrease with time. Figure 1.1
indicates the behavior of a typical viscoelastic material in a creep test characterized
by the application of a constant stress r0 at a time s0.
Using the unit step function H(t), defined in Appendix A, we may write this stress
history as

rðtÞ ¼ r0Hðt � s0Þ ð1:1Þ

which defines both the value of the applied stress and the time of its application.
In a creep test we measure an elastic strain component ee(instantaneous) and a
creep (delayed) component ec. The latter is the one that increases with time and
characterizes viscoelastic behavior. The deformation that remains after s[ s0

characterizes hysteresis.
Removing the applied stress at time s1 [ s0, that is, considering the stress

history

rðtÞ ¼ r0Hðt � s0Þ � r0Hðt � s1Þ ð1:2Þ
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we obtain for t [ s1 the strain history shown by the dotted line in Fig. 1.1. The
deformation reduction upon unloading is known as creep recovery.

In a relaxation test we have the material subjected to an imposed constant
deformation

eðtÞ ¼ e0Hðt � s0Þ ð1:3Þ

and we measure the stress r(t) that is needed to keep strain at the constant value e0.
We observe that r(t) diminishes progressively, as indicated by the stress history in
Fig. 1.2. Removing the applied deformation at time s1, that is, considering the
history

eðtÞ ¼ e0Hðt � s0Þ � e0Hðt � s1Þ ð1:4Þ

Fig. 1.2 Relaxation test of a
viscoelastic solid: histories of
stress and strain. Full line:
loading; dotted line:
unloading

Fig. 1.1 Creep test of a
viscoelastic solid: histories of
stress and strain. Full line,
loading; dotted line,
unloading
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we obtain the stress history shown in dotted lines. It is interesting to observe that in
this case we may have a change in the sign of the resultant stress; this fact may be
of importance for materials with different strengths in tension and compression.

1.3 Constitutive Relations

The general principles of mechanics (e.g. equilibrium and compatibility equations,
thermodynamic principles) are valid for all materials. The characteristic properties
of each material are specified by its constitutive equations.

A constitutive equation is a relation between forces and deformations. In
popular terms, the forces applied to a body ‘‘cause’’ it to deform and the quality
and amount of deformation varies according to the nature of the body. In the
present context (small deformation analysis) stresses and deformations are con-
veniently represented by Cauchy stress r and infinitesimal strain e. Constitutive
relations will be firstly discussed in a uniaxial setting. The extension to the mul-
tiaxial case will be analyzed in Chap. 4, and the extension to finite strains, in Chap.
8. A more precise definition of the concepts of strain and stress can be found in
Appendix B and references there.

In practice, constitutive relations are firstly suggested by experiments and then
established by means of mathematical equations. New experiments, new materials,
new applications, lead to new more refined or more sophisticated models.

1.3.1 Dependence on Time History; Elastic and Viscoelastic
Materials

During a typical experience, we apply to a specimen a stress history r(t), variable
in time (s0 B t B ?) and we measure the corresponding strain history e(t). We
may also apply a deformation history e(t) and measure the resulting stresses r(t),
because the choice of the controlled variable is a matter of experimental conve-
nience. For an arbitrary stress history, the strain at time t will depend, in general,
upon all the values of stress in the time interval of the experiment, so that we can
write

eðtÞ ¼ DfrðsÞ
s¼t

s¼s0

g ð1:5Þ

where D indicates a functional D : Cðs0; tÞ ) R while C(so, t) and R indicate
respectively the set of continuous functions defined in the interval [s0, t] and the
set of real numbers. Eq. (1.5) indicates that the value of e at time t depends on all
the values of r(s) for s varying between s0 and t. s0 is an arbitrary initial time, so
that r(t) = 0 and e(t) = 0 for t \ s0.
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Similarly, we can write

rðtÞ ¼ EfeðsÞ
s¼t

s¼s0

g ð1:6Þ

Notice here the existence of two symbols representing time. t is used to represent
the time of interest. For example, in (1.5) we are interested in the deformation at
time t. This deformation depends on all the stresses applied to the material in
different instants up to time t. To avoid confusion, we use another symbol,s, to
represent those instants. s is a dummy variable that runs in the interval that ends in t.

A different functional D corresponds to each class of material. For example, in
elastic materials the deformation at time t depends on the value of the stress at the
same time t: instantaneous, non hereditary response. Elastic materials have a very
short memory: they recall only the present stress, when s = t. In this case, the
functional in (1.5) is reduced to an ordinary function and

eðtÞ ¼ DðrðtÞÞ: ð1:7Þ

If the material is linearly elastic (1.7) may be still simplified to

eðtÞ ¼ DrðtÞ ð1:8Þ

where D is now a constant factor, the elastic compliance, which is the inverse of
the elastic modulus E.

On the other hand, viscoelastic materials are characterized by a dependence on
the whole history of the deformation process, and their constitutive relations must
have the functional structure indicated in (1.5) and (1.6). Considering for example
the creep test, as described in Sect. 1.2, we see that its result may be expressed in
the form (1.5). In this particular case, the argument of the functional is completely
determined once we know the values of r0, t and s, being s a generic time for
loading. Thus, creep tests may be characterized by a functional whose argument is
formed by step functions, or, equivalently, by a function of three variables

eðtÞ ¼ Dðr0; t; s0Þ ð1:9Þ

We have already seen how this function depends on t; now we will analyze its
dependence on r0(the stress applied in the creep test) and s0(the time at which the
creep test begins).

1.3.2 Dependence on Stress: Linearity

Figure 1.3a indicates the stress and strain histories for creep tests of a typical
material at different stress levels. We see that for small stresses the deformations
tend to stabilize, while for high stresses they grow at an increasing rate. This type
of behavior is usual in concrete, polymers and many other viscoelastic materials.
Figure 1.3b shows isochronous curves, that are obtained from Fig. 1.3a by setting

1.3 Constitutive Relations 5



s as a parameter. We can do this graphically just by choosing values of s in
Fig. 1.3a and determining the corresponding values of r and e. These isochronous
(from iso: equal, chronos: time) curves are pseudo stress–strain relations, but of
course are valid only in reference to creep tests.
In the case of Fig. 1.3, the threshold of nonlinearity is about 2r0. Its precise
location depends on the accepted tolerance. Linearity in this context may be
characterized by superposition. Consider arbitrary stress histories of the type

rðsÞ ¼ r1ðsÞ þ r2ðsÞ ; s 2 ½s0; t� ð1:10Þ

If they give rise to strain histories that can be expressed as

eðsÞ ¼ e1ðsÞ þ e2ðsÞ ð1:11Þ

where e1(s) and e2(s) are the strain histories corresponding to r1(s) and r2(s)
separately, we say that the material is linear. Linear behavior is also referred to as
obeying the ‘‘Principle of superposition in viscoelasticity’’ or ‘‘Boltzmann prin-
ciple’’. To check linear behavior experimentally, step functions are usually used.
The representation of nonlinear viscoelasticity is addressed in Chap. 8.

On the linear range, we may write (1.9) in the form

eðtÞ ¼ r0Dðt; sÞ ð1:12Þ

where D(t, s), the specific creep function or creep compliance, defined as the
response at time t to a unit step of stress applied at time s, fully characterizes the
behavior of a linear viscoelastic material.

In material testing it is usual to use uniaxial tension or compression loading
applying a strain history with constant rate e(t) = vt. An elastic material will show
a stress history also with constant rate. This is not the case when the material is
linear viscoelastic. A typical result is shown in Fig. 1.4. Stress-time and stress–
strain relations are not linear except for very slow (v ? 0) or very fast (v ? ?)
loading rates.

Fig. 1.3 a Creep tests with different values of stress and the corresponding strain histories.
b isochronous curves corresponding to the tests in (a)

6 1 Introduction
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When the limiting value of D(t, s) is finite, i.e., lim
t!1

Dðt; sÞ ¼ MðsÞ\1 we say

that the material is asymptotically stable. Sometimes, asymptotically stable
materials are referred to as solids, while those materials for which D(t, s) grows
indefinitely are called fluids. For stable materials we have

oDðt; sÞ
oðt � sÞ\0 ð1:13Þ

1.3.3 Dependence on Age: Aging

We call aging the change in the mechanical properties of a given material due to
its age, where age is the time period between some origin more or less arbitrarily

Fig. 1.4 Loading of a linear
viscoelastic material
(standard model) with
constant strain rate

Fig. 1.5 Surface
representing the creep
function D(t, s) for a material
that hardens with age (i.e.
concrete)
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established and the time of observation. Concrete is a typical example of an aging
material. From the moment of casting (taken usually as age zero) it begins to
increase its strength and to decrease its deformability. The function D(t, s) that
indicates the specific creep has for concrete the form indicated in Fig. 1.5. Notice
that D(t, s) = 0 for t \ s.
Frequently, the concept of aging involves other influences in addition to elapsed
time. Aging is different according to the environmental conditions in which the
material ages. In the case of concrete, humidity and temperature are important. In
the case of polymers factors such as temperature, humidity, UV radiation, etc.,
make a difference. In the case of a viscoelastic material without aging we have
D(t ? a, s ? a) = D(t, s), Va. Thus, for a = - s, we can write

Dðt; sÞ ¼ Dðt � sÞ ð1:14Þ

Non-aging materials represent a special (very important) case of viscoelastic
materials. Additional formulations and examples for the aging case are given in
Chap. 7.

1.4 State Variables Formulation

Besides the functional representation described in Sect. 1.3, a state variables
representation may be used with some advantages in viscoelasticity as well as in
plasticity and damage mechanics. An advantage of the state variable approach is
that physical theories, and micro-structural information, may be introduced
directly in the formulation of the evolution equations. Another one is that it leads
to more efficient numerical procedures. This formulation will be introduced in
Chap. 3.

1.5 Computational Viscoelasticity

Because of mathematical difficulties few real problems in viscoelasticity have
analytical solution. As in many other areas of science, the use of numerical
analyses and digital computers had a great impact in this field. Procedures based
on techniques as Finite Elements, and more recently, Boundary Elements and
Finite Volumes allow the analysis of complex bodies and structures made of linear
and nonlinear viscoelastic materials. In Chaps. 9, 10, 11 of this book, these
numerical procedures are described. To allow the reader to have some practice
with computational procedures a few examples using the well known commercial
software Abaqus are given.
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Chapter 2
Rheological Models: Integral
and Differential Representations

Viscoelastic relations may be expressed in both integral and differential forms.
Integral forms are very general and appropriate for theoretical work. Differential
forms are related to rheological models that provide a more direct physical
interpretation of viscoelastic behavior. In this chapter we describe the most usual
rheological models, deduce their differential equations and, by solving them, we
find the corresponding integral representations. These relations will be set in a
more computational friendly form in Chap. 3 and extended to three-dimensional
situations in Chap. 4 and then used in analytical and computational solutions.

2.1 General Integral Relations

When the functional relation (1.5) in Chap. 1 is linear it has a simple and useful
representation given by the Riesz theorem [1]: if the functional D is linear and
equi-continuous, it can be written

eðtÞ ¼
Z t

s0

Dðt � sÞdrðsÞ ð2:1Þ

or

eðtÞ ¼
Z t

s0

Dðt � sÞ _rðsÞds ð2:2Þ

Here, s0 should be chosen in a way that for s\ s0 the material is at rest, without
stress and strain. From the relations above we see that D(t – s)H(t – s0) represents
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the strain corresponding to a creep test with r(t) = H(t – s0). D(t – s) is the creep
function or creep compliance of dimension L2/F.

Equation (2.1) is an integral of the Stieltjes type. For these integrals, when r(s)
has steps DriH(t – si) we have

eðtÞ ¼
Z t

s0

Dðt � sÞdrðsÞ þ
X

i

DriDðt � siÞ ð2:3Þ

As long as r(t) is continuous and differentiable, _rðtÞ exists and the form (2.2)
can be used. Notice that the integration is performed with relation to s; t acts as a
parameter and as the superior limit of integration, but it is a constant inside the
integral. Thus, for differentiation in relation to t we have to use the Leibnitz
formula (See Appendix A).

Alternative forms of the integral representation. Besides the relations (2.1)
and (2.2) we may use the inverse relations

rðtÞ ¼
Z t

s0

Eðt � sÞdeðsÞ ð2:4Þ

and

rðtÞ ¼
Z t

s0

Eðt � sÞ_eðsÞds ð2:5Þ

exchanging the roles of stress and strain. E(t - s) is the specific relaxation function,
i.e., the stress response to a unit step of strain. Integrating (2.2) by parts, we obtain

eðtÞ ¼ rðtÞ
Eð0Þ þ

Z t

s0

dðt � sÞrðsÞds ð2:6Þ

where

dðt � sÞ ¼ � o

os
Dðt � sÞ

Eð0Þ ¼ 1=Dðt � tÞ
ð2:7Þ

Sometimes, instantaneous and delayed components of the specific creep are
separated

Dðt � sÞ ¼ 1
Eð0Þ þ Cðt � sÞ

Eðt � sÞ ¼ Eð1Þ þ Rðt � sÞ
ð2:8Þ
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2.2 Rheological Models

The behavior of viscoelastic materials under uniaxial loading may be represented
by means of conceptual models composed of elastic and viscous elements which
provide physical insight and have didactic value. Rheological models are descri-
bed in most of the books on viscoelasticity such as Flugge [2], Christensen [3] and
many others.

2.2.1 The Basic Elements: Spring and Dashpot

An ideal helicoidal spring, perfectly linear elastic and massless, represents Hooke
model (see Fig. 2.1a):

rðtÞ ¼ EeðtÞ ð2:9Þ

where E is the elasticity modulus with dimension [F/L2]. Both length and cross-
section are given unit values in order to identify force with stress and elongation
with strain.

The dashpot (Fig. 2.1b) is an ideal viscous element that extends at a rate pro-
portional to the applied stress, according to Newton equation

_eðtÞ ¼ rðtÞ=g ð2:10Þ

where _e ¼ oe=ot is the rate of strain and g is the viscosity coefficient, with
dimension [FT/L2]. Combining springs and dashpots we obtain different models of
viscoelastic behavior. The simplest viscoelastic models are those named after the
scientists J. C. Maxwell and Lord Kelvin.

2.2.2 Maxwell Model

This model is the combination of a spring and a dashpot in series, Fig. 2.2a. For
this system we may write the equations

Fig. 2.1 a Hooke model
(spring). b Newton model
(dashpot)
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eðtÞ ¼ eEðtÞ þ egðtÞ
rEðtÞ ¼ rgðtÞ ¼ rðtÞ
rEðtÞ ¼ EeEðtÞ; rgðtÞ ¼ g_egðtÞ

ð2:11Þ

where the sub-indexes g and E indicate dashpot and spring respectively.
Differentiating the first Eq. 2.11 with respect to time t and using the constitutive

relations for both spring and dashpot, we obtain

_eðtÞ ¼ _rðtÞ
E
þ rðtÞ

g
eðtÞ ¼ rðtÞ ¼ 0 for t\s0 ð2:12Þ

which is the differential equation for the Maxwell model. Solutions of (2.12) may
be determined considering either stress or strain as the controlled variable. In the
first case we have directly

eðtÞ ¼ rðtÞ
E
þ 1

g

Z t

s0

rðsÞds ð2:13Þ

Integrating (2.13) by parts we obtain the alternative expression

eðtÞ ¼
Z t

s0

1
E
þ t � s

g

� �
_rðsÞds ð2:14Þ

Comparing this to (2.2) we see that

Dðt � sÞ ¼ 1
E
þ t � s

g
; t� s ð2:15Þ

is the creep function. Since the strain response is unbounded for t ? ?, one says
that the Maxwell model exhibits unbounded creep and sometimes refers to it as
Maxwell fluid. For a stress history r(t) = r0[H(t – s0) - H(t – s1)], with

Fig. 2.2 Maxwell model: a rheological model, b creep test, c relaxation test
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s0 \ s1, as that shown in Fig. 2.2b, a residual deformation remains after
unloading.

Considering now the strain history as given, we obtain from (2.12), using the
general solution for first order differential equations in Appendix A,

rðtÞ ¼ E

Z t

s0

e�
E
gðt�sÞ _eðsÞds ð2:16Þ

Then, comparing to (2.5) we see that

Eðt � s0Þ ¼ Ee�ðt�s0Þ=T ; T ¼ g
E

; t� s0 ð2:17Þ

is the relaxation function that vanishes for t ? ?. Relations using creep or
relaxation functions, such as (2.14) and (2.16), are equivalent. A procedure to
obtain one from the other is given in Sect. 2.4 and in Chap. 5.

The constant T = g/E that appears in the exponential in (2.17) determines the
rate of the relaxation process and is called relaxation time. The smaller the
relaxation time, the faster the relaxation process, even though total relaxation takes
theoretically an infinite time. For example, for t – s0 = 3T about 95% of the total
relaxation is completed. Considering a loading–unloading history, such as
e(t) = e0[H(t -s0) - H(t - s1)], with s0 \ s1, the stress response changes signal
(Fig. 2.2c).

2.2.3 Kelvin Model

This model combines a spring and a dashpot in parallel, Fig. 2.3b. From the
relations

Fig. 2.3 Kelvin model: a creep test, b rheological model, c relaxation test
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rðtÞ ¼ rEðtÞ þ rgðtÞ
eEðtÞ ¼ egðtÞ ¼ eðtÞ
rEðtÞ ¼ EeEðtÞ; rgðtÞ ¼ g_eðtÞ

ð2:18Þ

we can determine the differential equation

rðtÞ ¼ EeðtÞ þ g_eðtÞ ð2:19Þ

For a given strain history we have the stress directly from (2.19). A relaxation
test is physically impossible with the Kelvin model because _eðtÞ ¼ e0dðtÞ and the
corresponding initial stress should be infinitely high.

For a given stress history r(t) the solution of (2.19) is

eðtÞ ¼ 1
g

Z t

s0

rðsÞe�t�s
h ds ; h ¼ g

E
ð2:20Þ

Comparing to (2.2) we see that

Dðt � s0Þ ¼
1
E

1� e�ðt�s0Þ=h
� �

; t� s0 ð2:21Þ

is the creep function for the Kelvin model. For t ? ? we obtain e(?) = r0/E that
corresponds to the asymptotic elastic solution, when all the stress is carried by the
spring.

Again, we have equivalent differential and integral representations. Fig. 2.3
shows the results of creep and relaxation tests. The constant h is called retardation
time and is analogous in meaning to the relaxation time: an estimate of the time
required for the creep process to approach completion.

2.3 Generalized Models

Maxwell and Kelvin models are adequate for qualitative and conceptual analyses,
but generally poor for the quantitative representation of the behavior of real
materials. In order to improve the representation we need to increase the number of
parameters by combining a number of springs and dashpots. A systematic way to
do that is to build generalized Maxwell and Kelvin models, shown in Fig. 2.4. The
generalized Maxwell model is composed of n ? 1 constituent elements in parallel,
being n Maxwell models and an isolated spring (to warrant solid behavior) (see
Fig. 2.4a).

The differential Eq. 2.12 for a generic Maxwell element r of a generalized
Maxwell model may be written in the operational form
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o

ot
eðtÞ ¼ 1

Er

o

ot
þ 1

gr

� �
rr ð2:22Þ

where Er, gr and rr indicate the elastic constant, viscosity coefficients and stress of
the r-th element, respectively. The symbol q/qt is a differential operator that can be
handled as an algebraic entity. For the generalized Maxwell model the strain is the
same for all constituent elements and the total stress is given by the equation

rðtÞ ¼ E1 þ
Xn

r¼1

o=ot
o=ot
Er
þ 1

gr

0
@

1
AeðtÞ ð2:23Þ

From Fig. 2.4 and (2.17) it is clear that the relaxation function for the
generalized Maxwell model is, for a generic value of s

Eðt � sÞ ¼ E1 þ
Xn

r¼1

Ere
�t�s

Tr ; Tr ¼ gr=Er ð2:24Þ

The generalized Maxwell model provides an exponentially varying stress
adding contributions with different relaxation times, one for each element in the
chain. Thus, it is possible to fit experimental creep curves to any required degree of
approximation if enough terms are used. To find the creep function for the
generalized Maxwell model the differential Eq. 2.23 has to be solved, like in
Example 1 below.

The generalized Kelvin model is composed of n Kelvin units in series plus an
isolated spring. The stress at each unit is the same external stress r(t) while the
total (observable) strain e(t) is the sum of the internal strains in each element.
Writing (2.19) in the symbolic form for a generic Kelvin element r

rrðtÞ ¼ Er þ gr
o=ot

� �
erðtÞ ð2:25Þ

we have for the model in Fig. 2.4b

eðtÞ ¼ 1
E0
þ
Xn

r¼1

1
Er þ gro=ot

 !
rðtÞ ð2:26Þ

Fig. 2.4 Maxwell and Kelvin chains with instantaneous elasticity
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From Eq. 2.21 and Fig. 2.4b, it is easy to gather that the specific creep function
for the generalized Kelvin model is, for a generic value of s,

Dðt � sÞ ¼ 1
E0
þ
Xn

r¼1

1
Er
½1� e�

t�s
hr � ; hr ¼ gr=Er ð2:27Þ

To find the relaxation function, the differential equation (2.26) has to be solved.

Example 1 Determine the differential equation of the Zener model, that is a
particular case of the generalized Maxwell model composed by a Maxwell model
with parameters E1 = E, g1 = g in parallel with a spring of stiffness E?,
Fig. 2.4a. Substituting these values into (2.23) we obtain

rðtÞ ¼ E1 þ
o=ot

o=ot
E þ 1

g

 !
eðtÞ ð2:28Þ

Developing this symbolic equation we find

rþ g
E

_r ¼ E1eþ gðE1 þ EÞ
E

_e ð2:29Þ

With Ez0 = E? ? E, hz = g(E? ? E)/(E?E) = gEz0/[E?(Ez0 - E?)] and
Tz = g/E = g/(Ez0 - E?), we have the nice form

Ezð0Þ _eðtÞ þ eðtÞ
hz

� �
¼ _rðtÞ þ rðtÞ

Tz
ð2:30Þ

where Ez(0) = Ez0. Solving in e we obtain, with the initial condition e(s0) = r(s0)/
Ez0,

eðtÞ ¼ rðtÞ
Ezð1Þ

� 1
Ezð1Þ

� 1
Ezð0Þ

� � Z t

0

e�
ðt�sÞ
hz _rðsÞds ð2:31Þ

being Ez(?) = E?. The corresponding creep function is then

Dðt � sÞ ¼ 1
Ezð1Þ

1� Ezð0Þ � Ezð1Þ
Ezð0Þ

e�
ðt�sÞ
hz

� �
ð2:32Þ

Example 2 Determine the differential equation of the standard solid model which
is a particular case of the generalized Kelvin model with a spring (E0) and a Kelvin
element (E1 = E, g1 = g) connected in series. Substituting these parameters in
(2.26), we have

eðtÞ ¼ 1
E0
þ 1

E þ go=ot

� �
rðtÞ ð2:33Þ
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Developing this equation, the following differential equation is obtained

rþ g
E0 þ E

_r ¼ E0E

E0 þ E
eþ E0g

E0 þ E
_e ð2:34Þ

Making Es(0) = E0, Es(?) = E0E/(E0 ? E), hs = g/E and Ts = g/(E0 ? E), this
differential equation can be written as

Esð0Þ _eðtÞ þ eðtÞ
hs

� �
¼ _rðtÞ þ rðtÞ

Ts
ð2:35Þ

Comparing (2.35) to (2.30), we conclude that the standard and Zener models
present similar differential equations. Then, the solution for each one of these
models can be obtained from the solution of the other by a convenient change of
parameters.

2.3.1 General Differential Representation

Equations 2.23 and 2.26 are differential equations with the general form

Xh

i¼0

pi
oir
oti
¼
Xk

j¼0

qj
o je
ot j

ð2:36Þ

where pi and qj are material constants dependent on the viscoelastic model.
Usually, without loss of generality, we assume p0 = 1.

From (2.30), the constants for the Zener model are

p0 ¼ 1; p1 ¼
g
E
; q0 ¼ E1 and q1 ¼

gðE1 þ EÞ
E

ð2:37Þ

and, for the standard solid model (2.35),

p0 ¼ 1; p1 ¼
g

E0 þ E
; q0 ¼

E0E

E0 þ E
and q1 ¼

E0g
E0 þ E

ð2:38Þ

Generalized Kelvin and Maxwell models are equivalent, in the sense that it is
always possible to find a generalized Maxwell model equivalent to a given gen-
eralized Kelvin one, as in Examples 1 and 2. In Chap. 5 it is shown how to go from
a creep to a relaxation function. Then, with Eqs. (2.24) and (2.27) we can find the
corresponding models.
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2.4 Integral and Differential Operators

Viscoelastic relationships may also be indicated in the symbolic forms

e ¼ D�r

r ¼ E�e
ð2:39Þ

which have to be interpreted as alternatives to (2.1) and (2.4) respectively. As the
linear operators E* and D* may be handled formally as algebraic quantities (with
some care), this notation simplifies some calculations. The operational form is
valid also for the differential representation. For example, the differential operator
for the generalized Kelvin model is the expression inside the brackets in (2.26).
With this notation viscoelastic and elastic equations have similar form. A more
rigorous development and applications of the operational technique will be given
in Chap. 5 through the use of Laplace transform.

Sometimes we need to invert the viscoelastic relations, i.e., to obtain the
relaxation function corresponding to a given creep function and vice versa.

From (2.39), we have

e ¼ D�E�e ð2:40Þ

Thus,

Hðt � s0Þ ¼ D�Eðt � sÞHðt � s0Þ ð2:41Þ

In extended form, this is written [4, 5]

1 ¼ Dðt � sÞEðt � tÞ þ
Z t

s0

Dðt � sÞ _Eðs� s0Þds for t� s0 ð2:42Þ

Equation (2.42) express the obvious fact that applying as a stress history the
corresponding relaxation function, we obtain a constant unit deformation.

Example 3 Consider the relaxation function corresponding to the Zener model
with E(t) = E1 ? E2e-t/T; then _EðtÞ ¼ �E2e�t=T=T and substituting into (2.42)

Dðt � s0ÞðE1 þ E2Þ �
E2

T

Z t

s0

Dðt�sÞe�ðt�sÞ=T ds ¼ 1 ð2:43Þ

Differentiating (2.43) in relation to t (Leibnitz rule)

_Dðt � s0ÞðE1 þ E2Þ �
E2

T
Dðt � s0Þ þ

E2

T2

Z t

s0

Dðt�sÞe�ðt�sÞ=T ds ¼ 0 ð2:44Þ

Multiplying this equation by T and adding to (2.43) we eliminate the integral to
obtain the differential equation

ðE1 þ E2ÞT _Dðt � s0Þ þ E1Dðt � s0Þ ¼ 1 ð2:45Þ
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From which we obtain, with the initial condition D(0) = 1/E(0) = 1/(E1 ? E2)

Dðt � s0Þ ¼
1

E1
� E2

ðE1 þ E2ÞE1
e�ðt�sÞ=h ð2:46Þ

with h = (1 ? E2/E1)T.
The operational form is valid also for the differential representation. For

example, the differential operator for the generalized Kelvin model is the
expression inside the brackets in (2.26).

2.5 Thermodynamic Restrictions

The work done in deforming a viscoelastic body must be non-negative. Sufficient
conditions that the relaxation function must satisfy are given in [6]. In reference to
Eq. (2.5)

(1) E(t) must be non-negative
(2) E(t) must be a monotonically decreasing function with finite limit for t ? ?.
(3) E(t) must be convex downward.

Most of the functions that are usually used to approximate the relaxation
function satisfy the conditions above.
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Chapter 3
State Variables Approach

The State Variables approach is an alternative to the history dependent integral
representation given in Chap. 2. It has a physical basis because of its origin in
thermodynamic formulations and shows computational advantages. The creep and
relaxation functions are approximated by exponential series. The introduction of
state variables leads to n differential equations of first order in place of the
differential equation of order n linked to a generalized model. This formulation
leads to exponential expressions that make incremental integration easier, allowing
the determination of the viscoelastic strains at time t ? Dt as a function of the
viscoelastic strains and stresses at time t. Then, there is no need to store the whole
history of stress or strain. In this chapter, we introduce the basic formulation that is
later extended to 3D, aging and nonlinear situations.

3.1 Basic Formulation

We have already seen (Chap. 2) that for each rheological model, we may have an
integral as well as a differential relation. We shall see now how to obtain, through
the State Variables approach, a new general form convenient for computational
applications.

In some important commercial computer codes (i.e. Abaqus, Ansys) the theo-
retical formulation is introduced in the integral form. Then, reference is made to a
rheological model (generalized Maxwell) and Prony series are introduced as its
representation. The State Variables approach [1, 3] presented here helps us to
understand better the relation among these formulations.
Let us begin with the general form of the integral representation (see (2.6))

S. P. C. Marques and G. J. Creus, Computational Viscoelasticity,
SpringerBriefs in Computational Mechanics, DOI: 10.1007/978-3-642-25311-9_3,
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eðtÞ ¼ rðtÞ
E0
þ
Z t

s0

dðt � sÞrðsÞds ð3:1Þ

where E0 = E(s0).
We may approximate the function d(t - s) by means of an exponential series

(called Dirichlet-Prony series by mathematicians)

dðt � sÞ ¼
Xn

i¼1

die
�ðt�sÞ

hi ð3:2Þ

Such an approximation is complete (i.e. can be as good as we like, depending
on the number of terms included). We introduce then the n values

qiðtÞ ¼
Z t

s0

die
�ðt�sÞ

hi rðsÞds i ¼ 1; . . .; n ð3:3Þ

and notice that, by taking the differential of (3.3) with relation to t (using Leibnitz
rule, Appendix A) we obtain

_qiðtÞ þ
qiðtÞ
hi
¼ dirðtÞ i ¼ 1; . . .; n ð3:4Þ

which is a system of n uncoupled linear differential equations of the first degree
that, with the adequate initial conditions (e.g. qi = 0 for t = s0) allows us to
determine the state variables. Then, with

eðtÞ ¼ rðtÞ
E0
þ
Xn

i¼1

qiðtÞ ð3:5Þ

that results from (3.1), (3.2) and (3.3) the strain can be determined.
Moreover, we notice that:

(i) Equations (3.4) and (3.5) correspond in this case to a generalized Kelvin Model
with springs of constants 1/dihi and dashpots with constants 1/di and an isolated
spring of constant E0.

(ii) From (3.4) and (3.5) we see also that, when the values qi are known at a given
instant tr, then e(t) may be determined for t C tr if r(t) is known for t C tr.
Thus, if the strains are measured for t C tr with respect to the configuration at tr,
the material behavior in the interval (tr, tf) with tf [ tr will depend only on the
value of the stresses in (tr, tf) and the value of qi at time tr. The observations
above justify the name state variables representation.

(iii) This representation is very general and can be extended to aging and non-
linear problems as well (see Chaps. 7 and 8).

(iv) State variables may also be related to the material microstructure [5].
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(v) Finally, this formulation is convenient for the numerical solution of visco-
elastic problems (using for example the Finite Element Method).

Alternatively, we may begin with the relation

rðtÞ ¼
Z t

s0

Eðt � sÞ_eðsÞds ð3:6Þ

and expand

EðtÞ ¼ E1 þ
Xn

i¼1

Eie
�t=Ti ð3:7Þ

Introducing the n quantities

qiðtÞ ¼
Z t

s0

e�
ðt�sÞ

Ti _eðsÞds i ¼ 1; . . .; n ð3:8Þ

and taking the derivative of (3.8) with respect to t we obtain

_qiðtÞ þ
qiðtÞ

Ti
¼ _eðtÞ i ¼ 1; . . .; n ð3:9Þ

A combination of (3.6), (3.7) and (3.8) provides the equation

rðtÞ ¼ E1eðtÞ þ
Xn

i¼1

EiqiðtÞ ð3:10Þ

Equations (3.9) and (3.10) together with the initial conditions qi = 0 when
t = s0 correspond to a Maxwell generalized model with springs Ei, dashpots TiEi

and an isolated spring E?. Here qi represents the strains in the springs of the
Maxwell elements.

3.2 Incremental Determination of State Variables

We may integrate system (3.4) in a variety of ways.

1. The use of the simple Euler process gives us, for a step increment Dt, the
algorithm

DqiðtÞ ¼ �
qiðtÞ
hi
� dirðtÞ

� �
Dt

qiðt þ DtÞ ¼ qiðtÞ þ DqiðtÞ
ð3:11Þ
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2. Better results are obtained writing

qiðt þ DtÞ ¼
Z t

s0

die
�ðtþDt�sÞ=hirðsÞdsþ

ZtþDt

t

die
�ðtþDt�sÞ=hirðsÞds ð3:12Þ

The first integral is equal to qi exp ( - Dt/hi); the second one may be written,
assuming r(t) constant over the interval[t, t ? Dt], as

dirðtÞe�ðtþDtÞ=hi

ZtþDt

t

es=hi ds ¼ dihirðtÞð1� e�Dt=hiÞ ð3:13Þ

so that

qiðt þ DtÞ ¼ e�Dt=hi qiðtÞ þ dihirðtÞð1� e�Dt=hiÞ ð3:14Þ

Expressions of this type are used in some viscoelastic computer codes (e.g.
Ansys). Simo and Hughes [6] propose an alternative of the same accuracy. The
value of a state variable at a given time may be determined directly from its
value at the previous time step and the history of stress or strain; this incre-
mental procedure is more accurate than the Euler integration procedure and is
more efficient than the direct numerical calculation of the integral in (3.3).

3. A more efficient algorithm may be obtained considering the relation r(s) to
vary linearly in the interval [t, t ? Dt]

rðsÞ ¼ rðtÞ þ DrðtÞðs� tÞ; t� s� t þ Dt ð3:15Þ

where

DrðtÞ ¼ rðtÞ � rðt � DtÞ
� �

=Dt ð3:16Þ

and Dt is the time interval in the preceding step. Then, (3.16) takes the form

qiðt þ DtÞ ¼ e�Dt=hi qiðtÞ þ rðtÞdihi 1� e�Dt=hi
� �

þ
rðtÞ � rðt � DtÞ
� �

dihi

Dt
Dt � hi 1� e�Dt=hi

� �� � ð3:17Þ

The determination of the value of the state variable q(t ? Dt) in an incremental
process requires the knowledge of qðtÞ;Dt; rðtÞ and rðt � DtÞ: A similar
algorithm is used in Abaqus. Other algorithms may be found in [7].
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3.3 Physical Grounds and Extensions

Many inelastic properties of solids can be explained qualitatively in terms of
various micro-structural rearrangements. In polymers, for example, the existence
of long-chain molecules, which may straighten or crumple, in addition to sliding
relatively to each other in response to sustained loads, provides the material with
instantaneous elasticity as well as with nonlinear viscosity. During these processes,
a certain amount of mechanical energy is lost into thermal energy. Additionally,
the micro-structural changes give rise to macroscopic history-dependent material
properties [2].

Explicit representations of history dependence may be formulated on purely
mathematical assumptions and expressed as integrals of stress or strain history, as
shown in Chap. 2, 7 and 8. Alternatively, a state variables representation may be
used with some advantages in viscoelasticity as well as in plasticity and damage
mechanics.

Then, the effect of the microscopic structural rearrangements is accounted for
by the introduction of additional n state variables called internal variables or
hidden coordinates, denoted collectively by qiði ¼ 1; . . .; nÞ which, in a certain
average global sense, represent the internal changes. The optimal selection of
suitable internal variables, minimum in number, which provide maximum infor-
mation, is an important problem [4].

Once the internal variables are chosen, we may define stress and internal energy
as

r ¼ rðe;H; qiÞ
W ¼ Wðe;H; qiÞ

ð3:18Þ

where stress and free energy are expressed as functions of current values of strain
(stress), temperature and other variables, including the internal state variables.

Rate effects are introduced through evolution or growth laws, in terms of the
history of external quantities like the stress or strain tensors and temperature, as
follows:

_qiðtÞ ¼ f ðqi;H; eÞ ð3:19Þ

From this set of equations one may explicitly eliminate the internal variables
from the constitutive equations, thus obtaining a result similar to that from the
functional theory in which stress (strain) is expressed as a functional of strain
(stress).

An advantage of the state variable approach is that physical theories, and micro-
structural information, may be introduced directly in the formulation of the evolution
equations. Another one is that it leads to more efficient numerical procedures. This
formulation will be extended to nonlinear viscoelasticity in Chap. 8. In the finite
strain situations it is important to take account of rigid rotations and the related
concepts of State and Orientation [5].
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Chapter 4
Multidimensional Viscoelastic Relations

In this chapter we extend the viscoelastic constitutive relations to a three dimensional
setting. An important subject is the determination of parameters to be used in the
solution of real problems. Viscoelastic behavior is determined experimentally,
mainly through uniaxial creep tests. To obtain 3D relations, some simplifying
assumptions are made. In the case of concrete, it is assumed that the Poisson ratio
does not change with time. In the case of polymers, as the creep in shear is more
important than volumetric creep, this one is disregarded and the material is con-
sidered as elastic in bulk. The viscoelastic equations are here presented in a general
form and then simplified for isotropic materials. Finally, a procedure based on the
state variables approach is presented for a general anisotropic linear viscoelastic
material.

4.1 General Relations

In Chap. 2, we studied the viscoelastic constitutive relations in the one-dimensional
case. In order to obtain the equations for the general case, we must proceed in the
same way as in the elasticity theory, that is, we must substitute a relation between
uniaxial stress r and uniaxial strain e by the corresponding relation between the
tensors rij and eij: Thus, we define as a linear viscoelastic material one for which the
relation between stresses and strains is given by

rijðtÞ ¼
Z t

s0

Eijklðt � sÞ_eklðsÞds ð4:1Þ

where Eijklðt � sÞ is a fourth order tensor relaxation function, or alternatively,

S. P. C. Marques and G. J. Creus, Computational Viscoelasticity,
SpringerBriefs in Computational Mechanics, DOI: 10.1007/978-3-642-25311-9_4,
� The Author(s) 2012
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eijðtÞ ¼
Z t

s0

Dijklðt � sÞ _rklðsÞds ð4:2Þ

where Dijklðt � sÞ is a fourth order tensor creep function.

4.2 Isotropic Materials

4.2.1 Integral and Differential Representations

If the material is isotropic (i.e. the mechanical properties of an element are
independent of its orientation) a simpler representation is possible because the
tensor functions Eijklðt; sÞ and Dijklðt; sÞ have the same symmetries as the elastic
tensor. Thus decomposing stress and strain history tensors in hydrostatic (r0; e0)
and deviatoric (sij; eij) parts, as shown in Appendix B, we can write

sijðtÞ ¼
Z t

s0

2Gðt � sÞ _eijðsÞds

r0ðtÞ ¼
Z t

s0

3Kðt � sÞ_e0ðsÞds

ð4:3Þ

or alternatively eijðtÞ ¼ e0ðtÞdij þ eijðtÞ

eijðtÞ ¼
Z t

s0

DGðt � sÞ_sijðsÞds

e0ðtÞ ¼
Z t

s0

DKðt � sÞ _r0ðsÞds

ð4:4Þ

Using the differential representation we have, extending (2.36),

Xm

h¼0

pG
h

ohsij

oth
¼
Xn

k¼0

qG
k

okeij

otk

Xl

h¼0

pK
h

ohr0

oth
¼
Xr

k¼0

qK
k

oke0

otk

ð4:5Þ

which can be written in operator symbolic form as PGsij ¼ QGeij and
PKr0 ¼ QKe0, respectively, where
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PG ¼
Xm

h¼0

pG
h

oh

oth
QG ¼

Xn

k¼0

qG
k

ok

otk

PK ¼
Xl

h¼0

pK
h

oh

oth
QK ¼

Xr

k¼0

qK
k

ok

otk

ð4:6Þ

This differential representation will be explored using Laplace transform in
Chap. 5.

The two material constants that appear in the constitutive relations of an iso-
tropic elastic solid may be chosen as pairs (E, m), (K, G), etc. Relations among
them may be found in Appendix B. Similar relations are valid, according to the
correspondence principle (see Chap. 5), among the corresponding creep and
relaxation functions and differential operators.

4.2.2 State Variables Representation

Let us consider equation (4.3)1. We apply the procedure in Sect. 3.1 [see Eq. (3.7)]
to the shear components

Gðt � sÞ ¼ G1 þ
Xn

a¼1

Gae�ðt�sÞ=Ta ð4:7Þ

Introducing the n quantities

qij;aðtÞ ¼
Z t

s0

e�
ðt�sÞ

Ta _eijðsÞds a ¼ 1; . . .; n ð4:8Þ

and taking the derivative of (4.8) with respect to t (Leibnitz rule) we obtain

_qij;aðtÞ þ
qij;aðtÞ

Ta
¼ _eijðtÞ a ¼ 1; . . .; n ð4:9Þ

A combination of (4.3)1, (4.7) and (4.8) provides the equation

sijðtÞ ¼ 2G1eijðtÞ þ
Xn

a¼1

2Giqij;aðtÞ ð4:10Þ

The same procedure is valid for the spherical components (4.3)2 as well as for
relations (4.4).

4.2.3 Determination of Creep and Relaxation Functions

Experimental determination of properties and curve fitting: A practical
problem is the determination of the creep and relaxation functions in Eqs. (4.3) and
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(4.4) from uniaxial rheological models or experimental results. The description of
experimental procedures depends on the material addressed and is outside the
scope of this book, but may be found in some other books [2–4] and in many
papers. The experimental creep curve is usually approximated by an equation
based on the Kelvin chain (see Sect. 2.3). Description of adequate curve fitting
procedures may be found in [2]. For exponential series MATLAB curve fitting
toolbox is useful. Commercial finite elements software, such as ABAQUS and
ANSYS, do not use creep but relaxation function information. Procedures to
transform creep into relaxation functions and vice versa are given in Sects. 2.4 and
5.1.

In many polymer materials, the creep function in shear is orders of magnitude
higher than the corresponding bulk function. The experimental determination of
the bulk viscoelasticity is difficult, and thus it is usual to model the material as
elastic in bulk, with a K coefficient determined from the E and m values. In shear,
the material is considered as viscoelastic, but usually the creep tests are performed
not in shear but in axial tension or compression.

Procedures to obtain a shear relaxation function from an extensional relaxation
creep function (assuming bulk elasticity) are given in Example 1 and, using
Laplace transforms, in Sect. 5.1.

Example 1 In an example in the Abaqus Manual [1] (Viscoelastic rod subjected to
constant axial load) it is used a Zener model (see Sect. 2.3, Example 1) for
viscoelasticity. The extensional relaxation function of the bar material (a polymer)
was obtained from tension tests as

EðtÞ ¼ k1 þ k2e�t=T ð4:11Þ

with k1 ¼ 1000, k2 ¼ 9000 and T ¼ 1. To solve the problem with a finite element
code (e.g. Abaqus) we need the elastic constants E and m, and the viscoelastic
operators G(t) and K(t). It is assumed that the material is elastic in bulk, with a
bulk coefficient K = 100,000. The initial elastic extensional modulus is Eð0Þ ¼
k1 þ k2: The initial Poisson modulus is, from (4.11) and (B.4),

mð0Þ ¼ 3K � k1 � k2

6K
¼ 0:4833 ð4:12Þ

The initial and final shear moduli are from Appendix B

Gð0Þ ¼ 3Kðk1 þ k2Þ
9K � ðk1 þ k2Þ

Gð1Þ ¼ 3Kk1

9K � k1
ð4:13Þ

We need to determine G(t). The relation among the viscoelastic operators is the
same as the one among the corresponding elastic constants

G� ¼ 3KE�

9K � E�
ð4:14Þ

For the Zener material it is
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E� ¼ 1
g
þ o=ot k1 þ k2ð Þ

k1k2

� �
1

k1g
þ o=ot

k1k2

� ��1

ð4:15Þ

with g ¼ k2TE. Substituting (4.15) into (4.14)

GðtÞ ¼ 3KE�
9K � E�HðtÞ ¼ 3K

1
gþ

o=ot k1þk2ð Þ
k1k2

1
k1g
þ o=ot

k1k2

0
B@

1
CA 9K � 1

gþ
o=ot k1þk2ð Þ

k1k2

1
k1g
þ o=ot

k1k2

0
B@

1
CA
�1

HðtÞ

ð4:16Þ

and simplifying

GðtÞ ¼ 3Kk1k2

9Kk2 þ 9Kgo=ot � k1k2 � gk1
o=ot � gk2

o=ot
ð4:17Þ

which leads to the differential equation

_GðtÞ þ 9Kk2 � k1k2

9Kg� gk1 � gk2
GðtÞ ¼ 3Kk1k2

9Kg� gk1 � gk2
ð4:18Þ

whose solution, for the initial condition,

Gð0Þ ¼ 3KEð0Þ
9K � Eð0Þ ¼

3Kk1 þ k2

9K � k1 � k2
ð4:19Þ

is, after substituting g ¼ k2TE

GðtÞ ¼ 27K2k2

ð9K � k1 � k2Þð9K � k1Þ
e�

ð9K�k1Þt
ð9K�k1�k2ÞTE þ 3Kk1

9K � k1
ð4:20Þ

Then the relaxation time in shear is

TG ¼ �
9K � k1 � k2

9K � k1
TE ¼ 0:9899 ð4:21Þ

For comparison, the same problem will be solved in Chapter 5 using Laplace
transforms. These results will be used in Example 12.1.

4.3 Anisotropic Materials

4.3.1 Constitutive Relation for an Anisotropic Material

For the case of anisotropic materials, such as composites, the viscoelastic behavior
is more complex and characterized by creep or relaxation constitutive tensors
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which present a greater number of independent component functions. In general,
we can write the integral representation of an anisotropic linear viscoelastic
material in the form given in (4.1) or (4.2). Using Voigt notation, these general
constitutive relations can be written respectively as

riðtÞ ¼
R t

s0
Eijðt � sÞ oejðsÞ

os ds
with i; j ¼ 1; 2; . . .; 6

eiðtÞ ¼
R t

s0
Dijðt � sÞ orjðsÞ

os ds
ð4:22Þ

where EijðtÞ and DijðtÞ represent the relaxation and creep functions of the material,
respectively, eiðtÞ are the components of strain and riðtÞ are the components of
stress. Considering that the viscoelastic functions exhibit the same symmetry
presented by the components of the elastic stiffness or elastic compliance i.e.
EijðtÞ ¼ EjiðtÞand DijðtÞ ¼ DjiðtÞ; we conclude that in general an anisotropic vis-
coelastic material has 21 independent relaxation functions EijðtÞ or creep functions
DijðtÞ: This number is reduced in accordance to the material symmetry presented
by the material. For example, that number is 9 for an orthotropic material and is 2
for an isotropic material.

In the next section, we present a general procedure based on the state variables
approach for a general anisotropic linear viscoelastic material.

4.3.2 State Variables Representation

Upon integration by parts, Eq. (4.22)2 may be written

eiðtÞ ¼ Dijð0Þ rjðtÞ �
Z t

0

o

os
Dijðt � sÞ rjðsÞ ds ð4:23Þ

Approximating the creep functions by a Dirichlet–Prony series it can be written

Dijðt � sÞ ¼ D0
ij þ

XM
p¼1

Dp
ij 1� exp � t � s

h p
ij

 !" #
ð4:24Þ

where D0
ij; Dp

ij and hp
ij are parameters to be determined from experimental results.

M is the number of significant terms in the series and depends on the accuracy
desired. The parameters hp

ij are the retardation times. Substituting (4.24) into (4.23)

eiðtÞ ¼ Dijð0ÞrjðtÞ þ
XM

p¼1

Z t

0
dp

ijðt � sÞrjðsÞ ds ð4:25Þ
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where

dp
ij ¼

D p
ij

h p
ij

exp � t � s
hp

ij

 !
ð4:26Þ

and no summation takes place on i, j. Thus,

eiðtÞ ¼ Dijð0ÞrjðtÞ þ
XM
p¼1

X6

s¼1

q p
isðtÞ ð4:27Þ

where

qp
11ðtÞ ¼

Z t

0
dp

11ðt � sÞr1ðsÞ ds

qp
12ðtÞ ¼

Z t

0
dp

12ðt � sÞr2ðsÞ ds

. . .

qp
66ðtÞ ¼

Z t

0
dp

66ðt � sÞr6ðsÞ ds

ð4:28Þ

are the state variables [5]. The numerical integration is as it was discussed in
Chap. 3.
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Chapter 5
Laplace Transform Solutions

Laplace Transform is a useful tool in solving important problems in different areas
of science and engineering. Usually, it is employed to convert differential or
integral equations into algebraic equations, simplifying the problem solutions.
Particularly, in linear nonageing viscoelasticity, interesting applications have been
found for Laplace transform techniques. Many computational solutions are also
based on the use of Laplace transforms [10, 12]. As already mentioned, an
important task in viscoelasticity consists of determining relations between the
different constitutive viscoelasticity functions of a material [5, 9]. In this chapter,
we show procedures based on Laplace transforms that allow us to obtain relaxation
function given the corresponding creep function, or vice versa. Also, we show
equivalence conditions between the integral and differential representations of the
constitutive viscoelastic relations. In many practical situations, we know the creep
function, which is evaluated in uniaxial tension or compression tests, and we need
to determine the viscoelastic constitutive functions for multiaxial states of stress or
strain. This problem is also focused in the present chapter. Finally, using the
similarity between the mathematical formulations of the linear elastic and linear
viscoelastic mechanical problems in the Laplace domain, the Correspondence
Principle [2, 3] is stated and applied.

5.1 Relations Among Viscoelastic Constitutive Representations
and Functions

Let f ðtÞ be a function of a real variable t� 0: The Laplace transform of f ðtÞ is
defined by

Lff ðtÞg ¼ �f ðsÞ ¼
Z 1

0
e�stf ðtÞdt ð5:1Þ
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where s is the transform parameter which may be complex or real. The reader can
find more details about Laplace transform in, for instance, Myskis [4] and Wylie
and Barrett [11]. The main Laplace transform properties used here are presented in
Appendix A.

As we have seen earlier, the viscoelastic constitutive relations for an isotropic
material can be defined in integral form by (4.3). Each one of these relations
corresponds to a convolution of two functions (see Appendix A) as follows

sijðtÞ ¼ 2GðtÞ � oeijðtÞ
ot

r0ðtÞ ¼ 3KðtÞ � oe0ðtÞ
ot

ð5:2Þ

Applying the Convolution theorem to (5.2), we find the following algebraic
equations in the Laplace domain:

�sijðsÞ ¼ 2s�GðsÞ�eijðsÞ
�r0ðsÞ ¼ 3s�KðsÞ�e0ðsÞ ð5:3Þ

Similarly, for the constitutive relations (4.4), we have

�eijðsÞ ¼ s�DGðsÞ�sijðsÞ
�e0ðsÞ ¼ s�DKðsÞ�r0ðsÞ

ð5:4Þ

Through simple algebraic manipulation of (5.3) and (5.4), the following equations
involving Laplace transforms of the creep and relaxation functions are found:

2�GðsÞ ¼ 1
s2 �DGðsÞ

ð5:5Þ

3�KðsÞ ¼ 1
s2 �DKðsÞ

ð5:6Þ

These two equations are used to determine the relaxation functions GðtÞ and KðtÞ
being given the corresponding creep functions DGðtÞ and DKðtÞ; and vice versa.
For the uniaxial extensional case, we find a similar relation connecting the Laplace
transforms �DðsÞ and �EðsÞ of the creep function and relaxation function, respec-
tively, which is given by

�EðsÞ ¼ 1
s2 �DðsÞ ð5:7Þ

The constitutive relations of a linear viscoelastic material can also be defined by
the differential form given in (4.5). We now will show the connection among the
coefficients of this differential representation and the creep and relaxation func-
tions. The Laplace transforms of the terms of (4.5)1 can be written as
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L PGsij

� �
¼ L sij þ pG

1
osij

ot
þ pG

2
o2sij

ot2
þ � � � þ pG

m

omsij

otm

� �

L QGeij

� �
¼ L qG

0 eij þ qG
1

oeij

ot
þ qG

2
o2eij

ot2
þ � � � þ qG

n

oneij

otn

� � ð5:8Þ

Applying the rule of Laplace transform of derivatives (see Appendix A) and
considering that the functions sijðtÞ and eijðtÞ; as well as their derivatives with
respect to time, vanish at t� s0; the following equation in the Laplace domain can
be found:

�PGðsÞ�sijðsÞ ¼ �QGðsÞ�eijðsÞ ð5:9Þ

where �PGðsÞ and �QGðsÞ are polynomials in s associated to the differential operators
PG and QG; respectively, given by

�PGðsÞ ¼ pG
0 þ pG

1 sþ pG
2 s2 þ � � � þ pG

msm

�QGðsÞ ¼ qG
0 þ qG

1 sþ qG
2 s2 þ � � � þ qG

n sn
ð5:10Þ

Similarly, for the constitutive relation defined by (4.5)2, it can be shown that

�PKðsÞ�r0ðsÞ ¼ �QKðsÞ�e0ðsÞ ð5:11Þ

with

�PKðsÞ ¼ pK
0 þ pK

1 sþ pK
2 s2 þ � � � þ pK

l sl

�QKðsÞ ¼ qK
0 þ qK

1 sþ qK
2 s2 þ � � � þ qK

r sr
ð5:12Þ

Comparing (5.3) with (5.9) and (5.11) we obtain the relations

2�GðsÞ ¼ 1
s

�QGðsÞ
�PGðsÞ ð5:13Þ

3�KðsÞ ¼ 1
s

�QKðsÞ
�PKðsÞ ð5:14Þ

which state the equivalence conditions between the integral and differential
representations of the constitutive viscoelastic relations.

Similarly, using (5.4), (5.9) and (5.11), we have

�DGðsÞ ¼ 1
s

�PGðsÞ
�QGðsÞ ð5:15Þ

�DKðsÞ ¼ 1
s

�PKðsÞ
�QKðsÞ ð5:16Þ
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These last equations are alternative conditions to state the equivalence between the
differential and integral forms.
Example 1 Determine the relaxation function in shear for a standard solid model
being given its corresponding creep function as follows

DGðtÞ ¼
1

2G1
þ 1

2G2
1� exp � t

h

� �h i
with h¼g=G2 ð5:17Þ

From Table A.1, the Laplace transform of (5.17) is given by

�DGðsÞ ¼
1

2G1
þ 1

2G2

� 	
1
s
� 1

2G2

1
1
hþ s

 !

and, substituting this equation in (5.5), we find the Laplace transform of the
relaxation function

�GðsÞ ¼ 1þ hs

s 1
2G1
þ 1

2G2
þ hs

2G1

� � ð5:18Þ

Applying the partial fraction expansion technique [6], we write (5.18) as

�GðsÞ ¼ A

s
þ B

1
2G1
þ 1

2G2
þ hs

2G1

� � ¼ A 1
2G1
þ 1

2G2

� �
þ A h

2G1
þ B

� �
s

s 1
2G1
þ 1

2G2
þ hs

2G1

� � ð5:19Þ

Comparing the second members of (5.18) and (5.19), the following expressions are
obtained:

A
1

2G1
þ 1

2G2

� 	
¼ 1 A

h
2G1
þ B ¼ h

and by solving this system of equations, we have

A ¼ 2G1G2

G1 þ G2
; B ¼ G1h

G1 þ G2

Substituting these equations in (5.19), we find the Laplace transform of the
relaxation function

�GðsÞ ¼ 2G1G2

G1 þ G2
þ 2G2

1

G1 þ G2

1
G1þG2

G2h
þ s

 !
ð5:20Þ

Using Table A.1 to transform (5.20) to time domain, we find the following
relaxation function in shear for the material:

GðtÞ ¼ 2G1G2

G1 þ G2
þ 2G2

1

G1 þ G2
exp � t

T

� �
ð5:21Þ
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where T ¼ g=ðG1 þ G2Þ: It is worth noting that the relaxation function corre-
sponding to the pair ðsij; eijÞ is 2GðtÞ:
Example 2 Find the coefficients of the differential constitutive equation for a
material that is elastic in dilatation and shows a viscoelastic behavior in shear,
defined by a standard model, being given its relaxation function.

The differential constitutive relations for such a material can be defined by (see
Sect. 4.2)

r0 ¼ 3Ke0 in dilatationð Þ

pG
0 sij þ pG

1
osij

ot
¼ qG

0 eij þ qG
1

oeij

ot
in shearð Þ

ð5:22Þ

From (5.13), and applying the partial fraction expansion technique, we have

2�GðsÞ ¼ qG
0 þ qG

0 s

sð1þ pG
1 sÞ ¼

A

s
þ B

1þ pG
1 s
¼ Aþ ðApG

1 þ BÞs
sð1þ pG

1 sÞ

which allows to conclude that

A ¼ qG
0 B ¼ qG

1 � qG
0 pG

1

Thus,

2�GðsÞ ¼ qG
0

s
þ qG

1 � qG
0 pG

1

1þ pG
1 s
¼ qG

0

s
þ qG

1 � qG
0 pG

1

pG
1

1
1

pG
1
þ s

Using Table A.1 to transform this equation to time domain, we obtain

2GðtÞ ¼ qG
0 þ

qG
1

pG
1

� qG
0

� 	
exp � t

pG
1

� 	
ð5:23Þ

Comparing (5.23) with (5.21), we have

pG
1 ¼ T ¼ g

G1 þ G2
qG

0 ¼
4G1G2

G1 þ G2
qG

1 ¼
4G1g

G1 þ G2
ð5:24Þ

which, together with pG
0 ¼ 1; are the coefficients of the differential constitutive

representation in shear for the standard model.
Example 3 Consider an isotropic material whose behavior is elastic in bulk and
viscoelastic in shear. The extensional axial creep function for this material is given
by

DðtÞ ¼ d1 þ d2 expð�t=hÞ ð5:25Þ

Suppose that, in order to analyze a problem using a computer program (for
instance, Abaqus), we need to provide the elastic constants E and m; as well as the
viscoelastic functions GðtÞ and KðtÞ: In this case, as the material is elastic in
dilatation, KðtÞ is constant and can be obtained directly as function of E and m (see
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Appendix B). We need then to determine GðtÞ from the known extensional axial
creep function.

To solve this question we will initially obtain the extensional axial relaxation
using the relation between creep function and relaxation function in the Laplace
domain (Eq. (5.7)).

The Laplace transform of (5.25) is given by

�DðsÞ ¼ d1

s
þ d2

1
1
hþ s

 !

Introducing this equation into (5.7), we have

�EðsÞ ¼ 1þ hs

s d1 þ d1 þ d2Þhsð Þ½ �

whose inverse is the extensional uniaxial relaxation

EðtÞ ¼ k1 þ k2 expð�t=TÞ ð5:26Þ

where k1 ¼
1
d1
; k2 ¼ �

d2

d1ðd1 þ d2Þ
and T ¼ d1þd2

d1
h:

Now, considering the material subjected to a uniaxial loading in direction 1 and
using (2.5), we can write

r11ðtÞ ¼
Z t

0
Eðt � sÞ oe11

os
ds ð5:27Þ

If the problem is decomposed in its spherical and deviator parts, we can easily
obtain the relations

r11ðtÞ ¼
Z t

0
3Gðt � sÞ oe11

os
ds ð5:28Þ

r11ðtÞ ¼
Z t

0
9Kðt � sÞ oeo

os
ds ð5:29Þ

where e11 ¼ 2ðe11 � e22Þ=3 and eo ¼ ðe11 þ 2e22Þ=3. Using the Convolution the-
orem, the Laplace transforms of (5.27)–(5.29) are given, respectively, by

�r11ðsÞ ¼ s�EðsÞ�e11ðsÞ ð5:30Þ

�r11ðsÞ ¼ 2s�GðsÞ �e11ðsÞ � �e22ðsÞ½ � ð5:31Þ

�r11ðsÞ ¼ 3s�KðsÞ �e11ðsÞ þ 2�e22ðsÞ½ � ð5:32Þ

After a simple algebraic handling of (5.30)–(5.32), we find the relation

�GðsÞ ¼ 3�KðsÞ�EðsÞ
9�KðsÞ � �EðsÞ ð5:33Þ
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This equation could be obtained directly by using the Correspondence Principle
presented in Sect. 5.2.

Through (5.26) and considering KðtÞ ¼ K; we have

�EðsÞ ¼ k1

s
þ k2

1
1
T þ s

�KðsÞ ¼ K

s
ð5:34Þ

Substituting (5.34) in (5.33), we obtain the relation

�GðsÞ¼3Kk1

1
T
þs

s 9K�k1
T þ 9K�k1�k2ð Þs

h iþ3Kk2
1

9K�k1
T þ 9K�k1�k2ð Þs

ð5:35Þ

Applying the partial fraction expansion technique, (5.35) can be written in the
form

�GðsÞ¼3Kk1
A

s
þ B

9K�k1
T þ 9K�k1�k2ð Þs

� �
2
64

3
75þ3Kk2

1
9K�k1

T þ 9K�k1�k2ð Þs

ð5:36Þ

where A ¼ 1
9K � k1

and B ¼ k2

9K � k1
. Using Table A.1, we obtain from (5.36) the

following relaxation function in shear

GðtÞ ¼ 27K2k2

9K � k1 � k2ð Þ 9K � k1ð Þ exp � 9K � k1

9K � k1 � k2

t

T

� 	
þ 3Kk1

9K � k1
ð5:37Þ

5.2 Correspondence Principle

In general, the mechanical behavior of a body must satisfy the motion equations,
kinematic relations and constitutive equations. In this set of three types of different
equations, only the constitutive relations are dependent on the material of which
the body is made. Then, the mathematical formulation of a mechanical problem for
a viscoelastic body is similar to that of an elastic body with the same geometry and
subjected to identical boundary conditions, the only difference being the consti-
tutive relations. The mechanical problem of a linear viscoelastic body with volume
V and boundary surface S subjected to volume forces bi; is defined by the fol-
lowing equations:

(a) Equilibrium equations (motion equations)

orij

oxj
þ bi ¼ 0 ð5:38Þ
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(b) Strain-displacement relations (kinematic equations)

eij ¼
1
2

oui

oxj
þ ouj

oxi

� 	
ð5:39Þ

(c) Constitutive relations

PGsij ¼ QGeij

PKr0 ¼ QKe0

ð5:40Þ

(d) Boundary conditions

ui ¼ bui on Su

rijnj ¼ bti on S� Su
ð5:41Þ

where nj are the components of the outward-directed unit vector normal to Su with
initial conditions

ui ¼ u0
i for t ¼ t0 ð5:42Þ

The Laplace transforms of the equations given by the conditions (a)–(d) yield
the following relations:

(a.1)

o�rijðsÞ
oxj

þ �biðsÞ ¼ 0 ð5:43Þ

(b.1)

�eijðsÞ ¼
1
2

o�uiðsÞ
oxj

þ o�ujðsÞ
oxi

� 	
ð5:44Þ

(c.1)

�PGðsÞ�sijðsÞ ¼ �QGðsÞ�eijðsÞ
�PKðsÞ�r0ðsÞ ¼ �QKðsÞ�e0ðsÞ

ð5:45Þ

(d.1)

�uiðsÞ ¼ �̂uiðsÞ on Su

�rijðsÞnj ¼ �̂tiðsÞ on S� Su

ð5:46Þ

Comparing the conditions (a.1)–(d.1) with the governing field equations of
linear elasticity, it can be concluded that they describe a fictitious quasi-static
linear elastic problem defined by volume forces �biðsÞ; prescribed displacement
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�̂uiðsÞ on Su and external tractions �̂tiðsÞ on S� Su and elastic constants �QGðsÞ



�PGðsÞ
and �QKðsÞ=�PKðsÞ:

If the field variables �uiðsÞ and �rijðsÞ of this fictitious linear elastic problem can be
obtained, then their inverse Laplace transforms uiðtÞ and rijðtÞ represent the dis-
placement and stress fields of the viscoelastic problem, respectively. In other words,
if the solution of the elastic problem is known, then the Laplace transform of the
solution corresponding to the viscoelastic problem can be obtained by replacing the
elastic constants 2G and 3K by the operator polynomial fractions �QGðsÞ



�PGðsÞ and

�QKðsÞ=�PKðsÞ; respectively, and the loads by their Laplace transforms. This analogy
between elastic and viscoelastic problems is known as Correspondence Principle.

It is worth to notice that this principle cannot be used if the interface between
the regions Su and S� Su depends on time.
Example 4 Determine the viscoelastic operator polynomial fractions corre-
sponding to Young modulus E and Poisson ratio m.

For an isotropic linear elastic material, one can obtain the relations

E ¼ 9KG

3K þ G
m ¼ 3K � 2G

6K þ 2G
ð5:47Þ

Introducing the operator polynomial fractions corresponding to G and K into these
equations, the following relations can be found

E !
3
2

�QK

�PK
�

�QG

�PG

�QK

�PK þ 1
2

�QG

�PG

¼ 3�QK �QG

2�QK �PG þ �QG�PK
ð5:48Þ

m!

�QK

�PK
�

�QG

�PG

2
�QK

�PK þ
�QG

�PG

¼
�PG �QK � �PK �QG

2�PG �QK þ �PK �QG
ð5:49Þ

For the sake of simplification the variable s was omitted in these relations.
Example 5 Using Laplace transformation method, to determine the solution of the
problem consisting of a linear viscoelastic thick-walled long cylinder subjected to
an internal pressure p as shown in Fig. 5.1. The material is assumed as elastic in
dilatation and viscoelastic in shear with a behavior defined by (a) standard solid
model and (b) Zener model.

Considering plane strain state and linear elastic material, the stress and radial
displacement fields are found by the theory of elasticity as follows [7]

rr ¼
pb2

a2 � b2
1� a2

r2

� 	
ð5:50Þ

rh ¼
pb2

a2 � b2
1þ a2

r2

� 	
ð5:51Þ
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u ¼ ð1þ mÞpb2

Eða2 � b2Þ 1� 2mð Þr þ a2

r

� �
ð5:52Þ

Substituting the expressions (5.47) into (5.52), we find the following equivalent
equation for the radial displacements

u ¼ pb2

2Gða2 � b2Þ
3G

3K þ G
r þ a2

r

� �
ð5:53Þ

As the radial and transversal stresses do not depend on the elastic constants, the
equations (5.50) and (5.51) are also valid for the viscoelastic cylinder. Replacing 2G
and 3 K by their corresponding polynomial fractions �QGðsÞ



�PGðsÞ and

�QKðsÞ=�PKðsÞ; respectively, in (5.53), we obtain the Laplace transform for the radial
displacement of the associated viscoelastic problem as follows

�u ¼ �pb2

ða2 � b2Þ
�PG

�QG

3�PK �QG

2�PG �QK þ �PK �QG
r þ a2

r

� 	
ð5:54Þ

If the material is linear elastic in dilatation and viscoelastic in shear with behavior
described by a standard solid model or Zener model, its polynomials can be written as

�PKðsÞ ¼ 1 �QKðsÞ ¼ 3K

�PGðsÞ ¼ 1þ pG
1 s �QGðsÞ ¼ qG

o þ qG
1 s

ð5:55Þ

Assuming pðtÞ ¼ pHðtÞ; its Laplace transform is �pðsÞ ¼ p

s
: Substituting the

polynomials (5.55) in (5.54), we obtain

�u ¼ pb2

ða2 � b2Þ
3ð1þ pG

1 sÞr
s 6K þ qG

0 þ ð6KpG
1 þ qG

1 Þs
 �þ a2

r

1þ pG
1 s

sðqG
0 þ qG

1 sÞ

( )
ð5:56Þ

Through the partial fraction expansion technique, (5.56) can put in the form

Fig. 5.1 Thick-walled
cylinder subjected to internal
pressure
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�u ¼ pb2

ða2 � b2Þ 3r
A

s
þ B

6K þ qG
0 þ ð6KpG

1 þ qG
1 Þs

� �
þ a2

r

C

s
þ D

qG
0 þ qG

1 s

� 	� �

ð5:57Þ

where

A ¼ 1


ð6K þ qG

o Þ; B ¼ ðqopG
1 � qG

1 Þ


ð6K þ qG

o Þ;
C ¼ 1



qG

o ; D ¼ pG
1 � qG

1



qG

o :

The solution for the radial displacements of the viscoelastic cylinder can be easily
obtained using Table A.1 to invert the Laplace transform (5.57). Hence, the
following general equation for the radial displacements for both models is found

u ¼ pb2

ða2 � b2Þ 3r
1

6K þ qG
o

þ pG
1

6KpG
1 þ qG

1

� 1
6K þ qG

o

� 	
exp � 6K þ qG

o

6KpG
1 þ qG

1

t

� 	� ��

þ a2

qG
o r

1þ qG
o

qG
1

pG
1 � 1

� 	
exp � qG

o

qG
1

t

� 	� ��
ð5:58Þ

Introducing the parameters of the considered model into (5.58), we have the radial
displacement solution. The parameters of the standard model are given in (5.24),
with pG

0 ¼ 1; and those for the Zener model are

pG
o ¼ 1 pG

1 ¼
g

G2
qG

o ¼ 2G1 qG
1 ¼

2g
G2
ðG1 þ G2Þ ð5:59Þ

From the limit theorems presented in Appendix A we can obtain the radial dis-
placement uð0Þ and uð1Þ using the Laplace transform �uðsÞ given in (5.56). For
instance, the second limit theorem states that lim

s!0
s�uðsÞ ¼ uð1Þ: Applying this

result to (5.56), we can easily obtain

u 1ð Þ ¼ pb2

ða2 � b2Þ
3r

6K þ qG
o

þ a2

qG
o r

� 	
ð5:60Þ

that is in accordance with (5.58).

5.3 Numerical Inversion of Laplace Transform

In problems presented above we have used an analytical procedure, the partial
fraction expansion method, to invert the Laplace transforms. However, in many
cases of practical interest that inversion cannot be easily obtained and, then, we
need to use numerical tools to do it. This can be considered as a weakness of the
Laplace transform techniques. On the other hand, in many problems the elastic
solutions are known only in a numerical form and, for these cases, the application
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of the correspondence principle requires the use of numerical tools to obtain their
associated viscoelastic solutions.

In this section, we present a numerical procedure to obtain the inverse function
of a Laplace transform, which is particularly appropriate to apply in linear
viscoelasticity problems when the analytical solutions for that inversion are not
available. This procedure was firstly presented by Schapery [8] and is known as the
Collocation Method.

Suppose the function f ðtÞ in (5.1) can be approximate by a Dirichlet-Prony
series with N terms, as follows,

fAðtÞ ¼
XN

j¼1

Xj exp � t

tj

� 	
ð5:61Þ

where Xj are unknown coefficients and tj are discrete times conveniently selected.
fAðtÞ indicates an approximation for the function f ðtÞ:

The total square error between those functions is defined by

D ¼
Z 1

0
f ðtÞ � fAðtÞ½ �2dt ð5:62Þ

To minimize this total square error with respect to the unknown coefficients in
(5.61), we impose the following N conditions

oD
oXi
¼
Z 1

0
2 f tð Þ � fAðtÞ½ � � ofAðtÞ

oXi

� �
dt ¼ 0 with i ¼ 1; 2; . . .N ð5:63Þ

Introducing (5.61) into (5.63), we obtain

Z 1
0

f ðtÞ exp � t

ti

� 	
dt �

XN

j¼1

Xj

Z 1
0

exp � 1
ti
þ 1

tj

� 	
t

� �
dt ¼ 0

or, noting that the first term is the Laplace transform of f ðtÞ at s ¼ 1=ti e solving
the second integral,

XN

j¼1

Xj
titj

ti þ tj
¼ �f ðsÞ

��
s¼1

ti

ð5:64Þ

Using indicial notation, (5.64) can be compactly written as

KijXj ¼ �fi ð5:65Þ

where

Kij ¼
titj

ti þ tj
; �fi ¼ �f ðsÞ

��
s¼1

ti

ð5:66Þ
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Equation (5.65) represents a linear set of N equations with N unknowns ðXjÞ: With
the N values tk selected and with the values of the Laplace transform of f ðtÞ for
s ¼ 1=tk; the coefficients appearing in (5.61) can be determined by solving the
linear system of equations (5.65) and, then, we have the approximated function
fAðtÞ: An alternative approach to the above procedure can be found in Barbero [1].
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Chapter 6
Temperature Effect

The viscoelastic constitutive relations presented so far were developed under the
hypothesis of isothermal conditions. However, most viscoelastic materials, par-
ticularly polymers, have temperature dependent constitutive relations. The
mechanisms responsible for these thermal effects have micro-structural origin and
are, consequently, complex. In this chapter we present a brief description on
temperature effects on the linear viscoelasticity behavior of polymers and concrete
and a simplified formulation that is adequate for the so called thermo-rheologically
simple materials.

6.1 Linear Thermoviscoelasticity

In the following, we use Voigt notation for tensors. The total strain of a solid
subjected simultaneously to a mechanical loading and a temperature change can be
assumed as composed by two parts, as follows:

eiðtÞ ¼ eM
i ðtÞ þ eT

i ðtÞ ð6:1Þ

where ei
M and ei

T are the mechanical and thermal strains, respectively. In this case,
for a linear viscoelastic solid, the constitutive relation can be written as

eiðtÞ ¼
Z t

s0

Dijðt � s;HÞ orjðsÞ
os

dsþ eT
i ðtÞ ð6:2Þ

or, alternatively,

riðtÞ ¼
Z t

s0

Eijðt � s;HÞ
o ejðsÞ � eT

j ðsÞ
h i

ðsÞ
os

ds ð6:3Þ
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being H the temperature, which can be constant or variable with time. Then, the
creep and relaxation functions depend on both time and temperature. The thermal
strain component is given by

eT
i ðtÞ ¼ aiDHðtÞ ð6:4Þ

where, in general, the thermal expansion coefficients of the material ai, (i = 1, 2,
…, 6), can be represented as the components of the vector a = {a11, a22, a33, a12,
a13, a23}. For the principal directions of an orthotropic material, the last three
components of this vector are null, meaning that the temperature causes only
normal strains. In case of isotropic materials, a11 = a22 = a33 = a and
a12 = a13 = a23 = 0. In (6.4), DH is the temperature variation with respect to the
initial strain-free temperature.

The thermal expansion coefficients may also depend on temperature H. For
most materials, subjected to temperature in the usual range of structural applica-
tions, coefficients ai can be assumed as approximately linear functions of tem-
perature H [10]. In this case the thermoviscoelastic formulation is nonlinear.

6.2 Temperature Effects in Polymers

The thermoviscoelastic behavior of polymers is related to molecular rearrange-
ments under stress whose speed depends on temperature [11]. In general, the
polymers may present different molecular transitions, the most important being the
rubber-glass transition defined by the glass-transition temperature Tg.

At a temperature above Tg an amorphous polymer exhibits high rates of
deformation, behaving like a rubber, i.e. presenting large, practically instantaneous
and fully reversible strains when subjected to mechanical loads. On the other hand,
at temperature below Tg the polymer presents low deformation. In this case, the
material behaves like a glass, exhibiting instantaneous and reversible strain and
brittle fracture. For a range of intermediate temperatures near Tg the polymer has a
behavior that consists of a combination of those exhibited in the glassy and rub-
bery regimes.

Figure 6.1 shows a typical curve that represents the variation of a relaxation
modulus E, for an amorphous polymer, versus temperature in the three cases. As
shown in this figure, for the glassy and rubbery regimes the modulus is not sen-
sitive to temperature variations while in the viscoelastic regime it is strongly
dependent on temperature.

Each molecular transition is associated with a relaxation mechanism. Some
materials exhibit only one dominant molecular transition: these are thermorhe-
ologically simple materials. Many amorphous polymers behave as thermorhe-
ologically simple [18]. For these materials, a temperature change results in an
horizontal shift of the viscoelastic function (creep or relaxation) when plotted
against log t as abscissa (see Fig. 6.2). On the other hand, some materials present
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two or more molecular transitions and relaxation mechanisms. Their behavior is
thermorheologically complex. More details about polymer properties and behavior
can be found in Ferry [9], Callister Jr [8], Brinson and Brinson [7].

6.3 Thermorheologically Simple Materials

To verify if a material belongs to this class, we must perform a set of creep or
relaxation tests at different temperatures and plot the results using a logarithm time
scale. If the curves can be superposed by a horizontal shift to form a master curve,
the material is considered thermorheologically simple [12]. This procedure is very
useful to obtain long term results using short term tests.

6.3.1 Time-Shifting Factor

Let us consider the creep curves in Fig. 6.2. At a reference temperature H0 we
have a creep function Dðt � s;H0Þ. Making a change of variables, i.e., using a
decimal logarithmic scale for time, the creep function can be written as

Dðt � s;H0Þ ¼ L logðt � sÞð Þ ð6:5Þ

and, for temperature H,

Dðt � s;HÞ ¼ L logðt � sÞ � uðHÞð Þ ð6:6Þ

with uðH0Þ ¼ 0 and ouðHÞ=oH\0. Writing uðHÞ ¼ log aTðHÞ, we have now

Fig. 6.1 Typical variation of
a polymer relaxation modulus
versus temperature
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Dðt � s;HÞ ¼ L log
t � s

aTðHÞ

� �
¼ L logðn� n0Þð Þ ¼ Dðn� n0;H0Þ ð6:7Þ

where n ¼ t=aTðHÞ and n0 ¼ s=aTðHÞ are the reduced times. The function aTðHÞ
is called shift factor [19].

The relation between real and reduced time, i.e., aTðHÞ, is obtained experi-
mentally from creep or relaxation tests as shown in Fig. 6.2. For temperature near
or above the glass transition temperature, Williams et al. [19] proposed an
empirical formula, known as WLF (William–Landel–Ferry) equation

log aT ¼
�C1ðH�Href Þ
C2 þHþHref

ð6:8Þ

where C1 and C2 are material constants dependent on the chosen reference tem-
perature Href . When Href ¼ Tg; it has been proposed that C1 and C2 assume the
‘‘universal’’ values C1 = 17.4 and C2 = 51.6, which are applicable to a wide
range of polymers.

For the case of transient temperature conditions, Morland and Lee [14] pro-
posed the following equation for the reduced time:

nðtÞ ¼
Z t

0

1
aT HðsÞð Þds ð6:9Þ

where s is an arbitrary real variable in the interval [0, t].

6.3.2 Real Time Behavior

We saw in Chap. 3 that the behavior of a linear viscoelastic material may be
represented by a Kelvin chain. Thus, consider a Kelvin element for which the
creep function at a reference temperature H0 is given by (2.21)

Fig. 6.2 Creep curves at two
different temperatures for a
thermorheologically simple
material; aT is the time shift
factor
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Dðt � s;H0Þ ¼
1
E

1� exp � t � s
h

� �h i
; h ¼ g=E ð6:10Þ

For a temperature H; in accordance with (6.7), the creep function can be written
as

Dðt � s;HÞ ¼ L logðt � sÞ � uðHÞð Þ ¼ 1
E

1� exp � n� n0

h

� �� �
ð6:11Þ

where n ¼ t=aTðHÞ and n0 ¼ s=aTðHÞ are the reduced times. Using the real time,
we have then

Dðt � s;HÞ ¼ 1
E

1� exp � t � s

ĥ

� �� �
ð6:12Þ

with ĥ ¼ aTðHÞh. This situation corresponds to a Kelvin element with

EðHÞ ¼ EðH0Þ ¼ constant

gðHÞ ¼ aTðHÞgðH0Þ

This example shows the characteristics of the hypothesis of thermo-rheological
simplicity:

(1) time shifting modifies retardation or relaxation times, but not the value of the
final deformations;

(2) the procedure is still valid when we have more than one element in the Kelvin
chain (or Maxwell chain) as long as all of them depend in the same form on
temperature, but if temperature dependence is different in each element, the
response is not thermo-rheologically simple. Thus, materials in which the
relaxation time is dominated by one thermally activated process will be
thermorheologically simple, but if there are multiple relaxation mechanisms,
each with its own dependence on temperature, the material will not be ther-
morheologically simple [16, 17].

(3) the thermorheologically simple condition implies that the material dependence
on temperature is governed only by the single temperature function aTðHÞ [15].

6.3.3 Anisotropic Materials

For an anisotropic thermorheologically simple material, the viscoelastic functions
and consequently the reduced times, depend on the direction. In this case, the creep
functions at a base temperature H0 may be in general written in the form

Dijðt � s;H0Þ ¼ Lij logðt � sÞð Þ ð6:13Þ
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and for a temperature H

Dijðt � s;HÞ ¼ Lij logðt � sÞ � uijðHÞ
� 	

ð6:14Þ

with uijðH0Þ ¼ 0 and ouijðHÞ


oH\0: Introducing shift factors aT

ijðHÞ; we have

Dijðt � s;HÞ ¼ Dijðnij � n0ij;H0Þ ð6:15Þ

being nij ¼ t
.

aT
ijðHÞ and n0ij ¼ s

.
aT

ijðHÞ reduced times.

6.4 Thermo-Rheologically Complex Materials

As mentioned in Sect. 6.2, the polymer materials can present different molecular
transitions which correspond to distinct characteristic temperature dependence.
When the polymer exhibits a single molecular process, it behaves as a thermo-
rheologically simple material (Sect. 6.3). In contrast, if the polymer presents two
or more active molecular processes, each one of them is associated with a different
shifting implying a thermorheologically complex behavior. In this case, the
superposition or fit of viscoelastic functions at different temperature values, plotted
against time logarithm scale, usually requires horizontal and vertical shifts and
eventually rotations. Barbero [3] presents a methodology to predict long-term
creep of polymeric composite laminates from short-term constituent data from
which the matrix is modeled as a thermorheologically complex material with time-
dependent horizontal and vertical shift factors. This model is validated by
experimental results.

A procedure also used to describe the thermorheologically complex behavior of
linear viscoelastic polymers consists of separating the contributions corresponding to
the different molecular transitions. In this context, the polymer behavior can be
represented by assemblages of springs and dashpots connected in series or in parallel,
like those generalized models shown in Chap. 2, considering separated contributions
from the molecular processes. If we indicate by a and b two distinct molecular
transitions, the generalized Maxwell model shown in Fig. 6.3 can be used to rep-
resent the polymer behavior [11]. This rheological model is constituted of nþ m
Maxwell element units, where n and m indicate the number of these units referred to
the molecular transition a and b; respectively. A generalized Kelvin representation
can also be employed to model the same complex behavior (see [11].

For the generalized Maxwell model shown in Fig. 6.3, the relaxation function is
defined by

EðtÞ ¼
Xm

i¼1

Ea;i exp � t

Ta;i

� �
þ
Xn

j¼1

Eb;j exp � t

Tb;j

� �
ð6:16Þ

where the relaxation times Ta;i ¼ ga;i



Ea;i and Tb;j ¼ gb;j



Eb;j.
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6.5 Temperature Effects in Concrete

Concrete is a material that at work stresses behaves as linear viscoelastic. How-
ever, its behavior is complex because of two additional effects: aging and
shrinkage. Creep in concrete can be divided into basic creep and drying creep.
Basic creep occurs without moisture movement to or from the environment
whereas drying creep is caused by drying. The primary mechanism responsible for
the creep and relaxation of concrete is considered as the activation energy in
cement paste. Long-term applied stress exceeds the activation energy limit of the
material and triggers the breaking of the bond in cement paste which leads to long-
term deformation [4]. At room temperature conditions and low stress level, the
creep strain for a stress r0 applied at time s0 can be evaluated by

eðt; s0Þ ¼ Dðt; s0Þr0 ¼
1

E0
1þ /ðt; s0Þ½ �r0 ð6:17Þ

where D(t, s0) indicates the concrete creep function, /(t, t0) is the creep coefficient
and E0 is the reference Young modulus. In this case, the creep function does not
depend on stress and thus, the strain at time t is proportional to the value of r0.
Under this condition, the linear viscoelasticity theory may be applied. In the
current design practice, such linearity is assumed for stress levels below 50% of
the strength limit.

Usually, temperature accelerates the creep process in concrete. When the
temperature level is not too high, it is possible that the material creep mechanism
continues being that one corresponding to room temperature. In this situation, the
creep function depends on temperature and the creep process is accelerated, but its
mechanism is not altered. So, according to Bazant and Kaplan [4], the same creep
function obtained at room temperature could be used together with an accelerated
time scale derived from Arrhenius equation. This means that under such conditions
of temperature concrete obeys a time–temperature equivalence relation. However,
for concrete, in general, a temperature variation implies horizontal and vertical
shifts, as well as rotation, of the creep curve [2]. Consequently, concrete does not
behave as a thermorheologically simple material.

In contrast, for higher temperatures the creep mechanism is changed and the
creep function becomes dependent on both temperature and stress. Under this

Fig. 6.3 Generalized
Maxwell model for a
thermorheologically complex
material
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elevated temperature conditions, the stress dependency of the creep function may
occur even in very low stress levels and the idea of using an accelerated time scale
applied to the room temperature creep function cannot be employed. More details
about creep in concrete may be found in Arthananari and Yu [1], Marechal [13]
and Bažant and Kim [5, 6].
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Chapter 7
Materials with Aging

We call aging the change in the mechanical properties of a given material with age
which is the time period between some origin more or less arbitrarily established
and the time of observation. Concrete is a material that may be used as an
example: from the moment of casting (taken usually as age zero) it begins to
increase its strength and to decrease its deformability. In the case of polymers both
physical (reversible) and chemical (irreversible) aging are observed. In the present
chapter we introduce the equations for viscoelasticity with aging for situations in
which compliance diminishes (‘‘hardening’’) and for situations in which compli-
ance increases (‘‘softening’’) with age in integral form and through rheological
models and state variables equations. The time-age equivalence model applied to
the physical aging of polymers is also discussed.

7.1 Experimental Results

The function D(t, s) for concrete has the form indicated in Fig. 1.5. The aging of
concrete may be classified as chemical because it is due to a progressive hydration
process during a period of several months after casting and is irreversible [2, 5].
Figure 7.1 shows results for physical aging of a polymer, which is temperature
driven and reversible. PVC specimens were quenched from 90 to 40�C and tested
at the lower temperature at different times.

Sometimes, the concept of aging involves other influences in addition to time.
Environmental conditions are also important: for concrete, humidity and temper-
ature; for polymers, temperature, humidity and UV radiation in the case of
chemical aging.
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7.2 Viscoelastic Aging Formulation

A general relation for a linearly viscoelastic aging material can be written in the
history-dependent (uniaxial) form

eðtÞ ¼
Z t

s0

Dðt; sÞ _rðsÞds ¼ rðtÞ
EðtÞ �

Z t

s0

oDðt; sÞ
os

rðsÞds ð7:1Þ

D(t, s) is the response to a unit stress r(t) = H(t - s) applied at time s, D(t, s)
has instantaneous and deferred components, whose separation is a matter of
convention to be discussed in each case. For nonaging viscoelastic materials it is

Dðt; sÞ ¼ Dðt � sÞ ¼ 1
E
þ Cðt � sÞ ð7:2Þ

For aging materials two situations must be considered. The first one corre-
sponds to materials that reduce their compliance with age because of the for-
mation of new bonds. In this case it is written

Dðt; sÞ ¼ 1
EðsÞ þ Cðt; sÞ ð7:3Þ

with qE(s)/qs[ 0 and qC(t, s)/ qs\ 0. The instantaneous part in the creep
compliance is a function of the delayed time s as the new bonds are initially
unstressed and only react to incremental loads. In absence of creep, C(t, s) = 0,
substitution of (7.3) into (7.1) yields

eðtÞ ¼
Z t

s0

1
EðsÞ _rðsÞds ð7:4Þ

Fig. 7.1 Tensile creep
curves for rigid PVC
quenched from 90�C (about
10�C above Tg) to 40�C and
aged at 40�C for a period of
4 years. The curves were
obtained at the different aging
times shown [6]
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or, in rate form,

_eðtÞ ¼ _rðtÞ
EðtÞ ð7:5Þ

For materials whose stiffness degrades with age because of the rupture of
existing links, the instantaneous part is a function of the current time t

Dðt; sÞ ¼ 1
EðtÞ þ Cðt; sÞ ð7:6Þ

with qE(t)/q t \ 0 and oCðt; sÞ=ot [ 0: For C(t, s) = 0,

eðtÞ ¼ rðtÞ
EðtÞ ð7:7Þ

or, in rate form

_eðtÞ ¼ _rðtÞ
EðtÞ �

rðtÞ _EðtÞ
EðtÞ½ �2

ð7:8Þ

The concepts above may be extended to 3-D situations. For the case of isotropic
materials, we have

eijðtÞ ¼
Z t

s0

DGðt; sÞ_sijðsÞdsþ dij

Z t

s0

DKðt; sÞ _r0ðsÞds ð7:9Þ

Where DG(t, s) and DK(t, s) are shear and volumetric creep functions respectively.
For an anisotropic model for plates and shells case we have [7]

eiðtÞ ¼
Z t

0
Dijðt; sÞ

orjðsÞ
os

ds ði; j ¼ 1; 2; . . .; 5Þ ð7:10Þ

where the composite is modelled as linear viscoelastic, with orthotropic symmetry.
Then ei(t) are the components of the strain vector {e} = {e11, e22, 2e12, 2e13, 2e23}
and rj(t) are the components of the stress vector {r} = {r11, r22, r12, r13, r23},
at time t. Components e33 and r33 are not considered. Dij(t, s) are the creep
functions corresponding to components ei and rj.

7.3 Rheological Models with Time Variable Parameters

Rheological models with time-dependent (or age-dependent) parameters have been
proposed to represent the behavior of aging materials and are useful as they
provide a physically intuitive representation.
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Elastic model: The stress–strain relation for a spring with variable modulus
E(t) depends on the stress history. In the case of materials that harden with age,
this relation has to be written in incremental or rate form

_rðtÞ ¼ EðtÞ_eðtÞ ð7:11Þ

which takes into account the physical processes involved in real materials (for
example, the gradual solidification of cement paste or the gradual building of new
links in polymer chains). It is important to notice that (7.11) and not _rEðtÞ ¼
EðtÞ_eðtÞ þ _EðtÞeðtÞ is to be employed. If the latter is used, we will have, for a
constant stress test _rEðtÞ ¼ 0 and therefore, _EðtÞeðtÞ ¼ �EðtÞ_eðtÞ: Thus, in a
material that hardens with time EðtÞ[ 0; _EðtÞ[ 0

� �
strains would decrease with

time _eðtÞ\0ð Þ; this result is not physically correct. From (7.11) we obtain the
expressions for total stress and strain

rðtÞ ¼
Z t

s0

EðsÞ_eðsÞds

eðtÞ ¼
Z t

s0

1
EðsÞ _rðsÞds

ð7:12Þ

In the case of materials that softens with age (e.g., through a deterioration
process) we have

rðtÞ ¼ EðtÞeðtÞ ð7:13Þ

Kelvin model hardening case: adding equations of dashpot and spring we have

rðtÞ ¼ gðtÞ_eðtÞ þ
Z t

s0

EðsÞ_eðsÞds ð7:14Þ

and differentiating (7.14) with relation to t

_rðtÞ ¼ _eðtÞ½EðtÞ þ _gðtÞ� þ gðtÞ€eðtÞ ð7:15Þ

With the additional constitutive assumption EðtÞ þ _gðtÞ ¼ gðtÞ=h; h ¼ const; we
obtain the differential equation

€eþ _e
h
¼ _r

gðtÞ ð7:16Þ

which determines the creep function

Dðt; sÞ ¼ h
gðsÞ ½1� e�ðt�sÞ=h� ð7:17Þ

that has the form Cðt; sÞ ¼ /ðsÞf ðt � sÞ.
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Kelvin model softening case: here we have

rðtÞ ¼ gðtÞ_eðtÞ þ EðtÞeðtÞ ð7:18Þ

With the additional constitutive assumption EðtÞ=gðtÞ ¼ 1=h ¼ const; the fol-
lowing relation is obtained

eðtÞ ¼
Z t

0

rðsÞ
gðsÞ e�ðt�sÞ=hds ð7:19Þ

This equation corresponds to the Arutyunyan model [1] used to represent the
behavior of aging concrete.

7.4 Representation by Means of State Variables

We consider the viscoelastic relation in the integral form (7.1). As indicated above,
we must work with strain rates. Thus, applying Leibnitz formula we have

_eðtÞ ¼
Z t

so

o

ot
Dðt; sÞ _rðsÞ½ �dsþ Dðt; tÞ _rðtÞ ð7:20Þ

or

_eðtÞ ¼ _rðtÞ
EðtÞ þ

Z t

so

_Dðt; sÞ _rðsÞds ð7:21Þ

where the relation Dðt; tÞ ¼ 1=EðtÞ has been used.
As seen before, to get the state variables representation we must develop the

creep function in Dirichlet-Prony series that can be chosen to give rise to Kelvin
chains or Maxwell chains. For the case of an aging Kelvin chain we can define an
exponential series expansion of the creep function

_Dðt; sÞ ¼
Xn

i¼1

1
giðsÞ

e�ðt�sÞ=hi ð7:22Þ

corresponding to a series of n Kelvin models with time dependent parameters.
Defining state variables in the form

qiðtÞ ¼
Z t

so

_rðsÞ
giðsÞ

e�ðt�sÞ=hi ds ð7:23Þ

(7.21) can be written
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_eðtÞ ¼ _rðtÞ
EðtÞ þ

Xn

i¼1

qiðtÞ ð7:24Þ

For the isotropic 3-D case, we have the expressions

_eðtÞ ¼ _roðtÞ
3KðtÞ þ

Xn

i¼1

q0
i ðtÞ þ

_sðtÞ
2GðtÞ þ

Xm

i¼1

qs
i ðtÞ ð7:25Þ

with

qo
j ðtÞ ¼

Z t

so

1
go

j ðsÞ
e�ðt�sÞðt�sÞ=ho

j _roðsÞds

qs
kðtÞ ¼

Z t

so

1
gs

kðsÞ
e�ðt�sÞ=hs

k _sðsÞds

ð7:26Þ

for the hardening case and

eðtÞ ¼ roðtÞ
3KðtÞ þ

Xn

i¼1

q0
i ðtÞ þ

sðtÞ
2GðtÞ þ

Xm

i¼1

qs
i ðtÞ ð7:27Þ

with

qo
j ðtÞ ¼

Z t

so

1
go

j ðsÞ
e�ðt�sÞ=ho

j roðsÞds

qs
kðtÞ ¼

Z t

so

1
gs

kðsÞ
e�ðt�sÞ=hs

k sðsÞds

ð7:28Þ

for the softening case. In these equations, ro and s are the hydrostatic and deviator
stress tensors, respectively. Integration in time can be performed as indicated in
Chap. 3.

7.5 Aging and the Time Shifting Procedure

The time shifting procedure developed to represent temperature effects and
addressed in Chap. 6 has been extended by Struik [8] and other authors [3, 4, 9] to
the case of physical aging. A very complete study by Hutchinson [6] describes the
phenomenon of physical aging of polymers, the thermodynamic and micro-
structural theories proposed for this phenomenon and the use of time shifting
procedure to model its effect on the viscoelastic properties of the material.

Still, an essential difference between temperature and age effects has to be
recognised. Age t and time s in (7.1) are variables with particular characteristics:
for example, D(t, s) = 0 for any t \ s. We can make experimental tests with
constant temperature, but cannot make tests with constant age, because age
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changes with time along the test. To avoid this problem, Struik [8] recommends to
perform ‘‘momentarily’’ tests, with short duration, assuming that age is approxi-
mately constant in each of them. This is an interesting device, but one that does not
provide complete information on the behavior of the aging material. Up to the
present time, there is no single accepted method for reducing this short-term data,
and different schemes can lead to significantly different results in both short and
long-term predictions [3]. As in the case of temperature vertical shift is needed in
addition to horizontal shift in order to represent adequately the mechanical
behavior.
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Chapter 8
Nonlinear Viscoelasticity

Viscoelastic behavior may show physical and/or geometrical nonlinearity. Physi-
cal nonlinearity corresponds to situations in which the linear behavior described in
Chap. 1 (Sect. 1.3.2) is not observed, even in small strain situations. Geometrical
nonlinearity corresponds to situations of large deformations (large displacements
and/or large strain). Both effects can appear combined in some problems (e.g.
polymers, biomechanics). Alternative nonlinear or quasi-linear single integral
representations have been proposed, some of which are described in Sect. 8.2. In
Sect. 8.3, a nonlinear state variables formulation proposed by Simo is described.
The situation involving large displacements associated with small strains that is
particularly important in the analyses of materials and structures is addressed in
detail in Chap. 9.

8.1 Schapery Single Integral Non-Linear Viscoelasticity

The Schapery single integral constitutive equation of non-linear viscoelasticity
was derived from fundamental principles utilizing the concepts of irreversible
thermodynamics [11] in a small strain context. For isothermal condition and
uniaxial stress, the creep constitutive equation proposed by Schapery can be
written as

eðtÞ ¼ g0D(0)rðtÞ þ g1

Z t

0

C w� w0ð Þ o

os
g2rðsÞð Þds ð8:1Þ

where D(0) and CðwÞ are the instantaneous and transient components of the creep
compliance in linear viscoelasticity, respectively. The arguments wand w0 are
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reduced times that take into account simultaneously, temperature and stress effects
and are given by

w ¼
Z t

0

ds

aðhÞbðrÞ and w0 ¼
Z s

0

ds

aðhÞbðrÞ ð8:2Þ

in which aðhÞ is the temperature shift factor used for thermorheologically simple
materials (see Chap. 6) whereas bðrÞ is the stress shift factor. Then, Dðw� w0Þ ¼
Dð0Þ þ Cðw� w0Þ is the creep compliance adjusted for stress and temperature
variations.

The material properties g0; g1 and g2 are nonlinear functions of stress. g0ðrÞ is
related to the nonlinear instantaneous compliance. The transient creep parameter
g1ðrÞ measures the nonlinear effect on creep and g2 accounts for the load rate
effect. When the applied stress is small, g0 ¼ g1 ¼ g2 ¼ bðrÞ ¼ 1 and (8.1) is
reduced to the integral representation of linear viscoelastic behavior. Notice that
when the mentioned stress functions are dependent on temperature, the material
behavior is thermorheologically complex.

When strain is the independent variable, the corresponding relaxation consti-
tutive equation for constant temperature is given by

rðtÞ ¼ h1Eð1ÞeðtÞ þ h1

Z t

0

Rðf� f0Þ o

os
h2eðsÞð Þds ð8:3Þ

where h1; h1 and h2 are material nonlinear functions of the strain. Eð1Þ and RðfÞ
indicate the asymptotic modulus at constant strainðt!1Þ and the transient
component of the relaxation function, in linear viscoelasticity, respectively. The
variables f and f0 stand for reduced times defined by

f ¼
Z t

0

ds

aðhÞcðeÞ f0 ¼
Z s

0

ds

aðhÞcðeÞ ð8:4Þ

where cðeÞ is the strain shift factor. Hence, considering the above definitions, the
relaxation function of the material, adjusted to take into account temperature and
strain effects, can be expressed as Eðf� f0Þ ¼ Eð1Þ þ Rðf� f0Þ

As seen in (8.1) and (8.2), the Schapery formulation involves five material
functions and a material constant to be determined experimentally. This number of
experimental parameters justifies the power of the model to fit the nonlinear
behavior of many viscoelastic materials. A detailed explanation of the complex
procedure needed to obtain these parameters may be found in the book by Brinson
and Brinson [1].

Several authors extended the Schapery model to 3D situations and implemented
it into finite element procedures [6, 7, 9].
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8.2 Nonlinear Viscoelasticity at Large Strains in Integral Form

8.2.1 General Constitutive Relation

In the case of large strain problems (geometrical nonlinearity) appropriate mea-
sures for stress and strain and their functions have to be used (see Appendix B).

Constitutive relations in a large deformation context need to be objective, that
is, independent of the presence of large displacements and rotations.

We begin with

rðtÞ ¼ G ðFÞ
t

s¼0
ð8:5Þ

(compare it with the small strain version (1.6)) and look for the conditions to make
it objective. To do this, rigid body motions, characterized by translations dðsÞ and
rotations QðsÞ; 0� s� t; are superposed on the body motion xðsÞ ¼ vðX; sÞ: For
this case, the particle position and deformation gradient are given by x�ðsÞ ¼
QðsÞxðsÞ þ dðsÞ and F�ðsÞ ¼ QðsÞF; respectively. When the material is subjected
to a rotation Q (Q is an orthogonal tensor, QQT¼ I), the stress r transforms as a
second order tensor while the deformation gradient F transforms as a vector. Then
we have

Q rQT ¼ G ðQFÞ
t

s¼0
¼ G ðQRUÞ

t

s¼0
ð8:6Þ

To find a necessary condition we choose Q ¼ RT ¼ R�1 and substitute it into
(8.6) obtaining

r ¼ G ðFÞ
t

s¼0
¼ RG ðUÞ

t

s¼0
RT ð8:7Þ

and

FTrF ¼ UF ðCÞ
t

s¼0
U ¼ ~G ðCÞ

t

s¼0
ð8:8Þ

because F ¼ RU and C ¼ FT F ¼ U2 (see Appendix B). Thus

rðtÞ ¼ FðtÞ~G Cðt � sÞ½ �ts¼0 FTðtÞ ð8:9Þ

Using the relation between the Cauchy stress tensor r and the Second Piola–
Kirchhoff stress tensor S (see Appendix B) in (8.9), we obtain

SðtÞ ¼ JðtÞ~G CðsÞf g
s¼t

s¼0
ð8:10Þ

The next problem is to describe the nonlinear functional.

8.2 Nonlinear Viscoelasticity at Large Strains in Integral Form 69



8.2.2 Multiple Integral Representations

A formulation to describe nonlinear viscoelastic functionals was given by Volterra
using an earlier representation developed by Frechet in the early 1900’s. This
formulation was forgotten until the procedure was generalized to three dimensions
by Rivlin and Green.

Assuming that the response functional obeys the continuity condition required
by the weak principle of fading memory [14], Green and Rivlin [5] derived an
approximate integral constitutive relation. Considering that the functional ~G in
(8.9) is continuous in CðsÞ, 0� s� t, they used the Stone-Weierstrass theorem and
the Fourier expansion of polynomials by integrals to derive the multiple integral
representation

rðtÞ ¼ FðtÞ
�Z t

0
K1
�
t � s1

�
Cðs1Þds1

þ
Z t

0

Z t

0
K2 t � s1; t � s2ð ÞCðs1ÞCðs2Þds1ds2 þ . . .

�
FTðtÞ

ð8:11Þ

where the memory kernels Kk, k ¼ 1; 2; . . .; n, are positive, continuous and
monotonically decreasing tensor-valued functions of time. The number of terms
required in (8.11) to obtain an adequate approximation depends on the charac-
teristics of the strain history. Findley et al. [3] describes the procedure both the-
oretically and experimentally. Because of the difficulty to evaluate experimentally
a large number of functions and because of stability problems, expansions are
limited to the third order. The experimental determination of parameters [15] is
difficult and the numerical computations are time consuming. Thus, this repre-
sentation is seldom applied to the solution of practical problems [12].

Another multiple integral representation has been proposed by Coleman and
Noll [14]

8.2.3 Pipkin–Rogers Model

The nonlinear viscoelastic constitutive theory presented by Pipkin and Rogers [10]
is based on the analysis of the response of the material to step strain histories.
According to this model, the functional in (8.9) can be expanded in a series whose
first term provides the best approximation to measured mechanical behavior using
single step strain histories. This leading term is given by

rðtÞ ¼ FðtÞ K CðtÞ; 0½ � þ
Z t

0

o

os
K CðsÞ; t � s½ �ds

8<
:

9=
;FTðtÞ ð8:12Þ
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KðC; tÞ is the strain dependent relaxation tensor induced by a single step strain
history and has the form K ¼ U0Iþ U1Cþ U2C2, where U0, U1 and U2 are scalar
functions of t and the invariants of C [2, 16].

8.2.4 Quasi-Linear Viscoelastic Model

When the constitutive tensor KðCðsÞ; t � sÞ appearing in (8.12) can be decom-
posed in the form

K C; t � s½ � ¼ Ke C½ �Fðt � sÞ ð8:13Þ

with Fð0Þ ¼ 1; the formulation is known as quasi-linear viscoelasticity. For this
case, (8.12) can be expressed as

rðtÞ ¼ FðtÞ Ke CðtÞ½ � þ
Z t

0

Ke CðsÞ½ � oFðt � sÞ
oðt � sÞ ds

8<
:

9=
;FTðtÞ ð8:14Þ

This constitutive relation was proposed by Fung [4] and used for modelling the
mechanical behavior of biological tissues. The terminology ‘‘quasi-linear visco-
elasticity’’ is used because K C½ � can be thought of as a nonlinear measure of strain.
The expression in braces in (8.14) is linear in this nonlinear strain measure.

8.3 Nonlinear Viscoelasticity at Large Strains Using
State Variables

Simo and co-workers [13] developed a constitutive model for nonlinear visco-
elasticity based on state variables. It is particularly addressed to materials like
polymers and rubbers that behave as hyperelastic in short time loading situations
and uses the concepts of deviatoric-volumetric split that is also convenient from
the computational point of view. This model assumes that viscoelastic behavior is
restricted to shear and that bulk strain is purely elastic. According to Simo the
formulation has the following attractive features:

1. It uses the numerical implementation of incremental integration as described in
Chap. 3.

2. It is a description of time-dependent behavior that contains hyperelasticity as a
particular case.

3. It allows a separation of volume preserving and dilatational responses.

The development follows the pattern of linear viscoelasticity: the time-depen-
dent behavior reduces to the corresponding hyperelastic behavior for very fast or
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very slow processes and the state variables formulation is an extension of the same
formulation for small strain. Thus, we will describe first the hiperelastic formu-
lation, then a state variable formulation for small strains recast in a slightly dif-
ferent way to allow for the introduction of the strain energy and finally the finite
strain formulation.

8.3.1 Hyperelastic Formulation

A hyperelastic material is characterized by a strain energy function

W ¼ WðFÞ ¼ WðCÞ ¼ WðEÞ� 0 with WðF ¼ IÞ ¼ 0 ð8:15Þ

The constitutive relation for a hyperelastic material is by definition

S ¼ 2
oWðCÞ

oC
¼ oWðEÞ

oE
ð8:16Þ

Volumetric-shear split
Some materials (e.g., polymers) behave quite differently in bulk and in shear.

Then it may be convenient to split the deformation into a volumetric part and an
isochoric part, as it is done in the small strain case (Sect. 4.2.1). This split has
advantages also from the computational point of view. Thus, we use the multi-
plicative decomposition [8]

�F ¼ J�1=3F ð8:17Þ

where J ¼ det F is related to the volume changes, i.e., to the dilatational part of F;

and �F is associated to the volume-preserving or isochoric part of F: Notice that,
from (8.17), �J ¼ det �F ¼ 1:

Introducing (8.17) into the definition of the right Cauchy-Green tensor C ¼
FT F; we have

C ¼ J2=3 �C ð8:18Þ

being �C ¼ �F
T �F the isochoric part of C: Similarly, the strain energy is divided into

volumetric and isochoric parts

WðCÞ ¼ WvolðJÞ þWisoð�CÞ ð8:19Þ

Thus,

_W ¼ oWvolðJÞ
oJ

_J þ oWisoð�CÞ
o�C

: _�C ¼ p _J þ 1
2

�S : _�C ð8:20Þ

with p ¼ oWvolðJÞ
oJ and �S ¼ 2 oWisoð�CÞ

o�C
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The Second Piola–Kirchhoff stress S is also divided into isochoric and volu-
metric parts

S ¼ 2
oWðCÞ

oC
¼ Siso þ Svol ð8:21Þ

where

Svol ¼ 2
oWvolðJÞ

oC
¼ J

oWvolðJÞ
oJ

C�1 ¼ JpC�1 ð8:22Þ

Siso ¼ 2
oWisoð�CÞ

oC
¼ J�2=3DEV�S

with DEV�S ¼ I� 1

3
C� C�1

� �
: �S: In this relation, I is the fourth-order unit

tensor and � denotes a tensor product.
Example 1: Derive the relations (8.22).
Applying the chain rule to (8.22)1 and using the relation oJ

oC ¼ J
2 C�1; we have

Svol ¼ 2
oWvolðJÞ

oC
¼ 2

oWvolðJÞ
oJ

oJ

oC
¼ 2

oWvolðJÞ
oJ

J

2
C�1 ¼ JpC�1

Now, we apply the chain rule to (8.22)2 and use the definition of �S to obtain

Siso ¼ 2
oWisoð�CÞ

oC
¼ 2

oWisoð�CÞ
o�C

o�C

oC
¼ �S :

o�C

oC

where, from (8.18),

o�C

oC
¼

o J�2=3C
� �

oC
¼ J�2=3

I� 2
3

1
J

oJ

oC
� C

� �
¼ J�2=3

I� 1
3

C� C�1

� �

and therefore, Siso ¼ J�2=3DEV�S; where the DEV operator delivers the deviatoric
part of the stress tensor.

8.3.2 Viscoelastic Small Strain Relations

Simo proposes a visco-hyperelastic model which is an extension of the linear
viscoelastic formulation described here in Chap. 3, recast in a convenient format.

He begins with a state variables formulation similar to that introduced in Sect.
3.1 for the generalized Maxwell model, modified to make the extension to finite
strains easier. First, a new internal variable q̂i is introduced, so that

q̂i ¼ E e� qið Þ ð8:23Þ
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where qi ði ¼ 1; . . .; nÞ are the state variables defined for the generalized Maxwell
model in Chap. 3. Thus, (3.9) and (3.10) become

_̂qi þ
q̂i

Ti
¼ ci

Ti
E0e

r ¼ E0e�
Xn

i¼1

q̂i ð8:24Þ

where E0 ¼ Eð0Þ ¼ E1 þ
Pn
i¼1

Ei and ci ¼ Ei=E0:

In the small strain three-dimensional context the strain energy can be decom-
posed in isochoric and volumetric parts

W0ðeÞ ¼ W0
isoðeÞ þW0

volðtreÞ ð8:25Þ

Considering that bulk deformation is elastic (8.24) may be written

_̂qi þ
q̂i

Ti
¼ ci

Ti

oW0ðeÞ
oe

ð8:26Þ

r ¼ oW0ðeÞ
oe

�
Xn

i¼1

q̂i

8.3.3 Formulation of the Nonlinear Viscoelastic Model

The generalization of (8.24)2 to the finite deformation regime is

SðtÞ ¼ S0ðtÞ � J�2=3DEV
Xn

i¼1

QiðtÞ
" #

ð8:27Þ

where S0ðtÞ is given by (8.21) with W being the total initial stored-energy function
W0 ¼ W0

iso þW0
vol and CðtÞ; being a function of time.

The growth law for the internal state variables is written, following (8.26)

_QiðtÞ þ
1
Ti

QiðtÞ ¼
ci

Ti
DEV 2

oW0
isoð�CðtÞ
o�C

� �
ð8:28Þ

with Qiðt� s0Þ ¼ 0: W0
iso denotes the volume-preserving contribution to the

stored-energy function.
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The solution of the differential equation (8.28) has the integral representation

QiðtÞ ¼
ci

Ti

Z t

�1

e�ðt�sÞ=Ti DEV 2
oW0

isoð�CðsÞ
o�C

� �
ds ð8:29Þ

These expressions are formally similar to the corresponding expressions in
Chap. 3. The recurrence formula for determination of Qiis also similar to that
shown in Sect. 3.2.
Time integration algorithm

At time tn we assume to know the displacement field un; its dependent variables
Fn ¼ Iþ oun=oX; Jn ¼ det Fn; Cn ¼ FT

n Fn; �Cn ¼ J�2=3Cn and the stress Sn sat-
isfying the equilibrium conditions. We need to determine the updated values of
these variables for a new displacement field unþ1; at time tnþ1 ¼ tn þ Dt; which is
corrected iteratively until the balance equations are satisfied within the given
tolerance. For this, we can use the following time integration algorithm:

(1) Given initial information at time tn : �S
0
n; Cn and Qið Þn with i ¼ 1; . . .;m;

(2) For a given trial solution unþ1 at time tnþ1; compute Fnþ1 ¼ Iþ ounþ1=oX;

Jnþ1 ¼ det Fnþ1;Cnþ1 ¼ FT
nþ1Fnþ1;�Cnþ1 ¼ J�2=3

nþ1 Cnþ1;

(3) Evaluate �S
0
nþ1 ¼ 2 oW0ð�CÞ

o�C

h i
nþ1

; S0
iso

� �
nþ1¼ J�2=3

nþ1 DEV�S
0
nþ1;

p0
nþ1 ¼

oW0
vol

oJ

� 	
nþ1

; S0
vol

� �
nþ1¼ Jnþ1p0

nþ1C�1
nþ1; S0

nþ1 ¼ S0
iso

� �
nþ1þ S0

vol

� �
nþ1;

(4) Update state variables and stresses: Qið Þnþ1¼ e�Dt=Ti Qið Þnþ
ci
2

DEV�S
0
nþ1 þ DEV�S

0
n

� 	
1� e�Dt=Ti
� �

and Snþ1 ¼ S0
nþ1 � J�2=3

nþ1 DEV
Pm
i¼1

Qið Þnþ1

� �

An alternative time integration algorithm can be found in Holtzapfel [8].
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Chapter 9
Viscoelastic Finite Element Formulation

The finite element method is the most popular numerical procedure for the analysis
of solids and structures, including those with time dependent properties. In this
chapter, we present an incremental viscoelastic finite element formulation for
problems with geometrical nonlinearity characterized by large displacements and
rotations with small strains. The formulation is based on a total Lagrangian
kinematic description. We begin with a brief presentation on the principle of
virtual displacements for geometrically nonlinear problems. Procedures used for
the computational implementation of the nonlinear viscoelastic model are also
presented. We assume that the reader has a basic knowledge of the finite element
method and of nonlinear continuum mechanics.

9.1 Principle of Virtual Displacements

Let us consider the motion of a body with arbitrary large displacements and
rotations. Figure 9.1 shows the body configurations C 0, Ct and Ct+Dt at instants s0,
t and t ? Dt, respectively, and the fixed coordinate system used as reference for
the static and kinematic variable. We are interested in evaluating the body equi-
librium in a finite sequence of configurations corresponding to times t1, t2,…,tn
within the analysis time range. As strategy used in this evaluation, we assume that
the variable fields in the configuration Ct+Dt can be completely determined if the
solutions at times s B t are already known.

The equilibrium condition of the body at time t ? Dt can be established by the
principle of virtual displacements, as follows
Z

X
tþDt

r
tþDt

: dedX
tþDt ¼

Z
XtþDt

btþDt
� �T

dudXtþDt þ
Z

CtþDt
ttþDt
� �T

dudC
tþDt ð9:1Þ
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SpringerBriefs in Computational Mechanics, DOI: 10.1007/978-3-642-25311-9_9,
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where the first member is the virtual work of the internal forces, whereas the
second member represents the virtual work of the external forces, i.e., body forces
b and surface forces t. In (9.1), de represents a variation in the infinitesimal strains
associated to the virtual increment du in the displacement ut+Dt. The superscripts
stand for the instant of time at which the quantities are determined. The integrals
appearing in (9.1) are evaluated over the domain Xt+Dt and its boundary CtþDt

corresponding to configuration Ct+Dt.
For geometrically nonlinear analyses different definitions of stress and strain

tensors are used depending on the characteristics of the problem. In the present
development we use the second Piola–Kirchhoff stress tensor S and the
Green–Lagrange strain tensor E (see Appendix B) that are energetically conju-
gated (1), i. e.,

Z
X

tþDt
rtþDt : dedX

tþDt ¼
Z

X0
StþDt

0 : dEtþDt
0 dX0 ð9:2Þ

where the index 0 is used to indicate that the quantities are referred to the initial
configuration C0. Substituting (9.2) into (9.1), we have
Z

X0
StþDt

0 : dEtþDt
0 dX0 ¼

Z
X

tþDt
btþDt
� �T

dudXtþDt þ
Z

CtþDt
ttþDt
� �T

dudCtþDt ð9:3Þ

As the Second Piola–Kirchhoff stress tensor and the Green–Lagrange strain
tensor are independent from the rigid body rotations, we may write

StþDt
0 ¼ St

0 þ DS0 ð9:4Þ

EtþDt
0 ¼ Et

0 þ DE0 ¼ Et
0 þ De0 þ Dg0

where DS0 and DE0 are the increments of the stress and strain measures between
t and t ? Dt, respectively. In (9.4), DE0 is decomposed in a linear part De0 and
nonlinear part Dg0, which in index notation are defined by

De0ij ¼
1
2

oDui

oXj
þ oDuj

oXi
þ out

k

oXi

oDuk

oXj
þ out

k

oXj

oDuk

oXi

� �
ð9:5Þ

2 2, tX x

3 3, tX x
1 1, tX x

C t+ tC t

C0

Fig. 9.1 Body
configurations and coordinate
systems
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Dg0ij ¼
1
2
oDuk

oXi

oDuk

oXj

where Du = ut+Dt-ut is the displacement increment vector and X = (X1,X2,X3) is
the particle position in the initial configuration.

Substituting (9.4) into (9.3) and considering that the external loading is inde-
pendent of the deformation, we obtain the total Lagrangian formulation of the
incremental principle of virtual displacements as

Z
X0

DS0 : d DE0ð ÞdX0 þ
Z

X0
St

0 : d Dg0ð ÞdX0 ¼
Z

X0
btþDt

0

� �T
dudX0

þ
Z

C0
ttþDt
0

� �T
dudC0 �

Z
X0

St
0 : d De0ð ÞdX0

ð9:6Þ

being btþDt
0 and ttþDt

0 the body and surface forces at time t ? Dt, respectively,
measured with respect to the initial configuration.

9.2 Linearization of the Principle of Virtual Displacements

We consider a viscoelastic body subjected to both mechanical and hygrothermal
loads. For this case the total increment of the Green–Lagrange strain tensor at time
interval [t,t ? Dt] is given by

DE0 ¼ DEe
0 þ DEV

0 þ DEHT
0 ð9:7Þ

where the superscripts e, V and HT are used to indicate the elastic, viscoelastic and
hygrothermal contributions, respectively. Neglecting the effect of the nonlinear
part Dg0 as an approximation to obtain the increment of the second Piola–Kir-
chhoff stress tensor, we may write

DS0 ffi CeðDe0 � DeV
0 � DeHT

0 Þ ð9:8Þ

where Ce is the 4th order elastic stiffness tensor of the material. Thus, using (9.8),
the incremental principle of virtual displacements (9.6) can be rewritten in the
form
Z

X0
CeDe0 : d De0ð ÞdX0 þ

Z
X0

St
0 : d Dg0ð ÞdX0 ¼

Z
X0

btþDt
0

� �T
dudX0 þ

Z
C0

ttþDt
0

� �T
dudC0

þ
Z

X0
CeDeV

0 : d De0ð ÞdX0 þ
Z

X0
CeDeHT

0 : d De0ð ÞdX0 �
Z

X0
St

0 : d De0ð ÞdX0

ð9:9Þ

Equation (9.9) is the linearized form of the incremental principle of virtual
displacements which will be used to derive the nonlinear finite element
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formulation in Sect. 9.3. It is worth noticing that to obtain (9.9) the approximation
d DE0ð Þ ffi d De0ð Þwas used.

From relations (9.5), we may show that

d De0ij

� �
¼ 1

2
d

oDui

oXj

� �
þ d

oDuj

oXi

� �
þ out

k

oXi
d

oDuk

oXj

� �
þ out

k

oXj
d

oDuk

oXi

� �� �
ð9:10Þ

d Dg0ij

� �
¼ 1

2
oDuk

oXi
d

oDuk

oXj

� �
þ oDuk

oXj
d

oDuk

oXi

� �� �

9.3 Nonlinear Viscoelastic Finite Element Formulation

In an incremental geometrically nonlinear analysis, the total displacements in the
current configuration ut+Dt are obtained by adding the displacement increments
Du to the point coordinates xt corresponding to the last configuration

utþDt ¼ xt þ Du ð9:11Þ

This is why it is convenient to use the same interpolation functions for dis-
placement and coordinates (or geometry). The same interpolation functions used in
the linear isoparametric finite element formulation can be employed for the non-
linear approach. Thus, for the three-dimensional case, the coordinate vector

X ¼ ½X1 X2 X3 �T of a finite element, with N nodal points, are in general defined
in the initial configuration as

XðeÞ ¼ HðnÞ~XðeÞ ð9:12Þ

where ~XðeÞ ¼ ~X
ðeÞT
1

~X
ðeÞT
2 . . . ~X

ðeÞT
N

h iT
is the element nodal coordinate vector

being ~X
ðeÞ
k ¼ ~X

ðeÞ
1

~X
ðeÞ
2

~X
ðeÞ
3

h iT

k
the coordinate vector of the element k-node. In

(9.12), HðnÞ represents the interpolation function matrix which has the general
form

HðnÞ ¼ ½H1ðnÞ H2ðnÞ . . . HNðnÞ � ð9:13Þ

with the diagonal submatrices

HkðnÞ ¼ NkðnÞ
1 0 0
0 1 0
0 0 1

2
4

3
5 ð9:14Þ

where Nk(n), (k = 1,2,…,N), indicate the element interpolation functions whose
argument is the natural coordinates n.
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Similarly, the element displacement vector uðeÞ ¼ uðeÞ1 uðeÞ2 uðeÞ3

h iT
is given

by the approximation

uðeÞ ¼ HðnÞ~uðeÞ ð9:15Þ

where ~uðeÞ ¼ ~u
ðeÞT
1 ~u

ðeÞT
2 . . . ~u

ðeÞT
N

h iT
represents the element nodal dis-

placement vector and its components ~u
ðeÞ
k ¼ ~uðeÞ1 ~uðeÞ2 ~uðeÞ3

h iT

k
are the nodal

displacement of the element k-node.
To simplify the finite element equations we use in this section Voigt notation.

Then, for the three-dimensional case, the second Piola–Kirchhoff stress vector is
given by

Ŝ ¼ S11 S22 S33 S23 S13 S12½ �T ð9:16Þ

and the Green–Lagrange strain vector by

Ê ¼ E11 E22 E33 2E23 2E13 2E12½ �T ð9:17Þ

In Voigt notation, the shear components in (9.17) are doubled to allow writing

the internal virtual work per volume unit as ŜTdÊ. Then, the equilibrium equation
(9.9) is expressed as

Z
X0

Dê0ð ÞT Ĉd Dê0ð ÞdX0 þ
Z

X0
Ŝt

0

� 	T
d Dĝ0ð ÞdX0 ¼

Z
X0

b̂tþDt
0

� �T
dûdX0 þ

Z
C0

t̂tþDt
0

� �T
dûdC0

þ
Z

X0
DêV

0

� �T
Ĉd Dê0ð ÞdX0 þ

Z
X0

DêHT
0

� �T
Ĉd Dê0ð ÞdX0

�
Z

X0
Ŝt

0

� 	T
d Dê0ð ÞdX0

ð9:18Þ

where Ĉ is the elastic constitutive matrix and the strain increment vectors are
defined by

Dê0 ¼ De011 De022 De033 2De023 2De013 2De012½ �T ð9:19Þ

Dĝ0 ¼ Dg011 Dg022 Dg033 2Dg023 2Dg013 2Dg012½ �T

with DÊ0 ¼ Dê0 þ Dĝ0. Similar definitions are employed for the viscoelastic and
hygrothermal strain increment vectors Dêv

0 and DêHT
0 . Using the interpolation

functions to express the displacements and increment displacements in (9.10), we
obtain the variations

dðDê0Þ ¼ BLd D~uðeÞ
� 	

dðDĝ0Þ ¼ BNLd D~uðeÞ
� 	

ð9:20Þ

where BL and BNL are the linear and nonlinear strain–displacement matrices [1, 7].
d D~uðeÞ
� �

is the variation in the nodal displacement increment vector of the element.
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Introducing the strain–displacement relations into (9.18) and using the inter-
polation functions to express the displacements appearing in this equation, we
obtain the following incremental equilibrium relationship for an element (3)

kt
L þ kt

NL

� �
D~uðeÞ ¼ rtþDt � f t

0 þ DfV þ DfHT ð9:21Þ

being D~uðeÞand rt+Dt the vector of nodal displacement increments and the vector of
external nodal loading at time t ? Dt respectively, and

kt
L ¼

Z
X0ðeÞ

Bt
L

� �T
ĈBt

LdX0ðeÞ linear stiffness matrix at time tð Þ ð9:22Þ

kt
NL ¼

Z
X0ðeÞ

Bt
NL

� �T
Ŝt

0Bt
NLdX0ðeÞ nonlinear stiffness matrix at time tð Þ ð9:23Þ

f t
0 ¼

Z
X0ðeÞ

Bt
L

� �T
Ŝt

0dX0ðeÞ

ðvector of nodal forces equivalent to the element stresses at time tÞ
ð9:24Þ

DfV ¼
Z

XoðeÞ
Bt

L

� �T
ĈDêV dXoðeÞ ðviscoelastic load increment vectorÞ ð9:25Þ

DfHT ¼
Z

XoðeÞ
Bt

L

� �T
ĈDêHT dXoðeÞ ðhygrothermal load increment vectorÞ ð9:26Þ

In these last equations, the integrals are determined on the element domain in
the initial configuration X0(e). The matrices Bt

L and Bt
NL are the linear and nonlinear

strain displacement matrices at time t, respectively. The present approach, for
which the kinematic and static variables and integration domains are referred to
the initial configuration, is known as total Lagrangian formulation. An alternative
and equivalent approach consists of the updated Lagrangian formulation that, for
each incremental step t ? Dt, adopts Ct as reference configuration [1].

For the case of small displacements, the incremental equilibrium equation
(9.21) becomes

kt
LD~uðeÞ ¼ rtþDt�rt þ DfV þ DfHT ð9:27Þ

9.4 Numerical Solution of the Equilibrium Equation

The numerical solution of the geometrically nonlinear problem (9.21) can be
obtained using an iterative procedure in which the element equilibrium equation at
time t ? Dt is given by
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k
tþDtði�1Þ
L þ k

tþDtði�1Þ
NL

� 	
D~uðeÞðiÞ ¼ rtþDtðiÞ � f

tþDtði�1Þ
0 þ DfVðiÞ þ DfHTðiÞ ð9:28Þ

where the superscripts i and i-1 indicate iterative steps. In this iterative approach,
the element viscoelastic and hygrothermal load increment vectors, DfV(i) and
DfHT(i), are taken as null for i C 2. For the first iteration i = 1, this last vector is
computed by using (9.26), with

DêHTð1Þ ¼ aDHð1Þ þ bDHð1Þ ð9:29Þ

being a and b the vectors of the temperature expansion and hygroscopic expansion
coefficients, respectively. DH(1) and DH(1) are the temperature and moisture
changes, respectively, for the first iterative step at time t ? Dt. The element vis-
coelastic load increment vector DfV(1) is obtained for the first iteration at time
t ? Dt using the viscoelastic strains computed by the equilibrated stresses corre-
sponding to time t (see Chap. 3).

For an assemblage of finite elements, the global equilibrium equation can be
written as

K
tþDtði�1Þ
L þK

tþDtði�1Þ
NL

� 	
D~UðiÞ ¼ RtþDtðiÞ � F

tþDtði�1Þ
0 þ DFVðiÞ þ DFHTðiÞ ð9:30Þ

where the variables have analogous meanings to those appearing in element
equilibrium equation (9.28), but referred to the global coordinates. An alternative
form of writing this global equilibrium equation is

K
tþDtði�1Þ
L þK

tþDtði�1Þ
NL

� 	
D~UðiÞ ¼ DkðiÞ�Pþ F

tþDtði�1Þ
d þ DFVðiÞ þ DFHTðiÞ ð9:31Þ

where Dk(i) is the loading factor corresponding to the iteration i at time t ? Dt, �P is

the reference load vector and F
tþDtði�1Þ
d is the unbalanced force vector at the

iteration (i-1) of the step t ? Dt. Using (9.30), the vector DFHT(i), for each time

step, must be computed for the temperature and moisture increments Dkð1Þ �H and

Dkð1Þ �H, being �Hand �H reference temperature and moisture values, respectively.
As solution algorithm to solve (9.31) we may use, for instance, the well-known

Newton–Raphson method [2]. In this method, the loading factor value Dk(i) is
adopted in the beginning of the first iteration (i = 1) of each incremental step and
is null for i C 2. One limitation of the Newton–Raphson method is the numerical
instability that occurs near the limit points. To overcome this problem, we may use
a displacement control algorithm, such as the Generalized Displacement Control
Method [6]. The application of this method to viscoelastic problems can be found
in Pavan et al. [5] and Oliveira and Creus [4].
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9.5 Procedures of the Viscoelastic Finite Element Analysis

The implementation of the above geometrically nonlinear finite element formu-
lation for the analysis of viscoelastic problems consists of the following main
steps:

(1) Input the data for geometry, control parameters, mesh discretization,
boundary conditions;

(2) Input the mechanical loads, temperature and moisture changes in each
loading stage;

(3) Input the material properties corresponding to the temperature and moisture
values;

(4) Assemble the strain–displacement matrices (BtðiÞ
L ,BtðiÞ

NL ) in the integration
points of the elements;

(5) Assemble the element stiffness matrices (ktðiÞ
L ,ktðiÞ

NL ) and global stiffness

matrices (KtðiÞ
L ,KtðiÞ

NL );
(6) If there are temperature and moisture changes in the current loading stage

and i = 1, assemble the element and global hygrothermal load increment
vectors (DfHT(1),DFHT(1)). For i C 2, DfHT(i) = 0 and DFHT(i) = 0;

(7) If the external loading was already applied at the current loading stage,
assemble the element and global viscoelastic load increment vectors corre-
sponding to the time interval of the incremental step (DfV(1),DFV(1)). The
viscoelastic strains can be computed by the state variables approach, as seen
in Chaps. 3 and 4. For i C 2, DfV(i) = 0 and DFV(i) = 0;

(8) Compute the nodal displacement increments D~Uðiþ1Þ;
(9) Update the nodal displacement ~Utðiþ1Þ ¼ ~UtðiÞ þ D~Uðiþ1Þand nodal

coordinates;

(10) Assemble the strain–displacement matrices (Btðiþ1Þ
L ,Btðiþ1Þ

NL ) for the integra-
tion points of the elements in the updated configuration;

(11) Compute the stresses in the element integration points and vectors of nodal

forces equivalent to these stresses (9.24), F
tðiþ1Þ
0 , for the updated

configuration;

(12) Determine the unbalanced force vector F
tðiþ1Þ
d ;

(13) If the convergence criterion is not satisfied, then, do i = i+1 and return to
step 4;

(14) If the convergence criterion is satisfied, two additional conditions must be
checked: (a) if the time interval corresponding to the current loading stage is
not complete, do t ? Dt, i = 1 and go to step 4; (b) if the time interval is
complete, then return to the new loading stage (step 2), if it exists,
continuing the analysis.
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Applications of these procedures to the analysis of viscoelastic laminated plates
and shells may be found in Marques and Creus [3] and applications to viscoelastic
thin-walled composite beams in Oliveira and Creus [4].
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Chapter 10
The Boundary Element Method
for Viscoelasticity Problems

The Boundary Element Method (BEM) is derived through the discretization of an
integral equation (the classical Somigliana identity, first published in 1886).
An interesting account of BEM early development may be found in [2]. This
formulation can only be derived for certain classes of problems and hence, is not as
widely applicable as the finite element method. However, when applicable, it often
results in numerical methods that are easier to use and computationally more
efficient. The advantages of the BEM arise from the fact that only the boundary of
the domain requires sub-division. In cases where the domain is exterior to the
boundary (e.g. the atmosphere surrounding an airplane, the soil surrounding a
tunnel, the material surrounding a crack tip) the advantages of the BEM are even
greater as the equation governing the infinite domain is reduced to an equation
over the (finite) boundary. In this chapter we shortly review two alternative
procedures for the solution of problems in linear viscoelasticity: the solution in the
Laplace transformed domain and the use of a general inelastic formulation. For the
latter, we make reference to the use of the Dual Reciprocity Method (DRM) that
allows a pure boundary formulation.

10.1 Linear Elastic Problems and Somigliana Identity

We begin with a short summary of the classical boundary element formulation [1].
The boundary element method for linear elasticity may be established beginning
with the Somigliana identity. Let us consider a body of volume X and surface C
subjected to body forces bk and surface forces pi (following a tradition in the area,
p in place of t will be used in this Chapter to denote tractions). Then, the
Somigliana identity

S. P. C. Marques and G. J. Creus, Computational Viscoelasticity,
SpringerBriefs in Computational Mechanics, DOI: 10.1007/978-3-642-25311-9_10,
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ui
l þ
Z

C

p�lkukdC ¼
Z

C

u�lkpkdCþ
Z

X

u�lkbkdX ð10:1Þ

gives the value of the displacements at any internal points in terms of the boundary
values of uk and pk, the domain forces bk and the fundamental solutions u�lk and p�lk.
p�lk are the tractions in the k direction due to a unit force at i acting in the
l direction, and u�lk are the displacements in the k direction due to a unit force at
i on the l direction. An updated derivation of the Somigliana identity may be found
in [1], where (10.1) is obtained by reciprocity with a singular solution of the
Navier equation for body force components modeled as unit point loads

Gu�l;kk þ
G

1� 2m
u�k;kl þ Diel ¼ 0 ð10:2Þ

where Di represents the Dirac delta function at i. For a boundary point, (10.1)
transforms to

ci
lkui

l þ
Z

C

p�lkukdC ¼
Z

C

u�lkpkdCþ
Z

X

u�lkbkdX ð10:3Þ

where the integrals are in the sense of Cauchy principal value. For C smooth at
point i it is ci

lk ¼ dlk=2.

10.1.1 Boundary Element Formulation for the Linear Elastic Case

In order to obtain a numerical procedure, the boundary is discretized in elements,
over which displacements and tractions are expressed in terms of their values at
the nodal points. Using now matrix notation,

u ¼ Uuj p ¼ Upj ð10:4Þ

where u j and p j are the element nodal displacements and tractions and the
interpolation functions U are the standard finite element type functions. Then,
writing (10.3) in matrix form we have

ciuiþ
Z

C

p�udC ¼
Z

C

u�pdCþ
Z

X

u�bdX ð10:5Þ

and using (10.4)

ciuiþ
XN

j¼1

Z

Cj

p�UdC

8><
>:

9>=
>;u j¼

XN

j¼1

Z

Cj

u�UdC

8><
>:

9>=
>;pjþ

XM
s¼1

Z

Xs

u�bdX

8><
>:

9>=
>; ð10:6Þ
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The sum from j = 1 to N indicate summation over all the N elements, Cj is the
surface of element j and u j and p j the corresponding displacements and tractions.
The domain was divided into M internal cells of volume Xs over which the body
forces integral have to be computed. After integration we have for a given node i

ciuiþ
XNE

j¼1

Hiju j ¼
XNE

j¼1

Gijp j þ
XM

s¼1

Bis ð10:7Þ

The contribution for all the NE nodes may be written in matrix form

HU ¼ GPþ B ð10:8Þ

After the boundary conditions are introduced, all unknowns are set into a vector
X leading to a system of equations

AX ¼ F ð10:9Þ

10.2 Viscoelastic Solutions in the Laplace Transform Domain

If the correspondence principle (see Chap. 5) is applied to the quasi-static problem,
the relevant boundary integral equation in the Laplace transformed domain is
written

ci
lk�u

i
lðsÞ þ

Z

C

p�lkðsÞ�ukðsÞdC ¼
Z

C

u�lkðsÞ�pkðsÞdCþ
Z

X

u�lkðsÞ�bkðsÞdX ð10:10Þ

where now u�lkðsÞ and p�lkðsÞ are the elastic fundamental solutions for displacements
and tractions in which the elastic constants have been replaced by the corre-
sponding functions in the transformed space according to Sect. 5.2. A discussion of
this type of approach may be found in Syngellakis [9], Gaul and Schanz [3]. The
main difficulty is the inversion from the Laplace to the real (time) domain.

10.3 Formulation Considering Inelastic Strains

The general boundary integral equation including the effect of inelastic strains may
be written in incremental form as [1]

ci
lk _ui

l ¼
Z

C

u�lkð _pk þ _pv
kÞdC�

Z

C

p�lkukdCþ
Z

X

u�lkð _bk þ _bv
kÞdX ð10:11Þ

where
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_pv
i ¼ _rv

ijnj; _bv
i ¼ � _rv

ij;j; _rv
ij ¼ Eijkl _e

v
kl ð10:12Þ

and ev
ij is the deferred part of strain as defined in Chap. 2. Equation (10.11) is

known as the pseudo-surface traction, pseudo-body force approach; the inelastic
forces are included adding _pv

k to _pk in the surface traction boundary integral and _bv
k

to _bk in the body force domain integral. This formulation has been applied to time-
dependent problems by a series of authors; see for example Brebbia et al. [1]. The
domain integral has to be computed using cells defined over the domain. There are
alternatives that avoid the domain integration, one of which is the Dual Reci-
procity Formulation (DRM) [6].

10.3.1 DRM Applied to Viscoelasticity

With reference to (10.11), we define _wv so that _wv
;i ¼ _bv

j . Using the DRM strategy, we
expand _wv as the sum of known approximating functions with initially unknown
coefficients

_wv ’
XM
j¼1

f m _am ð10:13Þ

where M is the number of DRM collocation points. Differentiating (10.13) we
obtain

_wv
;j ¼ _bv

j ’
XM
j¼1

f m
;j _am ð10:14Þ

Considering (10.11) and making the regular body forces bj ¼ 0, we can now

substitute _bv
j given by (10.14) obtaining

ci
lk _ui

l ¼
Z

C

u�lkð _pk þ _pv
kÞdC�

Z

C

p�lk _ukdCþ
XM
m¼1

Z

X

u�lkf m
;k

0
@

1
A _am ð10:15Þ

The DRM particular solutions ûj should satisfy the Navier equation

Gû j
k;ll þ

G

1� 2m
û j

l;lk ¼ f j
;k ð10:16Þ

Taking the domain term to the boundary with DRM we obtain

90 10 The Boundary Element Method

http://dx.doi.org/10.1007/978-3-642-25311-9_2


ci
lk _ui

l ¼
Z

C

u�lkð _pkþ _pv
kÞdC�

Z

C

p�lk _ukdCþ
XM
m¼1

clkûm
l �

Z

C

u�lkp̂m
l dCþ

Z

C

p�lkûm
l dC

0
@

1
A _am

ð10:17Þ

After discretization and approximation of the above equation to all boundary
nodes, the following system of equations is obtained

H _U�G _P ¼ ðHÛ�GP̂Þ _a ð10:18Þ

or, substituting from (10.13) _a ¼ F�1 _w

H _U�G _P ¼ ðHÛ�GP̂ÞF�1 _wm ð10:19Þ

or

H _U�G _P ¼ _D ð10:20Þ

Applying the usual BEM procedure we set the system of equations in the form

A _X ¼ _Yþ _D ð10:21Þ

From its solution we obtain _ui; _pi, and we can determine the boundary and internal
stress tensors and advance in time. Additional and numerical examples may be
found in [8].

10.4 Other Procedures

Other different and complementary procedures may be seen in Liu and Antes [4];
Mesquita and Coda [5]; Schanz and Antes [7].
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Chapter 11
Viscoelastic Finite Volume Formulation

The finite-volume theory is a well-known technique frequently used for analysis of
boundary-value problems in fluid mechanics [7]. Its excellent performance has
motivated attempts to extend it to solid mechanics problems. Thus, in the past two
decades, several authors presented formulations based on this technique. Here, we
present one of these finite-volume formulations, known as the Parametric Finite-
Volume Formulation. It uses the Finite Volume Direct Averaged Method—
FVDAM [1] as a basis and is summarized for the case of linear elastic problems in
Cavalcante et al. [2, 3]. An extension of the Parametric Finite-Volume Formu-
lation in order to include linear viscoelastic effect, here presented, can be found in
a more detailed form in Escarpini Filho [5].

11.1 Parametric Finite Volume Formulation:
Background

In the two dimensional parametric finite-volume formulation the domain occupied
by the solid is discretized into quadrilateral subvolumes. The formulation is based
on the mapping of a reference square subvolume onto each one of these quadri-
lateral subvolume resident on the actual solid domain, as shown in Fig. 11.1 [2].
The mapping of the point ðg; nÞ in the reference subvolume to the corresponding
actual point ðx; yÞ is defined by

xðg; nÞ ¼ N1ðg; nÞx1 þ N2ðg; nÞx2 þ N3ðg; nÞx3 þ N4ðg; nÞx4

yðg; nÞ ¼ N1ðg; nÞy1 þ N2ðg; nÞy2 þ N3ðg; nÞy3 þ N4ðg; nÞy4
ð11:1Þ

where Ni are the shape functions given by N1 ¼ ð1� gÞð1� nÞ=4;
N2 ¼ ð1þ gÞð1� nÞ=4; N3 ¼ ð1þ gÞð1þ nÞ=4 and N4 ¼ ð1� gÞð1þ nÞ=4. xi

and yi are the Cartesian coordinates of the i-th node of the quadrilateral subvo-
lume. Here, we use x and y as geometrical coordinates instead of x1 and x2:
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The displacement components in the reference subvolume are approximated by
second order polynomials as follows

ui ¼ Uið00Þ þ gUið10Þ þ nUið01Þ þ
1
2

3g2 � 1
� �

Uið20Þ þ
1
2

3n2 � 1
� �

Uið02Þ ð11:2Þ

where i ¼ 1; 2 and Uið Þare the unknown displacement field coefficients. Thus, for
two dimensional problems, we have ten unknown coefficients to be determined.

The surface-averaged partial derivative of the displacement components on the
subvolume faces Fkðk ¼ 1; 2; 3; 4Þ are defined by

oui

og

� ����
k¼1;3

¼ 1
2

Z þ1

�1

oui

og
dg

oui

on

� ����
k¼1;3

¼ 1
2

Z þ1

�1

oui

on
dg ð11:3Þ

oui

og

� ����
k¼2;4

¼ 1
2

Z þ1

�1

oui

og
dn

oui

on

� ����
k¼2;4

¼ 1
2

Z þ1

�1

oui

on
dn

which, using (11.2), can be expressed as functions of the displacement coefficients.
For the face Fk; the partial derivatives with respect to the Cartesian coordinates

are related to the partial derivatives given in (11.3) by

ou1
ox

�
ou1
oy

D
ou2
ox

�
ou2
oy

D

2
666664

3
777775

ðkÞ

¼ Ĵ 0
0 Ĵ

� �
ou1
og

D
ou1
on

D
ou2
og

D
ou2
on

D

2
6666664

3
7777775

ðkÞ

ð11:4Þ

being Ĵ the inverse of the volume-averaged Jacobian matrix �J defined by

Fig. 11.1 Mapping of the reference square subvolume in the g-n plane onto a quadrilateral
subvolume in the x–y plane of the actual microstructure
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�J ¼ 1
4

Z þ1

�1

Z þ1

�1
Jdgdn ð11:5Þ

and

J ¼
ox
og

oy
og

ox
on

oy
on

" #
ð11:6Þ

Using the strain–displacement relation (5.39) with x1 ¼ x and x2 ¼ y; we can
write the surface-averaged strain vector for the face Fk as

e11h
e22h
e12h

2
4

3
5
ðkÞ

¼ �L

ou1
ox

�
ou1
oy

D
ou2
ox

�
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2
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3
777775

ðkÞ

ð11:7Þ

being

�L ¼
1 0 0 0
0 0 0 1
0 1=2 1=2 0

2
4

3
5 ð11:8Þ

For elastic analyses, the surface-averaged stress vector on the subvolume face
Fk is given by

r11h
r22h
r12h

2
4

3
5
ðkÞ

¼ Ĉ
e11h
e22h
e12h

2
4

3
5
ðkÞ

ð11:9Þ

being Ĉ the material elastic constitutive matrix. Applying the Cauchy relation, we
have the surface-averaged tractions as follows

tðkÞ1

tðkÞ2

" #
¼ nðkÞ1 0 nðkÞ2

0 nðkÞ2 nðkÞ1

" # r11h
r22h
r12h

2
4

3
5
ðkÞ

ð11:10Þ

where nðkÞi stand for the components of the outward unit normal vector to the face
Fk: Substituting (11.9) into (11.10) and using (11.7) together with (11.2)–(11.4),
we derive the relation between the surface-averaged tractions on the subvolume
faces and unknown displacement coefficients

t ¼ �AU ð11:11Þ
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where

t ¼ tð1Þ1 tð1Þ2 tð2Þ1 tð2Þ2 tð3Þ1 tð3Þ2 tð4Þ1 tð4Þ2

h iT
ð11:12Þ

U ¼ U1ð10Þ U1ð01Þ U1ð20Þ U1ð02Þ U2ð10Þ U2ð01Þ U2ð20Þ U2ð02Þ
	 
T

ð11:13Þ

and �A ¼ DHLBA: These matrices are found in Appendix C.
Considering body forces b1 and b2; the differential equilibrium equations are

given by

or11

ox
þ or21

oy
þ b1 ¼ 0 ð11:14Þ

or12

ox
þ or22

oy
þ b2 ¼ 0

from which, after writing the stress derivatives in function of the displacement
coefficients, the following relations can be obtained

Ĉ11�J2
11 þ Ĉ33�J2

21

� �
U1ð20Þ þ Ĉ11�J2

12 þ Ĉ33�J2
22

� �
U1ð02Þ

þ Ĉ12 þ Ĉ33

� �
�J11�J21U2ð20Þ þ �J12�J22U2ð02Þ
� �

¼ � b1

3
ð11:15Þ

Ĉ21 þ Ĉ33
� �

�J11�J21U1ð20Þ þ �J12�J22U1ð02Þ
� �

þ Ĉ22�J2
21 þ Ĉ33�J2

11

� �
U2ð20Þ þ Ĉ22�J2

22 þ Ĉ33�J2
12

� �
U2ð02Þ

¼ � b2

3

Introducing the displacement approximations (11.2) into the definitions of the
surface-averaged displacement components in each subvolume face
Fkðk ¼ 1; 2; 3; 4Þ

�uðk¼1;3Þ
i ¼ uih jk¼1;3¼

1
2

Z þ1

�1
uidg �uðk¼2;4Þ

i ¼ uih jk¼2;4¼
1
2

Z þ1

�1
uidn ð11:16Þ

we derive the following relation between these displacement components and the
displacement coefficients
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U ¼ 1
2

0 1 0 �1 0 0 0 0
�1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 �1
0 0 0 0 �1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0

2
66666666664

3
77777777775

�uð1Þ1 � U1ð00Þ

�uð2Þ1 � U1ð00Þ
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�uð4Þ1 � U1ð00Þ

�uð1Þ2 � U2ð00Þ

�uð2Þ2 � U2ð00Þ

�uð3Þ2 � U2ð00Þ

�uð4Þ2 � U2ð00Þ

2
666666666666664

3
777777777777775

ð11:17Þ

being U the vector appearing in (11.11).
From (11.15) and (11.17), we can show that

U ¼ �B�u� NU�1X ð11:18Þ

where �u ¼ �uð1Þ1 �uð1Þ2 �uð2Þ1 �uð2Þ2 �uð3Þ1 �uð3Þ2 �uð4Þ1 �uð4Þ2

h iT
is the subvolume

surface averaged displacement vector,

�B ¼ P� NU�1HM ð11:19Þ

and

U ¼ Ĉ11 �J2
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ð11:20Þ

X ¼ 1
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� �
ð11:21Þ

HT ¼ 1
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� �

�J12�J22
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ð11:22Þ

The matrices P; M and N are presented in Appendix C.
Substituting (11.18) into (11.11) we obtain the relation between the surface-

averaged displacements and the surface-averaged tractions

t ¼ k�u� t0 ð11:23Þ

where k ¼ �A�B is the local stiffness matrix and t0 ¼ �ANU
�1

X represents a traction
vector related to the body forces.
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The global stiffness matrix is generated using a procedure similar to that
employed in finite element algorithms. However, in the Parametric Finite Volume
Formulation the global system of equations is obtained applying both surface-
averaged interfacial traction and displacement continuity conditions, followed by
the prescribed boundary conditions. Each face of a quadrilateral subvolume has
two degrees of freedom associated to two surface-averaged displacement com-
ponents and two degrees of freedom related to two surface-averaged traction
components. From this assemblage procedure, a global system of equations is
obtained with the form

kG�uG � tG0 ¼ tG ð11:24Þ

where kG is the global stiffness matrix and the vector �uG contains all the unknown
interfacial and boundary surface-averaged displacements. tG contains information
on the surface-averaged tractions along the interfaces and the discretized bound-
ary. tG0 is constituted by net contributions of the local vectors t0 along those
interfaces and the discretized boundary.

Solving the system of equations (11.24), we obtain the surface-averaged
displacement vector �uG and, in sequel, the surface-averaged displacement vector
�u of each subvolume. Afterwards, using (11.18) and (11.17), we determine all
subvolume displacement coefficients and, subsequently, the subvolume displace-
ment fields ui given by (11.2). Then, utilizing the strain–displacement equations
and the material constitutive relations, we obtain the subvolume strain and stress
components.

It is worth mentioning that the imposition of the continuity of surface-averaged
displacements and tractions used in the Parametric Finite Volume Formulation
gives to this tool a particular efficiency for the analysis of structures constituted by
heterogeneous materials [2–4].

11.2 Viscoelastic Parametric Finite Volume Formulation

For a viscoelastic subvolume, the incremental displacement field, corresponding to
time interval t; t þ Dt½ �; is expressed by the following second order approximations

Dui ¼ DUið00Þ þ gDUið10Þ þ nDUið01Þ þ
1
2

3g2 � 1
� �

DUið20Þ þ
1
2

3n2 � 1
� �

DUið02Þ

ð11:25Þ

where DUiðÞ are unknown coefficients. The increments of stress are related to
increments of strain through the expression
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being DeHT
ij and DeV

ij ; the hygrothermal and viscoelastic strain increments, respec-
tively. The surface-averaged incremental stress–strain relation for the subvolume
face k can be expressed in the form
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1
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ð11:27Þ

Applying to this equation the same procedure used to derive (11.11), i.e.,
introducing Cauchy formula in (11.27) and using the relations between displace-
ment increments and strain increments, we obtain the surface-averaged traction
increment vector of a subvolume

Dt ¼ �ADU� DH D�eHT þ D�eV
� �

ð11:28Þ

where D�eHT and D�eV are the hygrothermal and viscoelastic surface-averaged strain
increment vectors, respectively,

Dt ¼ Dtð1Þ1 Dtð1Þ2 Dtð2Þ1 Dtð2Þ2 Dtð3Þ1 Dtð3Þ2 Dtð4Þ1 Dtð4Þ2

h iT
ð11:29Þ

DU ¼ DU1ð10Þ DU1ð01Þ DU1ð20Þ DU1ð02Þ DU2ð10Þ DU2ð01ÞDU2ð20Þ DU2ð02Þ
	 
T

ð11:30Þ

Similarly to (11.18), we may show that the incremental displacement coefficient
vector DU is related to the surface-averaged incremental displacement vector D�u
by

DU ¼ �BD�u� NU�1DX ð11:31Þ

being the incremental body force vector

DX ¼ 1
3

Db1

Db2

� �
ð11:32Þ

and

D�u ¼ D�uð1Þ1 D�uð1Þ2 D�uð2Þ1 D�uð2Þ2 D�uð3Þ1 D�uð3Þ2 D�uð4Þ1 D�uð4Þ2

h iT
ð11:33Þ

Substituting (11.31) into (11.28), we obtain the local incremental relation

Dt ¼ kD�u� Dt0 ð11:34Þ

where k is the same stiffness matrix appearing in (11.23) and

Dt0 ¼ �ANU
�1

DXþ DHðD�eHT þ D�eVÞ ð11:35Þ
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It is worth noticing that the viscoelastic strains at t þ Dt can be evaluated using
the stresses obtained at the end of time t (see Sect. 3.2). So, the vector
D�eV ¼ �eVðt þ DtÞ � �eVðtÞis known during the incremental step corresponding to
the time interval t; t þ Dt½ �. Similarly, if we know the temperature and moisture
histories, the incremental hygrothermal strain vector D�eHT ¼ �eHTðt þ DtÞ � �eHTðtÞ
is also known during that incremental step. Here, the overbar is being used to
denote surface-averaged strain. The hygrothermal strain components at time t are
given by

eHT
i ðtÞ ¼ eT

i ðtÞ þ eH
i ðtÞ ¼ aiDHðtÞ þ biDHðtÞ ð11:36Þ

where bi and DHðtÞare, respectively, the hygroscopic expansion coefficient at
i-direction and the moisture variation at time t in relation to the initial strain-free
temperature. ai and DHðtÞ were defined in Sect. 6.1.

The global system of equations is obtained using the same procedures
employed to find (11.24). Solving this global system, we determine the global
incremental surface-averaged displacement vector D�uG. The local incremental
displacements, strains and stresses are obtained by the same procedures used for
the case of linear elastic material. The updated displacements, strains and stresses
of each subvolume are, then, given by

uðt þ DtÞ ¼ uðtÞ þ Du ð11:37Þ

eðt þ DtÞ ¼ eðtÞ þ De ð11:38Þ

rðt þ DtÞ ¼ rðtÞ þ Dr ð11:39Þ

Example 1 To show an application of the viscoelastic parametric finite-volume
formulation, we consider a viscoelastic block confined inside an infinitely rigid die
and subjected to an instantaneously applied vertical pressure p ¼ 10 MPa
(Fig. 11.2). The material is isotropic, homogeneous, linear elastic in dilatation and
linear viscoelastic in shear. This viscoelastic behavior is modeled by a Maxwell

x

p

y

Fig. 11.2 Viscoelastic block
confined in a rigid die
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element with a spring of constant G ¼ 3; 846:15 MPa and a dashpot with
gG ¼ 400 MPa:s: The elastic bulk modulus is K ¼ 8; 333:33 MPa: The friction
effect along the interface block-die is neglected.

According to the analytical solution, the horizontal normal stress is given by [6]

ryðtÞ ¼ �p 1� 6G

3K þ 4G
exp � 3Kt

3K þ 4Gð Þh

� �� �
ð11:40Þ

where h ¼ gG=G: The block is under plane strain state.
To analyze the problem using the viscoelastic parametric finite-volume for-

mulation, Escarpini Filho [5] discretized the block into rectangular subvolumes as
shown in Fig. 11.2. The analytical and numerical results for the horizontal
confinement stress in function of time are illustrated in Fig. 11.3. As observed, this
parametric formulation provides results nearly identical to the exact analytical
solution.
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Chapter 12
Solutions with Abaqus

To help the reader to practice with a professional computer code, we use Abaqus to
solve a few problems in viscoelasticity (small and large strains). First we relate
Abaqus procedure to the general formulation given in this book and then we
provide detailed instructions to run the code.

ABAQUS [1] is a highly sophisticated, general purpose finite element program,
designed primarily to model the behavior of solids and structures under externally
applied loading. It includes capabilities for geometrical modeling with an exten-
sive element library for static and dynamic analyses in small and large deformation
processes using linear and non linear constitutive relations. Its mechanical and
computational theoretical background is up-to-date and well explained and it is
widely used in industry and in academic research work.

12.1 Small Strain Examples

The formulation used in Abaqus for small strain problems is similar to the one in
this book. Yet, some particularities are to be stressed.

From (4.3) and (4.7) in Chap. 4, for the relations in shear, we have (we are here
using symbolic notation)

s ¼
Z t

0
2 G1 þ

XnG

i¼1

Gie
�ðt�sÞ=Ti

 !
_eds ð12:1Þ

Abaqus defines as state variables

qiðtÞ ¼
Z t

0
1� e�ðt�sÞ=Ti

� �
_eds ð12:2Þ

S. P. C. Marques and G. J. Creus, Computational Viscoelasticity,
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and then, with G0 ¼ G1 þ
PnG

i¼1
Gi and gP

i ¼ Gi=G0; obtains

s ¼ 2G0 e�
Xn

i¼1

gP
i qi

 !
ð12:3Þ

where qi is determined with a recurrent algorithm as that in (3.17) assuming that _e
in (12.2) varies linearly in each time interval. Similar procedure is used in relation
to bulk.

To enter the material data into Abaqus, we have to inform elastic and visco-
elastic properties. The elastic properties are given as the Young modulus E and the
Poisson modulus v. To enter the viscoelastic properties we must give G?, Gi and

Ti, i ¼ 1; . . .; nG; being G1 ¼ G0 �
PnG

i¼1
Gi; G0 is determined using E and v and the

expressions in Appendix B. The values of Gi are entered indirectly with the
relation gP

i ¼ Gi=G0; the values of Ti are entered directly. The same procedure is
used for entering the bulk properties, where the viscoelastic parameter is kP

i .
Abaqus uses the same relaxation times for bulk and shear. The procedure will be
detailed in Example 1 below.

Example 1 Viscoelastic rod subjected to constant axial load (Abaqus/Stan-
dard Example Problems Manual, Volume I).

This is a simple but interesting problem that introduces Abaqus viscoelastic
procedures and explains how to find the parameters needed and to compare the
answer with an analytical solution. We present it here with small modifications to
adapt it to SI standards.

The rod has a length of 300 mm, and a square section with 30 mm in each side.
A constant axial stress of 10 MPa is applied suddenly at one end and maintained
constant, as shown in Fig. 12.1. We aim the history of deformations in time.

Fig. 12.1 Viscoelastic rod 30 9 30 9 100 mm subjected to a creep test. Material elastic in bulk
and viscoelastic in shear. Comparison of numerical and analytical results
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It is here assumed that the reader has a general knowledge of Abaqus/CAE (a
tutorial ‘‘Getting started with Abaqus interactive edition’’ is available with the
software). We will show here only the details related to the viscoelastic analysis.

Determination of material parameters: The material is represented by a
Zener model with an extensional relaxation function

EðtÞ ¼ k1 þ k2e�t=TE ð12:4Þ

Comparing this equation to (2.24) in Chap. 2, we see that k1 ¼ Eð1Þ and
k2 ¼ Eð0Þ � Eð1Þ:

The relaxation time is TE ¼ g=k2; where g is the viscosity. In this example
k1 ¼ 100 MPa; k2 ¼ 900 MPa and TE ¼ 100 s: The bulk modulus K ¼ 10000 MPa
is independent of time.

Abaqus requires the elastic constants to be given in the elastic option through
the elastic modulus E and the Poisson ratio v. The elastic modulus is immediately
available as Eð0Þ ¼ k1 þ k2 ¼ 1000MPa and the Poisson ratio is determined as
(from Appendix B)

m ¼ 3K � ðk1 þ k2Þ
6K

¼ 0:4833

In the viscoelastic option, we have to use the relaxation functions for shear and
bulk defined using Prony series. In this problem, no bulk relaxation occurs, but we
need the shear relaxation function that Abaqus writes in the form

GðtÞ ¼ G0ð1�
XnG

i¼1

�gP
i ð1� e�t=TG

i ÞÞ ð12:5Þ

The form used in this book is, for the Zener model, from (2.24) in Chap. 2,

GðtÞ ¼ G1 þ G1e�t=TG
1 ð12:6Þ

Both equations are equivalent (check) because Abaqus defines gP
i ¼ Gi=G0:

Still, we have to obtain (12.5) from (12.4). In Example 3 from Chap. 5 the relation
between extensional and shear relaxation functions was given. For the material
characterized by (12.4) and purely elastic bulk behavior with bulk modulus K, we
have from (4.20) or (5.37)

GðtÞ ¼ 27K2k2

9K � k1 � k2ð Þ 9K � k1ð Þ exp � 9K � k1

9K � k1 � k2

t

TE

� �
þ 3Kk1

9K � k1
ð12:7Þ

Then, we have

G0 ¼
3Kðk1 þ k2Þ
9K � k1 � k2

¼ 337:078; G1 ¼
3Kk1

9K � k1
¼ 33:370; G1 ¼ G0 � G1

¼ 303:707
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and thus,

gp
1 ¼

G1

G0
¼ 0:901

TG
1 ¼

9K � k1 � k2

9K � k1
TE ¼ 98:99

Entering data into Abaqus: we assume that the reader has a basic familiarity
with Abaqus for the analysis of elastic problems. Thus, we include here only the
details related to viscoelastic analyses. The example is called BeamV.

The characteristics of the material are given in module Property.

1. Entering the module, we go to Create material. The Edit Material dialog box
appears.

2. Name the material Polymer.
3. From the Material Behavior menu select Mechanical-Elasticity-Elastic.

Abaqus displays the Elastic Data. Maintain Isotropic.
4. In Moduli Timescale (for viscoelasticity) choose instantaneous.
5. Type the value 1000 for Young modulus and the value 0.4833 for Poisson ratio

in the respective fields.
6. Without leaving this box, go again to Mechanical, elasticity, viscoelastic. In

Domain choose time, in time Prony. Inform gi:0.901, ki:0, tau:98.99. If we
have more terms in the Prony series we enter them below.

7. Save.

Defining and assigning section properties: Still in Module Property, select
the tool Create Section to define a Bar section:

1. The Create Section dialog box appears.
2. In the Create Section dialog box:
2.1. Name the section BarVSection.
2.2. Accept Category: Solid.
2.3. Type: Homogeneous.
2.4. Click Continue. The Edit Section dialog box appears.
3. In the Edit Section dialog box:
3.1. In Material accept Polymer. If you had defined other materials, you could

click the arrow next to the Material text box to see a list of available materials
and to select the material of your choice.

3.2. Click OK.

Go to Assign Section, to assign the section BarSection, to the model.

1. Click with the mouse on the beam and press DONE under the viewport.
2. In the Section Assignement box verify Section: BeamVSection.
3. Click OK. The bar changes color.
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Defining the assembly: This module may be used to assemble a complex
model from its parts. In the present case, we have only one part. In the Module list
located below the toolbar, click Assembly to enter the Assembly module.

1. From the menu bar, select Instance Part. The Create Instance dialog box
appears.

2. In the Instance Type dialog box, choose Independent (mesh on instance).
3. In the dialog box, select BeamV, click OK.

Configuring the Analysis: Now that the assembly has been created, you can
move to the Step module to configure your analysis. In the Module list, click Step
to enter the Step module.

Select Create Step.

1. The Create Step dialog box appears with a list of all the general procedures
and a step name. Write name stepvisco

2. Select Procedure type: General/Visco and click Continue.
3. The Edit Step Box opens. In the Basic tab, select time period: 10000,

NLGeom-Off.
4. In the Incrementation tab, Maximum number: 1000; increment size: initial:

10, minimum: 0.001, maximum: 30. In the option creep/swelling/viscoelastic
strain error tolerance: 0.005.

5. Click OK to create the step and to exit the Edit Step dialog box.

Then, we have to set the boundary conditions encastré in one of the ends and
apply a pressure -10 to the other, mesh the bar, choose the element type and
solve.

Comparing the result to the analytical solution: In Example 3 from Chap. 2,
the creep function corresponding to a given relaxation function was determined.
Thus, for the function (12.4) we obtain

DðtÞ ¼ 1
k1
� k2

k1ðk1 þ k2Þ
e�t=hE ð12:8Þ

with

hE ¼ ð1þ k2=k1ÞTE ¼ 1000

Abaqus gives a very approximate answer, as shown in Fig. 12.1 above.
Example 2 Change the integration parameters in Example 1 to see their influ-

ence on the approximation.
Example 3 Apply a constant displacement of 5 mm to the free end of the bar

and determine the relaxation curve. Check the result with (12.4).
Example 4 Thick cylindrical shell under internal pressure-Plane strain.
This problem was solved using Laplace transform in Example 5 of Chap. 5.
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Dimensions: b = 10 mm, a = 20 mm; Material properties are the same as in
Example 1: E ¼ 1000 MPa; t ¼ 0:483; gi ¼ 0:90101 ki ¼ 0; si ¼ 98:99 sec Pres-
sure p = 10 MPa; Time step = 10000, increments: initial = 10, minimum = 0.1,
maximum = 70, cetol = 0.005; Mesh size : 0.3, Element CPE4R.

Displacements are plotted in Fig. 12.2 compared to the analytical results given
in Example 5 of Chap. 5. Stresses remain constant, as predicted analytically.

12.2 Thermo-Viscoelasticity Examples

Example 5 Creep and relaxation tests at different temperatures
We will analyze the same problem of Example 1 determining the changes due

to increase of temperature. In this case we need to solve two problems: a thermal
one, that provides the temperature distribution and a viscoelastic one, that uses the
information of the first one to modify the constitutive parameters.

We begin the first problem applying temperature using the geometry of the
beam.

In Property we inform density:1, conductivity:1 and specific heat:1. In
module Step go to Create step, select heat transfer, Max. allowable tempera-
ture change per increment: 0.0001. In module load go to Create Load, type at
Selected Step temperature, select the beam and inform magnitude of temperature
and instantaneous. In module Mesh, Element Type select Heat Transfer. In Job
give the name applyingtemperature. Save as applyingtemperature.

Now we solve the viscoelatic problem, making the following changes (as
related to Example 1):

Fig. 12.2 Cylindrical tube subjected to internal pressure in plane strain. Dimensions:
a = 20 mm, b = 10 mm. Pressure p = 10 MPa. Radial displacement of the external face
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In module Property, after entering the viscoelastic data as before, we go to
Suboptions choose trs (for temperature shift) and inform theta0:0 (reference
temperature), C1:4.92 e C2:215. In module Load, we keep the same boundary
and load data, adding information from the. odb created previously. Still in the
module load go to Predefined Field in the upper toolbar and choose Create. In
Category, use Other, and in Types for Selected Step select Temperature,
continue, select all the beam. In the box Edit Predefined Field select as distri-
bution option From results of output database file and in file look for apply-
ingtemperature.odb and press OK.

Then, continue as in the previous examples.
We observe in Figs. 12.3 and 12.4 that, as said in Chap. 6, the time shifting

procedure does not alter the short term and long term behaviors but changes the
retardation and/or relaxation times.

12.3 Finite Strain Examples

For large strain situations, Abaqus uses a procedure based in relation (8.12) (see
Ciambella et al. [2, 3]. For the elastic deformation the hyperelastic equations are
now used. The viscoelastic representation is the same as in the small strain part.

In Miller [4], an interesting application of Abaqus to Biomechanics may be
found.

Example 6 Uniaxial creep of a bar
The same bar of Fig. 12.1 is now subjected to an axial stress of 50 MPa.

Material behavior: in Mechanical-elasticity-hyperelastic. Strain energy: choose:
Polynomial. Input source: choose: coefficients. Strain energy potential order:
choose: 1; In data write: C10 ¼ 100; C01 ¼ 68:5; D1 ¼ 0:0002. Go to Mechanical-
elasticity-viscoelastic- In Domain choose time, in time Prony. Inform:
gi = 0.901, ki = 0, tau = 98.99. In module step, create step, choose category
visco with time period:10000, increment size: initial: 0.1; minimum:0.1; maxi-
mum:50; creep/swelling/viscoelastic strain error tolerance: 0.1. In other,
choose in matrix storage the option unsymetric, keeping the other default options.

Fig. 12.3 Creep curves at different temperatures. Strain versus time in seconds
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The result, as a plot of logarithmic strain (Log10(1 ? e)) versus time, is given in
Fig. 12.5 above.

Situations with large strain are complex. In this example, if the load is too large
the solution may become unstable. The use of the hybrid element C3D8RH may be
convenient.

Example 7 Punching of a viscoelastic foam. This is an interesting example that
is described in the Abaqus manual.
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Appendix A
Mathematical Formulae

In this appendix we present a brief review of some mathematical definitions,
properties and relations that are useful for the development of several topics
presented in this book. For a more detailed review, the reader is encouraged to
consult specialized books (e.g., [1–3]).

1. Step and Impulse Functions
The unit step function H(t) is defined as

Hðt � t0Þ ¼
0 for t\t0

1 for t [ t0

(
ðA:1Þ

The unit impulse or Dirac-delta function d(t) has the following definition

dðt � t0Þ ¼
0 for t 6¼ t0

1 for t ¼ t0

(
ðA:2Þ

with the additional condition
R1
�1 dðtÞdt ¼ 1:

2. Leibnitz Rule for the Differentiation of Integrals
Given

FðtÞ ¼
Z hðtÞ

gðtÞ
f ðt; sÞds ðA:3Þ

then

dF

dt
¼
Z hðtÞ

gðtÞ

of

ot
ds� f ðt; gÞ dg

dt
þ f ðt; hÞ dh

dt
ðA:4Þ
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When h(t) = t and g(t) = s0 = const, (A.4) becomes

dF

dt
¼
Z t

s0

of

ot
dsþ f ðt; tÞ ðA:5Þ

3. Solution of the First Order Linear Differential Equation
The first order linear differential equation

_yþ pðsÞy ¼ rðsÞ ðA:6Þ

with the initial condition y(s0) = y0 has the general solution

yðtÞ ¼ exp �
Z t

s0

pðsÞds

� �Z t

s0

rðsÞ exp

Z t

s0

pðsÞds

� �� �
ds

þ y0 exp �
Z t

s0

pðsÞds

� �
ðA:7Þ

When p(s) = p0 = const, (A.7) becomes

yðtÞ ¼ exp p0 s0 � tð Þ½ �
Z t

s0

rðsÞ exp p0 s0 � tð Þ½ �dsþ y0 exp p0 s0 � tð Þ½ � ðA:8Þ

For p(s) = p0 = const and r(s) = r0 = const, (A.8) yields

yðtÞ ¼ r0

p0
1� expðp0s0 � p0tÞ½ � þ y0 exp p0s0 � p0tð Þ ðA:9Þ

4. Laplace Transform: Definition and Properties
Let f(t) be a function of a real variable t C 0. The Laplace transform of f(t) is
defined by

Lff ðtÞg ¼ �f ðsÞ ¼
Z 1

0
e�stf ðtÞdt ðA:10Þ

where s is the transform parameter which may be complex or real.
Some Important Properties of Laplace Transform

(a) Linearity
For n functions fi(t), using the definition (A.10), it can be easily shown that

Table A.1 Laplace transform pairs

f(t) H(t) d(t) e-at 1
a ð1� e�atÞ tn(n = 0, 1…) sin at cos at

�f ðsÞ 1
s

1 1 1
sðaþsÞ

n!
snþ1

a
s2þa2

s
s2þa2
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L
Xn

i¼1

aifiðtÞ
( )

¼
Xn

i¼1

aiL fiðtÞf g ðA:11Þ

where ai are values independent of t.
(b) Laplace transform of derivatives

If f0(t) is the first derivative of f(t), it is possible to prove that

L f 0ðtÞf g ¼ �f 0ðsÞ ¼ s�f ðsÞ � f ð0Þ ðA:12Þ

For the case of the second derivative f00(t), a similar procedure leads to the
following equation

L f 00ðtÞf g ¼ �f 00ðsÞ ¼ s2�f ðsÞ � sf ð0Þ � f 0ð0Þ ðA:13Þ

Generally, for the derivative of order n, the following equation can be found

L f ðnÞðtÞ
n o

¼ �f ðnÞðsÞ ¼ sn�f ðsÞ � sn�1f ð0Þ � sn�2f 0ð0Þ � � � � f ðn�1Þð0Þ ðA:14Þ

(c) Laplace transform of integrals
The Laplace transform of the integral gðtÞ ¼

R t
0 f ðsÞds is given by

L gðtÞf g ¼ �gðsÞ ¼
Z 1

0
e�st

Z t

0
f ðsÞdsdt ¼

�f ðsÞ
s

ðA:15Þ

(d) Laplace transform of the convolution of two functions
The convolution of two functions f(t) and g(t) defined for t C 0 is a new
function h(t) given by

hðtÞ ¼ f ðtÞ � gðtÞ ¼
Z t

0
f ðtÞgðt � sÞds ðt� 0Þ ðA:16Þ

It can be easily shown, using a change of variable, that f(t) � g(t) = g(t) � f(t). The
Laplace transform of h(t) is written as

L hðtÞf g ¼ �hðsÞ ¼
Z 1

0
e�st

Z t

0
f ðtÞgðt � sÞdsdt ¼ �f ðsÞ:�gðsÞ ðA:17Þ

This result is the well-known Convolution theorem.
(e) Laplace transforms of some common functions

Laplace transform pairs for some simple functions that often appear in
applications are shown in Table A.1.

(f) Limit theorems

lim
s!0þ

s�f ðsÞ ¼ f ð1Þ ðA:18Þ

lim
s!1

s�f ðsÞ ¼ f ð0Þ ðA:19Þ
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Appendix B

For the sake of completeness and to establish a reference notation, a brief review
of some continuum mechanics relations is included. For a complete formulation,
books on linear and non linear continuum mechanics should be consulted
(e.g., [4–6]).

B.1 Small Strain theory
The linear elastic constitutive relation is r = Ee. In isotropic small strain elasticity
we may divide strains into spherical (or volumetric) and deviatoric (or isochoric)
components

e0 ¼
1
3

treI

e ¼ e� e0

ðB:1Þ

Then, we can use (as an alternative to the Hooke law in terms of the elasticity
modulus E and the Poisson modulus m) the relation

r ¼ 3e0 þ 2Ge or rij ¼ 3Keiidij þ 2Geij ðB:2Þ

where

r0 ¼
1
3

trrI

s ¼ r� r0

ðB:3Þ

are the hydrostatic and deviatoric stresses and K and G are the bulk and shear
moduli respectively.
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B.2 Relationship Among Elastic Constants

G ¼ E

2ð1þ mÞ ¼
3Kð1� 2mÞ

2ð1þ mÞ ¼
3KE

ð9K � EÞ

m ¼ E

2G
� 1 ¼ ð3K � 2GÞ

2ð3K þ GÞ ¼
ð3K � EÞ

6K

E ¼ 2Gð1þ mÞ ¼ 9KG

ð3K þ GÞ ¼ 3Kð1� 2mÞ

K ¼ 2Gð1þ mÞ
3ð1� 2mÞ ¼

GE

3ð3G� EÞ ¼
E

3ð1� 2mÞ

ðB:4Þ

B.3 Finite Deformations
X and x represent, respectively, the initial and actual positions of a material point.
The deformation of the solid is represented by a mapping xðtÞ ¼ x̂ðX; tÞ:

Locally the mapping is approximated by the deformation gradient F

FðX; tÞ ¼ ox̂

oX
ðB:5Þ

that is the basic measure in the large strain theory. The displacement is given by

uðX; tÞ¼ x� X ðB:6Þ

and thus, the gradient of displacement is

ou

oX
¼ F� I ðB:7Þ

where I is the unit tensor.
J = det F is the volume ratio or Jacobian determinant.
The deformation gradient tensor may be split into pure deformation and pure

rotation components

F ¼ RU ¼ VR ðB:8Þ

with RT = R-1, U = UT and V = VT.

C ¼ FT F ¼ UT U ðB:9Þ

is the right Cauchy-Green tensor and

E ¼ 1
2
ðC� IÞ or Eij ¼

1
2

oui

oXj
þ ouj

oXi
þ ouk

oXi

ouk

oXj

� �
ðB:10Þ

is the Green-Lagrange strain tensor. In the small strain case we have
ouk

oXi
� 1: and

we write
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Eij ffi eij ¼
1
2

oui

oXj
þ ouj

oXi

� �
ðB:11Þ

B.4 Stress Measures
r measured on the deformed configuration is the true stress or Cauchy stress.
Other stress measures, useful in large strain calculations, are

s ¼ Jr : Kirchhoff stress ðB:12Þ

P ¼ JrF�T : non�symmetricð ÞFirst Piola � Kirchhoff stress or nominal stress

ðB:13Þ

S ¼ F�1P ¼ F�1sF ¼ JF�1rF�T : Second Piola� Kirchhoff stress ðB:14Þ

In the small strain case we have F % I, J % 1 and all stress measures coincide.
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Appendix C

Here, we show some matrices appearing in the Parametric Finite-Volume
Formulation presented in Chap. 11. The matrices used to define �A in Eq. (11.11)
are given by

A ¼
Að1Þ

Að2Þ

Að3Þ

Að4Þ

2
664

3
775 B ¼

Ĵ 0 0 0 0 0 0 0
0 Ĵ 0 0 0 0 0 0
0 0 Ĵ 0 0 0 0 0
0 0 0 Ĵ 0 0 0 0
0 0 0 0 Ĵ 0 0 0
0 0 0 0 0 Ĵ 0 0
0 0 0 0 0 0 Ĵ 0
0 0 0 0 0 0 0 Ĵ

2
66666666664

3
77777777775

ðC:1Þ

where

Að1;3Þ ¼

1 0 0 0 0 0 0 0
0 1 0 	3 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 	3

2
664

3
775

Að2;4Þ ¼

1 0 
3 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 
3 0
0 0 0 0 0 1 0 0

2
664

3
775

H ¼
Ĉ 0 0 0
0 Ĉ 0 0
0 0 Ĉ 0
0 0 0 Ĉ

2
664

3
775 D ¼

nð1Þ 0 0 0
0 nð2Þ 0 0
0 0 nð3Þ 0
0 0 0 nð4Þ

2
664

3
775 ðC:3Þ
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being

nðkÞ ¼ nðkÞ1 0 nðkÞ2

0 nðkÞ2 nðkÞ1

" #
ðC:4Þ

L ¼

�L 0 0 0
0 �L 0 0
0 0 �L 0
0 0 0 �L

2
664

3
775 ðC:5Þ

The matrices P, M and N that appear in (11.19) are defined by

P ¼

0 0 1=2 0 0 0 �1=2 0
�1=2 0 0 0 1=2 0 0 0

0 0 1=2 1=2 0 0 1=2 0
1=2 0 0 0 1=2 0 0 0

0 0 0 1=2 0 0 0 �1=2
0 �1=2 0 0 0 1=2 0 0
0 0 0 1=2 0 0 0 1=2
0 1=2 0 0 0 1=2 0 0

2
66666666664

3
77777777775

ðC:6Þ

M ¼

0 0 1 0 0 0 1 0
1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1
0 1 0 0 0 1 0 0

2
664

3
775 N ¼

0 0
0 0
1 0
1 0
0 0
0 0
0 1
0 1

2
66666666664

3
77777777775

ðC:7Þ
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Index

A
Age, 7, 59, 62, 64
Aging, 7–8, 59–60, 64
Anisotropic materials, 33, 55

B
Boltzmann superposition principle, 6
Boundary element analysis, 8, 87–88
Bulk modulus, 101, 105, 117

C
Composites, 1, 33
Concrete, 8, 57–59
Convolution, 38, 42, 115
Correspondence principle, 43, 45, 48, 89
Creep curves, 17, 53, 60, 109
Creep function, 6, 14, 16, 18
Creep tests, 5–6, 29, 32
Creep recovery, 3

D
Dashpot, 13–14, 62, 101
Deviator, 42, 64
Deviatoric, 30, 71, 73, 117
Differential operators, 20, 31, 39
Differential representations, 30, 37
Dirac delta function, 88, 113
Dirichlet-Prony series, 24, 34, 48, 63

E
Elastic modulus, 5, 107
Elastic strain, 2
Environmental conditions, 8, 59

F
Fading memory, 70
Finite deformation, 74, 118
Finite element method, 2, 25, 77, 87
Finite element analysis, 84
Finite volume formulation, 93, 98
Foam, 112

G
Generalized Kelvin

model, 16–18, 20–21, 24
Generalized Maxwell

model, 16–19, 56
Glass transition, 52, 54
Glassy regimes, 52
Green-Lagrange

Strain, 78–79, 81, 118
Green-Rivlin, 72

H
Hooke law, 117
Hyperelasticity, 71
Hyperelastic material, 72
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I
Impulse function, 113
Internal variables, 27, 73
Inversion of Laplace, 47
Isochronous curves, 5–6
Isotropic materials, 29–30, 52

K
Kelvin model, 15–16, 62–63
Kelvin chain, 17, 32, 54, 63

L
Laplace transform, 37–39, 46, 89, 114
Leibnitz rule, 113
Linearity, 5–6, 57, 114
Logarithmic strain, 110

M
Maxwell model, 13–14
Maxwell chain, 17
Modulus of elasticity, 117
Multiple integral representation, 70

N
Nonaging, 60
Nonlinear viscoelasticity, 6, 27, 67, 69, 71
Nonlinear effects, 68
Nonlinearity, 6, 67, 69, 77

P
Poisson ratio, 29, 45, 105–106
Polymers, 52, 54, 56, 59
Principle of superposition, 6

R
Relaxation function, 12, 15, 20, 29
Relaxation time, 15–16, 33, 55

Retardation time, 34
Reduced times, 54–56, 68
Rheological models, 11–13, 32, 61
Riesz theorem, 11

S
Schapery, 48, 67–68
Shear relaxation, 32, 105
Shift factor, 54, 68
Standard model, 7, 41, 47
State variables, 8, 23–25, 27, 31, 34–35, 59,

63, 67, 73–75
Step function, 115
Superposition principle, 6

T
Temperature effect, 51–52, 57, 64
Time-temperature equivalence, 57
Thermal expansion, 52
Thermodynamic restrictions, 21
Thermorheological simples, 53, 55, 58, 68
Thermorheological complex, 53, 57, 68
Thermoviscoelasticity, 51

U
Unit step function, 2, 113

V
Viscoelastic models, 13
Voigt notation, 34, 51, 81

W
WLF equation, 54

Z
Zener model, 18–20, 32
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