Towards the UML-Based Formal Verification
of Timed Systems

Luciano Baresi, Angelo Morzenti, Alfredo Motta, and Matteo Rossi

Politecnico di Milano
Dipartimento di Elettronica e Informazione, Deep-SE Group
Via Golgi 42 — 20133 Milano, Italy

{baresi,morzenti,motta,rossi}@elet.polimi.it

Abstract. This paper presents the approach to the formal verification of
UML-based models of timed systems developed in the MADES project.
The approach differs from many current ones in that it aims at (i) being
inclusive in the range of diagrams considered when producing the for-
mal model, and (ii) adhering to the UML notation as much as possible.
The metric temporal logic-based semantics developed in the project is
presented through an example system.

1 Introduction

UML, along with its dialects and profiles, is a widely utilized graphical, design
notation. Despite the vast adoption, users only tend to agree on the interpre-
tation of few well-known concepts, while the actual behavior of many parts of
the notation is left open. The concrete syntax of the language is very rich, and
offers alternatives to model the same concepts, but its semantics is only defined
informally and imprecisely. This is enough if we think of UML as a pure mod-
eling notation; it is not acceptable when one aims to detailed descriptions of
the system-to-be, neither is it suitable for automated analysis and for deriving
implementations that go beyond the frame of some classes.

In contrast, formal methods and tools (e.g., UPPAAI[or Alloy), which
would provide sophisticated analysis capabilities, have often demonstrated their
inability to attract the masses: the required mathematical background hampers
their adoption and many users privilege the “simplicity” of UML-like notations
rather than more formal means. Many proposals (e.g., [I0[TI/I8]) have already
tried to bridge the gap between the two domains by attempting to provide (parts
of) UML with a precise (possibly formal) semantics. The idea is to keep the pos-
itive aspects from both fields and provide the user with a well-known modeling
notation, suitably augmented with a formal semantics behind the scene.

If we think of UML as design means for a well-known programming language
(e.g., Java), the subset of the notation usually considered is very limited (mainly
just class diagrams), and the actual semantics is assumed to be the same as

! http://www.uppaal . org
2 http://alloy.mit.edu/

B.K. Aichernig, F.S. de Boer, and M.M. Bonsange (Eds.): FMCO 2010, LNCS 6957, pp. 267—@ 2011.
© Springer-Verlag Berlin Heidelberg 2011

http://www.uppaal.org
http://alloy.mit.edu/

268 L. Baresi et al.

the one of the target language. Petri nets have been widely used to explain the
dynamic behavior of UML activity and state diagrams for years [T9/12], but
the immediate explosion of the resulting nets, along with the inability to easily
distinguish between types (classes) and instances, hampered their adoption as
underlying formal representation for UML models.

The heterogeneity and overlapping of the different modeling elements, the
wide spectrum of the notation, and also the size of the resulting formal speci-
fications, which are often too big for analysis, play against complete formaliza-
tions. A coherent, consistent, and complete formal semantics is a very complex
and heavy task; things become even more complex when one considers some
special-purpose extensions defined for particular domains.

These limitations have been our motivations, and challenge, for ascribing a
formal dynamic semantics to a particular UML-based notation for timed systems,
the MADES modeling notation [I]. This language borrows many concepts from
SySML [I5] and MARTE [I4], but our interest is mainly in the timing aspects:
we are interested in the clocks provided by MARTE, and in the UML diagrams
that show time-related behaviors.

Being well aware of the difficulties inherent to the task, we decided to concen-
trate on a complete subset of the notation, which we called verification notation.
This is limited with respect to the general modeling notation, but selected ele-

ments and diagrams are able to cover all the important aspects of a complete
MADES model:

— The static parts of a system are covered through class diagrams. These di-
agrams, which can also be adopted to render components and objects, are
used to define the terms (the alphabet) of the specification.

— The dynamic aspects and behavior of the different parts are rendered through:
(a) State diagrams (and thus also activity diagrams), used to model the be-
havior of the different elements (components), (b) Sequence diagrams, used
to model the “local” interactions among the different elements of the sys-
tem, and (c) Interaction overview diagrams, used to relate different sequence
diagrams. Sequence diagrams are adopted to describe limited scenarios that
define how the system reacts to some particular conditions and/or inputs;
interaction overview diagrams describe more complete interactions, and thus
more general, and system-wide, properties.

— Clocks (and time diagrams) are used to add the time dimension to systems,
constrain the behavior of components, and be able to predicate on it.

All these diagrams supply users with a complete, homogeneous set of concepts to
render the system-to-be in a consistent way, offer a “simple” coherent notation
and keep the verification phase simple.

The rest of paper is organized as follows. Section [2 provides an overview
of the MADES approach. Section [3 presents the background concepts of the
semantic notation. Section E] defines the wverification notation, while Section
uses an example system to introduce the formal semantics. Section [6] surveys
some related approaches and Section [concludes the paper.

Towards the UML-Based Formal Verification of Timed Systems 269
2 Modeling and Verification Workflow

The MADES workflow is designed to allow users to carry out formal verification
activities while hiding from them the details of the creation of the formal model
and also of the execution of the verification phase itself. Two issues are key in
this approach: (i) the notation used for modeling the system to be verified must
be one with which the user is familiar with (ii) the verification phase must be
carried out without user intervention, in a “push-button” manner.

No User Intervention

System Design \ Formal Verification _ Property
MADES Formal Property
UML Model Property Formal Formal Model I d
Semantics Verification Tool = does not
y hold + visual

counterxample

Fig. 1. Overview of the MADES workflow

Figure [T provides an overview of the workflow. It starts with the definition by
the user of a UML model of the system to be verified. By design, in the MADES
approach the modeling notation conforms to the UML standard (including a pair
of relevant profiles such as SysML [16] and MARTE [14]), with some restrictions
that are needed to make the models verifiable in a fully automated way. In
addition, the user provides as input the property to check the model against.
We will discuss later how this property can be expressed.

Both the UML model and the property to be checked are translated automat-
ically, without user intervention, into a formal model that is suitable to be input
to a push-button formal verification tool. The translation is performed using the
semantics described in Section Bl Then, the tool is run on the system/property
combination, and its result is output. This can be either the notification that
the property holds or, if the property does not hold, a trace of the system that
violates it. In the second case, the counterexample trace is shown in UML form
as feedback. The trace can be used to examine the behavior of the objective
system.

Figure [2] shows a more detailed view of the MADES workflow, which high-
lights a distinguishing feature of the MADES approach, namely its inclusiveness
with respect to the set of UML diagrams taken into account. In fact, unlike
most existing approaches (see also Section [f]), MADES allows users to use and
combine a rich variety of UML diagrams to define the behavior of the system be-
ing designed. More precisely, the set of UML diagrams taken into consideration
consists of class diagrams, object diagrams, sequence diagrams (SD), interac-
tion overview diagrams (IOD), and state diagrams. Class diagrams and object
diagrams provide an high-level overview of: (i) the types of the components of
the system, (ii) the instances (i.e., the objects) of such types that are actually

270 L. Baresi et al.

Requirements

Modeling l Verification
SD [e]] dis:artaem Time property
g definition
= Property holds /
df:lass d‘;bire::n p— ——> does not hold
lagram g (+ counterexample)
Time bound
Clocks Tags
| Temporal Logic

Correct And Refine

Fig. 2. Detailed workflow, with indication of available UML diagrams

present in the system, and (iii) their interconnections. Essentially, these dia-
grams provide the alphabet of the formal model, i.e., the basic items and events
whose dynamics are described through the behavioral diagrams. State diagrams
are used to describe the behavior of the components of the system taken one by
one, in terms of their operations and of the effect that these have on their states
(i.e., the attributes). Sequence diagrams, instead, define the basic interactions
between the components introduced through class and object diagrams; these
basic interactions are in turn composed into more complex ones through inter-
action overview diagrams. In addition, MARTE clocks can be used as reference
to express timing constraints between events in the aforementioned diagrams.
Finally, MADES allows users to add to diagrams some domain-specific tags that
can be used to optimize the verification phase (these tags will not be discussed
in this paper; an overview of them can be found in [I]).

Section M described the meta-model of the UML subset that designers can use
to model systems to be verified in the MADES approach. To facilitate formal
verification of MADES models, this subset of UML must be given a semantics
based on a formalism that is at the same time flexible, to capture the meaning
of heterogeneous diagrams, and decidable, to allow for fully automated verifica-
tion. In addition, the formalism must be able to express the timing constraints
described in the MADES notation through clocks. Given such requirements, the
underlying formalism used in the MADES approach is the TRIO metric tempo-
ral logic described in Section Bl and in particular the decidable subset thereof
that is supported by the Zot bounded model/satisfiability checker (hence the
need to specify a time bound for the verification phase, as shown in Figure ().

Towards the UML-Based Formal Verification of Timed Systems 271

Finally, let us point out that, in the MADES approach, the property to be
verified for the system can be expressed in two different ways. The first one
is through the underlying formalism which is used to formalize the system (in
our case, TRIO); this, however, would be against the idea that the user should
never see the underlying formal notation. The second one is through a UML-
based graphical notation that expresses the property of interest and that can
be translated into the underlying formalism. The set of properties that can be
expressed in TRIO is bigger than the set of properties that can be expressed
through the UML-like notation. However UML hides the complexity of the TRIO
language to the user. The UML-like graphical notation is still on-going research,
thus this aspect of the work flow will not be discussed in this paper; some
considerations in this regard can be found in [I][2].

3 TRIO and Zot

TRIO [7] is a first-order linear temporal logic that supports a metric on time.
TRIO formulae are built out of the usual first-order connectives, operators, and
quantifiers, as well as a single basic modal operator, called Dist, that relates the
current time, which is left implicit in the formula, to another time instant: given
a time-dependent formula F' (i.e., a term representing a mapping from the time
domain to truth values) and a (arithmetic) term ¢ indicating a time distance (ei-
ther positive or negative), the formula Dist(F, t) specifies that F' holds at a time
instant whose distance is exactly ¢ time units from the current instant. Dist(F,)
is in turn also a time-dependent formula, as its truth value can be evaluated for
any current time instant, so that temporal formulae can be nested as usual.
While TRIO can exploit both discrete and dense sets as time domains, in this
paper we assume the standard model of the nonnegative integers IN as discrete
time domain. For convenience in the writing of specification formulae, TRIO
defines a number of derived temporal operators from the basic Dist, through
propositional composition and first-order logic quantification. Table [l defines
some of the most significant ones, including those used in this paper.

The TRIO specification of a system consists of a set of basic items, which are
primitive elements, such as predicates, time-dependent values, and functions,
representing the elementary phenomena of the system. The behavior of a system
over time is described by a set of TRIO formulae, which state how the items are
constrained and how they vary, in a purely descriptive (or declarative) fashion.

The goal of the verification phase is to ensure that the system .S satisfies some
desired property R, that is, that S = R. In the TRIO approach S and R are both
expressed as logic formulae X' and p, respectively; then, showing that S E R
amounts to proving that X' = p is valid.

TRIO is supported by a variety of verification techniques implemented in pro-
totype tools. In this paper we use Zot [17], a bounded satisfiability checker which
supports verification of discrete-time TRIO models. Zot encodes satisfiability

3http://home.dei.polimi.it/pradella/Zot

http://home.dei.polimi.it/pradella/Zot

272 L. Baresi et al.

Table 1. TRIO derived temporal operators

OPERATOR DEFINITION
Past(F,t) t > 0 A Dist(F, —t)
Futr(F,t) t > 0 A Dist(F,t)
Alw(F) Vd : Dist(F, d)
AlwP(F) Vd > 0 : Past(F, d)
AlwF(F) Vd > 0 : Futr(F, d)
SomF(F) 3d > 0 : Futr(F, d)
SomP (F) 3d > 0 : Past(F,d)
Lasted(F, t) vd € (0,t] : Past(F,d)
Lasts(F,t) vd € (0,t] : Futr(F,d)
WithinP(F, t) 3d € (0,t] : Past(F,d)
WithinF(F, t) 3d € (0,4] : Futr(F, d)
Since(F,G) 3d > 0: Lasted(F,d) A Past(G, d)

Until(F,G) 3d > 0: Lasts(F,d) A Futr(G, d)

(and validity) problems for discrete-time TRIO formulae as propositional satis-
fiability (SAT) problems, which are then checked with off-the-shelf SAT solvers.
More recently, we developed a more efficient encoding that exploits the features
of Satisfiability Modulo Theories (SMT) solvers [3]. Through Zot one can verify
whether stated properties hold for the modeled system (or parts thereof) or not;
if a property does not hold, Zot produces a counterexample that violates it.

4 A Verifiable Subset of UML

This section presents, through a set of UML class diagrams, the meta-model of
the verification notation. The meta-model is divided into the packages as shown
in Figure

The fundamental elements of the notation are grouped together in the core
package, which includes different class diagrams. core.diagrams (shown in Figure
M) describes the set of diagrams used in the verification workflow and how they
are related to one another. The MADES model is composed by Class diagrams,
Object diagrams, and Interaction Overview Diagrams (IOD). State diagrams
describe the behavior of the objects belonging to a certain class, and Sequence
diagrams show the details of the interactions between objects.

Diagram core.types (Figure[l) gives an overview of the data types that can be
used in the verification work flow. A TypedElement is an element of the system
that has a type. A type can be one of the classes declared in the class diagram, or
a DataType. A DataType can be a Primitive Type, an Array or an Enumeration.
Primitive types are Boolean, or Integer. An Array is an ordered list (of fixed
size) of Integers. An Enumeration is a finite set of Integers.

Towards the UML-Based Formal Verification of Timed Systems 273

] -]

ClassDiagram Core StateDiagram

<<mport-> <<import==

iAports i
T::JLTID > <<import>> <<import>>

—| . —l . _|

ObjectDi
IRol g SequenceDiagram 10D

Fig. 3. Metamodel packages

MadesModel
ClassDiagram (:T"/—f ;- \I/ 1.." 7| InteractionOverviewDiagram
ObjectDiagram
1“. T] T
Cla SequenceDiagram
StateDiagram e q . 9
. |Mame :String MName : String

Fig. 4. MADES metamodel: core.diagrams

Diagram core.events (shown in Figure [f]) defines what is an Event. Events
are directly translated into temporal logic predicates and define how the sys-
tem proceeds over time. Their temporal relationships will be precisely defined
in Section B} here, we simply list them with their informal meaning. ActivityS-
tart and ActivityFEnd occur in the time instants in which the IOD activity starts
and ends. DecisionPath and ForkPath correspond to the time instants in which
the IOD takes a certain path after a decision/fork operator. JoinEnd is the
time instant in which all the diagrams preceding a certain 10D Join operator
complete their execution. SDStart and SDEnd occur when a certain sequence
diagram starts/ends. SDAct is the time instant is which a certain sequence dia-
gram is ready to start. SDAct immediately precedes SDStart. MessageStart and
MessageEnd occur when a certain message starts/ends. EzOccStart and FEz-
OccEnd occur when a certain execution occurrence starts/ends. A TimeEvent
is a TimedInstantObservation in a certain sequence diagram (for details see
UML::CommonBehaviours::SimpleTime from [I6]). The time note @¢1 in Fig-
ure of Section [l shows an example of TimeFvent. Finally, Interrupt is the
time instant in which a certain interrupt (i.e., an event that causes activities in
an interruptible region of a IOD to exit, see [I6] for further details) occurs. The
rest of the metamodel describes how these events are associated to elements in
the various behavioral diagrams, as shown, for example, in Figure

274 L. Baresi et al.

Type has |TypedElement
1

]

Class DataType Enumeration

N

PrimitiveType Array
size : int

Name : String

size

g

Boolean Integer

Tu*

Fig. 5. MADES metamodel: core.types

ActivityStart | | ActivityEnd | DecisionPath | | ForkPath | |JoinEnd | (SDStart | |SDEnd | (SDAct

Event

MessageStart MessageEnd ExOccStart ExOccEnd TimeEvent | |Interrupt

Fig. 6. MADES metamodel: core.events

Diagram core.clocks (Figure[7]) defines the features of clocks. With respect to
the UML/MARTE notion of clocks, for formal verification purposes we deal only
with discrete clocks. Clock types are defined in the class diagram of a MADES
model. Class ClockType has a set of attributes that define specific features of the
clocks of that type (e.g., their period). A Clock has a ClockType and it can be
attached to objects, classes, and sequence diagrams. When a clock is attached
to an object (resp. class) the intuitive semantics is that the events related to
that object (resp. to the objects belonging to the class) will proceed with the
tick of this clock. When a clock is attached to a sequence diagram, all the events
of the objects inside the sequence diagram will proceed with the tick of this
clock (discrepancies between, for example, the clock of an object and that of a
sequence diagram in which that object appears can be highlighted and sorted
out during the verification phase).

The core package is completed with the core.expressions diagram (not shown
here for the sake of brevity), which defines what is a valid expression. Intuitively,

Towards the UML-Based Formal Verification of Timed Systems 275

Class ClockType
Mame : String .. | Period : Integer
3 x Drift : Boolean
0.1 MinValue : Integer
Clock | MaxValue : Integer
Name : Siring Increment : Integer
Name : String
0.1 0.1
i *
Object SequenceDiagram
Mame : String Name : String

Fig. 7. MADES metamodel: core.clocks

the MADES verification admits three types of expressions: MathematicalExpres-
sion, BooleanFExpression, TimeFEzpression. These expressions can be used in As-
signments, whose meaning is intuitive. More precisely, Mathematical Expressions
can be used in Assignments to variables of Integer type. BooleanExpressions can
be used in Assignment to variables of Boolean type, and everywhere a boolean
value is admitted (for example in the decision operator of the IOD). TimeEz-
pressions can be used to define time constraints between events.

The other packages of the MADES metamodel describe the single diagrams
in details. The MADES verification notation does not impose restrictions on
the operators of Class diagrams, nor on those of Object diagrams, for which we
refer to the UML specification [I6]. As shown in Figure § a SequenceDiagram
can contain: Messages, ExecutionOccurrences, TimeEvents, CombinedFragments
and Statelnvariants. RecursiveMessages are a special type of messages which
are used not only for self invocations, but also for assignments to variables of
Integer and Boolean type. Finally, TimeConstraints can be attached to sequence
diagrams to define relations between the time events defined in the diagram. A
TimeConstraint is a boolean expression made of Timelnequalities that relates
two different events with some inequality operator. If the sequence diagram is
inside an interruptible region of the IOD of the system, then TimeConstraints
may also refer to those interrupts (as an example see Figure [[2)). The diagram
of Figure B summarizes those concepts and shows the relations between the
operators of sequence diagram and the events associated to them. Those events
will be translated into temporal logic predicates together with the axioms that
define their precise semantics.

InteractionOverviewDiagrams (whose class diagram is not shown here for the
sake of brevity) can be seen as activity diagrams whose nodes are sequence di-
agrams. This very simple definition hides a number of details that are needed
in order to define a precise semantics. In particular, in the MADES metamodel
the SequenceDiagrams that are part of an InteractionOverviewDiagram have

276 L. Baresi et al.

\ T %asm

SequenceDiagram
[TimeConsiraint|__
——

[spstart| [sDEnd| [sDAct]
| | [1 |
[I L 1 1

Name : String
=7
Statelnvariant

hasEvent

ExecutionOccurrence

TimeNote
MessageEnd = 2cpyant = hasEvent
———

hasEvent

TimeEvent

Fig. 8. MADES metamodel: The main elements of sequence diagrams

one incoming and one outgoing flow, and they can be grouped together through
InterruptibleRegions. The FExceptionFEdge going out from the InterruptibleRegion
defines the name of the Interrupt associated with that region. This interrupt can
be caught by different InterruptNodes that go into the SequenceDiagram which is
responsible to continue the execution after that event. Figure [Tl shows an exam-
ple of InterruptibleRegion, which is associated with interrupt connTimeout that
is caught by the reconnect sequence diagram through a suitable InterruptNode.
Finally, regarding StateDiagrams (whose metamodel is not shown here) we
decided to keep the specification as simple as possible. In particular, a StateDi-
agram is a set of States. InitialState and FinalState are two particular kinds of
States. The Transition from one state to another can be triggered by the Fvents
of the system (i.e., those defined in Figure [d). Also, a Transition can be taken
only if its Guard is true. The Guard is a BooleanEzxpression (whose features are
described above). An example of state diagram is shown in Figure [3

5 From UML to Temporal Logic Formal Semantics

This section presents the MADES semantics through an example system, which
includes some desired properties to be verified. The system that is used to illus-
trate the modeling and verification features of the MADES approach is a simple
telephone system. After a brief description of the system, this section shows
how some meaningful UML diagrams are translated into their corresponding
temporal logic form according to the MADES semantics.

Towards the UML-Based Formal Verification of Timed Systems 277

5.1 Telephone System

The telephone system should provide the following features: At startup the sys-
tem should connect to the remote server and initialize the graphical user interface
(GUI). If the telephone is not correctly connected to the server, the GUT will not
be shown. The connection is attempted 3 times with a timeout of 10 seconds.
When the startup is finished, the system is ready to receive incoming calls and
SMSs. Incoming calls may arrive at any instant. Incoming SMSs are checked on
the server every 20 seconds by the telephone itself. If no reply is received by
the server within 10 seconds, the attempt is not repeated. If the download is
not completed within 10 seconds, the download is repeated. If the telephone is
idle (e.g. it is not performing any call, nor an SMS composition) and the user
presses a number, the number itself is shown on the screen and the telephone
waits for the remaining digits until the green button is pressed. If the red button
is pressed the system aborts the operation. If the SMS is not sent within 15
seconds, the operation is aborted. If the telephone is idle and the user presses
the ok button, then a textual interface is shown to compose the SMS. When
the ok button is pressed again the GUI waits for the telephone number and
when the ok button is pressed again the SMS is sent to the recipient. SMSs are
sent with tokens of 160 characters. The transmission time follows this formula:
trTime = length(SMS)/sigStrength 10sec, where sigStrength may be [1..5].

5.2 UML Diagrams and Their Formal Semantics

Figure [shows the class diagram of the system. The diagram is not itself trans-
lated into temporal logic, though it is used to determine the alphabet of the
formal model, that is, the actual predicates that appear in the formal model; for
example, from the names of the operations the corresponding events are defined.
The class diagram also contains some MADES-specific tags (e.g. the « Tl» stereo-
type) that will not be analyzed in this paper. The diagram is also used to define
the clock types of the system. For example, class SMSClockType defines a type
of clock whose period is 20, which will be used for the periodic SMS retrieval.
Figure [I0 shows the object diagram of the telephone system, which contains the
objects that are taken into consideration during the actual verification phase.
The number of objects (i.e., instances of classes described in the class diagram)
considered in the verification model must be finite, to allow for full automated
verification. The role of the object diagram, then, is to precisely define what in-
stances are present in the system model, and their (finite) numbers. For example,
the diagram of Figure [0 defines that there are six TransmissionThreads. These
objects are tagged as being a «sety. The semantics that is given in the MADES
approach to this stereotype is that, when an operation is invoked on one of the
objects of a set, the actual identity of the object is irrelevant, as the objects
all behave in the same manner. In the future, we will use such information to
optimize the verification phase, but we do not delve into this issue any further
in this paper. Figure [[0] also shows an instance of clock SMSClockType.

The Interaction Overview Diagram of Figure [[I] shows the startup of the
system. Sequence diagrams are used to group together macro-operations which

278 L. Baresi et al.

Init ConnectionThread Server
—c[*]- T
_sigStrenght: enum conntrial® int c[‘].. Connec_tranhread
<<Tl>> g: GUI _ <<TIs> it Init 0. -t[*]: TransmissionThread
| -<<Ti>>e: ConnectionThread | - <<TI>> s: Server -connect()
-connect() -disconnect()
1 -disconnect() -requestCall()
-checkSMS() -sendSMS()
1 -incomingCall() -getSMS()
GUI 1
-<<Tl>> i: Init o*
- SMSlen: int . - ; €CC|0CkType>>
ransmissioninrea
-lpadGUI() SMSClockType
-displaytime() B
-showlIncomingNumber() —pe.rlc 3
-showCallNumber() -receiveCallData() -drift: false
-showCallDuration() -handleCall{) -mln\ﬂ'alue:O‘
-getNumber() -getSMS() —maxVaIue:
-getChar() -sendSMS() -increment= 1

Fig. 9. Telephone System Class Diagram

are then combined together to obtain the complete system specification. Inter-
ruptible regions are used to stop the behaviors occurring inside a certain set of
sequence diagrams and continue elsewhere. In this particular example we model
the fact that while the telephone is performing the connection to the server it
may happen that a connection timeout occurs. In that case the connect sequence
diagram is stopped, and the reconnect sequence diagram continues the execution.

The temporal logic semantics of the diagram is generated as described in the
following. Each sequence diagram D, has three events, namely D, Act, D, Start,
D, End. Each event is translated into one temporal logic predicate, thus pred-
icate D, Act holds when the diagram is ready to start its execution, predicate
D, Start holds exactly one time unit later, and predicate D, End holds when the
diagram terminates. Depending on the operator that precedes diagram D, the
formula that defines D, Act may change; for reasons of brevity, a presentation
of the complete algorithm that manages all different cases is outside the scope
of this paper (we refer the interested reader to [2]). In the following we focus on
the definitions concerning some of the elements of Figure [Tl

When the whole diagram starts (i.e., predicate ActivityStart holds), the first
sequence diagram (i.e., init) is activated. In addition, diagram loadGUI is ac-
tivated when init ends, as represented by the fork operator between the two
diagrams. These properties are formalized by formulae (I)-().

InitAct < ActivityStart (1)
loadGUIAct < InitEnd (2)
connectAct < InitEnd V reconnect End (3)

Towards the UML-Based Formal Verification of Timed Systems 279

i:Init c: ConnectionThread s: Server

ig ght={1,2,3,4,5}

<<set>>: threadsetl
tl: TransmissionThread t2: TransmissionThread
g:GUI <<clock>>
SMSClock: SMSClockType
t3: TransmissionThread t4: TransmissionThread
<<set>>: threadset2
t5: TransmissionThread t6: TransmissionThread

Fig. 10. Telephone System Object Diagram

If we focus on the connect sequence diagram of Figure [[T, we notice that its
activation condition holds at the same time instant in which either diagram init
ends, or diagram reconnect ends. The reason is that connect is preceded by a
merge operator, thus both paths entering the latter may activate diagram con-
nect. One of those paths originates from a fork operator, but this is transparent
to the semantics. This is all formalized by formula ().

If, on the other hand, we analyze diagram run, its activation condition holds
exactly when the nodes preceding the join operator have finished their execution.
Formula () defines when the join ends (i.e., when the last between connect and
loadGui ends). Formula (@) states that diagram run is ready to start exactly in
the same time instant in which the join ends.

runAct < JoinlEnd (4)
JoinlEnd < (loadGUIEnd A Since(—Joinl End, connectEnd)) V
(connectEnd A Since(—Joinl End,loadGUIEnd)) (5)

To conclude this part of the semantics, formulae (@)-(7) define the relations
between the activation event and the start event of sequence diagram connect.
More precisely, D, Act holds when the enabling conditions are true. Then, if
the diagram is enabled and in the next time instant the activity has not ended,
D_,Start holds in the next time instant. Similar formulae hold for all other
diagrams in the figure (they can be obtained simply by replacing connect with
the name of the other diagrams, e.g., loadGUI).

connectAct N = Futr(ActivityEnd, 1) = Futr(connectStart, 1) (6)
connectStart = Past(connectAct, 1) (7)

280 L. Baresi et al.

init reconnect

-

Ev:connTime
out

Ev:digit
Button

Fig. 11. Telephone System Interaction Overview Diagram

Figure [[2 shows the connect sequence diagram in detail. The instance ¢ of Con-
nectionThread calls its own procedure connect() to start the connection to the
server. The time instant in which this connection procedure starts is marked
with the time note @¢1. Inside the connect() procedure the object ¢ invokes the
connect() procedure of the instance s of Server. After a while the reply message
is received and the sequence diagram ends. According to the system specification
the connection is attempted 3 times with a timeout of 10 seconds. To model the
connection timeout of 10 seconds we added a time constraint to the sequence
diagram. A time constraint relates two events with some temporal inequality
operator. In that case the semantics is that if the timeout occurs, then it must
occur exactly 10 time units after @¢1 (more precisely, the constraint says that
the difference between the time of the timeout and the time of event Qt1 is
exactly 10). Finally, the alternative combined fragment is added to specify that
the connection is attempted only if variable conntrial (which is an attribute of
class ConnectionThread) is strictly less than 3.

The temporal logic semantics starts from the events that are extracted from
the diagram. In this case we have the following events: connectSDStart, con-
nectSDFEnd, which correspond, respectively, to the start and end of the whole
diagram; t1Fvent, which represents the time instant in which event @t1 occurs;
c.connect1Start, c.connect1End, which correspond to the start and end of re-
cursive message connect (i.e., the invocation of operation connect being made
by ¢ on itself); c.exOcc1Start, c.exOcclEnd, which represent the start and end
of the execution occurrence that covers the lifeline of instance c; s.connect1Start,
s.connect]End, which correspond, respectively, to message (i.e., invocation)

Towards the UML-Based Formal Verification of Timed Systems 281

1
| @connTimeout- 1 connect |
] e

| @t1=10 !

L ———
| c: ConnectionThread |

Alt{conntrial<3}

@tl

Connect()

(J3mauuca

===~ "repiy()

Fig. 12. Telephone System SD connect

connect being sent by object ¢ to object s, and to the message being received
by object s; s.connect1ReplyStart, s.connectlReplyEnd, which correspond, re-
spectively, to message reply (i.e., the reply to the invocation of operation con-
nect) being sent by object s, and to the message being received by object c¢;
s.ExOcclStart, s.ExOcclEnd, which represent the start and end of the execu-
tion occurrence that covers the lifeline of instance s. Notice that the events
related to the execution occurrences and to the messages are labeled with some
index. This is due to the fact that each object can have more than one execution
occurrence in the system, and the temporal logic predicates must distinguish
between them. The same holds for each method invocation. The events which
are placed graphically on the same y-axis of the same lifeline hold on the same
time instant, no matter what the other axioms state. This is defined by formulae

®-@D.

t1Event < c.connectlStart A c. ExOcclStart (8)
s.connectl End < s.ExOcclStart 9)
s.connectl ReplyStart < s.ExOccl End (10)
c.connectl End < c¢.ExOccl End (11)

Formulae (I2)-(13), instead, enforce the ordering between the different events
of the diagram. In particular, the fact that an event Ev; is followed by another
event Fv; is stated by formula (I2). On the other hand, formula (I3]) entails
that we must have an occurrence of Fv; in the past in order to have Ev; now.
In addition formula ([I2) defines that, if Fv; holds now, then we must consider
the following possibilities: either it exists in the future a time instant in which
Ewv; holds and for all the time instants between Ev; and Fv; the sequence di-
agram is not interrupted, or it exist in the future a time instant in which the
diagram is interrupted, and until that time Ev; does not occur. The SD can
be interrupted for two reasons: either because the interaction overview diagram

282 L. Baresi et al.

ends, thus Activity End holds, or because an interrupt associated to that diagram
occurs. Formula (I3]) states similar properties for the past.

Ev; = Until(—~Ev; A - ActivityEnd A —~Interrupt;... A =~Interrupty, Ev;)
Vv (12)
Until(—Ev; A ~Ev;, ActivityEnd V Interrupt,... V Interrupty)
Evj = Since (~Evj A =Interrupt;... A ~Interrupty A —ActivityEnd, (13)
Ev;)

Considering the diagram of Figure [[2 formulae (I2))-(I3]) are instantiated with
the following events:

E’Ui Evj

c.connect1Start s.connect1Start
s.connect1Start s.connect1End
s.connect1Start s.connect1ReplyEnd
s.connect1End s.connect1ReplyStart
s.connect1ReplyEnd c.connect1End
c.connect1End connectSDEnd

Moreover in this case we have that the set Interrupt;...Interrupty is reduced to
connT'imeout.

Because the diagram includes an Alternative combined fragment the order-
ing between connectSDStart and the first event of the combined fragment is
treated separately. Namely, we specify that t1FEvent follows connectSDStart
only if conntrial is less than 3. This means that conntrial < 3 is added to
the precondition of formula ([I2)) instantiated with Ev; = connectSDStart and
Ev; = c.connectlStart. Finally, we instantiate again formula (I2) with Ev;, =
connectSDStart and Ev; = connectSDEnd with conntrial >= 3 included in
the sufficient condition as before.

The time constraint attached to the diagram is translated into formula (I4)
which states that connTimeout occurs exactly 10 time units after t1FEwvent.
Notice that according to formula (§]) this is the same time instant in which
the connect self-recursive message starts. Also notice that if the connTimeout
occurs when the diagram is finished this does not affect the normal behavior of
the sequence diagram according to formulae (I2)-(I3)).

connT'imeout < Past(t1Event, 10) (14)

State diagrams complete the picture of what is taken into consideration by the
MADES formal verification notation. The ConnectionThread state diagram is
composed of five states (see Figure [[3)). The initial state goes into the start
state. Here the object waits the beginning of the connection procedure. The
self-message c.connect() moves it from start to connecting. The s.connect()
procedure call moves it to the Waiting state. If the connTimeout interrupt
occurs it goes to reconnect and then to connecting again with c.connect(). If
connT'imeout does not occur, the c.connectEnd event moves the object into

Towards the UML-Based Formal Verification of Timed Systems 283

c.connectStart
c.connectStart
start connecting reconnect

Waiting
s.connectSta nﬂmmeout

c.connectEnd

@

Fig. 13. Telephone System ConnectionThread State Diagram

the connected state. Let us focus on the definition of the behavior that makes
the state machine enter and exit the connecting state. Predicate ¢ Connecting
represents when the diagram is in state connecting. Then, formulae (I5)-(I6)
state, essentially, that s.connectStart is the only event responsible for going out
of the connecting state. Formula [I7] instead, enforces the fact that the states
are mutually exclusive. The same kind of formulae hold for the other states of
the state diagram. Additional formulae, not shown here for the sake of brevity,
define that in the first time instant the machine is in the initial state, then it
non-deterministically enters the start state because no event is defined in the
transition label.

¢ Connecting A Futr(c Waiting, 1) = s.connectStart (15)
¢ Connecting A Futr(c Connecting, 1) = —s.connectStart (16)
¢ Connecting = —c Start A ~¢ Waiting A (17)

—¢ Reconnect \ —¢ Connected

Finally, the complete formal model X' that arises from the diagrams describing
the system is given by the simple logic conjunction of all formulae. The result is a
model that includes all features and constraints defined by the various diagrams,
which allows us to formally perform various checks through tools such as the Zot
bounded model/satisfiability checker.

A first kind of verification that can be carried out is a check of the consis-
tency of the model obtained by the combination of the various diagrams. This
corresponds to determining whether there exists at least an execution that is
compatible with the system model, a task that can be carried out through the
Zot tool simply by checking whether formula X' is satisfiable or not.

As depicted in Figure Bl the MADES approach also allows users to define
temporal properties of interest of the system, to be checked through formal ver-
ification techniques. For example, in the case of the telephone system presented
in this section, a property we may be interested in is the following:

”The telephone start-up lasts less than 30 seconds”

To express this property formally in a graphical, user-friendly, way, we are cur-
rently working on a visual notation that is inspired by sequence diagrams. The

284 L. Baresi et al.

definition of the precise syntax and semantics of such notation is left for future
work. Here, we simply note that, since the semantics of the MADES verifica-
tion notation is given in terms of a formal language, properties of interest can
always be expressed using this underlying formalism, in our case the TRIO met-
ric temporal logic. In the case of the temporal property mentioned above, its
formalization in the TRIO language could be the following

initSDStart = WithinF (runSDStart, 30) (18)

where initSDStart and runSDStart are, respectively, the events associated
with the beginning of the init and run sequence diagrams.

A wide range of temporal properties, of which (IJ)) is just a simple example,
can be defined by using the full set of features of the TRIO temporal logic
to predicate on the events and attributes of the system modeled through the
MADES notation. The properties that users are interested in verifying, however,
are often a small subset of those that can be expressed through the full power
of the TRIO language. For this reason, the graphical notation we are developing
within the MADES project to express properties to be verified will trade the
full expressive power of the TRIO language for a higher degree of simplicity and
intuitiveness of the representation of properties of interest.

6 Related Work

The vast majority of works that ascribe UML with a formal semantics usually
concentrate on individual diagrams. Only few approaches tried to give a seman-
tics that addresses different diagrams. For example, Hansen et al. [I3] describe
a translation of a subset of executable UML (xUML) into the process algebraic
specification language mCRL2. The subset consists of class diagrams, state ma-
chines, and an action language that complies with the UML action semantics.
This approach does not take into account sequence diagrams and it only con-
centrates on well-defined fairness and safety properties.

Diethers and Huhn [9] present Vooduu, a tool to automatically verify whether
a set of statechart diagrams that model a system satisfies communication and
timing constraints given as sequence diagrams. Both types of diagrams are trans-
lated into timed automata for the verification. Also Damm et al. [§] define the
semantical foundation of a sublanguage of UML that is mostly based on state-
chart diagrams. The semantics is given in terms of symbolic transition systems,
and it mostly addresses the concurrency and communication between objects.

Burmester et al. [5] exploit real-time component diagrams and real-time stat-
echart diagrams to model the static and dynamic parts of a system. These di-
agrams are formalized in terms of hierarchical timed automata, which allow
the authors to run compositional verifications of partial models. Saldhana and
Shatz [19] describe a methodology to develop a Petri net of the system. They
derive an Object Petri Net Model (OPM) from statechart diagrams connected
through collaboration diagrams. The analysis is carried out by exploiting the
usual techniques for Petri nets.

Towards the UML-Based Formal Verification of Timed Systems 285

As mentioned above there are many more works that focus on the separate
formalization of single diagrams. Hammal [I2] defines a method for translating
statechart diagrams into Interval Timed Petri Nets (ITPN) to run consistency
analyses. The ITPN enables the analysis of performance and time properties
of complex systems. Storrle [20] investigates the alignment activity diagrams
to Petri nets. It provides a mapping of the basic elements of activity diagrams
onto Petri nets and discusses the problems that arise from this translation. Es-
huis [10] proposes two translations from activity diagrams to the input language
of NuSMV, a well-known symbolic model checker. Both translations map activ-
ity diagrams into finite state machines and are inspired by existing semantics
for statechart diagrams. Finally, Cengarle and Knapp [6] investigate interac-
tion diagrams and provide an operational semantics for them, while Tebibel [4]
uses hierarchical colored Petri nets to define a formal semantics for interaction
overview diagrams.

7 Conclusions

This paper builds on the need for formal UML dialects for the design and valida-
tion of timed systems. It starts from the MADES modeling notation, which is a
particular extension to UML that borrows concepts from SysML and MARTE,
and it proposes a formal semantics for a verification-oriented version of the lan-
guage. The verification notation can be seen as an “abstract” notation for the
complete design notation. It filters out irrelevant elements and ascribes a formal
semantics to the other ones. The formal semantics covers a wide range of UML
diagrams and concentrates on time-related aspects. The formal semantics and
the verification tools will be used in the MADES project for the early verification
of embedded systems.

The paper outlines the formal semantics for the verification notation based on
the TRIO temporal logic. The definition is provided in a modular and method-
ological way to let the reader understand how the different pieces fit together.
Finer-grained improvements, optimizations, and tailoring are part of our on-
going work. The complete verification tool suite implementing the approach de-
scribed in this paper will be tested for usability by the industrial partners of the
MADES project.

Acknowledgments. This research was supported by the FEuropean Commu-
nity’s Seventh Framework Program (FP7/2007-2013) under grant agreement
n. 248864 (MADES), and by the Programme IDEAS-ERC, Project 227977-
SMScom.

References

1. Baresi, L., Morzenti, A., Motta, A., Rossi, M.: D3.1 domain-specific and user-
centred verification. Technical report, MADES Consortium (2010)

2. Baresi, L., Morzenti, A., Motta, A., Rossi, M.: D3.3 formal dynamic semantics of
the modelling notation. Technical report, MADES Consortium (2011)

286

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

L. Baresi et al.

Bersani, M.M., Frigeri, A., Pradella, M., Rossi, M., Morzenti, A., San Pietro, P.:
Bounded reachability for temporal logic over constraint systems. In: Proc. of the
Int. Symp. on Temporal Representation and Reasoning (TIME), pp. 43-50 (2010)

. Bouabana-Tebibel, T.: Semantics of the interaction overview diagram. In: Proc. of

the IEEE Int. Conf. on Information Reuse Integration (IRI), pp. 278-283 (2009)

. Burmester, S., Giese, H., Hirsch, M., Schilling, D., Tichy, M.: The fujaba real-time

tool suite: model-driven development of safety-critical, real-time systems. In: Proc.
of the 27th Int. Conf. on Soft. Eng., ICSE 2005, pp. 670-671 (2005)

. Cengarle, M.V., Knapp, A.: Operational semantics of UML 2.0 interactions. Tech-

nical Report TUM-10505, Technische Universitat Mnchen (2005)

. Ciapessoni, E., Coen-Porisini, A., Crivelli, E., Mandrioli, D., Mirandola, P.,

Morzenti, A.: From formal models to formally-based methods: an industrial ex-
perience. ACM TOSEM 8(1), 79-113 (1999)

. Damm, W., Josko, B., Pnueli, A., Votintseva, A.: A discrete-time uml semantics

for concurrency and communication in safety-critical applications. Sci. Comput.
Program. 55, 81-115 (2005)

. Diethers, K., Huhn, M.: Vooduu: Verification of object-oriented designs using up-

paal. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 139-143.
Springer, Heidelberg (2004)

Eshuis, R.: Symbolic model checking of UML activity diagrams. ACM Trans. Softw.
Eng. Methodol. 15(1), 1-38 (2006)

Eshuis, R., Wieringa, R.: Tool support for verifying UML activity diagrams. IEEE
Trans. Software Eng. 30(7), 437-447 (2004)

Hammal, Y.: A formal semantics of uml statecharts by means of timed petri nets.
In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 38-52. Springer, Heidelberg
(2005)

Hansen, H., Ketema, J., Luttik, B., Mousavi, M., van de Pol, J.: Towards model
checking executable uml specifications in mecrl2. Innovations in Systems and Soft-
ware Engineering 6, 83-90 (2010)

Object Management Group. UML Profile for Modeling and Analysis of Real-Time
Embedded Systems. Technical report, OMG, formal/2009-11-02 (2009)

Object Management Group. OMG Systems Modeling Language (OMG SysML).
Technical report, OMG, formal/2010-06-01 (2010)

Object Management Group. OMG Unified Modeling Language (OMG UML), Su-
perstructure. Technical report, OMG, formal/2010-05-05 (2010)

Pradella, M., Morzenti, A., San Pietro, P.: The symmetry of the past and of the
future: bi-infinite time in the verification of temporal properties. In: Proceedings
of ESEC/SIGSOFT FSE, pp. 312-320 (2007)

Pradella, M., Rossi, M., Mandrioli, D.: ArchiTRIO: A UML-compatible language
for architectural description and its formal semantics. In: Wang, F. (ed.) FORTE
2005. LNCS, vol. 3731, pp. 381-395. Springer, Heidelberg (2005)

Saldhana, J.A., Shatz, S.M.: Uml diagrams to object petri net models: An approach
for modeling and analysis. In: Proc. of SEKE 2000, pp. 103-110 (2000)

Storrle, H., Hausmann, J.H.: Towards a formal semantics of UML 2.0 activities.
In: Software Engineering. Lec. Not. in Inf, vol. 64, pp. 117-128 (2005)

	Towards the UML-Based Formal Verification
of Timed Systems
	Introduction
	Modeling and Verification Workflow
	TRIO and Zot
	A Verifiable Subset of UML
	From UML to Temporal Logic Formal Semantics
	Telephone System
	UML Diagrams and Their Formal Semantics

	Related Work
	Conclusions
	References

