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Abstract. In computer science, the development of hierarchical au-
tomata / statecharts has lead to stepwise development of complex dis-
crete systems. Such a concept is absent in the Compositional Interchange
Format (CIF), which is a modelling language based on hybrid automata.
In this article we extend the CIF language with the concept of hierar-
chy, which results in the Hierarchical Compositional Interchange format
(HCIF). Syntactically, hierarchy is introduced by adding three concepts
to CIF: a hierarchy function from a location to a HCIF composition, a
termination predicate, and disruptive edges. The semantics of HCIF is
given by means of Structural Operational Semantics rules. The seman-
tics of a hierarchical automaton is defined in a compositional manner,
by referring only to the transition system of the substructures, and not
to their syntactic representation. This compositional introduction of hi-
erarchy allows us to keep the semantics of the HCIF operators almost
unchanged with respect to their CIF versions. Finally, a case-study called
Patient Support System is modelled in HCIF to show its applicability1.

1 Introduction

Hierarchy provides a structured and economical description of complex systems
[21], which is suitable for incremental (bottom-up) construction of correct sys-
tems [3]. It also provides a framework for the development of abstraction and
refinement techniques.

The Compositional Interchange Format (CIF)[5,4,2] is a language for mod-
eling real-time, hybrid and embedded systems. CIF is developed to establish
interoperability among a wide range of formalisms and associated tools for the
specification of hybrid and timed systems, by means of model transformations
to and from CIF. In this way, implementation of many bilateral translators, is
avoided. As such it plays a central role in the European projects Multiform [16],
HYCON [13], C4C [7], and HYCON 2 [12].

CIF has a formal semantics defined in terms of Structured Operational Se-
mantics (SOS) [17] rules. This formal specification of the language is crucial for
1 Work done as part of the European Community’s Seventh Framework Programme
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enabling semantic preserving model transformations. Then, by translating CIF
models to formalisms that have model checking algorithms for their models, such
as Phaver [9], it is possible to verify CIF models as well.

In [6], the addition of hierarchy to a subset of CIF is investigated, and as a
result it is shown that the SOS rules of atomic entities can be modified without
altering the rules of the CIF operators. However the question remains whether this
approach can be extended when more complicated concepts such as invariants[11],
synchronization, and control variables [9] are added to the language.

In this paper we develop and extension of the full CIF language with hierar-
chy, named the Hierarchical Compositional Interchange Format (HCIF), and we
model a case study in HCIF to show how the new concepts can be applied.

There exists several hierarchical formalisms and tools for simulation and
validation of hybrid models, such as Charon [1], Matlab-Simulink[19], State-
charts [10], among others. However these formalisms either do not have a formal
and compositional semantics, or their semantics is not defined in terms of SOS
rules, which is a requirement for extending the CIF semantics.

The remainder of this work is organized as follows. In Section 2 the syntax of
HCIF is introduced. In Section 3 we introduce the semantic framework needed to
understand HCIF semantics, and in Section 4 we present the formal specification
of the language. A case study that shows the applicability of the formalism is
presented in Section 5.

2 Syntax of HCIF

In this section we describe the mathematical syntax of HCIF, and we illustrate
it by modeling a controller of a simplified Patient Support System of an MRI
scanner, which is discussed in more detail in Section 5. Note that in this section
we give an incomplete description of the controller model to illustrate the various
concepts involved in the definition of a hierarchical automaton.

Horizontal
inv : xv = 1

UpOut
inv : xh = −1 ∧

xv = 1

Vertical
inv : xh = −1

when s = 0

when s = +1 when s = 0

when s = −1

Normal

Fig. 1. Movement control

Fig. 1 gives an informal, graphical representation of a HCIF automaton, which
models a controller of a patient support table. The control operates in one of
the following three modes: Horizontal mode modeling the horizontal movement
of the table, UpOut modeling that the table is fully up and out, and Vertical
modeling the vertical movement of the table.
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Every location has an initialization predicate, an invariant predicate, and
a time can progress predicate associated to it. The initialization predicate of
a location l describes the constraints that the initial values of variables must
satisfy for an execution to start in l. Such locations for which the initialization
predicate is true are called active locations. The invariant of a location l is a
predicate that must hold as long as the system is in l. The time can progress (tcp)
predicate of a location l is a predicate that must hold during time delays, when l
is an active location. In Fig. 1, the location UpOut has true as the initialization
predicate, xh = −1∧xv = 1 as the invariant. Tcp predicates are in general useful
for triggering the execution of an action from a location within a certain period
of time. For instance, an action a must be executed when the clock value has
reached 2 units of time (See Fig. 3(a)).

Edges represent discrete changes in the computational state of a system. An
edge has a source and a target location, and its execution results in a change
of active location (unless the edge is a self loop). The automaton of Fig. 1 has
four edges in total among the locations Horizontal, UpOut, and Vertical. Every
edge contains a predicate called guard that determines when an action can be
executed, a predicate called update that determines how the model variables can
change after performing the action, and a set of jumping variables that specify
the variables that are changed by the action. Edges are labeled by actions that
may be used to synchronize the behavior of automata in a parallel composition.
In Fig. 1, the edge from the location UpOut to the location Horizontal has
guard s = 1, update predicate true, empty set of jumping variables, and the
silent action label τ .

Formally, the set of locations is denoted by L and the set of actions is denoted
by A. The invisible action τ is a special symbol, which is not present in the set
A and we fix Aτ = A∪ {τ}. In HCIF there are three types of variables: regular
variables, denoted by the set V ; the dotted versions of those variables, which be-
long to the set V̇ = {ẋ | x ∈ V}; and the step variables, which belong to the set
{x+ | x ∈ V ∪ V̇}. The notation x+ denotes the value of a variable x in the next
state. Furthermore, the variables can be classified according to their evolution
(i.e. how their values change during time delays). In particular, we distinguish
between discrete variables (such as s in Fig. 1), whose values remain constant
during time delays, so that the values of their dotted versions are always 0;
and continuous variables (such as xh and xv in Fig. 1), whose values evolve as
a continuous function of time during delays, and whose dotted versions repre-
sent their derivatives. Variables can also be constrained by differential algebraic
equations, which are specified as predicates (in invariants). The values of the
variables belong to the set Λ that contains, among others, the sets B (booleans)
and R (reals). The predicates representing the guards are taken from the set Pg,
the tcp, invariants and initializations are taken from the set Pt and the resets are
taken from the set Pr. The exact syntax and semantics of predicates are defined
in [2]. The predicates Pg,Pt and Pr are the terms of the language of predicate
logic [18], where for Pg,Pt the variables are taken from the set V ∪ V̇, and for
Pr the variables are taken from the set V ∪ V̇ ∪ {x+ | x ∈ V ∪ V̇}.
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StoppedIn
inv : ẋh = 0

Middle
inv : ẋh = s

StoppedOut
inv : ẋh = 0

when s = −1

when s = +1when x = +1 ∧ s ≥ 0

when x = −1 ∧ s ≤ 0

Horizontal

Fig. 2. Horizontal movement

Locations can contain other automata (or compositions of them, as we show
in Section 5). In Fig. 1 the location Horizontal contains the automaton shown in
Fig. 2, that defines the horizontal movement of the controller in more detail. Au-
tomata that are contained inside other locations are referred to as sub-automata
or sub-structure, and the containing automata are referred to as super-automata
or super-structure. In a HCIF automaton, there are two types of edges, namely,
non-disruptive edges (for brevity, we refer to a non-disruptive edge as an edge)
and disruptive edges. Intuitively, an edge can be executed from a location if the
sub-structure at that location is terminating, while a disruptive edge can be ex-
ecuted even if the sub-structure at that location is non-terminating. Note that
the conditions under which an edge or a disruptive edge can be executed depend
on several factors, which are defined in Section 4.

In addition to initialization, invariant and tcp predicates, each location has a
termination predicate which defines if execution can terminate in that location.
Termination predicates are used for specifying when the super-structure can
perform a transition. In the automaton shown in Fig. 1, the τ transition from the
location Horizontal to the location UpOut can be executed only if the guard s =
0 holds, the automaton (Fig. 2) inside the location Horizontal has StoppedOut
as its active location, and the termination predicate holds.

Additional components of an automaton (not shown in the example presented
here) include: control variables, synchronizing actions, and dynamic type map-
pings. Intuitively, controlled variables are those variables that can only be mod-
ified by the automaton that declares them, and they do not change arbitrarily
after performing an action. The set of synchronizing actions is used to specify
which actions are to be synchronized when the automaton is composed in paral-
lel. The concept of dynamic types [14] is used to model constraints in the joint
evolution of a variable and its dotted version. In CIF a dynamic type is a set
containing pairs of functions, whose domain is a closed range of the form [0, t],
with t ∈ T. Notation T is used to refer to the set of all time points.

Definition 1 (Hierarchical automata). A hierarchical automaton α is a tu-
ple (V, init, inv, tcp, E, D, varC , actS , dtype, term, h) where:

– V ⊆ L a set of locations,
– initial, invariant, time-can-progress and termination predicates init, inv, tcp,

term: V → Pt,
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– a set of edges E ⊆ V × Pg ×A× (2V∪V̇ × Pr) × V ,
– D ⊆ E is the set of disruptive edges of the automaton,
– varC ⊆ 2V is the set of controlled variables,
– actS ⊆ 2A is the set of synchronizing actions, and
– dtype : V ⇀ 2(T→Λ)×(T→Λ) is the dynamic type mapping.
– h : V ⇀ C is a partial function that associates to some set of locations a sub-

structure. Here, C is the set of all compositions in HCIF (See Definition 2).

We use symbol M to refer to the set of all hierarchical automata.

Using operators, more complex models, referred to as compositions (Defini-
tion 2), are possible. The semantics of the operators is presented in Section 4.1,
with the exception of the semantics of the action and variable scope operators.
The semantics of these operators is unchanged with respect to the semantics of
these operators in CIF, as defined in [2].

Definition 2 (HCIF compositions). The set of compositions C in the HCIF
formalism is recursively defined by the grammar below, where x ∈ V, e ∈ E,
a ∈ A, aτ ∈ Aτ . Informally, by a composition we mean either a hierarchi-
cal automaton or a syntactical object constructed from the different hierarchical
automata using the operators of HCIF. Note that, the word ‘composition’ is syn-
onymous to the phrase ‘process term’ used in process algebra terminology.

C ::= α hierarchical automaton
| C : α automaton postfix operator
| C ‖ C parallel composition operator
| |[V x = e, ẋ = e :: C ]| variable scope operator
| |[A a :: C ]| action scope operator
| υaτ (C) urgency operator

Throughout this article, the textual and graphical conventions given in Table 1
are followed.

3 Semantic Framework

In this section, the semantic framework is set up to properly explain the se-
mantics of HCIF. First we present the concepts of variable valuations and flow
trajectories. Next we describe informally hybrid transitions systems, which are
used to model the semantics of HCIF compositions. Finally, a formal definition
of this semantic model is given.

3.1 Preliminaries

Semantically, the execution of a system, specified by means of a HCIF compo-
sition, causes changes to the values of the variables appearing on it. Thus, in
the semantic model it is necessary to represent the values of the variables in a
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Table 1. Textual and graphical conventions in HCIF. The sentences terminated with
the symbol � indicates the features present only in HCIF.

Graphical representation Meaning

Location without any sub-structure

Initial location with init predicate true

Final location with termination predicate
true�

Location containing a sub-structure�

when g act a do x := e Edge (g, a, ({x}, x+ = e))

when g act a do x := e Disruptive edge (g, a, ({x}, x+ = e))�

when g Edge (g, τ, (∅, true))
act a Edge (true, a, (∅, true))
N D

Automaton N with declarations D

α β

N D

α ‖ β

N D

α β

L

AND superstate L containing parallel
composition α ‖ β

particular instant. For this purpose, we use the concept of valuation, which is
standard in semantics of processes with data. A valuation σ : (V ∪ V̇) → Λ is a
function that for each variable returns its corresponding value. We use notation
Σ � (V ∪ V̇) → Λ to refer to the set of all valuations.

Having defined valuations, we introduce the concept of satisfiability. Even
though predicates are abstract entities, we assume that a satisfaction relation
σ |= u is defined, which expresses that predicate u ∈ P is satisfied (i.e. it is true)
in valuation σ. For a valuation σ, we define σ+ � {(v+, c) | (v, c) ∈ σ}.

To model the evolution on the values of variables during time delays we use
the concept of variable trajectories. A variable trajectory is a function ρ : T ⇀ Σ
that returns the valuations of the variables at each time point. In other words,
ρ(s)(x) is the value of variable x at time s. We assume the domain of variable
trajectories to be closed intervals, i.e. intervals of the form [0, t], where t ∈ T.

3.2 Hybrid Transition Systems

The semantics of CIF compositions is given in terms of SOS rules, which induce
hybrid transition systems (HTS) [8]. The states of the HTS are of the form 〈p, σ〉,
where p ∈ C and σ ∈ Σ is a valuation. There are three kind of transition in the
HTS, namely, action transitions, environment transitions, and time transitions.
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Action transitions are of the form 〈p, σ〉 a,b,X−−−→ 〈p′, σ′〉. They model the exe-
cution of action a by process p in an initial valuation σ, which changes process p
into p′ and results in a valuation σ′. Label b is a boolean that indicates whether
action a is synchronizing or not, and label X is the set of controlled variables
defined by the environment of p and p′.

Time behavior is captured by time transitions. Time transitions are of the
form 〈p, σ〉 ρ,A,θ,ω
−→ 〈p′, σ′〉. They model the passage of time in composition p, in
an initial valuation σ, which results in a composition p′ and valuation σ′. Label
A contains the set of synchronizing actions of p and p′. Function ρ : T → Σ
is the variable trajectory. Function θ : T → 2A is called guard trajectory. It
models the evolution of enabled actions during time delays. For each time point
s ∈ dom(θ), the function application θ(s) yields the set of enabled actions of
composition p at time s. Lastly, function ω is called termination trajectory. It
models the evolution of termination (see below) during time delays: for each
time point s ∈ dom(ω), composition p′ is terminating at time s if and only if
ω(s). For all time transition dom(ρ) = [0, t], for some time point t ∈ T, and
dom(ρ) = dom(θ) = dom(ω). Termination is formally defined next.

Definition 3. Given a valuation σ, we define termination as follows:

– An automaton (V, init, inv, tcp, E, varC , actS , dtype, term, h) is terminating
in σ if there is a location v ∈ V such that σ |= init(v), σ |= inv(v), σ |=
term(v), and if v ∈ dom(h) then h(v) is terminating in σ.

– Composition p ‖ q is terminating in valuation σ if p and q are terminating
in valuation σ.

– For the remaining operators, termination is defined pointwise.

Environment transitions are of the form 〈p, σ〉 A,b��� 〈p′, σ′〉. They are used in the
semantics to enforce restrictions posed by the environment of a composition on

the action behavior of the composition. More specifically, a transition 〈p, σ〉 A,b���
〈p′, σ′〉 expresses the fact that p is consistent in σ, and p′ is consistent in σ′. In
addition, the role of the environment transitions is to indicate that a composition
p can initialize to become a composition p′ in which an active location is fixed
for each (active) substructure. Furthermore, the boolean b indicates whether
the initialized substructure can terminate, and thus give back the control over
actions to its environment. As before, label A is the set of synchronizing actions
of compositions p and p′. Next, consistency is defined recursively.

Definition 4. Given a valuation σ, we define consistency as follows.

– An automaton (V, init, inv, tcp, E, varC , actS , dtype, term, h) is consistent in
σ if there is a location � ∈ V such that σ |= init(�) and σ |= inv(�), and if
� ∈ dom(h) then h(�) is consistent in σ.

– Composition p ‖ q is consistent in valuation σ if p and q are consistent in
valuation σ.

– For the remaining operators, consistency is defined pointwise.
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We use notation σ |= p to denote that composition p is consistent in valuation
σ. Alternatively, we say that σ is consistent with p.

Definition 5 formalizes the hybrid transition system induced by the SOS rules
presented in the next sections.

Definition 5. A hybrid transition system (HTS) is a five-tuple of the form
(Q,A,−→ , 
−→, ���) where Q � C × Σ, −→ ⊆ Q × (Aτ × B × 2V) × Q, 
−→⊆
Q × ((T ⇀ Σ) × 2A × (T ⇀ 2A) × (T ⇀ B)) × Q, ��� Q × (2A × B) × Q.

4 Semantics

In this section we explain the semantics of HCIF both informally by means of
examples, and formally by means of SOS rules.

4.1 Hierarchical Automata

In a hierarchical automaton α, an active location v can execute actions at two
different levels of abstraction: external actions, which are specified as labelled
edges from the active location v to an arbitrary location v′; and internal actions,
which are generated by the sub-structure at the location v, i.e., h(v). Note that
there are different conditions under which an external or internal action can be
executed. Furthermore, the rules of CIF can be obtained from the current rules
by substituting h = ∅. Next, we explain and formalize the rules for every HCIF
composition.

Given an initial valuation σ, an external action a can be executed in a location
v if there is an edge (v, g, a, (W, r), v′) in α satisfying the following conditions:

– Location v is active (σ |= init(v)), the invariant at the location v is satisfied
(σ |= inv(v)) and the guard g holds (σ |= g).

– If there is a substructure inside location v (v ∈ dom(h)), then it is terminat-
ing in σ or the edge is disruptive.

– It is possible to find a new valuation σ′ such that:

• The invariant of the new location v′ holds σ |= inv(v′).
• The reset predicate r is satisfied in valuation σ ∪ σ′+ (σ ∪ σ′+ |= r).
• σ′ is consistent with the substructure inside the target location (if any).
• Controlled variables not in W (the set of jumping variables of the action)

are not allowed to change in σ′ (wrt. σ).

This is formalized by Rule 1. Some of the above conditions are summarized in
the term

σ, σ′ |=α (v, g, a, (W, r), v′)

that is syntactically equivalent to:

(v, g, a, r, v′) ∈ E∧ σ |= init(v)∧ σ |= g∧ σ |= inv(v)∧ σ′ |= inv(v′)∧ σ′+∪σ |= r.
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Henceforth, we use the following notation:

α ≡ (V, init, inv, tcp, E, varC , actS , dtype, term, h),
α[v] ≡ (V, idv, inv, tcp, E, varC , actS , dtype, term, h),

where dom(idv) = V and idv(w) � v = w. Note that the initialization predicate
idv encodes the active location, after execution of the first transition. An action
specified by an edge (v, g, a, (W, r), v′) in an automaton α can be triggered only
if the controlled variables of the automaton (varC) and of the environment (X)
remain the same in σ, and σ′, except if they belong to the set of jumping variables
W . We use notation f �A to refer to the domain restriction of function f to the
set A. Secondly, if the edge is not disruptive, it is necessary to check that the
substructure of the initial location, if any, is terminating. This is expressed by

condition (〈h(v), σ〉 A0,b��� 〈p, σ〉∨v �∈ dom(h)), (v, g, a, (W, r), v′) ∈ D∨b). Finally,
after the action is performed, the substructure in the target location, if present,

must be initialized, i.e, 〈h(v′), σ′〉 A1,b��� 〈q : α[v′], σ′〉. The choice of selecting
active locations of substructure h(v′) is made upon entering the location v′.
Consistency of the substructures is preserved by the environment transitions.

σ, σ′ |=α (v, g, a, (W, r), v′), σ �(X∪varC)\W = σ′ �(X∪varC)\W ,(
〈h(v), σ〉 A0,b��� 〈p, σ〉 ∨ v �∈ dom(h)

)
, (v, g, a, (W, r), v′) ∈ D ∨ b,

v′ ∈ dom(h), 〈h(v′), σ′〉 A1,b′��� 〈q, σ′〉
〈α, σ〉 a,a∈actS ,X−−−−−−−→ 〈q : α[v′], σ′〉

1

Consider the controller automaton in Fig. 1, assuming UpOut is an active loca-
tion with a valuation σ. The edge labelled when s = +1 can be executed if there
exists a valuation σ′ such that σ satisfies the invariant of the location UpOut
(σ(xh) = −1 ∧ σ(xv) = 1), σ′ satisfies the invariant of the location Horizontal
(σ′(xv) = 1) and the valuation σ′ is consistent with the automaton shown in
Fig. 2. The consistency of the valuation σ′ implies that the active location of the
automaton in Fig. 2 is Middle such that σ′ |= ẋh = s.

Now consider the active location of the controller to be Horizontal and the
active location of the automaton in Fig. 2 to be Stopped-in. In this case, the edge
labelled when s = 0 in Fig. 1 cannot be executed even if the guard s = 0 is true.
This is due to the fact that the composition inside the location Horizontal is non-
terminating in location Stopped-in. External actions, such as the edge labelled
when s = 0, can be executed only if either the sub-structure is terminating or
the edge labelled with the external action is specified as disruptive.

Rule 1 requires as a condition that there is an active substructure in the
target location v′ ∈ dom(h). If this is not the case then no active substructure
is prefixed to α[v], as expressed by Rule 2.

σ, σ′ |=α (v, g, a, (W,r), v′), σ �(X∪varC)\W = σ′ �(X∪varC )\W ,(
〈h(v), σ〉 A0,b��� 〈p, σ〉 ∨ v 
∈ dom(h)

)
, v′ 
∈ dom(h), (v, g, a, (W,r), v′) ∈ D ∨ b

〈α, σ〉 a,a∈actS,X−−−−−−−→ 〈α[v′], σ′〉
2
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Besides external actions, an automaton can also execute internal actions, which
are triggered by their internal structures. Given a valuation σ, an internal action
can be executed in an initial location v if the following conditions hold:

– The invariant associated with location v is satisfied (σ |= inv(v)).
– The action performed by the substructure of v results in a new valuation σ′

that also satisfies the invariant of v.

Rule 3 formalizes this. In the conclusion, p : α[v] reflects the fact that an initial
location is chosen in a hierarchical structure if the substructure performs an
action. In this rule we ignore the boolean b, that indicates whether the action a
is synchronizing, in the premise. As a result, the superstructure decides on which
actions it wants to synchronize. In other words, the superstructure defines the
set of synchronizing actions, independently of the sub-levels.

σ |= init(v), σ |= inv(v), σ′ |= inv(v), v ∈ dom(h), 〈h(v), σ〉 a,b,X∪varC−−−−−−−→ 〈p, σ′〉
〈α, σ〉 a,a∈actS,X−−−−−−−→ 〈p : α[v], σ′〉

3

Transition (h(v), σ)
a,b,X∪varC−−−−−−−→ (p, σ′) in the premise of the above rule ensures

that the control variables inherited from the environment (X) as well as the
control variables of the automaton (varC) will not jump arbitrarily when the
action is carried out by the substructure.

Again consider the model of the controller as given in Figures 1 and 2.
Assume that the active location is Horizontal and the active location of the sub-
structure is Middle. The edge labelled when x ≥ 1∧s ≥ 0 can be executed from
the location Middle only if there exists a new valuation σ′ such that it satisfies
the invariant of the locations Horizontal and StoppedIn.

In hierarchical CIF, a time delay is possible in an active location v if there
exists a trajectory ρ such that the invariant associated with the active locations
is satisfied in time point [0, t], the tcp predicate is satisfied in [0, t) and the
dynamic type constraints specified by dtype are satisfied. Henceforth, we use
ρ |= 〈t, v, init, inv, tcp, dtype〉 as an abbreviation of the predicate

ρ(0) |= init(v) ∧ dom(ρ) = [0, t] ∧ 0 < t ∧ ∀s∈[0,t).ρ(s) |= tcp(v) ∧
∀s∈[0,t].ρ(s) |= inv(v) ∧ ∀x∈dom(dtype).(ρ ↓ x, ρ ↓ ẋ) ∈ dtype(x).

For time delays, the substructure (if present) must perform a time transition
with the same trajectory. In this way, the invariants and tcp-predicates of the
active location of the automaton, and, recursively, of the active locations of its
active substructures are considered simultaneously. In this way time passes in
an automaton, and also in all of its contained active substructures. In other
words, an automaton and its active substructure synchronize on time delays.
Rule 4 models this, where dom(ω) = dom(ρ), dom(θ) = dom(ρ), ∀s∈[0,t].ω(s) =
(ω0(s) ∧ ρ(s) |= term(v)), and ∀s∈[0,t].θ(s) = θ0(s) ∪ {a | (v, g, a, (W, r), v′) ∈
E∧ρ(s) |= g∧ω0(s)}. The guard trajectory θ as well as the termination trajectory
ω are constructed by using the corresponding trajectories generated by the time
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transition in the substructure. The set of synchronizing actions only takes into
account the set actS in the superstructure, since the set of synchronizing actions
in the substructure does not influences the action synchronizing behavior of its
parent. The same approach is taken when computing the set of synchronizing
actions in the environment transition in Rule 6.

ρ |= 〈t, v, init, inv, tcp, dtype〉, v ∈ dom(h), 〈h(v), ρ(0)〉 ρ,A,θ0,ω0
−→ 〈p, ρ(t)〉
〈α, ρ(0)〉 ρ,actS ,θ,ω
−→ 〈p′ : α[v], ρ(t)〉

4

Rule 5 deals with the case that an initial location v does not contain a substruc-
ture, where dom(ω) = dom(ρ), dom(θ) = dom(ρ) and ∀s∈[0,t].ω(s) = (ρ(s) |=
term(v)), and ∀s∈[0,t].θ(s) = {a | (v, g, a, (W, r), v′) ∈ E ∧ ρ(s) |= g}.

ρ |= 〈t, v, init, inv, tcp, dtype〉, v �∈ dom(h)

〈α, ρ(0)〉 ρ,actS ,θ,ω
−→ 〈α[v], ρ(t)〉
5

In hierarchical CIF, if an automaton performs an environment transition, a
unique active location is chosen, and the substructure (if present) is initialized.
The environment transition ensures that the active location contains a consistent
hierarchical structure (Definition 4). This is expressed by Rule 6. The initialized
composition p becomes the active substructure of α[v], and the automaton is
terminating if the location and the active substructure are. Rule 7 deals with
the case where there is no substructure.

σ |= init(v), σ |= inv(v), σ′ |= inv(v), σ �varC
= σ′ �varC

,

v ∈ dom(h), 〈h(v), σ〉 A,b��� 〈p′, σ′〉
〈α, σ〉 actS,σ|=term(v)∧b

��� 〈p′ : α[v], σ′〉
6

σ |= init(v), σ |= inv(v), σ′ |= inv(v), σ �varC
= σ′ �varC

, v �∈ dom(h)

〈α, σ〉 actS ,σ|=term(v)
��� 〈α[v], σ′〉

7

4.2 Automaton Postfix Operator

The automaton postfix operator is used to define the semantics of hierarchy. It
is not an operator intended for modeling, and therefore we do not illustrate its
behavior by means of examples. We limit ourselves to semantic considerations.

Intuitively, the composition p : α means that composition p is the active
substructure of some initial location v ∈ V in the automaton α. Note, that
whenever the composition p : α is the result of a previous transition in α, this
initial location is always uniquely defined.

Rule 8 models the action transition taken by automaton α when the active
substructure is terminating or when the chosen edge is disruptive, and the target
location has a substructure. Rule 9 differs from Rule 8 only in that the target
location does not have a substructure. Rule 10 models the action transition
resulting from the execution of the substructure.
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σ, σ′ |=α (v, g, a, (W,r), v′), σ �(X∪varC)\W = σ′ �(X∪varC)\W , 〈p, σ〉 A0,b��� 〈p′, σ〉,
(v, g, a, (W,r), v′) ∈ D ∨ b, v′ ∈ dom(h), 〈h(v′), σ′〉 A1,b′��� 〈q, σ′〉

〈p : α, σ〉 a,a∈actS ,X−−−−−−−→ 〈q : α[v′], σ′〉
8

σ, σ′ |=α (v, g, a, (W, r), v′), σ �(X∪varC)\W = σ′ �(X∪varC)\W ,

〈p, σ〉 A,b��� 〈p′, σ〉, (v, g, a, (W, r), v′) ∈ D ∨ b, v′ �∈ dom(h)

〈p : α, σ〉 a,a∈actS ,X−−−−−−−→ 〈α[v′], σ′〉
9

σ |= init(v), σ |= inv(v), σ′ |= inv(v), 〈p, σ〉 a,b,X∪varC−−−−−−−→ 〈q, σ′〉
〈p : α, σ〉 a,a∈actS ,X−−−−−−−→ 〈q : α, σ′〉

10

Rule 11 models the passage of time in an automaton postfix such that the timed
transitions are (recursively) synchronized in every level of hierarchy of p : α,
where dom(ω) = dom(ρ), dom(θ) = dom(ρ), ∀s∈[0,t].ω(s) = ω0(s) ∧ ρ(s) |=
term(v), and ∀s∈[0,t].θ(s) = θ0(s)∪{a | (v, g, a, (W, r), v′) ∈ E∧ρ(s) |= g∧ω0(s)}.

ρ |= 〈t, v, init, inv, tcp, dtype〉, 〈p, ρ(0)〉 ρ,A,θ0,ω0
−→ 〈p′, ρ(t)〉
〈p : α, ρ(0)〉 ρ,actS ,θ,ω
−→ 〈p′ : α[v], ρ(t)〉

11

Finally, Rule 12 models the execution of an environment transition in an au-
tomaton postfix.

σ |= init(v), σ |= inv(v), σ′ |= inv(v), σ �varC = σ′ �varC ,

〈p, σ〉 A,b��� 〈p′, σ′〉
〈p : α, σ〉 actS ,σ|=term(v)∧b

��� 〈p′ : α[v], σ′〉
12

4.3 Parallel Composition

The parallel composition operator allows concurrent execution of HCIF com-
positions. The semantics of parallel composition is equal to the CIF semantics.
Action behavior is not affected by the addition of hierarchy. The rules for time
and environment transitions are updated to reflect the fact that a parallel com-
position is terminating only if both components are.

As an illustration, consider the assembly process shown in Fig. 3(a), hence-
forth referred to as Assembly , such that its location WaitForAB contains the
parallel composition shown in Fig. 3(b). The assembly process initially is in
the WaitForAB location, and, according to the semantics of atomic automata,
it can trigger action assembling only if its sub-structure terminates. Since the
sub-structure is a parallel composition of two automata, namely WaitForA and
WaitForB (See Fig. 3(b)), the substructure h(WaitForAB) can terminate af-
ter actions a and b have both been executed; i.e., both automata WaitForA and
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WaitForB can terminate. This pattern, in which an action is triggered after a
series of parallel processes terminate, can be expressed succinctly using hierarchy.
Without support for hierarchy and termination it is necessary to rewrite the
parallel processes into a flat automaton.

GenA
tcp : ca < 2C

ca = 0

when ca ≥ C act a do ca := 0

GenB
tcp : cb < 2C

cb = 0

when cb ≥ C act b do cb := 0

WaitForAB
Assembling
tcp : t < Δ

act assembling do t := 0

when t ≥ Δ act send

Assembly typeD : {ca → clock, cb → clock, t → clock}
GeneratorA
actS : {a}

GeneratorB
actS : {b}

Asembling
actS : {a, b}

(a) Assembly process (Assembly).

WaitForA

Done

WaitForB

Done

act a act b

WaitForAB

WaitForA
actS : {a}

WaitForB
actS : {b}

(b) Receive process
(h(WaitForAB)).

Fig. 3. Assembly line

The addition of hierarchy facilitates inter-level synchronization. As an exam-
ple consider the generator process GeneratorA shown in Fig. 3(a), which enables
an action a every C time units, when ca ≥ C. The action a from the generator
synchronizes with action a specified as synchronizing in the automaton Wait-
ForA, which is part of the substructure of location WaitForAB. This synchro-
nizing behavior is obtained by inclusion of action a in the set of synchronizing
actions actS of GeneratorA ({a}), and in the set of synchronizing actions of
automaton Assembly ({a, b}). Note that strictly speaking, action a need not be
defined as synchronizing for automaton WaitForA.

Formally, Rule 13 states that two synchronizing actions with the same label
can execute in parallel only if they share the same initial and final valuation,
and if the action is synchronizing in both the compositions. The set of control
variables X , is propagated from the conclusions to the premises since the control
variables in the scope of a parallel composition are shared by both partners.
The resulting action transition is also synchronizing which allows action a to
synchronise with more than two compositions.

〈p, σ〉 a,true,X−−−−−→ 〈p′, σ′〉, 〈q, σ〉 a,true,X−−−−−→ 〈q′, σ′〉
〈p ‖ q, σ〉 a,true,X−−−−−→ 〈p′ ‖ q′, σ′〉

13
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Rules 14 model interleaving behavior of two compositions when executed in
parallel. In these rules, an action can be performed in one of the components (p)
only if the initial and final valuations are consistent with the other composition
(q); and if this action is not synchronizing in the other component, which is

expressed by the condition a /∈ A. The environment transition (q, σ)
A,b′��� (q′, σ′)

is used to obtain the set of synchronizing action labels in composition q, to
ensure that the initial valuation σ is consistent with the active invariants and
initialization conditions of q, to select an initial location (in case there is more
than one in q), and to remove any initialization operators from q.

〈p, σ〉 a,b,X−−−→ 〈p′, σ′〉, 〈q, σ〉 A,b′��� 〈q′, σ′〉, a �∈ A

〈p ‖ q, σ〉 a,b,X−−−→ 〈p′ ‖ q′, σ′〉
〈q ‖ p, σ〉 a,b,X−−−→ 〈q′ ‖ p′, σ′〉

14

Rule 15 models the fact that if two compositions are put in parallel, time can pass
t time units only if allowed by both partners. As can be seen in this rule, the set of
enabled actions in the parallel composition at any point in time during the delay
depends both on the set of enabled actions and the set of synchronizing actions in
each component individually. Similarly, the termination trajectory of the parallel
composition depends on the termination trajectories of its components, where
θ01 = (θ0 ∩ θ1) ∪ (θ0 \ A1) ∪ (θ1 \ A0) and ∀s ∈ [0, t].[ω01(s) = ω0(s) ∧ ω1(s)].

〈p, ρ(0)〉 ρ,A0,θ0,ω0
−→ 〈p′, ρ(t)〉, 〈q, ρ(0)〉 ρ,A1,θ1,ω1
−→ 〈q′, ρ(t)〉
〈p ‖ q, ρ(0)〉 ρ,A0∪A1,θ01,ω01
−→ 〈p′ ‖ q′, ρ(t)〉

15

Rule 16 defines the environment transition behavior for parallel composition. The
resulting set of synchronizing actions is the union of the synchronizing actions
of p and q. The conjunction b0∧b1 models the fact that a parallel composition is
terminating if its components are. Note that the end valuations of all transitions
match.

〈p, σ〉 A0,b0��� 〈p′, σ′〉, 〈q, σ〉 A1,b1��� 〈q′, σ′〉
〈p ‖ q, σ〉 A0∪A1,b0∧b1��� 〈p′ ‖ q′, σ′〉

16

4.4 Urgency Operator

By means of the urgency operator it is possible to declare actions as urgent. This
means that time cannot pass if an urgent action is enabled. However, urgent
actions do not have priority over regular (non-urgent) actions.

For example, consider the model of the controller of Fig. 1 with the active
location UpOut. When a user demands the controller to operate in the horizontal
mode, it should react as soon as possible. In other words, the action τ in the



330 D. Nadales Agut et al.

labelled edge when s = +1 between the locations UpOut and Horizontal must
be made urgent. This ensures that time does not pass in the location UpOut
from the instant when the guard s = +1 is enabled.

Rule 17 specifies that the urgent action operator allows the passage of time
as long as no urgent action is enabled.

(p, σ)
ρ,A,θ,ω
−→ (p′, σ′), ∀s∈[0,t) · a /∈ θ(s)

(υa(p), σ)
ρ,A,θ,ω
−→ (υa(p′), σ′)

17

The urgency operator affects only the time behavior. Action and environment
transitions remain unchanged as expressed by Rules 18 and 19.

(p, σ)
	,b,X−−−→ (p′, σ′)

(υa(p), σ)
	,b,X−−−→ (υa(p′), σ′)

18
(p, σ)

A,b��� (p′, σ′)

(υa(p), σ)
A,b��� (υa(p′), σ′)

19

5 Case-Study: Patient Support System

The patient support system (See Fig. 4) is used in medical diagnosis to position
a patient in an MRI scanner [20]. The system can be operated in the following
modes: vertical mode, horizontal mode and user interface mode. In the vertical
mode, the table top on which a patient resides can only move vertically between
the bounds depicted in Fig. 4. Similarly, in the horizontal mode, the table top
can be moved in or out of the bore, either manually or by means of a motor
drive. Furthermore, the system is equipped with a table top release switch for
emergency situations. This system is controlled via a user interface that contains
a tumble switch to control the movement (both horizontally and vertically) of
the table, and a button to enable the start of an initialization sequence. The
position of the tumble switch is represented by variable s which can have the
values +1, 0 and −1. The continuous variables xh and xv represent the horizontal
and vertical position of the table top, respectively.

+1 −1

−1

+1

Horizontal axis xh

Vertical axis xvTabletop

Magnet

Bore

Fig. 4. Patient Support System
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−1 ≤ xh ≤ 1
−1 ≤ xv ≤ 1

Init

Normal
inv : xh = −1 ∨

xv = 1

TTR
inv :

−1 ≤ xh ≤ 1
∧ ẋv = 0

UI

act ttron

act ttroff

act ttron

PSS dtype : {xh → cont, xv → cont, s → disc, start → disc}
actS : {ttron, ttroff } varC : {xh, xv} actS : {ttron, ttroff }

Fig. 5. Patient Support System

The objective of this case-study is to design a controller that satisfies the
following requirements. The table should move up and down, or in and out of
the bore, by operating the tumble switch. The table should not move beyond
the boundaries shown in Fig. 4. The case-study is specified using a top-down
design methodology. In other words, we first model the overall system at a higher
level of abstraction in which we identify that the system consists of a controller
and a user interface. Furthermore, a controller can run in the following three
modes: Init mode in which the controller should place the table in the initial
position; Normal mode in which the controller synchronises with the events of the
tumble switch; TTR (Table Top Release) mode in which an operator is allowed
to override the normal execution of the controller. Fig. 5 shows the model of
the system at this level of abstraction. Throughout the complete description of
this case-study, it is assumed that only the τ action is urgent. All other actions,
which are the actions generated by the user interface, are non-urgent. This is
modeled by υτ (PSS ) where PSS represents the automaton PSS shown in Fig 5.

User interface. The user interface consists of three input devices: the tumble
switch, the table top release switch and the start button (See Fig. 6). The tum-
ble switch has three positions: MvUpOrIn, Neutral and MvDownOrOut. The
MvUpOrIn position is used to move the table either up or into the bore, the Mv-
DownOrOut position is used to move the table down or out of the bore. When
the switch is released, it returns to the neutral position, which enforces actuated
(motorized) movement of the table to stop.

The TTR switch can be used to release the table top from the horizontal
motor. When the switch is active, the horizontal movement of the table is un-
controlled by the system, so that an operator can manually move the table freely
in the horizontal direction. Finally, the start button initializes the system.
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MvUpOrIn
inv : s = +1

Neutral
inv : s = 0

MvDownOrOut
inv : s = −1

act neutral act neg

act neutralact pos

TTRoff TTRon

act ttron

act ttroff

Off On

act starton do start := true

act startoff do start := false

UI

TumbleSwitch

TTRSwitch StartButton
varC : {start}

Fig. 6. User interface

WFstart
inv : ẋh = 0 ∧

ẋv = 0

Retract
inv : ẋh = −1 ∧

ẋv = 0

MoveUp
inv : ẋh = 0 ∧

ẋv = 1

WFneutral
inv : ẋh = 0 ∧

ẋv = 0

when s = 0 ∧ start

when xh = −1

when xv = +1s = 0

Init

Fig. 7. Initialization

Initialization. In the Init mode, the position of the patient support system is
initialized (Fig. 7). The position of the tumble switch needs to be neutral before
initialization begins, and the movement is triggered by pressing the start button.
The desired final position of the table is fully retracted and fully up. First, the
table is retracted since this is always a safe movement. Then, when the table
is fully retracted, the table is moved up until it reaches the top position. The
initialization is complete when the tumble switch is in the neutral position, to
prevent that the table starts moving immediately after initialization.

Normal mode. Initially, the system enters the normal mode with the table fully
up and retracted, so in an up and out position (Fig. 8). In this intersection
point between moving the table horizontally or vertically, holding the tumble
switch in the MvUpOrIn position triggers horizontal movement of the table
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Horizontal
inv : xv = 1

UpOut
inv : xh = −1 ∧

xv = 1

Vertical
inv : xh = −1

when s = 0

when s = +1 when s = 0

when s = −1

Normal

Fig. 8. Normal movement control

StoppedIn
inv : ẋh = 0

Middle
inv : ẋh = s

StoppedOut
inv : ẋh = 0

when s = −1

when s = +1when x = +1 ∧ s ≥ 0

when x = −1 ∧ s ≤ 0

Horizontal

Fig. 9. Horizontal movement control

into the bore, whereas holding it in a MvDownOrOut position triggers vertical,
downward movement.

A system requirement is that between switching from horizontal to vertical
movement, and vice versa, the position of the tumble switch must be neutral.
This to prevent the table from continuing movement unexpectedly in a differ-
ent direction. Figure 9 show the horizontal movement of the system in more
detail. The automaton for the vertical movement of the system is similar to the
automaton drawn in Fig 9 and due to space reasons is not shown here.

6 Concluding Remarks

In this article we have presented the syntax and semantics of HCIF, which ex-
tends CIF with hierarchy in a compositional manner, so that only the SOS rules
for an automaton and for the time transitions of parallel composition need to be
adapted. As a result, we extended our previous work [6] to complete the hierar-
chical extension of CIF, which contains more involved concepts like invariants,
synchronization, local variables and control variables.

We conjecture that we are able to transform a HCIF composition into a bisimi-
lar CIF specification on the condition that the effective set of controlled variables
and the effective dynamic type of the variables is independent of the active lo-
cations of the automata, and is thus statically defined. This condition is needed
because in HCIF, the dynamic type of variables and the set of control vari-
ables can change per location, since the substructures of different locations may
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have different dynamic types and different control variables. Future work in-
cludes proving that HCIF is more expressive than CIF, and defining the subset
of HCIF that can be translated to CIF. These transformations are important to
reuse existing tools for CIF, including model transformations.

In addition, we observe that a liberal interpretation of a HCIF automaton
as an n-ary operator (where n represents the number of locations in the super-
automaton) places our semantic rules within the congruence format of [15]. This
means that the replacement of a sub-automaton by an equivalent one (modulo
stateless bisimulation equivalence) will lead to an equivalent behavior of the
super-automaton, which is a fundamental property for compositional reasoning.

Acknowledgements. The authors would like to thank Albert Hofkamp for
helpful comments.
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