
Lightweighting the Web of Data through Compact
RDF/HDT

Javier D. Fernández1, Miguel A. Martínez-Prieto1,2, Mario Arias1,
Claudio Gutierrez2, Sandra Álvarez-García3, and Nieves R. Brisaboa3

1 Universidad de Valladolid, España
{jfergar,migumar2}@infor.uva.es, mario.arias@gmail.com

2 Universidad de Chile, Chile
cgutierr@dcc.uchile.cl

3 Universidade da Coruña, España
{salvarezg,brisaboa}@udc.es

Abstract. The Web of Data is producing large RDF datasets from diverse fields.
The increasing size of the data being published threatens to make these datasets
hardly to exchange, index and consume. This scalability problem greatly dimin-
ishes the potential of interconnected RDF graphs. The HDT format addresses
these problems through a compact RDF representation, that partitions and effi-
ciently represents three components: Header (metadata), Dictionary (strings oc-
curring in the dataset), and Triples (graph structure). This paper revisits the format
and exploits the latest findings in triples indexing for querying, exchanging and
visualizing RDF information at large scale.

1 Introduction

The Web of Data comprises very large RDF1 datasets from diverse fields such as bioin-
formatics, geography or social networks. The Linked Data Project2 has been playing a
crucial role promoting the use of RDF and HTTP to publish structured data on the Web
and to connect it between different data sources [5]. This philosophy has lift traditional
hyperlinks to a new stage, in which more than 25 billion RDF triples are being shared
and increasingly linked3. Linked Open Data (LOD) cloud is roughly doubling every 10
months, hence the important problem when these data need to be managed.

To date, these RDF datasets tend to be published, exchanged and consumed
within plain RDF formats such as RDF/XML, N34 or Turtle5, which provide human-
focused syntaxes disregarding large data volumes. General compressors are used over
these plain formats in order to reduce the final size, but the resultant files must be
decompressed and parsed in plain at the final consumer.

1 http://www.w3.org/TR/REC-rdf-syntax/
2 http://linkeddata.org
3 http://www4.wiwiss.fu-berlin.de/lodcloud/
4 http://www.w3.org/DesignIssues/Notation3
5 http://www.w3.org/TeamSubmission/turtle/

J.A. Lozano, J.A. Gámez, and J.A. Moreno (Eds.): CAEPIA 2011, LNAI 7023, pp. 483–493, 2011.
© Springer-Verlag Berlin Heidelberg 2011

484 J.D. Fernández et al.

Several RDF indexes and RDF storages explore efficient SPARQL6 query resolution
methods [15,4]. However, these approaches suffer from lack of scalability [21]. There
is still a large interest in querying optimization [19], whose performance is diminished
when the RDF storages manage these very large datasets.

All this is diminishing the potential of interconnected RDF graphs due to the huge
space they take in and the large time required for consuming. Thus, only a small portion
of the data tend to be finally exchanged, indexed and consumed.

RDF/HDT (Header-Dictionary-Triples) addresses these issues. It proposes a binary
format for publishing and exchanging RDF data at large scale [10]. This paper revis-
its RDF/HDT and analyzes its role in the Web of Data. We provide a set of applica-
tion fields which need to overcome the aforementioned scalability problems, studying
RDF/HDT in such contexts. In particular, we focus in querying, exchanging and con-
suming RDF, i.e., the consuming usage of large RDF information. To this later end, we
refer to a novel tool which consumes HDT to provide large RDF data visualization.

The paper is organized as follows. Section 2 reviews the underlying problems of
large RDF in the Web of Data. Section 3 presents an overview of HDT concepts and
practical issues of their implementation. We revisit HDT for indexing and querying in
Section 4, studying two different solutions for Triples indexing. We provide an HDT-
based architecture for RDF exchanging in Section 5. Section 6 encourages HDT for
RDF consumption at large scale, referring to a visualization tool as a use-case. Finally,
Section 7 concludes and addresses future challenges.

2 Related Work

The RDF data model was designed as a general framework for the description and
modeling of information, hence it is not attached to a particular serialization format.
RDF/XML, despite its verbosity, is useful for interchanging small-scale data. Other
notations, e.g. Turtle and N3, allow shortening some constructions, such groups of URIs
or common datatypes. However, none of these proposals seems to have considered data
volume as a primary goal.

Although diverse techniques provide RDF indexes, the efficient and scalable reso-
lution of SPARQL remains an open problem. Some of them store RDF in a relational
database and perform SPARQL queries through SQL, e.g. Virtuoso7. A specific tech-
nique, called vertical-partitioning, groups triples by predicate and defines a 2-column
(S,O) table for each one [21]. They allow some SPARQL queries to be speeded up,
but make some others difficult, e.g. the queries with unbounded predicates. A different
strategy is followed in RDF-3X [15] and BitMat [4]; indexes are created for all ordering
combinations (SPO, SOP, PSO, POS, OPS, OSP), increasing spatial requirements.

The access points of the Web of Data, built on top of RDF, are typically the SPARQL
Endpoints, services which interpret the SPARQL query language. The performance of
querying this infrastructure is diminished by the aforementioned factors [18]: (1) the
response time, affected by the efficiency of the RDF indexing structure, and (2) the
overall data exchange time, obviously influenced by the serialization format.

6 http://www.w3.org/TR/rdf-sparql-query/
7 http://www.openlinksw.com/dataspace/dav/wiki/Main/VOSRDF

Lightweighting the Web of Data through Compact RDF/HDT 485

<../wikipage1> <../#wikilink> <../ wikipage2> .
<../wikipage1> <../#wikilink> <../ wikipage3> .
<../wikipage1> <../#title> “Title 1” .
<../wikipage2> <../#redirectsTo> <../ wikipage4> .
<../wikipage2> <../#title> “Title 2” .

RDF

<../wikipage2>

<../wikipage1>

<../wikipage3>
<../wikipage4>
“Title 1”
“Title 2”

<../#redirectsTo>
<../#title>
<../#wikilink>

1

2

2
3
4
5

1
2
3

S-O

S

O

P

Dictionary

2 3 1
2 3 2
2 2 4
1 1 3
1 2 4

Predicates:

Objects:

1 2 0 2 3 0

3 0 4 0 4 0 1 2 0

subject 1 subject 2

ID

Dictionary
Building

ID-based
Replacement

Triples

Plain Triples

Predicates

Objects

1 2 2 3

3 4 4 1 2

0 0 1 0 0 1

0 1 0 1 0 1 0 0 1

Sp

Bp

So

Bo

Compact Triples Bitmap Triples

Fig. 1. Incremental representation of an RDF dataset with HDT

SPARQL resolution over the Web of Data has been addressed in two different ways.
On the one hand, a federated query architecture, in the sense of traditional databases
federation [20], sets up an abstraction layer of multiple SPARQL Endpoints [17]. De-
composition of queries, subquery propagation and integration of results are its main
challenges. On the other hand, data centralization is based on dataset replication under
a unique access point, e.g. the well-known Sindice service [16] or the Linked Data ag-
gregation of OpenLink Software8. Both mechanisms suffer from a problem of dynamic
data discovery [12] and large data management and indexing.

3 RDF/HDT

Traditional formats for serializing RDF stay influenced by the old document-centric
perspective of the Web. This leads to fuzzy publications, inefficient management, com-
plex processing and lack of scalability for large RDF datasets. The format RDF/HDT
(Header-Dictionary-Triples) arises as a compact alternative to the plain formats for se-
rializing RDF in the current Web of Data, moving forward to a data-centric scheme.

3.1 Basic Concepts

RDF/HDT[10] is a binary format for RDF recently published as a W3C Member Sub-
mission9. It considers the skewed structure of large RDF datasets [22] to achieve large
spatial savings. It splits a dataset into three logical components:

- Header. This component is an RDF graph expressing metadata about the dataset. It
extends VoiD10 with a specific vocabulary11 which allows logical and physical descrip-
tions for the dataset. It can be used through well-known mechanisms, such as SPARQL
Endpoints, serving as an entrance point to the information described in the dataset.

8 http://lod.openlinksw.com/
9 http://www.w3.org/Submission/2011/SUBM-HDT-20110330/

10 http://www.w3.org/2001/sw/interest/void/
11 http://www.rdfhdt.org/hdt/

486 J.D. Fernández et al.

Table 1. Compression results and Triples sizes for several datasets

Dataset
Triples Size Compression (MB) Triples Size (MB)

(millions) (GB) gzip bzip2 ppmdi HDT-C Bitmap k2-Triples
geonames 9.4 1.00 78.54 54.78 49.15 32.36 33.60 17.41
wikipedia 47.0 6.88 491.04 360.01 288.85 156.40 143.84 124.93

dbtune 58.9 9.34 924.85 630.28 441.86 175.02 245.78 152.58
uniprot 72.5 9.11 1233.25 739.76 637.15 330.23 278.59 81.92

dbpedia-en 232.5 33.12 3513.58 2645.36 2251.95 1319.29 995.73 884.74

- Dictionary. It maps all different strings to integer IDs. This decision pursues the goal
of compactness because each triple can be now regarded as a group of three integer IDs.

- Triples. This component represents the graph topology by encoding all triples in the
dataset. The mapping of the Dictionary allows the structure to be managed as an integer-
stream. This new representation facilitates the encoder to take advantage of the existing
power-law distributions for subjects and objects [10], improving HDT effectiveness.

3.2 Practical Issues

RDF/HDT supports a flexible implementation for each component depending on the
final application consuming RDF. Figure 1 provides an example of different practical
strategies. First, the Dictionary is built from the original RDF dataset. It is implemented
on a simple hashing-based approach which distinguishes strings playing roles of: shared
subject-object (S-O), subject (S), object (O) and predicate (P). Then, these mappings
are used to describe three different techniques for the Triples [10].

Plain triples is the most naive approach in which only the ID replacement is car-
ried out. Compact triples performs a subject ordering and creates predicate and object
adjacency lists for each subject. The stream Predicates concatenates the predicate lists
related to each subject, using the non-assigned zero ID as separator. The second stream
(called Objects) lists all objects related to the pairs (s,p) in the same way. Finally,
Bitmap triples extracts the auxiliary zero IDs embedded in each stream and stores
them in two bitmaps in which 1-bits mark the end of the corresponding adjacency list.

Fernández, et al. [10] also proposes HDT-Compress, which combines specific
compression techniques for the Dictionary and the Triples. Table 1 studies the effective-
ness of this approach and compares them against well-known compressors for several
datasets12. As can be seen, HDT-Compress (column HDT-C) always achieves the best
compression ratio. The comparison of HDT-Compress against the typical compressor
used in the area (gzip) reports improvements from 2.5 up to more than 5 times. The
difference against the best compressor (ppmdi) is reduced, from 1.5 to 2.5 times, but
remains significative. These results support HDT as a very compact serialization format
for RDF and encourage its usage in applications, such as exchanging or publishing, in
which the dataset size determines their efficiency.

12 Geonames, dbtune and uniprot (http://km.aifb.kit.edu/projects/btc-2010),
wikipedia (http://labs.systemone.at) and dbpedia
(http://wiki.dbpedia.org)

Lightweighting the Web of Data through Compact RDF/HDT 487

1 2 3 4 5 6
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Predicate 1 1 2 3 4 5 6
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Predicate 2 1 2 3 4 5 6
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Predicate 3

(2,3,1)
(2,3,2)
(2,2,4)
(1,1,3)
(1,2,5)
(3,2,6)

S

O

S

O

S

O

Fig. 2. k2-triples: vertical partitioning on k2-trees

4 RDF Indexing and SPARQL Querying

RDF indexing is a cornerstone of the Web of Data because it determines the perfor-
mance of SPARQL resolution, and so, the efficiency of other tasks such as reasoning. A
common weakness for current RDF indexing solutions is the significative time that they
waste in disk transfers. Although full-in-memory indexes seem a logical solution, they
are hardly scalable due to their lack of compression. In this scenario, HDT arises as an
effective solution because of its compactness. This section addresses two HDT-based
approaches focused on the indexing of the Triples component.

4.1 Bitmap Triples

This is an intuitive technique based on the Bitmap triples representation described in
the previous section. Let us suppose a dataset containing |S|, |P |, and |O| different
subjects, predicates and objects respectively. Each predicate, in Sp, is represented with
log(|P |) bits whereas each object, in So, takes log(|O|) bits. In turn, the bitmaps Bp

and Bo are also represented in plain form [11]. This technique uses a 5% of extra space
over the original bitmap length in order to achieve efficient constant time for rank and
select operations [14]. These two operations enable graph structure traversing and
allow some SPARQL triple pattern queries to be performed13.

Regarding the SPO ordering, Bitmap triples resolves efficiently the triple patterns
(S, P, O), (S, P, ?O), (S, ?P, ?O), and (S, ?P, O). Note that all of them bound the sub-
ject. Patterns with unbounded subject require additional indexes to be resolved.

4.2 k2-Triples

The Bitmap triples approach achieves an interesting tradeoff between compression and
searching features, but it is not a full-index by itself. As we explained, the ordering
chosen for its building restricts the queries than can be efficiently answered. However,
its performance yields an important conclusion: compression allows RDF indexes to be
fully managed in main memory, achieving very efficient SPARQL resolution.

13 Triple patterns are like RDF triples except that each of the subject, predicate and object may
be a variable. ?X values are used to indicate variable elements in the pattern.

488 J.D. Fernández et al.

The usage of compact data structures [14] is not very common in semantic appli-
cations. However, they have been successfully used to solve problems in areas such as
Bioinformatics [7] or Web Graphs [6]. A technique from this last domain, called k2-
tree, has been generalized to be used for representing general graph databases [1]. It
models a graph as a binary matrix in which a cell (i,j) contains 1 iff the nodes i and
j are linked. This technique supports very effective resolution for queries which (1)
retrieves all points in a row x (direct neighbours for x); (2) retrieves all points in a col-
umn y (reverse neigbours for y); (3) checks the existence of a given point (x,y); and
(4) performs a bidimensional range queries involving subsets of rows and/or columns.

k2-triples [2] uses k2-trees to compress and index the Triples component of an
RDF/HDT dataset. It is, to the best of our knowledge, the first RDF index built on
compact data structures. It vertically partitions the dataset to group all triples related to
a given predicate. This decision allows each group to be modeled with an independent
k2-tree which indexes all pairs (subject, object) associated with a given predicate. The
resulting k2-trees describe very sparse 1 distributions which allow k2-triples to achieve
ultra-compressed representations of the Triples component.

Figure 2 shows how k2-triples represents the listed triples, extended from the ex-
ample in Figure 1. Three independent k2-trees are used for indexing the triples. Note
that this approach works on square matrices, hence the rows/columns are expanded. In
the example, only the three first rows (for the three existing subjects) and the six first
columns (for the six objects) are really used in each k2-tree, so all triples are stored
in these ranges. For instance, the predicate 2 takes part in three triples: (2,2,4), (1,2,5)
and (3,2,6), and its corresponding k2-tree stores them in the coordinates (2,4), (1,5) and
(3,6), which represent the corresponding subject-object pairs.

k2-triples supports all SPARQL triple pattern queries on the primitive operations
of the k2-tree. The conjunction of these patterns allows more complex queries to be
obtained through join conditions. It currently gives support for subject-subject joins,
object-object and cross-joins between subjects and objects.

The results reported for k2-triples [2] give three interesting facts: 1) it achieves the
most compressed representations14; 2) it largely outperforms vertical partitioning on re-
lational databases; and 3) it beats multi-index solutions for queries with bounded pred-
icates. These results support k2-triples for the design of full-in-memory RDF engines
and its performance excels for datasets using a limited number of predicates.

5 RDF Exchanging

Communication processes in the Web of Data are threatened by the overall data ex-
change time. Even if current RDF formats are compressed using universal techniques,
they must be decompressed at destination and then parsing the same verbose data.

HDT combines compressibility (as stated in Section 3.2) and cleaner parsing, since
it already provides an index to the information. Besides establishing a compact RDF
binary format for exchanging, HDT can be used as basis to design an efficient architec-
tural model in the Web of Data. The state-of-the art reveals the need of improving the
efficiency of SPARQL Endpoints, supporting (1) efficient and scalable mechanisms for

14 Table 1 also shows that k2-triples outperforms Bitmap triples compressibility.

Lightweighting the Web of Data through Compact RDF/HDT 489

SPARQL+ HDT OperationsTable
Remote
Services

T
R
S

SPARQL+ HDT Operations

(Dbpedia) (Geonames)

Fig. 3. Structure and communication flow in HDT·EndPoints

storing and indexing large RDF datasets, (2) compact formats for exchanging, such as
HDT, and (3) protocols for discovering new resources.

HDT·EndPoints is an architecture which extends the concept of SPARQL Endpoints
to support HDT functionality, taking advantage of its properties to overcome the men-
tioned needs. The net is built on top of HDT·Endpoint nodes.

Definition 1 (HDT·EndPoint). An HDT·EndPoint node is an element (i) conforming
to the SPARQL protocol for RDF (SPROT)15, (ii) which extends its functionality to
discover and communicate with other HDT·EndPoints, and (iii) makes use of HDT as
its RDF interchange format.

Figure 3 shows the structure and communication flow for two HDT·EndPoints, storing
DBpedia and Geonames in the LOD cloud. Imagine a client, (e.g. a human, a machine
or a consuming application), who wants to retrieve all the information about “Berlin”.
She will send a SPARQL query to the DBpedia HDT·EndPoint (step ’1’ in the figure)
which tries to solve it locally (’2’). Then, the DBpedia node will look up in its Table
of Remote Services (’3’) to discover other HDT·EndPoints which could contribute in
the results. It will discover Geonames, send a subquery (’4’), harvest the results (sent in
HDT) and present the final result (also in HDT) to the user (’5’).

The Table of Remote Services is a mechanism to discover other HDT·EndPoints
through the HDT Header. This can be seen as a “routing” table, which includes one
entry per HDT dataset held in the HDT·EndPoint. Each entry stores its namespaces and
the URI of the HDT·EndPoint hosting the dataset. It also includes the Header of the
dataset and an optional timestamp in order to support an updating policy.

In addition to SPARQL Queries, HDT·EndPoints allows for specific HDT opera-
tions, such as returning all (of a part of) each components (Header, Dictionary, Triples).

6 Consuming RDF. Large RDF Visualization

At this point, consuming RDF is seriously underexploited [13] due to (1) the huge
RDF graphs exchanging costs, (2) their complex parsing and indexing and (3) a general
darkness of the underlying structure. Large RDF data tend to be complex and hard to

15 http://www.w3.org/TR/rdf-sparql-protocol/

490 J.D. Fernández et al.

Fig. 4. Bibsonomy dataset as shown using the HDT visualization tool

read/parse in its textual publication format. Thus, semantic information developers have
to deal with painful processes in order to consume these large RDF graphs.

RDF/HDT leads to compact RDF representations which not only mitigate exchang-
ing costs, but also make the parsing and indexing easier. This way, applications con-
suming HDT can benefit from the reduced size as well as “instant” access to the data.

A visualization tool is proposed [3] as an example of application consuming HDT.
In addition, it provides a solution for the third aforementioned problem for consumers,
i.e. visualization and understanding of large RDF data.

6.1 Background

The use of visual tools helps consumers understand RDF content. Some of the typical
tasks are identifying the most relevant resources in the graph, whether the information
is grouped or scattered, or browsing the links between resources. Typical visualization
tools use the node-link representation of the underlying graph. Since huge RDF datasets
contain thousands to millions of statements, the number of graph nodes and edges [8]
is large, causing users to have trouble interpreting the visualization. A completely dif-
ferent approach for rendering graph data is using its adjacency matrix [9]. It consists of
generating a boolean-valued connectivity table where rows and columns represent the
vertices of the graph, and each cell (x,y) states whether x is connected to y or not.

6.2 Adjacency Matrix Visualization

Arias et al. [3] proposes using a 3D adjacency matrix as an alternate visualization
method for RDF. The RDF data must be available in HDT beforehand, so that the com-
pact information can be directly consumed by the application.

The Triples component of HDT, which represents each statement as a three integer
triple, can be seen as a (x, y, z) coordinate in a 3D space that can be plotted as point

Lightweighting the Web of Data through Compact RDF/HDT 491

in a 3D scattered plot. The y axis represents subjects, the x axis objects and the z axis
predicates. The user can rotate and zoom the view to have different 3D perspectives of
the data. The first and most interesting view is the one that places the camera on the
z axis looking at the origin, showing a 2D figure comparing subjects against objects
(Figure 4). Predicates are also highlighted using a different color for each one.

Each axis scale is annotated using the IDs, so the user can get a first sight of the
amount of subjects and objects. The shared subject-object area of the dictionary is rep-
resented using a rectangle at the origin with a different background color. This area is
quite interesting, because it represents the links among RDF resources.

The user experience can be enhanced by providing some extra features for inter-
actively browsing the data. The user can hover the mouse above the graphic, showing
details of the nearest triple under the cursor. The HDT Triples component can be queried
to find the nearest triple, and finally the full triple can be converted back to string using
the HDT Dictionary.

7 Conclusions and Future Work

RDF/HDT is a binary serialization format for RDF which decomposes the original data
into three logical components: Header, Dictionary and Triples. It exploits the skewed
structure of RDF datasets to achieve large spatial savings. Besides establishing a com-
pact RDF format, HDT also provides efficient querying and parsing. We revisit HDT
and study its applications in typical scenarios within the current Web of Data. We focus
on indexing, querying, exchanging and consumption of large RDF datasets.

We analyze indexing and querying of HDT information through two different ap-
proaches for the Triples component, Bitmap and k2-triples. Bitmap triples is a compact
representation suitable for scalable exchange, but it only supports basic query opera-
tions. K2-triples emerges as an ultra-compressed full-in-memory solution supporting
complex SPARQL operations. Experiments show that k2-triples is the most effective
technique among all considered solutions, and the most efficient engine for solving
triple patterns with bounded predicates. For future work, a query optimizer integrated
with HDT would allow more complex queries to be efficiently resolved. New dictio-
nary implementations can be also explored for providing native searches over the data,
allowing to compute SPARQL filters before the triples search.

The HDT·EndPoints architecture leads to mitigate the scalability problem of the cur-
rent Web of Data by means of HDT exploitation; larger volumes can be managed with
smaller delays, encouraging the distribution in the Web. Furthermore, the exchange of
HDT, compact and searchable, allows for direct access to the information. For future,
the analyzed features of RDF/HDT open a world of possibilities and applications in the
Web of Data. In particular, we envision the use of this infrastructure in mobile devices.
HDT would serve, not only as the RDF transmission format, but also as an internal
storage and native indexing, due to its reduced size fits mobile devices constrains.

Regarding RDF consumption, the major strength of HDT is to deal with huge
datasets, achieving efficient parsing and processing, as it already embeds an index to
the information. We show its applicability to a concrete problem of visualizing large-
scale RDF data. The tool, based on a 3D RDF adjacency matrix, consumes and makes

492 J.D. Fernández et al.

use of HDT to alleviate the limitations of previous node-link graph visualization ap-
proaches. RDF consumers can benefit from the latest findings in RDF/HDT. The logical
decomposition of the original RDF in three components allows for different researches,
implementation and improvements for future work.

Acknowledgments. This work is funded by the MICINN of Spain TIN2009-14009-
C02-02 (first three authors), Junta de Castilla y León and the European Social Fund
(first author) and Institute for Cell Dynamics and Biotechnology (ICDB), Grant ICM
P05-001-F, Mideplan, Chile (second author); Fondecyt 1090565 and 1110287 (fourth
author); and MICINN (PGE and FEDER) TIN2009-14560-C03-02, TIN2010-21246-
C02-01 and CDTI CEN-20091048, Xunta de Galicia (cofunded with FEDER) ref.
2010/17 (fifth and sixth authors), and MICINN BES-2010-039022 (FPI program), for
the fifth author.

References

1. Álvarez, S., Brisaboa, N., Ladra, S., Pedreira, O.: A Compact Representation of Graph
Databases. In: Proc. of MLG, pp. 18–25 (2010)

2. Álvarez García, S., Brisaboa, N., Fernández, J.D., Martínez-Prieto, M.A.: Compressed k2-
Triples for Full-In-Memory RDF Engines. In: Proc. of AMCIS, TBP (2011)

3. Arias, M., Fernández, J.D., Martínez-Prieto, M.A.: RDF Visualization using a Three-
Dimensional Adjacency Matrix. In: Proc. of SemSearch (2011), http://km.aifb.kit.
edu/ws/semsearch11/8.pdf

4. Atre, M., Chaoji, V., Zaki, M.J., Hendler, J.A.: Matrix “Bit” loaded: a scalable lightweight
join query processor for RDF data. In: Proc of WWW, pp. 41–50 (2010)

5. Bizer, C., Heath, T., Idehen, K., Berners-Lee, T.: Linked Data On the Web (LDOW 2008).
In: Proc. of WWW, pp. 1265–1266 (2008)

6. Brisaboa, N.R., Ladra, S., Navarro, G.: k2-Trees for Compact Web Graph Representation. In:
Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp. 18–30. Springer,
Heidelberg (2009)

7. Claude, F., Fariña, A., Martínez-Prieto, M.A., Navarro, G.: Compressed q-gram indexing for
highly repetitive biological sequences. In: Proc. of BIBE, pp. 86–91 (2010)

8. Dokulil, J., Katreniakova, J.: RDF Visualization - Thinking Big. In: Proc. DEXA, pp. 459–
463 (2009)

9. Fekete, J.: Visualizing networks using adjacency matrices: Progresses and challenges. In:
Proc. of CAD/GRAPHICS 2009, pp. 636–638 (2009)

10. Fernández, J.D., Martínez-Prieto, M.A., Gutierrez, C.: Compact Representation of Large
RDF Data Sets for Publishing and Exchange. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P.,
Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS,
vol. 6496, pp. 193–208. Springer, Heidelberg (2010)

11. González, R., Grabowski, S., Makinen, V., Navarro, G.: Practical implementation of rank and
select queries. In: Proc. of WEA, pp. 27–38 (2005)

12. Hartig, O., Bizer, C., Freytag, J.-C.: Executing SPARQL Queries over the Web of Linked
Data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E.,
Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 293–309. Springer, Heidelberg
(2009)

13. Hogan, A., Harth, A., Passant, A., Decker, S., Polleres, A.: Weaving the Pedantic Web. In:
Proc. of LDOW (2010)

http://km.aifb.kit.edu/ws/semsearch11/8.pdf
http://km.aifb.kit.edu/ws/semsearch11/8.pdf

Lightweighting the Web of Data through Compact RDF/HDT 493

14. Navarro, G., Mäkinen, V.: Compressed Full-Text Indexes. ACM Computing Surveys 39(1),
article 2 (2007)

15. Neumann, T., Weikum, G.: The RDF-3X Engine for Scalable Management of RDF data. The
VLDB Journal 19(1), 91–113 (2010)

16. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.:
Sindice.com: a document-oriented lookup index for open linked data. International Journal
of Metadata Semantics and Ontologies 3(1), 37 (2008)

17. Quilitz, B., Leser, U.: Querying Distributed RDF Data Sources with SPARQL. In: Bechhofer,
S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp.
524–538. Springer, Heidelberg (2008)

18. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Performance
Benchmark. In: Proc. of ICDE, pp. 222–233 (2009)

19. Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL Query Optimization. In: Proc.
of ICDT, pp. 4–33 (2010)

20. Sheth, A.P., Larson, J.A.: Federated Database Systems for Managing Distributed, Heteroge-
neous, and Autonomous Databases. ACM Computing Surveys 22(3), 183–236 (1990)

21. Sidirourgos, L., Goncalves, R., Kersten, M., Nes, N., Manegold, S.: Column-store Support
for RDF Data Management: not All Swans are White. Proc. of the VLDB Endowment 1(2),
1553–1563 (2008)

22. Theoharis, Y., Tzitzikas, Y., Kotzinos, D., Christophides, V.: On Graph Features of Semantic
Web Schemas. IEEE Trans. on Know. and Data Engineering 20(5), 692–702 (2008)

	Lightweighting the Web of Data through Compact RDF/HDT
	Introduction
	Related Work
	RDF/HDT
	Basic Concepts
	Practical Issues

	RDF Indexing and SPARQL Querying
	Bitmap Triples
	k2-Triples

	RDF Exchanging
	Consuming RDF. Large RDF Visualization
	Background
	Adjacency Matrix Visualization

	Conclusions and Future Work
	References

