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Preface

Securing complex and networked systems has become increasingly important
as these systems play an indispensable role in all aspects of modern life. Secu-
rity, trust, authentication, and privacy of communications, data, and computing
are critical for many applications and infrastructures, and their analysis and
establishment pose novel and difficult challenges. These challenges are further
exacerbated by the heterogeneity of communication networks, and by their dis-
tributed and asynchronous operation. Human, social, and economic factors play
an important role in security and performance of such networked systems, and
pose additional challenges that require innovative methodologies and at the same
time challenge the foundations of conventional methods in computer science,
mathematics, economics, and sociology. The investigation of security, trust, and
privacy in such systems involves inference and decision making at multiple lev-
els and time scales, given the limited and time-varying resources available to
both malicious attackers and administrators defending these complex networked
systems. Decision and game theory — in a broad sense — provides a rich and in-
creasingly expanding arsenal of methods, approaches, and algorithms with which
to address the novel resource allocation, inference, and decision-making problems
arising in security, trust, and privacy of networked systems.

GameSec 2011, the Second Conference on Decision and Game Theory for
Security, took place on the campus of the University of Maryland, College Park,
during November 14–15, 2011, under the sponsorships of the Maryland Cyber-
security Center (MC2) and other technical sponsors. GameSec brings together
researchers who aim to establish a theoretical foundation for making resource-
allocation decisions that balance available capabilities and perceived security
risks in a principled manner. The conference focuses on analytical models based
on game, information, communication, optimization, decision, and control theo-
ries that are applied to diverse security topics. At the same time, the connections
between theoretical models and real-world security problems are emphasized to
establish the important feedback loop between theory and practice. Given the
scarcity of venues for researchers who try to develop a deeper theoretical under-
standing of the underlying incentive and resource allocation issues in security,
GameSec aims to fill an important void and to serve as a distinguished forum.

This edited volume contains the summaries of the two plenary keynote ad-
dresses, and the 16 contributed full papers, presented at GameSec 2011. These
18 articles are categorized into the following seven sessions:

– “Plenary Keynotes” contains summaries of the two plenary keynote ad-
dresses, which present inspiring, visionary, and innovative ideas in game
theory and its interplay with social and economic considerations within the
context of security and trust in complex networked systems.



VI Preface

– “Attacks, Adversaries, and Game Theory” has two articles discussing game-
theoretic approaches to intrusion-detection systems and the role of adver-
saries’ risk profiles.

– “Wireless Adhoc and Sensor Networks” contains three articles, which inves-
tigate attacks and defense in infrastructureless wireless communication and
sensor networks.

– “Network Games” has three articles focusing on analytical investigations of
games related to security problems in networks.

– “Security Insurance” contains two articles on the new field of economic in-
surance considered as a component of the overall security infrastructure for
complex networks and systems.

– “Security and Trust in Social Networks” has four articles investigating, ana-
lytically and experimentally, game-theoretic methods in the important area
of social networks.

– “Security Investments” contains two articles investigating the value and ef-
fectiveness of investments for security mechanisms in the Internet.

Considering that inference and decision making for human–machine net-
worked systems is still an emerging research area, we believe that this edited
volume as well as the GameSec conferences will be of interest to both researchers
and students who work in this challenging and multidisciplinary area.

November 2011 John Baras
Jonathan Katz
Eitan Altman
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Tamer Başar University of Illinois at Urbana-Champaign, USA
Anthony Ephremides University of Maryland, College Park, USA
Jean-Pierre Hubaux EPFL, Switzerland

Program Committee

General Chair John Baras University of Maryland, USA
TPC Co-chairs Jonathan Katz University of Maryland, USA

Eitan Altman INRIA, France
Publicity Chair Sennur Ulukus University of Maryland, USA
Publication Chair Gang Qu University of Maryland, USA
Finance Chair Ion Matei National Institute of Standards and

Technology and University of
Maryland, USA

Local Chair Shah-An Yang University of Maryland, USA
Secretary Kimberly Edwards University of Maryland, USA

Sponsoring Institutions

Gold Sponsors

Maryland Cybersecurity Center (MC2)
Maryland Hybrid Networks Center (HyNet)
Lockheed Martin Chair in Systems Engineering

Silver Sponsors

Institute for Systems Research (ISR)

Technical Co-sponsors

IEEE Control System Society (IEEE CSS)
International Society of Dynamic Games (ISDG)
In cooperation with the ACM Special Interest Group on Security, Audit, and
Control (SIGSAC)



VIII Organization

Technical Program Committee

Tansu Alpcan TU Berlin and T-Labs, Germany
Venkat Anantharam University of California Berkeley, USA
Sonja Buchegger KTH Stockholm, Sweden
Levente Buttyán Budapest University of Technology and Economics,

Hungary
Srdjan Capkun ETH Zurich, Switzerland
Alvaro Cardenas Fujitsu Labs of America, USA
Song Chong KAIST, Republic of Korea
T. Charles Clancy Virginia Tech, USA
Laura Cottatellucci Eurecom, France
Merouane Debbah SUPELEC, France
Andrey Garnaev St. Petersburg State University, Russia
Jens Grossklags Pennsylvania State University, USA
Joseph Halpern Cornell University, USA
Sushil Jajodia George Mason University, USA
Tao Jiang Intelligent Automation Inc., USA
Arman Khouzani University of Pennsylvania, USA
Iordanis Koutsopoulos University of Thessaly, Greece
Richard La University of Maryland, USA
Armand Makowski University of Maryland, USA
Fabio Martignon University of Bergamo, Italy
Pietro Michiardi EURECOM, France
Ariel Orda Technion, Israel
Manoj Panda Indian Institute of Science, India
Radha Poovendran University of Washington, USA
Balakrishna Prabhu LAAS CNRS, France
Gang Qu University of Maryland, USA
Alonso Silva INRIA, France
Rajesh Sundaresan Indian Institute of Science, India
Georgios Theodorakopoulos EPFL, Switzerland
Wade Trappe Rutgers University, USA
Tunca Tunay Stanford University, USA
Kavitha Voleti Veeraruna INRIA, France
Jean Walrand University of California Berkeley, USA
Nan Zhang George Washington University, USA



Table of Contents

Plenary Keynotes

Beyond Nash Equilibrium: Solution Concepts for the 21st Century . . . . . 1
Joseph Y. Halpern

Network Security Games: Combining Game Theory, Behavioral
Economics, and Network Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Nicolas Christin

Attacks, Adversaries, and Game Theory

Indices of Power in Optimal IDS Default Configuration: Theory and
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Quanyan Zhu and Tamer Başar
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Beyond Nash Equilibrium:

Solution Concepts for the 21st Century

Joseph Y. Halpern

Computer Science Department
Cornell University

Ithaca, NY 14853, USA
halpern@cs.cornell.edu

An often useful way to think of security is as a game between an adversary
and the “good” participants in the protocol. Game theorists try to understand
games in terms of solution concepts ; essentially, this is a rule for predicting how
the game will be played. The most commonly used solution concept in game
theory is Nash equilibrium. Intuitively, a Nash equilibrium is a strategy profile (a
collection of strategies, one for each player in the game) such that no player can
do better by deviating. The intuition behind Nash equilibrium is that it represent
a possible steady state of play. It is a fixed point where each player holds correct
beliefs about what other players are doing, and plays a best response to those
beliefs. Part of what makes Nash equilibrium so attractive is that in games where
each player has only finitely many possible deterministic strategies, and we allow
mixed (i.e., randomized) strategies, there is guaranteed to be a Nash equilibrium
[11] (this was, in fact, the key result of Nash’s thesis).

For quite a few games, thinking in terms of Nash equilibrium gives insight into
what people do (there is a reason that game theory is taught in business schools!).
However, as is well known, Nash equilibrium suffers from numerous problems.
For example, the Nash equilibrium in games such as repeated prisoner’s dilemma
is to always defect. It is hard to make a case that rational players “should” play
the Nash equilibrium in this game when “irrational” players who cooperate for a
while do much better! Moreover, in a game that is only played once, why should
a Nash equilibrium arise when there are multiple Nash equilibria? Players have
no way of knowing which one will be played. And even in games where there is
a unique Nash equilibrium (like repeated prisoner’s dilemma), how do players
obtain correct beliefs about what other players are doing if the game is played
only once? (See [10] for a discussion of some of these problems.)

I will argue that Nash equilibrium is particularly problematic when it comes
to security. Not surprisingly, there has been a great deal of work in the economics
community on developing alternative solution concepts. Various alternatives to
and refinements of Nash equilibrium have been introduced, including, among
many others, rationalizability, sequential equilibrium, (trembling hand) perfect
equilibrium, proper equilibrium, and iterated deletion of weakly dominated strate-
gies. (These notions are discussed in standard game theory texts, such as [4,12].)
Despite some successes, none of these alternative solution concepts address the
following four problems with Nash equilibrium, all quite relevant to security.

J.S. Baras, J. Katz, and E. Altman (Eds.): GameSec 2011, LNCS 7037, pp. 1–3, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 J.Y. Halpern

– Although both computer science and distributed computing are concerned
with multiple agents interacting, the focus in the game theory literature has
been on the strategic concerns of agents—rational players choosing strate-
gies that are best responses to strategies chosen by other player, the focus
in distributed computing has been on problems such as fault tolerance and
asynchrony, leading to, for example, work on Byzantine agreement [3,13].
Nash equilibrium does not deal with “faulty” or “unexpected” behavior, “ir-
rational” players, or colluding agents. When dealing with security concerns,
all these issues are critical.

– Nash equilibrium does not take computational concerns into account. We
need solution concepts that can deal with resource-bounded players, concerns
that are at the heart of cryptography.

– Nash equilibrium presumes that players have common knowledge of the
structure of the game, including all the possible moves that can be made
in every situation and all the players in game. But in security applications,
sometimes the largest problems come from actions that were totally unan-
ticipated, and not on anyone’s radar screen beforhand (other than the at-
tacker’s!).

– Nash equilibrium presumes that players know what other players are doing
(and are making a best response to it). But how do they gain this knowledge
in a one-shot game, particularly if there are multiple equilibria?

The full version of this paper [5] has an overview of all the relevant issues and
further references; more details can be found in [1,2,7,8,6,9].
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Network Security Games:
Combining Game Theory, Behavioral Economics,

and Network Measurements

Nicolas Christin

Carnegie Mellon University
Information Networking Institute and CyLab

Pittsburgh, PA 15123
nicolasc@cmu.edu

Computer and information networks are a prime example of an environment where
negative externalities abound, particularly when it comes to implementing security de-
fenses. A typical example is that of denial-of-service prevention: ingress filtering, where
attack traffic gets discarded by routers close to the perpetrators, is in principle an ex-
cellent remedy, as it prevents harmful traffic not only from reaching the victims, but
also from burdening the network situated between attacker and target. However, with
ingress filtering, the entities (at the ingress) that have to invest in additional filtering are
not the ones (at the egress) who mostly benefit from the investment, and, may not have
any incentive to participate in the scheme. As this example illustrates, it is important
to understand the incentives of the different participants to a network, so that we can
design schemes or intervention mechanisms to re-align them with a desirable outcome.

Game theory offers a solid bedrock for formally assessing the incentives of non-
cooperative participants. In this talk, I will start by discussing a framework for net-
work security games [4,5] that we devised to help model how rational, individual, end-
users would respond to security threats in large-scale networks. We decouple security
decisions between self-insurance (which does not present any externalities) and self-
protection (which does present externalities). Assuming fully rational players, acting
with perfect information, and with the ability to perfectly execute their security deci-
sions, we can derive results showing how much of a negative impact externalities can
have on security decision-making. I will also introduce extensions of this work which
deal with more limited information cases [6].

However, humans are not acting perfectly rationally when it comes to security
decision-making. Prospect theory tells us that humans tend to be risk-averse when it
comes to gains; and risk-seeking when it comes to losses [7]. In other words, people
tend to “gamble” more than they should when it comes to security risks. I will further
show, through an experiment related to our framework [3] that in addition to these bi-
ases, users have very limited “computational” ability; in particular, they seem unable to
strategize over more than one decision variable at a time. I will present complementary
experimental results [1] that suggest that Peltzman effects [11] also apply in computer
security. Much like drivers wearing seat belts or helmets tend to drive faster, people
tend to behave more insecurely online when they believe they have adopted secure
precautions, such as installing an anti-virus scanner. As a result, I will postulate that
game-theoretic modeling either needs to be complemented by behavioral analysis (for

J.S. Baras, J. Katz, and E. Altman (Eds.): GameSec 2011, LNCS 7037, pp. 4–6, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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individual users) or is better suited to describing institutional users (e.g., corporations,
governments, ISPs...).

In the second part of this presentation, I will make the case that to provide im-
proved resilience to attacks, we must be simultaneously mindful of the capabilities of
the attackers, as well as their own economic incentives. Indeed, since the early- to mid-
2000’s, attackers have become mostly profit-driven [9]. By primarily conditioning their
actions on their best financial interest, attackers are more and more behaving rationally
in the economic sense of the term, and are considerably more predictable than attack-
ers driven by less mundane ideals. Trying to disrupt the economic incentives that drive
attackers to commit their forfeits appears to be a defensive strategy worth investigating,
as a complement to the technical approaches that have been proposed.

I will contend that modeling attacker behavior is easier than modeling defender be-
havior. First, attackers show much stronger economic rationality than defenders: the
success of the attack directly conditions their profits, while for defenders, security pre-
cautions are often viewed as sunk costs. Second, attackers’ actions are often publicly
observable: attacks such as phishing, malware distribution or search-engine manipula-
tion leave a visible footprint. I will present a couple of recent measurement studies we
conducted [2, 8, 10] in an effort to acquire more information on attacker behavior, and
will show that a priori disparate attacks all present concentration points. Specifically,
very often, the number of actual perpetrators behind entire class of attacks (e.g., search
engine manipulation) are small. This in turn helps us inform security games where we
want to model attackers as players, rather than exogenous entities.

Finally, I will conclude by presenting a roadmap for future research integrating net-
work measurements and formal, game theoretic, modeling.
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Indices of Power in Optimal IDS Default

Configuration: Theory and Examples

Quanyan Zhu and Tamer Başar�

Coordinated Science Laboratory and
Department of Electrical and Computer Engineering,

University of Illinois at Urbana Champaign,
1308 W. Main St., Urbana, IL, USA, 61801

{zhu31,basar1}@illinois.edu

Abstract. Intrusion Detection Systems (IDSs) are becoming essential
to protecting modern information infrastructures. The effectiveness of
an IDS is directly related to the computational resources at its disposal.
However, it is difficult to guarantee especially with an increasing demand
of network capacity and rapid proliferation of attacks. On the other hand,
modern intrusions often come as sequences of attacks to reach some pre-
defined goals. It is therefore critical to identify the best default IDS
configuration to attain the highest possible overall protection within a
given resource budget. This paper proposes a game theory based solu-
tion to the problem of optimal signature-based IDS configuration under
resource constraints. We apply the concepts of indices of power, namely,
Shapley value and Banzhaf-Coleman index, from cooperative game the-
ory to quantify the influence or contribution of libraries in an IDS with
respect to given attack graphs. Such valuations take into consideration
the knowledge on common attack graphs and experienced system attacks
and are used to configure an IDS optimally at its default state by solving
a knapsack optimization problem.

Keywords: Intrusion Detection Systems, IDS Configuration, Coopera-
tive Games, Shapley Value, Banzhaf-Coleman Index.

1 Introduction

The issue of optimal IDS configuration and provisioning has always been difficult
to deal with, mainly due to the overwhelming number of parameters to tune.
IDSs are generally shipped with a number of attack detection libraries (also
known as categories [13] or analyzers [12]) with a considerable set of configu-
ration parameters. The current version of the Snort IDS [13], for example, has
approximately 10,000 signature rules located in fifty categories. Each IDS also
comes with a default configuration to use when no additional information or ex-
pertise is available. It is not trivial to determine the optimal configuration of an
� This work was supported in part by the U.S. Air Force Office of Scientific Research

(AFOSR) under grant number AFOSR MURI FA9550-09-1-0249, and in part by
Boeing Company through the Information Trust Institute of the University of Illinois.

J.S. Baras, J. Katz, and E. Altman (Eds.): GameSec 2011, LNCS 7037, pp. 7–21, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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IDS because it is essential to understand the quantitative relationship between
the wide range of analyzers and tuning parameters. This explains the reason
why current IDSs are configured and tuned simply based on a trial-and-error
approach. Although there have been recent approaches, such as in [15, 18, 20],
to optimize IDS resource consumption, we still need to deal with resource con-
straints and make the best use of an IDS with available resource budgets. On
the other hand, most of current computer attacks do not come in one shot but
in several steps, by which attackers can acquire an increasing amount of knowl-
edge and privileges to attack the target system. To describe such multi-stage
behaviors, attack graphs or trees are commonly used as tools to model secu-
rity vulnerabilities of a system and all possible sequences of exploits used by
intruders.

In this paper, we develop a novel game theory based solution to the problem
of optimal default signature-based IDS configuration under resource limitations.
The solution considers the costs and functionalities of libraries and defender’s
knowledge on common attack graphs to configure an IDS optimally at its default
state.

The contribution of this paper can be summarized as follows. We introduce
the concept of detectability of an attack sequence with respect to a given set of
IDS libraries and devise metrics to measure the detectability and the efficacy
of detection. From a game theoretical perspective, we view a configuration as a
coalition among libraries and apply the indices of power, namely, Shapley value
and Banzhaf-Coleman index, to rank the overall importance of a library for the
purpose of intrusion detection, which can be used in a knapsack problem for
finding the optimal default configuration. In addition, we extend our results to
general attack graphs based on multilinear extension and propose a scheme to
approximate the indices of power when the number of libraries is large.

The rest of the paper is organized as follows. In the next section, we summarize
some recent related work on IDS configuration and cooperative games. In Section
3, we define the important notion of detectability and establish a mathematical
model for attackers and detectors. In Section 4, we formulate a cooperative
game framework to evaluate the indices of power for a given attack sequence.
In Section 5, we introduce multilinear extension as a general framework and an
approximation technique to evaluate the indices of power. Finally, in Section 6,
we conclude the paper.

2 Related Work

We find a recent growing literature on performance characterization of IDSs in
the computer science community. Some of the related work is summarized as
follows.

2.1 IDS Performance Evaluation

Gaffney et al. in [4] use a decision analysis that integrates and extends Receiver
Operating Characteristics (ROCs) to provide an expected cost metric. They
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demonstrate that the optimal operation point of an IDS depends not only on
the system’s own ROC curve and quantities such as the expected rate of false
positives, false negatives, and the cost of operation, but also on the degree of
hostility of an environment in which the IDS is situated, such as the probability
and the type of an intrusion. Hence, the performance evaluation of an IDS has
to take into account both the defender’s side and attacker’s side.

In [23], a network security configuration problem is studied. A nonzero-sum
stochastic game is formulated to capture the interactions among distributed in-
trusion detection systems in the network as well as their interactions against ex-
ogenous intruders. The authors have proposed the notion of security capacity as
the largest achievable payoff to an agent at an equilibrium to yield performance
limits on the network security, and a mathematical programming approach is
used to characterize the equilibrium as well as the feasibility of a given security
target.

Zhu and Başar in [22] use a zero-sum stochastic game to capture the dynamic
behavior of the defender and the attacker. The transition between different sys-
tem states depends on the actions taken by the attacker and the defender. The
action of the defender at a given time instant is to choose a set of libraries as
its configuration, whereas the action of the attacker is to choose an attack from
a set of possible ones. The change of configuration from one instant to the next
implies for the defender to either load new libraries or features to the configu-
ration or unload part of the current ones. The actions taken by the attacker at
different times constitute a sequence of attacks used by the attacker. An online
Q-learning algorithm is used to learn the optimal defense response strategies for
the defender based on the samples of outcomes from the game.

In this paper, we address the issues of optimal default configuration, which is
complementary to the one addressed in [22]. We find an optimal configuration
which can serve as an initial or starting profile for dynamic IDS configuration.

To identify important factors for the performance of an IDS is another crucial
investigation. In [14], Schaelicke et al. observe several architectural and system
parameters that contribute to the effectiveness of an IDS, such as operating
system structure, main memory bandwidth and latency as well as the processor
micro-architecture. Memory bandwidth and latency are identified as the most
significant contributors to sustainable throughput. CPU power is important as
well; however, it has been overlooked in the experiments due to the existence of
other closely related architectural parameters, such as deep pipelining, level of
parallelism, and caching.

In [2], the authors investigate the prediction of resource consumption based
on traffic profile. An interesting result, which we assume to be available in this
paper, is that both CPU and memory usage can be predicted with a model linear
in the number of connections. Equally important is the confirmation that the
factoring of IDS resource usage with per-analyzer and per-connection scaling is
a reasonable assumption. The authors use this finding to build an analyzer se-
lection and configuration tool that estimates resource consumption per analyzer
to determine whether a given configuration is feasible or not. The constraint
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used is a target CPU load below which the load should remain for a predefined
percentage of time. The actual selection of a feasible analyzer set is however left
as a manual task for the IDS operator. In our work, we propose a more informed
and automated way of IDS configuration decision that takes into account the
resource utilization per IDS library as well as the expected intrusion context
based on experienced attack sequences or graphs.

2.2 Attack Graphs

The generation of attack graphs has received considerable attention in the litera-
ture [6,7,9,17,16,19,21]. Sheyner et al. present in [16,17] a tool for automatically
generating attack graphs and performing different kinds of formal vulnerability
analysis on them. Attack graphs have also been used in intrusion containment.
Foo et al. develop in [3] the ADEPTS intrusion containment system in the con-
text of E-commerce environments. The system builds a graph of intrusion goals,
localizes intrusions, and deploys responses at the appropriate services to allow
the system to work with minimum overall performance degradation. The system
takes into consideration the financial impact of an attack and derives response
actions that go beyond the simple deactivation or isolation of the infected ser-
vice/host by considering interaction effects among multiple components of the
protected environment. Finally, in [10], attack graphs are used to derive optimal
IDS placement in a network so as to minimize intrusion risk. The authors de-
veloped the TVA tool (Topological Vulnerability Analysis), which can be used
to model a network and populate it with information regarding vulnerabilities.
The tool is claimed to have the ability to avoid state-space explosion through
attack graph reduction. In this paper, we assume that such knowledge of attack
graphs is given or has been acquired previously through experience.

2.3 Game-Theoretical Methods

Game-theoretical methods appear to be an appropriate framework that connects
the performance evaluation of an IDS with the attack sequences or graphs on
the intruder’s side. The concepts in cooperative game theory become natural to
study the contribution of each IDS component to the attack sequence, especially
when we view a configuration as a coalition among IDS libraries.

Cooperative game theory studies the outcome of a game when coalitions are
allowed among multiple players. The concepts of the core and stable sets are
regarded as solutions to N−person cooperative games. However, the lack of
general existence theorem has led game theorists to look for other solution con-
cepts. Currently, indices of power such as Shapley value, Banzhaf-Coleman index
of power and their multilinear extensions have been widely used in a variety of
literature involving resource allocation and estimation of power in a group of
decision-making agents. In [11], examples are given on the application of in-
dices of power in the analysis of presidential election games with a quantitative
conclusion that voters in some states are assuming more power than voters in
other states in the election. In [1], Shapley value is used to allocate profit in
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a multi-retailer and a single supplier cooperative game where players can form
inventory-pooling coalition. In [5], an efficient measurement allocation in unat-
tended ground sensor networks is suggested based on Shapley values. It is shown
that by allocating measurements proportional to the Shapley value, the observ-
ability of localizing a target increases. A similar approach was also found to
allocate unit start-up costs among electricity consumers, load and retailers.

It appears that there has been very little work on using game theoretical meth-
ods to study IDS configurations. Similar to the problems involving resource allo-
cations and presidential elections, cooperative game theory lends itself naturally
also to studying the relations among libraries in an adversarial environment.

3 Attacker and Detector Model

We let L = {l1, l2, · · · , lN} denote the set of a finite number of libraries and L∗

denote the set of all the possible subsets of L, with cardinality |L∗| = 2N . We let
Fi ∈ L∗, i ∈ {1, 2, · · · , 2N} be a configuration set of libraries, which is a subset
of L. Each library has a cost associated with it, i.e., there is a mapping function
C : L → R+ that determines the cost of each library ci = C(li). Assuming
the cost of each library is independent of the others [2], we define the cost of
a configuration Fi by CFi = C∗(Fi) =

∑
x∈Fi

C(x), where C∗ : L∗ → R+ is a
mapping function of configuration cost.

The attacker, on the other hand, has different types of attacks ai. Let ai ∈ A
be a specific action of attack and A = {a1, a2, · · · , aM} be the set of possible
attacks. We define a sequence of attacks Si to be a tuple of elements of A, and
A∗ be the set of all possible sequences of attacks. The order of the elements in
Si indicates a sequential strategy of an intrusion. Every attack ai ∈ A incurs a
damage di, given by the mapping function D : A → R+, i.e., di = D(ai), ∀ai ∈ A.
Assuming that the damage caused by a sequence of attacks does not depend
on the order of the sequence and the damage by one attack is independent of
other attacks, we define the damage caused by an attack sequence Si ∈ A∗ by
DSi = D∗(Si) =

∑
x∈Si

D(x).
Each library li can only effectively detect certain attacks. We define the set

Pli ⊂ A as its scope of detection. A library li is capable of detecting an attack
ai if and only if ai ∈ Pli , otherwise the library li is sure to fail to detect. The
definition of detectability of a library configuration follows from the scope of
detection of each library.

Without losing generality, we can further assume that
⋂

li∈L Pli = ∅ because
we can always define libraries to have functions that do not overlap with each
other. This is particularly true in practice with signature-based libraries.

Definition 1. An attack sequence Si is detectable by a library configuration Fi

if Si ⊆ Ti, where Ti := ∪lk∈FiPlk . An attack sequence Si is undetectable by Fi if
Si ⊆ T i, where T i := A \ Ti.

Based on Definition 3, we can separate an attack sequence Si into two separate
subsequences S◦

i and S�
i , where S◦

i is undetectable and S�
i is detectable. These
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Fig. 1. A library configuration Fi that consists of libraries l1, l2, l3 is used to detect an
attack sequence a1 → a5

two sequences satisfy the properties that they are mutually exclusive, i.e., S◦
i ∪

S�
i = Si and S◦

i ∩ S�
i = ∅.

An example is given in Fig. 1, where we have a sequence of five attacks
a1, a2, a3, a4 and a5. Detection library l1 can be used to monitor a1 and a2

effectively whereas libraries l2 and l3 can only detect a3 and a4 respectively.
However, a5 is alien to the detection system and no library can be used to de-
tect a5. An IDS will rely on the successful detection of earlier known attack
stages to prevent the last unknown one.

The definition of detectability assumes that each library can detect a certain
signature or anomaly-based attack with success once it is loaded. However, due
to many practical reasons such as delay and mutations of attacks, we can only
successfully detect with some true positive (TP) rate. We use αP

ij to denote the
probability of successful detection of an attack ai ∈ A using library lj and by
definition αP

ij = 0 for i not in Plj . The probability of undetected attacks when
attacks occur, or the false negative (FN) rate, is thus given by αN

ij = 1 − αij .
We also provide a metric that measures the detectability of an attack sequence

Si with respect to a configuration Fj , and the efficiency of detection for Si.

Definition 2. Let function v : A∗ → R be a value function defined on attacker’s
set of sequences, satisfying

v(A1 ∪ A2) ≤ v(A1) + v(A2), (1)

where A1, A2 ∈ A∗. Given a library component lj, its coverage Pj, and an attack
sequence Si, we define detection effectiveness, ηij ∈ [0, 1], as follows:

ηij :=
v(Si ∩ Pj)

v(Si)
. (2)

Remark 1. One simple choice of v is the cardinality of a set, i.e., v(Si) =
card(Si). We can also have more complicated value functions; for example, we
may have more weights on particular important attacks or final attacks.

Given a configuration F which consists of a finite number of libraries, we use
definition in (3) to define detectability of an IDS configuration with respect to
an attack sequence Si as follows.

ηi :=
∑
lk∈F

ηik =
v(Si ∩ T )

v(Si)
=

∑
lk∈F v(Si ∩ Pk)

v(Si)
. (3)
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Using the concepts of TP/FN, we can weight our definition of detectability in (3)
by true positive rate αP

ij . Thus we have the definition of weighted detectability
as follows.

Definition 3. Given a configuration F and attack sequence Si, αP -weighted
detectability is defined as

ηα
i =

∑
lk∈F

αP
ikηik. (4)

The notion of detectability shows the effectiveness of detection configuration Fj

with respect to attack sequence Si. We will later use detectability as a metric
to optimize the performance of an IDS since higher detectability yields better
detection results.

On the other hand, we can also describe efficiency of a detection using value
function v.

Definition 4. Given an attack sequence Si and configuration F , we let ζi de-
scribe the efficiency of detection

ζi =
v(Si ∩ T )

v(T )
=
∑
lk∈F

v(Si ∩ Pk)
v(T )

, (5)

and let ζα
i denote the weighted detection efficiency given by

ζα
i =

∑
lk∈F

αP
ik

v(Si ∩ Pk)
v(T )

. (6)

where T is a coverage of configuration F .

Proposition 5. With (1) and the metrics ηi and ζi defined in (3) and (5) re-
spectively, we have the following relation between these two metrics:

1
ηi

+
1
ζi

≤ 1, ∀i ∈ A∗. (7)

Proof. Using the definitions in (3), (5) and (1), we arrive at

1
ηi

+
1
ζi

=
v(Si) + v(T )

v(Si ∩ T )
≤ v(Si ∪ T )

v(Si ∩ T )
≤ 1. (8)

The inequality (7) provides a fundamental tradeoff relationship between de-
tectability and efficiency.

4 Cooperative Game Model

In this section, we review essential concepts of indices of power and use them
in the context of optimal default IDS configuration. We can view each possible
configuration as a coalition of different libraries and hence each library can be
associated with an index of power, signifying its contribution to the detection of
intrusions.

We introduce the notion of ω-effective detection to quantity the goal of intru-
sion detection.
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Definition 6. We call a configuration F of an IDS ω−effective for attack
sequence Si if the detectability does not fall below ω, that is ηi ≥ ω, and
(ω, α)−effective if the weighted detectability does not fall below ω, that is ηα

i ≥ ω.

Parameter ω is a level of intrusion detection performance an IDS wants to
achieve. We call a configuration goal achieving if it is (ω, α)-effective, and un-
satisfactory otherwise.

4.1 Shapley Values and B-C Index

To describe an N -person cooperative game using game-theoretical language, we
let L be the set of the players, and any subset of L, or a configuration F ∈ L∗,
be a coalition. We let f : L∗ → {0, 1} be a characteristic function of the game
having basic properties that

(P1) f(∅) = 0;
(P2) f(F1 ∪ F2) ≥ f(F1) + f(F2), F1, F2 ∈ L∗ and F1 ∩ F2 = ∅;
(P3) f({i}) = 0, for all i ∈ L.
(P4) f(L) = 1.

By having the characteristic function f taking values 0 and 1 only, we have
defined a simple game. The value 1 from the mapping f of a coalition or con-
figuration means a winning or goal achieving library configuration, whereas the
value 0 yields a non-winning or unsatisfactory library configuration.

A carrier of the cooperative game is a library which does not contribute to
any configurations to attain the goal of detection. Mathematically, a carrier is a
coalition, Fc ∈ L∗, such that f(F ) = f(F ∩Fc), for all F . We can always remove
from our library list those dummy libraries which do not contribute or disregard
them in our cooperative game when they are found to be carriers.

The Shapley value of the i-th library li is given by φi, for all li ∈ L.

φi =
∑
R⊂L

(r − 1)!(N − r)!
N !

[f(R) − f(R − {li})] (9)

The Shapley value φi given in (9) evaluates the contribution of each library
toward achieving ω−effective detection. Since the characteristic mapping f only
takes value in 0 and 1, Shapley value can be further simplified into

φi =
∑

R′⊂L

(r − 1)!(N − r)!
N !

, (10)

where, for a given li, R′ is the winning coalition such that the configuration can
achieve ω−effectiveness with li ∈ R′, whereas R′ −{li} fails to achieve the goal.
With a smaller scale problem, Shapley value is relatively easy to compute. How-
ever, in large problems, the evaluation of the weights can create computational
overhead and the complexity increases exponentially with the size of the library.
An easier index of power to compute is the Banzhaf-Coleman index of power,
or B-C index, which depends on counting the number of swings, i.e., number of
coalitions or configurations that wins when li is included but loses when is not.
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Definition 7. (B-C Index, [11]) The normalized Banzhaf-Coleman index
βi, ∀li ∈ L is given by

βi =
θi∑N

j=1 θj

, (11)

where θi is the number of swings for li; a swing for li ∈ L is a set R ⊂ L such
that R is a goal-achieving configuration if li ∈ R, and R − {li} is not.

Shapley value and B-C index are closely related. They can both be evaluated by
multilinear extension (see Section 5). The difference lies in the weighting coeffi-
cients used. In Shapley value, the weights are varied according to the coalition
size, whereas in the B-C index, the weights are all equal.

4.2 An Example

Suppose we are given an attack sequence Si as depicted in Fig. 1, where we have
five attack actions ordered by a1 → a2 → a3 → a4 → a5. There are 3 libraries
and the sets Pli , i = 1, 2, 3 are given as follows: Pl1 = {l1, l2}, Pl2 = {l3}, Pl3 =
{l4}. It is obvious that the sequence Si can only be partially detected as a5 is alien
to the existing libraries of the IDS system. Suppose that each library has TP rates
equal to 1 and v is the cardinality of the set. We can use Shapley value and B-C
index to quantify the contribution to the detection of the sequence Si. Let ω =
3/5. The set of swings for l1, l2 and l3 are {(l1, l2), (l1, l3), (l1, l2, l3)}, {(l1, l2)},
and {(l1, l3)}, respectively. The Shapley values are thus given by φ1 = 1

3 , φ2 = 1
6 ,

and φ3 = 1
6 ; and the B-C indices are thus β1 = 3

5 , β2 = 1
5 , and β3 = 1

5 . To achieve
ω = 3

5 level of detection, l1 is most important and l2 and l3 are equally important.
Therefore, in terms of the priority of loading libraries, l1 should be placed first
and then one should consider l2 and l3. Such evaluation via Shapley value and
BC-index is useful for IDS system to assess the influence of each library and make
decisions on which libraries to load initially when cost constraints are present.

5 Multiple Attack Sequences and Multinear Extension

In section 4, we introduced a cooperative game and proposed the concept of
ω−effectiveness to determine the winning or losing coalitions for a given known
sequence. In this section, we extend this framework to deal with multiple coop-
erative games with respect to different sequences in an attack graph. We look at
multilinear extensions in this section for two reasons: one is that it can be used
to approximate the Shapley value when the library size grows; and the other
reason is that it is a general framework that can yield B-C index.

5.1 Multilinear Extension (MLE)

A multilinear extension is a continuous function that can be used to evaluate
Shapley value and B-C index as special cases. We let each library li ∈ L be
associated with a continuous variable xi ∈ [0, 1], and fj be a characteristic
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function for detecting particular attack sequence Sj ∈ A∗. We now introduce
the multilinear extension for an attack sequence Sj , denoted by hj , as follows:

Definition 8. The multilinear extension of the cooperative game with charac-
teristic function fj is a function hj : [0, 1]N → R++ given by

hj(x1, x2, · · · , xN ) =
∑
R⊂L

{∏
li∈R

xi

∏
li∈L−R

(1 − xi)

}
fj(R). (12)

The function hj can be used to evaluate Shapley’s value by (13) below and B-C
index by (14) below.

φij =
∫ 1

0

∂hj(x1, x2, · · · , xN )
∂xi

∣∣∣∣∣
x1=t,x2=t,··· ,xN=t

dt, (13)

βij =
∂hj(x1, x2, · · · , xN )

∂xi

∣∣∣∣∣
x1=

1
2 ,x2=

1
2 ,··· ,xN= 1

2

, (14)

where φij and βij are the Shapley value and B-C index of library li for detecting
sequence Sj , respectively. The set M is a subset of A∗ that models a set of
attacks known to detectors.

To aggregate the effect of a library of detecting a set of sequences M ⊂ A∗,
we define an aggregated MLE h̄ as a sum of MLEs over all the sequences, as
follows

h̄ =
∑

Sj∈M
pjhj , (15)

where pj is a weight on hj , indicating the frequency of occurrence of the attack
sequence Si. It is a normalized parameter that satisfies pj ≥ 0 and

∑
Sj∈M pj =1.

Proposition 9. The Shapley value φi for detecting multiple sequences is given
by

φi =
∑

Sj∈M
pjφij , (16)

and B-C index βi for detecting multiple sequences is given by

βi =
∑

Sj∈M
pjβij =

∑
Sj∈M

(
pjθij∑N
k=1 θkj

)
, (17)

where θij is the number swings for detecting sequence Sj.

Proof. The proposition can be proved using the linearity of MLE.
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5.2 Multilinear Approximation

As is well known, the multilinear extension in (12) has a probabilistic interpre-
tation and it can be used to approximate the indices of power when the number
of libraries grows large. We can view the variable xi ∈ [0, 1] as the probability
of a library li in a random coalition S ⊂ L such that fj(S) = 1 when li ∈ S,
and fj(S) = 0 otherwise. Since the event that a library is in a random coali-
tion is independent from the event of other libraries in a coalition, we have that
the probability of forming the random coalition S as a particular coalition R is
given by P(S = R) =

∏
li∈R xi

∏
li∈L−R(1 − xi). The definition in (12) can be

interpreted as the expectation of f(S), i.e., hj(x1, x2, · · · , xN ) = E(fj(S)).
Let Zj be a random variable such that

Zj =
{∑

i∈M ηij =: ηS
j , if lj ∈ S

0 if lj ∈ L − S (18)

and let Y be another random variable defined by Y =
∑

lj∈S ηS
j =

∑
lj∈S,j �=i Zj .

Since Zj’s are independent, Y has the mean and variance

μ(Y ) =
∑

j �=i,lj∈S

ηS
j xj , (19)

σ2(Y ) =
∑

j �=i,lj∈S

ηS
j xj(1 − xj). (20)

Hence, hi(x1, · · · , xN ) is the probability that a coalition wins to be ω-effective
with respect to a set of sequences M but loses if li is removed from the coalition.
From the definition of ω-effectiveness, we can express hi as

hi(x1, x2, · · · , xN ) = P(ω ≤ Y ≤ ω + ηS
i ) (21)

When the size of the library grows, the random variable Y can be approximated
by a normal random variable Ȳ , with mean and variance given in (19) and (20).
Hence,

hi(x1, x2, · · · , xN ) = P
(

ω − 1
2
≤ Ȳ ≤ ω + ηS

i − 1
2

)
. (22)

The Shapley value can thus be computed from (13) and (15) by hi(t, t, · · · , t)
with the random variable Ȳ having the mean and variance μ(Ȳ ) = t

∑
j �=i ηS

j

and σ2(Ȳ ) = t(1− t)
∑

j �=i ηS
j , respectively. The B-C value can be approximated

by evaluating hi(t, t, · · · , t) at t = 1
2 using (22).

5.3 Optimal Default Configuration

The indices of power rank the importance of each library from high to low. We
can make use of these indices to make a decision on which libraries to load when
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the system is subject to some cost constraint C0. Toward that end, we arrive at
an integer programming problem as follows:

max
z

∑
li∈L ziφi (23)

s.t.
∑

li∈L zici ≤ C0

zi ∈ {0, 1}, ∀li ∈ L

We can use the B-C index as well in the objective function. The optimization
problem (23) can be viewed as a knapsack problem [8]. The knapsack problem is
well-known to be NP-complete. However, there is a pseudo-polynomial time al-
gorithm using dynamic programming and a fully polynomial-time approximation
scheme, which invokes the pseduo-polynomial time algorithm as a subroutine.

5.4 An Example

In this section, we continue with the example in Section 4.2, but with an extended
attack tree depicted in Fig. 2. The libraries that can be used for detection are
l1, l2, l3 and l4 whose coverages are Pl1 = {a1, a2}, Pl2 = {a3, a7}, Pl3 = {a4, a8}
and Pl4 = {a6}, respectively. There are 4 known attack sequences in the attack
tree. Let S1 be the sequence a1 → a2 → a3 → a4 → a5; S2 denote a1 → a2 → a6;
S3 denote a1 → a2 → a3 → a7; and S4 be a1 → a2 → a3 → a4 → a8.

The Shapley values and B-C indices are summarized in the Table 1 and Table
2, respectively. Suppose each library is equally expensive with 1 unit per library.
With the capacity constraint being 2 units, we can load library l1 and l2 to
optimize the default library. This choice is intuitively plausible because l1 and l2
covers the major routes in the attack tree. l4 does not contribute to the result of
detection as much as other libraries, and when ω = 3

5 , the impact of l4 becomes
negligible when l1 is used. When the size of the tree grows, we need to evaluate
indices of power in an automated fashion and use a polynomial-time algorithm
to find the solution to the knapsack problem (23).

Fig. 2. Attack tree with attacks aj , j = 1, 2, · · · , 8, and libraries li, i = 1, 2, 3, 4, that
are used to detect attacks
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Table 1. Shapley value for the attack tree

Sequences l1 l2 l3 l4

S1
1
3

1
6

1
3 0

S2 1 0 0 0
S3

1
2

1
2 0 0

S4
1
3

1
3

1
3 0

Table 2. B-C index for the attack tree

Sequences l1 l2 l3 l4

S1
3
5

1
5

1
5 0

S2 1 0 0 0
S3

1
2

1
2 0 0

S4
1
3

1
3

1
3 0

6 Conclusion

In this paper, we have adopted a cooperative game approach to study the in-
fluence of each library when forming a configuration or a coalition to detect
intrusions according to some known attack graphs. We have used the game ap-
proach to connect the detector and the attacker, and developed novel notions of
detectability and efficacy of detection. The paper has described the applications
of Shapley value and B-C index in a combinatorial knapsack optimization prob-
lem, which gives rise to an optimal configuration under the resource and cost
constraints. The multilinear extension offers a technique to generalize the two
indices discussed in the paper and, in addition, offers an approach to estimate
these values when the number of libraries grows.
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Abstract. At present much of the research which proposes to provide
solutions to Imperfect Information Non-Cooperative games provides su-
perficial analysis which then requires a priori knowledge of the game to
be played. We propose that High Card, a simple Multiplayer Imperfect
Information Adversarial game, provides a more robust model for such
games, and further, that these games may model situations of real world
security and international interest. We have formulated two such real
world models, and have created a modeling bot, which when facing ad-
versaries with equal or better performing risk profiles, achieves a 7-fold
increase in win performance.

Keywords: High Card, Imperfect Information, Adversarial Game
Theory.

1 Introduction

The field of research for imperfect information non-cooperative games can be said
to comprise a number of areas of such research. To begin, we discuss two such
areas - Poker research, and normal form simultaneous move games, in order to
lay the groundwork for where our research fits into the field. Poker research, such
as in Billings[3][9], Papp[16], focuses on creating AI or bot programs which play a
game of poker - generally Texas Hold’em - based on some expert knowledge of the
game of poker. These bots will sometimes perform in-depth opponent modeling,
but generally their opponent models are rather simple in nature. However, even
in the strongest case, this research focuses solely on the game of poker, and does
not suggest that the results can be used as a model for other games or real world
scenarios, such as security or international interest applications.

The second pertinent area of research is research that involves studies of spe-
cific normal form synchronous move games, such as Lye et al.[10] and Jiang et
al.[11][15], which propose to solve a broader problem for which these games serve
as a model. Unfortunately, these normal form games results are only theoreti-
cal as they require that we know a priori the payoffs for the game. The games
are ‘solved’ to find the Nash Equilibrium. Unfortunately, imperfect information
games are complex, and real world players don’t play according to ”optimal”
strategies as they are far to difficult to compute, even, in many cases, in a theo-
retical sense. In addition, these results do not provide any additional knowledge
about the nature of non-cooperative game theory as a field.

J.S. Baras, J. Katz, and E. Altman (Eds.): GameSec 2011, LNCS 7037, pp. 22–33, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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We propose that High Card, a multi-player adaptation of von Neumann’s
betting game, similar to a single betting round in Poker, can serve as a model
for security applications. High Card does not require that we assume a priori
knowledge of payoffs, and further, it allows for multiplayer play. We will show
that we have created a bot that creates opponent models based on past opponent
play in order to estimate the secret information that adversaries have, and exploit
those opponents to win additional resources.

2 High Card

Poker is a rather complex game to model. Much of the complexity of the game
adds significant requirement for expert knowledge, but does not provide a benefit
for use in modeling real world scenarios. As such, it is not uncommon to study
a simplified version of the poker game, which preserves the basic elements of
the game. Borel and von Neumann each simplify poker to a two-player zero-
sum game, where instead of a hand of cards, each player is dealt a hand X ∈
[1, S].[1] High Card is essentially a multi-player adaptation of such simplified
poker models. In particular, the simplifications we have made to the poker game
are a subset of the simplifications made for the von Neumann poker model,
namely that this is a multiplayer, unlimited bet sequence game rather than a
two-player limited bet sequence game.[2] These simplifications drastically reduce
the complexity. For example, in a game of Texas Hold’em with n opponents
there are H =

∏n
k=1

(
52−2k

2

)
÷ k! possible starting hands. For 6 opponents, this

works out to over 1 quadrillion combinations of starting hands. In High Card, by
contrast, for the same 6 opponent game there are only 13 billion starting hand
combinations. In addition, Texas Hold’em has additional added complexities by
the nature of its multiple betting rounds, whereas High Card only has one.

2.1 Game Parameters

Upon starting the game, a player is selected at random to be the ”Dealer” and
each player is issued a set, equal amount of chips. The player to the dealer’s
right is the “Big Blind”, which also refers to the size of the ante the player in
the Big Blind seat makes. The player to the right of the Big Blind is the “Small
Blind”, and antes an amount of chips less than or equal to the amount that the
Big Blind wagers, traditionally half of the Big Blind wager. Any chips wagered
are immediately added to the “Pot”, which the winning player receives in its
entirety.

2.2 A Round of Play

At the beginning of each round the Blinds post their antes simultaneously. Bet-
ting then begins with the Dealer and proceeds to the left. Play continues until
only M players remain. M is determined in advance.

Player take actions in turn, left around the table. When it is their turn a
player may:
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– Fold: abandon any claim to the Pot.
– Call: wager an amount of chips such that their total wager is equal to the

largest wager made thusfar.
– Raise: wager an amount of chips larger than the largest wager so far by at

least the Big Blind.
– Check: call a current additional wager of zero chips.

As a simple example, we have a game with a Big Blind of size 20, and a Small
Blind of size 10, and each player starting with 50 chips. Players A, B and C sit
around a table, B to A’s left, and C to B’s left. Player A puts in the Small Blind,
Player B puts in the Big Blind. Player C chooses to Call the current wager of
size 20, as set by B’s Big Blind. Player A then chooses to Raise the wager to 50,
requiring that A put in 40 additional chips. Player B decides to Call Player A’s
wager of 50, putting in 30 additional chips. Player C folds. There are now 120
chips in the Pot, and whichever of Player A or B has more chips will receive all
120 chips. The other player will be left with 0, and C will remain with 30.

2.3 Sidepots

If a player wagers an amount of chips larger than the amount of chips possessed
by any other player who has not folded in the current round, a sidepot is created.
If there are a number of players with chips smaller than the amount of chips
wagered by a player, then more than one sidepot may need to be created. Each
player is automatically a party to any sidepots which they are able to participate
in. Once a sidepot is created, any raises will go into that sidepot, or if a new
sidepot is required, into the new sidepot.

For example, Player A has 70 chips, Player B 50 and Player C 20. Player A
wagers 70 chips. This puts 20 chips - because C only has 20 chips - into the Main
Pot which all players are a party. 30 chips go into Side Pot 1 - because B only has
50 chips, 20 of which will go into the Main Pot should B call - to which Players
A and B are Parties. The remaining 20 chips into Side Pot 2 which only Player
A is a party to, because no other player has enough chips to participate in Side
Pot 2. While it would not be realistic that A would wager chips into a Pot that
only A could win, it does not effect the results in any way, as A is guaranteed
to receive those chips back. Players must meet the bet in any sidepot to which
they are a party in order to not fold, and Players may only win chips from Pots
to which they are a party. Assume that then from the previous example, both
B and C call Player A’s wager. If Player A has a 30, Player B a 40 and Player
C a 50, Player C will win 60 (20 + 20 + 20) chips from the Main Pot, Player B
will win 60 (30 + 30) chips from Side Pot 1 and Player A will win (by default)
his own 20 chips from Side Pot 2.

2.4 Round Resolution

When each player who has not folded, or caused the last raise or ante, has called
or checked in succession since the last raise or ante, the betting is over. At
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that point the player with the best card wins the entirety of any pots to which
they are a party. At the end of each round the Dealer, Big Blind and Small
Blind positions pass one player to the left. Note, unlike in Poker where there are
multiple rounds of betting in each hand, in High Card each hand only has one
round of betting.

2.5 Rules in a Nutshell

At the start of each hand two players are forced to make an ante, and each player
is dealt a card. Betting proceeds until all players have matched the same bet
or folded out of the hand. The player with the highest card wins all the chips
wagered. Which players are forced to make the ante changes, and play continues
with a new hand until a predetermined number of players remain.

3 Examples

In this section in order to demonstrate the wider potential use of the model
simulation, we propose a number of possible situations that could feasibly be
modeled by High Card.

3.1 Diplomacy

We find that there is existing literature in which Poker is used as a metaphor for
diplomatic relations. In particular, in Smith et al., no-limit poker in particular is
used as a metaphor for North Korean - United States relations [18] and in Freeman
it is used as a metaphor for Cold War nuclear disarmament discussions [19].

Such comparisons are apt because diplomatic relations constantly involve
quarrels between countries often with outside actors intervening occasionally es-
calating to very high stakes. Focusing on these quarrels in particular, we propose
that these relations can be modeled using a game of High Card. In particular,
during such quarrels, it may be the case that a number of countries which pos-
sess damaging information about the other countries will be willing to risk some
of their own credibility or resources in order to attempt to extract resources or
credibility from the other countries. The end goal of course is that by doing so
they will increase their own power in future negotiations.

We propose there exists a model for diplomatic relations in which, at each
time period t two diplomatic adversaries have a small disagreement which forces
them to risk some credibility. We assume that other actors may become involved
in these diplomatic relations, each in turn deciding if they want to wager some
credibility. During each actor’s turn they may take one of three actions - match-
ing the amount of credibility wagered by an opponent, withdrawing from the
confrontation thus leaving behind any credibility that they have wagered, or
raising the stakes and so by wagering additional credibility.

At the end of wagering the agent with the best secret information is able
to gain diplomatic leverage over the other agents and by doing so use that
information to take the credibility that was wagered on the quarrel.
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A particular example of a diplomatic situation occurring right now in which
such a model seems potentially useful is the United States attack on Osama
bin Ladin’s compound in Pakistan. This action has caused a diplomatic quarrel
between the two countries, with other countries intervening, and each country
holding secret information about the other. It is suspected that the United States
holds damaging information about Pakistan related to Osama bin Ladin’s un-
detected life in the suburbs [4], and Pakistan has arrested five people who they
claim are CIA informants [5]. At this point we are seeing the countries throwing
in their wagers, but no one yet knows what cards they each truly hold.

Even better, the 1960 U-2 incident between the United States and the Soviet
Union can be seen as a two-player betting game in action. In this example, the
United States triggers the diplomatic incident, sending a spy plane into Soviet
airspace, the Soviets then shoot the plane down. The United States, bets that
it can win the confrontation, and puts additional credibility on the line, stating
that the plane is a NASA weather plane which mistakenly drifted into Soviet
airspace. Unbeknownst to the United States of course, the Soviets had captured
the plane mostly intact and the pilot alive. At this point they reveal their secret
information, and claim the credibility that the U.S. had staked upon the incident,
embarrassing President Eisenhower at multiparty talks with Great Britain and
France.[8]

3.2 Computer Security

In a model of Computer Security as a game of High Card each play is akin
to a country competing against other countries to protect their own resources,
and attempting to obtain the opponent resources. Each hand is akin to the ‘big
blind’ being the defender, and the ‘small blind’ launching an initial cyber attack
against their systems. We assume then that there is public information about
these attacks, or that the attacks are frequent enough so as to be constant,
and thus the players always able to participate. This is a reasonable assumption
based on multiple statements from government officials, as well as actual security
incidents that cyber attacks are a real, constant, ongoing threat[12][13].

The game proceeds as a normal game of High Card with each player who is
not the Big Blind being presented the opportunity to participate in the attack.
Whoever has the most sophisticated attack (best secret information) is then able
to obtain resources. If they are defending, the resources they gain can be con-
sidered to be techniques that the attackers can no longer use. For the attackers,
the resources are information about attack techniques the other attackers have
used, as well as whatever resources (data, operational security) the defender was
attempting to protect.

4 Simulation

We created a simulation of a High Card game using bot players whose actions
were determined by various utility functions. At the beginning of each round the
players are allocated an equal number of chips, here 1000, and seated at random
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positions around a table. The Big Blind was set to 20, and the Small Blind 10.
We ran simulations with M set to either 1 or 2, for 6 player games. Each round
uses a shuffled complete 52 card deck drawn without replacement.

4.1 Probability of Winning

In High Card the probability of a player winning a game of equals the probability
that every other player at the table was dealt a card of a lower value than the
card that the player was dealt.

Pwin =

(
S−C

0

)(
C−1

N

)(
S
N

) =

(
C−1

N

)(
S
N

)
Given the total number of cards remaining, S, the rank of your card, C, and
the number of other players in the game, N , we propose that it is a reasonable
assumption that the players who have folded at the time a player is taking an
action had cards of a rank lower than the rank of that player’s card. Call the
number of players who have folded F, thus:

Pwin =

(
C−1−F

N−F

)(
S−F
N−F

)
A plot of the probability of winning given the number of other players in the
game, and the card you have assuming F=0 can be seen in Fig. 1.

Fig. 1. A heatmap for probability of winning, given your card rank and the number of
players in the game. As shown, as N increases at a fixed C, the probability of winning
decreases, but your potential profit could still be increasing.

4.2 Utility Functions

We define Ui(P, B, W ) as the expected utility of player i betting on pot P with
size of the bet to be made B, and the estimated probability to win W .

These bots use a number of different utility functions including:
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– linear: U(P, B, W ) = W ∗ P − (1 − W ) ∗ B

– superlinear: U(P, B, W ) = W ∗ P 1+ρ

1+ρ − (1 − W ) ∗ B1+ρ

1+ρ

– sublinear: U(P, B, W ) = W ∗ P 1−ρ

1−ρ − (1 − W ) ∗ B1−ρ

1−ρ

– prospect[14]: U(P, B, W ) = (W∗P )1−ρa

1−ρa
− ((1−W )∗B)1−ρb

1−ρb

– cumulative prospect[17]: U(P, B, W ) = (f(W )∗P )1−ρa

1−ρa
− (f(1−W )∗B)1−ρb

1−ρb

Linear. This utility function is the most obvious as there is no change value of
a chip you expect to lose or a chip you expect to gain. In short, with this utility
function you would be willing to wager exactly 50 chips for a 50% shot at 100
chips.

Superlinear. This utility function will overvalue large payoffs and bets. Thus
you should be willing to bet more than 50 chips for a 50% shot at 100 chips.

Sublinear. This utility function undervalues large payoffs and bets. Thus you
would only be willing to bet less than 50 chips for a 50% shot at 100 chips.

Prospect Utility. Prospect Utility is a social science theory which proposes
that human actors will value possible gains differently than potential losses. In
particular they will be very adverse to losing large amounts of money, whereas
gains of large amounts of money are not that different than small amounts of
money.

Selection. We determined that the Prospect Utility bot was the best choice
for a number of reasons. In particular, the prospect utility bot was desirable
due to its background as a model for actual human behavior as it relates to
decision making under risk[14]. This is desirable in order to demonstrate that
our results can be applied to real world games, in particular for quickly creating
models of opponent behavior based on samples of real world data, estimating
their risk curves, simulating possible outcomes, and in the process refining your
own strategy.

In testing even weak versions of the prospect utility bot defeated the linear
bot, as well as the super and sublinear bots for many different ρ values. The
results of simulating 5 bots types against one another can be seen in Table 1.

Table 1. Win rates of the 5 Different bot Types 1-game Iterations with 5 players per
game. The ProspectUtility bot was by far the strongest.

BotName ρa ρb WinRateM=1

PBot 0.8 0.1 0.69749
ExpBot 0.2 0.01709
LogBot 0.4 0.02312

LinearBot 0.01910
CumulativePBot 0.8 0.1 0.24322
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Prospect Theory Utility Tuning. After evaluating the alternative algorithms
and selecting the prospect utility bot, we tested different versions of the bot
using various parameters varying from 0.1 to 0.9 for each ρa and ρb. To prevent
restricting the field of bots to only a single utility function we determined that
the top 10 bots had roughly 0.6 ≤ ρa ≤ 0.9 and 0.1 ≤ ρb ≤ 0.3 and at most a
20% deviation in win percentages. We mitigated any restriction to too narrow
a field of bots by drawing the field of bot candidates uniformly on ρa and ρb

over those ranges, in units of 0.1. Fig. 2 shows an example of a prospect utility
curve. It appears that being strongly risk averse in specific is a strong strategy.
That is undervaluing possible gains and overvaluing possible losses, rather than
just under or overvaluing gains or losses using the same function as the super or
sublinear utility functions do, provides a much stronger strategy in this game.

In particular, the no-limit nature leads the linear or superlinear bots to bet
too aggressively, thus allowing them to push around the more conservative play-
ers for small amounts, ultimately causing them to be eliminated when a more
conservative player gets the card they were waiting for. Since the game is mul-
tiplayer and the players have finite resources winning the overall game is much
more important than winning the hand. We find that this too is applicable to

Fig. 2. The utility curve for potential gains (greater than zero) and losses (less than
zero) used by a prospect utility bot with parameters 0.6,0.3. As you can see the prospect
utility bots are highly risk-adverse.
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real world scenarios. Actors in the games we have proposed would be loathe to
wager all of their resources and risk being unable to participate in future rounds
unless their success was all but guaranteed or they were on the verge of being
eliminated anyway.

4.3 Non-modeling Bots

The bots that do not model behavior have their actions determined by a utility
function generated when the bots are added to the game at the start of the
round . These bots choose an action by maximizing the size of bet which returns
positive utility based on their utility function:

max
B

(U(P, B, W ) > 0)

We choose to do this rather than simply maximizing the utility of the players
because simple maximization of utility would imply that the bots always wish to
make the smallest bet possible which would allow them to win the pot. However,
since there are other players in the game this is not a situation like a lottery,
in which the player is presented with the option to spend an amount, B, to be
guaranteed the chance, W , to win the pot, P . Instead, they must play against
other players. Each bot, by maximizing the bet they will make are able to force
out other players who may be more risk averse, or, if other players choose to
match the larger bet, they are able to take more resources from those players
should they win. Since the expected utility in such situations is still positive,
it should be preferable in such a situation to actually make the largest bet for
which the player expects a positive utility, rather than the smallest. The desire
of the bots to make these larger bets is tempered by the fact that the bots are
strongly risk averse, and they will rarely make huge bets. In this case there will
often be actual back and forth play, whereas when they are always trying to
minimize their bet, the game itself is not very interactive, with most bots very
rarely participating if they are at all risk averse. A strategy similar to this is
used by professional poker players called value-sizing [6][7].

4.4 Modeling Bot

In order to compete against the fixed strategy prospect utility bots we created
a bot that would modify its approximation of the chances of winning a hand of
High Card based on observed past behaviors of the players which it is playing
against. This bot began each round with no information stored. As each hand
was played, and a players hand was revealed at the end of a round (due to
competing for winning the round), the bot stored the information of that player’s
play, indexed on the parameters at the time the action was taken, e.g. the pot
size, required bet, number of players in the game, and the number of players
who folded, and the card that the player had when they played their action in
response to the action parameters.
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Our bot played with the suboptimal, but highly conservative Prospect Utility
strategy with parameters 0.6, 0.3. However, unlike the other bots who evaluate
their chance of winning based only on the hypergeometric estimate of their
chance of winning based only the card they possess; our modeling bot estimated
its chance to win based on the historical play data it had for players who had
previously played the same action which they had played this round.

The probability that the modeling bot (MB) will win is, as shown in Fig. 3,
the product of the estimated probability that MB will beat each opponent, as-
suming that its probability of beating itself is 100%. If MB sees that there is
an opponent who it has data for who only has shown higher cards in the same
situations, it has no chance of winning. If MB has some information, MB esti-
mates its probability as being a function of the range of those cards, as if they
were uniformly distributed. If MB has no information, MB uses an approxima-
tion to the hypergeometric distribution for the remaining players. For example,
assuming that the bot has a card ranked 40 and that there are two players for
whom MB had no information for, MB would then use the equation in Fig. 4. It
can treat these quantities as equal because for the size of the sample set we are
drawing from and the number of items selected, selecting without replacement
doesn’t strongly effect the probabilities.

4.5 Results

Our simulation results consist of 2 sets of 1000 1-game tournaments. In these
tournaments the modeling bot only has the information about hands played
in the current game when modeling opponents. As depicted in the results in
Table 2, the modeling bot achieves roughly a 7 fold increase in performance for

W =
N∏

i=0

P (Cmod > Ci)

P (Cmod > Ci) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(Cmod−1
1 )

(S
1)

if maxi = ∅
1 if Cmod = Ci or Cmod > maxi

Cmod−mini
maxi−mini−1

if Cmod < maxi and Cmod > mini

0 if Cmod < mini

Fig. 3. Probability Estimation Function for the Modeling Bot

((
40
1

)(
51
1

))2

= 0.6151 ≈
(
40
2

)(
51
2

) = 0.6118

Fig. 4. The hypergeometric can be approximated by calculating the hypergeometric
for selecting one item and raising it to the power of the number of items you wish to
select
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Table 2. Win rates of the 12 Different bot Types and our ModelBot, 1-game Iterations
with 6 players per game

BotName ρa ρb WinRateM=2 WinRateM=1

ModelBot 0.6 0.3 0.39139 0.12510

PBot 0.6 0.1 0.22746 0.14930
PBot 0.6 0.2 0.13444 0.04859
PBot 0.6 0.3 0.05305 0.01813

PBot 0.7 0.1 0.52542 0.35881
PBot 0.7 0.2 0.30512 0.16637
PBot 0.7 0.3 0.16531 0.04928

PBot 0.8 0.1 0.63265 0.44704
PBot 0.8 0.2 0.43141 0.25092
PBot 0.8 0.3 0.20155 0.07869

PBot 0.9 0.1 0.34362 0.13656
PBot 0.9 0.2 0.17043 0.03340
PBot 0.9 0.3 0.03937 0.00511

both M=1 and M=2. The average number of hands played per round was 289
with M=2 and 615 for M=1.

5 Conclusions

Compared to the baseline Prospect Utility bot with ρa = 0.6, ρb = 0.3 our mod-
eling bot saw an improvement in play ranging from a factor of 6.9 to 7.5, while
using a modeling scheme without heuristic inference, or attempting to wholesale
recreate the risk curves of opponents. These results are promising given that the
bot had minimal observational inputs, yet still performed quite well.

Additionally, we have proposed that there exists a set of games, which hold
practical interest for modeling real world scenarios. Further, we propose that
no-limit High Card presents a simple model that can be used to simulate these
highly complex scenarios, allowing for preloading of adversary information, in
order to simulate possible outcomes from previous observations.
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Abstract. We address an anti-jamming strategy of channel access for
secondary user in a cogntive radio network when some idle channels of the
primary user are being jammed in each time slot. Given the secondary
does not know what idle bands are under attack, using our method it
tries to choose the best possible channel in each time slot to avoid the
jammer. We show this problem can be formulated as a multi-armed ban-
dit process and compare the results of different approaches for channel
selection including ε-greedy, ε-first, and random. Simulatons verify that
our method results in selecting channels with an average of almost 50%
improved signal to noise ratio (SNR) over randomly selected channels.

Keywords: Cognitive radio, multi-armed bandit, security, jamming.

1 Introduction

With the ever increasing role of wireless data communications in various as-
pects of society, measurements have been conducted to prove that due to the
bursty nature of wireless traffic, static spectrum licensing does not exploit the
full capacity in time and frequency. Opportunistic spectrum access is a proposed
solution. The cognitive radio (CR) communication paradigm, as opposed to the
traditional one, is designed to access the unused spectral/temporal/spatial re-
sources more efficiently. Unlike traditional communication systems, CRs have
flexible operating parameters, e.g., modulation, power, and frequency, and are
able to adapt themselves to the radio environment [1].

In cognitive radio networks (CRNs), as shown in Figure 1, secondary users
sense the primary (licensed) spectrum usage, utilize idle resources, and release
them when the primary returns. Learning capability is an integral part of CR.

The denial of service caused by radio jamming can be achieved in several ways.
Some attackers try to increase interference and degrade signal to noise (SNR) of
a user by directing signals to its vicinity [13]. Other attackers constantly send
packets and never let the wireless spectrum be released [6].

Like any communication network, CRNs are vulnerable to jamming attacks,
the goal of which is to prevent legitimate users from utilizing spectrum oppor-
tunities. However, here, attackers can also act adaptively to time-varying radio
environment. Stochastic game modeling is a suitable tool for dynamic security
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Fig. 1. Secondary CRs (unlicensed users) dynamically accessing unoccupied primary
(licensed) bands

mechanisms [10]. In this Markov decision process model, states are defined as
spectrum availability, channel quality, and the status of jammed channels ob-
served at the current time slot. Our goal here is to demonstrate at a smaller
scale that the multi-armed bandit strategy can also be adopted in this regard.

Various anti-jamming approaches have been studied for wireless networks.
These can be divided into three main categories:

– Network layer anti-jamming: Network coding or adding network-level re-
dundancy is a defense strategy against snooping and eavesdropping attacks.
In network coding the nodes combine multiple packets and then forward
them to other nodes in a network to increase the nework throughput. Par-
ticularly, random linear coding based schemes provide robust anti-jamming
capability in CRNs [4] by achieving required throughput with small redun-
dancy. Another example is called spatial retreat [14]. In this escaping method
when mobile nodes are interfered with, they should move to a safe operating
frequency. In other words, they should decide about the location they should
move to in a coordinated manner.

– Link layer anti-jamming: Channel hopping is a familiar example of this
strategy. Protecting IEEE 802.11 networks against jamming using channel
hopping is discussed in [6]. This method first evaluates what the best pos-
sible channel scanning and jamming strategy against channel hopping can
be and then decides how to best tune to the hopping strategy. A combi-
nation of software-based Markovian modeled reactive channel hopping and
error-correction coding [5] can be used to maximize network throughput in
spite of jamming. An anti-jamming protocol for IEEE 802.15.4-based hard-
ware and its effectiveness against interrupt jamming, activity jamming, scan
jamming, and pulse jamming has been investigated in [12]. Narrow-band RF
interference to IEEE 802.11 networks, even with weak power, can degrade
the performance of such networks to a great extent. In this regard, rapid
channel hopping is a possible strategy [3].
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– Physical layer anti-jamming: Beamforming, directional antennas, and
spread spectrum fall into this category. For example, a combination of sec-
tored antennas and mobility can maintain the connectivity of multihop ad
hoc wireless networks in spite of jamming attacks [7].

2 Problem Modeling and Solution

Figure 2 shows the structure of the problem. In each time slot t the primary user
releases some channels. The secondary user tries to avoid interference to the pri-
mary signals by spectrum sensing. The jammer, on the other hand, can perform
spectrum sensing and since it has limited power, it jams j channels at random
from the total channels released to the secondary. The random jamming strategy
helps the jammer against a smart secondary user. We assume the secondary user
can select one channel in each time slot and does not want to select a channel
under attack. We present the best strategy for the secondary to maximize its
throughput over time.

We assume the jammer does not jam the channels while the primary user
is active and only targets the secondary user’s access. This can hold true in
several cases, e.g., when the primary can recognize and punish the jammers,
when attacker is distant from the primary [10], or when the jammer has no
incentive to disrupt primary access.

To come up with the solution, we note that this problem can be forumalted
as a multi-armed bandit process, in which given unknown rewards of multiple
levers, the player (here the secondary user) tries to pull the most rewarding
lever at each time slot with the goal of maximizing its total reward over the
time horizon. Here, the levers are associated with available sub-channels and
the reward is proportional to the SNR of the secondary user over the chosen
sub-channel.

Fig. 2. Secondary user selects best strategy over time to avoid jammed channels among
released primary bands
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Obviously, if the secondary user mistakenly selects a jammed channel, its SNR
is severely degraded and the reward decreases. If the jammer has a low power,
the capacity may still be greater than zero, but without loss of generality, we
consider the worst case and define the secondary user’s reward over jammed
sub-channel equal to zero. Otherwise it gets a reward proportional to the chosen
channel throughput, proportional to its SNR over that channel.

The jammer can adopt a random frequency hopping strategy, in which it jams
different sub-channels from each trial to the next. Also, we note that the SNR of
non-jammed sub-channels varies from each time horizon to the next. We model
this setting as a restless multi-armed bandit process [2]. In restless multi-armed
bandit processes the state of non-pulled levers can evolve and change according
to some hidden patterns. This means regardless of whether or not the CR user
selects a sub-channel c at each round, it cannot tell about the reward of that
sub-channel index, or its state, in the next round. In other words, the state of c
changes over time.

Assume there are a total of C sub-channels and each sub-channel c can be in
one of K states pc =

{
p1

c , p
2
c , . . . , p

K
c

}
. These states correspond to SNR levels.

p1
c = 0, which denotes sub-channel c is under attack. There is a set of time-

variant transition probabilities for each state pk
c , where k ∈ {1, . . . , K}, denoted

by qc(k, j, t). Obviously,
∑

j �=k qc(k, j, t) ≤ 1. Suppose the sub-channel is in state
pk

c and is selected next after t ≥ 1 rounds. It gives reward rk
c proportional to pk

c

and transitions to one of the states pk
c with probability qc(k, j, t). In the most

general case, the transition probabilities for different sub-channels are indepen-
dent. The goal of the CR user is to find a sub-channel selection strategy at each
t, as in Figure 2, such that infinite time-horizon reward that is expressed in terms
of selected channel’s SNR is maximized. The solution lies in solving Whittle’s
linear program [11], as in equations (1) to (5). Here, xc

pk
c t and yc

pk
c t denote the

probabilities, in the optimal policy, that sub-channel c in state pk
c ∈ pc is se-

lected or not selected by CR user t timesteps after it was last accessed. To solve
this linear program, the CR user has to have an estimate of state transition
probabilities.

On the other hand, if the jammer’s strategy is fixed, the problems turns into
a stochastic multi-armed bandit process, which leans itself to indexing solu-
tions. There are various approaches to solve multi-armed bandit problems [9].
One category is comprised of semi-uniform strategies. The core of semi-uniform
stretegies is pulling the best lever greedily, except when a uniformly random
action is taken. For example, as shown in Figure 3, in the epsilon-first strat-
egy, there are distinct exploitation and exploration phases, with exploration for
fraction ε of trials and exploitation for the rest of the trials. In the exploration
phase, a lever is arbitrarily selected with a uniform probability distribution. In
the exploitation phase, the best lever is selected.

Epsilon-greedy strategy is a method in which the best lever is selected for
a proportion 1 − ε of the trials and another lever is randomly selected with
uniform probability with proportion ε. When the value of ε in an epsilon-greedy
strategy is decreasing as the number of experiments increases, the strategy is
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Maximize

C∑
c=1

∑
pk

c∈pc

∑
t≥1

rc
pk

c tx
c
pk

c t, (1)

subject to
C∑

c=1

∑
pk

c∈pc

∑
t≥1

xc
pk

c t ≤ 1, (2)

∑
pk

c∈pc

∑
t≥1

(xc
pk

c t + yc
pk

c t) ≤ 1, ∀c = 1, 2, . . . , C (3)

xc
pk

c t+1 + yc
pk

c t+1 = yc
pk

c t, ∀c, pk
c ∈ pc, t ≥ 1 (4)

xc
pk

c t+1, y
c
pk

c t+1 ∈ [0, 1] (5)

Fig. 3. State machine of semi-uniform multi-armed bandit strategies

called epsilon-decreasing. When the adversary jams different channels in each
timeslot, the behavior of rewards are highly changing from the viewpoint of the
secondary user. Therefore, a solution can be the adaptive epsilon-greedy strategy,
which adjusts ε based on reinforcement learning by keeping track of the reward
differences during experiments, i.e., high changes in the reward enforce a higher
ε or more exploration than exploitation [8].

If we denote the set of all available sub-channles by C, each sub-channel by
c and the set of jammed sub-channels by J ⊂ C, Equation 6 defines the reward
of the secondary user by accessing sub-channel c ∈ C:

r =
{

(S/N)c if c ∈ C − J
0 otherwise (6)

where (S/N)c is the SNR over sub-channel c.
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3 Numerical Results

We carried out simulations in MATLAB for various numbers of idle channels
provided by the primary user and varying numbers of jammed channels. Our
goal here is to show that the proposed method leads to better overall SNR
results and helps the secondary user avoid selecting the jammed sub-channels.

Figure 4 shows how using the ε-greedy method helps the secondary user to
avoid selecting jammed channels and hence obtain more average SNR over se-
lected channels in comparison with choosing sub-channels randomly. It is as-
sumed 30% of the sub-channels are being jammed, zero SNR over jammed chan-
nels and the SNR of other sub-channels vary between 5 and 20 dB. The CR user
might not have an exact estimate of sub-channels SNR before selecting them,
due to reasons such as characteristics of the fading environment, e.g., when the
coherence time of the channel is smaller than timeslot duration. The results are
averaged over the horizon of 50 trials. Here, ε is set to 0.1, which means 10% of
trials are dedicated to exploration and the rest to exploitation. However, unlike
the ε-first method, the exploration and exploitation rounds are interleaved in
ε-greedy gambling.

An arbitrary proportion of all plays can be dedicated to exploration and the
rest to exploitation. To come up with an optimum exploration length, we refer
to Figure 5 that shows how the choice of this proportion or ε can affect the sec-
ondary CR’s achieved gain. A horizon containing 50 trials has been considered,
with 20% of sub-channels being jammed in random. The experiment, iterated
500 times, demonstrates that increasing the exploration rounds to values beyond
5% does not improve the average SNR.
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Fig. 5. Effect of exploration phase length on average SNR obtained using ε-greedy
method
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Fig. 6. Comparison of average SNR obtained using ε-first, random and ε-greedy
methods

To compare the three methods of ε-first, random, and ε-greedy over a horizon
of 50 plays, Figure 6 shows the two multi-armed bandit methods yield more
success to the secondary CR in avoding the jammer and accordingly better SNR
results than the random method. With almost 1000 instances of completed plays
and almost 33% of jammed sub-channels, we observe that the ε-greedy and ε-
first methods approach almost the same performance level as the number of
sub-channels increases.
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Fig. 7. Effect of exploration phase length on average SNR obtained using ε-first method
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Fig. 8. Average SNR over selected channels in ε-greedy method vs. varying number of
sub-channels and jammed sub-channels

In order to get a sense of suitable exploration length with ε-first, we refer to
Figure 7, which shows making the exploration phase longer than 5% of rounds
degrades the overall results.

Figure 8 compares the performance of ε-greedy (ε = 0.1) with random method
for different number of sub-channels and different number of jammed channels.
As this figure depicts, the proposed method still gives better jammer avoidance
results over random channel selection.
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Fig. 9. Dynamic spectrum access by CR

4 Conclusions

In this work, we put forward an anti-jamming strategy for dynamic spectrum
access (DSA) by secondary users, in the existence of jamming attacks on some
sub-channels that are not revealed to the secondary user until after selection
and access. We showed this problem can be cast as a multi-armed bandit pro-
cesses and carried out simulations for two example multi-armed bandit strate-
gies, ε-greedy and ε-first. We compared the performance of the proposed jammed
channel avoidance schemes with random selection as a benchmark and showed
our method always offers better SNR and accordingly more throughput to the
secondary user. Applying other learning based multi-armed bandit solutions can
be a future topic of research.

4.1 Application to CR

The dynamic channel selection process in CRNs shown in Figure 9 starts with
spectrum sensing. If a channel is found, the CR enters the rendezvous state for
setting up access to the channel. Operation state is the next step in DSA. The
CR remains in that state until it is not interfering with the primary user. The
channel selection takes place at spectrum sensing state and the jammer tries to
manipulate this phase by injecting interference signals. Our method, basically,
offers a defense strategy to the CR at this stage by avoiding the selection of
sub-channels under attack.
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Abstract. Unattended wireless sensor networks are susceptible to node
capture attacks, where the adversary physically compromises a node, cre-
ates functional copies (clones) of it and deploys such clones back into the
network, in order to impact the network’s functionality. In the absence
of a centralized authority, distributed clone detection methods have been
developed to mitigate this attack. In this paper, we show that the node
capture attack and the network response can be modeled as a simultane-
ous, noncooperative, two-player game. In developing the game-theoretic
framework, we consider a deterministic, linear dynamical model of the at-
tack, as well as a general, stochastic model. For the deterministic model,
we develop three games, all of which have quadratic utility for the valid
network, whereas the adversary’s utility depends on the assumptions
about ist abilities. For the stochastic model, we develop a game with
convex utility functions. For each game, we prove the existence of a pure
strategy Nash Equilibrium and present an efficient way of solving the
game. These equilibria can then be used in choosing the appropriate
parameters for detecting and responding to the attack. Simulations are
provided to illustrate our approach.

Keywords: Node Capture Attack, Distributed Clone Detection Meth-
ods, Noncooperative Games, Convex Program.

1 Introduction

Networks of electronic devices, interacting to execute a common task in a dis-
tributed fashion, are increasingly becoming systems of choice in military, indus-
trial and medical applications. Examples include target surveillance and track-
ing, environmental sampling, remote plant control and health monitoring. An
important class of such systems is a wireless sensor network (WSN), a collection
of wireless sensors deployed over a monitoring area. A typical sensor consists
of low-cost hardware components, with constraints on power, communication
and computation capabilities. Such sensors are typically expected to operate
unattended over an extended period of time. Thus, they have to collaborate in
collecting and exchanging data, as well as in preserving their resources.
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Due to their unattended operation, WSNs are vulnerable to node capture
attacks [6]. In this attack, an adversary physically compromises a sensor, extract
data known to it, and using the obtained knowledge, deploys functional copies of
captured nodes (clones) back into the WSN. Using captured and cloned nodes,
referred to as compromised insiders, the adversary can mount a slew of efficient
attacks.

In the absence of a centralized authority, node capture attacks are typically
mitigated through the use of distributed, ad hoc solutions. In [3], we devel-
oped a dynamical model of the interaction between the adversary and a network
using distributed detection methods. Using a control theoretic methodology, we
showed how such a model can be used to control the detection, and consequently,
the revocation of compromised insiders. This deterministic model does not, how-
ever, characterize a full range of adversarial actions, which may be nonlinear or
randomized. Thus, a more general model of the node capture attack is needed.

In this paper, we develop a game-theoretic framework to model the interaction
between the adversary and the network under node capture attack. We further
show that node capture attack is a Markovian process and introduce a stochastic
model to represent it. For this stochastic model, and for the linear dynamical
model, we develop two-player, simultaneous, noncooperative games, referred to
as node capture games. For each game, we prove the existence of a pure-strategy
Nash Equilibrium (NE) and present an efficient algorithm of solving for it.

This paper is organized as follows. In Section 2, we state our assumptions
about the network, the adversary, and clone detection methods. In Section 3, we
present the stochastic model and the linear dynamical model of node capture
attack. In Section 4, the game-theoretic framework is introduced and node cap-
ture games are developed and analyzed. Simulation analysis is given in Section
5. Section 6 concludes the paper.

2 Background and Preliminaries

2.1 Network Model

We consider a WSN N , consisting of N wireless sensors. All sensors have limited
battery life, computation and communication capabilities. Every sensor is on
average able to directly communicate with d other nodes, referred to as neighbors.

We assume the use of identity-based public key cryptographic methods [10].
Prior to deployment, every sensor is assigned a key pair (PK, SK). The key
PK is the node’s public key; it is known to all other nodes and it is used as the
node’s unique identifier (ID). The key SK is the node’s secret key. Sensors are
further assumed to be able to determine their positions using secure localization
mechanisms [7].

2.2 Adversarial Model

We consider a time-persistent adversary A, who, over an extended period of
time, physically compromises a set of sensors and extracts their data, such as
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cryptographic secrets, information about the states of network protocols, and
sensed data. Using the extracted data, the adversary creates functional copies
of captured nodes, denoted as clones and deploys them back into the WSN. It
is assumed that every captured node is cloned at least once.

The adversary’s goal is to compromise the sensing operation. The sensing
operation is assumed to be compromised if the adversary can: (1) eavesdrop
on the exchanged messages in the targeted WSN, (2) change the content of
or tamper with the exchanged messages, (3) delete, drop or destroy messages
traversing a compromised node, (4) delay messages long enough to render them
invalid, or (5) insert false data into the targeted WSN, in order to cause the
network compute incorrect sensing value. We assume that, in order to achieve
one of the goals (1) through (5), the adversary has to gain control over a set of
at least K nodes, where K ≤ N − 1.

2.3 Related Work on Distributed Clone Detection Model

Distributed clone detection methods, such as [5,8,9], have been proposed to mit-
igate node capture attack, in the absence of a centralized monitoring authority.
Such methods exploit the idea of collision in detecting compromised insiders.
Every node periodically broadcasts a signed message (location claim) containing
the node’s unique identifier (ID) and its current location. Upon receiving a loca-
tion claim, each neighbor forwards the location claim to a set of nodes, V , with
probability p and discards it otherwise. Clone detection methods differ in the
way the set V , consisting of g distinct nodes, is chosen: in [9] and [8], the nodes
in V are chosen randomly, whereas in [5] the nodes are chosen as a function of
the claiming node’s ID.

If a node in V receives multiple location claims originating from the same
ID, claiming to be at different locations, then that node, denoted as a witness,
concludes that at least one of the senders is a clone and broadcasts a revocation
message for the senders’ ID. The effectiveness of a clone detection method can
be characterized through the probability of clone detection Pd. This probability
is a function of the average number of neighbors, d, the number of witnesses, g,
and the probability of forwarding the location claim, p [9].

3 Analytical Models of Node Capture Attacks

3.1 Linear Dynamical Model

In [3], a linear dynamical model of a node capture attack was developed. Under
this model the adversary is characterized by the parameters x(t), representing
the number of captured nodes at time t, and the capture rate, λ, representing
the fraction of valid nodes that the adversary captures per unit of time. Such a
modeling of adversarial actions is based on the assumption that the adversary
is located in one part of the WSN during one unit of time, and it captures valid,
previously uncompromised sensors placed within that same part of the WSN.
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The targeted network, using witness-based detection methods, is characterized
by the revocation rate, representing the fraction of compromised insiders revoked
from WSN per unit of time. Based on the observation that in distributed clone
detection methods, such as [5,8,9], revocation takes place immediately after a
compromised insider is detected, and a valid node cannot falsely be detected
as captured (false alarm), it follows that the revocation rate is bounded on the
interval [0, 1] and it is equal to the probability of detection, Pd. The interaction
between the adversary and the network is therefore represented by the following
dynamical model:

ẋ(t) = λ[N − x(t)] − Pdx(t) (1)

Since compromised insiders are detected after a collision in their location claims
occurs, it follows that there is a delay between the capture and the revocation
processes. This delay causes the number of captured nodes, x(t), to be larger
than zero even if the probability of detection Pd = 1. Indeed, from equation (1)
it follows that the number of captured nodes stabilizes at xss = λN

λ+Pd
.

3.2 Stochastic Model

The model (1) assumes that the process of capturing a node is a linear function of
time, whereas both the adversary and the network exhibit nonlinear and possibly
stochastic behaviors. Hence a generalized, stochastic model of the attack and
response is needed. Any such model should, however, be useful in analyzing
the interaction and developing realizable and implementable strategies of the
adversary and the network.

In developing such a model, we observe that the targeted network, by ex-
pending additional resources on creating deception, decreases the efficiency of an
intelligent adversary. We do not further explore the ways of creating deception
in this paper, but we identify nodes’ mobility and redundancy in the nodes’ IDs
and storage as mechanisms to do so. In the ideal case, by creating deception,
the targeted network steers the actions of an intelligent adversary towards the
actions of a random adversary, forcing it to capture every node completely inde-
pendent of all the previous captures. Thus, in a deceptive network, the capture
process can be modeled as a Poisson process X(t) with capture rate λ. The pro-
cess X(t) represents the number of captured nodes present in the WSN at time
t:

P[X(t) = k] = e−λt (λt)k

k!
, k = [0, N − 1] (2)

We further observe that the processes of revoking compromised insiders are
independent and identically distributed (i.i.d). In addition, the time required
to revoke a compromised insider is the number of independent iterations of
the clone detection algorithm until the insider is detected, and is therefore a
geometric random variable. As an idealization, for every sensor node we assume
that the revocation times ri, i = 1, . . .N − 1 have exponential distribution with
the revocation rate equal to the probability of detection, μ = Pd:

P[ri ≤ T ] = 1 − e−μT , T ≥ 0 (3)
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While there is a non-zero probability that the revocation process fails because
the collision-detecting witness has been compromised, and does not report colli-
sion, this event is statistically indistinguishable from the case when the witness
experiences device failure. As a result, we may assume that the random variable
ri is independent from the times when the nodes were captured.

Taken together, these assumptions imply that the node capture attack on a
WSN can be modeled as an M/M/N/N queue [2], where the capture process
maps into the arrival process, the number of captured nodes into the number
of customers in the system, and the revocation process into the service process.
The queue is truncated to the number of nodes in the system, N . The revocation
process is further modeled as consisting of N parallel servers, and each server
represents the WSN’s detection a compromised insiders.

4 A Game Theoretic Approach to Modeling Node
Capture Attacks

In this section, a game theoretic framework to model the strategic interaction
between the adversary and the network in a node capture attack is presented.
We formulate non-cooperative simultaneous games, Gi = (P ,S,U), i = 1, . . . , 5,
consisting of two players, P = {A,N}, where A denotes the adversary and N
the network. For both the linear dynamical model and for the queueing model,
the adversary’s strategy is to choose the capture rate λ ∈ [0, λmax], and the
network’s to choose the detection probability, Pd ∈ [0, 1].

In mounting the attack, the adversary incurs the following costs: the cost
of capture, representing the energy needed to disassemble and to access the
information for each captured node, and the cost of revocation, representing the
resources wasted if a compromised insider is detected. Similarly, the targeted
WSN incurs the cost of captured nodes, quantifying the impact of compromised
insiders on the WSN’s performance, and the cost of revocation, representing the
communication and storage overhead needed to detect and revoke compromised
insiders, as well as the effort involved in replacing them with new, secure nodes.
The adversary’s and the network’s optimal strategies depend on how these costs
are quantified, as discussed below.

4.1 Games Based on the Linear Dynamical Model

Game G1: Zero-Sum Game. We first consider a game where both players are
greedy and unconstrained in their resources. The utilities of the players are:

UA = −UN = x(t) (4)

In this zero-sum simultaneous game, the goal of the adversary A is to find the
capture rate λ that maximizes the number of captured nodes, whereas the goal
of the network is to find the revocation rate that minimizes the number of
compromised insiders. Both players have a dominant strategy: the adversary
always chooses capture rate λ∗ = λmax and the network always chooses the
maximum probability of detection, P∗

d = 1.
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Game G2: Quadratic Cost of the Network. We next formulate a game with
cost-oriented players, whose utility functions are defined as:

UA(λ, ν1, ν2) = −
[
λ + ν1

(
K − λN

λ + Pd

)
+ ν2(λ − λmax)

]
(5a)

UN (Pd) = − 1
T

∫ T

0

[q1x(t)2 + r1(Pdx(t))2]dt (5b)

where ν1, ν2 denote real numbers and T is a positive constant. Under this formu-
lation, the goal of the adversary is to find the minimal capture rate λ, such that
the number of captured nodes in the steady state, xss, is larger than or equal to
the number of nodes needed to compromise the WSN, K. The adversary solves
the following optimization problem:

min λ

subject to K ≤ xss (6)
λ ≤ λmax

In this game, the network’s cost consists of two components: the cost of re-
vocation and the cost (impact) of undetected compromised insiders. For a given
λ, the network’s best response, P∗

d(λ), can be found by solving the following
optimization problem, representing the tradeoff between the two costs:

min
Pd

1
T

∫ T

0

[q1x(t)2 + r1(Pdx(t))2]dt

subject to ẋ(t) = λ[N − x(t)] − Pdx(t) (7)
0 ≤ Pd ≤ 1

Theorem 1. In the node capture game G2, for
√

q1
r1

≤ 1 and T sufficiently large,
there exists a unique NE in pure strategies, given as:

(λ∗, P∗
d) =

(
K

N

√
q1

r1
,
N − K

N

√
q1

r1

)
(8)

Proof. The adversary’s optimization problem (6) represents an inequality form
of a linear program (LP) [4] and the optimal capture rate, λ∗, is attained when
the constraint K ≤ xss holds with strict equality. The optimal capture rate,
defined as the best response to the network’s optimal strategy, is therefore given
as:

λ∗ = BR(P∗
d) =

KP∗
d

N − K
(9)

The network’s optimization problem (7), after relaxing the constraint 0 ≤ Pd ≤
1, represents a Linear Quadratic Regulator (LQR) problem [1]. When T is suf-
ficiently large, the optimal value of Pd, defined as the best response to the ad-
versary’s optimal strategy, can be derived as:

P∗
d = BR(λ∗) =

P

r1
= λ∗

(
−1 +

√
1 +

q1

r1

1
(λ∗)2

)
(10)
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where P represents a positive solution of the Algebraic Ricatti Equation (ARE):
AP + PT A + Q − PBR−1BT P = 0, with A = −λ, B = −1, Q = q1 and
R = r1. The players’ optimal strategies (8) are obtained by solving the system
of equations (9) and (10) for λ∗ and P∗

d. The condition
√

q1
r1

≤ 1 implies that
0 ≤ Pd, and hence this equilibrium is feasible.

Game G3: Quadratic Cost of the Network and of the Adversary. We
next consider a game where the adversary incurs two costs in mounting the
attack: the cost of capturing a node, Q2 =

∫∞
0

r2(λz(t))2dt and the cost R2 =∫∞
0

q2z(t)2dt, representing the cost of not capturing enough nodes to compromise
the WSN. The costs Q2 and R2 represent the tradeoff between the invested
resources and ability to inflict damage on the targeted system. This tradeoff is
modeled through the adversary’s cost function:

UA(λ) = − 1
T

∫ T

0

[q2z(t)2 + r2(λz(t))2]dt (11)

where z(t) represents the number of valid nodes remaining in the targeted WSN.
In developing this utility function, we make an assumption that all revoked nodes
are replenished after revocation. This assumption is valid in target tracking and
surveillance applications, where the removal of a node may cause a gap in the
monitoring area.

In this node capture game, the network’s utility is defined as (5b) and the
network’s goal as an optimization problem (7). The adversary’s goal is to find
the capture rate λ such that the cost (11) is minimized:

min
λ

1
T

∫ T

0

[q2z(t)2 + r2(λz(t))2]dt

subject to ż(t) = Pd[N − z(t)] − λz(t) (12)
0 ≤ λ ≤ 1

In the optimization problem (12), the adversary minimizes the cost with respect
to the dynamics of the number of remaining valid nodes, z(t). The dynamics of
z(t) is derived from equation (1) by noting that z(t) := K − x(t).

Theorem 2. In the node capture game G3, under the conditions:

2b2 + 7b + 4ab ≤ 4a2 + 14a + 9
4b2 − 14b − 4ab ≤ 2a2 + 7a − 9 (13)

where a := q1
r1

, b := q2
r2

, c := (2b − 4a), d := (2a − 4b) there exists a unique NE in
pure strategies, defined as:

{λ∗, P∗
d} =

⎧⎨⎩
√

c +
√

c2 + 12b2

6
,

√
d +
√

(d2 + 12a2

6

⎫⎬⎭ (14)

when T is sufficiently large.
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Proof. Optimization problems (7) and (12), after relaxing the constraints 0 ≤
λ ≤ 1 and 0 ≤ Pd ≤ 1, represent LQR problems. From Theorem 1 it thus
follows that the players’ optimal strategies, defined as the best responses to the
opponent’s optimal strategy, are defined as:

λ∗ = BR(P∗
d) = −P∗

d +
√

(P∗
d)2 + b

P∗
d = BR(λ∗) = −λ∗ +

√
(λ∗)2 + a (15)

By solving the system of equations (15) for P∗
d, we obtain:

P∗
d =

√
λ2 + a − b (16)

Now, by substituting equation (16) into the adversary’s best response λ∗ =
BR(P∗

d) we obtain:
−3λ4 − λ2(2b − 4a) + b2 = 0 (17)

The optimal capture rate, λ∗, is obtained by solving equation (17). By symmetry
of the adversary’s and network’s optimization problems, the optimal probability
of detection, P∗

d, is obtained from the same equation, by substituting P∗
d and

λ∗, and a and b. It can be further shown that the constraints (13) imply that
0 ≤ λ∗ ≤ 1 and 0 ≤ P∗

d ≤ 1, thus confirming that the equilibrium (14) is feasible.

Game G4: Diminishing Returns in the Adversary’s Utility. We next
consider an adversary who experiences the effect of diminishing returns in the
number of captured nodes (i.e., every additional capture contributes to the ad-
versary’s utility less than the previous one). This effect occurs, for example,
when the adversary influences valid nodes through the compromised insiders
within their neighborhood. In such a setup, the number of additional nodes that
the adversary is able to influence by capturing a new node decreases with every
capture.

In this game formulation, the utility of the network is defined by equation (7)
and its goal by the optimization problem (7). The adversary’s utility function is
given as:

UA(λ) = log(xss) − cxss (18)

where the constant c represents the unit cost of capturing a node. The adversary’s
goal is to find the capture rate λ such that the utility function (18) is maximized:

max
λ

log
(

λN

λ + P∗
d

)
− cλN

λ + P∗
d

subject to K ≤ xss (19)
λ ≤ λmax

In order for the adversary’s utility function to be a nonnegative function of λ, the
cost of capturing a node, c, satisfies the following conditions: log(K)

N ≤ c ≤ 1
K .

The lower bound comes from the observation that the adversary has to capture
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at least K nodes to compromise the sensing operation, and the upper bound
represent the feasibility condition for the optimization problem (19). From these
conditions it follows that K log(K) ≤ N .

Theorem 3. In the node capture game G4, when log(K)
N ≤ c ≤ 1

K and T suffi-
ciently large, there exists a unique NE in pure strategies, defined as:

{λ∗, P∗
d} =

{√
q1

r1

1
(cN)2 − 1

,

√
q1

r1

(cN) − 1
(cN) + 1

}
(20)

Proof. The optimal strategy of the network, defined as the best response to
the optimal strategy of the adversary, is given by equation (10). Consider now
the adversary’s optimization problem (19). It represents a constrained convex
optimization problem. The optimal capture rate, λ∗, is attained when:

λ∗ =
P∗

d

cN − 1
(21)

The optimal values of the capture rate, λ∗, and the probability of detection, P∗
d,

are obtained solving the system of equations (10) and (21).

4.2 Games Based on the Queueing Model

Game G5: Maximizing the Average Number of Captured Nodes. A
queueing model of a node capture attack allows the steady state analysis of
the adversary’s and the network’s interaction, through the average number of
captured nodes in the network, the probability of having zero captured nodes in
the WSN, the probability that all (or K) nodes are captured, and through the
average time a captured node spends in the WSN before detection. We formulate
a two-player noncooperative game, focusing on the average number of captured
nodes in the WSN, as defined in [2]:

X̄ =
N∑

n=0

npn =
N∑

n=0

n

(
λ

μ

)n
p0

n!
=

∑N
n=0

(
λ
μ

)n
n
n!∑N

i=0

(
λ
μ

)i
1
i!

(22)

In this game, the adversary, assumed not to know the required number of nodes
to capture, K, intends to increase the average number of captured nodes, while
the network tries to decrease that number. Both players are cost-oriented, with
utility functions defined as:

UA(λ) = X̄ − cAλ UN (μ) = −[X̄ + cNμ]

where cA represents the average capture cost per node, and cN the average cost
of revoking a single node. The goal of the adversary is to find the capture rate,
λ, that maximizes the utility function UA. Similarly, the goal of the network is
to find the revocation rate, μ, that maximizes the cost function UN . For a large
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number of sensors, N , the average number of captured nodes, given in equation
(22), can be approximated as X̄ ≤

∑∞
n=0 npn = λ

μ . Thus, the adversary and the
network solve the following optimization problems:

Adversary Network
maxλ

λ
μ − cAλ minμ

λ
μ + cNμ

subject to 0 ≤ λ subject to 0 ≤ μ
λ ≤ λmax μ ≤ μmax

(a) (b)

(23)

Theorem 4. In the node capture game G5 there exist a unique NE in pure
strategies, defined as:

{λ∗, μ∗} =

⎧⎨⎩
{

λmax,
√

λmax
cN

}
, if λmax < cN

(cA)2{
cN

(cA)2 , 1
cA

}
, if λmax ≥ cN

(cA)2

(24)

Proof. The network’s optimization problem (23 (b)) is a constrained convex
optimization problem, and the optimal revocation rate μ∗ = BR(λ∗) is:

μ∗ = BR(λ∗) =
√

λ∗

cN
(25)

Similarly, the adversary’s optimization is a constrained linear program, with the
following points of interest:

μ∗ <
1
cA

→ λ∗ = λmax, μ∗ >
1
cA

→ λ∗ = 0, μ∗ =
1
cA

→ λ∗ ∈ [0, λmax] (26)

Now, if λ∗ = 0, it follows from equation (25) that μ∗ = 0. This, however, is not a
feasible equilibrium point, since λ∗ = 0 only if μ∗ > 1

cA . This is a contradiction,
implying that λ∗ = 0 is not a NE.

If μ∗ = 1
cA

, then the adversary is indifferent among different possible strate-
gies. In particular, for λ∗ = cN

(cA)2 , it follows from equation (25) that μ∗ = 1
cA

.

Finally, if λ∗ = λmax, it follows from equation (25) that μ∗ =
√

λmax
cN

. This is

an equilibrium point only if μ∗ ≤ 1
cA

, thus implying that λmax < cN
(cA)2 .

5 Simulation Results

In this section we provide simulation analysis for different game formulations of
node capture attack. We consider two network setups, with simulation param-
eters provided in Table 1. The optimal values of the capture rate, λ∗, and the
probability of detection, P∗

d, obtained as solutions to the games Gi, i = 1, . . . , 5,
are also given in Table 1, where N represents the number of sensors in the WSN,
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Table 1. Simulation parameters and optimal solutions of the games Gi, i = 2, . . . , 5

Parameters N K q1
r1

cA cN (λ∗
2, P

∗
d,2) (λ∗

3, P
∗
d,3) (λ∗

4, P
∗
d,4) (λ∗

5, P
∗
d,5)

Setup I 103 100 0.615 1.5 4 (0.12, 0.67) (0.47, 0.42) (0.16, 0.64) (1, 0.5)

Setup II 104 1200 0.857 2 6 (0.11, 0.82) (0.56, 0.49) (0.13, 0.80) (1, 0.41)
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Fig. 1. Comparison of the WSN’s performance under node capture attack: (a) Network
setup I - N = 103, K = 100, q1

r1
= 0.615, (b) Network setup II - N = 104, K =

1200, q1
r1

= 0.857. For both network setups, the number of captured nodes, x(t), for
games G2, G3 and G4 is shown.

K the number of sensors the adversary needs to capture to compromise the WSN,
q1
r1

the ratio between the cost of a compromised insider, q1, and the cost of revo-
cation, r1, cA the average cost of capturing a node, and cN the average cost of
revoking a node. Figures 1 (a) and (b) depict the number of captured nodes as a
function of time, for game formulations G2, G3 and G4 and network setups I and
II. In both figures, we observe that the adversary inflicts the largest impact on
the WSN when game G3 is played. This result reflects the differences in analyzed
games: in games G2 and G4, the adversary tries to find the minimum capture
rate that guarantees at least K captured nodes in the steady state. In the game
G3, however, instead of an explicit constraint on the number of captured nodes,
the adversary tries to minimize the tradeoff between capturing nodes and not
controlling the required number of nodes in the steady state. This optimization
problem, for a given ratio of tradeoff costs, results in a less cost-oriented, but
more powerful adversary. Comparing figures (a) and (b), we observe the impact
of the ratio q1

r1
on the WSN performance: in both setups, the number of captured

nodes in the steady state stabilizes close to K, for games G2 and G4. For setup
II, however, this number stabilizes closely below K, while for setup I, it always
stabilizes above K. In both setups, the adversary’s strategy is the same, but the
network strategy is dependant on the ratio, and the higher ratio results in more
assertive WSN.
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6 Conclusion

In this paper, we studied the node capture attack on wireless sensor networks.
We developed a game-theoretic framework to model the interaction between an
intelligent, time-persistent adversary and the network. We analyzed this inter-
action using two models of the attack: a linear dynamical model and a stochas-
tic, queueing model. For both models, noncooperative, simultaneous two-player
games were developed. The linear model was explored through a family of games,
where the network exhibits a quadratic cost and the adversary’s cost varied,
based on the assumptions about ist abilities. For the stochastic model, a game
with convex utilities were presented. For each game, we proved the existence of a
pure strategy Nash Equilibrium. We further presented an efficient way of solving
the games.

The developed games are one-stage simultaneous games and it was assumed
that both players possess full information about each other. In our future work,
we plan to investigate the use of repeated games, as well as the games of incom-
plete information in characterizing the interaction between the adversary and
the network in node capture attacks.
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Abstract. The paper deals with a mathematical model of a surveillance
system based on a net of sensors. The signals acquired by each node of
the net are Markovian process, have two different transition probabilities,
which depends on the presence or absence of a intruder nearby. The
detection of the transition probability change at one node should be
confirmed by a detection of similar change at some other sensors. Based
on a simple game the model of a fusion center is then constructed. The
aggregate function defined on the net is the background of the definition
of a non-cooperative stopping game which is a model of the multivariate
disorder detection.

Keywords: voting stopping rule, majority voting rule, monotone voting
strategy, change-point problems, quickest detection, sequential detection,
simple game.

1 Introduction

The aim of this consideration is to construct the mathematical model of a mul-
tivariate surveillance system. It is assumed that there is net N of p nodes which
register (observe) signals modeled by discrete time multivariate stochastic pro-
cess. At each node the state is the signal at moment n ∈ N which is at least one
coordinate of the vector −→x n ∈ E ⊂ �m. The distribution of the signal at each
node has two forms and depends on a pure or a dirty environment of the node.
The state of the system change dynamically. We consider the discrete time ob-
served signal as m ≥ p dimensional process defined on the fixed probability space
(Ω,F ,P). The observed at each node process is Markovian with two different
transition probabilities (see [18] for details). In the signal the visual consequence
of the transition distribution changes at moment θi, i ∈ N is a change of its
character. To avoid false alarm the confirmation from other nodes is needed.
The family of subsets (coalitions) of nodes are defined in such a way that the
decision of all member of some coalition is equivalent with the claim of the net
that the disorder appeared. It is not sure that the disorder has had place. The
aim is to define the rules of nodes and a construction of the net decision based on
individual nodes claims. Various approaches can be found in the recent research

J.S. Baras, J. Katz, and E. Altman (Eds.): GameSec 2011, LNCS 7037, pp. 56–66, 2011.
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for description or modeling of such systems (see e.g. [24], [17]). The problem is
quite similar to a pattern recognition with multiple algorithm when the fusions
of individual algorithms results are unified to a final decision. The proposed so-
lution will be based on a simple game and the stopping game defined by a simple
game on the observed signals. It gives a centralized, Bayesian version of the mul-
tivariate detection with a common fusion center that it has perfect information
about observations and a priori knowledge of the statistics about the possible
distribution changes at each node. Each sensor (player) will declare to stop when
it detects disorder at his region. Based on the simple game the sensors’ decisions
are aggregated to formulate the decision of the fusion center. The sensors’ strate-
gies are constructed as an equilibrium strategy in a non-cooperative game with
a logical function defined by a simple game (which aggregates their decision).

The general description of such multivariate stopping games has been for-
mulated by Kurano, Yasuda and Nakagami in the case when the aggregation
function is defined by the voting majority rule [9] or the monotone voting strat-
egy [25] and the observed sequences of the random variables are independent,
identically distributed. It was Ferguson [5] who substituted the voting aggrega-
tion rules by a simple game. The Markov sequences have been investigated by
the author and Yasuda [22].

The model of detection the disorder at each sensor are presented in the next
section. It allows to define the individual payoffs of the players (sensors). It is
assumed that the sensors are distributed in homogeneous way in the guarded
area and the intruders behavior are well modeled by symmetric random walk. By
these assumptions in Section 2 the a priori distribution of the disorder moment
at each node can be chosen in such a way that it gives the best model of the
structure of sensors and the behavior of intruder . Section 3 introduces the
aggregation method based on a simple game of the sensors. Section 4 contains
derivation of the non-cooperative game and existence theorem for equilibrium
strategy. The final decision based on the state of the sensors is given by the fusion
center and it is described in Section 6. The natural direction of further research
is formulated also in the same section. A conclusion and resume of an algorithm
for rational construction of the surveillance system is included in Section 7.

2 Detection of Disorder at Sensors

Following the consideration of Section 1, let us suppose that the process {−→Xn, n ∈
N}, N = {0, 1, 2, . . .}, is observed sequentially in such a way that each sensor, e.g.
r (gets its coordinates in the vector −→

Xn at moment n). By assumption, it is a
stochastic sequence that has the Markovian structure given random moment θr,
in such a way that the process after θr starts from state −→

Xn θr−1. The objective
is to detect these moments based on the observation of −→

Xn · at each sensor
separately. There are some results on the discrete time case of such disorder
detection which generalize the basic problem stated by Shiryaev in [19] (see e.g.
Brodsky and Darkhovsky [2], Bojdecki [1],Poor and Hadjiliadis [16], Yoshida [26],
Szajowski [21]) in various directions.
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Application of the model for the detection of traffic anomalies in networks has
been discussed by Tartakovsky et al. [23]. The version of the problem when the
moment of disorder is detected with given precision will be used here (see [18]).

2.1 Formulation of the Problem

The observable random variables {−→Xn}n∈N are consistent with the filtration Fn

(or Fn = σ(−→X 0,
−→
X 1, . . . ,

−→
Xn)). The random vectors −→

Xn take values in (E,B),
where E ⊂ �m. On the same probability space there are defined unobservable
(hence not measurable with respect to Fn) random variables {θr}m

r=1 which have
the geometric distributions:

P(θr = j) = pj−1
r qr, qr = 1 − pr ∈ (0, 1), j = 1, 2, . . .. (1)

The sensor r follows the process which is based on switching between two,
time homogeneous and independent, Markov processes {X i

rn}n∈N, i = 0, 1, r ∈ N
with the state space (E,B), both independent of {θr}m

r=1. Moreover, it is assumed
that the processes {X i

rn}n∈N have transition densities with respect to the σ-finite
measure μ, i.e., for any B ∈ B we have

Pi
x(X i

r1 ∈ B) = P(X i
r1 ∈ B|X i

r0 = x) =
∫

B

f ri
x (y)μ(dy). (2)

The random processes {Xrn}, {X0
rn}, {X1

rn} and the random variables θr are
connected via the rule: conditionally on θr = k

Xrn =
{

X0
rn, if k > n,

X1
r n+1−k, if k ≤ n,

where {X1
rn} is started from X0

r k−1 (but is otherwise independent of X0
r ·).

For any fixed dr ∈ {0, 1, 2, . . .} we are looking for the stopping time τ∗
r ∈ T

such that
Px(|θr − τ∗

r | ≤ dr) = sup
τ∈SX

Px(|θr − τ | ≤ dr) (3)

where SX denotes the set of all stopping times with respect to the filtration
{Fn}n∈N. The parameters dr determines the precision level of detection and
it can be different for too early and too late detection. These payoff functions
measure the chance of detection of intruder.

2.2 Construction of the Optimal Detection Strategy

In [18] the construction of τ∗ by transformation of the problem to the optimal
stopping problem for the Markov process −→

ξ has been made, such that −→
ξ rn =

(−→X r n−1−dr,n, Πn), where −→
X r n−1−dr,n = (−→X r n−1−dr , . . . ,

−→
X r n) and Πrn is the

posterior process:

Πr0 = 0,

Πrn = Px (θr ≤ n | Fn) , n = 1, 2, . . .
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which is designed as information about the distribution of the disorder in-
stant θr. In this equivalent the problem of the payoff function for sensor r is
hr(−→x r dr+2, α).

3 The Aggregated Decision via the Cooperative Game

There are various methods combining the decisions of several classifiers or sen-
sors. Each ensemble member contributes to some degree to the decision at any
point of the sequentially delivered states. The fusion algorithm takes into account
all the decision outputs from each ensemble member and comes up with an en-
semble decision. When classifier outputs are binary, the fusion algorithms include
the majority voting [10], [11], näıve Bayes combination [3], behavior knowledge
space [7], probability approximation [8] and singular value decomposition [12].

The majority vote is the simplest. The extension of this method is a simple
game.

3.1 A Simple Game

Let us assume that there are many nodes absorbing information and make deci-
sion if the disorder has appeared or not. The final decision is made in the fusion
center which aggregates information from all sensors. The nature of the system
and their role is to detect intrusion in the system as soon as possible but without
false alarm.

The voting decision is made according to the rules of a simple game. Let us
recall that a coalition is a subset of the players. Let C = {C : C ⊂ N} denote
the class of all coalitions.

Definition 1. (see [15], [5]) A simple game is coalition game having the char-
acteristic function, φ(·) : C → {0, 1}.
Let us denote W = {C ⊂ N : φ(C) = 1} and L = {C ⊂ N : φ(C) = 0}. The
coalitions in W are called the winning coalitions, and those from L are called
the losing coalitions.

Assumptions 2. By assumption the characteristic function satisfies the prop-
erties:

1. N ∈ W;
2. ∅ ∈ L;
3. (the monotonicity): T ⊂ S ∈ L implies T ∈ L.

3.2 The Aggregated Decision Rule

When the simple game is defined and the players can vote presence or absence,
xi = 1 or xi = 0, i ∈ N, of the intruder then the aggregated decision is given by
the logical function

π(x1, x2, . . . , xp) =
∑

C∈W

∏
i∈C

xi

∏
i/∈C

(1 − xi). (4)
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For the logical function π we have (cf [25])

π(x1, . . . , xp) = xi · π(x1, . . . ,
i

1̆, . . . , xp) + xi · π(x1, . . . ,
i

0̆, . . . , xp).

4 A Non-cooperative Stopping Game

Following the results of the author and Yasuda [22] the multilateral stopping
of a Markov chain problem can be described in the terms of the notation used
in the non-cooperative game theory (see [14], [4], [13], [15]). Let (−→Xn, Fn,Px),
n = 0, 1, 2, . . . , N , be a homogeneous Markov chain with state space (E,B). The
horizon can be finite or infinite. The players are able to observe the Markov chain
sequentially. Each player has their utility function fi : E → �, i = 1, 2, . . . , p,
such that Ex|fi(

−→
X 1)| < ∞. If process is not stopped at moment n, then each

player, based on Fn, can declare independently their willingness to stop the
observation of the process.

Definition 3. (see [25]) An individual stopping strategy of the player i (ISS) is
the sequence of random variables {σi

n}N
n=1, where σi

n : Ω → {0, 1}, such that σi
n

is Fn-measurable.

The interpretation of the strategy is following. If σi
n = 1 then player i declares

that they would like to stop the process and accept the realization of Xn. Denote
σi = (σi

1, σ
i
2, . . . , σ

i
N ) and let Si be the set of ISSs of player i, i = 1, 2, . . . , p.

Define
S = S1 × S2 × . . . × Sp.

The element σ = (σ1, σ2, . . . , σp)T ∈ S will be called the stopping strategy (SS).
The stopping strategy σ ∈ S is a random matrix. The rows of the matrix are the
ISSs. The columns are the decisions of the players at successive moments. The
factual stopping of the observation process, and the players realization of the
payoffs is defined by the stopping strategy exploiting p-variate logical function.
Let π : {0, 1}p → {0, 1}. In this stopping game model the stopping strategy is the
list of declarations of the individual players. The aggregate function π converts
the declarations to an effective stopping time.

Definition 4. A stopping time tπ(σ) generated by the SS σ ∈ S and the aggre-
gate function π is defined by

tπ(σ) = inf{1 ≤ n ≤ N : π(σ1
n, σ2

n, . . . , σp
n) = 1}

(inf(∅) = ∞). Since π is fixed during the analysis we skip index π and write
t(σ) = tπ(σ).

We have {ω ∈ Ω : tπ(σ) = n} =
⋂n−1

k=1{ω ∈ Ω : π(σ1
k, σ2

k, . . . , σp
k) = 0} ∩ {ω ∈

Ω : π(σ1
n, σ2

n, . . . , σp
n) = 1} ∈ Fn, then the random variable tπ(σ) is stopping
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time with respect to {Fn}N
n=1. For any stopping time tπ(σ) and i ∈ {1, 2, . . . , p},

let

fi(Xtπ(σ)) =
{

fi(Xn) if tπ(σ) = n,
lim supn→∞ fi(Xn) if tπ(σ) = ∞

(cf [20], [22]). If players use SS σ ∈ S and the individual preferences are con-
verted to the effective stopping time by the aggregate rule π, then player i gets
fi(Xtπ(σ)).

Let ∗σ = (∗σ1, ∗σ2, . . . , ∗σp)T be fixed SS. Denote

∗σ(i) = (∗σ1, . . . , ∗σi−1, σi, ∗σi+1, . . . , ∗σp)T .

Definition 5. (cf. [22]) Let the aggregate rule π be fixed. The strategy ∗σ =
(∗σ1, ∗σ2, . . . , ∗σp)T ∈ S is an equilibrium strategy with respect to π if for each
i ∈ {1, 2, . . . , p} and any σi ∈ Si we have

Exfi(
−→
X tπ(∗σ)) ≥ Exfi(

−→
X tπ(∗σ(i))). (5)

The set of SS S, the vector of the utility functions f = (f1, f2, . . . , fp) and the
monotone rule π define the non-cooperative game G = (S,f ,π). The construction
of the equilibrium strategy ∗σ ∈ S in G is provided in [22]. For completeness this
construction will be recalled here. Let us define an individual stopping set on the
state space. This set describes the ISS of the player. With each ISS of player i
the sequence of stopping events Di

n = {ω : σi
n = 1} combines. For each aggregate

rule π there exists the corresponding set value function Π : F → F such that
π(σ1

n, σ2
n, . . . , σp

n) = π{ID1
n
, ID2

n
, . . . , IDp

n
} = IΠ(D1

n,D2
n,...,Dp

n). For solution of the
considered game the important class of ISS and the stopping events can be
defined by subsets C i ∈ B of the state space E. A given set C i ∈ B will be called
the stopping set for player i at moment n if Di

n = {ω : Xn ∈ C i} is the stopping
event.

For the logical function π we have

π(x1, . . . , xp) = xi · π(x1, . . . ,
i

1̆, . . . , xp) + xi · π(x1, . . . ,
i

0̆, . . . , xp).

It implies that for Di ∈ F

Π(D1, . . . , Dp) = {Di ∩ Π(D1, . . . ,
i

Ω̆, . . . , Dp)}

∪{Di ∩ Π(D1, . . . ,
i

∅̆, . . . , Dp)}.
(6)

Let fi, gi be the real valued, integrable (i.e. Ex|fi(X1)| < ∞) function defined
on E. For fixed Dj

n, j = 1, 2, . . . , p, j �= i, and C i ∈ B define

ψ(C i) = Ex

[
fi(X1)IiD1(Di

1)
+ gi(X1)IiD1(Di

1)

]
where iD1(A) = Π(D1

1, . . . , D
i−1
1 , A, Di+1

1 , . . . , Dp
1) and Di

1 = {ω : Xn ∈ C i}.
Let a+ = max{0, a} and a− = min{0,−a}.
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Lemma 1. Let fi, gi, be integrable and let C j ∈ B, j = 1, 2, . . . , p, j �= i, be
fixed. Then the set ∗C i = {x ∈ E : fi(x) − gi(x) ≥ 0} ∈ B is such that

ψ(∗C i) = sup
C i∈B

ψ(C i)

and

ψ(∗C i) = Ex(fi(X1) − gi(X1))+IiD1(Ω) (7)

−Ex(fi(X1) − gi(X1))−IiD1(Ω) + Exgi(X1).

Based on Lemma 1 we derive the recursive formulae defining the equilibrium
point and the equilibrium payoff for the finite horizon game.

4.1 The Finite Horizon Game

Let horizon N be finite. If the equilibrium strategy ∗σ exists, then we denote
vi,N (x) = Exfi(Xt(∗σ)) the equilibrium payoff of i-th player when X0 = x. For
the backward induction we introduce a useful notation. Let Si

n = {{σi
k}, k =

n, . . . , N} be the set of ISS for moments n ≤ k ≤ N and Sn = S1
n×S2

n×. . .×Sp
n.

The SS for moments not earlier than n is nσ = (nσ1, nσ2, . . . , nσp) ∈ Sn, where
nσi = (σi

n, σi
n+1, . . . , σ

i
N ). Denote

tn = tn(σ) = t(nσ) = inf{n ≤ k ≤ N : π(σ1
k, σ2

k, . . . , σp
k) = 1}

to be the stopping time not earlier than n.

Definition 6. The stopping strategy n∗σ = (n∗σ1, n∗σ2, . . . , n∗σp) is an equilib-
rium in Sn if

Exfi(Xtn(∗σ)) ≥ Exfi(Xtn(∗σ(i))) Px − a.e.

for every i ∈ {1, 2, . . . , p}, where

n∗σ(i) = (n∗σ1, . . . , n∗σi−1, nσi, n∗σi+1, . . . , n∗σp).

Denote

vi,N−n+1(Xn−1) = Ex[fi(Xtn(∗σ))|Fn−1] = EXn−1fi(Xtn(∗σ)).

At moment n = N the players have to declare to stop and vi,0(x) = fi(x). Let us
assume that the process is not stopped up to moment n, the players are using the
equilibrium strategies ∗σi

k, i = 1, 2, . . . , p, at moments k = n + 1, . . . , N . Choose
player i and assume that other players are using the equilibrium strategies ∗σj

n,
j �= i, and player i is using strategy σi

n defined by stopping set C i. Then the
expected payoff ϕN−n(Xn−1,C i) of player i in the game starting at moment n,
when the state of the Markov chain at moment n − 1 is Xn−1, is equal to

ϕN−n(Xn−1,C i) = EXn−1

[
fi(Xn)Ii∗Dn(Di

n) + vi,N−n(Xn)Ii∗Dn(Di
n)

]
,

where i∗Dn(A) = Π(∗D1
n, . . . , ∗Di−1

n , A, ∗Di+1
n , . . . , ∗Dp

n).
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By Lemma 1 the conditional expected gain ϕN−n(XN−n,C i) attains the max-
imum on the stopping set ∗C i

n = {x ∈ E : fi(x) − vi,N−n(x) ≥ 0} and

vi,N−n+1(Xn−1) = Ex[(fi(Xn) − vi,N−n(Xn))+Ii∗Dn(Ω)|Fn−1]
−Ex[(fi(Xn) − vi,N−n(Xn))−Ii∗Dn(∅)|Fn−1]
+Ex[vi,N−n(Xn)|Fn−1]

(1)

Px−a.e.. It allows to formulate the following construction of the equilibrium
strategy and the equilibrium value for the game G.

Theorem 1. In the game Gwith finite horizon N we have the following solution.

(i) The equilibrium value vi(x), i = 1, 2, . . . , p, of the game G can be calculated
recursively as follows:
1. vi,0(x) = fi(x);
2. For n = 1, 2, . . . , N we have Px−a.e.

vi,n(x) = Ex[(fi(XN−n+1) − vi,n−1(XN−n+1))
+Ii∗DN−n+1(Ω)|FN−n]

−Ex[(fi(XN−n+1) − vi,n−1(XN−n+1))
−Ii∗DN−n+1(∅)|FN−n]

+Ex[vi,n−1(XN−n+1)|FN−n],

for i = 1, 2, . . . , p.

(ii) The equilibrium strategy ∗σ ∈ S is defined by the SS of the players ∗σi
n,

where ∗σi
n = 1 if Xn ∈ ∗C i

n, and ∗C i
n = {x ∈ E : fi(x) − vi,N−n(x) ≥ 0},

n = 0, 1, . . . , N .

We have vi(x) = vi,N (x), and Exfi(Xt(∗σ)) = vi,N (x), i = 1, 2, . . . , p.

5 Infinite Horizon Game

In this class of games the equilibrium strategy is presented in Definition 5 but
in class of SS

S∗
f = {σ ∈ S∗ : Exf−

i (Xt(σ)) < ∞ for every x ∈ E, i = 1, 2, . . . , p}.

Let ∗σ ∈ S∗
f be an equilibrium strategy. Denote

vi(x) = Exfi(Xt(∗σ)).

Let us assume that (n+1)∗σ ∈ S∗
f,n+1 is constructed and it is an equilibrium

strategy. If players j = 1, 2, . . . , p, j �= i, apply at moment n the equilibrium
strategies ∗σj

n , player i the strategy σi
n defined by stopping set Ci and (n+1)∗σ at

moments n + 1, n + 2, . . ., then the expected payoff of the player i, when history
of the process up to moment n − 1 is known, is given by

ϕn(Xn−1,C i) = EXn−1

[
fi(Xn)Ii∗Dn(Di

n) + vi(Xn)Ii∗Dn(Di
n)

]
,

where i∗Dn(A) = Π(∗D1
n, . . . , ∗Di−1

n , A, ∗Di+1
n , . . . , ∗Dp

n), ∗Dj
n = {ω ∈ Ω : ∗σj

n =
1}, j = 1, 2, . . . , p, j �= i, and Di

n = {ω ∈ Ω : σi
n = 1} = 1} = {ω ∈ Ω : Xn ∈ C〉}.
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By Lemma 1 the conditional expected gain ϕn(Xn−1,C i) attains the maximum
on the stopping set ∗C i

n = {x ∈ E : fi(x) ≥ vi(x)} and

ϕn(Xn−1,
∗C i) = Ex[(fi(Xn) − vi(Xn))+Ii∗Dn(Ω)|Fn−1]

−Ex[(fi(Xn) − vi(Xn))−Ii∗Dn(∅)|Fn−1]
+Ex[vi(Xn)|Fn−1].

Let us assume that there exists solution (w1(x), w2(x), . . . , wp(x)) of the equa-
tions

wi(x) = Ex(fi(X1) − wi(X1))+Ii∗D1(Ω) (1)

−Ex(fi(X1) − wi(X1))−Ii∗D1(∅) + Exwi(X1),

i = 1, 2, . . . , p. Consider the stopping game with the following payoff function
for i = 1, 2, . . . , p.

φi,N (x) =
{

fi(x) if n < N,
vi(x) if n ≥ N.

Lemma 2. Let ∗σ ∈ S∗
f be an equilibrium strategy in the infinite horizon game

G. For every N we have
Exφi,N (Xt∗) = vi(x).

Let us assume that for i = 1, 2, . . . , p and every x ∈ E we have

Ex[supn∈N f+
i (Xn)] < ∞. (2)

Theorem 2. Let (Xn, Fn,Px)∞n=0 be a homogeneous Markov chain and the pay-
off functions of the players fulfill (2). If t∗ = t(∗σ), ∗σ ∈ S∗

f then Exfi(Xt∗) =
vi(x).

Theorem 3. Let the stopping strategy ∗σ ∈ S∗
f be defined by the stopping sets

∗C i
n = {x ∈ E : fi(x) ≥ vi(x)}, i = 1, 2, . . . , p, then ∗σ is the equilibrium strategy

in the infinite stopping game G.

6 Determining the Strategies of Sensors

Based on the model constructed in Sections 2–4 for the net of sensors with
the fusion center determined by a simple game, one can determine the rational
decisions of each nodes. The rationality of such a construction refers to the
individual aspiration for the highest sensitivity to detect the disorder without
false alarm. The Nash equilibrium fulfills requirement that nobody deviates from
the equilibrium strategy because its probability of detection will be smaller. The
role of the simple game is to define wining coalitions in such a way that the
detection of intrusion to the guarded area is maximal and the probability of false
alarm is minimal. The method of constructing the optimum winning coalitions
family is not the subject of the research in this article. However, there are some
natural methods of solving this problem.
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The research here is focused on constructing the solution of the non-
cooperative stopping game as to determine the detection strategy of the sensors.
To this end, the game analyzed in Section 4 with the payoff function of the play-
ers defined by the individual disorder problem formulated in Section 2 should
be derived.

The proposed model disregards correlation of the signals. It is also assumed
that the fusion center has perfect information about signals and the information
is available at each node. The further research should help to qualify these real
needs of such models and to extend the model to more general cases. In some
type of distribution of sensors, e.g. when the distribution of the pollution in the
given direction is observed, the multiple disorder model should work better than
the game approach. In this case the a priori distribution of disorder moment
has the form of sequentially dependent random moments and the fusion decision
can be formulated as the threshold one: stop when k∗ disorder is detected. The
method of a cooperative game was used in [6] to find the best coalition of sensors
in the problem of the target localization. The approach which is proposed here
shows possibility of modelling the detection problem by multiple agents at a
general level.

7 Final Remarks

In a general case the consideration of this paper leads to the algorithm of con-
structing the disorder detection system.

7.1 Algorithm

1. Define a simple game on the sensors.
2. Describe signal processes and a priori distribution of the disorder moments

at all sensors. Establish the a posteriori processes: −→Πn = (Π1n, . . . , Πmn),
where Πkn = P(θ ≤ n|Fn).

3. Solve the multivariate stopping game on the simple game to get the individ-
ual strategies of the sensors.
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Abstract. Network users can choose among different security solutions
to protect their data. Those solutions are offered by competing providers,
with possibly different performance and price levels. In this paper, we
model the interactions among users as a noncooperative game, with a
negative externality coming from the fact that attackers target popular
systems to maximize their expected gain. Using a nonatomic weighted
congestion game model for user interactions, we prove the existence
and uniqueness of a user equilibrium, and exhibit the tractability of its
computation, as a solution of a convex problem. We also compute the
corresponding Price of Anarchy, that is the loss of efficiency due to
user selfishness, and investigate some consequences for the (higher-level)
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1 Introduction

Within the current evolution towards the Future Internet, the provision of ap-
propriate network security is considered to be one of the most difficult as well as
most challenging tasks. Among the broad range of related research approaches,
the attempt to better understand the mindset of attackers serves for sure as one
of the key sources for developing advanced protection mechanisms. Cybercrime
concerns colossal amounts of money, and is highly organized so that attacker
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efforts are rationalized to maximize the associated gains. This is why we model
here an interesting negative externality effect of security architectures and sys-
tems, through the attractiveness for potential attackers: majority products are
likely to be larger targets for hackers, and therefore become less attractive for
consumers. Then, the choice of a particular system and security protection -that
we will call a security provider from now on- by the whole online population can
now be considered as a congestion game, where congestion is not considered in
the common sense of an excessive demand for a finite resource amount, but more
generally as a degradation of the performance on a given choice when it gets too
popular. Here the performance degradation is indirect, since it stems from the
behavior of attackers.

In the specific context of security, the link between the audience of a system
and its attractiveness to attackers can be further described when attacks are
intended to steal or damage data: an attacker would be attracted by the potential
gain (or damage) of the attack, which depends on the value of the users’ data,
but that value affects (and is therefore, to some extent, revealed by) the security
option users choose. For example, the “safest” solutions may attract users with
high-value data to protect, making those solutions an interesting target for an
attacker even if their market share is small.

In this paper, we propose a model that encompasses that effect, by considering
users with heterogeneous data values making a choice among several security
possibilities. The criteria considered in that choice are the security protection
level -measured by the likeliness of having one’s data stolen or damaged, that is
subject to negative externalities- and the price set by the security provider.

The literature on network security involving game-theoretic models and tools
is recent and still not very abundant. Some very interesting works have been
published regarding the interactions between attacking and defending entities,
where the available strategies can consist in spreading effort over the links of a
network [6,15] or over specific targets [8], or in selecting some particular attack
or defense measures [5,11]. In those references, the security game is a zero-sum
game between two players only, and therefore no externalities among several
potential defenders are considered.

Another stream of work considers security protection investments, through
models that encompass positive externalities among users: indeed, when con-
sidering epidemic attacks (like, e.g., worms), the likeliness of being infected de-
creases with the proportion of neighbors that are protected. Since protection
has a cost and users selfishly decide to protect or not without considering the
externality they generate, the equilibrium outcome is such that investment is
suboptimal [12] and needs to be incentivized through specific measures [17]. For
more references on game theory applied to network security contexts, see [1,18].

In contrast, the work presented here considers negative externalities in the
choices of security software/procedures. As highlighted above, the negative ex-
ternality comes from the attractiveness of security solutions for attackers. Such
situations can arise when attacks are not epidemic but rather direct, as are at-
tacks targeting randomly chosen IP addresses. The interaction among users can
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then be modeled as a population game, that is a game where the user payoffs
for a given strategy (here, a security solution) change as more users choose that
same strategy [10]. Such games are particular cases of so-called congestion games
where user strategies are subsets of a given set of resources, and the total cost
experienced by users is the sum of the costs on each resource [2,22]. Here, users
select only one resource, and congestion corresponds to the fact that the more
customers, the more likely an attack.

In this paper, we consider a very large population, where the extra congestion
created by any individual user is negligible. The set of players can therefore be
considered as a continuum; note that such games are called nonatomic [29]. The
study of nonatomic congestion games has seen recent advances for the case when
all users are identical or belong to a finite set of populations [7,14,24,25,26], but
we want here to encompass the larger attractiveness to attackers of “rich” users,
compared to the ones with no valuable data online. More precisely, we intend to
model the heterogeneity in users congestion effects, by introducing a distribution
among users valuation for the data to protect. The congestion game is therefore
weighted in the sense that not all users contribute to congestion in an identical
manner. Fewer results exist for those games [4,21], even when user strategies
only consist in choosing one resource among a common strategy set.

Moreover, in our model users undergo the congestion cost of the security solu-
tion they select - which depends on the congestion as well as on their particular
data valuation -, but also the monetary cost associated to that solution - which
is the same for all users -. As a result, following [20,21] the game would be called
a weighted congestion game with separable preferences, and can be transformed
into an equivalent weighted congestion game with player-specific constants [19]
(i.e., the payoffs of users selecting the same strategy only differ through a user-
specific additive constant). In general, the existence of an equilibrium is not
ensured for such games when the number of users is finite [19,20,21]. In the
nonatomic case, the existence of a mixed equilibrium is ensured by [29] and the
loss of efficiency due to user selfishness is bounded [4], but the existence of a
pure equilibrium in the general case is not guaranteed.

In this paper, we establish the existence and essential uniqueness of a pure
equilibrium for our model, as well as its tractability by proving that an equilib-
rium solves a strictly convex optimization problem. To the best of our knowl-
edge, such proofs for nonatomic games had only been given for unweighted
games [27,28], with a finite number of different user populations; here we con-
sider a weighted game with possibly an infinity of different weight values, with
the specificity that the differences in user congestion weights are directly linked
to their user-specific valuations.

The remainder of the paper is organized as follows. The model is formally
introduced in Section 2. We focus on the user equilibrium existence, uniqueness
and tractability in Section 3, and give an upper bound on the loss of efficiency
due to user selfishness. The results are then applied in Section 4 to give some
insights about the prices that profit-oriented security providers should set. We
conclude and suggest directions for future work in Section 5.
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2 Model

We consider a set I of security providers (each one on a given architecture), and
define I := |I|.

2.1 User Data Valuation

Users differ with the valuation for their data. When an attack is successful over
a target user u, that user is assumed to experience a financial loss vu ≥ 0, which
we call her data valuation. The distribution of valuations over the population is
given by a cumulative distribution function F on R+, where F (v) represents the
proportion of users with valuation lower than or equal to v. Since users who do
not value their data (i.e., for whom vu = 0) will not play any role in our model,
we can ignore them; the distribution function F is therefore such that F (0) = 0.
The overall total “mass” of users is finite, and through a unit change we can
assume it to be 1 without loss of generality.

Equivalently, the repartition F of user preferences among the population can
be represented by its corresponding quantile function q : [0, 1) → R+. For x ∈
[0, 1), the quantity q(x) represents the valuation1 of the (infinitesimal) user at
(continuous) position x on a valuation-related increasing ranking. Formally, we
have

∀x ∈ [0, 1), q(x) = inf{v ∈ R+ : F (v) ≥ x}, (1)
∀v ∈ R+, F (v) = inf{x ∈ [0, 1) : q(x) > v}, (2)

with the convention inf ∅ := 1 in the latter equation. Note that F is right-
continuous, while the quantile function q is left-continuous. Both functions are
nonnegative and nondecreasing.

We may not suppose that the support of F , that we denote by Sv, is bounded,
but we assume that the overall value of the data in the population is finite, i.e.,

Vtot :=
∫

Sv

v dF (v) < +∞.

Finally, we define N (V ) as the user mass2 such that the total data valuation for
the N (V ) users with smallest valuation exactly equals V :

∀V ∈ [0, Vtot), N (V ) := min
{

x :
∫ x

y=0

q(y)dy = V

}
.

N (V ) is obtained by inverting the bijective function

V : [0, 1] �→ [0, Vtot]

x → V(x) =
∫ x

y=0

q(y)dy. (3)

1 Except, possibly, on a zero-measure set of users.
2 i.e., proportion since we normalized the total user mass to 1.
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Notice that V is continuous and differentiable on [0, 1], with left-derivative q(x)
and right-derivative q(x+), where q(x+) = limy→x,y>x q(y). Since q is nonde-
creasing and strictly positive for x > 0, then V is convex and strictly increasing
on [0, 1]. As a result, its inverse function N is concave on (0, Vtot), and has
left-derivative

N ′
l (V ) =

1
q(N (V ))

(4)

and right-derivative

N ′
r(V ) =

1
q(N (V )+)

. (5)

The distribution F , the quantity Vtot as well as the functions q and N are
illustrated in Figure 1.
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Fig. 1. Values and functions of interest regarding the user valuation distribution F

2.2 Security Systems Performance

In this paper, we focus on direct attacks targeting some specific machines, which
may for instance come from an attack-generating robot that randomly chooses
IP addresses and launches attacks to those hosts.

The attacks generated by such a scheme have to target a specific vulnerability
of a given security system. As a result, the attacker has to select which security
system i ∈ I to focus on. If an attack is launched to a security system i, we
consider that all machines protected by a system j �= i do not run any risk,
while the success probability of the attack is supposed to be fixed, denoted by
πi, on machines with protection system i. In other terms, the parameter πi

measures the effectiveness of the security defense.
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2.3 The Attacker Point of View

Successful attacks bring some revenue to the attacker. Be it in terms of damage
done to user data, or in terms of stolen data from users, it is reasonable to
consider that for a given attack, the gain for the attacker is proportional to the
value that the data had to the victim. Indeed, in the case of data steal, more
sensitive data (e.g., bank details) are more likely to bring high revenues when
used. Likewise, when the objective of the attacker is simply to maximize user
damage, then the link between attacker utility and user data valuation is direct.

For a given distribution of the population among providers, let Fi be the
(unconditional) distribution of valuations of users associated with provider i, so
that F =

∑
i∈I Fi. We then define for each provider i ∈ I the total value of the

protected data, as

Vi :=
∫

v dFi(v). (6)

For an attacker, the expected benefit from launching an attack targeted at system
i (without knowing which users are with provider i) is thus proportional to πiVi.
We therefore assume that the likeliness of attacks occurring on system i is a
nondecreasing function of πiVi. We discretize time, and denote by Ri(πiVi) the
probability that a particular user is the target of a system-i attack over a time
period. Remark that we consider system-specific functions (Ri)i∈I , so that the
model can encompass some heterogeneity in the difficulty of creating system-
targeted attacks.

To simplify a bit the writing, let us define Ti(Vi) as the risk, for a user, of
having one’s data compromised when choosing security provider i. Note that it
can be written as a function of the total protected data value Vi:

Ti(Vi) := πiRi(πiVi) = πiRi

(
πi

∫
vdFi(v)

)
. (7)

We will often make use of the assumption below.

Assumption A For all i ∈ I, Ti is a continuous and strictly increasing
function of Vi, and Ti(0) = 0.

For Ti functions of the form given in (7), Assumption A is equivalent to

– πi > 0 for all i ∈ I (no provider offers a perfect protection against attacks),
– Ri is a continuous and strictly increasing function with Ri(0) = 0, for all

i ∈ I (attackers do not target providers not protecting valuable data).

2.4 User Preferences

For a user u with data valuation vu, the total expected cost at provider i depends
on the risk of being (successfully) attacked, and on the price pi charged by the
security provider. That total cost is therefore given by

vuTi(Vi) + pi.
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To ensure that all users select one option, we can assume that there exists a
provider i with pi = 0, which would correspond to security solutions offered by
free software communities (e.g., avast! R©3). Indeed, if pi = 0, the total cost is the
valuation times a product of probabilities, and therefore less than the valuation
itself, so that this choice of a free service is always a valuable option4.

Remark that we consider risk-neutral users here, as may be expected from
large entities, while private individuals should rather be considered risk-averse.
Nevertheless, one can imagine some extra mechanisms (e.g., insurance [17]) to
reach a risk-neutral equivalent formulation.

3 User Equilibrium

In this section, we investigate how demand is split among providers, when their
prices pi and security levels πi are fixed. Recall we assumed that users are in-
finitely small: their individual choices do not affect the overall user distribution
among providers (and therefore the total values (Vi)i∈I).

The outcome from such user interactions should be determined by user self-
ishness: demand should be distributed in such a way that each user u chooses
one of the cheapest providers (in terms of perceived price) with respect to her
valuation vu and the current risk values (Ti(Vi))i∈I . Such a distribution of users
among providers, if it exists, will be called a user equilibrium. In other words,
if provider i ∈ I is chosen by some users u, then it is cheaper for those users
(in terms of total expected cost) than any other provider j ∈ I, otherwise they
would be better off switching to j. Formally,

i ∈ arg min
j∈I

vuTj(Vj) + pj .

We use here the nonatomicity assumption: each user u considers the values
(Vj)j∈I as fixed when making her individual choice.

3.1 Structure of a User Equilibrium

We now investigate the existence and uniqueness of a user equilibrium, for fixed
values of prices and attack success probabilities. To do so, we first define the
notion of user repartition.

Definition 1. Denote by PI the set of probability distributions over providers
in I, i.e., PI := {(y1, ..., yI) ≥ 0,

∑
i∈I yi = 1}. For a given price profile p =

(p1, ..., pI), a user repartition is a mapping A : Sv �→ PI, that is interpreted as
follows:

For all v ∈ Sv, among users with valuation v, a proportion Ai(v) chooses
provider i, where A(v) = (A1(v), ..., AI(v)).

3 http://www.avast.com
4 We implicitly assume here that each user u is willing to pay at least vu to benefit

from the online service.

http://www.avast.com
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Therefore, to a given user repartition A corresponds a unique distribution V =
(Vi)i∈I of the total data valuation Vtot among providers, given by

Vi(A) =
∫

v∈Sv

v Ai(v) dF (v) ∀i ∈ I. (8)

Remark also that Fi(v) =
∫

w≤v Ai(w)dF (w).
Reciprocally, we say that a distribution V = (Vi)i∈I of the data valuation is

feasible if Vi ≥ 0 for all i, and
∑

i∈I Vi = Vtot. For a feasible distribution V,
when providers are sorted such that p1 ≤ ... ≤ pI , we define for each i ∈ I ∪ {0}
the quantity

V[i] :=
i∑

j=1

Vj ,

with V[0] = 0. V[i] therefore represents the total value of the data protected by
the i cheapest providers.

We now formally define the outcome that we should expect from the interac-
tion of users, i.e., an equilibrium situation.

Definition 2. A user equilibrium is a user repartition Aeq such that no user has
an interest to switch providers. In other words, for any value v ∈ Sv, a user with
valuation v cannot do better than following the provider choice given by Aeq(v).
Formally, Aeq is a user equilibrium if and only if
∀v ∈ Sv,

Aeq
i (v) > 0 ⇒ i ∈ argmin

j∈I
vTj(Vj(Aeq)) + pj , (9)

where Vj(Aeq) is given by (8).

We now establish some monotonicity properties that should be verified by a user
equilibrium: if a user y values her data strictly less than another user x, then
she selects cheaper (in terms of price) providers than x.

Lemma 1. Consider a user equilibrium Aeq. Then user choices -in terms of
price of the chosen provider(s)- are monotone in their valuation: for any two
users x and y with respective valuations vx and vy, and any providers i and j,

(vx − vy) · Aeq
i (vx) · Aeq

j (vy) > 0 ⇒ pi ≥ pj. (10)

Proof. Let us write Vi := Vi(Aeq) and Vj := Vj(Aeq). From (9) applied to users
x and y, the left-hand inequality of (10) implies

vxTi(Vi) + pi ≤ vxTj(Vj) + pj

and vyTi(Vi) + pi ≥ vyTj(Vj) + pj. (11)

Subtracting those inequalities gives Ti(Vi) ≤ Tj(Vj) since (vx−vy) > 0. Then (11)
yields the right-hand side of (10).

We then use that result to prove that for a given value repartition (Vi)i∈I over
the providers, there can be only one equilibrium repartition if all providers set
different prices.
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Lemma 2. Assume that all providers set different prices. If a user equilibrium
exists, it is completely characterized (unless for a zero-measure set of users) by
the total values (Vi)i∈I of protected data for each provider i ∈ I, provided that∑

i∈I Vi = Vtot.

Proof. Without loss of generality, assume that provider prices are sorted, such
that p1 < p2 < ... < pI .

From Definition 1 and (8), to a given equilibrium corresponds a unique set of
values (Vi)i∈I .

Reciprocally, consider a feasible data value repartition V = (Vi)i∈I , and as-
sume it corresponds to a user equilibrium Aeq. Since we do not differentiate users
with similar valuations, we can sort them -still without loss of generality- in an
increasing order of the price of their chosen provider: if x < y and q(x) = q(y)
then we can impose that pix ≤ piy , where ix (resp. iy) would be the (unique)
provider chosen by user at position x (resp. y) in the user valuation ranking.
Therefore from Lemma 1, at the user equilibrium Aeq, provider prices can be
considered as sorted in a increasing order of user valuations among all users.
Thus, user choices are uniquely (unless on a zero-measure user set) determined
by their position x ∈ [0, 1] in the user valuation ranking, and given by

V(x) ∈ (V[i−1], V[i]) ⇒ user x selects provider i, (12)

where V is defined in (3).

3.2 The Case of Several Providers with the Same Price

In this subsection, we establish a way to consider several providers with the same
price as one single option from the user point of view. Let us consider a common
price p, and define Ip := {i ∈ I : pi = p}.

First, if one such provider i gets positive demand (i.e., Vi > 0), then at a user
equilibrium all providers with the same price also get positive demand: indeed,
Assumption A implies that Ti(Vi) > 0, and thus the total cost of a user u with
positive valuation choosing provider i ∈ Ip is vuTi(Vi) + p > p. Therefore each
provider j ∈ Ip necessarily has a strictly positive Tj, otherwise it would have
cost vuTj(0) + p = p for user u, who would be better off switching from i to j.
Consequently, at a user equilibrium we necessarily have Ti(Vi) = Tj(Vj).

When the set of users choosing one of the providers with price p is fixed, so
is the total valuation VIp of those users’ data. Consequently, the distribution of
users among all providers in Ip should be such that{

i, j ∈ Ip ⇒ Ti(Vi) = Tj(Vj)∑
i∈Ip

Vi = VIp .
(13)

Following [2], we reformulate (13) as a minimization problem:

(Vi)i∈Ip ∈ arg min
(xi)i∈Ip≥0

∑
i∈Ip

∫ xi

y=0

Ti(y)dy (14)

s.t.
∑
i∈Ip

xi = VIp .
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Under Assumption A, there exists a unique vector of values (Vi)i∈Ip satisfying
the above system. In the following, we will denote by TIp(V ) the corresponding
common value of Ti(Vi). Interestingly, remark that the function TIp that we have
defined also satisfies Assumption A. As a result, in the rest of the analysis of user
equilibria, we will associate providers with the same price p and consider them
as a single choice Ip that we assimilate as a single provider k, with corresponding
risk function Tk(V ) := TIp(V ) satisfying Assumption A.

3.3 Game Equilibrium as a Solution of an Optimization Problem

Based on the reasoning in Subsection 3.2, we assume that all providers submit
a different price, and we sort them such that p1 < ... < pI . Now let us consider
the following measure:

L(V,p) :=
∑
i∈I

(∫ Vi

y=0

Ti(y)dy + pi

(
N(V[i]) −N(V[i−1])︸ ︷︷ ︸
Market share of prov. i

))
(15)

=
I∑

i=1

∫ Vi

y=0

Ti(y)dy + pI −
I−1∑
i=1

(pi+1−pi)N(V[i]), (16)

with p0 := 0. Remark that the first part of the quantity L(V,p) in (15) is the
potential function usually associated to unweighted congestion games (see, e.g.,
[2]), while the second part stands for the total price paid by all users.

The expression (16) highlights the fact that L is a strictly convex function of
V, since N is concave and under Assumption A, Ti is strictly increasing. It thus
admits a unique minimum V∗ on the (convex) domain of feasible value shares;
and V∗ is completely characterized by the first-order conditions. We now prove
that this valuation repartition V∗ actually corresponds to a user equilibrium.

Proposition 1. Let Assumption A hold. For any price profile p, there exists
a user equilibrium, that is completely characterized by the valuation repartition
V∗, unique solution of the convex optimization problem

min
V feasible

L(V,p). (17)

Proof. We first consider the feasible directions consisting in switching some in-
finitesimal amount of value from i > 1 to j < i, when V ∗

i > 0. The optimality
condition in (16) then yields

0 ≤ Tj(V ∗
j ) − Ti(V ∗

i ) −
i−1∑
k=j

(pk+1 − pk)N ′
r(V

∗
[k])

≤ Tj(V ∗
j ) − Ti(V ∗

i ) − (pi − pj)N ′
r(V

∗
[i−1]), (18)

where the second line comes from the concavity of N .
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Notice that since pj < pi and N is nondecreasing,(18) and Assumption A
imply that V ∗

j > 0. Consequently, if we define i∗ := max{i ∈ I : V ∗
i > 0}, then

V ∗
i > 0 ⇔ i ≤ i∗. (19)

As a result, since Vi > 0 and i > 1 in (18), then 0 < V ∗
[i−1] < Vtot. Thus,

from (5), N ′
r(V

∗
[i−1]) = 1

q(N (V ∗
[i−1]))

is strictly positive. (18) is then equivalent to

v∗i Ti(V ∗
i ) + pi ≤ v∗

i Tj(V ∗
j ) + pj , (20)

with v∗i := q(N (V ∗
[i−1])

+) = inf{v :
∫ v

u=0 udF (u) > V ∗
[i−1]}. Remark that neces-

sarily from (20), Ti(V ∗
i ) < Tj(V ∗

j ) since pi > pj.
For i < I such that V ∗

i > 0 (i.e., i ≤ i∗), we now investigate the possibility of
switching some value from i to j > i. Still applying the optimality condition for
V∗, we get

0 ≤ Tj(V ∗
j ) − Ti(V ∗

i ) +
j−1∑
k=i

(pk+1 − pk)N ′
l (V

∗
[k])

≤ Tj(V ∗
j ) − Ti(V ∗

i ) + (pj − pi)N ′
l (V

∗
[i]), (21)

where we used again the concavity of N .
Applying (4), Relation (21) is equivalent to

v̄∗i Ti(V ∗
i ) + pi ≤ v̄∗i Tj(V ∗

j ) + pj , (22)

with v̄∗i = q(N (V ∗
[i])) = inf{v :

∫ v

u=0 udF (u) ≥ V ∗
[i]}.

Relations (20) and (22) can be interpreted as users with valuation v ∈ [v∗i , v̄
∗
i ]

preferring provider i over any other one, for the repartition value V∗. Formally,

v ∈ [v∗i , v̄
∗
i ] ⇒ i ∈ argmin

j∈I
vTj(V ∗

j ) + pj . (23)

Now, consider the provider choices induced by the value repartition V∗ as
given in (12). We prove here that this repartition is a user equilibrium: no user
has an interest to change providers. Take a provider i ∈ I. Then for x ∈ [0, 1],

V(x) ∈ (V ∗
[i−1], V

∗
[i]) ⇔ V ∗

[i−1] <

∫ x

y=0

q(y)dy < V ∗
[i]

⇔ N (V ∗
[i−1]) < x < N (V ∗

[i])
⇒ v∗i ≤ q(x) ≤ v̄∗i .

The last line and (23) imply that the considered user, that is at position x in
the population when it is ranked according to valuations, cannot do better than
choosing the provider suggested by (12). In other words, each user is satisfied
with her current provider choice, i.e., we have a user equilibrium.

We now establish the uniqueness of the equilibrium value repartition V∗ (and
thus, of the user equilibrium due to Lemma 2 when all prices are different).
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Proposition 2. Under Assumption A, the value repartition at a user equilib-
rium necessarily equals V∗ = arg min

V feasible
L(V,p). Consequently, there exists a

unique value equilibrium value repartition, and the user equilibrium is unique
(unless for a zero-measure set of users) when all providers set different prices.

Proof. We consider a user equilibrium, and prove that the corresponding value
repartition Ṽ satisfies the first-order conditions of the convex optimization prob-
lem (17), that has been shown to have a unique solution V∗.

We actually only need to show the counterpart of Relation (18) (resp., (21))
for j = i−1 (resp., j = i+1), since the other cases immediately follow. From (12),
at a user equilibrium we should have for all x ∈ (0, 1) and all i, j ∈ I,

x ∈
(
N (Ṽ[i−1]),N (Ṽ[i])

)
⇒ q(x)(Ti(Ṽi) − Tj(Ṽj)) + pi − pj ≤ 0. (24)

Consider i ∈ I such that Ṽi > 0.

– If j = i − 1, then Ti(Ṽi) < Tj(Ṽj). When x tends to N (Ṽ[i−1]), (24) yields

q(N (Ṽ[i−1])+)︸ ︷︷ ︸
=N ′

r(Ṽ[i−1])

(Ti(Ṽi) − Tj(Ṽj)) + pi − pj ≤ 0,

which is exactly the counterpart of (18).
– Likewise for j = i + 1, from (24) for x tending to N (Ṽ[i]) we get the coun-

terpart of (21) (using the fact that q is left-continuous)

q(N (Ṽ[i]))︸ ︷︷ ︸
=N ′

l (Ṽ[i])

(Ti(Ṽi) − Tj(Ṽj)) + pi − pj ≤ 0.

The repartition Ṽ satisfies the first-order conditions of the convex optimization
problem (17) and is feasible, therefore Ṽ = V∗, the unique solution of (17).

The second claim of the proposition is a direct application of Lemma 2.

Note that the uniqueness of the equilibrium value repartition V∗ implies that
even when several user equilibria exist, for all users the cost of each provider at
equilibrium is unique; the user equilibrium is then said essentially unique [2].

Note also that it was not compulsory to aggregate providers with the same
price p: at the minimum of L(·,p) we notice from (14) that the term

∫ VIp

0
TIp

involving the aggregated function coincides with
∑

i∈Ip

∫ xi

y=0
Ti(y)dy. Therefore,

the equilibrium value distribution V∗ can directly be found by solving the poten-
tial minimization problem (17). Nevertheless, the interpretation of the potential
is changed, since the terms N (V[i]) −N (V[i−1]) of (15) do not necessarily corre-
spond anymore to provider i’s market share.

The next result shows some continuity properties of the user equilibrium.

Proposition 3. The (unique) equilibrium value repartition V∗ is continuous in
the price profile. Moreover, at any price profile such that all prices are different,
the provider market shares are continuous in the price profile.
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Proof. Remark that L(V,p) is jointly continuous in V and p, and that the
set of feasible value repartitions is compact. Therefore, from the Theorem of
the Maximum (see [3]) applied to the minimization problem (17), the set of
equilibrium distributions is upper hemicontinuous in p. It is actually continuous
due to the uniqueness of the equilibrium distribution V∗.

For a given price profile p̄ where all prices differ, the strict order of prices
is maintained within a vicinity of p̄, where the market share of provider i is
N (V ∗

[i])−N (V ∗
[i−1]), which is jointly continuous in V and p since N is continuous.

Note that while the equilibrium value repartition V∗ is continuous for all price
profiles, that is not the case of provider market shares. Indeed, market shares
(θi)i∈I strongly depend on the order of prices through the expression N (V ∗

[i])−
N (V ∗

[i−1]), that holds when prices are sorted in an increasing order. Since N is a
concave function, then the market share of a provider may drastically decrease
when a slight price modification changes his position from k to k+1 in the price
ranking. This effect is more prominent when N is more concave, i.e., when user
valuations are heterogeneous.

3.4 Price of Anarchy of the User Game

In non-cooperative games, the Price of Anarchy measures the loss of efficiency
due to user selfishness [16]. This metric is usually defined as the worst-case ratio
of the total cost at an equilibrium to the minimal feasible total cost, and has
been extensively studied in the last years [7,24,25,26]. The results closest to the
one presented in this subsection come from [4]: the authors consider weighted
congestion games, where the cost experienced by each user would correspond to
the situation where all prices are set to 0 in our model. Then the authors prove
that the upper bound for the Price of Anarchy is not greater for the weighted
game than for its unweighted counterpart. We actually establish the same kind
of result for any value of the provider price profile p, except that in our case
the total user cost (sum of the costs perceived by all users) for any feasible user
valuation repartition V is

Cu :=
∑
i∈I

(
ViTi(Vi) + pi(N (V[i]) −N (V[i−1]))

)
. (25)

Proposition 4. Assume that the risk functions (Ti)i∈I belong to a family C,

and define as in [7] the quantity β(C) := sup
T∈C,(x,y)∈[0,Vtot]2

x(T (y) − T (x))
yT (y)

. Then

for any nonnegative price profile p,

C∗
u

Copt
u

≤ 1
1 − β(C)

, (26)

where C∗
u (resp. Copt

u ) is the total user cost at the user equilibrium (resp. the
minimum total user cost) for the price profile p.
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Proof. We apply a variational inequality that is satisfied by the user equilibrium
value repartition V∗, and that directly stems from the fact that users only select
their preferred provider: for any feasible value repartition V, we have∑
i∈I

(
V ∗

i Ti(V ∗
i ) + pi(N(V ∗

[i]) −N(V ∗
[i−1]))

)
≤
∑
i∈I

(
ViTi(V ∗

i )+ pi(N(V[i])−N(V[i−1]))
)
.

This yields
C∗

u ≤ Cu +
∑
i∈I

Vi(Ti(V ∗
i ) − Ti(Vi)) ≤ Cu + β(C)

∑
i∈I

V ∗
i Ti(V ∗

i ) ≤ Cu + β(C)C∗
u ,

which establishes the proposition.

It is shown in [7] that if C is the set of affine risk functions the bound 1/(1−β(C))
equals 4/3, resulting in a moderate loss of efficiency due to selfishness. Values
1.626 and 1.896 have also been found respectively for the sets of quadratic and
cubic cost risk functions, and β(C) = d/(d + 1)1+1/d for the set of polynomials
of degree at most d with non-negative coefficients.

As in [4], we find that the introduction of weights among user congestion
effects (and here, in addition, among user perceived costs) does not worsen the
Price of Anarchy. The bound given in Proposition 4 can indeed be attained,
when C includes the constant functions, with a simple 2-provider instance with
prices set to zero, and all users having the same weight.

4 Pricing Decisions of Security Providers

We now focus on the decisions made by security providers when choosing their
charging price. We consider that providers are able to anticipate user reactions
when fixing their prices. We then have a two-stage game, where at a first step
(larger time scale) providers compete on setting their prices so as to maximize
revenue, considering that at a second step (smaller time scale) users selfishly
select their provider.

The utility of provider i is given by his revenue ri := piθi, where θi is the mar-
ket share of provider i. When all providers propose different prices and providers
are ranked such that p1 < p2 < ... < pI , from Proposition 2 the user equilibrium
exists and is unique, and we simply have θi = N (V ∗

[i]) −N (V ∗
[i−1]), where V∗ is

the equilibrium value repartition. On the other hand, if several providers in a
set Ip propose the same price p, then the equilibrium valuation repartition V∗ is
unique, but the user equilibrium choices need not be unique: indeed, any price-
monotone user repartition consistent with V∗ is a user equilibrium, and several
such repartitions may exist. For those special cases, a reasonable assumption
could be that users make their provider choice independently of their valuation
when they have several equally preferred providers. As a result, the total market
share of providers in Ip would be split among them proportionally to the data
value V ∗

i that they attract, yielding

θi =
V ∗

i∑
j:pj=pi

V ∗
j

⎛⎝N (
∑

j:pj≤pi

V ∗
j ) −N (

∑
j:pj <pi

V ∗
j )

⎞⎠ .
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We now establish that, when there exists a bounded price alternative, the revenue
of any provider tends to zero if he increases his price to infinity. In practice,
such a bounded-price option always exists, even if it has bad performance: one
just needs to consider any free security possibility. Therefore, prices will not be
arbitrarily high when providers want to maximize revenue.

Proposition 5. Assume that there exists a provider i0 with price pi0 ≤ p̄i0 < ∞.
Then for any provider j �= i0, the revenue rj = pjθj tends to 0 when pj → ∞.

Proof. Let us consider a user with valuation v, for whom provider j is among
the favorite providers. In particular, that user prefers j over i0, thus at a user
equilibrium we have

v(Ti0(Vi0 ) − Tj(Vj)) ≥ pj − pi0 ≥ pj − p̄i0 . (27)

Therefore if pj > p̄i0 then Tj(Vj) < Ti0(Vi0 ) and

v ≥ pj − p̄i0

Ti0(Vi0 ) − Tj(Vj)
≥ pj − p̄i0

Ti0(Vtot)
:= vmin.

The revenue rj = pjθj of provider j can then be upper bounded:

rj ≤ pj

∫ +∞

v=vmin

dF (v) = Ti0(Vtot)
pj − p̄i0

Ti0(Vtot)

∫ +∞

v=
pj−p̄i0

Ti0(Vtot)

dF (v)

︸ ︷︷ ︸
−−−−→

pj→∞ 0

+p̄i0

∫ +∞

v=
pj−p̄i0

Ti0(Vtot)

dF (v)

︸ ︷︷ ︸
−−−−→

pj→∞ 0

,

where the two terms tend to zero since
∫∞
0 vdF (v) = Vtot < ∞.

4.1 Licensed versus Free Security Provider

We consider here a simple situation with two providers, but only one trying to
maximize his profit through subscription benefits. The other provider (or, more
likely, a community of developers) offers the security service for free.

Denote by 0 and 1 the freeware provider and the licensed provider, respec-
tively. From Proposition 1, there exists a unique value repartition (V0(p), Vtot −
V0(p)) at the user equilibrium, for any price p set by provider 1. Likewise, for
any p > 0 the equilibrium market share of provider 1 is unique and given by
θ1 = 1−N (V0(p)); the profit maximization problem of provider 1 can therefore
be written as

max
p≥0

p · (1 −N (V0(p))). (28)

Note that provider 1 gets demand as soon as his price is strictly below sup(Sv)×
T0(Vtot), therefore by choosing p ∈ (0, sup(Sv)T0(Vtot)) he can ensure a positive
revenue. Therefore from Propositions 3 and 5, the provider revenue optimization
problem (28) has a solution, that is finite.

Corollary 1. When a profit-oriented provider faces only a competitor with null
price, then under Assumption A there exists a finite price p̄ > 0 that maximizes
his revenue, whose maximum value is strictly positive.
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4.2 Competition among Providers: The Risk of Price War

Competitive contexts where providers play on price to attract customers often
lead to price war situations, i.e., situations where each provider has an interest
in decreasing his price below the price of his competitor. The outcome then
corresponds to providers making no profit, and possibly not surviving.

With the model presented in this paper, not all demand goes to the cheapest
provider because of the congestion effect due to attackers’ behavior. However,
some threshold effect still exist, as illustrated by the non-continuity of provider
market shares when provider prices cross each other.

Let us for example consider two identical profit-oriented providers and a free
alternative. Due to the symmetry of the game, one would expect a situation
where both providers set their price to the same level, say p > 0. As a result,
again from symmetry arguments both providers would be chosen by users to
protect, at equilibrium, the same value V ∗

1 = V ∗
2 := V ∗ of data each, while the

free provider covers a total data value V0. Then, if provider 1 sets his price to
p − ε for a small ε > 0, the market share repartition is such that when ε → 0,

θ0 = N (V ∗
0 ),

θ1 = N (V ∗
0 + V ∗) −N (V ∗

0 ),
θ2 = N (V ∗

0 + 2V ∗) −N (V ∗
0 + V ∗).

When users choosing provider 1 or 2 are not all homogeneous in their data
valuations (which is for example the case if the valuation distribution F admits
a density), then θ1 > θ2. In other words, provider 1 strictly improves his market
share (and thus his revenue) by setting his price just below the price of his
competitor. But provider 2 can make the exact same reasoning, resulting in a
price war situation.

Consequently, there can be no symmetric Nash equilibrium (i.e., a price profile
such that no provider can improve his revenue by a unilateral change) where
p1 = p2 > 0, despite the symmetry of the pricing game. Furthermore, the price
profile where all prices are set to 0 is not an equilibrium either: both providers
would get no revenue, which each one could strictly improve by a small price
increase as stated in Corollary 1.

Remark that this reasoning does not rule out the possibility of the pricing
game having a (non-symmetric) Nash equilibrium, however we cannot always
guarantee that such an equilibrium exists. An explanation to the existence of
stable price profiles can nevertheless still be found from game-theoretic argu-
ments, since the pricing game among providers is not played only once but
repeatedly over time. When considering repeated games (i.e., where players take
into account not only their current payoff but also a discounted sum of the future
ones), the set of Nash equilibria is indeed much larger than for their one-shot
counterpart, as evidenced by the Folk theorem [23]. The stability of prices can
then stem from the threat of being sanctioned by competitors for an (immediate-
profit) price change.
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We illustrate those results when user valuations are distributed according to
an exponential law with average value 1/λ = 10 monetary units. Such a distri-
bution models an unbounded continuum of valuations among the population,
where a large majority of users have limited valuations, but there exist few peo-
ple with extremely high value data to protect. The risk function considered in
our numerical computations is Ri(x) = 1− e−x for each provider i, which mod-
els the fact that systems with no valuable data are not targeted while successful
systems are very likely to attract attacks.

In our numerical illustration, we consider here three providers: a provider 0
with performance parameter π0 = 0.05, that is always free: p0 = 0; and two
profit-oriented providers, namely 1 and 2, with respective performance values
π1 = 0.01 and π2 = 0, 005. Providers protected data values and market shares
are shown in Figures 2 and 3, and the revenue of provider 2 is displayed in
Figure 4. The curves illustrate the continuity results of Proposition 3. Interest-
ingly, we remark in Figure 4 that despite the discontinuity in revenue when prices
cross each other, provider 2 actually has a revenue-maximizing price pBR

2 (p1)
strictly below the price of his competitor. That last figure shows the price war
situation: if providers engage in successive best-reply price adaptations to the
competition, then prices tend to very low values, which jeopardizes the viability
of security providers. However, a situation with strictly positive prices from both
providers could be stable in a repeated game context. Consider a price profile
(p1, p2) such that each provider obtains at least what he could obtain with an
aggressive competitor (i.e., a competitor that tries to minimize the provider rev-
enue); when providers value the future almost as much as the present (i.e., when
the discount factor that relates current prices to future prices is close to 1), that
price profile can be maintained as a subgame-perfect equilibrium of the repeated
game [9].
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Fig. 2. Protected data values when provider 2 varies his price
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Fig. 3. Market share of provider 1, when p1 varies
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Fig. 4. Revenue of provider 2 (π2 = 0.005) facing provider 1 (π1 = 0.01) and free
provider 0 (π0 = 0.05) (left), and best-reply functions of providers 1 and 2 (right)

5 Conclusions

The model introduced in this paper takes into account the attractiveness that
successful security systems represent to profit-minded attackers. This constitutes
a negative externality among users: their (selfish) security choices then form a
noncooperative congestion game. We have considered heterogeneity among user
valuations for data protection, which affects both the externality level and the
user cost functions. The corresponding game is therefore a weighted congestion
game with user-specific payoffs. We have studied that game for the case of a
continuum of infinitesimal users, and have proved that it admits a potential and
therefore an equilibrium, that is unique when providers submit different prices.
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The study of the user selection game has helped us understand the interaction
among security providers, who have to attract customers but are then subject to
quality degradation due to more attacks, hence a trade-off. Our analysis shows
that providers will keep their prices low, and that competition may lead to price
war situations, unless providers consider long-term repeated interactions.

Future work can focus on the information asymmetry and uncertainty among
actors: we have studied the interactions in a complete information context,
whereas users may not have a perfect knowledge of the performance level of
the different providers, or of their total protected data value. Likewise, attackers
can only estimate the potential gain from targeting a given system.

Another interesting direction for future research concerns the investment
strategies that security providers should implement: indeed, improving the pro-
tection performance has a cost, that has to be compensated by the extra revenue
due to user subscription decisions. While there exist references for this kind of
problem when users are homogeneous [13], the case when users have different
weights deserves further attention.
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1. Alpcan, T., Başar, T.: Network Security: A Decision and Game Theoretic Ap-
proach. Cambridge University Press (2011)

2. Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the economics of trans-
portation. Yale University Press, New Heaven (1956)

3. Berge, C.: Espaces topologiques. Fonctions multivoques, Collection Universitaire
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86 P. Maillé, P. Reichl, and B. Tuffin

9. Fudenberg, D., Maskin, E.: The folk theorem in repeated games with discounting
or with incomplete information. Econometrica 54(3), 533–554 (1986)

10. Fudenberg, D., Tirole, J.: Game Theory. MIT Press (1991)
11. Ganesh, A., Gunawardena, D., Jey, P., Massoulié, L., Scott, J.: Efficient quaran-
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Abstract. To formulate a network security problem, Mavronicholas et
al. [6] introduced a strategic game on an undirected graph whose nodes
are exposed to infection by attackers, and whose edges are protected
by a defender. Subsequently, MedSalem et al. [9] generalized the model
so that they have many defenders instead of a single defender. Then in
[1], we introduced a new network game with the roles of players inter-
changed, and obtained a graph-theoretic characterization of its pure Nash
equilibria. In this paper we study mixed Nash equilibria for stochastic
strategies in this new game, and then we generalize our network game
to an asynchronous game, where two players repeatedly execute simul-
taneous games. Although the asynchronous game is formally an infinite
game, we show that it has a stable solution by reducing it to a finite
game.

Keywords: Network Game, Asynchronous Game, Nash Equilibrium.

1 Introduction

Following a series of studies by Mavronicholas et al. [6], we propose a new network
game where attackers aim to damage the network by attacking an edge, and
defenders aim to protect the network by securing a vertex. Both the attackers
and defenders make individual (but simultaneous) decisions for their placements
in the network, seeking to maximize their objectives. The defenders seek to
protect the network as much as possible, while each attacker wishes to avoid
being caught so as to be able to damage the network. Inspired by the work of
MedSalem et al. [9], we suppose that to increase the number of defenders will
improve the quality of protection of the network. We model this network game
as a non-cooperative strategic game on a graph, and analyze the characteristics
of its Nash equilibrium [10], which is a stable solution immune from unilateral
deviations, that is, each player has no incentive to deviate from his/her strategy
given that other players do not deviate from theirs. Nash [11] proved that a finite
game has a Nash equilibrium in mixed strategies.

We then generalize the previous network game to a new game, called an asyn-
chronous game, which consists of sequential executions of simultaneous games
with two players. The most important property of asynchronous game is that
after one round of the game, the base graph may be reduced by removing an
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edge damaged by the attack. Then, the final goal of the attacker is to vanish the
graph as quickly as possible, while that of the opponent is to keep it as long as
possible. Actually, an asynchronous game can be viewed as a special Blackwell
game [2]. In 1998, Martin proved that a Blackwell game with Borel payoff is de-
terminate, i.e., it has a stable solution [5]. Thus, our game with a suitable payoff
is also determinate and each player has a stable strategy. However, we show this
by reducing it to a finite game without referring to the Blackwell determinacy.

1.1 Motivation

In this paper, we consider a network security problem concerning the protection
of a network from harmful entities. It is said that the more widely networks
grows, the more vulnerable they become to security risks. Thus, the challenge
is to invent a proper theoretical model for understanding the mathematical as-
pects of network security. We formulate a network security problem as a strategic
graph-theoretic game and study its associated Nash equilibria. More specifically,
we view a network as an undirected graph whose edges are exposed to virus
infection disseminated by attackers, and nodes can be protected, for instance,
by a system security software. In this model, attackers and defenders over the
network security have oposing aims that seek to maximize damage and protec-
tion, respectively. An attacked edge is destroyed unless one of its end nodes is
protected by the security software.

Our work continues the study of the network games introduced by Mavroni-
cholas et al. [6]. In particular, their study focused on the network security model
as a graph whose vertices are exposed to infection by attackers and whose edges
can be protected by a defender. Their model has been further studied in [3],[7]
and [8]. Especially, it models a risk scenario for a synchronous issue of network
attacks and a limited power security mechanism.

In this paper, our final aim is to study the dynamism of attack-protection
effects in the network. In other words, we consider a new game where a syn-
chronous game is executed repeatedly (unbounded many times). To invent such
a game, we realize that a network game with edge-attackers and node-defenders
can be more naturally repeated. In a previous game, a hub node is easier to
avoid damage since it has many edges for protection, but once it is damaged,
the network might have a terminal breakdown. Contrastively, in our new game,
even if a trunk edge is damaged, another rooting could take its role, and thus
the network could maintain major functions after the effective attack.

Our work is also motivated from the study by MedSalem et al. [9]. They
establish that the increased number of the defender results in better protection
of the network. Their work can be seen as a generalization of [6] where the games
with many non-centralized defenders are investigated in terms of the complexity
of pure Nash equilibria.

In the following sections, we first give all necessary backgrounds of our new
network game (Sect. 2) and then review our previous results of pure strategies
(Sect. 3). Next, we turn to the mixed strategies (Sect. 4) and discuss various
conditions for computing mixed Nash equilibria, and particularly we work with
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games on bipartite graphs. In the final section (Sect. 5) we present a new net-
work game where the players repeatedly make stochastic moves, that is, an
asynchronous game.

2 A New Strategic Game

2.1 Basic Notions of Graph Theory

We consider an undirected graph G = (V, E) where V denotes a set of vertices
and E denotes a set of edges. If v is adjacent to an edge e, then we write v ∈ e. A
vertex cover of G is a vertex set CV ⊆ V such that for each edge e ∈ E, there is
a v ∈ CV such that v ∈ e. A minimum vertex cover is one that has the minimum
size. An edge cover of G is an edge set CE ⊆ E such that ∀v ∈ V, ∃e ∈ CE , v ∈ e.
A matching M of G is a subset of E such that no vertex is incident to more
than one edge in M (i.e. no two edges in M have a common vertex). The two
ends of an edge in M are said to be matched under M . A matching M is said to
be maximum if for any other matching M ′, |M | ≥ |M ′|. A vertex set IV ⊆ V is
an independent set of G if for all pairs of vertices u, v ∈ IV , (u, v) /∈ E. Given
Ē ⊂ E and V̄ ⊂ V , define a set V (Ē) = {v ∈ V : v ∈ e for some e ∈ Ē},
and E(V̄ ) = {e ∈ E : ∃v ∈ V̄ , v ∈ e}. We write V (e) for V ({e}) and E(v) for
E({v}). Let nV (G) and nE(G) denote the numbers of vertices and edges in G,
respectively. Whenever no confusion arises we write nV and nE instead of nV (G)
and nE(G), respectively.

2.2 Definitions of Network Games and Profits

Definition 1. Let G = (V, E) be an undirected graph with no isolated vertices.
Fix integers α and δ with α, δ ≥ 1. A strategic game Γα,δ(G) = 〈N ,S〉 on G is
defined as follows:

– N = NA ∪ND is the set of players, where NA and ND are disjoint and
NA is a finite set of attackers ai, where 1 ≤ i ≤ α
ND is a finite set of defenders dj , where 1 ≤ j ≤ δ

– S = Eα × V δ is the strategy set of Γα,δ(G)

An element 〈e1, ..., eα, v1, ..., vδ〉 of S is also called a profile of the game, and
ei, vj strategies of ai, dj , respectively. Note that all players make their choice
simultaneously. Now fix a profile s = 〈e1, ..., eα, v1, ..., vδ〉 of the game Γα,δ(G).
We define a profit (income) of the players as follows.

– The individual profit of attacker ai, 1 ≤ i ≤ α, is given by

Ps(ai) =

{
0 if vj ∈ ei for some j, 1 ≤ j ≤ δ

1 if vj /∈ ei for all j, 1 ≤ j ≤ δ

In other words, attacker ai receives 0 if it is caught by a defender dj , and 1
otherwise.
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– The individual profit of defender dj , 1 ≤ j ≤ δ, is given by

Ps(dj) = |{i : 1 ≤ i ≤ α, vj ∈ ei}|

representing the number of attackers captured by dj .

3 Pure Nash Equilibria

Definition 2. A profile s is a Nash equilibrium if for any player r ∈ N , Ps(r) ≥
Ps̄(r) for any profile s̄ which differs from s only on the strategy of r.

In other words, in a Nash equilibrium no player can improve his individual profit
by changing his strategy unilaterally. Before we proceed to the theorem, we define
the following sets:

As = {e ∈ E : ∃i, 1 ≤ i ≤ α, where e = ei},

Ds = {v ∈ V : ∃j, 1 ≤ j ≤ δ such that v = vj},

where s = 〈e1, ..., eα, v1, ..., vδ〉.

Theorem 1. The game Γα,δ(G) has a Nash equilibrium if and only if there exist
D ⊂ V and A ⊂ E such that
(1) |D| ≤ δ and |A| ≤ α
(2) D is a vertex cover of G
(3) ∀v ∈ D, |A ∩ E(v)| = maxv̄∈V |A ∩ E(v̄)|.

Proof. Suppose Γα,δ(G) has a Nash equilibrium, say s. Let A = As and D = Ds.
Then, (1) is straightforward. To prove (2), suppose to the contrary that there
exists ē ∈ E such that v /∈ ē for all v ∈ D. Then, any attacker can receive 1
by switching to ē. Since s is a Nash equilibrium, each attacker must already get
1, which means that all defenders receive 0. However, any defender can get at
least 1 by switching to a vertex incident to an attacked edge, which contradicts
the assumption that s is Nash equilibrium. Similarly if (3) does not hold, there
would be a vj ∈ D and v̄ such that |A ∩ E(vj)| < |A ∩ E(v̄)|. Thus, defender
j would find it beneficial to change his choice from vj to v̄, which contradicts
the fact that s is a Nash equilibrium. Conversely, suppose there exist A and
D satisfying condition (1), (2) and (3). By (1), let s be a profile so that each
element of A (resp. D) is chosen by at least one attacker (resp. defender). By
(2), no matter how an attacker changes his strategy, he will always get 0. Thus,
an attacker has no incentive to change his strategy. By (3), if a defender changes
his choice, it won’t increase his profit, since the number of protected edges is
already maximum. ��

Theorem 2. If α is the size of a maximum matching in G and δ = 2α, then
the game Γα,δ(G) has a Nash equilibrium.
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Proof. Let A be a maximum matching in G and D be the set of vertices incident
to an edge in A. Then obviously conditions (1) and (3) of Theorem 1 hold. For
(2), assume that there were ē ∈ E such that v /∈ ē for all v ∈ D. Then, A ∪ {ē}
would be also a matching, which contradicts with the maximality of A. ��

In general, it is difficult to determine whether a network game has a Nash equi-
librium. The problem of finding a Nash equilibrium is related to the problem
of finding a maximum matching in a graph, which is also known to be compu-
tationally hard to treat. But for a bipartite graph, such a problem is tractable.
Moreover, bipartite graphs have many nice properties studied in the past re-
search. For instance, König’s theorem states that, in a bipartite graph, the size
of a minimum vertex cover is equal to the size of a maximum matching, which in
fact leads to a result that a minimum vertex cover and a maximum independent
set can be found in polynomial time for a bipartite graph.

Definition 3. The graph G is bipartite if V = V0 ∪ V1 for some disjoint vertex
sets V0,V1 ⊆ V so that for each edge (u, v) ∈ E, u ∈ V0 and v ∈ V1 (or u ∈ V1

and v ∈ V0).

Theorem 3. For a bipartite graph G, the game Γα,δ(G) has a Nash equilibrium
if and only if α, δ ≥ m, where m is the size of a maximum matching in G.

Proof. The proof easily follows from König’s duality theorem. For a bipartite
graph G, if M is a maximum matching and Cmin

V is a minimum vertex cover,
then ∀e ∈ M, ∃!v ∈ Cmin

V such that v ∈ e. On the other hand, ∀v ∈ Cmin
V , ∃e ∈ M

such that v ∈ e. So, A = M, D = Cmin
V satisfy the three conditions of Theorem

1. The other direction is similar. ��

Theorem 4. For a bipartite graph G, the existence of pure Nash equilibrium on
Γα,δ(G) can be determined in O(

√
nV nE).

Proof. The proof is based on an augmenting path algorithm (see [12]). The
overall complexity of finding a maximum matching by such an algorithm is
O(nV nE). This can be improved to O(

√
nV nE) by augmenting along several

augmenting paths simultaneously. ��

In sum, Theorem 3 reduces the problem of finding a Nash equilibrium to that
of finding a maximal matching in the case of a bipartite graph. Then, Theorem
4 shows that the existence of a pure Nash equilibrium on a bipartite graph can
be determined in almost linear time by computing an augmenting path through
the graph.

4 Mixed Nash Equilibria

In this section, we introduce a mixed strategy for our network game, and inves-
tigate the existence conditions of a mixed Nash equilibrium by applying some
results in the previous sections. We start with basic notations and definitions.
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4.1 Mixed Strategies

A mixed strategy for an attacker (resp. defender) is a probability distribution
over edges (resp. vertices) of G. A mixed profile s = 〈σ1, ..., σα, τ1, ..., τδ〉 is a
collection of mixed strategies, one for each player. So, σi(e) is the probability
that attacker ai chooses edge e and τj(v) is the probability that defender dj

chooses vertex v. Thus, for each i ≤ α,

σi : E → [0, 1] satisfies
∑
e∈E

σi(e) = 1,

and for each j ≤ δ,

τj : V → [0, 1] satisfies
∑
v∈V

τj(v) = 1.

The support of a player r ∈ N in a profile s, denoted by Ss(r), is the set of
edges or vertices to which r assigns positive probability in s. Finally, let

Ss(A) =
⋃

ai∈NA

Ss(ai)

and
Ss(D) =

⋃
dj∈ND

Ss(dj).

We say that s is uniform if for any i,

Ss(ai) = Ss(A) and σi(e) =
1

|Ss(A)| for e ∈ Ss(A)

and for any j,

Ss(dj) = Ss(D) and τj(v) =
1

|Ss(D)| for v ∈ Ss(D).

Now, fix a mixed profile s. For an edge e ∈ E, let Save(e) denote the event that
at least one end v ∈ e is protected by a defender in s. For a vertex v ∈ V , let
Save(v) denote the event that at least one defender protects the node v in s.
The probability of Save(v), denoted by πs(Save(v)), is defined by∑

j

τj(v) −
∑
j �=k

τj(v) · τk(v) +
∑

j �=k,k �=l,j �=l

τj(v) · τk(v) · τl(v) − · · · .

Thus for e = (u, v), the probability of Save(e), denoted by πs(Save(e)), is defined
as follows:

πs(Save(e)) = πs(Save(u)) + πs(Save(v)) − πs(Save(u))πs(Save(v)).
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4.2 Expected Profits

A mixed profile s induces an expected individual profit Ps(r) for each player
r ∈ N , which is the expectation, according to s, of its corresponding individual
profit (defined in Section 2.2). We proceed to define the expected profit for each
player.

For a defender dj ∈ ND,

Ps(dj) =
∑
v∈V
i≤α

e∈E(v)

τj(v)σi(e) =
∑
v∈V

τj(v)
∑

i
e∈E(v)

σi(e).

For an attacker ai ∈ NA,

Ps(ai) =
∑
e∈E

σi(e) · (1 − πs(Save(e))).

Definition 4. A mixed profile s is a mixed Nash equilibrium if for each player
r ∈ N , it maximizes Ps over all profiles s̄ that differ from s only with respect to
the mixed strategy of player r.

Intuitively, no player can gain more by a unilateral change of his strategy. We
proceed to study the characterization of a mixed Nash equilibrium.

4.3 Properties of Mixed Nash Equilibria

In this section, we show that two covering properties, that is, the existence of
a vertex cover and an edge cover, characterize a necessary condition for mixed
Nash equilibria. In fact, we show that the supports of defenders and attackers
are a vertex cover and an edge cover of the graph, respectively.

Theorem 5. In any mixed Nash equilibrium s of Γα,δ(G), Ss(D) is a vertex
cover of G.

Proof. Assume Ss(D) is not a vertex cover. Let ENC be a nonempty set of
edges of G not covered by Ss(D). Then, any attacker ai ∈ NA, by setting
Ss(ai) ⊆ ENC , cannot be caught by a defender. That is, any attacker is not
caught by a defender according to s, since it is a mixed Nash equilibrium. This
implies that for any j, Ps(dj) = 0, which contradicts with the property of a
mixed Nash equilibrium since a defender can choose a vertex incident to an
attacked edge. ��
Theorem 6. In any mixed Nash equilibrium s of Γα,δ(G), Ss(A) is an edge
cover of the subgraph of G obtained by restricting to Ss(D).

Proof. Assume the contrary, and let v ∈ Ss(D) such that v is not covered by
Ss(A). Since v ∈ Ss(D), there is a defender dj who chooses v with positive
probability. Now, if he chooses a vertex incident to an attacked edge with the
same probability instead of v, he can increase his profit, which is impossible in
a mixed Nash equilibrium. ��
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The following characterization is useful for checking whether or not it is a mixed
Nash equilibrium.

Proposition 1. Given a graph G, a mixed profile s is a Nash equilibrium if and
only if:

1. ∀j ≤ δ, ∀v ∈ Ss(dj) ∑
i

e∈E(v)

σi(e) = max
v̄∈V

∑
i

e∈E(v̄)

σi(e)

2. ∀i ≤ α, ∀e ∈ Ss(ai)

πs(Save(e)) = min
ē∈E

πs(Save(ē))

Proof. It is easy to see from the definition of a mixed Nash equilibrium and the
expected profit. ��

Remark 1. Given a profile s, the condition that Ss(A) and Ss(D) are an edge
cover and vertex cover respectively, does not necessarily imply that s is a Nash
equilibrium.

For example, let G = {{v0, v1, v2}, {e0, e1}} where e0 = (v0, v1) and e1 = (v1, v2).
Let α = δ = 1, and also s = 〈σ1, τ1〉 such that σ1(e0) = 0.9, σ1(e1) = 0.1 and
τ1(v0) = 0.9, τ1(v1) = 0, τ1(v2) = 0.1.

the attacker

the defender

v0 v1 v2
e0 e1

0.9 0.1

0.9 0 0.1

Fig. 1. An illustration of the example

Then, clearly Ss(A) = {e0, e1} and Ss(D) = {v0, v2} are an edge cover and
vertex cover, respectively. However,∑

i
e∈E(v0)

σi(e) = 0.9 �= max
v̄∈V

∑
i

e∈E(v̄)

σi(e) = 1

Hence, s is not a Nash equilibrium by Proposition 1.
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4.4 Perfect Covering Profiles

In this section, we introduce a new notion, called a perfect covering profile,
and show it is a sufficient condition for the existence of a Nash equilibrium in
a bipartite graph. These characterization enables an almost linear time algo-
rithm to compute a perfect Nash equilibrium on a bipartite graph with a given
independent vertex cover and a maximal matching.

Definition 5. A mixed profile s = (σ1, ..., σα, τ1, ..., τδ) is said to be a perfect
covering profile if it is uniform (see Remark 2) and satisfies the following con-
ditions.

1. Ss(D) is an independent vertex cover.
2. Ss(A) is a perfect matching.

Remark 2 (cf. Section 4.1). Recall that if s is uniform, then σi(e) = σi′(e′)
for any e, e′ ∈ Ss(A) and τj(v) = τj′ (v′) for any v, v′ ∈ Ss(D).

Lemma 1. In a bipartite graph, a perfect covering profile is a mixed Nash equi-
librium.

Proof. We shall use Proposition 1 to prove this lemma. We first show condition
(1). Fix j ≤ δ and v ∈ Ss(dj), and take v̄ ∈ V arbitrary. Since Ss(A) is a perfect
matching, for any w ∈ V , there is exactly one ew ∈ Ss(A) such that w ∈ ew.
Hence, we have∑

i
e∈E(v)

σi(e) =
∑

i

σi(ev) =
∑

i

σi(ev̄) =
∑

i
e∈E(v̄)

σi(e)

by uniformity of s. Thus,∑
i

e∈E(v)

σi(e) = max
v̄∈V

∑
i

e∈E(v̄)

σi(e).

To show that condition (2) holds, fix i ≤ α, e ∈ Ss(ai) and take ē ∈ E arbitrary.
Since Ss(D) is an independent set and vertex cover, for any f ∈ E, there is
exactly one vf ∈ Ss(D) such that vf ∈ f for each j ≤ δ. Hence, we have

πs(Save(e)) = πs(Save(ve))

=
∑

j

τj(ve) −
∑
j �=k

τj(ve) · τk(ve) + · · ·

=
∑

j

τj(vē) −
∑
j �=k

τj(vē) · τk(vē) + · · ·

= πs(Save(vē))

= πs(Save(ē))

by uniformity of s. Thus,

πs(Save(e)) = min
ē∈E

πs(Save(ē)).

By Proposition 1, it follows that s is a Nash equilibrium. ��
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4.5 Perfect Nash Equilibria

A perfect covering profile is called a perfect Nash equilibrium if it is a Nash
equilibrium. A subgraph of G is said to be an odd cycle if it is a cycle with
an odd number of vertices. Similarly for an even cycle with an even number of
vertices. Then, we can easily show the following fact.

Remark 3. If G has a perfect matching and no odd cycle, then G has an inde-
pendent vertex cover.

The following theorem provides necessary and sufficient conditions for a game
Γα,δ(G) to have a perfect Nash equilibrium.

Theorem 7. The game Γα,δ(G) has a perfect Nash equilibria if and only if G
has a perfect matching and no odd cycle.

Proof. Suppose first that Γα,δ(G) has a perfect Nash equilibrium, say s. By
definition, Ss(D) is an independent vertex cover, which imply V \Ss(D) is inde-
pendent as well. Suppose that G had an odd cycle Codd. Then, there would be an
edge e contained in Codd with endpoints both in Ss(D) or both in V \Ss(D), which
is a contradiction. By definition, G has a perfect matching. Conversely, assume
G has a perfect matching and no odd cycle. By Remark 3, G has an indepen-
dent vertex cover. Since now we have a perfect matching M and an independent
vertex cover ICV , we construct a perfect covering profile s = (...σi..., ...τj ...) as
follows:

σi(e) =

{
1

|M| if e ∈ M

0 if otherwise

and

τj(v) =

{
1

|ICV
| if v ∈ ICV

0 if otherwise

where M := Ss(A) and ICV := Ss(D). Clearly, a perfect covering profile s is a
mixed Nash equilibrium, as needed. Therefore, the game Γα,δ(G) has a perfect
Nash equilibrium. ��

For a subset U ⊆ V of a graph G, denote NG(U) = {v | (u, v) ∈ E for some u ∈
U}, the neighbour set of U in G. If G is (V0, V1)-bipartite, and U ⊆ V0, then
NG(U) ⊆ V1. The graph G is a V0-Expander graph if for each set U ⊆ V0,
|U | ≤ |NG(U)|. The degree of a vertex v is the number |E(v)| of edges at v, this
is equal to the number of neighbours of v. If all the vertices of G have the same
degree k, then G is k-regular, or simply regular.

Theorem 8 (Hall’s Theorem). Let G be a bipartite graph with bipartition
(V0, V1). Then, G contains a matching M that matches all the vertices in V0 if
and only if |NG(U)| ≥ |U | for all U ⊆ V0.

Corollary 1. If G is a k-regular bipartite graph with k > 0, then the game
Γα,δ(G) has a perfect Nash equilibrium.
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Proof. Let G be a k-regular bipartite graph (V0 ∪ V1; E). Thus, we have k|V0| =
nE = k|V1| by regularity, and hence |V0| = |V1| since k > 0. Now, let U ⊆ V0. Let
E0 = {e ∈ E : v ∈ e, for some v ∈ U} and E1 = {e ∈ E : v ∈ e, for some v ∈
NG(U)}. Clearly, E0 ⊆ E1. Therefore, k|NG(U)| = |E1| ≥ |E0| = k|U |, and so
|NG(U)| ≥ |U |. By Theorem 8, G has a matching M that matches every vertex
in V0. Since |V0| = |V1|, this matching is necessarily perfect. By Theorem 7, G
admits a perfect Nash equilibrium. ��

Note that the example for Remark 1 is bipartite but not regular, and that it has
an independent vertex cover but no perfect matching.

4.6 Computing a Nash Equilibrium

Theorem 9. For a bipartite graph G, it can be computed in O(
√

nV nE) whether
or not Γα,δ(G) has a perfect Nash equilibrium, and if any, one can obtain in
O(

√
nV nE).

Proof. Define Ss(A) := M and Ss(D) := ICV such that

σi(e) =

{
1

|M| if e ∈ M

0 if otherwise

and
τj(v) =

1
|ICV |

Clearly, s is a Nash equilibrium. Thus, the problem of deciding the game Γα,δ(G)
has a perfect Nash equilibrium is equivalent to finding a maximum matching M .
The algorithmic problem of finding such a matching thus can be reduces to
finding an augmenting path which can be compute in O(

√
nV nE). ��

5 An Asynchronous Game

5.1 Introduction

So far, we have only discussed network games where all the attackers and defend-
ers make individual decisions simultaneously. We now start considering a new
game where a pair of an attacker and a defender executes a simultaneous game in
turn. Or we may think that there is exactly one attacker and one defender, who
repeatedly execute simultaneous games. As in previous games, the attacker aims
to damage the network by attacking an edge, and the defender aims to protect
the network by choosing a vertex. The important characteristic of our new game
is that after one round of the game, the base graph may be reduced by removing
an edge damaged by the attack but not (adjacent to a vertex) protected in the
round. Then, the final objective of the attacker is to vanish the graph as quickly
as possible, while that of the opponent is to keep it as long as possible. Technical
definitions will be given in the next section.
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Although there may be many possible variations of this games, we are par-
ticularly interested in our formulation. Actually, to consider iterations of old
simultaneous games, we have thought it more natural that an edge is to be at-
tacked and a vertex protected rather than the opposite. In a previous game, a
hub node is easier to avoid damage since it has many edges for protection, but
once it is damaged, the network might have a terminal breakdown. Contrastively,
in our new game, even if a trunk edge is damaged, another rooting could take
its role, and thus the network could maintain major functions after the effective
attack. Since we have just started this line of research, we must leave detailed
analysis of the variations of this game to the future study.

We would like to point out some important facts. First of all, our new game can
be viewed as a special Blackwell game [2]. Blackwell games are infinite games of
imperfect information, which is introduced by D. Blackwell in 1969. It has been
shown in the standard set theory that in any Blackwell game with a Borel payoff,
the players have optimal strategy, namely the game is determinate. Thus, our
game (with a suitable payoff) is also determinate, and each player has a stable
strategy so that the estimation of the duration of the game is determined.

The Blackwell game is defined as follows:

Definition 6 (Blackwell Games). Let X and Y be two finite nonempty sets,
and put W = (X×Y )N. Let f : W → R be a bounded Borel-measurable function.
The Blackwell game Γ (f) with payoff function f is the two-person zero-sum
infinite game of imperfect information played as follows:

– Player I selects an element x1 ∈ X, and simultaneously, Player II selects an
element y1 ∈ Y . Then both players are told z1 = (x1, y1), and the game has
reached position (z1). Then,

– Player I selects x2 ∈ X, and simultaneously, Player II selects y2 ∈ Y . Then,
both players are told z2 = (x2, y2), and the game is at position (z1, z2).

Then both players simultaneously selects x3 ∈ X and y3 ∈ Y, etc. Thus they
produce a play w = (z1, z2, ...). Finally, player II pays player I the amount f(w),
ending the game.

5.2 Definitions of Asynchronous Games and Profits

We are ready to define an asynchronous game. First of all, we define partial plays
and corresponding sequences of subgraphs. Let G = (V, E) be an undirected
graph. The set P ⊂ (E × V )<N of partial plays is defined recursively as follows.
Put the empty sequence λ ∈ P and Eλ = E and Vλ = V . Now assume that
η ∈ P , and Eη ⊂ E and Vη ⊂ V have been defined. We put ρ := η�〈(e, v)〉 into
P , if e ∈ Eη and v ∈ Vη. Then, we define

Eρ :=

{
Eη if v ∈ e

Eη − {e} if v /∈ e

Vρ := V (Eρ).
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Finally, let [P ] = {w ∈ (E×V )N : each finite initial segment of w belongs to P}.
A payoff function needs to be defined on [P ]. But it is often regarded as a function
on W = (E × V )N by setting f(w) = 0 for w ∈ W − [P ].

Definition 7. Let f : W → R be a payoff function. An asynchronous game
Γ (G; f) with payoff function f is an infinite game of imperfect information
played as follows: Attacker a selects an element e1 ∈ E and simultaneously
defender d chooses an element v1 ∈ V . Then both the players are told z1 =
(e1, v1). Next, the attacker selects e2 ∈ E, and simultaneously the defender se-
lects v2 ∈ V , and z2 = (e2, v2), etc. In this manner they produce an infinite
sequence w = (z1, z2, ...) ∈ (E ×V )N. Finally, the defender pays the attacker the
amount f(w), ending the game.

A mixed strategy in an asynchronous game is defined as follows.

Definition 8. A mixed strategy for attacker a in Γ (G; f) is a function σ∗ as-
signing to each position ρ a probability distribution on Eρ, that is, σ∗ : P →
[0, 1]E satisfying

∑
e∈Eρ

σ∗(ρ)(e) = 1. Similarly, a mixed strategy for defender d

is given by τ∗ : P → [0, 1]V such that
∑

v∈Vρ
τ∗(ρ)(v) = 1.

Definition 9. Let σ∗ and τ∗ be strategies for the attacker and the defender in
Γ (G; f), respectively. The probability measure μσ∗,τ∗ on (E × V )ω is given by

μσ∗,τ∗([ρ]) =
∏

n<|ρ|

[
σ∗(ρ|n)(en)τ∗(ρ|n)(vn)

]
where [ρ] = {w ∈ W : ρ is an initial segment of w} and ρ|n is an initial segment
of ρ with the length n.

Given a pair of mixed strategies s = (σ∗, τ∗), the expected profit of the at-
tacker in Γ (G; f), according to σ∗ and τ∗, is the expectation of f(w) under this
probability measure:

Ps(Γ (G; f)) =
∫

f(w)dμσ∗,τ∗(w)

The value of a strategy σ∗ for the attacker in Γ (G; f) is the expected income
the attacker can guarantee if they plays according to σ∗. Similarly, the value of
a strategy τ∗ for the defender in Γ (G; f) is the amount to which the defender
can restrict the attacker’s profit if he plays according to τ∗, that is,

valσ∗(Γ (G; f)) = inf
τ∗ Ps(Γ (G; f)),

valτ∗(Γ (G; f)) = sup
σ∗

Ps(Γ (G; f)).

Definition 10. The lower value of Γ (G; f) is the smallest upper bound on the
income that the attacker can guarantee. Similarly, the upper value of Γ (G; f) is
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the largest lower bound on the restrictions the defender can put on the attacker’s
income, that is,

val↓(Γ (G; f)) = sup
σ∗

inf
τ∗ Ps(Γ (G; f)),

val↑(Γ (G; f)) = inf
τ∗ sup

σ∗
Ps(Γ (G; f)).

If val↑(Γ (G; f)) = val↓(Γ (G; f)), then Γ (G; f) is called determined.

A strategy σ∗ for the attacker in Γ (G; f) is optimal if

valσ∗(Γ (G; f)) = val↓(Γ (G; f)),

and similarly, a strategy τ∗ for the defender in Γ (G; f) is optimal if

valτ∗(Γ (G; f)) = val↑(Γ (G; f)).

5.3 One-Round Games and Profits

We are going to analyze our asynchronous game with a concrete payoff. Since
the objective of the attacker is to vanish the graph as quickly as possible, his
strategy at each round can not be evaluated simply by the expected numbers of
edges damaged by it. So, we start with the following one-round game.

Given a finite graph G and a state evaluation f : {G′ : G′ is a proper subgraph
of G} → R, we define a one-round game Γ (G; f). A mixed strategy σ for attacker
is a probability distribution over E. Similarly for defender, a mixed strategy τ
is a probability distribution over V . So, σ(e) is the probability that attacker a
chooses edge e and τ(v) is the probability that defender d chooses vertex v. We
define a function h : E × V → {subgraphs of G} by

h(e, v) :=

{
G if v ∈ e

G(E \ {e}) if v /∈ e

Now, we define the expected profit of the game Γ (G; f).

Definition 11. Let s = (σ, τ) be a pair of mixed strategies. The expected profit
of the attacker with the delay constant c is given by

Ps(Γ (G; f)) :=
∑
v/∈e

σ(e)τ(v){1 + f(h(e, v))} +
∑
v∈e

σ(e)τ(v)cPs(Γ (G; f)),

i.e.,

Ps(Γ (G; f)) =
∑
v/∈e

σ(e)τ(v){1 + f(h(e, v))}/(1 − c
∑
v∈e

σ(e)τ(v)).

To understand the above definition, suppose that the attacker chooses edge e and
the defender chooses vertex v. If v is not adjacent to e, the attack is successful
and so one point is given to the attacker. Since the new round starts with the



Network Games with and without Synchroneity 101

graph h(e, v), it follows that the attacker receives 1 + f(h(e, v)) in this case. If
v is adjacent to e, the next round starts with the same graph, but the expected
profit is evaluated as cPs(Γ (G; f)) with the delay constant c. For simplicity, we
will assume c = 1

2 from now on, though any c ∈ (0, 1) works as the same.
Now we investigate the existence of a mixed Nash equilibria in the one-round

game. The theorem is stated as follows.

Theorem 10. Given a graph G and function f : {G′ � G : G′ a subgraph} →
R. Then, the one-round game Γ (G; f) is determined with a stable solution.

The proof follows from a combination of the mini-max theorem and Brouwer’s
fixed point theorem (or the intermediate value theorem for this particular case).
First of all, we recall Brouwer’s fixed point theorem.

Theorem 11 (Brouwer’s Fixed Point Theorem). Let S be a subset of some
space Rn that is convex and compact, and let φ be a continuous function from
S to S. Then, φ has at least one fixed point, that is, a point s in S such that
φ(s) = s.

Brouwer’s theorem has been generalized in numerous ways, e.g., Schauder’s and
Tychonoff’s fixed point theorems. Kakutani also proposed a multifunction ana-
logue to Brouwer’s theorem, and then show that this generalized theorem implies
the famous von Neumann’s mini-max theorem.

Theorem 12 (Mini-Max Theorem). Let K, L be two bounded closed convex
sets in Rm, Rn. Let f(x, y) be a continuous real function on K ×L such that for
any x0 ∈ K and α ∈ R, {y ∈ L : f(x0, y) ≤ α} is convex, and for any y0 ∈ L
and β ∈ R, {x ∈ K : f(x, y0) ≥ β} is convex. Then we have

max
x∈K

min
y∈L

f(x, y) = min
y∈L

max
x∈K

f(x, y).

Proof of the Theorem 10. Suppose f : {G′ � G} → R, and f(G) = x ∈ R
(for the next round with the same G) are given. The expected profit according
to a profile (σ, τ) is following:

P (σ, τ, x) :=
∑
v/∈e

σ(e)τ(v){1 + f(h(e, v))} +
∑
v∈e

σ(e)τ(v)
1
2
x.

By the mini-max theorem, we have

max
σ

min
τ

P (σ, τ, x) = min
τ

max
σ

P (σ, τ, x)

for all x ∈ R. Note that the set of strategy σ’s (similar for τ ’s) is bounded closed
convex, and so it is easy to see that M(x) = maxσ minτ P (σ, τ, x) is a continuous
function. Now put m = 1+ max f . Clearly, M : [0, m] → [0, m]. So it has a fixed
point x̂. Then M(x̂) serves as a stable solution. ��

Note that in the above proof, we cannot use the second formula of the expected
profit in Definition 11, since the conditions of the mini-max theorem do not hold
for that formula.
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5.4 Games with a Natural Payoff Function

Now, we are going to define a function f : W → R, which plays the role of a
natural payoff for the attacker of our asynchronous game. Recall that [P ] ⊆ W is
defined to be the set of infinite sequences whose initial segments are all included
in P . For w = ((e1, v1), (e2, v2), (e3, v3), ...) ∈ [P ], we set

bi(w) :=

{
0 if vi ∈ ei,

1 if vi /∈ ei.

Then we define

f(w) =
∑
i>0

bi(w)
2i

Thus f(w) does not only evaluate the number of damaged edges through w, but
also evaluate the promptness of attacks. Finally we have,

Theorem 13. The asynchronous game Γ (G; f) is determined.

Proof. We show the existence of a stable solution in the game without referring
to the Blackwell determinacy. We call a subgraph G′ of G a terminal graph if
the graph can not be reduced to a smaller graph whatever the players play on
it. Let G0 be the set of terminal graphs of G. Now consider a subgraph G′ of
G, which is reduced to a terminal graph or unchanged after a one-round game
on G′ is executed. By assigning 0 to each terminal graph, we can compute the
profit or the state value of this graph by Theorem 10. We define G1 to be the
set of such subgraphs of G. Next consider a subgraph G′′ of G which is either
reduced to a graph in G0∪G1, or unchanged in a one-round game. By assigning 0
to each terminal graph, and to a graph G′ in G1, its state value, we can compute
the state value of the new graph by Theorem 10. By continuing this process (at
most nE(G) times), we finally obtain the profit of the attacker for G. ��

We should notice that in the above proof, the infinite game Γ (G; f) is reduced
to a finite-round game in a constructive way.

6 Concluding Remarks

In this paper, we presented a new network game with many attackers and defend-
ers. We have considered various conditions for computing mixed Nash equilibria
for this game. Then we generalized it to an asynchronous game, which may
be viewed as an infinite Blackwell game. Finally, we have shown that an asyn-
chronous game can be constructively reduced to a finite-round game. We believe
that this reduction method is quite useful to analyze the computational contents
of this game, which we will develop in the future literature.

Acknowledgments. The authors would like to thank Mr. Kojiro Higuchi, for
carefully reading a draft of this paper and offering many useful comments that
resulted in an improved paper.
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Abstract. In his 1961 monograph on Game Theory, Melvin Dresher
considered a high-low guessing game on N numbers. The game was solved
for N ≤ 11 by Selmer Johnson but solutions for higher values of N
have never been reported in the literature. In this paper we derive an
asymptotic formula for the value of the game as N → ∞ and we present
an algorithm that allows us to numerically solve the game for N ≤ 256.

Keywords: search game, binary search, asymptotic analysis.

We consider the following zero-sum game:

Alice secretly writes down one of the numbers 1, 2, . . . , N and Bob must re-
peatedly guess this number until he gets it, losing 1 for each guess. After each
guess, Alice must say whether the guess is too high, too low or correct.

Apparently this game first appeared in a monograph on game theory by Dresher [8,
p. 33] and that it why it is called Dresher’s guessing game. It is a classic game
which often serves as an instructive example of a zero-sum game [9,18]. If Alice
is allowed to lie a certain number of times, then it is called Ulam’s game, which
is intimately related to problems in coding theory and has accumulated a fair
amount of research [17]. Dresher’s game is very similar to games that are used in
economics to model bargaining situations, see [4,19] and the references therein.
Dresher’s game is also related to the study of coordination games and spatial
dispersion [3,6]. The following example is illustrative. A group of N people com-
mutes to a part of town that lies across a river. There are two bridges that cross
the river and the commuters can take either one, but they have to find a way
to coordinate their choice since the total capacity of the two bridges is equal
to N . The commuters will get stuck in a jam until they finally divide them-
selves according to the capacities of the bridges. In other words, the commuters
coordinate their choice based on a daily high-low feedback.

Despite the fact that Dresher’s game is a classic game describing a common
situation, it has only been solved for N ≤ 11 and that was done a long time
ago [15].1 The reason for this is, and this is typical for games involving deci-
1 Outside the research literature, the game has been solved for slightly larger

values. In a recent problem solving contest, IPSC 2011, one of the problems
was to solve the guessing game for N = 16. A solution can be found in
http : //ipsc.ksp.sk/contests/ipsc2011/

J.S. Baras, J. Katz, and E. Altman (Eds.): GameSec 2011, LNCS 7037, pp. 104–116, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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sions [2], that the number of pure strategies grows exponentially with N so that
standard algorithms such as the simplex method quickly become numerically
infeasible. In this paper we present a new algorithm, using a delayed column
generation, that allows a computational solution for N ≤ 256. The computa-
tional time increases exponentially at each consecutive power of 2 and we were
unable to push the computation to 512 on a standard PC.

Dresher’s game is an example of a high-low search game. Such games have
accumulated a fair amount of literature and many of them have been solved [2,
Chapter 5]. Gal solved a very similar guessing game in which Alice must say
whether the guess is too high or not too high [10]. The optimal strategies for
this version of the guessing game, and its value, can be described explicitly. For
reasons given below, an explicit solution of Dresher’s guessing game is probably
too much to hope for. However, we are able to derive an asymptotic formula for
the value of the game:

Theorem 1. Let V(N) be the value of Dresher’s guessing game and let lg(N)
be the logarithm of N to base 2. Suppose that 2k ≤ N ≤ 2k+1 for a non-negative
integer k and x(N) = N

2k − 1. In particular 0 ≤ x ≤ 1 and if we let N go to
infinity in such a way that x(N) converges to a fixed limit x in [0, 1], then

lim
N→∞

lg(N + 1) − V(N) = lg(1 + x) +
1 − x

1 + x

In other words, lg(N + 1) − V(N) has no proper limit and its value oscillates,
depending on the relative position of N between consecutive powers of two. Such
oscillations are a well known phenomenon in the analysis of binary search trees,
see for instance [14].

We use the numerical results from our algorithm to estimate the convergence
of lg(N + 1) + V(N) to lg(1 + x) + 1−x

1+x .

Theorem 2. Suppose that N ≥ 256 and we write x = x(N) = N
2k − 1, then

lg(1 + x) +
1 − x

1 + x
− 0.1 < lg(N + 1) − V(N) < lg(1 + x) +

1 − x

1 + x
.

The paper is organized as follows. We first show in section 1 that V(N) varies
periodically around lg N as N goes to infinity. In section 2 we calculate the limit
of lg(N +1)−V(N) and obtain Theorem 1. In section 3 we supply our algorithm
to solve the game and discuss our numerical results.

1 Asymptotic Periodicity of V(N)

We briefly describe the strategy spaces of Dresher’s guessing game. A more
detailed discussion can be found in [12,15,16]. Dresher’s game is finite and zero-
sum, so it has a well-defined value V(N). After each incorrect guess, the game
can continue in two ways depending on Alice’ secret number, so the course of
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the game can be described by a tree. For instance, if N = 7 and if Bob plays by
bisection, then his initial guess is 4, and his consecutive guess is 2 if the guess is
too high or 6 if it is too low, etc. The corresponding tree is depicted below. Note
that the top node is divisible by 4, the nodes at the next level are divisible by 2,
and the odd numbers are down below. It is not hard to show that a pure strategy

for Bob corresponds to a binary search tree on N nodes [16]. The payoff of the
pure strategy depends on Alice’s secret number and is equal to the depth of
the node containing the secret number. Bob’s strategy space corresponds to the
family of all binary trees, so its cardinality is equal to the N -th Catalan number
c(N), which is a number that grows exponentially with N . Alice’s strategy space
is relatively small, as it consists of N elements only: the matrix of the game has
size N × c(N).

Lemma 1. lg(N + 1) − 1 < V(N) ≤ lg(N + 1).

Proof. Note that V(N) ≤ V(M) if N ≤ M , because the game on N numbers can
be seen as a version of the game on M numbers in which Alice has a restricted
choice. If N = 1 then it takes one guess to get the secret number so V(1) = 1. We
prove by induction that V(N) ≤ lg(N+1). Suppose that N is odd and that Bob’s
initial guess is (N +1)/2. Then either the game is immediately over or Bob loses
one and play continues on (N−1)/2 numbers. In the game on (N−1)/2 numbers,
Bob has a strategy that guarantees an average loss of V((N−1)/2), and it follows
that V(N) ≤ 1 + V((N − 1)/2). According to our induction hypothesis is 1 +
V((N−1)/2) ≤ lg(N+1)−1. So if N is odd, then V(N) ≤ lg(N+1). Now suppose
that N is even and that Bob initially guesses N/2 or N/2 + 1 equiprobably. If
the game is not immediately over, then it continues equiprobably on N/2− 1 or
on N/2 numbers. Once again by induction V(N) ≤ 1 + 1

2

[
V
(

N
2 − 1

)
+ V

(
N
2

)]
and by the concavity of the logarithm we find that this is ≤ lg(N + 1). This
concludes the proof of the upper bound on V(N).

To prove the lower bound, consider Alice’s mixed strategy in which she chooses
a secret number uniformly randomly. Then the payoff of Bob’s pure strategy is
equal to the average depth of a node in the binary search tree. It has one node
of depth 1 - at most two nodes of depth 2 - at most four nodes of depth 3, etc.
If 2k ≤ N ≤ 2k+1 − 1 then the average depth of a binary search tree is at least

1
N

(
1 + 2.2 + 4.3 + · · · + 2k−1k + (N − 2k + 1)(k + 1)

)
(1)
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Since this is Alice’s minimal payoff if she uses the uniform strategy, it puts a
lower bound on the value of the game. We will come back to this lower bound
below. For now we observe that it is equal to

1
N

N∑
j=1

�lg(j + 1)� =
1
N

∫ N

0

�lg(x + 1)�dx >
1
N

∫ N

0

lg(x + 1)dx,

which is equal to (N+1) lg(N+1)−N
N and we conclude that the lower bound holds.

Lemma 2. The function c(N) = lg(N + 1) − V(N) satisfies the inequalities
c(2N + 1) ≥ c(N) and c(2N) ≥ c(N−1)+c(N)

2 .

Proof. In the proof above we found that V(2N+1) ≤ 1+V(N) which is equivalent
to c(2N + 1) ≥ c(N). We also found that V(2N) ≤ 1 + 1

2V(N) + 1
2V(N − 1),

which implies that c(2N) > c(N)+c(N−1)
2 .

To describe the way that V(N) varies between consecutive powers of two, we
need to compare c(N) to c(N/2). Therefore it is convenient to write N + 1 =
2k(1+x) for x ∈ [0, 1] and to define ck(x) = c(N). So instead of a single function
c(N) we obtain a sequence of functions ck(x). We extend the domain of ck to
the entire unit interval by linear interpolation. Note that if N = 2k − 1 then
ck(0) = ck−1(1) = c(N). Also note that Lemma 2 can be rewritten as ck+1(x) ≥
ck(x) so the limit function c∞(x) = limk→∞ ck(x) exists and it satisfies c∞(1) =
c∞(0). In other words, the value of Dresher’s guessing game is asymptotically
periodic.

2 Determining c∞(x)

In the proof of Lemma 1 we encountered equation (1) which gives a lower bound
on V(N). Therefore, it gives an upper bound on the functions ck(x) and in this
section we show that this upper bound is asymptotically sharp.

Lemma 3.
c∞(x) ≤ lg(1 + x) +

1 − x

1 + x

Proof. By equation (1) we know that

V(N) ≥
(k + 1)(N − 2k + 1) +

∑k
j=1 j2j−1

N
.

Now using that
∑k

j=1 j2j−1 = (k − 1)2k + 1 we find

V(N) ≥ (k + 1)(N + 1) − 2k+1 + 1
N

= k + 1 +
k + 2 − 2k+1

N
. (2)

Note that the formula at the right hand side of this inequality gives the average
payoff if Alice chooses her secret number equiprobably. We come back to this
below. As before we write N + 1 = 2k(1 + x) and find that
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ck(x) = lg(N + 1) − V(N) ≤ lg(1 + x) +
1 − x

1 + x
− k + 2

2k(1 + x)
.

and the last term vanishes as k → ∞.

Bob’s strategy space consists of binary search trees on N nodes. Each nodes
corresponds to a secret number. One tree that is particularly easy to describe is
β, the bisecting tree for N = 2k −1. The depth of a node n in β is equal to k− j
if and only if j = ord2(n). If N = 2k − 2 then Bob may still use the bisecting
tree β, which now has one node less as it loses the end node 2k − 1. Let β − 1 be
the binary search tree in which compared to β all nodes reduce by 1. The trees
β and β − 1 on 2k − 2 nodes are illustrated below for k = 3.

If N = 6 and if Bob picks one of the two trees β and β− 1 equiprobably, then
on average he has to pay Alice no more than 2 1

2 . The next lemma extends this
observation.

Lemma 4. Let d < k be a natural number. Then V(2k − 2d) ≤ k − 1 + 1
2d .

Proof. Suppose that Bob picks one of the trees β − i equiprobably for i =
0, . . . , 2d − 1. Let n ∈ {1, . . . , 2k − 2d} be an arbitrary secret number. The depth
of node n in β − i is equal to k − ord2(n + i). Consider the numbers n + i for
i = 0, . . . , 2d−1. Half of the are odd and half of them are even. Of the even num-
bers, half are divisible by 4 and half of them are not, etc. More succinctly, n + i
runs through all residues modulo 2d. If n + i = 0 mod 2d, then ord2(n + i) ≥ d.
All the other orders are determined by the residue. Since Bob takes one of the i
equiprobably, the average number of guesses against secret number n is

1
2d

2d−1∑
i=0

(k − ord2(n + i)) ≤ k − d

2d
− 1

2d

d−1∑
j=0

(d − 1 − j)2j .

We rewrite 1
2d

∑d−1
j=0 (d − 1 − j)2j by substituting i = d − 1 − j as

∑d−1
i=0

i
2i+1 ,

which is equal to 1 − d+1
2d . Hence, if Bob uses this strategy than the average

number of guesses against any secret number is bounded by k − 1 + 1
2d .
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Suppose that τ is a binary search tree on {1, . . . , N} and suppose that M > N .
Let S ⊂ {1, . . . , M} be a subset of cardinality N . In particular, there is an order
preserving bijection φ : {1, . . . , N} → S. Define the binary search tree τS on
{1, . . . , M} as follows. Replace each node j by φ(j). Once Bob guesses a number
that is an end node of this tree without guessing the secret number, which
happens if the secret number is not in S, then he guesses consecutive numbers.
If his guess is j and Alice says ‘too low’, then Bob guesses j + 1. If Alice says
’too high’, then Bob guesses j − 1. This is a well defined pure strategy which
corresponds to a binary search tree τS . To illustrate this, consider the search tree
β for N = 6 that we considered above. Let M = 10 and let S = {1, 3, 5, 6, 9, 10},
then βS is equal to the binary search tree in the figure below.

Note that it takes two additional guesses to get the secret number 7. The depth
of the tree has increased by two. This is because the complement of S contains
consecutive numbers, namely 7 and 8. If there are no consecutive numbers in
the complement of S, then the depth of τS exceeds the depth of τ by no more
than one.

Lemma 5. Let N = 2k − 2d and let y ≤ N be any natural number. Then

V(N + y) ≤ k − N − y

N + y
+

N

N + y
· 1
2d

Proof. We say that a subset C ⊂ {1, . . . , N} contains no consecutive numbers
if whenever j ∈ C then j − 1 �∈ C and j + 1 �∈ C. Here we calculate modulo
N , so we consider the numbers 1 and N to be consecutive. For instance, F =
{1, 3, . . . , 2y+1} is a subset of {1, . . . , N+y} of cardinality y without consecutive
numbers. Also j + F , which is a subset of {1, . . . , N + y} if we calculate modulo
N + y, contains no consecutive numbers,.

Let S be the complement of j+F . Suppose Bob takes a number j ∈ {1, . . . , N+
y} equiprobably and chooses the search tree βS . If the secret number is in S,
which has probability N/(N + y), then the expected number of guesses is ≤
k − 1 + 1

2d by the previous lemma. If not, then the number of guesses is ≤ k + 1



110 R. Fokkink and M. Stassen

since the depth of β is equal to k. So the average number of guesses of this
strategy against any secret number is bounded by

N

N + y

(
k − 1 +

1
2d

)
+

y

N + y
(k + 1) = k − N − y

N + y
+

N

N + y
· 1
2d

.

Theorem 3.
c∞(x) = lg(1 + x) +

1 − x

1 + x

Proof. We already proved that c∞(x) ≤ lg(1+x)+ 1−x
1+x , so it suffices to establish

the reverse inequality. By the previous lemma we have for N = 2k − 2d + y that
V(N) ≤ k − 2k−2d−y

N + N−y
N · 1

2d which is bounded by k − 2k−y
N + 2d

N + 1
2d . In

particular if we put N + 1 = 2k(1 + x) then

c(N) = lg(N + 1) − V(N) ≥ lg(1 + x) +
2k − y

N
− 2d

N
− 1

2d

Now we may let d go to infinity while being much smaller than k, so we can see to
it that 2d

N − 1
2d is arbitrarily small. Furthermore, as N = 2k−2d−y = 2k(1+x)−1

it follows that asymptotically, 2k−y
N = 2k−2kx

N = 1−x
1+x .

3 Solving Dresher’s Guessing Game by Backward
Induction

Dresher’s game is a zero-sum finite game, so it can be solved by linear program-
ming. Unfortunately, the matrix of the game is of dimension N × c(N), where
c(N) denotes the N -th Catalan number, see [16]. Johnson pointed out that the
size of the matrix can be reduced somewhat by symmetry considerations, but
this only allowed a solution of the game up to N = 11. The twelfth Catalan num-
ber is equal to 208012 and since it roughly quadruples with each increment of
N , storing the entire matrix quickly becomes infeasible. Therefore, the simplex
algorithm can only be used to solve the game for very small values of N . In each
iteration of the simplex algorithm, the matrix of the game (the tableau) is used
only once, to determine a certain column vector, see [8, chapter 2.8]. Our main
idea is to compute this column by backward induction rather than to determine
it from the matrix. In this way, we circumvent the problem of storing the matrix
in a way that has some similarity to the implicit tableaux representation that is
known from linear programming [7].

The solution of the storage problem does not solve all our computational
problems. We also need to deal with the computational time. It is a well known
fact that the simplex method often produces the solution in a relatively short
computational time, but for Dresher’s guessing game it does not. It turns out
that the computational time gets problematic if N is close to a power of 2. We
are able to push the computations to 256. It is perhaps possible to extend the
results to 512, but 1024 seems to be infeasible.
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We briefly recall the simplex method in terms of Dresher’s guessing game. It
starts with a selection of pure strategies γ for Bob (the base). Let V denote the
value of the game if Bob uses only pure strategies in the base and let α be an
optimal strategy for Alice in this game. Now check the tableau to see if there is
a pure strategy γ′ outside the base that has payoff less than V against α. If such
a γ′ exists then it is brought in the base and some other strategy is removed
from the base. This procedure is iterated until no such γ′ exists, and then the
game is solved. In our approach, instead of checking the tableau we compute the
optimal pure strategy γ′ by dynamic programming.

Theorem 4. Suppose Alice uses a mixed strategy α, in which she chooses the
secret number i with probability αi. It is possible to construct an optimal binary
search tree against α in time O(N3).

This theorem also follows from a result of Gottinger, but we include a proof to
keep our paper self-contained. A fully worked out example of how to construct
the optimal tree can be found in [13]. We introduce some notation. First observe
that a binary search tree τ on {1, . . . , N} can be represented by an N -dimensional
vector, in which the i-th entry of the vector is equal to the number of guesses
if the secret number is equal to i. If Alice uses the mixed strategy α and if
Bob uses the pure strategy τ , then the average payoff for Alice is equal to the
inner product α · τ . By τm,n we denote a binary search tree on a subinterval
{m, . . . , n} ⊂ {1, . . . , N}. We represent this by an N -dimensional vector which
has entries equal to zero for all coordinates that lie outside {m, . . . , n}. We
denote the inner product of this vector with α by

I(α, τm,n) = α · τm,n

and τm,n
� denotes the search tree on {m, . . . , n} that minimizes I(α, τm,n).

Each binary tree is a concatenation of two subtrees. If i is the top node (initial
guess) of the search tree τm,n, then we denote its concatenation by τm,n =
τm,i−1 ∗ τ i+1,n.

Lemma 6. τm,n
� = τm,i−1

� ∗ τ i+1,n
� for the i that minimizes I(α, τm,i−1

� ) +
I(α, τ i+1,n

� ).

Proof. Let τm,n = τm,i−1 ∗ τ i+1,n be a search tree with top node i. Then τm,n

uses one guess more than the subtrees it is concatenated from. So

I(α, τm,n) = I(α, τm,i−1) + I(α, τ i+1,n) +
n∑

j=m

αj .

If we minimize this expression we might as well minimize I(α, τm,i−1) +
I(α, τ i+1,n) since

∑n
j=m αj is constant. If i is fixed, then the minimum is

I(α, τm,i−1
� ) + I(α, τ i+1,n

� ), so the minimizing search tree with initial guess i
is τm,i−1

� ∗ τ i+1,n
� . Minimizing this expression over i gives the search tree τm,n

� .
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Bob’s best strategy against a given α is τ1,N
� , and we can construct this search

tree from the lemma combined with standard backward induction, as follows. In
the first stage we construct the trivial search trees τ i,i+1

� . At stage k the search
trees τ j,j′

� are known for all j′ − j ≤ k so we can construct the trees in stage
k + 1 from the recursion τ j,j+k+1

� = τ j,i−1
� ∗ τ i+1,k+1

� for the minimizing initial
guess i. During this backward induction we calculate and store each of the

(
N
2

)
search trees τm,n

� , minimizing over the m−n possible initial guesses. So we store
O(N3) numbers and we perform O(N3) computational operations. This proves
Theorem 4.

Now we have a dynamic pivoting rule all that remains is to decide how to start
the iteration. We choose the initial base from binary search trees that are optimal
against a uniform strategy, i.e., the coordinate sum is minimal for vectors in the
initial base.

V(1) := 1

For n = 2 to N do

Create the initial base B

Compute the maximin strategy α and the minimax

value V for B

Compute an optimal search tree τ against α
by backward induction

While α · τ < V do

{ Use the simplex method to compute the new maximin strategy

α for the matrix that consists of the base plus τ

Determine the exit strategy and delete it from the matrix

Compute an optimal search tree τ against α
by backward induction }

V(n) := V

End

This algorithm has been stylized. If many simplex iterations are necessary,
computing an optimal search tree gets expensive and it is faster to first check a
limited tableau. In our implementation of the algorithm, we have kept a tableau
with a number of O(N2) strategies. In this way we were able to compute the
value of the game for N up to 256. The running time to solve the game for N
close to 256 is less than 10 minutes on a standard PC (which should be compared
to a running time of just a few seconds if N is close to 128). We were unable
to push the computations further. The size of the denominator of V(N) grows
out of bounds for N close to 512 and so does the number of iterations in our
algorithm.

We have given the values of the game for N up to 128 in Table 1, the horizontal
lines mark intervals N ∈ {2k + 1, 2k+1}. The values are rational since the game
matrix is integral. The main point of the table is to illustrate that most values
have a denominator in the order of N , but the denominator increases enormously
if N gets close to a power of 2. For instance, if N = 251 then the value is equal to

2653606537964276651250932106041188553416146356322201
377369110180801532676167953580145041664055784123701
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N The Value V(N) of Dresher’s Game for N up to 128
1 1

1
3
2

9
5

2
1

5 20
9

12
5

23
9

27
10

9 31
11

35
12

187
62

1461
470

13 485
152

105
32

64
19

69
20

17 67
19

18
5

11
3

41
11

21 87
23

23
6

97
25

828
211

25 251175
63263

497650
123921

1582733
389951

480083
117046

29 3070955
741068

139927
33424

1253
296

1301
304

33 160
37

83
19

172
39

89
20

37 184
41

181
40

187
41

193
42

41 199
43

205
44

211
45

217
46

45 223
47

229
48

235
49

241
50

49 247
51

253
52

259
53

265
54

53 4076077
826967

5237399
1057922

55264235
11114897

3182554958
637292171

57 59930431
11950417

254940390977
50627775548

31796690703
6289080647

19469426589
3834724061

61 213640459389
41899765276

9192388161626
1794817610931

6806273
1322808

24915686
4820115

65 3703207
713160

3005
576

3061
584

3117
592

69 3173
600

3229
608

16
3

407
76

73 414
77

421
78

428
79

87
16

77 442
81

449
82

456
83

226
41

81 459
83

233
42

473
85

240
43

85 487
87

247
44

501
89

254
45

89 515
91

261
46

529
93

268
47

93 543
95

275
48

557
97

282
49

97 571
99

289
50

585
101

296
51

101 599
103

303
52

613
105

310
53

105 627
107

317
54

641
109

324
55

109 655
111

331
56

4720404
797257

4772379
804682

113 6533365607
1099683133

624907679549
104999048928

15191361638693
2548070672237

933518431166878
156305742679021

117 890616555658797
148864689372670

3790942584863081
632555273084809

6368077431428515
1060780090005299

52251006866784367
8689353905934113

121 350522565225630693340
58195450128986386161

18531122130814356325
3071476888881169472

37737845252852974863304387
6243960521484445452935245

22403327656993869010932034000
3700094158988790389215103839

125 108542390919612237498861415
17893615352566479630312496

2999644851370377796039135
493579475040285548610451

60987584076276076450
10015887812188091893

455919048640
74724658201

Even if it is possible to find an explicit formula for the value of the game, then
the size of the numerator and the denominator indicates that such a formula
will be very complicated. It is possible, however, to find formulas that hold for a
substantial part of the numbers N . Many values are equal to (k+1)(N+5)−2k+1−4

N+4

or (k+1)(N+3)−2k+1−1
N+2 . It may be possible to obtain an explicit solution of the

game for numbers N that are not close to a power of two.

Since we have computed the game for N ≤ 256, we can determine the functions
ck from section 2 for k ≤ 7. Since ck converges to c∞ monotonically, for N ≥ 256
we have that

c7(x) ≤ log(N + 1) − V(N) ≤ c∞(x).

The graph of c∞(x)−c7(x) is depicted in the figure below. Its maximum is < 0.1
and so we have the following result.

Theorem 5. lg(1 + x) + 1−x
1+x − 0.1 < lg(N + 1) − V(N) < lg(1 + x) + 1−x

1+x , for
N ≥ 256.

3.1 Brief Remarks on Alice’s Optimal Strategy

So far we have not discussed optimal strategies of the player. We conclude our
exposition with some very brief comments on Alice’s optimal strategies. In equa-
tion 2 we found that Alice’s average payoff is equal to E(N) = k+1+ k+2−2k+1

N if
she chooses a secret number equiprobably. It follows from our asymptotic formula
for the value of the game that limN→∞ V(N) − E(N) = 0. Since V(N) − E(N)
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Fig. 1. The graph of c∞(x) − c7(x)
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Fig. 2. V(N) − E(N)

converges to zero, one could say that the equiprobable strategy is ‘asymptotically
optimal’. In the figure below we have depicted V(N) − E(N) on a logarithmic
scale for N ≤ 256, demonstrating that this difference is relatively large if N is
close to a power of two, but also showing that the absolute difference is rather
small and in the order of 0.01 once N > 100.

By saying that the equiprobable strategy is ‘asymptotically optimal’, we do
not mean that Alice’s optimal strategy converges to the uniform distribution
as N goes to infinity. Indeed, that is not true. Gilbert [12] conjectured that
Alice ought to avoid the secret numbers N/2 as well as N/4 and 3N/4 and the
like. This seems to be true if N is close to a power of two, as illustrated in the
figure below, which depicts Alice’s optimal strategy for N = 249. However, if
N is ‘in between’ powers of two, then Alice plays almost equiprobably: only the
secret numbers 1, 2, N − 1, N get a slightly enlarged probability mass - all other
numbers are equiprobable.

Johnson [15] made the following conjectures for Alice’s optimal strategies for
N > 4:

1. The probability that Alice’s secret number is 1 is equal to the probability
that the secret number is 2 or 3.
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Fig. 3. Probability mass of Alice’s optimal strategy for N = 251

2. The probability that Alice’s secret number is 1 is twice the probability that
the secret number is 2.

The second conjecture turns out to be wrong for N = 13 already, but our nu-
merical results confirm the other conjecture. However, we are unable to prove it.
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Abstract. Security games are characterized by multiple players who
strategically adjust their defenses against an abstract attacker, repre-
sented by realizations of nature. The defense strategies include both ac-
tions where security generates positive externalities and actions that do
not. When the players are assumed to be risk averse, market insurance
enters as a third strategic option. We formulate a one-shot security game
with market insurance, characterize its pure equilibria, and describe how
the equilibria compare to established results. Simplifying assumptions
include homogeneous players, fair insurance premiums, and complete in-
formation except for realizations of nature. The results add more realism
to the interpretation of analytical models of security games and might
inform policy makers on adjusting incentives to improve network security
and foster the development of a market for cyber-insurance.

Keywords: Game theory, Security, Externalities, Protection,
Self-insurance, Market insurance.

1 Introduction

It is widely accepted that network security has properties of a public good. A
series of works on security games has led to a set of formal tools to analyze
the provision of network security by individual agents who control nodes on the
network. One distinctive feature of this work over the traditional literature on
the provisioning of public goods is the distinction of two types of security tech-
nologies, protection, which exhibits externalities, and self-insurance, which does
not. This combination frames network security as a hybrid between a public and
a private good, modulated by the relative costs of the two security technologies.

Another distinctive feature of network security over other public goods prob-
lems is the existence of uncertainty. An agent’s security investment at present
only pays off if an attack occurs in a future state of the world. In the existing
body of literature, this uncertainty is treated by considering the expected loss
as decision variable, largely for the sake of tractability. By contrast, decision
science has a rich variety of more realistic models of human and organizational
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decision making under uncertainty. One key concept is the notion of risk aver-
sion, typically expressed in a concave utility function. Introducing risk aversion
into security games and revisiting the equilibrium strategies is interesting of its
own. Even more so because risk aversion naturally leads to a third strategic op-
tion, namely agents seeking market insurance as a means to transfer the financial
risk of uncertain future outcomes.

The question of market insurance for network security has attracted the at-
tention of practitioners, policy makers, and researchers who contributed to a
meanwhile sizable body of literature on cyber-insurance.

This paper, to the best of our knowledge for the first time, tries to merge
the two streams of research and formally analyzes security games with optional
market insurance. To do so, we extend the basic setup of security games with
complete information—except for the uncertainty of future states—by a utility
function with risk aversion. We discuss this case as an intermediate result before
we advance to the analysis of market insurance. The analysis here focuses on
the existence of an insurance market, an unanswered question that is relevant to
inform policy makers on endeavors to bootstrap a market for cyber-insurance for
their assumed positive effects on other frictions to network security not captured
by our present formal model, such as information asymmetries and negligence.

This paper is organized as follows: Section 2 recalls the broader context of
security games and cyber-insurance within the field of economics of information
security. Section 3 presents our model, which is then analyzed in Section 4. The
final Section 5 wraps up with discussion and conclusion.

2 Background

An increasing amount of evidence about the economic and technical underpin-
nings of cybercrime highlight the need for thorough security measures. A growing
number of specialized measurement studies demonstrate the professionalism of
miscreants concerning a variety of nefarious business models. For example, Holz
et al. [14] document the elicit trade with payment credentials that have been
previously stolen through keylogging malware. Even relatively benign activities
such as spam distribution now depend on sophisticated infrastructures existing
in the form of botnets and their command-and-control centers [15,21].

The devastating success of these threats frequently depends on interdepen-
dencies in computer networks that inhibit the deployment of effective counter-
measures. For example, botnets as vehicles behind almost all volume crime on
the internet can only exist because some nodes connected to the network apply
lower-than-optimal security standards. Similarly, for targeted attacks, a single
breach of a corporate perimeter may allow an attacker to harvest resources from
all machines located within its confines.

To better understand the implications of these interdependencies for individ-
ual defenders, Varian [22] conducted an analysis of system reliability within a
public goods game-theoretical framework. He discusses the best effort, weakest-
link, and total effort games, as originally analyzed by Hirshleifer [12]. In Varian’s
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model, security investments take the form of protection effort (e. g., patching
system vulnerabilities) where aggregate investments have a decreasing marginal
contribution to network security. Further, the security of an individual defender
depends on her own effort and on the contributions by all her peers.

Grossklags et al. extend this framework by treating security as a hybrid be-
tween public and private goods. This is highly interesting because the character-
istic as a public or private good is not only determined by the available technol-
ogy (i. e., its cost) and the architecture of the network (i. e., the functional form
of interdependencies). Moreover, individual agents decide strategically on how
to split their security investments between protection and self-insurance [7,8].
Self-insurance only affects the investing defender directly, and is consequently
a private good (e. g., having good backups). This is different to Ehrlich and
Becker’s [6] terminology, who use self-insurance to denote loss protection, i. e.,
reduction of the size of the loss, and protection to denote loss prevention, i. e., re-
duction of the probability of loss, without differentiating between characteristics
of private and public goods. In a more general setting without the distinction
between private and public components, both reduce to shifting probability mass
in the loss distribution function.1 Unlike Varian [22], Grossklags et al. [7] assume
both investment variables to have constant marginal impact across the range of
investment opportunities (subject to interdependencies).

Computer security research has been effective in contributing to a better
understanding of the uncertainties resulting from attackers’ actions. However,
this progress in measuring relevant parameters (e. g., attacker intent and attack
probabilities) is only partially helpful to understand responders’ actions. In par-
ticular, we need to have a better grasp of how these factors are perceived by
defenders and translated into investment decisions. From behavioral research, it
is well-understood that individuals exhibit different risk-coping mechanisms that
may depend on a variety of factors (e. g., the amount at stake). Unfortunately,
it is rarely the case that risk perception and resulting actions are perfectly in
congruence (i. e., risk neutrality).

In fact, for a wide variety of risk scenarios individuals’ actions demonstrate
risk aversion [11]. Under this behavioral assumption and in the presence of uncer-
tainty, the expected utility of wealth is less than the utility of expected wealth,
where the expectations are taken over all possible outcomes of the random fu-
ture state. To the best of our knowledge there exists no previous work that
studies risk-averse agents’ decision making in the presence of multiple security
investment options (i. e., protection and self-insurance).

In the absence of regulation, institutional behavior is typically more aligned
with risk-neutral decision-making, whereas individual decision makers’ actions
are typically consistent with risk-aversion. Risk aversion and contracts are the

1 The term self-insurance in the sense of loss protection has also been used by Böhme
and Kataria [4] in the context of cyber-insurance describing the option of a single
decision maker who operates a large number of computing resources to achieve risk
balancing within its own pool of resources rather than joining a risk pool on the
insurance market.
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only prerequisites for market insurance. More specifically, insurers are offering
contracts to risk-averse agents, the insureds.2 This risk-pooling should decrease
the variance of losses and thereby increase overall welfare [16].

In practice, a number of obstacles have prevented the market for cyber-
insurance from achieving maturity. Absence of reliable actuarial data to compute
insurance premiums, lack of awareness among decision-makers contributing to
too little demand, as well as legal and procedural hurdles have been identified
in the “first generation” of cyber-insurance literature until about 2005 [3]. The
latter aspect may cause frustration when claiming compensation for damages.
Further, entities considering insurance must undergo a series of often invasive se-
curity evaluation procedures, revealing their IT infrastructures and policies [1,9].
Meanwhile, witnessing thousands of vulnerabilities, millions of attacks, and sub-
stantial improvement in defining security standards and computer forensics calls
into question the validity of these factors to causally explain the lack of an insur-
ance market. Consequently, a “second generation” of cyber-insurance literature
emerged. Its authors link the market failure with fundamental properties of in-
formation technology, specifically correlated risk [2], information asymmetries
between insurers and insureds [20], and interdependencies [18,20]. So far, these
obstacles have been studied independent of the hybrid private–public good char-
acteristic of network security. Our contribution in this paper is to marry both
streams of research and characterize equilibria in a basic model of a security
game with market insurance. To keep things tractable, we do not consider cor-
related risk and we remain in a regime of complete information except for the
realization of future losses—see Böhme and Schwartz [5] for a discussion of the
validity and implications of these conventions.

3 Model

We devise a stylized game-theoretic model with the intention to focus on the
analysis of symmetric equilibria. Occam’s razor was adjusted to emphasize the
introduction of risk aversion and the option to obtain market insurance at en-
dogenous but fair premiums. To that end, defenders act as players, attackers as
nature, and insurers as mechanism, i. e., price-takers with perfect information
about the players’ actions.

3.1 Baseline Security Game

The baseline game includes neither risk aversion nor market insurance. Formally,
the base model from which we develop our security games has the following payoff
structure. Each of N ∈ N players has an initial wealth M0. If a given player is
2 There are situations where the purchase of insurance might serve as a strategic tool to

achieve another purpose. For example, insureds can more credibly threaten with risky
behaviors [17]. The purchase of insurance might also help to quell a stakeholder’s
fear, uncertainty, and doubt after a security breach. See, for example, banks’ offers
of identity theft insurance plans with a free trial period after large-scale data thefts.
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attacked and compromised successfully she faces a loss L. Attacks arrive with an
exogenous probability of p (0 ≤ p ≤ 1). Players have two security actions at their
disposition. Player i chooses a protection level 0 ≤ ei ≤ 1 and a self-insurance
level 0 ≤ si ≤ 1. Finally, b ≥ 0 and c ≥ 0 denote the unit cost of protection and
self-insurance, respectively.

The post-event wealth function has the following structure:

M1(si, ei; b, c, M0) = M0(1 − q · L · (1 − si) − bei − csi) (1)

where q ∈ {0, 1} is the realization of a random variable indicating loss (q = 1)
and no loss (q = 0). The probability of loss is endogenous and depends on the
probability of attack p scaled by the protection effort H(ei, e−i). H : RN �→ [0, 1]
is a contribution function aggregating the protection efforts of player i and all
other players (denoted by suffix −i). H is monotonically increasing in all its
parameters, thereby ensuring that protection generates positive externalities. For
the analysis in this paper, we focus on the restricted case in which H describes
a weakest link externality, i.e. H(ei, e−i) = min{e1, . . . , eN}.

The final utility is mapped to the utility domain by u = U(M1). As the players
maximize expected utility, the combined payoff function of the baseline security
game is

E(ui) = p(1 − H(ei, e−i)) · U(M0(1 − L · (1 − si) − bei − csi))
+ (1 − p(1 − H(ei, e−i))) · U(M0(1 − bei − csi)). (2)

Post-event wealth is divided into two cases depending on whether a loss occurs
or not. In the bad case, new wealth is M1 = M0(1 − L · (1 − si) − bei − csi). In
the good case, new wealth is M1 = M0(1 − bei − csi).

3.2 Risk Aversion

Risk aversion is introduced by transforming wealth M1 to utility U(M1) using a
concave function of type CRRA3,

U(M) =

{
M1−σ

1−σ if σ > 0, σ �= 1
log(M) if σ = 1,

(3)

so that U ′(x) = x−σ. σ > 0 is the degree of risk aversion, an exogenous parameter
fixed to σ = 1 unless otherwise stated. The choice of the CRRA type is convenient
because it allows us to derive conclusions that are independent of the initial
wealth. This choice also follows established conventions in the cyber-insurance
literature (e. g., [2,20]), although CARA-type4 utility functions can be found as
well [18]. Other researchers are agnostic about the shape of the utility function
and just require concavity and twice differentiability [13].

3 CRRA = constant relative risk aversion [19].
4 CARA = constant absolute risk aversion.
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3.3 Market Insurance

By augmenting the baseline security game with optional market insurance, play-
ers will receive an insurance payment, 0 ≤ xi ≤ 1, when a security compromise
occurs and they have previously purchased insurance. We assume that agents
cannot be overcompensated for losses through a combination of self-insurance
and market insurance, i. e., xi + si ≤ 1. This reflects the principle of indemnity
prevalent in the insurance industry. The cost of market insurance, π, is per-
fectly related to the loss probability and the potential loss in a market with a
risk-neutral non-profit insurer who manages a pool of infinitely many homoge-
neous and independent risks, π = Lp · (1 − H(ei, e−i)). However, every realistic
(for-profit) insurer would require π > Lp · (1 − H(ei, e−i)).

In the presence of market insurance Equation 2 becomes:

E(ui) = p(1 − H(ei, e−i)) · U(M0(1 − L · (1 − si) − bei − csi + xi(1 − π)))
+ (1 − p(1 − H(ei, e−i))) · U(M0(1 − bei − csi − πxi)). (4)

Now, in the bad case, new wealth is M1 = M0(1−L·(1−si)−bei−csi−πxi+xi)).
In the good case, new wealth is M1 = M0(1 − bei − csi − πxi).

3.4 Simplifications

To keep the number of parameters manageable, we assume that b, c ≤ L = 1, and
that, since decisions made on the basis of a CRRA utility function are invariant
under multiplicative factors, M0 can be eliminated. Table 1 in the appendix
summarizes all symbols used in our model.

3.5 Payoff Dominance

Theorem 1. E[ui] is bounded above by max{1− b, 1− c, 1− π, 1− p}. Further-
more, the dominance is strict unless ei ∈ {0, 1}.

The theorem relies only on the affine structure of our wealth function, together
with U being increasing and concave up; a full proof is in the appendix. We
use this theorem to help isolate Nash equilibria. If the payoff of each player in
a homogeneous strategy achieves the maximizing bound from the theorem, we
may conclude that the strategy configuration is a Nash equilibrium.

Conversely, if a strategy configuration results in a utility for some player
not conforming to one of the outcomes from the theorem, the only way this
configuration can be an equilibrium is if at least one of the outcomes from the
theorem is not possible to achieve. This observation can be strengthened by the
following corollary.

Corollary 1. In any hybrid equilibrium where there is a non-zero partial pro-
tection investment, the utility of each player is strictly less than max{U(1 −
p), U(1 − b), U(1 − c), U(1 − π))}.

A proof of the corollary is also in the appendix.
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4 Analysis

4.1 Base Model

We begin by briefly reviewing the equilibrium results from the base model (see
[10]).

1. Protection equilibria
If b < p and b < c, then (ei, si) = (e0, 0) (protection at level e0) is a
symmetric Nash equilibrium for any e0 between p−c

p−b and 1.
2. Self-insurance equilibria

If c < p then (ei, si) = (0, 1) (full self-insurance) is a symmetric Nash equi-
librium.

3. Passivity equilibria
If p < c, then (ei, si) = (0, 0) (passivity) is a symmetric Nash equilibrium.

The above are the only symmetric Nash equilibria for this game. Note that
with the exception of partial protection equilibria, all equilibrium strategies are
corner strategies. Among all protection equilibrium strategies, the strategy in
which each player invests in full protection is Pareto-dominant.

4.2 Base Model with Risk Aversion

Incorporating risk aversion into the base model induces some changes. When the
risk-aversion is positive, players have a strong aversion to very low wealth. In
fact, for risk aversion coefficients σ ≥1, the prospect of having zero wealth results
in an infinitely negative utility.5 The consequence is that players are no longer
satisfied with any strategy in which there is the remote chance of obtaining a
non-positive wealth.

We find four distinct types of symmetric Nash equilibrium in the base model
supplemented by risk aversion, with σ = 1.

1. Full protection equilibria
If b < p and b < c, then (ei, si) = (1, 0) (full protection) is a symmetric Nash
equilibrium.

2. Full self-insurance equilibria
If c ≤ p then (ei, si) = (0, 1) (full self-insurance) is a symmetric Nash equi-
librium.

3. Partial self-insurance equilibria
If p < c, then (ei, si) =

(
0, p

c

)
(partial self-insurance at the indicated level)

is a symmetric Nash equilibrium.

5 For 0 < σ < 1 players’ utility at zero wealth is finite, but the derivative of utility
tends to infinity as wealth approaches zero, so players still have an infinite aversion
to retaining a non-positive wealth.
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4. Combined protection and self-insurance equilibria
If p ≤ c, there exists a sufficiently small b such that for any choice of e0 < 1−c

b ,

(ei, si) =
(
e0,

p(1−e0)
c + be0(c−p(1−e0))

c(1−c)

)
(partial protection with partial self-

insurance) is a symmetric Nash equilibrium.

An algebraic expression for the maximum b to make this work is difficult to
produce (and in fact may not exist), but the existence of b itself follows from the
utility function U being differentiable on positive inputs. In the resulting hybrid
equilibrium, every player would prefer to invest in full protection because the
cost is cheap, but due to the interdependencies inherent in the weakest link game,
the maximum investment in protection cannot be set unilaterally, so players are
forced to make up for the resulting probability of loss by obtaining self-insurance.
If the incentives are such that full self-insurance is desirable, then the incentive to
protect will not remain. But if incentives are such that only partial self-insurance
is desirable (and if b is sufficiently small), then the configuration with both types
of investments is an equilibrium.

Note that passivity is never an equilibrium for any σ ≥ 0, because in such cases
players have an infinitely-strong aversion to any non-zero chance of retaining zero
wealth.

4.3 Base Model with Risk Aversion and Market Insurance

When we incorporate market insurance, we arrive at more changes. The existence
of market insurance ensures that no partial self-insurance investment is optimal.
Such partial investments were only possible in the event p < c. But if p < c
and market insurance is available, then market insurance is always preferable
to self-insurance. Even if the reverse inequality holds, it is possible for market
insurance to be preferable to self-insurance if there is also a partial protection
investment.

1. Full market insurance
If p ≤ c then (ei, si, xi) = (0, 0, 1) (full market insurance) is a symmetric
Nash equilibrium.

2. Full self-insurance
If c ≤ p, then (ei, si, xi) = (0, 1, 0) (full self-insurance) is a symmetric Nash
equilibrium.

3. Full protection
If b ≤ min{c, p}, then (ei, si, xi) = (1, 0, 0) (full protection) is a symmetric
Nash equilibrium.

4. Partial market insurance and partial self-insurance
If c = p, then for any x0, s0 with s0 + x0 = 1, (ei, si, xi) = (0, s0, x0) is a
symmetric Nash equilibrium.

5. Partial protection and full market insurance
If b ≤ p and be0 + p(1 − e0) < c, then (ei, si, xi) = (e0, 0, 1) is a symmetric
Nash equilibrium.
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market
insurance

self-
insurance

protection

c = p

full market and
partial protection at
level e0 if b ≤ p and
be0 + p(1 − e0) < c

full if c ≤ pfull if b ≤ min{c, p}

impossible

full if p ≤ c

impossible

Fig. 1. Overview of feasible symmetric equilibria and corresponding conditions

The last case illustrates an instance in which the availability of market in-
surance has a positive effect on protection investment. In the same parameter
configuration without availability of market insurance, individuals would instead
be forced to turn to self-insurance to mitigate against the existing risk. If the
additional (compatible) condition c < p is added, then the incentive structure
is such that players would prefer to defect to a full self-insurance strategy, and
neglect any protection investment.

Figure 1 shows the equilibrium conditions for the case with risk aversion and
market insurance.

5 Discussion

In the base model, we find that agents can only with difficulty coordinate on an
equilibrium with full protection effort. In particular, the availability of alterna-
tive prevention equilibria at e0 < 1 may function to disincentivize defenders to
have faith in successful collective preventive actions. As a result, mitigation in
the form of full self-insurance may appear more appealing. As risk-neutral deci-
sion makers, the agents refrain from security investments when the costs exceed
potential losses (see passivity region in Figure 2.a).

Introducing risk aversion for the defender population serves to eliminate the
inefficient partial protection equilibria. Further, complete inaction in the form of
passivity equilibria disappears. Risk-averse decision makers are willing to invest
in security measures costing more than expected losses (see equilibrium strategies
for values larger than pL = p = 0.5 in Figure 2.b). For example, agents may
select a partial self-insurance investment at a fixed level (i. e., p

c ) when the cost
of self-insurance exceeds expected losses.
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risk aversion and market insurance



Security Games with Market Insurance 127

In contrast to the base model, we find that equilibria with a joint investment
in protection and self-insurance may exist. These outcomes are a more adequate
description of reality where a joint defense consisting of prevention and mitiga-
tion is common.

The equilibrium conditions including the market insurance option are depicted
in Figures 3.a and 3.b. The presence of this third defense strategy serves to clarify
the boundaries between the three different defense options. That is, for the most
part specific parameter values directly dictate the optimal strategy. Full market
insurance, full self-insurance and full protection split the parameter space. How-
ever, we observe a hybrid strategy with complementary full market insurance and
partial protection investments competing with the full protection equilibrium.
Our analysis finds that the hybrid option is payoff-inferior, but might neverthe-
less be chosen for managerial reasons or inherent unpredictabilities of protection
options. Otherwise, full market insurance should only be selected when it is
cheaper than both alternative options.

On a more abstract level, our analysis of security games with market insurance
can be summarized in three key observations. First, market insurance equilibria
exist, and all of them involve full insurance coverage. Second, market insurance
is more prevalent for risks with small probability of occurrence. Third, (full)
market insurance is a substitute for (expensive) self-insurance technologies, but
complementary to (partial and cheap) protection mechanisms.

This leads us to the discussion of limitations of our model and possible exten-
sions. The observation that market insurance responds in a complex manner to
the relative cost of protection and self-insurance suggests further investigations
are fruitful to account for non-linear cost functions. I.e., protection and self-
insurance are likely to exhibit decreasing marginal returns in several scenarios
— unlike market insurance which scales linearly as long as the risk is small (and
uncorrelated) relative to the pool. The combined equilibrium of partial protec-
tion and full market insurance depends on the assumption that the insurer has
perfect information about the insureds’ protection efforts. If this assumption is
relaxed, the arguments made by Shetty et al. for the case without self-insurance
must be adapted to our security game [20].

Further investigations are needed for the case when insurers charge a strictly
positive markup. This will introduce a “gap” of partial market and self-insurance
and push the region with full market insurance further to the upper-right cor-
ner in Fig. 3. Strictly positive markups are more realistic for various reasons:
insurance markets are not fully competitive, regulation requires insurers to be
risk-averse, and network risks are often not only independent but correlated as
well [5]. Risk correlation leads to longer right tails in the cumulative loss dis-
tribution and requires risk-averse insurers to set aside additional safety capital.
The cost of this capital has to be added to the fair insurance premium.

To sum up, this paper closes a research gap by modeling network security
investments that account for the choice between the hybrid goods of collective
protection and individual mitigation and externally provided market insurance.
To this end, we have characterized the equilibria of security games with risk
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aversion, and security games with risk aversion and market insurance. Overall,
as several equilibria with full market insurance exist, market insurance has a
place in security games. Moreover, it seems that the missing market problem for
cyber-insurance is at least not exacerbated if the agents have a choice between
protection and self-insurance.
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Appendix

Table 1. List of Symbols

Symbol Type Meaning Constraints

b parameter cost of protection 0 < b ≤ 1
c parameter cost of self-insurance 0 < c ≤ 1
ei choice variable level of player i’s protection
E operator expected value (over loss realization)
H function protection contribution function
L constant size of the loss L = 1

M0 constant initial wealth eliminated
M1 variable ex-post wealth
N parameter number of players N > 1
p parameter probability of loss
π variable cost of market insurance
q random variable realization of the loss q ∈ {0, 1}
si choice variable level of player i’s self-insurance si + xi ≤ 1
σ parameter risk aversion σ ≥ 0
ui variable player i’s utility
U function utility function
xi choice variable level of player i’s market insurance si + xi ≤ 1
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A Proof of Theorem 1

Proof. Assume that player strategies comprise a symmetric Nash equilibrium.
Let e, s, x be the homogeneous protection, self-insurance, and market insurance
investments, respectively. Then, we can write the expected utility of player i as

E[ui] = p(1−e) · U(s+x−be−cs− πx)) + (1 − p(1 − e)) · U(1 − be − cs − πx)
≤ U(p(1 − e) · (s+ x−be− cs − πx))+ (1− p(1− e)) · (1 − be − cs − πx))
= U(p(1 − e)(s + x) + p(1 − e)(−be − cs − πx)
+ (1 − p(1 − e) + (1 − p(1 − e))(−be − cs − πx))
= U(p(1 − e)(s + x) + (−be − cs − πx) + 1 − p(1 − e))
= U(ps + px − pes − pex − be − cs − πx + 1 − p + pe)
= U(1 − p + e(p − b) + x(p − π) + s(p − c) − ep(s + x)).

Since U is increasing we can maximize the last formula in the derivation above
by choosing e, s, x to maximize the quantity inside the U function.

Excluding the last term, that formula is linear; and the last term is strictly
negative whenever at least one of e or s + x is positive. So the choice if e, s, x to
maximize the formula can be easily determined from min{p, b, c, π} – namely, we
choose (e, s, x) = (0, 0, 0) if p is the minimum, resulting in utility U(1 − p); we
choose (e, s, x) = (1, 0, 0) if b is the smallest, obtaining utility U(1−b); we choose
(e, s, x) = (0, 1, 0) if c is the least obtaining utility U(1 − c); and if π is the min
we choose (e, s, x) = (0, 0, 1), obtaining utility U(1 − π). If there are equalities
among terms, then the proper choice of e, s, x to maximize the formula is not
uniquely determined, but there is nothing about equality that would change the
final utility. We conclude that for any choice of e, s, x, the expected utility of
each player E[ui] cannot exceed max{U(1 − p), U(1 − b), U(1 − c), U(1 − π)}.

For the strictness result, observe that the inequality in the second step follows
from the fact that U is concave down. The only time that inequality is an equality
is when one of the scaling factors p(1 − e) or 1 − p(1 − e) is zero. Since we have
assumed p > 0, the only way to have equality is if e ∈ {0, 1}.

B Proof of Corollary 1

Proof. For the corollary, we first note that in any hybrid equilibrium in which
there is a partial protection investment, we must necessarily have min{b, p} <
min{c, π}. Otherwise, any player could unilaterally make an investment in full
self-insurance or full market insurance and achieve the maximum bound from the
theorem, which would necessarily be an improvement due to the strict inequality.
Hence one of p or b minimizes {p, b, c, π}. If p ≤ b, then setting e > 1 results in
the final term in the derivation above being less than U(1 − p). On the other
hand, if b ≤ p, then any investment e < 1 results in a final term in the above
derivation being strictly less than U(1 − b). [Investment in s or x (assuming
s + x ≤ 1) cannot make up for this, because the last term in the last formula
subtracts the advantage gained from the protection investment].
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Abstract. Recent works on Internet risk management have proposed
the idea of cyber-insurance to eliminate risks due to security threats,
which cannot be tackled through traditional means such as by using an-
tivirus and antivirus softwares. In reality, an Internet user faces risks due
to security attacks as well as risks due to non-security related failures
(e.g., reliability faults in the form of hardware crash, buffer overflow,
etc.). These risk types are often indistinguishable by a naive user. How-
ever, a cyber-insurance agency would most likely insure risks only due
to security attacks. In this case, it becomes a challenge for an Internet
user to choose the right type of cyber-insurance contract as traditional
optimal contracts, i.e., contracts for security attacks only, might prove
to be sub-optimal for himself.

In this paper, we address the problem of analyzing cyber-insurance
solutions when a user faces risks due to both, security as well as non-
security related failures. We propose Aegis, a simple and novel cyber-
insurance model in which the user accepts a fraction (strictly positive)
of loss recovery on himself and transfers rest of the loss recovery on the
cyber-insurance agency. We mathematically show that only under condi-
tions when buying cyber-insurance is mandatory, given an option, risk-
averse Internet users would prefer Aegis contracts to traditional cyber-
insurance contracts1, under all premium types. This result firmly es-
tablishes the non-existence of traditional cyber-insurance markets when
Aegis contracts are offered to users. We also derive an interesting coun-
terintuitive result related to the Aegis framework: we show that an in-
crease(decrease) in the premium of an Aegis contract may not always
lead to decrease(increase) in its user demand. In the process, we also
state the conditions under which the latter trend and its converse emerge.
Our work proposes a new model of cyber-insurance for Internet security
that extends all previous related models by accounting for the extra di-
mension of non-insurable risks. Aegis also incentivizes Internet users to
take up more personal responsibility for protecting their systems.
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1 Introduction

The Internet has become a fundamental and an integral part of our daily lives.
Billions of people nowadays are using the Internet for various types of applica-
tions. However, all these applications are running on a network, that was built
under assumptions, some of which are no longer valid for today’s applications,
e,g., that all users on the Internet can be trusted and that there are no malicious
elements propagating in the Internet. On the contrary, the infrastructure, the
users, and the services offered on the Internet today are all subject to a wide
variety of risks. These risks include denial of service attacks, intrusions of vari-
ous kinds, hacking, phishing, worms, viruses, spams, etc. In order to counter the
threats posed by the risks, Internet users2 have traditionally resorted to antivirus
and anti-spam softwares, firewalls, and other add-ons to reduce the likelihood of
being affected by threats. In practice, a large industry (companies like Syman-
tec, McAfee, etc.) as well as considerable research efforts are centered around
developing and deploying tools and techniques to detect threats and anomalies
in order to protect the Internet infrastructure and its users from the resulting
negative impact.

In the past one and half decade, protection techniques from a variety of com-
puter science fields such as cryptography, hardware engineering, and software
engineering have continually made improvements. Inspite of such improvements,
recent articles by Schneier [1] and Anderson [2][3] have stated that it is impos-
sible to achieve a 100% Internet security protection. The authors attribute this
impossibility primarily to four reasons:

– New viruses, worms, spams, and botnets evolve periodically at a rapid pace
and as a result it is extremely difficult and expensive to design a security
solution that is a panacea for all risks.

– The Internet is a distributed system, where the system users have divergent
security interests and incentives, leading to the problem of ‘misaligned in-
centives’ amongst users. For example, a rational Internet user might well
spend $20 to stop a virus trashing its hard disk, but would hardly have
any incentive to invest sufficient amounts in security solutions to prevent
a service-denial attack on a wealthy corporation like an Amazon or a Mi-
crosoft [4]. Thus, the problem of misaligned incentives can be resolved only
if liabilities are assigned to parties (users) that can best manage risk.

– The risks faced by Internet users are often correlated and interdependent.
A user taking protective action in an Internet like distributed system cre-
ates positive externalities [5] for other networked users that in turn may
discourage them from making appropriate security investments, leading to
the ‘free-riding’ problem [6][7][8][9].

– Network externalities affect the adoption of technology. Katz and Shapiro
[10] have determined that externalities lead to the classic S-shaped adoption
curve, according to which slow early adoption gives way to rapid deployment
once the number of users reaches a critical mass. The initial deployment is

2 The term ‘users’ may refer to both, individuals and organizations.
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subject to user benefits exceeding adoption costs, which occurs only if a min-
imum number of users adopt a technology; so everyone might wait for others
to go first, and the technology never gets deployed. For example DNSSEC,
and S-BGP are secure protocols that have been developed to better DNS
and BGP in terms of security performance. However, the challenge is getting
them deployed by providing sufficient internal benefits to adopting entities.

In view of the above mentioned inevitable barriers to 100% risk mitigation, the
need arises for alternative methods of risk management in the Internet. Anderson
and Moore [3] state that microeconomics, game theory, and psychology will play
as vital a role in effective risk management in the modern and future Internet, as
did the mathematics of cryptography a quarter century ago. In this regard, cyber-
insurance is a psycho-economic-driven risk-management technique, where risks
are transferred to a third party, i.e., an insurance company, in return for a fee, i.e.,
the insurance premium. The concept of cyber-insurance is growing in importance
amongst security engineers. The reason for this is three fold: (i) ideally, cyber-
insurance increases Internet safety because the insured increases self-defense as
a rational response to the reduction in insurance premium [11][12][13][14], a
fact that has also been mathematically proven by the authors in [15][16], (ii)
in the IT industry, the mindset of ‘absolute protection’ is slowly changing with
the realization that absolute security is impossible and too expensive to even
approach while adequate security is good enough to enable normal functions - the
rest of the risk that cannot be mitigated can be transferred to a third party [17],
and (iii) cyber-insurance will lead to a market solution that will be aligned with
economic incentives of cyber-insurers and users (individuals/organizations) - the
cyber-insurers will earn profit from appropriately pricing premiums, whereas
users will seek to hedge potential losses. In practice, users generally employ a
simultaneous combination of retaining, mitigating, and insuring risks [18].

Research Motivation: The concept of cyber-insurance as proposed in the se-
curity literature covers losses only due to security attacks. However, in reality,
security losses are not the only form of losses. Non-security losses (e.g., reliability
losses) form a major loss type, where a user suffers, either because of hardware
malfunction due to a manufacturing defect or a software failure (e.g., buffer
overflow caused by non-malicious programming or operational errors3)[19]. A
naive Internet user would not be able to distinguish between a security or a
non-security failure and might be at a disadvantage w.r.t. buying traditional
cyber-insurance contracts. That is, on facing a risk, the user would not know
whether the cause of the risk is a security attack or a non-security related fail-
ure4. The disadvantage is due to the fact that traditional cyber-insurance would
only cover those losses due to security attacks, whereas an Internet user may
incur a loss that occurs due to a non-security problem and not get covered for
3 A buffer overflow can also be caused by a malicious attack by hackers. Example of

such attacks include the Morris worm, Slapper worm, and Blaster worm attacks on
Windows PCs.

4 Irrespective of whether a loss due to a risk is because of a security attack or a
non-security failure, the effects felt by a user are the same in both cases.
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it5. In such cases, it is an interesting problem to investigate the demand for tra-
ditional cyber-insurance as it seems logical to believe that an Internet user might
not be in favor of transferring complete loss recovery liability to a cyber-insurer
as the former would would have to pay the premium and at the same time bear
the valuation of the loss on being affected by non-security related losses. In this
paper, we analyze the situation of Internet users buying cyber-insurance when
they face risks that may arise due to non-security failures or security attacks. We
propose an alternative model of cyber-insurance, i.e., Aegis, in this regard and
show that given an option between cyber-insurance and Aegis contracts, an In-
ternet user would always prefer the latter. We make the following contributions
in the paper.

1. We propose a novel6 model of cyber-insurance, Aegis, in which Internet users
need not transfer the total loss recovery liability to a cyber-insurer, and may
keep some liability to themselves, i.e., an Internet user may not transfer the
entire risk to an insurance company. Thus, as an example, an Internet user
may rest 80% of his loss recovery liability to a cyber-insurer and may want
to bear the remaining 20% on his own. Our model captures the realistic
scenario that Internet users could face risks from security attacks as well as
from non-security related failures. It is based on the concept of co-insurance
in the traditional insurance domain. (See Section 2.)

2. We mathematically show that when Internet users are risk-averse, Aegis con-
tracts are always the user preferred policies when compared to traditional
cyber-insurance contracts. In this regard, the latter result de-establishes a
market for traditional cyber-insurance. The availability of Aegis contracts
also incentivizes risk-averse Internet users to rest some loss coverage liability
upon themselves rather than shifting it all to a cyber-insurer. (See Section 3.)

5 We assume here that the loss covering agency can distinguish between both types
of losses and it does not find it suitable to cover losses due to hardware or software
malfunctions, as it feels that they should be the responsibility of the hardware and
software vendors (e.g., some computer service agencies in India employ experts who
could distinguish between the two loss types, and these experts may be hired by the
loss recovery agency also.).

6 Our cyber-insurance model is novel because we model partial insurance, whereas ex-
isting works related to traditional cyber-insurance model full and partial insurance
coverage but not partial insurance. The notion of partial insurance can be explained
as follows: in traditional cyber-insurance models, only the cyber-insurer has the say
on the amount of coverage it would provide to its clients and in turn the premiums
it would charge, whereas in the Aegis model, the clients get to decide on the frac-
tion of the total amount of advertised insurance coverage it wants and in turn the
proportional premiums it would pay, given an advertised contract. Thus, in tradi-
tional cyber-insurance, it is mandatory for users to accept the insurance policy in
full, whereas in the Aegis model users have the option of accepting the insurance
policy in partial.
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3. We mathematically show that a risk-averse Internet user would prefer cyber-
insurance of some type (Aegis or traditional) only if it is mandatory for him
to buy some kind of insurance, given that he faces risks due to both, security
as well as non-security failures. (See Section 3.)

4. We mathematically show the following counterintuitive results: (i) an in-
crease in the premium of an Aegis contract may not always lead to a decrease
in its user demand and (ii) a decrease in the premium of an Aegis contract
may not always lead to an increase in its user demand. In the process, we also
state the conditions under which these trends emerge. The conditions give
a guideline to cyber-insurers on how to increase or decrease their premiums
in order to increase user demands for cyber-insurance. (See Section 4.)

2 The Aegis Cyber-Insurance Model

We consider the scenario where an Internet user faces risks7 that arise due to
security attacks from worms, viruses, etc., as well as due to non-security related
failures. One example of non-security related problems arises due to reliability
faults. In a seminal paper [19], the authors identified operational and program-
ming errors, manufacturing problems of software and hardware vendors, and
buffer overflow as some examples of system reliability faults, which have effects
on Internet users that are identical to the effects when they are affected by cer-
tain security threats (e.g., buffer overflow due to a malicious attack). On facing
the negative effects, an Internet user in general cannot distinguish between the
loss type. In this paper, we assume that a loss occurs either due to a security at-
tack or a non-security related failure and not both, i.e., a unit of damage cannot
occur simultaneously due to a security and a non-security failure. For example,
a file or a part of it that has been damaged by a security attack cannot be
damaged by a non-security fault at the same time.

We assume that cyber-insurers8 offer Aegis contracts to their clients, Aegis
contracts unlike traditional insurance contracts allow the user to rest some frac-
tion of loss recovery liability upon itself. For example, if the value9 of a loss
incurred by an Internet user equals L, and the insurance coverage advertised by
an insurer equals L− d, where d ≥ 0, an Aegis contract would allow its client to
rest a fraction, 1 − θ, of the coverage on itself and the remaining θ part on the
cyber-insurer, whereas a traditional contract would fix the value of θ to 1. Our
concept of Aegis contracts are based on the theory of co-insurance in general
insurance literature. It is logical to believe that a user will not prefer a 1−θ value

7 A risk is defined as the chance that a user faces a certain amount of loss.
8 A cyber-insurer could be an ISP, a third-party agency, or the government.
9 In this paper, like in all of existing cyber-insurance literature, we assume that loss

and coverage have the same scalar unit. In reality, this may not be true. As an
example, losing a valuable file may not be compensated by replacing the same file.
In return, monetary compensation may result. Considering appropriate units of loss
and coverage is an area of future work.
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that is large as it would mean that it wants to rest a substantial loss recovery
liability on itself, thereby diminishing the importance of buying cyber-insurance.
We assume that the value of θ is fixed between the user and the cyber-insurer
prior to contract operation.

Most of our analysis in the paper will revolve around the final wealth of a risk-
averse Internet user who may be subject to risks due to both security attacks
and non-security related failures. We have the following equation regarding its
final wealth according to the Aegis concept:

W = w0 + v − LS − LNS + θ(I(LS) − P ), (1)

where W is a random variable representing the final wealth of a user, w0 + v
is his constant initial wealth, with v10 being the constant total value of the
object subject to loss as a result of a security attack or a non-security attack,
LS is a random variable denoting loss due to security attacks, LNS is the random
variable denoting loss due to non security related failures, andI(LS) is the cyber-
insurance function that decides the amount of coverage to be provided in the
event of a security-related loss, where 0 ≤ I(LS) ≤ LS . We assume that both
LS and LNS lie in the interval [0, v]. As mentioned previously, a given amount
of loss can be caused either by a security attack or a by a non-security fault and
not by both. In this sense the loss types are not independent but are negatively
correlated. P is the premium11 charged to users in insurable losses and is defined
as P = (1 + λ)E(I(LS)). λ is the loading factor and is zero for fair premiums
and greater than zero for unfair premiums. We define θ ε [0, 1] as the level of
cyber-insurance liability opted for by a user. For example, a value of θ = 0.6,
implies that the user transfers 60% of its insurance coverage liability to the
cyber-insurer and keeps the rest 40% of the coverage liability on himself, where
the insurance coverage could be either full or partial. We observe from Equation
(1) that depending on the liability level, a user pays proportional premiums to
the cyber-insurer.

We define the expected utility of final wealth12 of an Internet user as

E(W ) = A + B + C + D, (2)

where

A =
∫ ∫

0<LS≤v,LNS=0

u(w0+v−LS−LNS+θ(I(LS)−P ))·g(LS , LNS)dL1·dLNS ,

B=
∫ ∫

0<LNS≤V,LS=0

u(w0+v−LS−LNS+θ(I(LS)−P ))·g(LS , LNS)dLS ·dLNS ,

10 We divide the fixed initial wealth of a user into two parts for modeling simplicity.
11 P is the premium corresponding to a θ value of 1, where θ is the level of cyber-

insurance liability opted by a user.
12 In economic and risk analyses, dealing with the expected utility of final wealth is

a standard approach and it arises from the von Neumann-Morgenstern model of
expected utility [20].
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C =
∫ ∫

0<LS,0<LNS

u(w0+v−LS−LNS+θ(I(LS)−P ))·g(LS , LNS)dLS ·dLNS ,

and
D = β · u(w0 + v − θ · P ),

with A, B, C, and D being the components of expected utility of final wealth
when there is a loss due to a security attack only, a non-security related failure
only, a security attack as well as a non-security related failure, and no failure of
any kind, respectively. u is a twice continuously differentiable risk-averse concave
utility function of wealth of a user.

We define the joint probability density function, g(), of LS and LNS as

g(LS , LNS) =

⎧⎨⎩
α · fS(LS) 0 < LS ≤ v, LNS = 0

(1 − α − β) · fNS(LNS) 0 < LNS ≤ v, LS = 0,
0 0 < LS ≤ v, 0 < LNS ≤ v

(3)

where α is the probability13 of loss occurring due to a security attack, and
β is the probability of no attack due to either a security or a non security
attack. fS(LS) and fNS(LNS) are the univariate density functions of losses due
to a security attack and non security attack respectively. The joint probability
density function has three components: 1) the case where there is a loss only due
to a security attack, 2) the case when there is a loss only due to a non-security
related failure, and 3) the case when a loss occurs due to both types of risks.

Based on g(), Equation (1) can be re-written as

E(W ) = A1 + B1 + C1, (4)

where
A1 =

∫ v

0

u(w0 + v − LS + θ(I(LS) − P ))α · fS(LS)dLS ,

B1 =
∫ v

0

u(v0 + v − LNS − θ(P ))(1 − α − β) · fNS(LNS)dLNS ,

and
C1 = β · u(w0 + v − θ · P ),

with A1, B1, and C1 being the components of expected utility of final wealth
when there is a loss due to a security attack only, a non-security related failure
only, and no failure of any kind, respectively.

In the following sections, we adopt the Aegis model of cyber-insurance and
derive results in the form of theorems and propositions.

3 Efficacy of Aegis Contracts

In this section, we investigate whether Aegis contracts are preferred by Internet
users over traditional cyber-insurance contracts, and if yes, then under what
13 We plan to estimate α using correlation models.
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conditions. In this regard, we state the following theorems that establish results
regarding the user demand for Aegis contracts when compared to traditional
cyber-insurance contracts.

Theorem 1. Risk-averse Internet users always prefer Aegis contracts to tradi-
tional cyber-insurance contracts when non-insurable losses exist, irrespective of
whether the cyber-insurance premium charged in an Aegis contract is fair (λ = 0)
or unfair (λ > 0)14.

Proof: Taking the first derivative of E(W ) w.r.t. θ, and equating it to zero,
we get the first order condition as

dE(W )
dθ

= A2 + B2 + C2 = 0, (5)

where

A2 =
∫ v

0

u′(w0 + v − LS + θ(ILS − P ))(I(LS) − P )α · fS(LS)dLS ,

B2 =
∫ v

0

u′(w0 + v − LNS − θ(P ))(−P )(1 − α − β) · fNS(LNS)dLNS ,

and
C2 = β · u′(w0 + v − θ · P )(−P ).

Now substituting I(LS) = LS ( indicating full coverage) and θ = 1 (indicating
no co-insurance) into the first order condition, we get

dE(W )
dθ

= A3 + B3 + C3 = 0, (6)

where
A3 =

∫ v

0

u′(w0 + v − P )(LS − P )α · fS(LS)dLS ,

B3 =
∫ v

0

u′(w0 + v − LS − P )(−P )(1 − α − β) · fNS(LNS)dLNS ,

and
C3 = β · u′(w0 + v − P )(−P ).

Re-arranging the integrals we get

A3 = u′(w0 + v − P ) · α
∫ v

0

(LS − P )fS(LS)dLS ,

and

B3 = (−P )(1 − α − β)
∫ v

0

u′(w0 + v − LNS − P )fNS(LNS)dLNS ,

14 The comparison is based on equal degrees of fairness or unfairness between an Aegis
contract and a traditional cyber-insurance contract.
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Now using the fact that E(I(LS)) = α ·
∫ v

0
LS ·fS(LS)dLS = P (fair premiums),

we have the following equation

dE(W )
dθ

= A4 + B4, (7)

where
A4 = u′(w0 + v − P )(1 − α − β)P

and

B4 = (−P )(1 − α − β)
∫ v

0

u′(w0 + v − LNS − P )fNS(LNS)dLNS .

Since a user has a risk-averse utility function, we have u′(w0 + v − LNS −
P ) > u′(w0 + v − P )∀LNS > 0. Thus, dE(W )

dθ < 0 at θ = 1. This indi-
cates that the optimal value of θ is less than 1 for fair insurance premiums.
On the other hand, even if we consider unfair premiums with a load factor
λ > 0, we get dE(W )

dθ < 0. Therefore in this case also the optimal value of θ is
less than 1. Q.E.D.

Implications of Theorem 1. The theorem implies that risk-averse users would
always choose Aegis cyber-insurance contracts over traditional cyber-insurance
contracts, when given an option.
Intuition Behind Theorem 1. In situations where a risk-averse user cannot distin-
guish between losses due to a security attack or a non-security failure, he would
be conservative in his investments in insurance (as he could pay premiums and
still not get covered due to a non-insurable loss) and would prefer to invest more
in self-effort for taking care of his own system so as to minimize the chances of
a loss. Thus, in a sense the Aegis model incentivizes risk-averse Internet users
to invest more in taking care of their own systems than simply rest the entire
coverage liability upon a cyber-insurer.

Theorem 2. When risks due to non-insurable losses are increased in a first
order stochastic dominant15 sense, the demand for traditional cyber-insurance
amongst all risk-averse Internet users decreases.

Proof. Again consider the first order condition

dE(W )
dθ

= A2 + B2 + C2 = 0, (8)

15 Let X and Y be two random variables representing risks. Then X is said to be smaller
than Y in first order stochastic dominance, denoted as X ≤ST Y if the inequality
V aR[X; p] ≤ V aR[Y ; p] is satisfied for all p ε [0, 1], where V aR[X; p] is the value at
risk and is equal to F−1

X (p). First order stochastic dominance implies dominance
of higher orders. We adopt the stochastic dominant approach to comparing risks
because a simple comparison between various moments of two distributions may not
be enough for a correct prediction about the dominance of one distribution over
another.
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where

A2 =
∫ v

0

u′(w0 + v − LS + θ(ILS − P ))(I(LS) − P )α · fS(LS)dLS ,

B2 =
∫ v

0

u′(w0 + v − LNS − θ(P ))(−P )(1 − α − β) · fNS(LNS)dLNS ,

and
C2 = β · u′(w0 + v − θ · P )(−P ).

We observe that when LNS is increased in a first order stochastic dominant
sense16 and fS(LS) and β remain unchanged, the premium for insurance does not
change. An increase in LNS in the first order stochastic dominant sense increases
the magnitude of

∫ v

0
u′(w0 + v−LNS − θ(P ))(−P )(1−α−β) · fNS(LNS)dLNS ,

whenever u′(w0 + v − LNS − θ(P )) is increasing in LNS. This happens when
u(W ) is concave, which is the exactly the case in our definition of u. Thus, an
increase in LNS in a first order stochastic dominant sense leads to the first order
expression, dE(W )

dθ , to become increasingly negative and results in reductions in
θ, implying the lowering of demand for cyber-insurance. Q.E.D.

Implications of Theorem 2. The theorem simply implies the intuitive fact that
an increase in the risk due to non-insurable losses leads to a decrease in the
demand of traditional cyber-insurance contracts, irrespective of the degree of
risk-averseness of a user.
Intuition Behind Theorem 2. The implications of Theorem 2 hold as the user
would think that there are greater chances of it being affected by a loss and
not being covered at the same time. An increase in the risk due to non-insurable
losses also decreases the demand for Aegis contracts. However, according to The-
orem 1, for the same amount of risk, Aegis contracts are preferred to traditional
cyber-insurance contracts.

Theorem 3. When the risk due to non-insurable losses increases in the first
order stochastic dominant sense, the expected utility of final wealth for any cyber-
insurance contract (Aegis and traditional) falls when compared to the alternative
of no cyber-insurance, for risk averse Internet users.

Proof. The expected utility of any cyber-insurance contract is given by the
following

E(W ) = A1 + B1 + C1, (9)
16 Let X and Y be two random variables representing risks. Then X is said to be smaller

than Y in first order stochastic dominance, denoted as X ≤ST Y if the inequality
V aR[X; p] ≤ V aR[Y ; p] is satisfied for all p ε [0, 1], where V aR[X; p] is the value at
risk and is equal to F−1

X (p). First order stochastic dominance implies dominance
of higher orders. We adopt the stochastic dominant approach to comparing risks
because a simple comparison between various moments of two distributions may not
be enough for a correct prediction about the dominance of one distribution over
another.
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where
A1 =

∫ v

0

u(w0 + v − LS + θ(I(LS) − P ))α · fS(LS)dLS ,

B1 =
∫ v

0

u(w0 + v − LNS − θ(P ))(1 − α − β) · fNS(LNS)dLNS ,

and
C1 = β · u(w0 + v − θ · P ).

When θ = 0 (the case for no cyber-insurance), E(W ) reduces to

E(W ) = A1′ + B1′ + C1′, (10)

where
A1′ =

∫ v

0

u(w0 + v − LS)α · fS(LS)dLS ,

B1′ =
∫ v

0

u(w0 + v − LNS)(1 − α − β) · f2(LNS)dLNS ,

and
C1′ = β · u(w0 + v).

Increases in LNS affect only the second terms in each of these utility expressions.
Thus, we need to consider the change in the second order terms in the two utility
expressions to observe the impact of the increase in LNS. The difference in the
second order terms is given as

R1 − R2,

where

R1 =
∫ v

0

u(w0 + v − LNS − θ(P ))(1 − α − β) · fNS(LNS)dLNS

and
R2 =

∫ v

0

u(w0 + v − LNS)(1 − α − β) · fNS(LNS)dLNS .

Thus, R1 − R2 evaluates to∫ v

0

[u(w0 + v − LNS − θ(P )) − u(w0 + v − LNS)](1 − α − β) · fNS(LNS)dLNS ,

where [u(w0+v−LNS−θ(P ))−u(w0+v−LNS)] is decreasing in LNS under risk
aversion and concave under user prudence. Thus, increases in LNS in the first
order stochastic dominant sense reduces the expected utility of cyber-insurance
relative to no cyber-insurance. Q.E.D.

Implications of Theorem 3. Theorem 3 provides us with an explanation of why
risk-averse Internet users would be reluctant to buy cyber-insurance of any kind
given an option between choosing and not choosing insurance, when risks due to
non-security related losses are present along with risks due to security attacks.
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Intuition Behind Theorem 3. Theorem 3 holds because the expected utility to
a risk-averse Internet user opting for a zero level of cyber-insurance liability is
greater than that obtained when he opts for a positive level of cyber-insurance
liability.
Combining the results in Theorems 1, 2, and 3, we conclude the following:

– In the presence of non-insurable losses, the market for traditional cyber-
insurance may not exist.

– When risk-averse Internet users have an option between traditional cyber-
insurance, Aegis contracts, and no cyber-insurance, they may prefer the last
option. Thus, Aegis contracts might be preferred by Internet users over tra-
ditional cyber-insurance contracts only if it is mandatory for them to buy
some kind of insurance. In general, Internet service providers (ISPs) or cyber-
insurance agencies might force its clients on regulatory grounds to sign up
for some positive amount of cyber-insurance to ensure a more secure and
robust Internet.

4 Sensitivity Analysis of User Demands

In this section we conduct a sensitivity analysis of user demands for Aegis con-
tracts. We investigate whether an increase in the premium charged by a contract
results in an increase/decrease in user demand for the contract. The user demand
is reflected in the θ value, i.e., user demand indicates the fraction of loss cover-
age liability a risk-averse user is willing to rest on the cyber-insurance agency.
In an Aegis contract, to avoid insurance costs not related to a security attack,
a risk-averse user takes up a fraction of loss coverage liability on himself as it
does not know beforehand whether he is affected by a security or a non security
threat. Thus, intuitively, a decrease in a contract premium may not always lead
to a user increasing his demand and analogously an increase in the premium
may not always lead to a decrease in the user demands. The exact nature of the
relationship between the premiums and user demand in this case depends on the
degree of risk averseness of a user. To make the latter statement clear, consider
an Internet user who is very risk averse. It would not matter to that user if there
is a slight decrease in the premium amount because he might still not transfer
additional loss coverage liability to the cyber-insurer, given that he is unsure
about whether the risk he faces is due to a security attack or a non security
related issue. On the other hand a not so risk averse user may not decrease the
amount of loss coverage liability rested upon a cyber-insurer, even if there is a
slight increase in the cyber-insurance premiums. In this section we study the
conditions under which there is an increase/decrease of user demand for Aegis
contracts with change in contract premiums. We first provide the basic setup for
sensitivity analysis, which is then followed by the study of the analysis results.

4.1 Analysis Setup

Let a user’s realized final wealth be represented as

W = w − L + θ(L − P ). (11)
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Substituting P = λ′E(L), we get

W = w − L + θ(L − λ′E(L)), (12)

where λ′ equals (1+λ), w is equal to w0+v, θ lies in the interval [0, 1], λ ≥ 1 is the
gross loading factor of insurance, L = LS+LNS, and λE(L) = α

∫ v

0
L·fS(L)dL is

the premium payment for full insurance17 with E being the expectation operator.
The user is interested in maximizing his expected utility of final wealth in the
von Neumann-Morgenstern expected utility sense and chooses a corresponding
θ to achieve the purpose. Thus, we have the following optimization problem.

argmaxθE(U(W )) = E[U(w − L + θ(L − λ′E(L))],

where 0 ≤ θ ≤ 1. The first order condition for an optimum θ is given by

E′
θ(U(W )) = E[U ′(W )(L − λ′E(L))] = 0, (13)

which occurs at an optimal θ = θ∗. Integrating by parts the LHS of the first
order condition and equating it to zero, we get

M1 + M2 = 0, (14)

where
M1 = U ′(W (0))

∫ v

0

(L − λ′E(L))dFS(L)

and

M2 =
∫ v

0

U ′′(W (L))W ′(L)
(∫ v

L

(t − λ′E(L))dFS(t)
)

dL.

Here W (x) is the value of W at L = x and W ′(L) = −(1 − θ) ≤ 0. The second
order condition is given by

E′′
θ (U(W )) = E[U ′′(W )(L − λ′E(L))2] < 0, (16)

which is always satisfied for U ′′ < 0. We now consider the following condition
C, which we assume to hold for the rest of the paper.

Condition C - The utility function U for a user is twice continuously differen-
tiable, thrice piecewise continuously differentiable18 and exhibits U ′ > 0, U ′′ < 0
with the coefficient of risk aversion, A, being bounded from above.

The condition states the nature of the user utility function U , which is in ac-
cordance with the standard user utility function used in the insurance literature,
with the additional restriction of thrice piecewise continuous differentiability of
U to make the coefficient of risk aversion well-defined for all W . We adopt the
17 By the term ‘full insurance’, we imply a user resting its complete loss liability on

the cyber-insurer, i.e., θ = 1. Full insurance here does not indicate full insurance
coverage.

18 We consider the thrice piecewise continuously differentiable property of U so that
A′(W ) becomes piecewise continuous and is thus defined for all W .
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standard Arrow-Pratt risk aversion measure [21], according to which the coeffi-
cient of risk aversion is expressed as (i) A = A(W ) = −U ′′(W )

U ′(W ) for an absolute

risk averse measure and (ii) R = R(W ) = −WU ′′(W )
U ′(W ) for a relative risk averse

measure.

4.2 Sensitivity Analysis Study

In this section we study the change in user demands for Aegis contracts with vari-
ations in cyber-insurance premiums, under two standard risk-averse measures:
(1) the decreasing absolute risk averse measure and (2) the decreasing relative
risk averse measure. The term ‘decreasing’ in both the risk measures implies
that the risk averse mentality of users decrease with the increase in their wealth,
which is intuitive from a user perspective. We are interested in investigating the
sign of the quantity, dθ∗

dλ′ . The nature of the sign drives the conditions for an
Aegis contract to be either more or less preferred by Internet users when there
is an increase in the premiums, i.e., if dθ∗

dλ′ ≤ 0, an increase in cyber-insurance
premium implies decrease in user demand, and dθ∗

dλ′ ≥ 0 implies an increase in
user demand with increase in premiums.

We have the following theorem and its corresponding proposition related to
the conditions under which Internet users increase or decrease their demands for
Aegis contracts, when the users are risk-averse in an absolute sense.

Theorem 4. For any arbitrary w, λ′, F , and any U satisfying condition C, (i)
dθ∗
dλ′ ≥ 0 if and only if there exists ρ ε R such that∫ w

L

[A(W (x))θ∗(x − λ′E(L)) − 1]dF (x) ≥ ρ

∫ w

L

θ∗(x − λ′E(L))dF (x), (17)

and (ii) dθ∗
dλ′ < 0 if and only if there exists ρ ε R such that∫ w

L

[A(W (x))θ∗(x − λ′E(L)) − 1]dF (x) < ρ

∫ w

L

θ∗(x − λ′E(L))dF (x), (18)

where L ε [0, w] and F (·) is the distribution function of loss L.

Proof. We know that dθ∗
dλ′ = −E′

θλ′
E′′

θ
. Now dθ∗

dλ ≤ 0 if and only if the following
relationship holds because E′′

θ < 0.

E′
θλ′(U(W (L))) = E[−U ′′(W (L))θ∗E(L)(L − λ′E(L)) − U ′(W (L))E(L)] ≤ 0

(19)
or

E

{(
A(W (L)) − 1

θ(L − λ′E(L))

)
U ′(W (L))(L − λ′E(L)

}
≤ 0 (20)

The LHS of Equation 19 can be expressed via integration by parts as∫ w

0

[A(W (L))θ∗(L − λ′E(L)) − 1]U ′(W (L))dF (L)
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which evaluates to
X + Y,

where
X = U ′(W (0))

∫ w

0

[A(W (L))θ∗(L − λ′E(L)) − 1]dF (L)

and

Y =
∫ w

0

U ′′(W (L))W ′(L)
{∫ w

L

[A(W (t))θ∗(x − λ′E(L)) − 1]dF (x)
}

dL.

Now X + Y ≥ M + N , where

M = U ′(W (0))
∫ w

0

ρ(L − λ′E(L))dF (L)

and

N =
∫ w

0

U ′′(W (L))W ′(L) ·
(

ρ

∫ w

L

(x − λ′E(L))dF (x)
)

dL.

Thus, dθ∗
dλ′ ≥ 0, and the sufficient condition is proved. The proof of the neces-

sary condition follows from Proposition 1’ in [22]. Reversing Equation 16 we
get the necessary and sufficient conditions for dθ∗

dλ′ ≤ 0, which is condition (ii) in
Theorem 4. Q.E.D.

Proposition 1. There exists a ρ ε R − {0} such that Theorem 4 holds if the
following two conditions are satisfied.

(1 − θ∗)A′

A
≤ θ∗A (21)

and ∫ w

0

A(W (L))
{

L − λ′E(L) − 1
θ∗A(W (L))

}
dF (L) > 0 (22)

Proof. We observe the following relation

E1 < E2, (23)

where

E1 =
∫ w

0

A(W (L))
{

L − λ′E(L) − 1
θ∗A(W (L))

}
dF (L)

and
E2 =

∫ w

0

A(W (L))(L − λ′E(L))dF (L).

Thus, from Equation 21 in the theorem statement, we have∫ w

0

A(W (L))(L − λ′E(L))dF (L) > 0 (25)
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According to Lemma 2 in [22], there exists ρ∗ ε R − {0} such that the following
relation holds for all L ε [0, w].∫ w

L

A(W (x))(x − λ′E(L))dF (x) ≥ ρ∗
∫ w

L

(x − λ′E(L))dF (x) (26)

Now, d[L−λ′E(L)−(θ∗A(W (L)))−1]
dL ≥ 0 if and only if (1 − θ∗ A′

A ≤ θ∗A. Since both
L−λ′E(L))d(F (x) and L−λ′E(L)−(θ∗A(W (L)))−1 are increasing and become
negative when L is sufficiently small, and using arguments presented in Lemma
2 in [22], we can show that Equations 21 and 22 imply∫ w

L

A(W (t))(t − λ′E(L))d(F (t) > 0 (27)

and ∫ w

L

A(W (t))[t − λ′E(L) − (θ∗A(W (t)))−1]dF (t) > 0. (28)

for all L ε [0, w]. Now choosing a δ > 0 sufficiently small gives

P1 > P2 > 0, (29)

where
P1 =

∫ w

L

A(W (t))[t − λ′E(L) − (θ∗A(W (t)))−1]dF (t)

and
P2 = δ

∫ w

L

A(W (t))(t − λ′E(L))d(F (t),

for all L ε [0, w]. Now, setting ρ = ρ∗δ, we get for all L ε [0, w], the following
relation∫ w

L

A(W (t))[t−λ′E(L)−(θ∗A(W (t)))−1]dF (t) ≥ ρ

∫ w

L

(t−λ′E(L))dF (t) (30)

This proves the proposition Q.E.D.

Notes on Theorem 4 and Proposition 1. Theorem 4 and Proposition 1 are related
to each other in the sense that Theorem 4 provides the necessary and sufficient
conditions under which Internet users increase/decrease demands of Aegis con-
tracts. The intuition behind the result in Theorem 4 is based on expected utility
comparisons. For an increase in the λ value, the expected utilities of a user are
compared with and without a corresponding increase in θ value. We say that user
demands for Aegis contracts increase (decrease) if there is an increase (decrease)
in expected utility with an increase in the θ value, and we find the conditions
for such situations to arise. Proposition 1 states that Theorem 4 always holds
provided certain conditions are met.

We have the following theorem that states the conditions under which Inter-
net users increase or decrease their demands for Aegis contracts, when the users
are risk averse in a relative sense.
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Theorem 5. For any arbitrary w, λ′, F , and any U satisfying condition C,
(i) dθ∗

dλ′ ≥ 0 only if R(W ) > 1 and (ii) dθ∗
dλ′ < 0 only if R(W ) ≤ 1, where

W ε [W (w), W (0)].

Proof. We can rewrite Equation 16 as follows∫ w

L

{θ∗[A(W (x)) − ρ](x − λ′E(L)) − 1}dF (x) ≥ 0, (31)

which can be further rewritten as∫ w

L

{(R(W (x)) − 1) − A(W (x))(w0 − x) − ρ(x − λ′E(L))}dF (x) ≥ 0. (32)

The integral in Equation 23 is non-negative for all L ε [0, w] only if R(W ) > 1
for some W . To see this it suffices to realize that −A(W (L))(w0 − L) < 0
for all L ε [0, w) as L ≤ w0 and there exists L ε [0, w] at which −

∫ w

L
ρ(L −

λ′E(L))dF (x) < 0 as
∫ w

L
(x − λ′E(L))dF (x)) alternates in sign on (0, w). Now

suppose by contradiction that R(W ) ≤ 1 for all W . Substituting this into Equa-
tion 23 violates the condition stated in Equation 22 for some L ε [0, w]. Again by
Theorem 4, we have that there exists utility function U satisfying condition C
such that dθ∗

dλ′ ≥ 0 - a contradiction. Since F is arbitrary, the result (i) in the the-
orem follows. By reversing the sign of the condition on R(W ) the result (ii) in the
theorem follows. Q.E.D.

Implications of Theorem 5. The theorem implies that above a certain level of
the degree of relative risk averseness, a user prefers Aegis contracts even if there
is an increase in contract premiums.
Intuition Behind Theorem 5. The coefficient of relative risk aversion is measured
relative to the wealth of a user and thus more his wealth, lesser would be his
concerns about losing money due to paying more cyber-insurance premiums, and
not getting coverage on being affected by a non-security failure. The intuition is
similar for the case when below a certain threshold of relative risk averseness,
users reduce their demand for Aegis contracts.

5 Related Work

The field of cyber-insurance in networked environments has been fueled by re-
cent results on the amount of individual user self-defense investments in the
presence of network externalities19. The authors in [6][7][23][24][8][9] mathemat-
ically show that Internet users invest too little in self-defense mechanisms relative
to the socially efficient level, due to the presence of network externalities. These
works highlight the role of positive externalities in preventing users from invest-
ing optimally in self-defense. Thus, one challenge to improving overall network
19 An externality is a positive (external benefits) or negative (external costs) impact

on an user not directly involved in an economic transaction.
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security lies in incentivizing end-users to invest in a sufficient amount of self-
defense in spite of the positive externalities they experience from other users in
the network. In response to this challenge, the works in [23][24] modeled net-
work externalities and showed that a tipping phenomenon is possible, i.e., in a
situation where the level of self-defense is low, if a certain fraction of population
decides to invest in self-defense mechanisms, then a large cascade of adoption in
security features could be triggered, thereby strengthening the overall Internet
security. However, these works did not state how the tipping phenomenon could
be realized in practice. In a series of recent works [15][16], Lelarge and Bolot have
stated that under conditions of no information asymmetry [25][26] between the
insurer and the insured, cyber-insurance incentivizes Internet user investments
in self-defense mechanisms, thereby paving the path to triggering a cascade of
adoption. They also showed that investments in both self-defense mechanisms
and insurance schemes are quite inter-related in maintaining a socially efficient
level of security on the Internet. In a follow up work on joint self-defense and
cyber-insurance investments, the authors in [27] show that Internet users invest
more efficiently in self-defense investments in a cooperative environment when
compared to a non-cooperative one, in relation to achieving a socially efficient
level of security on the Internet.

In spite of Lelarge and Bolot highlighting the role of cyber-insurance for net-
worked environments in incentivizing increasing of user security investments, it
is common knowledge that the market for cyber-insurance has not yet blossomed
with respect to its promised potential. Most recent works [28] [29] have attributed
this to (1) interdependent security (i.e., the effects of security investments of a
user on the security of other network users connected to it), (2) correlated risk
(i.e., the risk faced by a user due to risks faced by other network users), and (3)
information asymmetries (i.e., the asymmetry between the insurer and the in-
sured due to one having some specific information about its risks that the other
does not have). In a recent work [30], the authors have designed mechanisms
to overcome the market existence problem due to information asymmetry, and
show that a market for cyber-insurance exists in a single cyber-insurer setting.

However, none of the above mentioned works related to cyber-insurance ad-
dress the scenario where a user faces risks due to security attacks as well as due
to non-security related failures. The works consider attacks that occur due to
security lapses only. In reality, an Internet user faces both types of risks and
cannot distinguish between the types that caused a loss. Under such scenarios,
it is not obvious that users would want to rest the full loss recovery liability
to a cyber-insurer. We address the case when an Internet user faces risks due
to both security as well as non-security problems, and show that users always
prefer to rest some liability upon themselves, thus de-establishing the market
for traditional cyber-insurance. However, the Aegis framework being a type of a
cyber-insurance framework also faces problems identical to the traditional cyber-
insurance framework, viz., that of interdependent security, correlated risk, and
information asymmetry.
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6 Conclusion

In this paper we proposed Aegis, a novel cyber-insurance model in which an
Internet user accepts a fraction (strictly positive) of loss recovery on himself and
transfers the rest of the loss recovery on the cyber-insurance agency. Our model
is specifically suited to situations when a user cannot distinguish between similar
types of losses that arise due to either a security attack or a non-security related
failure. We showed that given an option, Internet users would prefer Aegis con-
tracts to traditional cyber-insurance contracts, under all premium types. The
latter result firmly establishes the non-existence of traditional cyber-insurance
markets when Aegis contracts are offered to users. Furthermore, the Aegis model
incentivizes risk-averse Internet users to invest more in taking care of their own
systems than simply rest the entire coverage liability upon a cyber-insurer. We
also derived two interesting counterintuitive results related to the Aegis frame-
work, i.e., we showed that an increase (decrease) in the premium of an Aegis con-
tract may not always leads to a decrease (increase) in its user demand. Finally,
through a simple model of cyber-insurance we show that only under conditions
when buying some type of cyber-insurance is made mandatory, does a market ex-
ist, and that too for idealistic situations when information asymmetry is absent.
Thus, it is important that (i) the insuring agency (if it is not the ISP or the gov-
ernment) partners with the regulators to make cyber-insurance mandatory for
Internet users, and (ii) information asymmetry be taken into equation to check
whether a market for cyber-insurance can be made to exist in its presence. As
part of future work, we plan to investigate the efficacy of Aegis contracts under
information asymmetry.
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Abstract. Ideas, ranging from product preferences to political views,
spread through social interactions. These interactions may determine
how ideas are adopted within a market and which, if any, become dom-
inant. In this paper, we introduce a model for Dynamic Influence in
Competitive Environments (DICE). We show that existing models of
influence propagation, including linear threshold and independent cas-
cade models, can be derived as special cases of DICE. Using DICE, we
explore two scenarios of competing ideas, including the case where a
newcomer competes with a leader with an already-established idea, as
well as the case where multiple competing ideas are introduced simulta-
neously. We formulate the former as a Stackelberg game and the latter as
a simultaneous-move game of complete information. Moreover, we show
that, in both cases, the payoff functions for both players are submodular,
leading to efficient algorithms for each player to approximate his optimal
strategy. We illustrate our approach using the Wiki-vote social network
dataset.

Keywords: Social network, influence propagation, noncooperative game.

1 Introduction

Ideas spread rapidly through human social interactions, especially when enabled
by modern technology, including blogs, online social networking sites, and mobile
and pervasive computing. Such interactions can be used to convey information to
the public at little direct cost. In politics, both traditional social networks (such
as groups of politically like-minded people) and new, online social networks (such
as Facebook and Twitter) have been instrumental in spreading revolutionary sen-
timent [12]. Commercial marketing campaigns have also leveraged social media,
with companies using online social networks to enhance word-of-mouth effects
in advertising [13].

In the applications listed above, multiple, competing ideas, potentially inter-
fering with one another, may propagate simultaneously through the network.
This competition may take different forms [9]. In the leader-follower (or Stackel-
berg) case, a well-established idea, such as a market-leading product or prevailing
political belief, is challenged by newcomers, denoted as followers. Alternatively,
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two or more ideas may be introduced simultaneously, as in a political election
with two or more parties.

In all of these competitive scenarios, the success or failure of each idea may
depend on how the idea is introduced into the network, in particular who the
initial holders of the idea (denoted as seeds) are. For instance, an idea espoused
by the owner of a popular blog may reach a large number of people, while an
idea held by a handful of isolated individuals may not spread at all [11]. In
addition, there may be scenarios where no idea is able to completely dominate
the other ideas. Effective introduction of an idea into a social network therefore
requires an understanding of how competing ideas will propagate through the
network, as well as a tractable framework for choosing the set of nodes in the
network that must initially hold the idea. At present, however, while there are
formulations of the competitive influence maximization problem [2,7], they do
not lead to computationally tractable solution algorithms for the three classes
of players listed above.

Our contributions in this paper are two-fold. As our first contribution, we
introduce a model for Dynamic Influence in Competitive Environments (DICE).
Under DICE, each individual adopts an idea based on observations of his neigh-
bors’ current beliefs, leading to a Markov model of idea propagation. Unlike
existing approaches, DICE allows nodes to switch between adopted ideas over
time. This allows modeling of the case where a new idea is able to overtake or
replace an existing, well-established idea. We further show how to leverage the
Markovian properties of our proposed model to compute the expected number of
individuals holding each idea, as well as the probability that a certain individual
holds a given idea, in steady-state.

As our second contribution, we develop game-theoretic formulations for com-
petition between two ideas within the Stackelberg and simultaneous competitive
environments described above. Our influence model leads to an average-case op-
timization problem for each player. We show that, for the case of a social network
with strongly connected components (as in [1]), the objective function for each
player is submodular. As a result, solution algorithms can be developed for each
player that approximate the optimal strategy up to a provable bound.

The rest of this paper is organized as follows. In Section 2, we review the
related work on influence propagation. In Section 3, we define and analyze our
proposed influence propagation models. In Sections 4 and 5, we introduce non-
cooperative game formulations for the Stackelberg and simultaneous competition
models, respectively. Simulations are presented in Section 6, and Section 7 con-
cludes the paper and gives directions for future work.

2 Related Work and Preliminaries

2.1 Influence Propagation Models

The first mathematical model of influence propagation was the threshold model
of [5]. This model assumes that an individual will adopt a given idea if a thresh-
old number of its acquaintances adopt the idea first. The threshold model can
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be motivated both by sociological observation and as the equilibrium of a non-
cooperative game between the individuals comprising the network. Another class
of propagation models is based on cascading phenomena, in which each individ-
ual attempts to convince his or her neighbor of the idea, succeeds with a certain
probability, and otherwise fails and does not try again [4].

Markov models for propagation of belief through a network have been pro-
posed in the context of gossip and rumor spreading [3,1]. In such models, each
individual’s belief is represented by a real number. The individuals reach consen-
sus on a global belief by taking randomized weighted averages of their neighbors’
beliefs. While our approach uses a Markov model of influence propagation, we
study the case where ideas are competing and mutually exclusive, thus ruling
out averaging and consensus.

2.2 Maximizing Spread of Influence

The problem of influence maximization in social networks was first proposed
in [11], in the context of marketing. In [6], the authors analyzed the problem
of choosing an optimal set of k seed nodes in order to maximize the spread
of influence. It was shown that, for a generalized influence model taking both
the cascade and threshold models as special cases, the influence maximization
problem is submodular, enabling the use of greedy approximation heuristics.

Extensions to the case of multiple competing ideas have been explored re-
cently. In [2], the cascade model is extended to competing ideas, and it is shown
that, for a follower, the influence maximization problem is submodular. Strate-
gies for leaders, however, are only computable under specific assumptions about
the network topology. In [7], the connection between influence maximization and
competitve facility location was explored, with the observation that, under a ba-
sic diffusion model related to [4], approximating the optimal strategy for the
leader is NP-hard.

2.3 Background on Submodular Functions

The notion of submodularity will be used to derive solution algorithms for the
formulations of Section 4. The notion of submodularity is defined as follows.

Definition 1. Let V be a finite set. A function f : 2V → R is submodular if,
for any S ⊆ T ⊆ V and any v ∈ V \ T ,

f(S + v) − f(S) ≥ f(T + v) − f(T ) (1)

Definition 1 can be understood as a “diminishing returns” property, in which the
incremental utility of adding an element to a set decreases as the set grows. For
additional background on submodular functions, including the following lemma,
see [10].

Lemma 1. A nonnegative weighted sum of submodular functions is submodular.
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3 Proposed Influence Propagation Model: DICE

In this section, the Dynamic Influence in Competitive Environments (DICE)
model is defined. The social network is defined by a graph G = (V, E), where V
is the set of n individuals (also referred to as nodes) and E is the set of social
relationships, with (i, j) ∈ E if individual i has influence over individual j. N(i)
is the set of individuals who have influence over i.

A set of m ideas, indexed I = {I1, . . . , Im}, is present in the network. Ik is
assumed to have an originator Ok. At each time t, each individual i ∈ V has a
state xi(t) ∈ {0, . . . , m}, where xi(t) = k if i holds idea Ik at time t and xi(t) = 0
if i has not adopted an idea at time t. Further, it is assumed that each node may
be aware of multiple ideas, even if it only holds one of them. Let Ii(t) ⊆ I be
the set of ideas that i is aware of at time t.

The propagation of ideas under DICE proceeds as follows. At time t = 0,
let Vk be the set of individuals with xi(0) = k. All nodes i ∈ V \ ∪m

k=1Vk

have xi(0) = 0. At each subsequent time step t, each individual i chooses a
node j ∈ N(i) ∪ {i} with probability dij > 0. If j = i, then i chooses an idea
Il ∈ Ii(t) with probability Pi(k, l), where k = xi(t). Individual i then updates
its state to xi(t + 1) = l. If j �= i, then i sets xi(t + 1) = xj(t) with probability
Pij(xi(t), xj(t)), and sets xi(t + 1) = xi(t) otherwise. In either case, i updates
Ii according to Ii(t + 1) = Ii(t) ∪ {xj(t)}.

This approach can be generalized to include probabilistic social network mod-
els, such as those in [6,4], as follows. Suppose that there is a base topology
G = (V, E0), and let P be a probability distribution, where P(E) is the proba-
bility that a given edge set E ⊆ E0 occurs. Then for a given realization E ⊆ E0,
let

dE
ij =

dij∑
(i,j)∈E dij

(2)

while the values of Pi(k, l) and Pij(xi(t), xj(t)) remain unchanged.
DICE contains several existing influence models as special cases. These con-

nections are summarized in Table 1.

3.1 Distribution of Ideas in Steady-State

The eventual popularity of a given idea can be studied by examining the asymp-
totic distribution of ideas. This steady-state distribution determines the prob-
ability πi(k) that individual i holds idea Ik for large values of t, given an ini-
tial distribution V1, . . . , Vm. The total expected number of nodes holding ideas

Table 1. Existing influence models as realizations of DICE. The triggering model is
equivalent in steady-state, while the remaining models have the same dynamics.

Existing model Parameters

Triggering model [6] Number of ideas m = 1

Generalized linear threshold model [5] Pi(k, l) ≡ 1
|Ii(t)| , choice of Pij(k, l)

Independent cascade model [2] P(E) =
∏

(u,v)∈E pU,V
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I1, . . . , Im can then be used to evaluate the effectiveness of using V1, . . . , Vm as
seed nodes. The following theorem gives necessary conditions for this distribution
to exist.

Theorem 1. Suppose that, for each i ∈ V and k, l ∈ Ii(t), dii > 0 and Pi(k, l) >
0. Then for a given collection of seed nodes V1, . . . , Vm, the proposed influence
propagation model converges to a unique stationary distribution for (x1, . . . , xn),
where πi(k|V1, . . . , Vm) denotes the stationary probability of node i holding idea
Ik. Furthermore, let

Ii(V1, . . . , Vm) � {Ik ∈ I : ∃ path from Vk to i } (3)

If G can be decomposed into strongly connected components, then

πi(k|V1, . . . , Vm) = πi(k|V ′
1 , . . . , V ′

m) (4)

for any V1, . . . , Vm and V ′
1 , . . . , V ′

m satisfying Ii(V1, . . . , Vm) = Ii(V ′
1 , . . . , V ′

m).

Due to space constraints, a full proof is not given here. A sketch of the proof
is as follows. By the definition of DICE, every individual becomes aware of the
ideas held by its neighbors, even if it does not immediately adopt the ideas.
This, together with the assumptions that dii > 0 and Pi(k, l) > 0, implies that i
becomes aware of every idea in Ii within finite time. Hence for sufficiently large
t, the vector (x1(t), . . . , xn(t)) can take any value in the space S = I1 × · · · ×
In. Moreover, since dii > 0 and Pi(k, l) > 0, there is a nonzero probability of
transitioning into any state s ∈ S at each time step. This implies that the chain,
restricted to S, is irreducible and aperiodic, and hence has a unique stationary
distribution over S. Finally, if G has strongly connected components, then for
every component Gl and i, j ∈ Gl, the relationship Ii = Ii(t) = Ij(t) = Ij holds
for sufficiently large values of t, regardless of which specific nodes are in the sets
Vk ∩ Gl.

4 Problem Formulation: Leader-Follower Model

In this section, we formulate the competition between leader and follower ideas
as a Stackelberg game. Analysis and algorithms for both the leader and follower
strategies are provided as well. Although DICE can be applied to an arbitrary
finite number of ideas, the case of two ideas is considered in the following sections
in order to ensure simplicity of the solution algorithms.

4.1 Game Definition

The leader-follower game is defined as follows.

Definition 2. The Stackelberg competing ideas game consists of two players
Ok, k = 1, 2, each of which owns a competing idea Ik. One of the players (without
loss of generality, assume it is O1) selects a set of individuals V1 to implant with
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I1 at time 0. The second player, O2, observes V1 and then chooses a set of
individuals V2 ⊆ V \ V1 in which to implant I2. Player Ok’s payoff Uk is given
by

Uk(V1, V2) =
∑

E⊆E0

[
P(E)

(∑
i∈V

πi(k|V1, V2, E)

)]
− c|Vk| (5)

where c > 0 is the cost associated with implanting an idea and πi(k|V1, V2, E) is
the steady-state probability that individual i will hold idea Ik given initial sets V1

and V2 and edge set E.

Under this formulation, the goal of player O2 is to find the set V ∗
2 (V1) satis-

fying
V ∗

2 (V1) = arg max
V2:V2∩V1=∅

U2(V1, V2) (6)

Meanwhile, the goal of player O1 is to find the set V ∗
1 satisfying

V ∗
1 = arg max

V1
U1(V1, V

∗
2 (V1)) (7)

4.2 Solving Stackelberg Game for Follower

The goal of the follower is to find the set of seed nodes that maximizes the
number of individuals holding I2 in steady-state, given knowledge of the leader’s
seed nodes V1. The follower’s optimal strategy when G is deterministic is given by
Proposition 1. When the topology is probabilistic, the follower’s strategy can be
found by using submodular optimization techniques, as described in Theorem 2.

Proposition 1. Suppose that the underlying interaction topology G can be di-
vided into strongly connected components G1, . . . , GL. Then the follower’s best
response consists of a single node vl from each connected component Gl satisfying∑

i∈V

πi(2|V1, vl) > c (8)

Proof. First, note that, for each component Gl and each i ∈ Gl, πi(2|V1, V2)
depends only on whether Gl ∩V2 is nonempty by Theorem 1. This, coupled with
the fact that ∑

i

π2(2|V1, V2) − c|Gl ∩ V2| ≤
∑

i

π2(2|V1, V2) − c (9)

implies that any V2 with |Gl ∩ V2| > 1 is suboptimal.
Now, U2(V1, V2|E) can be rewritten as

U2(V1, V2|E) =
L∑

l=1

(∑
i∈Gl

(πi(2|V1, V2)) − c|Gl ∩ V2|
)

(10)

Since propagation of ideas in disconnected components is independent, each term
of the outer sum of (10) can be considered independently. Thus |Gl ∩ V2| = 1 is
optimal iff the corresponding term of (10) is positive, which occurs iff (8) holds.

��
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Theorem 2. When the interaction topology is stochastic and V1 is fixed,
U2(V1, V2) is a submodular function of V2.

Proof. By Proposition 1, the incremental gain from adding v ∈ Gl to V2 is equal
to

U2(V1, V2 + v) − U2(V1, V2) =
{∑

i∈Gl
πi(2|V1, v) − c, V2 ∩ Gl = ∅
−c, else

(11)

Now, if S ⊆ T and T ∩ Gl = ∅, then S ∩ Gl = ∅. Hence

U2(V1, S + v) − U2(V1, S) ≥ U2(V1, T + v) − U2(V1, T ) (12)

proving that U2(V1, ·) is submodular. In general, U2 is given by

U2(V1, V2) =
∑

E⊆E0

U2(V1, V2|E)P(E) (13)

which is a nonnegative weighted sum of submodular functions, and hence is
submodular. ��

The submodularity of U2(V1, ·) implies that (6) is a submodular maximiza-
tion problem. Although the submodular maximization problem is NP-hard, al-
gorithms have been proposed that are guaranteed to achieve a provable approx-
imation bound in polynomial time [10].

An algorithm for solving (6) is as follows. Initialize V 0
2 = ∅. At each subsequent

iteration t, find a node v∗ satisfying

v∗ = arg max
v∈V \(V1∪V t

2 )
U2(V1, V2 + {v}) − U2(V1, V2) (14)

If U2(V1, V
t
2 ∪ {v∗}) − U2(V1, V

t
2 ) > 0, then set V t+1

2 = V t
2 ∪ {v∗}, increment t,

and continue. Otherwise the algorithm terminates. A pseudo-code description of
the algorithm is given in Figure 1.

Submodularity of U2(V1, ·) and Proposition 4.1 of [10], yields the following
proposition on the optimality of the algorithm.

Proposition 2. The algorithm of Figure 1 returns a set Ṽ2 such that

U2(V1, V
∗
2 ) − U2(V1, Ṽ2) ≤ c|Ṽ2| (15)

4.3 Solving Stackelberg Game for Leader

As a preliminary, the following lemma describes the leader’s payoff for a given
set of seed nodes V1.

Lemma 2. For fixed topology G = (V, E), the payoff for the leader is given by

U1(V1, V
∗
2 (V1)|E) =

∑
l:Gl∩V1 �=∅

∑
i∈Gl

wi − |V1|c (16)
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FOLLOWER SEED NODE SELECTION
Input: Set V1, topology G = (V, E), distribution P(E)
Output: Set V2

V 0
2 ← ∅

t ← 0
while(1)

v ← arg maxv∈V \V1 U2(V1, V
t
2 + v) − U2(V1, V

t
2 )

if U2(V1, V
t
2 + v) > U2(V1, V

t
2 )

V t+1
2 ← V t

2 ∪ {v}
t ← t + 1

else
break

return V t
2

Fig. 1. Pseudo-code description for submodular maximization of follower payoff

where wi is given by

wi =
{

πi(1|I1, I2),
∑

i∈Gl
πi(2|I1, I2) > c

πi(1|I1) else
(17)

and πi(1|I1, I2) and πi(1|I1) are the stationary probability that i holds idea I1

when Ii = {I1, I2} and Ii = {I1}, respectively.

Proof. By Proposition 1, the follower’s best response is to add a node vl ∈ Gl

iff
∑

i∈Gl
πi(2|I1, I2) > c. In this case, the leader’s payoff is

∑
i∈Gl

πi(1|I1, I2)
by Definition 2. Otherwise, the nodes in Gl only become aware of I1, and so the
leader’s payoff is

∑
i∈Gl

πi(1|I1). ��

This leads to the following theorem, analogous to Theorem 2.

Theorem 3. U1(V1, V
∗
2 (V1)) is submodular as a function of V1.

Proof. By Lemma 2, the incremental gain from adding v to V1 when G is deter-
ministic is given by

U1(V1 + v, V ∗
2 (V1 + v)) − U1(V1, V

∗
2 (V1)) =

{∑
i∈Gl

wi − c, V1 ∩ Gl = ∅
−c, else

(18)

Hence the incremental gain is positive iff V1 ∩ Gl = ∅. Given S ⊆ T ⊆ V ,
T ∩ Gl = ∅ implies that S ∩ Gl = ∅. Thus

U1(S+v, V ∗
2 (S+v))−U1(S, V ∗

2 (S)) ≥ U1(T +v, V ∗
2 (T +v))−U1(T, V ∗

2 (T )) (19)

as desired. As in Theorem 2, when G is stochastic, U1 is a nonnegative weighted
sum of submodular functions, and is therefore submodular. ��

Theorem 3 implies that an algorithm analogous to that in Figure 1 can be
used to solve the leader’s optimization problem (7). A pseudo-code description
of the algorithm is contained in Figure 2.
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LEADER SEED NODE SELECTION
Input: Topology G = (V, E), distribution P(E)
Output: Set V1

V 0
1 ← ∅

t ← 0
while(1)

v ← arg maxv∈V U1(V
t
1 + v, V ∗

2 (V t
1 + v))

if U1(V
t
1 + v, V ∗

2 (V t
1 + v)) > U1(V

t
1 , V ∗

2 (V t
1 ))

V t+1
1 ← V t

1 ∪ {v}
t ← t + 1

else
break

return V t
1

Fig. 2. Pseudo-code description for submodular maximization of leader payoff

5 Problem Formulation: Simultaneous Model

Under the simultaneous-move game, the originators of competing ideas simul-
taneously choose sets of seed nodes. This models the case where two ideas are
introduced at the same time, or, more generally, when neither player is able to
observe the other’s choice of seed nodes before introducing his idea.

Definition 3. The simultaneous-move game consists of two players Ok, k =
1, 2, each of which owns a competing idea Ik. The players simultaneously select
sets Vk of individuals to implant with idea Ik at time 0. (If the players choose
the same individual, then that individual adopts one of the ideas but is aware of
both of them). Player Ok’s payoff is given by

Uk(V1, V2) =
∑
i∈V

πi(k|V1, V2) − c|Vk| (20)

where c and πi are defined as in Definition 2.

In what follows, analysis of the simultaneous-move game under DICE is provided.
The first observation is that, when the topology is deterministic, the game can
be decomposed into a set of L games, each played on a different connected
component Gl of the social network G. For a given component Gl, each player
chooses whether or not to choose Vk such that Gl ∩ Vk �= ∅. The resulting payoff
matrix is given by Table 2, where Ek =

∑
i∈Gl

πi(k), H denotes the case where
Gl ∩ Vk �= ∅, and H ′ denotes the case where Gl ∩ Vk = ∅.

The following theorem describes the Nash equilibria of the game.

Theorem 4. For the simultaneous-move game with a single component Gl,
(i) If |Gl| < c, then the game has a unique Nash equilibrium of (H ′, H ′).
(ii) If E1 > c (resp. E2) and E2 < c (resp. E1), then the game has a unique

Nash equilibrium of (H, H ′) (resp. (H ′, H)).
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Table 2. Payoffs of O1 and O2 for simultaneous-move game

H H ′

H (E1 − c, E2 − c) (|Gl| − c, 0)

H ′ (0, |Gl| − c) (0, 0)

(iii) If Ek > c for k = 1, 2, there are two pure strategy Nash equilibria and
one Nash equilibrium in mixed strategies.

Proof. Points (i) and (ii) follow by inspection of the payoff matrix, noting that
the equilibria Pareto dominate the other possible strategies. When the conditions
of (iii) hold, (H, H ′) and (H ′, H) are Nash equilibria by inspection. To find the
mixed Nash equilibrium, note that it occurs when both parties are indifferent
between playing H and H ′. Let pk denote the probability that player k plays H .
Then player 1’s payoff from playing H is p2(E1 − c) + (1 − p2)(|Gl| − c) while
the payoff from playing H ′ is 0. Setting these equal yields p2 = |Gl|−c

|Gl|−E1
. Thus

the mixed strategy equilibrium is given by

p1 =
|Gl| − c

|Gl| − E2
, p2 =

|Gl| − c

|Gl| − E1
(21)

as desired. ��

6 Simulation Study

In this section, a simulation study of the leader-follower game of Section 4 is
presented. Simulations were performed using Matlab on the Wiki-vote dataset
[8]. A link (i, j) exists if user i voted in favor of user j becoming an administrator.
The original data set had |V | = 7115; in order to reduce runtime, randomly
chosen subsets of V were used for simulation. It was assumed that each edge in
E0 was added to E with probability chosen uniformly at random from [0, 0.5].
For each edge (i, j), the probability that individual i changes from I1 to I2 (or
vice versa) based on j’s input was chosen uniformly at random from [0, 1]. The
probability of an individual i spontaneously switching between ideas was chosen
uniformly at random from [0, 0.05]. The remaining simulation parameters are
summarized in Table 3.

Table 3. Simulation parameters

Parameter Values Used

Number of nodes, n n = 100, 200, 300, 400, 500, 600, 700

Number of ideas, m 2

Probability of self-determination dii 0.5

Probability of i choosing j, dij
0.5

|N(i)|
Cost of adding an individual to Vk, c 5 (low cost) and 15 (high cost)
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Fig. 3. Simulation of the leader-follower game using the Wiki-vote dataset. The payoff
for each player increases with network size; the rate of increase depends on the cost c.
The leader’s payoff typically exceeds the follower’s.

Figure 3 shows the number of individuals holding ideas I1 and I2 in steady-
state for different values of n and c. The payoffs of both players increase with
network size. However, in most cases, the payoff of the leader exceeds the payoff
of the follower. This is because the follower must choose whether to compete
with the leader for influence over highly-connected clusters of individuals. When
the follower has no incentive to do so, the leader may automatically gain control
of these clusters at minimal cost.

Increasing the cost c gives each player less incentive to target individual nodes.
Figure 3 suggests that there is a cutoff n(c) on the network size in order for idea
originators to be willing to introduce their ideas. This may be interpreted as a
“barrier to entry” for ideas to enter the marketplace [9].

7 Conclusions and Future Work

In this paper, the problem of maximizing influence of competing ideas was stud-
ied. The Dynamic Influence in Competitive Environments (DICE) model, which
uses Markov processes to model the propagation of ideas through a social net-
work, was introduced. Based on DICE, game-theoretic models of competition
between ideas were developed, including a Stackelberg game modeling the inter-
action between a leader and a follower in a marketplace, as well as a model for
simultaneous introduction of ideas. It was shown that computationally tractable
algorithms can be used to approximate the solution for both players.

In our proposed formulation it was assumed that both players have complete,
full knowledge of the network topology and each other’s attributes. Our plan of
future work is to develop models of competition with incomplete information.
We will also extend the static games analyzed in this paper to dynamic games,
in which the owner of each idea adapts his strategy in response to the actions
of his competitors. Another direction of future work is to improve on the speed
and accuracy of the solution algorithms of Section 4.
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Abstract. Recent smartphones incorporate embedded GPS devices that
enable users to obtain geographic information about their surroundings
by providing a location-based service (LBS) with their current coordi-
nates. However, LBS providers collect a significant amount of data from
mobile users and could be tempted to misuse it, by compromising a cus-
tomer’s location privacy (her ability to control the information about
her past and present location). Many solutions to mitigate this privacy
threat focus on changing both the architecture of location-based systems
and the business models of LBS providers. MobiCrowd does not intro-
duce changes to the existing business practices of LBS providers, rather
it requires mobile devices to communicate wirelessly in a peer-to-peer
fashion. To lessen the privacy loss, users seeking geographic informa-
tion try to obtain this data by querying neighboring nodes, instead of
connecting to the LBS. However, such a solution will only function if
users are willing to share regional data obtained from the LBS provider.
We model this collaborative location-data sharing problem with rational
agents following threshold strategies. Initially, we study agent coopera-
tion by using pure game theory and then by combining game theory with
an epidemic model that is enhanced to support threshold strategies to
address a complex multi-agent scenario. From our game-theoretic anal-
ysis, we derive cooperative and non-cooperative Nash equilibria and the
optimal threshold that maximizes agents’ expected utility.

1 Introduction

Today’s smartphones are often equipped with GPS devices that enable their
users to obtain contextual information about their surroundings, such as the
location of the nearest supermarket, without needing to ask directions from other
people. To obtain such contextual information, users normally query a loca-
tion-based service (LBS), such as Google Maps (http://maps.google.com)
that, given a current position, can provide detailed information about points-of-
interest in the region and stepwise instructions to reach a particular destination.
The downside of using an LBS system is the possible loss of location privacy
[5][10][12], defined as the ability for a user to control how, where, and when
information about her current and past location is used and by whom [1][4].

MobiCrowd [14] mitigates the loss in location privacy by assuming users carry
location-aware wireless devices capable of peer-to-peer communication, through
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which they can share regional data and, in this way, reduce the fraction of queries
dispatched to the LBS. MobiCrowd devices are equipped with a mobile proxy
that stores the results of LBS queries in a buffer. When a user issues a new query,
the mobile proxy scans the buffer for the information. If the query cannot be
answered by the local cache, it is broadcast to peer devices within range. Should
these peers be unable or unwilling to answer the query, the device finally prompts
the LBS server. The main advantage of this new scheme is that it helps protect
users’ location privacy and requires no changes to the current business practices
of LBS providers and only minimal changes to the architecture of conventional
location-based services.

Our goal is to learn whether the overall level of cooperation amongst users is
sufficiently high for a solution such as MobiCrowd to work. For this purpose, we
model the problem by using game theory [2][13]. This discipline provides a rich
set of analytical tools through which researchers study the interaction between
agents as decision-makers, notably in the context of cooperation in wireless com-
munications [7] and in location privacy [1][4][8][9][11]. Combining game theory
with epidemic models, such as the susceptible-infected-removed (SIR) model [6],
is a practical approach to studying strategic behavior for large populations of
agents. This method is used in [3] to explore why rational individuals might pre-
clude the eradication of a vaccine-preventable disease by weighing the risks of
vaccination and infection; and in [15] to study how the investment in security by
self-interested agents affects the propagation of a computer network infection.

In our game-theoretic model, we represent users as agents who follow threshold
strategies. We assume that users are rational, meaning that they have knowl-
edge of their actions, reason about uncertainty, have clear preferences expressed
through a utility function, and choose actions in their own self-interest by max-
imizing this utility function [13]. Using this model, we define two infinitely re-
peated games of imperfect information. In the first game, we study an elemen-
tary, two-agent interaction and use pure game theory to derive Nash and Pareto
optimal equilibria. In the second, we analyze a complex, multi-agent interaction
by using a modified version of the epidemic model in [14] to support threshold
strategies and derive the optimal threshold that maximizes agents’ payoffs.

2 System Model

In this section we define a game-theoretic framework from which we scrutinize
the MobiCrowd architecture. Consider an agent i confined to a single region. As
it interacts with other agents in the region and the LBS, it switches between
three distinct roles: seeker (K), informed (I), and removed (R) [14]. Seekers try
to obtain regional data by querying other peers or, ultimately, the LBS server.
Informed agents have data on the region and accept to spread this information
according to a threshold strategy; they become removed once the data on their
mobile proxy expires. Finally, removed agents are not interested in obtaining
regional data but can become information seekers later in the game. The set
of roles that each agent may have is defined as follows: ΠR = {K, I, R}. We
illustrate the interaction between the three agent roles in Figure 1.
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Region Legend:

Informed 
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Fig. 1. Operating principle of MobiCrowd. Seekers attempt to obtain data on this re-
gion through informed agents or the LBS using wireless communication links. Removed
agents do not have any regional data and do not want to obtain such information, ab-
staining from any interaction with either seekers or informed agents.

As agent i communicates with its peers, it records (i) the number of times it
received data from other agents, rci(t), and (ii) the number of times it answered
queries from its peers, tri(t), up to and excluding time t, where rci(0) = tri(0) =
0. The goal is to define an agent’s cumulative cooperation effort: the total
number of times an agent receives help in excess of the amount of times it shared
data with a peer. An agent uses this value to decide whether to cooperate or
defect when receiving queries from its peers. Let φi(t) denote the cumulative
cooperation effort of agent i, defined as follows:

φi(t) = rci(t) − tri(t) . (1)

Further, let the set Πφ equal the range of the cumulative cooperation effort: Πφ =
{φmin, . . . , 0, . . . , φmax}, where φmin and φmax are, respectively, the minimum and
maximum bounds for φi(t).

There are two variables that define the state of an agent in the system: (i) its
current role and (ii) its cumulative cooperation effort. Hence, by combining these
two variables, we can define the full set of agent states. Let S denote the set of
agent states, computed as the cartesian product of ΠR and Πφ: S = ΠR×Πφ. We
adopt the following notation to refer to each state: Xφ, where X represents one of
the three possible roles and φ is the cumulative cooperation effort. Additionally,
we express the fraction of agents in each state at time t as Xφ(t).

An agent i decides to share regional facts with seekers according to a thresh-
old strategy si(t). It cooperates with a seeker if (i) it is informed and (ii) its
cumulative cooperation effort, φi(t), is above a common threshold α that ex-
presses the amount of sharing agents accept to perform before expecting some
aid in return; lowering α improves an agent’s capacity to collaborate. If either
condition is false, the agent defects:

si(t) =
{

cooperate if φi(t) > α ∧ i ∈ Iφi(t) ,
defect otherwise . (2)
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As in [14], we assume that agents share a single kind of contextual information.
To consider multiple types of regional data, we can apply the same system model
to each type of data separately; hence, no loss of generality results from this
simplifying assumption.

In our work, we consider a payoff model that reflects the costs and benefits
experienced by MobiCrowd users as they interchange data with peers and con-
nect to the LBS. Consider a simple interaction between a seeker i, an informed
agent j, and the LBS. When i prompts j and j cooperates, i receives a benefit of
binf, expressing the agent’s information gain, and j incurs a communication cost
of ccom for sharing data. If j defects it receives no payoff and i must seek help
from the LBS, earning a lesser payoff of binf−csrv, where csrv denotes the privacy
loss implied when communicating with the location-based service. The utility of
agent i at time t is defined as the difference between the benefit obtained, bi(t),
and the cost incurred, ci(t), at time t:

ui(t) = bi(t) − ci(t) . (3)

According to the operating principle of MobiCrowd [14], users that seek geo-
graphic data query nearby informed peers to avoid the privacy threat posed
by the LBS; hence, we assume that the LBS privacy cost (csrv) exceeds the
peer-to-peer communication cost (ccom). As users ultimately endeavor to be-
come informed, we further assume that the benefit of acquiring data (binf) tops
the privacy and communication costs: 0 ≤ ccom < csrv < binf ≤ 1.

In infinitely repeated games, agents lack knowledge of the precise game dura-
tion, thus, they value present payoffs more than future rewards. To capture this
fact, we define the aggregate discounted reward of an agent for two distinct
cases: discrete time and continuous time games. In the discrete case, the payoff
of an agent i is observed at several discrete time instances or game stages and
the aggregate discounted reward is the sum of its payoff in the immediate stage
game, plus the sum of aggregate rewards discounted by a constant δ ∈]0, 1[.

Definition 1. Given an infinite sequence of payoffs ui(0), ui(1), . . . for agent i,
and a discount factor δ with 0 < δ < 1, the aggregate discounted reward of
i in a discrete time game is:

∑∞
t=0 δtui(t) =

∑∞
t=0 δt(bi(t) − ci(t)).

Additionally, we consider a continuous time game, in which case the aggregate
discounted reward is given by the integral of an agent’s payoff for the duration
of the game, discounted by a constant δ ∈]0, 1[.

Definition 2. Given the utility function ui(t) for agent i and a discount factor
δ with 0 < δ < 1, the aggregate discounted reward of i in a continuous time
game is:

∫∞
0 δtui(t) dt =

∫∞
0 δt (bi(t) − ci(t)) dt.

3 Two-Agent Game

We first model the problem as an infinitely repeated two-agent game of imperfect
information and we constrain both agents to a single map region. To avoid this
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Table 1. List of Symbols

Symbol Description

n size of the agent population
φi(t) cumulative cooperation effort of agent i
rci(t) number of times agent i received data up to and excluding time t
tri(t) number of times agent i shared data up to and excluding time t
si(t) pure strategy followed by agent i at time t
α threshold value used in si(t) to trigger cooperative and non-

-cooperative agent behavior
αopt common threshold value that maximizes agents’ expected payoff
ui(t) agent i’s payoff at time t
bi(t) agent i’s benefit (if any) at time t
ci(t) agent i’s cost (if any) at time t
binf payoff for obtaining regional data from a peer or the LBS
ccom communication cost of sharing regional data with a peer
csrv privacy cost incurred when calling the LBS server
δ discount factor used to calculate agents’ aggregate payoffs
Ui agent i’s expected aggregate discounted payoff

Û estimate of an agent’s expected aggregate discounted payoff
Utotal total discounted payoff of the game

Ûtotal estimate of the game’s total discounted payoff
rctotal total rate at which seekers receive data from informed peers
r̂ctotal estimate of the total rate at which seekers receive data from

informed peers
trtotal total rate at which informed agents share data with seekers

t̂rtotal estimate of the total rate at which informed agents share data
with seekers

ŝvtotal estimate of the total rate at which seekers receive data from the LBS
S set of game states
Πφ range of the cumulative cooperation effort: {φmin, . . . , 0, . . . , φmax}
ΠR set of possible agent roles: {K, I,R}
Kφ an agent i is in this game state at time t if it wants to obtain

regional data and φi(t) = φ
Kφ(t) fraction of agents in state Kφ at time t
Iφ an agent i is in this game state at time t if it has regional data

and φi(t) = φ
Iφ(t) fraction of agents in state Iφ at time t
Rφ an agent i is in this game state at time t if it has no regional data,

does not wish to obtain this data, and φi(t) = φ
Rφ(t) fraction of agents in state Rφ at time t
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privacy threat, agents 1 and 2 want to obtain information about this region by
querying their partner, instead of calling the LBS. In the beginning, no agent has
the desired data, consequently one agent must call the LBS. The data retrieved
from the LBS expires after one game epoch, at which time it is deleted from the
agents’ mobile proxy. At the start of each stage, exactly one agent — chosen
uniformly at random — will be responsible for querying the server. Upon query-
ing the LBS, an agent i becomes informed and follows a threshold strategy to
decide whether to cooperate and share data with its peer j or defect by refusing
to share, according to the strategy function si(t) (2).

When agent i cooperates at time t, i.e. si(t) = cooperate, i incurs a commu-
nication cost of ccom and j gains a benefit of binf. If i defects, si(t) = defect,
it obtains no payoff and j must call the LBS, earning binf − csrv. The utility
function, shared by both agents, is defined succinctly as follows:

ui(t) =

⎧⎪⎪⎨⎪⎪⎩
binf if sj(t) = cooperate ,
binf − csrv if sj(t) = defect ,
−ccom if si(t) = cooperate ,
0 if si(t) = defect .

(4)

Agent i uses the same utility and strategy functions as its peer j, knows
the action chosen by j in the current game stage, but it does not record j’s
past moves. The ability to memorize the history of actions played by an agent is
unrealistic due to the memory constraints of existing smartphone devices. Hence,
i is unable to compute j’s cumulative cooperation effort for all game stages. For
this reason, agents i and j have imperfect information about the game state.

4 Two-Agent Game Analysis

The goal of this section is to determine under which conditions the threshold
strategy introduced previously will yield a cooperative equilibrium. Let Ui denote
the expected aggregate discounted reward for agent i. Agents acting rationally
will only cooperate if the expected discounted benefit is greater than the expected
discounted cost incurred, as defined next:

Ui =
∞∑

t=0

δt (bi(t) − ci(t)) > 0 . (5)

We now calculate the expected discounted aggregate reward, assuming that
agents are chosen randomly at each turn to query the LBS.

Lemma 1. If exactly one agent is chosen at each turn to query the LBS and
the probability of being chosen equals 1/2, then agent i’s expected aggregate dis-
counted reward, as a function of the threshold α, is given by

Ui(α) =

⎧⎪⎨⎪⎩
1

1 − δ
· binf − ccom

2
if α ≤ −1 ,

1
1 − δ

· binf − csrv
2

otherwise .
(6)
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Proof. The probability that an agent i is chosen to query the LBS is 1/2. If agent
i is chosen to query the LBS in turn k, it will cooperate with the second agent
if φi(k) > α, incurring a cost of ccom, and defect otherwise, receiving no payoff.
If agent j is selected to query the LBS in turn k, it will cooperate with agent i
if φj(k) > α, resulting in a benefit of binf for agent i, and defect if φj(k) ≤ α,
causing agent i to call the LBS server, yielding a lesser benefit of binf − csrv. Let
Ui(α) denote the expected aggregate discounted reward for agent i as a function
of the threshold value α. Then Ui(α) can be calculated as follows:

Ui(α) =
1
2

∞∑
t=0

δt
[
−ccom · 1{φi(t)>α} + 0 · 1{φi(t)≤α}

]
+

δt
[
binf · 1{φj(t)>α} + (binf − csrv) · 1{φj(t)≤α}

]
, (7)

where 1predicate is an indicator function yielding 1 each time the predicate is true
and zero when the predicate is false.

As we do not know the value of φi(t) for the duration of the game, we must
calculate the average cumulative cooperation effort (φ) based on the average
number of times an agent receives data (rc) and shares data (tr), as follows:

φ = rc − tr . (8)

As the two agents have equal probabilities of being chosen to query the LBS at
each turn, we expect that each agent is chosen for m/2 game stages, where m
is the length of the game. Additionally, agent i will share data with its peer j
with an estimated probability of: Pr{φ > α}. Hence, rc and tr are given by

rc = (m/2) · Pr{φ > α} , (9)

tr = (m/2) · Pr{φ > α} , (10)

implying that the average cumulative cooperation effort is zero: φ = 0. Using
the previous results, we can now estimate the value of Ui(α) as follows:

Ui(α) =
1
2

∞∑
t=0

δt
[
(binf − ccom) · 1{α<0} + (binf − csrv) · 1{α≥0}

]
=

=

⎧⎪⎨⎪⎩
1

1 − δ
· binf − ccom

2
if α ≤ −1 ,

1
1 − δ

· binf − csrv

2
otherwise .

��

In the following theorem we characterize the possible equilibria resulting from
the game described in Lemma 1.

Theorem 1. The game described in Lemma 1 has two Nash equilibria: (i) both
agents choose a threshold α = −1, ensuring the minimal level of cooperation



170 F. Santos et al.

necessary to achieve the maximal payoff and (ii) both agents opt for a threshold
of α ≥ 0, thus defecting throughout the game. Further, the choice of α = −1
results in a Pareto optimal equilibrium.

Proof. Agents i and j can opt for a threshold of α > −1 or, equivalently,
α ≥ 0, leading to a non-cooperative Nash equilibrium. As the function φi(t)
is initially zero, it will never be greater than zero, and agents will never cooper-
ate: ∀i,tφi(t) �> 0. If agent j independently chooses a threshold α′ smaller than
zero, it will cooperate, at most, −α′ times, incurring a cost proportional to ccom.

The choice of α = −1 is also a Nash equilibrium as it is the maximal threshold
that still allows mutual cooperation between both agents, minimizes the number
of times they share data, and maximizes their expected discounted payoffs:

maxUi,j(α) =
1

1 − δ
· binf − ccom

2
for α ≤ −1. (11)

If agent j independently decreases its threshold to α′ < α, it will increase its
capacity to cooperate with i, potentially incurring a higher sharing cost, propor-
tional to ccom, and consequently obtaining a lower payoff than (11). Assuming
j chooses, instead, α′ ≥ 0, it will always defect and agent i will cooperate, at
most, once with j, at which time j earns binf and i has a cost of ccom. As this
event occurs, at most, once for an infinitely repeated game, we do not consider
this an advantage for player j. Instead, we assume that the game outcome is
equivalent to when both agents defect throughout the game.

We now compare the two possible choices of threshold values: α = −1 and
α ≥ 0. Clearly, Ui(−1) > Ui(α′), for α′ ≥ 0 and 0 ≤ ccom < csrv < binf ≤ 1.
Hence, the strategical choice of α = −1 Pareto dominates the choice α ≥ 0.
As there is no other strategy that Pareto dominates the choice of α = −1, we
conclude that this choice by both agents is Pareto optimal. ��

5 Multiple-agent Game

In an effort to match more closely a real interaction between MobiCrowd devices,
we now consider a game with multiple agents and represent time as a continuous
measure. To analyze the behavior of a large population of agents (n >> 2), we
alter the epidemic model in [14] to support threshold strategies and we define
the rate at which agents switch between states, as shown in Figure 2. The letters
K, I, and R in the state-diagram stand for the three agent roles, seeker (K),
informed (I), and removed (R) and the integer suffix next to each letter denotes
the cumulative cooperation effort. The Cartesian product of the set of roles and
the range of the cumulative cooperation effort generates the full set of agent
states: S = ΠR × Πφ.

Assume that only seekers are present at the start of the game; so all agents are
at state K0 (the cumulative cooperation effort is initially zero). With no informed
agents in the vicinity, seekers must acquire regional data via the LBS, following
transition K0 → I0, in which case their cumulative cooperation effort remains
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constant at zero. These newly informed agents can now cooperate with seekers
at state K0. A seeker receiving regional data through an informed peer improves
its cumulative cooperation effort by one and then jumps to a higher layer in
the state diagram. Whereas, informed agents sharing data suffer a decrement in
their cumulative cooperation effort and fall to a lower level in the state diagram.

An informed agent i with the minimum cumulative cooperation level (i.e. that
has reached the bottom level in the state chart) does not cooperate with seekers
as the condition to cooperate, φi(t) > φmin = α, no longer holds (2). To reach the
maximum cumulative cooperation effort, an agent i must act solely as a recipient
of information and all its (n − 1) peers act as providers of information; agent
i’s peers descend to the bottom layer of the diagram and reach the minimum
cumulative cooperation effort.

Theorem 2. The cumulative cooperation effort of an agent i, φi(t), has a max-
imum of φmax and minimum of φmin, where

φmax = (1 − n)α , (12)
φmin = α , (13)

for an n-agent game and a common threshold value of α.

In other words, there is an upper limit to the amount of cooperation an agent i is
forced to provide by following the threshold strategy si(t), which is proportional
to the number of agents n in the game and the threshold value α. If agent i’s
cooperation effort reaches the maximum value, φi(t) = φmax, i will cooperate,
at most, φmax − φmin = −nα times, for φi(t) = 0, i will cooperate, at most, −α
times, and if φi(t) = φmin, i will defect.

Proof. Consider an n-agent game and let G be the group of agents consisting
of all but agent p1. Hence, the cardinality of G is given by: |G| = n − 1. The
cumulative cooperation effort of all agents is initially equal to zero. Each time t
the regional data in p1’s cache expires, an agent p, satisfying {p ∈ G|φp(t) > α},
contacts the LBS server and shares the retrieved data with p1, upon p1’s request.
This benevolent sharing activity ceases at time t′ when all agents p ∈ G have a
cumulative cooperation effort of: φp(t′) = α. If there was an agent p∗ ∈ G such
that φp∗(t′) = α + 1 > α, then p∗ could share data with p1 once more before
defecting. Each agent in G can, thus, share at most −α data items with p1 before
defecting. Hence, p1’s cumulative cooperation effort reaches a maximum at time
t′, given by:

φp1(t
′) = |G|(−α) = (1 − n)α ,

and those of p ∈ G reach a minimum of

φp(t′) = α . ��

The arrows in the state chart denote the rates at which agents switch between
states, where rcon refers to the contact rate between game agents in a region,
1/rsrv is the average waiting time before contacting the LBS server, 1/rinf is the



172 F. Santos et al.

average information lifetime, and finally, rreq is the rate at which MobiCrowd
users request information. Here A(t) is proportional to the fraction of informed
agents with a cumulative cooperation effort above the minimum (φmin), i.e. the
pool of informed agents that can cooperate, and B(t) is proportional to the
fraction of seekers with a cumulative cooperation effort below the maximal value
(φmax), i.e. the group of seekers capable of querying informed peers. In Table 2
we define the payoffs associated with each state transition.

Table 2. Transition Rates and Payoffs

Transition Pre-condition Rate Utility

1) Kφ → Iφ+1 φ < φmax A(t) · Kφ(t) binf

2) Kφ → Iφ – rsrv · Kφ(t) binf − csrv

3) Iφ+1 → Iφ φ < φmax B(t) · Iφ+1(t) −ccom

4) Iφ → Rφ – rinf · Iφ(t) 0
5) Rφ → Kφ – rreq · Rφ(t) 0

where:

A(t) = rcon

φmax∑
l=φmin+1

Il(t) and B(t) = rcon

φmax−1∑
l=φmin

Kl(t) .

When a seeker successfully queries an informed agent, it becomes informed, im-
proves its cumulative cooperation effort by 1 and obtains a benefit of binf as
defined by Transition 1. Note that only informed agents with a cumulative coop-
eration effort greater than φmin (or α) will cooperate with seekers. By following
Transition 2, seekers can become informed by connecting to the LBS instead
of communicating with a peer. However, in this case, they receive a payoff of
just binf − csrv and their cumulative cooperation efforts remain constant. When
a seeker i reaches the highest cumulative cooperation effort, φi(t) = φmax, it
can only become informed through the LBS server, by following Transition 2,
as there is no other agent j available such that φj(t) > α (see proof of Theo-
rem 2). Each time informed agents share data with a seeker, their cumulative
cooperation effort drops by 1 unit and they incur a communication cost of ccom,
according to Transition 3. Finally, the remaining two transitions, 4 and 5, define
the rates at which agents switch from the informed to the removed state and
from the removed to the seeker state, respectively.

As we define the transition rates between agent states for the n-agent game,
we ensure that the total information shared is equal to the total amount of
information received by seekers. Even though agents are constantly updating
the regional data stored in their mobile proxies, this property must still hold
because each fresh data item shared by an informed agent must be received by a
seeker. This property implies that there is no loss of information during the data
sharing process between informed agents and seekers; we assume lost packets are
retransmitted. This concept is expressed formally in the following theorem.
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Theorem 3. The total amount of information shared by informed agents must
equal the total amount of information received by seekers, assuming the infor-
mation sharing process incurs no loss of data.

Proof. The total rate at which seekers receive data from informed agents equals

rctotal(α, t) =
(1−n)α−1∑

φ=α

Kφ(t) · rcon

(
Iα+1(t) + . . . + I(1−n)α(t)

)
. (14)

A seeker agent i at state Kφmax cannot receive data from an informed agent
because state Kφmax is only reached when all other agents j have the lowest
possible cumulative cooperation effort, ∀jφj(t) = α, as explained in the proof
of Theorem 2, hence any informed agent j ∈ Iφmin following threshold strategy
sj(t) will defect.

Similarly, the total rate at which informed agents share data with seekers is
given by the following:

trtotal(α, t) =
(1−n)α∑
φ=α+1

Iφ(t) · rcon

(
Kα(t) + . . . + K(1−n)α−1(t)

)
. (15)

Expanding rctotal(α, t) gives

rctotal(α, t) = Kα(t) · rcon

(
Iα+1(t) + . . . + I(1−n)α(t)

)
+ . . .

+ K(1−n)α−1(t) · rcon

(
Iα+1(t) + . . . + I(1−n)α(t)

)
. (16)

By factorizing (16) in terms of Iφ(t), for α < φ ≤ (1 − n)α, we obtain

Iα+1(t) · rcon

(
Kα(t) + . . . + K(1−n)α−1(t)

)
+ . . .

+ I(1−n)α(t) · rcon

(
Kα(t) + . . . + K(1−n)α−1(t)

)
= trtotal(α, t) . (17)

As both rates are equal, rctotal(α, t) = trtotal(α, t), the total amount of informa-
tion shared must equal the total amount of information received:∫ ∞

0

rctotal(α, t) dt =
∫ ∞

0

trtotal(α, t) dt . (18)

��

To calculate the total discounted game payoff, we map each transition to a utility
value (see Table 2). We assign the highest payoff of binf to transition Kφ → Iφ+1,
through which seekers acquire regional data from an informed peer. Seekers earn
a lesser payoff of binf − csrv per query when they acquire data from the LBS
using transition Kφ → Iφ due to the privacy loss incurred. Informed agents
suffer a penalty of ccom whenever they share data with seekers using transition
Iφ+1 → Iφ. By multiplying the transition rates and the transition utility values
we obtain the game’s payoff rate u(α, t) (see Appendix A). Applying the discount
factor δ to the payoff rate u(α, t) and integrating the result over the whole
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duration of the game gives the total game discounted reward; in other words,
the payoff accumulated by the whole agent population:

Utotal(α) =
∫ ∞

0

δtu(α, t) dt . (19)

For a finite population of agents n, the expected total discounted payoff of each
agent is calculated simply as

U(α) =
1
n
· Utotal(α) . (20)

6 Multiple-agent Game Analysis

The quantity of agents in each state is controlled by a system of non-linear
differential equations (see Appendix B), derived from the agent state-chart in
Figure 2. Ideally, the exact expressions for Kφ(t), Iφ(t), and Rφ(t) could be found
by solving the system of equations. Unfortunately, the basic W. Kermack and A.
McKendrick SIR model, on which our work relies, cannot be solved analytically
[6]1. The additional complexity of our own system of differential equations only
lessens the chances of finding an analytical solution. However, we can still solve
the system of differential equations by using numerical methods [6]. We resort
to a numerical ODE solver in Mathematica to compute functions Kφ(t), Iφ(t),
and Rφ(t), to analyze the game’s evolution and its steady-state equilibrium.

Our first concern in the game analysis is to study the evolution of the rates at
which (i) seekers become informed by contacting informed peers (Kφ → Iφ+1),
(ii) informed agents share data with seekers (Iφ+1 → Iφ), and (iii) the rate at
which seekers become informed by contacting the LBS (Kφ → Iφ). We do this
because these are the only three transitions that have utilities different from
zero (see Table 2). From the plots in Figure 3, it is clear that the rate at which
informed agents share data equals the rate at which seekers obtain data from
informed peers (plots of Kφ → Iφ+1 overlap those of Iφ+1 → Iφ in 3a and 3d).
Varying the contact rate, rcon, average information lifetime, 1/rinf, average time
before calling the server, 1/rsrv, and the request rate, rreq, affects the proportion
of agents occupying each of the three roles (i.e. seeker, informed, and removed)
at equilibrium. By balancing the transition rates (Figure 3d), it is possible to
achieve a uniform proportion of agents in each of the three roles (Figure 3e).

Decreasing the common threshold α increases the fraction of informed agents
willing to cooperate, i.e. all informed agents i whose cumulative cooperation
effort is above the threshold φi(t) > φmin = α. Consequently, seekers begin
querying informed peers (Kφ → Iφ+1) more often than the LBS (Kφ → Iφ),
thus raising their payoffs from binf − csrv to binf per query. The total discounted
payoff stabilizes when the cumulative cooperation effort of most informed agents
is above the threshold and the rate of transition Kφ → Iφ+1 no longer increases.

1 See Section 1.5 of [6].
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Kφmax Iφmax Rφmax

RφminIφminKφmin

I0 R0

R1I1

rreq · Rφmax(t)

rinf · Iφmax(t)rsrv · Kφmax(t)

B(t) · Iφmax(t)

B(t) · I2(t)
rreq · R1(t)

A(t) · K1(t)

A(t) · Kφmax−1(t)

rreq · R0(t)

rreq · Rφmin(t)

B(t) · I1(t)A(t) · K0(t)

rsrv · K1(t)

rsrv · K0(t)

rsrv · Kφmin(t)

rinf · I1(t)

rinf · I0(t)

rinf · Iφmin(t)

B(t) · I0(t)

B(t) · Iφmin+1(t)

A(t) · K−1(t)

A(t) · Kφmin(t)

K1

K0

Fig. 2. State diagram of the n-agent game. Initially all agents have a null cumula-
tive cooperation effort and are spread out across the three states: K0, I0, and R0. A
seeker at state K0 can become informed by contacting an informed agent at states
Iφmin+1,. . . ,I0,. . . ,Iφmax and switch to state I1. If this fails, the same seeker can ob-
tain regional data through the LBS, maintaining its cumulative cooperation effort, and
switch to state I0. Informed agents at states Iφmin+1,. . . ,I0,. . . ,Iφmax can share data
with seekers, in which case their cumulative cooperation effort drops by one unit, and
they fall to a lower level in the diagram. An informed agent at state Iφmin does not
cooperate with seekers and seekers at state Kφmax can only become informed via the
LBS. Once the information expires, informed agents become removed and can later
become seekers. The transitions represent the rates at which agents change state.
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This phenomenon is illustrated in Figures 3c and 3f, where the total discounted
payoff function Utotal(α) is almost level for α ≤ −4 in 3c and α ≤ −5 in 3f.

We proceed to estimate the distribution of agents for the whole range of
cumulative cooperation values, i.e. φ ∈ [φmin, φmax] = [α, (1 − n)α], assuming a
uniform distribution of agents for the three possible roles at the game’s steady
state equilibrium. As we represent the population of agents in each state as a
fraction of unity and given that agents can only be in a single state at a time,
the sum Kφ(t)+ Iφ(t)+Rφ(t) can be interpreted as the probability that a given
agent i has a cumulative cooperation effort equal to φ at time t:

Pr{∃i : φi(t) = φ} = Kφ(t) + Iφ(t) + Rφ(t) . (21)

For a large population of agents (n >> 2) and at the game’s steady-state equi-
librium (t → ∞ or t∞), we estimate this probability (21) as

Pr{∃i : φi(t∞) = φ} ≈ 1
1 − α

· 1

(1 − 1/α)φ−α
, (22)

where
∑(1−n)α

φ=α
1

1−α · 1
(1−1/α)φ−α → 1, for α ≤ −1 and n → ∞. In Figure 4 we plot

(21) and (22) for a population of n = 40 agents and a threshold of α = −2. The
estimate (22) is particularly relevant to characterize agents’ rational behavior
at equilibrium, which allows them to quantify the rates of all transitions with
utilities different from zero, and to be able to choose the optimal threshold αopt

to maximize their payoff.
Assuming we reach a uniform distribution of agents occupying each of the

three roles at the game’s steady-state equilibrium, as with the case illustrated in
Figure 3e, we can estimate the probability that a given agent i is in, for example,
state Kφ as: 1/3 · Pr{∃i : φi(t∞) = φ} (the same holds for Iφ and Rφ). This
enables us to estimate the total rate at which information is shared by informed
agents, t̂rtotal(α) ≈ trtotal(α, t∞), received by seekers contacting informed peers,
r̂ctotal(α) ≈ rctotal(α, t∞), and received by seekers contacting the LBS, ŝvtotal(α),
at the game’s steady-state equilibrium, as shown below:

t̂r(α) =
rcon

32
· α

α − 1

[(
α − 1

α

)nα

− 1
]2

, (23)

r̂c(α) = t̂r(α) , (24)

ŝv(α) =
rsrv

3

[
1 −
(

α − 1
α

)nα−1
]

. (25)

Using (23)-(25) we estimate the game’s total payoff at equilibrium as

Ûtotal(α) = binf · r̂c(α) − ccom · t̂r(α) + (binf − csrv) · ŝv(α) (26)

and an agent i’s total payoff at equilibrium as

Û(α) =
1
n
· Ûtotal(α) , (27)

for a large, but finite agent population of size n (n >> 2).
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Fig. 4. Distribution of the cumulative cooperation effort. The plot shows the fraction
of agents with a specific cumulative cooperation effort, for Πφ = [φmin, φmax], assuming
we have 1/3 of each type of agent at the game’s steady-state equilibrium.

Agents acting to maximize their payoffs will benefit by decreasing their thresh-
old. A lower threshold implies that more agents are willing to cooperate when
informed. Seekers can obtain regional data from this larger pool of coopera-
tive informed agents, instead of using the LBS and gathering a higher payoff.
Clearly, the benefit of acquiring data from an informed peer and sharing it with
another agent is greater than the payoff achieved when connecting to the LBS:
binf − ccom > binf − csrv, provided 0 ≤ ccom < csrv < binf ≤ 1. In order to con-
sider an optimal threshold (αopt), as illustrated in Figures 3c and 3f, we define
a tolerance ε > 0 such that an agent i will not ponder reducing α to maximize
its payoff if the added benefit is less than ε:

αopt = max{α ≤ −1 : Û(α − 1) − Û(α) < ε} . (28)

7 Conclusion

The MobiCrowd system architecture introduces only minor changes to the way
traditional location-based schemes operate, thus enabling users to obtain geo-
graphic data from other peers and to potentially improve their location privacy
by reducing the amount of queries that participants send to the LBS server [14].
However, the improvement in privacy is only possible if users are willing to coop-
erate. The goal of our work is to learn if users adopting the MobiCrowd system
would be willing to collaborate by sharing regional data between themselves in
order to avoid the privacy threat of connecting directly to the LBS provider. To
study this problem we first developed a game-theoretic framework, from which
we defined two infinitely repeated games of imperfect information.

In the first game, we model two agents that are chosen to query the LBS with
equal probability. We derived two Nash equilibria in this game, one favors mutual
cooperation that is Pareto optimal and the second favors mutual defection. In the
second game, by modifying the original MobiCrowd SIR model [14] to support
agent rational behavior using threshold strategies we represent an interaction
between multiple agents confined to a single region. Due to the complexity of
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modeling peer-to-peer interactions in this case, we use transition rates to define
the pace at which agents change state over time and we assign payoffs to each
transition. From the analysis of this game, we derive the optimal threshold that
maximizes an agent’s expected payoff, for a large population of agents, assuming
a uniform distribution of agents at the steady-state equilibrium.

Our results show that rational agents attempting to maximize their payoffs
will benefit by sharing data with their peers, both in the controlled environ-
ment of the two-agent game and in the more realistic n-agent scenario. As
a future development of this work, we plan to analyze the same contextual-
data sharing problem considering threshold strategies with an independent (per
agent) threshold, experiment with different types of reactive strategies, and in-
troduce statistical processes describing the rate at which agents enter and leave a
region.
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Appendix A Total Discounted Payoff

Using the transitions, rates and payoffs (defined in Table 2), we can calculate
the total discounted game payoff by integrating over the duration of the game
the product of the payoff rate, u(α, t), and the discount factor, δ ∈]0, 1[. The
payoff rate, u(α, t), is defined as the difference between the benefit rate b(α, t),
and the cost rate, c(α, t):

u(α, t) = b(α, t) − c(α, t) , (29)

where

b(α, t) = binf

(1−n)α−1∑
l=α

A(t) · Kl(t) + (binf − csrv)
(1−n)α∑

l=α

rsrv · Kl(t) , (30)

and

c(α, t) = ccom

(1−n)α∑
l=α+1

B(t) · Kl(t) . (31)

We now apply Definition 2 to calculate the total discounted reward as a function
of the threshold α:

Utotal(α) =
∫ ∞

0

δtu(α, t) dt . (32)
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Appendix B Game Dynamics

The system of non-linear differential equations governing the fraction of agents
in each state, Kφ(t), Iφ(t), Rφ(t), for φ ∈ [φmin, φmax], is

K ′
φmax(t) = rreq · Rφmax(t) − rsrv · Kφmax(t) , (33)

I ′φmax(t) = A(t) · Kφmax−1(t) + rsrv · Kφmax(t)
− (B(t) + rinf) Iφmax(t) , (34)

R′
φmax(t) = rinf · Iφmax(t) − rreq · Rφmax(t) , (35)

K ′
φmin<φ<φmax(t) = rreq · Rφ(t) − (A(t) + rsrv)Kφ(t) , (36)

I ′φmin<φ<φmax(t) = A(t) · Kφ−1(t) + rsrv · Kφ(t) − (B(t) + rinf) Iφ(t)
+ B(t) · Iφ+1(t) , (37)

R′
φmin<φ<φmax(t) = rinf · Iφ(t) − rreq · Rφ(t) , (38)

K ′
φmin(t) = rreq · Rφmin(t) − (A(t) + rsrv) Kφmin(t) , (39)

I ′φmin(t) = rsrv · Kφmin(t) + B(t) · Iφmin+1(t) − rinf · Iφmin(t) , (40)

R′
φmin(t) = rinf · Iφmin(t) − rreq · Rφmin(t) . (41)

As agents can only be in a single state at a time, the following relationship must
also hold:

φmax∑
l=φmin

Kl(t) +
φmax∑

l=φmin

Il(t) +
φmax∑

l=φmin

Rl(t) = 1 . (42)
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Abstract. An experimental study of the digital trust game in [2] is presented.
The study consists of an initial survey followed by a four-part dynamic experi-
ment investigating various aspects of digital trust decisions. Digital trust in online
environments differs from its offline variants due to its unique characteristics such
as near instantaneous communication, transient and impersonal nature of interac-
tions, immediate access to opinions of others, and availability of high amount
of (but often low quality) information. It is observed that while the game the-
ory provides a suitable analytical framework for quantitative analysis of digital
trust decisions, the model in [2] has its shortcomings. Firstly, the subjects do not
seem to adopt an iterative best or gradient response strategy. They exhibit signifi-
cant (mental) inertia and only respond to new information or significant situation
changes. Secondly, they take into account signals from their social circle much
more than aggregate signals such as average scores. Both of these results and
additional insights gained have important implications for future game theoretic
modeling efforts of digital trust.

Keywords: Digital trust, decision making, game theory, social influences, sur-
vey, dynamic experiment.

1 Introduction

Trust relationships in online environments differ from those in offline media due to
fundamental differences between the two. Traditionally, trust is established through per-
sonal interactions and their history, based on which the involved parties make their trust
decisions. The situation is quite different in an online medium. However, digital trust
and reputation still play a fundamental role in many types of online interactions rang-
ing from communication and entertainment services to e-commerce [17, 5]. This new
paradigm of digital trust has naturally attracted the attention of the research community
as a result of its increasing importance [10, 1].

Trust and related interactions, whether they occur in digital or offline environments,
naturally involve multi-person decision making. Therefore, it is not surprising to see
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that the topic has been studied by the game theory community [7, 8, 3, 11] often with a
focus on economical aspects or offline repeated games. While some these game mod-
els are also (partially) applicable to digital trust in online environments, the change of
medium from offline to online necessitates a fresh approach due to fundamental dif-
ferences in their characteristics [14]. Near instantaneous communication, transient and
impersonal nature of interactions, immediate access to opinions of others, availability
of high amount of (but often low quality) information, online social networking effects
are among the properties of online media that distinguishes digital trust from its offline
versions [6, 16, 15].

This experimental study builds upon the earlier game theoretic model introduced
in [2], which focuses on community effects and other factors in digital trust decisions.
Quantitative analysis of digital trust decisions and factors influencing them are at the
center of the model considered. Thus, it differs from a recent work [12] where no an-
alytical modeling effort is present. The developed model in [2] constitutes a starting
point for a quantitative and analytical approach to digital trust from a decision making
perspective. However, that model has only been analyzed numerically until this paper.
The goal of this paper is to take the next natural step in the scientific process: an ex-
perimental study of the digital trust game model. Although the experiments conducted
have limitations and are of modest scale, they still provide invaluable insights to where
the model successfully captures reality and at which points the inherent modeling as-
sumptions fail.

Experimental studies investigating the gap between game theoretic models and real
human behavior have a long history. The book “behavioral game theory” [4] covers the
field extensively reporting the results of numerous past experiments. The experimental
results presented in this paper support a conclusion of that book stating that game theo-
retic models capture some aspects of the human decision making processes surprisingly
well while failing to match reality in others.

The main contributions of this work are summarized as follows:

– Experimental study of a digital trust game model which provides valuable insights
to how well the model captures real trust decisions.

– Presentation of experimental results indicating
• actual decisions of subjects do not necessarily follow gradient or best response

dynamics in parallel update schemes that are often used in game models.
• many social factors such as peer-pressure or influence, social networking ef-

fects, and anonymity can be captured using appropriate and tractable cost struc-
tures in digital trust games.

– A discussion various interpretations of the results obtained and potential evolution
of the model in light of the observations.

The next section gives an overview of the digital game model that inspired the survey
and experiments for completeness. Section 3 presents the experiment setup which is
followed by the results in Section 4. Interpretation and discussion of the results obtained
are in Section 5. The paper ends with concluding remarks of Section 6. All of the survey
and experiment results are in Appendix A. Appendix B gives a brief overview of the
web-based software used along with screenshots.
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2 Digital Trust Game Model

In this section the digital trust game model of [2] is summarized for completeness as
it constitutes the basis of the experimental study in this paper. For further details on
analysis and simulations we refer to that paper.

Consider the set of N users or agents, A, in a standard online environment. A digital
trust game is played among the users of the set A, who make trust decisions on, for
example, an e-commerce website or seller. Each user i has an initial trust score (level),
ei ∈ R, of the website. Using this initial score ei as a starting point, the user decides
on her/his trust level, xi ∈ R, of the seller after exchanging information with the rest
of the community. The individual opinion or trust score, xi, is influenced by various
community effects as well as the properties of the user. The opinions of all the users
represented by the vector

x = [x1, . . . , xN ] ∈ X ⊂ RN

define the decision space of the digital trust game.
In the game, xi = 0 corresponds to a neutral or default opinion of user i on the seller.

Consequently, the positive values, xi > 0 represent a positive opinion and negative
ones, xi < 0, a negative opinion. The users’ opinions are not only a function of the
initial reputation and image but also of factors capturing community influences. The
decision process of a user i can be modeled by the minimization of a well-defined cost
function that quantifies the factors affecting the opinion of the agent. As one possibility,
the following cost function is adopted here:

Ji(xi,x−i) :=
αi

2
x2

i +
βi

2

⎛⎝xi −
1

N − 1

∑
j �=i

xj

⎞⎠2

+
γi

2
(xi − ei)2, (1)

where 0≤αi, βi, γi ≤ 1, αi+βi+γi = 1 ∀i, and x−i := [x1, . . . , xi−1, xi+1, . . . , xN ].
It is naturally possible to consider different types of cost functions. This particular one
is chosen for its nice analytical properties as a first order approximation.

The first term, αix
2
i , in the cost function (1) quantifies the timidness of user i,

especially in the case when the trust decisions are publicized. The term quadratically
penalizes any positive or negative opinion of the user forcing it to the neutral or zero
opinion. Users with different properties can be represented by choosing the weighting
parameter α appropriately. A timid user, who is reluctant to pass judgment, is expected
to have a high α whereas a self-assertive or opinionated one is captured by a small
α parameter value. The second term in the cost function quantifies the influence of
peer pressure on the user. Here, peer pressure is modeled using a quadratic cost on
any opinion deviating from the mean value of others. An individualistic or independent
user is represented with a small β value. On the other hand, a user who follows the
crowd is expected to have a high-valued β parameter. The third term, γi(xi − ei)2,
captures the effect of the initial trust ei of the user on the final opinion xi. A steadfast
user who does not change its own opinion as a result of community interactions or
sharing is represented by a high γ value. On the other hand, a user who updates its
opinion easily has a small γ parameter in the respective cost function. Notice that the
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weighting parameters α, β, γ are normalized in such a way that the factors discussed
above are balanced with each other. Hence, the inherent trade-offs between the factors
are captured by the cost function and the game.

The set of players or users A, the decision space X , and the cost functions Ji ∀i
define together the digital trust game, G1(A,X , J). In this noncooperative game each
individual user i minimizes own cost Ji by choosing own opinion (trust decision), xi ∈
R, given the opinions (trust decisions) of others, x−i, i.e.

xi = argmin
xi

Ji(xi,x−i). (2)

It has been shown in [2] that the static digital trust game G1 defined admits a unique
Nash equilibrium solution, which can be even analytically described in the case of sym-
metric user costs. It has been also shown that the parallel update algorithm (PUA) sum-
marized in Algorithm 1 and its asynchronous variant converge to this unique Nash equi-
librium very fast (geometrically). In PUA, each user i updates its own opinion xi(t) to-
gether (in parallel) with all other agents at the same discrete time instances t = 1, 2, . . .
according to own best response function:

xi(t + 1) =
βi

N − 1

∑
j �=i

xj(t) + γiei, ∀i, (3)

which is directly computed from the convex cost function (1).

Algorithm 1. Parallel Update Algorithm (PUA)

Input: Individual trust values e, convergence threshold ε.
Initialize trust values xi(0) = ei ∀i and time step t = 0.
while ‖x(t + 1) − x(t)‖ > ε do

t = t + 1
Compute s(t) :=

∑
i xi(t)

for i = 1 to N do

Compute xi(t + 1) =
βi

N − 1
(s(t) − xi(t)) + γiei.

end for
end while

3 Experiment Setup and Execution

The experiment is conducted using a Web-based program over the Internet. It consists
of two parts: a standard survey and a dynamic experiment, which investigates the itera-
tive decision process in digital trust games. Although there are adequate survey software
which can be used for the survey part, there is no suitable software for conducting the dy-
namic experiment within the context of the model in Section 2. Hence, an all new custom
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software has been written using the Django Web framework1 in Python2 programming
language. Technical information about the software is provided in Appendix B.

The survey and experiment are completed by a total of 28 volunteered participants
who are senior and graduate level Computer Science students of Sabanci University on
May 23, 2011. Participants have come together in a classroom environment and used
their computers during the entire experiment. All stages of the experiment have been
supervised by a single instructor who has acted as the administrator.

First the supervisor has asked the participants to create an online account for the
experiment system. Once the accounts have been created, the supervisor has delivered
an overview speech to explain what will be performed during the experiments.

After that, the supervisor has asked the volunteers to complete the survey part. It is
important that participants start the second part (dynamic experiments) synchronously.
Therefore, the supervisor has made an announcement in which the participants are re-
quested to wait for each other in order to continue with the second part (dynamic exper-
iment) after finishing the first part (survey). The supervisor has not made extra verbal
explanations for the survey questions with the exception that he clarified the distinction
between the questions 5-7 (anonymous evaluation) and 8-10 (non-anonymous evalua-
tion). The completion of survey questions has taken 12 minutes for all participants.

Once the survey part is finished, the supervisor has instructed the participants about
the dynamic experiments part. He has specifically mentioned that there are four differ-
ent parts in this experiment and each of them has five rounds. He has also specified
that the participants should act synchronously such that all participants should finish
entering scores in a round in order to proceed with the next round. The reason is that
the participants should see the updated average scores at the beginning of each round,
except the initial round.

At the beginning of each experiment part, the scenario displayed on the screen has
also been explained verbally by the administrator. Each participant enters his/her initial
score in the first round of each experiment segment. As mentioned before, all of the
participants should complete a particular round in order to continue with the next round.
Actually the online system shows a ”please wait” screen to a particular participant while
other participants record their scores for a round; however, the participants have been
specifically instructed by the supervisor not to close their windows, restart, or press back
button of the browser. Round transitions have been performed without intervention of
the supervisor since the participant screens are automatically refreshed and next round
information is shown once all participants finish their entry. It has taken approximately
30 minutes to complete all four parts of the dynamic experiment.

4 Experiment Results

4.1 Survey Results

The survey consists of ten single or multiple choice questions answered by all partici-
pants before moving on to the dynamic part of the experiment. The questions and their
answers in graphical (histogram) representation are shown in Appendix A.

1 www.djangoproject.com/
2 www.python.org

www.djangoproject.com/
www.python.org
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Table 1. Comparison of Answers to Q5-7 (anonymous) with Q8-10 (public disclosure)

Compared Total Percentage Individual Changes
Questions scores change (decrease, same, increase)

Q5 vs Q8 188 vs 180 -4.2% 7 dec, 15 same, 5 inc

Q6 vs Q9 28 vs 39 +39.3% 9 dec, 12 same, 7 inc

Q7 vs Q10 -211 vs -202 +4.3% 6 dec, 14 same, 8 inc

The first four survey questions are mainly for warm-up and to obtain insights to (the
online interaction habits of) the subjects. The answers to the first and third questions
indicate that the participants are quite active online both in e-commerce and social net-
working. They also take into account opinions of others when making decisions online
as indicated by the results of question two. The answers to question four indicate that
they are somewhat careful when it comes to their privacy online and do some kind of
risk management. While most subjects do not hesitate to share information which they
do not see as critical (e.g. E-mail or real name), half of them have never shared their
address, telephone, or credit card information online.

The questions five to ten are about evaluation of an Internet (e-commerce) company
and giving it a trust score between −10 and 10, meaning no trust and full trust, respec-
tively. A zero score means neutral. In questions five, six, and seven, these scores are
anonymous. The questions eight, nine, and ten are repetitions of five, six, and seven,
respectively, but now the participants are told that their scores are shared publicly using
their real names.

Overall, the answers to questions five to ten are consistent with the instructions given.
It is observed that roughly half of the participants do not change their answers when the
scores are not anonymous, i.e. they do not hesitate to openly announce their opinions.
For the other half, anonymity is a consideration when sharing their trust scores with
others. The changes in scoring are summarized in Table 1 below. The mixed nature
of the results indicate that multiple factors may be concurrently affecting the subject
behavior.

4.2 Dynamic Experiment Results

In each part of the dynamic experiment, the participants give a trust score to an online
company based on a slightly different scenario. This is repeated for five rounds in each
scenario/part. In each round, they see the average trust score of the previous one, and
have a chance to change their own score accordingly.

In the first part, the subjects are asked to decide on a trust score for a company they
trust initially and update it four more times using the average score (of all participants)
in the previous round. First, they are told that their scores are shared publicly with their
real name. The second part is a variation of the first but this time the scores are kept
anonymous. In both cases, it is observed in Figures 12 and 13 that a significant portion
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of the subjects do not change their trust level based on the average trust level. Others
do so only slightly and mostly in the first round.

The last two parts of the dynamic experiment investigate the effect of the opinion of a
“good friend” on the decision of a subject. In the third part, the subjects decide on a trust
score of a company they trust. At the same time, “a good friend” tells them that he gives
a low trust score of −8 to the company, i.e. the company is not trustworthy. In the fourth
part, the situation is reversed and they score a company they do not trust but this time the
“good friend” tells them otherwise and gives the company a trust score of +8. In both
of these parts, the subjects still see the average trust score in each round. It is observed
in Figures 14 and 15 of parts three and four of the dynamic experiment, respectively,
that the suggestion of a “good friend” has a significant effect on the decisions of most
subjects.

5 Discussion and Interpretation

Although the scale of this experimental study is modest and participants have uniform
backgrounds (Internet-savvy undergraduate and graduate engineering students), it is
possible to gain some insights to the nature of digital trust decisions and applicability
of the game theoretic model discussed in Section 2.

The survey results indicate that roughly half of the participants share their trust de-
cisions or ratings openly in an e-commerce setting without hesitation. The other half
exhibits, on the other hand, mixed reactions to the anonymity versus disclosure in trust
decisions. Multiple factors may be in play here. One possibility is that the abstract na-
ture of the experiment may have affected subjects, preventing a conscious evaluation of
the long term effects of anonymity versus public disclosure. Another interpretation is
that evaluating a company is a rather regular activity in e-commerce today (e.g. provid-
ing feedback in Amazon, E-bay, online hotel booking, etc.). Therefore, most subjects
seem to have no misgivings about openly disclosing their opinions. It can be speculated
that online environments empower customers in general and do not hinder flow of in-
formation among customers. This was not possible before the Internet age. It should be
noted, however, in settings other than e-commerce where disclosing such trust decisions
may have direct repercussions (social networks, evaluation of instructors, peer review)
we may expect a different picture and a stronger anonymity trend.

Another motivation behind the last six survey questions is calibration. The goal here
is to make users think about their scores before starting the dynamic experiment. The
consistency of the observed scores, low for not trusted and high for trusted, show that
such a calibration is useful and arguably makes the results in the dynamic segment more
reliable [9].

An important result of the dynamic experiment is that users do not seem to adopt
an iterative best or gradient response strategy when making trust decisions. This is
in contrast to the assumed behavior in simulations of the model in [2]. A simulation
result is reproduced in Figure 1 for comparison. In dynamic experiments, however, the
subjects mostly either stick to their original decisions or update it often only once in
the second round after seeing the average opinion of others. This may be explained
with inertia and the inherent (mental) cost of making decisions. It is a well-known fact,
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Fig. 1. Evolution of trust scores of 20 simulated symmetric users who update their decisions
iteratively in parallel according to best response scheme in (3) (figure reproduced from [2])

for example, that customers prefer flat pricing over metered ones in order to decrease
mental load.

The game theoretic model in [2] has not taken the inertia factor into account which
seems to have a profound effect on actual decision making dynamics. A better model
could be one where users express their preferences once and update them only if an ex-
ternal event such as a significant new observation or substantial change in circumstances
happens. Such a state and information-based approach may capture the observed subject
behavior better than the customary iterative dynamic update models.

This outcome has also consequences for mechanism design. It indicates that a mech-
anism designer hoping to make use of iterative user updates to infer their preferences
has a much more difficult task than expected as inertia decreases variability, and hence
hinders the inherent flow of information in a designed mechanism.

As a side note, iterative dynamic update models may still have a place in certain
situations. For example, if the users rely on software agents acting on their behalf, then
these agents may use best response and gradient algorithms to find the best solution.
Even in such cases, the users may update their input to agents or preferences rarely.

Another important result of the dynamic experiment relates to the social influ-
ences. The first two parts of the dynamic experiment (Figures 12 and 13) show that
participants care relatively little about anonymous and aggregate signals such as the av-
erage trust score of all others. They change their decisions only slightly if at all based
on such signals. However, the last two parts of the experiment (Figures 14 and 15) show
that they take any signal from their friends and trusted third parties seriously. Compar-
ing Figures 12 and 14 clearly shows that such a signal has a profound effect on trust
decision of the subjects.

This result verifies that social networks are very important and play a significant
role in trust decisions. In the advertisement industry, this phenomenon is well-known
and even has its name: word of mouth advertisement. An interesting conclusion for
game theoretic models in digital decision making is that networking effects cannot be
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simplified to aggregate signals and have to be explicitly modeled. Again, this is missing
in the current model of Section 2.

Finally, despite its shortcomings, the game theoretic approach has captured some of
the fundamental aspects of digital trust decisions quite well. The chosen cost function
can be easily modified to take into account the mentioned issues. “Inertia” can also be
incorporated into the existing model. For example, the approach in [13] can be used,
where users stick to their previous decisions with some probability. Alternatively, the
probabilistic inertia can be replaced by a rule based variant.

6 Conclusions

An experimental study of the digital trust game in [2] is presented. The study consists
of an initial survey followed by a four-part dynamic experiment investigating various
aspects of digital trust decisions in online environments. It is observed that while the
game theory provides a suitable analytical framework for quantitative analysis of digital
trust decisions, the current model has its shortcomings. Firstly, the subjects do not really
adopt an iterative best or gradient response strategy. They exhibit significant inertia and
mainly respond to new information, e.g. suggestion of a friend, or situation changes
such as public disclosure of their scores. Secondly, they take into account signals from
their social circle much more than aggregate signals such as average scores. Both of
these results have far-reaching implications for future game theoretic modeling efforts.

The next research step is to follow the scientific process and update the models in ac-
cordance with experimental findings. Then, they can be studied again with an extended
set of experiments. Specific aspects that can be immediately incorporated into the model
include networking effects as a factor influencing decisions of users and (mental) iner-
tia in decision updates. It is worth noting that both of these issues are characteristics of
digital trust and are much less emphasized in offline settings.
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Appendix A: Survey and Experiment Results
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Fig. 2. Answers to Question 1: How frequently do you use Internet shopping services on average
(e.g. E-bay, Amazon)?
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Fig. 3. Answers to Question 2: Do you read other user comments and take them into account when
you make decision about a product during Internet shopping (e.g. when you buy something)?
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Fig. 4. Answers to Question 3: How actively do you use a social network (e.g. Facebook)?
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Fig. 5. Answers to Question 4: Which of the informations below have you given to companies
online (Amazon, Facebook, etc. Banks who have the information already from offline sources do
not count)?
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Fig. 6. Answers to Question 5: You evaluate an Internet company by giving it a score anony-
mously. Any positive score indicates your trust in it (maximum +10) and any negative score
(-10) indicates mistrust. Zero, 0, means neutral. You do not have to give maximum scores when
you trust or mistrust, any score is fine. Now consider a scenario where you give a score to a
company you trust a lot. What score would you give?
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Fig. 7. Answers to Question 6: You evaluate an Internet company by giving it a score anony-
mously. Any positive score indicates your trust in it (maximum +10) and any negative score
(-10) indicates mistrust. Zero, 0, means neutral. You do not have to give maximum scores when
you trust or mistrust, any score is fine. Now consider a scenario where you give a score to a
company you trust only a little bit. What score would you give?
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Fig. 8. Answers to Question 7: You evaluate an Internet company by giving it a score anony-
mously. Any positive score indicates your trust in it (maximum +10) and any negative score
(-10) indicates mistrust. Zero, 0, means neutral. You do not have to give maximum scores when
you trust or mistrust, any score is fine. Now consider a scenario where you give a score to a
company you don’t trust. What score would you give?
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Give a trust score [−10,10] to a company you trust a lot  (score publicly announced)

Fig. 9. Answers to Question 8: You evaluate an Internet company by giving it a score. This time,
your scores are shared publicly with your real name on the Internet (e.g. as in amazon.com).
Any positive score indicates your trust in it (maximum +10) and any negative score (-10) indicates
mistrust. Zero means neutral. You do not have to give maximum scores when you trust or mistrust,
any score is fine. Now consider a scenario where you give a score to a company you trust a lot.
What score would you give?
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Give a trust score [−10,10] to a company you trust a only a little bit  (score publicly announced)

Fig. 10. Answers to Question 9: You evaluate an Internet company by giving it a score. This time,
your scores are shared publicly with your real name on the Internet (e.g. as in amazon.com).
Any positive score indicates your trust in it (maximum +10) and any negative score (-10) indicates
mistrust. Zero means neutral. You do not have to give maximum scores when you trust or mistrust,
any score is fine. Now consider a scenario where you give a score to a company you trust only a
little bit. What score would you give?
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Fig. 11. Answers to Question 10: You evaluate an Internet company by giving it a score. This
time, your scores are shared publicly with your real name on the Internet (e.g. as in ama-
zon.com). Any positive score indicates your trust in it (maximum +10) and any negative score
(-10) indicates mistrust. Zero means neutral. You do not have to give maximum scores when you
trust or mistrust, any score is fine. Now consider a scenario where you give a score to a company
you don’t trust. What score would you give?
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Fig. 12. User scores in dynamic experiment 1. The text of the given scenario is: You evaluate
an Internet company which you mainly trust by giving it a score. You have the chance to
change your score up to 5 times before finalizing it and you will see the average score the
company gets from everyone. Any positive score indicates your trust in it (maximum +10) and
any negative score (-10) indicates mistrust. Zero means neutral. Your scores are shared publicly
with your real name on the Internet.
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Fig. 13. User scores in dynamic experiment 2. The text of the given scenario is: You evaluate an
Internet company which you mainly trust by giving it a score. Your scores are anonymous.
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Fig. 14. User scores in dynamic experiment 3. The text of the given scenario is: You evaluate an
Internet company which you mainly trust by giving it a score. Your scores are shared publicly
with your real name on the Internet. A good friend of yours tells you that he does not trust
this company and gives the company a score of -8.
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Fig. 15. User scores in dynamic experiment 4. The text of the given scenario is: You evaluate an
Internet company which you do not trust by giving it a score. Your scores are shared publicly
with your real name on the Internet. A good friend of yours tells you that he does trust this
company a lot and gives the company a score of +8.
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Appendix B: Web-Based Game Experiment Software

The software specially developed for this experimental study by Tansu Alpcan is a
web application. The programming language used on the server side, Python3, is very
suitable for academic usage as it is high-level, easy-to-learn, and has support for scien-
tific computing such as the SciPy4 library. The software is built upon the python-based
Django web framework, which allows fast prototyping and decreases the programming
time significantly. In addition, it provides a useful administration interface for accessing
the underlying database.

The survey part of the software has a flexible structure that allows entering questions
and different types of answers (single/multiple choice, number, text) separately, and
hence creation of a question and answer database. Then, surveys can be constructed
using question/answer combinations in a flexible manner.

The dynamic experiment section of the software is its unique aspect. Currently,
only synchronized iterative update is supported with a hard-coded number of responses
needed to move to the next round. It is possible to give subjects a different piece of
information at each round as well as aggregate metrics such as the average score in this
experiment.

A screenshot of the main screen, a survey question, and a round in a dynamic ex-
periment are shown in the Figures 16, 17, and 18, respectively. It is possible to use a
html/css template to increase the visual appeal of the system. Subsequent to some basic
improvements, this software is planned to be shared with the community in the future
as an open source project.

Fig. 16. Screenshot of the main screen after login

3 python.org
4 www.scipy.org

python.org
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Fig. 17. Screenshot of a survey question

Fig. 18. Screenshot of a dynamic experiment section
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Abstract. Phishing exhibits characteristics of asymmetric conflict and
guerrilla warfare. Phishing sites, upon detection, are subject to removal
by takedown specialists. In response, phishers create large numbers of
new phishing attacks to evade detection and stretch the resources of the
defenders. We propose the Colonel Blotto Phishing (CBP) game, a two-
stage Colonel Blotto game with endogenous dimensionality and detection
probability. We find that the optimal number of new phishes to create,
from the attacker’s perspective, is influenced by the degree of resource
asymmetry, the cost of new phishes, and the probability of detection.
Counter-intuitively, we find that it is the less resourceful attacker who
would create more phishing attacks in equilibrium. And depending on
the detection probability, an attacker will vary his strategies to either
create even more phishes, or to focus on raising his resources to increase
the chance he will extend the lifetime of his phishes. We discuss the
implications to anti-phishing strategies and point out that the game is
also applicable to web security problems more generally.

Keywords: Phishing, Economics, Colonel Blotto, Web Security.

1 Introduction

Phishing, among other web security issues, has remained a tricky problem today.
While it is non-trivial to measure the exact financial losses due to phishing, and
that many estimated loss figures appear overstated [9], the damage inflicted
by phishing activities is never negligible. Realizing that technical sophistication
alone will not be sufficient to fend off phishing activities, over the past few years,
researchers have started to look at the ecosystem and modi operandi of phishing
activities.

McGrath and Gupta found that phishers misuse free web hosting services
and URL-aliasing services, and that phishing domains are hosted across mul-
tiple countries with a significant percentage of hosts belonging to residential
customers [13]. Moore and Clayton identified different types of phishing attacks
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according to the way a phishing site is hosted [16]. The most common hosting
vectors were found to be compromised web servers and free web-hosting services.
While system admins and hosting companies are usually cooperative and quick
to take down the phishing pages once notified, noticing them in the first place is
challenging [16]. Moreover, victim servers were found to be re-compromised by
the attackers to host phishing pages as the vulnerabilities of the servers remain
unpatched [17]. Two notorious gangs, known as ‘Rock Phish’ and ‘Avalanche’1

even showed much technical sophistication in their massive and concerted phish-
ing attacks. Both gangs exploited malware-infested machines and the fast flux
method (mapping the domain name to different IP addresses (of different bots)
by changing the DNS records in a high frequency) to extend the lifetime of
a phishing site. Taking down the phishing pages from a large number of bots
is extremely difficult, especially when the ISPs have only limited control and
responsibility over malware-infested machines. This forces the defender to take-
down the phishing sites by suspending the phishing domain names with the help
from registrars and registries.

The above highlights several important challenges in defending against phish-
ing activities. First, it is challenging to detect all phishing attacks out there.
Second, taking down phishing attacks that have been identified (e.g., to remove
the phishing sites, or to ensure that a vulnerable web server is patched to prevent
re-compromise) is also non-trivial. The situation is worsened by a lack of infor-
mation sharing in the anti-phishing industry [16]. Meanwhile, despite a spike in
the count of phishing attacks2 in 2009 due to the Avalanche gang [2], the num-
ber of unique phishing domains found (per six months) has remained steady at
around 30,000 over the past few years, except in the second half of 2010 where
43,000 unique phishing domain names were recorded partly due to new data
inputs from the China Internet Network Information Center (CNNIC) who op-
erates the .cn registry [3].3 This suggests that the phishers do factor in the cost
consideration when carrying out phishing attacks.

Different from prior studies that have largely taken the empirical approach,
we propose in this work a theoretical model to aid researchers and policymak-
ers in better analyzing the different aspects of phishing defense. We build on
the Colonel Blotto game, an old but interesting game that has been largely ne-
glected due to its complexity, until the recent work by Roberson [18] which gives
a complete characterization to the unique equilibrium payoffs of a two-player
asymmetric Colonel Blotto game. The game is particularly suitable to capture
the resource allocation problem between a phisher and a defender with asym-
metrical resources. In addition to mapping the phishing problem into the Colonel

1 An account of the modi operandi of the Rock Phish and Avalanche gangs can be
found in [14] and [2] respectively.

2 An attack is defined by Anti-Phishing Working Group (APWG) as a unique phishing
site targeting a specified brand.

3 Measurement of unique phishing attacks, uptime of phishing sites and in-depth sur-
veys on the trends and domain name use by phishing sites can be found in a series
of reports (e.g., [2,3]) by the APWG on http://www.antiphishing.org.

http://www.antiphishing.org
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Blotto game, our model extends the two-stage Colonel Blotto game in [10] to
include a detection probability to factor in the consideration of asymmetric in-
formation that not all phishes will be known to the defender. We regard the de-
fender in this work as a takedown company (e.g., MarkMonitor4, BrandProtect5

and Internet Identity6) that has been contracted by its clients (e.g., financial
institutions, e-commerce services) to remove phishing sites that masquerade as
the clients’ legitimate sites. Although the defender is in a disadvantage position
for not being able to detect all phishes that have been created, and that the
attacker can always exploit the next weakest link whenever a phishing server is
taken down, we expect that the defender can garner more resources than the
attackers from the contract with its clients, plus the support from the ISPs,
service providers, law enforcers, registrars and registries.

In the following, we first give a quick introduction to the Colonel Blotto game
and related work in Section 2. We propose the Colonel Blotto Phishing (CBP)
game in Section 3 to model phishing attack and defense. We present the results
from our analysis based on the CBP model in Section 4. And lastly, we discuss
the implications to the anti-phishing strategies in Section 5.

2 Background and Related Work

The Colonel Blotto game was first introduced in 1921 by Borel [6] as a two-
player constant-sum game, where the players strategically distribute a fixed and
symmetrical amount of resources over a finite number of n contests (battlefields).
The player who expends a higher amount of resources in a contest wins that
particular battlefield, similar to an all-pay auction. The objective of the players
is to maximize the number of battlefields won. Gross and Wagner [8] in 1950
described the game with asymmetrical resources between the two players, but
have only solved the case where the number of battlefields n = 2.

The complexity for the case when there are n ≥ 3 battlefields and the lack
of pure strategies have arguably led to the Colonel Blotto game being largely
neglected by the research community. A resurgence of interests in the Colonel
Blotto game (e.g., [4,5,7,11,12,19]) follows the recent work by Roberson [18]
which has successfully characterized the unique equilibrium payoffs for all con-
figurations of resource asymmetry, and the equilibrium resource allocation strate-
gies (for most configurations) of a constant-sum Colonel Blotto game with n ≥ 3
battlefields. Roberson and Kvasov have later studied the non-constant-sum ver-
sion in [19]. We summarize the main results from Roberson [18] below:

Theorem 1. (case a, b and c correspond to Theorem 2, 3 and 5 in [18])
Let n denote the number of battlefields, while Rw and Rs denote the resources
of the weak (w) and strong (s) players respectively such that Rw ≤ Rs, the Nash
equilibrium univariate distribution functions (for allocating resources to individ-
ual battlefields strategically), and the unique equilibrium payoffs (measured in
4 http://www.markmonitor.com
5 http://www.brandprotect.com
6 http://internetidentity.com

http://www.markmonitor.com
http://www.brandprotect.com
http://internetidentity.com
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the expected proportion on battlefields won), depending on the Rw

Rs
ratio and the

number of battlefields n, are given in the following:

case a: 2
n ≤ Rw

Rs
≤ 1

In the unique Nash equilibrium, player w and s allocate xj resources in each
battlefield j ∈ {1, ..., n} based on the following univariate distribution functions:

Fw,j(x) = (1 − Rw

Rs
) + nx

2Rs
(Rw

Rs
) , x ∈ [0, 2Rs

n ]

Fs,j(x) = nx
2Rs

, x ∈ [0, 2Rs

n ]

The unique equilibrium payoffs (expected proportions of battlefields won) of player
w and s are independent of the number of battlefields, given as follows:

πw = Rw

2Rs

πs = 1 − Rw

2Rs

case b: 1
n−1 ≤ Rw

Rs
< 2

n
In the unique Nash equilibrium, player w and s allocate xj resources in each
battlefield j ∈ {1, ..., n} based on the following univariate distribution functions:

Fw,j(x) = (1 − 2
n ) + x

Rw
( 2

n ) , x ∈ [0, Rw]

Fs,j(x) =
{

(1 − Rs

nRw
)( 2x

Rw
) , x ∈ [0, Rw)

1 , x ≥ Rw

The expected proportions of battlefields won by player w and s are as follows:

πw = 2
n − 2Rs

n2Rw

πs = 1 − 2
n + 2Rs

n2Rw

case c: 1
n < Rw

Rs
< 1

n−1
In a Nash equilibrium, player w allocates zero resources to n−2 of the battlefields,
each randomly chosen with equal probability. On the remaining 2 battlefields, he
randomizes the resource allocation over a set of bivariate mass points. On the
other hand, player s allocates Rw resources to each of n − 2 randomly chosen
battlefields. On the remaining 2 battlefields, player s also randomizes the resource
allocation over a set of bivariate mass points. Let m = � Rw

Rs−Rw(n−1)	 such that
2 ≤ m < ∞, the unique expected proportions of battlefields won by player w and
s are given as follows:

πw = 2m−2
mn2

πs = 1 − 2m−2
mn2

Note that the univariate distribution functions constitute the players’ mixed
strategies in Nash equilibrium. The allocation of resources across the n bat-
tlefields must additionally be contained in the set of all feasible allocations
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x ∈ Rn

+|
∑n

j=1 xi,j ≤ Ri

}
where i = w, s.7 In general, player s uses a stochas-

tic ‘complete coverage’ strategy (which expends non-zero resources in all bat-
tlefields, and locks down in a random subset of battlefields by allocating Rw

resources to them in case b and c), while player w uses a stochastic ‘guerrilla
warfare’ strategy (which optimally abandons a random subset of the battle-
fields). Despite the resource asymmetry, player w can expect to win a non-zero
proportion of the battlefields, except in the case of Rs ≥ nRw, where the player
s can trivially lock down (win) all battlefields by allocating Rw resources to each
of them.

Note that also the proportion of battlefields won by the player w is a function
of n in the case b and c of Theorem 1. In a recent work, Kovenock et al. [10] pre-
sented a two-stage Colonel Blotto game which endogenizes the dimensionality of
the classic Colonel Blotto game, allowing the players to create additional battle-
fields in the additional ‘pre-conflict’ stage. They show that with such possibility,
player w will optimally increase the number of battlefields in the ‘pre-conflict’
stage, given a low battlefield creation cost, so to thin the defender’s resources
and reduce the number of battlefields player s can lock down in the ‘conflict’
stage. We outline the main results from [10] below:

Theorem 2. (see Theorem 2 in [10])
In the pre-conflict stage of the game with n0 initial battlefields and resource asym-
metry that satisfies 1

n0−1 ≤ Rw

Rs
≤ 1, assuming that the cost to create additional

battlefields, c is strictly increasing and strictly convex, the optimal numbers of
new battlefields that player w and s will create, n∗

w and n∗
s respectively, in the

subgame perfect equilibrium, are given as follows:

case a: If Rw

Rs
satisfies 2

n0
≤ Rw

Rs
≤ 1, then n∗

s = n∗
w = 0.

case b: If Rw

Rs
satisfies 1

n0−1 ≤ Rw

Rs
< 2

n0
, then n∗

s = 0, and let nwr ∈ (0, 2Rs

Rw
−n0)

denotes the real number that solves:

− 2
(n0+nwr)2 + 4Rs

Rw(n0+nwr)3 − c′nwr
= 0

then, n∗
w is either �nwr	 or �nwr� depending on which of it results in a higher

utility for player w, given n∗
s = 0.

Note that Theorem 2 has not formally treated the case c of Theorem 1. The
analysis of case c will be more complicated as the expected proportion of bat-
tlefields won by both players have points of discontinuity, but the underlying
intuition is the same as case b. [10] Note that also Theorem 2 assumes that the
cost of creating additional battlefields is expended separately from the players’
resources.

7 We refer interested readers to Roberson [18] for proofs and details on how the equi-
librium univariate distribution functions give a n-variate joint distribution function
satisfying the constraint that

∑n

j=1
xi,j ≤ Ri where i = w, s.
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3 Modeling

With an introduction to the classic Colonel Blotto game and the extension with
endogenous dimensionality, we are now ready to model the economics for phish-
ing activities in this section. We will first apply the classic Colonel Blotto game
to phishing attack and defense. Then, we will extend the game to model endoge-
nous dimensionality following the two-stage Colonel Blotto game in [10], and
asymmetric information using an additional detection probability to reflect that
not all phishes will be known to the defender in practice.

3.1 Applying Colonel Blotto to Phishing

We map the basics the Colonel Blotto game in the context of phishing attack
and defense in the following.

Players. Like the classic Colonel Blotto, we consider here a two-player constant-
sum game between a phisher and a defender. We regard the defender here to be
a takedown company such as MarkMonitor, BrandProtect and Internet Identity
as aforementioned. The takedown company is contracted by its clients, including
banks and popular brand owners, to remove phishing sites attacking the clients’
brands. On the other hand, the phisher plays to keep alive the phishing sites, or
to launch new attacks, to victimize as many users he can.

Resources. We assume the phisher to be the weak player (w) and the takedown
company to be the strong player (s). Although this may be debatable, assuming
such resource asymmetry is reasonable if we consider that takedown companies
will usually maintain good contacts with and can thus get assistance from the
ISPs, service providers, law enforcers, registrars and registries in the process
of taking down the phishes. By resources, we thus mean not financial figures
but mainly the technologies, infrastructure (e.g., access to a botnet), time and
manpower.8 Phisher’s profitability is also not as lucrative as it appears in the
news. A number of estimates on the losses due to phishing attacks have been
criticized to be overstated [9]. The resources, Rs and Rw respectively, are finite
with Rs ≥ Rw. They are of the ‘use-it-or-lose-it’ nature, meaning that unused
resources will give no value to the players in the end of the game.

Battlefields. We define a battlefield to be a unique phishing site (a fully quali-
fied domain name or IP address, or a site on a shared hosting service) targeting
a specific brand, following the definition of a phishing attack by APWG (see e.g.,
page 4 in [3]). Different URLs directing to the same phishing page, crafted to
evade spam filters or to trick the URL-based anti-phishing toolbars, are consid-
ered the same battlefield. Defined this way, creating a battlefield hence involves
some costs ranging from low (e.g., to register a subdomain on a shared host-
ing service, to copy the login page of a brand) to high (e.g., to register a new

8 Resource asymmetry should not be confused with asymmetry in coverage where the
defender needs to protect all assets while the attacker can target any of them.
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domain name, to compromise a vulnerable web server). In this paper, we use the
terminologies ‘a phish’ and ‘a phishing attack’ interchangeably.

Objectives & Contests. We model the objective of the phisher and the de-
fender to be maximizing the expected proportion of phishing attacks kept online
and taken down, respectively. We consider that either the phisher or the defender
can outperform the other party to win a battlefield by allocating more resources
to it. And given that we have not factored in the uptime and the number of
victims per attack in our model, we loosely define that a specific battlefield
(phishing attack) is won by the phisher if the phish has a long enough uptime.
For example, having the resources of a botnet infrastructure, an attacker can
use ‘fast-flux’ IP addresses and malware-controlled proxies, to make it hard for
the defender to take down the phishing server, prolonging the uptime of the
phishes, as the defender will have to turn to the responsible registrar or registry
to suspend the domain name. We elaborate on other tricks used by phishers,
including the two infamous Rock Phish and Avalanche gangs, in Section 3.2.

Given the above configurations, we can already gain a number of useful in-
sights. For example, we can expect that there will be always some phishes that
will have long uptime unless that the defender is much more resourceful than the
phisher (i.e., Rs ≥ nRw). However, the classic colonel blotto game alone does
not describe the practical scenario quite yet. Why are there a large number of
phishing attacks instead of just a few? Indeed, it is to the phisher’s advantage
to create an optimal number of additional phishes (battlefields), so to thin the
defender’s resources in removing each of them. Furthermore, how does the asym-
metric information affect the strategies of the phisher? We extend the two-stage
Colonel Blotto game in [10] to include an additional parameter, the expected
probability of detection Pd, to reflect that not all phishes will be known to the
defender – a major challenge in the anti-phishing industry. [16]

Table 1. The flow of the Colonel Blotto Phishing game

Stage Phisher (w) Defender (s)

i) create – a. create and market n∗
w new phishes a. detect new phishes

detect b. learn about detection b. publish findings

ii) resist –
takedown

c. expend ε resources to undetected
phishes, while allocating Rw − ε re-
sources to phishes known to the de-
fender to resist removal

c. expend all Rs re-
sources strategically
to remove the newly
detected and known
existing phishes in a
promptly manner
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nw new phishes 

detected undetected 

expected proportion of  
n0+Pdnw phishes removed 

determined by classic  
Colonel Blotto game 

(1-Pd)nw  
phishes  
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known 
existing 
phishes 

Pd 1-Pd 

Fig. 1. Expected proportion of phishes in different states

3.2 The Colonel Blotto Phishing Game

We name our model as the Colonel Blotto Phishing (CBP) game. It consists of
two stages: (i) create–detect, (ii) resist–takedown, similar to the ‘pre-conflict’
and ‘conflict’ stages in [10]. Table 1 summarizes the flow of the CBP game. We
detail on the game stages in the following.

Stage 1: Create–Detect. We consider that game starts with the phisher hav-
ing a number of phishes n0 that are known to the defender, and both players
are allowed to increase the dimensionality of the game by introducing new bat-
tlefields in the first stage. Obviously, the defender will not create any phishes.
However, it is to the phisher’s advantage to create a number of new phishing at-
tacks nw so to stretch the defender’s resources, in hope to increase the expected
proportion of phishes that will stay online for more than a certain period of time.
Hence, we have the total phishing attacks n = n0 + nw. We expect the phisher
then advertises the newly created phishes through spams and online social net-
works.9 We assume a linear cost c for creating and advertising the new phishes;
c can be low or high depending on the way the phisher carries out the attack
(e.g., through free subdomain services, paying for a newly registered domain,
taking the effort to hack a vulnerable web server, and so on).

A new aspect we incorporate into the classic Colonel Blotto game is the sit-
uation where some of the newly created phishes might not be detected by the
takedown company. We analyze both cases where the expected detection prob-
ability Pd is (i) exogenously determined, and (ii) endogenously influenced by
the number of new phishing attacks in Section 4. The expected proportions of
phishes that trivially get away undetected, or that will possibly stay online long
enough depending on the resource allocations of both the phisher and defender
in the second stage, are depicted in Figure 1. In practice, takedown companies
learn about new phishing attacks through their own infrastructures (e.g., spam

9 McGrath and Gupta [13] observed that most domains created for phishing become
active almost immediately upon registration.
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filters) in addition to ‘raw’ feeds bought, negotiated or obtained from the ISPs
or phishing clearinghouses, such as the APWG and PhishTank10.

An assumption we make here is that the phisher will then learn about which
of his phishes have been detected before proceeding to the next game stage.
This is reasonable, regardless of whether the takedown company shares their
detection results11, as we expect that the phisher can achieve this using public
clearinghouses (e.g., phishtank) or through anti-phishing APIs that come with
modern browsers (e.g., Google Safe Browsing API12 for FireFox and Chrome).

Stage 2: Resist–Takedown. Knowing the identity of the detected phishes Jd,
the optimal move for the phisher in the second stage is hence to expend all his
resources strategically on the detected phishes only, so to resist the takedown
process. Here, we assume that the resources (e.g., technologies, infrastructure,
manpower) are of the ‘use-it-or-lose-it’ nature, typical to a constant-sum game.
In other words, unused resources will give no value to the players. We further
assume that the phisher will optimally allocate ε ≈ 0 resources for the undetected
phishes j /∈ Jd given that the defender does not know about them. We note that
this assumption is reasonable as the resources are finite.

We regard that either the phisher or the takedown company will ‘succeed’ with
respect to a particular phishing attack depending on the amount of resources
they put in: the player who expends more resources wins. Specifically, with xi,j

and x−i,j denoting the amount of resources player i ∈ {w, s} and his opponent
puts into the phish attack j respectively, the success of player i at attack j is
given by:

πi,j(xi,j , x−i,j) =
{

0 if xi,j < x−i,j

1 if xi,j > x−i,j

where in the case of xw,j = xs,j (a tie), we assume that defender s will succeed
in taking down the attack promptly. As for undetected phishes, i.e., ∀j /∈ Jd,
we regard that xs,j = 0 and the phisher will trivially win the battlefield with
xw,j = ε resources.

Can the phisher still win in an already detected phish in practice?
While it may not be intuitive at first, the answer is ‘yes’ given our definition that
a phishing attack is won by the phisher (defender) if the phish has an uptime
more (less) than a certain threshold. The longer a phish can resist being removed,
the more users could fall victim to it. While a weak phisher may simply abandon
his phishes (given that he cannot win) when facing a much more resourceful

10 PhishTank – a community based phishing collator. http://www.phishtank.com
11 Individual takedown companies often will validate the ‘raw’ URLs of potential

phishes to remove false positives, and they might not voluntarily share their val-
idated feeds for competitive advantages. Moore and Clayton showed how sharing
of phishing data could have helped to halve the lifetime of phishes, translating to
a potential loss mitigation of $330 million per year, based on data feeds from two
takedown companies [15].

12 http://code.google.com/apis/safebrowsing/

http://www.phishtank.com
http://code.google.com/apis/safebrowsing/
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defender (i.e., when Rs ≥ nRw), there have been practical examples of how a
skilled phisher attempts to extend the lifetime of his phishes via different tricks.
For example, a phisher may configure his phishes not to resolve on every access
so to misguide the defender, but remain online to trick more users (see e.g.,
[3], footnote 5). The phisher may also temporarily remove the phishing pages
from a compromised web server so to avoid further actions from the defender or
admin (e.g., to patch up specific vulnerabilities) and re-plant the phishes at a
later time. Indeed, APWG (see e.g., [3], footnote 5) finds that more than 10%
of phishes are re-activated after being down for more than an hour. Moore and
Clayton also found that 22% of all compromised web servers are re-compromised
within 24 weeks to be used as the host for phishing sites [16].

With more resources, a phisher can even increase technical sophistication so
to use malware-controlled proxies and fast-flux IP addresses as demonstrated
the large-scale attacks by the infamous ‘Rock Phish’ and ‘Avalanche’ phishing
gangs. The fast-changing nature of IP address that the phishing site resolving
to indicate that the attacker has in control of a large number of compromised
machines (bots) make it infeasible for the takedown company and the responsible
ISPs to take the phishing servers offline promptly. Instead, the defender will have
to work towards suspending the domain names in use, which could take a while
if the responsible registrars are not responsive or have limited experience in
abuse control. The ‘Avalanche’ gang was found to have exploited this; at the
same time as they launched their massive attacks using domains bought from
a few registrars (resellers), the gang scouted for other unresponsive registrars
for future use (see page 7 of [2]). Meanwhile, in [14] Moore and Clayton found
that the fast-flux phishing gang used 57 domain names and 4287 IP addresses
for fast-flux phishing. The 1:75 skewed ratio is interesting as it suggests that
the fast-flux phishing gang was highly resourceful (having access to a botnet
infrastructure). However, we note that these resources are not unlimited. For
example, the operations of the ‘Avalanche’ gang was disrupted as the security
community affected a ‘temporary’ shut-down of the botnet infrastructure in Nov
2009 [2]. Later, although the gang managed to re-establish a new botnet, they
were also found to prefer using their resources for a more profitable opportunity
to distribute the Zeus malware, which has been designed to automate identity
theft and facilitate unauthorized transactions. [3]

Subgame Perfect Equilibrium. We consider the objective of the phisher (the
takedown company) is to maximize the proportion of phishes that he succeeds
in keeping alive for a certain period (removing promptly), minus the cost for
creating new phishing attacks. With xi and x−i denoting the resource allocations
across all phishing sites by player i ∈ {w, s} and his opponent respectively, the
utility of player i can be written as:

Ui({xi, ni}, {x−i, n−i}) =
1
n

(
∑
j∈Jd

πi,j +
∑
j /∈Jd

πi,j) − cni

Note that xi and x−i must be contained in the set of all feasible allocations,
given by {xi ∈ Rn

+|
∑n

j=1 xi,j ≤ Ri}.
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The optimal number of new phishes to create n∗
i and the optimal utility U∗

i

in subgame perfect equilibrium can be obtained by backward induction. First,
we can work out the expected proportion of success of each player in the ‘resist–
takedown’ stage based on Theorem 1 and the fact that a fraction of phishes will
get away undetected as given by Pd. Then, returning to the ‘create–detect’ stage,
the optimization problem of the phisher becomes:

max
nw

E(Uw|nw) =
1
n

E(
∑
j∈Jd

πw,j) +
(1 − Pd)nw

n
− cnw

=
nd

n
E(πw) +

(1 − Pd)nw

n
− cnw

where

E(πw) =

⎧⎪⎨⎪⎩
Rw

2Rs
if 1 ≥ Rw

Rs
≥ 2

nd
2

nd
− 2Rs

(nd)2Rw
if 2

nd
≥ Rw

Rs
≥ 1

nd−1

0 if 1
nd

≥ Rw

Rs

nd = Pdnw + n0

n = nw + n0

As with many real life security problems, the defender in this model is disad-
vantaged in that he takes only reactive measures against the phisher. Note that
also we have omitted the case c of Theorem 1 (i.e., when 1

nd−1 > Rw

Rs
> 1

nd
), a

relatively small region with points of discontinuity, for simplicity.

4 Analysis

We analyze using the CBP game three different scenarios: (i) the hypothetical
case of perfect detection of phishing attacks, i.e., Pd = 1, (ii) Pd < 1 and is
exogenously determined, and (ii) Pd < 1 and is endogenously influenced by the
number of phishes the attacker creates.

Perfect Phish Detection. Let us start with the hypothetical case where the
probability of detection, Pd = 1. Figure 2 plots the optimal number of additional
phishing attacks n∗

w that the phisher will launch depending on cost c, knowing
that all newly created phishes will be detected by the defender. Note that this is
exactly the scenario analyzed in [10], and that the dashed and solid lines plot the
case a and b of Theorem 2 respectively. When the resource asymmetry is small
(with 2

n0
≤ Rw

Rs
= 1

2 , dashed line), the phisher optimally chooses not to create
additional phishes. There is no advantage to further stretch the defender as the
attacker, given his resources, is expected to win in equilibrium a proportion of
battlefields equals Rw

2Rs
= 1

4 as shown in Figure 2(b).
However, when the resource asymmetry is large (with 2

n0
> Rw

Rs
= 1

900 , solid
line), the phisher will create additional phishing attacks to reduce the ability
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Fig. 2. The optimal new phishes n∗
w and utility U∗

w given Pd = 1. Solid and dashed
lines plot the case where Rw

Rs
= 1

900
and 1

2
respectively, with n0 = 1000.

of the defender in locking down all of them. Especially when cost c (measured
in terms of the normalized utility) is negligible, n∗

w approaches 2Rs

Rw
− n0 = 800

given Rw

Rs
= 1

900 and n0 = 1000. Even so, interestingly, the utility of the phisher
is still less than 10−3. Meanwhile, as c increases (see Figure 2(a)), the optimal
number of new phishing attacks n∗

w quickly approaches zero.

Imperfect Phish Detection (Exogenous). In practice, we can expect that a
significant fraction of phishing attacks will get away undetected by the defender.
The problem is exacerbated by non-sharing of data between different security
vendors as observed in [15]. Figure 3(a) and 3(b) plot the optimal number of
new phishes n∗

w and the corresponding utility of the phisher U∗
w depending on

Pd ∈ [0, 1]. We assume that the phisher will be able to estimate Pd based on
past experience.

Let us first focus on the game between a resourceful (strong) phisher and the
defender, with the resource asymmetry 2

n0
≤ Rw

Rs
= 1

2 (as shown by the solid
lines). Here, with Pd < 1, the phisher will now create additional phishes knowing
that the defender will fail to detect some of the attacks, different from the case of
perfect detection. The undetected phishes add on to the phisher’s utility, which
has a lower bound at Rw

2Rs
= 1

4 . As for the game between a less resourceful (weak)
phisher and the defender given a large resource asymmetry of 2

n0
> Rw

Rs
= 1

900 (as
depicted by the dashed lines), observe that the optimal numbers of new phishing
attacks are now much higher than 800, the upper bound for the case of perfect
detection.

Another interesting observation is that the utility gap between a strong and a
weak phisher reduces as Pd decreases from 1 to 0. Improving on Pd thus will hurt
a weak phisher, but has less impact on a strong phisher as he can leverage on his
resources (technologies, infrastructure, manpower, etc.) to resist the takedown
of some of his phishes. The trend also suggests that an attacker will optimally
vary his strategies to create more phishes when Pd is low, but strive to increase
his resources as Pd increases.
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Fig. 3. Optimal number of new phishes to create n∗
w and the corresponding optimal

utility U∗
w . Solid and dashed lines plot the case where Rw

Rs
= 1

900
and 1

2
respectively,

with n0 = 1000. The effect of a decreasing cost c going from 5× 10−5 to 1× 10−5 and
2 × 10−6, measured in terms of the normalized utility, is depicted by the thick-black,
normal-black and thin-gray lines, respectively.

Regardless of the extent of resource asymmetry, an increased cost (see the
thick-dark lines versus the thin-gray lines) reduces both the optimal number
of phishes and the utility of the phisher. But, somewhat counter-intuitively, the
lower the detection probability, the more phishes the attacker will want to create.
An attacker does not settle with having a fraction of undetected phishes, but
will exploit the weakness of the defender in detecting all phishes and create even
more phishes to increase his utility.

Another counter-intuitive and interesting finding is that in fact it is optimal
for a less resourceful phisher to create more new phishes (than if he is a resource-
ful phisher) in equilibrium. This can be seen in Figure 3 where the solid lines
(Rw

Rs
= 1

900 ) remain above the dashed lines (Rw

Rs
= 1

2 ) for all different costs c. This
is surprising as large-scale phishing attacks are more often associated with re-
sourceful attackers such as the ‘Rock Phish’ and ‘Avalanche’ gangs empirically.13

There could be several reasons to this. First, while the ‘Avalanche’ phishes can
be recognized easily with their distinctive characteristics, we do not know if the
bulk of other phishing attacks are not related (carried out by a single organiza-
tion) for sure. Secondly, could there be really a ‘tragedy of the commons’ due
to the a large number of phishers (as described in [9]) that has forced the less
resourceful attackers out of the phishing endeavor? We note that analyzing the
effect of competition between several phishers would be an interesting extension
to our current model. Another more likely explanation would be that most of
the phishing attacks are in fact detectable by the defender today, forcing the
less resourceful attacker to gain too little utility to be profitable (observe that
U∗

w for the less resourceful attacker is almost zero as Pd → 1 in Figure 3(b)).
Furthermore, having a large number of phishes can also increase the probability

13 For example, the ‘Avalanche’ gang was responsible for 84,250 out of 126,697 (66%)
phishing attacks recorded by the APWG in the second half of 2009.
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Fig. 4. Optimal n∗
w and U∗

w when the effective probability of detection, Pd = Pd0 ×
(nw)α. Graphs a and b plot the case where α = 0.05 > 0, while graphs c and d plot
the case of α = −0.2 < 0. Solid and dashed lines plot the case where Rw

Rs
= 1

900
and 1

2

respectively, with n0 = 1000. The effect of a decreasing cost c going from 5 × 10−5 to
1×10−5 and 2×10−6 is depicted by the thick-black, normal-black and thin-gray lines,
respectively.

of detection by the defender. We analyze the case when Pd depends on the nw

in the next section.

Imperfect Phish Detection (Endogenous). Let us model the effective Pd to
depend on the number of phishes an attacker creates with a simple formulation:

Pd = Pd0 × (nw)α

where with α = 0, we thus have the exogenous case as discussed in the previous
section. The interesting analysis here is when α �= 0 as depicted in Figure 4.

There are many examples where increasing the number of phishing attacks
(battlefields) can lead to a higher detection rate by the defender. For instance,
the way the ‘Rock Phish’ and ‘Avalanche’ gangs hosted a number of phish-
ing attacks (i.e., different phishing pages targeting different brands) using the
same domain name14, while reducing cost, increases the chance that all these
phishes (battlefields) will be detected and taken down altogether. An attacker
14 A typical ‘Avalanche’ domain often hosted around 40 phishing attacks at a time [2].
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who register multiple domains for phishing purposes may also risk leaving visible
patterns in the WHOIS database that is being used by the defender to identify
and suspend suspicious domains quickly.15

As shown in Figure 4(a) and 4(b), both the n∗
w and U∗

w curves are now steeper
than before. The optimal number of additional phishing attacks to create quickly
approaches zero as Pd0 increases. Other than that, the main results from the case
of exogenous detection probability (where α = 0) remain applicable. First, it is
optimal for a weak phisher to create more phishes than a resourceful attacker.
The lower the detection probability is the more phishes will an attacker create.
Also, improving the baseline detection technologies (Pd0) hurts a weaker phisher
more than a stronger phisher.

It is harder to think of some practical examples where an increased number
of phishes helps to reduce the effective detection rate by the defender (i.e., with
α < 0). A possible but unlikely scenario would be if the phishing attacks that a
phisher creates cannot be correlated to each other, and that the larger number
of attacks stretch the defender’s capability in detecting all of them. We include
the plots of optimal n∗

w and U∗
w under such scenario in Figure 4(c) and 4(d) for

reference purposes. Notice that the optimal utility of the phisher is now bounded
only by the cost of creating new phishes.

5 Discussion: Implications to Anti-phishing Strategies

The success of anti-phishing defense depends on a number of interacting vari-
ables. As captured in our model, increasing the cost of creating new phishes c,
improving the detection rate of new phishes Pd, as well as, increasing the re-
source asymmetry between the defender and phisher, Rs

Rw
are all crucial factors

to be considered.
Increasing the cost for creating new phishes will hurt the attacker especially a

weak phisher, who has no resources to resist the prompt removal of his phishes.
Raising the cost (both in financial and procedural terms) for registering a domain
name can therefore help, but only to a certain extent. Take the decision by
CNNIC to make the registration of domain names more restrictive for example,
the number of .cn phishing domains dropped, but phishing attacks on Chinese
institutions remained high as phishers shifted to use other domain names such as
.tk and the co.cc subdomain service (see [3] page 5). Phishers would also usually
register new domains using stolen credit cards. Furthermore, studies have found
that a larger percentage of phishing attacks (80%) are actually performed using
compromised web servers of innocent domain registrants (see e.g., [2,3,17]). To
raise the cost c will thus involve patching a large number of vulnerable servers,
which is challenging if not impossible without a proper incentive plan.

A more effective alternative is hence to focus on improving the detection rate
of new phishes. While automated spam filters help to detect potential phishing
15 APWG reported that attackers often utilize a single or small set of unique names,

addresses, phone numbers, or contact email addresses to control their portfolio of
fraudulent domain names [1].
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URLs, the ’Rock Phish’ gang, for example, used GIF image in phishing email
to evade detection. The popularity of URL shortening services and wall post-
ings on online social networks add up to the challenge of detecting all phishing
advertisements. Calls to share the phishing data in the anti-phishing industry
have been made before (e.g., in [15]), but sharing can also create concerns as
takedown companies leverage on their phishing data for competitive edges. Here,
we see a room to employ and better coordinate the crowds to help improving the
detection probability. Collecting user reports against potential phishes (or po-
tentially harmful sites), without necessarily demanding from them higher skilled
tasks such as evaluating if a phish is valid (or that a site is secure), can already
be helpful.

Naturally, the value of data sharing and crowd-based phish-reporting will de-
pend on the state of information asymmetry (i.e., the detection probability Pd).
As can be seen in Figure 3, an ‘intelligent’ phisher will leverage on a large number
of phishes for optimal utility when Pd is low. Meanwhile, as Pd → 1, a phisher
will improve his utility by increasing his resources to match the defender’s. This
includes, for example, to gain access to a botnet infrastructure so to prolong the
uptime of his phishes. Should a good estimate of Pd is available, the defender
can thus decide whether to prioritize on increasing the cost of creating new at-
tacks (to reduce the number of phishes the attacker can create), or to prioritize
on disrupting the channels a phisher can increase his resources (e.g., access to
a botnet infrastructure, malicious tools, the underground market to monetize
stolen credentials, or domain resellers with shady practices), accordingly.

6 Conclusions

We have proposed the Colonel Blotto Phishing (CBP) game to help better un-
derstanding the dynamics of the two-step detect-and-takedown defense against
phishing attacks. We gained several interesting insights, including the counter-
intuitive result that it is optimal for the less resourceful attacker to create even
more phishing attacks than the resourceful counterpart in equilibrium, and that
the attacker will optimally vary his strategies to either increase the number of
phishes or to focus on raising his resources depending on the detection proba-
bility. We then discussed the implications to the anti-phishing industry.

Capturing the conflicts between an attacker and a defender with asymmetric
resources and information, it is our hope that the CBP game can be eventually
used to analyze other interesting problems, including measuring the effects of
competition between multiple phishers, and the benefits of cooperation between
multiple takedown companies. We also see the suitability of the CBP game to
be applied to web security problems in general. Indeed, various web security
problems, including malicious sites, illegal pharmacies, mule-recruitment and so
fourth, are currently mitigated through a detect-and-takedown process similar
to in the anti-phishing industry.

Future Work. Like other stylized models, the CBP game can be extended in
several directions. A potential extension is to include the time dimension into the
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game, for example, using repeated games to model the uptime of a phish, which
is often used to measure the damage caused by phishing activities. Using the
variants of the classic Colonel Blotto game, such as the non-constant sum version
[19] in which players might optimally choose not to expend all their resources,
may also yield interesting results. We note that it may be interesting also to test
our CBP model through experimental studies. Existing studies as conducted
in [4,5,7,12] have largely found that subjects were able to play the equilibrium
strategies of the classic Colonel Blotto game, with the weak and strong players
adopting the ‘guerrilla warfare’ and ‘stochastic complete coverage’ strategies
respectively. Testing how the subjects will play our two-stage CBP game can be
an interesting future work.
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Abstract. Entrepreneurs face investment decisions on privacy-
preserving technology (PPT) adoption as privacy-concerned consumers
may decide whether to use firms’ services based on the extent of privacy
that firms are able to provide. Kantarcioglu et.al. (2010)[9] contributes to
guidelines for entrepreneurs’ adoption decisions through a novel frame-
work, which combines copula functions and a Stackelberg leader-follower
game with consumers taking the role of the follower (referred as static-
copula-game model hereafter). The valuation requires a clearly defined
bivariate distribution function of two random variables, the consumer’s
valuation of private information and the consumer’s profitability to a
firm. Copula functions are used to construct the bivariate distribution
function from arbitrarily univariate marginals with various dependence
structures fitting into different market/industry segments. This study ex-
tends the static-copula-game model to include project value uncertainty,
simultaneously considering different market competition structures and
the regulatory promise of random arrival of government mandatory adop-
tion. The project value from the static-copula-game model is used as an
estimate of the initial (current) project value for the stochastic evolution.
By doing so, we retain the advantages of applying copulas and preserve
the established valuation property exclusively applicable to the valuation
of PPT adoption. The extension model makes several improvements in-
cluding: (1) Reduce concerns about myopic PPT adoption decisions that
may result when static valuation is employed. (2) Overcome the potential
biased PPT adoption decision that may arise due to negligence of market
competition impact. (3) Understand the regulatory influence of govern-
ment mandatory adoption with uncertainty. We find that: (1) If one can
link univariate marginals and dependence structures to industry groups,
one can determine for which industries project value uncertainty has
no impact on the entrepreneur’s immediate PPT adoption decision. For
these industries, there is no need for government intervention/regulation
to accelerate/induce PPT adoption even though the project value is un-
certain. (2) Under project value uncertainty, competition may suggest
either a later or an earlier PPT adoption compared with the monopoly
case. (3) The promise of government mandatory adoption has the po-
tential to accelerate PPT adoption. The PPT adoption guidelines con-
sidering competition and regulatory promises of government mandatory

J.S. Baras, J. Katz, and E. Altman (Eds.): GameSec 2011, LNCS 7037, pp. 219–238, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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adoption when the project value is uncertain bring useful recommenda-
tions to both entrepreneurs and policymakers.

Keywords: Privacy-Preserving Technology, Stackelberg Game, Govern-
ment Intervention, Random Competition, Uncertainty, Copulas.

1 Introduction

A recent survey by California Health Foundation[12] shows that one of the bar-
riers to consumer acceptance of digitized personal health records is the fear
that their private information may not be adequately protected. Since privacy-
concerned consumers may consider privacy issues when making their service
usage decisions, entrepreneurs encounter investment assessments on the imple-
mentation of the privacy-preserving technology (PPT). Perceiving entrepreneurs’
investment decision-making problems, Kantarcioglu et.al. (2010)[9] propose a
valuation model for PPT adoption (referred as static-copula-game model here-
after).

The value that an individual puts on his private information incentivizes his
demand for privacy protection when using a firm’s services. Knowing how in-
dividual appraises his private information is essential for entrepreneurs facing
the PPT adoption decision. The reason is that entrepreneurs can approximate
the demand for PPT adoption based on such knowledge. Literature related to
quantifying privacy value often invokes the specification of an individual’s utility
function with postulated risk preferences. However, by means of experimental
auctions, [5] is able to quantify individual privacy value without claiming a par-
ticular form of utility function with certain risk preferences. In [5], an individual’s
valuation of his private information is directly affected by his trait’s desirability
in relation to the categorized group. It shows that an individual in a group would
demand a higher value for private information if his trait deviates from that of
average population segment in the group, and the further his trait is away from
that of average population segment, the higher the value of private informa-
tion is demanded. For example, overweight people tend to valuate their private
weight information with higher prices. By extending the assertion of [5] that an
individual valuates privacy based on his trait’s desirability, Kantarcioglu et.al.
(2010)[9] propose a unique measure for estimating the consumer base that a firm
can exploit given PPT adoption. This unique measure links a consumer’s deci-
sion threshold for service usage considering privacy protection to his valuation
of private information.

In the static-copula-game model, a firm’s consumer profiles are characterized
by two distributions which are the consumer’s valuation of private information
and the consumer’s profitability to a firm. The expected project value is obtained
by applying a Stackelberg leader-follower game and copula functions. By apply-
ing copulas, Kantarcioglu et.al. (2010)[9] are able to explore how the two un-
derlying distributions and their dependence structures impact an entrepreneur’s
project valuation on the proposed static-copula-game model. The results from
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the static-copula-game model provide useful guidelines for entrepreneurs’ in-
vestment decisions, and give implications about the necessity of government
intervention to encourage firms’ PPT adoption. The focus on investment assess-
ments and government policy inferences as well as the integration of copulas
and the uniquely defined privacy related decision measure with a Stackelberg
leader-follower game distinguishes our earlier work from other privacy related
literature.

Two major reasons call for improvements on the static-copula-game model.
First, there may be a concern that the the project value may deviate from
the static value obtained under the static-copula-game model, for example, the
variation arising from some consumers’ nuisance decision-making. Second, com-
petition among firms is not considered in the static-copula-game model. The cur-
rent static-copula-game extension model is established to overcome the above-
mentioned shortcomings by incorporating project value uncertainty and com-
petition into the valuation. In addition, to gain policy implications about the
regulatory effect of legally mandatory adaption under project value uncertainty,
the extension model also studies the random arrival of government mandatory
adoption.

To model the project value uncertainty considered in the extension model,
we use the project value from the static-copula-game model as the estimate of
initial project value (i.e., initial state value), which then evolves stochastically
to capture the potential variation. By doing so, we preserve the advantages and
properties of the static-copula-game model exclusively applied in valuating PPT
adoption. In the extension model, given the uncertain project value evolution,
the entrepreneur solves his optimal adoption time (i.e., optimal stopping time
in the terminology of control theory) that maximizes his expected discounted
project value from undertaking PPT adoption. This methodology is in essence
the application of option pricing theory and has been termed “real options” by
financial economists (see for example Dixit et.al. (1994)[4]).

Various market structures are studied in the extension model. The monopoly
situation enables us to directly compare valuation outcomes under project value
uncertainty with those from the static-copula-game model. We consider two spe-
cific competition structures.1 One is the Stackelberg leader-follower competition
and the other is stochastic arrival of competition. The social network market
segment prompts our interest in studying the Stackelberg leader-follower com-
petition. In this market segment, Diaspora2 is the leader for implementing PPT,
and Facebook, the leader of the social network in terms of the market share,
may follow the PPT adoption optimally later. On the other hand, we may also
expect to observe market segments where entrepreneurs may join the PPT adop-
tion at their discretions randomly. The random arrival of competitors’ entries

1 In our other companion work, we study another market competition structure defined
by preemption game.

2 Amid complaints of Facebook’s erosion of personal privacy, a team of students at
NYU’s Courant Institute of Mathematical Sciences is developing a social network
built on privacy[13].
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depict such a market structure. We summarize the main results and state the
contribution in the following two sections, Sect. 1.1 and Sect. 1.2, respectively.

1.1 Summary of Main Results

The following summarizes main observations of this study:

– The project value uncertainty may or may not alter the immediate PPT
adoption decision suggested by the static-copula-game model. The outcome
depends on the underlying univariate distributions and dependence struc-
tures. Therefore, for those market segments in which the PPT adoption
brings significant profits, the optimal policy generated from the static-copula-
game model will not be myopic even though the project value is uncer-
tain. For such industry segments, the entrepreneur shall be concerned about
project value uncertainty only when the uncertainty is above an identified
threshold level.

– Depending on the competition structure of the existing market segment,
competition may either delay or accelerate PPT adoption compared with
the monopoly case. Under the Stackelberg game framework, although the
leader’s minimum triggering project value for PPT adoption coincides with
the monopolist’s, in some states of the world, the leader may indeed defer
PPT adoption compared with the monopoly case. This is due to the fact that
the leader’s optimal PPT adoption rule is characterized by a two-interval
strategy .3 When the project value from PPT adoption reaches leader’s min-
imum triggering project value for PPT adoption(coincides with the monop-
olist’s PPT adoption trigger), the leader will adopt the PPT immediately
as if he were a monopolist. However, unlike the monopolist, the leader will
not adopt the PPT once the the project value reaches the range containing
a level close to the follower’s triggering project value for PPT adoption. In
this range, the leader will postpone PPT adoption until the project value
reaches his largest triggering project value for PPT adoption. The reason is
that, in the range of project values where the follower will undertake PPT
adoption soon, the period at which the leader enjoys the monopoly rent is
too short to justify PPT adoption under project value uncertainty. In addi-
tion, for the industry segments for which the initial project value suggested
by the static-copula-game model is at least as large as the leader’s largest
triggering project value for PPT adoption, we may observe that the leader
and the follower make immediate PPT adoption almost simultaneously.

Next, when the market structure presents random arrival of competitors’
PPT adoption, the entrepreneur may adopt PPT earlier than if he were a
monopolist. This suggests that if the entrepreneur anticipates uncertain mul-
tiple entries of competitors, the fear of obtaining smaller project value by

3 A two-interval strategy means that the entrepreneur adopts the technology within
two identified intervals, and does not adopt the technology otherwise. In the current
case, the intervals are characterized by 3 distinct project values.
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adopting late may induce an earlier PPT adoption. In this case, the deferral
of PPT adoption due to project value uncertainty may be less significant
compared with the industry where only one firm monopolizes the market.

– The promise of random arrival of legally mandatory adoption may induce
an earlier PPT adoption. The regulatory promise of mandatory adoption
lowers the triggering project value required by the entrepreneur for PPT
adoption. The entrepreneur may even undertake PPT adoption despite a
negative net payoff if he expects that government mandatory adoption is
forthcoming. The prediction of entrepreneur’s acceleration on PPT adop-
tion due to regulatory promise may be supported by the FTC’s (Federal
Trade Commission) recent pushes towards legislation for pushing industry
towards self-regulation regarding privacy issues. For example, at the Senate
hearing on March 16, 2011, the FTC recommended imposing more stringent
measures to protect Internet users against unauthorized tracking, including a
universal Do Not Track browser setting. Knowing business entities have little
incentive to adopt this stringent privacy protection measure, FTC called for
such a universal mechanism to be accomplished by legislation or potentially
through robust, enforceable self-regulation[14,15].

1.2 Contribution of This Study

– Kantarcioglu et.al. (2010)[9] contributes to guidelines for entrepreneurs’ PPT
adoption decisions through integrating copula functions with a Stackelberg
leader-follower game. The current study extends the contribution to incorpo-
rate the impact of project value uncertainty. We are able to identify industry
segments for which there is no need for government intervention/regulation
to accelerate/induce PPT adoption even under project value uncertainty
unless the uncertainty reaches a high level.

– The second contribution of this study is to provide optimal PPT adoption
policies with different market competition structures under project value
uncertainty. We find that the effect of competition on PPT adoption under
project value uncertainty is inconclusive compared with the monopoly case.
The impact depends on the nature of market competition structures.

– The third contribution is that we shed light on the the regulatory effect of
legally mandatory adoption under project value uncertainty. The important
message to policymakers is that a credible promise of government mandatory
adoption may be a powerful tool to induce PPT adoption.

We omit proofs to keep the presentation concise; all proofs are available on
http://www.utdallas.edu/∼mxk055100/publications/pptoptions.pdf.The remain-
der of the paper is organized as follows. In Section 2, we give a short review of
relevant literature. In Section 3, we briefly review the static-copula-game valu-
ation model. The project value from the static-copula-game model serves as an
input parameter for implementing the extension model. In Section 4, we intro-
duce various models under project value uncertainty and give the corresponding
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optimal PPT adoption rules. In Section 5, we make qualitative discussions and
comparisons of the optimal PPT adoption rules for each scenario. We present
concluding remarks in Section 6.

2 Review of Relevant Literature

Privacy is a central concern in the information age, and has attracted much
research attention. One major research area on privacy related works focuses
on issues related to clarifying the privacy tradeoffs that individuals will make to
gain access to specific services or quantifying individuals’ privacy values. [5] seeks
to quantify how general privacy attitudes impact the price participants set for
revealing private information. Through experimental auctions, they show that
an individual’s trait’s desirability in relation to the group plays a key role in the
amount people demand to publicize private information. Working on clarifying
the tradeoffs between gaining service access and relinquishing private informa-
tion, [7] concludes that the information-seeking organization has to offer financial
incentives and convenience (i.e., privacy mitigation strategies) in exchange for
individuals to relinquish personal information.

Researchers have extended the study of clarifying tradeoffs between preserv-
ing privacy and gaining specific service access to encompass broader issues. For
example, studies devote to finding optimal online service strategies for firms com-
peting against personal information, optimal online privacy protection regimes
for firms, consumers and society,...etc. Modelling consumer’s utility function
based on the privacy-benefit tradeoffs, [2] analyzes the equilibrium strategy of
online personalization service offerings under duopolistic markets, and gives pol-
icy implications and managerial recommendations. [11] studies the optimal on-
line privacy protection regimes for consumers, retailers and society. The regimes
studied include self-regulation, mandatory standards and caveat emptor. They
show that the optimal regime depends on the number of individuals facing a loss
from privacy violations and the size of loss they face.

Observing that research [3,7,10] has uncovered a dichotomy between stated
attitudes and actual behavior of individuals facing decisions on privacy and
personal information security, [1] provides an analysis of the dichotomy, outlin-
ing an experimental design to test their hypotheses about the observed incon-
sistency. More recently, multidisciplinary fields of human-computer interaction
(HCI) have emerged with a raft of work on privacy in computing. [6] updates the
development of HCI from psychology aspects. They give explicit attention to the
emergence of computer-supported cooperative work and point out that having
both “useful and usable” computing systems are of paramount importance. In
accordance with the “useful and usable” criterion postulated by [6], [8] proposes
a privacy expectations and security assurance offer system.The proposed system
bears the benefits of enhancing consumer privacy choices, creating a market for
privacy preferences, and providing direct incentives for privacy offering organi-
zations to care about the security of personal information.

[9] is the closest related paper to the current work; both studies focus on
the analysis of entrepreneurs’ investment decision on PPT adoption. In [9], two
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important factors, a customer’s valuation of his private information and a cus-
tomer’s profitability to the firm, affect entrepreneurs’ valuation. The valuation
is viewed as a consequence of a Stackelberg leader-follower game under complete
information with consumers taking the role of the follower. Their uniquely de-
fined measure of consumers’ service usage decision is inspired by [5]. Copula func-
tions are applied to obtain the expected project value. They formulate guidelines
for entrepreneurs’ optimal adoption decisions and identify several cases where
the government intervention may be required to have firms invest in privacy-
preserving technologies requiring significant costs. The current study extends
the valuation model of [9] by retaining the advantages of applying copulas and
keeping the established valuation property exclusively applied to appraising PPT
adoption. The extension model improves the static model of [9] by integrating
project value uncertainty and competition structures into the valuation model.
In addition, to gain policy implications from government promises of mandatory
adoption, the current study extends the static framework of [9] to model random
arrival of legally mandatory adoption.

3 Static-Copula-Game Model - Integrating Copula
Functions with a Stackelberg Game

We first briefly review the static-copula-game model and the resulting PPT
adoption rule proposed in our earlier work, Kantarcioglu et.al. (2010)[9].

3.1 Basic Information for Model Setup

We consider a firm facing a PPT investment problem. The adoption of this
privacy-preserving technology P, will pose a fixed investment cost K,4 which
measures both the fixed adoption cost as well as the opportunity cost. The op-
portunity cost measures the potential loss caused by preventing firms from using
certain private information as a consequence of PPT adoption(eg. facebook’s new
privacy controls). For a firm’s potential consumer group, I, each individual is
assigned a consumer profile characterized by his valuation of private information
and his profitability to the firm. For example, for customer i ∈ I, his profile re-
vealed to the firm is (xi, yi), where xi represents consumer i’s valuation of private
information and yi represents consumer i’s profitability to the firm. We assume
4 It does not necessarily mean that this analysis work is only appropriate for valuating

a single PPT adoption. Rather, we can consider the privacy-preserving technology
P as any possible combination of available technologies resulting in different services
and costs. That is, P can be considered as an element of the power set P(S), S =
{s1, s2, ..., sn}, n ≥ 1 where si, i = 1, 2...n represents different technologies. Thus,
there would be at most 2n possible combinations as well as associated costs. When
S = ∅, it indicates that no PPT is evaluated; hence K = 0 in this scenario. When
n = 1, it resorts to the valuation of single PPT adoption. When n > 1, we can valuate
all potential combinations and rank them in order to make the best investment
decision.
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complete information, that is, xi and yi are publicly available information.5 The
random variables associated with consumers’ valuation of private information,
X , and consumers’ profitability to a firm, Y , can be best described by their de-
scriptive probability distributions, which can be characterized by corresponding
cumulative distribution functions, FX(x) and FY (y) respectively.

To obtain the project value of adopting the privacy-preserving technology P
with the privacy-protection level αP, we view the firm’s investment valuation as
a Stackelberg leader-follower game under complete information with consumers
taking the role of the follower.

3.2 Customer’s (Follower’s) Decision Function

We solve the problem with backward induction. Given firm’s adoption of the
privacy-preserving technology P, an individual consumer chooses his utility max-
imization strategy. We assume homogenous individuals. For each individual con-
sumer, we define his utility function as:

U(x, D) = (2D − 1)
(

αP −
(
a × |x − μX |

σX
+ b
))

where D = {0, 1}, μX and σX represent the mean and the standard deviation of
X respectively, both a > 0 (a given weight in the model) and b > 0 (a basic level
of privacy related to values of private information common to the population;
exogenously determined in the model) are constants, and αP > b.

The term a× |x−μX |
σX

+ b measures individual consumer’s fair level of privacy.
This specification is motivated by [5] in which the authors show that an individ-
ual in a group would demand a higher value for private information if his trait
deviates from that of the average population segment in the group. Moreover,
the further an individual’s trait is away from that of average population segment,
the higher the value for private information he demands. It is clear that rational
consumers would choose D = 1 if αP ≥ (a × |x−μX |

σX
+ b) and D = 0 otherwise.

That is, a consumer’s optimal strategy in response to his utility maximization
solution relies solely on his value of private information and privacy protection
that the firm’s PPT can provide. We define such a rule as a consumer’s decision
function given:

D(x) = �
a× |x−μX |

σX
+b≤αP

.

3.3 Firm’s (Leader’s) Project Value and Investment Decision

Once consumers’ optimal decisions have been solved, the firm integrates con-
sumers’ decisions into their valuation. The expected project value from PPT

5 In practice, we may identify these information through marketing research for
example.
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adoption is the expected profits that a firm can receive from consumers using
services:

v0 = E[Y D(X)] =
∫

X×Y

yD(x)dFX,Y (x, y). (1)

where FX,Y (x, y) is the joint distribution function. From (1), a clearly defined
joint distribution function is required for valuation. We propose to employ copula
functions for the bivariate distribution function. This allows us to study project
values through a richer class of joint distribution functions fitting into different
market segments and to investigate the impact of dependence structure on the
project value.6

In return for the project value obtained by (1), the firm incurs an adoption
cost K. Clearly, the market mechanism makes it the case that the firm will make
the investment if and only if

v0 ≥ K. (2)

4 Static-Copula-Game Extension Model

The project value obtained from (1) is static. However, there may be uncertainty
embedded in this project value estimate. For example, the consumer’s actual
service usage decision may deviate from the estimated formula given by D(x)
since consumers may simply decide not to use the service and vice versa. A
concern about myopic adoption decisions may thus arise due to the potential
project value deviation from the static estimate given by (1).

To model project value uncertainty, we propose to use v0 obtained from (1) in
Sect. 3.3 as the initial state value, which then evolves according to a stochastic
process to capture the potential variation of the project value. By doing so, we
achieve two major desired properties. First, the valuation is exclusively applied
to PPT adoption since v0 is obtained under the valuation model developed solely
for PPT adoption. Second, we retain the major advantage of the static-copula-
game model brought from employing copula functions to obtain bivariate joint
distribution functions required for the valuation, that is, the ability to exploit
rich classes of distributions as well as the flexibility in describing dependence
structures fitting into different market/industry segments.

Therefore, the project value initiates from varieties of univariate marginals
and copulas based on the characteristics of industry/market segments. And it
then evolves stochastically. We describe the uncertain project value evolution
by a geometric Brownian motion process. We choose this process for two main
reasons. First, the project value defined by (1) is the expected profits that a firm
can receive from consumers using the service, thus it shall be nonnegative. The
geometric Brownian motion process satisfies this condition. Second, Browian
6 In practice, for generating empirically validated or theoretically supported cumula-

tive distribution functions, we may first identify individual marginals, and then use
existing copula families or construct empirical copulas for dependence structures.
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motion used to describe random movements of particles (Particle Theory) cap-
tures the randomness (uncertain movements) of the project value. We define the
project value evolving according to:

dV (t) = αV (t)dt + ςV (t)dW (t), V (0) = v0 (3)

where W (t) is a standard Wiener process(i.e. Brownian motion), and both α
and ς are constants, representing the drift rate and the volatility of the project
value respectively. As we are mainly interested in the uncertainty of the project
value, we would take α = 0 in our study. Note that in such a specification, given
zero uncertainty, i.e. ς = 0, the entrepreneur will undertake the investment as
soon as V (0) = v0 ≥ K, recovering our static valuation rule proposed in (2),
Sect. 3.3.

After setting up the stochastic evolution of the project value due to poten-
tial nuisances, we proceed to study optimal PPT adoption rules under different
scenarios, which consists of various market competition structures as well as the
random arrival of legally mandatory adoption.

4.1 The Case of Monopoly

Given the evolution of the project value defined by (3), the entrepreneur’s prob-
lem is to find the optimal time to adopt the privacy-preserving technology P
(i.e., an optimal stopping time) by maximizing the expected discounted project
value:

M(v) = sup
τ≥0

E
[
e−μτ

(
Vv0(τ) − K

)
�τ<∞

]
, (4)

where μ is the required rate of return required by the entrepreneur.
Assuming that the function M(v) is sufficiently smooth, M(v) solves the fol-

lowing variational inequality (V.I.) as a consequence of Dynamic Programming:⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2M ′′(v)v2ς2 − μM(v) ≤ 0
M(v) ≥ v − K

[M(v) − (v − K)]
[

1
2M ′′(v)v2ς2 − μM(v)

]
= 0

M(0) = 0; M(v) ≥ 0; M(v) has linear growth at infinity.

. (5)

Theorem 1.

M(v) =

⎧⎨⎩
K

β − 1
( v

v∗
)β

v ≤ v∗

v − K v ≥ v∗
, (6)

where β = 1
2 +
√

1
4 + 2μ

ς2 > 1, and v∗ = βK
β−1 .

The optimal stopping rule (i.e., the optimal time to adopt the PPT) which
achieves the supremum in (4) is: τ∗(v) = inf {t|Vv0(t) ≥ v∗}. That is the en-
trepreneur will adopt the PPT as soon as the project value reaches v∗ from
below.
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4.2 The Case of a Stackelberg Leader-Follower Game

We next consider a duopoly market setting with a Stackelberg leader-follower
type. This is a market segment where a clear market leader of PPT adoption
exists, and the other firm (the follower) will undertake PPT adoption only after
the leader’s adoption. The social network market segment may be a good ex-
ample of such market segments, where Diaspora is the leader for PPT adoption
and Facebook may be considered to be the follower for PPT adoption.

Under the Stackelberg leader-follower competition, the leader can enjoy the
whole project value from PPT adoption at the onset, but he must surrender a
portion of project value to the follower upon the follower’s optimal PPT adop-
tion. We assume that the leader retains πV portion of the project value upon
the follower’s optimal entry with π ∈ (0, 1), leaving (1−π)V to the follower. We
note that to assume that the leader and the follower obtain a portion of project
value once they both undertake PPT adoption has the same effect as modelling
the market demand function faced by each firm. For the case of symmetric firms,
we take π = 1

2 .

A. Optimal Adoption Time for the Follower. The follower solves the same
optimal PPT adoption problem as the monopolist after the leader has adopted
the PPT. Thus, the follower’s optimal PPT adoption strategy is identical to that
described in the monopolist’s case. However, since the follower can only enjoy
(1 − π)V portion of the project value, the value function and the triggering
investment threshold are slightly different from those of the monopoly case,
which are given:

F (v) =

⎧⎨⎩
K

β − 1
(v
v̂

)β
v ≤ v̂

(1 − π)v − K v ≥ v̂
, (7)

where β = 1
2 +
√

1
4 + 2μ

ς2 > 1, and v̂ = βK
(1−π)(β−1) .

The follower’s optimal time to adopt the privacy-preserving technology P
which maximizes the expected discounted project value is: τ̂(v) = inf{t|Vv0(t) ≥
v̂}.

We note that the adopting time τ̂ (v) is the optimal adoption timing if the
follower could adopt PPT at time zero. Since the follower will adopt PPT only
after the leader has already done so (who adopts at time θ), for finite θ, the
follower will adopt at time:7

τ̂θ = θ + τ̂ (Vv0(θ)) . (9)

7 For any test function Ψ(x, s), we have:

E[Ψ(Vv0(τ̂θ), τ̂θ)|Fθ ] = Ψ(Vv0(θ), θ)�Vv0 (θ)≥v̂ + �Vv0 (θ)<v̂E[Ψ(v̂, t + τ̂ (v))]|v=Vv0 (θ),t=θ

(8)
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B. Optimal Adoption Time for the Leader. We now proceed to the case
of the leader. Recall in such a market segment, the follower will only adopt the
PPT following the leader’s adoption. Thus, when the leader adopts the PPT at
time θ < ∞, by paying cost K, he anticipates to receive Vv0(θ); however, he also
anticipates that a rational follower will enter at τ̂θ, at which time, he surrenders
(1 − π)Vv0 (τ̂θ). So at time θ, if θ < ∞, the leader receives:

Vv0(θ) − K − (1 − π)E
[
e−μ(τ̂θ−θ)Vv0(τ̂θ)�τ̂θ<∞|Fθ

]
= πVv0(θ)�Vv0 (θ)≥v̂ + (Vv0(θ) − βF (Vv0(θ)))�Vv0 (θ)<v̂ − K,

where we use the fact that
(1 − π)v̂

(1 − π)v̂ − K
= β and F (v) is defined in (7). The

leader’s problem can be expressed as:

L(v) = sup
θ≥0

E
[
e−μθΨ(Vv0 (θ))�θ<∞

]
, (10)

where

Ψ(v) = πv�v≥v̂ + (v − βF (v))�v<v̂ − K. (11)

and L(v) must satisfy:

L(v) ≥ 0; L(v) ≥ Ψ(v). (12)

The obstacle, Ψ(v), is only continuous, not C1(0,∞) with the only point of
non-differentiability, v̂. Setting U(v) = L(v) − πv + K, we have:8

U(V ) = sup
θ≥0

E
{

e−μθ

(
Ψ
(
Vv0(θ)

)
− πVv0(θ) + K

)
�θ<∞

+
∫ θ

0

e−μs

(
− πμVv0 (s) + μK

)
ds

}
= sup

θ≥0
E
{

e−μθχ
(
Vv0(θ)

)
�θ<∞ +

∫ θ

0

e−μsf
(
Vv0 (s)

)
ds

}
. (13)

This formulation leads to an optimal stopping time problem with an obstacle
χ(v) = Ψ(v) − πv + K and a running profit f(v) = −μπv + μK.

We have:

0 ≤ χ(v) ≤ K, and 0 ≤ U(v) ≤ K. (14)

Theorem 2. There exist three points 0 < v1 < v2 < v̂ < v3 such that:⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 1

2U ′′(v)ς2v2 + μU(v) = −πμv + μK

0 < v < v1 and v2 < v < v3

U(v) = χ(v) for v1 ≤ v ≤ v2

U(v) = 0 for v ≥ v3

(15)

with matching conditions: U ′(v1) = χ′(v1), U ′(v2) = χ′(v2), and U ′(v3) = 0.

8 It is straightforward that the uniqueness and existence of solution, U(v), guarantees
the uniqueness and existence of solution, L(v) = U(v) + πv − K.
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We can define the leader’s optimal stopping rule as:

θ̂(v) =

⎧⎪⎪⎨⎪⎪⎩
inf{t|Vv0(t) ≥ v1} if 0 ≤ v < v1

0 if v1 ≤ v ≤ v2

inf{t|Vv0(t) ≤ v2 or Vv0(t) ≥ v3} if v2 < v < v3

0 if v ≥ v3

. (16)

C. Summary of Optimal Rules for the Stackelberg Leader and Follwer.
We summarize the leader’s and the follower’s optimal PPT adoption rules as
follows:

1. If v < v1, the leader waits to adopt the PPT until v ≥ v1, and the follower
undertake the adoption when v ≥ v̂.

2. If v1 < v < v2, the leader adopts the PPT immediately, and the follower
undertake the adoption when v ≥ v̂.

3. If v2 < v < v3, the leader waits to adopt the PPT until v moves outside the
interval bounded by v2 and v3. The follower will only undertake PPT adop-
tion when v ≥ v̂ after the leader has already implemented PPT. The reason
is that in this market segment, the follower will undertake PPT adoption
only after the leader has already done so.

4. If v ≥ v3, the leader adopts PPT immediately, and the follower then makes
his move. When undertaking PPT adoption yields big profits, we anticipate
to observe almost simultaneous PPT adoption.

The reason that the leader will not adopt the PPT in the interval (v2, v3) is
because it contains a level close to v̂, the follower’s triggering project value for
PPT adoption. It implies that the follower would adopt the PPT pretty soon
after the leader’s adoption. As a consequence, the time that the leader enjoys
monopoly rents is too short to justify his PPT adoption. Therefore, the rational
leader would wait until V moves outside this interval, which either grants him a
longer period of enjoying monopoly rents or compensates him with a sufficiently
large project value for the loss of monopoly rents. The PPT adoption pattern
observed in the social network market segment may support our theoretical
prediction.

4.3 Random Arrival of Competitors’ Entries

We now consider another market competition structure. Under this scenario, the
entrepreneur is aware that more entrepreneurs may adopt the PPT subsequently
at some random time in the future, causing unpredictable but sizable drops in
the project value. Given this market structure, the project value, V , follows a
mixed Brownian motion/jump process:⎧⎪⎨⎪⎩

dV (t) = αV (t)dt + ςV (t)dW (t) − V (t)dq(t), V (0) = v0,

dq(t)(ζ,φ) =

{
φ, with probability ζdt,

0, with probability 1 − ζdt,

(17)
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where W (t), α and ς are defined the same as in (3), and we assume E[dq(t)dW (t)] =
0. Equation (17) indicates that V will fluctuate as a geometric Brownian motion,
which captures the continuous nuisance, but there is a probability ζdt that the
value will drop to (1−φ)V over each time interval dt due to more entrepreneurs’
PPT adoption to share the market. As in the geometric Brownian motion case,
we take α = 0 for we are only interested in the impact of uncertainty. Thus,
when ς = 0 and ζ = 0, it resorts to the static valuation case and the adoption
rule v0 ≥ K applies.

Optimal Adoption Time. The entrepreneur’s problem is to find the opti-
mal time to adopt privacy-preserving technology P by maximizing the expected
discounted project value, as described in (4), with V subject to the evolution
described by (17). We denote the corresponding value function by MJ(v) to
distinguish the different underlying process assumption.

Assuming that the function MJ(v) is sufficiently smooth, MJ(v) solves the
following V.I. as a consequence of Dynamic Programming:⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2M ′′

J (v)v2ς2 + ζMJ [(1 − φ)v] − (μ + ζ)MJ (v) ≤ 0
MJ(v) ≥ v − K

[MJ(v) − (v − K)]
[

1
2M ′′

J (v)v2ς2 + ζMJ [(1 − φ)v] − (μ + ζ)MJ(v)
]

= 0
MJ(0) = 0; MJ(v) ≥ 0; MJ(v) has linear growth at infinity.

.

(18)

Theorem 3

MJ(v) =

⎧⎨⎩
K

β − 1
( v

v̂J

)β
v ≤ v̂J

v − K v ≥ v̂J

, (19)

where β is the positive root of 1
2 ς2β2 − 1

2 ς2β + ζ(1 − φ)β − (μ + ζ) = 0 and
v̂J = β

β−1K.

The optimal stopping rule is: τ̂J(v) = inf {t|Vv0(t) ≥ v̂J}. That is the
entrepreneur will adopt the PPT as soon as the project value reaches v̂J from
below.

4.4 Random Arrival of Legally Mandatory Adoption

The project value still follows the geometric Brownian motion process given by
(3). However, to gain potential implications of regulatory promises, we addition-
ally consider the random arrival of government mandatory adoption. Once the
government regulation for mandatory adoption arrives, the entrepreneurs have
no choice but to adopt the PPT. We consider the random arrival time of govern-
ment mandatory adoption, T , as a Poisson process with the mean arrival rate
1/λ, independent of Weiner process W (t) defined in (3). To focus on the regula-
tory effect of government mandatory adoption, we do not consider competitions
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under this setting. At the time of the mandatory adoption enacted, the project
value will jump down. The drop size of the project value depends on the num-
ber of entrepreneurs required to obey the law. We assume that upon the arrival
of this government regulation, the project value will jump down to (1 − ψ)V
with ψ ∈ (0, 1]. The parameter ψ captures the effect of project value dilution
due to sharing the market with other participants resulting from regulatory
enforcement.

Optimal Adoption Time. The entrepreneur’s objective function is:

Jv0(τ) = E
[
e−μτ∧T [�τ<T (Vv0(τ) − K) + �τ≥T ((1 − ψ)(Vv0 (T ) − K)]

]
= E

[
e(−μ+λ)τ (Vv0(τ) − K)�τ<∞

]
+ λE

[∫ τ

0

e−(λ+μ)s ((1 − ψ)Vv0 (s) − K)ds

]
(20)

and the associated value function is:

MR(v) = sup
τ

Jv0(τ). (21)

Assuming that the function MR(v) is sufficiently smooth, MR(v) solves the
following V.I. as a consequence of Dynamic Programming:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2M ′′

R(v)v2ς2 − (μ + λ)MR(v) + λ ((1 − ψ)V − K) ≤ 0
MR(v) ≥ v − K

[MR(v) − (v − K)]
[
1
2M ′′

R(v)v2ς2 − (μ + λ)MR(v) + λ ((1 − ψ)V − K)
]

= 0
MR(v) ≥ (1−ψ)λ

λ+μ v − Kλ
λ+μ

MR(v) has linear growth at infinity.

.

(22)

Theorem 4

MR(v) =

⎧⎨⎩
K

β − 1
μ

μ + ψλ

( v

v̂R

)β +
(1 − ψ)λ

λ + μ
v − Kλ

λ + μ
v ≤ v̂R

v − K v ≥ v̂R

, (23)

where v̂R = β
β−1

μ
ψλ+μK and β = 1

2 +
√

1
4 + 2(μ+λ)

ς2 .

The optimal stopping rule is: τ̂R(v) = inf {t|Vv0 (t) ≥ v̂R}. That is the
entrepreneur will adopt the PPT as soon as the project value reaches v̂R from
below.

Remark 1. When λ = 0, i.e., no promise of potential government mandatory
adoption, the solution recovers the monopoly case in Section 4.1.
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Table 1. Summary of Adoption Rules under Various Scenarios

Scenarios Adoption Trigger Adoption Rules

Monopoly v∗ = β
β−1

K, β = 1
2

+
√

1
4

+ 2μ
ς2

v ≥ v∗

Stackelberg Leader v1, v2, v3; v1 > v2 > v3; v1 = β
β−1

K v1 ≤ v ≤ v2, v ≥ v3

β = 1
2

+
√

1
4

+ 2μ
ς2

Stackelberg Follower v̂ = β
(1−a)(β−1)

K, β = 1
2

+
√

1
4

+ 2μ
ς2

v ≥ v̂

Random Arrivals of v̂J = β
β−1

K, β is the positive root of v ≥ v̂J

Competitor’s Entries 1
2
ς2β2 − 1

2
ς2β + ζ(1 − φ)β − (μ + ζ) = 0.

Random Arrival of v̂R = β
β−1

μ
ψλ+μ

K, β = 1
2

+
√

1
4

+ 2(μ+λ)

ς2
v ≥ v̂R

Mandatory Regulation

5 Discussion

Table 1 summarizes the results of project values triggering PPT adoption and
the optimal adoption rules under various scenarios presented in Sect. 4.

From Table 1, except for the case of random arrival of government mandatory
adoption, the project value triggering PPT adoption is greater than the adoption
cost K since β

β−1 > 1. It thus indicates that once the project value uncertainty
is considered, the project value triggering PPT adoption is higher than the one
without uncertainty in which the triggering project value is K (see (2)). Thus,
we arrive at the following proposition.

Proposition 1. In general, the introduction of project value uncertainty would
require a higher triggering project value for justifying PPT adoption.

Proposition 2. For the industry segments for which the two underlying vari-
ables, customers’ valuation of private information and customers’ profitabil-
ity to a firm, are either independent or binormally distributed, the concern
about project value uncertainty would further impede the entrepreneur’s PPT
adoption.

Proposition 2 is a direct result from the static-copula-game model by [9]. Form
Proposition 1 and 2 of the static-copula-game model by [9], it identifies that
for the industry for which customers’ valuation of private information and cus-
tomers’ profitability to a firm are either independent or binormally distributed,
the entrepreneur is unlikely to undertake PPT adoption requiring significant in-
vestment costs. Therefore, for such industries, the introduction of uncertainty
would further discourage PPT adoption since the entrepreneur asks for a higher
project value to justify the investment under uncertainty.

Proposition 3. Under different univariate marginals and copula functions, we
obtain different v0 by (1). For any v0 ≥ β

β−1K, holding other else being constant,
the relation holds for ς ≤ ς̄ where ς̄ is determined by v0.
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Proposition 3 suggests that, for the industry segment with v0 ≥ β
β−1K, the

immediate PPT adoption rule suggested by the static valuation will not be my-
opic due to the introduction of project value uncertainty unless the uncertainty
is above the identified level, ς̄. In other words, the impact of project value un-
certainty is industry specific if one can associate univariate distributions and de-
pendence structures with various industries. With inputs from industrial users,
an industry specific table, which identifies the tolerable level of project value
uncertainty, may be produced for assisting managerial decision-making.

In our extension model, we introduce competition structures to study the
impact of competition on PPT adoption. In the following, we first compare the
optimal adoption rules of the Stackelberg leader and follower with that of the
monopolist.

Proposition 4. 1. v1 = βK
β−1 = v∗, and v̂ = βK

(1−π)(β−1) > βK
β−1 = v∗.

2. For any v0 from (1) with v0 ≥ v3, holding other else being constant, the
relation holds for ς ≤ ς̄ where ς̄ is determined by v0.

Proposition 4 indicates that the leader’s triggering project value for PPT adop-
tion is at least as large as his triggering project value as a monopolist. The
necessity of sharing the project value upon the follower’s optimal PPT adoption
does not affect the entrepreneur’s minimum triggering project value for PPT
adoption compared with the monopoly case. The reason is that below this trig-
gering project value, the project value is too low to justify PPT adoption under
uncertainty. On the other hand, the follower’s triggering project value for PPT
adoption is larger than a monopolist’s. In addition, from Table 1, we observe that
the leader’s optimal adoption rule is a two-interval strategy . For v2 < v < v3,
the leader will not adopt the PPT due to the promise of losing monopoly rents
soon since the follower is likely to undertake PPT adoption soon. Combining the
fact that the follower would delay PPT adoption and the fact that the leader will
not adopt the PPT for v2 < v < v3, the Stackelberg leader-follower competition
structure may delay PPT adoption compared with the case when only one firm
monopolizes the market.

In addition, for the industry segment with v0 ≥ v3, we will observe almost
simultaneously immediate PPT adoption. As proposed in Proposition 3, this
immediate PPT adoption decision, which also coincides with the rule generated
by the static valuation, will hold for ς ≤ ς̄ (i.e., the project value uncertainty
level is below the threshold level, ς̄), which is industry specific. Figure 1 shows
the relation of the triggering project value for the monopolist, the Stackelberg
leader and the Stackelberg follower.

We continue to compare the optimal PPT adoption rule for the entrepreneur
facing random arrival of competitors’ entries with that for a monopolist.

Proposition 5. v̂J < v∗. v̂J is inversely related to ζ and φ.

Proposition 5 suggests that when the potential market competition structure
is introduced in the form of random arrival of competitors’ entries, the antic-
ipated decreases in the project value due to potential market competition will
induce the entrepreneur to adopt the PPT earlier compared with the monopoly
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StackelbergFollower'�sValue

1000 2000 3000

�500

500

1000

1500

Option Value to Invest

Fig. 1. Optimal Stopping Rules for the Monopolist, the Stackelberg Leader and the
Stackelberg Follower

case. The greater the probability that competitors enter into the market soon
to share the project value, the lower the triggering project value that the en-
trepreneur requires to adopt the PPT. Furthermore, the larger the decrease in
the project value due to competitors’ entries, the lower the triggering project
value is required for PPT adoption.

Combining Proposition 4 and 5, we find that market competition structure
may present different impacts on PPT adoption. For a Stackelberg leader-follower
type framework, PPT adoption may occur later compared with the monopoly
case. If the entrepreneur expects to encounter random arrival of competitors’ en-
tries, the entrepreneur may be inclined to adopt the PPT earlier than he would
as a monopolist or the Stackelberg leader.

Finally, the study of random arrival of legally mandatory adoption arrives at
the following two propositions.

Proposition 6. v̂R < v∗. v̂R is inversely related to λ.

Proposition 6 implies that the expected random arrival of government enforce-
ment regulation may accelerate PPT adoption. The higher the possibility that
the enforcement regulation will enact soon, the lower the triggering project value
that the entrepreneur would require to adopt the PPT.

Proposition 7. v̂R ≤ K if β
β−1

μ
μ+ψλ ≤ 1.

Proposition 7 signifies that, due to the anticipation of government mandatory
adoption, the entrepreneur may indeed adopt the PPT with the triggering project
value smaller than the adoption cost. Combining Proposition 6 and 7, it may sug-
gest that the credible promise of government mandatory enforcement could bring
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Table 2. Adoption Triggering Project Value v.s. the Mean Arrival Rate of Government
Enforcement Regulation( 1

λ
); Values of Parameters: ς = 0.4 , μ = 0.05, ψ = 1.

λ β
β−1

μ
μ+ψλ

v̂R versus K

0.01 2.5 v̂R > K

0.03 1.64 v̂R > K

0.05 1.19 v̂R > K

0.07 0.92 v̂R < K

PPT adoption to society sooner. Table (5) illustrates the relations among the
mean arrival rate of government enforcement regulation, the triggering project
value for PPT adoption, and the adoption cost.

6 Conclusion

This study extends the static-copula-game model by [9] to include project value
uncertainty and different market competition structures. The promise of random
arrival of government mandatory adoption is also studied for policy implications.
The extension model reduces the concern about myopic PPT adoption decisions
that may result when static valuation is employed, overcomes the potential bi-
ased PPT adoption decision that may arise due to overlooking the impact of
competition, and enables us to study the impact of government enforcement
regulation under uncertainty.

For the industry segment with v0 ≥ β
β−1K, the immediate PPT adoption

rule suggested by the static valuation will not be myopic even under the project
value uncertainty unless the uncertainty is above an identified threshold level. If
one can associate univariate distributions and dependence structures with var-
ious industries, then an industry specific table, which identifies the tolerable
level of project value uncertainty, may be produced for assisting entrepreneurial
decision-making. Depending on the competition structure of the existing mar-
ket segment, competition may delay or accelerate PPT adoption compared with
the monopoly case. A Stackelberg leader-follower type competition may indeed
impede PPT adoption compared with the monopoly case. On the other hand,
if the entrepreneur expects to encounter random arrival of competitors’ entries,
the entrepreneur may be inclined to adopt the PPT earlier than he would as a
monopolist or the Stackelberg leader. The promise of random arrival of govern-
ment mandatory adoption will have the potential to accelerate PPT adoption.
Such a government promise may indeed induce the entrepreneur to adopt the
PPT with the project value smaller than the adoption cost. The implication
for policymakers is that it may be better to implement legislature enforcement
regulation than to legislate an investment tax credit. The latter is known to
have a detrimental effect on the adoption decision since entrepreneurs would
require a higher triggering project value for PPT adoption if the enactment of
an investment tax credit is expected in the future.
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Abstract. Modern distributed communication networks like the Inter-
net are characterized by nodes (Internet users) interconnected with one
another via communication links. In this regard, the security of individ-
ual nodes depend not only on their own efforts, but also on the efforts
and underlying connectivity structure of neighboring network nodes. By
the term ‘effort’, we imply the amount of investments made by a user in
security mechanisms like antivirus softwares, firewalls, etc., to improve
his security. However, often due to the large magnitude of such networks,
it is not always possible for nodes to have complete effort and connectiv-
ity structure information about all their neighbor nodes. Added to this is
the fact that in many applications, the Internet users are selfish and are
not willing to co-operate with other users on sharing effort information.

In this paper, we adopt a non-cooperative game-theoretic approach to
analyze individual user security in a communication network by account-
ing for both, the partial information that a network node possess about
its underlying neighborhood connectivity structure and security invest-
ment of its neighbors, as well as the presence of positive externalities
arising from efforts exerted by neighboring nodes. We analyze the strate-
gic interactions between Internet users on their security investments in
order to investigate the equilibrium behavior of nodes and show (i) the
existence of monotonic symmetric Bayesian Nash equilibria of efforts and
(ii) better connected Internet users choose lower efforts to exert but earn
higher utilities than less connected peers with respect to security im-
provement when user utility functions exhibit strategic substitutes, i.e,
are submodular. Our results extend previous work with respect to tack-
ling topological information uncertainty, and provide useful insights to
Internet users on appropriately (from improving payoffs perspective) in-
vesting in security mechanisms under realistic environments of effort and
topological information uncertainty, in order to improve system security
and welfare. We also discuss the implications of our results on the param-
eters of risk management techniques like cyber-insurance, and compare
the user investment behavior in the incomplete information case with the
case when users have increased topological information of their network.

Keywords: security, externality, uncertainty, Bayesian Nash equilibria.
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1 Introduction

The Internet has become a fundamental and integral part of our daily lives.
Billions of people are using the Internet for various types of applications that
demand different levels of security. For example, commercial and government
organizations run applications that require a high level of security, since security
breaches would lead to large financial damage and loss of public reputation.
Another example of a high security application in the Internet is maintaining
user anonymity through a censorship-resistant network. On the other hand, an
ordinary individual for instance generally uses a computing device for purposes
that do not demand strict security requirements. However, all these applications
are running on a network, that was built under assumptions, some of which are
no longer valid for today’s applications, e.g., that all users on the Internet can
be trusted and that the computing devices connected to the Internet are static
objects. Today, the Internet comprises of both good and malicious users. The
malicious users perform illegal activities, are able to aspect many users in a short
time period, and at the same time reduce their chances of being discovered. To
overcome security related issues, Internet users invest in security mechanisms
such as anti-virus solutions and firewalls.

It is commonsense information that due to Internet connectivity, the secu-
rity strength of an Internet user1 is dependent on the security strength of other
users, especially neighboring users. Thus, from an individual user perspective,
two important pieces of information are (i) the amount of security investments
of his neighbors in the network and (ii) the knowledge of the underlying connec-
tivity structure of his neighbors. Information on both of these drive optimal user
investments. Unfortunately, due to the large magnitude of the Internet, it is not
feasible or practical to have exact information about the security investments
and connectivity structure of all neighboring Internet users. In addition, most
Internet users are selfish in nature and would not be inclined to share invest-
ment information with other Internet users. However, users do need to invest
properly in security/defense mechanisms to protect themselves as much as pos-
sible, in turn improving system security. In this paper, we address the problem
of optimal security investments when an individual user is uncertain about both,
the underlying network connectivity structure of his neighbors as well as their
security investment amounts, and accounts for the network externalities2 posed
by the neighbors when they invest in security mechanisms. We emphasize here
that the Internet has a static topology and it is not impossible for users to know
the whole topology. However, the size of the Internet is so large that naive users
do not care to give efforts to know the topology, and thus a virtual uncertainty
arises in their mind regarding complete Internet topology information.

1 An Internet user could be a single individual or an individual organization.
2 An externality is a positive(negative) effect caused to a user not directly involved in

an economic transaction, by other users involved in the transaction. For example,
an Internet user investing in security mechanisms benefits all the nodes connected
to him and thus creates a positive externality for his neighbors.
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In the presence of positive network externalities, we consider models related
to two general security scenarios as mentioned in [1]. These scenarios are (i)
where the security strength of an individual user depends upon the sum secu-
rity strength of itself and neighboring individual nodes in the network under
operation and (ii) where the security strength of an individual user depends on
the strength of the strongest node/s amongst its neighbors. An example of sce-
nario 1 is a peer-to-peer network where an attacker might want to slow down
the transfer of a given piece of information, whose transfer speed might depend
on the aggregate effort of all relevant nodes concerned. An example of scenario
2 is a censorship-resistant network, where a piece of information will remain
available to a public domain as long as atleast one node serving that piece of
information is unharmed. Another example of scenario 2 is the flow of traffic
between two backbone nodes in the Internet. Modeling each path between two
backbone nodes as a node, traffic will flow securely between the backbone as long
as there is atleast one node that is unharmed by an attacker, i.e., there exists
atleast one path between the backbone nodes. Likewise, there are other exam-
ples of applications on the Internet that fit scenarios 1 and 2. We emphasize here
that there is another practical scenario as mentioned in [1], viz., one where the
security strength of an individual user depends on the strength of the weakest
neighboring node. This scenario is mainly an intra-organization scenario, where
once a node in an organization is compromised due to a weak password or a
security policy, it is easy for an attacker to hack the whole system. However, the
information of neighborhood topology structure within an organization may be
known to the network users in certainty, whereas in this paper we focus on the
case when users have uncertain information about the neighborhood topology
structure of the network under operation.

We make the following research contributions in this paper.

1. We present a general model for analyzing individual user security invest-
ments in a non co-operative Internet environment. In this regard, we study
security investment games where 1) Internet users have incomplete informa-
tion about the underlying neighboring network connectivity structure as well
as on neighborhood security investment amounts and 2) Internet users ac-
count for the positive externalities posed by the investments of neighboring
Internet users. The novelty of our model over existing security investment
models lies in the fact that Internet users in our work account for neighbor-
hood topological information uncertainty in order to decide on their optimal
security investments. We discuss the implications of optimal user investments
on risk management techniques such as cyber-insurance. Our model is based
on the work in [27](See Section 3.)

2. We formulate our user security investment problems as Bayesian games of
incomplete information and show the existence of a monotonic symmetric
Nash equilibrium of user investments in these games. The results related
to equilibrium show that under incomplete neighboring network topology
information, better connected users choose lower efforts to exert and earn
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higher payoffs than lesser connected peers when user utility functions ex-
hibit strategic substitutes, i.e., are submodular. We also show the existence
of monotonic symmetric equilibria in games of increased topological infor-
mation and compare user investment behaviors in such games with those in
which there is uncertainty regarding complete topological information. We
discuss the implications of equilibria on the ’free-riding’ behavior of Internet
users. (See Section 4.)

2 Related Work

There have been few works related to security investments in the Internet. In this
section, we give a brief overview of related work on Internet security investments.
We divide the related work into the following three subdivisions:

2.1 Joint Investments in Cyber-Insurance and Self-Protection

The authors in [2][3] have analyzed self-protection3 investments in Internet se-
curity under the presence of cyber-insurance, which is a form of a third-party
risk transfer. These papers are based on the inter-dependent risk model in [9].
Under the assumption of users having complete network topology information of
neighbors, the works show that (i) cyber-insurance incentivizes users to invest in
self-protection, (ii) cyber-insurance entails optimal user investments both in in-
surance and in self-protection, and (iii) co-operation amongst Internet users
result in higher user self-protection investments when compared to the case
when users do not co-operate. However, attractive though the concept may
seem, cyber-insurance may not be a market reality due to factors such as inter-
dependent security, correlated risks, and information asymmetry between the
insurer and the insured [4][5]. In addition, it is also infeasible for Internet users
to have complete network topology information of their neighbors.

2.2 Investments In Self-Protection and/or Self-Insurance

For non cyber-insurance environments, in a recent series of works [7][6], the au-
thors show that Internet users invest sub-optimally in self-protection measures
under selfish environments when compared to the case when user co-operation
is allowed. They account for positive network externalities posed by the secu-
rity investments of Internet users but base their results by assuming users hav-
ing complete network topology information of neighbors. However, as we have
discussed previously, in a large network such as the Internet, having complete
network topology information is infeasible. In addition, all the mentioned re-
lated works do not model the well-known security games mentioned in [1], that
are in general played between attackers and defenders (non malicious Internet
users) when externalities are present in a network. In this regard, the works in

3 Protection using anti-virus and antispam softwares, firewalls, etc.
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[11][12][8] [13] tackle the problem of optimal security investments (self-protection
and self-insurance) and model the cited security games mentioned in [1], but do
not account for any uncertainty of information that a user has regarding the
underlying neighboring network topology, or regarding the security investments
of other users. In a different type of investment work, the authors in [14] derive
optimal liability schemes for increasing software security, where liability schemes
are different types of investments by a vendor of a security software to prevent
zero-day attacks. However, their work has no relation with the topological ele-
ments of a network, i.e., they do not model the network topology in evaluating
the probability of zero-day attacks.

2.3 Tackling Information Uncertainty

The authors in [15][16][17][18][19] address certain challenges posed by informa-
tion uncertainty related to security threats, response mechanisms, and associated
expected losses and costs. As a set of contributions, the latter set of papers (i)
derive bounds for the ratio of Internet user utilities with and without perfect in-
formation on risk parameters, (ii) model uncertainty in risk parameters like user
security investments (self-protection and self-insurance), probability of attack,
probability of risk propagation, as probability distributions, and (iii) propose
Bayesian games of incomplete information to address the strategic interaction
amongst Internet users under uncertain environments of risk information and
analyze Nash equilibria in the games with their practical applications. However,
the works do not consider network topology to be a parameter when users make
a decision on their security investments.

In this paper, we advance previous research in security investments by jointly
modeling (i) externalities due to user security investments (only self-protection),
(ii) the fact that users have uncertain information regarding the connectivity
structure of their neighboring nodes, and (iii) user uncertainty about security
investments of their neighbors, to arrive at optimal user security investments.
Thus, the novelty of our paper over existing security investment models lies in
the fact that Internet users in our work account for neighborhood topological
information uncertainty in order to decide on their optimal security investments.

3 Modeling Network Security Investment Games

In this section, we propose a general model for analyzing user network secu-
rity investments using a game-theoretic approach when topological information
needs to be accounted for. First, we model the user interaction network in the
Internet. Second, we describe the utility/payoff function of the Internet users as
a function of their strategies/actions, which are nothing but the security invest-
ments of users. Finally, we explain the information structure of Internet users
with respect to the underlying connectivity structure of their neighbors and their
security investments, and highlight the games of investments that result from
the information structure.
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3.1 Network Structure

We consider a set N = {1, ......, n} of n Internet users, where the connections
between them form a graph G = (V, E), where vij = 1 (edge weight between
nodes (users) i and j) if the utility of user i is affected by the security investment
of user j, i being not equal to j, and 0 otherwise. Let Ni(v) = {j|vij = 1} denote
the set of all the one hop neighbors of i, where v ε {0, 1}n×n is a matrix of
connections amongst nodes. We also consider the k-hop neighbors of node i and
denote the set by Nk

i (v). This set consists of all the nodes that are within k-hops
of node i, where k ≥ 1. Inductively, we have the following relationships between
Nk

i (v) and Ni(v):
N1

i (v) = Ni(v). (1)

Nk
i (v) = Nk−1

i (v) ∪ (∪j ε Nk−1
i (v)Nj(v)). (2)

We represent the degree of a node i by di, where di equals |Ni(v)|. In this paper,
we assume that each user has perfect knowledge about his own degree but does
not have complete information about the degrees of his neighbors. (More on
degree information structure in Section 3.3.)

3.2 User Strategies and Payoffs

In this paper we consider two types of non co-operative security investment
games concerning the case when Internet users have incomplete information on
the topology of their neighbors and their security investments: (1) sum of efforts
game - the users are selfish and invest to maximize their own utilities, with
the security strength of an individual user depending on the sum of security
investments of himself and his neighboring individual nodes and 2) best-shot
game - the users are selfish and invest to maximize their own utilities, with
the security strength of an individual user network depending on the security
investments of the most robust node/s amongst his neighbors. In both these
types of games, each Internet user is a player and his strategy is the amount of
security investment he makes. We assume here that the strategy/action of each
user i is xi and lies in the compact4 set [0, 1]. We model the utility/payoff to each
user i as Ui, which is a function of the security investments made by himself and
his one hop neighbors. Thus, Ui = Ui(xi,

−→x Ni(v)), where −→x Ni(v) is the vector of
security investments of the one hop neighbors of user i. From the structure of user
utility functions, we observe that two players having the same degree will have
the same utility function. We also model the concept of a positive externality
as it forms an integral part of game analyses. A positive externality to a user
from its one hop neighbors results when the latter invest in security, thereby
improving the individual security strength of the user. We represent the concept
mathematically in the following manner: we say that a payoff function exhibits
positive externalities if for each Ui and for all −→x ≥ −→x ′, Ui(xi,

−→x ) ≥ Ui(xi,
−→x ′),

4 In mathematical analysis, a compact set is one that is closed and bounded.
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where −→x and −→x ′ are the vectors of security investments of one hop neighbors of
user i.

In scenarios where the security strength of a user i depends on the sum of
investments of himself and other neighboring users, i.e., as in a sum-of-efforts
game, we mathematically formulate i’s utility/payoff function as follows:

Ui(x1, ......., xdi) = f

⎛⎝xi + λ

di∑
j=1

xj

⎞⎠− c(xi), (3)

where f(·) is a non-decreasing function of −→x , c(xi) is the cost incurred by user
i for putting in effort xi to make his system more robust, and λ is a real scalar
quantity which determines the magnitude of the positive externality experienced
by user i due to the security investments made by his one-hop neighbors.

The situation where the security strength of a user depends on the investments
made by the strongest neighbor/s, i.e., as in a best-shot game, can be modeled
as a special case of the situation where user security strength depends on the
sum of the security investments of his neighbors. We first note that from user i’s
perspective, the strongest-neighbor situation implies that as long as there is a
neighboring node/s that is secure, user i is safe. In Section 1 we have already cited
censorship resistant networks and Internet backbone networks to be examples
of networks where the former situation might arise leading to a best-shot game.
We had also given an example of how the best-shot scenarios arising in these
networks can be modeled as a graph to reflect the ‘user-neighbor’ concept. Once
we have modeled a best-shot scenario as a graph, we fix the strategy space of
individual users to {0, 1} and make f(0) = 0 and f(y) = 1 for all y ≥ 1. A binary
strategy space of {0, 1} implies that each user decides either to invest or not to
invest. If a user or any of his neighbors invest, the former is safe, else he is not.
We observe that the ‘sum of investments’ game gets converted to a best-shot
game. In this case user i’s payoff follows the following equation:

Ui(xi, (−→x , 0)) = Ui(xi,
−→x ), ∀(xi,

−→x ) ε [0, 1]di+1. (4)

Equation (4) implies that adding a link to a neighbor who invests zero amount in
security mechanisms is equivalent to not having the neighbor. This fact captures
the intuition of a best-shot game.

In this paper we assume the utility functions of players in both the game
types to be of the strategic substitute type exhibiting positive externalities. We
say that a utility/payoff function exhibits strategic substitutes or is submodular
if it exhibits the property of decreasing differences, i.e., Ui(xi,

−→x )−Ui(x′
i,
−→x ) ≤

Ui(xi,
−→x ′)−Ui(x′

i,
−→x ′). The practical interpretation of a strategic substitute as

applicable to this paper is that an increase in the security investments of a user’s
neighbors reduces the marginal utility of the user, thus de-incentivizing him from
investing. This happens due to the positive externality a neighbor exerts on the
user through his own investments.
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3.3 Information Structure

In this paper we assume that each Internet user (player) knows his own degree5

but does not have perfect information regarding the degree of his neighbors. It
has already been shown by Newman in [20] that nodes (Internet users) in an
Internet like network exhibit degree correlations6. In this regard, we account for
the degree correlations between the neighboring nodes of a user i in our model,
i.e., when a user decides on his strategy, he accounts for the amount of informa-
tion he has on the degree of his neighbors. Information on degree correlations
is important as it guides a user to making better security investments when
compared to the situation when he has no information about the correlations.
For example, a user having the knowledge that his neighbors are connected to
a high number of nodes would invest differently than he would if he knows that
his neighbors are connected to few nodes.

Let the degrees of the neighbors of user i be the vector
−→
d Ni(v), whose di-

mension is di. We assume that user i does not know the vector
−→
d Ni(v) but has

information regarding its probability distribution, i.e., he knows the value of
P (

−→
d Ni(v)|di). We assume that each player in the network under consideration

begins with ex-ante symmetrical beliefs and common priors regarding the degree
of his neighbors. The players may end up with different positions in a network
and conditional beliefs, but these beliefs are only updated based on their real-
ized position (their own degree) and not on their identities. Thus, arises a family
of conditional distributions, C ≡ {[P (

−→
d |d)]−→

d ε Nd}d ε N, where
−→
d is a vector of

degrees of the neighbors of a node and d is the degree of a given node.
We model the strategic interactions between the players of the network as a

Bayesian game of incomplete information. The type space of the Bayesian game
is the user knowledge on the potential degrees of his neighboring players. The
strategy for each player is his security investment conditioned on the knowledge
of the degrees of his neighbors, and the payoff function for each player is as
defined in Section 3.2, which depends on the game being a sum of investments
game or a best-shot game. Assuming that S is the set of possible investments a
user could make, the strategy for player i is a mapping γi : {0, 1, ....., n− 1} →
Ω(S), where Ω(S) is the set of distribution functions on S.

We already noted that for a player, his conditional distributions concerning
the neighbors’ degrees can vary with his own degree. According to our model,
players may have different number of neighbors, and the degrees of the neigh-
bors are correlated with each other due to the well-known result in [20]. Thus,

5 We restrict ourselves to having perfect knowledge only about a node’s own degree
because (i) no user has zero knowledge about the Internet topology, which is static,
and thus we decide to model partial knowledge of a user, and (ii) for simplicity
of analysis we just assume one level of complete information with regard to the
neighbors of a node.

6 Newman show through empirical studies that technological and Internet networks
exhibit negative degree correlation whereas social networks exhibit positive degree
correlation.
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the dimension of the vector of degrees of its neighbors may vary from player
to player. In order to address correlation amongst vectors of different dimen-
sions, we adopt the technique of ‘affiliation’ from the domain of statistics [21].
Affiliation is used to track the correlation patterns of groups of random vari-
ables, given the complicated interdependencies that might be present between
them. A positive affiliation indicates that higher levels of one variable (in this
case a player’s degree) implies higher levels of all other variables (in this case a
player’s neighbors’ degrees). On the other hand, a negative affiliation indicates
that higher levels of one variable implies lower levels of other variables. Next,
we mathematically describe affiliation as appropriate to our work.

Mathematical Description of Affiliation: Given a player i with degree di, enu-
merate the degrees of i’s neighbors as

−→
d Ni(v) = (d1, ........, ddi). Now consider a

function F : {0, 1, ......, n − 1}m → R, where m ≤ di. Let the following relation
hold:

EP (·|di)[F ] =
∑

−→
d Ni(v)

P (
−→
d Ni(v)|di)F (d1, ......, dm). (5)

In Equation (5) we fix a subset m ≤ di of user i’s neighbors, and then take the
expectation of F operating on their degrees. We say that the family of distri-
butions C exhibits positive affiliation if, for all k′ > k, and any non-decreasing
F : {0, 1, ........., n− 1}k → R, we have

EP (·|k′)[F ] ≥ EP (·|k)[F ], (6)

and C exhibits negative affiliation if

EP (·|k′)[F ] < EP (·|k)[F ], (7)

for all k′ > k, and any non-decreasing F : {0, 1, ........., n−1}k → R. The concept
of affiliation simply implies that higher degrees for a given player are correlated
with higher of lower degree (depending on whether the affiliation is positive or
negative) of all her neighbors.

Practical Implications of Optimal Security Investments: As mentioned in [2],
cyber-insurance incentivizes Internet users to invest in self-defense investments.
However, self-defense investments have a direct impact on insurance premiums as
high investments would result in lesser premiums for a user and low investments
would lead to a user paying higher premiums. We will discuss more on the
relation between premium amounts and user welfare in Section 4.

4 Game Analysis

In this section, we analyze the symmetric Bayesian game of incomplete informa-
tion played between the users of the network under operation. In any symmetric
game, the player payoffs for playing a particular strategy depend only on the
strategies of other players and not on who is playing the strategies. In our game,
symmetric equilibrium implies that players with the same network characteristic,
i.e., network degree, choose the same strategy in a Bayesian Nash equilibrium.
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The primary reasons why we consider only symmetric equilibria are (i) the net-
work formation mechanism is anonymous and the population (ex., as in the
Internet) is very large, and (ii) the payoff function is strictly concave in its own
actions. Under these two conditions, all users of any given degree face the same
decision problem and due to the nature of their utility functions choose an unique
optimal strategy. We investigate the existence, uniqueness, and monotonicity of
our game equilibria. In studying monotonicity of equilibria, we investigate the
changes in the best response investment magnitude of a user when other users in
the network increase/decrease their best response investment amounts. We also
investigate the effect of the increase/decrease in user degrees on the equilibria of
the game. We initially give a mathematical definition of our Bayesian game and
follow it up with the analysis and practical implications of our game equilibria.

4.1 Game Definition

Consider a player (Internet user) i having degree di in a sum-of-efforts game or
a best-shot game. Each player chooses a security investment amount from the
set S as its strategy, where S is as defined in Section 3.3. Let dρ−i(−→γ , di) be the
probability density over xNi(v) ε Sdi induced by the beliefs P (·|di) held by player
i over the degrees of his neighbors, combined with the strategies played via −→γ ,
the vector of strategies of other users in the network. Let

EUi(xi,
−→γ , di) =

∫
xNi(v) ε Sdi

Ui(xi, xNi(v))dρ−i(−→γ , di), (8)

where EUi(xi,
−→γ , di) is the expected utility/payoff of player i with degree di and

investment xi when other players choose strategy −→γ . The Bayesian Nash equi-
librium of the game is a strategy vector that maximizes the expected utility of
each player in the network [22][23]. We note here that the above formulation of a
Bayesian game is valid only for continuous payoff functions, which can arise for
non-discrete strategy sets. The case for discrete sets has been analyzed by [27].
What is important from this paper’s point of view is to relate network structure
and user utilities to the Nash equilibria results, which in turn requires us to
relate user strategies (security investments) to their degrees. In this regard, we
next provide some basic definitions related to our problem model. which would
be used in the analysis of game equilibria.

Definition 1. A strategy −→γ is monotonically increasing in player degrees if
−→γ (d′) first-order stochastically dominates7 −→γ (d) for each d′ > d. Similarly,
7 Let X and Y be two random variables representing risks. Then X is said to be smaller

than Y in first order stochastic dominance, denoted as X ≤ST Y if the inequality
V aR[X; p] ≤ V aR[Y ; p] is satisfied for all p ε [0, 1], where V aR[X; p] is the value at
risk and is equal to F−1

X (p). First order stochastic dominance implies dominance
of higher orders. We adopt the stochastic dominant approach to comparing risks
because a simple comparison between various moments of two distributions may not
be enough for a correct prediction about the dominance of one distribution over
another.
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a strategy −→γ is monotonically decreasing in player degrees if the domination
relationship is reversed, for each d′ > d.

Definition 2. For a given player i, we say that his expected utility function
exhibits degree substitutability if

EUi(xi,
−→γ , di) − EUi(x′

i,
−→γ , di) ≤ EUi(xi,

−→γ , d′i) − EUi(x′
i,
−→γ , d′i), (9)

where xi > x′
i, di > d′i, and −→γ is non-increasing. Similarly for a given player i,

we say that his expected utility function exhibits degree complementarity if

EUi(xi,
−→γ , di) − EUi(x′

i,
−→γ , di) ≥ EUi(xi,

−→γ , d′i) − EUi(x′
i,
−→γ , d′i), (10)

where xi > x′
i, di > d′i, and −→γ is non-decreasing.

We observe that the concepts of degree substitutability and complementarity
are in relation to the marginal expected utilities of a player with increase in his
degree. Degree substitutability states that if a high strategy (security invest-
ment) is less attractive than a low strategy, for a player of some degree, then the
same is true for a player of a higher degree, when the strategy being played by
other players is non-increasing. Similarly, degree complementarity states that if a
high strategy is more attractive than a low strategy, for a player of some degree,
then the same is true for a player of a higher degree, when the strategy being
played by other players is non-decreasing. In a recent work, [24] have shown as
sufficient conditions that when Equation 4 holds, the user utility functions ex-
hibit strategic substitutes, and the neighbor affiliation of C is negative, degree
substitution arises. However, the authors did not state these conditions as neces-
sary to ensure degree substitutability. In our work, we only assume the sufficient
conditions while considering degree substitutability because the payoff functions
for the players in the sum-of-efforts and best-shot games exhibit the strategic
substitute property. We emphasize here that it is yet to be proved through theory
or experiments that the the topology of the Internet at the user level exhibits
degree substitutes. We assume in this paper that there exists a negative degree
of neighbor affiliation (like in the case of degree correlations at the router level
[20]) for the Internet at the user level. The analysis case for positive affiliation
is an important open problem and is left for future work.

4.2 Game Equilibria Results

In this section we state the results related to equilibria of our proposed Bayesian
game of security investments, and analyze various practical implications of our
results. As mentioned earlier, given a symmetric environment; i.e., players partic-
ipate in a symmetric Bayesian game of security investments, we analyze symmet-
ric equilibria. Apart from the reasons previously mentioned on why we address
only symmetric game equilibria, asymmetric behavior seems relatively unintu-
itive, and difficult to explain in a one-shot interaction [25].
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Lemma 1. There exists a symmetric equilibrium in our proposed security in-
vestment game when user utility functions exhibit strategic susbstitutes, and the
equilibrium is non-increasing, i.e., monotone decreasing.

Proof. In our game the players (Internet users) have identical strategy set S. The
utility functions of each player is the same, and each player’s beliefs about the
degrees of its neighbors are ex-ante symmetric. Given that action set is compact
and the utility/payoff function of users are continuous, there exists a mixed strat-
egy Nash equilibrium of the Bayesian game [22][23]. Regarding monotonicity of
equilibria, we use the degree substitute property to show that a player would play
a monotone best-reply if the rest of the players play monotone strategies. Thus,
the monotone strategies form a compact and convex set, and by the results in [28]
there exists a monotonic equilibrium. Q.E.D.

Implications of Lemma 1: The degree substitutes property ensures that there is
a game equilibrium that is monotonically decreasing. From a user point of view
this implies that his investments monotonically decrease with increase in his own
degree, which further implies low user investments on being well connected, lead-
ing to a free-riding problem. Assuming the existence of cyber-insurance markets,
this problem can be tackled to incentivize well-connected users to invest opti-
mally [2]. Under mandatory cyber-insurance, well-connected users would either
pay high premiums or would invest more to avoid high premiums. In the case
when there are multiple symmetric Nash equilibria ( this case does not arise in
best-shot games, It has been shown in [27] that best-shot Bayesian games have a
unique pure strategy symmetric Nash equilibria which is monotone decreasing)
that are non-monotone, it may prove good for overall network security because
well connected users might put in more investment efforts even if it has high
degree, in turn paying less insurance premiums. On the other hand, we cannot
be sure if low degree users would exert high investment efforts for non-monotone
equilibria.

Lemma 2. Given that (1) Ui(xi, (−→x , 0)) = Ui(xi,
−→x ), ∀(xi,

−→x ) ε Sdi+1, for each
player i and (2) degrees of neighboring nodes of users are independent, then
strategic substitutes of user utility functions result in every symmetric equilib-
rium of our proposed Bayesian game of security investments being monotone
decreasing.

Proof. Let −→γ ∗ be the strategy played in equilibrium. Consider any d ε {0, 1, ...., n}
and let xd = inf [supp(γ∗

d)]. If xd = 1, thenxd′ ≤ xd for all xd′ ε supp(γ∗
d′) for

d′ > d. Now let us assume xd < 1. Then for any x > xd, Equation 4 holding,
and user utility functions exhibiting strategic substitutes, we have for player i

A ≤ B. (11)

Here
A = Ui(x, xdn1,, ..., xdnd

, xs) − Ui(xd, xdn1,, ..., xdnd
, xs)
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and
B = Ui(x, xdn1,, ..., xdnd

) − Ui(xd, xdn1,, ..., xdnd
),

where xs ≥ 0. Given the assumption of stochastically independent neighbor
degree distributions, we have

EUi(x,−→γ ∗, d + 1)− EUi(xd,
−→γ ∗, d + 1) < EUi(x,−→γ ∗, d)− EUi(xd,

−→γ ∗, ). (12)

Now we also know that for all x

EUi(x,−→γ ∗, d) − EUi(xd,
−→γ ∗, d) ≤ 0. (13)

Thus, we have for all x > xd

EUi(x,−→γ ∗, d + 1) − EUi(x,−→γ ∗, d + 1) < 0, (14)

which implies γ∗
d first order stochastically dominates γ∗

d+1. Iterating our argu-
ment, we arrive at the conclusion that γ∗

d first order stochastically dominates γ∗
d′

whenever d′ > d. Q.E.D.

Implications of Lemma 2: Lemma 2 states the conditions under which all sym-
metric equilibria are monotone, and gives an insight on the topology of the
network that could result in all symmetric equilibria being monotone. Lemma 1
only guarantees the existence of a single monotone equilibria when the network
topology exhibits degree substitutes. Lemma 2 states that under independence
of neighbor degree nodes (ex., as in a Erdos-Renyi random graph) every sym-
metric equilibria is monotone decreasing. However, topologies such as the Erdos-
Renyi graph do not represent the Internet. Assuming every equilibrium would
be monotone decreasing with respect to the Internet topology, it would enable
cyber-insurance markets to flourish (provided that markets exist and cyber-
insurance is made mandatory for Internet users). Thus, for user-level Internet
topologies and for multiple non-monotone symmetric equilibria, the overall net-
work security strength explanation follows as per the explanation in Lemma 1.

Lemma 3. Suppose Ui(xi, (−→x , 0)) = Ui(xi,
−→x ), ∀(xi,

−→x ) ε Sdi+1, for each player
i. If C is negatively affiliated and user utility functions exhibit strategic substi-
tutes, then in every monotonically decreasing symmetric equilibrium of security
investment of our proposed Bayesian game, the expected utilities of players are
non-decreasing in degree.

Proof. Let −→γ ∗ be an equilibrium strategy. Suppose that xd ε supp(γ∗
k) and

xd+1 ε supp(γ∗
d+1). Equation 4 implies that

Ui(xd, xdn1 , ...., xdnd
, 0) = Ui(xd, xdn1 , ...., xdnd

), (15)

for all xdn1 , ...., xdnd
. Now since the user utilities exhibit positive externalities,

it is true for all x > 0 that

Ui(xd, xdn1 , ...., xdnd
, x) = Ui(xd, xdn1 , ...., xdnd

). (16)
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Now for negative neighbor affiliation, we have

EUi(xd,
−→γ ∗, d + 1) ≤ EUi(xd,

−→γ ∗, d). (17)

Since, γ∗
d+1 is a best response in the network game, and that xd+1 ε supp(γ∗

d+1),
we have

EUi(xd+1,
−→γ ∗, d + 1) ≤ EUi(xd,−→γ ∗, d + 1). (18)

Thus, our result is proved. Q.E.D.

Implications of Lemma 3. Lemma 3 provides the relation between network de-
grees of users and their equilibrium payoffs, and identifies the conditions under
which payoffs increase/decrease with network degree. Assuming that the Inter-
net at the user level has negative neighbor degree affiliation, the lemma states
that players with more neighbors exert lesser investment efforts and earn higher
payoffs as compared to their less connected peers. In general, the lemma pro-
vides intuitions about user investments in games exhibiting strategic substitutes.
Given that there exist markets for cyber-insurance and that insurance is made
compulsory for Internet users, the overall network security strength explanation
follows as per the explanation in Lemma 1.

4.3 The Case of Increased Topological Information

In this section, we investigate player investment behavior when he has more
information regarding the network topology than just knowing his own degree
and the conditional distributions of the degrees of his neighbors. Our goal is to
compare user behavior regarding security investments between the ‘less infor-
mation’ and ‘more information’ cases. We consider the case where players apart
from knowing his own degree also knows the degrees of his neighbors. In the
case when a player has complete information about the network topology, it has
been shown in [26] that multiple pure strategy Nash equilibria may result (not
necessarily monotone).

For the ease of exposition, we consider the simple comparison setting where
the degrees of neighbors of a user are stochastically independent. This assump-
tion also implies the independence of the degrees of neighbors of neighbors.
Recall from Lemma 2 that under degree independence and the strategic sub-
stitute property of user utility functions, all symmetric Nash equilibria of the
Bayesian game are monotonic decreasing. However, an interesting trend to study
is whether all equilibria are monotone when the ‘’level of topological informa-
tion’ increases. Note that in the case of increased topology information, the type
space of each player in the Bayesian game is of the form (di; dni1, ...., dnidi),
where di is the degree of player i and {dni}’s are the degrees of i’s neighbors.
We have the following lemma regarding user behavior in the increased topolog-
ical information scenario, i.e., the scenario where a user in addition to his own
degree also knows the degree of his neighbors.
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Lemma 4. Suppose Ui(xi, (−→x , 0)) = Ui(xi,
−→x ), ∀(xi,

−→x ) ε Sdi+1, for each player
i. When user utility functions exhibit strategic substitutes and neighbor degrees
are stochastically independent, our proposed Bayesian game of security invest-
ments has at least one symmetric equilibrium that is monotone decreasing.

Proof. The proof of this lemma follows from the same logic as that in Lemma
1, i,e., the best-response of a player to a monotone decreasing strategy by all
other players is monotone decreasing, given that the set of monotone strategies
is convex and compact. The latter condition guarantees the existence of equilib-
rium. The proof details follow a similar method as proposed in Proposition 10
of [24]. Q.E.D

Implications of Lemma 4. The lemma states does not guarantee the existence
of every symmetric equilibrium being monotone decreasing, when compared to
Lemma 2. Thus, with increasing information, the flourishing of cyber-insurance
markets and increments in overall network security might follow the same trends
as in the case when users had less information.

A Note on Multiplicity of Nash Equilibria. We observe that our games
might have multiple symmetric Nash equilibria, and that the chances of having
multiple equilibria increases with the increase in the amount of topological in-
formation [27]. There are two important practical implications of this behavior:
(i) it is difficult for a player to choose the best equilibrium as computing a single
Nash equilibria is PPAD-complete [29], and (ii) there might be multiple cyber-
insurance contracts for the multiple equilibria, and due to the intractability of
computing any Nash equilibria, let alone the best equilibria, clients might go for
a contract that either ‘over-prices’ or ‘under-prices’ them with regard to insur-
ance premiums, thus leading to chances of market failure. Thus we observe a
flip side to having more information on the network topology. However, in most
practical cases (approximately 95% of the time) Nash equilibria is reached in
polynomial time. Added to this is the fact that having more information on a
large network is infeasible and therefore more chances that users will be involved
in a game having a single or less number of Nash equilibria.

5 Cyber-Insurance – A Brief Note

In this section we give a brief overview of the need for cyber-insurance in Internet
security since we draw practical implications of our model results with respect
to this risk management technique.

The Internet has become a fundamental and an integral part of our daily
lives. Billions of people nowadays are using the Internet for various types of
applications. However, all these applications are running on a network, that
was built under assumptions, some of which are no longer valid for today’s
applications, e,g., that all users on the Internet can be trusted and that there
are no malicious elements propagating in the Internet. On the contrary, the
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infrastructure, the users, and the services offered on the Internet today are all
subject to a wide variety of risks. These risks include denial of service attacks,
intrusions of various kinds, hacking, phishing, worms, viruses, spams, etc. In
order to counter the threats posed by the risks, Internet users8 have traditionally
resorted to antivirus and anti-spam softwares, firewalls, and other add-ons to
reduce the likelihood of being affected by threats. In practice, a large industry
(companies like Symantec, McAfee, etc.) as well as considerable research efforts
are centered around developing and deploying tools and techniques to detect
threats and anomalies in order to protect the Internet infrastructure and its
users from the resulting negative impact.

In the past one and half decade, protection techniques from a variety of com-
puter science fields such as cryptography, hardware engineering, and software
engineering have continually made improvements. Inspite of such improvements,
recent articles by Schneier [30] and Anderson [31][32] have stated that it is im-
possible to achieve a 100% Internet security protection. The authors attribute
this impossibility primarily to four reasons:

– New viruses, worms, spams, and botnets evolve periodically at a rapid pace
and as a result it is extremely difficult and expensive to design a security
solution that is a panacea for all risks.

– The Internet is a distributed system, where the system users have divergent
security interests and incentives, leading to the problem of ‘misaligned in-
centives’ amongst users. For example, a rational Internet user might well
spend $20 to stop a virus trashing its hard disk, but would hardly have
any incentive to invest sufficient amounts in security solutions to prevent
a service-denial attack on a wealthy corporation like an Amazon or a Mi-
crosoft [33]. Thus, the problem of misaligned incentives can be resolved only
if liabilities are assigned to parties (users) that can best manage risk.

– The risks faced by Internet users are often correlated and interdependent.
A user taking protective action in an Internet like distributed system cre-
ates positive externalities [9] for other networked users that in turn may
discourage them from making appropriate security investments, leading to
the ‘free-riding’ problem [8][7][34][6].

– Network externalities affect the adoption of technology. Katz and Shapiro
[35] have determined that externalities lead to the classic S-shaped adoption
curve, according to which slow early adoption gives way to rapid deploy-
ment once the number of users reaches a critical mass. The initial deploy-
ment is subject to user benefits exceeding adoption costs, which occurs only
if a minimum number of users adopt a technology; so everyone might wait
for others to go first, and the technology never gets deployed. For example
DNSSEC, and S-BGP are secure protocols that have been developed to bet-
ter DNS and BGP in terms of security performance. However, the challenge
is getting them deployed by providing sufficient internal benefits to adopting
entities.

8 The term ‘users’ may refer to both, individuals and organizations.
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In view of the above mentioned inevitable barriers to 100% risk mitigation, the
need arises for alternative methods of risk management in the Internet. Anderson
and Moore [32] state that microeconomics, game theory, and psychology will play
as vital a role in effective risk management in the modern and future Internet, as
did the mathematics of cryptography a quarter century ago. In this regard, cyber-
insurance is a psycho-economic-driven risk-management technique, where risks
are transferred to a third party, i.e., an insurance company, in return for a fee, i.e.,
the insurance premium. The concept of cyber-insurance is growing in importance
amongst security engineers. The reason for this is three fold: (i) ideally, cyber-
insurance increases Internet safety because the insured increases self-defense as
a rational response to the reduction in insurance premium [36][37][38][39], a
fact that has also been mathematically proven by the authors in [40][2], (ii) in
the IT industry, the mindset of ‘absolute protection’ is slowly changing with
the realization that absolute security is impossible and too expensive to even
approach while adequate security is good enough to enable normal functions - the
rest of the risk that cannot be mitigated can be transferred to a third party [41],
and (iii) cyber-insurance will lead to a market solution that will be aligned with
economic incentives of cyber-insurers and users (individuals/organizations) - the
cyber-insurers will earn profit from appropriately pricing premiums, whereas
users will seek to hedge potential losses. In practice, users generally employ a
simultaneous combination of retaining, mitigating, and insuring risks [42].

6 Conclusion

In this paper we proposed a security investment model for the Internet in which
Internet users account for the positive externality posed to them by other Inter-
net users and make security investments under situations when they do not have
complete information about the underlying connecting topology of his neighbors
and their security investments. Our model is based on a game-theoretic approach
and we showed (i) the existence of symmetric monotone Bayesian Nash equilibria
of efforts and (ii) better connected nodes choose lower efforts to exert but earn
higher utilities with respect to security improvement when user utility functions
exhibit strategic substitutes. Our results provided ways for Internet users to
appropriately invest in security mechanisms under realistic environments of in-
formation uncertainty. Our results also clarified how the basic strategic features
of the game - as manifest in the substitutes property - combine with different pat-
terns of degree association to shape network behavior and user payoffs. We also
stated the implications of our results to successfully realizing risk management
schemes such as cyber-insurance, in practice. Finally, we compared between user
investment behaviors in ‘low information’ and ‘increased information’ scenarios.
As a part of future work, we plan to investigate security investments under an
asymmetric environment, i.e., a game environment in which user payoffs depend
not only on the strategy of other users but also on the identity of the users.
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