
Program Specialization via a

Software Verification Tool�

Richard Bubel, Reiner Hähnle, and Ran Ji

Department of Computer Science and Engineering
Chalmers University of Technology, 41296 Gothenburg, Sweden

{bubel,reiner,ran.ji}@chalmers.se

Abstract. Partial evaluation is a program specialization technique that
allows to optimize a program for which partial input is known. We pro-
pose a new approach to generate specialized programs for a Java-like
language via the software verification tool KeY. This is achieved by sym-
bolically executing source programs interleaved with calls to a simple
partial evaluator. In a second phase the specialized programs are synthe-
sized from the symbolic execution tree. The correctness of this approach
is guaranteed by a bisimulation relation on the source and specialized
programs.

1 Introduction

Symbolic execution [13] and partial evaluation [12] are both generalizations of
standard interpretation of programs in different ways: while symbolic execu-
tion permits interpretation of a program with symbolic (i.e., unspecified) initial
values, the aim of partial evaluation is to transform a program with partially
specified input values into a (hopefully, more efficient) program that has only the
unspecified arguments as input. For fully specified input arguments the result of
both mechanisms is standard program interpretation.

Our previous work [5] showed how to speed up the symbolic execution engine
by interleaving with partial evaluation. On the other hand, an important question
that can be asked is the possibility of achieving a more sophisticated program
specializer via symbolic execution interleaved with simple partial evaluation op-
erations. Another interesting question is whether the specialized program will
behave the same as the source program with respect to the observable output,
i.e., the soundness of the program specialization procedure. This paper tries to
give an answer.

We propose a new approach to specialize Java-like programs via the software
verification tool KeY, in which a symbolic execution engine is used. It is a two-
phase procedure that first symbolically executes the program interleaved with

� This work has been partially supported by the EU project FP7-ICT-2007-3 HATS
Highly Adaptable and Trustworthy Software using Formal Models and the EU COST
Action IC0701 Formal Verification of Object-Oriented Software.

B.K. Aichernig, F.S. de Boer, and M.M. Bonsange (Eds.): FMCO 2010, LNCS 6957, pp. 80–101, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Program Specialization via a Software Verification Tool 81

a simple partial evaluator, and then synthesizes the specialized program in the
second phase. The soundness of the approach is proved.

The paper is organized as follows: In Sect. 2 we introduce a Java-like program-
ming language PL as the working language in this paper and define its program
logic. Sect. 3 presents the sequent calculus for PL. In Sect. 4 we integrate a sim-
ple partial evaluator into the symbolic execution engine. In Sect. 5 we introduce
the bisimulation modality and define its sequent calculus. Sect. 6 shows how
to generate specialized programs using our approach. Sect. 7 discusses related
work. Sect. 8 concludes and addresses future work.

2 Dynamic Logic

Dynamic logic (DL) [9] is a representative of multi-modal logic tailored towards
program verification. The programs to be verified against their specification oc-
cur in unencoded form as first class citizens of dynamic logic similar to Hoare
logic [10] and avoid the encoding of programs.

Sorted first-order dynamic logic is sorted first-order logic plus two additional
kinds of modalities: [·]· (box) and 〈·〉· (diamond). The first parameter takes a
program and the second parameter a dynamic logic formula. Let p denote a
program and φ a dynamic logic formula then

– [p]φ is a DL-formula and, informally, expresses that if p is executed and
terminates then in all reached final states φ holds;

– 〈p〉φ is a DL-formula. Informally, it means that if p is executed then it
terminates and in at least one of the reached final states φ holds.

We consider from now on only deterministic programs: Hence, a program p exe-
cuted in a given state s either terminates and reaches exactly one final state or it
does not terminate and there are no final states reachable from s upon execution
of program p. In this setting, the box modality expresses partial correctness of a
program, while the diamond modality coincides with total correctness. With the
above statements we can see that Hoare logic is subsumed by dynamic logic. The
Hoare triple {pre} p {post} can be expressed as the DL formula pre→ [p]post.

In the remainder of this section we introduce some basic concepts of dynamic
logic. We follow thereby closely the KeY-approach [3].

Programming Language. We consider a simple Java-like programming language
called PL. It provides features like interfaces, classes, attributes, method poly-
morphism (but not method overloading). PL does not support multi-threading,
floating points or garbage collection. For ease of presentation we omit also class
and object initialization, exceptions as well as break or continue statements
and require non-void methods to have a single point of return at the end of the
method. Further, the only supported primitive types are boolean and int.

Fig. 1 shows a PL program which we use as a running example throughout
the paper.

82 R. Bubel, R. Hähnle, and R. Ji

������ ����� OnLineShopping {

�		�
�� cpn;

������ ��� read() { /* read price of item */ }

������ ��� sum(��� n) {

��� i = 0;

��� count = n;

��� tot = 0;

���
(i <= count) {

��� m = read();

��(i >=2 && cpn) { tot = tot + m * 9 / 10; i++; }

��
 { tot = tot + m; i++; }

}

�
���� tot;

}

}

Fig. 1. Example PL program

This PL program could be used in an online shopping session. The read()
method collects the price for each item. The sum() method calculates the total
amount to be paid when purchasing n items. If the customer provides a coupon
and purchases at least 2 items, then a 10% discount will apply from the second
item onwards.

Dynamic Logic. Given a PL program C including interface and class declarations.
Program C is in the following referred to as context program. We define our
dynamic logic PL-DL(C) as follows:

Definition 1 (PL-Signature ΣC). The signature ΣC = (S,�,Pred,Func, LVar)
consists of

– a set of names S called sorts containing at least one sort for each primitive
type and for each interface I and class C declared in C as well as the Null
sort:

S ⊇ {int, boolean, Null} ∪ {T | f.a. interfaces or classes T declared in C}
– The partial subtyping order �: S × S models the subtype hierarchy of C

faithfully.
– An infinite set of function symbols Func := {f : T1 × . . .×Tn → T | Ti, T ∈
S}. We call α(f) = T1 × . . . × Tn → T the arity of the function symbol.
Func := Funcr ∪ PV ∪ Attr is further divided into disjoint subsets:
• Funcr rigid function symbols,
• PV program variables i, j (non-rigid constants), and
• attribute function symbols Attr, where for each attribute a of type T

declared in class C an attribute function a@C : C → T ∈ Attr exists.
We omit the @C from attribute names if no ambiguity arises.

– An infinite set of predicate symbols Pred := {p : T1 × . . .× Tn | Ti ∈ S}.
– A set of logical variables LVar := {x : T |T ∈ S}.

Program Specialization via a Software Verification Tool 83

Terms and formulas are defined as usual. The grammar below together with the
canonical well-typedness conditions defines the syntax:

t ::= x | i | t.a | f(t, . . . , t) | (φ ? t : t) |
Z | TRUE | FALSE | null | {u}t

u ::= i := t | t.a := t | u ‖ u
φ ::= ¬φ | φ ◦ φ (◦ ∈ {∧,∨,→,↔}) | (φ ? φ : φ) |

∀x : T.φ | ∃x : T.φ | [p]φ | 〈p〉φ | {u}φ
where a ∈ Attr, f ∈ Func, i ∈ PV, x : T ∈ LVar, and p is a sequence of executable
statements in PL. The elements of category u are called updates and used to de-
scribe state changes. An elementary update i := t or t.a := t is a pair of location
and term. Its intended meaning is that of an assignment. Updates applied on
terms or formulas are again terms or formulas. They can be composed to parallel
updates playing then the role of simultaneous assignments.

In the remaining paper, we use the notion of a program to refer to a sequence
of executable PL-statements. If we want to include class, interface or method
declarations, we either include them explicitly or make a reference to the context
program C.

The next step is to assign meaning to PL-DL terms and formulas. A formula
in dynamic logic is evaluated with respect to a Kripke structure, in our case a
PL-DL Kripke structure:

Definition 2 (Kripke structure KΣP L). A PL-DL Kripke structure is a triple
KΣPL = (D, I,St) with

– a set of elements D called domain,
– an interpretation I with

• I(s) = Ds, s ∈ S assigning each sort its non-empty domain Ds. It ad-
heres to the restrictions imposed by the subtype order �; Null is always
interpreted as a singleton set and subtype of all reference (class and in-
terface) types.

• I(f) : DT1 × . . . × DTn → DT for each rigid function symbol f : T1 ×
. . .× Tn → T ∈ Funcr.

• I(p) ⊆ DT1 × . . .×DTn for each rigid predicate symbol p : T1× . . .× Tn ∈
Pred.

– a set of states St assigning non-rigid function symbols a meaning: Let s ∈ St
then s(a@C) : DC → DT , a@C ∈ Attr and s(i) : DT , i ∈ PV.

The pair D = (D, I) is called a first-order structure.

Finally, a variable assignment β : LVar → DT maps a logic variable x : T to its
domain DT . An update, program, term or formula ξ is evaluated with respect to
a given first-order structure D = (D, I), a state s ∈ St and a variable assignment
β as valD,I,s,β(ξ). The evaluation function val is defined recursively on the term
and formula structure. Fig. 2 shows an excerpt of its definition.

Some words on the semantics of updates. While elementary updates have the
same meaning as assignments, the semantics of parallel updates is slightly more
complicated. We explain them by example:

84 R. Bubel, R. Hähnle, and R. Ji

valD,s,β(x) = β(x), x ∈ LVar
valD,s,β(f(t1, . . . , tn)) = D(f)(valD,s,β(t1), . . . , valD,s,β(tn))
valD,s,β(x) = s(x), x ∈ PV
valD,s,β(o.a) = s(a)(valD,s,β(o)), a ∈ Attr
valD,s,β(¬φ) = tt iff valD,s,β(φ) = ff
valD,s,β(ψ ∧ φ) = tt iff valD,s,β(ψ) = tt and valD,s,β(ψ) = tt
valD,s,β(ψ ∨ φ) = tt iff valD,s,β(ψ) = tt or valD,s,β(ψ) = tt
valD,s,β(ψ → φ) = valD,s,β(¬ψ ∨ φ)

valD,s,β((ψ ? ξ1 : ξ2)) =

{
valD,s,β(ξ1) if valD,s,β(ψ)
valD,s,β(ξ2) otherwise

valD,s,β(x := v) = s′, with

{
s′(x) = valD,s,β(v)
s′(y) = s(y) y �= x

valD,s,β(o.a := v) = {s′}, s = s′ except s′(a)(valD,s,β(o)) = valD,s,β(v)

valD,s,β([s1; s2]φ) =

{
valD,s′,β([s2]φ), {s′} = valD,s,β(s1)
tt, s1 ↑

valD,s,β([if(e) {p} else {q}]φ) = valD,s,β([T b; b = e; if(e) {p} else {q}]φ)

valD,s,β([if(b) {p} else {q}]φ) =

{
valD,s,β([p]φ), s(b) = valD,s,β(TRUE)
valD,s,β([q]φ), otherwise

(b ∈ PV)

Fig. 2. Definition of evaluation function val (excerpt)

Example 1 (Update semantics)

– Evaluating {i := j+1}i ≥ j in a state s is identical to evaluate the formula
i ≥ j in a state s′ which coincides with s except for the value of i which is
evaluated to the value of valD,s,β(j + 1).

– Evaluation of the parallel update i := j‖j := i in a state s leads to the
successor state s′ identical to s except that the values of i and j are swapped.

– The parallel update {i := 3‖i := 4} has a conflict as i is assigned differ-
ent values. In such a case the conflict is resolved by using a last-one-wins
semantics. Last-one-wins semantics means that the textually last occurring
assignment overrides all previous ones of the same location.

We conclude the presentation of PL-DL by defining the notions of satisfiability,
model and validity.

Definition 3 (Satisfiability, model and validity). A formula φ

– is called satisfiable if there exists a first-order structure D, a state s ∈ St
and a variable assignment β with valD,s,β(φ) = tt (short: D, s, β |= φ).

– has a model if there exists a first-order structure D, a state s ∈ St, such
that for all variable assignments β: valD,s,β(φ) = tt holds (short: D, s |= φ).

– is valid if for all first-order structures D, states s ∈ St and for all variable
assignments β: valD,s,β(φ) = tt holds (short: |= φ).

Program Specialization via a Software Verification Tool 85

3 Sequent Calculus

To analyze a PL-DL formula for validity, we use a Gentzen style sequent calculus.
A sequent

φ1, . . . , φn︸ ︷︷ ︸
Γ

=⇒ ψ1, . . . , ψm︸ ︷︷ ︸
Δ

is a pair of sets of formulas Γ (antecedent) and Δ (succedent). Its meaning is
identical to the meaning of the formula

∧
φ∈Γ

φ→
∨
ψ∈Δ

ψ

A sequent calculus rule

rule

premises︷ ︸︸ ︷
Γ1 =⇒ Δ1 . . . Γn =⇒ Δn

Γ =⇒ Δ︸ ︷︷ ︸
conclusion

consists of one conclusion and possibly many premises. One example of a sequent
calculus rule is the rule andRight:

andRight
Γ =⇒ φ, Δ Γ =⇒ ψ, Δ

Γ =⇒ φ ∧ ψ, Δ
We call φ and ψ (formula) schema variables which match here any arbitrary
formula. A rule is applied on a sequent s by matching it conclusion against s.
The instantiated premises are then added as children of s. For example, when
applying andRight to the sequent =⇒ i ≥ 0∧¬o.a = null we instantiate φ with
i ≥ 0 and ψ with ¬o.a = null. The instantiated sequents are then added as
children to the sequent and the resulting partial proof tree becomes:

=⇒ i ≥ 0 =⇒ ¬o.a = null
=⇒ i ≥ 0 ∧ ¬o.a = null

Fig. 3 shows a selection of first-order sequent calculus rules. A proof of the
validity of a formula φ in a sequent calculus is a tree where

– each node is annotated with a sequent,
– the root is labeled with =⇒ φ,
– for each inner node n: there is a sequent rule whose conclusion matches the

sequent of n and there is a bijection between the rule’s premises and the
children of n, and,

– the last rule application on each branch is the application of a close rule
(axiom).

86 R. Bubel, R. Hähnle, and R. Ji

Axioms and Propositional Rules

close
∗

φ =⇒ φ
closeTrue

∗
=⇒ true

closeFalse
∗

false =⇒

andLeft
Γ, ψ, φ =⇒ Δ

Γ, φ ∧ ψ =⇒ Δ
orRight

Γ =⇒ φ, ψ,Δ

Γ =⇒ φ ∨ ψ, Δ impRight
Γ, φ =⇒ ψ,Δ

Γ =⇒ φ→ ψ, Δ

andRight
Γ =⇒ φ, Δ Γ =⇒ ψ, Δ

Γ =⇒ φ ∧ ψ, Δ orLeft
Γ, φ =⇒ Δ Γ,ψ =⇒ Δ

Γ, φ ∨ ψ, Δ =⇒
First-Order Rules

allLeft
Γ, φ[x/t] =⇒ Δ

Γ,∀x : T.φ =⇒ Δ
exRight

Γ =⇒ φ[x/t], Δ

Γ =⇒ ∃x : T.φ Δ

allRight
Γ =⇒ φ[x/c], Δ

Γ =⇒ ∀x : T.φ, Δ
exLeft

Γ, φ[x/c] =⇒ Δ

Γ,∃x : T.φ =⇒ Δ
c new, freeVars(φ) = ∅

Fig. 3. First-order calculus rules (excerpt)

So far the considered rules were pure first-order reasoning rules. The calculus
design regarding rules for formulas with programs is discussed next. We consider
only the box modality variant of these rules.

Our sequent calculus variant is designed to stepwise symbolically execute a
program. It behaves for most parts as a symbolic program interpreter. Symbolic
execution as a means for program verification goes back to King [13]. Symbolic
execution means that upon program execution the initial values of the input
variables, fields etc., are symbolic values (terms) instead of concrete ones. The
program then performs algebraic computations on those terms instead of actually
computing concrete values.

We explain the core concepts along a few selected rules. Starting with the
assignment rule:

assignLocalVariable
Γ =⇒ {U}{x := litV ar}[ω]φ,Δ
Γ =⇒ {U}[x = litV ar;ω]φ,Δ

where x ∈ PV, and litV ar is either a boolean/integer literal or a program vari-
able, and ω the rest of the program. The assignment rule works as most program
rules on the first active statement ignoring the rest of the program (collapsed
into ω). Its effect is the movement of the elementary program assignment into
an update.

The assignment rule for an elementary addition is similar and looks like

assignLocalVariable
Γ =⇒ {U}{x := litV ar1 + litV ar2}[ω]φ,Δ
Γ =⇒ {U}[x = litV ar1 + litV ar2;ω]φ,Δ

Program Specialization via a Software Verification Tool 87

There is a number of other assignment rules for the different program expres-
sions. All of the assignment rules have in common that they operate on ele-
mentary (pure) expressions. This is necessary to reduce the number of rules
and also as expressions may have side-effects that need to be “computed” first.
Our calculus works in two phases: first complex statements and expressions are
decomposed into a sequence of simpler statements, then they are moved to an
assignment or are handled by other kinds of rules (e.g., a loop invariant rule).
The decomposition phase consist mostly of so called unfolding rules such as:

unfoldAssignmentAddition

Γ =⇒ {U}[int v1 = exp1; int v2 = exp2; x = v1+ v2;ω]φ,Δ
Γ =⇒ {U}[x = exp1 + exp2;ω]φ,Δ

where exp1, exp2 are arbitrary (nested) expressions and v1, v2 new program
variables not yet used in the proof or in ω.

The conditional rule is a typical representative of a program rule to show how
splits in control flows are treated:

conditionalSplit

Γ, {U}b = TRUE =⇒ {U}[p;ω]φ,Δ Γ, {U}¬b = TRUE =⇒ {U}[q;ω]φ,Δ
Γ =⇒ {U}[if (b) {p} else {q} ω]φ,Δ

where b is a program variable.
The calculus provides two different kinds of rules to treat loops. The first one

realizes—as one would expect from a program interpreter—a simple unwinding
of the loop:

loopUnwind
Γ =⇒ {U}[if (b) {p̄; while (b) {p}} ω]φ,Δ

Γ =⇒ {U}[while (b) {p} ω]φ,Δ

where p̄ is identical to p except for renaming of the newly declared variables in
p to avoid name collisions.

The major drawback of the rule is that except for cases where the loop has a
fixed and known number of iterations, the rule can be applied arbitrarily often.
Instead of unwinding the loop, one often used alternative is the loop invariant
rule whileInv:

whileInv

Γ =⇒ {U}inv,Δ (init)
Γ, {U}{Vmod}(b = TRUE ∧ inv) =⇒ {U}{Vmod}[p]inv,Δ (preserves)
Γ, {U}{Vmod}(b = FALSE∧ inv) =⇒ {U}{Vmod}[ω]φ,Δ (use case)

Γ =⇒ {U}[while (b) {p} ω]φ,Δ

The loop invariant rule requires the user to provide a sufficiently strong formula
inv capturing the functionality of the loop. The formula needs to be valid before
the loop is executed (init branch) and must not be invalidated by any loop
iteration started from a state satisfying the loop condition (preserves branch).

88 R. Bubel, R. Hähnle, and R. Ji

Finally, in the third branch the symbolic execution continues with the remaining
program after the loop.

The anonymizing update Vmod requires further explanation: We have to show
that inv is preserved by an arbitrary iteration of the loop body as long as the loop
condition is satisfied. But in an arbitrary iteration, values of program variables
may have changed and outdated the information provided by Γ,Δ and U . In
traditional loop invariant rules, this context information is removed completely
and the still valid portions have to be added to the invariant formula inv. We
use the approach described in [3] and avoid to invalidate all previous knowledge.
For this we require the user to provide a superset of all locations mod that
are potentially changed by the loop. The anonymizing update Vmod erases all
knowledge about these locations by setting them to a fixed, but unknown value.
An overapproximation of mod can be computed automatically.

The last rule we want to introduce is about method contracts and it is a
necessity to achieve modularity in program verification. More important for this
paper is that it allows to achieve a modular program specializer. Given a method
T m(T param1, . . . , Tn paramn) and a method contract

C(m) = (pre(param1, . . . , paramn), post(param1, . . . , paramn, res),mod)

The formulas pre and post are the precondition and postcondition of the method
with access to the parameters and to the result variable res (the latter only in
post). The location set mod describes the locations (fields) that may be changed
by the method. When we encounter a method invocation, the calculus first un-
folds all method arguments. After that the method contract rule is applicable:

methodContract

Γ =⇒ {U}{param1 := v1‖ . . . ‖paramn := vn}pre,Δ
Γ =⇒ {U}{param1 := v1‖ . . . ‖paramn := vn}{Vmod}(post→ [r =res;ω]φ), Δ

Γ =⇒ {U}[r = m(v1, . . . , vn); ω]φ,Δ

In the first branch we have to show that the precondition of the method is
satisfied. The second branch then allows us to assume that the postcondition is
valid and we can continue to symbolically execute the remaining program. The
anonymizing update Vmod erases again all information about the locations that
may have been changed by the method. About the values of these locations, the
information encoded in the postcondition is the only knowledge that is available
and on which we can rely in the remaining proof.

Definition 4 (Soundness). A rule is sound if and only if the validity of the
premises implies the validity of the conclusion.

Theorem 1. The sequent calculus rules for PL-DL are sound.

4 Integrated Simple Partial Evaluator

In this section, we show how to integrate a simple partial evaluator into the
symbolic execution engine to perform some basic partial evaluation when

Program Specialization via a Software Verification Tool 89

symbolically executing the program. The operations defined here were also intro-
duced in our previous paper [5], where we showed how to speed up the symbolic
execution engine by interleaving these partial evaluation operations.

The basic idea is to introduce a partial evaluation operator p ↓ (U , φ) that can
be attached to any program statement or expression p. The partial evaluation
operator then specializes the program construct p with respect to the knowl-
edge accumulated in update U and formula φ. The integration is achieved by
introducing special sequent calculus rules that trigger the specialization on the
program under consideration.

Specialization Operator Propagation. The specialization operator needs to be
propagated along the program as most of the different specialization operations
work locally on single statements or expressions. During propagation of the op-
erator, its knowledge base, the pair (U , φ), needs to be updated by additional
knowledge learned from executed statements or by erasing invalid knowledge
about variables altered by the previous statement. Propagation of the specializa-
tion operator as well as updating the knowledge base is realized by the following
rewrite rule

(p; q) ↓ (U , φ) � p ↓ (U , φ); q ↓ (U ′, φ′)

This rule is sound under a number of restrictions of U ′, φ′, see [5] for details.

Constant propagation and constant expression evaluation. Constant propagation
entails that if the value of a variable v is known to have a constant value c within
a certain program region (typically, until the variable is potentially reassigned)
then usages of v can be replaced by c. Note that c could also be another variable
and in this case usages of v can be replaced by c until v is reassigned or c is
changed. The rewrite rule (v)↓(U , ϕ) � c models the replacement operation. To
ensure soundness the rather obvious condition U(ϕ → v

.= c) has to be proved
where c is a rigid constant (within the given region). The above rule can be
easily modified to include constant expression evaluation.

For example, in Fig. 1, when executing int count = n; in method sum(),
count will be replaced by n in the loop guard because both count and n are
unchanged, therefore, the loop guard becomes i <= n. However, int i = 0;
could not propagate 0 into the loop guard since i could potentially be reas-
signed in the loop. One interesting point is that, if we unwind the loop once
according to loopUnwind rule introduced in Section 3, it will become if(i <=
n) ... if(i >= 2 && cpn) ... while(i <= n) ..., where i is ok to be re-
placed by 0 in both conditional guards (because i is not reassigned), but not
in the loop guard. The result looks like if(0 <= n) ... if(0 >= 2 && cpn)
... while(i <= n)

Dead-Code Elimination. Constant propagation and constant expression evalu-
ation often result in specializations where the guard of a conditional (or loop)
becomes constant. In this case, unreachable code in the current state and un-
der the current path condition can be easily located and pruned. A typical

90 R. Bubel, R. Hähnle, and R. Ji

example for a specialization operation eliminating an infeasible symbolic execu-
tion branch is the rule

(if (b) {p} else {q}) ↓ (U , φ) � p ↓ (U , φ)

which eliminates the else branch of a conditional if the guard can be proved
true. The soundness condition of the rule is straightforward and self-explaining:
U(φ→ b

.= TRUE).
Continuing the example above, we can perform further specialization with

the dead-code elimination rule. Since in the second conditional guard 0 >= 2 is
evaluated to false, the then-branch is pruned. The result is if(0 <= n) int m
= read(); tot = tot + m; i++; while(i <= n)

Some other partial evaluation operations such as Safe Field Access and Type
Inference are also integrated. Please refer to [5] for more details.

5 A Sequent Calculus for Bisimulation

In the previous sections we introduced a dynamic logic based on symbolic execu-
tion. In section 4 we reported about our previous work on speeding up symbolic
execution by interleaving the symbolic execution with partial evaluation steps.

In this section we present how to extend the existing framework in a natural
way to extract a specialized version for the verified program.

In Sect. 5.1 we introduce a bisimulation modality which allows us to relate two
programs that behave indistinguishably on a given set of locations. The programs
being related to each other are the original program and its specialized version.
Sect. 5.2 defines the calculus rules for the newly added modal operator.

5.1 The Bisimulation Modality

Please note that several of the definitions given in this section assume that in
program specialization the source language is the same as the target language.
The definitions are generalizable to specialization (and finally compilation) be-
tween different languages (see Sect. 8).

Definition 5 (Location Sets). A location set is a set of

– program variables x or
– attribute expressions o.a with a ∈ Attr and o being a term of appropriate

sort.

We are often not interested whether two states are identical, but rather whether
they coincide on a given set of locations:

Definition 6. Let s1, s2 denote two states and loc a location set. We write
s1 ∼loc s2 if and only if for all l ∈ loc it holds that valD,s1,β(l) = valD,s2,β(l)
where D denotes a first-order structure and β a variable assignment.

Program Specialization via a Software Verification Tool 91

Specialized programs behave indistinguishably from the original program for
(externally) observable locations. The set of observable locations includes usually
all output variables and the part of the heap reachable from input and output
variables. The formal definition bears a close relationship to the definition of
non-interference:

Definition 7 (Observable Locations). Let D denote a first-order structure
and β a variable assignment. A location loc is called observable by a program p
if there are two states s0, s1 differing only in the evaluation of loc and either

– program p terminates for si, but not for s1−i (i ∈ {0, 1}), or
– program p terminates for both states in final states {s′i} = valD,si,β(p) (i ∈

{0, 1}) and there is a location loc′ (not necessarily the same as loc) with
valD,si,β(loc

′) �= valD,s′i,β(loc
′) and valD,si,β(loc

′) �= valD,s′1−i,β
(loc′)

A location loc is observable by a formula φ if there are two states s1, s2 differing
only in loc with valD,s1,β(φ) �= valD,s2,β(φ).

Definition 8 (Bisimulates Relationship). Let obs be a location set and s1, s2
two states with s1 ∼obs s2. Two programs p, q are in a obs-bisimulation relation
with respect to s1 and s2 if and only if for all first-order structures D and
variable assignments β
valD,s1,β(p) ∼obs valD,s2,β(q)

holds. We write s1, s2 |= p ∼obs q.
If for all states s1, s2 with s1 ∼obs s2 the statement s1, s2 |= p ∼obs q holds we

simply write p ∼obs q and say p obs-bisimulates q

In this paper we restrict ourselves to program specialization and can use the
same state s for s1, s2 (s ∼obs s holds trivially). The more general definition
above is necessary when extending our approach to compilation (see Sect. 8).

Lemma 1. Let obs be the set of all locations observable by formula φ and let p, q
be programs. If s |= p ∼obs q then for all first-order structures D and variable
assignments β D, s, β |= [p]φ↔ [q]φ holds.

Definition 9 (Bisimulation Modality—Syntax). The bisimulation modal-
ity [psrc ∼ ptarget]@(obs, use) is a modal operator providing compartments
for the source program psrc, the target (or specialized) program ptarget , and two
location sets obs and use.

We extend our definition of formulas: Let φ be a PL-DL formula and p, q two
programs and obs, use two location sets, then [p ∼ q]@(obs, use)φ is also a
PL-DL formula.

Remark 1. The intended meaning of the location set use is to keep track of use-
definition chains and contains roughly all locations that are read by program
p before they are redefined. The intent of set obs is to capture the locations
observable by p and φ.

92 R. Bubel, R. Hähnle, and R. Ji

Remark 2. The definition above is tailored to the presentation of this paper, but
in its general setting the modality can accommodate locations sets that represent
arbitrary (local) analysis information.

We formalize our intuition by defining the semantics of the bisimulation
modality:
Definition 10 (Bisimulation Modality—Semantics). Let D, s, β denote a
first-order structure, state and variable assignment, respectively. Further, p, q
are programs and obs and use location sets.
valD,s,β([p ∼ q]@(obs, use)φ) = tt if and only if

(i) valD,s,β([p]φ) = tt
(ii) s |= p ∼obs q
(iii) obs is a superset of all locations observable by p and φ
(iv) usedV ar(s, p, φ) ⊆ use where usedV ar returns the set of variables read by

p or observed by φ before any redefinition (when executing p in state s).

5.2 Sequent Calculus Rules for the Bisimulation Modality

The general sequent calculus rules for the bisimulation modality are of the fol-
lowing form:

ruleName

Γ1 =⇒ {U1}[p1 ∼ q1]@(obs1, use1)φ1, Δ1

. . .
Γn =⇒ {Un}[pn ∼ qn]@(obsn, usen)φn, Δn

Γ =⇒ {U}[p ∼ q]@(obs, use)φ,Δ
Unlike the normal sequent calculus rules which are executed in a bottom-up
manner, the application of sequent calculus rules for the bisimulation modality
consists of two phases.
1. Symbolic execution of source program p. It is performed bottom-up as usual

in sequent calculus rules. In addition, the observable location sets obsi are
also propagated since they contain the locations observable by pi and φi that
will be used in the second phase to synthesize the specialized program. Nor-
mally obs could contain the return variables of a method and the locations
used in the continuation of the program.

2. We synthesize the target program qi and usei by applying the rules in a
top-down manner.

Based on the application of sequent calculus rules for the bisimulation modality,
the process of synthesizing specialized programs is a two-phase procedure. The
first phase is symbolic execution of the source program while keeping track of
the observable location set obs. In the second phase, when the program is fully
symbolically executed, the specialized program is synthesized by applying the
rules in the other direction, starting with the emptyBox rule.

emptyBox

Γ =⇒ {U}@(obs,)φ,Δ
Γ =⇒ {U}[nop ∼ nop]@(obs, obs)φ,Δ

Program Specialization via a Software Verification Tool 93

where is an anonymous placeholder, and nop explicitly denotes that the pro-
gram is empty (no operation). The interesting aspect of this rule is that the
location set use tracking read access to variables is set to obs, ensuring that
observable locations are accessible in the specialized program.

Here are some examples of sequent calculus rules for the bisimulation modality.
For convenience, we use p to denote the specialized version of p.

assignLocalVariable

Γ =⇒ {U}{l := r}[ω ∼ ω]@(obs, use)φ,Δ(
Γ =⇒ {U}[l = r;ω ∼ l = r;ω]@(obs, use− {l} ∪ {r})φ,Δ if l ∈ use
Γ =⇒ {U}[l = r;ω ∼ ω]@(obs, use)φ,Δ otherwise

)

The use set contains all program variables on which a read access might occur
in the remaining program before being overwritten. In the first case, when the
left side l of the assignment is among those variables, we have to update the use
set by removing the newly assigned program variable l and adding the variable
r which is read by the assignment. The second case makes use of the knowledge
that the value of l is not accessed in the remaining program and skips the
specialization of the assignment.

conditionalSplit

Γ, {U}b =⇒ {U}[p;ω ∼ p;ω]@(obs, usep;ω)φ,Δ
Γ, {U}¬b =⇒ {U}[q;ω ∼ q;ω]@(obs, useq;ω)φ,Δ

Γ =⇒ {U}[if (b) {p} else {q};ω ∼
if (b) {p;ω} else {q;ω}]@(obs, usep;ω ∪ useq;ω ∪ {b})φ,Δ

(with b boolean variable.)

On encountering a conditional statement, symbolic execution splits into two
branches, namely the then-branch and else-branch. The specialization of the
conditional statement will result in a conditional. The guard is the same as used
in the source program, then-branch is the specialization of the source then-
branch continued with the rest of the program after the conditional, and the
else-branch is analogous to the then-branch.

Note that the statements following the conditional statement are symbolically
executed on both branches. This leads to duplicated code in the specialized pro-
gram, and, potentially to code size duplication at each occurrence of a conditional
statement. One note in advance: code duplication can be avoided when applying
a similar technique as presented later in connection with the loop translation
rule. However, it is noteworthy that the application of this rule might have also
advantages: as discussed in [5], symbolic execution and partial evaluation can be
interleaved resulting in (considerably) smaller execution trace. Interleaving sym-
bolic execution and partial evaluation is orthogonal to the approach presented
here and can be combined easily. In several cases this can lead to different and
drastically specialized and therefore smaller versions of the remainder program
ω and its specialization ω. The use set is extended canonically by joining the
use sets of the different branches and the guard variable.

94 R. Bubel, R. Hähnle, and R. Ji

loopUnwind

Γ =⇒ {U}[if (b) {p̄; while (b) {p}} ω ∼
if (b) {p̄; while (b) {p}} ω]@(obs, use)φ,Δ

Γ =⇒ {U}[while(b) {p} ω ∼ if (b) {p̄; while(b) {p}} ω]@(obs, use)φ,Δ

whileInv

Γ =⇒ {U}inv,Δ
Γ, {U}{Vmod}(b = TRUE ∧ inv) =⇒ {U}{Vmod}

[p ∼ p]@(obs ∪ use1 ∪ {b}, use2)inv,Δ
Γ, {U}{Vmod}(b = FALSE∧ inv) =⇒ {U}{Vmod}[ω ∼ ω]@(obs, use1)φ,Δ
Γ =⇒ {U}[while(b){p}ω ∼ while(b){p}ω]@(obs, use1 ∪ use2 ∪ {b})φ,Δ

. . .

while(b)

body rest

b ¬b
5 1

3

4 2

Fig. 4. Work flow of synthesizing loop

On the logical side the loop invari-
ant rule is as expected and has three
premises. Here we are interested in
compilation of the analyzed program
rather than proving its correctness.
Therefore, it is sufficient to use true as
a trivial invariant or to use any auto-
matically obtainable invariant. In this
case the first premise ensuring that
the loop invariant is initially valid
contributes nothing to the program
compilation process and is ignored
from here onwards (if true is used as
invariant then it holds trivially).

Two things are of importance: the
third premise executes only the pro-
gram following the loop. Furthermore, this code fragment is not executed by any
of the other branches and, hence, we avoid unnecessary code duplication. The
second observation is that variables read by the program in the third premise
may be assigned in the loop body, but not read in the loop body. Obviously,
we have to prevent that the assignment rule discards those assignments when
compiling the loop body. Therefore, we must add to the variable set obs of the
second premise the used variables of the third premise and, for similar reasons,
the program variable(s) read by the loop guard. In practice this is achieved by
first executing the use case premise of the loop invariant rule and then using the
resulting use1 set in the second premise. The work flow of the synthesizing loop
is shown in Figure 4.

methodContract

Γ =⇒ {U}{param1 := v1‖ . . . ‖paramn := vn}pre,Δ
Γ =⇒ {U}{param1 := v1‖ . . . ‖paramn := vn}{Vmod}

(post→ [r =res;ω ∼ r =res;ω]@(obs, use)φ), Δ
Γ =⇒ {U}[r = m(v1, . . . , vn); ω ∼ r =res;ω]@(obs, use)φ,Δ

Program Specialization via a Software Verification Tool 95

Theorem 2 (Soundness Sequent Calculus Rules). The rules for the bisim-
ulation modality are sound.

A proof sketch of the theorem is given in the appendix.

Theorem 3 (Soundness Procedure). The procedure of program specializa-
tion by application of the sequent calculus for the bisimulation modality is sound.

6 Application

In this section, we show the application of our framework to generate specialized
programs for a Java-like language. Consider the program in Fig. 1. Our purpose
is to specialize the sum() method which consists of non-trivial constructs such as
attributes, a conditional, loop and method call. To achieve a clearer presentation
we omit the postcondition φ following the bisimulation modality throughout the
example as well as other unnecessary formulas in the sequents.

The first phase of our approach starts symbolically executing method sum()
with the return value tot as the only observable location, i.e., obs = {tot}. The
first statements of the method declare and initialize variables. These statements
are executed similar to assignments. Altogether the assignLocalVariable rule is
applied three times, where each assignment rule application is immediatley fol-
lowed by a partial evaluation step. We end up with

=⇒ {. . . ||tot := 0}[while(i <= n) . . . ∼ sp3]@({tot}, use3)
=⇒ {. . . ||count := n}[tot = 0; while(i <= n) . . . ∼ sp2]@({tot}, use2)

=⇒ {i := 0}[count = n; . . . ∼ sp1]@({tot}, use1)
=⇒ [i = 0; . . . ∼ sp0]@({tot}, use0)

where spi denotes the corresponding specialized program.
The next statement to be symbolically executed is the while loop computing

the total sum. Instead of immediately applying the loop invariant rule, we unwind
the loop once using the loopUnwind rule. Partial evaluation allows to simplify the
guard i <= n and i >= 2 && cpn of the introduced conditional to i <= 2 and 0
>= 2 && cpn by applying constant propagation. Furthermore, the then-branch
is eliminated because the guard 0 >= 2 && cpn can be evaluated to false . The
result is as follows:

=⇒ {i := 0|| . . . ||tot := 0}
[if(0 <= n){int m1 = read(); tot = m1; i = 1; while . . .} ∼ sp3]@({tot}, use3)

=⇒ {i := 0|| . . . ; tot := 0}
[if(0 <= n){. . . tot = 0 + m1; i = 1; while . . .} ∼ sp3]@({tot}, use3)

=⇒ {i := 0|| . . .}
[if(0 <= n){. . . if(0 >= 2&&cpn) . . . ; i = 0 + 1; while . . .} ∼ sp3]@({tot}, use3)

=⇒ {i := 0|| . . .}
[if(i <= n){. . . if(i >= 2&&cpn) . . . ; i + +; while . . .} ∼ sp3]@({tot}, use3)

=⇒ {i := 0|| . . . ||tot := 0}[while(i <= n) . . . ∼ sp3]@({tot}, use3)

96 R. Bubel, R. Hähnle, and R. Ji

Application of the conditionalSplit rule creates two branches. The else-branch
contains no program so it is synthesized right away by applying the emptyBox
rule. Symbolic execution of the then-branch, applies the assignLocalVariable rule
three times until we reach the while loop again. We decide to unwind the loop
a second time. The symbolic execution follows then the same pattern as before
until we reach the loop for a third time. Fig. 5(a) shows the relevant part of the
proof tree of the second loop unwinding.

Instead of unwinding the loop once more, we apply the loop invariant rule
whileInv. The rule creates three new goals. The goal for the init premise is not
of importance for the specialization itself, hence, we ignore it in the following.

The used variables set use of the preserves premise depends on the instan-
tiation of the use set in the use case premise. To resolve the dependency we
continue with the latter. In this case, the use case premise contains no pro-
gram, so it is trivially synthesized by applying the emptyBox rule which results
in nop as the specialized program and the only element tot in obs becomes the
use set. Based on this, the use set of the preserves premise is the union of
obs, {tot} and the locations used in the loop guard: {tot, i}. The program in
the preserves premise is then symbolically executed by applying suitable rules
until it is empty. This process is similar to that when executing the program
in the then-branch of the conditional generated by loopUnwind. The proof tree
resulting from the application of the loop invariant rule is shown in Fig. 5(b).

After symbolic execution we enter the second phase of our approach in which
the specialized program is synthesized. Recall that when applying the whileInv
rule, the procedure of synthesizing the loop starts with the use case branch. In
our example, we have already performed this step and could already determine
the instantiation of the observable location set obs of the preserves premise.

We explain now how the loop body is synthesized using the preserves
premise: applying the emptyBox rule instantiates the placeholders sp12 and use12
with nop and {tot, i}. Going backwards, the assignLocalVariable rule tells us how
to derive the instantiations for sp11 = i++; and use11 = {tot, i}. The instan-
tiations for sp10 and use10 can be derived as tot=tot+m; i++; and {tot, i}.
Before we can continue, the instantiations of sp9 and use9 need to be determined.
Similar to the derivation of sp10 and use10, applying the assignLocalVariable rule
two times, we get sp9 = tot=tot+m*9/10; i++; and use9={tot, i}.

We have now reached the node where we previously applied the conditionalSplit
rule. This rule allows us to derive if(cpn) {tot=tot+m*0.9; i++;} else
{tot=tot+m; i++;}, as instantiation for sp8 and {tot, i, cpn} as instantiation
for use8. Applying suitable rules, we end up with the specialized program sp6

����� (i<=n) {
��� m = read();
�� (cpn) {tot=tot+m*9/10; i++;}
��	� {tot=tot+m; i++; }

}

and the used variable set use6 = {tot, i, cpn}.

Program Specialization via a Software Verification Tool 97

1
≤

n
=⇒

{.
..
‖i

:=
2
}[

w
h
i
l
e
(i
<

=
n
)
..
.
∼
sp

6
]@

({
t
o
t
},
u
se

6
)

..
.

0
≤

n
=⇒

{.
..
}[

i
f
(i
<

=
n
)
..
.;
w
h
i
l
e
..
.
∼
sp

5
]@

({
t
o
t
},
u
se

5
)

0
≤

n
=⇒

{.
..
‖m
2

:=
r
e
a
d
()
‖t
o
t

:=
m
2
‖i

:=
1
}[

w
h
i
l
e
(i
<

=
n
)
..
.
∼
sp

5
]@

({
t
o
t
},
u
se

5
)

..
.

¬(
0
≤

n
)

=⇒
{.
..
}[

∼
n
o
p

]@
({
t
o
t
},
{t
o
t
})

0
≤

n
=⇒

{.
..
}[

i
n
t
m
2

=
r
e
a
d
()

;.
..

∼
sp

4
]@

({
t
o
t
},
u
se

4
)

=⇒
{.
..
}[

i
f
(0
<

=
n
){
i
n
t
m
2

=
r
e
a
d
()

;t
o
t

=
m
2
;i

=
1
;w
h
i
l
e
..
.}

∼
sp

3
]@

({
t
o
t
},
u
se

3
)

(a
)

S
p
ec

ia
li
za

ti
o
n

o
f
th

e
w
h
i
l
e

lo
o
p

v
ia

u
n
w

in
d
in

g

..
.
=⇒

{.
..
‖i

:=
i

+
1
}[

∼
sp

1
2

]@
({
t
o
t
}∪

{i
},
u
se

1
2
)

..
.
=⇒

{.
..
‖t
o
t

:=
t
o
t

+
m
}[

i
+

+
;
∼
sp

1
1

]@
({
t
o
t
}∪

{i
},
u
se

1
1
)

..
.,
c
p
n

=⇒
..
.[
..
.
∼
sp

9
]@

({
t
o
t
}∪

{i
},
u
se

9
)..
.,
¬c

p
n

=⇒
{.
..
}[

t
o
t

=
t
o
t

+
m
;.
..

∼
sp

1
0

]@
({
t
o
t
}∪

{i
},
u
se

1
0
)

..
.
=⇒

{m
:=

r
e
a
d
()
}[

i
f
(c
p
n
)
..
.
∼
sp

8
]@

({
t
o
t
}∪

{i
},
u
se

8
)

..
.,
¬(

i
≤

n
)

=⇒
[
∼

n
o
p

]@
({
t
o
t
},
{t
o
t
})

..
.,
i
≤

n
=⇒

[
i
n
t
..
.
∼
sp

7
]@

({
t
o
t
}∪

{i
}∪

{t
o
t
},
u
se

7
)

1
≤

n
=⇒

{.
..
‖i

:=
2
}[

w
h
i
l
e
(i
<

=
n
)
..
.
∼

{t
o
t
}]

@
(u
se

6
,)

(b
)

S
p
ec

ia
li
za

ti
o
n

o
f
th

e
w
h
i
l
e
-l
o
o
p

u
si

n
g

th
e

lo
o
p

in
va

ri
a
n
t

ru
le

Fig. 5. Specialization of the while-loop by different means

98 R. Bubel, R. Hähnle, and R. Ji

Following the symbolic execution tree backwards and applying the correspond-
ing rules, we finally synthesize the specialized program for sum() as follows:

���� ��� sum(��� n) {
��� i; ��� tot; tot = 0;
�� (0 <= n) {
��� m1 = read(); tot = m1;
�� (1 <= n) {
��� m2 = read();
tot = tot + m2; i = 2;
�����(i <= n) {
��� m = read();
�� (cpn) { tot = tot + m * 9 / 10; i++; }
��	� { tot = tot + m; i++; }
} } }

������ tot; }

7 Related Work

JSpec [15] is a program specializer for Java and, therefore, has the same goal
as our approach. In fact, JSpec is not working with full Java but a subset
without concurrency, dynamic loading, etc. In this sense it is similar to our
work. However, they use an offline partial evaluation technique that depends on
binding time analysis . Our work is based on symbolic execution to derive infor-
mation on-the-fly, similar to online partial evaluation [14]. Our work is related
to the latter, the main difference being that we do not generate the specialized
program during the symbolic execution phase, but synthesize it in the second
phase. In principle, our first phase can obtain as much information as online
partial evaluation, and the second phase can generate a more precise specialized
program.

Our approach is also related to the Verifying Compiler [11] project which aims
at the development of a compiler that verifies the program during compilation.
In contrast to this, our approach might be called instead the Compiling Verifier.
Like our work, compiler verification [8] aims to guarantee the correctness of the
target program. The difference is that compiler verification attempts to verify
the compiling program which is very expensive and hardly scales to realistic
target languages and sophisticated optimizations.

Our work is closely related to rule-based compilation [1,4]. It differs in the
sense that to the best of our knowledge their inference machine is by far not as
powerful as the mature simplification engine used in KeY. Also closely related
are recent approaches to translation validation of optimizing compilers (e.g.,
[2]) which also use a theorem prover to discharge proof obligations. They work
usually on an abstraction of the target program. Both mentioned approaches
encode the compilation strategy within the rules, while our approach separates
the actual strategy from the translation rules. What distinguishes our work from

Program Specialization via a Software Verification Tool 99

most approaches that we know is that the starting point is a system for functional
verification of Java which is used for program specialization in such a way that
it becomes fully automatic.

8 Conclusion and Future Work

We presented a novel approach to specialize programs via a software verification
tool in a two-phase manner. In the first phase, symbolic execution interleaved
with simple partial evaluation is performed. Symbolic execution permits dynamic
analysis at compile time which is similar to online partial evaluation. In the sec-
ond phase, the specialized program is synthesized. A use-definition chain set
is maintained to eliminate unused assignments and to avoid unnecessary state-
ments occurring in the specialized program. The correctness of the specialization
is guaranteed by the bisimulation relationship of the source and specialized pro-
grams, together with the soundness of the program logic. It is a new architecture
to construct verified compilers by combining verification, partial evaluation and
local transformation. The implementation is currently ongoing with KeY tool
and more results will be reported later.

Although this approach is defined for a Java-like language, it will be interest-
ing to see whether other features such as concurrency could be handled, going
towards full-Java.

Orthogonally, there are still opportunities to optimize the procedure. For in-
stance, on encounter of a loop, the heuristics that decide whether to unwind it
or not have a strong influence on the resulting specialized programs. Importing
information, e.g., loop invariants, from other tools could also be useful.

The idea of this paper is to generate specialized programs, however, the bisim-
ulation modality is not restricted to source and target program being from the
same language, but it can be generalized to other languages provided with cor-
responding observable locations. Consequentially, the approach is still sound for
generating bytecode or other intermediate languages. We plan to apply our ap-
proach to the modeling language ABS developed in the context of the HATS
project[6,7]

Furthermore, the close connection between the program logic and compila-
tion allows to ensure the correctness of the compilation process as such. We see
a great potential of our approach when encoding security or safety properties
in terms of pre-/postconditions. This should allow to identify unsafe or unse-
cured execution paths during compilation and either to abort compilation or to
wrap the undesired execution paths in a wrapper that at least ensures the safety
or security property of interest. For example, execution paths that may leak
information can be secured by omitting the assignments that violate secure in-
formation flow. Another possibility would be to ensure that if the program enters
an unsecured execution path, then the program will not terminate. Exploring
these avenues is future work.

Acknowledgments. We thank Wolfgang Ahrendt for fruitful discussions as
well as for valuable comments on an earlier version of this paper.

100 R. Bubel, R. Hähnle, and R. Ji

References

1. Augustsson, L.: A compiler for lazy ML. In: Proceedings of the 1984 ACM Sym-
posium on LISP and functional programming, LFP 1984, pp. 218–227. ACM, New
York (1984)

2. Barrett, C.W., Fang, Y., Goldberg, B., Hu, Y., Pnueli, A., Zuck, L.D.: TVOC: A
translation validator for optimizing compilers. In: Etessami, K., Rajamani, S.K.
(eds.) CAV 2005. LNCS, vol. 3576, pp. 291–295. Springer, Heidelberg (2005)

3. Beckert, B., Hähnle, R., Schmitt, P. (eds.): Verification of Object-Oriented Soft-
ware. The KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

4. Breebaart, L.: Rule-based compilation of data parallel programs. PhD thesis, Delft
University of Technology (2003)

5. Bubel, R., Hähnle, R., Ji, R.: Interleaving symbolic execution and partial eval-
uation. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.)
FMCO 2009. LNCS, vol. 6286, pp. 125–146. Springer, Heidelberg (2010)

6. Clarke, D., Diakov, N., Hähnle, R., Johnsen, E.B., Schaefer, I., Schäfer, J., Schlatte,
R., Wong, P.Y.H.: Modeling spatial and temporal variability with the HATS ab-
stract behavioral modeling language. In: Bernardo, M., Issarny, V. (eds.) SFM
2011. LNCS, vol. 6659, pp. 417–457. Springer, Heidelberg (2011)

7. Clarke, D., Muschevici, R., Proença, J., Schaefer, I., Schlatte, R.: Variability mod-
elling in the ABS language. In: Aichernig, B.K., de Boer, F.S., Bonsange, M.M.
(eds.) FMCO 2010. LNCS, vol. 6957, pp. 206–226. Springer, Heidelberg (2011)

8. Dave, M.A.: Compiler verification: a bibliography. SIGSOFT Softw. Eng. Notes 28,
2 (2003)

9. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)

10. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10) (October 1969)

11. Hoare, T.: The verifying compiler: A grand challenge for computing research. J.
ACM 50, 63–69 (2003)

12. Jones, N., Gomard, C., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice Hall, New York (1993)

13. King, J.C.: A program verifier. PhD thesis, Carnegie-Mellon University (1969)

14. Ruf, E.S.: Topics in online partial evaluation. PhD thesis, Stanford University,
Stanford, CA, USA, UMI Order No. GAX93-26550 (1993)

15. Schultz, U.P., Lawall, J.L., Consel, C.: Automatic program specialization for Java.
ACM Trans. Program. Lang. Syst. 25(4), 452–499 (2003)

Appendix: Proof of Lemma 2

Proof (Sketch). We give here only the proof for conditionalSplit. The proofs for
other rules are similar. To prove soundness of a rule we need to show that the
validity of the conclusion is a consequence of the premises’ validity.

Let D, sa, β be arbitrary, but fixed. We assume that valD,sa,β(Γ ∧ ¬Δ) = tt
otherwise we are trivially done. We have now to prove that

valD,sa,β({U}[
if (b) {p} else {q};ω ∼ if (b) {p;ω} else {q;ω}

]@(obs, usep;ω ∪ useq;ω ∪ {b})φ)

Program Specialization via a Software Verification Tool 101

holds or, equivalently, that

valD,s,β([
if (b) {p} else {q};ω ∼ if (b) {p;ω} else {q;ω}

]@(obs, usep;ω ∪ useq;ω ∪ {b})φ)

with valD,sa,β(U) = s holds.
We have to check that the four requirements stated in Def. 10 are satisfied.

First, we need to check requirement (i), namely:

valD,s,β({U}[if (b) {p} else {q};ω]) = tt

This requirement is equivalent to the soundness proof of the conditional rule for
the standard calculus version and skipped.

The most interesting requirement to be checked is (ii). We need to show that
the specialized program s-obs-bisimulates the original program:

s |= if (b) {p} else {q};ω ∼obs if (b) {p;ω} else {q;ω}

Case valD,s,β(b) = true: Validity of the first premise ensures that

s |= p;ω ∼obs p;ω

which means according to its definition

valD,s,β(p;ω) ∼obs valD,s,β(p;ω)

With that we get

valD,s,β(if (b) {p} else {q};ω) = valD,s,β(p;ω)
∼obs valD,s,β(p;ω)
= valD,s,β(if (b) {p;ω} else {q;ω})

The second case valD,s,β(b) = false is analogous. Taking both cases we can
conclude the proof of requirement (ii).

Requirement (iii) is satisfied if

usep;ω ∪ useq;ω ∪ {b}

is a superset of all observable locations of if (b) {p} else {q};ω and φ. From
the premises we get directly that usep;ω and useq;ω are supersets of all observ-
able locations of the branches, the remaining program and formula φ. The only
additional location which is read by the conditional statement except those of
its branches and which may not yet be included is variable b. The union of
all these sets is the set used in the rule’s conclusion and satisfies obviously re-
quirement (iii). Finally, we need to check requirement (iv) which can be done
analogous to the check for requirement (iii). ��

	Program Specialization via a Software Verification Tool
	Introduction
	Dynamic Logic
	Sequent Calculus
	Integrated Simple Partial Evaluator
	A Sequent Calculus for Bisimulation
	The Bisimulation Modality
	Sequent Calculus Rules for the Bisimulation Modality

	Application
	Related Work
	Conclusion and Future Work
	References

