

Lecture Notes in Computer Science 6957
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Bernhard K. Aichernig Frank S. de Boer
Marcello M. Bonsangue (Eds.)

Formal Methods
for Components
and Objects

9th International Symposium, FMCO 2010
Graz, Austria, November 29 - December 1, 2010
Revised Papers

13

Volume Editors

Bernhard K. Aichernig
Graz University of Technology
Institute for Software Technology
Inffeldgasse 16b
8010 Graz, Austria
E-mail: aichernig@ist.tugraz.at

Frank S. de Boer
Centre for Mathematics and Computer Science, CWI
Science Park 123
1098 XG Amsterdam, The Netherlands
E-mail: f.s.de.boer@cwi.nl

Marcello M. Bonsangue
Leiden University
Leiden Institute of Advanced Computer Science
P.O. Box 9512
2300 RA Leiden, The Netherlands
E-mail: marcello@liacs.nl

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-25270-9 e-ISBN 978-3-642-25271-6
DOI 10.1007/978-3-642-25271-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number:

CR Subject Classification (1998): D.2.4, D.2, D.3, F.3, D.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Large and complex software systems provide the necessary infrastructure in all
industries today. In order to construct such large systems in a systematic manner,
the focus in development methodologies has switched in the last two decades from
functional issues to structural issues: both data and functions are encapsulated
into software units which are integrated into large systems by means of various
techniques supporting reusability and modifiability. This encapsulation principle
is essential to both the object-oriented and the more recent component-based
software engineering paradigms.

Formal methods have been applied successfully to the verification of medium-
sized programs in protocol and hardware design. However, their application to
the development of large systems requires more emphasis on specification, mod-
eling and validation techniques supporting the concepts of reusability and mod-
ifiability, and their implementation in new extensions of existing programming
languages like Java.

The 9th Symposium on Formal Methods for Components and Objects (FMCO
2010) was held in Graz, Austria, from November 29 to December 1, 2010. The
venue was Hotel Weitzer. FMCO 2010 was realized as a concertation meeting
of European projects focussing on formal methods for components and objects.
This volume contains 20 revised papers submitted after the symposium by the
speakers of each of the following European projects involved in the organization
of the program:

– The FP7-IST project AVANTSSAR on automated validation of trust and
security of service-oriented architectures. The contact person is Luca Viganò
(University of Verona, Italy).

– The FP7-IST project DEPLOY on industrial deployment of advanced system
engineering methods for high productivity and dependability. The contact
person is Alexander Romanovsky (Newcastle University, UK).

– The ESF-COST Action IC0701 on formal verification of object-oriented soft-
ware. The contact person is Bernhard Beckert (Karlsruhe Institute of Tech-
nology, Germany).

– The FP7-IST project HATS on highly adaptable and trustworthy software
using formal models. The contact person is Reiner Hähnle (Chalmers Uni-
versity of Technology, Sweden).

– The FP7-SST project INESS on an integrated European railway signaling
system. The contact person for work relating to FMCO is Jim Woodcock
(University of York, UK).

– The FP7-IST project MADES on a model-driven approach to improve the
current practice in the development of embedded systems. The contact per-
son is Alessandra Bagnato (TXT e-solutions, Italy).

VI Preface

– The FP7-IST project MOGENTES on model-based generation of tests for
dependable embedded systems. The contact person for work relating to
FMCO is Bernhard Aichernig (Graz University of Technology, Austria).

– The FP7-IST project MULTIFORM on integrated multi-formalism tool sup-
port for the design of networked embedded control systems. The contact
person for work relating to FMCO is Christian Sonntag (TU Dortmund,
Germany).

– The FP7-IST project QUASIMODO on quantitative system properties in
model-driven design of embedded systems. The contact person is Kim G.
Larsen (Aalborg University, Denmark).

The proceedings of the previous editions of FMCO have been published as vol-
umes 2852, 3188, 3657, 4111, 4709, 5382, 5751, and 6286 of Springer’s Lecture
Notes in Computer Science. We believe that these proceedings provide a unique
combination of ideas on software engineering and formal methods which reflect
the expanding body of knowledge on modern software systems.

Finally, we thank all authors for the high quality of their contributions, and
the reviewers for their help in improving the papers for this volume.

July 2011 Bernhard K. Aichernig
Frank de Boer

Marcello Bonsangue

Organization

FMCO 2010 was organized by the Institute for Software Technology, Graz Uni-
versity of Technology, Austria, in collaboration with the Centrum voor Wiskunde
en Informatica (CWI), Amsterdam, and the Leiden Institute of Advanced Com-
puter Science, Leiden University, The Netherlands.

Program Organizer

Bernhard K. Aichernig Graz University of Technology, Austria

Steering Committee

Frank de Boer CWI and Leiden University, The Netherlands
Marcello Bonsangue Leiden University, The Netherlands
Stefan Hallerstede University of Düsseldorf, Germany
Michael Leuschel University of Düsseldorf, Germany
Eric Madelaine INRIA Méditérannée, France

Local Organization at Graz University of Technology

Bernhard K. Aichernig (Chair)
Harald Brandl
Arabella Gaß
Elisabeth Jöbstl
Petra Pichler
Herbert Pöckl
Stefan Tiran
Benedict Wright

Sponsoring Institutions

European FP7 project MOGENTES
Graz University of Technology
Graz Convention Bureau

Table of Contents

The AVANTSSAR Project

ASLan++ — A Formal Security Specification Language for Distributed
Systems . 1

David von Oheimb and Sebastian Mödersheim

Orchestration under Security Constraints . 23
Yannick Chevalier, Mohamed Anis Mekki, and Michaël Rusinowitch

Customizing Protocol Specifications for Detecting Resource Exhaustion
and Guessing Attacks . 45

Bogdan Groza and Marius Minea

The ESF Cost Action IC0701

Improving the Usability of Specification Languages and Methods for
Annotation-Based Verification . 61

Bernhard Beckert, Thorsten Bormer, and Vladimir Klebanov

Program Specialization via a Software Verification Tool 80
Richard Bubel, Reiner Hähnle, and Ran Ji

The DEPLOY Project

Model–Based Analysis Tools for Component Synthesis 102
Luigia Petre, Kaisa Sere, and Leonidas Tsiopoulos

Shared Event Composition/Decomposition in Event-B 122
Renato Silva and Michael Butler

The HATS Project

ABS: A Core Language for Abstract Behavioral Specification 142
Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer,
Rudolf Schlatte, and Martin Steffen

A Component Model for the ABS Language . 165
Michaël Lienhardt, Ivan Lanese, Mario Bravetti, Davide Sangiorgi,
Gianluigi Zavattaro, Yannick Welsch, Jan Schäfer, and
Arnd Poetzsch-Heffter

X Table of Contents

Compositional Algorithmic Verification of Software Product Lines 184
Ina Schaefer, Dilian Gurov, and Siavash Soleimanifard

Variability Modelling in the ABS Language . 204
Dave Clarke, Radu Muschevici, José Proença, Ina Schaefer, and
Rudolf Schlatte

The INESS Project

Automated Verification of Executable UML Models 225
Helle Hvid Hansen, Jeroen Ketema, Bas Luttik,
MohammadReza Mousavi, Jaco van de Pol, and
Osmar Marchi dos Santos

Verification of UML Models by Translation to UML-B 251
Colin Snook, Vitaly Savicks, and Michael Butler

The MADES Project

Towards the UML-Based Formal Verification of Timed Systems 267
Luciano Baresi, Angelo Morzenti, Alfredo Motta, and Matteo Rossi

The MOGENTES Project

Generic Fault Modelling for Fault Injection . 287
Rickard Svenningsson, Henrik Eriksson, Jonny Vinter, and
Martin Törngren

Tightening Test Coverage Metrics: A Case Study in Equivalence
Checking Using k-Induction . 297

Alastair F. Donaldson, Nannan He, Daniel Kroening, and
Philipp Rümmer

The MULTIFORM Project

The Hierarchical Compositional Interchange Format 316
Damian Nadales Agut, Bert van Beek, Harsh Beohar,
Pieter Cuijpers, and Jasper Fonteijn

Application of Model-Checking Technology to Controller Synthesis 336
Alexandre David, Jacob Deleuran Grunnet, Jan Jakob Jessen,
Kim Guldstrand Larsen, and Jacob Illum Rasmussen

Table of Contents XI

The QUASIMODO Project

Testing Real-Time Systems under Uncertainty . 352
Alexandre David, Kim Guldstrand Larsen, Shuhao Li,
Marius Mikucionis, and Brian Nielsen

Model-Checking and Simulation for Stochastic Timed Systems 372
Arnd Hartmanns

Author Index . 393

ASLan++ — A Formal Security Specification

Language for Distributed Systems

David von Oheimb1 and Sebastian Mödersheim2

1 Siemens Corporate Technology, IT Security, Munich, Germany
David.von.Oheimb@siemens.com, ddvo.net

2 DTU Informatics, Technical University of Denmark, Lyngby, Denmark
samo@imm.dtu.dk, imm.dtu.dk/~samo

Abstract. This paper introduces ASLan++, the AVANTSSAR Specifi-
cation Language. ASLan++ has been designed for formally specifying dy-
namically composed security-sensitive web services and service-oriented
architectures, their associated security policies, as well as their security
properties, at both communication and application level.

We introduce the main concepts of ASLan++ at a small but very in-
structive running example, abstracted form a company intranet scenario,
that features non-linear and inter-dependent workflows, communication
security at different abstraction levels including an explicit credentials-
based authentication mechanism, dynamic access control policies, and
the related security goals. This demonstrates the flexibility and expres-
siveness of the language, and that the resulting models are logically ad-
equate, while on the other hand they are clear to read and feasible to
construct for system designers who are not experts in formal methods.

Keywords: services, security, specification language, formal analysis.

1 Introduction

Formal Security Analysis. Security in distributed systems such as web ser-
vices and SOA is very difficult to achieve, because often the security problems
are very subtle. Even systems that are simple to describe (such as the famous
three-line Needham-Schroeder Public Key protocol) may have weaknesses that
go unnoticed for years even when the system has been carefully studied [9].
Formal specification and verification of such systems can help to uncover weak-
nesses before they can be actually exploited. Especially automated verification
tools can help to find the needle in the haystack — one trace of the system
that violates the security goals among an enormous number of traces that are
fine.

Over the last decade, formal verification for security has made a lot of progress.
In the late 90s, automated protocol verification tools began to emerge that fo-
cussed on simple security protocols that can be described by an exchange of
messages (e.g., in Alice&Bob-style notation). Despite being small systems, their
verification is very challenging, in particular considering that an intruder has an

B.K. Aichernig, F.S. de Boer, and M.M. Bonsange (Eds.): FMCO 2010, LNCS 6957, pp. 1–22, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

ddvo.net
imm.dtu.dk/~samo

2 D. von Oheimb and S. Mödersheim

unbounded choice in constructing messages, which may involve algebraic prop-
erties of the cryptographic primitives. Moreover one cannot give a bound on
the number of sessions that can be executed in parallel. These problems are
now well understood, both theoretically in terms of complexity and decidabil-
ity [21,12,15], and in terms of methods and tools that are practically feasible
automated verification [8,1,13,16].

Limitations of Security Protocol Analysis. The focus of simple security
protocols is however quite limited, ignoring a lot of aspects that play a crucial
role in distributed systems and that often are relevant for security.

The first very common aspect that falls out of the simple structure of security
protocols is non-linear communication. For instance, a (web-) server typically
listens for requests that must be in one of several types of formats; depending on
the request, the server will start an appropriate workflow, possibly contacting
other servers that implement subtasks of the workflow, and then finally give a
response to client who sent the initial request.

This brings us immediately to a second aspect: the described transaction may
sometimes not be independent from all other transactions, but for instance may
be related via dynamic distributed state. For instance, in case of an online shop,
a database maintained by the server may contain the set of all processed orders
and their status, the set of all registered customers, and other related informa-
tion. Processing different requests may depend on this database, for instance a
registered user can send a request to see all her recent orders — provided the
user can authenticate herself by username and password or maybe by a cookie.
Another subsequent request could then be to cancel or change an order that has
not yet been shipped. These aspects are completely outside the realm of simple
security protocols where different sessions are essentially independent and the
only information shared between different sessions are static long-term keys.

A third important aspect concerns the relation to dynamic security policies.
For example, when a server receives a request from a client to access a resource
it controls, it may need to check whether the particular client has the necessary
access rights. These access rights may not be static but may for instance depend
on who is a member of the group that owns a particular resource, and these
memberships may change over the time. The change of group memberships may
itself be transactions of the system that is again governed by some access control
policies, e.g., only members of a certain role, say manager, are authorized to
change group memberships.

AVANTSSAR and Its Specification Language. The EU-funded Project
AVANTSSAR has been concerned with developing a formal specification lan-
guage and automated verification methods and tools to handle systems at de-
sign level in which all these three aspects are relevant: non-linear work-flow,
relationships between workflows (for instance via databases), and access control
policies. In this paper, we describe the AVANTSSAR Specification Language

A Formal Security Specification Language for Distributed Systems 3

ASLan++ [4], which has been developed as a joint effort by the partners of the
project. The design goal of ASLan++ were

1. expressiveness sufficient to describe the security-relevant aspects of service-
oriented architectures as described above,

2. ease of use for systems designers, in particular being close to the way design-
ers think about and describe such systems, allowing to abstract from details
whenever they are not relevant or can be “factored out”,

3. compatibility with existing and emerging verification methods so that au-
tomatically analyzing specifications is feasible at least for small number of
parallel processes, without being biased to a particular method.

Structure of This Paper. In this paper, we discuss the main concepts of
ASLan++ and how they can be used for modeling the most relevant aspects of
service-oriented architectures. We also briefly discuss the rationale behind some
design decisions and some consequences for the verification methods, drawing in
particular from our experience in modeling a number of larger case studies.

For introducing ASLan++, we employ a small but very instructive running
example specification. Its full text may be found in the appendix, while in the fol-
lowing sections we describe it piece-by-piece, progressing from basic structuring
of the specification over its procedural aspects to security policies, communica-
tion properties, and security goals.

The example describes part of a company intranet scenario. Employees may
access files according to a dynamic access control policy. A central server keeps
track of the access rights. Both managers and employees can influence the
policy.

2 Specification Structure and Execution

2.1 Specifications

An ASLan++ specification of a system and its security goals consists of a hi-
erarchy of entities. An entity may import other entities contained in separate
files, which in turn contain a hierarchy of entity declarations. The top-level en-
tity, usually called Environment, serves as the global root of the system being
specified, similarly to the “main” procedure of a program. In our example spec-
ification, the Environment has two sub-entities: Session and Employee, where
the former has in turn two sub-entities: Server and Manager. The Manager en-
tity, for example, is used to describe the behavior of any honest manager as well
as the security requirements that can be stated from her perspective.

2.2 Entities and Agents

Entities are the major ASLan++ building blocks, which are similar to classes in
Java or roles in HLPSL [10] and other security protocol specification languages.
Entities are a collection of declarations and behavior descriptions. They can have
parameters and local variables, with the usual nested scoping w.r.t. sub-entities.

4 D. von Oheimb and S. Mödersheim

Entities are like blueprints that can be instantiated to any number of processes
(or threads), each executing the body of the entity. With the exception of sets,
the parameters of an entity have call-by-value semantics: the entity obtains a
copy of the values and may change them without side-effects for the “calling”
process. On the other hand, one can easily model shared data [4, §2.4].

Each entity has an explicit or implicit formal parameter Actor, which is sim-
ilar to this or self in object-oriented programming languages. The value of
Actor is the name of the agent playing the role defined by the entity. This is
important for defining the security properties of the entity.

The entity and instance structure of our example is as follows, where entity
and variable names are uppercase, while constant and type names are lower-case.
ASLan++ comments start with a “%” symbol and extend until end of the line.

entity Environment {
...
entity Session (M, S: agent) {

entity Server(M, Actor: agent) {
...

}
entity Manager (Actor , S: agent) {

...
}
body { % of Session

...
new Server (M,S);
new Manager (M,S);

}
}
entity Employee (Actor , S: agent) {

...
}
body { % of Environment

...
any M. Session (M, centralServer);
new Employee (e1, centralServer);
new Employee (e2, centralServer);

}
}

There is (at least) one instance of entity Session, each invoked by a statement
any M. Session(M,centralServer) (described later). It has two formal pa-
rameters (of type agent): M refers to the agent playing the manager role, while
S holds the name of the server. Each session launches in parallel a thread of the
Server and a Manager instance, by statements like new Manager (M,S). The
session(s) runs in parallel with two (or more) Employee instances.

The Manager entity has two parameters: Actor is used to refer to herself, while
S holds the name of the server she is going to interact with. The parameters of
the Employee entity are analogous to Manager.

Instances of the Server entity will actually obtain the name of the manager
via the manager’s messages described below. Still, for the sake of relating entities
for the security goals, we need to give M, the variable that will hold the manager’s
agent name, as a formal parameter of Server. The other parameter of Server
is, as usual, the Actor.

A Formal Security Specification Language for Distributed Systems 5

Note that while each instance of Manager and Employee (typically) has a dif-
ferent agent playing the respective role, for example referred to by the constants
e1 and e2 used for employees, there is just a single constant centralServer used
as actor of the Server entity. This is how we model that the server is global.

2.3 Execution Model

The instantiation of an entity is in parallel : the caller starts a new process that
runs in parallel to the caller. A subtle point is the granularity at which paral-
lel processes can be interleaved. Consider that a web server may make quite a
number of intermediate computations between receiving a request and sending a
reply. Running in parallel with other processes (e.g., other instances of the same
server that currently serve a different request) produces an exponential number
of interleavings, which is difficult to handle for many verification methods. There
is also a number of classical problems attached, e.g., if we think of a two threads
of the server checking and modifying the database, this can easily lead to race
conditions. For ASLan++ we have chosen a particular way to deal with interleav-
ings. Whenever an entity receives a message and then acts upon that, we consider
its subsequent activity atomic up to the point where the entity goes back into
a state of waiting for further messages. The reason is quite pragmatic: we get a
coarse interleaving model that is feasible for verification tools without the user
having to code tool-related optimizations into the specification (i.e., declaring
atomicity-blocks to help the tools). At the same time, this can be regarded as a
reasonable model for many situations: when the server’s computation is related
to a shared resource, e.g., reading from a database and then writing a change
into the database, it is clear that in the implementation that process should
get a lock on the server so that other processes do not change the database in
between. ASLan++ thus allows to abstract from such locking mechanisms, and
in fact they are often not the focus of a security verification. However, if desired,
ASLan++ also allows to declare “custom breakpoints” (overriding the default
atomicity behavior) to model a finer interleaving model.

ASLan++ offers experimental support for constraints on the global system
run via LTL formulas, which may be used to specify e.g., fairness assumptions.

2.4 Dishonest Agents and the Intruder

The attacker is known as the intruder and can be referred to by the constant i
(of type agent). Yet we allow the intruder to have more than one “real name”.1

To this end, we use the predicate dishonest that holds true of i and of every
pseudonym (i.e., alias name) A of i.

1 The intruder may have several names that he controls. This reflects a large number
of situations, like an honest agent who has been compromised and whose long-term
keys have been learned by the intruder, or when there are several dishonest agents
who collaborate. This worst case of a collaboration of all dishonest agents may be
simply modeled by one intruder who acts under different identities.

6 D. von Oheimb and S. Mödersheim

As long as the actual value of the Actor parameter of an entity is an honest
agent, the agent faithfully plays the role defined by the entity. If the Actor
parameter value is dishonest already on instantiation of the entity, which is
typically the case for some of the possibilities included in symbolic sessions (cf.
subsection 2.6), the body of the entity is ignored because the intruder behavior
subsumes all honest and dishonest behavior.

We also allow that an entity instance gets compromised later, that is, the
hitherto honest agent denoted by the Actor of the entity becomes dishonest.
Once an agent has become dishonest, for instance because it has been corrupted,
it can never become honest again.

2.5 Declarations

An entity may contain declarations of types, variables, constants, functions,
macros, (Horn) clauses, and algebraic equations.

Unless declared non-public, constants and functions are public, such that the
intruder knows them and thus may (ab-)use them. Moreover, function symbols
are by default interpreted in the free term algebra (modulo algebraic equations),
such that they are by default invertible in each argument. This conveniently
reflects the typical behavior of message constructors, like the ones declared in
our example:

login (agent ,symmetric_key): message ;
changeGroup (agent ,agent set,agent set): message ;
assignDeputy(agent): message ;
requestAccess(file): message ;
grantedAccess(file): message ;
deniedAccess(file): message ;

where the types in parentheses specify their argument types.
Message constructors abstract from the actual implementation details of how

messages are actually encoded. Essentially the only property we rely on is their
invertibility, such that e.g., the intruder may obtain A, G1, and G2 from knowing
changeGroup(A,G1,G2). Since often a function application term is better read-
able when the first argument is written before the function symbol, ASLan++
offers syntactic sugar for this, such that we can equivalently write in “object-
oriented style”: A->changeGroup(G1,G2). The message constructors just men-
tioned, as well as the remaining symbols declared in the global symbols section,
will be described in more detail below where appropriate.

Types may have subtypes, e.g., the (built-in) relation agent < message means
that any value of type agent may be used in a context where a value of type
message is expected. The type message includes all those values that may be sent
over the network, in particular concatenation M1.M2 and tuples (M1,M2) of sub-
messages M1 and M2. For “atomic” values in messages, one may use the subtype
text, which may be dealt with more efficiently during model-checking. For in-
stance, we declare an abstract type of files (or better: file identifiers) as

types
file < text;

A Formal Security Specification Language for Distributed Systems 7

Sets, which are passed by reference, are not a subtype of message, such that
they cannot be directly sent as messages.2 Sets and tuples have parameters for
their element types, e.g., nat set and agent * message).

Symbols may also be declared in the respective sections of the various entities,
in particular the local variables that their instances use internally. For instance,
both Manager and Server declare

symbols
Cookie: cookie;

where cookie is a subtype of text.

2.6 Statements

Statements may be the usual assignments, branches and loops, but also non-
deterministic selections, assertions, generation of fresh values and of new entity
instances, transmission of messages (i.e., send and receive operations), and in-
troduction or retraction of facts, which represent state-dependent truth values.

The select statement is typically used within the main loop of a server, as
it is the case in our example for the Server entity:

body {
while(true) {

select {
on(... & ...): {

...
}
...
on(?A *->* Actor: requestAccess(?F)): {

...
}

}
}

}

Such a statement handles a variety of potential incoming requests or other events
such as timeouts. It checks the guards given, blocking as long as no guard is
fulfilled, then nondeterministically chooses any one of the fulfilled guards and
executes the corresponding statement block. The evaluation of the chosen guard
assign variables that are written with the ? symbol before their name. For in-
stance, the guard

on(?A *->* Actor: requestAccess(?F)): { ... }

(where in this context the decorated arrow symbol *->* denotes a communi-
cation channel with certain properties, as we will describe in section 4) can fire
when a requestAccessmessage has been received from any authenticated agent
A for any file F. When this guard is chosen, the values of these two variables are
set according to the actual values received. Then in response the compound
statement enclosed by the brackets { ... } is executed.

Entity generation, introduced by the keyword new or any, instantiates sub-
entities. This is only allowed for direct sub-entities, such that static and dynamic

2 In [4, §2.5], we describe several possibilities to communicate sets.

8 D. von Oheimb and S. Mödersheim

scoping coincide. In our example, the Session entity creates new instances of
the server and the Manager entity:

new Server (M,S);
new Manager (M,S);

These run in parallel and in this case happen to obtain on creation the same
actual parameter values, M and S.

Symbolic entity generations, introduced by any, are a convenient shorthand
for loosely instantiating an entity, in the following sense: the bound parameters
of the entity, as indicated by the given list of variables, allows to explore all
possible values, from the domain of their type (which may be any subtype of
message). An optional guard, which may refer to the variables listed, constrains
the selection. This mechanism is typically used to produce so-called symbolic
sessions, where the bound variables range over type agent, such that (unless
further constraints exist) their values include i, the name of the intruder.

In our example, we symbolically instantiate the Session entity by
any M. Session (M, centralServer);

Note that since we did not constrain the agent value for M, it may be in fact the
intruder. The model checkers will use this freedom to look for attacks for both
honest and dishonest instantiations for M.

2.7 Terms

Terms may contain variables (e.g., A), constants (e.g., e1), and function appli-
cations (to be more precise: function symbols applied to first-order terms, e.g.,
requestAccess(F)) including infix right-associative message concatenation, e.g
M1.M2) and tupeling (e.g., (A,b2,0)). Set literals are written as usual (e.g.,
{A,B,C}), while the basic operator on sets is the contains function, where the
presence of the fact Set->contains(X) means that X is a member of Set.

3 Policies and Transitions

ASLan++ provides an extremely powerful way to specify security policies and
their interaction with the dynamic system defined by the entities given in the
specification. For simplicity, let us refer to the latter system in the following
simply as the transition system. Policies are specified by a set of Horn clauses,
e.g., stating that a person can get access to some resource if certain conditions
are met. In our running example, there are only two such rules:
clauses

accessDirect(A,G,F): A->canAccess(F) :- G->isOwner (F) & G->contains (A);
accessDeputy(A,B,F): A->canAccess(F) :- A-> deputyOf (B) & B->canAccess(F);

These rules make use of the following user-declared predicate symbols:
canAccess(agent ,file): fact;
isOwner (agent set ,file): fact;
deputyOf (agent ,agent): fact;

A Formal Security Specification Language for Distributed Systems 9

3.1 Predicates and Facts

Instead of the usual type bool for truth values, ASLan++ uses the type fact.
Terms denoting atomic propositions, generally knows as predicates, are repre-
sented by functions with result type fact. The question whether an atomic
proposition holds or not is expressed by the (non-)existence the respective pred-
icate term in a global “fact space”. Facts may be combined with the usual logical
operators in LTL formulas to express goals, and they are also used in conditions
(in if, while, and select statements) known as guards.

By default a fact does not hold, but it may be explicitly introduced (simply
by writing it as an ASLan++ statement) and retracted. The constant true is
introduced automatically, while the constant false is never introduced. Facts
may also be generated by Horn clauses, as described next.

3.2 Horn Clauses

The first above rule says that an agent A can access a file F if A is a member
of a group G that is the owner of F . The second rule says that A can access
file F if A is a deputy of another agent B who has access to F . Note that it
is only for the sake of simplicity of the example that this latter rule models a
“complete delegation” of all access rights while most real systems would make
more fine-grained delegations.

The symbols A, B, G, F are variables that can be instantiated with arbitrary
values and hence are regarded as “parameters” of the rules; this allows in the
output of (attack) traces to clearly announce which rule with which values of the
parameters had been applied. Note that the second rule is “recursive”: if A is
the deputy of B and B is the deputy of C, then A also gets access to everything
that C has access to — and such a line of deputies can be extended ad libitum,
implying delegation of access rights along this line.

It is important to see that these rules are positive formulations of access con-
trol conditions: A gets access to a file F if and only if there is some way to derive
A->canAccess(F)with the Horn clauses. We do not allow negative formulations
such as “A does not get access if . . . ”. This has the advantage that ASLan++
policies can never be inconsistent in the sense that one rule allows access while
another one would deny it. The price that we pay for this is that it is harder
in ASLan++ to formulate a higher-level policy that overrides the judgements of
a lower level policies; we discuss this below. Observe that by allowing arbitrary
definite first-order logic Horn clauses, this alone gives a Turing-complete pro-
gramming language (namely a subset of Prolog).3 This expressivity implies that
derivability in ASLan++ policies is in general undecidable. There are several
ways to restrict this concept to decidable fragments, e.g., allowing only primi-
tive recursion. It was part of the language design of ASLan++ not to commit
to such a particular restricted fragment, which may be specific to a verification

3 There is even some (experimental, so far) support for (in-)equalities as side conditions
on the right-hand side of clauses.

10 D. von Oheimb and S. Mödersheim

method. Our method thereby allows to formulate policies in very different ways,
e.g., SecPAL and DKAL policies [6,18] can be specified.

It is crucial to first distinguish two kinds of facts, namely the state facts :
those explicitly introduced by the transition system, and policy facts: those more
implicitly “generated” by Horn clauses. In our example, canAccess is the only
policy fact, because it is the only fact that can be produced by the policy rules.
All the other facts are state facts. We will come back why we must insist on this
distinction.

3.3 Policy Interaction

There are now two ways how the policies can interact with the transition system
that we describe by the ASLan++ entity specifications and their instantiations.

First, transitions of an entity can depend on the judgement of policies. For our
example, consider the transaction where an authenticated user requests access
to a file: the server governing file access should first check whether the policy
actually allows this user access to the requested file. Here is the code snippet of
the server’s behavior (thus Actor is centralServer here):

on(?A *->* Actor: requestAccess(?F)): {
if (A->canAccess(F))

Actor *->* A: grantedAccess(F);
else

Actor *->* A: deniedAccess(F);
}

The response of the server, either grantedAccess(F) or deniedAccess(F), de-
pends on whether A->canAccess(F) holds, which is determined by the two Horn
clauses as explained above.

The second way that policies can interact with the transition system is just
the other way around: the transition system can generate and retract state facts
on which the Horn clauses depend. For instance, there can be transitions that
change who is the owner of a file, or who is member of which group or who is
deputy of whom, and this has an immediate effect on the access rights via the
rules. In our example, let us consider that a manager M can tell the server that
a certain employee A changes from a group G1 to a group G2, so that the server
updates the group membership information. Here is the code snippet from the
point of view of the server (i.e., Actor):

on(M *->* Actor: (?A->changeGroup(?G1 ,?G2)) & ?G1-> contains (?A)): {
retract (G1->contains (A));
G2->contains (A);

}

Like with the messages sent by an employee, here the manager’s command is
transmitted on a secure channel (including authentication of the manager), and
again the command is abstracted into the message constructor changeGroup that
has the relevant information (the agent A that changes group, and the source
and destination group) as parameters. The server just retracts the fact that A
is a member of G1 and introduces the fact that G2 now contains A. Note the
command is simply ignored if A is not a member of group G1 at the time the

A Formal Security Specification Language for Distributed Systems 11

command is received; in a more detailed model, one would include a feedback
message (whether the command was accepted or not) to the manager.

3.4 Concrete Policy Example

Let us consider the consequences of the transition just described for our policy.
For concreteness, let us consider a state where we have a manager m1, three
employees e1, e2 and e3, and two groups g1 = {e1, e2} and g2 = {e3}. Con-
sider moreover files f1, f2, where group gi owns file fi, and that initially there
are no deputy relations. All this is formulated by the following contents of the
Environment declaration:

symbols % for the concrete access examples
m1: agent;
e1, e2, e3: agent;
g1, g2: agent set;
f1, f2: file;
...

body { % of Environment
% for the concrete access examples :
m1->isManager;
g1->contains (e1); g1->contains (e2);
g2->contains (e3);
g1->isOwner (f1);
g2->isOwner (f2);
...

}

By our access control rules, e1 and e2 can access f1 and e3 can access f2.
When a manager successfully issues the command e1->changeGroup(g1,g2),

this implies that e1 looses her or his access to f1 but gains access to f2. Thus,
the access rights are obtained as the least closure of the state facts under the
policy rules: everything that can be derived from the current state by the policy
is true, everything else is false.

To illustrate the effects of state transitions to the policy in more depth, let us
consider another transaction where A assigns B as her deputy:

on(?A *->* Actor: assignDeputy(?B)): {
B->deputyOf (A);

}

Consider that in this way e1 becomes deputy of e2 while both are still in group
g1. If the transfer of e1 from group g1 to g2 is performed in this situation, e1

gets access to f2, but it does not loose the access to f1. This is because access
to f1 is still derivable through the deputy relation: e1 has access to everything
that e2 has access to (via the second policy rule), and e2 is still a member of g1

and thus has direct access to f1 (via the first policy rule).
This illustrates how expressive the combination of transitions and policies ac-

tually is. In particular, there can be several independent reasons why an agent
has access to a particular resource. Each of these reasons can change dynami-
cally when people enter or leave groups, become deputies of others or stop being
deputies. If one reason for access is removed by a transition, but another reason
remains, then also the access right remains. Once all reasons are removed, also

12 D. von Oheimb and S. Mödersheim

the access right is gone. In the previous example, if e1 stops being deputy of e2

(say, because e2 returns from vacation, which can be modeled by a straightfor-
ward revokeDeputy command) then with that also the reason for access to f1

is removed, and since no other reason is left, e1 no longer has access to f1.

3.5 Meta Policies

Of course this example has been deliberately kept simple, but let us now review
briefly how certain more complex aspects can be modeled. One may model the
hierarchical structure in a company and model that one inherits the access rights
of one’s subordinates:
accessSuperior(A,B,F): A->canAccess(F) :- A->superiorOf(B) & B->canAccess(F);
superiorDirect(A,B) : A->superiorOf(B):- A->managerOf(B);
superiorTrans (A,B,C): A->superiorOf(C):- A->superiorOf(B) & B->superiorOf(C);

This shows a different application of the Policy/Horn clauses: mathematically
speaking, we define the relation superiorOf as the transitive closure of the
managerOf relation. Intuitively, managerOf gives the direct superior and is a
relation controlled by the transition system just like the other state facts like
deputyOf etc.; while superiorOf yields all superiors over any number of hi-
erarchy levels, and this is “immediately computed” depending on the state of
managerOf.

This example of “superiors can access everything that their subordinates can
access” can be regarded as a meta policy, i.e., actually a policy about policies
or giving boundaries to policies. This is increasingly important because policies
may be expressed (formally) at different levels, e.g., there may be policies at the
level of workgroups or divisions of a company, or at the level of the company
itself, or on top of that policies required by governmental law.

We have just seen an example of a positive top-level policy, which is easy
to integrate. More difficult are negative top-level policies. Take the following
negative meta policy as an example: one cannot assign a deputy outside one’s
own group. This aims at preventing the situation in the above example where
e1 still has access to a file of his old group because he is deputy of an old group
member e2. We cannot directly formulate such negative conditions in the Horn
clauses of ASLan++, but we could code it indirectly into the transition for
assigning deputies:
on(?A *->* Actor: assignDeputy(?B) & ?G->contains (?A) & ?G->contains (?B)): {

B->deputyOf (A);
}

Here the first condition G->contains(A) determines one group ?G that A is
member of — in fact we have not explicitly enforced that every agent is member
of at most one group — and the second condition requires that the to-be-assigned
deputy B is also member of the same group G. However, this only enforces that
at the moment of deputy assignment, A and B are member of one common
group, and in fact the high-level policy is violated as soon A or B change to
another group while the deputy relation is in place. In fact a real system may
be built like this and have the weakness that the meta policy is not checked

A Formal Security Specification Language for Distributed Systems 13

when people change groups. We thus see it as a strength of ASLan++ that such
systems (with all their flaws) can be modeled and the problem be discovered by
automated verification.

To formalize a system that realizes the deputy-in-same-group meta policy (no
matter how), the easiest way is to actually allow in the model deputies outside
the group, but to enforce the same-group constraints whenever access is granted
on grounds of the deputy relation, i.e., refining our original accessDeputy rule:
accessDeputy(A,B,F,G) : A->canAccess(F) :- A-> deputyOf (B) & B-> canAccess(F)

& G->contains (A) & G->contains (B);

If there are other decision made based on the deputyOf relation, they would
have to be refined similarly.

4 Channels

A very typical aspect of the systems we model in ASLan++ is that they are
distributed and communicate over (initially) insecure channels that could be
accessible to an intruder who may read, intercept, insert and modify messages.
It is also common to secure the communication lines by protocols like TLS or
IPSec and thereby obtain a virtual private network, i.e., as if the distributed
components were directly connected by secure lines.

4.1 Abstraction Levels

ASLan++ is of course expressive enough to directly model protocols like TLS
and IPSec, using the classical cryptographic primitives for encryption and digital
signatures, but this is not really desirable: one should not model large systems
monolithically and in all detail, but, whenever possible, distinguish different
layers and components in a system. This approach entails to verify high-level
applications that are run over secure channels independently of the low-level
protocol that provides these channels. This gives also greater significance to
the verification result: the application is then secure even when exchanging the
low-level secure channel protocol. Vice-versa, the channel protocol should be
verified independently of a concrete application, so that it can be used for other
applications as well. There are first results for such compositional reasoning for
channels [20,11].

ASLan++ supports an abstract notion of channels where we simply state
that messages are transmitted under certain assumed security properties. We
have already seen examples above:

?A *->* Actor: requestAccess(?F)

The stars mean that the respective side of the channel is protected. Protection
on the receiver side means confidentiality: it can only be received by the intended
receiver. Protection on the sender side means authentication: it is certain that
the message indeed comes from the claimed sender. Authentication also includes
that the intended recipient is part of what is being authenticated; so the receiver

14 D. von Oheimb and S. Mödersheim

can see whether this message was really intended for him (even though everybody
can read it when confidentiality is not stipulated). This follows the definition of
the cryptographic channel model (CCM) and the ideal channel model (ICM) pre-
sented in [20]. There is an alternative notation supporting the abstract channel
model (ACM) of [2]; we leave this out here for lack of space and also because
the integration into ASLan++ is not finished at the state of this writing. Much
more detail on the three channel models may be found e.g., in [4, §3.8].

The channels we have in our little example only ensure confidentiality and
authenticity/integrity, they do not incorporate other properties such as recent-
ness (which can be achieved using the ->>), disambiguation of different channels
between the same principals (which can be achieved by including distinguishing
channel/session identifiers in the messages) or the ordering of messages (which
can be achieved by including sequence numbers). For details on these aspects of
channel modeling we refer to [4, §2.9].

4.2 Client Authentication

We do want to illustrate however one very common situation in modeling chan-
nels: one side may not be authenticated. The most typical example is TLS where
usually the server possesses a certificate, but the client does not. One may model
this situation by declaring transmissions from client to server as being only con-
fidential (but not authentic) and transmissions from server to client as only
authentic (but not confidential). However, TLS with an unauthenticated client
provides actually more security guarantees, namely sender and receiver invari-
ance for the client: even though the client’s request is not authenticated, the
response from the server is sure to go only to that client who posed the request,
and subsequent requests can be associated to the same client. [20] suggests re-
garding this as a secure channel except that the client is not authenticated by
its real name but by a self-chosen pseudonym. We denote this such a channel in
ASLan++ as [Client]_[Pseudonym] *->* Server.

Such unilaterally authenticated channels are of high relevance in practice for
many applications, such as transmitting authentication information of the client
like passwords or cookies to the server. In this case, the server can definitely link
the pseudonym to the client’s real name. If we wish to just abstract from the TLS
channel, but not from the authentication mechanism that is run over the channel,
then the pseudonymous channel notation of ASLan++ gives us the possibility
to do so. Let us consider for that reason a refinement of our previous example.
Before, we used a secure channel between a Manager M and the server S. Let
us now model that M has a TLS channel to S where M is not authenticated. As
a first step, the manager would send a login with his name and password. The
password we model as symmetric key which is a function of M and S:

nonpublic noninvertible password (agent ,agent): symmetric_key;

Here, nonpublicmeans that no agent itself can apply the password function, one
can only initially know passwords or learn them during a message transmission.
Similarly noninvertible means that one cannot obtain the agent names from

A Formal Security Specification Language for Distributed Systems 15

a given password. We ignore here bad passwords, but we explicitly allow the
intruder to have its own password with S, namely password(i,S), which is
initially known to the intruder.

We model that when a manager logs in to the server (here the Actor) over
the pseudonymous channel [?M]_[?MP] *->* Actor, the server creates a cookie
for that manager, sends it back on the pseudonymous channel, and stores the
cookie, along with the manager’s identity, in a cookie database:

on([?M]_[?MP] *->* Actor: login (?M,password (?M,Actor)) & ?M->isManager): {
Cookie := fresh();
cookies (Actor)->contains ((M,Cookie));
Actor *->* [M]_[MP]: Cookie;

}

Note that in all transactions involving a manager we write ?M and ?MP because
the identity of M and her pseudonym ?MP are learned by the server at this point.
This allows for modeling multiple managers. When a manager connects, stating
its own name M , the server requires an abstract login message that consists of
the user name M and password. After these have been verified, it makes sense to
check if M is indeed a manager, which we describe by the predicate isManager.
With the line Actor *->* [M]_[MP]: Cookie; we ensure that the cookie goes
to exactly the person who sent the login (the owner of the pseudonym MP which
is – hopefully – the manager). Note that this allows us to faithfully model also
the situation where an intruder has found out the password of a manager: in this
case he can now obtain also such a cookie (and use this cookie for subsequent
impersonation of the manager).

The cookie database is also worth discussing in more detail: we declare
nonpublic cookies (agent): agent*cookie set;

i.e., similar to the passwords, it is a function parameterized over agent names
— in this case the owner of the database. The cookie database simply consists
of a set of pairs of agent names and cookies.

We can now re-formulate the changeGroup action of the manager to run over
a pseudonymous channel, using a previously obtained cookie for authentication:

on([?M]_[?MP] *->* Actor: ?Cookie .(?A-> changeGroup(?G1 ,?G2))
& cookies (Actor)->contains ((?M,?Cookie)) & ?G1 ->contains (?A)): {

retract (G1->contains (A));
G2->contains (A);

}

Here the manager is authenticated by the cookie, which is looked up, in con-
junction with her name stored in the variable M , in the server’s cookie database
before granting the transaction. Again this is a faithful model of the real situa-
tion: we send a cookie over a TLS channel where the sender is not authenticated
— possibly even the pseudonym MP is not the same because a new TLS session
had been opened meanwhile. If for some reason the intruder has obtained such
a cookie, he can use it to impersonate the manager in such transactions.

This example illustrates how the channel notation can be used to model dif-
ferent levels of granularity of our models: we can either completely abstract from
authentication mechanisms and right away use a secure channel, as we did first,

16 D. von Oheimb and S. Mödersheim

or we can just abstract from TLS but model a credential-based approach like
the above password/cookie mechanism. The abstraction has the advantage that
we fade out model details and make thus the specification easier to read and
work with, while a more detailed specification may allow to model more aspects
such as leaking passwords or cookies. Note that again such an intermediate layer
could also be addressed with compositional reasoning, i.e., specifying just the
credential-based system without concrete applications like changeGroup and au-
thentic transmission as a goal.

5 Security Goals

ASLan++ has been geared as a high-level input language for model checking
security aspects of distributed systems, and it is therefore crucial to offer a con-
venient, clear, and expressive way to formalize the desired security properties.
The most general way to describe a security property in ASLan++ is to use
a first-order temporal-logic formula, defining a set of traces G that satisfy the
security properties. An attack is then any trace that the system can show and
that is not contained in G. The logic that we use is an extension of LTL (linear
temporal logic); for brevity we refer to it simply as LTL. The propositional basis
are the ASLan++ facts, and we allow all the standard temporal operators from
LTL and first-order quantification. The currently available tools however sup-
port only fragments of this logic. First, all tools currently only support outermost
universal quantification. Second, OFMC and CL-AtSe support only safety prop-
erties, i.e. such that every attack manifests itself in a finite trace, while SATMC
also supports liveness properties. We do not support any properties that involve
multiple traces such as non-interference goals.

To make the specification of simple and common goals as convenient as possi-
ble, especially to user without a background in formal logic, we provide several
ways to specify goals. In particular we can formulate goals within an entity,
allowing to refer to all variables defined in this scope.

Invariants. Goals that should hold during the whole life of an entity instance
are stated in the goals section of the entity declaration. Properties expected
to hold globally during the overall system execution should be given in the
outermost entity.

For invariants, basically any LTL formula can be given. As an example, con-
sider the meta policy “one cannot have a deputy outside one’s own group” men-
tioned in subsection 3.5:
goals
deputy_in_group: forall A B. [](B->deputyOf (A) =>

(exists G. G->contains (A) & G->contains (B)));

where “[]” is the “globally” LTL operator. However this is outside the supported
fragment of all tools (due to the existential quantifier). Taking advantage of the
fact that in our model each employee is in exactly one group, which could be
specified and checked as a further invariant, we can re-phrase the formula as

A Formal Security Specification Language for Distributed Systems 17

forall A B G. [](B->deputyOf (A) => (G->contains (A) => G->contains (B)))

As mentioned before, this goal is violated.

Assertions. An assertion is very similar to an invariant, except that it is in-
serted as a statement in the body of an entity and is expected to hold only at
the given point of execution of the current entity instance.

In our example, we can express the expectation that an employee is allowed
to access a certain file F using a very simple LTL formula:

assert can_access_file: Decision = grantedAccess(F);

Channel Goals. ASLan++ offers special support for conveniently specifying
the usual communication goals like confidentiality, authentication, and the like,
called channel goals. In our example, in order to state that a manager authen-
ticates to the server on her cookie when sending a changeGroup command, we
write

manager_auth:(_) M *-> S

In analogy to the syntax of message transmission, M denotes the sender and S
denotes the receiver of the transmission to which the goal refers. In between
them is a symbol for the kind of channel property, in this case “*->” indicating
sender authenticity. The goal name manager_auth is augmented with a param-
eter placeholder “(_)” to indicate that in sub-entities the goal name appears
again, in the form of a goal label, with a message term as its argument. Here,
the message term is Cookie.

This channel goal is stated, as usual, at the level of the Session entity and
pertains to those message transmissions in which the goal name manager_auth
re-appears. In our example, we write in the Manager entity:

[Actor]*->* S: manager_auth:(Cookie).
(e1->changeGroup(g1,g2));

and in the Server entity:
[?M]_[?MP] *->* Actor: manager_auth:(?Cookie).

(?A->changeGroup(?G1 ,?G2))

The operational semantics of this goal is that whenever the server receives
?Cookie.(?A->changeGroup(?G1,?G2)) from any manager ?M, the agent de-
noted by M must have sent to the server the changeGroup command with the
same cookie value (as long as M is not the intruder legitimately playing the
manager’s role).

It is important to note that M’s value is determined dynamically here, depend-
ing on the cookie just received. The side condition

cookies (Actor)->contains ((?M,? Cookie)) % actually learns M here!

models that the server looks up the name M in its database: it is the name that
was stored along with the cookie when the manager logged in. So the manager to
be authenticated is not determined statically by the initial value of the parameter
M of the Server.

18 D. von Oheimb and S. Mödersheim

Secrecy Goals. Very similarly to the channel goal just described, we state
shared_secret:(_) {M,S}

in the Session entity. Its interpretation is that the values annotated by the
respective goal labels in the sub-entities must be known only to the agents M and
S. In this case, the confidential value is the password that the manager uses for
logging in to the server. Therefore, we write in the Manager entity:

[Actor]*->* S: login(Actor ,shared_secret:(password (Actor ,S)));

and in the Server entity:
on([?M]_[?MP] *->* Actor: login (?M, % actually learns M here!

shared_secret:(password (?M,Actor)))

The operational semantics is that after the manager or the server has processed
the value given as argument of the goal label shared_secret:(...), this value
must never show up in the knowledge of the intruder (as long as the intruder
does not legitimately play the role described by any of the two entities).

Confidential transmission of a value between two parties can also be stated as a
channel goal, but the secrecy goal is more general: it may be used to state that the
value is shared between more than two parties, and the confidentiality is meant
to be persistent (unless the secrecy goal is retracted or modified dynamically).

6 Conclusion

We have illustrated by means of an example how the major security-relevant
features of modern service-oriented architectures can be specified in ASLan++,
in particular how to formulate non-linear and inter-dependent workflows, as
well as policies and related goals. We have shown how to selectively abstract
from communication aspects using secure channels, as well as pseudonymous
channels and password- or cookie-based authentication mechanisms. The spec-
ifications are clear and readable for web service designers, and at the same
time are on a reasonable abstraction level to be feasible for automated veri-
fication tools such as those of AVANTSSAR. For instance, the violation of the
deputy_in_group goal in our example is found by the CL-AtSe back-end in less
than a second.

AVANTSSAR Case Studies and Tool Availability. While the running ex-
ample has been deliberately kept small and simple for presentation, this paper
reflects also our experiences in the AVANTSSAR project with real-world case
studies [3] from the areas of e-Government, e-Health, and e-Business. There,
ASLan++ similarly allows us to have well-structured, easy-to-read descriptions
of complex systems that can be effectively analyzed with the automated verifi-
cation tools of the AVANTSSAR platform within reasonable time (usually much
less than 1 hour CPU time). Both the case studies and the AVANTSSAR Tool,
including a convenient web interface, are available at www.avantssar.eu.

www.avantssar.eu

A Formal Security Specification Language for Distributed Systems 19

Related Work. There are a number of specification languages that have simi-
lar or overlapping aims. The closest ones are the high-level protocol specification
language HLPSL [10] and the low-level language IF of the predecessor project
AVISPA [5]. In fact, experience with these languages had much influence on the
ASLan++ design. The most crucial extensions w.r.t. HLPSL and IF are the
integration of Horn clauses and the notion of channels. Moreover, ASLan++
is closer to a programming language than the more logic-oriented HLPSL and
the more low-level description of transition rules of IF. ASLan++ is automati-
cally translated to the more low-level language ASLan, which is an appropriate
extension of IF and serves as the input language of the model-checking tools.

In the area of policy specification languages, we are closest to SecPAL [6]
and DKAL [18] with their Horn clause specification style. their relation with a
transition system. Another, conceptually quite different approach is KLAIM [14],
which allows for specifying mobile processes where access control is formalized
using a capability-based type system. Despite the differences, the combination
of a policy aspect and a dynamic distributed system bears similar ideas and
we plan to investigate as part of future work whether the concepts of the two
languages could be connected.

A language focussing on the vertical architecture especially in web services is
Capito [17], this is however again built on relatively simple authentication pro-
tocols and is not related to the required compositionality results such as [20,11].

One of the pioneering verification frameworks for web services is the Tula-
Fale project [7], which in particular supports a convenient way to deal with the
details of the message formats such as SOAP. It is based on the verification
tool ProVerif [8] using abstraction methods, which represent the entire protocol
as a set of Horn clauses. A limitation of this approach is the monotonicity the
abstraction, which forbids for instance to model revocation of access rights. One
of our works aims to overcome this limitation while preserving the advantages
of abstract interpretation, namely the set-based abstraction approach [19]. It is
part of our future work to build a bridge from ASLan++ to that framework. This
bridge will consist not only in a translator from ASLan++ to a suitable input
language, but also of a mechanism to choose and refine appropriate abstractions.

Acknowledgments. The work presented in this paper was supported by the
FP7-ICT-2007-1 Project no. 216471, “AVANTSSAR: Automated Validation of
Trust and Security of Service-oriented Architectures”. We thank the anonymous
reviewers for their helpful comments.

References

1. Armando, A., Basin, D. A., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, J.,
Drielsma, P.H., Heám, P.-C., Kouchnarenko, O., Mantovani, J., Mödersheim, S.,
von Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., Vigneron,
L.: The AVISPA tool for the automated validation of internet security protocols and
applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 281–285. Springer, Heidelberg (2005)

20 D. von Oheimb and S. Mödersheim

2. Armando, A., Carbone, R., Compagna, L.: LTL Model Checking for Security Pro-
tocols. Journal of Applied Non-Classical Logics, special issue on Logic and Infor-
mation Security, 403–429 (2009)

3. AVANTSSAR. Deliverable 5.3: AVANTSSAR Library of validated problem cases
(2010), http://www.avantssar.eu

4. AVANTSSAR. Deliverable 2.3 (update): ASLan++ specification and tutorial
(2011), http://www.avantssar.eu

5. AVISPA Project, http://www.avispa-project.org

6. Becker, M.Y., Fournet, C., Gordon, A.D.: Security Policy Assertion Language (Sec-
PAL), http://research.microsoft.com/en-us/projects/SecPAL/

7. Bhargavan, K., Fournet, C., Gordon, A.D., Pucella, R.: TulaFale: A security tool
for web services. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P.
(eds.) FMCO 2003. LNCS, vol. 3188, pp. 197–222. Springer, Heidelberg (2004)

8. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules.
In: Proceedings of CSFW 2001, pp. 82–96. IEEE Computer Society Press, Los
Alamitos (2001)

9. Burrows, M., Abadi, M., Needham, R.: A Logic of Authentication. ACM Transac-
tions on Computer Systems 8(1), 18–36 (1990)

10. Chevalier, Y., Compagna, L., Cuéllar, J., Hankes Drielsma, P., Mantovani, J.,
Mödersheim, S., Vigneron, L.: A High Level Protocol Specification Language for
Industrial Security-Sensitive Protocols. In: Automated Software Engineering. Proc.
SAPS 2004 Workshop, pp. 193–205. Austrian Computer Society (2004)

11. Ciobâca, S., Cortier, V.: Protocol composition for arbitrary primitives. In: Pro-
ceedings of CSF, pp. 322–336 (2010)

12. Comon-Lundh, H., Cortier, V.: New decidability results for fragments of first-
order logic and application to cryptographic protocols. Technical Report LSV-03-3,
Laboratoire Specification and Verification, ENS de Cachan, France (2003)

13. Cremers, C.: The scyther tool: Verification, falsification, and analysis of security
protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418.
Springer, Heidelberg (2008)

14. De Nicola, R., Ferrari, G., Pugliese, R.: KLAIM: a kernel language for agents
interaction and mobility. IEEE TSE 24(5), 315–330 (1998)

15. Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: Undecidability of bounded secu-
rity protocols. In: Proceedings of the Workshop on Formal Methods and Security
Protocols (1999)

16. Escobar, S., Meadows, C., Meseguer, J.: Maude-npa: Cryptographic protocol anal-
ysis modulo equational properties. In: FOSAD, pp. 1–50 (2007)

17. Gao, H., Nielson, F., Nielson, H.R.: Protocol stacks for services. In: Proc. of the
Workshop on Foundations of Computer Security, FCS (July 2009)

18. Gurevich, Y., Neeman, I.: Distributed-Knowledge Authorization Language
(DKAL), http://research.microsoft.com/~gurevich/DKAL.htm

19. Mödersheim, S.: Abstraction by Set-Membership—Verifying Security Protocols
and Web Services with Databases. In: Proceedings of 17th CCS. ACM Press, New
York (2010)

20. Mödersheim, S., Viganò, L.: The Open-source Fixed-point Model Checker for Sym-
bolic Analysis of Security Protocols. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.)
Fosad 2007-2008-2009. LNCS, vol. 5705, pp. 166–194. Springer, Heidelberg (2009)

21. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions
is NP-complete. In: CSFW, p. 174. IEEE Computer Society, Los Alamitos (2001)

http://www.avantssar.eu
http://www.avantssar.eu
http://www.avispa-project.org
http://research.microsoft.com/en-us/projects/SecPAL/
http://research.microsoft.com/~gurevich/DKAL.htm

A Formal Security Specification Language for Distributed Systems 21

ASLan++ Specification Example

specification example
channel_model CCM

entity Environment {

types
file < text;

% a group is an agent set
cookie < text;

symbols
login (agent ,symmetric_key): message;
changeGroup (agent ,agent set ,agent set): message;
assignDeputy(agent): message;
requestAccess(file): message;
grantedAccess(file): message;
deniedAccess(file): message;

nonpublic noninvertible password(agent ,agent): symmetric_key;
nonpublic cookies(agent): (agent * cookie) set;
% used by the Server to store cookies for managers

centralServer: agent;
isManager(agent): fact;
canAccess(agent ,file): fact;
isOwner (agent set ,file): fact;
deputyOf (agent ,agent): fact;

clauses
accessDirect(A,G,F): A->canAccess(F) :- G->isOwner(F) & G->contains(A);
accessDeputy(A,B,F): A->canAccess(F) :- A->deputyOf(B) & B->canAccess(F);

symbols % for the concrete access examples
m1: agent;
e1, e2 , e3: agent;
g1, g2: agent set;
f1, f2: file;

entity Session (M, S: agent) {

entity Server(M, Actor: agent) {
% Exercise for the reader: how to formulate this for a decentralized system?
% Hint: introduce either an additional argument (representing the P.o.V.) to
% all policy judgements , or a modality like "Server ->knows(A->canAccess(F))".

symbols
MP: public_key; % pseudonym of a manager
A, B: agent;
G, G1, G2: agent set;
F: file;
Cookie: cookie;

body {
while(true) {

select {
on([?M]_[?MP] *->* Actor: login (?M, % actually learns M here!

shared_secret :(password (?M,Actor)))
& ?M->isManager): {

Cookie := fresh ();
cookies(Actor)->contains ((M,Cookie));
Actor *->* [M]_[MP]: Cookie;

}
on([?M]_[?MP] *->* Actor: manager_auth :(? Cookie).(?A->changeGroup (?G1 ,?G2))

& cookies(Actor)->contains ((?M,? Cookie)) % actually learns M here!
& ?G1->contains (?A)): {

retract(G1 ->contains(A));
G2->contains(A);

}

22 D. von Oheimb and S. Mödersheim

on(?A *->* Actor: assignDeputy (?B) & ?G->contains (?A) & ?G->contains (?B)): {
B->deputyOf(A);

}
on(?A *->* Actor: requestAccess (?F)): {

if(A->canAccess(F))
Actor *->* A: grantedAccess(F);

else
Actor *->* A: deniedAccess(F);

}
}

}
}
goals

deputy_in_group: forall A B G. [](B->deputyOf(A) =>
(G->contains(A) => G->contains(B)));

}
entity Manager(Actor , S: agent) {

symbols
Cookie: cookie;

body {
[Actor]*->* S : login(Actor ,shared_secret :(password(Actor ,S)));
S *->*[Actor]: ?Cookie;

[Actor]*->* S : manager_auth :(Cookie).
(e1 ->changeGroup(g1 ,g2));

}
}
body { % of Session

iknows(password(i,S)); % intruder knows its own password
new Server (M,S);
new Manager(M,S);

}
goals

shared_secret :(_) {M,S};
manager_auth :(_) M *-> S;

}
entity Employee(Actor , S: agent) {

symbols
F: file;
G: agent set;
Decision: message;

body {
if(Actor=e1)

Actor *->* S: assignDeputy(e2);
% results in a meta policy violation if "e1 ->changeGroup(g1,g2)" happens later!

% get any file currently owned by this employee
if(?G->contains(Actor) & ?G->isOwner (?F)) {

Actor *->* S : requestAccess(F);
% before the decision is received , access rights could have changed ...
S *->* Actor: ?Decision;
assert can_access_file: Decision = grantedAccess(F);

}
}

}
body { % of Environment

% for the concrete access examples:
m1->isManager;
g1 ->contains(e1); g1 ->contains(e2);
g2 ->contains(e3);
g1 ->isOwner(f1);
g2 ->isOwner(f2);

any M. Session(M,centralServer); % M may be dishonest!
new Employee(e1 ,centralServer);
new Employee(e2 ,centralServer);

% new Employee(e3 ,centralServer);
}

}

Orchestration under Security Constraints

Yannick Chevalier, Mohamed Anis Mekki, and Michaël Rusinowitch

LORIA & INRIA Nancy Grand Est, France
FirstName.LastName@loria.fr

Abstract. Automatic composition of web services is a challenging task. Many
works have considered simplified automata models that abstract away from the
structure of messages exchanged by the services. For the domain of secured ser-
vices (using e.g. digital signing or timestamping) we propose a novel approach
to automated composition of services based on their security policies. Given a
community of services and a goal service, we reduce the problem of composing
the goal from services in the community to a security problem where an intruder
should intercept and redirect messages from the service community and a client
service till reaching a satisfying state. We have implemented the algorithm in
AVANTSSAR Platform [5] and applied the tool to several case studies.

1 Introduction

To meet frequently changing requirements and business needs, for instance in a feder-
ation of enterprises, components are replaced by services that are distributed over the
network (e.g. the Internet) and composed in a demand-driven and flexible way. Service-
oriented architectures (SOAs) have gained much attention as a unifying technical archi-
tecture that can address the challenges of this ever-evolving environment.

Secured Services. Since it is not acceptable in many cases to grant access to a service to
any person present on the Internet, one has to regulate the use of services by policies.
These policies express the context, including the requester’s identity, her credentials,
the link between the service and the requester, and higher-level business rules to which
a service is subject. They also dictate how the information transmitted between services
has to be protected on the wire. In the following we call secured service a service that
is protected by a security policy.

Composition of Secured Services. Each service may rely on the existence and avail-
ability of other (possibly dynamically retrieved) partner services to perform its compu-
tation. For this one needs dynamic adaptation and explicit combination of applicable
policies, which determine the actions to be executed and the messages to be exchanged
in order to satisfy the client requests in accordance with the partners policies. For ex-
ample, a service granting the access to a resource of a business partner may use a local
authentication service, trusted by both partners, to assess the identity of a client and rely
on authorization services on both ends that combine their policies to decide whether to
grant the access or not.

Contribution of this work. For the domain of secured services we propose a novel ap-
proach to automated composition of services based on their security policies. Given a

B.K. Aichernig, F.S. de Boer, and M.M. Bonsange (Eds.): FMCO 2010, LNCS 6957, pp. 23–44, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

FirstName.LastName@loria.fr

24 Y. Chevalier, M.A. Mekki, and M. Rusinowitch

community of services and a goal service, we reduce the problem of composing the goal
from services in the community to a security problem where an intruder should intercept
and redirect messages from both the community services and the client in such a way
that the client service reaches its final state, defined as an insecure one. The approach
amounts to collecting the constraints on messages, parameters and control flow from the
components services and the goal service requirements. A constraint solver checks the
feasibility of the composition, possibly adapting the message structure while preserving
the semantics, and displays the service composition as a message sequence chart. The
resulting composed service can be verified automatically for ensuring that it cannot be
subject to active attacks from intruders. The services that are input to our system are
provided in a declarative way using ASLan [2], a high level specification language. The
approach is fully automatic and we show on a case-study how it succeeds in deriving a
composed service that is currently proposed as a product by a company.

Paper organization. In Section 3 we explain our approach on a simple example. In
Section 4 we introduce the formal model we consider for secured Web services. We
explain the mediator synthesis problem in Subsection 4.1, how to represent messages
in Subsection 4.2, and services in Subsection 4.3. The composition problem is for-
mally stated in Subsection 4.4 and solved in Subsections 4.5 and 4.6. In Subsection 4.7
we formalize the obtained composed service in the ASLan language in order to verify
it automatically against classical security properties. In Section 5 we describe the ex-
periments we have performed on three case-studies and put the focus on one provided
by OpenTrust company. We show how we can derive automatically a Digital Contract
Signing service from their components services. Finally we also prove automatically
that the resulting service cannot be subject to active attacks. We conclude in Section 6
where we give several perspectives.

2 Related Work

Most works on Web service composition are based on automata representations of web
services [9,11,24], trying to synthesize, from available components, an automata whose
behavior simulates the specification of the goal service. These approaches are focusing
on control flow. For instance. the Roman model [8] focuses on deterministic atomic
actions, and has been extended by data and communication capabilities in the Colombo
model [9]. Synthesis of composite services in [9,8] is based on Propositional Dynamic
Logic.

Another approach to composition relies on advanced AI planning techniques. For
instance [17] applies these techniques at the knowledge level to address the scalability
problem, retaining only the features of services that are relevant to compose them. Ac-
cording to [24] most solutions in the literature involve too much human encoding or do
not address the problem of data heterogeneity, hence are still far from automatic genera-
tion of executable processes. Given the variations in information representation such as
message-level heterogeneity data mediation is crucial for handling service composition.
Hence our objective is to handle (in some cases) structural and semantic heterogeneity
as defined by [18]. Furthermore we take into account the effects of the security policy
of the services on the format of the messages. An advantage of our approach is that it

Orchestration under Security Constraints 25

Fig. 1. Time stamping and archiving a digital signature

can handle automatically message structure adaptation since the orchestrator has capa-
bilities (presented by a formal deduction system) to apply operations on messages and
build new messages. This provides for free automatic adaptation of messages for proper
service communications. We also address the problem of checking that the composed
service satisfies some security properties. For the validation of the synthesized service
we can employ directly our cryptographic protocol validation tools [6,21].

While our approach focuses on the problems related to message adaptation, it is sig-
nificantly less expressive than more standard automata-based techniques when consid-
ering complex goal services. In particular we consider a bounded orchestration problem
in which the number of communications is bounded, thereby excluding iteration com-
pletely. As a consequence we believe that the method presented in this paper is more
complementary with than a concurrent of these standard methods, and that future work
should focus on integrating these approaches in a common framework.

3 Introductory Example

Figure 1 illustrates a composition problem corresponding to the creation of a new ser-
vice (described here by Goal) for appending a timestamp to a digital signature per-
formed by a given partner (described here by Client) over some data (described here
by data) and then submitting it together with the signed data and some other proofs for
long time conservation by an archiving third party. More precisely Goal should expect
a first message from Client containing a session identifier sid, the Client’s certificate

26 Y. Chevalier, M.A. Mekki, and M. Rusinowitch

containing his identity and his public key ckey and finally the data he wishes to digitally
sign. Goal should answer with a message containing the same session identifier and a
footer value to be appended to the data before the client’s signature. This value aims to
capture the fact that the Client acknowledges a certain chart (known by Goal) before
using the service Goal. Indeed this is what Client is expected to send back to Goal.
Goal should then append to the received digital signature (described by SIGNATURE)
a timestamp (described by TIMESTAMP). The timestamp consists of a time value which
is bound to the Client’s signature (through the use of md5 hash) and signed by a trusted
timestamper’s private key #2.

Goal should also include a certain number of assertions or proofs about its response
message. ASSERTIONS is described below and consists of 4 assertions or judgments.

ASSERTIONS = ASSRT0,ASSRT1,ASSRT2,ASSRT3
ASSRT0 = assertion(cOCSPR,#0,crypt(inv(#0),cOCSPR))
cOCSPR = ocspr(name,ckey,time)
ASSRT1 = assertion(tsOCSPR,#0,crypt(inv(#0),tsOCSPR))
tsOCSPR = ocspr(#1,#2,time)
ASSRT2 = assertion(arcOCSPR,#0,crypt(inv(#0),arcOCSPR))
arcOCSPR = ocspr(#3,#4,time)
ASSRT3 = assertion(ARCH,#4,crypt(inv(#4),ARCH))
ARCH = archived(session(sid),certificate(name,ckey),

contract(data), SIGNATURE,TIMESTAMP,ASSRT0,ASSRT1)
#0 in trustedCAKeys
pair(#1,#2) in trustedTSs
pair(#3,#4) in trustedARs

ASSRT0 is a judgment made about the validity of the Client’s certificate at the time
time and signed by a certification authority trusted by Client. This trust relation is mod-
eled by the fact that the public key of the certification authority is in the set trusted-
CAKeys representing the public keys of the certification authorities trusted by Client.
ASSRT1,ASSRT2 represent similar judgments made about the certificates of the used
timestamper and archiving service and signed by the same trusted certification author-
ity. On the other hand ASSRT3 models the fact that the data to be signed by Client, its
digital signature together with a timestamp and all the proofs obtained for the different
involved certificates have been successfully archived by an archiving third party which
is in addition trusted by Client for this task: here also this trust relationship is modeled
by the constraint: pair(#3,#4) in trustedARs. These assertions are encoded as certifi-
cates embedded in the messages. They represent either a condition φ evaluated before
accepting a message or a guarantee ψ ensured by the service sending a message.

Finally the use of dashed communication lines in Figure 1 refers to additional con-
straints on the communication channels used by Client and Goal: in our example this
turns to be a transport constraint requiring the use of SSL. We can express this constraint
in our model by requiring that the concerned messages are ciphered by a symmetric key
previously shared between both participants (the key establishment phase is not handled
by the composed service).

Orchestration under Security Constraints 27

Fig. 2. Available services: Certification Authority

In order to satisfy the requests of Client, Goal relies on a community of available
services ranging from timestampers, and archiving third party to certification authori-
ties.

These services are also given by their interface, i.e. the description of the precise
message patterns they accept and they provide in consequence. For instance Figure 2
describes a certification authority CA capable of providing two sorts of answers when
asked about the validity of a certificate: one is OCSP-based (i.e. based on the Online
Certificate Status Protocol) and returns a proof containing a real-time time-bound for
the validity of a given certificate; while the second only provides the classical Certificate
Revocation List CRL. Intuitively by inspecting the composition problem one can think
that to satisfy the Client request the second mode should always be employed with CA
(provided it is also trusted by the Client). One can also deduce that some adaptation
should be employed over the Client’s messages to obtain the right message patterns
(possibly containing assertions) from the community (for example the use of the flag
OCSP with CA).

The solution we propose computes whenever it is possible the sequence of calls to
the service community possibly interleaved with adaptations over the already received
messages and permitting to satisfy the Client’s requests as specified in the composition
problem.

28 Y. Chevalier, M.A. Mekki, and M. Rusinowitch

4 Formal Description of Service Composition and Adaptation

4.1 Mediator Synthesis

A web service is in standard way described in terms of the interface it presents to the
outside world (the possible clients) using the WSDL [23] language. This description
is structured into ports, each proposing a set of available operations. An operation is
then defined by its given in-bound and out-bound message patterns; these patterns are
usually described using the XSD [26] language and reflects the XML message structure.
Security constraints can then be defined on top of the service interface description us-
ing WS-SecurityPolicy [16] annotations. Such annotations can occur at any level in the
WSDL binding the levels they occur into the security constraints they carry. They range
from the service to the message level and typical examples are an SSL transport require-
ment for the whole service or the need to cipher or digitally sign a certain part inside
a message pattern (in-bound or out-bound to some operation). We note that the use of
XSD for the description of message patterns permits the use of the XPATH [25] language
to write the queries identifying parts inside these message patterns which simplifies the
writing of message-level security constraints. We put the focus on SOAP-based (in con-
trast with RESTful-based) web services. These services rely on the SOAP [19] protocol
that encapsulates the messages described in the WSDL specification of the service. We
claim that after (automated) analysis we can collect from the different specification
files the descriptions of the different message patterns in-bound and out-bound to all
the operations of the service and corresponding to the messages really exchanged by
the service (SOAP encapsulation included). These descriptions are discussed below.

4.2 Representation of Messages and Security Constraints

We use first-order terms to represent the messages exchanged by a service. We recall
this notion below.

Terms. We consider an infinite set of free constants Consts and an infinite set of vari-
ables X . For each signature F (i.e. a set of function symbols with arities), we denote
by T(F) (resp. T(F ,X)) the set of terms over F ∪ Consts (resp. F ∪ Consts ∪ X).
The former is called the set of ground terms (or messages) over F , while the latter is
simply called the set of terms over F . Given a term t we denote by Var(t) the set of
variables occurring in t. A substitution σ is an idempotent mapping from X to T(F ,X)
such that Supp(σ) = {x | σ(x) �= x}, the support of σ, is a finite set. The application
of a substitution σ to a term t (resp. a set of terms E) is denoted tσ (resp. Eσ) and is
equal to the term t (resp. E) where all variables x have been respectively replaced by
the term xσ. Terms are manipulated by applying operations on them. These operations
are defined by a subset Fp of the signature F called the set of public symbols. A con-
text C[x1, . . . , xn] is a term in which all symbols are public and such that its nullary
symbols are the variables x1, . . . , xn. C[x1, . . . , xn] is also denoted C when there’s no
ambiguity and n is called its length. We define the application of a context C of length
n over the sequence of messages 〈m1, . . . , mn〉, denoted by C ·〈m1, . . . , mn〉, to be the
image of C[X1, . . . , Xn] by the substitution {Xj → mj}1≤j≤n. An equational theory

Orchestration under Security Constraints 29

E is defined by a set E of equations u = v with u, v ∈ T(F ,X). We write s =E t
as the congruence relation between two terms s and t. This equational theory is intro-
duced in order to specify the effects of operations on the messages and the properties
of messages. We say that a term t is deducible from a set of terms E whenever there
exists a sequence of elements 〈t1, . . . , tkt〉 in E and a context Ct of length kt such that
C · 〈t1, . . . , tkt〉 =E t.

XML Messages. We aim to represent a significant fragment of XML messages as de-
scribed by the XSD language using first-order terms defined over a signature given
below. The fragment we address corresponds to XML elements, described by sequential
complex types, i.e. elements having an ordered and a fixed-cardinality set of children.
We also abstract away the attributes in XML messages. To represent XML messages we
define the following signature:

F =
{

noden
a , childn

i
a

| i ≤ a ∈ N, n ∈ Consts
}
∪

{scrypt, sdcrypt, crypt, dcrypt, sign, verif, inv, invtest,	}

where the symbol noden
a represents an XML node named n (ranging over the set of

constants Consts) and having a children. For each symbol noden
a we define the set

of symbols childn
1
a

, . . . , childn
a
a

permitting to extract its children. In order to model

security constraints holding over exchanged XML messages, we also represent the usual
cryptographic primitives through the use of symbols: scrypt/sdcrypt for symmetric
encryption and decryption, crypt/dcrypt for asymmetric encryption and decryption,
sign/verif for digital signature and its verification, inv to denote key inverses and
invtest permitting to test whether a pair of terms {t, t′} verifies t′ = inv(t). The
constant 	 is the result of a successful test. We denote by Fp, the set of public symbols
and assume in the remainder of this chapter that Fp = F \ {inv}.

Some of the symbols represent the possible operations on the messages. Their se-
mantics is defined with the following equational theory:

EXML

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sdcrypt(scrypt(x, y), y) = x (Ds)
dcrypt(crypt(x, y), inv(y)) = x (Das)
verif(x, sign(x, inv(y)), y) = 	 (Sv)
childn

i
a

(noden
a(x1, . . . , xa)) = xi (P i

a
)

invtest(x, inv(x)) = 	 (Iv)

We say that a term t is deducible (we use also deduced) from a set of terms E whenever
there exists a sequence of elements 〈t1, . . . , tkt〉 in E and a context Ct of length kt such
that C · 〈t1, . . . , tkt〉 =EXML t.

4.3 Representation of Services

We note that the WSDL specification of a web service does not precisely list any or-
der of invocation for its operations but only gives their exhaustive list. Moreover this
specification does not mention how the input parameters are related to the output pa-
rameters for a given operation. The BPEL [22] language allows reasoning about such

30 Y. Chevalier, M.A. Mekki, and M. Rusinowitch

properties by permitting first to specify a certain workflow logic for the service, and
second to specify all the manipulations needed to construct the sent messages given the
received ones. In this sense BPEL describes business processes which are structured
workflows of activities ranging over invocation of web service operations, providing of
web services operations or manipulation of messages.

We consider services that do not contain any iteration or replication. Here we shall
also abstract from internal actions and we shall focus on communications. Therefore
a service S will be considered as a sequence of in- and out-bound messages denoted
respectively RCV(m) and SND(m).

We assume that all the services we consider are also described in terms of their
respective BPEL specification and focus only on services described by linear processes,
i.e. sequences of activities. Therefore a service S will be considered as a sequence of
in- and out-bound messages denoted respectively RCV (m) and SND(m) as described
by the following grammar:

P, Q := services
0 null service

RCV (m) · P input message
SND(m) · P output message

P ‖ Q AC parallel composition

Parallel composition of services S1 and S2 is denoted by S1 ‖ S2. It is associative and
commutative, and has a unit element 0, the null process. We consider a community to
be a parallel composition of all its available services.

In the following we say that a term t is deducible (or deduced) from a service S
whenever t is deducible from the sequence 〈m1, . . . , mkS 〉 representing the messages
received by the service S.

Transition Semantics. We introduce transition semantics to define how services are
executed in interaction with their environment and in particular with clients. The state
of a service S can be viewed as the list of remaining operations it has to perform to end
properly. For instance the service in state RCV (r)·S′ waiting for a message matching r
proceeds with S′σ if it is added in parallel to a service in state SND(m) ·S such that m
matches r with some substitution σ. In this case the latter service proceeds then with S.
The global configuration is a pair (S, E) with first component the set of service states,
and second component the set of messages that have been sent so far. The evolution of
the global configuration is given by the transition rule:

(RCV (r) · S ‖ (SND(m) · S′ ‖ . . . , E) m→ (Sσ ‖ S′ ‖ . . . , E ∪ {m})
if ∃σ, rσ = m

Such transitions are called communication transitions.
The reception of a message instantiates the variables in the receive pattern. This

instantiation is applied on the variables remaining in the process that describes the ser-
vice. A derivation is a sequence of transitions. The size of derivation is the size of its
sequence of transitions. We say that a service has ended in a derivation if it is reduced
to a null process.

Orchestration under Security Constraints 31

4.4 Web Services Composition Problem

Composition Goal. To answer a client C request we often need a new service T to be
obtained as a composition of some of the ones that are available in the community. We
define the composition goal as the ordered list of messages that C should receive from
T and that T should receive from C. Hence the composition goal is also a service that
can be specified with the service grammar given above.

Composition Mediator. We exploit a derivation as follows to generate a mediator. The
messages sent by the services are dispatched by the mediator and they can possibly be
adapted before assigning them to the proper recipient. In order to express this adaptation
capability of the mediator, we simply define the following transition rule:

(P , E) C−→ (P , E ∪ {m})
if there exists a context C and t1, . . . , tn in E s.t C[t1, . . . , tn] =EXML m

We call such transitions adaptation transitions.
The problem we are interested in is to check whether a client C can be satisfied by a

composition of services from the community. More formally we can state it as:

Service Composition Problem

Input: A community of service S = {S1, . . . , Sn}
A composition goal C (specified by the client requests)

Output: A derivation from initial state (S ∪ {C}, ∅) to a state where
C has ended, and each service in S has either ended or is in
its initial state, if such a derivation exists and the symbol ⊥
otherwise.

In other word we have to check for the existence of a derivation (applying the transition
rules) from an initial state where the client is put in parallel with the community of
services and no messages have been sent so far, to a state where all requests from the
client have been satisfied (C has ended) and the services from the community that have
been initiated have properly terminated.

4.5 Solving the Composition Problem

Theorem 1. The Service Composition Problem is NP-complete.

Sketch of proof: We reduce the Service Composition Problem to showing the existence
of an attack on a protocol built from the services and the client (given the EXML theory).
To ensure proper termination of services that are involved in an interaction with the
client, we guess at the beginning whether a service Si will be employed or not. Let
{S′

1, . . . , S
′
m} be the subset of services to be really employed. After this guessing step

the composition problem is reduced to the reachability of a configuration (0, E) from a
configuration (C ‖ S′

1 ‖ . . . ‖ S′
m, ∅) with {S′

1, . . . , S
′
m} ⊆ {S1, . . . , Sn}

For each service S · 0 in {C, S′
1, . . . , S

′
m} we introduce a new constant cS and trans-

form the service S · 0 into a service S = S · SND(cS) · 0. It is clear that a service S

32 Y. Chevalier, M.A. Mekki, and M. Rusinowitch

reduces to the null process if, and only if, S sends cS . Finally we add a monitor service
M to the community that checks that all constants are sent. We let

M = RCV (cC) · RCV (cS′
1
) . . . RCV (cS′

m
) · SND(secret) · 0

It is clear that M sends secret if and only if all the services C, S′
1, . . . , S

′
m reduce

to the null process. Thus we have transformed the problem of the reachability of a
configuration (0, E) from a configuration (C ‖ S′

1 ‖ . . . ‖ S′
m, ∅) into the problem of the

reachability of a configuration (P, E ′) with secret ∈ E ′ from the initial configuration
(M ‖ C ‖ S′

1 ‖ . . . ‖ S′
m, ∅). This latter problem is a classic problem for cryptographic

protocols and is called the Protocol insecurity problem. Since the existence of an attack
on a protocol is a problem known to be in NP [20] we can conclude. �

The protocol insecurity problem corresponding to our composition problem can then be
submitted to any state-of-the-art protocol verification tool capable of checking reach-
ability properties. If the composition problem admits a solution we obtain an attack
trace (or a conversation trace) describing how the intruder (or the mediator from a com-
position point of view) succeeded into satisfying the clients requests by applying its
adaptation skills on messages exchanged with some services in the community.

For instance Figure 3 illustrates the solution for the composition problem stated in
the introductory example.

To fulfill the Client’s requests (messages M1 and M3) the mediator first calls (with
messages M4 and M5) the certification authority service denoted by CA to obtain an
assertion (message M6) stating the validity of the Client’s certificate. Then he calls the
timestamper denoted by TS and trusted by the Client (with message M7) to obtain a
timestamp (message M8) and subsequently CA (with messages M9 then M10) to ob-
tain an assertion (message M11) stating the validity of TS’s certificate. Then he calls an
archiving third party service ARC trusted by the Client (with message M12) to obtain
assertions (in message M13) stating that the Client’s timestamped signature was cor-
rectly archived. Finally the mediator calls CA (with messages M14 and M15) to obtain
the last needed assertion (message M16) stating the validity of ARC’s certificate, before
successfully answering the last request of the Client (with message M17).

We remark that the mediator service M is easily extractable from the conversation
trace. This can be done by running through all the communication steps in the conver-
sation trace, putting the focus on those involving the mediator and updating its service
description as follows:

– if the communication step is S → M : t, append RCV (t) to M ;
– otherwise, append SND(t) to M .

On the other hand, by definition of a composition problem, a corresponding solution
should also describe all the adaptation steps that have to be performed by the medi-
ator. These adaptation steps are abstracted away in the conversation trace depicted in
Figure 3, which is a typical result of the state-of-the-art protocol verification tools. For
instance, one could intuitively state that the message M5 sent by the mediator to CA
can be extracted from the message M1 (previously sent to him by Client) by taking
its second child. We present in Section 4.6 an automated procedure permitting to com-
pute all these adaptation steps from a conversation trace similar to the one illustrated in
Figure 3.

Orchestration under Security Constraints 33

(a) Trace (b) Messages

Fig. 3. Solution for the composition problem in the introductory example

4.6 Generating the Mediator’s Adaptation Steps

A conversation trace describes partially the solution of a given composition problem.
Indeed, it only illustrates the ordered sequence of all communication transitions present
in the corresponding derivation. Therefore for all communication step i in the trace, we
can extract the following communication transition:

δi = (Pi, Ei)
mi−→ (Pi+1, Ei ∪ {mi})

where (Pi, Ei) (resp. mi) is the configuration before executing step i (resp. the message
exchanged at the communication step i). We propose now to enrich this subsequence
by interposing the missing adaptation transitions between the existing communication
transitions, in order to reconstruct a complete solution of the problem.

Let us first remark that this enrichment may not be unique, and solutions of the com-
position problem can have an arbitrarily large size. Indeed if the derivation contains at
least one adaptation transition, resulting in adding some message m to the environment
one can build an infinity of messages (denoted by T (m)) by applying public symbols to
m and since the environment is finite then one can enrich the derivation with an adap-
tation transition resulting in adding some new term from T (m) to the environment. To
ensure the finiteness of the enrichment we will consider only adaptation transitions that

34 Y. Chevalier, M.A. Mekki, and M. Rusinowitch

add subterms occurring in the conversation trace to the environment. Since the inference
system associated to the EXML equational theory enjoys the locality [14] property1,
such an enrichment always exists.

To compute a derivation solving a composition problem given the corresponding
conversation trace we first compute for each communication step i, the set Enew

i of the
subterms ti1, . . . , t

i
k occurring in the trace and deduced by the mediator only starting

from that step. We aslo keep track of Cnew
i the sequence of contexts 〈Cti

1
, . . . , Cti

k
〉 that

permit to construct these subterms from the current knowledge in the order according
to which they were constructed. Then we construct Δi for each communication step i
as described below:

Δi =
C

ti
1−→ (Pi+1, Ei ∪

{
mi, t

i
1

}
) . . .

C
ti
k−1−→ (Pi+1, Ei ∪

{
mi, t

i
1, . . . , t

i
k−1

}
)

C
ti
k−→

Finally we construct:
Δ = δ1Δ1 . . . δnΔn

which is a solution of the composition problem. To prove the last statement, it is suffi-
cient to prove that (i) Δ is a derivation and (ii) Δ solves the composition problem and
both are true by construction.

We put the focus now on the computation of the set Enew
i and the sequence Cnew

i for
all communication step i. We recall that Enew

i is the set of subterms occurring in the
trace and deduced by the mediator only starting from the communication step i and that
by construction we have: Enew

i = Ei \ Ei−1 with E0 = ∅. One important remark here
is that only receptions steps bring new knowledge to the mediator. After a reception of
a message mi, the mediator tries all the possible applications of equations in EXML to
his current knowledge including the message mi and possibly computes new subterms
occurring in the trace.

We now introduce the notion of sequents which we will use to compute the set Ei for
all reception step i.

Definition 1. Given a service S we call γ a sequent of S (denoted by t1, . . . , tk �f t0)
an equality t0 =EXML f(t1, . . . , tk) where f is a public symbol and t0, . . . , tk is
a sequence of subterms occurring in S. We call respectively t0, f and the sequence
t1, . . . , tk the head, the symbol and the tail of γ and denote them respectively by h(γ),
s(γ) and t(γ). We denote the set of all sequents of S by Γ (S) and the set of all valid
sequents at some step i by Γi(S).

We say that γ is valid at some step i when for all 0 ≤ j ≤ k, tj ∈ Ei. We remark that
if a sequent γ is valid at step i then its head is an element of Ei. Indeed t0 is deducible
at step i by taking t0 =EXML f(t1, . . . , tk). We exploit this property to compute the set
Γi(Mediator) for all reception step i of the mediator service.

First we compute Γ (Mediator) by running through all the subterms occurring in it
and collecting the corresponding sequents. For example a subterm of the form t =
scrypt(k, m) will provide two entries: k, m �scrypt t and k, t �sdrcypt m. For each

1 Informally speaking, this property means that whenever a secrecy attack on a subterm t exists
for a given protocol, then the intruder can reproduce a secrecy attack on t where he needs to
derive only a subset of the subterms occurring in the protocol or in t.

Orchestration under Security Constraints 35

computed sequent γ we define an integer called its readiness and initially set to the
size of t(γ). This integer is used to compute the validity of a sequent as explained
further in this paragraph. For each subterm t we define two fields: dstep which will
hold the least reception step i where t is deduced and context which will hold the
context that permitted to deduce t. We also define for each subterm t of s a list of
sequents sequents(t) which is initialized by all the sequents γ′ such that t appears in
the tail of γ′.

Then the idea is to perform a fix-point computation per each step i corresponding to
the set Γi(Mediator). The detailed solution is illustrated by Algorithm 1 which relies
on Algorithm 2 and both are given below.

Algorithm 1. Compute Deduced Subterms
Require: Mediator : Service
1: for all RCV (mk) ∈ Mediator do
2: deduce(mk, k)
3: end for

We start from subterms that are trivially deduced at some given step i.e. all the re-
ceived messages clearly deduced at their corresponding reception step and try to deduce
the new ones by checking whether there exists some sequents having their tails made
only of already deduced subterms. In order to select these sequents we make use of the
readiness field attached to each sequent which is decremented each time one element
in its tail is deduced (Algorithm 2, line 4). Since the readiness field is initialized by
the cardinality of its tail thus whenever γ.readiness equals zero at some step then the
sequent is also valid at that step.

Algorithm 2. deduce
Require: t : subterm, i : step
1: if t.dstep > i then
2: t.dstep ← i
3: t.context = γ
4: for all γ ∈ sequents(t) do
5: γ.readiness −−
6: if γ.readiness = 0 then
7: Γi(p).add(γ)
8: deduce(h(γ), i)
9: end if

10: end for
11: end if

Algorithm 1 runs in linear time in the size of mediator service represented as a di-
rected acyclic graph (DAG).

36 Y. Chevalier, M.A. Mekki, and M. Rusinowitch

4.7 Generating the Mediator’s ASLan Specification

The ASLan Language

Background. 2 ASlan (AVANTSSAR Specification Language) is defined by extending
the Intermediate Format (IF) [7]. IF is an expressive language for specifying security
protocols and their properties, based on multiset rewriting. As described in detail in [1],
ASLan extends IF with a number of important features so as to express diverse security
policies, security goals, communication and intruder models at a suitable abstraction
level, and thereby allow for the formal specification and analysis of complex services
and service-oriented architectures.

Most notably, ASLan extends IF with support of Horn clauses and LTL formulas. For
instance invariants of the system can be defined by a set of (definite) Horn clauses. Horn
clauses allow us not only to capture the deduction abilities of the attacker in a natural
way, but also, and most importantly, they allow for the incorporation of authorization
logics in specifications of services. Moreover, complex security properties can be spec-
ified in Linear Temporal Logic. As shown, for instance, in [3], this allows us to express
complex security goals that services are expected to meet as well as assumptions on the
security offered by the communication channels.

Syntax and Semantics. Here, we recall the main features of ASLan, pointing the reader
to [2] for more details on the language.

An ASLan file consists of several sections, among which:
emphSection Inits contains one or more initial states of the transition system. A state of
a transition system is a set of variable-free facts.
emphSection Rules specifies the transitions of the transition system. A transition is a
rule containing two parts, a left-hand side (LHS) and right-hand side (RHS). The rule
can fire in a state whenever its LHS holds in that state. Moreover, a transition can be
labeled with a list of existentially quantified variables whose purpose is to introduce
new constants representing fresh data (e.g. nonces).

Example 1. Sample transition.

1 step sampleTransition(BankAgent):=
2 state_BankingService(BankAgent,1).
3 iknows(request)
4 =>
5 state_BankingService(BankAgent,2).
6 iknows(response)

where

– step is a keyword used to define a new transition;
– sampleTransition is a transition name;
– BankAgent is a parameter of the transition;
– state BankingService (BankAgent,1), iknows(request),

state BankingService (BankAgent,2), iknows(response) are facts;

2 Excerpts from [2].

Orchestration under Security Constraints 37

– state BankingService (BankAgent,1).iknows(request) is the LHS of the transition;
– state BankingService (BankAgent,2).iknows(response) is the RHS of the transition.

This transition represents the behavior of a banking service that receives a request
and then reacts by replying with a response and moving to another state. More pre-
cisely, the transition can be fired if there exists a value val of variable BankAgent such
that state BankingService (val ,1) and iknows(request) are in the current state. The re-
sult of firing the transition is to replace the fact state BankingService (val ,1) by the fact
state BankingService (val ,2) and add a new fact iknows(response).

Message sending and receiving are specified using iknows facts: the iknows in the LHS
of a transition stands for receiving a message, while in the RHS of a transition it stands
for sending a message. The fact iknows(request) of Example 1 will not disappear from
the current state, because the predicate iknows is persistent: once a message is emitted,
it becomes a part of the knowledge of the environment (i.e., of the network or of the
intruder) and the environment does not “forget” it. If the LHS of a transition holds in
the current state, then it is assumed that the knowledge (represented by a set of ground
facts) of the corresponding service is enough to build the messages stated in iknows in
the RHS of the transition.

We use one predicate per service to specify the service states. By convention the
predicate name starts with state followed by the service name, e.g. state BankingService
from Example 1.

– Section Goals: contains security goals that can be defined as attack states (special
states of the transition system) or by means of LTL formulae.

Example 2. Sample attack state.

1 attack_state stateName(Msg):=
2 fact1(Msg).
3 fact2(Msg)

Here, attack state stateName is reached, if there exists a value val of variable Msg
such that fact1 (val) and fact2 (val) are in the current state of the transition system.
Section HornClauses: contains a finite set of Horn clauses. They can specify, for
instance, the authorization logic.

ASLan Generation Procedure. We build a transition system specified in ASLan and
representing a prudent implementation of the mediator service M . First we consider
a list A = 〈a1, . . . , an〉 of all the subterms occurring in M deduced by M (at some
communication step) such that for all 1 ≤ i < j ≤ n, ai.dstep ≤ aj .dstep and
we associate a fresh variable name per each atom in A through a bijective mapping
σ−1 : ai �→ Xi. We then create a state fact state M for M with the following profile
type: type(a1)∗. . .∗type(an) → fact. For each reception RCV (m) in M we generate
an ASLan transition τ having only the fact iknows(σ−1(m)) in its RHS. We note that
σ−1(m) is well defined, since every message m received by p is trivially reachable by
her. For each emission SND(m) in M we generate an ASLan transition τ having only
the fact iknows(σ−1(m)) in its LHS. Again we note here that every message m sent
by the mediator M has been already deduced by him and thus σ−1(m) is well defined.

38 Y. Chevalier, M.A. Mekki, and M. Rusinowitch

We introduce the variable renaming functions {V Namej}1≤j≤length(c) to distin-
guish whether a value has been assigned to the variable Xm or not yet in a transition. For
each transition labeled by step j we respectively append to its LHS and RHS the facts
state M(〈V Namej−1(Xi)〉1≤i≤n) and state M(〈V Namej(Xi)〉1≤i≤n) where the
functions V Namej map variables to ASLan variable names as follows:

V Namej(Xi) =

{
NI Xi, if σ(Xi).dstep ≥ j;
Xi, otherwise.

Finally we specify the initial state of the partner: state n(〈ni Xi〉1≤i≤n). Informally
speaking we initialize (with dummy values) the variables corresponding to atoms that
will be seen in received messages or generated as nonces in messages to be sent.

5 Experimental Results

5.1 Avantssar Platform

The above mediator construction has been implemented in AVANTSSAR Platform [5],
as the Orchestrator module. A solution of the orchestration problem (the description
of the mediator) is automatically extracted from the attack trace and then translated to
ASLan using the Trace2ASLan module. It provides us with an operational implemen-
tation of the new feature provided by the composed service (or mediator). The com-
bination of this implementation and the available services is validated with respect to
regular security properties (and in prescript of all other partner services) in presence of
an active intruder. The validation task is performed by the AVANTSSAR backends. The
overall architecture is displayed in Figure 5. We have applied the AVANTSSAR Plat-
form to three case-studies from the AVANTSSAR Test Library [4] (putting the focus
on composition problems). In the following we describe one of these case-studies then
we provide the execution times needed to solve the three corresponding orchestration
problems as well as the one in the introductory example.

5.2 Running Case Study

Description. We have applied the AVANTSSAR Platform to a digital contract signing
(DCS) case study, provided by OpenTrust. A Business Portal (BP) is provided to parties
that plan to digitally sign a contract. The goal of this case study is to automatically
compose a security server (SeS) that will interact with this security portal as well as
with available services to satisfy the security constraints.We assume that the community
of services available to compose SeS contains the following services:

Timestamper: An external service that provides a timestamping functionality. We ab-
stract the protocol employed to communicate with this service with a simple pay-
load exchange with an assertion guaranteeing the timestamp’s freshness;

PKI: A Public Key Infrastructure (PKI) is employed to check the validation keys of the
customers. Again, we abstract away the protocols employed to communicate with
this or these PKI, and rely on an assertion to characterize the PKI functionality.

Orchestration under Security Constraints 39

Archiver: An archiver service is also accessible. We are doing coarse grain composi-
tion, and simply abstract this service with an assertion stating that this service is
trusted for long-term storage.

Security Constraints. There were several constraints on the SeS. We list here the main
ones: i) The exchange between the BP and the SeS must be secured using the HTTPS
protocol ii) The contracts have to be stored securely.

Client Service. In addition to the compliance with the above constraints, the SeS
provider that we generate has to be able to be the security server partner in the BP
process. To this end we have extracted the message exchange session with the SeS part-
ner from the BP definition, and imposed that the generated service interacts with the
BP. In the process the customers were completely abstracted away.

Orchestration. We run CL-Atse [21], one of the back-end of Avispa Tool suite, with
the ASLan specification described above. It returns an attack on the secrecy of a newly
introduced constant (signaling the end of the client service), which corresponds to the
trace of the messages exchanged between the component services (and the Business
Portal). This trace is displayed in Figure 4 and can be directly translated to a composed
service for Digital Contract Signing.

Validation of the Composed Service. The trace computed for the composition and
adaptation of services has been automatically translated to an ASLan specification of
the mediator which has been added in parallel with the specification modeling the avail-
able services and the client. We have applied CL-Atse to verify some security properties
of the resulting composition to validate the secrecy of the proof record and the authen-
tication of the BP by the security server.

5.3 Testing Benchmark

We briefly describe two other composition problems from the AVANTSSAR Library.

– Public Bidding (PB): PB illustrates a secure document exchange, and aims at pro-
viding a web portal (the Bidding Portal (BiP)) to manage an online call for tender,
and also Bidders’ proposal submissions. The composition problem associated to
this case-study amounts to generating the BiP’s behavior satisfying the requests of
two bidders.

– Car Registration Process (CRP): CRP models an e-government scenario, where a
citizen have a secure access point, enabling communication with government of-
ficers (with a hierarchical chief, the Officer Head (OfH)) and service providers
in an easily usable and secure way. From this portal, citizens may access a great
variety of services with different authentication, authorization, and protection re-
quirements. The composition problem associated to this case-study amounts to
generating the OfH’s behavior that leads the government officers to satisfy some
citizen’s car registration request.

40 Y. Chevalier, M.A. Mekki, and M. Rusinowitch

One common concern in these case-studies (including DCS) is to guarantee the legal
value of the electronic documents produced. The security requirements imposed on such
platforms are highly critical since the probative value of digitally signed documents
relies on the conditions under which they have been produced and validated.

Table 1. Execution Times

Case-Study Composition Time ASLan Generation Time Verification Time
Introductory Example 30 s 163 ms 708 ms

DCS 1 m 659 ms 3 m
PB 1 m 4 s 18 m

CRP 2 m 3 s 4 m

Table 1 illustrates per each case-study the different execution times needed to solve
the composition problem, to generate the ASLan specification of the mediator (and add
it in parallel to the initial specification) and finally to verify the resulting specification.

6 Conclusion

Relying on cryptographic protocols analysis methods we succeeded into solving a class
of web services composition problem. The next step is to generate an executable media-
tor service from the produced ASLan specification. We also need to ensure for security
reasons that the generated mediator code controls and protects as much as possible the
messages it sends and receives. We have already obtained initial results in this direction.
A second research line is to extend the presented works to services with more complex
workflows.

References

1. AVANTSSAR. Deliverable 2.1: Requirements for modelling and ASLan v.1 (2008),
http://www.avantssar.eu

2. AVANTSSAR. Deliverable 2.3: ASLan final version with dynamic service and policy com-
position (2010), http://www.avantssar.eu

3. AVANTSSAR. Deliverable 5.1: Problem cases and their trust and security requirements
(2008), http://www.avantssar.eu

4. AVANTSSAR. Deliverable 5.4: Assessment of the AVANTSSAR Validation Platform
(2010), http://www.avantssar.eu

5. AVANTSSAR. AVANTSSAR Platform (2010), http://www.avantssar.eu
6. Armando, A., et al.: The Avispa Tool for the automated validation of internet security proto-

cols and applications, http://www.avispa-project.org/
7. AVISPA Deliverable 2.3: The Intermediate Format (2003),

http://www.avispa-project.org
8. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic Com-

position of E-services That Export Their Behavior. In: Orlowska, M.E., Weerawarana, S.,
Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 43–58. Springer, Hei-
delberg (2003)

http://www.avantssar.eu
http://www.avantssar.eu
http://www.avantssar.eu
http://www.avantssar.eu
http://www.avantssar.eu
http://www.avispa-project.org/
http://www.avispa-project.org

Orchestration under Security Constraints 41

9. Berardi, D., Calvanese, D., De Giacomo, G., Hull, R., Mecella, M.: Automatic composition
of transition-based semantic web services with messaging. In: Proceedings of the 31st Inter-
national Conference on Very Large Data Bases, Trondheim, Norway, August 30 - September
2, pp. 613–624. ACM, New York (2005)

10. Bultan, T., Su, J., Fu, X.: Analyzing conversations of Web services. In: Proceedings of the
Internet Computing, pp. 18–25. IEEE, Los Alamitos (2006)

11. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: a new approach to design and
analysis of e-service composition. In: Proceedings of the International Conference on World
Wide Web, WWW 2003, pp. 403–410 (2003)

12. Colombo, M., Di Nitto, E., Mauri, M.: SCENE: A Service Composition Execution Environ-
ment Supporting Dynamic Changes Disciplined Through Rules. In: Dan, A., Lamersdorf, W.
(eds.) ICSOC 2006. LNCS, vol. 4294, pp. 191–202. Springer, Heidelberg (2006)

13. Dolev, D., Yao, A.: On the Security of Public-Key Protocols. IEEE Transactions on Informa-
tion Theory 2(29) (1983)

14. McAllester, D.A.: Automatic Recognition of Tractability in Inference Relations. Journal of
the ACM 40, 284–303 (1993)

15. Monfroy, E., Perrin, O., Ringeissen, C.: Dynamic Web Services Provisioning with Con-
straints. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part I. LNCS, vol. 5331, pp. 26–43.
Springer, Heidelberg (2008)

16. Oasis Technical Comittee on Secure Exchange. Ws-securitypolicy 1.2 (2007),
http://doc.oasis-open.org/ws-sx/ws-securitypolicy/200702/
ws-securitypolicy-1.2-spec-cd-02.pdf

17. Pistore, M., Marconi, A., Bertoli, P., Traverso, P.: Automated Composition of Web Services
by Planning at the Knowledge Level. In: International Joint Conference on Artificial Intelli-
gence, IJCAI (2005)

18. Sheth, A.P., Kashyap, V.: So far (schematically) yet so near (semantically). In: Hsiao, D.K.,
Neuhold, E.J., Sacks-Davis, R. (eds.) DS-5. IFIP Transactions, vol. A-25, pp. 283–312.
North-Holland, Amsterdam (1992)

19. World Wide Web Consortium. Simple Object Access Protocol 1.2 (April 2007),
http://www.w3.org/TR/soap12-part1

20. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions is NP-
complete. In: Proc.14th IEEE Computer Security Foundations Workshop, Cape Breton, Nova
Scotia (June 2001)

21. Turuani, M.: The CL-Atse Protocol Analyser. In: Pfenning, F. (ed.) RTA 2006. LNCS,
vol. 4098, pp. 277–286. Springer, Heidelberg (2006)

22. Oasis Consortium. Web Services Business Process Execution Language Version 2.0. (Jan-
uary 23, 2006), http://www.oasis-open.org/
committees/documents.php?wg abbrev=wsbpel

23. World Wide Web Consortium. Web Services Description Language (WSDL) 1.1 (March 15,
2001), http://www.w3.org/TR/wsdl,

24. Wu, Z., Gomadam, K., Ranabahu, A., Sheth, A., Miller, J.: Automatic Composition of Se-
mantic Web Services Using Process Mediation. In: ICEIS, vol. (4), pp. 453–462 (2007)

25. World Wide Web Consortium. XML Path Language (XPath) 2.0. (January 23, 2007)
http://www.w3.org/TR/xpath20/

26. World Wide Web Consortium. XML Schema Definition (XSD) (March 2005),
http://www.w3.org/XML/Schema

http://doc.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-cd-02.pdf
http://doc.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-cd-02.pdf
http://www.w3.org/TR/soap12-part1
http://www.oasis-open.org/committees/documents.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/documents.php?wg_abbrev=wsbpel
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/xpath20/
http://www.w3.org/XML/Schema

42 Y. Chevalier, M.A. Mekki, and M. Rusinowitch

7 Appendix

In Fig. 4 we have employed the following abbreviations:

M1 = {signature sent(s1 · contract · {sha1(contract · s1 · signaturepolicy)} inv(pks1))
·{sha1(contract · s1 · signaturepolicy)} (inv(pks1))} kbpss

M2 = timestamp ok(sha1(contract · s1 · signaturepolicy) · n267(N)
·sha1(sha1(contract · s1 · signaturepolicy) · n267(N)) (inv(pkts))) · n267(N)
·{sha1(sha1(contract · s1 · signaturepolicy) · n267(N))} (inv(pkts))

M3 = timestamp ok(sha1(contract · s1 · signaturepolicy) · n267(N)
·{sha1(sha1(contract · s1 · signaturepolicy) · n267(N))} inv(pkts))
·timestamp ok(sha1(contract · s2 · signaturepolicy) · n258(N)
·{sha1(sha1(contract · s2 · signaturepolicy) · n258(N))} inv(pkts) · n267(N)
·{sha1(sha1(contract · s1 · signaturepolicy) · n267(N))} inv(pkts) · n258(N)
·{sha1(sha1(contract · s2 · signaturepolicy) · n258(N))} inv(pkts)

M4 = signature sent(s1 · contract · {sha1(contract · s1 · signaturepolicy)} inv(pks1))
·signature sent(s2 · contract · {sha1(contract · s2 · signaturepolicy)} inv(pks2)
·{sha1(contract · s1 · signaturepolicy)} inv(pks1)
·{sha1(contract · s2 · signaturepolicy)} inv(pks2)

M5 = {contract · s1 · signaturepolicy · {sha1(contract · s1 · signaturepolicy)} (inv(pks1))
·n267(N) · {sha1(sha1(contract · s1 · signaturepolicy) · n267(N))} (inv(pkts))
·{sha1(s1 · pks1)} inv(pkpki) · {sha1(contract · s2 · signaturepolicy)} (inv(pks2))
·n258(N) · {sha1(sha1(contract · s2 · signaturepolicy) · n258(N))} inv(pkts)
·{sha1(s2 · pks2)} inv(pkpki)} kssarc

M6 = archive ok(contract · s1 · signaturepolicy
·{sha1(contract · s1 · SignaturePolicy(3))} inv(pks1) · n267(N)
·{sha1(sha1(contract · s1 · signaturepolicy) · n267(N))} (inv(pkts))
·{sha1(s1 · pks1)} inv(pkpki) · {sha1(contract · s2 · signaturepolicy)} inv(pks2)
·n258(N) · {sha1(sha1(contract · s2 · signaturepolicy) · n258(N))} inv(pkts)
·{sha1(s2 · pks2)} inv(pkpki))

M7 = archive ok(contract · s1 · signaturepolicy
·{sha1(contract · s1 · signaturepolicy)} inv(pks1) · n267(N)
·{sha1(sha1(contract · s1 · signaturepolicy) · n267(N))} inv(pkts)
·{sha1(s1 · pks1)} inv(pkpki) · {sha1(contract · s2 · signaturepolicy)} inv(pks2)
·n258(N) · {sha1(contract · s2 · signaturepolicy · n258(N))} inv(pkts)
·{sha1(s2 · pks2)} (inv(pkpki)))

Orchestration under Security Constraints 43

Fig. 4. Sequence Diagram for Digital Contract Signing (the intruder i stands for the security
server)

44 Y. Chevalier, M.A. Mekki, and M. Rusinowitch

Fig. 5. Avantssar Platform

Customizing Protocol Specifications for Detecting

Resource Exhaustion and Guessing Attacks�

Bogdan Groza and Marius Minea

Politehnica University of Timişoara and Institute e-Austria Timişoara
bogdan.groza@aut.upt.ro, marius@cs.upt.ro

Abstract. Model checkers for security protocols often focus on basic
properties, such as confidentiality or authentication, using a standard
model of the Dolev-Yao intruder. In this paper, we explore how to model
other attacks, notably guessing of secrets and denial of service by re-
source exhaustion, using the AVANTSSAR platform with its modelling
language ASLan. We do this by adding custom intruder deduction rules
and augmenting protocol transitions with constructs that keep track of
these attacks. We compare several modelling variants and find that writ-
ing deductions in ASLan as Horn clauses rather than transitions using
rewriting rules is crucial for verification performance. Providing auto-
mated tool support for these attacks is important since they are often
neglected by protocol designers and open up other attack possibilities.

1 Introduction and Motivation

Formal verification tools provide an efficient means for automatic verification of
security protocols, once models of these have been written, e.g., some variant
of symbolic transition systems. Usually, the focus is on verification of standard
security goals, such as authenticity and confidentiality. However, in many cases,
satisfying these goals is not sufficient to consider a protocol safe and a more
in-depth analysis to rule out other kinds of attacks is necessary.

This paper focuses on two such attacks which are not handled routinely by
many protocol verifiers, namely guessing attacks and denial of service (DoS).
Both of these attacks are a main concern in protocol design. Guessing attacks
are relevant because users tend to choose weak passwords, and some values such
as PIN codes have intrinsically low entropy. They can become the weakest link
in more complex protocols, leading to other attacks as well. Resource exhaustion
is relevant as a common source of DoS as well as from an economic point of view
if one considers ruling out protocol designs that can be exploited to make honest
participants spend unreasonable amounts of resources, time or memory.

� This work is supported in part by FP7-ICT-2007-1 project 216471, AVANTSSAR:
Automated Validation of Trust and Security of Service-oriented Architectures and
by strategic grant POSDRU/21/1.5/G/13798 of the Human Resources Development
Programme 2007-2013, co-financed by the European Social Fund – Invest in People.

B.K. Aichernig, F.S. de Boer, and M.M. Bonsange (Eds.): FMCO 2010, LNCS 6957, pp. 45–60, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

46 B. Groza and M. Minea

Our research is performed in the framework of the AVANTSSAR project,
where security protocols and services are specified as transition systems in the
ASLan specification language, based on set rewriting. ASLan models can be
analyzed by three different model checkers as back-ends: CL-Atse [19], OFMC [4]
and SATMC [2]. None of them handles DoS or guessing attacks by default.

We present several ways to model custom deduction rules in ASLan. The
purpose is to devise a way to augment protocol models so they can be analyzed
for guessing and DoS attacks without changing the model checkers.

To introduce customized attack rules at the ASLan level there are two main
options: adding new intruder transitions and/or adding Horn clauses. The first
approach results in mixing protocol steps with the new customized transitions,
which can significantly increase state space explosion and verification time. Using
Horn clauses is more efficient but faces several issues. both due to the ASLan
design (Horn clauses cannot add to intruder knowledge, which would be needed
in guessing) and because the model checkers differ in their level of support for
Horn clauses and in their search strategies. Consequently, to express customized
attack rules, we need to write additional transition rules as well as Horn clauses.

Section 2 presents the ASLan specification language focusing on the main fea-
tures relevant for our modelling. In Section 3, we briefly present the principles
behind our analysis of DoS attacks and then details of their modelling with cus-
tomized transitions. Section 4 describes the modelling of guessing attacks, with
several versions using customized transitions and, for efficiency, Horn clauses for
intruder deductions. We conclude in Section 5 with a discussion of the results.

2 The ASLan Specification Language

The AVANTSSAR specification language ASLan is an expressive language for
specifying security protocols and services as well as their policies, based on set
rewriting. In the following, we give a simplified account of the language, focusing
on the features which are most relevant for our customized modelling of attack
rules. A full description of the language is given in [3].

ASLan models are transition systems in which each state is modeled by a
set of ground facts. Predefined types include message and its subtypes (agent,
private key, public key, symmetric key, text). The user can declare addi-
tional type symbols, functions and facts (predicates) with their type signatures.

For example, consider the MS-CHAP protocol, a known target for guessing
attacks. Figure 1 presents the description in Alice-and-Bob notation, together
with an ASLan transition rule for role A, who on receiving nonce NB in step 2
responds with NA and a hash computation in step 3.

Here, state A is a fact that tracks the state of principal A, including an in-
stance identifier ID, a step counter that changes from 1 to 2, and other known
values, including the identity of B, the shared key, the hash function, and the two
nonces (which become known as a result of the step). Communication is modeled
using the fact iknows (on the left-hand side for receive, and on the right-hand
side for send), since anything transmitted becomes part of the intruder knowl-
edge. Conjunction of facts is represented by a dot; apply represents function

Customizing Protocol Specifications for Detecting Resource Exhaustion 47

application and pair message concatenation. The exists keyword specifies the
creation of a fresh value as part of the transition.

1. A → B : A
2. B → A : NB

3. A → B : NA, H(kAB, NA, NB , A)
4. B → A : H(kAB, NA)

step step_1(A,B,H,ID,Kab,Na,Nb,Na0,Nb0) :=

state_A(A,ID,1,B,Kab,H,Na0,Nb0)

.iknows(Nb)

=[exists Na]=>

state_A(A,ID,2,B,Kab,H,Na,Nb)

.iknows(pair(Na,apply(H,

pair(Kab,pair(Na,pair(Nb,A))))))

Fig. 1. MS-CHAP v2 protocol and ASLan transition rule

Let F be the set of ground facts; the set of all possible states is then S = 2F .
An ASLan model defines a transition system M = 〈S, I,→〉, where I ⊆ S is the
set of initial states and → ⊆ S × S is the transition relation.

In an ASLan model, the set of initial states is a conjunction of facts. Transi-
tions are rewrite rules where both sides are conjunctions of facts. A transition
can be taken from any state that contains the facts on the left-hand side; these
are removed from the state and replaced by the facts on the right-hand side.
As an exception, iknows (intruder knowledge) is a persistent fact and does not
disappear, even if written on the left-hand side and being omitted on the right.

Formally, we first define the closure �S�H of a state S with respect to the set
H of Horn clauses in the model as the set of all ground facts that can be derived
from S using H . More precisely, �S�H is the smallest set containing S such that

∀F ← F1, · · · , Fn ∈ H, ∀σ.
⋃

1≤i≤n Fiσ ⊆ �S�H ⇒ Fσ ∈ �S�H

where σ is any substitution function that maps the variables of the Horn clause
F ← F1, · · · , Fn to ground terms.

A transition rule in ASLan has the form PF .NF =[V]=> R, where PF is a
set of positive facts, NF is a set of negative (negated) facts, V is a set of fresh
introduced variables, and the right-hand side R is a conjunction of facts.

We can now define the transition relation → as follows: there is a transition
S → S′ iff there exists a transition rule PF .NF =[V]=> R and a substitution σ
from the variables of PF to ground terms such that following conditions hold:

– PFσ ⊆ �S�H , i.e., the positive facts on the left-hand side hold in �S�H

– NFσσ′ ∩ �S�H = ∅ for all substitutions σ′ such that NFσσ′ is ground, i.e.,
the negative facts cannot hold in �S�H

– S′ = (S \PFσ)∪Rσσ′′, where σ′′ is any substitution such that for all v ∈ V ,
vσ′′ does not occur in S (i.e., variables in V are substituted with fresh terms).

The combination of transition rules and Horn clauses in the language implies the
existence of two kinds of facts. Explicit facts are introduced by the right-hand
side of transition rules and are persistent unless removed by a later transition
(if present on the left-hand side but not the right-hand side). Implicit facts are
introduced by Horn clauses and are recomputed as part of the state closure after
each transition step. To ensure a consistent semantics, explicit facts (including

48 B. Groza and M. Minea

the intruder knowledge iknows) cannot appear in the conclusion of a Horn clause.
This impacts our design of guessing rules, which must add intruder knowledge.

These definitions lead to an execution model for an ASLan specification that
alternates Horn clause deductions and transition steps: first, the set of facts com-
prising a state is augmented by the facts obtained by performing the transitive
closure of the Horn clauses, and then one of the applicable transition rules is
chosen and executed, after which the entire process is repeated. In particular,
this makes Horn clauses suitable for modelling intruder deduction and any addi-
tional processing necessary for attack detection, as Horn clause deductions are
performed after each transition step.

3 Customized Transitions for Detection of DoS Attacks
by Resource Exhaustion

We formalize costs and attack conditions in order to detect DoS attacks by re-
source exhaustion. While we focus on computation resources due to the varying
cost of cryptographic primitives, costs could be associated to memory consump-
tion or other resources as well.

Resource exhaustion DoS attacks can be divided according to the behaviour
of the adversary in two categories: one is abusive use of the service by clients
which willingly or not deplete the server from resources, the other is malicious
use in which adversaries manipulate protocol messages and make honest prin-
cipals waste computational time without reaching protocol goals. For the first
case, we consider an attack feasible if the initiator can force repeated use of the
protocol, which leads to resource depletion. For the second case we consider the
protocol under attack when principals reach states in which their beliefs about
the protocol are wrong, e.g., messages are accepted from impersonated senders.
Cutting down communication is not an issue since the intruder can do this for
any protocol and protocol design cannot give countermeasures to it. In both
cases, to deem a resource exhaustion attack successful we must evaluate costs
for both the adversary and honest principals. An attack is flagged as successful
when both the cost of the adversary is lower and one of the two situations hold:
the adversary is the initiator or the principal’s beliefs are wrong.

3.1 Defining Costs and Augmenting Transitions

Costs can be treated according to the framework of Meadows [16], which uses a
monoid structure; this approach is also used in follow-up related work [17,18].
The cost set employed is S = {0, low, medium, high}, and the sum of two
costs is simply defined as their maximum: ∀a, b ∈ S, a + b = max(a, b). This
can be easily modeled in ASLan by using a fact for summing costs, as shown
in Figure 2 where cost values are of type text and sum has the signature
sum: text * text * text -> fact. In the same manner, the comparison be-
tween cost values is defined with the fact less.

Customizing Protocol Specifications for Detecting Resource Exhaustion 49

The existing AVANTSSAR model checkers have limited support for numeric
values. Using SMT-based techniques would allow for integer costs and a better
evaluation of complex attacks such as distributed DoS, where a more sensitive
cost analysis must be done. For example, the initial cost of the adversary can be
high, but it can be alleviated over multiple protocol sessions. Only a few manual
analyses have been done with explicit numeric cost values [15]; most analyses in
the literature are symbolic, using a monoid as cost structure.

Transitions can be easily augmented by costs. This has to be done for both
protocol steps (as described in detail in [11]) and intruder deductions. Figure 2
shows the cost definition and an intruder deduction modeled as protocol transi-
tion that keeps track of cost. The example is a deduction in which the intruder
performs a signature with key Y over term X , denoted by costSig(X,Y), and
incurring cost high, with the initial condition that he knows both X and Y .

sum(low, low, low).

sum(low, medium, medium).

sum(medium, low, medium).

sum(low, high, high).

sum(high, low, high).

sum(high, medium, high).

sum(medium, high, high).

sum(high, high, high).

less(low, medium).

less(medium, high).

less(low, high)

step trans_1(X, Y, Cost, NewCost, ID):=

state_adv(i, ID, 0)

.iknows(X).iknows(Y)

.cost(i, Cost)

.sum(Cost, high, NewCost)

=>

state_adv(i, ID, 0)

.iknows(costSig(X,Y))

.cost(i, NewCost)

.sum(Cost, high, NewCost)

Fig. 2. Defining costs (left) and a cost-augmented transition for a signature (right)

3.2 Defining the Attack Condition

To flag an attack on principal P , a necessary condition is that the intruder cost
is less than the cost incurred by P : cost(i, Ci).cost(i, CP).less(Ci, CP). In addi-
tion, for abusive use, we need to keep track of the protocol initiator. This can be
done by augmenting the initial transition of the protocol (done by principal A)
with the fact initiate(A) and adding initiate(i) in the attack condition (the
attack must be repeatable by the intruder). For malicious use, we track the viola-
tion of injective agreement. This can be done by augmenting the right-hand side
of each send and receive transition with the facts send(S, R, M, L, ID) and re-
spectively recv(S, R, M, L, ID), having as parameters the sender, recipient,
content, protocol step and instance. The attack is flagged by checking satisfi-
ability of the condition recv(S, R, M, L, ID).not(send(S, R, M, L, ID),
which means that a message receive does not have a matching send.

These attack conditions can be further refined along other criteria, such as
determining whether the attack is detectable or not by a given principal, or by
any honest principal, etc. A more difficult issue is handling costs over multiple

50 B. Groza and M. Minea

sessions. In this case, principals must not cumulate costs from correct protocol
runs, but only from sessions initiated by the adversary or from malicious sessions.
This requires rewriting each protocol transition in several ways, keeping track of
these conditions, and tracking costs either per-session or per-principal. Modelling
details are given in [11].

As an example, we discuss the Station-to-Station protocol (STS) [8] depicted
in Figure 3. The protocol computes a shared session key k = αxy starting from
the random values x and y chosen by the two participants.

A → B : αx

B → A : αy ,CertB , Ek(sigB(α
y, αx))

A → B : CertA, Ek(sigA(α
x, αy))

A → Adv(B) : αx

Adv → B : αx

B → Adv : αy ,CertB, Ek(sigB(α
y , αx))

Adv(B) → A : αy ,CertB, Ek(sigB(α
y , αx))

A → Adv(B) : CertA, Ek(sigA(α
x, αy))

Fig. 3. Station to Station protocol (left) and Lowe’s attack (right)

Lowe’s attack [13], in the right part of Figure 3, shows the adversary capturing
the message sent by A to B and resending it in his own name to B. Afterwards,
B is talking to Adv, while A believes she is talking to B. Adv(B) means the
adversary impersonating B, while Adv is the adversary acting as himself.

The attack found by Lowe shows a flaw in the protocol, irrespective of costs.
Later, Meadows [16] analyzed this attack from a cost-based perspective. Our
model allows a model checker to detect this attack automatically. By using an
attack condition (attack state) such as

dos_on_a(X, Y, P, V, L, ID) := cost(a, X).cost(i, Y).less(Y, X)
.recv(P, a, V, L, ID) & not(send(P, a, V, L, ID))

we direct the model checker to find a protocol trace in which the adversary has
lower cost than the honest principal A, who accepts a message from a different
session. Figure 4 presents the attack trace found by CL-Atse (release 2.5-8).
The attack differs slightly from the one found by Lowe, but by placing different
constraints the back-end can reproduce Lowe’s attack as well. The trace shows
the adversary reusing a value sent by A to obtain a response from B that is
further redirected and accepted by A. Steps 1 to 3 are from A’s session with B
(compromised by the intruder in step 3), while step 2’ is from a session between
the intruder and B (step 1’ is implicit since the intruder knows everything sent
over the network). The cost of both A and B is high as they compute modular
exponentiations while their beliefs about the resulting shared session key (αxy)
are both wrong. A believes she shares a key with B, while B believes he shares
the key with Adv, who is actually unable to compute it without knowing x.

The cost of the adversary is low as he doesn’t perform computations except
for redirecting messages, which is assumed to be cheap.

Customizing Protocol Specifications for Detecting Resource Exhaustion 51

1. A → B : αx

⎧⎨
⎩

i → (A, 5) : {}
(A, 5)→ i : costExp(g, n5(XA))
& Built from trans0

2. B → I(A) : αy1 ,CertB ,
Ek(sigB(α

y1 , αx))

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i → (B, 12) : costExp(g, n5(XA))
(B, 12)→ i : costExp(g, n6(XB)).certB.
|costExp(g, n6(XB)).costExp(g, n5(XA)) inv(b pk)|
costExp(costExp(g, n5(XA)), n6(XB))
& Built from trans1

2′. B → I : αy2 ,CertB ,
Ek(sigB(α

y2 , αx))

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i → (B, 22) : costExp(g, n5(XA))
(B, 22)→ i : costExp(g, n14(XB)).certB.
|costExp(g, n14(XB)).costExp(g, n5(XA)) inv(b pk)|
costExp(costExp(g, n5(XA)), n14(XB))
& Built from trans1

3. I(B)→ A : αy2 ,CertB ,
Ek(sigB(α

y2 , αx))

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

i → (A, 5) : costExp(g, n14(XB)).certB.
|costExp(g, n14(XB)).costExp(g, n5(XA)) inv(b pk)|
costExp(costExp(g, n5(XA)), n14(XB))
(A, 5)→ i : certA.
|costExp(g, n5(XA)).costExp(g, n14(XB)) inv(a pk)|
costExp(costExp(g, n14(XB)), n5(XA))
& Built from trans2

Fig. 4. STS and the corresponding attack trace shown by CL-Atse

4 Combining Transitions and Horn Clauses for Detection
of Guessing Attacks

A guessing attack is done by guessing the value of a low-entropy secret and
being able to verify the guess. This can be done in two distinct cases. The first
case requires knowing the image of a one-way function on the secret, e.g., h(s),
and being able to compute the function on arbitrary values for verification. The
second case computes the output of a function inverse that depends on the secret
(e.g., the secret is part of a decryption key), and checks a property of the output,
e.g., a known part a in decrypting {a.m}s or two equal parts for {m.m}s. We
have presented a formalization and automation of this approach in [10].

Related work on guessing is based on various theories. A widely used definition
is due to Lowe [14], while Abadi et al. [1] present a sound approach from an
algebraic point of view based on indistinguishability. Corin et al. [6] also use
equational theories, while [12] explicitly represents intruder computation steps,
but is limited to offline attacks. Tools that are able to find guessing attacks are
presented by Blanchet [5], Corin et al. [7], and Lowe [14].

4.1 Formalization of Guessing

Our approach uses oracles to represent terms obtained as functions computed
over the secret. An adversary may establish two kinds of relations with an oracle:
observes means that the adversary knows the output of the oracle, for some
inputs which are not necessarily known. The stronger notion of controls means

52 B. Groza and M. Minea

that the adversary can apply inputs of its choice to the oracle and obtain the
resulting output. Thus, controls implies observes, but the reverse does not hold.

With these notions defined, the first case, when the adversary knows the image
of a one-way function over the secret and controls the corresponding oracle, is
verified using the guessing rule:

observes(Of (s)) ∧ controls(Of (s)) ⇒ guess(s) (1)

Here Of (s) denotes the oracle computing the function (term) f over secret s.
Guessing holds because the adversary knows the image of a one-way function over
the secret and since he controls the oracle for that function he can successively
give all values of the secret as input to the oracle then verify the result. This
rule can detect guessing attacks on terms such as m.h(m, s) or {s}s, etc.

In the second case, when the secret is part of the key of an invertible function
we need to check if a term is verifiable by the adversary. We define a term as
verifiable by the adversary in any of the following cases:

– the term is already known:

verifiable(Term) :– iknows(Term) (2)

– the term is a digital signature, and the public key and message are known:

verifiable(apply(inv(PK),Term)) :– iknows(PK) ∧ iknows(Term) (3)

– the image of a one-way function on the term and a controllable oracle for
that function are known:

verifiable(Term) :– iknows(apply(F, T ′)) ∧ part(Term , T ′)

∧ controls(OF (T ′)(Term)) (4)

– the term is an encryption with a controllable decryption oracle, and some
part T ′′ of the encrypted term is verifiable if the remaining part T ′ is added
to the intruder knowledge (expressed by fact split(Term , T ′, T ′′)):

verifiable(scrypt(K,Term)) :– controls(O{M}K−1 (M))
∧ split(Term , T ′, T ′′) ∧ verifiable(T ′′) (5)

We can now define the second case of guessing. If the adversary observes an
encryption oracle that uses a key dependent on the secret s, if he controls the
corresponding decryption oracle (with s as input) and can verify a part of the
encrypted message then the adversary can guess the secret, i.e.,

observes(O{Term}K (s)) ∧ controls(O{Term}K−1 (s))
∧ split(Term, T ′, T ′′) ∧ verifiable(T ′′) ⇒ guess(s) (6)

For example, consider h, m1, apply(h, pair(m1, m2)) and scrypt(s, m2) as known.
Since m2 is a part of apply(h, pair(m1, m2)) and this function is controllable

Customizing Protocol Specifications for Detecting Resource Exhaustion 53

in m2 (h and m1 being known), then m2 is verifiable by rule 4. Knowing
scrypt(s, m2) and controlling the decryption oracle, one can guess s.

Next, consider that scrypt(s, scrypt(k, pair (m, m))) and k are known. Using
rule 5, scrypt(k, pair (m, m)) is verifiable, since adding the first instance of m
to the intruder knowledge, one can verify the second m from the pair. This in
turn allows guessing s. On the other hand, from scrypt(s, scrypt(k, m)) and k
the intruder cannot in general guess s: if symmetric encryption is done with a
one-time pad then the decrypted m has no meaning and cannot be verified. Of
course, if the adversary knows both m and k, the term is verifiable by rule 1
since iknows(scrypt(k ,m)) holds. Other verification rules can be added to the
model, for example in the case of authenticated encryption, etc.

To implement observes, the analysis performed by the model checker needs
to determine if a composed term contains the secret to be guessed. We express
observing an oracle as ihears(T)∧contains(T, S), where S is the guessable secret,
and ihears is a fact added to the right-hand side of each send transition in the
protocol, supplementary to iknows . This new fact is needed to distinguish terms
overheard on the network from terms otherwise derived by the intruder.

To decide controls, the analysis takes a term containing the secret and con-
structs a new term where the secret is replaced by a fresh value. If the adversary
knows this term, it controls the oracle corresponding to the original term. Con-
trolling an oracle is then modeled by the facts replace(T,TNew)∧iknows(TNew).

For efficiency, the above expressions can be used directly in the attack con-
dition rather than introducing explicit observes and controls facts. Moreover,
a sufficient condition for the case of offline guessing is whether the adversary
knows all parts of a term except the secret which it tries to guess. This is easier to
model and verify by the back-ends and will be used in the following subsections.

We next discuss how to express the facts contains and replace for checking
the presence of a secret in a term and constructing a new term, respectively,
and how to efficiently model the verifiability conditions given above using Horn
clauses. We evaluate the various approaches on a protocol case study.

4.2 Processing Terms That Contain the Secret

Checking whether a term contains a particular secret, and replacing it with a
new value is simple conceptually but challenging in practice. These steps are
the basis for detecting simple attacks such as those covered by the first guessing
case of rule 1, e.g., guessing s if a and h(a.s) are known. We discuss three ways
of implementing containment and replacement, with major differences both in
writing the rules and in the analysis time to find an attack.

We test the various approaches using as example the MS-CHAP protocol [20],
depicted in Figure 1. To make analysis times more significant we modify this
simple protocol by inserting more complex terms. In MS-CHAP* the last term,
H(kAB, NA), is changed to H(NA, kAB, NA), while for MS-CHAP** we con-
catenate NA to the key seven times: H(NA, . . . , NA, kAB, NA). While guessing
is conceptually straightforward in all cases, for complex terms the rules require
more processing time, highlighting the differences between the approaches.

54 B. Groza and M. Minea

Naive Approach with Transitions
The straightforward approach is to consider terms heard by the intruder on
the network, to define contains and replace for atoms, and to derive them for
composed terms using the corresponding facts for their components. For atomic
terms, rules can be defined as shown in the left part of Figure 5 for an atom of
type text. Since the atom is not equal to the secret, replace does not change it,
and contains is asserted with a dummy null secret.

For composed terms, contains and replace facts can be derived if these facts
are known for their components. This is shown in the right part of Figure 5 for a
term composed with pair, and similar rules are defined for terms composed with
scrypt, crypt, etc. In our implementation, we restrict the application of these rules
only for terms sent over the network, in order to avoid their inefficient application
over the entire intruder knowledge. This is because the set of terms known by the
intruder is large, conceptually even unbounded (since the intruder can always
create fresh terms or compose already known terms with known operators), and
the back-end may fail to terminate. Using ihears instead of iknows also allows
us to derive the sub-terms of terms that are heard on the network, which can be
easily done by adding transitions for each type of composed term.

In practice, this modelling approach works for decomposing simple terms,
however if the terms are more complex, and many transitions are needed, then
the back-end times out attempting to verify the model. As seen in Table 1, this
modelling variant fails for terms on which the forthcoming procedures succeed.

state_process(A, ID, 0)

.ihears(AtomText)

.not(equal(AtomText, s))

=>

state_process(A, ID, 0)

.ihears(AtomText).

.contains(AtomText, snull)

.replace(AtomText, AtomText)

state_process(A, ID, 0)

.ihears(pair(T1, T2))

.contains(T1, S1).contains(T2, S2)

.replace(T1, T1New).replace(T2, T2New)

=>

state_process(A, ID, 0)

.ihears(pair(T1, T2))

.contains(T1, S1).contains(T2, S2)

.replace(T1, T1New).replace(T2, T2New)

.contains(pair(T1, T2), S1)

.contains(pair(T1, T2), S2)

.replace(pair(T1, T2), pair(T1New, T2New))

Fig. 5. Contains and replace for atomic terms (left) and composed terms (right)

Improved Approach with Transitions
The previous approach is inefficient because the steps for customized intruder
deductions can be interleaved with protocol steps, leading to exponential com-
plexity. To avoid this, we control the order in which the terms are processed by
placing them in a stack (constructed with pair and a dummy separator). Terms
are processed by structural decomposition and each new sub-term is placed on
top of the stack unless it is an atom and the contains and replace facts for it can

Customizing Protocol Specifications for Detecting Resource Exhaustion 55

be directly deduced. Clearly an atom contains the secret if and only if it is the
actual secret, otherwise contains is false and replace leaves the atom unchanged.

For example, consider the term scrypt(k, h(pair (NA, NB))) heard over the net-
work. In the first step the stack contains only this term. Next, k (the left operand
of scrypt) is added to the top of the stack. As this operand is atomic, one can
directly establish contains and replace for it, and remove it from the stack. The
next item on the stack will be the right operand of scrypt, i.e., h(pair(NA, NB)).
The next element is pair(NA, NB), with the stack now containing three items,
and so on. On the left side of Figure 6 an atom of type text is eliminated from
the list, while on the right side a composed term is split into its components.
This mechanism greatly reduces complexity due to interleaving.

As can be seen in Table 1, this modelling variant succeeds in deriving the
guess also for the artificially complicated structure of MS-CHAP**. However,
its time requirement increases significantly with the complexity of the term, a
drawback removed in the next modelling solution.

state_process(A, ID, 1)

.process(

pair(pair(AtomText,sep),Right))

.not(guessable(AtomText))

=>

state_process(A, ID, 0)

.process(Right)

.contains(AtomText, snull).

.checked(AtomText)

.replace(AtomText, AtomText).

.replaced(AtomText)

state_process(A, ID, 1)

.process(

pair(pair(pair(T1, T2), sep), Right))

.contains(T1, S1).replace(T1, T1New)

.contains(T2, S2).replace(T2, T2New)

=>

state_process(A, ID, 0)

.process(Right)

.contains(T1, S1).replace(T1, T1New)

.contains(T2, S2).replace(T2, T2New)

.checked(pair(T1, T2))

.contains(pair(T1, T2), pair(S1, S2))

.replace(pair(T1,T2),pair(T1New,T2New))

.replaced(pair(T1, T2)).

Fig. 6. Improved contains/replace for atomic terms (left) and composed terms (right)

Efficient Approach with Horn Clauses
Horn clauses are more elegant and intuitive for modelling intruder deductions.
They were specially introduced in ASLan for this purpose, as well as for mod-
elling static or dynamic security policies.

The model checkers of the AVANTSSAR platform process Horn clauses in
different ways, depending on their overall exploration strategy. CL-Atse employs
a backward search, using Horn clauses only when deriving some fact is required
(e.g., for the left-hand side of a transition). SATMC on the other hand employs
a forward strategy and saturates the set of known facts by transitively applying
Horn clauses after each transitions. Thus, Horn clauses written with one search
strategy in mind may lead a model checker employing the opposite strategy to
non-termination. We have devised models adapted to the use of CL-Atse.

56 B. Groza and M. Minea

For example, the Horn clauses in Figure 7 find both the part of a term and its
remainder. The fact ispart(T1, T2, T3) denotes that T1 is split into disjoint parts
T2 and T3. The Horn clause part left states that T2 is part of pair (T0, T1) with
remainder pair (T0, T3) if T2 is part of T1 with remainder T3. Such rules need to
be written for all operators that can be applied on terms.

hc part_null(T1) :=

ispart(T1, null, T1)

hc part_id(T1) :=

ispart(T1, T1, null)

hc part_left(T0, T1, T2, T3) :=

ispart(pair(T0, T1), T2, pair(T0, T3)) :- ispart(T1, T2, T3)

hc part_right(T0, T1, T2, T3) :=

ispart(pair(T0, T1), T2, pair(T3, T1)) :- ispart(T0, T2, T3)

hc part_scrypt_left(T0, T1, T2, T3) :=

ispart(scrypt(T0, T1), T2, pair(T0, T3)) :- ispart(T1, T2, T3)

hc part_scrypt_right(T0, T1, T2, T3) :=

ispart(scrypt(T0, T1), T2, pair(T3, T1)) :- ispart(T0, T2, T3)

Fig. 7. Splitting terms using Horn clauses

1. A → B : A

{
i → (chap Init, 11) : start
(chap Init, 11)→ i : a

2. B → A : NB

{
i → (chap Resp, 18) : a
(chap Resp, 18)→ i : n4(Nb)

3. A → B : NA,
H(kAB, NA, NB , A)

⎧⎨
⎩
i → (chap Init, 13) : n4(Nb)
(chap Init, 13)→ i : pair(n2(Na), h(pair(s,

pair(n2(Na), pair(Nb(2), a)))))

4. B → A : H(kAB, NA)

⎧⎨
⎩
i → (chap Resp, 20) : pair(n2(Na), h(pair(s,

pair(n2(Na), pair(n4(Nb), a)))))
(chap Resp, 20)→ i : h(pair(s, n2(Na)))

Horn clause facts:

controls(h(pair(s,n2(Na))),s),

iguess(s),

ihears(h(pair(s,n2(Na)))),

ispart(h(pair(s,n2(Na))),h(pair(s,n2(Na))),null),

ispart(s,pair(s,n2(Na)),pair(n2(Na),null)),

ispart(s,s,null),

observes(h(pair(s,n2(Na))),s)

Fig. 8. MS-CHAP v2 and the corresponding attack trace found by CL-Atse

In the attack trace from Figure 8 the intruder was forced to guess kAB from
the message in step 4, although it could have also guessed at step 3. The Horn
clauses show that the intruder observes the term from step 4, and repeatedly
applies rules involving ispart until it can derives controls, which then allows the
guess. Rules for observes and controls are discussed in the next subsection.

Customizing Protocol Specifications for Detecting Resource Exhaustion 57

Table 1 shows that by using this approach the increase in time requirements
is negligible for more complex terms which otherwise require several seconds of
processing, or even fail if naive transition rules are used for term processing.

Table 1. Timing results for attack detection on MS-CHAP with CL-Atse

MS-CHAP MS-CHAP* MS-CHAP**

Naive Transitions 456 ms 820 ms TOUT

Efficient Transitions 1272 ms 1812 ms 10529 ms

Horn Clauses 120 ms 120 ms 112 ms

4.3 Using Horn Clauses and Transitions for Intruder Deductions

Finally, to flag a guessing attack, we need to determine whether some term is
verifiable by the intruder. Figure 9 shows rules for the verifiability conditions
discussed previously. To achieve this, in some cases we need to add terms to
the intruder knowledge as shown in Figure 10. This is important for modelling:
while Horn clauses can be used for verifying terms, they cannot be used to add
terms to intruder knowledge when working with CL-Atse, due to the backward
strategy it employs when using Horn clauses. (SATMC however can do this, as
it due to the forward strategy employed). The two guessing cases are detected
by the Horn clauses in Figure 11. Thus, to validate the guess we have to use a
mixture of Horn clauses and intruder transitions. Using these, CL-Atse is able
to detect guessing from terms such as {m, m}s or k, {{m, m}k}s, etc.

% verify known term

hc verif_iknows(MsgA) :=

verifiable(MsgA) :- iknows(MsgA)

% verify signature

hc verif_sign(PbK, MsgA) :=

verifiable(apply(inv(PbK), MsgA)) :- iknows(PbK), iknows(MsgA)

% verification of term under hash

hc verif_hash(MsgA, MsgB, MsgC) :=

verifiable(MsgA) :- iknows(apply(h,MsgB)),

ispart(apply(h,MsgB), MsgA, MsgC), iknows(MsgC)

% the ciphertext is verifiable if the encryption key is known

% and part of the plaintext is verifiable

hc verif_scrypt_ciphertext(K, MsgA, MsgB, MsgC) :=

verifiable(scrypt(K, MsgA)) :- iknows(K), split(MsgA, MsgB, MsgC),

verifiable(MsgC)

Fig. 9. Horn clauses for verifying terms

58 B. Groza and M. Minea

% split a message if it was not split before

step trans_split(A, MsgA, MsgB, MsgC, K):=

state_split(A)

.ihears(scrypt(K, MsgB)).ispart(MsgB, MsgA, MsgC)

.not(equal(MsgC, null)).not(is_split(MsgB))

=>

state_split(A)

.ihears(scrypt(K, MsgB)).ispart(MsgB, MsgA, MsgC)

.iknows(MsgA)

.split(MsgB, MsgA, MsgC).is_split(MsgB)

Fig. 10. Transition for adding terms to intruder knowledge

hc controls_hash(S, K, Rest, Msg) :=

controls(apply(h, Msg), S) :- ihears(apply(h, Msg)),

ispart(S, Msg, Rest), iknows(Rest)

hc observes_hash(S, K, Rest, Msg) :=

observes(apply(h, Msg), S) :- ihears(apply(h, Msg)),

ispart(S, Msg, Rest)

hc guess_case_i(S, Msg) :=

iguess(S) :- lowentropy(S), observes(Msg, S), controls(Msg, S)

hc controls_scrypt(S, K, KRest, Msg) :=

controls(scrypt(K, Msg), S) :- ihears(scrypt(K, Msg)),

ispart(S, K, KRest), iknows(KRest)

hc observes_scrypt(S, K, KRest, Msg) :=

observes(scrypt(K, Msg), S) :- ihears(scrypt(K, Msg)),

ispart(S, K, KRest)

hc guess_case_ii(S, K, MsgA, MsgB, MsgC) :=

iguess(S) :- lowentropy(S),

observes(scrypt(K, MsgA), S), controls(scrypt(K, MsgA), S),

split(MsgA, MsgB, MsgC), verifiable(MsgC)

Fig. 11. Horn clauses for guessing

4.4 Distinguishing Detectable from Undetectable On-line Attacks

With the guessing mechanism established above, the attack condition can be
stated in different flavours. For example, as the deduction rules allow detecting
on-line attacks, we can ask whether the attack is detectable or not by some
(or any) honest participant. The relevance of this kind of undetectable on-line
attacks was previously pointed out by Ding and Horster [9].

We can express that guessing is undetectable for honest participants if for all
executions where guessing happens, the protocol is completed normally by all
participants. Thus, we can reformulate undetectable guessing as a reachability

Customizing Protocol Specifications for Detecting Resource Exhaustion 59

check for an attack state in which the secret has been guessed and all protocol
participants have completed execution.

In ASLan models, each participant has a unique identifier ID which is part of
its state fact. We also define for each participant the fact running(ID) which is
true in every state except the participant’s initial and final states. An adversary
observes (controls) an oracle undetectably if it observes (controls) the oracle and
all protocol participants reach a final state, i.e., no fact running(ID) holds.

A protocol description can be automatically augmented to allow for this check
by statically identifying its initial and final transitions. Initial transitions have in
the LHS a state fact, whereas final transitions have in the RHS a state fact that
does not appear in the LHS of any other transition rule. Every initial transition
is augmented to generate a fresh ID value, and the positive fact running(ID) is
added to its RHS. Every final transition is augmented with the fact running(ID)
on the LHS, but not on the RHS, thus it becomes false. This protocol adaptation
allows to directly express undetectable guessing.

The same technique can be used to distinguish offline attacks. This is achieved
by checking for attacks, while requiring that no fresh ID is ever generated. It
may also be useful to check, for instance, if only adversary observe actions were
done on-line, while controls, which involves computations and is more tedious,
is performed offline. This can be done by checking that no fresh ID is generated
between observes and controls. Thus, our approach allows not only the detection
of guessing attacks, but also their classification.

5 Conclusions

As model checkers for security protocols do not by default support the detection
of all attacks, one needs to use customized intruder deductions and transitions for
this purpose. This allows the handling of new types of attacks without changing
the model-checking back-ends. In this paper, we have explored two such case
studies: modelling guessing attacks and denial of service by resource exhaustion.
These attacks are relevant as many protocols used in practice are vulnerable to
them, and we show the applicability of our theories with automatically obtained
attack traces on known protocols.

We present different modelling options and investigate the relative efficiency
of transition rules and Horn clauses, with the latter providing significant per-
formance gain and allowing the processing of more complex message terms. The
modelling approaches described here show the power of the ASLan specification
language which serves as input to the AVANTSSAR model checkers.

We hope that the approaches shown here can provide a starting point for
modelling other types of attacks that are currently not detected by default.

References

1. Abadi, M., Baudet, M., Warinschi, B.: Guessing attacks and the computational
soundness of static equivalence. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS
2006. LNCS, vol. 3921, pp. 398–412. Springer, Heidelberg (2006)

60 B. Groza and M. Minea

2. Armando, A., Compagna, L.: SAT-based model-checking for security protocols
analysis. International Journal of Information Security 7(1), 3–32 (2008)

3. AVANTSSAR: Deliverable 2.3 (update): ASLan++ specification and tutorial
(2011), http://www.avantssar.eu

4. Basin, D.A., Mödersheim, S., Viganò, L.: OFMC: A symbolic model checker for
security protocols. Internat. J. of Information Security 4(3), 181–208 (2005)

5. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In:
Proc. 14th IEEE Computer Security Foundations Workshop, pp. 82–96 (2001)

6. Corin, R., Doumen, J.M., Etalle, S.: Analysing password protocol security against
off-line dictionary attacks. In: Proc. 2nd Int’l. Workshop on Security Issues with
Petri Nets and other Computational Models (WISP), pp. 47–63 (2004)

7. Corin, R., Malladi, S., Alves-Foss, J., Etalle, S.: Guess what? Here is a new tool
that finds some new guessing attacks. In: Proc. Workshop on Issues in the Theory
of Security, pp. 62–71 (2003)

8. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Designs, Codes and Cryptography 2(2), 107–125 (1992)

9. Ding, Y., Horster, P.: Undetectable on-line password guessing attacks. Operating
Systems Review 29(4), 77–86 (1995)

10. Groza, B., Minea, M.: A formal approach for automated reasoning about off-line
and undetectable on-line guessing (short paper). In: Sion, R. (ed.) FC 2010. LNCS,
vol. 6052, pp. 391–399. Springer, Heidelberg (2010)

11. Groza, B., Minea, M.: Formal modelling and automatic detection of resource ex-
haustion attacks. In: Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security, ASIACCS (2011)

12. Hankes Drielsma, P., Mödersheim, S., Viganò, L.: A formalization of off-line guess-
ing for security protocol analysis. In: Baader, F., Voronkov, A. (eds.) LPAR 2004.
LNCS (LNAI), vol. 3452, pp. 363–379. Springer, Heidelberg (2005)

13. Lowe, G.: Some new attacks upon security protocols. In: Proc. of the 9th IEEE
Computer Security Foundations Workshop, pp. 162–169 (1996)

14. Lowe, G.: Analysing protocols subject to guessing attacks. Journal of Computer
Security 12(1), 83–98 (2004)

15. Matsuura, K., Imai, H.: Modification of internet key exchange resistant against
denial-of-service. In: Pre-Proceedings of Internet Workshop, pp. 167–174 (2000)

16. Meadows, C.: A cost-based framework for analysis of denial of service networks.
Journal of Computer Security 9(1/2), 143–164 (2001)

17. Ramachandran, V.: Analyzing DoS-resistance of protocols using a cost-based
framework. Tech. Rep. DCS/TR-1239, Yale University (2002)

18. Smith, J., González Nieto, J.M., Boyd, C.: Modelling denial of service attacks
on JFK with Meadows’s cost-based framework. In: Proc. of the 4th Australasian
Information Security Workshop, pp. 125–134 (2006)

19. Turuani, M.: The CL-Atse protocol analyser. In: Pfenning, F. (ed.) RTA 2006.
LNCS, vol. 4098, pp. 277–286. Springer, Heidelberg (2006)

20. Zorn, G.: Microsoft PPP CHAP extensions, version 2 (2000)

http://www.avantssar.eu

Improving the Usability of

Specification Languages and Methods for
Annotation-Based Verification�

Bernhard Beckert, Thorsten Bormer, and Vladimir Klebanov

Institute for Theoretical Computer Science,
Karlsruhe Institute of Technology, Germany

http://formal.iti.kit.edu

Abstract. It is widely recognized that human input is indispensable in
deductive verification of real-world code. Verification engineers have to
guide the proof search and provide information reflecting their insight
into the workings of the program. Lately we have seen a shift towards an
annotation-based paradigm – sometimes called “verifying compiler” –,
where this information is provided in the form of program annotations
instead of interactively during proof construction.
Suspicions have been growing recently that expressing verification

knowledge as annotations in their current form suffers from serious scal-
ability and maintainability issues.
In this paper, we pinpoint some of the biggest neuralgic spots and pro-

vide recommendations to the designers of annotation-based verification
systems aimed to improve usability of specification languages and meth-
ods and, thus, the tool’s productivity. We clarify the different purposes
that annotations can serve and show why a certain class of annotations
that are not program requirements is currently indispensable for proof
construction. Moreover, we discuss how the use of data abstractions can
be improved in annotation-based specifications.

1 Introduction

Program annotations as a form of interaction with the software verification
tool have several important advantages. They make verification attempts self-
contained, as human guidance is captured textually (and typically in terms
closely related to the program at hand). They also keep the program and the
specification close to each other, which is helpful as both unavoidably (co-)evolve.

At the same time, suspicions have been growing recently that expressing ver-
ification knowledge as annotations in their current form suffers from serious
scalability and maintainability issues. This is part of a more general concern
that writing specifications may turn into a bottle-neck for program verification
(this observation was also, e.g., made in [13]).
� Work partially funded by the German Federal Ministry of Education and Research
(BMBF) in the framework of the Verisoft XT project under grant 01 IS 07008 H.
The responsibility for this article lies with the authors.

B.K. Aichernig, F.S. de Boer, and M.M. Bonsange (Eds.): FMCO 2010, LNCS 6957, pp. 61–79, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://formal.iti.kit.edu

62 B. Beckert, T. Bormer, and V. Klebanov

The problems with annotation-based verification arise as the lines between
(a) requirement specification, (b) auxiliary information needed for proof con-
struction, and (c) information for proof-search guidance get blurred. Even worse,
related specification parts get dispersed and different levels of abstraction inter-
mixed.

In this paper, we pinpoint some of the biggest neuralgic spots and provide rec-
ommendations to the designers of annotation-based verification systems aimed
to improve usability of specification languages and methods and, thus, the tool’s
productivity.

After an introduction to the typical architecture and working cycle of anno-
tation-based verification systems (Sect. 2), we discuss in Section 3 the different
purposes that annotations can serve, based on a clarification of what the no-
tion of completeness means in this framework. We show why a certain class of
annotations that are not program requirements is currently indispensable for
proof construction. Users are often surprised that they cannot omit certain non-
requirement annotations even for the simplest (sub-)problems. We plead that
they must be better educated about the inner workings of a verification system
and what kinds of annotations are indispensable in which situations. This is in
conflict with the desire to enable the user to work with the verification system
as a “black box”, which is generally seen as an important feature of the verifying
compiler paradigm.

In Section 4, we discuss how the use of data abstractions can be improved in
annotation-based specifications. The lack of syntactical separation between the
(abstract) requirements and the non-requirement annotations obscures the inner
structure of specifications and makes them hard to understand and maintain.

Finally, in Section 5 we draw conclusions from our research and discuss future
work.

The problems we discuss are not inherent to annotation-based verification (nor
the verifying compiler approach), but rather due to the currently implemented
design decisions of such verification systems. All of the issues mentioned in this
work can be overcome by extending specification languages and methodologies.
The general, central idea of annotating programs at source-code level – using a
language whose syntax is closely related to the programming language – is not
the source of the problems described in this paper.

2 Inside a Typical Annotation-Based Verification System

Tools following the annotation-based paradigm include Spec# [1], VCC [12],
Caduceus [7] and others. They are all based on powerful fully-automatic provers
and decision procedures, and they support real-world programming languages
such as C and C#.

Compared to fully automatic verification approaches like model checking or
abstract interpretation that need no human interaction, the annotation-based
paradigm allows for full functional verification of programs. But the former meth-
ods are either restricted in the expressiveness of specifications, the precision of
results, or in the kind of programs that can be verified.

Improving the Usability of Specification Languages and Methods 63

In the following we describe the process of software verification with the Ver-
ifying C Compiler (VCC). Our observations (unless noted otherwise) are, how-
ever, not restricted to this particular setup.

2.1 Structure of the Toolchain

The VCC toolchain allows for modular verification of C programs using method
contracts and invariants over data structures. Method contracts are specified by
pre- and postconditions. These contracts and invariants are stored as annotations
within the source code in a way that is transparent to the regular, non-verifying
compiler.

As most annotation-based verification systems today, VCC works using an
internal two-stage process. The reason for this is a better separation of con-
cerns and easy integration of different tools. We will discuss the interplay of
the two stages, but many of our remarks also apply to one-stage or multi-stage
approaches.

The first stage of the VCC toolchain translates the annotated C code into
first-order logic via an intermediate language called BoogiePL [6]. BoogiePL
is a simple imperative language with embedded assertions. From this BoogiePL
representation, it is easy to generate a set of first-order logic formulas, which state
that the program satisfies the assertions. These formulas are called verification
conditions and the stage a verification condition generator (VCG).

In the second stage, the resulting formulas are given to an automatic theorem
prover (TP) resp. SMT solver (in our case Z3 [5]) together with a background
theory capturing the semantics of C’s built-in operators, etc. The prover checks
whether the verification conditions are entailed by the background theory. En-
tailment implies that the original program is correct w.r.t. its specification.

See Sections 3 and 4 for some real-world examples for specification and veri-
fication of C programs with VCC.

2.2 The Possible Outcomes of Invoking an Annotation-Based
Verification Tool

In practice, where the limitations of resources are relevant, the possible outcomes
of a verification attempt using a two-stage annotation-based verification system
are:1

1. The formulas generated by the VCG are valid, and the TP has found a proof
for that. This outcome entails that the original program has the specified
properties.

2. Some generated formula is not valid, and the TP has found a counter-
example. This can mean two things: (a) The program is not correct w.r.t. its
specification, i.e., there is an error in either the program code or the specifi-
cation. (b) The program satisfies the specification, but some loop invariant

1 We assume that the programs to be verified are of reasonable size such that only the
theorem proving stage can run out of resources and not the VCG stage.

64 B. Beckert, T. Bormer, and V. Klebanov

or other auxiliary annotation is missing or not strong enough and, as a con-
sequence, some generated verification condition is not a valid formula. We
will discuss this distinction in more detail in Section 3.1.

3. The TP runs out of resources (time or space). This can mean two things:
(a) The generated formula is valid and the program is correct (as in Case 1
above), but the TP could not find a proof in the allotted time/space. (b) The
formula is not valid (as in Case 2 above), but the TP could not find a counter-
example. The non-validity can, again, be due either to the program being
incorrect or to some auxiliary annotation being not strong enough.

In Case 1 above, the invocation of the verification system was successful – a
desired but rare case in practice. Cases 2 and 3 are much more common, and
the user has to analyze the problem. If they find (using the potential counter-
example) that the program indeed does not satisfy the specification, the error
has to be corrected. If they find that the program satisfies the specification, then
new auxiliary annotations (stronger invariants, helpful lemmas, etc.) have to be
added. This process is repeated until the program can be verified.

3 Distinguishing Different Kinds of Annotations

3.1 Annotations and Their Properties

Preliminaries. In the following we assume as given a programming language,
and an annotation language for expressing specifications. Which annotations are
possible depends on the particular language; typical annotations are for example
invariants, pre-/postcondition pairs, and assertions of various kinds. In order to
easily relate alternative potential annotations for the same program, we take
the view that annotations are disjoint from regular program statements. On
the other hand, each annotation has an intended context (statement, method,
class, etc.). We assume that we only deal with combinations of programs and
annotations without context mismatches, i.e., annotations are compatible with
the programs to which they are added. The context an annotation refers to must
actually exist in the program, and the symbols used in the annotation must be
defined for that context.

Definition 1 (Combination of program and annotations). If P is a pro-
gram and A is a set of annotations compatible with P , then we call the pair
P+<A the combination of the two. The parameter < fixes the order of annota-
tions if several of them have the same intended context. We will omit the ordering
whenever it is irrelevant or clear from the context and simply write P+A.

Definition 2 (Annotation satisfaction). We assume that there is a defini-
tion of when a program P satisfies a specification REQ, denoted by |= P+REQ.

Definition 3 (Strength of annotations). An annotation A is (logically)
stronger than an annotation B, in symbols A ⇒ B, if |= P+B holds for all
programs P with |= P+A.

Improving the Usability of Specification Languages and Methods 65

Different Purposes of Program Annotations. Annotations can serve dis-
tinctively different purposes, though sometimes several different ones simultane-
ously. The following classification of annotations is neither syntactic nor seman-
tic, but concerns rather the pragmatics of their use and the intentions of their
author.

Requirement Annotations. Requirement annotations constitute the speci-
fication of the program. They assure the behavior of the program (module)
towards its environment. They are the reason for performing verification. Typ-
ical requirement annotations are pre- and postconditions, class invariants, or
resource consumption limits. They are visible externally and cannot be changed
easily.

Auxiliary Annotations. Auxiliary annotations are used to guide the proof
search. They are usually not part of program requirements. As long as they
satisfy their purpose, auxiliary annotations can be changed anytime without
notice. We further distinguish two subclasses of auxiliary annotations:

(a) The first subclass is necessary merely for efficiency reasons. It encompasses
lemmas, intermediate assertions, quantifier instantiation triggers, and the
like. These annotations are not necessary for completeness. They can always
be made obsolete by increasing the space/time available for proof search or
by advances in SMT prover technology. Another purpose of annotations from
this subclass is to inspect the proof state. For this, the user temporarily adds
auxiliary annotations to get information about implicit “knowledge” of the
proof system at particular points in the proof search – in order to eventually
come up with the right auxiliary annotations needed to complete the proof
(as defined in Def. 7).

(b) The other subclass of auxiliary annotations are essential annotations. Get-
ting them right is essential for completeness, the very existence of a correct-
ness proof. The most prominent essential annotations are loop invariants.
Further auxiliary annotations that can be essential are data-structure in-
variants and abstractions, ownership annotations, and framing conditions.

Monotonicity of Auxiliary Annotations. A very desirable property of anno-
tation satisfaction is monotonicity. Adding auxiliary annotations should strictly
increase the strength of the specification, i.e., |= should be monotonic w.r.t.
adding annotations.

Definition 4 (Monotonicity of |=). |= is monotonic w.r.t. adding annota-
tions iff, for all programs P and all specifications REQ and AUX the following
holds:

if |= P+(REQ ∪ AUX) then |= P+REQ .

In reality, monotonicity of |= w.r.t. adding auxiliary annotations is not given
unless we make some restrictions. One concerns assume annotations that add
an unchecked assumption to the following proof (and thus can make a specifica-
tion weaker). Since all proved properties only hold modulo these assumptions,

66 B. Beckert, T. Bormer, and V. Klebanov

assume annotations are a correctness risk. For these reasons we always classify
assume annotations as part of the requirement and never as auxiliary.

In the same vein, adding a formula to a precondition, and thus weakening it,
violates the condition of Def. 4 and is not an acceptable way of adding auxiliary
annotations.

3.2 Annotations and Existence of Proofs

To separate the annotations that are essential for the existence of a proof and
the ones that are needed only for supporting proof search, one needs a clear
understanding of the notion of completeness. In this section, we discuss what
completeness means in the framework of annotation-based verification systems
and give formal definitions.

Completeness and Relative Completeness. The classical notion of com-
pleteness for deduction systems can be adapted to annotation-based verification
systems as follows:

Definition 5 (Completeness). Let S be a verification calculus or system. S
is complete if, for any program P satisfying its requirement specification REQ,
this fact can be proved using the calculus from a fixed set of axioms ThS. In
symbols:

if |= P+REQ then ThS �S P+REQ

The semantics of the programming language (used for P) and the annotation
language (used for REQ) are encoded in the calculus rules �S and in the back-
ground theory ThS . The restriction of resources (time and space) of real-world
systems is usually not considered for the notion of completeness.

Note also the difference between |= and �: Fewer annotations are easier to
satisfy by the program (|=), while more annotations may make it easier to find
a proof (�).

Since first-order arithmetics is undecidable, all non-trivial properties of pro-
grams are undecidable (Rice’s Theorem), and all program verification systems
are necessarily incomplete in the sense of Def. 5. Instead the notion of relative
completeness is used, i.e., completeness in the sense that the system or calcu-
lus would be complete if it had an oracle for the validity of formulas about
arithmetic [4]. This can be formalized as follows:

Definition 6 (Relative completeness). A verification system S, consisting
of �S and ThS, is relatively complete (w.r.t. arithmetics) if, for each program P
and specification REQ with

|= P+REQ ,

there is a set Arith of valid arithmetical formulas such that

ThS ∪ Arith �S P+REQ .

Improving the Usability of Specification Languages and Methods 67

Luckily, undecidability of first-order arithmetics is usually not an obstacle for ver-
ification in practice. Experience shows that the axiomatization Th together with
the calculus rules of the theorem prover approximate arithmetics well enough and
that the valid arithmetic formulas occurring in practice can be derived (which
does not imply that finding a derivation is easy or possible automatically but
only that a derivation exists). One has to keep in mind, that the distinction
between completeness and relative completeness exists, even if the restriction to
relative completeness is not a real limitation in practice.

Theoretical Completeness Arguments. Relatively complete calculi exist
for many program logics. Harel gives one for first-order Dynamic Logic in [8].
Less-known is the fact that the presence of auxiliary annotations, such as loop
invariants, is not a prerequisite for relative completeness.

Harel conducts his relative completeness proof by showing that program logics
are no more expressive than first-order arithmetics. That is, for every program
there is a first-order arithmetics formula that encodes the same relation be-
tween states that the program encodes. The less-known fact is that it is possible
to effectively compute such a formula without further input. In fact, Harel’s
proof contains a simple algorithm that for any Dynamic Logic formula φ ef-
fectively computes an equivalent purely first-order arithmetics formula φA [8,
Theorem 3.2]. This construction gives along the way a means to automatically
compute the strongest invariant of any loop.

The algorithm is based on Gödelization, i.e., encoding a finite sequence of
domain elements into one element. The generated invariant formula asserts the
existence of a number encoding a sequence of states corresponding to the forth-
coming computation sequence of the loop until it terminates.

Thus, theoretically speaking, the strongest loop invariant for any given loop
and so the verification conditions for any given piece of code can be easily com-
puted in polynomial time. That is not a contradiction to general undecidability of
program verification, since one undecidable problem (program verification) gets
transformed into another undecidable problem (deciding first-order logic with
arithmetics). Still, assuming a theoretical standpoint, one can conclude that no
auxiliary annotations are really needed because all information contained in an-
notations can easily be computed by the VCG.

In Practice: Annotation Completeness. The theoretical fact that all nec-
essary annotations can “easily” be constructed (see above) is in practice a red
herring because the constructed annotations use Gödelization and, thus, com-
plex arithmetics. Proof obligations generated from such annotations would be
impossible to discharge by existing theorem provers. For practical purposes one
needs instead annotations containing all the necessary information in a clear and
direct manner and not obscured by Gödelization.

Therefore, in contrast to theory, all of today’s deductive verification systems
presuppose certain types of additional, non-requirement annotations to be given
by the user. It is neither given nor expected that an annotation-based verification
system is relatively complete in the sense of Def. 6. In practice, completeness

68 B. Beckert, T. Bormer, and V. Klebanov

of a verification system means that if the program is correct w.r.t. its given
requirement specification REQ , then some auxiliary specification AUX exists
allowing to prove this.

Definition 7 (Annotation completeness). A verification system (�S ,ThS)
is annotation complete if, for each program P and specification REQ with

|= P+REQ ,

there is (a) a set AUX of annotations (not containing any assume clauses),
(b) an order < on the annotations, and (c) a set Arith of valid arithmetical
formulas such that

ThS ∪ Arith �S P+<(REQ ∪ AUX) .

The completeness of the whole verification process depends on completeness of
the components of the toolchain. As already described, the toolchain usually con-
sists of a VCG stage and an automated theorem proving or SMT backend. The
VCG must be able to generate valid formulas provided the auxiliary annotations
are sufficiently strong, i.e,

if |= P+REQ then Th |=FOL V CG(P+(REQ ∪AUX))

for some AUX . Then the TP, in its turn, must be able to prove these valid
formulas:

Th � V CG(P+(REQ ∪ AUX)) .

The users, who serve as an oracle for finding auxiliary annotations that are strong
enough to prove a given program correct are not relevant for the completeness
as long as they are considered to be omniscient and always find the required
annotation (provided it exists). In practice, of course, users are not omniscient.
They may very well fail to find the required auxiliary annotation, which may lead
to a failure in the verification process even if the verification system is complete.

Note that, if one annotation-complete system S is stronger than another
annotation-complete system S′ because it can automatically derive additional
annotations (it may, e.g., include a generator for loop invariants), then life is eas-
ier for the user of S; proofs will be found more often using S and with less effort
(less auxiliary annotations). Nevertheless, both systems S and S′ are annotation-
complete; there are no different degrees of annotation completeness.

Essential and Non-essential Annotations. When a verification system is
used that is annotation complete (Def. 7) but not relatively complete (Def. 6),
i.e., any annotation-based verification system, then there are essential auxiliary
annotations that cannot be omitted without losing the existence of a proof.
Besides such essential annotations there are non-essential annotations that are
not needed for the existence of a proof but for finding it more easily.

Improving the Usability of Specification Languages and Methods 69

Definition 8 (Essential annotation). Given a verification system (�S ,ThS),
a program P , a specification REQ with |= P+REQ, and a set AUX of annota-
tions and an order < with

ThS ∪ Arith �S P+(REQ ∪ AUX)

for some set Arith of valid arithmetical formulas.
A subset AUX ess ⊂ AUX is essential if

ThS ∪ Arith ��S P+(REQ ∪ (AUX \ AUX ess)) .

Otherwise it is non-essential.

The notion of essential annotations (Def. 8) has some awkward properties, which
make it difficult to recognize essential annotations in practice. It is possible that
some subsets A, A′ ⊂ AUX are both essential but A ∪ A′ is not. This happens
frequently if, for example, A is needed for the proof of A′ and A′ is needed for the
proof of A. Also, there is in general no single minimal set of essential annotations.
In fact there may be completely different sets of essential auxiliary annotations
for proving the same requirement that are both minimal but disjoint.

Besides the question of whether an annotation may be omitted or not, one
may also be interested in the question of whether it can be replaced by a weaker
annotation.

Definition 9 (Strongly essential annotation). A subset AUX ess ⊂ AUX is
strongly essential if

ThS ∪ Arith ��S P+REQ ∪ ((AUX \ AUX ess) ∪ AUX ′)

for all AUX ′ that are weaker than AUX ess , i.e., AUX ess ⇒ AUX ′.

While an auxiliary annotation that is strongly essential cannot be replaced by
a weaker annotation, it may well be possible to replace it by an equivalent
annotation that is “simpler” in some practical way not covered by Definition 9
(e.g., easier to understand for human users).

Note that even with the notion of strongly essential annotations, there is in
general no single minimal set of auxiliary annotations.

It is important for a user to know which annotations are essential because
during the verification process many auxiliary annotations are added. And as
too many annotations clutter the program and make it harder to find a proof,
users often remove unneeded annotations. This carries the danger that simple
but essential annotations get removed by accident, which – as experience shows
– leads to hard to solve problems in the search for a set of annotations with
which a proof can be constructed. Thus, to understand which annotations may
be essential, users have to possess a certain knowledge about the inner workings
of a verification system. As further discussed in Section 3.4, we also suggest to
enrich the annotation languages with a syntactical way (e.g., a key word) to
distinguish between the two kinds of annotations.

70 B. Beckert, T. Bormer, and V. Klebanov

3.3 Possible Failures in Authoring Annotations

In the following, we use a concrete example to illustrate the three different ways
in which authoring annotations may fail.

Annotations and Program Code Can Be In Conflict. A program P and an an-
notation SPEC are in conflict if the program does not fulfill the specification:
�|= P+SPEC .

Consider the code in Figure 1 together with the requirement to compute the
minimum of a given array of length size. The precondition of the method
(keyword requires) states that array points to a C array in memory with
positive length size, which is not modified outside the current thread (the
latter enables sequential reasoning). The post-condition of the method (keyword
ensures) states that the result of the method is (a) less than or equal to all
elements and (b) contained in the array. We assume in the following that this is
the right set of requirement annotations.

One possible error that could occur in the program is that the variable min
has never been initialized (line labeled (A) missing). The resulting program is
legal C code, but depending on the random initial value of min and the contents
of the array, may fail to compute the minimum, and it does not satisfy the
annotations.

For this conflict, the VCC system is able to provide a counter-example. It
demonstrates that the second loop invariant does not hold when the loop is
entered. The variable assignment returned as counter-example is: size = 1,
min = 0, array[0] = 1.

Annotations Can Be Too Weak. An auxiliary annotation AUX is too weak if
|= P+REQ ∪ AUX , i.e., the program is correct w.r.t. the specification, but this
cannot be shown. There are now two cases to distinguish:

1. The VCG produces valid verification conditions, i.e.,

Th |=FOL V CG(P+(REQ ∪ AUX)) ,

and there is a proof for this, i.e.,

Th � V CG(P+(REQ ∪ AUX)) ,

but the TP stage runs out of resources before finding a proof.
2. Something essential is missing from AUX and at least one of the verification

conditions generated by the VCG is invalid:

Th �|=FOL V CG(P+(REQ ∪ AUX)) ,

and (because of soundness) no proof exists, that is:

Th �� V CG(P+(REQ ∪ AUX)) .

Improving the Usability of Specification Languages and Methods 71

#define uint unsigned int

int min(int *array, uint size)
_(requires size > 0)
_(requires \mutable_array(array, size))
_(ensures \forall uint i; 0<=i && i<size ==>

result <= array[i])
_(ensures \exists uint i; 0<=i && i<size &&

result == array[i])
{

uint i;
int min;
min = array[0]; // * (A) *
for (i = 0; i < size; i++)
_(invariant \forall uint j; 0 <= j && j < i ==>

array[j] >= min)
_(invariant \exists uint j; 0 <= j && j < size &&

min == array[j]) // * (B) *
{ if (array[i] < min) min = array[i]; }
return min;

}

Fig. 1. Computing the smallest element of an array by simple iteration

In Case (1), no counter-example is available and the user has limited recourse – to
assist the user, VCC provides tools for inspecting the duration of proof attempts
for single proof obligations as well as identifying axioms that are “costly” for
the prover to instantiate, leading to an inefficient proof search. In Case (2), a
counter-example for the validity of the verification condition may be constructed.
We give an example for this latter case.

Assume that the second loop-invariant has been forgotten (label (B) in the
program in Fig. 1). Without that invariant, the system cannot verify the second
post-condition. The generated counter-example is still the same as above, but
this time it shows that the loop invariants (after the loop terminates) do not
logically entail the post-condition.

Annotations Can Be Inadequate. An annotation is inadequate when it does not
mean what its author thinks it means. Verification of inadequate annotations will
thus not have the expected impact in the real world. By its very nature, user
input cannot easily be verified or tested for adequacy. But, apart from many
systematic approaches for elicitation of requirements (which we will not cover
here), there are a number of ways in which verification technology can assist its
user to formulate meaningful specifications.

First, the builders of verification systems can work on formalisms that do not
make it unnecessarily hard for the users to express their exact intentions. Sec-
ond, the verification systems can produce a proof or a trace to justify the re-
sult. Inspection of the proof is a very effective – if costly – measure to combat

72 B. Beckert, T. Bormer, and V. Klebanov

misunderstandings in the meaning of the proof obligation. There are reports that
users of verification systems monitor the prover running time to detect verifica-
tion based on inadvertently inconsistent specifications (a particular case of inad-
equacy). In addition, VCC can check for inconsistencies in the specification by
trying to prove false at the different execution branches of the program – this of
course can also only give an indication whether the specification is consistent or
not.

Third, a whole new class of sanity checks based on mutation has been devel-
oped lately for automated program verification with model checking [10]. After
a successful verification attempt, the query (the program or the specification) is
mutated and the deduction is repeated. If verification succeeds again, then the
mutated part of the query probably plays no role in determining the outcome.
This indicates a problem with the query.

3.4 Improving the Annotation Languages and Methodologies

Annotation-based verification systems are currently not designed for complete-
ness in the sense that theorem provers are (Def. 6). They are designed for com-
pleteness in a different sense (Def. 7), requiring the user as an oracle to provide
sufficient auxiliary annotations in the form of, e.g., loop invariants or assertions.

Theoretically the user could always give auxiliary annotations of maximal
strength (i.e., logically entailing all other possible annotations), but this is not
feasible in practice. Instead, one is interested in a weak set of auxiliary annota-
tions that is still sufficient. Consequently, it is extremely important for the user
to have knowledge about which kind of annotations are essential for the given
VCG – even in cases where the requirement to be verified is comparatively sim-
ple. Without that knowledge they may continue to add the wrong annotations.
It is therefore essential to provide user documentation on what kind of auxiliary
annotations are needed by a verification system.

Moreover, requirement and auxiliary annotations must be syntactically dis-
tinguished. That makes specifications clearer and easier to read and understand.
In certification processes it is indispensable to have a very clear understanding
of which annotations form the requirement specification that has been verified.

It is preferable to keep the two in separate files: for instance, requirement
annotations in the header file and auxiliary annotations in the C source file.
Where no such separation is possible, keywords (in the style of visibility modifiers
public and private) should be used.

4 Using Data Abstractions in Annotation-Based
Verification Systems

In this section, we discuss the use of data abstractions in annotation-based verifi-
cation systems, and how it can be improved. For that, we first introduce parts of
the VCC methodology and the VCC annotation language only as far as needed
for the examples. For a more detailed description of the VCC methodology,
see [3,2].

Improving the Usability of Specification Languages and Methods 73

The example we use as illustration is taken from the 1st Verified Software
Competition [9]. The goal of the competition was to implement, formally specify
and verify an algorithm that solves a problem defined in natural language. Our
example is based upon the following requirement:

Problem: Searching a Linked List. Given a linked-list representation
of a list of integers, find the index of the first element that is equal to
zero. Show that the program returns a number i equal to the length of
the list if there is no such element. Otherwise, the element at index i
must be equal to zero, and all the preceding elements must be non-zero.

4.1 The VCC Approach

The particular solution presented here, consisting of a C implementation and a
specification in the VCC language, was developed after the competition by the
team “VC Crushers” (see [9]).2 It is an optimized version of their competition
solution – the amount of auxiliary annotations is kept to a minimum sufficient to
verify the requirement specification. Another VCC formalization of the list data
structure that introduces a more general abstraction suited for a large range of
applications is also made available by the team (because of space restrictions,
we cannot include this more general but also more complex solution here).

The concrete C implementation of the list data structure and the C method
find that is a solution to the above problem definition is shown in Fig. 2. Anno-
tations are given in VCC syntax and are enclosed in labelled frames throughout
the code.

Linked List Data Structure. In the implementation of the linked list data
structure (struct List), the field data contains the value stored in a node
of the list, and the field tail points to the rest of the list. Note that each node
of the list also stores the length of its tail (including the node itself). In this
implementation, the end of a list is thus not indicated by a null pointer or a
sentinel node but by the value of length being zero.

The semantics of the length field as well as an abstract representation of the
list’s contents are specified by the object invariants in the block labelled 〈OI 〉:
For each node, information about the elements of the sublist starting at that
node is stored in the map vals in ghost state (a specification state separate
from the normal C memory). The invariant I1 defines the abstraction relation
between the list and its abstraction vals. The abstraction from linked list to
array is needed because the built-in data type array allows quantification and
recursion over the elements of the list. A direct quantification over the elements
is not possible in first-order logic because reachability is not first-order definable.

To be able to access all elements of the list (via the data field of the struc-
ture), each node is given exclusive ownership to the next node in the list (mine-
annotation of invariant I2). In addition, the invariant I2 implies acyclicity of the
list, as length is bounded and decreasing for each element that can be reached
via the tail pointer.
2 For better readability, we have slightly modified the source code of the example.

74 B. Beckert, T. Bormer, and V. Klebanov

typedef struct List {
int data;
struct List *tail;
unsigned length; 〈OI 〉 �

_(ghost int vals[unsigned])
_(invariant vals == \lambda unsigned i; //(I1)

i < length ? (i == 0 ? data
: tail->vals[i - 1])

: 0
)

_(invariant length == 0 //(I2)
|| (\mine(tail) && length == tail->length + 1))

�
} List, *PList;

unsigned find(PList l) 〈MC 〉 �

_(requires \wrapped(l))
_(ensures \result <= l->length)
_(ensures \result < l->length

==> l->vals[\result] == 0)
_(ensures \forall unsigned i; i < \result

==> l->vals[i] != 0)
�

{
PList p;
for (p = l; p->length != 0; p = p->tail) 〈LI 〉 �

_(invariant p->length <= l->length) //(I3)
_(invariant p \in \domain(l)) //(I4)
_(invariant p->vals == \lambda unsigned j; //(I5)

j < p->length
? l->vals[l->length - p->length + j]
: 0)

_(invariant \forall unsigned j;
j < l->length - p->length ==> l->vals[j] != 0)

�
{ 〈AN 〉 �

_(assert \forall unsigned j; j < p->tail->length
==> p->tail->vals[j] == p->vals[j + 1])

�
if (p->data == 0) {

break;
}

}
return l->length - p->length;

}

Fig. 2. Annotated C source code of find

Improving the Usability of Specification Languages and Methods 75

Implementation of the find Algorithm. Using the C data structure List,
the find method can be implemented by iterating over the list’s elements via
the tail pointer in a for-loop.

Annotations are used within the method at three locations – namely for the
method contract 〈MC 〉, the loop invariant 〈LI 〉 and as an auxiliary annotation
inside the loop body 〈AN 〉.

The method contract in block 〈MC 〉 specifies that the behavior of the method
conforms to its specification in natural language. The pre- and postconditions
〈MC 〉, together with the invariants 〈OI 〉 of the list data structure, capture the
intended semantics of find. 〈MC 〉 and 〈OI 〉 constitute the methods requirement
specification.

To be able to verify the implementation of find to be correct w.r.t. to its
requirement specification, a set of four essential auxiliary annotations has to be
provided the in form of loop invariants (block 〈LI 〉).

The invariants I3 and I5 state that the abstraction of the “iterator” p is always
a suffix of the abstraction of the input list l.

As each access to a list element p->data inside the loop has to be shown
to be a valid access, additional justification has to be provided to VCC to be
able to prove this. This justification is given with the invariant I4 – the property
depends on the fact that p is also a sublist of l in the concrete representation.

Even in this simple example, a non-essential auxiliary annotation is needed at
location 〈AN 〉 in order to be able to show that the loop body preserves the third
loop invariant. It asserts that the vals fields related to two adjacent nodes are
abstractions of the appropriate sublists starting at those nodes.

In order to come up with the right auxiliary annotations, in this case, the user
has to know about the inner workings of VCC, respectively the strengths of the
underlying SMT solver Z3.

4.2 Separation of Concerns: Annotation-Based Verification and
Algebraic Specifications

In the example shown in the previous section, annotations with different purposes
are intermingled. In the following, we suggest to use techniques known from
abstract data type specifications to provide a clean separation of requirement
and auxiliary annotations, and to make the specification more readable.

Assuming that we have defined an abstract data type IntList, an abstrac-
tion function abs from concrete linked lists to abstract lists, as well as an ab-
stract (specification) function absfind on IntList, a good method contract
for find could look like this:

unsigned find(PList l) 〈MC 〉 �

_(requires \wrapped(l))
_(ensures \result == absfind(abs(l)))

�

This contract is very compact and easy to understand. It simply states that
find returns the same integer value that is the result of the abstract operation
absfind on the abstraction of the input list.

76 B. Beckert, T. Bormer, and V. Klebanov

In the VCC example presented in Sect. 4.1, the equivalent of absfind is
implicitly given by postconditions 〈MC 〉 of method find. The abstraction func-
tion abs is concealed within the definition of structure List, namely in the
invariants in 〈OI 〉.

Of course, to complete the specification, we now have to define IntList and
absfind. The required syntax is not available in VCC (yet). We suggest to
use a syntax for abstract data type definitions based on the Common Algebraic
Specification Language (CASL) [11]. A possible definition then would look like
this:

spec IntList =
free type List ::= nil | cons(Int; List)

then vars i, e: Int; l, l’: List
op absfind : List -> Int

* absfind(nil) = 0

* absfind(cons(e, l)) = 1 when e = 0
else absfind(l) + 1

ops append : List x List -> List
tail : List -> List

* append(nil, l) = l

* append(cons(e,l’), l) = cons(e, append(l’,l))

* tail(nil) = nil

* tail(cons(e,l)) = l
within implementation find

end

To be able to specify the implementation of find with the help of the ab-
stract data type, the data type is equipped with the externally visible operation
absfind that captures the semantics of find according to the problem defi-
nition. In addition, the two operations append and tail are defined with the
usual semantics.

Compared to the rudimental abstraction given by the map vals in Sect. 4.1,
this specification is additional overhead in terms of lines of code. However, the
compactness of the map specification is partly due to the fact that maps are
a built-in feature of the verification tool. Furthermore, the flexibility offered
by defining arbitrary abstract data types in our opinion clearly outweighs the
annotation overhead, as we can choose the abstract data type representation
that matches the implementation data types best. Lastly, the above definition
is to a large extent reusable and can be seen as a sort of library definition.

To relate the concrete implementation data type List to its abstract data
type counterpart IntList, we have two options: (A) defining an abstraction
function abs from List to IntList (as already mentioned above), and (B) ax-
iomatizing the abstraction using concrete implementations for the (abstract)
constructors nil and cons.

Improving the Usability of Specification Languages and Methods 77

For option (A), the abstraction function abs is defined in terms of the concrete
implementation details (i.e., field data and pointer tail):

〈OI 〉 �

_(spec IntList abs(PList l)
returns(l->length == 0 ? nil :

cons(l->data, abs(l->tail)))
)

�

With this definition, one of our goals is already achieved, namely providing
a clearly differentiated and discernible specification construct that couples the
concrete and abstract data types. However, this definition does not hide the
implementation details of the linked list data structure from callers of the find
method.

The alternative solution (B) uses concrete implementations of the constructors
of the list data structures (not shown in this paper). Then, no explicit definition
of the abstraction function as in (A) is needed. The relation between the abstract
and the concrete constructors can, for example, be specified as follows:

〈OI 〉 �

PList cons(int e, PList l)
_(requires \wrapped(l))
_(ensures abs(\result) == cons(e, abs(l)))

�

Note that the above method contract of cons does not use any implementa-
tion details of the linked list data type in C, so that these details do not become
part of the requirement specification.

Regardless of which alternative (A) or (B) is chosen, due to the separation
of abstract and concrete representation of the list data type, the annotation
overhead of the List data structure can be reduced:

typedef struct List {
int data;
struct List *tail;
unsigned length;
_(invariant \exists IntList l; abs(this) == l

&& (abs(this) == nil || \mine(tail)))
} List, *PList;

Only one invariant of list remains that is concerned with the state of the
structure according to the VCC methodology (keyword mine), as well as enforc-
ing the existence of an abstract element corresponding to the concrete instance
of the list (which rules out cyclic linked lists).

Using the two “library” functions tail and append, almost all auxiliary
annotations of our example can be simplified – for the loop invariants at location
〈LI 〉 the new annotations are:

78 B. Beckert, T. Bormer, and V. Klebanov

_(invariant p \in \domain(l))
_(invariant \exists IntList front;

append(front, abs(p)) == abs(l)
&& absfind(f) == 0)

Furthermore, the single non-essential annotation at location 〈LI 〉 becomes:

_(assert abs(p->tail) == tail(abs(p)))

5 Conclusions and Future Work

We have described and analyzed problematic properties of current annotation-
based specification practices. A large part of the problem is the non-discrimina-
tory use of the same language to specify both requirements and auxiliary (non-
requirement) annotations. Among the latter some are (only) needed for efficiency
of proof search, while others are essential for completeness, i.e., indispensable for
proof construction. In practice, we often encountered confusion as to what the
important notion of completeness means in the framework of verifying compilers.
We have provided a clarification in Section 3.2. We have recommended measures
to alleviate the specification bottleneck in Sections 3.4 and 4.2. Beyond that, we
see the following issues as worth further exploration.

The distinction between requirement and auxiliary annotations is always rela-
tive to a module boundary. Some aspects of modularity are imposed by the pro-
gramming language, while others have to be defined by the specification language
and verification calculus. The designers of the latter should make their modular-
ity concepts (syntactically) explicit and better educate the users about them. A
hiding operator for annotations may be appropriate when composing modules.

It is important to keep related parts of specifications together and not mix
different levels of abstraction. This tenet is frequently violated by the wide-
spread practice of mixing ghost code (providing an abstract specification) and
real code (implementing it) – often on the level of individual statements. While
a separation is desirable, it is not yet clear how to disentangle the two.

The verification system should track (and disclose) dependencies between an-
notations. All annotations should carry a unique textual identifier (label). For
any given annotation, the user must be informed about which other annotations
are necessary to prove it. One way to accomplish this is by automated deduction
on the part of the system. Another way is to demand that the user explicitly
attach to each annotation a set of labels naming other annotations that are to
be considered as premisses in the proof.

References

1. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

Improving the Usability of Specification Languages and Methods 79

2. Beckert, B., Moskal, M.: Deductive verification of system software in the Verisoft
XT project. In: KI 2009, Online first version available at SpringerLink (2009)

3. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

4. Cook, S.A.: Soundness and completeness of an axiom system for program verifica-
tion. SIAM Journal of Computing 7(1), 70–90 (1978)

5. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

6. DeLine, R., Leino, K.R.M.: BoogiePL: A typed procedural language for checking
object-oriented programs. Technical Report MSR-TR-2005-70, Microsoft Research
(2005)

7. Filliâtre, J.-C., Marché, C.: Multi-prover verification of C programs. In: Davies, J.,
Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 15–29. Springer,
Heidelberg (2004)

8. Harel, D.: First-Order Dynamic Logic. LNCS, vol. 68. Springer, Heidelberg (1979)
9. Klebanov, V., Müller, P., Shankar, N., Leavens, G.T., Wüstholz, V., Alkassar, E.,
Arthan, R., Bronish, D., Chapman, R., Cohen, E., Hillebrand, M., Jacobs, B.,
Leino, K.R.M., Monahan, R., Piessens, F., Polikarpova, N., Ridge, T., Smans, J.,
Tobies, S., Tuerk, T., Ulbrich, M., Weiß, B.: The 1st verified software competition:
Experience report. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664,
pp. 154–168. Springer, Heidelberg (2011) Materials available at, www.vscomp.org

10. Kupferman, O.: Sanity checks in formal verification. In: Baier, C., Hermanns, H.
(eds.) CONCUR 2006. LNCS, vol. 4137, pp. 37–51. Springer, Heidelberg (2006)

11. Mosses, P.D. (ed.): CASL Reference Manual – The Complete Documentation of the
Common Algebraic Specification Language. LNCS, vol. 2960. Springer, Heidelberg
(2004)

12. Schulte, W., Songtao, X., Smans, J., Piessens, F.: A glimpse of a verifying C com-
piler. In: Proceedings, C/C++ Verification Workshop (2007)

13. Zeller, A.: Mining specifications: A roadmap. In: Proceedings, The Future of Soft-
ware Engineering, Zurich, Switzerland, pp. 173–182. Springer, Heidelberg (2010)

www.vscomp.org

Program Specialization via a

Software Verification Tool�

Richard Bubel, Reiner Hähnle, and Ran Ji

Department of Computer Science and Engineering
Chalmers University of Technology, 41296 Gothenburg, Sweden

{bubel,reiner,ran.ji}@chalmers.se

Abstract. Partial evaluation is a program specialization technique that
allows to optimize a program for which partial input is known. We pro-
pose a new approach to generate specialized programs for a Java-like
language via the software verification tool KeY. This is achieved by sym-
bolically executing source programs interleaved with calls to a simple
partial evaluator. In a second phase the specialized programs are synthe-
sized from the symbolic execution tree. The correctness of this approach
is guaranteed by a bisimulation relation on the source and specialized
programs.

1 Introduction

Symbolic execution [13] and partial evaluation [12] are both generalizations of
standard interpretation of programs in different ways: while symbolic execu-
tion permits interpretation of a program with symbolic (i.e., unspecified) initial
values, the aim of partial evaluation is to transform a program with partially
specified input values into a (hopefully, more efficient) program that has only the
unspecified arguments as input. For fully specified input arguments the result of
both mechanisms is standard program interpretation.

Our previous work [5] showed how to speed up the symbolic execution engine
by interleaving with partial evaluation. On the other hand, an important question
that can be asked is the possibility of achieving a more sophisticated program
specializer via symbolic execution interleaved with simple partial evaluation op-
erations. Another interesting question is whether the specialized program will
behave the same as the source program with respect to the observable output,
i.e., the soundness of the program specialization procedure. This paper tries to
give an answer.

We propose a new approach to specialize Java-like programs via the software
verification tool KeY, in which a symbolic execution engine is used. It is a two-
phase procedure that first symbolically executes the program interleaved with

� This work has been partially supported by the EU project FP7-ICT-2007-3 HATS
Highly Adaptable and Trustworthy Software using Formal Models and the EU COST
Action IC0701 Formal Verification of Object-Oriented Software.

B.K. Aichernig, F.S. de Boer, and M.M. Bonsange (Eds.): FMCO 2010, LNCS 6957, pp. 80–101, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Program Specialization via a Software Verification Tool 81

a simple partial evaluator, and then synthesizes the specialized program in the
second phase. The soundness of the approach is proved.

The paper is organized as follows: In Sect. 2 we introduce a Java-like program-
ming language PL as the working language in this paper and define its program
logic. Sect. 3 presents the sequent calculus for PL. In Sect. 4 we integrate a sim-
ple partial evaluator into the symbolic execution engine. In Sect. 5 we introduce
the bisimulation modality and define its sequent calculus. Sect. 6 shows how
to generate specialized programs using our approach. Sect. 7 discusses related
work. Sect. 8 concludes and addresses future work.

2 Dynamic Logic

Dynamic logic (DL) [9] is a representative of multi-modal logic tailored towards
program verification. The programs to be verified against their specification oc-
cur in unencoded form as first class citizens of dynamic logic similar to Hoare
logic [10] and avoid the encoding of programs.

Sorted first-order dynamic logic is sorted first-order logic plus two additional
kinds of modalities: [·]· (box) and 〈·〉· (diamond). The first parameter takes a
program and the second parameter a dynamic logic formula. Let p denote a
program and φ a dynamic logic formula then

– [p]φ is a DL-formula and, informally, expresses that if p is executed and
terminates then in all reached final states φ holds;

– 〈p〉φ is a DL-formula. Informally, it means that if p is executed then it
terminates and in at least one of the reached final states φ holds.

We consider from now on only deterministic programs: Hence, a program p exe-
cuted in a given state s either terminates and reaches exactly one final state or it
does not terminate and there are no final states reachable from s upon execution
of program p. In this setting, the box modality expresses partial correctness of a
program, while the diamond modality coincides with total correctness. With the
above statements we can see that Hoare logic is subsumed by dynamic logic. The
Hoare triple {pre} p {post} can be expressed as the DL formula pre → [p]post.

In the remainder of this section we introduce some basic concepts of dynamic
logic. We follow thereby closely the KeY-approach [3].

Programming Language. We consider a simple Java-like programming language
called PL. It provides features like interfaces, classes, attributes, method poly-
morphism (but not method overloading). PL does not support multi-threading,
floating points or garbage collection. For ease of presentation we omit also class
and object initialization, exceptions as well as break or continue statements
and require non-void methods to have a single point of return at the end of the
method. Further, the only supported primitive types are boolean and int.

Fig. 1 shows a PL program which we use as a running example throughout
the paper.

82 R. Bubel, R. Hähnle, and R. Ji

������ ����� OnLineShopping {

�		�
�� cpn;

������ ��� read() { /* read price of item */ }

������ ��� sum(��� n) {

��� i = 0;

��� count = n;

��� tot = 0;

���
(i <= count) {

��� m = read();

��(i >=2 && cpn) { tot = tot + m * 9 / 10; i++; }

��
 { tot = tot + m; i++; }

}

�
���� tot;

}

}

Fig. 1. Example PL program

This PL program could be used in an online shopping session. The read()
method collects the price for each item. The sum() method calculates the total
amount to be paid when purchasing n items. If the customer provides a coupon
and purchases at least 2 items, then a 10% discount will apply from the second
item onwards.

Dynamic Logic. Given a PL program C including interface and class declarations.
Program C is in the following referred to as context program. We define our
dynamic logic PL-DL(C) as follows:

Definition 1 (PL-Signature ΣC). The signature ΣC = (S,�, Pred, Func, LVar)
consists of

– a set of names S called sorts containing at least one sort for each primitive
type and for each interface I and class C declared in C as well as the Null
sort:

S ⊇ {int, boolean, Null} ∪ {T | f.a. interfaces or classes T declared in C}

– The partial subtyping order �: S × S models the subtype hierarchy of C
faithfully.

– An infinite set of function symbols Func := {f : T1 × . . .×Tn → T | Ti, T ∈
S}. We call α(f) = T1 × . . . × Tn → T the arity of the function symbol.
Func := Funcr ∪ PV ∪ Attr is further divided into disjoint subsets:
• Funcr rigid function symbols,
• PV program variables i, j (non-rigid constants), and
• attribute function symbols Attr, where for each attribute a of type T

declared in class C an attribute function a@C : C → T ∈ Attr exists.
We omit the @C from attribute names if no ambiguity arises.

– An infinite set of predicate symbols Pred := {p : T1 × . . . × Tn | Ti ∈ S}.
– A set of logical variables LVar := {x : T |T ∈ S}.

Program Specialization via a Software Verification Tool 83

Terms and formulas are defined as usual. The grammar below together with the
canonical well-typedness conditions defines the syntax:

t ::= x | i | t.a | f(t, . . . , t) | (φ ? t : t) |
Z | TRUE | FALSE | null | {u}t

u ::= i := t | t.a := t | u ‖ u
φ ::= ¬φ | φ ◦ φ (◦ ∈ {∧,∨,→,↔}) | (φ ? φ : φ) |

∀x : T.φ | ∃x : T.φ | [p]φ | 〈p〉φ | {u}φ

where a ∈ Attr, f ∈ Func, i ∈ PV, x : T ∈ LVar, and p is a sequence of executable
statements in PL. The elements of category u are called updates and used to de-
scribe state changes. An elementary update i := t or t.a := t is a pair of location
and term. Its intended meaning is that of an assignment. Updates applied on
terms or formulas are again terms or formulas. They can be composed to parallel
updates playing then the role of simultaneous assignments.

In the remaining paper, we use the notion of a program to refer to a sequence
of executable PL-statements. If we want to include class, interface or method
declarations, we either include them explicitly or make a reference to the context
program C.

The next step is to assign meaning to PL-DL terms and formulas. A formula
in dynamic logic is evaluated with respect to a Kripke structure, in our case a
PL-DL Kripke structure:

Definition 2 (Kripke structure KΣP L). A PL-DL Kripke structure is a triple
KΣPL = (D, I,St) with

– a set of elements D called domain,
– an interpretation I with

• I(s) = Ds, s ∈ S assigning each sort its non-empty domain Ds. It ad-
heres to the restrictions imposed by the subtype order �; Null is always
interpreted as a singleton set and subtype of all reference (class and in-
terface) types.

• I(f) : DT1 × . . . × DTn → DT for each rigid function symbol f : T1 ×
. . . × Tn → T ∈ Funcr.

• I(p) ⊆ DT1 × . . .×DTn for each rigid predicate symbol p : T1× . . .× Tn ∈
Pred.

– a set of states St assigning non-rigid function symbols a meaning: Let s ∈ St
then s(a@C) : DC → DT , a@C ∈ Attr and s(i) : DT , i ∈ PV.

The pair D = (D, I) is called a first-order structure.

Finally, a variable assignment β : LVar → DT maps a logic variable x : T to its
domain DT . An update, program, term or formula ξ is evaluated with respect to
a given first-order structure D = (D, I), a state s ∈ St and a variable assignment
β as valD,I,s,β(ξ). The evaluation function val is defined recursively on the term
and formula structure. Fig. 2 shows an excerpt of its definition.

Some words on the semantics of updates. While elementary updates have the
same meaning as assignments, the semantics of parallel updates is slightly more
complicated. We explain them by example:

84 R. Bubel, R. Hähnle, and R. Ji

valD,s,β(x) = β(x), x ∈ LVar
valD,s,β(f(t1, . . . , tn)) = D(f)(valD,s,β(t1), . . . , valD,s,β(tn))
valD,s,β(x) = s(x), x ∈ PV
valD,s,β(o.a) = s(a)(valD,s,β(o)), a ∈ Attr
valD,s,β(¬φ) = tt iff valD,s,β(φ) = ff
valD,s,β(ψ ∧ φ) = tt iff valD,s,β(ψ) = tt and valD,s,β(ψ) = tt
valD,s,β(ψ ∨ φ) = tt iff valD,s,β(ψ) = tt or valD,s,β(ψ) = tt
valD,s,β(ψ → φ) = valD,s,β(¬ψ ∨ φ)

valD,s,β((ψ ? ξ1 : ξ2)) =

{
valD,s,β(ξ1) if valD,s,β(ψ)
valD,s,β(ξ2) otherwise

valD,s,β(x := v) = s′, with
{

s′(x) = valD,s,β(v)
s′(y) = s(y) y �= x

valD,s,β(o.a := v) = {s′}, s = s′ except s′(a)(valD,s,β(o)) = valD,s,β(v)

valD,s,β([s1; s2]φ) =

{
valD,s′,β([s2]φ), {s′} = valD,s,β(s1)
tt, s1 ↑

valD,s,β([if(e) {p} else {q}]φ) = valD,s,β([T b; b = e; if(e) {p} else {q}]φ)
valD,s,β([if(b) {p} else {q}]φ) =

{
valD,s,β([p]φ), s(b) = valD,s,β(TRUE)
valD,s,β([q]φ), otherwise

(b ∈ PV)

Fig. 2. Definition of evaluation function val (excerpt)

Example 1 (Update semantics)

– Evaluating {i := j+1}i ≥ j in a state s is identical to evaluate the formula
i ≥ j in a state s′ which coincides with s except for the value of i which is
evaluated to the value of valD,s,β(j + 1).

– Evaluation of the parallel update i := j‖j := i in a state s leads to the
successor state s′ identical to s except that the values of i and j are swapped.

– The parallel update {i := 3‖i := 4} has a conflict as i is assigned differ-
ent values. In such a case the conflict is resolved by using a last-one-wins
semantics. Last-one-wins semantics means that the textually last occurring
assignment overrides all previous ones of the same location.

We conclude the presentation of PL-DL by defining the notions of satisfiability,
model and validity.

Definition 3 (Satisfiability, model and validity). A formula φ

– is called satisfiable if there exists a first-order structure D, a state s ∈ St
and a variable assignment β with valD,s,β(φ) = tt (short: D, s, β |= φ).

– has a model if there exists a first-order structure D, a state s ∈ St, such
that for all variable assignments β: valD,s,β(φ) = tt holds (short: D, s |= φ).

– is valid if for all first-order structures D, states s ∈ St and for all variable
assignments β: valD,s,β(φ) = tt holds (short: |= φ).

Program Specialization via a Software Verification Tool 85

3 Sequent Calculus

To analyze a PL-DL formula for validity, we use a Gentzen style sequent calculus.
A sequent

φ1, . . . , φn︸ ︷︷ ︸
Γ

=⇒ ψ1, . . . , ψm︸ ︷︷ ︸
Δ

is a pair of sets of formulas Γ (antecedent) and Δ (succedent). Its meaning is
identical to the meaning of the formula∧

φ∈Γ

φ →
∨

ψ∈Δ

ψ

A sequent calculus rule

rule

premises︷ ︸︸ ︷
Γ1 =⇒ Δ1 . . . Γn =⇒ Δn

Γ =⇒ Δ︸ ︷︷ ︸
conclusion

consists of one conclusion and possibly many premises. One example of a sequent
calculus rule is the rule andRight:

andRight
Γ =⇒ φ, Δ Γ =⇒ ψ, Δ

Γ =⇒ φ ∧ ψ, Δ

We call φ and ψ (formula) schema variables which match here any arbitrary
formula. A rule is applied on a sequent s by matching it conclusion against s.
The instantiated premises are then added as children of s. For example, when
applying andRight to the sequent =⇒ i ≥ 0∧¬o.a = null we instantiate φ with
i ≥ 0 and ψ with ¬o.a = null. The instantiated sequents are then added as
children to the sequent and the resulting partial proof tree becomes:

=⇒ i ≥ 0 =⇒ ¬o.a = null
=⇒ i ≥ 0 ∧ ¬o.a = null

Fig. 3 shows a selection of first-order sequent calculus rules. A proof of the
validity of a formula φ in a sequent calculus is a tree where

– each node is annotated with a sequent,
– the root is labeled with =⇒ φ,
– for each inner node n: there is a sequent rule whose conclusion matches the

sequent of n and there is a bijection between the rule’s premises and the
children of n, and,

– the last rule application on each branch is the application of a close rule
(axiom).

86 R. Bubel, R. Hähnle, and R. Ji

Axioms and Propositional Rules

close
∗

φ =⇒ φ
closeTrue

∗
=⇒ true

closeFalse
∗

false =⇒

andLeft
Γ, ψ, φ =⇒ Δ

Γ, φ ∧ ψ =⇒ Δ
orRight

Γ =⇒ φ, ψ, Δ

Γ =⇒ φ ∨ ψ, Δ
impRight

Γ, φ =⇒ ψ, Δ

Γ =⇒ φ → ψ, Δ

andRight
Γ =⇒ φ, Δ Γ =⇒ ψ, Δ

Γ =⇒ φ ∧ ψ, Δ
orLeft

Γ, φ =⇒ Δ Γ, ψ =⇒ Δ

Γ, φ ∨ ψ, Δ =⇒
First-Order Rules

allLeft
Γ, φ[x/t] =⇒ Δ

Γ,∀x : T.φ =⇒ Δ
exRight

Γ =⇒ φ[x/t], Δ

Γ =⇒ ∃x : T.φ Δ

allRight
Γ =⇒ φ[x/c], Δ

Γ =⇒ ∀x : T.φ, Δ
exLeft

Γ, φ[x/c] =⇒ Δ

Γ,∃x : T.φ =⇒ Δ
c new, freeVars(φ) = ∅

Fig. 3. First-order calculus rules (excerpt)

So far the considered rules were pure first-order reasoning rules. The calculus
design regarding rules for formulas with programs is discussed next. We consider
only the box modality variant of these rules.

Our sequent calculus variant is designed to stepwise symbolically execute a
program. It behaves for most parts as a symbolic program interpreter. Symbolic
execution as a means for program verification goes back to King [13]. Symbolic
execution means that upon program execution the initial values of the input
variables, fields etc., are symbolic values (terms) instead of concrete ones. The
program then performs algebraic computations on those terms instead of actually
computing concrete values.

We explain the core concepts along a few selected rules. Starting with the
assignment rule:

assignLocalVariable
Γ =⇒ {U}{x := litV ar}[ω]φ, Δ

Γ =⇒ {U}[x = litV ar; ω]φ, Δ

where x ∈ PV, and litV ar is either a boolean/integer literal or a program vari-
able, and ω the rest of the program. The assignment rule works as most program
rules on the first active statement ignoring the rest of the program (collapsed
into ω). Its effect is the movement of the elementary program assignment into
an update.

The assignment rule for an elementary addition is similar and looks like

assignLocalVariable
Γ =⇒ {U}{x := litV ar1 + litV ar2}[ω]φ, Δ

Γ =⇒ {U}[x = litV ar1 + litV ar2; ω]φ, Δ

Program Specialization via a Software Verification Tool 87

There is a number of other assignment rules for the different program expres-
sions. All of the assignment rules have in common that they operate on ele-
mentary (pure) expressions. This is necessary to reduce the number of rules
and also as expressions may have side-effects that need to be “computed” first.
Our calculus works in two phases: first complex statements and expressions are
decomposed into a sequence of simpler statements, then they are moved to an
assignment or are handled by other kinds of rules (e.g., a loop invariant rule).
The decomposition phase consist mostly of so called unfolding rules such as:

unfoldAssignmentAddition

Γ =⇒ {U}[int v1 = exp1; int v2 = exp2; x = v1+ v2; ω]φ, Δ

Γ =⇒ {U}[x = exp1 + exp2; ω]φ, Δ

where exp1, exp2 are arbitrary (nested) expressions and v1, v2 new program
variables not yet used in the proof or in ω.

The conditional rule is a typical representative of a program rule to show how
splits in control flows are treated:

conditionalSplit

Γ, {U}b = TRUE =⇒ {U}[p; ω]φ, Δ Γ, {U}¬b = TRUE =⇒ {U}[q; ω]φ, Δ

Γ =⇒ {U}[if (b) {p} else {q} ω]φ, Δ

where b is a program variable.
The calculus provides two different kinds of rules to treat loops. The first one

realizes—as one would expect from a program interpreter—a simple unwinding
of the loop:

loopUnwind
Γ =⇒ {U}[if (b) {p̄; while (b) {p}} ω]φ, Δ

Γ =⇒ {U}[while (b) {p} ω]φ, Δ

where p̄ is identical to p except for renaming of the newly declared variables in
p to avoid name collisions.

The major drawback of the rule is that except for cases where the loop has a
fixed and known number of iterations, the rule can be applied arbitrarily often.
Instead of unwinding the loop, one often used alternative is the loop invariant
rule whileInv:

whileInv

Γ =⇒ {U}inv, Δ (init)
Γ, {U}{Vmod}(b = TRUE ∧ inv) =⇒ {U}{Vmod}[p]inv, Δ (preserves)
Γ, {U}{Vmod}(b = FALSE∧ inv) =⇒ {U}{Vmod}[ω]φ, Δ (use case)

Γ =⇒ {U}[while (b) {p} ω]φ, Δ

The loop invariant rule requires the user to provide a sufficiently strong formula
inv capturing the functionality of the loop. The formula needs to be valid before
the loop is executed (init branch) and must not be invalidated by any loop
iteration started from a state satisfying the loop condition (preserves branch).

88 R. Bubel, R. Hähnle, and R. Ji

Finally, in the third branch the symbolic execution continues with the remaining
program after the loop.

The anonymizing update Vmod requires further explanation: We have to show
that inv is preserved by an arbitrary iteration of the loop body as long as the loop
condition is satisfied. But in an arbitrary iteration, values of program variables
may have changed and outdated the information provided by Γ, Δ and U . In
traditional loop invariant rules, this context information is removed completely
and the still valid portions have to be added to the invariant formula inv. We
use the approach described in [3] and avoid to invalidate all previous knowledge.
For this we require the user to provide a superset of all locations mod that
are potentially changed by the loop. The anonymizing update Vmod erases all
knowledge about these locations by setting them to a fixed, but unknown value.
An overapproximation of mod can be computed automatically.

The last rule we want to introduce is about method contracts and it is a
necessity to achieve modularity in program verification. More important for this
paper is that it allows to achieve a modular program specializer. Given a method
T m(T param1, . . . , Tn paramn) and a method contract

C(m) = (pre(param1, . . . , paramn), post(param1, . . . , paramn, res), mod)

The formulas pre and post are the precondition and postcondition of the method
with access to the parameters and to the result variable res (the latter only in
post). The location set mod describes the locations (fields) that may be changed
by the method. When we encounter a method invocation, the calculus first un-
folds all method arguments. After that the method contract rule is applicable:

methodContract

Γ =⇒ {U}{param1 := v1‖ . . . ‖paramn := vn}pre, Δ
Γ =⇒ {U}{param1 := v1‖ . . . ‖paramn := vn}{Vmod}(post → [r =res; ω]φ), Δ

Γ =⇒ {U}[r = m(v1, . . . , vn); ω]φ, Δ

In the first branch we have to show that the precondition of the method is
satisfied. The second branch then allows us to assume that the postcondition is
valid and we can continue to symbolically execute the remaining program. The
anonymizing update Vmod erases again all information about the locations that
may have been changed by the method. About the values of these locations, the
information encoded in the postcondition is the only knowledge that is available
and on which we can rely in the remaining proof.

Definition 4 (Soundness). A rule is sound if and only if the validity of the
premises implies the validity of the conclusion.

Theorem 1. The sequent calculus rules for PL-DL are sound.

4 Integrated Simple Partial Evaluator

In this section, we show how to integrate a simple partial evaluator into the
symbolic execution engine to perform some basic partial evaluation when

Program Specialization via a Software Verification Tool 89

symbolically executing the program. The operations defined here were also intro-
duced in our previous paper [5], where we showed how to speed up the symbolic
execution engine by interleaving these partial evaluation operations.

The basic idea is to introduce a partial evaluation operator p ↓ (U , φ) that can
be attached to any program statement or expression p. The partial evaluation
operator then specializes the program construct p with respect to the knowl-
edge accumulated in update U and formula φ. The integration is achieved by
introducing special sequent calculus rules that trigger the specialization on the
program under consideration.

Specialization Operator Propagation. The specialization operator needs to be
propagated along the program as most of the different specialization operations
work locally on single statements or expressions. During propagation of the op-
erator, its knowledge base, the pair (U , φ), needs to be updated by additional
knowledge learned from executed statements or by erasing invalid knowledge
about variables altered by the previous statement. Propagation of the specializa-
tion operator as well as updating the knowledge base is realized by the following
rewrite rule

(p; q) ↓ (U , φ) � p ↓ (U , φ); q ↓ (U ′, φ′)

This rule is sound under a number of restrictions of U ′, φ′, see [5] for details.

Constant propagation and constant expression evaluation. Constant propagation
entails that if the value of a variable v is known to have a constant value c within
a certain program region (typically, until the variable is potentially reassigned)
then usages of v can be replaced by c. Note that c could also be another variable
and in this case usages of v can be replaced by c until v is reassigned or c is
changed. The rewrite rule (v)↓(U , ϕ)� c models the replacement operation. To
ensure soundness the rather obvious condition U(ϕ → v

.= c) has to be proved
where c is a rigid constant (within the given region). The above rule can be
easily modified to include constant expression evaluation.

For example, in Fig. 1, when executing int count = n; in method sum(),
count will be replaced by n in the loop guard because both count and n are
unchanged, therefore, the loop guard becomes i <= n. However, int i = 0;
could not propagate 0 into the loop guard since i could potentially be reas-
signed in the loop. One interesting point is that, if we unwind the loop once
according to loopUnwind rule introduced in Section 3, it will become if(i <=
n) ... if(i >= 2 && cpn) ... while(i <= n) ..., where i is ok to be re-
placed by 0 in both conditional guards (because i is not reassigned), but not
in the loop guard. The result looks like if(0 <= n) ... if(0 >= 2 && cpn)
... while(i <= n)

Dead-Code Elimination. Constant propagation and constant expression evalu-
ation often result in specializations where the guard of a conditional (or loop)
becomes constant. In this case, unreachable code in the current state and un-
der the current path condition can be easily located and pruned. A typical

90 R. Bubel, R. Hähnle, and R. Ji

example for a specialization operation eliminating an infeasible symbolic execu-
tion branch is the rule

(if (b) {p} else {q}) ↓ (U , φ) � p ↓ (U , φ)

which eliminates the else branch of a conditional if the guard can be proved
true. The soundness condition of the rule is straightforward and self-explaining:
U(φ → b

.= TRUE).
Continuing the example above, we can perform further specialization with

the dead-code elimination rule. Since in the second conditional guard 0 >= 2 is
evaluated to false, the then-branch is pruned. The result is if(0 <= n) int m
= read(); tot = tot + m; i++; while(i <= n)

Some other partial evaluation operations such as Safe Field Access and Type
Inference are also integrated. Please refer to [5] for more details.

5 A Sequent Calculus for Bisimulation

In the previous sections we introduced a dynamic logic based on symbolic execu-
tion. In section 4 we reported about our previous work on speeding up symbolic
execution by interleaving the symbolic execution with partial evaluation steps.

In this section we present how to extend the existing framework in a natural
way to extract a specialized version for the verified program.

In Sect. 5.1 we introduce a bisimulation modality which allows us to relate two
programs that behave indistinguishably on a given set of locations. The programs
being related to each other are the original program and its specialized version.
Sect. 5.2 defines the calculus rules for the newly added modal operator.

5.1 The Bisimulation Modality

Please note that several of the definitions given in this section assume that in
program specialization the source language is the same as the target language.
The definitions are generalizable to specialization (and finally compilation) be-
tween different languages (see Sect. 8).

Definition 5 (Location Sets). A location set is a set of

– program variables x or
– attribute expressions o.a with a ∈ Attr and o being a term of appropriate

sort.

We are often not interested whether two states are identical, but rather whether
they coincide on a given set of locations:

Definition 6. Let s1, s2 denote two states and loc a location set. We write
s1 ∼loc s2 if and only if for all l ∈ loc it holds that valD,s1,β(l) = valD,s2,β(l)
where D denotes a first-order structure and β a variable assignment.

Program Specialization via a Software Verification Tool 91

Specialized programs behave indistinguishably from the original program for
(externally) observable locations. The set of observable locations includes usually
all output variables and the part of the heap reachable from input and output
variables. The formal definition bears a close relationship to the definition of
non-interference:

Definition 7 (Observable Locations). Let D denote a first-order structure
and β a variable assignment. A location loc is called observable by a program p
if there are two states s0, s1 differing only in the evaluation of loc and either

– program p terminates for si, but not for s1−i (i ∈ {0, 1}), or
– program p terminates for both states in final states {s′i} = valD,si,β(p) (i ∈

{0, 1}) and there is a location loc′ (not necessarily the same as loc) with
valD,si,β(loc′) �= valD,s′

i,β
(loc′) and valD,si,β(loc′) �= valD,s′

1−i,β
(loc′)

A location loc is observable by a formula φ if there are two states s1, s2 differing
only in loc with valD,s1,β(φ) �= valD,s2,β(φ).

Definition 8 (Bisimulates Relationship). Let obs be a location set and s1, s2

two states with s1 ∼obs s2. Two programs p, q are in a obs-bisimulation relation
with respect to s1 and s2 if and only if for all first-order structures D and
variable assignments β

valD,s1,β(p) ∼obs valD,s2,β(q)
holds. We write s1, s2 |= p ∼obs q.

If for all states s1, s2 with s1 ∼obs s2 the statement s1, s2 |= p ∼obs q holds we
simply write p ∼obs q and say p obs-bisimulates q

In this paper we restrict ourselves to program specialization and can use the
same state s for s1, s2 (s ∼obs s holds trivially). The more general definition
above is necessary when extending our approach to compilation (see Sect. 8).

Lemma 1. Let obs be the set of all locations observable by formula φ and let p, q
be programs. If s |= p ∼obs q then for all first-order structures D and variable
assignments β D, s, β |= [p]φ ↔ [q]φ holds.

Definition 9 (Bisimulation Modality—Syntax). The bisimulation modal-
ity [psrc ∼ ptarget]@(obs, use) is a modal operator providing compartments
for the source program psrc, the target (or specialized) program ptarget , and two
location sets obs and use.

We extend our definition of formulas: Let φ be a PL-DL formula and p, q two
programs and obs, use two location sets, then [p ∼ q]@(obs, use)φ is also a
PL-DL formula.

Remark 1. The intended meaning of the location set use is to keep track of use-
definition chains and contains roughly all locations that are read by program
p before they are redefined. The intent of set obs is to capture the locations
observable by p and φ.

92 R. Bubel, R. Hähnle, and R. Ji

Remark 2. The definition above is tailored to the presentation of this paper, but
in its general setting the modality can accommodate locations sets that represent
arbitrary (local) analysis information.

We formalize our intuition by defining the semantics of the bisimulation
modality:
Definition 10 (Bisimulation Modality—Semantics). Let D, s, β denote a
first-order structure, state and variable assignment, respectively. Further, p, q
are programs and obs and use location sets.

valD,s,β([p ∼ q]@(obs, use)φ) = tt if and only if
(i) valD,s,β([p]φ) = tt
(ii) s |= p ∼obs q
(iii) obs is a superset of all locations observable by p and φ
(iv) usedV ar(s, p, φ) ⊆ use where usedV ar returns the set of variables read by

p or observed by φ before any redefinition (when executing p in state s).

5.2 Sequent Calculus Rules for the Bisimulation Modality

The general sequent calculus rules for the bisimulation modality are of the fol-
lowing form:

ruleName

Γ1 =⇒ {U1}[p1 ∼ q1]@(obs1, use1)φ1, Δ1

. . .
Γn =⇒ {Un}[pn ∼ qn]@(obsn, usen)φn, Δn

Γ =⇒ {U}[p ∼ q]@(obs, use)φ, Δ

Unlike the normal sequent calculus rules which are executed in a bottom-up
manner, the application of sequent calculus rules for the bisimulation modality
consists of two phases.
1. Symbolic execution of source program p. It is performed bottom-up as usual

in sequent calculus rules. In addition, the observable location sets obsi are
also propagated since they contain the locations observable by pi and φi that
will be used in the second phase to synthesize the specialized program. Nor-
mally obs could contain the return variables of a method and the locations
used in the continuation of the program.

2. We synthesize the target program qi and usei by applying the rules in a
top-down manner.

Based on the application of sequent calculus rules for the bisimulation modality,
the process of synthesizing specialized programs is a two-phase procedure. The
first phase is symbolic execution of the source program while keeping track of
the observable location set obs. In the second phase, when the program is fully
symbolically executed, the specialized program is synthesized by applying the
rules in the other direction, starting with the emptyBox rule.

emptyBox

Γ =⇒ {U}@(obs,)φ, Δ

Γ =⇒ {U}[nop ∼ nop]@(obs, obs)φ, Δ

Program Specialization via a Software Verification Tool 93

where is an anonymous placeholder, and nop explicitly denotes that the pro-
gram is empty (no operation). The interesting aspect of this rule is that the
location set use tracking read access to variables is set to obs, ensuring that
observable locations are accessible in the specialized program.

Here are some examples of sequent calculus rules for the bisimulation modality.
For convenience, we use p to denote the specialized version of p.

assignLocalVariable

Γ =⇒ {U}{l := r}[ω ∼ ω]@(obs, use)φ, Δ(
Γ =⇒ {U}[l = r; ω ∼ l = r; ω]@(obs, use− {l} ∪ {r})φ, Δ if l ∈ use
Γ =⇒ {U}[l = r; ω ∼ ω]@(obs, use)φ, Δ otherwise

)

The use set contains all program variables on which a read access might occur
in the remaining program before being overwritten. In the first case, when the
left side l of the assignment is among those variables, we have to update the use
set by removing the newly assigned program variable l and adding the variable
r which is read by the assignment. The second case makes use of the knowledge
that the value of l is not accessed in the remaining program and skips the
specialization of the assignment.

conditionalSplit

Γ, {U}b =⇒ {U}[p; ω ∼ p; ω]@(obs, usep;ω)φ, Δ
Γ, {U}¬b =⇒ {U}[q; ω ∼ q; ω]@(obs, useq;ω)φ, Δ

Γ =⇒ {U}[if (b) {p} else {q}; ω ∼
if (b) {p;ω} else {q;ω}]@(obs, usep;ω ∪ useq;ω ∪ {b})φ, Δ

(with b boolean variable.)

On encountering a conditional statement, symbolic execution splits into two
branches, namely the then-branch and else-branch. The specialization of the
conditional statement will result in a conditional. The guard is the same as used
in the source program, then-branch is the specialization of the source then-
branch continued with the rest of the program after the conditional, and the
else-branch is analogous to the then-branch.

Note that the statements following the conditional statement are symbolically
executed on both branches. This leads to duplicated code in the specialized pro-
gram, and, potentially to code size duplication at each occurrence of a conditional
statement. One note in advance: code duplication can be avoided when applying
a similar technique as presented later in connection with the loop translation
rule. However, it is noteworthy that the application of this rule might have also
advantages: as discussed in [5], symbolic execution and partial evaluation can be
interleaved resulting in (considerably) smaller execution trace. Interleaving sym-
bolic execution and partial evaluation is orthogonal to the approach presented
here and can be combined easily. In several cases this can lead to different and
drastically specialized and therefore smaller versions of the remainder program
ω and its specialization ω. The use set is extended canonically by joining the
use sets of the different branches and the guard variable.

94 R. Bubel, R. Hähnle, and R. Ji

loopUnwind

Γ =⇒ {U}[if (b) {p̄; while (b) {p}} ω ∼
if (b) {p̄; while (b) {p}} ω]@(obs, use)φ, Δ

Γ =⇒ {U}[while(b) {p} ω ∼ if (b) {p̄; while(b) {p}} ω]@(obs, use)φ, Δ

whileInv

Γ =⇒ {U}inv, Δ
Γ, {U}{Vmod}(b = TRUE ∧ inv) =⇒ {U}{Vmod}

[p ∼ p]@(obs ∪ use1 ∪ {b}, use2)inv, Δ
Γ, {U}{Vmod}(b = FALSE∧ inv) =⇒ {U}{Vmod}[ω ∼ ω]@(obs, use1)φ, Δ

Γ =⇒ {U}[while(b){p}ω ∼ while(b){p}ω]@(obs, use1 ∪ use2 ∪ {b})φ, Δ

. . .

while(b)

body rest

b ¬b
5 1

3

4 2

Fig. 4. Work flow of synthesizing loop

On the logical side the loop invari-
ant rule is as expected and has three
premises. Here we are interested in
compilation of the analyzed program
rather than proving its correctness.
Therefore, it is sufficient to use true as
a trivial invariant or to use any auto-
matically obtainable invariant. In this
case the first premise ensuring that
the loop invariant is initially valid
contributes nothing to the program
compilation process and is ignored
from here onwards (if true is used as
invariant then it holds trivially).

Two things are of importance: the
third premise executes only the pro-
gram following the loop. Furthermore, this code fragment is not executed by any
of the other branches and, hence, we avoid unnecessary code duplication. The
second observation is that variables read by the program in the third premise
may be assigned in the loop body, but not read in the loop body. Obviously,
we have to prevent that the assignment rule discards those assignments when
compiling the loop body. Therefore, we must add to the variable set obs of the
second premise the used variables of the third premise and, for similar reasons,
the program variable(s) read by the loop guard. In practice this is achieved by
first executing the use case premise of the loop invariant rule and then using the
resulting use1 set in the second premise. The work flow of the synthesizing loop
is shown in Figure 4.

methodContract

Γ =⇒ {U}{param1 := v1‖ . . . ‖paramn := vn}pre, Δ
Γ =⇒ {U}{param1 := v1‖ . . . ‖paramn := vn}{Vmod}

(post → [r =res; ω ∼ r =res; ω]@(obs, use)φ), Δ
Γ =⇒ {U}[r = m(v1, . . . , vn); ω ∼ r =res; ω]@(obs, use)φ, Δ

Program Specialization via a Software Verification Tool 95

Theorem 2 (Soundness Sequent Calculus Rules). The rules for the bisim-
ulation modality are sound.

A proof sketch of the theorem is given in the appendix.

Theorem 3 (Soundness Procedure). The procedure of program specializa-
tion by application of the sequent calculus for the bisimulation modality is sound.

6 Application

In this section, we show the application of our framework to generate specialized
programs for a Java-like language. Consider the program in Fig. 1. Our purpose
is to specialize the sum() method which consists of non-trivial constructs such as
attributes, a conditional, loop and method call. To achieve a clearer presentation
we omit the postcondition φ following the bisimulation modality throughout the
example as well as other unnecessary formulas in the sequents.

The first phase of our approach starts symbolically executing method sum()
with the return value tot as the only observable location, i.e., obs = {tot}. The
first statements of the method declare and initialize variables. These statements
are executed similar to assignments. Altogether the assignLocalVariable rule is
applied three times, where each assignment rule application is immediatley fol-
lowed by a partial evaluation step. We end up with

=⇒ {. . . ||tot := 0}[while(i <= n) . . . ∼ sp3]@({tot}, use3)

=⇒ {. . . ||count := n}[tot = 0; while(i <= n) . . . ∼ sp2]@({tot}, use2)

=⇒ {i := 0}[count = n; . . . ∼ sp1]@({tot}, use1)

=⇒ [i = 0; . . . ∼ sp0]@({tot}, use0)

where spi denotes the corresponding specialized program.
The next statement to be symbolically executed is the while loop computing

the total sum. Instead of immediately applying the loop invariant rule, we unwind
the loop once using the loopUnwind rule. Partial evaluation allows to simplify the
guard i <= n and i >= 2 && cpn of the introduced conditional to i <= 2 and 0
>= 2 && cpn by applying constant propagation. Furthermore, the then-branch
is eliminated because the guard 0 >= 2 && cpn can be evaluated to false . The
result is as follows:

=⇒ {i := 0|| . . . ||tot := 0}
[if(0 <= n){int m1 = read(); tot = m1; i = 1; while . . .} ∼ sp3]@({tot}, use3)

=⇒ {i := 0|| . . . ; tot := 0}
[if(0 <= n){. . . tot = 0+ m1; i = 1; while . . .} ∼ sp3]@({tot}, use3)

=⇒ {i := 0|| . . .}
[if(0 <= n){. . . if(0 >= 2&&cpn) . . . ; i = 0+ 1; while . . .} ∼ sp3]@({tot}, use3)

=⇒ {i := 0|| . . .}
[if(i <= n){. . . if(i >= 2&&cpn) . . . ; i++; while . . .} ∼ sp3]@({tot}, use3)

=⇒ {i := 0|| . . . ||tot := 0}[while(i <= n) . . . ∼ sp3]@({tot}, use3)

96 R. Bubel, R. Hähnle, and R. Ji

Application of the conditionalSplit rule creates two branches. The else-branch
contains no program so it is synthesized right away by applying the emptyBox
rule. Symbolic execution of the then-branch, applies the assignLocalVariable rule
three times until we reach the while loop again. We decide to unwind the loop
a second time. The symbolic execution follows then the same pattern as before
until we reach the loop for a third time. Fig. 5(a) shows the relevant part of the
proof tree of the second loop unwinding.

Instead of unwinding the loop once more, we apply the loop invariant rule
whileInv. The rule creates three new goals. The goal for the init premise is not
of importance for the specialization itself, hence, we ignore it in the following.

The used variables set use of the preserves premise depends on the instan-
tiation of the use set in the use case premise. To resolve the dependency we
continue with the latter. In this case, the use case premise contains no pro-
gram, so it is trivially synthesized by applying the emptyBox rule which results
in nop as the specialized program and the only element tot in obs becomes the
use set. Based on this, the use set of the preserves premise is the union of
obs, {tot} and the locations used in the loop guard: {tot, i}. The program in
the preserves premise is then symbolically executed by applying suitable rules
until it is empty. This process is similar to that when executing the program
in the then-branch of the conditional generated by loopUnwind. The proof tree
resulting from the application of the loop invariant rule is shown in Fig. 5(b).

After symbolic execution we enter the second phase of our approach in which
the specialized program is synthesized. Recall that when applying the whileInv
rule, the procedure of synthesizing the loop starts with the use case branch. In
our example, we have already performed this step and could already determine
the instantiation of the observable location set obs of the preserves premise.

We explain now how the loop body is synthesized using the preserves
premise: applying the emptyBox rule instantiates the placeholders sp12 and use12

with nop and {tot, i}. Going backwards, the assignLocalVariable rule tells us how
to derive the instantiations for sp11 = i++; and use11 = {tot, i}. The instan-
tiations for sp10 and use10 can be derived as tot=tot+m; i++; and {tot, i}.
Before we can continue, the instantiations of sp9 and use9 need to be determined.
Similar to the derivation of sp10 and use10, applying the assignLocalVariable rule
two times, we get sp9 = tot=tot+m*9/10; i++; and use9={tot, i}.

We have now reached the node where we previously applied the conditionalSplit
rule. This rule allows us to derive if(cpn) {tot=tot+m*0.9; i++;} else
{tot=tot+m; i++;}, as instantiation for sp8 and {tot, i, cpn} as instantiation
for use8. Applying suitable rules, we end up with the specialized program sp6

����� (i<=n) {
��� m = read();
�� (cpn) {tot=tot+m*9/10; i++;}
��	� {tot=tot+m; i++; }

}

and the used variable set use6 = {tot, i, cpn}.

Program Specialization via a Software Verification Tool 97

1
≤

n
=⇒

{.
..
‖i
:=

2
}[

w
h
i
l
e
(i

<
=

n
)
..

.
∼

sp
6
]@
({
t
o
t
},

u
se

6
)

..
.

0
≤

n
=⇒

{.
..
}[

i
f
(i

<
=

n
)
..

.;
w
h
i
l
e

..
.
∼

sp
5
]@
({
t
o
t
},

u
se

5
)

0
≤

n
=⇒

{.
..
‖m
2
:=

r
e
a
d
()
‖t
o
t
:=

m
2
‖i
:=

1
}[

w
h
i
l
e
(i

<
=

n
)
..

.
∼

sp
5
]@
({
t
o
t
},

u
se

5
)

..
.

¬(
0
≤

n
)
=⇒

{.
..
}[

∼
n
o
p
]@
({
t
o
t
},
{t
o
t
})

0
≤

n
=⇒

{.
..
}[

i
n
t
m
2
=

r
e
a
d
()
;.

..
∼

sp
4
]@
({
t
o
t
},

u
se

4
)

=⇒
{.

..
}[

i
f
(0

<
=

n
){
i
n
t
m
2
=

r
e
a
d
()
;t
o
t
=

m
2
;i
=

1
;w
h
i
l
e

..
.}

∼
sp

3
]@
({
t
o
t
},

u
se

3
)

(a
)
S
p
ec
ia
li
za
ti
o
n
o
f
th
e
w
h
i
l
e
lo
o
p
v
ia
u
n
w
in
d
in
g

..
.
=⇒

{.
..
‖i
:=

i
+
1
}[

∼
sp

1
2
]@
({
t
o
t
}∪

{i
},

u
se

1
2
)

..
.
=⇒

{.
..
‖t
o
t
:=

t
o
t
+
m
}[

i
+
+
;
∼

sp
1
1
]@
({
t
o
t
}∪

{i
},

u
se

1
1
)

..
.,
c
p
n
=⇒

..
.[

..
.
∼

sp
9
]@
({
t
o
t
}∪

{i
},

u
se

9
)..

.,
¬c

p
n
=⇒

{.
..
}[

t
o
t
=

t
o
t
+
m
;.

..
∼

sp
1
0
]@
({
t
o
t
}∪

{i
},

u
se

1
0
)

..
.
=⇒

{m
:=

r
e
a
d
()
}[

i
f
(c
p
n
)
..

.
∼

sp
8
]@
({
t
o
t
}∪

{i
},

u
se

8
)

..
.,
¬(

i
≤

n
)
=⇒

[
∼

n
o
p
]@
({
t
o
t
},
{t
o
t
})

..
.,
i
≤

n
=⇒

[
i
n
t

..
.
∼

sp
7
]@
({
t
o
t
}∪

{i
}∪

{t
o
t
},

u
se

7
)

1
≤

n
=⇒

{.
..
‖i
:=

2
}[

w
h
i
l
e
(i

<
=

n
)
..

.
∼

{t
o
t
}]
@
(u

se
6
,)

(b
)
S
p
ec
ia
li
za
ti
o
n
o
f
th
e
w
h
i
l
e
-l
o
o
p
u
si
n
g
th
e
lo
o
p
in
va
ri
a
n
t
ru
le

Fig. 5. Specialization of the while-loop by different means

98 R. Bubel, R. Hähnle, and R. Ji

Following the symbolic execution tree backwards and applying the correspond-
ing rules, we finally synthesize the specialized program for sum() as follows:

���� ��� sum(��� n) {
��� i; ��� tot; tot = 0;
�� (0 <= n) {
��� m1 = read(); tot = m1;
�� (1 <= n) {
��� m2 = read();
tot = tot + m2; i = 2;
�����(i <= n) {
��� m = read();
�� (cpn) { tot = tot + m * 9 / 10; i++; }
��	� { tot = tot + m; i++; }
} } }

������ tot; }

7 Related Work

JSpec [15] is a program specializer for Java and, therefore, has the same goal
as our approach. In fact, JSpec is not working with full Java but a subset
without concurrency, dynamic loading, etc. In this sense it is similar to our
work. However, they use an offline partial evaluation technique that depends on
binding time analysis . Our work is based on symbolic execution to derive infor-
mation on-the-fly, similar to online partial evaluation [14]. Our work is related
to the latter, the main difference being that we do not generate the specialized
program during the symbolic execution phase, but synthesize it in the second
phase. In principle, our first phase can obtain as much information as online
partial evaluation, and the second phase can generate a more precise specialized
program.

Our approach is also related to the Verifying Compiler [11] project which aims
at the development of a compiler that verifies the program during compilation.
In contrast to this, our approach might be called instead the Compiling Verifier.
Like our work, compiler verification [8] aims to guarantee the correctness of the
target program. The difference is that compiler verification attempts to verify
the compiling program which is very expensive and hardly scales to realistic
target languages and sophisticated optimizations.

Our work is closely related to rule-based compilation [1,4]. It differs in the
sense that to the best of our knowledge their inference machine is by far not as
powerful as the mature simplification engine used in KeY. Also closely related
are recent approaches to translation validation of optimizing compilers (e.g.,
[2]) which also use a theorem prover to discharge proof obligations. They work
usually on an abstraction of the target program. Both mentioned approaches
encode the compilation strategy within the rules, while our approach separates
the actual strategy from the translation rules. What distinguishes our work from

Program Specialization via a Software Verification Tool 99

most approaches that we know is that the starting point is a system for functional
verification of Java which is used for program specialization in such a way that
it becomes fully automatic.

8 Conclusion and Future Work

We presented a novel approach to specialize programs via a software verification
tool in a two-phase manner. In the first phase, symbolic execution interleaved
with simple partial evaluation is performed. Symbolic execution permits dynamic
analysis at compile time which is similar to online partial evaluation. In the sec-
ond phase, the specialized program is synthesized. A use-definition chain set
is maintained to eliminate unused assignments and to avoid unnecessary state-
ments occurring in the specialized program. The correctness of the specialization
is guaranteed by the bisimulation relationship of the source and specialized pro-
grams, together with the soundness of the program logic. It is a new architecture
to construct verified compilers by combining verification, partial evaluation and
local transformation. The implementation is currently ongoing with KeY tool
and more results will be reported later.

Although this approach is defined for a Java-like language, it will be interest-
ing to see whether other features such as concurrency could be handled, going
towards full-Java.

Orthogonally, there are still opportunities to optimize the procedure. For in-
stance, on encounter of a loop, the heuristics that decide whether to unwind it
or not have a strong influence on the resulting specialized programs. Importing
information, e.g., loop invariants, from other tools could also be useful.

The idea of this paper is to generate specialized programs, however, the bisim-
ulation modality is not restricted to source and target program being from the
same language, but it can be generalized to other languages provided with cor-
responding observable locations. Consequentially, the approach is still sound for
generating bytecode or other intermediate languages. We plan to apply our ap-
proach to the modeling language ABS developed in the context of the HATS
project[6,7]

Furthermore, the close connection between the program logic and compila-
tion allows to ensure the correctness of the compilation process as such. We see
a great potential of our approach when encoding security or safety properties
in terms of pre-/postconditions. This should allow to identify unsafe or unse-
cured execution paths during compilation and either to abort compilation or to
wrap the undesired execution paths in a wrapper that at least ensures the safety
or security property of interest. For example, execution paths that may leak
information can be secured by omitting the assignments that violate secure in-
formation flow. Another possibility would be to ensure that if the program enters
an unsecured execution path, then the program will not terminate. Exploring
these avenues is future work.

Acknowledgments. We thank Wolfgang Ahrendt for fruitful discussions as
well as for valuable comments on an earlier version of this paper.

100 R. Bubel, R. Hähnle, and R. Ji

References

1. Augustsson, L.: A compiler for lazy ML. In: Proceedings of the 1984 ACM Sym-
posium on LISP and functional programming, LFP 1984, pp. 218–227. ACM, New
York (1984)

2. Barrett, C.W., Fang, Y., Goldberg, B., Hu, Y., Pnueli, A., Zuck, L.D.: TVOC: A
translation validator for optimizing compilers. In: Etessami, K., Rajamani, S.K.
(eds.) CAV 2005. LNCS, vol. 3576, pp. 291–295. Springer, Heidelberg (2005)

3. Beckert, B., Hähnle, R., Schmitt, P. (eds.): Verification of Object-Oriented Soft-
ware. The KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

4. Breebaart, L.: Rule-based compilation of data parallel programs. PhD thesis, Delft
University of Technology (2003)

5. Bubel, R., Hähnle, R., Ji, R.: Interleaving symbolic execution and partial eval-
uation. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.)
FMCO 2009. LNCS, vol. 6286, pp. 125–146. Springer, Heidelberg (2010)

6. Clarke, D., Diakov, N., Hähnle, R., Johnsen, E.B., Schaefer, I., Schäfer, J., Schlatte,
R., Wong, P.Y.H.: Modeling spatial and temporal variability with the HATS ab-
stract behavioral modeling language. In: Bernardo, M., Issarny, V. (eds.) SFM
2011. LNCS, vol. 6659, pp. 417–457. Springer, Heidelberg (2011)

7. Clarke, D., Muschevici, R., Proença, J., Schaefer, I., Schlatte, R.: Variability mod-
elling in the ABS language. In: Aichernig, B.K., de Boer, F.S., Bonsange, M.M.
(eds.) FMCO 2010. LNCS, vol. 6957, pp. 206–226. Springer, Heidelberg (2011)

8. Dave, M.A.: Compiler verification: a bibliography. SIGSOFT Softw. Eng. Notes 28,
2 (2003)

9. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)

10. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10) (October 1969)

11. Hoare, T.: The verifying compiler: A grand challenge for computing research. J.
ACM 50, 63–69 (2003)

12. Jones, N., Gomard, C., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice Hall, New York (1993)

13. King, J.C.: A program verifier. PhD thesis, Carnegie-Mellon University (1969)

14. Ruf, E.S.: Topics in online partial evaluation. PhD thesis, Stanford University,
Stanford, CA, USA, UMI Order No. GAX93-26550 (1993)

15. Schultz, U.P., Lawall, J.L., Consel, C.: Automatic program specialization for Java.
ACM Trans. Program. Lang. Syst. 25(4), 452–499 (2003)

Appendix: Proof of Lemma 2

Proof (Sketch). We give here only the proof for conditionalSplit. The proofs for
other rules are similar. To prove soundness of a rule we need to show that the
validity of the conclusion is a consequence of the premises’ validity.

Let D, sa, β be arbitrary, but fixed. We assume that valD,sa,β(Γ ∧ ¬Δ) = tt
otherwise we are trivially done. We have now to prove that

valD,sa,β({U}[
if (b) {p} else {q}; ω ∼ if (b) {p;ω} else {q;ω}

]@(obs, usep;ω ∪ useq;ω ∪ {b})φ)

Program Specialization via a Software Verification Tool 101

holds or, equivalently, that

valD,s,β([
if (b) {p} else {q}; ω ∼ if (b) {p;ω} else {q;ω}

]@(obs, usep;ω ∪ useq;ω ∪ {b})φ)

with valD,sa,β(U) = s holds.
We have to check that the four requirements stated in Def. 10 are satisfied.

First, we need to check requirement (i), namely:

valD,s,β({U}[if (b) {p} else {q}; ω]) = tt

This requirement is equivalent to the soundness proof of the conditional rule for
the standard calculus version and skipped.

The most interesting requirement to be checked is (ii). We need to show that
the specialized program s-obs-bisimulates the original program:

s |= if (b) {p} else {q}; ω ∼obs if (b) {p; ω} else {q; ω}

Case valD,s,β(b) = true: Validity of the first premise ensures that

s |= p;ω ∼obs p;ω

which means according to its definition

valD,s,β(p; ω) ∼obs valD,s,β(p; ω)

With that we get

valD,s,β(if (b) {p} else {q}; ω) = valD,s,β(p; ω)
∼obs valD,s,β(p; ω)
= valD,s,β(if (b) {p; ω} else {q; ω})

The second case valD,s,β(b) = false is analogous. Taking both cases we can
conclude the proof of requirement (ii).

Requirement (iii) is satisfied if

usep;ω ∪ useq;ω ∪ {b}

is a superset of all observable locations of if (b) {p} else {q}; ω and φ. From
the premises we get directly that usep;ω and useq;ω are supersets of all observ-
able locations of the branches, the remaining program and formula φ. The only
additional location which is read by the conditional statement except those of
its branches and which may not yet be included is variable b. The union of
all these sets is the set used in the rule’s conclusion and satisfies obviously re-
quirement (iii). Finally, we need to check requirement (iv) which can be done
analogous to the check for requirement (iii). "#

Model–Based Analysis Tools for Component
Synthesis

Luigia Petre, Kaisa Sere, and Leonidas Tsiopoulos

Department of Information Technologies, Åbo Akademi University, Turku, Finland

Abstract. Component-based development typically refers to assembling
pre-existing pieces of software or hardware for integrating them into new
systems. In this paper we introduce a formalism-based approach to verify
the component boundaries, based on the component interdependencies.
We base this synthesis method on B Action Systems and the animation
techniques provided by the ProB tool. In addition, we put forward another
applicability for our method, namely to mapping components to hardware
platform tiles.

Keywords: Component Synthesis, B Action Systems, ProB tool, Ap-
plication Mapping.

1 Introduction

Component-based development identifies and manages interdependencies among
preexisting software or hardware parts for integrating them into new systems [1],
[2]. During the last two decades, it has been widely recognized that methodologies
and frameworks with adequate tool support are needed, in order to facilitate the
component-based development.

One of the candidate approaches for specifying reliable software and hardware
systems, modelling the communication of their components, as well as verifying
their design is provided by formal methods [3], [4]. These methods are often
accompanied by adequate tool support making them more accessible. The im-
portance of formal methods for the development of complex systems is justified
by the potential they have in avoiding costly errors in the later design phases,
hence, contributing to the reliability of such systems. A formal component-based
development framework additionally to specification and verification of complex
systems needs to provide means for component interdependency analysis and
component synthesis with adequate tool support.

In this paper, we propose a formal method based methodology for component
synthesis. We understand the functionality of a component as a collection of
services that the component has to implement [2]. Components have been tra-
ditionally developed with an emphasis on the specification of their functionality,
without explicitly describing and analysing their interdependencies. Here, based
on the services that components need to implement, we identify some initial
boundaries of components. Then, we identify those services needed for communi-
cation among components; hence, we identify the component interdependencies.

B.K. Aichernig, F.S. de Boer, and M.M. Bonsange (Eds.): FMCO 2010, LNCS 6957, pp. 102–121, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Model–Based Analysis Tools for Component Synthesis 103

Based on these interdependencies, we then reason about the suitability of cer-
tain boundaries, i.e., we argue whether some components should or not merge.
As an application of our approach, we employ these interdependencies to place
components on hardware platforms, so that highly communicating components
find each other in their vicinity.

We base our approach on two formalisms. First, we employ a state-based
formal method, B Action Systems [5], created for reasoning about parallel and
distributed systems within the B Method [6]. We start our approach based on
a B Action Systems model comprising a predefined grouping of services into
components. The purpose of our method is to determine configurations that are
more suitable if possible. Second, we employ a model checker also based on the
B Method principles, namely the ProB tool [7] that provides various verification
techniques such as model checking and animation. We argue that animation
of component services is a valuable technique for identifying the component
interdependencies. Based on it, we devise a method for challenging the compo-
nent boundaries. An animation of the model generates the computed coverage,
i.e., the guaranteed as well as the possible relations between the services of the
components. We analyze these relations and decide on new component configu-
rations taking into account a desired number for component interdependencies.
We continue applying the method on a component configuration until we find a
suitable grouping of services into components with respect to the desired number
for component interdependencies.

In addition, we employ the animating tool GeneSyst [8] to further assist our
synthesis method to the placement of components on hardware platforms. This
application of the method involves some adaptation as well as the incorporation
of additional ProB animating facilities. The latter contribute to determining the
execution traces and the interdependency details of the components. Instead of
defining new components, we simply place highly communicating components as
close as possible to each other for efficient communication.

We proceed as follows. In Section 2, we describe B Action Systems and the
animating tools to the extent needed in this paper; we also describe our case
study and model it formally. In Section 3, we introduce our proposed synthesis
method, exemplify it, and discuss it in detail. We then adapt our proposed
method to mapping application components to hardware platform tiles in Section
4. We discuss related work in Section 5 and we conclude in Section 6.

2 Preliminaries

In this section we present the formalisms we employ in this paper together with
an example modeled with these formalisms.

2.1 B Method Based Formalisms

B Action Systems [5] is a state-based formalism based on Action Systems [9] and
the B Method [6]. This framework was developed in order to allow reasoning
about parallel and distributed systems within the B Method.

104 L. Petre, K. Sere, and L. Tsiopoulos

We illustrate the form of a B Action System in Fig. 1 (a). The main computa-
tional unit is the machine, identified by a unique name A. A machine has a finite
set of (local) variables and a finite set of operations that evaluate and modify the
variables. The variables of the machine are declared in the VARIABLES-clause;
their values describe the state of the machine. The INVARIANT-clause defines
the types of the variables and gives their guaranteed behaviour. Initial values
are assigned to the variables in the INITIALISATION-clause. The operations in
the OPERATIONS-clause are of the form Oper = SELECT P THEN S END, where
P is a predicate (called guard) on the variables and S is a substitution (update)
statement; hence, an operation can evaluate and modify the state of the system
modelled by the variable values. When P holds, the operation Oper is said to be
enabled. Only enabled operations are considered for execution and if there are
several operations enabled simultaneously then only one is selected for execution
in a non-deterministic manner. If some operations have no variables in common
and are enabled at the same time, then they can be considered to execute in par-
allel since their sequential execution in any order gives the same result. When
there are no enabled operations the machine terminates.

 MACHINE A
INCLUDES/EXTENDS/SEES B
VARIABLES x
INVARIANT Inv(x)
INITIALISATION x := x0
OPERATIONS
 A_Oper1 = SELECT P1 THEN S1 END;
 …
 A_Opern = SELECT Pn THEN Sn END
END

MACHINE GlobalVar_z
VARIABLES z
INVARIANT Inv(z)
INITIALISATION z := z0
OPERATIONS
 assign_z(y) = PRE J(y) THEN z := y END
END

(a) (b)

Fig. 1. (a) Example of a B Action System, (b) Global variables in B Action Systems

Structuring mechanisms can be used to express B action systems as a composi-
tion of subsidiary systems. The mechanisms used in this paper are the SEES and
INCLUDES mechanisms [6]. The SEES-mechanism allows reading access to the
seeing machine, meaning that variables of the seen machine can be used in the
initialization and operations of the seeing machine. When using the INCLUDES-
mechanism, in addition to the reading access, the invariant of the including
machine can express requirements on the variables of the included machine. The
variables of the included machine are directly visible to the including machine,
but they may only be updated via the included system.

Global variables that can be read and updated by more than one system are
one of the most common communication mechanisms in B Action Systems. A
global variable z is declared in a separate machine as shown in Fig. 1 (b). This
machine is then INCLUDED or SEEN in the machines that refer to the global
variable and the including machine is allowed to assign a new value y to the
variable z via an operation assign_z(y) [5] in the global variable machine. Global
variables are further employed in the next section.

Parallel composition of several machines into a single machine is an impor-
tant aspect of our modelling approach as will become apparent in the following

Model–Based Analysis Tools for Component Synthesis 105

sections. The parallel composition of a machine A and a machine B is illustrated
in Fig. 2 and it is formed by merging the variables, invariants and operations
of A and B. The local variables of the machines have to be distinct. This can
easily be achieved by renaming the conflicting variables before forming the com-
position. The global variables declared in a global variable machine will be the
global variables of the parallel composition. Since the invariant of the composed
machine is the conjunction of the invariants of the individual machines before
the composition, the operations of each machine should preserve the invariants
of all other machines in the composition. This is mainly a restriction on the
assignments to the common global variables.

parallel
comp.

MACHINE A
INCLUDES
 GlobalVar_z
VARIABLES x
INVARIANT
 Inv_A
INITIALISATION
 x := x0
OPERATIONS
 A_Oper = …
END

MACHINE B
SEES
 GlobalVar_z
VARIABLES y
INVARIANT
 Inv_B
INITIALISATION
 y := y0
OPERATIONS
 B_Oper = …
END

MACHINE AB
INCLUDES
 GlobalVar_z
VARIABLES x, y
INVARIANT
 Inv_A Inv_B
INITIALISATION
 x := x0 || y := y0
OPERATIONS
 A_Oper = …;
 B_Oper = …
END

Fig. 2. Parallel composition of B Action Systems A and B

ProB Tool. In order to analyse B Action System specifications we employ the
ProB tool [7]. ProB is a model checking and animation tool for B machines
that includes a fully automatic animator written in SICStus prolog [10]. ProB
takes an instantiated model in B, i.e. a model in which any generic set has been
instantiated with some concrete values to avoid state explosion and generates a
finite coverage graph. In this paper we only employ the animation capabilities
provided by ProB.

ProB also computes the coverage of the model after a random animation
of a number of operation executions. The computed coverage consists of infor-
mation about the total number of the nodes of the state space of the system
and their status (deadlocked, live, or open). It also provides the total number
of operations of the model, as well as the possibly covered operations between
the nodes. The list of DEFINITELY_ENABLED_AFTER operations and the list
of POSSIBLY_ENABLES operations are also provided. The former list contains
the operations that are definitely enabled after the execution of a subset of
the model’s operations. The latter list contains the operations that are possi-
bly enabled after the execution of each operation of the model. Furthermore, the
Signature-Merge Reduced Statespace (S-MRS) graph contains specific transitions
(operation executions) based on some specific global state, for instance, we can
observe the different starting points of possible interleaving. This S-MRS graph
corresponds to the full state-space graph.

GeneSyst Tool. S-MRS graphs from ProB are prone to rapid expansion if
the model is non-deterministic and the sets defined for variable declarations are

106 L. Petre, K. Sere, and L. Tsiopoulos

large. Such graphs can then be difficult to examine and of small value to the user
of the tool. A potential alleviation of this problem comes from animating tools
like GeneSyst [8]. This is an animating tool for B machines that takes as input
a set of disjoint predicates (given by the user in an additional ASSERTIONS-
clause) on the state variables of a B machine. Based on several internal checks
and proofs, the tool outputs an abstract state-transition diagram corresponding
to the predicates given by the user.

2.2 An Example Modelled with the Formalisms

As a case study, we consider a model of an asynchronous pipelined processor
introduced by Plosila and Sere [11] and specified originally within the Action
Systems formalism [9]. In the following we describe this model to the extent
needed in this paper and put forward the B Action Systems and ProB specifica-
tions of this model.

HazardUnit

hz

mw

fd

xm

InstructionMemoryUnit imr

regr
regw

pp

pp dx

xm

mw

ExecutionUnit DecodeUnit ProgramCounter

MemoryAccessUnit WriteBackUnit

RegisterAccessUnit

FetchUnit

Fig. 3. Asynchronously communicating subsystems of a pipelined processor

In Fig. 3 we illustrate several components of the processor together with their
dependencies: FetchUnit, InstructionMemoryUnit, DecodeUnit, RegisterAccessUnit, Pro-
gramCounter, HazardUnit, ExecutionUnit, MemoryAccessUnit and WriteBackUnit. The
components cooperate in the following manner. First, FetchUnit fetches a new
instruction for manipulation from InstructionMemoryUnit and initiates the com-
munication with DecodeUnit. DecodeUnit then communicates with HazardUnit in
order to avoid a pipeline hazard, i.e., a read-write conflict on the relevant regis-
ters between a new incoming instruction in DecodeUnit and a current instruction
being written to the memory. When the memory is updated with the current
instruction, HazardUnit acknowledges back and allows DecodeUnit to increment
ProgramCounter, read the register, and decode the new instruction. DecodeUnit
waits for the acknowledgements from ProgramCounter and RegisterAccessUnit be-
fore it acknowledges the communication with FetchUnit and sends the current
decoded instruction to ExecutionUnit. After the communication with FetchUnit is
acknowledged, a new instruction can be fetched. ExecutionUnit manipulates the
instruction: depending on its type, it increments or loads ProgramCounter. After
the acknowledgement from ProgramCounter, ExecutionUnit initiates communication
with MemoryAccessUnit and acknowledges the communication with DecodeUnit, so

Model–Based Analysis Tools for Component Synthesis 107

that it can receive a new decoded instruction. MemoryAccessUnit sends the instruc-
tion to WriteBackUnit, that writes the instruction to the memory through Register-
AccessUnit and acknowledges back to MemoryAccessUnit the memory update. The
manipulation of the next instruction can then continue from an intermediate
pipelined stage. More details of the model appear in [11].

 MACHINE PipelinedProcessor
INCLUDES GlobalVarsOfPipelinedProcessor
SEES def
VARIABLES lpc1, lpc2, lpc3 /* Program counters to model sequential composition of operations of
 DecodeUnit, ExecutionUnit and FetchUnit */
INVARIANT lpc1 : COUNTER & lpc2 : BOOL & lpc3 : BOOL
INITIALISATION lpc1 := one || lpc2 := FALSE || lpc3 := FALSE
OPERATIONS /* FetchUnit operations */
 Fetch1 = SELECT fd = FALSE & lpc3 = FALSE THEN Change_imr(TRUE) || lpc3 := TRUE END;
 Fetch2 = SELECT imr = FALSE & lpc3 = TRUE THEN Change_fd(TRUE) || lpc3 := FALSE END;
 /* ProgramCounter operations*/ Increment = SELECT pp = inc THEN Change_pp(ack) END;
 LoadInstruction = SELECT pp = load THEN Change_pp(ack) END;
 /* DecodeUnit operations */ Decode1 = SELECT fd = TRUE & dx = FALSE & lpc1 = one

 THEN lpc1 := two || Change_hz(TRUE) END;
 Decode2 = SELECT hz = FALSE & lpc1 = two

 THEN Change_pp(inc) || Change_regr(TRUE) || lpc1 := three END;
 Decode3 = SELECT pp = ack & regr = FALSE & lpc1 = three
 THEN lpc1 := one || Change_dx(TRUE) || Change_fd(FALSE) END;
 /* HazardUnit operation */
 Hazard = SELECT hz = TRUE & xm = FALSE & mw = FALSE THEN Change_hz(FALSE) END;
 /* ExecutionUnit operations */
 Execute1 = SELECT dx = TRUE & xm = FALSE & lpc2 = FALSE

 THEN ANY ppp WHERE ppp : {inc, load} THEN Change_pp(ppp) ||
 lpc2 := TRUE END END;

 Execute2 = SELECT pp = ack & lpc2 = TRUE THEN Change_xm(TRUE) || Change_dx(FALSE) ||
 lpc2 := FALSE END;
 /* MemoryAccessUnit operation*/
 MemoryAccess = SELECT xm = TRUE & mw = FALSE THEN Change_mw(TRUE) ||
 Change_xm(FALSE) END;
 /* WriteBackUnit operation*/
 WriteBack = SELECT mw = TRUE & regw = FALSE THEN Change_mw(FALSE) ||
 Change_regw(TRUE) END;

/* RegisterAccessUnit operations*/
 RegisterWrite = SELECT regw = TRUE THEN Change_regw(FALSE) END;
 RegisterRead = SELECT regr = TRUE THEN Change_regr(FALSE) END;
 /* InstructionMemoryUnit operation*/
 InstructionMemRead = SELECT imr = TRUE THEN Change_imr(FALSE) END END

MACHINE def
SETS
 COUNTER = {one, two, three};
 pp_Type = {inc, load, ack}
END

MACHINE GlobalVarsOfPipelinedProcessor
SEES def
VARIABLES fd, pp, dx, xm, hz, mw, regw, regr, imr
INVARIANT fd & dx & xm & hz & mw & regw & regr : BOOL &

 pp : pp_Type
INITIALISATION fd := FALSE || pp := ack || dx := FALSE ||
 xm := FALSE || hz := FALSE || mw := FALSE
OPERATIONS
 Change_fd(bb) = PRE bb : BOOL THEN fd := bb END;
 Change_pp(ppp) = PRE ppp : pp_Type THEN pp := ppp END;
 Change_dx(bb); Change_xm(bb); Change_hz(bb);
 Change_mw(bb); Change_regw(bb); Change_regr(bb);
 Change_imr(bb) END END

Fig. 4. B Action System of PipelinedProcessor

The dependencies between the components are modeled with global variables.
The dashed arrows indicate read access to the attached variables mw and xm in
HazardUnit. The continuous line arrows indicate read and write access to the at-
tached variables. For example, the components ProgramCounter, DecodeUnit and

108 L. Petre, K. Sere, and L. Tsiopoulos

ExecutionUnit are all allowed to update the global communication variable pp,
that can be updated with the values inc (to increment ProgramCounter), load (to
load ProgramCounter), and ack (acknowledgement from ProgramCounter for the
two possible updates). The other global variables are of type BOOL to model
the request and acknowledgement phases of the asynchronous communication.
The value TRUE corresponds to the request phase and the value FALSE corre-
sponds to the acknowledgement phase.

For applying the analysis techniques provided by ProB, the decomposed model
of the processor illustrated in Fig. 3 is composed (in parallel) into a single B
Action System as defined in Section 2.1. Currently, ProB can model check and
animate only one system and not a collection of systems running in parallel
at the same hierarchical level. However, this is not a real restriction since the
execution of various systems in parallel is equivalent to their parallel composition
as explained in Section 2.1.

In Fig. 4 we illustrate the specification of the pipelined processor. The shared
global variables together with simple operations to update them are defined in
the separate global variable machine GlobalVarsOfPipelinedProcessor. The required
sets for this specification are defined in a separate machine def. The continuous
line arrow indicates the INCLUDES structuring mechanism and the dashed line
arrow indicates the SEES mechanism. PipelinedProcessor has three (local) variables
named lpc1, lpc2 and lpc3 to model the sequential composition of the operations of
DecodeUnit, ExecutionUnit and FetchUnit, respectively. The operations of each com-
ponent are grouped together and the components are conventionally separated
from each other with a comment line. For instance, the operations between the
comment lines /* FetchUnit operations */ and /* ProgramCounter operations */ de-
note the FetchUnit, the operations between the comment lines /* ProgramCounter
operations */ and /* DecodeUnit operations */ denote the ProgramCounter and so on.
The functionality of the subsystems in Fig. 4 corresponds to the description of
their dependencies in Fig. 3.

We observe here the nature of this case study. In the model illustrated in Fig.
3, the variables are stored within the various components and declared global, so
that other components can also access them. The control flow in the pipelined
processor is mainly sequential and then generates various branches of parallel
flows. One component can start its job only if specific actions have taken place
before that. We translate this component sequencing to communication modeled
in B Action Systems via the SEES and INCLUDES mechanisms.

We now observe the nature of the B Action Systems model of PipelinedProces-
sor. The most obvious difference with respect to the model illustrated in Fig. 3 is
that the global variables are no longer stored within the units but instead in one
INCLUDED machine. This is only a technical detail for specifying PipelinedProces-
sor in ProB. When we analyse the pipelined application, we assume the variables
stored within the components as in the original model [11] illustrated in Fig. 3.
In Fig. 5, we show the history of the executed operations after an animation;
this is only a part of the main interface of ProB, where the model in Fig. 4 is
specified. We focus on this part of the window because it is the most relevant for

Model–Based Analysis Tools for Component Synthesis 109

Fig. 5. Implementation of PipelinedProcessor in ProB and history of executed opera-
tions

our component mapping method. The other parts of the main interface contain
the specification under animation as well as the enabled operations and the state
properties during animations.

3 The Synthesis Method

Our approach to synthesising components is based on the component services:
they are the basic units of composition. We model component services with
machine operations in the B Action Systems model; hence, we start our approach
based on a B Action Systems model comprising all the possible operations to
synthesize. Every specification typically comes with a semantical grouping of
operations into components. We take advantage of this initial grouping; the
purpose of our method is to determine more suitable component configurations
if possible. We assume we are given a positive integer n that represents the
maximum desired number of interdependencies among components. Hence, the
inputs of our method are a suggested delineation of components and the number
n.

The B Action Systems model is translated into a ProB model on which we
apply various animations techniques in order to challenge the component bound-
aries. Our proposed method is described below.

1. We run a (large enough) animation in ProB, based on the ProB model of the
application. Based on the computed coverage of the ProB model, we record the
relations between the operations in the lists DEFINITELY_ENABLED_AFTER
and POSSIBLY_ENABLES.

2. We replace each operation in the recorded lists of Step 1 with the name of
its component.

3. We count the number of occurrences of the name of each component in
the recorder lists created in Step 2. We store this information in a table
with three columns: one for the component names, one for the number
of communications of each component, modeled by the enabledness rela-
tions recorded in Steps 1-2, and one for the names of the communication

110 L. Petre, K. Sere, and L. Tsiopoulos

partners of each component. If the same relation occurs in both lists DEFI-
NITELY_ENABLED_AFTER and POSSIBLY_ENABLES, we only count it once.
We place the component names in the table in the descending order of the
number of their communications.

4. We check the table created in the previous step to identify components that
communicate more than n times with other components, by observing the
number of communications associated with component names in the table.
(a) If there is no such component, then we have a suitable component con-

figuration and the method ends.
(b) If there are such components, then they have a too narrow border. We

enlarge the border of the highest communicating component to comprise
all the services of all its communication partners. We feed back the new
component configuration to our method and restart from Step 1.

We run a large enough animation so that it produces a full state-space graph in
ProB. By analysing applications in the above way we have a structured method
for analysing the number of component interdependencies. Based on it we can
change the component configuration to a desired level of component interdepen-
dencies.

3.1 Applying the Synthesis Method

As a case study of our method we study the component interdependencies of the
pipelined application described in Section 2.2. We apply our synthesis method
starting with the ProB specification, where the components are delineated by
comments as shown in Fig. 4. We assume that n = 4. When applying Step 1 in
our method we get the lists described in the left part of Fig. 6.

After applying Steps 2 and 3, we obtain the table shown in Fig. 7. This table
shows for each component the number of communications with other components
as well as the names of these components. The definite and possible dependencies
between the components are shown in the right part of Fig. 6. Studying the table
we can apply Step 4 of our method, where we reach the conclusion that DecodeUnit
should be merged with FetchUnit, RegisterAccessUnit, ProgramCounter, HazardUnit,
and ExecutionUnit in order to have more suitable component boundaries.

The method should now be applied again on the new component configuration.
We do not show it here due to lack of space, but one can easily see that in
the new configuration there will only be four components, with at most four
communications each. Hence, the method now stops.

3.2 On the Correctness of Our Method

The method takes as input a given component configuration C = {C1, . . . , Cm}
so that each component Ci, i ∈ {1, . . . , m} implements a certain number pi of
services Sj , j ∈ {1, . . . , pi} : Ci = {Sj|j ∈ {1, . . . , pi}. Some of these services
may denote internal computation, while others may enable some of the services
of other components. The latter occurrence is detected by our method via the

Model–Based Analysis Tools for Component Synthesis 111

 DEFINITELY_ENABLED_AFTER
Hazard==>Decode2
Decode2==>Increment
Decode2==>RegisterRead
Decode3==>Fetch1
Decode3==>Execute1
Execute2==>MemoryAccess
MemoryAccess==>WriteBack
Fetch1==>InstructionMemRead
WriteBack==>RegisterWrite
InstructionMemRead==>Fetch2
LoadInstruction==>Execute2
POSSIBLY_ENABLES
Hazard?=>Decode2
Decode2?=>Increment
Decode2?=>RegisterRead
RegisterRead?=>Decode3
Decode3?=>Fetch1
Decode3?=>Execute1
Decode1?=>Hazard
Execute2?=>MemoryAccess
Execute2?=>Decode1
Increment?=>Execute2
Increment?=>Decode3
MemoryAccess?=>WriteBack
Fetch1?=>InstructionMemRead
WriteBack?=>RegisterWrite
InstructionMemRead?=>Fetch2
RegisterWrite?=>Hazard
Fetch2?=>Decode1
LoadInstruction?=>Execute2
Execute1?=>Increment
Execute1?=>LoadInstruction

DEFINITELY_ENABLED_AFTER
HazardUnit ==> DecodeUnit
DecodeUnit ==> ProgramCounter
DecodeUnit ==> RegisterAccessUnit
DecodeUnit ==> FetchUnit
DecodeUnit ==> ExecutionUnit
ExecutionUnit ==> MemoryAccessUnit
MemoryAccessUnit ==> WriteBackUnit
FetchUnit ==> InstructionMemoryUnit
WriteBackUnit ==> RegisterAccessUnit
InstructionMemoryUnit ==> FetchUnit
ProgramCounter ==> ExecutionUnit
POSSIBLY_ENABLES
HazardUnit ?=> DecodeUnit
DecodeUnit ?=> ProgramCounter
DecodeUnit ?=> RegisterAccessUnit
RegisterAccessUnit ?=> DecodeUnit
DecodeUnit ?=> FetchUnit
DecodeUnit ?=> ExecutionUnit
DecodeUnit ?=> HazardUnit
ExecutionUnit ?=> MemoryAccessUnit
ExecutionUnit ?=>DecodeUnit
ProgramCounter ?=> ExecutionUnit
ProgramCounter ?=> DecodeUnit
MemoryAccessUnit ?=> WriteBackUnit
FetchUnit ?=> InstructionMemoryUnit
WriteBackUnit ?=> RegisterAccessUnit
InstructionMemoryUnit ?=> FetchUnit
RegisterAccessUnit ?=> HazardUnit
FetchUnit ?=> DecodeUnit
ProgramCounter ?=> ExecutionUnit
ExecutionUnit ?=> ProgramCounter
ExecutionUnit ?=> ProgramCounter

Fig. 6. Part of the computed coverage of PipelinedProcessor

Components

No of
Component
Interactions

DecodeUnit

ExecutionUnit

FetchUnit

RegisterAccessUnit

ProgramCounter

HazardUnit

MemoryAccessUnit

InstructionMemoryUnit

WriteBackUnit

10

5

4

4

3

3

2

2

2

Communication Partners

FetchUnit, RegisterAccessUnit,
ProgramCounter, ExecutionUnit, HazardUnit

DecodeUnit, MemoryAccessUnit,
ProgramCounter

DecodeUnit, InstructionMemoryUnit,

DecodeUnit, WriteBackUnit, HazardUnit

DecodeUnit, ExecutionUnit

DecodeUnit, RegisterAccessUnit

ExecutionUnit, WriteBackUnit

FetchUnit

MemoryAccessUnit, RegisterAccessUnit

Fig. 7. Dependencies between the components of PipelinedProcessor, their number of
interactions and their communication partners

112 L. Petre, K. Sere, and L. Tsiopoulos

ProB animation tools and we refer to it as component communication. We iden-
tify with our method a certain number ri for each component Ci, i ∈ {1, . . . , m}
that denotes the number of definite and possible communications for the respec-
tive component Ci, i ∈ {1, . . . , m}. We denote with maxk the highest number
of component communications at run k of the method, for instance max1 = 10
and max2 = 4 in our example above. We also take as input to the method a
positive integer n, denoting the maximum desired number of component interde-
pendencies. The goal of the method is to determine a component configuration
C´ = {C´1, . . . , Cm´} where each r´i ≤ n, i ∈ {1, . . . , m´}.

Termination. As we start with a finite number m of components and each
rerun of the method is triggered by some of these components merging, we
observe that m < m´. This necessarily means that the method terminates, in
the extreme case with m´ = 1 and r´i = 0. The extreme case thus translates to
all the components merged into one.

From One Configuration to the Next. While we are certain that the method
terminates with 0 ≤ r´i ≤ n, i ∈ {1, . . . , m´}, we cannot guarantee that the
highest number maxk of component communications at each run k of the method
is continuously decreasing. For instance, Fig. 8 shows a configuration C = {C1,
C2, C3, C4, C5, C6} where r1 = 20, r2 = 18, r3 = 18, r4 = 16, r5 = 12, and
r6 = 12 and n = 12. We also assume that C1 communicates 10 times with C2, 6
times with C3, and 4 times with C4; C2 communicates 10 times with C1, 4 times
with C3, and 4 times with C5; C3 communicates 6 times with C1, 4 times with
C2, and 8 times with C6; C4 communicates 4 times with C1, 8 times with C5,
and 4 times with C6; C5 communicates 4 times with C2 and 8 times with C4;
and C6 communicates 8 times with C3 and 4 times with C4. This means that
after the first run of the method, the first four components are merged; we have
max1 = 20 while max2 = 24.

Components

No of
Component
Interactions

C1

C2

C3

C4

C5

C6

20

18

18

16

12

12

Communication

Partners

C2, C3, C4

C1, C3, C5

C1, C2, C6

C1, C5, C6

C2, C4

C3, C4

Fig. 8. Dependencies and number of interactions between components C1, C2, C3, C4,
C5, C6

This is not a wrong result as the following run of the method will provide a con-
figuration where all the components are merged into one and the method ends.

Model–Based Analysis Tools for Component Synthesis 113

However, this type of result shows that the component configuration contains a
high number of interdependencies that are best avoided if all the components
are merged. Our method is intended for analysis purposes and by running it
several times we may decide that perhaps the initial configuration with max1 =
20 was more balanced than the second one with max2 = 24. Obviously, the
method is highly dependent on the maximum desired number of component
interdependencies, n.

The Desired Number of Component Interdependencies. The desired
number of component interdependencies is relative to each application. In some
cases, it can depend on some standards and in some cases, it can depend on the
experience of the developers. One can also start from an arbitrary number n and
check the generated component configuration, given the initial configuration and
such n. If the configuration is not suitable with the purposes of the application,
then a higher interdependency level might be tested.

The ProB animations are instrumental in our method as they allow us to
determine significant numbers related to component communication. One can
see from figures such as Fig. 3 that DecodeUnit communicates with five other
components; however, it is not clear how much communication actually occurs
on these five ‘channels’.

Another interesting application of our method refers to placing components
on hardware platforms so that the highly communicating components are placed
close to each other. We study this particular problem in more detail in the next
section.

4 Applying the Synthesis Method to NoC Mapping

Recently the Network-on-Chip (NoC) communication paradigm [12] has been
proposed as the intercommunication scheme of the cores in Multi-Processor
Systems-on-Chip (MPSoC) offering sufficient bandwidth for concurrent on-chip
data transactions, incremental scalability of the network, as well as distributed
and flexible routing of data.

The mapping of the components of an application to NoC platforms and their
subsequent communication patterns contribute essentially to the efficient execu-
tion of the application as well as to the performance and power consumption of
the NoC system. Meeting these efficiency constraints for various design require-
ments becomes a challenge due to the growing complexity of systems [13]. To
address this, application mapping techniques have been recently proposed [14]
with the main advantage of reducing the length of the global interconnect which
in turn reduces power consumption considerably. In other words, the main contri-
bution of application mapping techniques is to place communicating components
as close as possible to each other such that the energy required to transfer data
between them is minimised. Hence, the mapping of an application to a NoC
platform considerably influences the efficiency of a NoC regardless of the nature
of the communication patterns.

114 L. Petre, K. Sere, and L. Tsiopoulos

We base our synthesis method for efficient application mapping on several as-
sumptions. First, we assume that some NoC communication topology is available
for the actual propagation of data between the components of an application.
Second, we assume that a certain application can be first generically developed
and then "applied" to various network settings. Hence, it is not necessary to con-
sider the network mechanisms when designing the application, but rather have
them integrated at a later stage. This separation of concerns is important for
reusing the generic application and port it on various platforms. We also assume
that neighbouring tiles on a NoC communicate faster than non–neighbouring
tiles, hence our goal is to place components that communicate heavily as close
as possible to each other.

Based on these assumptions, given an already specified application, we explore
the mapping of the application’s software components to NoC tiles with the ProB
and GeneSyst formal approach to handle and analyse the dependencies between
the components. A simplified 2D mesh NoC topology is illustrated in Fig. 9.
The dots represent the NoC routers and the white squares represent processing
cores as well as storage elements connected to their routers through network
interfaces. The interfaces are represented by the black squares within the white
squares.

Fig. 9. A 2D NoC mesh

We adapt our synthesis method described in Section 3 to mapping components
onto a NoC platform. In Step 4 in our method, instead of defining the new
component, we simply place the communicating components as close as possible
to the highly communicating one. Moreover, we incorporate the additional ProB
facilities to help understand the pipelined traces as intermediate steps in our
method, as well as we employ the GeneSyst tool for facilitating the placement in
the last step. The steps of our generic method of Section 3 are therefore modified
to:

1. We run a (large enough) animations in ProB based on the ProB model of
the application.

2. We generate an abstract state-transition diagram with GeneSyst based on
specific states of the application.

3. Based on the computed coverage of the model by ProB, we record the re-
lations between the operations of the model’s components given in the lists
DEFINITELY_ENABLED_AFTER and POSSIBLY_ENABLES.

Model–Based Analysis Tools for Component Synthesis 115

4. We enrich the operation traces with information about interleaving opera-
tions by:
(a) observing the history window of ProB for the generated operation traces.
(b) observing the computed coverage and the S-MRS graph of the model to

understand the different starting points of the interleaving.
5. We replace each operation in the recorded lists of Step 3 with the name of

its component.
6. We count the number of occurrences of the name of each component in

the table created in Step 5 and store this information in another table. If
the same relation occurs in both lists DEFINITELY_ENABLED_AFTER and
POSSIBLY_ENABLES, count it only once. We place the components in the
table in descending order of the number of their occurrences.

7. We identify the component that has communication with the biggest num-
ber of other components by observing the number associated with it in the
previous step and place that component in the 2D NoC mesh at a position
where there are enough free tiles around it for the placement of the other
components.

8. We parse the rest of the table created in Step 6 and place each remaining
unplaced component on the NoC according to the relationships with the
other units stored in the table created in Step 6, the interactions shown in
the enriched trace created in Step 4 and the information observable by the
abstract state-transition diagram generated by GeneSyst in Step 2.
(a) If there are components interfering only with one other component, we

place them beside the interfering component and out of the way of com-
munication between the other components.

(b) We perform the placing of the rest of the components according to the
interactions of their operations in relation to the operations of the placed
components.

We exemplify our mapping method based on the specification of PipelinedProcessor
in ProB. We apply our synthesis method starting with the animation of the ProB
model (Step 1). In Fig. 5 we observe the history of executed operations of the
components.

In Fig. 10 we present the generated abstract state-transition diagram by
GeneSyst (Step 2) based on specific states of the application. In this case we focus
on the predicate (fd = FALSE & hz = FALSE) given in an additional ASSERTIONS-
clause in the specification of PipelinedProcessor presented in Fig. 4. For each state
one can observe the transitions that do not change it and the transitions being
able to fire between the states. The given predicate in Fig. 10 corresponds to a
single state, hence, we do not show any example of transitions between states.

The condition fd = FALSE & hz = FALSE is equivalent to the case when a new
instruction can be fetched from InstructionMemoryUnit and a current instruction
can be manipulated in ExecutionUnit and be further written to the memory with-
out a possibility for a pipeline hazard. This is illustrated by the group of enabled
operations which do not update the state. Operations Decode1 and Fetch2 of De-
codeUnit and FetchUnit, respectively, are not included because they update the

116 L. Petre, K. Sere, and L. Tsiopoulos

(fd = FALSE &
hz = FALSE)

[G] [] Fetch1
[G] [] InstructionMemRead
[G] [] Decode2
[G] [] Decode3
[G] [] Increment
[G] [] LoadInstruction
[G] [] Execute1
[G] [] Execute2
[G] [] MemoryAccess
[G] [] WriteBack
[G] [] RegisterWrite
[G] [] RegisterRead

QInit

[] [X] Init

Fig. 10. Abstract state-transition diagram of PipelinedProcessor observing a specific
state; (fd = FALSE & hz = FALSE)

value of fd and hz. Operation Hazard of HazardUnit is not included, too, because
it cannot be enabled in that state.

After a large enough animation to obtain full state-space exploration, ProB
computes the coverage of the model (Step 3). Fig. 6 shows part of the infor-
mation observable from the computed coverage which is relevant for our analy-
sis: the list of DEFINITELY_ENABLED_AFTER operations and the list of POSSI-
BLY_ENABLES operations.

Examination of the S-MRS graph of a model generated by ProB after an
animation is instrumental (Step 4) in order to understand the history of executed
operations in Fig. 5. Part of the S-MRS graph of the model generated by ProB
is shown in Fig. 11.

12
[Execute1/0,InstructionMemRead/0]

Execute1/0
Fetch1/0

Increment/0
Fet

Execute1/0
Execute1/0 Fetch1/0

Execute1/0
InstructionMemRead/0

11
[Execute1/0,Fetch1/0]

Decode3/0

13
[Fetch1/0,Increment/0] [Fetc

34
[InstructionMemRead/0,LoadInstruction/0]

15
[Increment/0,InstructionMemRead/0]

Fig. 11. Part of Signature-Merge Reduced Statespace graph of PipelinedProcessor

From this graph we can observe the different starting points of possible par-
allel pipelining. For instance, it can be seen that pipelined fetching of a new
instruction with operation Fetch1 of FetchUnit may occur at the point where op-
eration Decode3 of DecodeUnit has been executed, or it may occur at the point
where operation Execute1 of ExecutionUnit has been executed.

We continue our analysis by creating a trace of the executed operations show-
ing the pipelining and interleaving (Step 4). The history window, the information
from the computed coverage and the exploiting of the S-MRS graph of the model
are used for understanding the pipelining and interleaving. In Fig. 12 we show
such an enriched trace.

Model–Based Analysis Tools for Component Synthesis 117

 Fetch1 InstructionMemRead Fetch2 Decode1 Hazard Decode2
Increment RegisterRead Decode3 (Fetch1) Execute1 Increment
Execute2 (InstructionMemRead) MemoryAccess (Fetch2) (Decode1)
WriteBack RegisterWrite Hazard Decode2 RegisterRead Increment
Decode3 Execute1 (Fetch1) LoadInstruction (InstructionMemRead)
(Fetch2) Execute2 MemoryAccess WriteBack (Decode1) RegisterWrite
Hazard Decode2 RegisterRead Increment Decode3 Execute1
LoadInstruction (Fetch1) (InstructionMemRead) Execute2 (Fetch2)
(Decode1) MemoryAccess WriteBack RegisterWrite Hazard …

Fig. 12. Part of an execution trace of PipelinedProcessor

Operation Fetch1 of FetchUnit initiates a new instruction manipulation and
operation RegisterWrite of RegisterAccessUnit completes it, which is shown with
the operation names being in bold face. The pipelined manipulation of a new
instruction is shown with the operations in parenthesis. For instance, the sec-
ond execution of operation Fetch1 (the fetching of the second instruction) occurs
between operations Decode3 and Execute1 of DecodeUnit and ExecutionUnit, respec-
tively, operating on the first instruction, while the next pipelined fetching of new
instructions occur between different pairs of units. A diagrammatic view of part
of the trace (lines 2, 3 and 4 in Fig. 12) is illustrated in Fig. 13.

Hazard Decode1 Fetch2 InstructionMemRead Fetch1

RegisterWrite WriteBack MemoryAccess Execute2 Increment Execute1 Decode3

Fig. 13. Diagrammatic view of part of the trace in Fig. 12

The next step of our method (Step 5) consists of replacing each operation
in the recorded lists of Step 3 with the name of its component, which can be
observed in Fig. 6. We then count the number of occurrences of the name of each
component (Step 6) in the table created in Step 5 and store this information in
another table (left and central column in Fig. 7).

We continue the analysis and conclude our mapping of the processor compo-
nents to the NoC 2D mesh shown in Fig. 14. We note that any NoC communi-
cation topology can be considered, but in this paper we assumed a 2D mesh as
the target topology. The proposed mapping is justified as follows, by performing
Steps 7 and 8 of our method.

We first study the table illustrated in Fig. 7 and we identify DecodeUnit as the
component that has communication with the biggest number of other compo-
nents (Step 7) by observing the number associated with it. DecodeUnit is placed
on the 2D NoC mesh at a position where there are enough free tiles around it
for the placement of the other components.

We parse repeatedly the rest of the table included in Fig. 7 (Step 8) and place
ExecutionUnit beside DecodeUnit with a distance between them of one hop, i.e. one
connecting line between their corresponding routers shown in Fig. 14. The reason
for this placement is because these components communicate regularly according

118 L. Petre, K. Sere, and L. Tsiopoulos

to the dependencies and pipelining shown in Fig. 13, 12 and 11. Moreover, they
both communicate with several non-communicating components that do not
need to be placed close together. The third most communicating component
is RegisterAccessUnit and is placed beside DecodeUnit because they communicate
according to the interactions shown in Fig. 13, 12 and 11. RegisterAccessUnit does
not interact with FetchUnit as shown in the figures of the previous analysis steps,
thus they do not need to be placed close to each other.

Based on the results shown in Fig. 11, 12 and 13, we continue with the place-
ment of ProgramCounter. It interferes only with DecodeUnit and ExecutionUnit which
results in placing these three components close together and ProgramCounter to
be out of the way of the communication between DecodeUnit, ExecutionUnit and
the rest of the components. In a similar manner we can decide on the placement
of HazardUnit. Based on the previous analysis it communicates with DecodeUnit
and always allows DecodeUnit to continue computation after operation WriteBack
of WriteBackUnit and the update of RegisterAccessUnit. MemoryAccessUnit commu-
nicates with ExecutionUnit and WriteBackUnit, which in turn communicates with
HazardUnit. Thus, MemoryAccessUnit, ExecutionUnit, WriteBackUnit and HazardUnit
need to be placed close together. InstructionMemoryUnit interacts only with FetchU-
nit, so it is placed beside FetchUnit without interfering with the other units. This
is justified too by what is shown in the abstract state-transition diagram gener-
ated by GeneSyst in Fig. 10. Considering all these interactions which are based
on the analysis in Section 4, we decide on the final placement shown in Fig. 14.

DecodeUnit

ProgramCounter

FetchUnit

MemoryAccessUnit

HazardUnit

WriteBackUnit
RegisterAccessUnit

InstructionMemoryUnit

ExecutionUnit

Fig. 14. Placement of the subsystems of PipelinedProcessor on a region of a NoC 2D
mesh

We can justify the proposed placement of the components of PipelinedProcessor
based on one of the main metrics for efficient application mapping in the liter-
ature, namely total communication cost. This metric is calculated by summing
all the products of required bandwidth and the distance in hops on the NoC
for each pair-wise communication. If we assume that the required bandwidth
for each pair-wise communication is equal then the decided placement incurs
the minimum total communication cost for the execution of the application. If
the bandwidth required for each pair-wise communication was known then this
would form one more input to our method. This will be considered in future
applications of our method.

Model–Based Analysis Tools for Component Synthesis 119

5 Related Work

Several frameworks have been developed in order to elevate the representation
and analysis of component interdependencies to a separate design problem, or-
thogonal to the specification of the functional components of an application. We
consider here two of them that are closely related to our approach. Cadena [15] is
an integrated environment for modeling systems built using the CORBA Com-
ponent Model (CCM). Cadena provides facilities for defining component types,
assembling systems from CCM components, visualizing several dependence re-
lationships between components, specifying and verifying correctness (through
the Bogor model checking framework) properties of models of CCM systems,
and producing CORBA stubs and skeletons implemented in Java.

Synthesis [1] is a component-based software development environment provid-
ing software interconnection dependencies and sets of alternative protocols for
managing them. The environment consists of three elements: a software archi-
tecture description language called Synopsis, a design handbook of dependencies
and associated coordination protocols and a design assistant which generates ex-
ecutable applications by successive specialisations of their Synopsis description.

Several works have been presented during the last years to address the appli-
cation mapping to 2D NoC designs. The reader is referred to the survey done
by Marculescu et al. [13] for a detailed list of them. Specific to pipelined appli-
cations, Yang et al. [16] propose a mapping strategy for block cipher security
algorithms decomposed into tasks. Each task is mapped to a processing element
of a NoC platform. The proposed approach is simulated by a cycle-accurate
SystemC model platform called Networked Processor Array. The algorithms are
written in C and are then profiled to identify pipelined execution groups which
can be performed concurrently or sequentially. The scheduling and mapping step
has as inputs the results from the profiling step as well as the available number
of processing elements on the NoC platform.

Branca et al. [17] compared four search algorithms for the mapping of pipelined
applications on multiprocessor platforms. Thus, Tabu Search, Simulated Anneal-
ing, Genetic Algorithms and the Bayesian Optimisation Algorithm were applied
on two pipelined applications. The authors concluded that the deployment of
the Bayesian Optimisation algorithm was the most efficient.

Zheng et al. [18] proposed a pipelined scheme for implementation of H.264
CABAC decoding. After analysing the original H.264 specification document
and employing a finite state machine the authors identified a fixed and steady
pipelined behavior to improve the efficiency of the decoder. In contrast to this
approach, we provide an analysis method that can assist the user to identify
parallel pipelines.

McEwan and Schneider [19] presented modelling and analysis of the AMBA
synchronous bus using ProB as the main tool. They stated that ProB is effective
in supporting the construction of the formal model at the point it is being
developed. In this paper we presented an additional synthesis method within
ProB for a later design phase after the formal modelling and verification of a
software application has taken place.

120 L. Petre, K. Sere, and L. Tsiopoulos

6 Conclusions

Formal methods with adequate tool support are important for the design and
analysis of complex systems in order to correct errors in the early design phases
and reduce the involved costs of system design and development.

In this paper we propose a novel method for analyzing component bound-
aries, based on a desired interdependency level between component services.
The component interdependencies are determined based on ProB animation fa-
cilities such as the definite and the possible communications for one component.
This is a decision we assume for our method here, but elsewhere [20] we have
devised a method based only on the definite communications. We demonstrate
the suitability of our proposed method to efficient application mapping to a NoC
platform, which we believe is one potential application domain of our method.

To the best of our knowledge, this is the first approach to use model checking
and animating tools of formal methods in order to facilitate the analysis of
component interdependencies. This development is thus important in order to
design dependable systems.

Specific to applying our analysis method for facilitating efficient application
mappings to NoC platforms, in this paper we did not consider the actual com-
putation volume of each subcomponent, nor the required bandwidth for the
component intercommunication which affects the total communication cost for
the mapped application. These are additional metrics for deciding the mapping
of an application to NoC platforms and will be considered in future applications
of our method.

Acknowledgement. This work is supported by IST FP7 DEPLOY project.
The authors would like to thank the anonymous reviewers of this paper for their
helpful comments.

References

1. Dellarocas, C.: The SYNTHESIS Environment for Component-Based Software De-
velopment. In: 8th International Workshop on Software Technology and Engineer-
ing Practice (STEP 1997), p. 434 (1997)

2. Szyperski, C.: Component Software - Beyond Object-Oriented Programming.
Addison-Wesley, ACM Press (1998)

3. Lecomte, T.: Safe and Reliable Metro Platform Screen Doors Control/Command
Systems. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 430–434.
Springer, Heidelberg (2008)

4. Bernardo, M., Cimatti, A. (eds.): SFM 2006. LNCS, vol. 3965. Springer, Heidelberg
(2006)

5. Waldén, M., Sere, K.: Reasoning about Action Systems using the B Method. Formal
methods in System Design 13(1), 5–35 (1998)

6. Abrial, J.-R.: The B–Book. Cambridge University Press, Cambridge (1996)
7. Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: International Sympo-

sium of Formal Methods Europe, pp. 855–874 (2003)

Model–Based Analysis Tools for Component Synthesis 121

8. Bert, D., Potet, M.-L., Stouls, N.: GeneSyst: A Tool to Reason About Behavioral
Aspects of B Event Specifications, Application to Security Properties. In: Treharne,
H., King, S., C. Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp.
299–318. Springer, Heidelberg (2005)

9. Back, R.J.R., Kurki-Suonio, R.: Decentralization of Process Nets with Centralized
Control. In: The 2nd Symposium on Principles on Distributed Computing, pp.
131–142 (1983)

10. SICS, SICStus Prolog (2006), website: http://www.sics.se/sicstus
11. Plosila, J., Sere, K.: Action Systems in Pipelined Processor Design. In: 3rd Inter-

national Symposium on Advanced Research in Asynchronous Circuits and Systems
(ASYNC 1997), p. 156 (1997)

12. Hemani, A., Jantch, A., Kumar, K., Postula, A., Öberg, J., Millberg, M., Lindqvist,
D.: Network on a Chip: An architecture for billion transistor era. In: IEEE NorChip
Conference (2000)

13. Marculescu, R., Ogras, U., Peh, L.-S., Enright Jerger, N., Hoskote, Y.: Outstanding
Research Problems in NoC Design: System, Microarchitecture, and Circuit Per-
spectives. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 28(1), 3–21 (2009)

14. Hu, J., Marculescu, R.: Energy-aware mapping for tile-based NOC architectures
under performance constraints. In: Asia South Pacific Design Automation Confer-
ence, Japan, pp. 233–239 (2003)

15. Childs, A., Greenwald, J., Ranganath, V.P., Deng, X., Dwyer, M.B., Hatcliff, J.,
Jung, G., Shanti, P., Singh, G.: Cadena: An Integrated Development Environment
for Analysis, Synthesis, and Verification of Component-Based Systems. In: Wer-
melinger, M., Margaria-Steffen, T. (eds.) FASE 2004. LNCS, vol. 2984, pp. 160–164.
Springer, Heidelberg (2004)

16. Yang, Y.S., Bahn, J.H., Lee, S.E., Bagherzadeh, N.: Parallel and Pipeline Process-
ing for Block Cipher Algorithms on a Network-on-Chip. In: Sixth International
Conference on Information Technology: New Generations, pp. 849–854 (2009)

17. Branca, M., Camerini, L., Ferrandi, F., Lanzi, P.L., Pilato, C., Sciuto, D., Tumeo,
A.: Evolutionary Algorithms for the Mapping of Pipelined Applications onto het-
erogeneous Embedded Systems. In: 11th Annual Conference on Genetic and Evo-
lutionary Computation, GECCO 2009 (2009)

18. Zheng, J., Wu, D., Xie, D., Gao, W.: A novel pipeline design for H.264 CABAC
decoding. In: Ip, H.H.-S., Au, O.C., Leung, H., Sun, M.-T., Ma, W.-Y., Hu, S.-M.
(eds.) PCM 2007. LNCS, vol. 4810, pp. 559–568. Springer, Heidelberg (2007)

19. McEwan, A.A., Schneider, S.: Modeling and analysis of the AMBA bus using CSP
and B. In: Communicating Process Architectures, pp. 379–398 (2007)

20. Petre, L., Sere, K., Tsiopoulos, L., Liljeberg, P., Plosila, J.: Towards Self-Placing
Applications on 2D- and 3D-NoCs. In: Cong-Vinh, P. (ed.) Autonomic Networking-
on-Chip: Bio-inspired Specification, Development, and Verification, Embedded
Multi-core System(EMS) Book Series. CRC Press, Boca Raton (to appear, 2011)

http://www.sics.se/sicstus

Shared Event Composition/Decomposition in

Event-B�

Renato Silva		 and Michael Butler

School of Electronics and Computer Science
University of Southampton, UK
{ras07r,mjb}@ecs.soton.ac.uk

Abstract. The construction of specifications is often a combination of
smaller sub-components. Composition and decomposition are techniques
supporting reuse and allowing formal combination of sub-components
through refinement steps. Sub-components can result from a design or
architectural goal and a refinement framework should allow them to be
further developed, possibly in parallel. We propose the definition of com-
position and decomposition in the Event-B formalism following a shared
event approach where sub-components interact via synchronised shared
events and shared states are not allowed. We define the necessary proof
obligations to ensure valid compositions and decompositions. We also
show that shared event composition preserves refinement proofs, that is,
in order to maintain refinement of compositions, it is sufficient to prove
refinement between corresponding sub-components. A case study apply-
ing these two techniques is illustrated using Rodin, the Event-B toolset.

Keywords: formal methods, composition, decomposition, reuse, Event-
B, design techniques, specification.

1 Introduction

The development of specifications in a “top-down” style starts with an abstract
model of the envisaged system. Systems can often be seen as a combination and
interaction of several sub-specifications (hereafter called sub-components) where
each sub-component has its own functionality aspect. This view introduces mod-
ularity in the system: different sub-components represent a particular functional-
ity and changes in the sub-components are accommodated more gracefully [1] in
the system specification. We use composition to structure specifications through
the interaction of sub-components seen as independent modules. This use of
composition is not new in other formal notations: examples are [2,3,4]. Here
we express how we can use (and reuse) composition for building specifications

� Part of this research was carried out within the European Commission ICT project
214158 DEPLOY (http://www.deploy-project.eu.

�� R. Silva receives a Doctoral Degree Grant sponsored by Fundação Ciência e Tec-
nologia (FCT-Portugal).

B.K. Aichernig, F.S. de Boer, and M.M. Bonsange (Eds.): FMCO 2010, LNCS 6957, pp. 122–141, 2011.
� Springer-Verlag Berlin Heidelberg 2011

http://www.deploy-project.eu

Shared Event Composition/Decomposition in Event-B 123

in Event-B [5] through the interaction of sub-components (modules) , benefit-
ing from their properties and proof obligations (POs). The interesting part of
composition involves the interaction of sub-components which usually occurs by
means of shared state [6], shared operations [7] or a combination of both (for
example, fusion composition [4]). In CSP [8,9] shared actions labels can be syn-
chronised. We take a similar approach in Event-B and we synchronise events
independently of their labels in a shared event composition approach. Properties
of the CSP synchronisation such as monotonicity remain valid for the shared
event composition. Butler [7] using Action Systems [10] and Classical B [11] de-
fines the parallel composition of action systems including parallel composition
with value-passing. We follow this approach to define the shared event compo-
sition for Event-B.

Decomposition is motivated by the possibility of breaking a complex problem
or system into parts that are easier to conceive, manage and maintain. The par-
tition of a model into sub-components can also be seen as a design/architectural
decision and the further development of the sub-components in parallel is pos-
sible. Besides alleviating the complexity for large systems and the respective
proofs, decomposition allows team development in parallel over the same model
which is very attractive in an industrial environment. Moreover the proof obli-
gations of the original (non-decomposed) model can be reused by the sub-
components. The proof obligations to ensure a valid composition are expressed
including the possibility to reuse the sub-components properties. We present in
more detail the shared event approach applied to composition and decompo-
sition. The monotonicity property for composition is proved by means of re-
finement proof obligations. We see decomposition as the inverse operation of
composition and therefore we can reuse its properties to decompose systems.
Guidelines for applying a shared event decomposition are presented illustrated by
a case study. The models are developed in Rodin [12], an Event-B toolset [5,13].

This document is structured as follows: Section 2 gives an overview of the
Event-B formal method. Section 3 introduces the notion and motivation for the
shared event approach for composition and decomposition. Composed machines,
properties, proof obligations are described in Sect. 4. Decomposition guidelines
are presented in Sect. 5. Section 6 illustrates the application of composition and
decomposition to a distributed system case study: file access system. Related
work is described in Sect. 7. Conclusions and future work are drawn in Sect. 8.

2 Event-B Language

Event-B, inspired by Action Systems, Classical B and Z [14], is a formal mod-
elling method for developing correct-by-construction hardware and software sys-
tems. An Event-B model is a state transition system where the state corresponds
to a set of variables v and transitions are represented by events. Essential is the
formulation of invariants I(v): safety conditions to be preserved at all times.

An abstract Event-B specification is divided into a static part called context
and a dynamic part called machine as seen in Fig. 1. A context consists of sets s

124 R. Silva and M. Butler

refines

ABSTRACT ABSTRACT

CONTEXT

CONCRETE CONCRETE

CONTEXT

M C

DN

sees

Variables

Invariants

Events

Sets

Constants

Axioms

sees

Variables

Invariants

Events

Sets

Constants

Axioms

MACHINE

MACHINE

extends

Fig. 1. Machine and context refinement

(collection of elements or type definitions), constants c and axioms A(. . .)1 of
the system. A machine contains the state (global) variables v whose values are
assigned in events. Events, that can be parameterised by local variables p, occur
when their conditions (called guards G(. . .)) are true and as a result the state
variables may be updated by actions S(. . .). Invariants I(. . .) define the dy-
namic properties of the specification and POs are generated to verify that these
properties are always maintained. The most general form of an event is

e =̂ ANY p WHERE G(s, c, p, v) THEN S(s, c, p, v, v′) END.

where event e is expressed by parameters p, guards G(s, c, p, v) and actions
S(s, c, p, v, v′). When guard G(s, c, p, v) is true then event e is enabled and there-
fore the action S(s, c, p, v, v′) updates the set of variables v to v′ (value of v after
the assignment).

To facilitate the construction of large-scale models, Event-B advocates the use
of refinement : the process of gradually adding details to a model. Refinement
of a machine consists of refining existing events. An Event-B development is a
sequence of models linked by refinement relations. It is said that a concrete model
refines an abstract one. Abstract variables v are linked to concrete variables w
by a gluing invariant J(v, w). POs are generated to ensure that this invariant
is preserved in the concrete model. Any behaviour of the concrete model must
be simulated by some behaviour of the abstract model, with respect to the
gluing invariant J(v, w). New events can be added, refinining skip which may be
declared as convergent, meaning they do not cause divergence. The convergence
is proved if each new event decreases a variant. The variant must be well-founded
and may be an integer or a finite set.

3 Shared Event Approach

The shared event approach is suitable for the development of distributed
systems[7]: sub-components interact through synchronised events in parallel.

1 (. . .) refers to the free identifiers in the expression like sets, constants, etc.

Shared Event Composition/Decomposition in Event-B 125

In CSP, synchronised input or output channels can exchange messages. In Event-
B, the sub-component events can exchange messages via shared parameters which
is useful for modelling message broadcasting systems. Next we describe how we
define a shared event composition in Event-B.

3.1 Shared Event Composition

Sub-component specifications that are part of a full system specification deal
with a particular part of the system being modelled. Sub-component interaction
must be verified to comply with the desired behavioural semantics of the system.
We focus on developments using shared event composition where individual ele-
ments’ properties are conjoined: conjunction of individual invariants, conjoining
variables and synchronisation of events.

Fig. 2. Shared event composition of M1 and M2 (a) resulting in M (b)

Consider Fig. 2 where machine M1 has events e1 and e2 using variable v1.
Moreover machine M2 has events e3, e4 and e5 using variables v2 and v3. Events
e2 and e3 can occur in parallel (independent variables) and can be synchronised.
In Fig. 2, machine M is the result of the shared event composition of machines
M1 and M2 where e2 from machine M1 and e3 from machine M3 are composed:
e2 ‖ e3. The interaction of machines M1 and M2 through their events results
in a composed event sharing two independent variables: v1 and v2.

Butler [7] defines a general definition for the parallel composition of action
systems with value-passing fusion. Based on that work, we can express a general
definition for the parallel composition of generic events ea and eb as Def. 1 :

Definition 1. Composition of events ea and eb with a common parameter p
results in:

ea =̂ANY p?, x WHERE G(p?, x, m) THEN S(p?, x, m) END

eb =̂ANY p!, y WHERE H(p!, y, n) THEN T (p!, y, n) END

ea ‖ eb =̂ANY p!, x, y WHERE G(p!, x,m) ∧ H(p!, y, n)

THEN S(p!, x, m) ‖ T (p!, y, n) END

126 R. Silva and M. Butler

where x, y, p are sets of parameters from each of the events ea and eb. Event ea has
p? as an input parameter and eb has p! as an output parameter and the resulting
composition is p! itself an output parameter, modelling the passing of the output
value from the output parameter to the input parameter. This property can be
used to model value-passing systems: eb sends a value to ea using the common
parameter p. Communication between input type parameters is also possible but
not for both output parameters since the output parameters may not be willing
to output the same value, leading to a deadlock state. Although it is possible
to compose events ea and eb even if they share variables, this would lead to a
shared variable decomposition which out of the scope of this document since we
focus on the shared event decomposition that restricts variable sharing. More
information about that kind of composition can be found in [6].

Action systems [10] provide a general description of reactive systems, capable
of modelling terminating, aborting and infinitely repeating systems. Event-B is
inspired by action systems and can be seen as a realisation of actions systems but
using a combination of logic and mathematics. Both formalisms share the same
refinement semantics. Therefore we claim that Event-B has the same semantic
structure and refinement definitions as action systems. It is possible to make a
correspondence between parallel composition in CSP and an event-based view
of parallel composition for action systems [15,16].

Theorem 1. The shared event parallel composition of actions systems corre-
sponds to the CSP parallel composition. The failure-divergence semantics of CSP
can be applied to action systems. The failure divergence semantics of action sys-
tem M in parallel with N, M ‖ N is defined as:

�M ‖ N� = �M� ‖ �N�

where �M� and �N� are the failure divergence semantics of M and N respectively.
The proof of this theorem can be found in [15].

The semantics of the parallel composition of machines M and N corresponds to
the set of failure-divergence for each individual machine in parallel. The parallel
operator for value-passing action-systems enjoys properties such as monotonicity
and associativity [15]. There is a correspondence between action systems and
Event-B. Action system is a predicate transformer from a precondition P to post-
condition Q with variables v possibly being modified. Event-B events are similar
but from a more specific view where the guards correspond to preconditions P,
actions R correspond to post-condition Q and the same variables v are possibly
modified:

[ANY x WHERE P (x, v) THEN v :| R(x, v, v′) END]Q

An action in action systems is expressed by:

(∀x·P (x, v)⇒ [v :| R(x, v, v′)]Q)⇔ (∀x·P (x, v)⇒ (∀v ·R(x, v, v′)⇒ Q))

Event-B can be seen as a realisation of the generic action system formalism where
there is a direct correspondence between Action System actions and Event-B

Shared Event Composition/Decomposition in Event-B 127

events. From the correspondence between action systems and Event-B, machines
M and N can be refined independently which is one of the most important and
powerful properties that shared event composition in Event-B inherits from CSP.
The monotonicity property for the shared event composition in Event-B is proved
by means of proof obligation in Sect. 4.3. An advantage of using Event-B is the
tool support available through the Rodin platform where proof obligations are
automatically generated.

When sub-components are composed it is desirable to define properties that
relate the individual sub-components allowing interactions. These properties are
expressed by adding composition invariants ICM (s, c, v1, . . . , vm) to the com-
posed machine constraining the variables of all machines being composed.

Definition 2. The invariant of the parallel composition of machines M1 to Mm

with variables v1 to vm respectively is the conjunction of the individual invariants
and the composition invariant ICM (s, c, v1, . . . , vm):

I(M1 ‖ · · · ‖ Mm) =̂ I1(s, c, v1) ∧ · · · ∧ Im(s, c, vm) ∧ ICM (s, c, v1, . . . , vm). (1)

In Fig. 2, composed machine M has as invariant the conjunction of the individual
invariants I(A ‖ B) =̂ IA(s, c, v1)∧IB(s, c, v2, v3) plus a possible composition in-
variant ICM (s, c, v1, v2, v3). In a shared event composition the sub-components
have independent state space (variables are unique to each machine). Conse-
quently, composition reasoning is simplified, as there are no constraints between
state spaces of sub-components.

3.2 Shared Event Decomposition

Decomposition can be seen as the inverse process of composition: after some re-
finements a larger model may be decomposed into smaller components. This step
might be a consequence of complexity or just as an architectural decision. The
shared event approach is also used: events are shared between sub-components
and variable sharing is not allowed. Butler [17] proposes a shared event decom-
position for Event-B inspired by CSP and action systems with event sharing as
seen in Fig. 3. We follow that work in our approach.

Fig. 3. Shared event decomposition of machine S into T and W sharing e2

128 R. Silva and M. Butler

The decomposition is obtained by selecting which variables from the original
model are allocated to which sub-component. Therefore, events using variables
allocated to different sub-components (e2 shares v1 and v2) must be split (de-
scribed in Sect. 5). The part corresponding to each variable (e2’ and e2”) is
used to create partial versions of the original event. After the decomposition,
the individual machines can be further refined since the composition relation
holds. The possible recomposition of the sub-components (or their refinements)
is a refinement of the original composed component although this step should
never be required in practice.

4 Composed Machines: Composition and Refinement

We define a new construct composed machine, representing the shared event com-
position of Event-B machines. We aim to have a construct that remains reactive
to changes in the sub-components. Consequently the composition is structural.
The interaction of sub-components follows a “top-down” approach, representing
a refinement of an existing abstraction. To formalise the composition, it is nec-
essary to define composition and refinement POs. In the following sections, we
introduce the structure of a composed machine, respective POs and prove the
monotonicity property.

4.1 Structure of Composed Machines

A shared event composed machine is expressed as the parallel conjunction of
machines. Machines are composed in parallel including their invariants, variables
and events: CM =̂ M1 ‖ · · · ‖ Mm as seen in Fig. 4. Moreover:

– The composed machine variables are all the sub-component variables (v1

from M1, v2 from M2, . . . , vm from Mm) and are state-space disjoint.
– The invariants of the composed machine are defined as Def. 2.
– The composed events are defined according to Def. 1.

COMPOSED MACHINE CM
INCLUDES M1, . . . , Mm

VARIABLES v1, . . . , vm

INVARIANTS ICM (s, c, v1, v2, . . . , vm)
EVENTS

e11 =̂ M1.e11 ‖ . . . Mm.em1
. . .
e1p =̂ M1.e1p ‖ . . . Mm.em1 e1p

END

Fig. 4. Composed machine CM composing M1 to Mm and seeing context Ctx

When a composed machine is used as a combination of composition and refine-
ment, it refines an abstract model and just like in an ordinary machine, abstract
events must be refined. For instance, a composed machine CM resulting from
the parallel composition of M1 . . .Mm and refining abstract machine M0 can
be expressed as M0 $ CM ≡ M0 $ M1 ‖ · · · ‖ Mm. Next we present the
required POs to verify composed machines.

Shared Event Composition/Decomposition in Event-B 129

4.2 Proof Obligations

POs play an important role in Event-B developments. POs are generated to
verify the properties of a model. For simplicity we define POs in terms of a
composition of two machines M1 and M2 that refine machine M0, but the rules
generalise easily to the composition of n machines. Furthermore context elements
such as sets, constants and axioms (s, c, A(s, c)) that are part of the static side of
a specification, are not considered in the formulas. The POs defined for standard
machines are [5]:

– Consistency: Invariant Preservation (INV) and Feasibility (FIS)
– Refinement: Guard Strengthening (GRD), Simulation/Refinement (SIM)

and Gluing Invariant Preservation (INV)
– Variant: Numeric Variant (NAT), Numeric Variant Decreasing (VAR), Fi-

nite Set Variant (FIN)
– Well-Definedness(WD)

Invariant Preservation and Gluing Invariant Preservation POs differ in that the
first refers to the invariant in the abstract machine while the second refers to
invariant relating abstract and concrete variables in a (concrete) refinement ma-
chine. These POs also are defined for composed machines except the ones related
with variant (no variant for composed machines). We simplify the composed
machines POs by assuming that the POs of the individual machines hold. We
explain and define the additional POs necessary to ensure that the composed
machine satisfies all the standard POs. We consider that the POs of M0, M1

and M2 hold. The respective composition POs are described as follows.

Consistency. Consistency POs are required to be always verified. The feasibil-
ity proof obligation for the composed event e1 ‖ e2 is FISe1‖e2.

The Feasibility PO ensures that each non-deterministic action is feasible for
a particular event. The goal is to ensure that values exist for variables v′ such
that the before-after predicate S(p, s, c, v, v′) is feasible.

Theorem 2. The FIS PO of individual events can be reused for proving the
feasibility for each composed event and that is enough to verify this property. The
feasibility PO for the composed event e1 ‖ e2 can be expressed by the feasibility
PO of e1 (FISe1) and e2 (FISe2).

FISe1 : I1(v1) ∧ G1(p1, v1) � ∃v′
1 ·(S1(p1, v1, v

′
1)) (2)

FISe2 : I2(v2) ∧ G2(p2, v2) � ∃v′
2 ·(S2(p2, v2, v

′
2)) (3)

FISe1‖e2 : ICM (v0, v1, v2) ∧ I1(v1) ∧ I2(v2) ∧ G1(p1, v1) ∧ G2(p2, v2) (4)

� ∃v′
1, v

′
2 ·(S1(p1, v1, v

′
1) ∧ S2(p2, v2, v

′
2)).

Assume: FISe1 and FISe2.
Prove: FISe1‖e2.

130 R. Silva and M. Butler

Proof. Assume the hypotheses of FISe1‖e2.

ICM (v0, v1, v2)

I1(v1) ∧ G1(p1, v1) (5)

I2(v2) ∧ G2(p2, v2). (6)

Prove: ∃v′
1, v

′
2 ·(S1(p1, v1, v

′
1) ∧ S2(p2, v2, v

′
2)). The proof proceeds as follows:

∃v′
1, v

′
2 ·(S1(p1, v1, v

′
1) ∧ S2(p2, v2, v

′
2))

≡ ∃v′
1 ·(S1(p1, v1, v

′
1)) ∧ ∃v′

2 ·(S2(p2, v2, v
′
2)) {disjoint v1 and v2}

⇐ (FISe1 ∧ FISe2). {(2)+(5),(3)+(6)}

Another consistency PO is invariant preservation. In the composed machine,
invariant preservation PO INVCM corresponds to the invariant preservation
in all events from the individual machines that are composed. The invariant
preservation proof obligation for the composed event e1 ‖ e2 is INVe1‖e2.

Theorem 3. This kind of proof obligation ensures that each invariant is pre-
served by each event. The goal is each individual invariant from the set of exist-
ing invariants. For each invariant i from the set of invariants I in a composed
machine, the composition invariant ICM (v0, v1, v2) needs to be verified.

INVe1 : I1(v1) ∧ G1(p1, v1) ∧ S1(p1, v1, v
′
1) � i1(v

′
1) (7)

INVe2 : I2(v2) ∧ G2(p2, v2) ∧ S2(p2, v2, v
′
2) � i2(v

′
2) (8)

INVe1‖e2 : ICM (v0, v1, v2) ∧ I1(v1) ∧ I2(v2)

∧ G1(p1, v1) ∧ G2(p2, v2) ∧ S1(p1, v1, v
′
1) ∧ S2(p2, v2, v

′
2)

� i1(v
′
1) ∧ i2(v

′
2) ∧ iCM (v0, v

′
1, v

′
2)

Assume: INVe1 and INVe2.
Prove: INVe1‖e2.

Proof. Assume the hypotheses of INVe1‖e2.

ICM (v0, v1, v2)

I1(v1) ∧ G1(p1, v1) ∧ S1(p1, v1, v
′
1) (9)

I2(v2) ∧ G2(p2, v2) ∧ S2(p2, v2, v
′
2) (10)

Prove: i1(v
′
1) ∧ i2(v

′
2) ∧ iCM (v0, v

′
1, v

′
2). The proof proceeds as follows:

i1(v
′
1) ∧ i2(v

′
2) ∧ iCM (v0, v

′
1, v

′
2)

⇐ INVe1 ∧ INVe2 ∧ iCM (v0, v
′
1, v

′
2). {(7)+(9),(8)+(10)}

Well-definedness for expressions (guards, actions, invariants, etc) needs to be
verified. These are verified by means of POs in Event-B [18]. For composed
machines, well-definedness POs are only generated for ICM (v0, v1, v2). Other
expressions are verified in the individual machines.

Shared Event Composition/Decomposition in Event-B 131

Refinement. Refinement POs are required when the composed machine refines
an abstract machine. Machine M0 with variables v0, invariant I0(v0) and abstract
event e0 is refined by composed machine CM defined by machines M1 with
variables w1, invariant I1(w1), event e1 and M2 (w2 ; I2(w2); e2) and composition
invariant JCM (v0, w1, w2). The composed event e1 ‖ e2 refines the abstract event
e0. The refinement PO results from the verification of the invariant preservation
JM (v0, wi), the verification of guard strengthening for G0(p0, v0) and simulation
S0(p0, v0, v

′
0) for each concrete event. A general refinement PO (REFei) for a

machine M refining event ei follows from:

REFei =̂ Ii(vi) ∧ Ji(vi, wi) ∧ Hi(qi, wi) ∧ Ti(qi, wi, w
′
i)

� ∃v′
i ·Gi(vi) ∧ Si(pi, vi, v

′
i) ∧ Ji(v

′
i, w

′
i) (11)

Theorem 4. For each composed event e1 ‖ e2, refining abstract event e0 through
(gluing) composition invariant in a composed machine, the refinement REF
PO consists in proving the guard strengthening of abstract guards, proving the
simulation of the abstract variables (v′0) and preserving the gluing invariant
(JCM (v′0, w

′
1, w

′
2)). From (11):

INVe1 : I1(w1) ∧ H1(q1, w1) ∧ T1(q1, w1, w
′
1) � i1(w

′
1) (12)

INVe2 : I2(w2) ∧ H2(q2, w2) ∧ T2(q2, w2, w
′
2) � i2(w

′
2) (13)

REFe0�(e1‖e2) : I0(v0) ∧ I1(w1) ∧ I2(w2) ∧ JCM (v0, w1, w2)

∧ H1(q1, w1) ∧ H2(q2, w2) ∧ T1(q1, w1, w
′
1) ∧ T2(q2, w2, w

′
2)

� ∃v′
0 ·G0(p0, v0) ∧ S0(p0, v0, v

′
0) ∧ I1(w

′
1) ∧ I2(w

′
2) ∧ JCM (v

′
0, w

′
1, w

′
2)

Assume: INVe1 (12) and INVe2 (13).
Prove: REFe0�(e1‖e2).

Proof. Assume the hypotheses of REFe0�(e1‖e2). Prove: ∃v′
0 ·G0(p0, v0) ∧

S0(p0, v0, v
′
0) ∧ I1(w

′
1) ∧ I2(w

′
2) ∧ JCM (v

′
0, w

′
1, w

′
2). The proof proceeds as follows:

∃v′
0 ·G0(p0, v0) ∧ S0(p0, v0, v

′
0)

∧ I1(w
′
1) ∧ I2(w

′
2) ∧ JCM (v

′
0, w

′
1, w

′
2)

≡ G0(p0, v0) ∧ I1(w
′
1) ∧ I2(w

′
2)

∧ ∃v′
0 ·(S0(p0, v0, v

′
0) ∧ JCM (v

′
0, w

′
1, w

′
2)) {∧ goal; v0, w

′
1, w

′
2 are free variables}

≡ G0(p0, v0)

∧ ∃v′
0 ·(S0(p0, v0, v

′
0) ∧ JCM (v

′
0, w

′
1, w

′
2)) {from (12) and (13)}

These are the required POs to verify composed machines. Next we show that
composed machines are monotonic which allows to further refine individual ma-
chines preserving composition.

4.3 Monotonicity of Shared Event Composition for Composed
Machines

An important property of the shared event composition in Event-B is monotonic-
ity. We prove it by means of refinement POs confirming that this property holds

132 R. Silva and M. Butler

Fig. 5. Refinement of composed machine CM1 =̂ M1 ‖ N1 by CM2 =̂ M2 ‖ N2

as it happens for actions systems and CSP described by Butler [15]. Figure 5
shows abstract component specification M1 composed with other component
specification N1, creating a composed model M1 ‖ N1. M1 is refined by M2
and N1 by N2 respectively. Once we compose specifications M1 and N1, dis-
charge the required composed POs, M1 and N1 can be refined individually
while the composition properties are preserved without the need to recompose
refinements M2 and N2. We want to formally prove the monotonicity property
through refinement POs between composed machines. Therefore if the refine-
ment POs hold between CM1 and CM2 then CM1 $ CM2. Events eM1 in
machine M1 and eM2 in machine M2 are represented as:

eM1 =̂ANY pM WHERE GM (pM , vM)THEN SM (pM , vM , v′
M) END (14)

eM2 =̂ANY qM WHERE HM (qM , wM)THEN TM (qM , wM , w′
M) END (15)

The gluing invariant of the refinement between M1 and M2 is expressed as
JM (vM , wM) relating the states of M1 and M2: M1 $JM M2. We can derive the
refinement PO between M2 and M1 for the concrete event eM2 refining abstract
event eM1.

REFeM1�eM2 : IM (vM) ∧ JM (vM , wM) ∧ GM (pM , vM) ∧ HM (qM , wM)

∧ SM (pM , vM , v′
M) ∧ TM (qM , wM , w′

M)

� ∃v′
M ·GM (pM , vM) ∧ SM (pM , vM , v′

M) ∧ JM (v
′
M , w′

M). (16)

The refinement PO between N2 and N1 is similar. We refine an abstract event
in CM1 by a concrete one in CM2 and verify that the refinement POs for each
individual machine hold for the composition. Event eM1 from machine M1 and
event eN1 from machine N1 are composed, resulting in the abstract composed
event eM1 ‖ eN1 in CM1 from Fig. 5. The gluing invariant relating the states of
CM1 and CM2 is expressed as the conjunction of the gluing invariants between
(M1 and M2) and (N1 and N2):

JCM (vM , vN , wM , wN) = JM (vM , wM) ∧ JN (vN , wN) (17)

Theorem 5. The refinement POs for composed machines is expressed as the
conjunction of the refinement POs for the individual machines. Therefore the
monotonicity property holds if the refinement POs of individual machines hold.

Shared Event Composition/Decomposition in Event-B 133

The refinement PO between concrete composed event eM2 ‖ eN2 and abstract
composed event eM1 ‖ eN1 is expressed as:

REF(eM1‖eN1)�(eM2‖eN2) : IM (vM) ∧ IN(vN) ∧ JCM (vM , vN , wM , wN)

∧ HM (qM , wM) ∧ HN (qN , wN)

∧ TM (qM , wM , w′
M) ∧ TN (qN , wN , w′

N)

� ∃v′
M , v′

N ·GM (pM , vM) ∧ GN (pN , vN)

∧ SM (pM , vM , v′
M) ∧ SN (pN , vN , v′

N)

∧ JCM (v
′
M , v′

N , w′
M , w′

N). (18)

Assume: REFeM1�eM2 and REFeN1�eN2 .
Prove: REF(eM1‖eN1)�(eM2‖eN2).

Proof. Assume the hypotheses of REF(eM1‖eN1)�(eM2‖eN2).

JCM (vM , vN , wM , wN) ≡ JM (vM , wM) ∧ JN (vN , wN) {expanding JCM from (17)}
IM (vM) ∧ HM (qM , wM) ∧ TM (qM , wM , w′

M) (19)

IN(vN) ∧ HN(qN , wN) ∧ TN (qN , wN , w′
N) (20)

Prove: ∃v′
M , v′

N ·GM (pM , vM) ∧ GN(pN , vN) ∧ SM (pM , vM , v′
M) ∧ SN (pN , vN , v′

N) ∧
JCM (v

′
M , v′

N , w′
M , w′

N). The proof proceeds as follows:

∃v′
M , v′

N ·GM (pM , vM) ∧ GN(pN , vN)

∧ SM (pM , vM , v′
M) ∧ SN (pN , vN , v′

N)

∧ JM (v
′
M , w′

M) ∧ JN (v
′
N , w′

N) {expanding JCM from (17)}
≡ ∃v′

M ·GM (vM) ∧ SM (pM , vM , v′
M) ∧ JM (v

′
M , w′

M)

∧ ∃v′
N ·GN(vN) ∧ SN (pN , vN , v′

N) ∧ JN (v
′
N , w′

N) {disjoint v′
M ,v

′
N}

⇐ REFeM1�eM2 ∧ REFeN1�eN2 {(16)+(19),(16)+(20)}

We also need to prove the monotonicity for single (non-composed) events that
appear at both levels of abstraction. We shall prove it using machines M1 and
CM2. In this case, the gluing invariant described in (17) does not use neither
the variables (vN) neither the invariants(IN) neither events (eN1) from N1.
Therefore it can be simplified and rewritten as:

JCM (vM , wM , wN) = JM (vM , wM) ∧ JN (wN) (21)

Deriving from (21), the goal of INVeM2‖eN2 can be expanded to:

jCM (v
′
M , w′

M , w′
N) ≡ jM (v

′
M , w′

M) ∧ jN (w
′
N) (22)

where jM and jN correspond to each invariant from the set of gluing invariants
JM and JN respectively.

134 R. Silva and M. Butler

Theorem 6. An individual event eM1 in machine M1 is refined by a composed
event eM2 ‖ eN2 in composed machine CM2. The monotonicity is preserved
if the refinement PO between M1 and M2 hold in conjunction with the gluing
invariant preservation PO for the composed event eM2 ‖ eN2. The refinement
PO between concrete composed event eM2 ‖ eN2 and abstract non-composed event
eM1:

REFeM1�(eM2‖eN2) : IM(vM) ∧ JCM (vM , wM , wN) ∧ HM(qM , wM)

∧ HN(qN , wN) ∧ TM (qM , wM , w′
M) ∧ TN (qN , wN , w′

N)

� ∃v′
M ·GM (pM , vM) ∧ SM (pM , vM , v′

M) ∧ JCM (v
′
M , w′

M , w′
N)

(23)

Assume: REFeM1�eM2 and INVeM2‖eN2 .
Prove: REFeM1�(eM2‖eN2).

Proof. Assume the hypotheses of REFeM1�(eM2‖eN2).

JCM (vM , wM , wN) ≡ JM (vM , wM) ∧ JN (wN) {expanding JCM from (21)}.
IM (vM) ∧ HM (qM , wM) ∧ TM (qM , wM , w′

M) (24)

HN(qN , wN) ∧ TN (qN , wN , w′
N)

And the hypotheses of INVeM2‖eN2 :

JCM (vM , wM , wN) ≡ JM (vM , wM) ∧ JN (wN) {expanding JCM from (21)}
IM (vM) ∧ HM (qM , wM) ∧ TM (qM , wM , w′

M)

W2(v
′
M , wM , wN , qM , qN , w′

M , w′
N) (25)

HN (qN , wN) ∧ TN (qN , wN , w′
N) (26)

Prove: ∃v′
M ·GM (pM , vM) ∧ SM (pM , vM , v′

M) ∧ JCM (v
′
M , w′

M , w′
N) . The proof pro-

ceeds as follows:

∃v′
M ·GM (pM , vM) ∧ SM (pM , vM , v′

M)

∧ JCM (v
′
M , v′

N , w′
M , w′

N)

≡ ∃v′
M ·GM (pM , vM) ∧ SM (pM , vM , v′

M)

∧ JM (v
′
M , w′

M) ∧ JN (w
′
N) {expanding JCM from (21)}

≡ ∃v′
M ·GM (pM , vM) ∧ SM (pM , vM , v′

M) ∧ JM (v
′
M , w′

M)

∧ JN (w
′
N) {disjoint v′

M}
⇐ REFeM1�eM2 ∧ JN (w

′
N) {(16)+(24)}

⇐ REFeM1�eM2 ∧ INVeM2‖eN2 {(22)+(25)+(26)}

New events can be added during refinement. They must respect the refinement
POs. The refinement PO proof for new events is similar to the previous cases
but applied to a single event refined by composed event. Due to the lack of space
we do not present it here.

Shared Event Composition/Decomposition in Event-B 135

5 Decomposition Guideline

Based on the work developed for composition, its properties and the inverse re-
lation between composition and decomposition, we develop a methodology to
partition models in a shared event style. As described in Sect. 3.2, for a shared
event decomposition approach, the variables of a system are separated into dif-
ferent sub-components and consequently the rest of the system is decomposed.
As a restriction of the shared event approach, no variable sharing is allowed. We
present the required steps to process a decomposition, possible problems and
how to tackle them.

Variables: From the modeller’s point of view, the decomposition starts by defin-
ing which sub-components are generated. The following step is to define the
partition of variables over the sub-components. The rest of the model de-
composition (events, parameters, invariants, contexts) is a consequence of
the variable allocation as defined below.

Invariants: The decomposition of the invariants depends on the scope of the
variables. Therefore the minimal set of invariants must include the variable
type definitions. And these are the required invariants for a valid refinement.
Additional ones depend on the user, as they may be useful in later refine-
ments or to help in reusing the sub-components. When an invariant clause is
demanded and uses variables placed outside the scope of a sub-component,
a further refinement of the composed component might be required to make
an explicit separation of the variables.

Events: The partition of the events depends on the partition of the variables.
When the decomposition occurs, parameters are shared between the decom-
posed events. The guard of a decomposed event inherits the guard on the
composed event according to the variable partition. For example, let us con-
sider event e1:

e1 =̂WHEN c = TRUE THEN a := b ‖ c := FALSE

where variables a and b are of type DATA and variable c is a Boolean.
This event is enabled when c is TRUE and results in a being assigned the
value of b and this event being disabled by assigning c to FALSE. If this
event is decomposed such that variable a belongs to sub-component M1 and
variables b and c belong to M2, then action a := b needs to be split. This
assignment needs to be rewritten in a way that these variables are not part of
the same expression. A solution is to refine this event in a way that the guards
and actions do not refer to variables allocated to different sub-components.
Before the decomposition, we refine event e1 by adding parameter p:

e1 =̂ ANY p WHEN c = TRUE ∧ p ∈ DATA ∧ p = b

THEN a := p ‖ c := FALSE

Parameter p receives the value of variable b. Then the value of p is assigned
to variable a. The parameter p is shared between the sub-components and

136 R. Silva and M. Butler

whereas variable a is within the scope of M1 only containing the guard
p ∈ DATA and the action a := p (e1′), the guard p = b is added to M2
(e1′′):

e1′ =̂ ANY p WHERE p ∈ DATA THEN a := p

e1′′ =̂ ANY p WHERE p ∈ DATA ∧ p = b ∧ c = TRUE THEN c := FALSE

These corresponds to the value passing of parallel events similar to suggested
by Butler [15] for action systems based on CSP: for event e1′′, parameter
p has a output behaviour as it is written by the value of b; in event e1′,
parameter p has an input behaviour as its value is read and assigned to
variable a.

The events in the sub-components resulting from the decomposition maintain
the interface of the original events, preserving the parts corresponding to the
variables that belongs to each sub-component.

6 File Access Management Case Study

A distributed system is presented where a system is decomposed into two smaller
parts. A specification of a file management system is developed: files containing
DATA can be created, read, overwritten, deleted and sent to other users. Each
file has an owner. The owners are users with clearance level ranging from 1 to
10 where 10 is the highest level. A super user exists with clearance level 10.
Moreover, files have a classification level varying from 1 to 10. Permission is
needed in order to read, modify or delete a file. When the permission is granted,
the requested action can take place.

Machine FileAccessManagement contains variables user, file, fileData (con-
tains the data of each file) and fileStatus (defines the status of a file operation
and can have the states SUCCESS or FAILED). When a file is created or sent,
variable fileStatus is updated accordingly to the result of the operation. The sta-
tus of a file must be reset (in event clearFileStatus) to allow a new operation in
the same file. The access management is defined by variables userClearanceLevel,
permission, fileClassification and fileOwner. A user can change the clearance of
another user as long as the former has a clearance level superior to the latter
as described in event modifyUser (guard grd3 in Fig. 6). For all the other oper-
ations, permission is required and it is granted by the non-deterministic action
in event requestPermission. When a permission is granted, a file can be read,
modified, deleted or sent to another user. A file can only be modified by users
with a clearance level superior to the file classification (guard grd8 in event over-
writeFile). To delete a file, described in event deleteFile, the user must be the
owner of the file or be the super user as described by guard grd5.

Our intention is to separate the management of permissions (administrative
task) from the modification of the files in the disk (writing, reading tasks). The
result are two sub-components, AccessMng and FileMng that deal with different

Shared Event Composition/Decomposition in Event-B 137

machine

sees

variables userClearanceLevel permission

 fileClassification fileOwner user file

 fileData fileStatus

invariants

 @inv1 file FILE

 @inv2 user USER

 @inv3 userClearanceLevel user ClearanceLevel

 @inv4 permission PERMISSION

 @inv5 fileClassification file Classification

 @inv6 fileOwner file user

 @inv7 fileData file DATA

 @inv8 fileStatus file STATUS

 @inv9 ran(fileStatus) {SUCCESS, FAILED}

 @inv10 fileOwner file user

 @inv11 f·f file

 userClearanceLevel(fileOwner(f)) > fileClassification(f)

events

event

then

super

OFF

super

end

event

any

where

ClearanceLevel

super

then

end

event

any

event

any

where

ALLOWED

super

then

OFF

end

event

any

where

SUCCESS FAILED

Classification

ALLOWED

then

OFF

end

event requestPermission

 where

 @grd1 permission ALLOWED

 then

 @act1 permission: PERMISSION {OFF}

end

event

any

where

SUCCESS FAILED

then

end

end

event

any

where

ALLOWED

super

then

OFF

end

event

any

where

SUCCESS FAILED

Classification

ALLOWED

then

OFF

end

event

where

ALLOWED

then

PERMISSION OFF

end

event clearFileStatus

 any ff

 where

 @grd1 ff dom(fileStatus)

 @grd2 fileStatus(ff)

 {SUCCESS,FAILED}

 then

 @act1 fileStatus {ff} fileStatus

end

end
eevent addUser

 any uu //changed user

 masterUser //user ordering the change

 newUserClearanceLevel //new ClearanceLevel
 where

 @grd1 uu dom(userClearanceLevel)

 @grd2 newUserClearanceLevel ClearanceLevel

 @grd3 newUserClearanceLevel

 < userClearanceLevel(uu)

 @grd4 masterUser uu

 @grd5 uu super

 @grd6 f·f dom(fileClassification)

 fileOwner(f)=uu

 newUserClearanceLevel>fileClassification(f)

 @grd7 uu user

 @grd8 masterUser user

 then

 @act1 userClearanceLevel(uu)

 newUserClearanceLevel

 @act2 user user {uu}

end

event

any

where

ClearanceLevel

super

then

end

 event

any

where

DATA

Classification

ALLOWED

then

OFF

event

any

where

ClearanceLevel

super

then

end

event modifyUser

 any uu // changed user

 masterUser // user ordering the change

 newUserClearanceLevel //new ClearanceLevel
 where

 @grd1 uu dom(userClearanceLevel)

 @grd2 newUserClearanceLevel ClearanceLevel

 @grd3 newUserClearanceLevel

 < userClearanceLevel(uu)

 @grd4 masterUser uu

 @grd5 uu super

 @grd6 f·f dom(fileClassification)

 fileOwner(f)=uu

 newUserClearanceLevel>fileClassification(f)

 then

 @act1 userClearanceLevel(uu)

 newUserClearanceLevel

end

 event

any

where

DATA

Classification

ALLOWED

then

OFF

event

any

where

ALLOWED

super

then

OFF

end

event sendFile

 any ff recipient u fs cl

 where

 @grd1 ff file

 @grd2 u user

 @grd3 recipient user

 @grd4 ff dom(fileStatus)

 @grd5 fs {SUCCESS,FAILED}

 @grd6 u recipient

 @grd7 u dom(userClearanceLevel)

 @grd8 cl Classification

 @grd9 permission = ALLOWED

 @grd10 ff dom(fileClassification)

 cl = fileClassification(ff)

 @grd11 userClearanceLevel(u)>cl

 then

 @act1 fileStatus(ff) fs

 @act2 fileClassification(ff) cl

 @act3 permission OFF

 @act4 fileOwner(ff) u

end

event

where

ALLOWED

then

PERMISSION OFF

end

event

any

where

SUCCESS FAILED

then

end

end

eevent deleteFile

 any ff //file to be deleted

 u //user executes action
 where

 @grd1 ff file

 @grd2 u user

 @grd3 permission = ALLOWED

 @grd4 ff dom(fileOwner)

 @grd5 u {super,fileOwner(ff)}

 then

 @act1 file file {ff}

 @act2 fileData {ff} fileData

 @act3 fileStatus {ff} fileStatus

 @act4 fileClassification

 {ff} fileClassification

 @act5 permission OFF

 @act6 fileOwner {ff} fileOwner

end

event

any

where

SUCCESS FAILED

Classification

ALLOWED

then

OFF

end

event

where

ALLOWED

then

PERMISSION OFF

end

event

any

where

SUCCESS FAILED

then

end

end

event

any

where

ClearanceLevel

super

then

end

event

any

where

ClearanceLevel

super

then

end

 event overwriteFile

 any ff dd cl u

 where

 @grd1 ff file

 @grd2 dd DATA

 @grd3 dd fileData(ff)

 @grd4 u dom(userClearanceLevel)

 @grd5 cl Classification

 @grd6 permission = ALLOWED

 @grd7 ff dom(fileClassification)

 cl = fileClassification(ff)

 @grd8 userClearanceLevel(u)>cl

 then

 @act1 fileData(ff) dd

 @act2 fileClassification(ff) cl

 @act3 permission OFF

 @act4 fileOwner(ff) u

end

Fig. 6. FileAccessManagement : variables, invariants and some events

aspects of the system. An advantage of this separation is to more easily define
specific properties to each part without additional constraints of the other part.
For instance, an administrative task of AccessManagement is to have a quota
of disk per user which is irrelevant to FileMng. Overwriting a file in the disk is
relevant to FileMng but not to AccessMng that deals with the users that are
allowed to execute this action. Therefore we decompose FileAccessManagement
into two sub-components as described in the next section.

6.1 Decomposition: AccessMng and FileMng

Following the steps suggested in Sect. 5, the variables of FileAccessManagement
are allocated to AccessMng and FileMng as described in the following table:

138 R. Silva and M. Butler

FileMng AccessMng
Variables file,user, userClearanceLevel,permission,

fileData,fileStatus fileOwner,fileClassification

The distribution of events can be seen on the composed machine described in
Fig. 7. Some events are specific to a sub-component: events modifyUser and re-
questPermission belong to AccessMng while clearFileStatus belongs to FileMng;
the other events are shared. In Fig. 8, the invariants include theorems defining the
variable types as suggested in Sect. 5. Moreover for Fig. 8(b), invariants relating
variables for the same sub-component are automatically included. Figure 9 shows
the decomposed events overwriteFile where parameters ff, dd and cl are shared
(value passing from AccessMng to FileMng). Also the actions are split according
to the user’s variable selecting (cf. Table above): fileOwner, fileClassification
and permission belong to AccessMng while fileData belongs to FileMng.

COMPOSED MACHINE FileAccessManagement
INCLUDES

AccessMng, FileMng
EVENTS

addUser =̂ AccessMng.addUser ‖ FileMng.addUser
modifyUser =̂ AccessMng.modifyUser
createFile=̂ AccessMng.createFile ‖ FileMng.createFile
readFile =̂ AccessMng.readFile ‖ FileMng.readFile
overwriteFile =̂ AccessMng.overwriteFile ‖ FileMng.overwriteFile
deleteFile =̂ AccessMng.deleteFile ‖ FileMng.deleteFile
sendFile =̂ AccessMng.sendFile ‖ FileMng.sendFile
requestPermission =̂ AccessMng.requestPermission
clearFileStatus =̂ FileMng.clearFileStatus

Fig. 7. Composed machine FileAccessManagement

mmachine AccessMng sees

User_C0 AccessManagement_C0 FileManagement_C0

variables userClearanceLevel permission

 fileClassification fileOwner

invariants

 theorem @typing_userClearanceLevel

 userClearanceLevel (USER)

 theorem @typing_fileOwner

 fileOwner (FILE USER)

 theorem @typing_permission

 permission PERMISSION

 theorem @typing_fileClassification

 fileClassification (FILE)

events

event

then

super

OFF

end

event

any

where

USER

USER

ClearanceLevel

super

then

end

event

any

where

USER

STATUS

FILE

DATA

SUCCESS

Classification

ALLOWED

then

OFF

mmachine FileMng sees

User_C0 AccessManagement_C0 FileManagement_C0

variables file user fileData fileStatus

invariants

 theorem @typing_fileStatus fileStatus (FILE STATUS)

 theorem @typing_file file (FILE)

 theorem @typing_user user (USER)

 theorem @typing_fileData fileData (FILE DATA)

 @FileAccessMng_inv1 file FILE

 @FileAccessMng_inv2 user USER

 @FileAccessMng_inv7 fileData file DATA

 @FileAccessMng_inv8 fileStatus file STATUS

 @FileAccessMng_inv9 ran(fileStatus) {SUCCESS, FAILED}

events

event

then

super

end

event

any

where

USER

STATUS

FILE

FILE

DATA

SUCCESS

Classification

then

end

event

any

where

DATA

USER

FILE

end

(a) (b)

Fig. 8. AccessMng (a) and FileMng (b): variables and invariants

Composition and decomposition are combined: the decomposition partitions
the model in sub-components based on the variables and the composition expresses
the events’ interaction. The extensibility of Rodin, allows new functionalities to
be added to the Event-B language. Silva et al [19] developed a semi-automatic
decomposition tool for shared event or shared variable. A composition tool [20]
is also available in the Rodin platform. We use both tools: FileAccessManage-
ment is decomposed using the decomposition tool and the composition tool shows

Shared Event Composition/Decomposition in Event-B 139

the event splitting. In a shared event decomposition, the user does not control the
event splitting since they are a consequence of the variable allocation (selected by
the user). Therefore the composition view gives an additional insight of the entire
process, complementing the decomposition view.

As we proved in Sect. 4.3, shared event composition is monotonic and con-
sequently sub-components can be further refined independently preserving the
verified properties while composed. For instance, AccessMng can be refined by
defining a more deterministic event requestPermission based on the kind of op-
eration and user. For FileMng, event sendFile can be further refined by introduc-
ing a processing queue where events can be stored. The advance of independent
refinement of sub-components is a separation of behaviours and properties veri-
fiable without the interference of other sub-components.

end

event

any

where

USER

FILE

ALLOWED

then

OFF

end

event

any

where

USER

USER

ClearanceLevel

super

then

end

event overwriteFile

 any ff dd cl u

 where

 @grd2 dd DATA

 @grd4 u dom(userClearanceLevel)

 @grd5 cl Classification

 @grd6 permission = ALLOWED

 @grd7 ff dom(fileClassification) cl = fileClassification(ff)

 @grd8 userClearanceLevel(u)>cl

 then

 @act2 fileClassification(ff) cl

 @act3 permission OFF

 @act4 fileOwner(ff) u

end

event

any

where

USER

FILE

ALLOWED

super

then

event

any

where

USER

USER

ClearanceLevel

super

then

end

event overwriteFile

 any ff dd cl

 where

 @typing_ff ff FILE

 @typing_cl cl

 @grd1 ff file

 @grd2 dd DATA

 @grd3 dd fileData(ff)

 @grd5 cl Classification

 then

 @act1 fileData(ff) dd

end

event

any

where

USER

FILE

then

end

event

any

where

USER

FILE

STATUS

USER

(a) (b)

Fig. 9. Decomposed events overwriteFile for AccessMng (a) and FileMng (b)

7 Related Work

Composition allows the interaction of sub-components. Back [21], Abadi and
Lamport[22] studied the interaction of components through shared variable com-
position. Jones [23] also proposes a shared variable composition for VDM by
restricting the behaviour of the environment and the operation itself in order to
consider the composition valid using rely-guarantee conditions. In Z, composi-
tion can be achieved by combining schemas [14] where variables within the same
scope cannot have identical names or by views [1] allowing the development of
partial specifications that can interact through invariants that relate their state
or by operations’ synchronisation. Although systems are developed in single ma-
chines in classical B, Bellegarde et at [24] suggest a composition by rearranging
separated machines and synchronising their operations under feasibility condi-
tions. The behaviour of a component composition is seen as a labelled transition
system using weakest preconditions, where a set of authorised transitions are
defined. The objective is to verify the refinement of synchronised parallel com-
position between components but it is limited to finite state transitions and a
finite number of components. This work differs from ours as it uses a labelled
transition system including a notion of refinement and variable sharing while we
use synchronisation and communication in the CSP style. Butler and Walden [25]

140 R. Silva and M. Butler

discuss a combination of action systems and classical B by composing machines
using parallel systems in an action system style and preserving the invariants of
the individual machines. This approach allows the classical B to derive parallel
and distributed systems and since the parallel composition of action system is
monotonic, the sub-systems in a parallel composition may be refined indepen-
dently. This work is closely related to our work with similar underlying semantics
and notion of refinement based on CSP. Abrial et al [6] propose a state-based
decomposition for Event-B introducing the notion of shared variables and exter-
nal events. Although it allows variable sharing, this approach is also monotonic
but its respective nature is more suitable for parallel programs [26].

8 Conclusions

Our Event-B composition and decomposition is based on the close relation be-
tween action systems and Event-B plus the correspondence between action sys-
tems and CSP as described in Sect. 3.1. Composition POs are defined to ensure
valid composed machines and refinements. These can be simplified when machine
POs are reused. We prove that shared event composition is monotonic by means
of POs and “top-down” refinement is allowed. Sub-components interact through
event parameters by value-passing. Event-B is extended to support shared event
composition, allowing combination and reuse of existing sub-components through
the introduction of composed machines. We do not address the step correspond-
ing to the translation of the composition to an implementation. This study needs
to be carried out in the future. Using a case study, composition, decomposi-
tion and refinement are combined, suggesting a methodology for modelling dis-
tributed systems and verifying properties through the generation of POs. A file
access management system is decomposed into two independent parts with a sep-
aration of their logics: file and access management and possible refinements are
suggested. Other case studies have been applying (de)composition with success
such as the decomposition of a safety metro system2.

References

1. Jackson, D.: Structuring Z specifications with views. ACM Trans. Softw. Eng.
Methodol. 4(4), 365–389 (1995)

2. Zave, P., Jackson, M.: Conjunction as Composition. ACM Trans. Softw. Eng.
Methodol. 2(4), 379–411 (1993)

3. Jones, C.B.: Wanted: a compositional approach to concurrency. In: Programming
Methodology, pp. 5–15. Springer-Verlag New York, Inc, New York (2003)

4. Poppleton, M.: The Composition of Event-B Models. In: Börger, E., Butler, M.,
Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 209–222. Springer,
Heidelberg (2008)

5. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

6. Abrial, J.R., Hallerstede, S.: Refinement, Decomposition, and Instantiation of Dis-
crete Models: Application to Event-B. Fundam. Inf. 77(1-2), 1–28 (2007)

2 This case study is available online at http://eprints.ecs.soton.ac.uk/22195/

http://eprints.ecs.soton.ac.uk/22195/

Shared Event Composition/Decomposition in Event-B 141

7. Butler, M.: An Approach to the Design of Distributed Systems with B AMN.
In: Till, D., P. Bowen, J., Hinchey, M.G. (eds.) ZUM 1997. LNCS, vol. 1212, pp.
221–241. Springer, Heidelberg (1997)

8. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International
Series in Computer Science (1985)

9. Morgan, C.: Of wp and CSP. In: Beauty is our Business: a Birthday Salute to Edsger
W. Dijkstra, pp. 319–326. Springer-Verlag New York, Inc., New York (1990)

10. Back, R.-J.R., Kurki-Suonio, R.: Decentralization of Process Nets with Centralized
Control. In: PODC 1983: Proceedings of the Second Annual ACM Symposium on
Principles of Distributed Computing, pp. 131–142. ACM, New York (1983)

11. Abrial, J.R.: The B-Book: Assigning programs to meanings. Cambridge University
Press, Cambridge (1996)

12. Rodin: RODIN project Homepage (September 2008), http://rodin.cs.ncl.ac.uk
(accessed July 27, 2010)

13. Abrial, J.R., Butler, M.J., Hallerstede, S., Voisin, L.: An Open Extensible Tool
Environment for Event-B. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS,
vol. 4260, pp. 588–605. Springer, Heidelberg (2006)

14. Spivey, J.M.: The Z Notation: a Reference Manual. Prentice-Hall, Inc., Englewood
Cliffs (1989)

15. Butler, M.J.: A CSP Approach to Action Systems. PhD thesis, Oxford University
(1992)

16. Butler, M.: Stepwise Refinement of Communicating Systems. Science of Computer
Programming 27(2), 139–173 (1996)

17. Butler, M.: Synchronisation-Based Decomposition for Event-B. In: RODIN Deliv-
erable D19 Intermediate Report on Methodology, pp. 47–57 (2006)

18. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
An Open Toolset for Modelling and Reasoning in Event-B. International Journal
on Software Tools for Technology Transfer, STTT (April 2010)

19. Silva, R., Pascal, C., Hoang, T.S., Butler, M.: Decomposition Tool for Event-B.
Software: Practice and Experience 41(2), 199–208 (2011)

20. Silva, R., Butler, M.: Parallel Composition Using Event-B (July 2009),
http://wiki.event-b.org/index.php/Parallel_Composition_using_Event-B

(accessed July 27, 2010)
21. Back, R.-J.R.: Refinement Calculus, part II: Parallel and Reactive Programs. In: de

Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430,
pp. 67–93. Springer, Heidelberg (1990)

22. Abadi, M., Lamport, L.: Composing Specifications. In: de Bakker, J.W., de Roever,
W.P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430, pp. 1–41. Springer, Heidel-
berg (1990)

23. Woodcock, J., Dickinson, B.: Using VDM with Rely and Guarantee-Conditions. In:
Bloomfield, R.E., Jones, R.B., Marshall, L.S. (eds.) VDM 1988. LNCS, vol. 328,
pp. 434–458. Springer, Heidelberg (1988)

24. Bellegarde, F., Julliand, J., Kouchnarenko, O.: Synchronized Parallel Composition
of Event Systems in B. In: Bert, D., Bowen, J.P., Henson, M.C., Robinson, K. (eds.)
B 2002 and ZB 2002. LNCS, vol. 2272, pp. 436–457. Springer, Heidelberg (2002)

25. Butler, M., Waldén, M.: Distributed System Development in B. Technical Report
TUCS-TR-53, Turku Centre for Computer Science, 14 (1996)

26. Hoang, T., Abrial, J.R.: Event-B Decomposition for Parallel Programs. In: Frap-
pier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS,
vol. 5977, pp. 319–333. Springer, Heidelberg (2010)

http://rodin.cs.ncl.ac.uk
http://wiki.event-b.org/index.php/Parallel_Composition_using_Event-B

ABS: A Core Language for
Abstract Behavioral Specification�

Einar Broch Johnsen1, Reiner Hähnle2, Jan Schäfer3,
Rudolf Schlatte1, and Martin Steffen1

1 Department of Informatics, University of Oslo, Norway
{einarj,rudi,msteffen}@ifi.uio.no

2 Chalmers University of Technology, Sweden
reiner@chalmers.se

3 Department of Computer Science, University of Kaiserslautern
jschaefer@cs.uni-kl.de

Abstract. This paper presents ABS, an abstract behavioral specification
language for designing executable models of distributed object-oriented
systems. The language combines advanced concurrency and synchroniza-
tion mechanisms for concurrent object groups with a functional language
for modeling data. ABS uses asynchronous method calls, interfaces for
encapsulation, and cooperative scheduling of method activations inside
concurrent objects. This feature combination results in a concurrent
object-oriented model which is inherently compositional. We discuss cen-
tral design issues for ABS and formalize the type system and semantics
of Core ABS, a calculus with the main features of ABS. For Core ABS,
we prove a subject reduction property which shows that well-typedness
is preserved during execution; in particular, “method not understood”
errors do not occur at runtime for well-typed ABS models. Finally, we
briefly discuss the tool support developed for ABS.

1 Introduction

This paper presents ABS, an abstract behavioral specification language for dis-
tributed object-oriented systems. Abstract behavioral specification languages
can be situated between design-oriented and implementation-oriented specifi-
cation languages. ABS addresses the specification of executable formal models
for distributed object-oriented systems: it allows a high-level specification of a
system, including its concurrency and synchronization mechanisms as well as
local state updates. Thus ABS models capture the concurrent control flow of
object-oriented systems, yet abstract away from many implementation details
which may be undesirable at the modeling level, such as the concrete represen-
tation of internal data structures, the scheduling of method activations, and the
properties of the communication environment.
� Partly funded by the EU project FP7-231620 HATS: Highly Adaptable and Trust-

worthy Software using Formal Models (http://www.hats-project.eu).

B.K. Aichernig, F.S. de Boer, and M.M. Bonsange (Eds.): FMCO 2010, LNCS 6957, pp. 142–164, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

ABS: A Core Language for Abstract Behavioral Specification 143

The target domain of ABS is distributed systems. In a distributed setting,
the implementation details of other objects in the system are not necessarily
known. Instead, ABS uses interfaces as types for objects, abstracting in the type
system from the classes implementing the functionality of these objects. The
strict separation of types and implementations makes concurrent ABS models
compositional. The concurrency model of ABS is similar to that of JCoBox [34],
which generalizes the concurrency model of Creol [24] from single concurrent
objects to concurrent object groups.

The language supports asynchronous method calls, which trigger activities
in other objects without transferring control from the caller, using first-class
futures [13]. Thus, an object may have many method activations competing to
be executed. A distinguishing feature of this concurrency model is the use of
cooperative scheduling of method activations to explicitly control the internal
interleaving of activities inside concurrent object groups. Thus, a clear notion
of quiescent state may be formulated, namely when the active process of each
object in the cog is idle. This allows an approach to system verification in which
local reasoning is based on the maintenance of monitor invariants which must
hold in quiescent states. Because of cooperative scheduling and the interface
encapsulation mechanism, local reasoning about the concurrent object system
can be done by suitable extensions of standard verification systems for sequential
object-oriented programs. This approach is carried out in a number of papers
[3, 13, 15, 18] for both Creol and Core ABS.

The present paper discusses the design decisions behind ABS and defines Core
ABS, a calculus formalizing the main features of ABS. The contributions of this
paper may be summarized as follows:

– We define the functional level of ABS, which is used to abstract computations
on internal data in concurrent objects. ABS supports user-defined parametric
data types and functions with pattern matching. We define a syntax, type
system, and reduction system for functional expressions in Core ABS.

– We define the concurrent object level of ABS, which is used to capture con-
current control flow and communication in ABS models. This part of ABS
integrates functional expressions, imperative object-based programming, and
concurrent object groups with cooperative scheduling. We define a syntax,
type system, and an SOS style operational semantics for the concurrent ob-
ject level of Core ABS.

– We show how type preservation is guaranteed at runtime for well-typed mod-
els in Core ABS, with a particular focus on the creation of concurrent object
groups, objects, and first-class futures.

An extended discussion and further technical details on the ABS language may
be found in [14] while a program logic for Core ABS is in [15, Chap. 2].

2 Abstract Behavioral Specification

Specification languages can be categorized into three categories with partly com-
plementary and partly overlapping purposes:

144 E.B. Johnsen et al.

– Design-oriented languages focus on structural aspects of systems, such as
the relationship between features or classes, and the flow of messages be-
tween objects. Examples of design-oriented languages are UML/OCL [36],
FDL [35], and architectural description languages [11, 29].

– Foundational languages focus on foundational aspects of, e.g., concurrency
and interaction, by identifying a small set of primitives and their formal
semantics. Examples of foundational languages are process algebras [31],
automata models [27], and object calculi [1, 23].

– Implementation-oriented languages focus on behavioral properties of im-
plemented systems. Examples of implementation-oriented specification lan-
guages are JML [7] and Spec# [6].

Design-oriented languages often provide visual means of displaying a system’s
structure, but typically lack flexible constructs for expressing concurrency and
synchronization aspects of a system. Foundational languages address this con-
cern, but their minimalistic set of language features makes it cumbersome to
develop models of real systems without complicated encodings; the resulting
models typically do not reflect the structure of an object-oriented target pro-
gram. Even the abstractions of object calculi make it difficult to express real
systems; for example, Featherweight Java [23] does not provide fields in ob-
jects. In contrast, implementation-oriented specification languages are restricted
to the particular, often extremely complex, concurrency and synchronization
mechanisms of their target language, and typically enforce particular solutions
which may be undesirable at the design stage.

ABS is situated between these three categories of specification languages. It
has in common with implementation-oriented languages that it is designed to
be close to the way programmers think, by maintaining a Java-like syntax and
a control flow close to an actual implementation. In fact, ABS models may be
automatically compiled into, e.g., Java (see Sect. 7). On the other hand, the lan-
guage has a formally defined semantics, in the style of foundational languages,
and allows the modeler to abstract from undesirable implementation details by
means of user-defined algebraic data types and functions. Consequently, impera-
tive structures may be used to study particular aspects of a system, while other
aspects may be abstracted to ADTs. In addition, the concurrency model of ABS
abstracts from particular assumptions about the communication environment,
such as ordering schemes for message transfer and scheduling policies for the
selection of method activations inside objects.

3 The Design of ABS

3.1 The Overall Structure of ABS

ABS targets distributed object-oriented systems. The concurrency model of ABS
is two-tiered and separates local, synchronous, shared-memory communication
in the lower tier from asynchronous communication with only message passing
in the upper tier. The lower tier is inspired by JCoBox [34] which generalizes

ABS: A Core Language for Abstract Behavioral Specification 145

the concurrency model of Creol [13, 24] from concurrent objects to concurrent
object groups, so-called cogs. Cogs can be seen as object-based runtime com-
ponents with their own object heaps. A cog’s behavior is based on cooperative
multi-tasking of external requests and synchronous internal method activations.
Cooperative multi-tasking guarantees data-race freedom inside a cog and enables
active and reactive behavior to be safely combined. Only asynchronous method
calls can occur between different cogs, different cogs have no shared heap.

Complementing the concurrent object language, ABS supports user-defined
data types with (first-order) functions and pattern matching. This functional
level of ABS is largely orthogonal to the concurrent object level and is intended
to model data manipulation. Such data is immutable and can safely be exchanged
between cogs. Using functional data types to realize most internal data structures
in the cogs can significantly simplify the specification and verification of models.
The value of functional expressions can be underspecified which is important in
order to realize abstraction from concrete implementations.

ABS contains non-deterministic constructs, notably, the outcome of execut-
ing concurrency primitives is non-deterministic. While underspecification is used
for data abstraction, non-deterministic execution semantics is the prerequisite
for abstracting behavior. As a modeling language, ABS makes no a priori as-
sumptions about, e.g., concrete scheduling mechanisms. Importantly, underspec-
ification and non-determinism do not preclude executability: the outcome of a
non-deterministic transition step is a finite set of possible successor states which
can be systematically inspected in simulation, analysis, and visualization tools.

In the remainder of this section, we briefly describe how to represent and work
with data, and then discuss the concurrent object level of ABS.

3.2 Data Types, Functions, and Pattern Matching

ABS does not have primitive types for basic values. Instead, algebraic data types
may be defined by the user. A library of predefined data types and operators is
provided, including Unit, Bool, Int, and String. Data types and functions
in ABS can be polymorphic; i.e., their definition may have type parameters.

Example 1. The following code shows the polymorphic data type List<A> (part
of the ABS Standard Library), as well as a function contains which checks
whether an element e is a member of a given list l.

data List<A> = Nil | Cons(A, List<A>);
def Bool contains<A>(List<A> l, A e) =

case l { Nil => False;
Cons(e, _) => True;
Cons(_, xl) => contains(xl, e); };

3.3 Interfaces in ABS

ABS is a class-based language, which uses interfaces for typing. ABS has no
class inheritance, but multiple inheritance is allowed at the interface level. A

146 E.B. Johnsen et al.

class may implement several interfaces, provided that it supports all methods
offered by these interfaces. Subtype polymorphism is permitted at the level of
interfaces: an object supporting an interface I may be replaced by another object
supporting I or a subtype of I in a context where I is expected, although the
classes of the two objects may differ.

Due to the typing of object variables by interfaces, the fields of another ob-
ject cannot be accessed directly, only method calls to the object are possible.
The object controls its own state; another object can only manipulate the state
indirectly via the methods exported through an interface. In fact, interfaces are
the only encapsulation mechanism of ABS objects and no access modifiers are
provided. Since the class may support several interfaces, different methods may
be exported to the environment through different interfaces; for example, a super
user interface may export methods not seen through the normal user interface.

Example 2. Consider a peer-to-peer system whose participant nodes act both as
servers and clients, and exchange files which are composed of packets. In this
setting, it is important for each node to remain responsive during file transfer,
both to serve concurrent requests and for simultaneous downloads. Files are
transferred packet by packet, with one request per packet.

Client behavior is modeled by aClient interface, declaring agetFilemethod
which is invoked from the outside, e.g., via a graphical user interface. Server behav-
ior consists of a methodgetFilenames for querying the server about its available
files, a method getLength for querying the length in packets for a given file, and
a method getPack which requests the n’th packet of a given file.

type Packet = String;
type File = List<Packet>;

interface Server {
List<Filename> getFilenames();
Int getLength(Filename fId);
Packet getPack(Filename fId,
Int pNbr);

}

interface Client {
File getFile(Server sId,
Filename fId);

}

interface Peer
extends Client, Server {
}

3.4 The Concurrency Model of ABS

Conceptually, each cog has a dedicated processor and lives in a distributed en-
vironment with asynchronous and unordered communication. A set of objects
is located within a cog. On the upper tier of the ABS concurrency model, all
communication is between named objects, typed by interfaces, by means of asyn-
chronous method calls. Calls are asynchronous as the caller may decide at run-
time when to synchronize with the reply from a call. Asynchronous method calls
may be seen as triggers of concurrent activity, spawning new method activations
(so-called processes) in the called object.

Active behavior, triggered by an optional method run, is interleaved with
passive behavior, triggered by asynchronous method calls. Thus, an object has

ABS: A Core Language for Abstract Behavioral Specification 147

a set of processes to be executed, which originate from method activations.
Among these, at most one process among the objects of a cog is active and
the other processes are suspended in a process pool. Process scheduling is non-
deterministic, but controlled by processor release points in a cooperative way.
Hence, the amount of concurrency in an ABS model is directly reflected in the
number of cogs introduced in the model. A Creol-like concurrent object model
corresponds to an ABS model in which each object has its own cog.

Example 3. Consider a class Node which implements the peer behavior of Ex-
ample 2, providing both client and server functionality. The getFile method
first obtains the length of the requested file, then fetches the packets one by one.
As it uses asynchronous method calls, the object can interleave the execution
of getFile with answering requests in its server role and other invocations of
getFile. (For brevity the implementation of the fields and remaining methods,
such as getFilenames, is omitted. For a full model in ABS, see [14, App. E].)

class Node implements Peer {

// Fields and other methods
// of Node omitted

File getFile(Server sId,
Filename fId) {

File file = Nil;
Fut<Int> l1 = sId!getLength(fId);
await l1?;
Int lth = l1.get;

while (lth > 0) {
lth = lth - 1;
Fut<Packet> l2
= sId!getPack(fId, lth);

await l2?;
Packet pack = l2.get;
file = Cons(pack, file);

}
return file;

}
}

4 A Formal ABS Calculus

Core ABS is a formal calculus which simplifies the full ABS language by exclud-
ing, e.g., the module system, type synonyms, the predefined data types (except
Bool), and annotations. However, Core ABS captures the central features of
ABS. (A complete formalization of ABS exists in the rewriting logic of Maude
[10].)

4.1 The Syntax of Core ABS

An ABS model P defines interfaces, classes, datatypes, functions, and a main
block to configure the initial state (see Fig. 2). Objects are dynamically created
from classes with attributes initialized to type-correct default values (e.g., null
for object references) that may be reassigned in an optional method init.

A Functional Language for User-Defined Parametric Data Types and Functions.
The functional level of Core ABS defines data types and functions, as shown
in Fig. 1. The ground types T consist of basic types B such as Bool and Int,
as well as names D for data types and I for interfaces. In general, a type A

148 E.B. Johnsen et al.

Syntactic categories
T in Ground Type
B in Basic Type
A in Type
N in Names
x in Variable
e in Expression
b in Bool Expression
t in Ground Term
br in Branch
p in Pattern

Definitions

T ::= B | I | D | D〈T 〉
B ::= Bool | Int | · · ·
A ::= N | T | D〈A〉

Dd ::= data D[〈A〉] = Cons[|Cons];
Cons ::= Co[(A)]

F ::= def A fn[〈A〉](A x) = e;
e ::= b | x | t | this | destiny | Co[(e)] | fn(e) | case e {br}
t ::= Co[(t)] | null

br ::= p ⇒ e;
p ::= _ | x | t | Co[(p)]

Fig. 1. Core ABS syntax for the functional level. Terms e and x denote possibly empty
lists over corresponding syntactic categories, and square brackets [] optional elements.

may also contain type variables N (i.e., uninterpreted type names [32]). In data
type declarations Dd, a data type D has at least one constructor Cons, which
has a name Co and a list of types A for its arguments. Function declarations F
consist of a return type A, a function name fn, a list of variable declarations x
of types A, and an expression e. Data type declarations Dd and function decla-
rations F may optionally have type parameters. Expressions e include Boolean
expressions b, variables x, (ground) terms t, the self-identifier this, the return
address destiny of the method activation, constructor expressions Co(e), func-
tion expressions fn(e), and case expressions case e {br}. Ground terms t are
constructors applied to ground terms Co(t), and null. Case expressions have a
list of branches p⇒ e, where p is a pattern. The branches of case expressions are
evaluated in the listed order. Patterns include wild cards _, variables x, terms t,
and constructor patterns Co(p). Let the function vars(p) return the set of vari-
ables in a pattern p, defined inductively by vars(_) = vars(t) = ∅, vars(x) = {x},
and vars(Co(p1, . . . , pn) =

⋃n
i=1 vars(pi).

The Concurrent Object Level of Core ABS is given in Fig. 2. An interface IF
has a name I and method signatures Sg. A class CL has a name C, interfaces
I (specifying types for its instances), formal parameters and state variables x
of types T , and methods M . (The fields of the class are both its parameters
and state variables). A method signature Sg declares the return type T of a
method with name m and formal parameters x of types T . M defines a method
with signature Sg, local variable declarations x of types T , and a statement s.
Statements may access attributes of the current class, locally defined variables,
and the method’s formal parameters. A program’s main block is a method body
{T x; s}. There are no type variables at the concurrent object level of ABS.

Right-hand side expressions rhs include object creation within the same cog
(written “new C(e)”) and in a fresh cog (written “new cog C(e)”), method
calls, and (pure) expressions e. Statements are standard for sequential compo-
sition, assignment, skip, if, while, and return constructs. The statement
suspend unconditionally releases the processor, suspending the active process.
In await g, the guard g controls processor release and consists of Boolean

ABS: A Core Language for Abstract Behavioral Specification 149

Syntactic categories
C, I, m in Names
g in Guard
s in Statement

Definitions

P ::= Dd F IF CL {T x; s}
IF ::= interface I { Sg }

CL ::= classC [(T x)] [implements I] { T x; M}
Sg ::= T m (T x)
M ::= Sg { T x; s }
g ::= b | e? | g ∧ g
s ::= s; s | x = rhs | suspend | await g | skip

| if b {s} [else {s}] | while b {s} | return e
rhs ::= e | new [cog] C [(e)] | e!m(e) | e.m(e) | x.get

Fig. 2. Core ABS syntax for the concurrent object level

conditions b and return tests x? (see below). If g evaluates to false, the processor
is released and the process suspended. When the processor is idle, any enabled
process from the object’s pool of suspended processes may be scheduled. Conse-
quently, explicit signaling is redundant in ABS.

Communication in ABS is based on asynchronous method calls, denoted
o!m(e), and synchronous method calls, denoted o.m(e), where o is an object ex-
pression (i.e., an expression typed by an interface). Any method may be called ei-
ther synchronously or asynchronously. After asynchronously calling x = o!m(e),
the caller may proceed with its execution without blocking on the call. Here x
is a future variable; i.e., a variable which refers to a return value which has yet
to be computed. There are two operations on future variables, which explicitly
control external synchronization in ABS. Let e be an expression denoting a fu-
ture variable. First, a return test e? evaluates to false unless the reply to the call
can be retrieved. (Return tests are used in guards.) Second, the return value is
retrieved by the expression e.get, which blocks all execution in the object until
the return value is available.

When executed between objects in different cogs, then the statement sequence
x = o!m(e); v = x.get amounts to a blocking, synchronous call and is abbre-
viated v = o.m(e). In contrast, synchronous calls v = o.m(e) inside a cog have
the reentrant semantics known from, e.g., Java threads. The statement sequence
x = o!m(e); await x?; v = x.get codes a non-blocking, preemptable call, ab-
breviated await v = o.m(e). In many cases, these method calls with implicit
futures provide sufficiently flexible concurrency control to the modeler.

4.2 The Type System of Core ABS

A mapping binds names to values. Let Γ be a mapping, [N �→ V] a binding from
name N to value V , and denote lookup by Γ (x). Then Γ [N �→ V] denotes the
mapping such that Γ [N �→ V](N) = V and Γ [N �→ V](x) = Γ (x) if x �= N .
Denote the empty mapping by ε, lists of bindings by [N �→ V] and [N �→ V ,N ′ �→
V
′], and mapping composition by Γ ◦Γ ′ (where Γ ◦Γ ′(x) = Γ ′(x) if x ∈ dom(Γ ′)

and Γ ◦ Γ ′(x) = Γ (x) otherwise). We say that Γ ′ extends Γ , denoted Γ ⊆ Γ ′, if
dom(Γ) ⊆ dom(Γ ′) and Γ (x) = Γ ′(x) for x ∈ dom(Γ).

150 E.B. Johnsen et al.

(T-ConsDecl)

Γ (Co) = A → D[〈B〉]
Γ � Co(A) : D[〈B〉]

(T-DataDecl)

Γ � Cons : D[〈A〉]
Γ � data D[〈A〉] = Cons;

(T-Sub)

Γ � e : T T � T ′

Γ � e : T ′

(T-Bool)

Γ � b : Bool
(T-Null)

Γ � null : A

(T-Wildcard)

Γ � _ : A

(T-Var)

Γ (x) = A

Γ � x : A

(T-FuncExpr)

tmatch(A, C) = σ σ 	= ⊥
Γ � e : C Γ (fn) = A → B

Γ � fn(e) : Bσ

(T-ConsExpr)

Γ � e : C σ 	= ⊥
tmatch(A, C) = σ

Γ (Co) = A → D[〈B〉]
Γ � Co(e) : D[〈B〉]σ

(T-FuncDecl)

Γ (fn) = B → C

Γ [x �→ B] � e : C

Γ � def C fn[〈A〉](B x) = e;

(T-Branch)

Γ ′ � p : A Γ ′ � e : B
Γ ′ = Γ ◦ psubst(p, A, Γ)

Γ � p ⇒ e : A → B

(T-Case)

Γ � e : A

Γ � br : A → B

Γ � case e {br} : B

Fig. 3. The type system for the functional level of ABS

A typing context Γ is a mapping from names to typings which assigns types
A to variables, type constants T to constants, and type signatures A → B to
function symbols. For simplicity, overloading is not considered. A name can only
have one typing, and interface and class names are assumed to be distinct. We
omit the typing of basic types such as Bool and Int, and assume that expressions
of the basic types are type checked directly as in the rule T-Bool in Fig. 3.

The Functional Level of the ABS Type System is shown in Fig. 3. We assume
a typing context Γ which maps names to their declared types; i.e., the initial
typing context gives types to variables and to (user-defined) constructors and
functions. The expression null can have any type by T-Null. A variable is
well-typed if declared in Γ by T-Var. In T-ConsDecl, constructor declarations
are treated like variables. (Note that the constructor may be parametric; e.g., for
List〈A〉, the list constructor Cons should have the type A, List〈A〉 → List〈A〉.)
In T-ConsExpr, a constructor expression is well-typed if its actual and formal
parameter types are the same when matching the type variables of the formal
parameter type to the actual parameter types by the auxiliary function tmatch. If
there is no match, tmatch(A,C) returns ⊥. (For example, if x is an Int and y is a
List〈Int〉, then Cons(x, y) should get type List〈Int〉, which happens since tmatch
binds A to Int.) Function definition and application are handled in the same
way by T-FuncDecl and T-FuncExpr. Additionally the function body is type-
checked in Γ extended with the typing of formal parameters in T-FuncDecl,
which may again be type variables.

The declaration of a data type is well-typed if its constructors are well-typed,
by T-DataDecl. Case expressions are well-typed by T-Case if all branches type
check to the same type. The pattern must have the same type A as the case
expression. A branch p ⇒ e is well-typed by T-Branch if there is an extension
of Γ which adds types for the new variables in the pattern p and which allows the
expression e to be type-checked. The desired mapping can be constructed from A
and p by induction over the structure of p as follows: If A is a type variable, then
p is a variable and psubst(p,A, Γ) = [p �→ A]. Otherwise, we proceed by induction

ABS: A Core Language for Abstract Behavioral Specification 151

(T-Poll)

Γ � e : fut〈T 〉
Γ � e? : Bool

(T-Get)

Γ � x : fut〈T 〉
Γ � x.get : T

(T-Skip)

Γ � skip

(T-Await)

Γ � g : Bool
Γ � await g

(T-Suspend)

Γ � suspend

(T-Composition)

Γ � s Γ � s′

Γ � s; s′

(T-Assign)

Γ � rhs : Γ (v)
Γ � v = rhs

(T-And)

Γ � g1 : Bool
Γ � g2 : Bool

Γ � g1 ∧ g2 : Bool

(T-New)

Γ � e : ptypes(C)
T ∈ interfaces(C)

Γ � new [cog] C(e) : T

(T-AsyncCall)

Γ � e.m(e) : T

Γ � e!m(e) : fut〈T 〉

(T-Conditional)

Γ � b : Bool Γ � s1 Γ � s2
Γ � if b {s1} else {s2}

(T-While)

Γ � b : Bool Γ � s

Γ � while b {s}

(T-Return)

Γ � e : T
Γ (destiny) = fut〈T 〉

Γ � return e

(T-SyncCall)

Γ � e : N Γ � e : T

match(m, T → T, N)
Γ � e.m(e) : T

(T-Method)

Γ ′ = Γ [x �→ T , x′ �→ T ′]
Γ ′[destiny �→ fut〈T ′′〉] � s

Γ � T ′′ m (T x){T ′ x′; s}
(T-Class)

∀I ∈ I · implements(C, I)
Γ [this �→ C, fields(C)] � M

Γ � class C implements I {T f ; M}

(T-Program)

Γ [x �→ T] � s ∀Dd ∈ Dd · Γ � Dd
∀CL ∈ CL · Γ � CL ∀F ∈ F · Γ � F

Γ � Dd F IF CL {T x; s}

Fig. 4. The type system for the concurrent object level of ABS

over p. If p = x, psubst(p,A, Γ) = if Γ (x) = T then ε else [p �→ A] fi. If p = t
or p = _, psubst(p,A, Γ) = ε. Otherwise p = Co(p1, . . . , pn) such that Γ (Co) =
A1, . . . , An → A, and psubst(p,A, Γ) = psubst(p1, A1) ◦ . . . ◦ psubst(pn, An, Γ).
The type of a variable x in p must be the same as in Γ (x), unless it is new.

Subtyping. T T ′ is nominal and reflects the extension relation on interfaces.
For simplicity we extend the subtype relation such that C I if class C imple-
ments interface I; object identifiers are typed by their class and object references
by their interface. We don’t consider subtyping for data types or type variables.

The Concurrent Object Level of the ABS Type System is given in Fig. 4. By
T-Program, a program is well-typed if its data types, functions, interfaces,
classes, and its main block are well-typed (we ignore the straightforward type
checking of interface declarations). By T-Class, a class is well-typed if its meth-
ods are well-typed in the typing context extended by the typing of its fields. We
add a fresh name this to the typing context, which is typed by C, allowing in-
ternal methods to be invoked. We omit the definitions of the auxiliary functions
of the type system, which are straightforward; e.g., fields(C) returns the typing
context given by the attributes of C. By T-Method, a method declaration is
well-typed if its body is well-typed in the typing context extended by the typing
of formal parameters and local variables. We add a fresh name destiny to the typ-
ing context, which binds to the type of the method’s future. The rules for skip,
suspend, assignment, composition, conditional, and while are standard.

By T-Return, a return statement from an asynchronous method call is well-
typed if its expression types to the type of the method’s future. By T-Await,

152 E.B. Johnsen et al.

cn ::= ε | fut | object | invoc | cog | cn cn cog ::= cog(c, act)
fut ::= fut(f, val) val ::= v | ⊥

object ::= ob(o, a, p, q) a ::= T x v | a, a
process ::= {a | s} | error p ::= process | idle

q ::= ε | process | q q v ::= o | f | b | t
invoc ::= invoc(o, f, m, v) act ::= o | ε

s ::= cont(f) | . . .

Fig. 5. Runtime syntax; here, o, f , and c are object, future, and cog identifiers

await g is well-typed if g is of type Bool, rule T-And decomposes guards, and by
T-Poll a reply-guard e? is a Bool if e is a future reference. Similarly, by T-Get,
the get operation unwraps the type of a future. By T-New, object creation
has a type T if the actual parameters can be typed to the types of the formal
parameters (given by a function ptypes) and T is among the declared interfaces
of the class. By T-AsyncCall, an asynchronous method call has type fut〈T 〉
if the corresponding synchronous call has type T . By T-SyncCall, a call to a
method m has type T if its actual parameters have types T and the signature
T → T matches a signature for m in the known interface of the callee (given by
an auxiliary function match).

5 An Operational Semantics for Core ABS

The operational semantics of ABS is presented as a transition system in an SOS
style [33]. Rules apply to subsets of configurations (the standard context rules
are not listed). For simplicity we assume that configurations can be reordered
to match the left-hand side of the rules (i.e., matching is modulo associativity
and commutativity as in rewriting logic [30]). A run is a possibly nonterminating
sequence of rule applications. When auxiliary functions are used in the semantics,
these are evaluated in between the applications of transition rules in a run.

5.1 Runtime Configurations

The runtime syntax is given in Fig. 5. Configurations cn are sets of objects, in-
vocation messages, concurrent object groups (cogs), and futures. The associative
and commutative union operator on configurations is denoted by whitespace and
the empty configuration by ε. Configurations are written inside curly brackets; in
the term {cn}, cn captures the entire configuration. A substitution is a mapping
from variable names to values (for convenience, we associate the declared type
of the variable with the binding). An object is a term ob(o, a, p, q) where o is the
object’s identifier, a a substitution representing the object’s fields, p an active
process, and q a pool of suspended processes. A process p consists of a substitution
l of local variable bindings and a list s of statements, denoted by {l | s} when
convenient or it is idle. The statement cont(f) is used to control scheduling
when local synchronous calls complete their execution, returning control to the
caller. In an invocation message invoc(o, f,m, v), o is the callee, f the future to

ABS: A Core Language for Abstract Behavioral Specification 153

(RedCons)

σ � ei � σ′ � e′
i 1 ≤ i ≤ n

σ � Co(e1, . . . , ei, . . . , en)
� σ′ � Co(e1, . . . , e′

i, . . . , en)

(RedFunExp)

σ � ei � σ′ � e′
i 1 ≤ i ≤ n

σ � fn(e1, . . . , ei, . . . , en)
� σ′ � fn(e1, . . . , e′

i, . . . , en)

(RedVar)

σ � x � σ � σ(x)

(RedCase1)

σ � e � σ′ � e′

σ � case e {br}
� σ′ � case e′ {br}

(RedCase3)

match(σ(p), t) = ⊥
σ � case t {p ⇒ e; br}
� σ � case t {br}

(RedFunGround)

fresh({y1, . . . , yn})
y = y1, . . . , yn

length(xfn) = n

σ � fn(t)
� σ[y �→ t] � efn [xfn �→ y]

(RedCase2)

match(σ(p), t) 	= ⊥
σ′ = σ[yi �→ match(σ(p), t)(xi)] for 1 ≤ i ≤ n

y = y1, . . . , yn fresh({y1, . . . , yn})
x = x1, . . . , xn {x1, . . . , xn} = vars(σ(p))

σ � case t {p ⇒ e; br} � σ′ � e[x �→ y]

Fig. 6. The evaluation of functional expressions

which the call’s result is returned, m the method name, and v the call’s actual
parameter values. A cog only contains an identifier c and the currently active
object o, or ε if no object of the cog is currently active (i.e., all objects have
the idle process as active process). A future fut(f, v) has an identifier f and a
reply value v (which is ⊥ when the future’s reply value has not been received).
Values are object and future identifiers, Boolean values, and ground terms from
the functional language. For simplicity, classes are not represented explicitly in
the semantics, as they may be seen as static tables.

5.2 A Reduction System for ABS Functional Expressions

The evaluation of functional expressions is defined by the small-step reduction
relation σ � e � σ′ � e′, given in Fig. 6, which reduces an expression e in the
context of a substitution σ to e′ in the context of σ′. A substitution σ is well-typed
in a typing context Γ , denoted Γ � σ, if Γ � σ(x) : Γ (x) for all x ∈ dom(σ).

Let e[x �→ y] denote the expression e in which every occurrence of xi has
been replaced by the corresponding yi. The predicate fresh({x1, . . . , xj}) asserts
that any variable name xi (for 1 ≤ i ≤ j) is globally unique. Let the syntactic
category t consist of ground terms, i.e., constructor terms with only ground terms
in argument positions, built-in constants such as null, and object names.

Function evaluation is strict. For a function fn defined by def T fn(T x) = e,
denote by xfn the formal parameter list x and by efn the body e. The evaluation
of a function call fn(e) in a context σ reduces to the evaluation of efn[xfn �→ y]
in the context σ[y �→ t] after the arguments e have successfully been reduced to
ground terms t. The change in scope for evaluating a function body is obtained
by replacing the formal parameters xfn with fresh variables y in the function
body, thus avoiding name capture while keeping the full context σ.

Case expressions will only be reduced if the pattern in one of the branches
matches. The function match(p, t) returns the unique substitution σ such that

154 E.B. Johnsen et al.

σ(p) = t and dom(σ) = vars(p) (otherwise, match(p, t) = ⊥). Note how in
RedCase2, the current substitution σ is applied to the pattern before match-
ing, which allows the pattern to first match with the current state. For pattern
matching, variables in the pattern p are bound to ground terms in the term t,
applying a similar variable renaming as for function evaluation. Thus the con-
text for evaluating the right-hand side e of the branch p⇒ e extends the current
substitution σ with the bindings that occurred during the pattern matching.

The variable renaming in the rules which change the scope of variables, i.e.,
RedFunGround and RedCase2, allows small-step reductions in the arguments
to constructors and function application in RedCons and RedFunExp, since the
additional variables will not introduce name conflicts.

Lemma 1 (Type preservation). Let Γ be a typing context and σ a substitu-
tion such that Γ � σ. If Γ � e : A and σ � e � σ′ � e′, then there is a typing
context Γ ′ such that Γ ⊆ Γ ′, Γ ′ � σ′, and Γ ′ � e′ : A.

Proof. The proof is by induction over the application of reduction rules.

– RedVar. By assumption, Γ � σ and Γ � x : A. Since σ is well-typed,
Γ � σ(x) : Γ (x), so Γ � σ(x) : A.

– RedCons. By the induction hypothesis (IH), Γ � ei : Ai, Γ ′ � e′i : Ai,
Γ ⊆ Γ ′, and Γ ′ � σ′. By assumption, Γ � Co(e1, . . . , ei, . . . , en) : A. Since
Γ ⊆ Γ ′, Γ ′ � Co(e1, . . . , e′i, . . . , en) : A.

– RedFunExp. Similar to the case for RedCons.
– RedFunGround. By assumption, Γ � σ, Γ � fn(t) : A, and Γ � ti : Ai

for all ti in t. Thus, we may assume a function declaration for fn such that
Γ (fn) = T → T ′ and a type substitution ρ such that T ′ρ = A and Tiρ = Ai
for all Ti in T . Obviously, Γ [xfn �→ Tρ] � [xfn �→ T]. By T-FuncDecl,
Γ [xfn �→ T] � efn : T ′. Typing is preserved under type substitutions [32], so
Γ [xfn �→ Tρ] � efn : T ′ρ, which is the same as Γ [xfn �→ Ai] � efn : A. After
variable renaming, we let Γ ′ = Γ [y �→ Ai] and get Γ ′ � efn[xfn �→ y] : A.
Since {y1, . . . , yn} are fresh, we have Γ ⊆ Γ ′ and Γ ′ � σ, so Γ ′ � σ′.

– RedCase1. By assumption Γ � e : T , and by the IH Γ ⊆ Γ ′,Γ ′ � σ′, and
Γ ′ � e′ : T . Since Γ ⊆ Γ ′, Γ ′ � case e′ {br}.

– RedCase2. By assumption, Γ � σ, Γ � case t {p ⇒ e; br} : A, and
match(σ(p), t) �= ⊥. Since we match with σ(p), vars(σ(p)) ∩ dom(σ) = ∅. By
T-Case, there is some type T such that Γ � t : T and Γ � p ⇒ e : T → A.
By T-Branch, there is a type substitution ρ = psubst(σ(p), T) �= ⊥ such that
for Γ ′′ = Γ ◦ ρ, Γ ′′ � σ(p) : T and Γ ′′ � e : A. Since dom(ρ) ∩ dom(σ) = ∅,
Γ ′′ � σ ◦ match(σ(p), t). Renaming the variables in σ(p), we define Γ ′ =
Γ [yi �→ Γ ′′(xi)] for 1 ≤ i ≤ n. Obviously, Γ ⊆ Γ ′. Since y1, . . . , yn are
fresh, renaming variables uniformly does not change the derivations, so we
get Γ ′ � σ′ and Γ ′′ � e[x �→ y] : A.

– RedCase3. Since Γ � case t {p⇒ e; br} : A, we have Γ � case t {br} : A.
��

It follows from Lemma 1 that given a well-typed expression e and a well-typed
context σ, then all states in the reduction sequence from σ � e will be well-typed,

ABS: A Core Language for Abstract Behavioral Specification 155

(RedBoolGuard)

σ � b
� σ � b′

σ, cn � b
� σ, cn � b′

(RedReplyGuard1)

σ � e � σ � f
fut(f, v) ∈ cn v 	= ⊥

σ, cn � e?
� σ, cn � true

(RedReplyGuard2)

σ � e � σ � f
fut(f, ⊥) ∈ cn

σ, cn � e?
� σ, cn � false

(RedGuards)

σ, cn � g1 � σ, cn � g′
1

σ, cn � g2 � σ, cn � g′
2

σ, cn � g1 ∧ g2
� σ, cn � g′

1 ∧ g′
2

Fig. 7. The evaluation of guard expressions

independent of the order of reductions. If an expression e in a context σ reduces
to a ground term t, we denote the resulting value by [[e]]σ. This value, however, is
not guaranteed to exist, for two reasons: first, the reduction sequence might not
terminate; second, the normal form may not be a ground term, because branches
in case expressions need not have full coverage. (We assume here that normal
forms are unique, although we do not prove this.) In either case, we know by
Lemma 1 that all states in such a reduction sequence are well-typed.

5.3 The Operational Semantics for Concurrent Objects in ABS

Evaluating Guards. Given a substitution σ and a configuration cn, we lift the
reduction relation for functional expressions to guards by the rules of Fig. 7. It
follows from Lemma 1 that well-typedness is preserved by guard reduction in the
context of well-typed substitutions and configurations. If a guard g in a context
σ, cn reduces to a ground term b, we denote the resulting value by [[g]]cnσ .

Auxiliary functions. If T is the return type of a method m in a class C, we
let bind(o, f,m, v, C) return a process resulting from the activation of m in C
with actual parameters v, callee o and associated future f . If binding succeeds,
this process has a local variable destiny of type fut〈T 〉 bound to f , and the
formal parameters are bound to v. If binding does not succeed, we get the error
process. The function atts(C, v, o, c) returns the initial state of an instance of class
C, in which the formal parameters are bound to v and the reserved variables
this and cog are bound to the object and cog identities o and c, respectively.
The function init(C) returns an activation of the init method of C, if defined,
and otherwise the idle process. The predicate fresh(n) asserts that a name n is
globally unique (where n may be an identifier for an object, a future, or a cog).

Transition rules transform state configurations into new configurations, and
are given in Figs. 8 and 9. There are different assignment rules for functional
expressions (Assign-Local and Assign-Field), object creation (New-Object and
New-Cog-Object), method calls (Async-call, Cog-Sync-Call and Self-Sync-

Call), and future dereferencing (Read-Fut). Rule Skip consumes a skip in the
active process. Here and in the sequel, the variable s will match any (possibly
empty) statement list. Rules Assign-Local and Assign-Field assign the value of
expression e to a variable x in the local variables l or in the fields a, respectively.
Rules Cond-True and Cond-False branch the execution depending on the value
obtained by evaluating the expression e. (We omit the standard rule for while.)

Process Suspension and Activation. Three operations manipulate a process
pool q: q∪p adds a process p to q, q\p removes p from q, and select(q, a, cn) selects

156 E.B. Johnsen et al.

(Skip)

ob(o, a, {l|skip; s}, q)
→ ob(o, a, {l|s}, q)

(Assign-Local)

x ∈ dom(l) v = [[e]](a◦l)
ob(o, a, {l|x = e; s}, q)

→ ob(o, a, {l[x �→ v]|s}, q)

(Assign-Field)

x ∈ dom(a) v = [[e]](a◦l)
ob(o, a, {l|x = e; s}, q)

→ ob(o, a[x �→ v], {l|s}, q)

(Cond-True)

[[e]](a◦l)
ob(o, a, {l|if e then {s1} else {s2}; s}, q)

→ ob(o, a, {l|s1; s}, q)

(Cond-False)

¬[[e]](a◦l)
ob(o, a, {l|if e then {s1} else {s2}; s}, q)

→ ob(o, a, {l|s2; s}, q)

(Suspend)

ob(o, a, {l|suspend; s}, q)
→ ob(o, a, idle, q ∪ {l|s})

(Release-Cog)

c = a(cog)
ob(o, a, idle, q) cog(c, o)

→ ob(o, a, idle, q) cog(c, ε)

(Await-True)

[[g]]cn
(a◦l)

{ob(o, a, {l|await g; s}, q) cn}
→ {ob(o, a, {l|s}, q) cn}

(Activate)

p = select(q, a, cn) c = a(cog)
{ob(o, a, idle, q) cog(c, ε) cn}

→ {ob(o, a, p, q\p) cog(c, o) cn}

(Await-False)

¬[[g]]cn
(a◦l)

{ob(o, a, {l|await g; s}, q) cn}
→ {ob(o, a, {l|suspend; await g; s}, q) cn}

(Async-Call)

o′ = [[e]](a◦l) v = [[e]](a◦l) fresh(f)
ob(o, a, {l|x = e!m(e); s}, q)

→ ob(o, a, {l|x = f ; s}, q) invoc(o′, f, m, v) fut(f, ⊥)

(Bind-Mtd)

p′ = bind(o, f, m, v, class(o))
ob(o, a, p, q) invoc(o, f, m, v)

→ ob(o, a, p, q ∪ p′)

Fig. 8. Semantics of the concurrent object level of Core ABS (1)

a process from q (if q is empty or no process is ready, the result is the idle process
[24]). The actual definitions of these operations are left unspecified; different
definitions correspond to different scheduling policies for processes, although
care must be taken that select always gives the initial process of an object the
highest priority (otherwise another process might see uninitialized object states).

Let ∅ denote the empty pool. Rule Suspend suspends the active process to the
process pool, leaving the processor idle, and Release-Cog makes the cog idle if its
active object is idle. Rule Await-True consumes await g if g evaluates to true in
the object’s current state, Await-False adds a suspend statement to the process
if the guard evaluates to false. Rule Activate selects a process p from the process
pool for execution if p is ready to execute, i.e., if p would not directly be resus-
pended or block the processor [24]. These rules ensure that a process can only be
scheduled if the cog associated with the object is idle, and that an object always
acquires the cog if its process is activated. Synchronous calls and synchronous self-
calls, which also influence scheduling, are discussed below.
Communication and Object Creation. Rule Async-Call sends an invocation mes-
sage to o′ with a new future f (which is unique since fresh(f)), the method name
m, and actual parameters v. The return value of f is undefined (i.e., ⊥). Rule
Bind-Mtd consumes an invocation message and places the process corresponding
to the method activation in the callee’s process pool. A reserved local variable
destiny stores the identity of the future associated with the call.

Rule Return in Fig. 9 places the return value into the call’s associated future.
Rule Read-Fut dereferences the future f if v �= ⊥. If v = ⊥, the reduction on this
object is blocked. Rules Cog-Sync-Call and Cog-Sync-Return-Sched

ABS: A Core Language for Abstract Behavioral Specification 157

(Return)

v = [[e]](a◦l) l(destiny) = f

ob(o, a, {l|return e; s}, q) fut(f, ⊥)
→ ob(o, a, {l|s}, q) fut(f, v)

(Read-Fut)

v 	= ⊥ f = [[e]](a◦l)
ob(o, a, {l|x = e.get; s}, q) fut(f, v)
→ ob(o, a, {l|x = v; s}, q) fut(f, v)

(Cog-Sync-Call)

o′ = [[e]](a◦l) v = [[e]](a◦l) fresh(f)
a′(cog) = c f ′ = l(destiny)

{l′|s′} = bind(o′, f, m, v, class(o′))
ob(o, a, {l|x = e.m(e); s}, q)
ob(o′, a′, idle, q′) cog(c, o)

→ ob(o, a, idle, q ∪ {l|x = f.get; s}) fut(f, ⊥)
ob(o′, a′, {l′|s′; cont(f ′)}, q′) cog(c, o′)

(Cog-Sync-Return-Sched)

a′(cog) = c l′(destiny) = f

ob(o, a, {l|cont(f)}, q) cog(c, o)
ob(o′, a′, idle, q′ ∪ {l′|s})

→ ob(o, a, idle, q) cog(c, o′)
ob(o′, a′, {l′|s}, q′)

(Self-Sync-Call)

f ′ = l(destiny) o = [[e]](a◦l) v = [[e]](a◦l)
fresh(f) {l′|s′} = bind(o, f, m, v, class(o))

ob(o, a, {l|x = e.m(e); s}, q)
→ ob(o, a, {l′|s′; cont(f ′)}, q ∪ {l|x = f.get; s}) fut(f, ⊥)

(Self-Sync-Return-Sched)

l′(destiny) = f

ob(o, a, {l|cont(f)}, q ∪ {l′|s})
→ ob(o, a, {l′|s}, q)

(Rem-Sync-Call)

o′ = [[e]](a◦l) fresh(f) a(cog) 	= a′(cog)
ob(o, a, {l|x = e.m(e); s}, q) ob(o′, a′, p, q′)
→ ob(o, a, {l|f = e!m(e); x = f.get; s}, q)

ob(o′, a′, p, q′)

(New-Object)

fresh(o′) p = init(C)
a′ = atts(C, [[e]](a◦l), o′, c)

ob(o, a, {l|x = new C(e); s}, q) cog(c, o)
→ ob(o, a, {l|x = o′; s}, q) cog(c, o)

ob(o′, a′, idle, {p})

(New-Cog-Object)

fresh(o′) fresh(c′) p = init(C)
a′ = atts(C, [[e]](a◦l), o′, c′)

ob(o, a, {l|x = new cog C(e); s}, q)
→ ob(o, a, {l|x = o′; s}, q)
ob(o′, a′, p, ∅) cog(c′, o′)

Fig. 9. Semantics of the concurrent object level of Core ABS (2)

address synchronous method calls between two objects that are in the same cog.
For a synchronous call, possession of the cog directly transfers control from the
calling object to the callee and back, bypassing the Suspend and Activate rules.
A special cont instruction is inserted at the end of the statement list of the new
process in Cog-Sync-Call, which is then used to re-activate the caller process
in Cog-Sync-Return-Sched. Synchronous self-calls are implemented similarly by
Self-Sync-Call and Self-Sync-Return-Sched. The cog invariant (only one ob-
ject with a non-idle process per cog) is maintained by these rules. A synchronous
call to an object of another cog is syntactic sugar for an asynchronous call which is
immediately followed by a blocking get operation, captured by Rem-Sync-Call.

Rule New-Object creates an object with a unique identifier o′. The object’s
fields are given default values by atts(C, [[e]](a◦l), o′, c), extended with the actual
values e for the class parameters (evaluated in the context of the creating process),
o′ for this and with the creating object’s cog c. To instantiate the remaining fields,
the process p is queued (we assume that this process reduces to idle if init(C) is un-
specified in the class definition, and that it asynchronously calls run if the latter is
given). Process p is not directly scheduled in order to uphold the cog invariant (ie.,
only one object per cog is active), hence any scheduling policy must take care to

158 E.B. Johnsen et al.

(T-State1)

Δ(v) = T
Δ �R val : T

Δ �R T v val ok

(T-Cont)

Δ(f) = fut〈T 〉
Δ � cont(f)

(T-Future)

Δ(f) = fut〈T 〉
val 	= ⊥ ⇒ Δ(val) = T

Δ �R fut(f, val) ok

(T-Configurations)

Δ �R cn ok

Δ �R cn′ ok

Δ �R cn cn′ ok

(T-State2)

Δ �R fds ok

Δ �R fds′ ok

Δ �R fds fds′ ok

(T-Process-Queue)

Δ �R q ok

Δ �R q′ ok

Δ �R q q′ ok

(T-Process)

Δ′ �R T x val ok
Δ′ = Δ[x → T] Δ′ �R s ok

Δ �R (T x val, s) ok

(T-Cog)

Δ(c) = cog
Δ �R cog(c, act)

(T-Empty)

Δ �R ε ok

(T-Idle)

Δ �R idle ok

(T-Object)

fields(Δ(o)) = [x �→ T]
Δ′ = Δ[x �→ T] Δ′ �R q ok

Δ′ �R T x val ok Δ′ �R p ok

Δ �R ob(o, T x val, p, q) ok

(T-Invoc)

Δ(f) = fut〈T 〉
Δ(v) = T

match(m, T → T, Δ(o))
Δ �R invoc(o, f, m, v)

Fig. 10. The typing rules for runtime configurations

always schedule an initial process p with highest priority. Rule New-Cog-Object

is like New-Object, except that a fresh cog is created with o′ as its (only) active
object, and the initial process p is directly scheduled.

6 Subject Reduction for ABS

The initial state of a well-typed program consists of an object ob(start, ε, p, ∅),
where the process p corresponds to the activation of the program’s main block.
A run is a sequence of reductions of an initial state according to the rules of
the operational semantics. We now show that a run from a well-typed initial
configuration will maintain well-typed configurations; in particular, substitutions
remain well-typed and method binding does not result in the error process.

Runtime Configurations. Typing rules are given for the runtime syntax shown
in Fig. 5. The typing context of the runtime configurations extends the static
typing context with types for dynamically created values, i.e., object and future
identifiers. Object identifiers are typed by the class of the created object.

Typing Rules for Runtime Configurations. Let Δ �R config ok express that
the configuration config is well-typed in the typing context Δ. The typing rules
for runtime configurations are given in Fig. 10. In rule T-Object, the premise
fields(Δ(o)) = [x �→ T] asserts that the object’s fields have the types declared in
its class. If a configuration is well-typed in a typing context Δ, the substitutions
a and l (for any object and any process) are well-typed in Δ. Consequently, by
Lemma 1, expression and guard evaluation in ABS processes preserves typing.

Well-typedness Assumptions for Auxiliary Functions. Let C be a class with for-
mal parameters x of types T . We assume that init(C) returns a well-typed pro-
cess, and atts(C, v, o, c) a well-typed substitution if v have types T and o and c
are object and cog identifiers, respectively. If C implements a method m with
return type T and formal parameters x′ of types T ′, let bind(o, f,m, v′, C) return
a well-typed process if f has type fut〈T 〉 and v′ have the types T ′.

ABS: A Core Language for Abstract Behavioral Specification 159

We prove that the object corresponding to the main block of a well-typed
program is well-typed (Lemma 2) and show that the well-typedness of runtime
configuration is preserved by reductions (Theorem 1).

Lemma 2. Let P {T x; s} be an ABS program. If Γ � P {T x; s} for some
typing context Γ , then Γ �R ob(start, ε, {T x atts(T)|s}, ∅) ok.

Proof. Let Γ ′ = Γ [x �→ T]. It is obvious that Γ ′ �R T x atts(T) ok. By assump-
tion, Γ � P {T x; s}, so Γ ′ �R s. ��
Theorem 1 (Subject Reduction). If Δ �R cn ok and cn → cn′, then there
is a Δ′ such that Δ ⊆ Δ′ and Δ′ �R cn′ ok.

Proof. The proof is by induction over the application of transition rules. We
assume that class definitions are well-typed (and omit them from the runtime
syntax since they do not change). Objects, futures, and messages not affected by
a transition remain well-typed, and are ignored below. It follows from Lemma 1
that the reduction of an expression in a well-typed object results in a well-typed
object. The transition rules apply when these reductions terminate, reducing an
expression e in the state σ to the ground term [[e]]σ. Hence, the reduction of
expressions e in states σ occur as [[e]]σ in the assumptions to the transition rules,
and similarly for the evaluation [[g]]cnσ of guards g in a configuration cn.

– Skip. If Δ �R ob(o, a, {l|skip; s}, q) ok, then Δ �R ob(o, a, {l|s}, q) ok.
– Assignment. Let Δ �R ob(o, T 1 x1 v1, {T 2 x2 v2|x = e; s}, q) ok. Let Δ′ =
Δ[x1 �→ T 1, x2 �→ T 2]. Then Δ′ � x = e; s, so Δ′ � e : Δ′(x). Assume
that v = [[e]]a◦l. For Assign-Local, we need to show Δ �R ob(o, T 1 x1 v1,
{T 2 x2 v2[x �→ v]|x = e; s}, q) ok, which follows from Lemma 1 since Δ′ �
v : Δ′(x). Similarly for Assign-Field.

– Conditionals. Let Δ �R ob(o, a, {l|if e {s1} else {ss}; s}, q) ok. By as-
sumption there is a Δ′ extending Δ with a and l, such that Δ′ � e, Δ′ � s1,
Δ′ � s2, and Δ′ � s. Consequently, Δ′ � s1; s and Δ′ � s2; s, and both
Cond-True and Cond-False preserve well-typedness.

– Process Suspension and Activation. It is immediate that the rules Await-True,
Await-False, Activate, Suspend, Release-Cog, Self-Sync-Return-Sched,
and Cog-Sync-Return-Sched preserve the well-typedness.

– Object creation. For New-Object, assume Δ �R ob(o, a, {l|x = new C(e); s},
q) ok, Δ(x) = I, and implements(C, I) (so C I). Since fresh(o′), let
Δ′ = Δ[o′ �→ C]. Obviously, Δ′ �R ob(o, a, {l|x = o′; s}, q) ok. By assump-
tion, a′ and p are well-typed in o′, and Δ′ �R ob(o′, a′, idle, {p}) ok. For
New-Cog-Object, let Δ′ = Δ[o′ �→ C, c′ �→ cog]. Since fresh(c′), this does
not affect the well-typedness of o and o′. We must additionally show that
Δ′ �R cog(c′, o′) ok, which is immediate.

– AsyncCall. LetΔ �R ob(o, a, {l|x = e!m(e}, q) ok. We first consider the case
e �= this. By AsyncCall, we may assume that Δ � e!m(e) : fut〈T 〉 and by
Assign that Δ(x) = fut〈T 〉. Therefore, Δ � e : I and Δ � e : T such that
match(m,T → T, I). Assume that [[e]]a◦l = o′ and let Δ(o′) = C for some

160 E.B. Johnsen et al.

class C. By Lemma 1, there is aΔ′ such thatΔ′ �R [[e]]a◦l : I andΔ′(o′) = C,
so C I. By assumption class definitions are well-typed, so for any class
C that implements interface I we have match(m,T → T,C). By Lemma 1,
[[e]]a◦l similarly preserves the type of e. Let Δ′′ = Δ′[f �→ fut〈T 〉]. Since
fresh(f) we know that f �∈ dom(Δ′), so if Δ′ �R cn ok, then Δ′′ �R cn ok.
Since Δ′ � e!m(e) = Δ′′(f), we get Δ′′ �R ob(o, a, {l|x = f ; s}, q) ok.
Furthermore, Δ′′ � invoc(o′, f,m, v) ok and Δ′′ �R fut(f,⊥) ok. The case
e = this is similar, but uses the class of this directly for the match (so
internal methods are also visible).

– Bind-Mtd. Let C = Δ(o). By assumption Δ �R invoc(o, f,m, v) ok and
Δ �R ob(o, a, p, q) ok, so Δ(f) = fut〈T 〉, Δ(v) = T , and match(m,T →
T,C). Let x be the formal parameters ofm in C. Consequently, the auxiliary
function bind(o, f,m, v, C) returns a process {l[T x v, fut〈T 〉 destiny f]|s}
which is well-typed in Δ ◦ fields(C), and it follows that Δ �R ob(o, a, p, q ∪
{bind(o, f,m, v, C)}) ok.

– Return. By assumption, we have Δ �R ob(o, a, {l|return e; s}, q) ok and
Δ �R fut(f,⊥) ok. Obviously,Δ �R ob(o, a, {l|s}, q) ok. Since l(destiny) = f
and l is well-typed, we know that Δ(destiny) = Δ(f). Let Δ(f) = fut〈T 〉.
By T-Return, Δ �R e : T and by Lemma 1, Δ(v) = T , so Δ �R fut(f, v) ok.

– Read-Fut. By assumption, Δ �R ob(o, a, {l|x = e.get; s}, q) ok, Δ �R
fut(f, v) ok, and [[e]]a◦l = f . Let Δ(f) = fut〈T 〉. Consequently, Δ �R e.get :
T and Δ(v) = T , so Δ � x = v, and Δ �R ob(o, a, {l|x = v; s}, q) ok.

– Rem-Sync-Call. By assumption, Δ �R ob(o, a, {l|x = e.m(e); s}, q) ok, Δ �
e.m(e) : T , and fresh(f). Let Δ′ = Δ[f �→ fut〈T 〉]. Then obviously Δ′ � f =
e!m(e);x = f.get.

– Self-Sync-Call and Cog-Sync-Call. By assumption, the judgments Δ �R
ob(o, a, {l|x = e.m(e); s}, q) ok, Δ � e.m(e) : T , Δ �R {l′|s′} ok, and
fresh(f) hold. Let Δ′ = Δ[f �→ fut〈T 〉]. Obviously Δ′ � {l′|s′;cont(f)} ok,
Δ′ � x = f.get, and Δ′ �R fut(f,⊥) ok. ��

7 Tool Support

The ABS language is being used and developed as part of the EU project HATS
(www.hats-project.eu). ABS comes with considerable tool support, includ-
ing editing, compiling, running, and visualizing ABS models in the Emacs editor
and in the Eclipse integrated development environment.

Compiler frontend. All ABS tools use a common compiler frontend which sup-
plies parsing, type checking, and basic error reporting. The compiler frontend
is implemented using the JastAdd toolkit [19] and provides an object-oriented,
type-annotated syntax tree representing an ABS model. All backend implemen-
tations, code analyzers, etc. are implemented on top of this common base. At
present there are two language backends, making ABS executable on the Maude
rewriting engine and the Java virtual machine, with more backends planned.

The Maude backend is a translation of the operational semantics given in this
paper into equational logic for the functional level of ABS and rewriting logic for

www.hats-project.eu

ABS: A Core Language for Abstract Behavioral Specification 161

the concurrent object level. This semantics is executed as a language interpreter
using the Maude tool [10]. Compiling an ABS model into Maude results in a
set of class and function definitions (since all type checking is done at compile
time, interface and datatype declarations do not have runtime representations).
A special class implements the main block; starting an ABS model in Maude
means instantiating an object of that class. The conciseness and high level of
abstraction of the Maude backend make it well-suited for experiments with lan-
guage constructs and semantics. Maude also provides model-checking support,
but the large size of each state, as well as the non-deterministic scheduling and
concurrent execution of ABS, and the resulting combinatorial explosion, make
model-checking ABS models of realistic size very difficult in practice.

The Java backend provides a translation of ABS models into Java source
code, which is compiled into bytecode using the standard Java tool chain. The
Java backend uses a Java translation similar to the one for JCoBox [34], which
proved to be very efficient. Compared to JCoBox, the generated code of ABS has
better support for configuring the scheduling strategies, for system observation,
and debugging. The ABS main block is translated into a standard Java main
method so the generated code can be executed like standard Java programs.

The Java backend provides higher execution speed, an integration into existing
Java tools, and the potential for integrating “native” or library functionality
(e.g., file handling) into the language. Hence, the Java and Maude backends
provide complementary and attractive features for the modeler.

8 Related Work

The concurrency model provided by concurrent objects and in actor-based com-
putation, where software units with encapsulated processors communicate asyn-
chronously, is increasingly attracting attention due to its intuitive and compo-
sitional nature (e.g., [2, 5, 9, 13, 21, 37]). ABS uses the communication mecha-
nisms of Creol [24] for remote communication, based on asynchronous method
calls and first-class futures [13]. A distinguishing feature of Creol is the coopera-
tive scheduling between asynchronously called methods [24], which allows active
and reactive behavior to be combined within objects as well as compositional
verification of partial correctness properties [3, 13]. Creol’s model of cooperative
scheduling has recently been generalized from single objects to groups of objects
in a Java extension called JCoBox [34], which forms the basis for cogs in ABS.

Formal models are useful to clarify the intricacies of object orientation and
may contribute to improve programming languages by making programs easier
to understand, maintain, and analyze. Object calculi such as the ς-calculus [1]
and its concurrent extension [20] aim at directly expressing features such as
self-reference, encapsulation, and method calls, but asynchronous method calls
are not addressed. This also applies to Obliq [8], a programming language using
similar primitives to target distributed concurrent objects. The object calculus
of Di Blasio and Fisher [16] has both synchronous and asynchronous method
calls, but, in contrast to ABS, return values are discarded when methods are

162 E.B. Johnsen et al.

called asynchronously and the synchronous and asynchronous calls have different
semantics. Caromel, Henrio, and Serpette propose ASP [9], a concurrent object
calculus with asynchronous method calls and first-class futures. Compared to
ABS, ASP’s futures are transparent (i.e., there is no polling and the get-operation
is implicit) and communication is ordered to make reductions deterministic.

The internal concurrency model of cogs in ABS follows Creol’s concept of
cooperative scheduling [24], but is lifted from the level of objects to the level of
cogs. Synchronous method calls inside a cog are reentrant, which allows standard
recursive programming of internal imperative data structures. Cogs in ABS may
be compared to monitors [22] or to thread pools executing on a single proces-
sor. In contrast to monitors, explicit signaling is avoided. Sufficient signaling is
ensured by the semantics, which significantly simplifies reasoning [12]. However,
general monitors may be encoded in the language [24]. In contrast to thread
pools, processor release is explicit. The activation of suspended processes is non-
deterministically handled by an unspecified scheduler. Consequently, intra-object
concurrency is similar to the interleaving semantics of concurrent process lan-
guages [4, 17], and each process resembles a series of guarded atomic actions
(ignoring local variable scopes). Internal reasoning control is facilitated by the
explicit declaration of release points, at which class invariants should hold [3, 18].

Our type system resembles that of Featherweight Java [23], a core calculus for
Java, because of its nominal approach. Featherweight Java is class-based with
single inheritance, and subtyping is the reflexive and transitive closure of the
subclass relation. In contrast, ABS cleanly distinguishes classes and types. Creol
combined asynchronous calls and interfaces as in ABS with class inheritance,
choice operators, and a notion of cointerface at the interface level to accomo-
date type-safe callbacks [25]. Creol’s type system used an effect system [28] to
infer types for future variables, which allowed a flexible reuse of future variables
for method calls with different return types. By means of backwards analysis, the
effect system could insert deallocation operations to garbage-collect inaccessible
futures depending on the local control flow at runtime [26]. In contrast, future
variables in ABS have explicit types for return values, which restricts reuse but
allows a type analysis without effects. Compared to previous work on Creol, this
paper formalizes user-defined data types and functions in the context of concur-
rent objects. The presented type safety results show how the typing context is
dynamically extended when new objects and futures are created.

9 Conclusion

This paper presents ABS, an abstract behavioral specification language for de-
signing executable, object-oriented, formal models of distributed systems. The
language is situated between design-oriented, foundational, and implementation-
oriented languages by being abstract, yet executable. The concurrency model of
ABS is based on concurrent object groups (cogs) which are encapsulated be-
hind interfaces and do not share state. While cogs may execute in parallel, there
is a cooperative model of interleaving concurrency inside each cog, reflected
by explicit processor release points in the language. This concurrency model is

ABS: A Core Language for Abstract Behavioral Specification 163

inherently compositional and allows to reason about concurrent system behavior
using monitor invariants and sequential object-oriented proof systems.

The combination of a functional and a concurrent object level in the ABS
language allows the modeler to focus the model on crucial parts of an impera-
tive system, including its concurrency and synchronization mechanisms, by using
functional data types to abstract from other parts of the internal data structures
and by abstracting from specific scheduling policies and environmental prop-
erties. ABS is a formally defined, executable specification language. We gave
rigorous, mathematical definitions of its core syntax, type system, and opera-
tional semantics. We proved a subject reduction result showing that execution
preserves well-typedness in the sense that “method not understood” errors do
not occur for well-typed ABS models.

Acknowledgment. We thank Frank S. de Boer, Olaf Owe, and the HATS
consortium for interesting discussions and their contributions to the ABS, and
the anonymous referees for excellent feedback, significantly improving the paper.

References
1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer, Heidelberg (1996)
2. Agha, G.A.: ACTORS: A Model of Concurrent Computations in Distributed Sys-

tems. The MIT Press, Cambridge (1986)
3. Ahrendt, W., Dylla, M.: A system for compositional verification of asynchronous

objects. Science of Computer Programming (2010) (In press)
4. Andrews, G.R.: Foundations of Multithreaded, Parallel, and Distributed Pro-

gramming. Addison-Wesley, Reading (2000)
5. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic

Bookshelf (2007)
6. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: An

overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

7. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An overview of JML tools and applications. International Jour-
nal on Software Tools for Technology Transfer (STTT) 7(3) (June 2004)

8. Cardelli, L.: A language with distributed scope. Comp. Sys. 8(1), 27–59 (1995)
9. Caromel, D., Henrio, L., Serpette, B.P.: Asynchronous sequential processes. In-

formation and Computation 207(4), 459–495 (2009)
10. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott,

C.L. (eds.): All About Maude - A High-Performance Logical Framework. LNCS,
vol. 4350. Springer, Heidelberg (2007)

11. Clements, P.C.: A survey of architecture description languages. In: Proc. Work-
shop on Software Specification and Design (IWSSD 1996), pp. 16–25. IEEE, Los
Alamitos (1996)

12. Dahl, O.-J.: Monitors revisited. In: A Classical Mind, Essays in Honour of C.A.R.
Hoare, pp. 93–103. Prentice Hall, Englewood Cliffs (1994)

13. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007)

14. Full ABS Modeling Framework, Deliverable 1.2 of project FP7-231620 (HATS)
(March 2011), http://www.hats-project.eu

http://www.hats-project.eu

164 E.B. Johnsen et al.

15. Verification of Behavioral Properties, Deliverable 2.5 of project FP7-231620
(HATS) (March 2011), http://www.hats-project.eu

16. Di Blasio, P., Fisher, K.: A calculus for concurrent objects. In: Sassone, V., Monta-
nari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 655–670. Springer, Heidelberg
(1996)

17. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM 18(8), 453–457 (1975)

18. Dovland, J., Johnsen, E.B., Owe, O.: Observable behavior of dynamic systems: Com-
ponent reasoning for concurrent objects. In: Proc. Foundations of Interactive Com-
putation (FInCo 2007). ENTCS, vol. 203, pp. 19–34. Elsevier, Amsterdam (2008)

19. Ekman, T., Hedin, G.: The JastAdd system: modular extensible compiler con-
struction. Science of Computer Programming 69(1-3), 14–26 (2007)

20. Gordon, A.D., Hankin, P.D.: A concurrent object calculus: Reduction and typing.
In: Proc. High-Level Concurrent Languages (HLCL). ENTCS, vol. 16(3) (1998)

21. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based pro-
gramming. Theor. Comp. Sci. 410(2-3), 202–220 (2009)

22. Hoare, C.A.R.: Monitors: an operating systems structuring concept. Communi-
cations of the ACM 17(10), 549–557 (1974)

23. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Prog. Lang. and Sys 23(3), 396–450 (2001)

24. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)

25. Johnsen, E.B., Owe, O., Yu, I.C.: Creol: A type-safe object-oriented model for
distributed concurrent systems. Theor. Comp. Sci. 365(1-2), 23–66 (2006)

26. Johnsen, E.B., Yu, I.C.: Backwards type analysis of asynchronous method calls.
Journal of Logic and Algebraic Programming 77, 40–59 (2008)

27. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer (STTT) 1(1-2), 134–152 (1997)

28. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: Proc. POPL, pp.
47–57. ACM Press, New York (1988)

29. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying distributed software
architectures. In: Botella, P., Schäfer, W. (eds.) ESEC 1995. LNCS, vol. 989, pp.
137–153. Springer, Heidelberg (1995)

30. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comp. Sci. 96, 73–155 (1992)

31. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

32. Pierce, B.C.: Types and Programming Languages. The MIT Press, Cambridge
(2002)

33. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic
and Algebraic Programming 60-61, 17–139 (2004)

34. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing active objects to con-
current components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp.
275–299. Springer, Heidelberg (2010)

35. van Deursen, A., Klint, P.: Domain-specific language design requires feature de-
scriptions. Journal of Computing and Information Technology 10(1), 1–18 (2002)

36. Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modelling with
UML. Object Technology Series. Addison-Wesley, Reading (1999)

37. Welc, A., Jagannathan, S., Hosking, A.: Safe futures for Java. In: Proc. OOPSLA,
pp. 439–453. ACM, New York (2005)

http://www.hats-project.eu

A Component Model for the ABS Language�

Michaël Lienhardt1, Ivan Lanese1, Mario Bravetti1, Davide Sangiorgi1,
Gianluigi Zavattaro1, Yannick Welsch2,

Jan Schäfer2, and Arnd Poetzsch-Heffter2

1 Focus Team, University of Bologna, Italy
{lienhard,lanese,bravetti,davide.sangiorgi,zavattar}@cs.unibo.it

2 Software Technology Group, University of Kaiserslautern, Germany
{welsch,jschaefer,poetzsch}@cs.uni-kl.de

Abstract. Finding good abstractions to model and express partial up-
date, mobility and wrapping in object-oriented systems remains challeng-
ing. In this paper, we propose Comp, a process calculus approach for
component models that merges aspects of object-orientation and evolu-
tion. The key features of Comp are: a hierarchical structure of compo-
nents; the capacity to move, update, wrap components; method interfaces
for components; and some isolation capacities to encode distribution and
wrapping. Specifically, we introduce the syntax of Comp and formulate
its operational semantics. We show a number of examples of use of Comp,
with particular emphasis on common evolution patterns for components.

1 Introduction

Evolution is an important issue in complex software systems. The needs and
requirements on a system may change over time. This may happen because
the original specification was incomplete or ambiguous, or because new needs
arise that had not been predicted at design time. As designing and deploying a
system is costly, it is important that the system supports operations to adapt it
to changes in the surrounding environment. By dynamic evolution of a system
we refer to the possibility that functionalities offered by the system change over
time. This may involve reconfiguring and updating applications to meet new
requirements and new operating conditions, which were unexpected when the
application was developed and deployed.

The goal of this work is to isolate interesting constructs for expressing dynamic
evolution that can be easily integrated into existing object-oriented programming
and modeling languages. More specifically, we are interested in integrating these
constructs into the modeling language ABS [10], a language developed within
the HATS European project [12], which is based on ideas from Creol [13,9] and
JCoBox [27]. The ABS language is a formally defined object-oriented language
whose purpose is to support the design of concurrent and distributed software
systems, in particular by providing high-level specification and checking facil-
ities. To integrate well with ABS (and similar object-oriented languages), we
� Partly funded by the EU project FP7-231620 HATS.

B.K. Aichernig, F.S. de Boer, and M.M. Bonsange (Eds.): FMCO 2010, LNCS 6957, pp. 165–183, 2011.
� Springer-Verlag Berlin Heidelberg 2011

166 M. Lienhardt et al.

adopt its basic scheme to handle components1. Components are represented by
objects. The object’s methods enable communication between the object and its
environment. Furthermore, the same language specification technique is used to
foster the integration between the calculus and the formal analysis techniques
developed for ABS and Creol [9,1].

Many different component models were developed over the past decade, like
OSGi [2], Fractal [4], COM [8], Java Beans [30] and others [3,21,23]. These
models focus on aspects different from those of Comp (see discussion in Sect. 5).
If at all possible, dynamic evolution steps have to be handcoded in these models
(e.g. in OSGi, components can be stopped and replaced by new versions, but
this has to be programmed using the framework API). In particular, a high-level
formal analysis of such steps is not supported. The central aspects and goals of
Comp are summarized in the following.

Firstly, these previous models [2,4,8,30] are not developed for formal analysis
and do not provide a formal semantics needed for verification. In particular, they
are more or less coupled to complex programming languages and APIs written
in these languages which makes it difficult to identify an analyzable formal core.

The second aspect is about interface specifications based on typing and ports.
Many component models (e.g. [4,18,23]) support typed input and output ports
to allow static checking of composition. To focus on dynamic evolution and
keep the calculus manageable, we do not consider typing aspects in the core
calculus presented in this paper. Similar to objects, a component has an interface
consisting of a set of (untyped) methods. The component can communicate via
channels with other components. In Sect. 4, we show how the basic constructs
of the core calculus can be used to model more structured connections between
components. An extension to static analysis techniques (e.g., type systems) is
planned as future work.

The third aspect concerns scope and component visibility. In many component
models [4,22,29], the hierarchical structure of a component system is rigid: the
boundary of a component a hides all the inner components, which are unreach-
able from a’s environment. Other component models do not support nesting of
components at all. Comp provides component nesting and flexibility with re-
spect to visibility of internal components in order to model common patterns of
distributed systems that involve sharing of resources.

The last issue is about the passivation mechanism provided by some of the
models such as the Kell-calculus [29] or MECo [22]. Passivation allows the
programmer to freeze a component and capture it; the component can then be
sent around at will, with even the possibility of duplicating it. Passivation is
very powerful, but makes it quite hard to ensure safety of reconfiguration and to
prove properties of systems. Also, the practical relevance of the act of copying a
running component is dubious.

The language that we propose in this paper, called Comp, addresses the four
issues above as follows:

1 As we focus on dynamic aspects, components here are runtime entities, often called
component instances to distinguish them from the programs.

A Component Model for the ABS Language 167

– Comp has a formal semantics, defined using the reduction and labeled tran-
sition system styles.

– Components in Comp have an input interface, but no output interfaces; as
a consequence, components can be used much in the same way as objects;
however, component additionally have mobility capacities.

– Comp provides opening and closing operations for dynamically changing the
visibility of a component. Thus, while by default communication in Comp

remains global to fit the communication capacities of objects, if needed,
the boundary of a component a can be closed to restrict access to specific
components internal to a, say b; as a consequence, a component external to
a will not be able to directly access b any more.

– Mobility of running components is allowed by means of movement primitives
rather than by capturing and communicating components. These primitives
are inspired by the constructs for achieving mobility in the Ambient cal-
culus [6]. In Comp a component may thus move in the tree hierarchy of
a component system. Processes (including component definitions) may be
communicated, but they cannot be grabbed when running.

The main challenge in the formalization of a component model is to isolate key
aspects of component-based systems and reflect them into specific constructs. In
our case, the scenarios we want to describe with our model are presented as a set
of examples that show how objects, components and runtime modifications of
a program architecture can easily be combined. While developing the model we
followed a general strategy that we call “the architect principle”, which means
that each component in the system is in charge of managing its children. We
chose to follow this principle in our model because it improves its consistency,
making it more easy to work with. Indeed, because of this principle, the one
responsible for a modification is uniquely identified, which makes the behavior
of systems clearer, and the modifications easier to code. Moreover, as the parent
has the control over its children and their communications, it can help their
integration into the rest of the system. We summarize below the main concepts
that our approach is based on.

Components. Components are a way to structure a system into a set of units,
each of them having a clear boundary. Processes inside the same boundary share
some features, which can be of various kinds. For instance, they may share some
computational resources, they may be in the same physical location or just inside
the same security perimeter, or they may jointly implement some functionali-
ties. In our case each component has its own data and its own execution space.
More important, components represent the units of evolution in this paper. Put
differently, evolution is obtained by adding, removing, replacing, wrapping or
manipulating components and the component structure in a modular way. No-
tably, while a component is being, e.g., replaced, other components can continue
to execute normally, thus minimizing service disruption.

Components give rise to a hierarchical structure, which allows for the modular
definition of complex software architectures. Nesting of components may have

168 M. Lienhardt et al.

different meanings, corresponding to the meanings of components themselves.
In our case the parent of a component is in charge of updating its children,
according to the “architect principle” described above.

Components can also be used to specify system deployment. Components in
fact may represent physical locations and available resources, and deployment
can be done by specifying how to associate to each object its enclosing com-
ponent, thus defining how to deploy it. Notably, evolution constructs discussed
later enable dynamic re-deployment of components to deal with modifications
of the underlying architecture. We will not consider this possibility in depth.

Methods. Each component is equipped with a set of methods, defining its avail-
able functionalities. Having an explicit input interface is important, since this
provides an abstract description of the functionalities of the component, to be
used to ensure correctness of evolution steps. For instance, if an evolution step
preserves the interface of the involved components, it will introduce no typing
errors on runtime invocations.

Having methods in a component also matches the intuition that components
correspond to objects with extended capabilities, which is useful for integration
of components with objects. In contrast to other component models, Comp

components have no output interface, since this has no correspondence inside
objects. This would also make the semantics of the isolation mechanism more
complex.

Isolation. A consequence of the component hierarchy is that a component may
decide to hide its internal components, or to make (some of) them available to
the external world. Hiding is fundamental for encapsulation: hidden components
cannot be reached directly from the outside. Isolation can also be used to encode
wrapping, where the wrapper component hides the wrapped one, while providing
updated functionalities. In this way, for instance, methods can be removed, added
or redefined. An internal component may however be left visible, which is useful
for modeling shared resources.

According to the “architect principle”, the decision about when and whether
making a component available to the outside is taken by its parent.

Mobility. Having a hierarchical structure in place, the immediate way for achiev-
ing evolution is to allow components to move along the hierarchy. Remember
that mobility can be either logical or physical, according to whether compo-
nents model the software architecture of the system or its physical distribution.

Clearly, different primitives for mobility are possible. We decided to introduce
two primitives for mobility, in and out, inspired from the Ambient calculus [6],
that allow us to move a component inside a sibling one or outside its parent.
These primitives disallow direct mobility between locations far from each other
(unrealistic in many cases, e.g., for physical locations). Again, following the
architect principle, a component may only be moved by its parent.

Channel-based communication. Our components communicate using channels.
Analogously to passing object references, this kind of communication is

A Component Model for the ABS Language 169

completely independent from the component hierarchy. The main goal of this
mechanism is to enable the support of futures (as available in ABS) for return-
ing the result of a method to the caller regardless of which reconfigurations
occurred since the call has been performed. Also, channel-based communication
can be handy to synchronize different components performing some joint recon-
figuration. We allow both names and processes to be communicated. Process
communication in particular allows for code injection. Code injection and mo-
bility are quite different concepts, since mobility refers to running components
while code injection concerns idle processes.

Structure of the paper. We first present the calculus and explain its syntax in
Sect. 2. We then formulate its operational semantics in Sect. 3, which is in-
troduced by both: i) a reduction semantics that models the manipulation of
the component’s structure; and ii) a labeled semantics that models method in-
vocations and channel-based communication. We illustrate the calculus with a
number of examples in Sect. 4 showing, in particular, how various patterns of
evolution of components are captured. Finally, we discuss related work in Sect. 5
and conclude in Sect. 6.

2 Primitives for Components and Evolution

This section presents the primitives we propose for modeling components and
their evolution patterns. The formal semantics will be discussed in the next
section. The syntax of Comp primitives is summarized in Fig. 1. Our syntax is
based on a few syntactic categories (pairwise distinct): names for components,
ranged over by a, b, l, x, names for channels, ranged over by c, d, y, ack, ch, names
for methods, ranged over by m, and process variables, ranged over by X . We
denote with S isolation sets, namely sets of component names that can be of
two kinds: finite sets, represented as {a1, . . . , an} ({a} will be shortened into
a), or sets including all the component names but a finite set, represented as
{a1, . . . , an}.

Our values include component names, channel names and processes, and we
use V to range over values. We use n to range over both component and channel
names. We use J to range over process variables and component and channel
names (assuming in this last case that they are bound by an input or a method
definition).

The main construct of Comp is the component a(S){M}[P], where i) a is
the name of the component; ii) S is the isolation set containing the names of
inner components that are hidden from the environment; iii) M is the set of
methods of the component; and iv) P is the body of the component, containing
its currently running code and its sub-components.

Methods are defined as usual: m(J).P declares a method m with formal pa-
rameter J2 and body P . As already said, J can be a component name, a channel
name, or a process variable.
2 We consider just one parameter, the extension to many parameters is trivial.

170 M. Lienhardt et al.

Component Names a, b, x
Channel Names c, d, y, ack, ch

Process Variables X
Names n ::= a | c
Values V ::= P | n

Placeholders J ::= X | n

Isolation Sets S ::= {a1, . . . , an} | {a1, . . . , an}
Processes P ::= a(S){M}[P] Component

| P | P Parallel Composition

| A.P Action Prefix

| 0 Null Process

| X Process Variable Occurrence

| νn P Restriction

Actions A ::= a m〈V 〉 Method Call

| open S Open

| close S Close

| a in b Move In

| a out b Move Out

| c(J) Message Receive

| c〈V 〉 Message Send

Methods Sets M ::= 0 Empty Methods Set

| m(J).P Method Definition

| M | M Methods Set

Fig. 1. Comp syntax

Processes can perform actions. The main actions are: i) method invocation
a m〈V 〉, that calls the method m of the component a with parameter V (here
V is either a process P , for code injection, a component name b, or a channel
name c); ii) close S, that hides the child components in the isolation set S from
the rest of the system; in particular, close ∅ will make the component a perfect
black-box w.r.t. method invocations; iii) open S, that, on the opposite, reveals
the components in S to the environment; iv) a in b, that puts the component a
inside the parallel component b and v) a out b, that takes the component a that
is inside b, and puts it outside as shown in Fig. 2. The command a(S){M}[P]
creates a new component named a.

Finally, Comp contains several other constructs, standard from process calculi
such as π-calculus [20] and Higher-Order π-calculus [26]: i) 0 is the process with
no behavior (like skip in imperative languages); ii) X is a process variable; iii)
νn P is (channel or component) name restriction, which creates a new name
n; and iv) c(J), c〈V 〉 are input and output primitives for communication on
channels.

As mentioned above, we use channel-based communication, well studied in
process calculi, mainly to model the return statement of object-oriented lan-
guages. Remember that ABS has asynchronous method invocations and the

A Component Model for the ABS Language 171

b

a

a in b
a

a out b
Fig. 2. In and Out primitives

communication of the return value is done using futures [9]. As one can see in the
evolution patterns presented in Sect. 4, most of the occurrences of channel-based
communication are already used for returning values.

Comp has no explicit operator for recursion or replication. However infinite
behaviors can be encoded using higher-order communication or self-invocations
of methods.

Bound names and variables (binders are name restriction, method definitions
and input on channels) can be α-converted as usual. We write n(P) for the
set of names in process P and fn(P) for its set of free names. We restrict our
attention to processes with no free variables. We remark that names in isolation
set {a1, . . . , an} are only a1, . . . , an.

3 Operational Semantics

The operational behavior of a process calculus is usually defined either by means
of a reduction semantics, or by means of a labeled transition semantics. A reduc-
tion semantics typically uses the auxiliary relation of structural congruence, with
which the participants of an interaction are brought into contiguous positions.
This makes it possible to express interaction by means of simple term-rewriting
rules. In a labeled transition semantics, in contrast, interacting parties can be far
away, and the labels of the transition carry the information on the interaction
up in the term, allowing synchronization.

For our calculus, we express component reconfigurations (those derived from
mobility of components and modification of the isolation sets) by means of a
reduction semantics, whereas channel-based interactions and method calls are
described by means of a labeled transition system (LTS). The reason for the
separation is that component reconfiguration is a local activity, whereas chan-
nel/method interaction is global (i.e., components far away can interact). The
semantics of reconfiguration is simpler via a reduction semantics in the same
way as in the Ambient calculus [6], which has inspired our movement primitives,
and has a simple reduction semantics but a complex LTS semantics [19].

We write P → P ′ for an execution step of the process P that is derived using the
reduction semantics, and P

μ−→ P ′ for a step derived using the labeled semantics in
which the label is μ. Finally, � is the union of the two relations → and

μ−→, and �∗

172 M. Lienhardt et al.

is the reflexive and transitive closure of �. The relations → and
μ−→ are presented

in the following two sections.

3.1 Semantics of Reconfiguration

We discuss here the formal semantics of reconfiguration in Comp. As already
said, this consists in defining a structural congruence relation and a reduction
relation →.

Structural congruence. The structural congruence relation is written ≡, and is
defined as the smallest congruence that satisfies the rules presented in Fig. 3. The
structural congruence ≡ is quite standard: the parallel operator is commutative
and associative and has unit 0 for processes and methods, while name restriction
can be extruded if not capturing free names.

P | 0 ≡ P P1 | P2 ≡ P2 | P1 (P1 | P2) | P3 ≡ P1 | (P2 | P3)

M | 0 ≡ M M1 | M2 ≡ M2 | M1 (M1 | M2) | M3 ≡ M1 | (M2 | M3)

Q | νn P ≡ νn (Q | P) if n /∈ fn(Q)

a(S){M}[νn P] ≡ νn (a(S){M}[P]) if n /∈ fn(S) ∪ {a} ∪ fn(M)

Fig. 3. Structural congruence on Comp processes

Reduction rules. The relation → is defined as the smallest relation closed w.r.t.
≡ and α-conversion that validates the rules presented in Fig. 4. The first two
rules describe the manipulation of the program architecture. First, the command
a in b takes two parallel components named a and b respectively and moves a

a in b.P | a(Sa){Ma}[Pa] | b(Sb){Mb}[Pb]→ P | b(Sb){Mb}[Pb | a(Sa){Ma}[Pa]]

a out b.P | b(Sb){Mb}[Pb | a(Sa){Ma}[Pa]]→ P | a(Sa){Ma}[Pa] | b(Sb){Mb}[Pb]

a(S){M}[close S′.P | P ′]→ a(S ∪ S′){M}[P | P ′]

a(S){M}[open S′.P | P ′]→ a(S \ S′){M}[P | P ′]

P → P ′

P | Q → P ′ | Q

P → P ′

νnP → νnP ′
P → P ′

a(S){M}[P]→ a(S){M}[P ′]

Fig. 4. Rules for reconfiguration

A Component Model for the ABS Language 173

inside b. The operator a out b has the opposite behavior, as it takes a component
named b in parallel (i.e. in the same parent component), takes a component
a inside b and puts a outside of it (i.e. in parallel to b). The two following
rules allow to change component visibility. The action close S executed inside a
component a(S′){M}[P] will add S to S′ while open S will remove S from S′.
Since isolation sets are closed under set union and set difference the semantics
of the two primitives is well-defined.

The last three rules are standard closures under parallel composition, name
restriction and component contexts.

How the isolation set S influences the behavior of method calls is described
in the following section.

3.2 Method Invocations and Channel Communications

Method invocations and channel communications are described using an LTS.
The rules for channel communication are entirely standard, following the SOS
style of message-passing calculi such as π-calculus and Higher-Order π-calculus,
as channel-based communications are independent from the component hierar-
chy. Method calls are described by similar rules, which just have one more side
condition that checks whether the method call is allowed to go through the
component boundaries it has to cross.

The label (or action) μ of a transition can be of five different kinds: i) τ , corre-
sponding to an inner step; ii) c(V), corresponding to the sending of the value V
on the channel c; iii) c(V), corresponding to the reception of the value V at the
channel c; iv) a m(V), corresponding to the invocation of the method m of the com-
ponent a with the parameter V ; and v) a m(V), corresponding to the triggering of
method m of component a with the parameter V . To simplify our rules, we note Φ
a label corresponding to a communication on a channel or the inner step τ , and
Ψ(a) a label corresponding to a method call to a component named a.

The relation μ−→ is defined as being the smallest closed relation w.r.t. ≡ and
α-conversion that validates the rules in Fig. 5. The first two rules are the basic
cases of channel communication, while the two following ones deal with the basic
cases of method invocation. We remember that values V can be component or
channel names or processes. Similarly, J is used for denoting either a (bound)
component/channel name or a process variable. The five next rules handle con-
gruence: i) first, we state that the relation is closed w.r.t. parallel composition; ii)
then, communication on channels can freely cross component boundaries; while
iii) method calls to a component b cannot cross a component boundary with b in
its isolation set S; also iv) an inner step is always propagated by components and
v) can cross restrictions. We do not need to add rules for extrusions or propagat-
ing actions through restrictions, since restrictions can always be moved to the
top level. These rules would be needed however, e.g., for defining a bisimilarity-
based abstract semantics. The last rule shows how two processes synchronize
to achieve either a channel communication or a method call (in labels, overline
is only put on subjects for notational convenience), while the last one allows
components to invoke their own methods.

174 M. Lienhardt et al.

c〈V 〉.P c(V)−−−→ P c(J).P
c(V)−−−→ P{V/J} a m〈V 〉.P ′ a m(V)−−−−→ P ′

a(S){m(J).P | M}[P ′]
a m(V)−−−−→ a(S){m(J).P | M}[P ′ | P{V/J}]

P1
μ−→ P2

P1 | P
μ−→ P2 | P

P1
Φ−→ P2

a(S){M}[P1]
Φ−→ a(S){M}[P2]

P1
Ψ(b)−−−→ P2 b �∈ S

a(S){M}[P1]
Ψ(b)−−−→ a(S){M}[P2]

P1
τ−→ P2

νnP1
τ−→ νn P2

P1
μ−→ P2 P ′

1
μ−→ P ′

2

P1 | P ′
1

τ−→ P2 | P ′
2

P1
a m(V)−−−−→ P2

a(S){m(J).P | M}[P1]
τ−→ a(S){m(J).P | M}[P2 | P{V/J}]

Fig. 5. Rules for communication

4 Basic Reconfiguration Patterns

In this section we discuss different basic patterns of reconfiguration, showing
how they can be encoded using Comp primitives.

Adding and removing a component. The two most basic operations to manipulate
a program structure, in addition to the in and out operators, are the addition
and removal of components. The addition of a component is straightforward, as
it corresponds to the creation of a new component. The macro Add(a, S, M, P)
creates a component with name a, isolation set S, set of methods M and body
P :

Add(a, S, M, P) � a(S){M}[P]

The encoding of component removal is more subtle. Instead of destroying the
component, we simply hide it with the insurance that it will never be accessible
again. Macro Remove(a, P) removes component a and then executes continua-
tion process P , that is supposed to notify the environment that the removal has
been performed, i.e. a is not available anymore.

Remove(a, P) � νb(b(∅){0}[0] | a in b.P)

In order to remove a component, the Remove(a, P) process needs to be put in
parallel with the component to be removed:

a(S){M}[Q] | Remove(a, P)

A Component Model for the ABS Language 175

Assuming that the action a in b inside Remove(a, P) is executed, the configu-
ration becomes

νb(b(∅){0}[a(S){M}[Q]] | P)

The macro creates a new black-box component b that no one knows (and thus
no one can modify), then moves the component a inside it and executes con-
tinuation P . Note that b completely hides a and its subcomponents from the
rest of the architecture: a will never be accessible again. Hence, as soon as the
computation inside a finishes, it becomes behaviorally equivalent to 0 and can
be safely garbage collected.

Our definition of component removal intentionally does not destroy the com-
ponent. Indeed, suppose we want to remove the component a so to replace it
with a newer version. The current version of a could be computing some result of
past method calls. Immediately destroying the component a would create some
consistency issues inside the system, as some other computations may be waiting
for the results being computed by a. Our definition ensures that we can replace
a with another component without creating such inconsistencies.

Hiding structure manipulation. It is common practice to isolate the part of
the system one wants to modify prior to its manipulation to prevent possible
interferences. In our case, interferences may emerge because two components
can have the same name: suppose we want to create a component b and move
an existing component a inside of it. The natural approach is to first create
the component b and then move a, but, if another component with name b
already existed, we will have two components with the same name b but possibly
different behavior/structure. Because of the nondeterminism, we cannot ensure
that component a is moved in the newly created component. It may as well
happen that it is moved inside the old one. A simple way to avoid this is to
create a temporary component b′ where we put only the components that are
expected to take part in the reconfiguration, i.e. a and the new b. After the
reconfiguration process terminates, we can put the resulting subsystem back in
place.

We propose here a simple definition of this isolation mechanism. The macro
Hide(a, b, P, ack, P ′) hides the component a, applies to it the reconfiguration
specified by P which notifies its end by sending an output on ack. Upon receipt
of ack the new component b is put in the environment. Finally, process P ′ is
executed to make the environment aware of the end of the reconfiguration.

Hide(a, b, P, ack, P ′) � νb′ (b′(∅){0}[P] | a in b′.ack(x).b out b′.P ′)

An example of usage of the pattern will be discussed in the next paragraph about
component renaming. In our macro definition, channel ack is used to notify when
the reconfiguration specified by P is terminated and the resulting component b
can be released to the environment. In order to avoid interferences this name
should not be used elsewhere, e.g. it may be freshly generated just before the
macro (a bit more care is needed if P is received via a communication).

176 M. Lienhardt et al.

Renaming a component. Since components are identified by their names, re-
naming a component is a useful operation. Also, two components may have the
same name. This raises the possibility of nondeterminism in method invocations
or reconfiguration operations – which might or might not be desired depending
on the situation. Renaming a component can thus be used to create or remove
nondeterminism.

We show below how to define macro Rename(a, b, P), which renames com-
ponent a into b (we assume a and b to be distinct) and executes P to notify
to the environment about the end of the renaming operation. The idea is to
create a new component with name b, with isolation set {a} and with the same
methods as a (we assume to know the interface m1, . . . , mn of the component to
be renamed, i.e. the macro depends on the interface of the component to be
renamed). The behavior of these methods will be just to forward the calls to a.
By moving a into b (thus making a no longer accessible from the environment), b
behaves as a. This concludes the renaming. Remark that the renaming definition
is based on the isolation macro Hide defined above to avoid interferences.

Rename(a, b, P)

� νack Hide(a, b,

�
b(a)

���
m1(x).a m1〈x〉

. . .
mn(x).a mn〈x〉

��� [0] | a in b.ack〈0〉.0

�
, ack, P)

We show now how the renaming of a component works in practice. To simplify
the presentation, we write M for the methods of the component a, and M ′ for
the methods of b, defined as in the definition of the Rename operator.

a(S){M}[P] | Rename(a, b, P ′)
= a(S){M}[P] | νack Hide(a, b, (b(a){M ′}[0] | a in b.ack〈0〉.0), ack, P)

= a(S){M}[P] | νack, b′ (b′(∅){0}[b(a){M ′}[0] | a in b.ack〈0〉.0] |
a in b′.ack(x).b out b′.P ′)

≡ νack, b′ (a(S){M}[P] | b′(∅){0}[b(a){M ′}[0] |
a in b.ack〈0〉.0] | a in b′.ack(x).b out b′.P ′)

→ νack, b′ (b′(∅){0}[a(S){M}[P] | b(a){M ′}[0] |
a in b.ack〈0〉.0] | ack(x).b out b′.P ′)

→ νack, b′ (b′(∅){0}[b(a){M ′}[a(S){M}[P]] | ack〈0〉.0] | ack(x).b out b′.P ′)
τ−→ νack, b′ (b′(∅){0}[b(a){M ′}[a(S){M}[P]]] | b out b′.P ′)

→ νack, b′ (b′(∅){0}[0] | b(a){M ′}[a(S){M}[P]] | P ′)

Wrapping. Wrapping is a key feature in evolvable architectures. The idea of
wrapping is to replace an old component named, for instance, a with a new
component b that exploits a to perform its behavior. One can also imagine that
b changes/extends the behavior of a.

A Component Model for the ABS Language 177

A simple definition of wrapping can be given inspired by the Rename macro
defined above. The main difference is that now the information about the behavior
of component b is needed as a parameter. We call this definition NaifWrap. We
will present a refined definition just after. Macro NaifWrap(a, b(S){M}[P], P ′)
takes a component a and puts it inside the wrapper b, executing then process P ′

to make the environment aware of the completion of the operation. As for the
renaming operation, we assume that names a and b are different.

NaifWrap(a, b(S){M}[P], P ′)

� νack Hide(a, b, (b(S ∪ {a}){M}[P] | a in b.ack〈0〉.0), ack, P ′)

One may also want to wrap a component a using a wrapper with the same name.
In this way in fact an external component will not notice that wrapping has been
performed, and can interact with the wrapper as if it was the old component.
This is particularly useful when one uses wrapping to extend the interface or the
behavior of an existing component.

The naif definition of wrapping above does not work when the wrapper and the
wrapped component have the same name. In this case the code of the wrapper
must be able to call the old component a, but also to perform self-calls. On the
contrary, neither the environment nor the old component a should notice that
the wrapping has been performed. In particular, calls to a in the environment
should activate the wrapper.

For these reasons we propose below a refined definition of wrapping. The new
definition uses both renaming and naif wrap. Macro Wrap(b, a(S){M}[P], P ′)
takes component a and wraps it into a wrapper with the same name, which is
supposed to use b (different from a) to reference the old component.

Wrap(b, a(S){M}[P], P ′)

� νch, ack (Hide(a, a,

	
Rename(a, b, ch〈0〉.0) |

ch(x).NaifWrap(b, a(S){M}[P], ack〈0〉.0)

, ack, P ′))

When the macro is put in parallel with a component a, a is renamed into b and
then wrapped. In the definition, channel ch is used to ensure that renaming of
a has been completed before performing the actual wrapping.

Update. Updating a component means adding to it some new features. This can
be done by adding new methods, new processes or new sub-components.

In Comp, the interface of components is fixed. However adding new methods
can be simulated. In fact, it is a particular case of the wrap operation defined
above.

Adding new processes and sub-components can also be done, using higher-
order communication. This can be programmed in such a way that the updated
component can also perform some check to ensure the validity of the update
before installing it. In particular, the component to be updated should provide
a dedicated method for update. The macro Update(a, P) requiring component
a to install the update P is defined as:

Update(a, P) � a upd〈P 〉

178 M. Lienhardt et al.

and assumes that component a has the form:

a(S){upd(X).X | M}[P ′]

The update mechanism could be used to apply one of the previously discussed
reconfiguration patterns to subcomponents. In fact, the above patterns can be
applied only to parallel components. In case one wants to apply them also to
nested components, the update mechanism could be used to forward downward
the reconfiguration request. For instance, assume that one process in parallel
with a component a wants to rename a component b contained in a to name
c. This could be accomplished by using the update mechanism to send to the
component a the rename macro:

Update(a,Rename(b, c, 0)) | a(S){upd(X).X | M}[b(S′){M ′}[P ′] | P]

A more refined macro Update(a, c, P) may include also a channel name c where
to ask for the credentials of the update. In such a way component a may insert
some code for checking the validity of the update in between the receipt of the
update request and the execution of X .

Links. In many component models in the literature [2,4,23,31], components come
equipped with input ports, output ports, and links connecting input ports to
output ports. In our model methods can be considered as interfaces of an input
port. However, to keep the calculus focused and manageable, we choose not to
include explicit output ports and links as language constructs. Here, we show
that output ports and links can be defined by the calculus, thus enabling the
programmer to exploit them. In particular, different disciplines of linking ports
can be defined and analyzed using the calculus.

The output ports of a component a represent the dependencies that a needs
in order to perform its task. Output ports can be seen in our model as virtual
methods. Connecting one such method mv to a real method mr (typically, from
another component) using a link means that the dependency mv is satisfied by
invoking method mr. In other words, a link acts as a forwarder. We encode a link
between the output port a.mv and the input port a′.mr as a component (named
here b) of the form:

b(∅){0}[a(∅){mv(x).a′ mr〈x〉}[0]]

Each link is a component with its own name, so that it can be referred to, e.g.
remove it when it is no more needed.

We can finally present the macros for creating and deleting links. Macro
Connect(a.mv, a′.mr, b, P) creates a link named b connecting port a.mv to method
a′.mr and executing P upon completion. Macro DisConnect(b, P) removes link
b and executes P upon completion.

Connect(a.mv, a′.mr, b, P) � b(∅){0}[a(∅){mv(J).a′ mr〈J〉}[0]] | P

DisConnect(b, P) � Remove(b, P)

A Component Model for the ABS Language 179

The links defined here are quite primitive, in the sense that they are subject to
interference. However interferences could be avoided. First one would need to
use fresh names to link components. Also, links are attached here to component
names. On one hand this ensures that links are not spoiled by wrapping. On
the other hand, they are spoiled when the target component is renamed. If this
is not the desired behavior, one has to update the links when a component is
renamed. This may require keeping track of all the links referring to a given
component. We do not consider this issue in more detail here.

Distribution. In Comp, there are no dedicated constructs for modeling physical
distribution. However, as we already said, components can also represent physical
locations. We can consider for instance a top-level component representing the
network, and containing a sub-component for each site. The network component
can e.g. be used to implement communication protocols. It can even provide
facilities for deployment and re-deployment of components.

A sample configuration is defined below. It includes two sites, Site1 and
Site2, running processes P1 and P2 respectively. The two sites cannot commu-
nicate through method calls. In fact, each of them can just see the network. The
network however provides an asynchronous communication mechanism, made
available as a global component Net relaying messages from one site to another.
We assume to this end that Site1 (resp. Site2) listens for incoming messages
via method in, and can be reached by calling the method Net toS1〈x〉 (resp.
Net toS2〈x〉) provided by the Net component.

Network(∅){0}[
Site1({Net}){in(x).P ′

1}[P1]
| Site2({Net}){in(x).P ′

2}[P2]
| Net(∅){toS1(x).Site1 in〈x〉 | toS2(x).Site2 in〈x〉}[0]

]

Note that in this example we use the set of names {Net} to specify that both sites
Site1 and Site2 can only communicate with the component Net which encodes
the network protocols. Also, the network protocols defined here are trivial (pure
forwarding), but they can easily be extended to account correctness checking,
buffering or other features.

Re-deployment. Since distribution is defined in terms of our component notion,
and the component hierarchy can be dynamically updated at any moment, we
can exploit our primitives for dynamic re-deployment.

Suppose we have a running system as above, and that we want to move a
component from one location to another, e.g. for efficiency reasons. This can be
obtained by adding to the component Network above some code for performing
re-deployment. A basic example is given below, where we add a method move to
the Network:

Network(∅){move(a, l1, l2).a out l1.a in l2.0}[. . .]

180 M. Lienhardt et al.

Method move takes three parameters, the name a of the component to be moved,
its current location l1 and its destination l2. Simple forms of re-deployment
can be obtained by invoking method Network move with suitable parameters.
Clearly, more refined implementations of primitives for re-deployment are possi-
ble, keeping into account more complex reconfiguration requests or performing
suitable checks on the request and on the state of the system before actually
executing the request.

5 Related Work

Components have been introduced as a new programming paradigm in the
mid-nineties, as a mean to solve several limitations of the object models [31].
One of the main such limitations is the lack of high level operators for adap-
tation/evolution, as motivated in [24,25]. Nowadays, many component models
exist, distinguished by their definition of the component structure and by the
operations provided on them. For instance, the OSGi component model [2] de-
veloped by IBM defines its components as a set of objects and classes with some
extra information, as which services the component provides, and on which ser-
vices it depends on. This model thus allows one to add components at runtime,
with a constraint solver that checks and solves the dependencies of the added
component. Let us note that components in OSGi can only be assembled in a flat
structure, while in Fractal [4], developed by INRIA and France-Telecom, they
can be assembled into a tree structure. But in contrast to OSGi, in Fractal, the
programmer must explicitly specify how the dependencies are solved by using
bindings, similar to the links presented in our examples.

The main focus of these component models, as well as for many others, like
COM [8], Java Beans [30], Appia [21], Click [23], Coyote [3] or Dream

[14], is practical and implementation support for code packaging and wiring of
components (for instance, OSGi is the basis of the Eclipse IDE and its plugin
mechanism). Some of the component models allow evolution steps for the com-
ponents, but do not provide formally defined operators to reason about these
steps. Indeed, to meet practical requirements, the models are tied to large pro-
gramming languages and come together with complex APIs. This makes them
inappropriate for the formal investigation of dynamic evolution steps in the con-
text of ABS models. Moreover, even if many of the models are based on an
object-oriented language, none of them are concerned with the dynamic behav-
ior or describe the interaction between components and objects. For instance,
the Fractal model states that communication between components can only
occur by using the input and output ports. But because of its implementation
in Java, it is possible to use the objects and their methods to make components
communicate without an explicit use of ports. Our approach aims to solve these
two problems: as our model is defined in the process calculus style it has a precise
semantics, and we designed our components to be an extension of ABS object
groups, with additional isolation and mobility capabilities: hence the interactions
between components and objects are naturally described in our model.

A Component Model for the ABS Language 181

A few component models are formally defined, most of them in the process
calculus style. There are, for instance, the M-calculus [28] and the kell-calculus
[29], both inspired by Fractal. Other calculi, like the different flavors of the
Ambient calculus [6,32,16,5], the join-calculus [11] or the seal calculus [7] use
named boxes as a means to structure the program into a tree hierarchy. Moreover,
some of these calculi use this structure to control communication and to enable
adaptation through the modification of the program structure. Finally, in Oz/K

[17], the authors have proposed a core programming language with components
as a main feature. These component models, being formally defined, are a better
fit for ABS than the previous ones, but still have several limitations. First, only
Oz/K integrates objects in its model. The other proposals do not provide any
description of how components and objects interact (actually, many of them
have no concept of object at all) and so cannot be directly integrated with ABS.
Moreover, Oz/K has quite a complex communication pattern, and deals with
adaptation via the use of passivation, which, as suggested by [15], is a too high
level operation to hope for any tool to help proving behavioral properties. Our
model is by design simple and close to objects so to solve by construction the
limitations of existing formal component models described above.

6 Conclusion

In this paper we have presented Comp, a component model designed to be
easily integrated into an object-oriented language like ABS, and defined with a
formal semantics in order to be a basis for proofs of correctness and behavioral
properties. We also put our model at work on a set of simple patterns for dynamic
reconfiguration, showing e.g. that component removal, update and wrapping can
easily be defined using the primitives that we propose.

The work presented here opens many possibilities for further development.
First, we want a full integration between Comp and ABS. We expect no major
difficulties, since Comp has been developed with this aim in mind, and compo-
nents are designed as extended objects, but a few technical steps are required.
First, the semantics of ABS is defined in a purely rewriting style, thus we should
adapt the Comp semantics. Then one has to add component definitions by in-
stantiation of suitable component classes (extending object classes). Finally,
communication patterns based on channels have to be reformulated in terms
of asynchronous method calls and futures.

Another important but orthogonal task that we plan to investigate is a type
system for Comp. The main point here is the trade-off between the strong
guarantees that the type system should provide (e.g., in terms of absence of
message-not-understood errors), and the possibility of typing evolution steps
able to change the structure of components.

A last point to be investigated is the introduction of error handling and com-
pensations in the model. This would allow one to manage errors (due, e.g., to
inconsistent reconfigurations) ensuring that the whole system can reach a con-
sistent state. Such an approach is under analysis in ABS, but we plan to extend

182 M. Lienhardt et al.

it to deal with components. In particular, the hierarchy of components may
be used as hierarchy for error management. Also, compensations may allow to
locally manage the effect of a global reconfiguration.

References

1. Ahrendt, W., Dylla, M.: A system for compositional verification of asynchronous
objects. Science of Computer Programming (2010) (in press)

2. OSGi Alliance. Osgi Service Platform, Release 3. IOS Press, Inc., Amsterdam
(2003)

3. Bhatti, N.T., Hiltunen, M.A., Schlichting, R.D., Chiu, W.: Coyote: A system for
constructing fine-grain configurable communication services. ACM Trans. Comput.
Syst. 16(4) (1998)

4. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.-B.: The Frac-
tal Component Model and its Support in Java. Software - Practice and Experi-
ence 36(11-12) (2006)

5. Bugliesi, M., Castagna, G., Crafa, S.: Access control for mobile agents: the calculus
of boxed ambients. ACM. Trans. Prog. Languages and Systems 26(1) (2004)

6. Cardelli, L., Gordon, A.D.: Mobile Ambients. Theoretical Computer Science 240(1)
(2000)

7. Castagna, G., Vitek, J., Nardelli, F.Z.: The Seal calculus. Inf. Comput. 201(1)
(2005)

8. Coulson, G., Blair, G., Grace, P., Joolia, A., Lee, K., Ueyama, J.: OpenCOM v2:
A Component Model for Building Systsms Software. In: Proceedings of IASTED
Software Engineering and Applications, SEA 2004 (2004)

9. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007)

10. Full ABS Modeling Framework, Deliverable 1.2 of project FP7-231 620 (HATS)
(March 2011), http://www.hats-project.eu

11. Fournet, C., Gonthier, G.: The join calculus: A language for distributed mobile
programming. In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds.) APPSEM
2000. LNCS, vol. 2395, pp. 268–332. Springer, Heidelberg (2002)

12. European Project HATS, http://www.hats-project.eu

13. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)

14. Leclercq, M., Quema, V., Stefani, J.-B.: DREAM: a Component Framework for the
Construction of Resource-Aware, Configurable MOMs. IEEE Distributed Systems
Online 6(9) (2005)

15. Lenglet, S., Schmitt, A., Stefani, J.-B.: Howe’s Method for Calculi with Passivation.
In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 448–
462. Springer, Heidelberg (2009), doi:10.1007/978-3-642-04081-8 30

16. Levi, F., Sangiorgi, D.: Mobile safe ambients. ACM. Trans. Prog. Languages and
Systems 25(1) (2003)

17. Lienhardt, M., Schmitt, A., Stefani, J.-B.: Oz/k: A kernel language for component-
based open programming. In: GPCE 2007: Proceedings of the 6th International
Conference on Generative Programming and Component Engineering, pp. 43–52.
ACM, New York (2007)

http://www.hats-project.eu
http://www.hats-project.eu

A Component Model for the ABS Language 183

18. Liu, X., Kreitz, C., van Renesse, R., Hickey, J., Hayden, M., Birman, K., Consta-
ble, R.: Building Reliable, High-Performance Communication Systems from Com-
ponents. In: Proceedings of the 1999 ACM Symposium on Operating Systems Prin-
ciples, Kiawah Island, SC (December 1999)

19. Merro, M., Nardelli, F.Z.: Behavioral theory for mobile ambients. J. ACM 52(6),
961–1023 (2005)

20. Milner, R., Parrow, J., Walker, J.: A calculus of mobile processes, I and II. Inform.
and Comput. 100(1), 1–40, 41–77 (1992)

21. Miranda, H., Pinto, A.S., Rodrigues, L.: Appia: A flexible protocol kernel support-
ing multiple coordinated channels. In: 21st International Conference on Distributed
Computing Systems (ICDCS 2001). IEEE Computer Society, Los Alamitos (2001)

22. Montesi, F., Sangiorgi, D.: A model of evolvable components. In: Wirsing, M.,
Hofmann, M., Rauschmayer, A. (eds.) TGC 2010, LNCS, vol. 6084, pp. 153–171.
Springer, Heidelberg (2010), doi:10.1007/978-3-642-15640-3 11

23. Morris, R., Kohler, E., Jannotti, J., Frans Kaashoek, M.: The Click Modular
Router. In: ACM Symposium on Operating Systems Principles (1999)

24. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evo-
lution. In: Proceedings of the 20th International Conference on Software Engi-
neering, ICSE 1998, pp. 177–186. IEEE Computer Society, Washington, DC, USA
(1998)

25. Oreizy, P., Medvidovic, N., Taylor, R.N.: Runtime software adaptation: framework,
approaches, and styles. In: Companion of the 30th International Conference on
Software Engineering, ICSE Companion 2008, pp. 899–910. ACM, New York (2008)

26. Sangiorgi, D.: From pi-calculus to higher-order pi-calculus - and back. In: Gaudel,
M.-C., Jouannaud, J.-P. (eds.) CAAP 1993, FASE 1993, and TAPSOFT 1993.
LNCS, vol. 668, pp. 151–166. Springer, Heidelberg (1993)

27. Schäfer, J., Poetzsch-Heffter, A.: Jcobox: Generalizing active objects to concurrent
components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299.
Springer, Heidelberg (2010)

28. Schmitt, A., Stefani, J.-B.: The M-calculus: A Higher-Order Distributed Process
Calculus. In: Proceedings 30th Annual ACM Symposium on Principles of Program-
ming Languages, POPL (2003)

29. Schmitt, A., Stefani, J.-B.: The Kell Calculus: A Family of Higher-Order Dis-
tributed Process Calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS,
vol. 3267, pp. 146–178. Springer, Heidelberg (2005)

30. Sun Microsystems. JSR 220: Enterprise JavaBeans, Version 3.0 – EJB Core Con-
tracts and Requirements (2006)

31. Szyperski, C.: Component Software, 2nd edn. Addison-Wesley, Reading (2002)
32. Teller, D., Zimmer, P., Hirschkoff, D.: Using Ambients to Control Resources. In:

Brim, L., Jančar, P., Křet́ınský, M., Kučera, A. (eds.) CONCUR 2002. LNCS,
vol. 2421, pp. 288–303. Springer, Heidelberg (2002)

Compositional Algorithmic Verification

of Software Product Lines�

Ina Schaefer1, Dilian Gurov2, and Siavash Soleimanifard2

1 Technische Universität Braunschweig, Germany
i.schaefer@tu-braunschweig.de

2 Royal Institute of Technology, Stockholm, Sweden
{dilian,siavashs}@csc.kth.se

Abstract. Software product line engineering allows large software sys-
tems to be developed and adapted for varying customer needs. The prod-
ucts of a software product line can be described by means of a hierarchical
variability model specifying the commonalities and variabilities between
the artifacts of the individual products. The number of products gen-
erated by a hierarchical model is exponential in its size, which poses a
serious challenge to software product line analysis and verification. For
an analysis technique to scale, the effort has to be linear in the size of
the model rather than linear in the number of products it generates.
Hence, efficient product line verification is only possible if compositional
verification techniques are applied that allow the analysis of products to
be relativized on the properties of their variation points. In this paper,
we propose simple hierarchical variability models (SHVM) with explicit
variation points as a novel way to describe a set of products consisting
of sets of methods. SHVMs provide a trade–off between expressiveness
and a clean and simple model suitable for compositional verification. We
generalize a previously developed compositional technique and tool set
for the automatic verification of control–flow based temporal safety prop-
erties to product lines defined by SHVMs, and prove soundness of the
generalization. The desired property relativization is achieved by intro-
ducing variation point specifications. We evaluate the proposed technique
on a number of test cases.

1 Introduction

System diversity is prevalent in modern software systems. Systems simultane-
ously exist in many different variants in order to adapt to their application con-
text. Software product line engineering [23] aims at developing a set of systems
variants with well-defined commonalities and variabilities by managed reuse in
order to decrease time to market and to improve quality. During family engi-
neering reusable core artifacts are developed, that are used to realize the actual
products during application engineering.
� This work has been partially supported by the Deutsche Forschungsgemeinschaft
(DFG) and the EU project FP7-231620 HATS.

B.K. Aichernig, F.S. de Boer, and M.M. Bonsange (Eds.): FMCO 2010, LNCS 6957, pp. 184–203, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Compositional Algorithmic Verification of Software Product Lines 185

The variability of the artifacts used for building a software product line can
be described by a hierarchical variability model. In this model, on each level of
hierarchy the commonalities of the product artifacts are specified in a common
core, while the variabilities are represented by explicit variation points. Each
variation point is associated with a set of variants that represent choices for
realizing the variation points in different products. A variant can itself contain
commonalities defined in a common core and variabilities specified by variation
points introducing a new level of hierarchy.

Product line verification typically aims at establishing that all products of
a product line satisfy a desired set of properties. The number of products de-
fined by a hierarchical variability model is exponential in the size of the model.
This explosion poses serious problems to ensuring the critical product require-
ments by static analysis or other formal verification techniques, and can render
infeasible the verification of product lines by verifying all products individually.
Formal verification techniques will only scale if their complexity is linear in the
size of the hierarchical variability model rather than linear in the number of
products. In order to achieve this scalability, these techniques have to be com-
positional, allowing to relativize the product properties towards properties of
variation points.

In this paper, we generalize a previously developed compositional verifica-
tion technique (and the corresponding tool set) for the automatic verification of
control–flow based temporal safety properties [13,15] to the compositional ver-
ification of hierarchically defined product lines. We propose simple hierarchical
variability models (SHVM) as a novel way to specify the variability of product
artifacts. SHVMs provide a clean and simple model facilitating compositional
verification, while they are still sufficiently expressive for capturing variability.
In this work, product artifacts consist of sets of public and private methods. In an
SHVM, the artifact variability is defined by common core methods and explicit
variation points on different hierarchical levels. The properties that can be han-
dled fully automatically specify illegal sequences of method invocations, such as
improper usage of API methods, in terms of temporal logic formulas, abstracting
from the computed data. Compositionality, and the ability to relativize global
SHVM properties on local assumptions for the core methods and the variation
points, is achieved by means of maximal flow graphs that are derived algorith-
mically from the local assumptions. The flow graphs replace the assumptions
when verifying global properties. The local specifications of core methods are
verified by extracting flow graphs from the method implementations and model
checking the induced behaviors against their specification.

The presented approach is one of the first compositional verification tech-
niques for software product lines. It allows to guarantee efficiently that all prod-
ucts of a product line satisfy certain desired control–flow based safety properties.
With respect to model checking behavioral properties of product lines, only Blun-
dell et al. [4] and Liu et al. [20] propose compositional verification techniques
based on assume–guarantee style reasoning for product features. Other model
checking approaches for product lines [8,10,18,5] use a monolithic model of the

186 I. Schaefer, D. Gurov, and S. Soleimanifard

complete product line such that they face severe state–space explosion problems
since all possible products are analyzed in the same analysis step.

The paper is organized as follows. In Section 2, we present SHVMs to hi-
erarchically represent product lines. In Section 3, we describe the foundations
of our compositional verification technique. In Section 4, we present the com-
positional verification procedure for product lines and prove its soundness. In
Section 5, we present tool support and an evaluation of the compositional veri-
fication technique. In Section 6, we review related work and conclude the paper
in Section 7.

2 Hierarchical Variability Modelling

A product in the context of this work is defined by a set of methods. Products
are not necessarily closed, i.e., they may still require additional methods such
as API methods. A method m from a set of methods Meth is understood as a
method definition, consisting of a method name, the types of the return value
and the parameters, and its implementation (method body). The methods of
a product are partitioned into public and private methods. Public methods are
visible to the outside of the product, while private methods are only visible within
products and can be viewed as a means of implementing the public methods.
For a product, the methods defined in the product are called provided, while the
called methods that are not provided themselves are referred to as required.

A product line PL is defined as a set of method sets PL ⊆ 2Meth and can
be represented by a hierarchical variability model, with the common methods of
all products captured by a core set of methods separated into public and pri-
vate methods. The differences between the products are represented by variation
points. To each variation point, a set of variants is attached. The variants rep-
resent different possibilities to realize the variability described by this variation
point. A variant can either comprise a set of core methods or be a hierarchical
variability model itself, i.e., consisting of core set of methods and a set of varia-
tion points. A product is derived by resolving the variabilities, i.e., by selecting
variants at the variation points on all levels of hierarchy. An example is given
later in this section in Figure 1.

Hierarchical variability modeling captures the variability of the artifacts that
are used to build the products, called solution space variability in [7]. In this
work, hierarchical variability modeling describes the variability of the methods
implementing single products. This is in contrast to problem space variablity [7]
which is mainly represented in terms of product features. Product features de-
note a user-visible product functionality and are merely labels without inherent
semantical meaning. The valid combinations of product features can be described
by feature models [16] and correspond to the valid member products. The tree-
hierarchy in feature models usually describes the sub/super-feature relationship
between product features, while the hierarchy in hiearchical variability models
refers to the commonality and variability of the solution space artifacts.

Compositional Algorithmic Verification of Software Product Lines 187

In this paper, we introduce a variant of the hierarchical variability modelling
approach called simple hierarchical variability model (SHVM). An SHVM is a
hierarchical variability model that requires exactly one variant to be selected
at each variation point to obtain a product. In an SHVM, there is no means
for defining constraints between different variants and variation points to rep-
resent that the selection of a variant at one variation point requires a specific
variant at another variation point to be selected, thus restricting the number of
derivable products. These simplifications constitute a trade–off between provid-
ing an expressive representation of product variability and a clean model that
allows straight–forward application of the compositional verification procedure
described in Section 4. This trade–off is discussed at the end of this section.

Definition 1 (Simple Hierarchical Variability Model). A simple hierar-
chical variability model (SHVM) S is inductively defined as:

(i) a ground model consisting of a core set of methods MC = (Mpub ,Mpriv),
partitioned into public and private methods Mpub ,Mpriv ⊆ Meth, or

(ii) a pair (MC , {VP1, . . . ,VPN}), where MC is defined as above and where
{VP1, . . . ,VPN} is a non-empty set of variation points. A variation
point VP i = {Si,j | 1 ≤ j ≤ ki} is a non–empty set of SHVMs. The mem-
bers of a variation point are called variants.

The variant interface of a pair (MC , {VP1, . . . ,VPN}) is defined as a pair of
public required and public provided methods. The set of public provided methods
is the union of all sets of public provided methods in the core methods and the
variation points. The set of public required methods is the union of all sets of
public methods required by the core methods and by the variation points without
the methods provided by the core methods or another variation point.

We assume the following two well–formedness constraints on SHVMs. First,
all variants attached to a variation point have to provide and require the same
sets of public methods. This pair of public required and provided methods is
called the variation point interface. The constraint guarantees that all variants
offer the same functionality in terms of the provided public methods while the
implementation of the public methods may differ in the variant’s private meth-
ods. Second, in order to enforce that a derivable product does not contain several
methods with the same name, it is required that the provided methods in each
variation point interface are disjoint from each other and the core method set.

Example 1. As a running example throughout this paper, we consider a product
line of cash desks that is a simplified version of the trading system product line
case study proposed in [24]. The cash desks process purchases by retrieving the
prices for all items to be purchased and calculating the total price. After the
customer has paid, a receipt is printed and the stock is updated accordingly.
The commonality of all cash desks is that every purchase is processed following
the same process. However, the cash desks differ in the way how the items are
entered. Some cash desks allow entering products using a keyboard, others only
provide a scanner, and a third group provides both options which can be chosen

188 I. Schaefer, D. Gurov, and S. Soleimanifard

Keyboard Scanner

enterProd()

useScanner()

writeReceipt()
updateStock()

sale()

enterProd()

CardCash

payment()payment()

cashPay()

CashOrCard

enterProd() payment()

@EnterProducts

cashPay()

cardPay()
enterCard()
cardPay()

useKeyboard()
enterCard()

KeyboardOrScanner

CashDesk

useKeyboard()
useScanner()

@Payment

Fig. 1. The Cashdesk SHVM

by the cashier. Payment at some cash desks can only be made in cash. Other
cash desks only accept credit cards, while a third group allows the choice between
cash and credit card payment. This set of cash desks is defined by an SHVM as
follows:

CashDesk = (({sale} , {updateStock, writeReceipt}),
{@EnterProducts, @Payment})

where @EnterProducts= {Keyboard, Scanner, KeyboardOrScanner}
@Payment = {Cash, Card, CashOrCard}

and Keyboard = ({enterProd} , {useKeyboard})
Scanner = ({enterProd} , {useScanner})

KeyboardOrScanner= ({enterProd} , {useScanner, useKeyboard})
Cash = ({payment} , {cashPay})
Card = ({payment} , {enterCard, cardPay})

CashOrCard = ({payment} , {cashPay, enterCard, cardPay})
The common purchase process of all cash desks is modeled by the public core
method sale. The private methods updateStock and writeReceipt represent
internal details of the sale process. The two variation points @EnterProducts
and @Payment represent the variabilities of the cash desks. The variation point
@EnterProducts has the associated variants Keyboard, Scanner and Keyboard-
OrScanner for entering product by keyboard, by scanner or providing both op-
tions. Both provide the public method enterProd that is internally realized by
the different private methods useKeyboard, useScanner or their combination.
Similarly, the variation point @EnterProducts has the associated variants Cash,
Card and CashOrCard that provide the public method payment which is inter-
nally realized by different private methods in the respective variants.

An SVHM can be seen as a tri–partite directed graph having an SHVM–node
as root, where SHVM–nodes have one core methods leaf child (split in public

Compositional Algorithmic Verification of Software Product Lines 189

and private methods) and optional VP–node children that have two or more
SHVM–node children. For the cashdesk example, a graphical presentation is
shown in Figure 1. In the figure, SHVM-nodes are depicted by rounded boxes,
core methods nodes by ovals, and VP–nodes by diamonds. The dotted rounded
boxes depict what we call modules of the SHVM, defining the boundaries between
SHVMs at different levels of hierarchy. The size of an SHVM is defined as the
number of modules in its graph.

An SHVM induces a set of products P through all possible ways of resolving
the variabilities of the SHVM. Variability resolution means to recursively select
exactly one variant for each variation point. The set of products induced by a
ground model containing only core methods is the singleton set comprising the
set of core methods (and, thus, representing one product). The set of products
induced by a variation point is the union of the product sets induced by its
variants. Finally, the set of products induced by an SHVM with a non–empty
set of variation points is the set of all products consisting of the core methods
and of exactly one product from the set induced by each variation point.

Definition 2 (Variability Resolution). Let S be an SHVM as defined above.
The set products(S) ⊆ 2Meth induced by S is inductively defined as follows:

products(MC) = {MC}
products(VP) =

⋃
S∈VP products(S)

products(MC , {VP1, . . . ,VPN}) =
{
MC ∪

⋃
1≤i≤N Mi | Mi ∈ products(VP i)

}
Example 2. The SHVM defined in Example 1 induces the products:

products(CashDesk) = {P1, P2, P3, P4, P5, P6, P7, P8, P9}

where:

P1 =
{
sale, updateStock, writeReceipt, enterProdKeyboard,
useKeyboard, paymentCash, cashPay

}

P2 =
{
sale, updateStock, writeReceipt, enterProdScanner,
useScanner, paymentCash, cashPay

}

P3 =
{
sale, updateStock, writeReceipt, enterProdKeyboardOrScanner,
useKeyboard, useScanner, paymentCash, cashPay

}

P4 =
{
sale, updateStock, writeReceipt, enterProdKeyboard,
useKeyboard, paymentCard, enterCard, cardPay

}

P5 =
{
sale, updateStock, writeReceipt, enterProdScanner,
useScanner, paymentCard, enterCard, cardPay

}

P6 =
{
sale, updateStock, writeReceipt, enterProdKeyboardOrScanner,
useKeyboard, useScanner, paymentCard, enterCard, cardPay

}

P7 =
{
sale, updateStock, writeReceipt, enterProdKeyboard,
useKeyboard, paymentCashOrCard, cashPay, enterCard, cardPay

}

190 I. Schaefer, D. Gurov, and S. Soleimanifard

P8 =
{
sale, updateStock, writeReceipt, enterProdScanner,
useScanner, paymentCashOrCard, cashPay, enterCard, cardPay

}

P9 =

⎧⎨
⎩
sale, updateStock, writeReceipt, enterProdKeyboardOrScanner,
useKeyboard, useScanner, paymentCashOrCard,
cashPay, enterCard, cardPay

⎫⎬
⎭

To disambiguate methods with the same name, but coming from different vari-
ants, we add as subscript the name of the parent SHVM–node, for instance,
enterProdKeyboard refers to the method enterProd of the variant Keybord.

For a given SHVM, let AND and OR denote the maximal branching factors at
SHVM and variation point nodes, respectively, and let ND be its nesting depth.

The number of products induced by the SHVM is bound by OR
AND·(ANDND−1)

AND−1 and
is thus exponential in the size of the SHVM, which is bound by (OR·AND)(ND+1)−1

OR·AND−1 .
These bounds are obtained in a routine fashion by solving the corresponding
recurrence relations. Notice that in SHVMs with a small nesting depth as in
the example above, the exponential blow–up in the number of products is not
observed: With branching factors of 3 and a nesting depth of 1, we have at most
9 products, but 7 modules. However, adding just another level of hierarchy, e.g.,
variability in the accepted type of cards, immediately results in an explosion (see
Section 5).

SHVMs are a simplification of hierarchical variability modeling supporting a
straight-forward application of compositional reasoning with the following con-
sequences to the expressiveness for product variability. In SHVMs, exactly one
variant has to be selected at every variation point. If a combination of vari-
ants (including optional variants) should be selectable, the combination has to
be modeled as an additional variant associated to this variation point. In most
cases (and also in the example in this section), combinations of variants require
additional glue code for the cooperation of the different behaviors such that com-
binations have to be represented as separate variants anyway. SHVMs do not
allow requires/excludes constraints between variants. These constraints restrict
the set of possible products that can be derived from a hierarchical variability
model. The removal of these constraints results in an SHVM which defines prod-
ucts that would not exist otherwise. The requirement that all variants associated
to a variation point have the same interface restricts the method variability of
the variants. This can be alleviated to some extend by adding required methods
to the interface, although they are not called by the variant, and adding dummy
implementations for provided methods.

3 A Framework for Compositional Verification

This section outlines the theoretical framework for verification of temporal safety
properties upon which our compositional verification technique for product lines
(described in the next section) is based. It relies on our earlier work on compo-
sitional verification (see e.g. [13,12]).

Compositional Algorithmic Verification of Software Product Lines 191

Program Model. In order to reason algorithmically about sequences of method
invocations, we abstract the set of methods defining our program by ignoring all
data. An initialized model serves as an abstract representation of a program’s
structure and behavior.

Definition 3 (Model). A model is a (Kripke) structure M = (S, L,→, A, λ)
where S is a set of states, L a set of labels, →⊆ S × L × S a labeled transition
relation, A a set of atomic propositions, and λ : S → P(A) a valuation, assigning
to each state s the set of atomic propositions that hold in s. An initialized model
is a pair (M, E) with M a model and E ⊆ S a set of initial states.

A method graph is an instance of an initialized model which is obtained by
ignoring all data from a method implementation. A flow graph is a collection of
method graphs, one for each method of the program. It is a standard model for
the analysis of control flow based properties, see e.g. [3].

Definition 4 (Method graph). Let Meth be a countably infinite set of meth-
ods names. A method graph for method m ∈ Meth over a set of method names
M ⊆ Meth is an initialized model (Mm, Em) where Mm = (Vm, Lm,→m

, Am, λm) is a finite model and Em ⊆ Vm is a non-empty set of entry points
of m. Vm is the set of control nodes of m, Lm = M ∪ {ε}, Am = {m, r}, and
λm : Vm → P(Am) so that m ∈ λm(v) for all v ∈ Vm (i.e., each node is tagged
with its method name). The nodes v ∈ Vm with r ∈ λm(v) are return points.

Note that methods according to the above definition can have multiple entry
points. Flow graphs that are extracted from a program source have single entry
points, but the maximal models that we generate for compositional verification
can have multiple entry points.

Every flow graph G is equipped with an interface I = (I+, I−), denoted G : I,
where I+, I− ⊆ Meth are the provided and externally required methods, respec-
tively. Interfaces are needed when constructing maximal flow graphs. A flow
graph is closed if its interface does not require any methods, and it is open oth-
erwise. Flow graph composition is defined as the disjoint union & of their method
graphs.

Example 3. Figure 2 shows a simple Java class and the (simplified) flow graph
it induces. It consists of two method graphs, for method even and method odd,
respectively. Entry nodes are depicted as usual by incoming edges without source.
Its interface is ({even, odd}, ∅), thus the flow graph is closed.

Flow graph behavior is also defined as an instance of an initialized model, induced
through the flow graph structure. We use transition label τ for internal transfer
of control, m1 call m2 for the invocation of method m2 by method m1 when
method m2 is provided by the program and m1 call! m2 when method m2 is
external, and m2 ret m1 respectively m2 ret? m1 for the corresponding return
from the call.

Definition 5 (Behavior). Let G = (M, E) : (I+, I−) be a flow graph such that
M = (V, L,→, A, λ). The behavior of G is defined as an initialized model b(G) =

192 I. Schaefer, D. Gurov, and S. Soleimanifard

v5

v6

v7

v1

v3 v9

v0

v2

v4 v8
r rrr

Fig. 2. A simple Java class and its flow graph

(Mb, Eb), where Mb = (Sb, Lb,→b, Ab, λb), such that Sb = (V ∪ I−) × V ∗, i.e.,
states are pairs of control points v or required method names m, and stacks σ,
Lb = {m1 k m2 | k ∈ {call, ret}, m1, m2 ∈ I+} ∪ {m1 call! m2 | m1 ∈ I+, m2 ∈
I−} ∪ {m2 ret? m1 | m1 ∈ I+, m2 ∈ I−} ∪ {τ}, Ab = A, λb((v, σ)) = λ(v) and
λb((m, σ)) = m, and →b⊆ Sb × Lb × Sb is defined by the following rules:

[transfer] (v, σ) τ−→(v′, σ) if m ∈ I+, v
ε−→mv′, v |= ¬r

[call] (v1, σ) m1 call m2−−−−−−−→(v2, v
′
1 · σ) if m1, m2 ∈ I+, v1

m2−−→m1v
′
1, v1 |= ¬r,

v2 |= m2, v2 ∈ E

[ret] (v2, v1 · σ) m2 ret m1−−−−−−→(v1, σ) if m1, m2 ∈ I+, v2 |= m2 ∧ r, v1 |= m1

[call!] (v1, σ) m1 call! m2−−−−−−−→(m2, v
′
1 · σ) if m1 ∈ I+, m2 ∈ I−, v1

m2−−→m1v
′
1, v1 |= ¬r

[ret?] (m2, v1 · σ) m2 ret? m1−−−−−−−→(v1, σ) if m1 ∈ I+, m2 ∈ I−, v1 |= m1

The set of initial states is defined by Eb = E×{ε}, where ε denotes the empty
sequence over V ∪ I−.

Notice that return transitions always hand back control to the caller of the
method. Calls to external methods are modeled with an intermediate state,
from which only an immediate return is possible. In this way possible callbacks
from external methods are not captured in the behavior. This simplification is
justified, since we abstract away from data in the model and the behavior is
thus context–free, but has to be kept in mind when writing specifications; in
particular one cannot specify that callbacks are not allowed.

Example 4. Consider the flow graph of Example 3. One example run through its
(branching, infinite–state) behavior, from an initial to a final configuration, is:

(v0, ε)
τ−→(v1, ε)

τ−→(v2, ε)
even call odd−−−−−−−−→(v5, v3)

τ−→(v6, v3)
τ−→

(v8, v3)
odd ret even−−−−−−−→(v3, ε)

Now, consider just the method graph of method even as an open flow graph,
having interface ({even}, {odd}). The local contribution of method even to the
above global behavior is the following run:

Compositional Algorithmic Verification of Software Product Lines 193

(v0, ε)
τ−→(v1, ε)

τ−→(v2, ε)
even call! odd−−−−−−−→(odd, v3)

odd ret? even−−−−−−−→(v3, ε)

An alternative way to express flow graph behavior is by means of pushdown
systems (PDS). We exploit this by using pushdown system model checking to
verify behavioral properties, see [25].

We refine this program model to allow an explicit partitioning of method
names into public and private ones, and introduce the notions of public interface
and public behavior in order to abstract away from private methods which are
used as a means of implementing the desired public behavior. On the flow graph
level, such an abstraction is accomplished through inlining of private methods.
For details the reader is referred to [13].

Specification. The specification language for behavioral properties we use here is
the safety–fragment of Linear Temporal Logic (LTL) that uses the weak version
of until1.

Definition 6 (Safety LTL). The formulae of sLTL are inductively defined by:

φ ::= p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | X φ | G φ | φ1 W φ2

where p ∈ Ab denotes the set of atomic propositions.

Satisfaction on states (Mb, s) |= φ is defined in the standard fashion (see
e.g. [28]) as validity of φ over all runs starting from state s ∈ Sb in model
Mb. For instance, formula X φ holds of state s in model Mb if φ holds in the
second state of every run starting from s, while φ W ψ holds in s if for every run
starting in s, either φ holds in all states of the run, or ψ holds in some state of
the run and φ holds in all previous states. Satisfaction of a formula φ in flow
graph G with behavior b(G) = (Mb, Eb) is defined as satisfaction of φ on all
initial states s ∈ Eb.

Satisfaction is generalized on product lines in the obvious way: A product line
described by a variability model S satisfies a formula φ if the behavior b(Gp) of
the flow graph Gp of every product p ∈ products(S) satisfies φ.

Compositional Verification. Our method for compositional verification is based
on the construction of maximal flow graphs for properties of sets of methods. For
a given property ψ and interface I consisting of provided and required methods,
consider the class of all flow graphs with interface I satisfying ψ. A maximal
flow graph for ψ and I is a flow graph Max(ψ, I) that satisfies exactly those
properties that hold for all members of the class. Thus, the maximal flow graph
can be used as a representative of the class for the purpose of checking properties.
Using maximal models for compositional verification was first proposed in [11]
for finite–state systems, and was generalized for flow graphs in [13,12].
1 The theoretical underpinings of our compositional verification framework are actu-
ally based on a slightly more expressive specification language, namely simulation
logic, the fragment of the modal μ–calculus [17] with boxes and greatest fixed–points
only (for details see again [13]).

194 I. Schaefer, D. Gurov, and S. Soleimanifard

The main principle of compositional verification based on maximal flow graphs
can be presented, for a system that is partitioned into k sets of methods, as a
proof rule with k + 1 premises:

⊎
i=1,...,k

Gi |= φ

G1 |= ψ1 · · · Gk |= ψk

⊎
i=1,...,k

Max(ψi, Ii) |= φ

(1)

The principle states that the composition of the sets of methods with the respec-
tive interfaces G1 : I1, ...,Gk : Ik satisfies a global property φ if for some local
properties ψi satisfied by the corresponding sets of methods Gi, the composition
of the maximal flow graphs for ψi and Ii satisfies property φ.

As we prove in [13], the rule is sound and complete when interfaces describe
all provided and required methods, and is sound in the context of the private
method abstraction mentioned earlier.

4 Compositional Verification of SHVMs

In this section we propose a compositional reasoning approach that is linear in
the number of modules in the SHVM description of the product line, rather than
linear in the number of generated products (which is exponential in the number
of modules). This approach is an instantiation of the compositional verification
principle presented above to SHVMs.

For every module (MC , {VP1, . . . ,VPN}) in the SHVM, a specification has
to be provided in order to allow for compositional verification. This comprises
a specification for every public method m ∈ Mpub by a public behavioral prop-
erty ψm and a public interface Im = (I+

m, I−m) declaring the names of the publicly
provided and required methods, a specification for every variation point VP i by
a behavioral property ψVP i

and a public interface IVP i
, and a specification of

the SHVM node itself by a behavioral property φ and a public interface I. The
SHVM nodes of variants attached to a variation point inherit the correspond-
ing variation point specification. The lop–level SHVM is specified by the global
product property that is to be verified. Our verification procedure for SHVMs
is as follows.

Verification Procedure. For every module (MC , {VP1, . . . ,VPN}) of the
SHVM, perform the following two independent tasks:

(i) For every public method m ∈ Mpub , extract the method graph Gm from the
implementation of m, then inline the already extracted graphs of the private
methods, and finally model check the resulting method graph G′

m against
the specification ψm of m to establish G′

m |= ψm. For the latter, we apply
standard finite–state model checking.

(ii) For all public methods m ∈ Mpub with specification (Im, ψm), construct the
maximal method graphs Max(ψm, Im), and for all variation points VP i with

Compositional Algorithmic Verification of Software Product Lines 195

specification (IVP i
, ψVPi

), construct the maximal flow
graphs Max(ψV Pi , IV Pi). Then, compose the constructed graphs, resulting
in flow graph GMax, and model check the latter against the SHVM prop-
erty φ, i.e.,⎛

⎝ ⊎
m∈Mpub

Max(ψm, Im) &
⊎

1≤i≤N

Max(ψVPi
, IVPi

)

⎞
⎠ |= φ (2)

For properties given in sLTL, we represent the behavior of GMax as a PDS
and use standard PDS model checking.

The presented verification procedure is sound, as established by the following
theorem.

Theorem 1. Let S be an SHVM with global property φ. If the verification pro-
cedure succeeds for S, then p |= φ for all its products p ∈ products(S).

Proof. The proof is by induction on the structure of S. For the base case, let S
be a ground model, i.e., a core set of methods MC = (Mpub, Mpriv) with no
variation points. Assume the verification procedure succeeds for S. It has then
established:

(i) G′
m |= ψm for all public methods m ∈ Mpub, and

(ii)
⊎

m∈Mpub
Max(ψm, Im) |= φ

From these, and by soundness of rule (1) refined for private method abstraction,
it follows MC |= φ. Since products(S) = {MC} in this case, we have p |= φ for
all p ∈ products(S).

For the induction step, let S be a non-ground model (MC , {VP1, . . . ,VPN})
with variation points VP i = {Si,j | 1 ≤ j ≤ ki}, where ki is the number of
variants of VP i. Further, let (ψVPi

, IVPi
) be the specification of VP i. Assume

the result for all Si,j (induction hypothesis). Next, assume that the verification
procedure succeeds for S. The following has then been established for the top–
level module:

(i) G′
m |= ψm for all public methods m ∈ Mpub, and

(ii)
(⊎

m∈Mpub
Max(ψm, Im) &

⊎
1≤i≤N Max(ψVP i , IVP i)

)
|= φ

By the assumption, the verification procedure has also succeeded for all Si,j .
Thus, by the induction hypothesis, and since the SHVM nodes of variants at-
tached to a variation point inherit the corresponding variation point specifica-
tion, we have:

∀i : 1 ≤ i ≤ N. ∀j : 1 ≤ j ≤ ki. ∀p ∈ products(Si,j). p |= ψVP i

By Definition 2 we have products(VP i) =
⋃

1≤j≤ki
products(Si,j), and hence:

(iii) ∀i : 1 ≤ i ≤ N. ∀p ∈ products(VP i). p |= ψVPi

196 I. Schaefer, D. Gurov, and S. Soleimanifard

Also by Definition 2, we know that every product p of S is the union of a
core MC and exactly one subproduct from every variation point. Due to (i),
the public methods of MC , after inlining the private ones, meet their respective
specifications. Similarly, by (iii), all subproducts meet their respective specifica-
tions. Finally, by (ii) and from soundness of rule (1) refined for private method
abstraction follows that p |= φ. This concludes the proof. �

The total number of verification tasks needed to establish the global product line
property is, thus, equal to the number of modules, since we have to complete one
verification task per module. In contrast, the number of products is exponential
in the number of modules.

Example 5. To illustrate our compositional verification approach, we use the
cashdesk product line described in Example 1. The global behavioral property
we want to verify is informally stated as follows:

The entering of products has to be finished before the payment process
has started.

Taking into account the distribution of functionality to methods intended by the
variability model from the example, the specification can be approximated as:

If control starts in method sale, it cannot reach method payment before
it has already been in method enterProd and then back in sale.

In terms of the (global) behavior of the flow graphs of the products induced by
the product line, this property can be formalized in sLTL as follows:

ϕCD = sale → (¬payment W (enterProd ∧ r ∧ X sale))

where the subformula enterProd ∧ r ∧ X sale captures a return from enterProd
to sale.

First, we have to specify all public core methods and variation points of the
cashdesk SHVM. The specification of the sale method and the @EnterProd and
@Payment variation points are as follows:

– The interface of method sale is Isale = ({sale} , {enterProd, payment}).
In order to entail the global property, the local behavioral property that
method sale (or, more precisely, its method graph as an open flow graph)
has to satisfy is that it has to have invoked method enterProd and returned
from the call before it can invoke method payment, after the return from
which no more methods are invoked. Formally, this can be expressed by the
sLTL formula:

ϕsale = sale W′ enterProd W′ sale W′ payment W′ (G sale)

where the derived temporal operator φ W′ ψ abbreviates φ ∧ (φ W ψ) and is
by convention right–associative.

Compositional Algorithmic Verification of Software Product Lines 197

– The interface of variation point @EnterProducts is IEP = ({enterProd} ,
{payment}). The property required for the variation point is that the
enterProd method never calls the payment method, neither directly nor
via a call to one of its non-public methods. Formally, this property can be
expressed by the formula2:

ϕEP = G ¬payment

– The interface of variation point @Payment is IP = ({payment} , {enterProd}).
Similarly to the variation point above, the property required for this variation
point is that the payment method never calls the enterProd method:

ϕP = G ¬enterProd

The variants Keyboard, Scanner, KeyboardOrScanner, Cash, Card and
CashOrCard inherit the specification of their SHVM node from the respective
variation point specification. The specification of the public methods enterProd
and payment is similar to the specification of the @EnterProd and @Payment
variation points.

Next, we have to verify that all public methods satisfy their behavioral prop-
erty. For the sale method, we have to inline the private methods writeReceipt
and updateStock to obtain the method graph of the sale method, Then we check
that the method graph satisfies the property ϕsale by finite-state model checking.
Similarly, we verify the enterProd and payment methods defined in the variants
Keyboard, Scanner, KeybordOrScanner, Cash, Card and CashOrCard.

Finally, we have to establish that all SHVMs satisfy their SHVM specification.
For the top–level SHVM, we construct the maximal models for the specifications
of the variation points @EnterProducts and @Payment and for the public method
ϕsale , and model check ϕCD against the composition of these maximal models.
The properties of the variants Keyboard, Scanner, KeyboardOrScanner, Cash,
Card and CashOrCard are easy to verify because each of them contains only one
public method. A maximal model for the specification of this public method is
constructed and checked against the inherited variation point property.

5 Tool Support and Evaluation

ProMoVer [26] is a fully automated tool for the procedure–modular verifica-
tion of control flow temporal safety properties of Java programs3. It supports
compositional verification by relativizing the correctness of a global program
property on properties of individual methods and their public interfaces. All
interfaces, local and global properties are provided to the tool as assertions in
the form of program annotations. ProMoVer accepts a JML–like syntax for

2 This and the following property would trivialise if we specified the set of required
methods to be empty. For now, however, our tool does not check interfaces.

3
ProMoVer is available via the web interface www.csc.kth.se/~siavashs/ProMoVer

www.csc.kth.se/~siavashs/ProMoVer

198 I. Schaefer, D. Gurov, and S. Soleimanifard

/**

* @variation_point :

* EnterProd

* @variation_point_interface:

* provided enterProd

* @variation_point_ltl_prop:

* G ! payment

* @variants :

* Keyboard ,Scanner ,

* KeyboardOrScanner

*/

/** @variant: Keyboard

* @variant_interface :

* provided enterProd ()

* @variation_points :

*/

/** @core: Keyboard

* @local_interface :

* required

* @local_ltl_prop : G ! payment

*/

public int enterProd (){

...

Fig. 3. Annotations for variation point @EnterProd and its variant Keyboard

annotations (cf. [19]) as special comments called pragmas. To simplify the spec-
ification of local properties, ProMoVer provides a facility for extracting local
properties from source code. Further, it provides a proof storage and reuse mech-
anism which stores flow graphs, maximal models and model checking results and
reuses these the next time the same program is verified. To reuse the stored in-
formation, ProMoVer checks for each method of the program: if the source
code of the method has not changed, the stored flow graph of the method is
used, if a local specification has not changed the stored maximal model for the
specification is used. Further, it provides users with a library of global proper-
ties which contains platform as well as application specific properties. For details
about ProMoVer, the reader is refered to [27].

We have adapted ProMoVer for verifying properties of SHVMs according to
the compositionality principle described in Section 4. For this adaptation, we have
extended the annotation language to support the definition of core methods, vari-
ants and variation points and the associated specifications by designated pragmas.
The tool takes as input a source code file in which the SHVM to be analysed is rep-
resented by annotations. The product property, the variation point properties and
the specifications of the public core methods are also provided by annotations. Fig-
ure 3 shows in the left column the annotation for the @EnterProd variation point,
while the annotations for its Keyboard variant with core method enterProd are
shown in the right column. ProMoVer fully automatically extracts the SHVM
modules and the corresponding flow graphs from the annotated source code and
performs the associated model checking tasks.

For evaluating our compositional verification approach, we considered the ver-
ification of the safety property explained in Example 5 for different versions of the
trading system product line [24]. The product lines of cash desks were described
as SHVMs with different hierarchical depths and different total numbers of mod-
ules. As a basis, we used the product line described in Example 1 and extended
it by an optional coupon handling functionality within the sale method, and a
variation point for accepting different card types as a hierarchical refinement of
variant Card. For each product line, we compared the time required to verify all

Compositional Algorithmic Verification of Software Product Lines 199

Table 1. Evaluation Results

Product Line Depth # Modules # Products tind[s] tcomp[s]

CD 1 7 9 79 9
CD/CH 1 9 18 177 10
CD/CT 2 15 27 278 11
CD/CH/CT 2 17 54 652 12

induced products individually with the time for compositional verification. The
experiments were performed on a SUN SPARC machine4.

The results are summarized in Table 1 where CD denotes the product line of Ex-
ample 1, CD/CH the version with coupon handling, CD/CT the version with differ-
ent card types and CD/CH/CT the version with coupon handling and different card
types. As can be observed from the table, the processing time tind for verifying
every product individually grows dramatically when new modules and levels of hi-
erarchy are added to the SHVM. This is easily explained by the analytical bounds
presented in Section 2. In contrast, the growth of the processing time tcomp for
compositional SHVM verification is insignificant, since the preprocessing and flow
graph extraction is only performed once by ProMoVer for the complete SHVM.
The experiment suggests that for large software products comprising many prod-
ucts, the compositional verification technique based on the SHVM representation
of the product line increases efficiency of verification dramatically.

Scalability of our method comes at the price of having to provide specifications
for variation points. This additional effort is justified for large systems that
render infeasible the verification of the product line by verifying all its products
individually. Also, the specifications only need to be written once and are later
reused when the code has been changed, or for proving other global properties.

SHVMs do not allow to express that a variant requires or excludes another
variant. Without these constraints, the set of products that can be derived from
an SHVM is larger than with requires/excludes constraints. If a desired property
can be shown for the larger set of products defined by an SHVM, the property
immediately holds for the original product set defined by the hierarchical vari-
ability model. However, this leaves the possibility that not all products defined
by an SHVM satisfy a property such that verification procedure fails, while the
property is satisfied by the products defined by an hierarchical variablity model
containing variant constraints. In this case, an additional check of the excluded
products would be required.

6 Related Work

The existing approaches to represent product line variability on the artifact level
can be classified into three main directions [30]. First, annotative approaches
4 The focus of the evaluation is on comparing the times required for verification, and
not on the total times themselves.

200 I. Schaefer, D. Gurov, and S. Soleimanifard

consider one model representing all products of a product line. Variant annota-
tions, e.g., using UML stereotypes [31,9], presence conditions [6], or separate vari-
ability representations, such as orthogonal variability models [23], define which
parts of the model have to be removed to derive the model of a concrete prod-
uct. Second, compositional approaches [2,30,21,1] associate product fragments
with product features which are composed for particular feature configurations.
Third, transformational approaches, such as [14], represent variability by rules
determining how modelling elements of a base model have to be replaced for a
particular product model.

In this paper, we pursue an alternative approach to model the variability of a
software product line by hierarchical variability modelling in SHVMs. Similar ap-
proaches are only pursued for modeling the variability of components contained
in a software architecture. Plastic partial components [22] capture component
variability by extending partially defined components with variation points and
associated variants. However, variants cannot contain variable components, and
thus the model is not fully hierarchical. In the Koala component model [29], com-
ponent variability is defined by designated linguistic concepts, called diversity
interfaces and switches, but these are fixed in a given component architecture.

Most approaches for algorithmic verification of behavioral properties of soft-
ware product lines rely on an annotative model of the product line comprising all
possible product variants in the same model. Existing model checking techniques
are adapted to deal with optional behavior defined by variant annotations. For
instance, in [8], modal transition systems are extended by variability operators
from deontic logic. In [10], the process calculus CCS is extended with a variant
operator to represent a family of processes. In [18], transitions of I/O-automata
are related to variants. In [5], product families are modeled by transition systems
where transitions are labelled with features, so that state reachability modulo a
set of features can be computed.

These approaches do not scale for large product lines since the used annota-
tive product line models easily get very large. To counter this, Blundell et al. [4]
and Liu et al. [20] propose techniques for compositional verification of prod-
uct features and are the only existing compositional verification techniques for
product families in the literature so far. In these approaches, the behavior of a
feature is represented by a state machine to which other features may attach in
designated states (interface states or variation points). For a temporal property
of a feature, constraints for these states are generated which have to be satisfied
by composed features. However, the compositionality results are based on the
applied notion of features and feature composition, while SHVMs provide a more
flexible means to define product variability.

7 Conclusion

We present a novel hierarchical variablility model for software product lines, in
which the variability of products in terms of sets of public and private methods

Compositional Algorithmic Verification of Software Product Lines 201

is specified by defining common core methods and variation points at different
hierarchical levels. The model allows to adapt a previously developed method
and tool set for compositional verification of procedural programs such that the
exponential blow–up required for verifying all products individually is avoided:
The number of verification tasks resulting from our method is linear in the size
of the variablity model rather than in the number of products. This is achieved
by the introduction of variation point specifications on which product properties
are relativized, and the construction of maximal flow graphs that replace the
specifications when model checking specifications on the next higher level of
hierarchy. The class of properties that can be handled fully automatically is the
class of control flow-based temporal safety properties, specifying illegal sequences
of method calls. The input to our verification tool is the description of a product
line in form of an annotated Java program defining the variablity model and
providing the necessary specifications.

Our first experiments with the tool show a dramatic gain in performance
even for models with a low hierarchical depth. In future work, we plan to ex-
tend our hierarchical variability model with optional variants and constraints
between variants in order to facilitate the direct verification of more expressive
hierarchical variability models.

Acknowledgement. We thank Afshin Amighi for his help with flow graph
extraction, and Björn Terelius for his help with obtaining the analytical bounds.

References

1. Apel, S., Janda, F., Trujillo, S., Kästner, C.: Model Superimposition in Software
Product Lines. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 4–19.
Springer, Heidelberg (2009)

2. Batory, D., Sarvela, J., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE
Trans. Software Eng. 30(6), 355–371 (2004)

3. Besson, F., Jensen, T., Le Métayer, D., Thorn, T.: Model checking security prop-
erties of control flow graphs. J. of Computer Security 9(3), 217–250 (2001)

4. Blundell, C., Fisler, K., Krishnamurthi, S., van Hentenryck, P.: Parameterized
Interfaces for Open System Verification of Product Lines. In: Automated Software
Engineering (ASE 2004), pp. 258–267. IEEE, Los Alamitos (2004)

5. Classen, A., Heymans, P., Schobbens, P., Legay, A., Raskin, J.: Model Checking
Lots of Systems: Efficient Verification of Temporal Properties in Software Product
Lines. In: International Conference on Software Engineering (ICSE 2010), pp. 335–
344. IEEE, Los Alamitos (2010)

6. Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach
Based on Superimposed Variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005.
LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005)

7. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, Reading (2000)

8. Fantechi, A., Gnesi, S.: Formal Modeling for Product Families Engineering. In:
Software Product Line Conference (SPLC 2008), pp. 193–202. IEEE, Los Alamitos
(2008)

202 I. Schaefer, D. Gurov, and S. Soleimanifard

9. Gomaa, H.: Designing Software Product Lines with UML. AddisonWesley, Reading
(2004)

10. Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software
product lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051,
pp. 113–131. Springer, Heidelberg (2008)

11. Grumberg, O., Long, D.: Model checking and modular verification. ACM Transac-
tions on Programming Languages and Systems 16(3), 843–871 (1994)

12. Gurov, D., Huisman, M.: Reducing behavioural to structural properties of programs
with procedures. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS,
vol. 5403, pp. 136–150. Springer, Heidelberg (2009)

13. Gurov, D., Huisman, M., Sprenger, C.: Compositional verification of sequential
programs with procedures. Information and Computation 206(7), 840–868 (2008)

14. Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Olsen, G., Svendsen, A.: Adding
Standardized Variability to Domain Specific Languages. In: Software Product Line
Conference (SPLC 2008), pp. 139–148. IEEE, Los Alamitos (2008)

15. Huisman, M., Gurov, D.: CVPP: A tool set for compositional verification of
control–flow safety properties. In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010.
LNCS, vol. 6528, pp. 107–121. Springer, Heidelberg (2011)

16. Kang, K., Lee, J., Donohoe, P.: Feature-Oriented Project Line Engineering. IEEE
Software 19(4) (2002)

17. Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Sci-
ence 27, 333–354 (1983)

18. Lauenroth, K., Pohl, K., Toehning, S.: Model checking of domain artifacts in prod-
uct line engineering. In: Automated Software Engineering (ASE 2009), pp. 269–280.
IEEE, Los Alamitos (2009)

19. Leavens, G., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P., Kiniry,
J., Chalin, P.: JML Reference Manual, Department of Computer Science, Iowa
State University (February 2007), http://www.jmlspecs.org

20. Liu, J., Basu, S., Lutz, R.R.: Compositional model checking of software product
lines using variation point obligations. Autom. Softw. Eng. 18(1), 39–76 (2011)

21. Noda, N., Kishi, T.: Aspect-Oriented Modeling for Variability Management. In:
Software Product Line Conference (SPLC 2008), pp. 213–222. IEEE, Los Alamitos
(2008)

22. Pérez, J., Dı́az, J., Soria, C.C., Garbajosa, J.: Plastic Partial Components: A so-
lution to support variability in architectural components. In: WICSA/ECSA, pp.
221–230 (2009)

23. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering -
Foundations, Principles, and Techniques. Springer, Heidelberg (2005)

24. Requirement Elicitation, Deliverable 5.1 of project FP7-231620 (HATS) (August
2009), http://www.hats-project.eu

25. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, Technische Univer-
sität München (2002)

26. Soleimanifard, S., Gurov, D., Huisman, M.: Procedure–modular verification of con-
trol flow safety properties. In: Workshop on Formal Techniques for Java Programs,
FTfJP 2010 (2010)

27. Soleimanifard, S., Gurov, D., Huisman, M.: Promover: Modular verification of tem-
poral safety properties. In: Software Engineering and Formal Methods, SEFM 2011
(to appear,2011)

28. Stirling, C.: Modal and Temporal Logics of Processes. Springer, Heidelberg (2001)

http://www.jmlspecs.org
http://www.hats-project.eu

Compositional Algorithmic Verification of Software Product Lines 203

29. van Ommering, R.: Software reuse in product populations. IEEE Trans. Software
Eng. 31(7), 537–550 (2005)

30. Völter, M., Groher, I.: Product Line Implementation using Aspect-Oriented and
Model-Driven Software Development. In: Software Product Line Conference (SPLC
2007), pp. 233–242. IEEE, Los Alamitos (2007)

31. Ziadi, T., Hëlouët, L., Jézéquel, J.-M.: Towards a UML Profile for Software Product
Lines. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 129–139.
Springer, Heidelberg (2004)

Variability Modelling in the ABS Language�

Dave Clarke1, Radu Muschevici1, José Proença1,
Ina Schaefer2, and Rudolf Schlatte3

1 IBBT-DistriNet, Katholieke Universiteit Leuven, Belgium
2 University of Braunschweig, Germany

3 University of Oslo, Norway

Abstract. The HATS project aims at developing a model-centric
methodology for the design, implementation and verification of highly
configurable systems, such as software product lines, centred around the
Abstract Behavioural Specification (ABS) modelling Language. This ar-
ticle describes the variability modelling features of the ABS Modelling
framework. It consists of four languages, namely, μTVL for describing
feature models at a high level of abstraction, the Delta Modelling Lan-
guage DML for describing variability of the ‘code’ base in terms of delta
modules, the Product Line Configuration Language CL for linking fea-
ture models and delta modules together and the Product Selection Lan-
guage PSL for describing a specific product to extract from a product
line. Both formal semantics and examples of each language are presented.

1 Introduction

Software systems are central for the infrastructure of modern society. To justify
the huge investment made to build such systems, they need to live for decades.
This requires that the software is highly adaptable; software systems must sup-
port a high degree of variability to accommodate a range of requirements and
deployment scenarios, and to allow these to change over time. A major challenge
facing software construction is addressing high adaptability combined with trust-
worthiness. A limitation of current development practices is the missing rigour
of models and property specification. Without a formal notation for distributed,
component based systems, it is impossible to achieve automated consistency
checking, security enforcement, generation of trustworthy code, etc. Further-
more, it does not suffice to simply extend current formal approaches.

Work done in the HATS project will make software product line engineering
(SPLE) [30] into a more rigorous approach. SPLE addresses the development of
software products sharing a number of commonalities, while differing in other as-
pects. Fig. 1 depicts the workflow in SPLE. Product variability can be expressed
by features, which are user-visible product characteristics. The set of products is
represented by a feature model [22,4], describing valid combinations of features.
Given a set of software artefacts associated to these features, a final product is
built by selecting the desired features and combining the artefacts.
� This research is funded by the EU project FP7-231620 HATS: Highly Adaptable and

Trustworthy Software using Formal Methods (http://www.hats-project.eu).

B.K. Aichernig, F.S. de Boer, and M.M. Bonsange (Eds.): FMCO 2010, LNCS 6957, pp. 204–224, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.hats-project.eu

Variability Modelling in the ABS Language 205

Feature
Model

Family
Engineering

Product Line
Artefacts Base

Feature
Selection

Application
Engineering

Software
Product

Fig. 1. Stages of product line development

The HATS project aims at developing a model-centric methodology for the
design, implementation and verification of highly configurable systems, such as
software product lines, that have high demands on dependability and trustwor-
thiness. The HATS methodology is centred around the Abstract Behavioural
Specification language (ABS) and its accompanying tool suite1 that allows pre-
cise specification and analysis of the abstract behaviour and variability of highly
configurable software systems. ABS is designed to fill the niche between design-
oriented formalisms such as UML [27] and feature description language FDL [13],
on one hand, and implementation-oriented formalisms such as Spec# [2] and
JML [8], on the other hand. In this paper, we focus on the linguistic concepts of
the ABS to represent anticipated system variability.

ABS [15] comprises a core language, called Core ABS, with specialised lan-
guage extensions addressing system variability. Core ABS is a class-based, object-
oriented language based on the active object concurrency model of Creol [21,6],
which uses asynchronous method calls and cooperative multi-tasking between
concurrent object groups of one or more ABS objects that share a computation
resource; i.e., there can be at most one activity running inside the group.

The full ABS modelling framework extends Core ABS by four specialised lan-
guages to represent variability of Core ABS models. The micro textual variability
language (μTVL), based on TVL [7,11], expresses variability via feature models
(Section 2). The Delta Modelling Language (DML), based on the concept of delta
modelling [32], expresses the code-level variability of ABS models (Section 3). In
delta modelling, a set of products is described by an initial core module, which is
a Core ABS model, together with a set of product deltas specifying transforma-
tions to this core module (additions, removals, or modifications). The Product
Line Configuration Language (CL) defines the relationship between the feature
model and product deltas and thus forms the top-level specification of a product
line of Core ABS models (Section 4). The Product Selection Language (PSL)
represent the actual products by providing a selection of the product features

1 http://tools.hats-project.eu/

http://tools.hats-project.eu/

206 D. Clarke et al.

and their attributes along with initialisation code for the product (Section 5).
Fig. 2 depicts the relationship between these languages. The process of generat-
ing a software product from a software product line specification is explained in
Section 6. Related work is presented in Section 7 and Section 8 concludes.

Feature
Model

Product
Selection Configuration

Deltas Core

Modules

Software Product

satisfies

uses
generates

apply deltas

links

Fig. 2. Relationship Between Ingredients

2 Feature Modelling

This section introduces the μTVL text-based feature modelling language, pro-
nounced either micro textual variability language or simply mu tee vee ell, an
extended subset of TVL [7,11]. TVL was developed at the University of Namur,
Belgium, to serve as a reference language for specifying feature models. It is tex-
tual, as opposed to diagrammatic, and aims to be scalable, concise, modular, and
comprehensive, and thus, serves as a suitable starting point for our purposes.
A feature model is represented textually as a tree of nested features, each with
a collection of boolean or integer attributes. Additional cross-tree dependencies
can also be expressed in the feature model.

μTVL is designed to be deliberately smaller than TVL in order to capture
the essential feature modelling requirements and to simplify the manipulation
of feature models. The simplification allows reducing a number of semantic con-
straints imposed by TVL to syntactic constraints. μTVL enables a feature model
with multiple roots (hence, multiple trees) to express orthogonal variability [30],
which is useful for expressing application models and platform models in an
orthogonal fashion (even in different files). Support for attributes of enumer-
ated types have been dropped, but our tools support checking of satisfiability
of integer attributes. Finally, in μTVL features can only be extended (in Fea-
tureExtension clauses) by adding new constraints, but not by introducing new
features. Even though TVL syntax is used (with a few variations), the tools for
μTVL have been developed from scratch and integrated with the ABS language
tool suite.

Variability Modelling in the ABS Language 207

2.1 Concrete Syntax

The grammar of μTVL is given in Fig. 3. Text in monospace denote terminal
symbols. Assume the presence of two global sets: FID of feature names and AID
of attribute names.

Model ::= (root FeatureDecl)∗ FeatureExtension∗

FeatureDecl ::= FID [{ [Group] AttributeDecl∗ Constraint∗ }]
FeatureExtension ::= extension FID { AttributeDecl∗ Constraint∗}

Group ::= group Cardinality { [opt] FeatureDecl, ([opt] FeatureDecl)∗ }

Cardinality ::= allof | oneof | [n1 .. *] | [n1 .. n2]

AttributeDecl ::= Int AID ; | Int AID in [Limit .. Limit] ; | Bool AID ;

Limit ::= n | ∗
Constraint ::= Expr ; | ifin: Expr ; | ifout: Expr ;

| require: FID ; | exclude: FID ;

Expr ::= True | False | n | FID | AID | FID.AID
| UnOp Expr | Expr BinOp Expr | (Expr)

UnOp ::= ! | -
BinOp ::= || | && | -> | <-> | == | != | > | < | >= | <= | + | - | * | / | %

Fig. 3. Grammar of μTVL; n ranges over integers

Attributes and values in μTVL range either over integers or booleans. The
Model clause specifies a number of ‘orthogonal’ root feature models along with
a number of extensions that specify additional constraints, typically cross-tree
dependencies. The FeatureDecl clause specifies the details of a given feature,
firstly by giving it a name (FID), followed by a number of possibly optional
sub-features, the feature’s attributes and any relevant constraints. The Feature-
Extension clause specifies additional constraints and attributes for a feature.
This is particularly useful for specifying constraints that do not fit into the tree
structure given by the root feature model. The Cardinality clause describes the
number of elements of a group that may appear in a result. The AttributeDecl
clause specifies the declaration of both integer (bounded or unbounded) and
boolean attributes of features.

The Constraint clause specifies constraints on the presence of features and
on attributes. An ifin constraint is only applicable if the current feature is
selected. Similarly, an ifout constraint is only applicable if the current feature
is not selected. A require clause specifies that the current feature requires some
other feature, whereas exclude expresses the mutual incompatibility between
the current feature and some other feature. The Expr clause expresses a boolean
constraint over the presence of features and attributes, using standard boolean
and arithmetic operators. Features are referred to by identity (FID). Attributes
are referred to either using an unqualified name (AID), for in scope attributes,
or using a qualified name (FID.AID) for attributes of other features.

208 D. Clarke et al.

Example 1. The following is a feature model of a multi-lingual Hello World prod-
uct line, which describes software that can output “Hello World” in multiple
languages some number of times.

root MultiLingualHelloWorld {
group allof {
Language {
group oneof { English, Dutch, German }

},
opt Repeat {
Int times in [0..1000];
ifin: times > 0;

} } }

extension English {
ifin: Repeat ->

(Repeat.times >= 2 &&
Repeat.times <= 5);

}

The multi-lingual Hello World product line in the example above has two main
features, Language and Repeat, under the root feature and joined with the allof
combinator. The Language feature requires one out of three possible features:
English, Dutch, or German. The Repeat feature is optional, it has no associated
sub-features, and it has an attribute times which ranges between 0 and 1000,
with an added condition that it must be strictly greater than 0. In this example
an extension for the English feature is given. When the English and the Repeat
features are present, the attribute times must be between 2 and 5, inclusive.

2.2 Abstract Syntax

The abstract syntax tree for μTVL programs is presented in Fig. 4, where f ∈
FID, a ∈ AID, and n ∈ Int. The translation from the concrete tree to the abstract
tree is straightforward and hence omitted. Local attribute names are expanded to
fully qualified names. Bounds are placed on all integer attributes. The semantics
of μTVL is given as the solutions of the integer constraints defined inductively
on the abstract syntax of feature models.

2.3 Semantics

The semantics of a feature model in μTVL are defined by translation into con-
straints over integers whose solutions correspond to valid feature and attribute
selections. Boolean variables are treated as integers in the standard manner: 0
corresponds to false, and 1 to true. The function � � encoding feature model M
as an integer constraint is given in Fig. 5. The notation x represents a sequence
of elements x1 · · ·xn. Within the context of a given feature f , function � �f trans-
lates constraints relative to that feature. In the translation, f † is a unique name
based on name f . If f is an optional feature, f † can freely be set to 1 to count
the optional feature, even when f is absent. For example, when dealing with an
allof constraint, it is required that all children are present; some may however
be optional, so as far as the allof constraint is concerned, optional children are
counted, though the corresponding features may not be included. Expressions e
are encoded into constraints, denoted φe . Their encoding is straightforward and
therefore omitted (see [11]). Boolean operations are mapped to a conjunctive

Variability Modelling in the ABS Language 209

M ::= F ∗ feature model C ::= e | ifin e | ifout e |
F ::= f [G] A∗ C∗ feature (extension) | require f | exclude f constraint
G ::= c N∗ group lt ::= true | false
N ::= opt F | mand F feature node | n | f | f.a literal or variable
c ::= allof | min n U ::= neg | not unary operator

| rng n n cardinality B ::= or | and | implies
A ::= f.a T attribute declaration | equiv | eq | neq
T ::= bool | int L L type and domain | lt | gt | lteq
L ::= ∗ | n domain limit | gteq | plus | minus
e ::= lt | U e | B e e expression | mult | div | mod binary operator

Fig. 4. Abstract syntax of μTVL

set of integer operations over the values 0 and 1 where, for example, a → b is
a shorthand for a ≤ b. Finally, we assume a lower bound MIN and an upper
bound MAX on the values of integer variables.

Given a feature model FM in μTVL, the set of solutions of the integer con-
straints �FM � provides our semantics for FM. Such a solution will specify values
for all attributes even when the corresponding feature is not selected. Such as-
signments should have no effect.

The semantics also enforce that each feature is selected either zero or one
times, in spite of cardinality conditions which may appear to allow more instances
of a feature. Cardinality conditions specify the number of selected sub-features
from a group. Note that optional features can only appear under the allof
cardinality; otherwise there would be a fragile interaction between cardinality
conditions and optional features [5].

Example 2. Below is the encoding into integer constraints of the Hello World
feature model introduced in Example 1.

0 ≤ MultiLingualHelloWorld ≤ 1 ∧
Language → MultiLingualHelloWorld ∧ Repeat† → MultiLingualHelloWorld ∧
Language + Repeat† = 2 ∧
0 ≤ Language ≤ 1 ∧
English → Language ∧ Dutch → Language ∧ German → Language ∧
1 ≤ English + Dutch + German ≤ 1 ∧
0 ≤ English ≤ 1 ∧ 0 ≤ Dutch ≤ 1 ∧ 0 ≤ German ≤ 1 ∧
0 ≤ Repeat† ≤ 1 ∧
Repeat → Repeat† ∧
0 ≤ Repeat ≤ 1 ∧ 0 ≤ Repeat.times ≤ 1000 ∧ Repeat.times > 0 ∧
English → (Repeat → (Repeat.times ≥ 2 ∧ Repeat.times ≤ 5)).

Every declaration of a new feature or attribute x is converted into a constraint
of type min ≤ x ≤ max , and, in the case of booleans and feature names,
min = 0 and max = 1. The tree structure of the feature model is captured
by implications between the children and their parents, as shown in the sec-
ond line of Example 2. The optional feature Repeat is split into two variables:
Repeat and Repeat†. The latter is used only to address the cardinality of the
parent MultiLingualHelloWorld, and they are connected by the implication

210 D. Clarke et al.

�F � =
∧

x∈F �x�

�f [G] A C� = (0 ≤ f ≤ 1) ∧ �[G] �f ∧ �A� ∧ �C�f

�allof N�f = tree(f, N) ∧∑
N = #N ∧ �N�

�(min n) N�f = tree(f, N) ∧ n ≤ ∑
N ∧ �N�

�(rng n1 n2) N�f = tree(f, N) ∧ n1 ≤ ∑
N ≤ n2 ∧ �N�

�opt (f [G] A C)� = f → f† ∧ �f [G] A C �

�mand F � = �F �

�f.a int L1 L2� = valmin (L1) ≤ f .a ∧ �ifin e�f = f → �e�

f .a ≤ valmax (L2) �ifout e�f = ¬f → �e�

�f.a bool� = 0 ≤ f .a ≤ 1 �require f ′�f = f → f ′

�e� = φe �exclude f ′�f = ¬(f ∧ f ′)

� [X] � =

{
�X� if X is present

true otherwise

feat(opt(f _ _ _))

feat(mand(f _ _ _))

= f†

= f

#(N1 · · ·Nn) = n valx (n) = n∑
(N1 · · ·Nn) = feat(N1) + · · ·+ feat(Nn) valmin(∗) = MIN

tree(f, N1 · · ·Nn) =
∧

1≤i≤n feat(Ni)→ f valmax (∗) = MAX

Fig. 5. Semantics of μTVL

Repeat → Repeat†, similar to how child features are related to their parent.
Cardinalities are encoded as constraints that add the 0-1-integer value of the
feature variables and check whether they belong to a specific domain, as shown
in the third and seventh line of the example. Constraints over attributes are
simply interpreted as integer constraints.

3 Delta Modelling

Delta-oriented programming was introduced by Schaefer et al. [32,34,33] as a novel
programming language approach for software-based product lines, and as an di-
rect alternative to feature-oriented programming [3]. Both approaches aim at au-
tomatically generating software products for a given feature selection by provid-
ing a flexible and modular technique to build different products that share com-
mon code. In feature-oriented programming, software modules are associated to
features, and product generation consists of composing the modules for a feature
selection. In delta-oriented programming [32], application conditions over the set
of features and their attributes, are associated with modules of program modi-
fications (add, remove or modify code), called delta modules. The collection of
applicable delta modules is given by the application conditions that are true for
a particular feature and attribute selection. By not associating the delta modules
directly with features, a degree of flexibility is obtained, resulting in better reuse of

Variability Modelling in the ABS Language 211

code and the ability to resolve conflicts caused by deltas modifying the code base
in incompatible ways [10]. The flexibility offers benefits for managing the evolution
of product lines, by allowing versions to be implemented using software deltas.

The implementation of a software product line in delta-oriented program-
ming [32] is divided into a core module and a set of delta modules. The core
module consists of the classes that implement a complete product of the corre-
sponding product line. Delta modules describe how to change the core module
to obtain new products. The choice of which delta modules to apply is based
on the selection of desired features for the final product. Schaefer et al. de-
scribed and implemented delta-oriented programming for Java [32], introducing
the programming language DeltaJava. This language has strongly influenced
our design, though we further separate deltas from features by moving applica-
tion conditions out of deltas and into a product line configuration language, as
pursued in [34,33]. Delta modelling is included in the ABS language to implement
variability at the source code level of abstraction.

3.1 Syntax

Figure 6 specifies the ABS syntax related to delta modelling. Nonterminals writ-
ten in purple (gray) refer to core ABS symbols, whose intended meaning should
be immediate.

DeltaDecl ::= delta TypeId [DeltaParams] { ClassOrIfaceModifier∗ }

ClassOrIfaceModifier ::= adds ClassDecl
| modifies class TypeName ImplModifier∗ { Modifier∗ }

| removes class TypeName ;

| adds InterfaceDecl
| modifies interface TypeName ImplModifier∗ { Modifier∗ }

| removes interface TypeName ;

ImplModifier ::= adds TypeName
| removes TypeName

Modifier ::= adds FieldDecl
| removes FieldDecl
| adds MethDecl
| modifies MethDecl
| removes MethSig

DeltaParams ::= (DeltaParam (, DeltaParams)∗)

DeltaParam ::= Identifier HasCondition∗

| Type Identifier

HasCondition ::= hasField FieldDecl
| hasMethod MethSig
| hasInterface TypeName

Fig. 6. ABS Grammar: Delta Modules

212 D. Clarke et al.

The DeltaDecl clause specifies the syntax of delta modules, consisting of an
unique identifier, a list of parameters and a body containing a sequence of class
and interface modifiers. The ClassOrIfaceModifier clause describes the syntax
of modifications at the level of classes and interfaces. Such a modification can
add a class or interface declaration, modify an existing class or interface, or
remove a class or interface. The ImplModifiers clause describes how to modify
the interfaces a class implements or an interface extends, either by adding new
or removing existing interfaces.

The Modifier clause specifies the modifications that can occur within a class
or interface body. These include (where relevant) adding and removing fields and
method signatures (from interfaces), and modifying methods, which amounts to
replacing a method with a new one, but enabling the original method to be called
using the original keyword. The aim of original is to enable the method being
replaced to be called from the delta module that replaces it. This is implemented
by renaming the original method, and replacing the call via keyword original
with a call to the renamed method. The semantics of calling original() as shown
in the above example are essentially the same as Super() from feature-oriented
programming [3], and proceed from context-oriented programming [19], and simi-
lar to ordinary super calls in standard object-oriented languages, as well as around
advice from aspect-oriented programming [23], except without quantification.

In contrast to deltas presented in the literature [32,34,33], delta modules in
the HATS ABS language can be parameterised both by attribute values, which
ultimately flow from the feature model selection, and by class names, to enable
the application of a single delta module in more than one circumstance. Finally,
the HasCondition describes constraints on class arguments to which a delta may
be applied. These constraints consist of descriptions of the methods and fields
such a class implements and any interfaces it is expected to have.

Example 3. Following is the implementation of the Hello World product line
with the feature model shown in Example 1. Delta modules specify the variable
behaviour.

interface Greeting {
String sayHello();

}
class Greeter implements Greeting {

String sayHello() {
return "Hello world";

} }
class Application {

String s = "";
Unit run() {

Greeting bob;
bob = new Greeter();
s = bob.sayHello();

} }
delta Nl {

modifies Greeter {
modifies String sayHello() {

return "Hallo wereld";
} } }

delta De {
modifies Greeter {

modifies String sayHello() {
return "Hallo Welt";

} } }

delta Rpt (Int times) {
modifies Greeter {

modifies String sayHello() {
String result = "";
Int i = 0;
while (i < times) {

String orig = original();
result = result + " " + orig;
i = i + 1;

}
return result;

} } }

Variability Modelling in the ABS Language 213

In the example above the interface Greeting and the classes Greeter and
Application form the core module of the implementation, written in the core
ABS language. There are three delta modules: Nl, De, and Rpt. The delta module
De has a single class modifier for Greeter, which in turn has a single method
modifier. This method modifier replaces the method sayHello to return the
German text “Hallo Welt". The delta module Rpt has a single parameter for the
number of times that the greeting should be repeated. It replaces the method
sayHello() inside Greeter with new ABS code, allowing the original method to
be called via original().

Example 4. The following diagram illustrates both the use of parameters and
of the original keyword. A parameterised delta, such as Rpt, must have its
arguments provided before it can be applied. The arguments are substituted
into the body of the delta module prior to application.

class Greeter {
String sayHello() {

return "Hello";
}

}

class Greeter {
String original_sayHello() {

return "Hello";
}
String sayHello() {

String result = "";
Int i = 0;
while (i < 10) {

String orig = original_sayHello();
result = result + " " + orig;
i = i + 1;

}
return result;

} }

Rpt(10)

3.2 Formal Semantics

Applying a delta module Δ to a core ABS program P yields a new core ABS
program. Thus a product is constructed by successively applying delta modules,
one at a time, to a core module. This section presents a formal semantics of
delta modules based on the more abstract presentation of Clarke et al. [10]. That
work also describes the composition of delta modules with each other, which is
essential for reasoning about conflicting delta modules, but this feature is elided
from the current presentation. ABS programs, classes and delta modules will be
represented in terms of finite maps from identifiers to the corresponding contents
of the program, class, or delta module, in order to more cleanly present the
semantics. The semantics only describes the modifications of methods; dealing
with fields and so forth is a straightforward extension. Parameters are omitted.
These will be treated when dealing with configurations in Section 4.

Let Identifier be the set of identifiers, let MethBody be the set of method
bodies, including the parameter and return types, and let MethBodyWrap be
the set of method bodies with an explicit call to original. In the following
domains, Replace, Update, and Remove are used to tag the various branches of
sum data types. Finally, let Error denote that an error has occurred. Errors
occur if one attempts to wrap a method that is not present. Other irregularities,

214 D. Clarke et al.

such as attempting to update a class that is not present, can be given a sensible
semantics, so long as no wrapping occurs.

Program = Identifier ⇀ ClassBody
ClassBody = Identifier ⇀ MethBody

Delta = Identifier ⇀ DeltaBody
DeltaBody = Replace (Identifier ⇀ MethBody)

& Update (Identifier ⇀ (MethBody & MethBodyWrap & Remove))
& Remove

A program is a map from class names to classes, which themselves are collections
of named method bodies. A delta module is a map from class names to delta
bodies, which consist of three different types of modification: Replace either adds
or replaces the class with the specified contents; Update modifies a class in place,
where the three elements within an update clause correspond to replacing a
method with a new body from MethBody, wrapping the method with a body
from WrapMethBody or removing the method; and finally, Remove denotes the
removal of the class.

Notation 1. Let f : X ⇀ Y denote a partial function from X to Y . If f(x) is
undefined for x ∈ X, write f(x) = ⊥, where ⊥ /∈ Y . For set A, let A⊥ denote
A ∪ {⊥}, where ⊥ /∈ A. We freely shift between partial functions X ⇀ Y and
functions X → Y⊥. If ' : A⊥ × B⊥ → C⊥, define the lifting of ' to partial
functions over index set I as

− ' − : (I ⇀ A) × (I ⇀ B) → (I ⇀ C)
(f ' g)(i) = f(i) ' g(i), where i ∈ I

Given class update f : Identifier ⇀ (MethBody&MethBodyWrap&Remove), define
function f∗ : Identifier ⇀ (MethBody & Error) as follows. For i ∈ Identifier:

f∗(i) =

⎧⎨
⎩

⊥ if f(i) = Remove
f(i) if f(i) ∈ MethBody
Error if f(i) ∈ MethBodyWrap.

Notation 2. In the following definition, the notation w[] denotes a wrapper
method from MethBodyWrap, where the hole [] denotes that the original method
is unknown. Notation w[b] denotes the wrapping of method body b with wrapper
w, thus the original call can be successfully bound. The resulting method w[b]
is considered to be an element of MethBody.

Definition 1 (Delta module application). The application of a delta module
to a program is specified by the following functions:

apply : Delta× Program ⇀ Program
apply(d, p) = d 'c p

Variability Modelling in the ABS Language 215

where −'c − : DeltaBody⊥ × ClassBody⊥ → ClassBody⊥
⊥ 'c x = x

(Replace g) 'c _ = g (Update f) 'c ⊥ = f∗

Remove 'c _ = ⊥ (Update f) 'c h = f 'm h

and − 'm − : (MethBody & MethBodyWrap & Remove)⊥ × MethBody⊥
→ (MethBody & Error)⊥
⊥ 'm x = x

w[] 'm b = w[b] m 'm _ = m
Remove 'm _ = ⊥ w[] 'm ⊥ = Error

where m ∈ MethBody and w[] ∈ MethBodyWrap.

Notation 3. If m ∈ Identifier then w[m] denotes the wrapper with each call to
original replaced by a call to m.

In our implementation the method body is not inlined. Instead, if the resulting
class C has an element m �→ w[b] ∈ C, the following post-processing steps are
performed before applying another delta module:

1. generate a fresh method name m′ /∈ C,
2. remove m �→ w[b] from C, and
3. add m �→ w[m′] and m′ �→ b to C.

Example 4 illustrated this process with concrete code. The modified method in
that example is sayHello(). Before replacing the method, it was renamed to a
fresh name such as original_sayHello(). The new method was then added to
the class, with its body modified so that original is replaced by the renamed
method’s name original_sayHello. The stipulation that the method name is
fresh is required in the case that multiple delta modules are applied to the
same class, each wrapping the same method. In such a case, the first renaming
would result in method original_sayHello, for example, the second in name
original_sayHello2, and so forth.

4 Product Line Configuration

This section describes the product line configuration language CL which links
feature models specified in μTVL (Section 2) with delta modules (Section 3), to
specify the variability in a product line. This approach is similar to the product
line specification proposed in delta-oriented programming [34,33].

A product line configuration consists of a set of features assumed to exist and
a set of delta clauses. Each delta clause specifies a delta and the conditions re-
quired for its application, propositional formulas over the set of known features
and attributes called application conditions, and a partial ordering relation with
respect to other deltas. When the propositional formula holds for a given prod-
uct, the delta is said to be active. The partial order states which deltas, when
active, should be applied before the current delta.

216 D. Clarke et al.

Configuration ::= productline TypeId { Features ; Deltas }

Features ::= features FID (, FID)∗

DeltaClauses ::= DeltaClause (, DeltaClause)∗

DeltaClause ::= delta DeltaSpec [AfterCondition] [ApplicationCondition] ;

DeltaSpec ::= TypeName [(DeltaArgs)]
DeltaArgs ::= DeltaArg (, DeltaArg)∗

DeltaArg ::= FID | FID.AID | DataExp

AfterCondition ::= after TypeName (, Name)∗

ApplicationCondition ::= when Expr

Fig. 7. Product Line Configuration Grammar

4.1 Syntax

The syntax of the product line configuration language is given in Fig. 7. The
Configuration clause specifies the name of the product line, the set of features
it implements, and the set of delta modules used to implement those features.
The feature names are included so that certain simple self-consistency checks
can be performed. The DeltaClause clause is used to specify each delta module,
linking it to the feature model. Each DeltaClause has a DeltaSpec, specifying its
name and its parameters, an AfterCondition, specifying the delta modules that
the current delta must be applied after, and an ApplicationCondition, specifying
an arbitrary predicate over the feature and attribute names (see Fig. 3) that
describes when the given delta module is included in the product line.

Example 5. The Hello World product line is configured, connecting the features
and attributes defined in the feature model to delta modules.

productline MultiLingualHelloWorld {
features English, German, Dutch, Repeat;

delta Rpt(Repeat.times) after De, Nl when Repeat;
delta De when German;
delta Nl when Dutch;

}

The example above first names the set of features from the feature model in
Example 1 used to configure this product line. The delta clauses link each delta
module to the feature model through an application condition (when clause); in
this case, a delta module is applied simply when the specified feature is selected
(e.g. “De when German”). There is no delta module corresponding to the feature
English, as the core module provides support for the English language by de-
fault. In addition, Rpt has to be applied after De and Nl. Rpt’s argument is
Repeat.times, the times attribute feature Repeat; its value (defined by product
selection, see Section 5) is propagated to the Rpt delta.

Variability Modelling in the ABS Language 217

4.2 Semantics

A CL script specifies how the feature model relates to the delta modules that
are to be applied to the core module. It does so by specifying the parameters
and application conditions for each delta module, and an ordering on the deltas.

Each delta module referred to in a configuration file is modelled by an element
of the following type:

Delta × Params × AppCondition

where Delta is the semantic domain of delta module bodies, defined in Section 3.2,

Params = Var ⇀ FID & (FID × AID) & Int

models the substitution of actual parameters, which may be attributes or con-
stants, defined in the CL script with the formal parameters of the corresponding
delta module, and AppCondition is the syntactic category of application condi-
tions. Class parameters to delta modules are not modelled.

A configuration script can be modelled as a partial order over the declared
delta modules (with their parameters and application conditions), where the par-
tial order is determined by the reflexive, transitive closure of the after clauses.
This is given by the following domain, where PO(−) denotes the collection of all
partial orders over a given set.

Config = PO(Delta × Params × AppCondition)

The semantics of a configuration script conf ∈ Config is a function of type

�conf �_ : ProductSelection → P(Delta∗)

which maps a product selection—the interpretation of a PSL script (see Sec-
tion 5.2)—to the delta modules to apply, in the order they should be applied.
Note that many orders may exist if the after-order is underspecified. A product
selection is an assignment from feature names to true or false (1 or 0) and from
attributes to values, given by the domain ProductSelection:

ProductSelection = (FID & (FID × AID)) ⇀ Int

We now develop the ingredients making up function �conf �_.
Firstly, assume that a notion of substitution exists for delta modules, respect-

ing the scoping of variables, to replace parameters with appropriate values:

Subst = Var ⇀ Int

applySubst : Subst × Delta → Delta

Next, we define the composition of the parameter specifications of delta modules
with a product selection, giving a mapping from formal parameters of delta

218 D. Clarke et al.

modules to values (Int), which will be used to refine the delta modules with the
configuration parameters specifying in the product selection:

◦ : ProductSelection× Params → Subst
σ ◦ p = {v �→ xσ | v �→ x ∈ p}

where xσ =
{

v if x ∈ FID & (FID × AID)) and x �→ v ∈ σ
x if x ∈ Int

Now the function taking a product selection σ ∈ ProductSelection and giving
the collection of delta modules to apply is computing as the composition of the
following steps:

1. Select applicable deltas by applying select_ : Config → PO(Delta × Params)

selectσ(D,≺) = (D′,≺|D′),
where D′ = {(d, p) | (d, p, φ) ∈ D, σ |= φ} and ≺|D′ is ≺ restricted to D′,
and |= ⊆ ProductSelection× AppCondition is the satisfaction relation.

2. Specialise deltas using the function specialise : ProductSelection×PO(Delta×
Params) → PO(Delta)

specialiseσ(D,≺) = (D′,≺|D′), where D′ = {applySubst(σ ◦ p, d) | (d, P) ∈ D}.

3. Order deltas using the function order : PO(Delta) → P(Delta∗)

order ((D,≺)) = {[d1, . . . , dn] | d1, . . . , dn is a linear extension of (D,≺)}.

Finally, the semantics of a CL script can be interpreted as a function

�_�_ : Config × ProductSelection → P(Delta∗)
�conf �σ = order(specialiseσ(selectσ(conf))).

Note that this process may be ambiguous when multiple orderings of delta mod-
ules are possible. This should be resolved either by adding more elements to the
‘after’ order or by introducing conflict-resolving deltas [10].

5 Product Selection

A product selection needed to generate a product from a product line is specified
using the product selection language (PSL) A product selection states which
features are to be included in the product and by sets attributes of those features
to concrete values. In addition, some core ABS code is provided to initialise the
selected product. As depicted in Fig. 2, a product selection is checked against
a μTVL feature model for validity. It is then used by the configuration file to
guide the selection and application of deltas during the generation of the final
software product.

Variability Modelling in the ABS Language 219

5.1 Syntax

Fig. 8 specifies the grammar of the ABS product selection language. The Se-
lection clause specifies a product by giving it a name, by stating the features
and optional attribute assignments that are included in that product, and by
specifying an initialisation block. An initialisation block can be any core ABS
block, but typically will be a simple call to some already present main method.
Initialisation blocks are specified in the product selection language to enable
product lines with multiple entry points to start execution.

Example 6. Products of the Hello World product line are product selections.

// basic product with no deltas
product P1 (English) {

new Application();
}

// apply delta De
product P2 (German) {

new Application();
}

// apply deltas De and Repeat
product P3 (German, Repeat{times=10}) {

new Application();
}
// apply deltas En and Repeat, but it
// should be refused because "times > 5"
product P4 (English, Repeat{times=6}) {

new Application();
}

In the example above we specify four products: P1, P2, P3, and P4. In the case of
the product P1, the parameter English means the product consists of this feature
and of the features implied by the constraints over the feature model. In this
case the implied features are Language and the root MultiLingualHelloWorld,
according to the model in Example 1. In P3 and P4 the parameters also include
attribute values, in these cases assigning a value to the attribute times from the
feature Repeat. The block of ABS code associated to each product provides its
initialisation code. Every product in our example instantiates an Application
object and executes its run method.

5.2 Semantics

There are two components of interest in a PSL product selection such as

product P (Feature1 {attribute1_1 = value1_1, ...},
Feature2 {attribute2_1 = value2_1, ...}, ...)

{ InitBlock }

Selection ::= product TypeId (FeatureSpecs) { InitBlock }

FeatureSpecs ::= FeatureSpec (, FeatureSpec)∗

FeatureSpec ::= FID [AttributeAssignments]

AttributeAssignments ::= { AttributeAssignment (, AttributeAssignment)∗ }

AttributeAssignment ::= AID = Literal

InitBlock ::= Block

Fig. 8. PSL Grammar

220 D. Clarke et al.

– An assigment σ ∈ ProductSelection defined as follows:
• for each Featurei, σ(Featurei) = 1.
• for each attributei,j = valuei,j clause in Featurei,

σ(Featurei.attributei,j) = valuei,j .
– The initialisation block.

The assignment is not complete as it does not specify the values for unselected or
implicitly-selected features. An example of an implicitly-selected feature occurs
when a leaf feature is selected, requiring that its ancestors in the tree need to be
selected too. In addition, the variable f † introduced to count optional feature f is
set to 1. Finally, values of attributes for unselected features are set to some arbi-
trary value so that the all variables appearing in a constraint are defined (required
to test satisfaction). The following steps add the missing elements to an assign-
ment. We call this the completion of the product selection. Assume that f ∈ FID,
a ∈ AID, and feature model FM is encoded as constraints given by ψ = �FM �.

1. Iterate the following steps until a fixed point is reached:
(a) If f ∈ dom(σ) and f ′ is the parent of f , then set σ(f ′) = 1.
(b) If f ∈ dom(σ) and f † appears in ψ, then set σ(f †) = 1.

2. If f /∈ dom(σ) and f appears in ψ, then set σ(f) = 0
3. If f.a /∈ dom(σ) and f.a appears in ψ, then set σ(f.a) = v, where v is an

arbitrary (integer) value within the range specified for f.a.

A product selection σ is valid whenever for all completions σ′ we have σ′ |= ψ.

Example 7. The product P3 from Example 6 results in the following initial vari-
able assignment

σ(German) = 1 σ(Repeat) = 1 σ(Repeat.times) = 10.

In the context of the feature model in Example 2. The remaining variables are
English, Dutch, and MultiLingualHelloWorld, which is the parent of Language
and Repeat, and there are no other attributes. The completion of σ includes the
following additional elements:

σ(MultiLingualHelloWorld) = 1 σ(English) = 0
σ(Language) = 1 σ(Dutch) = 0

The resulting completed assignment σ satisfies the constraints specified in Ex-
ample 2. In contrast to this, the constraints would not be satisfied for product
P4, where σ(English) = 1, σ(Repeat.times) = 6, and σ(Repeat) = 1, due to the
clause English → (Repeat → (Repeat.times ≥ 2 ∧ Repeat.times ≤ 5)).

6 Product Generation

This paper introduced four language extensions to core ABS: the μTVL language
to represent feature models, the delta modelling language (DML) to represent
delta modules, the product line configuration language (CL) to associate deltas

Variability Modelling in the ABS Language 221

to products and to establish the order of application of the deltas, and the
product selection language (PSL) to describe the desired products. From a global
perspective, these are used in the generation of a final software product as follows.

Given a core ABS module P , a set of delta modules Δ, a product line config-
uration C, a feature model FM , and a product selection p, the following steps
are performed to build the final software product:

Check that the product selection p is satisfied by the feature model FM , as
explained in Section 5.2.

Select the delta modules from Δ with valid application condition according to
p, as described in Section 4.2.

Apply the deltas to the core module P , in the prescribed order, as described
in Section 3.2. Add the initialisation block from the product selection—this
will be the ‘main’ method.

Application of the deltas yields the final software product, a core ABS program.

7 Related Work

Existing approaches to express variability in modelling languages can be clas-
sified in two main directions [37]: annotative (or negative) and compositional
(or positive). A third main approach for representing variability of development
artefacts are model transformations.

Annotations. Annotative approaches consider one model representing all prod-
ucts of the product line. Variant annotations, e.g., using UML stereotypes in
UML models [38,14] or presence conditions [12], define which parts of the model
have to be removed to derive a concrete product model. The orthogonal variabil-
ity model (OVM) proposed in Pohl. et al. [30] models the variability of product
line artefacts in a separate model where links to the artefact model take the
place of annotations. Similarly, decision maps in KobrA [1] define which parts
of the product artefacts have to be modified for certain products. In the Koala
component model [28], the variability of a component architecture containing all
possible components is expressed by component parameterisation that is instan-
tiated depending on the product features.

Composition. Compositional approaches, such as delta modelling [35,31,32,34],
associate model fragments with product features that are composed for a partic-
ular feature configuration. A prominent example of this approach is AHEAD [3],
which can be applied on the design as well as on the implementation level. In
AHEAD, a product is built by stepwise refinement of a base module with a se-
quence of feature modules. Design-level models can also be constructed using
aspect-oriented composition techniques [17,37,26]. Apel et al. [36] apply model
superposition to compose model fragments.

Transformations. The common variability language (CVF) [16] represents the
variability of a base model by rules describing how modelling elements of the
base model have to be substituted in order to obtain a particular product model.

222 D. Clarke et al.

In [20], graph transformation rules capture artefact variability of a single kernel
model comprising the commonalities of all systems. In [18], architectural variabil-
ity is represented by change sets containing additions, removals or modifications
of components and component connections that are applied to a base line archi-
tecture. Perrouin et al. [29] obtain a product model by model composition and
subsequently refinement by model transformation.

Delta modelling. The notion of program deltas was introduced by Lopez-Herre-
jon [25] to describe the modifications of object-oriented programs. Schaefer et
al. [35,31] introduced delta modelling as a means to develop product line arte-
facts suitable for automated product derivation. The conceptual ideas of delta
modelling have also been applied the programming language level in an extension
of Java with core and delta modules allowing the automatic generation of Java-
based product implementations [32]. In recent work, Schaefer et al. [34,33] propose
a version of delta-oriented programming where products are generated only from
delta modules applied to the empty product. Furthermore, in this version the ap-
plication conditions and the application ordering are specified separately from the
delta modules in a product line specification in order to increase the reusability of
the delta modules and to enable compositional type checking.

8 Conclusion

This paper presented the variability modelling fragment of the HATS ABS mod-
elling framework, realised by languages μTVL, DML, CL, and PSL. Together
these languages can specify all the variability of a product line of core ABS
models, with PSL scripts specifying the eventual products that can be derived.

The presented variability modelling concepts only target spatial variability.
However, an ABS product line must also safely evolve over time in order to
accommodate necessary changes after the deployment of the products; e.g., bug
fixes, feature extensions or modifications, or changes in user requirements. In
order to facilitate the modelling of temporal variability for core ABS models, it
is crucial that evolution is expressed at the abstraction level of the modelling
language. Hence, in the future, also within the scope of the HATS project, we
are planning to extend the presented variability modelling concepts which are
based on delta modelling with dynamic delta models to capture variability in
space as well as variability in time.

A description of the core ABS language [15] and the proposed component
model [24], along with a tutorial of the full ABS language and HATS tools
suite [9] are available. In addition, the HATS tool suite, documentation, as well
as several case studies are available from http://www.hats-project.eu.

References

1. Atkinson, C., Bayer, J., Muthig, D.: Component-Based Product Line Development:
The KobrA Approach. In: SPLC (2000)

2. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

http://www.hats-project.eu

Variability Modelling in the ABS Language 223

3. Batory, D., Sarvela, J., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE
Trans. Software Eng. 30(6) (2004)

4. Batory, D., Benavides, D., Ruiz-Cortes, A.: Automated analysis of feature models:
challenges ahead. Commun. ACM 49(12), 45–47 (2006)

5. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: a literature review. Information Systems (2010)

6. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007)

7. Boucher, Q., Classen, A., Faber, P., Heymans, P.: Introducing TVL, a text-based
feature modelling language. In: Proceedings of the Fourth International Workshop
on Variability Modelling of Software-intensive Systems (VaMoS 2010), Linz, Aus-
tria, January 27-29, pp. 159–162. University of Duisburg-Essen (2010)

8. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An overview of JML tools and applications. International Journal
on Software Tools for Technology Transfer, STTT 7(3) (June 2004)

9. Clarke, D., Diakov, N., Hähnle, R., Johnsen, E.B., Schaefer, I., Schäfer, J., Schlatte,
R., Wong, P.Y.H.: Modeling spatial and temporal variability with the HATS ab-
stract behavioral modeling language. In: Bernardo, M., Issarny, V. (eds.) SFM
2011. LNCS, vol. 6659, pp. 417–457. Springer, Heidelberg (2011)

10. Clarke, D., Helvensteijn, M., Schaefer, I.: Abstract Delta Modeling. In: Proceedings
of the Ninth International Conference on Generative Programming and Component
Engineering, GPCE 2010, pp. 13–22. ACM, New York (2010)

11. Classen, A., Boucher, Q., Heymans, P.: A text-based approach to feature modelling:
Syntax and semantics of TVL. Science of Computer Programming (November 2010)

12. Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach
Based on Superimposed Variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005.
LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005)

13. van Deursen, A., Klint, P.: Domain-specific language design requires feature de-
scriptions. Journal of Computing and Information Technology 10(1), 1–18 (2002)

14. Gomaa, H.: Designing Software Product Lines with UML. Addison Wesley, Reading
(2004)

15. Hähnle, R., Johnsen, E.B., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core
language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsange, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 143–165. Springer, Hei-
delberg (2011)

16. Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Olsen, G., Svendsen, A.: Adding
Standardized Variability to Domain Specific Languages. In: SPLC (2008)

17. Heidenreich, F., Wende, C.: Bridging the Gap Between Features and Models. In:
Aspect-Oriented Product Line Engineering, AOPLE 2007 (2007)

18. Hendrickson, S.A., van der Hoek, A.: Modelling product line architectures through
change sets and relationships. In: ICSE, pp.189–198 (2007)

19. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented Programming. Jour-
nal of Object Technology (March/April 2008)

20. Jayaraman, P.K., Whittle, J., Elkhodary, A.M., Gomaa, H.: Model composition
in product lines and feature interaction detection using critical pair analysis. In:
Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 151–165. Springer, Heidelberg (2007)

21. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and System Modeling 6(1), 35–58 (2007)

224 D. Clarke et al.

22. Kang, K.C., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-Oriented domain
analysis (FODA) feasibility study. Tech. Rep. CMU/SEI-90-TR-021, Carnegie Mel-
lon University Software Engineering Institute (1990)

23. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.,
Irwin, J.: Aspect-oriented programming. In: Aksit, M., Auletta, V. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

24. Lienhardt, M., Lanese, I., Bravetti, M., Sangiorgi, D., Zavattaro, G., Welsch,
Y., Schäfer, J., Poetzsch-Heffter, A.: A component model for the ABS language.
In: Aichernig, B.K., de Boer, F.S., Bonsange, M.M. (eds.) FMCO 2010. LNCS,
vol. 6957, pp. 166–184. Springer, Heidelberg (2011)

25. Lopez-Herrejon, R.E., Batory, D.S., Cook, W.R.: Evaluating Support for Features
in Advanced Modularization Technologies. In: Gao, X.-X. (ed.) ECOOP 2005.
LNCS, vol. 3586, pp. 169–194. Springer, Heidelberg (2005)

26. Noda, N., Kishi, T.: Aspect-Oriented Modeling for Variability Management. In:
SPLC (2008)

27. OMG: Unified modelling language, infrastructure and superstructure (version 2.2,
OMG final adopted specification) (2009)

28. van Ommering, R.C.: Software reuse in product populations. IEEE Trans. Software
Eng. 31(7), 537–550 (2005)

29. Perrouin, G., Klein, J., Guelfi, N., Jézéquel, J.M.: Reconciling Automation and
Flexibility in Product Derivation. In: SPLC (2008)

30. Pohl, K., Böckle, G., Van Der Linden, F.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, Heidelberg (2005)

31. Schaefer, I.: Variability Modelling for Model-Driven Development of Software Prod-
uct Lines. In: Proc. of 4th Intl. Workshop on Variability Modelling of Software-
intensive Systems, VaMoS 2010 (2010)

32. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented pro-
gramming of software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS,
vol. 6287, pp. 77–91. Springer, Heidelberg (2010)

33. Schaefer, I., Bettini, L., Damiani, F.: Compositional Type-Checking for Delta-
oriented Programming. In: Intl. Conference on Aspect-oriented Software Develop-
ment, AOSD (to appear, 2011)

34. Schaefer, I., Damiani, F.: Pure Delta-oriented Programming. In: FOSD 2010 (2010)
35. Schaefer, I., Worret, A., Poetzsch-Heffter, A.: A Model-Based Framework for Au-

tomated Product Derivation. In: Proc. of Workshop in Model-based Approaches
for Product Line Engineering, MAPLE 2009 (2009)

36. Apel, S., Janda, F., Trujillo, S., Kästner, C.: Model Superimposition in Software
Product Lines. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 4–19.
Springer, Heidelberg (2009)

37. Völter, M., Groher, I.: Product Line Implementation using Aspect-Oriented and
Model-Driven Software Development. In: SPLC, pp. 233–242 (2007)

38. Ziadi, T., Hélouët, L., Jézéquel, J.M.: Towards a UML Profile for Software Product
Lines. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 129–139.
Springer, Heidelberg (2004)

Automated Verification

of Executable UML Models

Helle Hvid Hansen1, Jeroen Ketema2, Bas Luttik1, MohammadReza Mousavi1,
Jaco van de Pol2, and Osmar Marchi dos Santos3

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 University of Twente, Enschede, The Netherlands

3 University of York, York, England

Abstract. We present a fully automated approach to verifying safety
properties of Executable UML models (xUML). Our tool chain consists
of a model transformation program which translates xUML models to
the process algebra mCRL2, followed by symbolic model checking using
LTSmin. If a safety violation is found, an error trace is visualised as a
UML sequence diagram. As a novel feature, our approach allows safety
properties to be specified as UML state machines.

1 Introduction

UML has become the popular modeling approach, driving the development of
industrial applications in many different fields. One such field is the railway
industry, where Executable UML (xUML) [35] is gaining popularity for specifying
critical applications such as railway interlockings. The main goal of interlockings
is to ensure that trains neither collide nor derail. This is achieved by establishing
routes, which comprise tracks, points and other railway components, along which
trains can pass safely. Correctness of interlockings is certainly imperative, and
hence rigorous methods should be employed to verify their safety properties.

In this paper, we report on an automated approach to verifying safety prop-
erties of xUML models. These xUML models may specify the functional require-
ments of interlocking systems, but in principle they are not restricted to the
interlocking domain. One of the target groups for our tool chain are modeling
engineers with no training in formal methods. We accommodate this target group
by allowing the functional requirements (i.e. the actual model) as well as their
safety properties to be specified in xUML. The safety properties are expressed
as state machines that “observe” the behavior of the model, and issue an error
signal if a safety property is violated.

The verification is carried out using the well-known technique called model
checking where the entire state space of a formal model is exhaustively explored
and checked against a property. In our case, the formal model is specified in
the process algebra mCRL2 [21] and the exploration is done using the symbolic
model checking tools of LTSmin [8]. In particular, safety violations are found
by detecting the above-mentioned error signals in the mCRL2 model. An xUML

B.K. Aichernig, F.S. de Boer, and M.M. Bonsange (Eds.): FMCO 2010, LNCS 6957, pp. 225–250, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

226 H.H. Hansen et al.

model defines a generic model of object behaviour, but an mCRL2 model de-
scribes the behaviour of a concrete collection of interacting objects. Our tool
chain therefore also takes as input an instance specification from which a model
instance can be created. The verification is thus always carried out with respect
to a particular model instance.

The mCRL2 model is obtained by automatically translating the xUML model,
its safety properties and the instance specification into mCRL2. This automated
translation is implemented using the Eclipse-based model transformation tools
of Epsilon [30,31]. The translation goes via an internal format called iUML.
This iUML representation is a intermediate step between the hierarchical xUML
model and the “flat” transition system specified in mCRL2. We have several
reasons for using such an intermediate representation. First, a one-step trans-
lation from xUML to mCRL2 would be quite complicated to implement due to
the significant differences between the two languages. In particular, expressions
and actions that can be statically evaluated are transformed in the iUML rather
than translated into mCRL2 and evaluated there. Second, the iUML allows us
to perform static analysis tasks which are not easily cast as a model checking
task. Third, the iUML is sufficiently general to support different variations of
the translation into mCRL2, and we expect that it can serve as a basis for
translations into other target languages such as Promela [25] and Event-B [1].

The functionalites of our tool chain are illustrated in Figure 1 of the next
section. To summarise, the tool chain consists of the following three main steps:
(1) Automated translation of the model, its safety properties and an instance
specification from xUML into the formal specification language mCRL2. (2)
Checking for safety violations by searching for error signals in the mRL2 model.
(3) Visualisation of an error trace as an UML sequence diagram, in case a safety
violation is found.

In the paper [22], we reported on the early developments of our approach.
The main contributions of the present work with respect to [22] are:

1. A method for specifying safety properties as UML state machines.
2. A tool chain which realises a fully automated verification and feedback tra-

jectory, where both input and output are expressed in UML.
3. Automation of the translation from xUML to mCRL2, and a more detailed

description of the translation itself.
4. Investigations into the scalability of our approach by conducting verifica-

tion of several different xUML interlocking models and more realistic track
layouts (that yield model instances).

We believe that items 1 and 2 greatly improve the usability of our approach
to modelling engineers and domain specialists, since only knowledge of UML is
required, rather than familiarity with formal methods. We should point out that
our current translation differs at some point from the translation in [22] (see end
of Section 5).

The rest of this paper is structured as follows. In Section 2, we give a more
detailed overview of our tool chain and its architecture. In Section 3, we introduce
the subset of xUML supported by our tool chain, and discuss its syntax and

Automated Verification of Executable UML Models 227

semantics. In Section 4, iUML is introduced, which is our intermediate format
between the input models and the mCRL2 specification used for model checking.
Section 5 presents the translation schema and Section 6 outlines the verification
methods we used, the challenges we faced, and the results obtained. Finally, in
Section 7 we conclude by discussing related and future work.

2 Tool Chain

The tool chain achieves its goal in a number of steps of which the details are
hidden behind a rudimentary user interface. The core of this process is depicted
in Figure 1. Next, we give more details on each part of the tool chain.

xUML
model

Safety
property

Instance
spec.

Translation
Formal
model

Model
checking

Diagnostic
trace

Visualisation

Fig. 1. Automatic verification of xUML models

Input. The inputs of our tool chain comprise two xUML models (specifying the
model itself and its safety properties) and an instance specification (defining the
object identifiers and their roles in associations). The family of xUML models
that can be used as input are described in Section 3. The input xUML models
must be provided in an XMI format that is compatible with the Eclipse UML
Tools v3.0 (which implement the UML 2.2 specification). Currently we support
two ways of generating these XMI files: An xUML model created in Artisan
Studio can be transformed into XMI by our tool chain, or an xUML model can
be created in the UML modeling tool Papyrus [37] which is based on Eclipse just
as several other parts of our tool chain. Finally, the instance specification must
be supplied in a simple text-based format that we defined for this purpose.

Translation. The automated translation from xUML to mCRL2 is implemented
in the Eclipse Modeling Framework [41] (Eclipse Galileo version 3.5.2). In the
Eclipse Modeling Framework (EMF), metamodels define the abstract syntax of
EMF models. In close analogy, the UML superstructure [36] provides a meta-
model that defines the UML language elements and their relationships. But
unlike UML, EMF models generally do not have a graphical representation. As
already mentioned, the automated translation goes via an intermediate repre-
sentation called iUML, and we thus have metamodels that define the structure of

228 H.H. Hansen et al.

iUML models, and of their expressions and actions. We specify metamodels using
the textual syntax of EMFText [23] which also provides a parser generator facility
that we use to transform well-formed strings to EMF models. We access and
manipulate EMF models using the Epsilon model transformation tools [30,31]:
The transformation from UML to iUML is implemented in the model-to-model
transformation language ETL. Generating mCRL2 code from iUML models is
carried out using the model-to-text transformation language EGL.

Model checking. The generated mCRL2 specification is verified using a combi-
nation of the mCRL2 [21] and LTSmin [8] model checking tool sets (revision
8543 and the next branch dated 3-3-2011, respectively). From the mCRL2 tool
set we use a number of utilities that pre-process the mCRL2 specification. In
this pre-processing, parallel behavior is turned into non-deterministic sequen-
tial behavior and the result is simplified by removing redundant and constant
data parameters. The latter step potentially reduces the size of the generated
state space. The actual state space exploration is achieved using the symbolic
reachability tool from the LTSmin tool set, which also provides distributed and
multi-core reachability tools, and a tool to reduce state spaces modulo branching
bisimulation.

Visualisation. In the case one of the specified safety properties is violated in
the chosen instance of the xUML model, LTSmin generates a trace, that is, a
sequence of actions leading to a violation of the property. This trace is visualized
in Eclipse in the form of a UML message sequence diagram. If none of the safety
properties are violated, a message is displayed reporting this result.

3 Executable UML: Translation Domain

In this section we describe the subset of Executable UML (xUML) [35] that is
covered by our translation. For further information on the UML, we refer to [36].

3.1 Models, Classes and State Machines

Informally stated, an xUML model is a hierarchical structure that defines types
of objects, their relationships and how they react to events in the system. In our
subset of xUML, a model consists of signals, events, classes and associations.
An event can be a signal event denoted simply by the signal name; a change
event, denoted by when(cond) where cond is the change expression; or a (rela-
tive) time event, denoted by after(n) where n is the timeout delay. We do not
include absolute time events. A class consists of properties, receptions and a
state machine. A property can be an attribute, a generalisation or an associa-
tion end. An attribute can be derived in which case it is defined by a Boolean
expression. Derived attribute names start with a slash (/). A generalisation in a
class C is a reference to another class. A class C’ is called a superclass of C if C’
can be reached from C via the transitive closure of the generalisation relation. We

Automated Verification of Executable UML Models 229

require that attribute names are unique within a class and its superclasses. The
receptions declare the signals that the class will react to, and the state machine
specifies how the class reacts to events. State machines are described below. An
association is an n-ary relation between classes.

Classes and their associations can be graphically represented by a class dia-
gram, as illustrated in Figure 2 which shows the class diagram of a toy exam-
ple called Micro interlocking, kindly provided to us by KnowGravity1. Figure 2
shows that there are five classes: track, point, signal, route and HAL device where
HAL device generalises track, point and signal. (The boxes with labels LCL and
HAL can be ignored.) Furthermore, there are four binary associations, one be-
tween route and track, two between route and point, and one between route and
signal. Note that a route instance should be linked to exactly one signal instance
via the property entry signal. Figure 2 also shows that in class point there are
derived attributes called /at left, /at right and /is locked, but their definitions
are not shown. Similarly, the classes track and route also have derived attributes.

Fig. 2. Class diagram of Micro interlocking

A state machine consists of regions and states (alternatingly nested), and
transitions between states. For a state s, we denote by Regions(s) the regions
immediately contained in s. Similarly, for a region r, we denote by States(r) the
states immediately contained in r. A root region is a region which is contained

1 http://www.knowgravity.com

http://www.knowgravity.com

230 H.H. Hansen et al.

only in the state machine, but not in any state. A state may be simple, com-
posite or concurrent meaning that it contains zero, at least one, or at least two
regions, respectively. Furthermore, states may have entry and exit actions. The
only pseudo-states we allow are initial pseudo-states, so in particular we exclude
(deep) history, final, junction pseudo-states, and entry/exit points. The sets of
all states and regions contained in the state machine of a class C are denoted by
States(C) and Regions(C), respectively.

Example 1. The state machine diagram of point is found in Figure 3, and it
shows, for example, that working and moving are composite, non-concurrent
states (i.e. they contain one region), and the region of working contains the
states left, right and moving. There are no concurrent states in point. All states
except for startup and moving have entry actions. The tags, such as <i> or <ic>,
that prefix signal names indicate a signal stereotype, but this is only a naming
convention, and no UML semantics is derived from these tags.2

A transition t goes from a source state source(t) to a target state target(t), and
is labelled with trg[grd]/eff where trg, grd , eff are the trigger, guard and effect
of t, respectively. The trigger is an event, the guard is a Boolean expression, and
the effect is a sequence of actions that should be carried out when the transition
fires. We require that transition has a single event as trigger, but the guard and
the effect can be omitted. Moreover, we require that for any state s there is at
most one transition triggered by a time event with source s.

A transition t can be internal meaning that source(t) = target(t) and firing
t does not trigger exit or entry actions. In state machine diagrams, an internal
transition in a state s is shown by placing the transition label trg[grd]/eff in
a box below the entry and exit actions of s. For example, in the point state
machine there is an internal transition in the substate left of working with trigger
<ic> move right.

If, for a transition t, source(t) is an initial pseudo-state then target(t) is
called the default entry state of its enclosing region. If source(t) is also directly
contained in a root region, then t is called an initial transition. We require that
initial transitions are unguarded.

A class inherits all properties, association ends, and so on, from its super-
classes. In particular, a class also inherits state machines. So even though we
only allow one state machine per class, when a class C is instantiated, the re-
sulting object has all the state machines of C and its superclasses.

3.2 Expressions and Actions

We now describe the expression language and the action language for our models.
These languages correspond to certain subsets of the SIML-language from [29].

Boolean expressions occur as transition guards, as change conditions, and
as definitions of derived attributes. Apart from the usual Boolean connectives,
2 The version of Artisan Studio used to create this model does not properly support
UML stereotypes.

Automated Verification of Executable UML Models 231

Fig. 3. State machine diagram of point in Micro interlocking

they may include quantification over linked objects thereby referring to non-local
state. Formally, Boolean expressions are generated by the following grammar.

Bool ::= true | false | not Bool | Bool and Bool | Bool or Bool
| in state(#(State)) | DAttr
| forall ObjExpr is true Bool | exists ObjExpr is true Bool

ObjExpr ::= AssocEnd | AssocEnd UNION AssocEnd

where DAttr and AssocEnd are identifiers of a derived attribute and an associ-
ation end, respectively, and State is a sequence of dot-separated state or region
names that describes a state of a given state machine. For example, the substate
left of the state moving in the point state machine (see Figure 3) is referred to by
the expression working.moving.left. Expressions of type ObjExpr denote sets of
objects. Such sets can be specified either as the collections of objects that can be
referenced via association ends, or as a union of such collections. The forall . . .
and exists . . . denote quantification over sets of objects.

232 H.H. Hansen et al.

Examples of Boolean expressions in Micro interlocking are:

in point: in state(#working.left)

in point: exists (L routes UNION R routes) is true /established

in route: forall left points is true /at left

There are two types of basic actions : assignments and sending signals. An
object can send signals to itself, to linked objects, or to some environment in-
terface (referred to as GUI) and they may carry a list of parameters. All actions
can be composed sequentially. Formally, the action language is generated by the
following grammar.

Act ::= send Signal
| send Signal to #GUI

| send ObjExpr.Signal
| Attr := Val
| DAttr := Expr
| Act;Act

Signal ::= SignalName
| SignalName(Params)

Params ::= ParamName := ParamVal
| Params,Params

where ObjExpr is defined as above, Attr is the name of an attribute, DAttr is
the name of a derived attribute, ParamName is an identifier and ParamVal is
an expression that is evaluated at the time the action takes place. An action
send a means that the object is sending the signal a to itself, and send Obs .a
means that the signal a is sent to all objects in the set denoted by Obs .

3.3 UML Semantics

An xUML model defines a generic model of communicating objects. A model
instance is obtained by instantiating classes and associations For example, an
instance of the Micro interlocking is defined based on a particular track layout
which specifies a number of tracks, points, signals and routes and how they are
linked (i.e. how the associations are instantiated).

UML semantics defines the operational behaviour of objects, that is, how
objects react to events, and how they communicate with each other. Some of
these aspects are defined by the UML specification [36], but for others the UML
specification allows a choice between different interpretations in order to allow
for flexible modeling. We give a brief, informal description of the semantics that
we follow. We refer to [36, 15.3.12] for more details.

An object of type C is an instance of a class C together with an event pool.
Due to inheritance, an object can have several state machines. These can be
viewed as the concurrently executing regions of a single state machine. In the
rest of this section, we let O denote an object of type C.

The set of states in which the object state machine currently resides is called
the active state configuration. This is a set of states rather than a single state,
due to the presence of concurrent regions. A transition is enabled if its trigger
is available, its source state is active and its guard evaluates to true. When a

Automated Verification of Executable UML Models 233

transition fires, its source state is exited (possibly triggering exit actions), then
the effect actions are carried out, and finally its target state is entered, which
again can trigger entry actions. It is possible that several transitions are enabled
at the same time. In this case, a maximal set of consistent, enabled transitions
is fired. Informally stated, two transitions are consistent if executing one does
not disable the other by exiting its source state. This is, in particular, the case
if the transitions are contained in disjoint regions of the state machine.

The UML specifies a run-to-completion (RTC) semantics which means that an
object must finish all the behaviour triggered by an event, before the next event
can be processed. While an object is processing an event its state is considered
undefined, hence other objects are not allowed to inspect its state at this point.
The behaviour imposed by the RTC semantics can be described by the following
object execution cycle:

O1: Let other objects read the currently active state configuration A, or choose
an available event e for processing by the state machines of O. This marks
the beginning of a run-to-completion (RTC) step in O.

O2: Let T be a maximal, consistent set of enabled transitions in O with trigger
e. If there are several such T s, then one is chosen nondeterministically. Fire
all transitions in (the possibly empty) T (in arbitrary order). The RTC step
is now completed. Go to step O1.

Note that in agreement with UML 2.2 semantics (see Run-to-completion and
concurrency in [36, 15.3.12]) the RTC step applies simultaneously to all regions
of the state machine. But the RTC steps of different objects may be interleaved.

We now define when events are available for processing: A signal event de-
notes the moment when a signal is sent. A signal event is available if it is in the
event pool. A change event when(cond) is available whenever the change condi-
tion cond is true. This seems to conflict with [36, Sec.13.3.7] which says that a
change event occurs when the change condition becomes true. But UML 2.2 does
not specify when change events are detected, or whether they remain after the
change condition becomes false again. In our interpretation change events are
thus detected immediately, but they do not remain. A time event after(n), which
triggers a transition t, is available whenever source(t) is active. This semantics
is based on the assumption that all transitions and actions take place in zero
time.

The UML specification allows for different priority schemes when choosing an
event for processing by an object, see [36, Sec.15.3.12]. We apply the following
priority scheme: signals from the object to itself have priority over all others;
signals from the environment, time events and change events have priority over
signals coming from other objects; signals coming from other objects are pro-
cessed on a fifo basis (which we realise by implementing the event pool as a
queue). Note that the semantics does not impose any fairness constraints: an
available event is not guaranteed to be processed. In terms of transitions, it
means that a transition may be enabled but never taken.

234 H.H. Hansen et al.

Objects communicate by sending signals to each other. We assume that signals
are never lost or duplicated. The communication is one-to-one (i.e. no broadcast)
and asynchronous (since signal events are stored in event pools).

4 The iUML Representation

The iUML representation can be described as an intermediate step between UML
and a labelled transition system (LTS) representation of object behaviour. The
LTS states are active state configurations and labelled transitions are defined
according to the semantics described in Section 3.3. Furthermore, we use the
iUML to represent model instances.

4.1 Transitions in iUML

In order to associate a unique action sequence with iUML transitions it may be
necessary to refine UML transitions into several iUML transitions. The reason
is that a UML transition t can have a composite source state, hence the (exit)
actions that should be executed when firing t may depend on which nested
substates of source(t) are active. We illustrate the refinement of such a transition
with the following simple example. Consider the transition t from A0 to B0 in
Figure 4. (We have only drawn the elements relevant for the refinement of this
t.) Assume that A0 is active, the trigger of t is available, and its guard is true.

B1

A0 B0

A1

A4 A5

A2

A3

t

Fig. 4. UML transition with composite source state

In order to determine which actions to carry out when firing t, we need to also
inspect which of the states A1, A2, A3, A4 and A5 are active and whether
they have exit actions defined. Suppose that A0, A4 have exit actions a0, a4,
respectively. We then have two possible exit action sequences when t fires: if A4
is active, the exit action sequence is a4; a0 and if A4 is not active, it is a0. This
motivates the following definitions.

– An active state predicate is a pair (U, V) where U, V ⊆ States(C). An active
state configuration A satisfies (U, V) if U ⊆ A and V ∩ A = ∅. In other
words, A satisfies (U, V) if all states in U are active, and no states in V are
active. We denote by [[(U, V)]] the set of active state configurations of O that
satisfies (U, V).

Automated Verification of Executable UML Models 235

– An iUML transition consists of an active state predicate (instead of a source
state), a target state, a trigger, a guard, an exit sequence, an effect sequence
and an entry sequence. An iUML transition t is enabled if the currently
active state configuration satisfies the active state predicate of t, the trigger
is available and the guard is true.

Due to the nesting of A4 inside the composite state A1, the transition t from
Figure 4 is refined into three iUML transitions t1, t2 and t3 with the following
active state predicates and exit sequences:

flat active state predicate exit sequence
t1 ({A0,A1,A4}, ∅) a4; a0

t2 ({A0,A1}, {A4}) a0

t3 ({A0}, {A1}) a0

Note that in iUML transitions, we keep as much of the high-level representation
of the UML as we can. For example, in the above we have one iUML transition t3
rather than two (where one requires A2 to be active, and the other one requires
A3 to be active). This is facilitated by the use of active state predicates instead
of source states. Note that the entry sequence of a UML transition does not
depend on the currently active state configuration. For example, if in Figure 4
B0, B1 have entry actions b0, b1, respectively, then the entry sequence is b0; b1

for all t1, t2, t3.

4.2 Transition Selection

Recall from the object execution cycle (Section 3.3) that upon receiving an
event e, an object must select a maximal, consistent set of enabled transitions
for execution. In the iUML, transitions are grouped together in a way that
reflects the transition selection algorithm. We first group an object’s transitions
by trigger and active state predicate. For each such transition group T , the
consistent subsets of T that can fire depend also on the values of transition
guards. These subsets are called multi-transitions. In the iUML representation,
each object will contain a collection of transition groups, and each transition
group will contain its multi-transitions.

We now give a formal definition. Let O be an object of type C. For an event e,
we let Tr(O, e) be the set of all transitions in O with trigger e. A transition group
with active state predicate (U, V) and trigger e (in object O) is a non-empty,
maximal subset T of Tr(O, e) such that for all t ∈ T , [[(U, V)]] ⊆ [[(Ut, Vt)]] where
(Ut, Vt) is the active state predicate of t. Note that if e is a time event or a
change event, then Tr(O, e) is a singleton and equal to the only transition group
with trigger e. Transition groups that contain several consistent transitions can
result from transitions in concurrent regions.

For example, an object of type point has five transitions triggered by the
signal <ic> move left (see Figure 3). These transitions will result in four tran-
sition groups. One group will contain the two transitions that both have source

236 H.H. Hansen et al.

state working.right; the other three groups will be singletons. Note that the non-
singleton transition group is not consistent (since firing one will disable the other
by exiting working.right). However, these transitions will never be enabled at the
same time, since their guards are complementary.

The subsets of a transition group that can actually fire depends on the con-
sistency of transitions and the value of transition guards. We formalise these
subsets as multi-transitions. A multi-transition of a transition group T is a con-
sistent subset M of T such that M = G ∪ ungrd(T) where G ⊆ grd(T), grd(T)
is the set of all guarded t ∈ T , and ungrd(T) := T \ grd(T).

For example, if T = {t0, t1, t2} is a transition group in which all transitions
are pairwise consistent, and grd(T) = {t1, t2} where gi is the guard of ti for
i = 1, 2, then the multi-transitions of T are {t0, t1, t2}, {t0, t1}, {t0, t2} and {t0}
which correspond to the scenarios where g1 and g2 are both true, only g1 is true,
only g2 is true, or g1, g2 were both false.

5 Translation from iUML to mCRL2

We sketch our translation from iUML into mCRL2. The mCRL2 specification
language [21] extends the process algebra ACP [5] with facilities to specify ab-
stract datatypes (ADTs), and includes built-in types such as Booleans, integers,
and lists. The advantages of translating into mCRL2 are that the language has
a formal semantics [21], and that it comes with powerful verification technology.
The possibility of defining data types and using them in the behavioral specifi-
cation is essential for the translation presented in this section. Process algebras
without ADT support such as CSP [24] supported by the FDR2 toolset [15]
are thus not directly applicable, while process algebras with ADT support such
as E-LOTOS [26] and LOTOS-NT [40] supported by the CADP toolset [16]
provide alternatives for mCRL2 in our setting. We refer to [21] and the web-
site http://www.mcrl2.org for details regarding the syntax and operational
semantics of mCRL2.

Our translation takes as input an iUML model instance M. M describes a
collection of objects that interact by sending signals to each other, but also by
inspecting each others state. We translate each object into an mCRL2 process;
the translation of the entire model M will then, roughly, be the parallel com-
position of the mCRL2 processes associated with the objects in M, and the
interaction between the objects is implemented by means of mCRL2’s facility
for (synchronous) communication between components.

We proceed to discuss the translation of the objects in M as object processes.
Recall that each object has associated with it an event pool, and a collection
of state machines describing its behaviour. An object process will consist of the
parallel composition of a buffer process modelling the event pool, and a state
machine process modelling the actual behaviour of the object. Below we will
discuss the translation of the event pool and object behaviour in more detail,
illustrating the translation on the object p1 of type point (see Fig. 3).

http://www.mcrl2.org

Automated Verification of Executable UML Models 237

Event Pool. Signals are specified using mCRL2’s facility for defining abstract
data types. The signals that are to be stored in the event pool of an object
of type C are represented by an enumerated data type C_Messages. That is,
C_Messages has a member for each reception in the class C. The buffer process
of an object of type C receives and stores the signals that are sent to the object
by implementing a queue of C_Messages.

Example 2. The specification of the enumerated type point_Messages is:

point_Messages = struct

ic_move_right_point | ic_move_left_point |

dv_at_right_point| dv_at_left_point ;

The event pool of the object p1 is specified by the following mCRL2 process
specification.

proc point_Buffer_p1(message_buffer: List(point_Messages))=

% Messages received from other components

(#message_buffer < max_buffer_size) ->

sum m: point_Messages. sum sender : Identifiers.

receive_from_system(sender, p1, m).

point_Buffer_p1(message_buffer <| m)

+ % Messages sent to component

(#message_buffer > 0) ->

send_to_component(p1, head(message_buffer)).

point_Buffer_p1(tail(message_buffer));

The specification above expresses that the process point_Buffer_p1 consists of
a choice (denoted by +) between the following options: either (if its buffer is not
full) it receives some element m of sort point_Messages from some sender and
then appends m to its message_buffer, or (if its buffer is not empty) it sends
the first element in message_buffer to the associated state machine, removing
this element from the message_buffer.

States, Messages and Buffers. The state machine process implements the
concurrent composition of the state machines of the class C, and the process
carries data parameters that encode the active state configuration by letting each
such state parameter range over an enumerated data type that represents the
states contained in a region r. More precisely, we declare for each state machine
X in C and each region r in X , an enumerated data type X__r_States whose
members represent the set States(r). If r is not a root region, then X__r_States
will also have a member (ending with _nop) that will be used to indicate that
no state in r is currently active.

Example 3. The regions in the Point state machine shown in Figure 3 give
rise to enumerated data types: point_States, point__working_States, and
point__working_moving_States. Below we show the definitions of the first two:

238 H.H. Hansen et al.

point_States = struct point__working_States = struct

point__broken_substate point__working_right_substate

| point__startup_substate | point__working_left_substate

| point__working_substate ; | point__working_moving_substate

| point__working_nop ;

Recall from Figure 2 that Point is a specialisation of HAL device; the active state
configurations of the latter are represented by the data type HAL_device_States.
The behaviour defined by the state machines of the object p1 is then expressed
by a process definition of the form

proc point_p1(

HAL_device_state : HAL_device_States,

point_state : point_States,

point__working_state : point__working_States,

point__working_moving_state : point__working_moving_States

) = ...

We postpone the discussion of how the state machines of HAL device and Point
give rise to the right-hand side of the above defining equation for point_p1.
First, we explain how mCRL2’s features of parallel composition, communication
and blocking are used to combine point_Buffer_p1 and point_p1 specifying
the behaviour of the object p1. The object p1 is represented by the following
expression:

proc point_Complex_p1

= block({send_to_component, receive_from_buffer},

comm({send_to_component|receive_from_buffer -> message_to_component},

point_Buffer_p1([])

|| point_p1(HAL_device__normal_substate, point__startup_substate,

point__working_nop, point__working_moving_nop)));

The process point_Complex_p1 is defined as a parallel composition of instances
of the processes point_Buffer_p1 and point_p1. Initially, the active states
are startup (in Point) and normal (in HAL device), and the buffer is empty;
this explains the respective parameter values passed to point_Buffer_p1 and
point_p1. The operation comm expresses a communication between point_p1
and point_Buffer_p1: both components may synchronise by simultaneously ex-
ecuting the action receive_from_buffer and send_to_component; the result-
ing event is denoted by message_to_component. The operation block declares,
in fact, that the actions send_to_component and receive_from_buffer may
not be executed in isolation; they may only occur as part of the aforementioned
synchronisation.

State Machine Process. We proceed to explain how the behaviour of an object
as expressed by a state machine is translated into mCRL2. The state machine
process implements the object execution cycle (see page 233). Starting from a
“stable state”, which corresponds to O1 in the object execution cycle, the process
can either receive and process an event, or let other processes inspect its state.
This inspection of states is implemented as a communication of state parameter

Automated Verification of Executable UML Models 239

values: a consumer action takes place in the object process that needs the data;
the matching producer action takes place in the object process whose current
state must be known to the consumer.

The possible behaviours in state O1 (process event or send state data) are
modelled as a nondeterministic choice (sum) over the different alternatives. As
an example, part of the state machine process for the object p1 is sketched below.
In the first two summands, a message is received from the buffer. In the next two
summands, a message is received directly from the environment. The following
two summands represent the two time event transitions in the Point state ma-
chine, one has source state startup and the other has source state working.moving.
The last four summands are actions that produce data for the evaluation of
change conditions in two Route objects r1 and r2. They show that in r1, there
are two change conditions that require the expression in state(#(working.right))
to be true in p1.

proc point_p1(<state params>)

= receive_from_buffer(p1,ic_move_left_point). ...

+ receive_from_buffer(p1,ic_move_right_point). ...

+ receive(p1,dv_at_left_point). ...

+ receive(p1,dv_at_right_point). ...

+ (point_state == point__startup_substate) ->

tick(p1). ...

+ (point__working_state == point__working_moving_substate) ->

tick(p1). ...

+ when_data_r1_1_p1_producer(p1,

point__working_state == point__working_right_substate). ...

+ when_data_r1_2_p1_producer(p1,

point__working_state == point__working_right_substate). ...

+ when_data_r2_1_p1_producer(p1,

point__working_state == point__working_left_substate). ...

+ when_data_r2_2_p1_producer(p1,

point__working_state == point__working_left_substate). ...

Recall that in our semantics, time event transitions can fire whenever the
source state is active. The detection of a time event is specified by the action
tick . The tick action does not actually place an event in the buffer. Change events
are specified in a manner similar to time events which we describe towards the
end of this section.

The part of the state machine process that follows an action that models the
choice of an event for processing specifies the transition selection algorithm and
the execution of the selected transitions. Recall now that in the iUML repre-
sentation, we have a representation of the transition selection algorithm given
by transition groups and multi-transitions. The mCRL2 specification that im-
plements the transition selection algorithm consists of a nesting of conditional
statements ranging over transition groups. For each transition group it is checked
whether its active state predicate is satisfied by the currently active state con-
figuration. If this check fails for all transition groups, then the process continues
recursively with its state parameters unchanged. Otherwise, there is a transition

240 H.H. Hansen et al.

group T for which the active state predicate is satisfied by the currently active
state configuration. If the guards of transitions in T refer to the state of other
objects, then the process carries out a number of consumer actions to retrieve
this state information. Next, a conditional statement runs through the multi-
transitions of T ordered decreasingly by size, until it finds a multi-transition M
whose transition guards are all true, and then the action sequence associated
with M is executed, and the state machine process continues recursively with its
state parameters updated to reflect the state after firing the transitions in M .

The mCRL2 code for the transition group in p1 with trigger move left and ac-
tive state predicate ({working.right}, {working.left,working.moving.right,broken})
is shown in Figure 5. The transition group consists of two transitions tleft and
tright with guards not /is locked and /is locked, respectively. Such pairs of transi-
tions with complementary guards result in two singleton multi-transitions. The
derived attribute /is locked in p1 refers to the state of route objects r1 and r2
which explains the communication with r1 and r2 in lines 2-4. These consumer
actions are matched by producer actions in r1 and r2. In line 3, the active state
predicate is checked. In line 7 the transition guard not /is locked is evaluated
using the received data values. Line 8 contains the action that results from firing
the multi-transition {tleft}. Lines 9-13 specify the updated state of the process af-
ter firing {tleft}. If not /is locked evaluates to false in line 7, then /is locked must
evaluate to true, and so the multi-transition {tright} is fired, which is specified
in lines 14-20.

1 point_p1(...) =

2 ...

3 (point__working_state == point__working_right_substate) ->

4 (sum r1_var: Bool. sum r2_var: Bool.

5 condition_data_p1_1_consumer(r1,r1_var)

6 | condition_data_p1_1_consumer(r2,r2_var).

7 (!(r2_var || r1_var)) ->

8 send_to_rail_yard(p1,sv_move_left_point_railyard).

9 point_p1(

10 HAL_device_state,

11 point_state,

12 point__working_moving_substate,

13 point__working_moving_left_substate)

14 <>

15 send_to_environment(p1,i_point_locked_point_environment).

16 point_p1(

17 HAL_device_state,

18 point_state,

19 point__working_state,

20 point__working_moving_state)

21)

Fig. 5. Example mCRL2 code for a transition group

Automated Verification of Executable UML Models 241

A transition tc triggered by a change event c can fire whenever the change
condition is true, and source(tc) is active. If the change condition refers to data
in other objects, then a sequence of consumer actions are executed in order to
obtain the data, similarly to how transition guards are evaluated.

Difference with Earlier Translation. In our earlier work [22], we presented
a slightly different translation from xUML to mCRL2. This translation was not
formulated in terms of an intermediate format, as it was done by hand. There
are, however, also semantic differences between the two translations:

– In the translation from [22], change events are detected by an additional
monitor component of object processes, and when a change condition be-
comes true, the monitor places a message in the buffer. In particular, change
events remain in the buffer even after the condition becomes false.

– In the translation from [22], change events, object-internal signals, and system-
internal signals have equal priority (all go through the fifo-buffer), and all
these events take priority over external signals. In the current translation,
object-internal signals have priority over all others, and change events, time
events and external events are allowed to overtake system-internal signals.

Based on discussions with the UML modelling engineers, our current trans-
lation is more in line with their view on UML semantics (which is based on
the CASSANDRA simulator [29]) than our previous translation. As a further
advantage, we have found that the mCRL2 models resulting from our current
translation are dealt with more easily by our model checking tools.

6 Verification

Our approach to verifying safety properties of xUML models is based on ex-
pressing the safety properties as UML state machines that observe the system
state and send an error signal in case a violation is found. The model and its
safety properties are both translated into mCRL2, as described in the previ-
ous section, and safety violations are detected by using the facility of our model
checking tools that allow searching for a particular action, in this case, the “send
error signal”-action.

Our motivation for expressing safety properties as state machines is two-fold.
First, it allows UML modelling engineers to specify safety requirements without
having to learn temporal logic. Second, the mCRL2 tools that provide (explicit-
state) model checking of modal mu-calculus formulas were not able to deal with
the sizes of our models. By turning the verification problem into a reachability
problem, we were able to verify our models using the symbolic reachability tool
from the LTSmin tool set [8]. This symbolic tool allows for varying exploration
strategies, and reports some basic performance analytics.

In Section 6.1 we describe how safety properties are modelled as UML state
machines. The verification proper is discussed in Sections 6.2 and 6.3, which
investigate, respectively, the size of the models we are able to deal with, and
ways to ‘attack’ larger models.

242 H.H. Hansen et al.

6.1 Safety Properties as Observer Classes

In an internal document describing the Micro interlocking the following two
safety requirements are given:

MS1: “A point that is locked by an established route shall never move.”
MS2: “The entry signal of a route shall never display proceed when one

of its tracks is not free.”

The exact meaning of the railway signaling concepts mentioned in MS1 and MS2
is not so important for the present discussion, but one should think of a route
being established as a requirement for letting a train pass (safely) over the route.
What is relevant is that properties such as a point being locked, a route being
established, and hence MS1 and MS2 themselves, can be expressed in terms of
the system’s state, that is, without reference to the ordering of events. We will
use the term state property to refer to such safety properties.

Our approach to verifying state properties is based on the observation that
state property violations can be detected in the system itself as certain change
events. In order to detect such violations we define a collection of observer classes
whose state machines will detect safety violations and send error signals. These
observer classes are expressed in the same subset of xUML as the model we wish
to verify, and we can therefore apply our automated translation to generate an
mCRL2 specification of the “observed model”.

Observer Classes. The common structure of observer classes is modelled
by the class StateObserver. The StateObserver class has three attributes: id,
ObservedObject and ObservedClass, one derived attribute /triggered (which will
be defined by a Boolean expression), and a state machine with a single transition
with trigger when(/triggered) and effect send <i> violation(observer := id) to

#GUI. The purpose of the attribute ObservedClass is to define the context in which
/triggered is evaluated. The attribute ObservedObject must be the name of an
instance of ObservedClass. All attribute values are defined upon instantiation.

Specific state properties are modelled as specialisations of the class StateOb-
server. These specialisations are what we call observer classes. The state machine
of an observer class consists of just one state and an initial transition to it. The
definition of /triggered, and of any additional derived attributes that may aid
the definition of /triggered, are assigned as the effect of the initial transition. We
illustrate using the two examples MS1 and MS2 from above. It should be clear
that MS1 and MS2 are both state properties.

The property MS1 will be modelled as an observer for the class Point, that is,
the attribute ObservedClass has value “Point”. Hence, the definition of /triggered
may use derived attributes from the Point class such as /is locked which is defined
as /is locked := exists (L routes UNION R routes) is true /is established. In
other words, /is locked is true if the point is locked by an established route, and
we define /triggered := /is locked and in state(#working.moving).

Automated Verification of Executable UML Models 243

The property MS2 is modelled as an observer for the class Route, and it
defines two “auxiliary” derived attributes /all tracks free and /proceed. The
initial transition of its state machine has effect:

/all tracks free := forall tracks is true /is free;

/proceed := entry signal.in state(#proceed);

/triggered := /is established and /proceed and not /all tracks free;

6.2 Feasibility of Verification

Given instances of the translated UML models, we would first of all like to know
the size of models we can deal with. To this end we designed several track layouts
for the Micro interlocking which are of increasing complexity. The layouts are
presented in Figure 6 and correspond to simple configurations one might find in
rail yards. Although not depicted in the figure, the possible routes in a layout
are precisely all the maximal paths in starting from a signal and not passing
both the left and right branch of a point (e.g., Layout 5 has six routes).

s1

t1

(a) Layout 1

s1

t1 p1

t3

t2

(b) Layout 2

s1

t1 p1

t3

t2

p2
t4

(c) Layout 3

s1

t1
p1

t3

t2

p2

t5

t4

(d) Layout 4

s11

t11 p1

p2

tm

s12

t12

s21

t21

s22

t22

(e) Layout 5

s1

t1 p1

p3

t2 t3

t4
p4

t5

p2

p5 t6

s2
t7

s3

(f) Layout 6

Fig. 6. Several track layouts used to test the feasibility of the verification task

244 H.H. Hansen et al.

Using the mCRL2 and LTSmin model checking tool sets (see Section 2) we can
next generate the state spaces for the depicted track layouts. The measurements
as obtained with the BDD based symbolic model checker from the LTSmin tool
set are depicted in Table 1. As can be seen in the table, model checking our
simple track layouts is possible, but running times and memory consumption
increase fast when introducing more routes (compare Layouts 4 and 5, where 4
has three routes and 5 has six).

Table 1. State spaces of the layouts from Figure 6, without observers, where each
state machine is assumed to have at most one message in its event pool. Resource
consumption is for the LTSmin symbolic model checker run on an Intel Xeon X5550
machine with 148 GB of internal memory; a saturation-like [9] exploration strategy
was used. The running times exclude the time to load the model.

Layout Components Routes States Runtime (s) Memory (MB)

1 2 1 1.7×104 0.01 61
2 5 2 1.3×109 0.25 76
3 7 2 4.9×1011 7.73 86
4 8 3 8.9×1013 19.39 115
5 11 6 6.8×1023 2605.90 3133
6 15 8 > 7.0×1030 > 496 h > 30 GB

Given the resources consumed already by Layout 5, we can conclude that
it is impossible to generate complete states spaces for ‘realistic’ layouts, which
usually consists of hundreds of components and routes. Hence, more advanced
methods are required, which are discussed in the next section. Of course, if cer-
tain properties are violated, this might already be detectable when instantiating
the UML models for the small layouts.

Remark 1. The figures in Table 1 make it clear that explicit state space gener-
ation is infeasible. Using the distributed model checker which is also part of the
LTSmin tool set, already Layout 2 is too large to be dealt with on a cluster of
10 Intel Xeon E5335 machines each with 24 GB of internal memory.

Given the simplicity of track layouts and the state machines shown, it may
come as a surprise that the state spaces are so huge. Note, however, that not all
states are depicted in the state machines: First, event pools are not included.
Second, as a sequence of actions that is carried out when a transition fires is
not executed as an atomic block, additional ‘intermediate’ states exist between
actions in the sequence. Third, the communication needed to exchange state
parameters also introduces some additional states.

Remark 2. Bounded model checking (BMC) [6] is not a suitable model checking
technique in the current context. The technique cannot prove the absence of
errors, which is precisely what we are interested in, given the safety critical
nature of interlockings.

Automated Verification of Executable UML Models 245

6.3 Speeding and Scaling Up Verification

Given our interest in proving the presence or absence of certain actions (see
Section 6.1), it might be possible to speed up and scale up the verification. From
the literature at least two symbolic model checking techniques are known that
may help to achieve this:

– Compositional exploration of state spaces [33,4]: The transition relation is
split into several parts and only some of these are used in state space ex-
ploration. Selection of the employed parts is based on an analysis of the
interaction between the parts and on the particular property one is inter-
ested in. Additional parts are selected in case the property could be neither
proved nor disproved using the selected subset of the transition relation.

– Counterexample-guided abstraction refinement (CEGAR) [11]: Given a prop-
erty, the transition relation is over-approximated (i.e., a relation is used of
which the transition relation is a sub-relation). Next, refinement takes place
based on violations of the property. Eventually either a violation is found
that also holds given the transition relation (i.e., the non-over-approximated
one) or an over-approximation is reached in which the property holds (im-
plying it also holds given the original transition relation).

In [33,4,11] it is reported that with both techniques, speed up and scalability are
achieved in case only part of the transition relation is needed to show that the
considered property holds. Moreover, in case of CEGAR speed up and scalability
are also achieved as the symbolic representation of the over-approximated state
space is often smaller than the symbolic representation of the real state space.

Preliminary Results. Thus far we have extended the symbolic model checker
from the LTSmin tool set with the first of the aforementioned techniques and
we are currently working on implementing the second technique.

Some preliminary results obtained with the implementation of the first tech-
nique mentioned above are shown in Table 2. The safety properties MS1 and
MS2 (see Section 6.1) have been verified for Layout 2 from Figure 6. Both prop-
erties are violated by the Micro interlocking specification and, hence, an error
trace (of a certain length) can be generated.

Table 2. Running times and trace lengths when searching for error actions using the
LTSmin symbolic model checker run on an Intel Core 2 Duo machine with 4 GB of
internal memory; a saturation-like [9] exploration strategy was used. The running times
include the time to load the model and generate a trace.

Layout Property
Runtime (s) Trace Length

Default Compositional Default Compositional

2
MS1 6.33 6.42 35 22
MS2 7.33 6.78 41 41

246 H.H. Hansen et al.

It is impossible to draw any definite conclusions given the small sample. Never-
theless, we note that some speed up is obtained in the case of MS2. Furthermore,
the reported lengths of the error traces are encouraging: the length of the error
trace is substantially shorter in the case of MS1, and it is not longer in the case
of MS2.

Remark 3. We do not automatically obtain the shortest trace possible, as we
use a saturation-like strategy instead of breadth-first search. Using breadth-first
increases running times for the layout 2 to 7.05 and 8.98 seconds for MS1 and
MS2, respectively. For layout 2, the shortest error traces for MS1 and MS2
consist, respectively, of 22 and 28 steps.

7 Discussion and Conclusion

We have presented a fully automated, translation-based approach to the verifi-
cation of safety properties in xUML models. Since both the input and the output
of our tool chain are expressed in UML, our verification technology can be used
by engineers without a thorough background in process algebra, model checking,
or modal mu-calculus.

Additional Case Studies. Our translation from xUML to mCRL2 has been
further applied in two case studies: (i) a UML model of a controller for mixing
hot and cold water, obtained from one of the industrial partners of the Uni-
versity of Twente; (ii) a UML model of the session setup protocol from the
ISO/IEEE 11073-20601 [27] standard (a data exchange standard for the health
care industry).

With regard to item (i), we were able to identify certain property violations.
However, this required the use of temporal logic, as the specified properties were
liveness properties (which we currently cannot capture using our observer state
machine approach). Moreover, since the controller for mixing hot and cold water
is intended to be implemented on a Programmable Logic Controller (PLC), which
does not buffer incoming events, we modified our translation in this respect.

The second case study (ii) was carried out by a colleague from the Eindhoven
University of Technology [28]. After resolving some ambiguity issues in the state
machines provided, the UML model could be translated into mCRL2. The veri-
fication revealed that it is possible for the system setup to reach an unsafe state
(where the communicating devices operate with different measurement units).
However, it was also shown that no unsafe operational behaviour could occur,
due to detection of the unsafe state before the first data exchange.

Related Work. Formalisation of xUML models for the purpose of verification
is a widely studied topic, and we mention just a few [2,3,12,20,34,42,44]. We
briefly relate our approach to some of the aforementioned ones. Recall that we
currently support signal, time and change events, but not call events.

In the UMC framework of [3], xUML models may be specified in the UMC
specification language. UMC supports signal and call events, but no time or

Automated Verification of Executable UML Models 247

change events, nor exit/entry actions of states. Properties must be specified in
a CTL-like logic, and are verified using on-the-fly model checking. Specifying
properties of UMC models thus requires some knowledge of formal methods
(and not just of UML), but on the other hand, the types of properties that can
be expressed far exceeds what our observers can define. In [20], xUML models
(with change, call and send events) are translated into a temporal logic that
supports compositional specification, and verification takes the form of refine-
ment proofs. Our approach is based on model checking which has the advantage
that the verification process is fully automatic whereas theorem proving gen-
erally requires human interaction in order to find proofs. In [34], UML state
machines are translated into timed automata using, as we do, model transfor-
mation technology. The resulting timed automaton is verified using the UPPAAL
model checker. It is, however, not clear how the timing constraints of the timed
automaton are derived from the input xUML model, in particular, since only
signal events are allowed as transition triggers (see Rule 10 in [34]).

Formal verification of high-level interlocking specifications has been studied in
[13,43]. For verification of concrete interlocking systems, see e.g. [10,14,19]. One
major source of challenges in the verification of xUML models lies in the asyn-
chronous communication model. It has been observed earlier that synchronous
specifications may be more amenable to automatic and exhaustive verification;
see, e.g., [39], for a short experience report in the domain of railway interlockings.

Our approach to modelling safety properties of xUML models in xUML itself
seems to be new, but similar ideas are found in [7,17,18,32,38]. The main dif-
ference with our work is that our observers monitor state changes whereas the
above-mentioned observers monitor event sequences, and hence they are able
to express temporal properties. The expression of liveness properties in our ap-
proach is still very much an open issue.

Future Work. In the future, we intend to extend the subset of xUML cov-
ered in our translation. In particular, we would like to include synchronous calls,
which are used in the more elaborate xUML models of railways interlockings
that we have been presented with. We would also like to extend our approach to
specifying safety properties in UML to include specification of temporal proper-
ties.

Moreover, we would like to give a formal operational semantics of our xUML
models, so that we can make formal statements about the generic properties
of models, as well as a formal comparison of different alternative approaches
to the xUML semantics. In order to enhance the scalability of our verification
techniques, we will continue our efforts to adopt compositional techniques as
well as counterexample-guided abstraction refinement.

Acknowledgements. The authors thank Louis Rose for his helpful comments
on an earlier draft of this paper.

Funding. This research is partially funded by the European Comission (EC),
as a grant to the FP7 project INESS, grant agreement no. 218575. Any opinions,
findings and conclusions or recommendations expressed in this material are those

248 H.H. Hansen et al.

of the authors and do not necessarily reflect the views of either the EC or the
INESS consortium.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Alur, R., Yannakakis, M.: Model checking of hierarchical state machines. ACM
Transactions on Programming Languages and Systems 23(3), 273–303 (2001)

3. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Science of Com-
puter Programming 76(2), 119–135 (2011)

4. Behrmann, G., Larsen, K.G., Andersen, H.R., Hulgaard, H., Lind-Nielsen, J.: Ver-
ification of hierarchical state/event systems using reusability and compositionality.
Formal Methods in System Design 21(2), 225–244 (2002)

5. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Infor-
mation and Control 60(1-3), 109–137 (1984)

6. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Advances in Computers 58, 118–149 (2003)

7. Blom, J., Hessel, A., Jonsson, B., Pettersson, P.: Specifying and generating test
cases using observer automata. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004.
LNCS, vol. 3395, pp. 125–139. Springer, Heidelberg (2005)

8. Blom, S., van de Pol, J., Weber, M.: LTSmin: Distributed and symbolic reachability.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359.
Springer, Heidelberg (2010)

9. Ciardo, G., Lüttgen, G., Miner, A.S.: Exploiting interleaving semantics in symbolic
state-space generation. Formal Methods in System Design 31(1), 63–100 (2007)

10. Cimatti, A., Giunchiglia, F., Mongardi, G., Romano, D., Torielli, F., Traverso, P.:
Formal verification of a railway interlocking system using model checking. Formal
Aspects of Computing 10(4), 361–380 (1998)

11. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. Journal of the ACM 50(5),
752–794 (2003)

12. Damm, W., Josko, B., Pnueli, A., Votintseva, A.: A discrete-time UML seman-
tics for concurrency and communication in safety-critical applications. Science of
Computer Programming 55, 81–155 (2005)

13. Eriksson, L.-H.: Specifying railway interlocking requirements for practical use. In:
Proceedings of the 15th International Conference on Computer Safety, Reliability
and Security (SAFECOMP 1996). Springer, Heidelberg (1996)

14. Fokkink, W.: Safety criteria for the vital processor interlocking at Hoorn-
Kersenboogerd. In: Computers in Railways V (COMPRAIL 1996). Railway Sys-
tems and Management, vol. I (1996)

15. Formal Systems (Europe) Ltd. Failures-divergence refinement: FDR2 User Manual
(2010)

16. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A toolbox for the
construction and analysis of distributed processes. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg (2011)

17. Geilen, M.: On the construction of monitors for temporal logic properties. Electr.
Notes in Theor. Comp. Sci. 55(2) (2001)

Automated Verification of Executable UML Models 249

18. Ghazel, M., Toguyéni, A., Yim, P.: State observer for DES under partial observa-
tion with timed petri nets. Discrete Event Dynamic Systems 19(2), 137–165 (2009)

19. Gnesi, S., Latella, D., Lenzini, G., Abbaneo, C., Amendola, A.M., Marmo, P.: An
automatic SPIN validation of a safety critical railway control system. In: Proceed-
ings of the 2000 Int. Conf. on Dependable Systems and Networks, pp. 119–124.
IEEE Computer Society, Washington, DC, USA (2000)

20. Graw, G., Herrmann, P.: Transformation and verification of Executable UML mod-
els. In: Proceedings of the Workshop on the Compositional Verification of UML
Models. Electr. Notes in Theor. Comp. Sci, vol. 101, pp. 3–24 (2004)

21. Groote, J.F., Mathijssen, A., Reniers, M.A., Usenko, Y.S., van Weerdenburg, M.:
The formal specification language mCRL2. In: Methods for Modelling Software
Systems. Dagstuhl Seminar Proceedings, vol. 06351 (2007)

22. Hansen, H.H., Ketema, J., Luttik, B., Mousavi, M.R., van de Pol, J.: Towards
model checking Executable UML specifications in mCRL2. Innovations in Systems
and Software Engineering 6(1-2), 83–90 (2010)

23. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Derivation and
refinement of textual syntax for models. In: Paige, R.F., Hartman, A., Rensink,
A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 114–129. Springer, Heidelberg
(2009), http://www.emftext.org (last visit: July 4, 2011)

24. Hoare, T.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs
(1985)

25. Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley, Reading (2003)
26. ISO/IEC. Enhancements to Lotos (E-Lotos), International Standard 15437:2001

(2001)
27. ISO/IEEE. ISO/IEEE 11073-20601: Health infomatics — personal health device

communication — Part 20601: Application profile — optimized exchange protocol
(April 2010)

28. Keiren, J.: Modelling session setup of IEEE Std 11073-20601 (2011), Personal com-
munication

29. KnowGravity. Cassandra/xUML User’s Guide (2008)
30. Kolovos, D.: An Extensible Platform for Specification of Integrated Languages

for Model Management. PhD thesis, University of York, United Kingdom (2009),
http://www.eclipse.org/gmt/epsilon/ (last visit: July 4, 2011)

31. Kolovos, D., Rose, L., Paige, R.: The Epsilon Book,
http://www.eclipse.org/gmt/epsilon/doc/book/ (last visit: July 4, (2011)

32. Lafortune, S., Teneketzis, D., Sampath, M., Sengupta, R., Sinnamohideen, K.:
Failure diagnosis of dynamic systems: an approach based on discrete event systems.
In: Proceedings of the American Control Conference, vol. 3, pp. 2058–2071 (2001)

33. Lind-Nielsen, J., Andersen, H.R., Hulgaard, H., Behrmann, G., Kristoffersen, K.J.,
Larsen, K.G.: Verification of large state/event systems using compositionality and
dependency analysis. Formal Methods in System Design 18(1), 5–23 (2001)

34. Mekki, A., Ghazel, M., Toguyeni, A.: Time-constrained systems validation using
MDA model transformation. A railway case study. In: Proceedings of the 8th In-
ternational Conference of Modeling and Simulation, MOSIM 2010 (2010)

35. Mellor, S.J., Balcer, M.: Executable UML: A foundation for model-driven archi-
tecture. Addison-Wesley, Reading (2002)

36. Object Management Group. OMG Unified Modeling Language Superstructure Ver-
sion 2.2 (February 2009)

37. Papyrus Developers. Papyrus: Open source tool for graphical UML2 modelling,
http://www.papyrusuml.org (last visit: July 4, 2011)

http://www.emftext.org
http://www.eclipse.org/gmt/epsilon/
http://www.eclipse.org/gmt/epsilon/doc/book/
http://www.papyrusuml.org

250 H.H. Hansen et al.

38. Schneider, F.B.: Enforceable security policies. ACM Transactions on Information
and Systems Security 3(1), 30–50 (2000)

39. Sheeran, M., St̊almarck, G.: A tutorial on st̊almarck’s proof procedure for propo-
sitional logic. In: Gopalakrishnan, G.C., Windley, P. (eds.) FMCAD 1998. LNCS,
vol. 1522, pp. 82–99. Springer, Heidelberg (1998)

40. Sighireanu, M.: LOTOS NT user’s manual. Technical report, INRIA Rhône-
Alpes/VASY (2008)

41. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework. Addison-Wesley Professional, Boston (2008),
http://www.eclipse.org/modeling/emf/ (last visit: July 4, 2011)

42. Turner, E., Treharne, H., Schneider, S., Evans, N.: Automatic generation of CSP ||
B skeletons from xUML models. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun,
H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 364–379. Springer, Heidelberg (2008)

43. Winter, K., Robinson, N.J.: Modelling large railway interlockings and model check-
ing small ones. In: ACSC 2003: Proceedings of the 26th Australasian Comp. Sci.
Conference, pp. 309–316. Australian Computer Society, Inc. (2003)

44. Yeung, W.L., Leung, K.R.P.H., Wang, J., Dong, W.: Improvements towards for-
malizing UML state diagrams in CSP. In: Proceedings of the 12th Asia-Pacific
Software Engineering Conference (APSEC 2005). IEEE Computer Society, Los
Alamitos (2005)

http://www.eclipse.org/modeling/emf/

Verification of UML Models by Translation to

UML-B

Colin Snook, Vitaly Savicks, and Michael Butler

University of Southampton

Abstract. UML-B is a ‘UML like’ notation based on the Event-B for-
malism which allows models to be progressively detailed through refine-
ments that are proven to be consistent and to satisfy safety invariants
using the Rodin platform and its automatic proof tools. UML, on the
other hand, encourages large models to be expressed in a single, detailed
level and relies on simulation and model testing techniques for verifica-
tion. The advantage of proof over model-testing is that the proof is valid
for all instantiations of the model whereas a simulation must choose
a typical instantiation. In the INESS project we take an extant UML
model of a railway interlocking system and explore methodical ways to
translate it into UML-B in such a way as to facilitate proof that the
model satisfies certain safety properties which are expressed as invari-
ants. We describe the translation attempted so far and insights that we
have gained from attempting to prove a safety property. We propose some
possible improvements to the translation which we believe will make the
proof easier.

1 Introduction

The aim of the INESS project [1] is to develop specifications and associated
material to assist in the development of a European common standard for rail-
way interlocking systems. The role of the WP4 group within INESS is to develop
ways to verify UML models of such interlocking systems. Other partners in WP4
are using model-checkers to verify a translation of the UML models. While this
method benefits from a high degree of automation, the size of models that can
be verified is limited by performance constraints and each instantiation of the
model (i.e. interlocking layout) has to be verified separately. We are exploring
the alternative approach of using theorem provers to verify (a translation of)
the model. While this approach generally requires a higher degree of expert
intervention depending on the size and complexity of the model, it does not
suffer from state-explosion to the same degree and once completed is valid for
all possible layouts that satisfy the constraints of the model. Proof however, can
quickly become intractable in real-world problems. The key to proving some-
thing, therefore, is to abstract away from the details and prove much simpler
properties which can then be used as lemmas in the proof at the more detailed
level. Refinement is the process of introducing more detail into the model in or-
der to move from the simpler abstract version to the detailed concrete level and

B.K. Aichernig, F.S. de Boer, and M.M. Bonsange (Eds.): FMCO 2010, LNCS 6957, pp. 251–266, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

252 C. Snook, V. Savicks, and M. Butler

requires further proof to ensure that the concrete model is consistent with the ab-
straction. The refinement that we use can be broadly categorised into horizontal,
superposition where more details are added without altering the representation
of the abstract model, and vertical data refinement where the abstract model is
replaced with a more complex version. The latter is, in general, a more powerful
form of abstraction and involves more substantial proof to show the correspon-
dence between the models. In fact, the intention of the refinement is generally
given in the form of a ‘gluing invariant’ which specifies the relationship between
the abstract variables and the concrete ones. The gluing invariant may also be
used as a lemma in the proof of properties at the detailed level.

In this paper we report on an investigation into translating a UML model
of an interlocking system into a formal refinement based notation so that safety
properties can be formally proven to hold. We use a small given example of an in-
terlocking model which is constructed in a style which is proposed by the INESS
project for use in the railway industry sector and we select and prove one safety
property from its requirements specification to demonstrate our method. We
would normally recommend considering safety properties at the earliest possible
stage [2] but this requires expertise in finding useful abstractions. Instead, we
adopt a rather naive approach where our refinements are constructed mechanis-
tically from the UML structure without abstracting the main concepts involved
in the safety property and we then attempt to add the safety property at a late
stage. The purpose of taking this approach was to determine to what degree a
mechanistic, low expertise, approach would succeed and where we would need
to introduce more abstraction in order to succeed in the proof. Indeed, when
we initially tackled the proof of the safety requirement, not only did we find it
difficult, but also, we could not detect whether it should be provable or whether
there was a problem in the model. For a second attempt, we introduced a more
useful abstraction into the model which enabled us to detect some errors in the
original UML source model and then prove the safety requirement in a more
abstract form. We were then able to prove the more concrete form of the safety
requirement using the abstract property.

Our goal in the INESS project is to develop techniques for using our methods
to prove safety requirements in UML models of interlocking systems. As depicted
schematically in Fig. 1, to do this we need to translate the UML model and
its associated safety requirements into our notation where we can apply the
automatic prover. The primary aim of this paper is to report on our ongoing work
on INESS. However, we also see a more general contribution emerging which is a
set of guidelines for building formal models from semi-formal entity relationship
and state machine models (including UML models) so that the process is better
defined and it is clearer where stronger abstractions will be needed than those
that can be inferred mechanistically.

The paper is structured as follows. In section 2 we describe the methods that
we use. In section 3 we describe the source UML model that we were given
to verify. In section 4 we describe our mechanistic approach to translating the
UML model into a series of UML-B refinements. In section 5 we describe our

Verification of UML Models by Translation to UML-B 253

Fig. 1. Schematic block diagram illustrating the translation of the UML model and
associated safety invariants into the UML-B notation

interpretation of a safety requirement and how the pursuit of a proof led us to
revise our modelling approach and to uncover safety problems in the original
model. Section 6 outlines how we intend to develop our approach in response to
the findings reported here. Section 7 is the conclusion.

2 Background

The Unified Modelling Language (UML) [3] is a semi-formal diagrammatical
modelling notation which has been adopted relatively widely throughout indus-
try. UML includes several diagram notations which can be used for different as-
pects of a system and for different stages of the development process. The UML
diagram notations that we are concerned with are ‘Class Diagrams’ which can
be used to show the relationships between different kinds of entities and ‘State
Diagrams’ which give a state oriented view of the behaviour of the classes. To a
lesser extent we are also interested in ‘Use Case Diagrams’ and ‘Sequence Dia-
grams’ which are used together to illustrate the requirements of a system. UML
is often interpreted flexibly and to some extent this is a strength, but it is some-
times criticised for having imprecise semantics which may lead to confusion and
ambiguity. Some variants of UML have been developed which are constrained
and more precisely defined. UML has no notion of refinement.

Event-B [4,5] is a state-oriented formal modelling language that was developed
for modelling at the systems level. State is represented by typed variables and

254 C. Snook, V. Savicks, and M. Butler

spontaneous transitions (guarded events) occur to alter the state. A central
concept of Event-B is refinement, where more detailed state is added and this
reveals more detailed events. The Rodin platform has been developed as a formal
modelling environment for Event-B and includes a static checker and a prover.
The Rodin platform [6,7] is designed to be extensible and many plug-in’s are
available which extend the Event-B language or provide additional tools for
model development, verification and validation.

We base our approach upon UML-B [8,9], Event-B and the Rodin platform.
UML-B is a visual front-end for the Event-B notation and includes a state ma-
chine diagram editor. Tool support for UML-B is provided by a plug-in to the
Rodin platform. State machines may be refined by adding nested state ma-
chines [10] and can be animated via a plug-in [11] that utilises the ProB [12]
model checker and animator. The state machine refinement supported by UML-B
allows the model to be progressively developed in stages. This improves under-
standing, and hence validity, as features can be laid down in small steps while
the Rodin provers ensure consistency. Invariants can be added to states (i.e. the
state being active becomes an implicit antecedent for the property) providing
another mechanism to clearly state our understanding of the model with further
consistency checking via the Rodin provers. One use for invariants is to express
safety properties that we believe the model satisfies so that we can prove that
this is indeed the case. Animation of the state machine diagrams allows us to
test that they behave as we expected.

3 UML Model of Interlocking

For the purpose of investigating and demonstrating how to apply our methods
in this domain, we were given a small UML model of an interlocking system,
called micro2010 [13], which had been constructed in a style that is typical of
the full scale models that are expected to be produced during or after the INESS
project. The model is constructed using the Artisan UML tool [14] in a variant of
the UML called xUML [15] which can be executed in a simulation environment
called Cassandra [16]. xUML has a precise but easy to read action and constraint
language which is interpreted by the Cassandra simulation tool. The advantage
of this model is that it has an operational semantics as defined by the Cassandra
simulation.

The micro2010 UML model is based on a structure of classes as shown in
Fig 2. The class HAL represents the control of a physical device in the system.
Hence the class structure making up the modelled interlocking system controller
mirrors the components in the physical track layout. There are subclasses for
signal, track and point. The class, route, represents a concept used in railway
interlocking systems where a collection of track layout components constitute
a path through the layout that a train may wish to follow. The safety of the
system is based on a route being requested and subsequently allocated provided
that all the components in that route are free and not allocated for use in any
other route. The route class therefore has several associations with the logical

Verification of UML Models by Translation to UML-B 255

Fig. 2. UML Class Diagram showing structure in the interlocking model

device classes which identify the components involved in that route. Note that,
for verification by proof, we do not need to specify the values of these classes
and associations, the proof is valid for any valid instantiation, whereas, for model
checking or simulation an example configuration is configured or generated by
instantiating these classes and giving values to all the associations.

The classes often own derived attributes which represent a boolean condition
over properties of the class and its associated classes. Derived attributes (desig-
nated by a preceding slash /) do not represent any new state, they are a short-
hand way of expressing a boolean condition over variables that are elsewhere in
the model. For example, the point class has a derived attribute, /is locked, which
is true if and only if that point belongs to a route that is currently established.
There is no actual variable attached to /is locked, so it can never be assigned to
in an action but it may appear in guards as a shorthand for its definition.

The behaviour of each class is specified by a state machine diagram. Exam-
ples of two such state machines are shown in Figs 3 and 4. The state machines
are composed in a hierarchical manner with some states containing sub-states.
The behaviour of the system is specified in terms of guarded transitions that
may fire when the system is in their source state. For convenience, guards are
usually specified using a derived attribute (e.g. moveLeft[not /isLocked] in Fig
3). There are several different ways by which a transition may be triggered.
Transitions stereotyped ic are triggered by a send action in another transition
(e.g. moveLeft in Fig 3). Transitions stereotyped dv are triggered by external
events in the environment (e.g. atLeft in Fig 3). Transitions named with the
keyword ‘after(t)’ are triggered spontaneously after the time t since the source

256 C. Snook, V. Savicks, and M. Butler

Fig. 3. UML State Machine of Points

Fig. 4. UML State Machine of Routes

Verification of UML Models by Translation to UML-B 257

state was entered (e.g. after(3) in Fig 3). Transitions named with the keyword,
‘when’, are triggered spontaneously when their guard condition is true (e.g.
when([/proceed-conditions-ok]) in Fig 4).

4 Translation to UML-B

UML-B provides equivalent modelling diagram notations to those used in the
UML model (i.e. Class and State-machine) but with minor syntactic and signifi-
cant semantic differences. In general UML-B is less flexible because it is strongly
founded on the Event-B formalisation, but in most cases there are no significant
problems in translating the diagrams. We also introduced some new features into
UML-B in order to assist the translation. However, the semantic differences in
transitions deserves some attention. Due to their correspondence with Event-B
events, the only mechanism for triggering transitions in UML-B is spontaneous
triggering when the transition guard is true (‘when’ transitions). The other tran-
sition triggering methods used in the UML model are handled as follows.

Externally triggered transitions are modelled using spontaneous triggering
in the same way as ‘when’ transitions. Since we do not explicitly model the
environment, the transition is considered to implicitly represent the response to
an event occurring in the environment.

Timed transitions are modelled using spontaneous triggering in the same way
as ‘when’ transitions. Since we do not explicitly model time, the transition is
considered to implicitly represent the response to a time limit being reached.
Since the properties we wish to verify only concern event ordering, this is suffi-
cient for our purposes provided that there are no cases where two timing events
compete from the same system state.

Internally triggered transitions are represented by modelling a message pass-
ing system. A base class buffer owner is inherited by all other classes and pro-
vides an attribute which is a set of messages received by an object in that class.
A transition that needs to be internally triggered waits for an instance of its
trigger message to be received by its owning object and removes that message
as it fires. In a UML-B refinement, new transitions may only modify variables
that have been introduced in that refinement and are not allowed to alter the
variables introduced in previous refinement levels. This means that we can not
alter the buffer in any subsequent refinement levels after we first introduce the
buffer. To avoid this problem we provide an event that non-deterministically
modifies the buffer attribute so that transitions introduced in subsequent refine-
ments may refine this behaviour by sending trigger messages to other objects and
removing their own trigger messages. Note that although this mechanism does
not impose any ordering on triggering within an object and does not allow for
multiple triggering of the same transition it is sufficient for the safety properties
being verified.

As in Event-B, refinement is a key concept within UML-B. Even without in-
troducing a safety property, there are significant proof obligations concerning
the internal consistency and well-definedness of the model and these would be

258 C. Snook, V. Savicks, and M. Butler

difficult to handle if the model was introduced in a single stage without re-
finement. Therefore, we need to build the UML-B model in several refinement
stages. Since this is a research experiment aimed at finding a method that can
be applied to bigger and more general UML models of interlocking systems, we
also require that the method of introducing refinements is methodological and
does not rely on high expertise in refinement and abstraction. Three potential
methods for introducing refinement are considered.

a) Class inheritance has some analogy with refinement. Classes higher up the
inheritance structure can be introduced and modelled without knowledge of
subclasses. These inherited classes have features that are common to their
subclasses which can be modelled in an abstract level before the subclasses
are introduced in a subsequent refinement. In this case the micro2010 model
contains one inherited class, HAL which does not contain any interesting
behaviour. Therefore we do not use this technique in this translation.

b) Class associations and behaviour can be examined for dependency and used
to determine a priority ordering for introducing classes. It is usually the
case that the classes exhibit a hierarchy in the way that they control each
other with one class responding to instructions from another (via the internal
triggering mechanism). The associations give a clue to this hierarchy because
internal triggering occurs between instances that are linked by associations.
In the class diagram of the micro2010 model (Fig. 2) observe that the track,
signal and point classes are not connected by association whereas the route
class connects with all three. It is apparent that the track, signal and point
classes are independent and can be introduced in any order whereas the
route class is dependent on the others and must be introduced last. This is
confirmed by examining the internal triggering where the route class is the
only one that sends triggers while the other classes are only responding to
them.

c) State machine hierarchy can be used to introduce the full behaviour in stages
following the hierarchy of nesting within the class’ state machine. Nested
state machines only elaborate the behaviour of the parent state machine
which can be constructed in a way that is valid without the nested one. We
use this method to introduce the point class in three refinements and again
to introduce the route class in two refinements.

These 3 methods should be used in the order shown since this will result in an
appropriate ordering with respect to class dependencies. We also suggest using
the 3 methods in a ’depth first’ manner. That is, the highest (most abstract) level
classes in the inheritance structure should be introduced first and fully refined
using methods b and c before the next level in the inheritance structure is dealt
with. Similarly the classes introduced by analysing the associations should be
fully refined by method c before the next priority according to associations is
dealt with.

There is no facility in UML-B for representing derived attributes. Therefore
derived attributes are fully expanded with their definitions wherever they are
used and only introduced at a refinement level where all the features required

Verification of UML Models by Translation to UML-B 259

Fig. 5. UML-B State Machine Diagram showing the behaviour of points in the working
state

by their definitions have been added to the model. However, our experience of
proving (described in chapter 5) has led us to the conclusion that there needs to
be more abstraction of features of the model. We are now re-assessing whether
these derived attributes represent useful abstractions that should be introduced
in early refinements for the purpose of proving important properties.

The refinement steps of the UML-B version of the railway interlocking model
can be summarised as follows: (The application of the methods outlined above
is shown for each refinement).

m0 Introduces the message passing mechanism used for internal triggering of
transitions. (No method - prior to translation).

m1 Introduces the signal class and its state-machine describing its behaviour
which sets the signal to proceed or stop in response to internal triggers.
(Method b).

m2 Introduces the track class and its state-machine describing its behaviour
which sets the track to free or occupied in response to internal triggers.
(Method b).

m3 Introduces the point class and its first level state-machine describing its
behaviour to go to the broken state if a command is not achieved within a
time limit and to recover if another internal trigger is received. (Method b).

m4 Elaborates the behaviour of the point class when it is in the working st state
by adding the nested state-machine shown in Fig. 5. (Method c).

m5 Elaborates the behaviour of the point class when it is in the moving st state
by adding the nested state-machine shown in Fig. 6. (Method c).

m6 Introduces the route class and its first level state-machine shown in Fig. 7.
(Method b).

260 C. Snook, V. Savicks, and M. Butler

Fig. 6. UML-B State Machine Diagram showing the behaviour of points in the moving
state

Fig. 7. UML-B State Machine Diagram showing the behaviour of routes

m7 Elaborates the behaviour of the route class when it is in the established st
state by adding a nested state-machine. (Method c).

m8 Adds the safety invariant to check that points that are in an established
route do not move. (No method - add invariant).

In order to reason about the UML-B model and, in particular, to discuss the
invariants, we need a textual representation of the value of a state machine. This
is provided by the UML-B toolset since it automatically translates the diagrams
into an equivalent Event-B model for verification purposes. The tool translates
each class into a set with the same name as the class, and each state machine to
a variable using the name of the state machine. (As a convention we have named
the state machines after their parent with ” sm” appended). The state machine
variable is a function from the set representing the class to an enumeration of
the states in the state machine. The value of a state machine for a particular
instance of a class is therefore available by function application. Associations are
constant relations between the class sets and values can be accessed by relational
image. Hence we can refer to the left points of a route, r, as left points [{r}] and
a point, p, being in the left position as point sm(p) = left st.

Verification of UML Models by Translation to UML-B 261

5 Proving the Safety Invariant

Once the UML-B model is developed throughout its levels of refinement, we can
turn our attention to verifying that it satisfies the safety requirements. Up to
this stage, until we introduce some safety requirements, the proof only concerns:

a) well-definedness (e.g. that where a function application is used, the function
is defined for that value),

b) typing (i.e. that an assignment doesn’t contravene a defined sub-range of a
variable’s basic type) and

c) simulation (i.e. that the the principles of refinement are observed).

These proof obligations, which are mostly discharged automatically by the Rodin
provers1, ensure that the model is constructed correctly in a consistent manner
but do not prove anything about how the model behaves.

A more interesting and challenging use of proof is to introduce some invariant
property which we require to hold at any time in the model. These invariant
properties are ideal for expressing safety requirements. The micro2010 UML
model contains four safety requirements which are stated in natural language in
the documentation. We choose one of these safety requirements for the purpose
of illustrating our method.

SR1: A point that is locked by an established route shall never move.

The safety requirement is worded with a little redundancy since, by definition,
a point is locked by establishing a route to which it belongs. Since we have
expanded away all derived attributes, such as /is locked, in our UML-B model,
we re-state the safety invariant as follows:

SR1’: A point that belongs to the left points or right points of an estab-
lished route shall never move.

We can now translate this into an invariant using the features of our UML-B
model. When translated to plain Event-B this state invariant becomes::

SR1 : ∀r , p ·r ∈ route ∧ route sm(r) = established st ∧ p ∈ (left points [{r}] ∪
right points [{r}])⇒ (p ∈ dom(working sm)⇒working sm(p) �= moving st)

SR1 is read as follows: For all p and r, where r is a route which is in the state
established st and p belongs to the union of the left points and right points of r
then (if p is in the domain of the state machine, working sm then) p is not in
the state moving st. Note that the condition in brackets is not a logical necessity
since if it is not true then the point is not even in the super state of moving st,
however, it is included so that the prover can discharge a related proof obligation
that the function application, working sm(p), is well formed.

1 Some theorems were added at the first refinement to help the provers discharge POs
about the refinement of buffer assignments.

262 C. Snook, V. Savicks, and M. Butler

We were unable to prove this safety invariant and suspected the original UML
model to be unsafe. Often when this is the case, examination of the proof obli-
gation helps understanding the problem and suggests a correction in the model.
However, in this case it is not obvious why the proof obligation is not provable
and how the model can be fixed. The difficulty stems from the late arrival of
the concept of routes and the consequent lack of abstract representations of the
concepts involved in the safety invariant. In fact, the original UML model intro-
duces the abstract concept of locking (albeit for different reasons) which we have
discarded due to difficulty in translation. To improve our model we re-worked it
from refinement level m4 where point is introduced and at this stage we model
the derived attribute is locked as a boolean attribute of the point class. This
allows us to express, at an earlier stage, the fact that points must not move
while locked, even before specifying the real meaning of locked. At this stage we
introduce some non-deterministic alteration of the locked attributes which are
later refined into the behaviour of routes. We introduce an invariant into the
moving st state of the point class to express the constraint that the point should
not be locked when it is moving. In doing so we prove an abstract equivalent of
the safety invariant SR1, namely:

SR1a: A point that is moving is not locked.

The invariant can be seen in the state moving st of Fig 5. When translated to
plain Event-B this state invariant becomes:

SR1a : ∀thisPoint ·((thisPoint ∈ point)⇒((point sm(thisPoint) = working st)⇒
((working sm(thisPoint) = moving st) ⇒ (locked(thisPoint) = FALSE))))

The invariant in the diagram is translated from dot notation to function ap-
plication to obtain locked(thisPoint) = FALSE. The contextual position of the
invariant in the sub-state moving st of the state working st of a state machine
belonging to the class, point, gives rise to the chain of antecedents.

In attempting to prove this we realised that the model has unguarded transi-
tions to moving st which are triggered when a point is requested to move to the po-
sition it is already in (transitions move left from left and move right from right).
Perhaps this was not considered by the UML modellers to be a genuine move for
the purpose of safety but, if this is the case, it is not possible to (formally) distin-
guish safety in the given model meaning that we have been given an impossible
task. To investigate further we corrected the model by adding guards to prevent
these transitions when the point is locked allowing us to prove the abstract safety
invariant SR1a.

Having established that locked points do not move, to complete the proof of
the safety invariant, we need to prove that the points in an established route are
always locked. (This is the gluing invariant corresponding to the data refinement
that replaces is locked with membership of an established route). That is:

GL1 : ∀r , p ·r ∈ route ∧ route sm(r) = established st ∧ p ∈ (left points [{r}] ∪
right points [{r}]) ⇒ locked(p) = TRUE

Verification of UML Models by Translation to UML-B 263

Given the abstract invariant, SR1a and the gluing invariant, GL1, the original
safety invariant, SR1, is discharged easily by the Rodin provers. In fact, since it
follows directly from SR1a and GL1 we can make SR1 a theorem so that it only
needs to be proved once.2

However, the gluing invariant still can not be proved for the transitions, can-
cel route and established idle, that reset locked to false (or to use the concrete
representation, release an established route). Upon examination, we realise that
the model does not prevent two conflicting routes (that share common points)
from being established concurrently (so that a point is locked by two routes at
the same time). In this case, the gluing invariant is violated when either one
of the routes is cancelled and unlocks its points. The location of the mistake
is in another derived attribute of the UML model, proceed conditions ok, which
is defined as ‘all left points of the route are at left, all right points of the route
are at right and all tracks of the route are free’. Hence the proceed conditions
defined in the source model prevent a route from being established when its
points are not in the required positions but not if another route has already es-
tablished and locked those points in the correct positions. Strictly speaking, the
safety requirement we are working on does not specify anything about conflicting
routes, it was an assumption we made in our gluing invariant. We could design
an alternative, provable, gluing invariant which allows for conflicting routes, but
since the micro2010 UML model also contains a use-case that indicates that a
‘set route’ request should not succeed if one of its points is locked by a route, we
deduce that there is a mistake. To correct it we add a guard to the transition,
setting up established, in the route state machine Fig. 7 of refinement level m6.
The guard ensures that none of the points that are used in the route are already
locked:

Guard4 : locked [left points [{self }] ∪ right points [{self }]] = {FALSE}

The guard uses the contextual instance, self, of the class, route (i.e. self is the
route being set up by the transition setting up established). The guard can be
read as, the only value of locked for all the left points and right points of self, is
FALSE.

Note that this is the same transition that locks the points used by the route.
It is important that this is done in one (atomic) transition to a) ensure that the
guard remains true when the locks are set and b) so that the derived attribute
is locked is refined by its definition.3

After adding this guard we are able to prove the gluing invariant for the
two transitions that render a route un-established, i.e. cancel route and estab-
lished idle. This completes the proof of the safety invariant SR1.

2 In Event-B, and hence UML-B, to prove an invariant it is necessary to prove that
every event results in a state that satisfies the invariant whereas a theorem is deduced
from the other invariants and theorems.

3 Although, for clarity, we have retained is locked, we would like the option to remove
it in a later refinement and our proof of SR1 relies on the data refinement where it
is replaced by its definition.

264 C. Snook, V. Savicks, and M. Butler

The statistics for proofs are given in the following table. The automatic provers
are configurable so that the user can choose which provers to try and specify time-
out values. These figures represent a configuration with a meta-prover (called
Relevance Filter) enabled. With this meta prover enabled, before tackling the
safety requirement in m8, only one PO (from m6) requires interactive proof. All
of the POs relating to the abstract safety invariant in m4 are discharged auto-
matically. In m8, three PO’s required interactive proof. These are the proof of the
intermediate state invariant when a route is established and the two (identical)
proofs that the transitions that un-establish a route satisfy the gluing invariant.

Refinement Proofs Automatic Interactive
m0 7 7 0
m1 11 11 0
m2 18 18 0
m3 15 15 0
m4 88 88 0
m5 34 34 0
m6 34 33 1
m7 26 26 0
m8 16 13 3

It is interesting to know where the effort lies in carrying out this verification
work. The effort in actually carrying out an interactive proof is minor. Now that
the model has been constructed and corrected, we could conduct the interactive
proofs within an hour at most. Similarly, discovering and correcting errors in the
model is not particularly time consuming because the proof obligations quickly
lead one to the problem. However, the iterative process of attempting the proofs,
running into difficulties and improving the modelling techniques to make the
model more amenable to proof, took several weeks of effort.

6 Future Work

As part of our role in the INESS project we will continue to prove other safety
requirements in the micro2010 model. We expect to find that similar techniques
of introducing more abstraction are necessary and hope this will lead to a general
method. Hence we will investigate in more detail how to methodically generate
abstract concepts from UML derived attributes in a way that helps us prove
safety invariants. We will continue this investigation using more extensive exam-
ples in order to test the generality of the method.

We are also interested in developing guidelines for constructing a UML-B
model in refinements from a UML model that has none. For this purpose, the
micro2010 model has given us some initial ideas but is somewhat limited. We
plan to investigate these guidelines using some more extensive examples of in-
terlocking models that are also available as part of the INESS project.

Verification of UML Models by Translation to UML-B 265

Another approach that we have previously investigated [2] is to start by mod-
elling the most abstract model that is needed in order to demonstrate the safety
requirements. It may then be possible to develop the full translated model as a
refinement of the safety requirements, hence showing that the model is safe by
construction. We would like to investigate this alternative approach in compar-
ison to that presented here.

7 Conclusion

We have investigated a mechanistic approach to translation of a UML model
into a series of UML-B refinements and the introduction of safety invariants at a
final stage. We found that this approach has limitations because the refinement is
based on the structure of the UML model resulting in a superposition approach
to refinement (often called horizontal refinement). The safety invariant to be
proved becomes too complicated to a) find a proof, and b) to find why it is not
provable in the model. We deduce that the translation does not provide enough
abstraction of concept (often called vertical refinement) and suggest that derived
attributes of the UML source model may provide a clue to introducing this
methodically through the translation. When we introduced a vertical refinement
using the derived attribute is locked we were able to find and rectify two problems
in the model and subsequently proved the safety invariant with relative ease using
the abstract version of it and the gluing invariant of the refinement.

References

1. INESS (2010), http://www.iness.eu/
2. Snook, C.: Specifying Safety Requirements for a Railway Interlocking System.
Dagstuhl Seminar on Refinement based methods for the construction of dependable
systems (2009)

3. Rumbaugh, J., Jacobson, I., Booch, G.: UnifiedModeling Language Reference Man-
ual, 2nd edn. Addison-Wesley Object Technology. Addison-Wesley Professional,
Reading (2004)

4. Metayer, C., Abrial, J.R., Voisin, L.: Event-B Language. Rodin deliverable 3.2, EU
Project IST-511599 -RODIN (May 2005)

5. Abrial, J.R.: Modelling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

6. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. International Journal on
Software Tools for Technology Transfer (STTT) 12(6), 447–466 (2010)

7. Abrial, J.R., Butler, M., Hallerstede, S., Voisin, L.: An Open Extensible Tool En-
vironment for Event-B. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS,
vol. 4260, pp. 588–605. Springer, Heidelberg (2006)

8. Snook, C., Butler, M.: UML-B: Formal modeling and design aided by UML. ACM
Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006)

9. Snook, C., Butler, M.: UML-B and Event-B: an integration of languages and
tools. In: The IASTED International Conference on Software Engineering SE 2008
(February 2008)

http://www.iness.eu/

266 C. Snook, V. Savicks, and M. Butler

10. Said, M., Butler, M., Snook, C.: Language and Tool Support for Class and State
Machine Refinement in UML-B. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009.
LNCS, vol. 5850, pp. 579–595. Springer, Heidelberg (2009)

11. Savicks, V., Snook, C., Butler, M.: Animation of UML-B Statemachines. Tech-
nical Report (http://eprints.ecs.soton.ac.uk/18261/1/TBFMsmAnim.pdf) and
presented at Rodin User and Developer Workshop (2010)

12. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

13. Schacher, M.: Micro interlocking 2010. Know Gravity Inc (2010),
http://knowgravity.com

14. ArtisanStudio (2010), http://www.atego.com/products/artisan-studio/
15. Mellor, S., Balcer, M.: Executable UML: A foundation for model-driven architec-

ture. Addison-Wesley, Reading (2002)
16. Cassandra (2010), http://www.knowgravity.com/eng/value/cassandra.htm

http://eprints.ecs.soton.ac.uk/18261/1/TBFMsmAnim.pdf
http://knowgravity.com
http://www.atego.com/products/artisan-studio/
http://www.knowgravity.com/eng/value/cassandra.htm

Towards the UML-Based Formal Verification

of Timed Systems

Luciano Baresi, Angelo Morzenti, Alfredo Motta, and Matteo Rossi

Politecnico di Milano
Dipartimento di Elettronica e Informazione, Deep-SE Group

Via Golgi 42 – 20133 Milano, Italy
{baresi,morzenti,motta,rossi}@elet.polimi.it

Abstract. This paper presents the approach to the formal verification of
UML-based models of timed systems developed in the MADES project.
The approach differs from many current ones in that it aims at (i) being
inclusive in the range of diagrams considered when producing the for-
mal model, and (ii) adhering to the UML notation as much as possible.
The metric temporal logic-based semantics developed in the project is
presented through an example system.

1 Introduction

UML, along with its dialects and profiles, is a widely utilized graphical, design
notation. Despite the vast adoption, users only tend to agree on the interpre-
tation of few well-known concepts, while the actual behavior of many parts of
the notation is left open. The concrete syntax of the language is very rich, and
offers alternatives to model the same concepts, but its semantics is only defined
informally and imprecisely. This is enough if we think of UML as a pure mod-
eling notation; it is not acceptable when one aims to detailed descriptions of
the system-to-be, neither is it suitable for automated analysis and for deriving
implementations that go beyond the frame of some classes.

In contrast, formal methods and tools (e.g., UPPAAL1 or Alloy2), which
would provide sophisticated analysis capabilities, have often demonstrated their
inability to attract the masses: the required mathematical background hampers
their adoption and many users privilege the “simplicity” of UML-like notations
rather than more formal means. Many proposals (e.g., [10,11,18]) have already
tried to bridge the gap between the two domains by attempting to provide (parts
of) UML with a precise (possibly formal) semantics. The idea is to keep the pos-
itive aspects from both fields and provide the user with a well-known modeling
notation, suitably augmented with a formal semantics behind the scene.

If we think of UML as design means for a well-known programming language
(e.g., Java), the subset of the notation usually considered is very limited (mainly
just class diagrams), and the actual semantics is assumed to be the same as
1 http://www.uppaal.org
2 http://alloy.mit.edu/

B.K. Aichernig, F.S. de Boer, and M.M. Bonsange (Eds.): FMCO 2010, LNCS 6957, pp. 267–286, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.uppaal.org
http://alloy.mit.edu/

268 L. Baresi et al.

the one of the target language. Petri nets have been widely used to explain the
dynamic behavior of UML activity and state diagrams for years [19,12], but
the immediate explosion of the resulting nets, along with the inability to easily
distinguish between types (classes) and instances, hampered their adoption as
underlying formal representation for UML models.

The heterogeneity and overlapping of the different modeling elements, the
wide spectrum of the notation, and also the size of the resulting formal speci-
fications, which are often too big for analysis, play against complete formaliza-
tions. A coherent, consistent, and complete formal semantics is a very complex
and heavy task; things become even more complex when one considers some
special-purpose extensions defined for particular domains.

These limitations have been our motivations, and challenge, for ascribing a
formal dynamic semantics to a particular UML-based notation for timed systems,
the MADES modeling notation [1]. This language borrows many concepts from
SySML [15] and MARTE [14], but our interest is mainly in the timing aspects:
we are interested in the clocks provided by MARTE, and in the UML diagrams
that show time-related behaviors.

Being well aware of the difficulties inherent to the task, we decided to concen-
trate on a complete subset of the notation, which we called verification notation.
This is limited with respect to the general modeling notation, but selected ele-
ments and diagrams are able to cover all the important aspects of a complete
MADES model:

– The static parts of a system are covered through class diagrams. These di-
agrams, which can also be adopted to render components and objects, are
used to define the terms (the alphabet) of the specification.

– The dynamic aspects and behavior of the different parts are rendered through:
(a) State diagrams (and thus also activity diagrams), used to model the be-
havior of the different elements (components), (b) Sequence diagrams, used
to model the “local” interactions among the different elements of the sys-
tem, and (c) Interaction overview diagrams, used to relate different sequence
diagrams. Sequence diagrams are adopted to describe limited scenarios that
define how the system reacts to some particular conditions and/or inputs;
interaction overview diagrams describe more complete interactions, and thus
more general, and system-wide, properties.

– Clocks (and time diagrams) are used to add the time dimension to systems,
constrain the behavior of components, and be able to predicate on it.

All these diagrams supply users with a complete, homogeneous set of concepts to
render the system-to-be in a consistent way, offer a “simple” coherent notation
and keep the verification phase simple.

The rest of paper is organized as follows. Section 2 provides an overview
of the MADES approach. Section 3 presents the background concepts of the
semantic notation. Section 4 defines the verification notation, while Section 5
uses an example system to introduce the formal semantics. Section 6 surveys
some related approaches and Section 7 concludes the paper.

Towards the UML-Based Formal Verification of Timed Systems 269

2 Modeling and Verification Workflow

The MADES workflow is designed to allow users to carry out formal verification
activities while hiding from them the details of the creation of the formal model
and also of the execution of the verification phase itself. Two issues are key in
this approach: (i) the notation used for modeling the system to be verified must
be one with which the user is familiar with (ii) the verification phase must be
carried out without user intervention, in a “push-button” manner.

Fig. 1. Overview of the MADES workflow

Figure 1 provides an overview of the workflow. It starts with the definition by
the user of a UML model of the system to be verified. By design, in the MADES
approach the modeling notation conforms to the UML standard (including a pair
of relevant profiles such as SysML [16] and MARTE [14]), with some restrictions
that are needed to make the models verifiable in a fully automated way. In
addition, the user provides as input the property to check the model against.
We will discuss later how this property can be expressed.

Both the UML model and the property to be checked are translated automat-
ically, without user intervention, into a formal model that is suitable to be input
to a push-button formal verification tool. The translation is performed using the
semantics described in Section 5. Then, the tool is run on the system/property
combination, and its result is output. This can be either the notification that
the property holds or, if the property does not hold, a trace of the system that
violates it. In the second case, the counterexample trace is shown in UML form
as feedback. The trace can be used to examine the behavior of the objective
system.

Figure 2 shows a more detailed view of the MADES workflow, which high-
lights a distinguishing feature of the MADES approach, namely its inclusiveness
with respect to the set of UML diagrams taken into account. In fact, unlike
most existing approaches (see also Section 6), MADES allows users to use and
combine a rich variety of UML diagrams to define the behavior of the system be-
ing designed. More precisely, the set of UML diagrams taken into consideration
consists of class diagrams, object diagrams, sequence diagrams (SD), interac-
tion overview diagrams (IOD), and state diagrams. Class diagrams and object
diagrams provide an high-level overview of: (i) the types of the components of
the system, (ii) the instances (i.e., the objects) of such types that are actually

270 L. Baresi et al.

Fig. 2. Detailed workflow, with indication of available UML diagrams

present in the system, and (iii) their interconnections. Essentially, these dia-
grams provide the alphabet of the formal model, i.e., the basic items and events
whose dynamics are described through the behavioral diagrams. State diagrams
are used to describe the behavior of the components of the system taken one by
one, in terms of their operations and of the effect that these have on their states
(i.e., the attributes). Sequence diagrams, instead, define the basic interactions
between the components introduced through class and object diagrams; these
basic interactions are in turn composed into more complex ones through inter-
action overview diagrams. In addition, MARTE clocks can be used as reference
to express timing constraints between events in the aforementioned diagrams.
Finally, MADES allows users to add to diagrams some domain-specific tags that
can be used to optimize the verification phase (these tags will not be discussed
in this paper; an overview of them can be found in [1]).

Section 4 described the meta-model of the UML subset that designers can use
to model systems to be verified in the MADES approach. To facilitate formal
verification of MADES models, this subset of UML must be given a semantics
based on a formalism that is at the same time flexible, to capture the meaning
of heterogeneous diagrams, and decidable, to allow for fully automated verifica-
tion. In addition, the formalism must be able to express the timing constraints
described in the MADES notation through clocks. Given such requirements, the
underlying formalism used in the MADES approach is the TRIO metric tempo-
ral logic described in Section 3, and in particular the decidable subset thereof
that is supported by the �ot bounded model/satisfiability checker (hence the
need to specify a time bound for the verification phase, as shown in Figure 2).

Towards the UML-Based Formal Verification of Timed Systems 271

Finally, let us point out that, in the MADES approach, the property to be
verified for the system can be expressed in two different ways. The first one
is through the underlying formalism which is used to formalize the system (in
our case, TRIO); this, however, would be against the idea that the user should
never see the underlying formal notation. The second one is through a UML-
based graphical notation that expresses the property of interest and that can
be translated into the underlying formalism. The set of properties that can be
expressed in TRIO is bigger than the set of properties that can be expressed
through the UML-like notation. However UML hides the complexity of the TRIO
language to the user. The UML-like graphical notation is still on-going research,
thus this aspect of the work flow will not be discussed in this paper; some
considerations in this regard can be found in [1][2].

3 TRIO and �ot

TRIO [7] is a first-order linear temporal logic that supports a metric on time.
TRIO formulae are built out of the usual first-order connectives, operators, and
quantifiers, as well as a single basic modal operator, called Dist, that relates the
current time, which is left implicit in the formula, to another time instant: given
a time-dependent formula F (i.e., a term representing a mapping from the time
domain to truth values) and a (arithmetic) term t indicating a time distance (ei-
ther positive or negative), the formula Dist(F, t) specifies that F holds at a time
instant whose distance is exactly t time units from the current instant. Dist(F, t)
is in turn also a time-dependent formula, as its truth value can be evaluated for
any current time instant, so that temporal formulae can be nested as usual.
While TRIO can exploit both discrete and dense sets as time domains, in this
paper we assume the standard model of the nonnegative integers � as discrete
time domain. For convenience in the writing of specification formulae, TRIO
defines a number of derived temporal operators from the basic Dist, through
propositional composition and first-order logic quantification. Table 1 defines
some of the most significant ones, including those used in this paper.

The TRIO specification of a system consists of a set of basic items, which are
primitive elements, such as predicates, time-dependent values, and functions,
representing the elementary phenomena of the system. The behavior of a system
over time is described by a set of TRIO formulae, which state how the items are
constrained and how they vary, in a purely descriptive (or declarative) fashion.

The goal of the verification phase is to ensure that the system S satisfies some
desired property R, that is, that S |= R. In the TRIO approach S and R are both
expressed as logic formulae Σ and ρ, respectively; then, showing that S |= R
amounts to proving that Σ ⇒ ρ is valid.

TRIO is supported by a variety of verification techniques implemented in pro-
totype tools. In this paper we use �ot [17], a bounded satisfiability checker which
supports verification of discrete-time TRIO models. �ot3 encodes satisfiability

3 http://home.dei.polimi.it/pradella/Zot

http://home.dei.polimi.it/pradella/Zot

272 L. Baresi et al.

Table 1. TRIO derived temporal operators

Operator Definition

Past(F, t) t ≥ 0 ∧Dist(F,−t)

Futr(F, t) t ≥ 0 ∧ Dist(F, t)

Alw(F) ∀d : Dist(F, d)

AlwP(F) ∀d > 0 : Past(F, d)

AlwF(F) ∀d > 0 : Futr(F, d)

SomF(F) ∃d > 0 : Futr(F, d)

SomP(F) ∃d > 0 : Past(F, d)

Lasted(F, t) ∀d ∈ (0, t] : Past(F, d)

Lasts(F, t) ∀d ∈ (0, t] : Futr(F, d)

WithinP(F, t) ∃d ∈ (0, t] : Past(F, d)

WithinF(F, t) ∃d ∈ (0, t] : Futr(F, d)

Since(F, G) ∃d > 0 : Lasted(F, d) ∧ Past(G, d)

Until(F, G) ∃d > 0 : Lasts(F, d) ∧ Futr(G, d)

(and validity) problems for discrete-time TRIO formulae as propositional satis-
fiability (SAT) problems, which are then checked with off-the-shelf SAT solvers.
More recently, we developed a more efficient encoding that exploits the features
of Satisfiability Modulo Theories (SMT) solvers [3]. Through �ot one can verify
whether stated properties hold for the modeled system (or parts thereof) or not;
if a property does not hold, �ot produces a counterexample that violates it.

4 A Verifiable Subset of UML

This section presents, through a set of UML class diagrams, the meta-model of
the verification notation. The meta-model is divided into the packages as shown
in Figure 3.

The fundamental elements of the notation are grouped together in the core
package, which includes different class diagrams. core.diagrams (shown in Figure
4) describes the set of diagrams used in the verification workflow and how they
are related to one another. The MADES model is composed by Class diagrams,
Object diagrams, and Interaction Overview Diagrams (IOD). State diagrams
describe the behavior of the objects belonging to a certain class, and Sequence
diagrams show the details of the interactions between objects.

Diagram core.types (Figure 5) gives an overview of the data types that can be
used in the verification work flow. A TypedElement is an element of the system
that has a type. A type can be one of the classes declared in the class diagram, or
a DataType. A DataType can be a PrimitiveType, an Array or an Enumeration.
Primitive types are Boolean, or Integer. An Array is an ordered list (of fixed
size) of Integers. An Enumeration is a finite set of Integers.

Towards the UML-Based Formal Verification of Timed Systems 273

Fig. 3. Metamodel packages

Fig. 4. MADES metamodel: core.diagrams

Diagram core.events (shown in Figure 6) defines what is an Event. Events
are directly translated into temporal logic predicates and define how the sys-
tem proceeds over time. Their temporal relationships will be precisely defined
in Section 5; here, we simply list them with their informal meaning. ActivityS-
tart and ActivityEnd occur in the time instants in which the IOD activity starts
and ends. DecisionPath and ForkPath correspond to the time instants in which
the IOD takes a certain path after a decision/fork operator. JoinEnd is the
time instant in which all the diagrams preceding a certain IOD Join operator
complete their execution. SDStart and SDEnd occur when a certain sequence
diagram starts/ends. SDAct is the time instant is which a certain sequence dia-
gram is ready to start. SDAct immediately precedes SDStart. MessageStart and
MessageEnd occur when a certain message starts/ends. ExOccStart and Ex-
OccEnd occur when a certain execution occurrence starts/ends. A TimeEvent
is a TimedInstantObservation in a certain sequence diagram (for details see
UML::CommonBehaviours::SimpleTime from [16]). The time note @t1 in Fig-
ure 12 of Section 5 shows an example of TimeEvent. Finally, Interrupt is the
time instant in which a certain interrupt (i.e., an event that causes activities in
an interruptible region of a IOD to exit, see [16] for further details) occurs. The
rest of the metamodel describes how these events are associated to elements in
the various behavioral diagrams, as shown, for example, in Figure 8.

274 L. Baresi et al.

Fig. 5. MADES metamodel: core.types

Fig. 6. MADES metamodel: core.events

Diagram core.clocks (Figure 7) defines the features of clocks. With respect to
the UML/MARTE notion of clocks, for formal verification purposes we deal only
with discrete clocks. Clock types are defined in the class diagram of a MADES
model. Class ClockType has a set of attributes that define specific features of the
clocks of that type (e.g., their period). A Clock has a ClockType and it can be
attached to objects, classes, and sequence diagrams. When a clock is attached
to an object (resp. class) the intuitive semantics is that the events related to
that object (resp. to the objects belonging to the class) will proceed with the
tick of this clock. When a clock is attached to a sequence diagram, all the events
of the objects inside the sequence diagram will proceed with the tick of this
clock (discrepancies between, for example, the clock of an object and that of a
sequence diagram in which that object appears can be highlighted and sorted
out during the verification phase).

The core package is completed with the core.expressions diagram (not shown
here for the sake of brevity), which defines what is a valid expression. Intuitively,

Towards the UML-Based Formal Verification of Timed Systems 275

Fig. 7. MADES metamodel: core.clocks

the MADES verification admits three types of expressions: MathematicalExpres-
sion, BooleanExpression, TimeExpression. These expressions can be used in As-
signments, whose meaning is intuitive. More precisely, MathematicalExpressions
can be used in Assignments to variables of Integer type. BooleanExpressions can
be used in Assignment to variables of Boolean type, and everywhere a boolean
value is admitted (for example in the decision operator of the IOD). TimeEx-
pressions can be used to define time constraints between events.

The other packages of the MADES metamodel describe the single diagrams
in details. The MADES verification notation does not impose restrictions on
the operators of Class diagrams, nor on those of Object diagrams, for which we
refer to the UML specification [16]. As shown in Figure 8, a SequenceDiagram
can contain: Messages, ExecutionOccurrences, TimeEvents, CombinedFragments
and StateInvariants. RecursiveMessages are a special type of messages which
are used not only for self invocations, but also for assignments to variables of
Integer and Boolean type. Finally, TimeConstraints can be attached to sequence
diagrams to define relations between the time events defined in the diagram. A
TimeConstraint is a boolean expression made of TimeInequalities that relates
two different events with some inequality operator. If the sequence diagram is
inside an interruptible region of the IOD of the system, then TimeConstraints
may also refer to those interrupts (as an example see Figure 12). The diagram
of Figure 8 summarizes those concepts and shows the relations between the
operators of sequence diagram and the events associated to them. Those events
will be translated into temporal logic predicates together with the axioms that
define their precise semantics.

InteractionOverviewDiagrams (whose class diagram is not shown here for the
sake of brevity) can be seen as activity diagrams whose nodes are sequence di-
agrams. This very simple definition hides a number of details that are needed
in order to define a precise semantics. In particular, in the MADES metamodel
the SequenceDiagrams that are part of an InteractionOverviewDiagram have

276 L. Baresi et al.

Fig. 8. MADES metamodel: The main elements of sequence diagrams

one incoming and one outgoing flow, and they can be grouped together through
InterruptibleRegions. The ExceptionEdge going out from the InterruptibleRegion
defines the name of the Interrupt associated with that region. This interrupt can
be caught by different InterruptNodes that go into the SequenceDiagram which is
responsible to continue the execution after that event. Figure 11 shows an exam-
ple of InterruptibleRegion, which is associated with interrupt connTimeout that
is caught by the reconnect sequence diagram through a suitable InterruptNode.

Finally, regarding StateDiagrams (whose metamodel is not shown here) we
decided to keep the specification as simple as possible. In particular, a StateDi-
agram is a set of States. InitialState and FinalState are two particular kinds of
States. The Transition from one state to another can be triggered by the Events
of the system (i.e., those defined in Figure 6). Also, a Transition can be taken
only if its Guard is true. The Guard is a BooleanExpression (whose features are
described above). An example of state diagram is shown in Figure 13.

5 From UML to Temporal Logic Formal Semantics

This section presents the MADES semantics through an example system, which
includes some desired properties to be verified. The system that is used to illus-
trate the modeling and verification features of the MADES approach is a simple
telephone system. After a brief description of the system, this section shows
how some meaningful UML diagrams are translated into their corresponding
temporal logic form according to the MADES semantics.

Towards the UML-Based Formal Verification of Timed Systems 277

5.1 Telephone System

The telephone system should provide the following features: At startup the sys-
tem should connect to the remote server and initialize the graphical user interface
(GUI). If the telephone is not correctly connected to the server, the GUI will not
be shown. The connection is attempted 3 times with a timeout of 10 seconds.
When the startup is finished, the system is ready to receive incoming calls and
SMSs. Incoming calls may arrive at any instant. Incoming SMSs are checked on
the server every 20 seconds by the telephone itself. If no reply is received by
the server within 10 seconds, the attempt is not repeated. If the download is
not completed within 10 seconds, the download is repeated. If the telephone is
idle (e.g. it is not performing any call, nor an SMS composition) and the user
presses a number, the number itself is shown on the screen and the telephone
waits for the remaining digits until the green button is pressed. If the red button
is pressed the system aborts the operation. If the SMS is not sent within 15
seconds, the operation is aborted. If the telephone is idle and the user presses
the ok button, then a textual interface is shown to compose the SMS. When
the ok button is pressed again the GUI waits for the telephone number and
when the ok button is pressed again the SMS is sent to the recipient. SMSs are
sent with tokens of 160 characters. The transmission time follows this formula:
trT ime = length(SMS)/sigStrength∗ 10sec, where sigStrength may be [1..5].

5.2 UML Diagrams and Their Formal Semantics

Figure 9 shows the class diagram of the system. The diagram is not itself trans-
lated into temporal logic, though it is used to determine the alphabet of the
formal model, that is, the actual predicates that appear in the formal model; for
example, from the names of the operations the corresponding events are defined.
The class diagram also contains some MADES-specific tags (e.g. the ���� stereo-
type) that will not be analyzed in this paper. The diagram is also used to define
the clock types of the system. For example, class SMSClockType defines a type
of clock whose period is 20, which will be used for the periodic SMS retrieval.
Figure 10 shows the object diagram of the telephone system, which contains the
objects that are taken into consideration during the actual verification phase.
The number of objects (i.e., instances of classes described in the class diagram)
considered in the verification model must be finite, to allow for full automated
verification. The role of the object diagram, then, is to precisely define what in-
stances are present in the system model, and their (finite) numbers. For example,
the diagram of Figure 10 defines that there are six TransmissionThreads. These
objects are tagged as being a �����. The semantics that is given in the MADES
approach to this stereotype is that, when an operation is invoked on one of the
objects of a set, the actual identity of the object is irrelevant, as the objects
all behave in the same manner. In the future, we will use such information to
optimize the verification phase, but we do not delve into this issue any further
in this paper. Figure 10 also shows an instance of clock SMSClockType.

The Interaction Overview Diagram of Figure 11 shows the startup of the
system. Sequence diagrams are used to group together macro-operations which

278 L. Baresi et al.

Fig. 9. Telephone System Class Diagram

are then combined together to obtain the complete system specification. Inter-
ruptible regions are used to stop the behaviors occurring inside a certain set of
sequence diagrams and continue elsewhere. In this particular example we model
the fact that while the telephone is performing the connection to the server it
may happen that a connection timeout occurs. In that case the connect sequence
diagram is stopped, and the reconnect sequence diagram continues the execution.

The temporal logic semantics of the diagram is generated as described in the
following. Each sequence diagram Dx has three events, namely DxAct, DxStart,
DxEnd. Each event is translated into one temporal logic predicate, thus pred-
icate DxAct holds when the diagram is ready to start its execution, predicate
DxStart holds exactly one time unit later, and predicate DxEnd holds when the
diagram terminates. Depending on the operator that precedes diagram Dx the
formula that defines DxAct may change; for reasons of brevity, a presentation
of the complete algorithm that manages all different cases is outside the scope
of this paper (we refer the interested reader to [2]). In the following we focus on
the definitions concerning some of the elements of Figure 11.

When the whole diagram starts (i.e., predicate ActivityStart holds), the first
sequence diagram (i.e., init) is activated. In addition, diagram loadGUI is ac-
tivated when init ends, as represented by the fork operator between the two
diagrams. These properties are formalized by formulae (1)-(2).

InitAct ⇔ ActivityStart (1)
loadGUIAct ⇔ InitEnd (2)
connectAct ⇔ InitEnd ∨ reconnectEnd (3)

Towards the UML-Based Formal Verification of Timed Systems 279

Fig. 10. Telephone System Object Diagram

If we focus on the connect sequence diagram of Figure 11, we notice that its
activation condition holds at the same time instant in which either diagram init
ends, or diagram reconnect ends. The reason is that connect is preceded by a
merge operator, thus both paths entering the latter may activate diagram con-
nect. One of those paths originates from a fork operator, but this is transparent
to the semantics. This is all formalized by formula (3).

If, on the other hand, we analyze diagram run, its activation condition holds
exactly when the nodes preceding the join operator have finished their execution.
Formula (5) defines when the join ends (i.e., when the last between connect and
loadGui ends). Formula (4) states that diagram run is ready to start exactly in
the same time instant in which the join ends.

runAct ⇔ Join1End (4)
Join1End ⇔ (loadGUIEnd ∧ Since(¬Join1End, connectEnd)) ∨

(connectEnd ∧ Since(¬Join1End, loadGUIEnd)) (5)

To conclude this part of the semantics, formulae (6)-(7) define the relations
between the activation event and the start event of sequence diagram connect.
More precisely, DxAct holds when the enabling conditions are true. Then, if
the diagram is enabled and in the next time instant the activity has not ended,
DxStart holds in the next time instant. Similar formulae hold for all other
diagrams in the figure (they can be obtained simply by replacing connect with
the name of the other diagrams, e.g., loadGUI).

connectAct ∧ ¬Futr(ActivityEnd, 1) ⇒ Futr(connectStart, 1) (6)
connectStart ⇒ Past(connectAct, 1) (7)

280 L. Baresi et al.

Fig. 11. Telephone System Interaction Overview Diagram

Figure 12 shows the connect sequence diagram in detail. The instance c of Con-
nectionThread calls its own procedure connect() to start the connection to the
server. The time instant in which this connection procedure starts is marked
with the time note @t1. Inside the connect() procedure the object c invokes the
connect() procedure of the instance s of Server. After a while the reply message
is received and the sequence diagram ends. According to the system specification
the connection is attempted 3 times with a timeout of 10 seconds. To model the
connection timeout of 10 seconds we added a time constraint to the sequence
diagram. A time constraint relates two events with some temporal inequality
operator. In that case the semantics is that if the timeout occurs, then it must
occur exactly 10 time units after @t1 (more precisely, the constraint says that
the difference between the time of the timeout and the time of event @t1 is
exactly 10). Finally, the alternative combined fragment is added to specify that
the connection is attempted only if variable conntrial (which is an attribute of
class ConnectionThread) is strictly less than 3.

The temporal logic semantics starts from the events that are extracted from
the diagram. In this case we have the following events: connectSDStart, con-
nectSDEnd, which correspond, respectively, to the start and end of the whole
diagram; t1Event, which represents the time instant in which event @t1 occurs;
c.connect1Start, c.connect1End, which correspond to the start and end of re-
cursive message connect (i.e., the invocation of operation connect being made
by c on itself); c.exOcc1Start, c.exOcc1End, which represent the start and end
of the execution occurrence that covers the lifeline of instance c; s.connect1Start,
s.connect1End, which correspond, respectively, to message (i.e., invocation)

Towards the UML-Based Formal Verification of Timed Systems 281

Fig. 12. Telephone System SD connect

connect being sent by object c to object s, and to the message being received
by object s; s.connect1ReplyStart, s.connect1ReplyEnd, which correspond, re-
spectively, to message reply (i.e., the reply to the invocation of operation con-
nect) being sent by object s, and to the message being received by object c;
s.ExOcc1Start, s.ExOcc1End, which represent the start and end of the execu-
tion occurrence that covers the lifeline of instance s. Notice that the events
related to the execution occurrences and to the messages are labeled with some
index. This is due to the fact that each object can have more than one execution
occurrence in the system, and the temporal logic predicates must distinguish
between them. The same holds for each method invocation. The events which
are placed graphically on the same y-axis of the same lifeline hold on the same
time instant, no matter what the other axioms state. This is defined by formulae
(8)-(11).

t1Event ⇔ c.connect1Start ∧ c.ExOcc1Start (8)
s.connect1End ⇔ s.ExOcc1Start (9)

s.connect1ReplyStart ⇔ s.ExOcc1End (10)
c.connect1End ⇔ c.ExOcc1End (11)

Formulae (12)-(13), instead, enforce the ordering between the different events
of the diagram. In particular, the fact that an event Evi is followed by another
event Evj is stated by formula (12). On the other hand, formula (13) entails
that we must have an occurrence of Evi in the past in order to have Evj now.
In addition formula (12) defines that, if Evi holds now, then we must consider
the following possibilities: either it exists in the future a time instant in which
Evj holds and for all the time instants between Evi and Evj the sequence di-
agram is not interrupted, or it exist in the future a time instant in which the
diagram is interrupted, and until that time Evj does not occur. The SD can
be interrupted for two reasons: either because the interaction overview diagram

282 L. Baresi et al.

ends, thus ActivityEnd holds, or because an interrupt associated to that diagram
occurs. Formula (13) states similar properties for the past.

Evi ⇒ Until(¬Evi ∧ ¬ActivityEnd ∧ ¬Interrupti... ∧ ¬Interruptk, Evj)
∨ (12)
Until(¬Evi ∧ ¬Evj , ActivityEnd∨ Interrupti... ∨ Interruptk)

Evj ⇒ Since (¬Evj ∧ ¬Interrupti... ∧ ¬Interruptk ∧ ¬ActivityEnd,
Evi)

(13)

Considering the diagram of Figure 12 formulae (12)-(13) are instantiated with
the following events:

Evi Evj

c.connect1Start s.connect1Start
s.connect1Start s.connect1End
s.connect1Start s.connect1ReplyEnd
s.connect1End s.connect1ReplyStart
s.connect1ReplyEnd c.connect1End
c.connect1End connectSDEnd

Moreover in this case we have that the set Interrupti...Interruptk is reduced to
connT imeout.

Because the diagram includes an Alternative combined fragment the order-
ing between connectSDStart and the first event of the combined fragment is
treated separately. Namely, we specify that t1Event follows connectSDStart
only if conntrial is less than 3. This means that conntrial < 3 is added to
the precondition of formula (12) instantiated with Evi = connectSDStart and
Evj = c.connect1Start. Finally, we instantiate again formula (12) with Evi =
connectSDStart and Evj = connectSDEnd with conntrial >= 3 included in
the sufficient condition as before.

The time constraint attached to the diagram is translated into formula (14)
which states that connT imeout occurs exactly 10 time units after t1Event.
Notice that according to formula (8) this is the same time instant in which
the connect self-recursive message starts. Also notice that if the connT imeout
occurs when the diagram is finished this does not affect the normal behavior of
the sequence diagram according to formulae (12)-(13).

connT imeout ⇔ Past(t1Event, 10) (14)

State diagrams complete the picture of what is taken into consideration by the
MADES formal verification notation. The ConnectionThread state diagram is
composed of five states (see Figure 13). The initial state goes into the start
state. Here the object waits the beginning of the connection procedure. The
self-message c.connect() moves it from start to connecting. The s.connect()
procedure call moves it to the Waiting state. If the connT imeout interrupt
occurs it goes to reconnect and then to connecting again with c.connect(). If
connT imeout does not occur, the c.connectEnd event moves the object into

Towards the UML-Based Formal Verification of Timed Systems 283

Fig. 13. Telephone System ConnectionThread State Diagram

the connected state. Let us focus on the definition of the behavior that makes
the state machine enter and exit the connecting state. Predicate c Connecting
represents when the diagram is in state connecting. Then, formulae (15)-(16)
state, essentially, that s.connectStart is the only event responsible for going out
of the connecting state. Formula 17, instead, enforces the fact that the states
are mutually exclusive. The same kind of formulae hold for the other states of
the state diagram. Additional formulae, not shown here for the sake of brevity,
define that in the first time instant the machine is in the initial state, then it
non-deterministically enters the start state because no event is defined in the
transition label.

c Connecting ∧ Futr(c Waiting, 1) ⇒ s.connectStart (15)
c Connecting ∧ Futr(c Connecting, 1) ⇒ ¬s.connectStart (16)

c Connecting ⇒ ¬c Start ∧ ¬c Waiting ∧ (17)
¬c Reconnect ∧ ¬c Connected

Finally, the complete formal model Σ that arises from the diagrams describing
the system is given by the simple logic conjunction of all formulae. The result is a
model that includes all features and constraints defined by the various diagrams,
which allows us to formally perform various checks through tools such as the �ot
bounded model/satisfiability checker.

A first kind of verification that can be carried out is a check of the consis-
tency of the model obtained by the combination of the various diagrams. This
corresponds to determining whether there exists at least an execution that is
compatible with the system model, a task that can be carried out through the
�ot tool simply by checking whether formula Σ is satisfiable or not.

As depicted in Figure 2, the MADES approach also allows users to define
temporal properties of interest of the system, to be checked through formal ver-
ification techniques. For example, in the case of the telephone system presented
in this section, a property we may be interested in is the following:

”The telephone start-up lasts less than 30 seconds”

To express this property formally in a graphical, user-friendly, way, we are cur-
rently working on a visual notation that is inspired by sequence diagrams. The

284 L. Baresi et al.

definition of the precise syntax and semantics of such notation is left for future
work. Here, we simply note that, since the semantics of the MADES verifica-
tion notation is given in terms of a formal language, properties of interest can
always be expressed using this underlying formalism, in our case the TRIO met-
ric temporal logic. In the case of the temporal property mentioned above, its
formalization in the TRIO language could be the following

initSDStart ⇒ WithinF (runSDStart, 30) (18)

where initSDStart and runSDStart are, respectively, the events associated
with the beginning of the init and run sequence diagrams.

A wide range of temporal properties, of which (18) is just a simple example,
can be defined by using the full set of features of the TRIO temporal logic
to predicate on the events and attributes of the system modeled through the
MADES notation. The properties that users are interested in verifying, however,
are often a small subset of those that can be expressed through the full power
of the TRIO language. For this reason, the graphical notation we are developing
within the MADES project to express properties to be verified will trade the
full expressive power of the TRIO language for a higher degree of simplicity and
intuitiveness of the representation of properties of interest.

6 Related Work

The vast majority of works that ascribe UML with a formal semantics usually
concentrate on individual diagrams. Only few approaches tried to give a seman-
tics that addresses different diagrams. For example, Hansen et al. [13] describe
a translation of a subset of executable UML (xUML) into the process algebraic
specification language mCRL2. The subset consists of class diagrams, state ma-
chines, and an action language that complies with the UML action semantics.
This approach does not take into account sequence diagrams and it only con-
centrates on well-defined fairness and safety properties.

Diethers and Huhn [9] present Vooduu, a tool to automatically verify whether
a set of statechart diagrams that model a system satisfies communication and
timing constraints given as sequence diagrams. Both types of diagrams are trans-
lated into timed automata for the verification. Also Damm et al. [8] define the
semantical foundation of a sublanguage of UML that is mostly based on state-
chart diagrams. The semantics is given in terms of symbolic transition systems,
and it mostly addresses the concurrency and communication between objects.

Burmester et al. [5] exploit real-time component diagrams and real-time stat-
echart diagrams to model the static and dynamic parts of a system. These di-
agrams are formalized in terms of hierarchical timed automata, which allow
the authors to run compositional verifications of partial models. Saldhana and
Shatz [19] describe a methodology to develop a Petri net of the system. They
derive an Object Petri Net Model (OPM) from statechart diagrams connected
through collaboration diagrams. The analysis is carried out by exploiting the
usual techniques for Petri nets.

Towards the UML-Based Formal Verification of Timed Systems 285

As mentioned above there are many more works that focus on the separate
formalization of single diagrams. Hammal [12] defines a method for translating
statechart diagrams into Interval Timed Petri Nets (ITPN) to run consistency
analyses. The ITPN enables the analysis of performance and time properties
of complex systems. Störrle [20] investigates the alignment activity diagrams
to Petri nets. It provides a mapping of the basic elements of activity diagrams
onto Petri nets and discusses the problems that arise from this translation. Es-
huis [10] proposes two translations from activity diagrams to the input language
of NuSMV, a well-known symbolic model checker. Both translations map activ-
ity diagrams into finite state machines and are inspired by existing semantics
for statechart diagrams. Finally, Cengarle and Knapp [6] investigate interac-
tion diagrams and provide an operational semantics for them, while Tebibel [4]
uses hierarchical colored Petri nets to define a formal semantics for interaction
overview diagrams.

7 Conclusions

This paper builds on the need for formal UML dialects for the design and valida-
tion of timed systems. It starts from the MADES modeling notation, which is a
particular extension to UML that borrows concepts from SysML and MARTE,
and it proposes a formal semantics for a verification-oriented version of the lan-
guage. The verification notation can be seen as an “abstract” notation for the
complete design notation. It filters out irrelevant elements and ascribes a formal
semantics to the other ones. The formal semantics covers a wide range of UML
diagrams and concentrates on time-related aspects. The formal semantics and
the verification tools will be used in the MADES project for the early verification
of embedded systems.

The paper outlines the formal semantics for the verification notation based on
the TRIO temporal logic. The definition is provided in a modular and method-
ological way to let the reader understand how the different pieces fit together.
Finer-grained improvements, optimizations, and tailoring are part of our on-
going work. The complete verification tool suite implementing the approach de-
scribed in this paper will be tested for usability by the industrial partners of the
MADES project.

Acknowledgments. This research was supported by the European Commu-
nity’s Seventh Framework Program (FP7/2007-2013) under grant agreement
n. 248864 (MADES), and by the Programme IDEAS-ERC, Project 227977-
SMScom.

References

1. Baresi, L., Morzenti, A., Motta, A., Rossi, M.: D3.1 domain-specific and user-
centred verification. Technical report, MADES Consortium (2010)

2. Baresi, L., Morzenti, A., Motta, A., Rossi, M.: D3.3 formal dynamic semantics of
the modelling notation. Technical report, MADES Consortium (2011)

286 L. Baresi et al.

3. Bersani, M.M., Frigeri, A., Pradella, M., Rossi, M., Morzenti, A., San Pietro, P.:
Bounded reachability for temporal logic over constraint systems. In: Proc. of the
Int. Symp. on Temporal Representation and Reasoning (TIME), pp. 43–50 (2010)

4. Bouabana-Tebibel, T.: Semantics of the interaction overview diagram. In: Proc. of
the IEEE Int. Conf. on Information Reuse Integration (IRI), pp. 278–283 (2009)

5. Burmester, S., Giese, H., Hirsch, M., Schilling, D., Tichy, M.: The fujaba real-time
tool suite: model-driven development of safety-critical, real-time systems. In: Proc.
of the 27th Int. Conf. on Soft. Eng., ICSE 2005, pp. 670–671 (2005)

6. Cengarle, M.V., Knapp, A.: Operational semantics of UML 2.0 interactions. Tech-
nical Report TUM-I0505, Technische Universität Mnchen (2005)

7. Ciapessoni, E., Coen-Porisini, A., Crivelli, E., Mandrioli, D., Mirandola, P.,
Morzenti, A.: From formal models to formally-based methods: an industrial ex-
perience. ACM TOSEM 8(1), 79–113 (1999)

8. Damm, W., Josko, B., Pnueli, A., Votintseva, A.: A discrete-time uml semantics
for concurrency and communication in safety-critical applications. Sci. Comput.
Program. 55, 81–115 (2005)

9. Diethers, K., Huhn, M.: Vooduu: Verification of object-oriented designs using up-
paal. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 139–143.
Springer, Heidelberg (2004)

10. Eshuis, R.: Symbolic model checking of UML activity diagrams. ACM Trans. Softw.
Eng. Methodol. 15(1), 1–38 (2006)

11. Eshuis, R., Wieringa, R.: Tool support for verifying UML activity diagrams. IEEE
Trans. Software Eng. 30(7), 437–447 (2004)

12. Hammal, Y.: A formal semantics of uml statecharts by means of timed petri nets.
In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 38–52. Springer, Heidelberg
(2005)

13. Hansen, H., Ketema, J., Luttik, B., Mousavi, M., van de Pol, J.: Towards model
checking executable uml specifications in mcrl2. Innovations in Systems and Soft-
ware Engineering 6, 83–90 (2010)

14. Object Management Group. UML Profile for Modeling and Analysis of Real-Time
Embedded Systems. Technical report, OMG, formal/2009-11-02 (2009)

15. Object Management Group. OMG Systems Modeling Language (OMG SysML).
Technical report, OMG, formal/2010-06-01 (2010)

16. Object Management Group. OMG Unified Modeling Language (OMG UML), Su-
perstructure. Technical report, OMG, formal/2010-05-05 (2010)

17. Pradella, M., Morzenti, A., San Pietro, P.: The symmetry of the past and of the
future: bi-infinite time in the verification of temporal properties. In: Proceedings
of ESEC/SIGSOFT FSE, pp. 312–320 (2007)

18. Pradella, M., Rossi, M., Mandrioli, D.: ArchiTRIO: A UML-compatible language
for architectural description and its formal semantics. In: Wang, F. (ed.) FORTE
2005. LNCS, vol. 3731, pp. 381–395. Springer, Heidelberg (2005)

19. Saldhana, J.A., Shatz, S.M.: Uml diagrams to object petri net models: An approach
for modeling and analysis. In: Proc. of SEKE 2000, pp. 103–110 (2000)

20. Störrle, H., Hausmann, J.H.: Towards a formal semantics of UML 2.0 activities.
In: Software Engineering. Lec. Not. in Inf, vol. 64, pp. 117–128 (2005)

B.K. Aichernig, F.S. de Boer, and M.M. Bonsange (Eds.): FMCO 2010, LNCS 6957, pp. 287–296, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Generic Fault Modelling for Fault Injection

Rickard Svenningsson1, Henrik Eriksson1, Jonny Vinter1, and Martin Törngren2

1 Department of Electronics, SP Technical Research Institute of Sweden
{rickard.svenningsson,henrik.eriksson,jonny.vinter}@sp.se

2 Department of Mechatronics, KTH Royal Institute of Technology
martin@md.kth.se

Abstract. Fault injection is a widely used experimental dependability validation
method, with a vast amount of techniques and tools. Within the scope of
MOGENTES, an EU 7th framework programme project, tools have been
developed which implements three different fault injection techniques;
hardware-implemented fault injection, software-implemented fault injection and
model-implemented fault injection. To support fault injection under the same
conditions with these tools, an unambiguous description format for failure
modes has been developed. Within MOGENTES, over 30 different failure
modes have been identified, which all are implementable using the proposed
format. XML has been chosen as the storage format for the failure modes,
following a schema that is described in this paper.

1 Introduction

As fault injection (also known as fault insertion testing) has become widely used as an
experimental dependability validation method, many different techniques for injecting
faults have been developed. Fault injection accelerates the occurrences of faults in a
system and the main purpose is to evaluate and debug error handling mechanisms. It is
used at various abstraction levels and phases of the development process. Traditional
fault injection is performed during the later part of the development process to verify
that a system fulfills its robustness requirements, thus being a straightforward method
where faults are injected during run-time to observe the system behavior under the
influence of the injected faults. However, by using model-implemented fault injection
[1] (MIFI), fault injection can be performed already into behavior models, i.e. during
the early development phases. One of the major implications of using this technique is
that the effects of faults cannot be automatically derived, since a system can be
synthesized in virtually infinite ways. To cope with this, hardware faults are
abstracted into high-level fault models that represent the fault effect on the same
abstraction level as the behavior model, with the anticipated implementation in mind.
In MOGENTES [2], more than 30 fault models have been created that represent
possible effects of hardware faults. Performing fault injection on model level can be
considered as an automated dynamic failure modes and effects analysis [3] (FMEA),
and if exhaustively performed [4], it also covers the result of a dynamic fault tree
analysis [5] (FTA). The process of choosing the fault models that shall be applied for
every single fault injection location in the model is similar to the process of choosing
failure modes for components in an FMEA, where failure modes are chosen from
domain specific standards, e.g. the IEC TR 62380 reliability data handbook [6].

288 R. Svenningsson et al.

To create and store generic fault models in a tool-independent format, the authors
propose an XML schema [7]. Many of the fault models defined in MOGENTES have
been implemented in the proposed representation and successfully used in the tool
MODIFI [4].

Similar work has been performed independently by others [8] to support
interoperability between different fault injectors for SWIFI. The goal here is to
standardize the information sent from a fault injection manager, where campaigns are
created, to the fault injector, which injects faults on a specific target hardware.
Applicability to three different fault injectors (Windows, i386, and Sparc) are
demonstrated. Our goal extends this idea by standardizing the fault descriptions used
for fault injection tools with fault injectors working at different levels: model,
software and hardware, respectively.

The remainder of this paper is organized as follows: following this introduction is a
section about model-implemented fault injection which demonstrates the use of high
level fault models in the MODIFI tool. After that, a few fault models from the
definitions in MOGENTES are presented, followed by the description of the proposed
modeling format. Finally some concluding remarks are presented followed by
references.

2 Model-Implemented Fault Injection in MODIFI

The MODIFI (MODel-Implemented Fault Injection) tool injects faults in behavior
models developed using the Matlab/Simulink [9] environment. The purpose of the tool
is to carry out an early evaluation of model robustness against faults and to exercise
and evaluate error handling mechanisms that are part of the model. Such mechanisms
are sometimes impossible to evaluate without the usage of fault injection, e.g. when the
default-statement in a C switch block is used to capture invalid values.

To illustrate how fault injection is performed in MODIFI, the model depicted in
Figure 1 is used as a reference.

Fig. 1. Simulink model of a sensor voter

Figure 1 shows a TMR (triple modular redundancy) system which detects and
masks a single faulty sensor value. Three input values are received from
corresponding sensors and if one sensor is faulty, the output is assigned the value of
one of the two fault-free sensor values.

 Generic Fault Modelling for Fault Injection 289

When MODIFI injects a fault during runtime, i.e. a fault-injection block is
automatically inserted in the model, it injects the fault effect (denoted a Failure Mode
Function, FMF) before the execution occurs, and also adds an additional input port
that controls the triggering of the fault (see Figure 2).

The FMF library is implemented in XML using the proposed schema described in
this paper. An example of fault injection with MODIFI is depicted in Figure 2,
showing how an FMF block is inserted into a single location (Sensor 1 input block out
port) in the previously described Simulink model to simulate the occurrence of a
hardware fault. The Simulink artifact that is inserted into the model is a block which
encapsulates the Matlab m-code that is automatically generated from the FMF library
XML-file (further described in following sections).

Fig. 2. Simulink model of a sensor voter with an FMF block inserted

During the configuration of the MODIFI tool, the selection of FMFs that shall be
used for each available fault injection location in the model is made manually (see
Figure 3), similar to preparing an FMEA for a safety-critical embedded system. Only
FMFs that are actually applicable for the artifact are shown in the GUI. In the
example depicted, the data type of the selected signal is uint16, i.e. 16 bit unsigned
integer. Thus only FMFs that are applicable to unsigned integers are displayed (Flip
bits FMF in the depicted example).

Fig. 3. MODIFI GUI – Assignment of fault models to fault injection locations

290 R. Svenningsson et al.

During the fault injection campaign (a set of experiments), the user can follow the
progress through the progress cube that shows the status of each experiment. Figure 4
shows the progress of a campaign for the sensor voter with 120 experiments, each
represented as a box in the cube. A blue box denotes an experiment to be performed, a
green box denotes an experiment that did not violate a safety requirements and a red
box denotes an experiment where safety requirements were violated. The bit-flip fault
model is used (Fmf: 30) and the six locations corresponds to the three inputs and three
internal signals of the model. In this demonstration example, the model is only run for
four time steps.

Fig. 4. MODIFI progress cube visualization

3 Fault Models

A fault is defined as a time-location pair, meaning that two faults injected at the same
location, but at two different instants in time, could have a completely different effect
on the system. Thus, the time aspects are important and faults are thus injected during
execution of the target system. A fault model (also denoted as a failure mode in e.g.
safety standards) can be defined by means of the number of faults, the time aspect and
the fault type. An example of a fault model is a single transient bit-flip fault.

3.1 Failure Modes

Traditionally, fault injection is used to simulate hardware faults. The term hardware
fault refers to a physical fault. We emphasize that hardware faults can be simulated by
using fault injection mechanisms implemented in the model (MIFI), implemented by
extra software (SWIFI), or implemented by using extra hardware (HIFI).
Furthermore, hardware faults can be simulated at different levels of abstraction. A
distortion of a signal may be caused by a bit-flip fault at the gate-level (i.e., in
silicon), or by electromagnetic interference disturbing a transmission channel.

3.2 Failure Mode Functions

An FMF can be seen as an implementation of a fault effect, which is utilized to
manipulate signals between blocks in a model, or that manipulates operators, to simulate

 Generic Fault Modelling for Fault Injection 291

the effect of faults/errors that will lead to a failure (e.g. a value failure or a component
failure). A general remark valid for all FMFs presented in this section is that at each
time step when a failure is not activated the actual value is equal to the nominal value
(non-faulty value); else the actual value assumes the value determined by the FMF. The
temporal aspect (transient, intermittent, permanent) of the FMF is defined by a boolean
input to the FMF where a true value means that the FMF is activated.

Table 1 shows two fault models that are defined within the MOGENTES project;
Flip_bits and Set_bits. Flip_bits simulates the effect of a bit flip fault, while Set_bits
simulates the effect of e.g. stuck-at faults.

Table 1. Bit-level failure mode function description

Name Description

Flip_bits This FMF will flip (alter the logical value for) one or more bits in
the representation of the actual value.

Set_bits This FMF will set one or more bits to a specific bit pattern in the
representation of the actual value.

4 Modeling of Fault Models

The purpose of the proposed XML schema is to provide an unambiguous,
implementation independent description format from which implementations can be
automatically created (e.g. by code generation). The overall design goal is that the
modeling of the more than 30 fault models that have been defined within the
MOGENTES project shall be possible with this format.

Fig. 5. FMF model part 1

292 R. Svenningsson et al.

Figure 5 shows the left part of the fault model description format while Figure 6
shows the right part. A failure mode function is distinguished through its id
parameter, which shall be a unique identifier. The name parameter on the other hand
is an arbitrary short-name, which not needs to be unique. As an example, the FMFs
with ids “30u”, “30s” and “30f” are all named “Flip bit”, but for different data types
(unsigned integer, signed integer and floating point value, respectively). In MODIFI,
only fault models that are applicable for the data-type of a specific location are visible
in the configuration GUI. Therefore, only one of the three fault models is visible. The
data-types that are supported in this format specification are: unsigned integer, signed
integer, floating point value and boolean.

To support a wide set of fault models, the interface to a failure mode function is
defined using ports and parameters. Ports are specified by an FMF unique name, a
direction (IN or OUT) and a data type (UNSIGNED INTEGER, SIGNED INTEGER,
FLOAT or BOOLEAN). Parameters are defined similarly (without direction) with the
addition of min and max value of the parameter value. These are used e.g. when the
fault injection tool (e.g. MODIFI) is able to choose the value of a parameter, e.g.
which bit to flip for the previous “flip bits” example.

The FMF description also supports variable allocation of dynamic length, e.g. to
store port values during several time steps for produced-too-late faults.

To know which input ports and output ports that shall be connected by default,
default port-mappings can be added to the description. These are typically used to
map a single output to a single input.

Fig. 6. FMF model part 2

 Generic Fault Modelling for Fault Injection 293

Figure 6 depicts the actual behavior specification of a failure mode function. An
FMF contains at least one operation, which in turn contains a command sequence of
at least one command that is executed if the referenced trigger-conditions are
fulfilled. The command specifier is one of the commands in Table 2, which shall be
supported by a generator that conforms to the proposed FMF library format.

Table 2. Mandatory commands for a FMF library

ASSIGN_OUT

Copy a specified input to a specified output.

ASSIGN_OUT_BOOL_NOT Copy a specified Boolean input to a specified
boolean output, but invert the value.

ASSIGN_OUT_BITWISE_OR Copy a specified input to a specified output, but
do a bitwise OR with the specified value.

ASSIGN_OUT_BITWISE_XOR Copy a specified input to a specified output, but
do a bitwise XOR with the specified value.

ASSIGN_OUT_BITWISE_AND Copy a specified input to a specified output, but
do a bitwise AND with the specified value.

ASSIGN_OUT_RANDOM Copy a random value (between a min and max
value) to a specified output.

ASSIGN_OUT_MULT Copy the multiplication between two inputs to a
specified output.

ASSIGN_OUT_ADD Copy the addition between two inputs to a
specified output.

ASSIGN_OUT_SUB Copy the subtraction between two inputs to a
specified output.

FILL_VARIABLE Fill a variable with a specified input.
SHIFT_VARIABLE Shift a variable (shift in a specified input).

A trigger-conditions container is identified by a unique name, and contains an
arbitrary number of trigger-condition containers which all shall be evaluated to TRUE
for the trigger-conditions container evaluation to be evaluated as TRUE.

A trigger-condition container is defined as follows. A trigger-type (PORT value,
VARIABLE value or the ITERATION-COUNTER value) and trigger-name is used
to identify the left-hand side, and a value-type (PORT value or PARAMETER value)
and value-name is used to identify the right-hand side of the evaluation of the
operator (==, >=, <=, >, <, ! (i.e. NOT)).

The following example shows how the effect of a bit-flip fault (Flip_Bits FMF) is
modeled using the proposed format, with the addition of a trigger to enable/disable
the fault effect. This is useful to support different persistence models.

294 R. Svenningsson et al.

Table 3. FMF description of bit-flip fault

PORTS
{name, direction, data type}

{Input1, IN, SIGNED_INTEGER}
{Trigger, IN, BOOL}
{Output1, OUT, SIGNED_INTEGER}

PARAMETERS
{name, data type, min, max}

{Bit, UNSIGNED_INTEGER, 0, 31}
{True, BOOL, true, true}

VARIABLES
{name, data type, size source, size name, init
value}

DEFAULT-PORT-MAPPINGS
{source port, destination port}

{Input1, Output1}

TRIGGER-CONDITIONSS
{name, {trigger type, trigger name, delay,
value type, value name, operator}}

{TrigCond,
{PORT, Trigger, 0, PARAMETER, True,
==}
}

OPERATIONS
{trigger-name,
{command specifier, PARAMETERS}}

{TrigConds,
{ASSIGN_OUT_BITWISE_XOR,
Output1, Input1, Bit}
}

Using a C source code generator on the description in Table 3, the source code in
Figure 7 is produced.

Fig. 7. Generated C source code from FMF description in Table 3

 Generic Fault Modelling for Fault Injection 295

For usage with the MODIFI tool, a Matlab [9] m-code generator has been created
that produces Matlab-executable code, similarly to the previous example. This is
depicted in Figure 8.

Fig. 8. Generated m source code from FMF description in Table 1

In MODIFI, the generated code is encapsulated into a Simulink block that is
inserted automatically by the fault injection engine into the model, as shown in Figure
2. Parameters values, that are realized as input parameters to the FMF initialization
function (e.g. Fmf30s_Init in Figure 8) are randomly chosen by the fault injection
engine to a value between the minimum and maximum values defined in the FMF
library. In the previous example, a value between 0 and 31 will be chosen for the Bit
parameter, while the value true will be chosen for the True parameter. The latter is a
way of defining constants, i.e. by setting the minimum and the maximum value of a
parameter to the same value.

5 Conclusions

To support interoperability between fault injection tools, an XML schema based
format has been proposed for describing effects of hardware faults, denoted failure
mode functions (FMF’s). An FMF is described by using the provided properties (e.g.
trigger conditions, operations, ports and parameters) based on the anticipated effect of
a hardware fault occurring in a system, similar to the preparation of an FMEA for a
safety-related electronic system.

Code generators have been implemented for both C code and Matlab code. These
generators take an FMF library in XML-format and produce code for each FMF
(examples depicted in Figure 7 and Figure 8) together with a generic part that act as
an interface between the fault injection engine and the library.

296 R. Svenningsson et al.

These generators and the proposed XML schema have been used successfully by
fault injection tools that were developed within the MOGENTES project.

Acknowledgments. This work has been funded by the research project MOGENTES
within the European Community’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement no 216679.

References

1. Svenningsson, R., Vinter, J., Eriksson, H., Törngren, M.: Model-Implemented Fault
Injection for Hardware Fault Simulation. In: Proceedings of the Workshop on Model-
Driven Engineering, Verification, and Validation (MoDeVVa 2010), Oslo, Norway,
October 3, pp. 31–36 (2010)

2. The MOGENTES Project, http://www.mogentes.eu
3. IEC International Electrotechnical Commission, IEC 60218:2006 Analysis Techniques for

System Reliability – Procedure for Failure Mode and Effects Analysis (FMEA)
4. Svenningsson, R., Vinter, J., Eriksson, H., Törngren, M.: MODIFI: A MODel-Implemented

Fault Injection Tool. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 210–
222. Springer, Heidelberg (2010)

5. IEC International Electrotechnical Commission, IEC 61025:2006 Fault Tree Analysis
(FTA)

6. IEC TR 62380 – Reliability data handbook, http://www.iec.ch
7. W3C XML Schema, http://www.w3.org
8. da Silva, A., et al.: XML schema based fault set definition to improve fault injection tools

interoperability. International Journal of Critical Computer-Based Systems 1(1/2/3), 220–
237 (2010)

9. Mathworks, http://www.mathworks.com

Tightening Test Coverage Metrics:

A Case Study in Equivalence Checking
Using k-Induction�

Alastair F. Donaldson1, Nannan He1, Daniel Kroening1, and Philipp Rümmer2

1 Computer Science Department, Oxford University, UK
2 Uppsala University, Department of Information Technology, Uppsala, Sweden

Abstract. We present a case study applying the k-induction method to
equivalence checking of Simulink designs. In particular, we are interested
in the problem of equivalence detection in mutation-based testing: given
a design S, determining whether a “mutant” design S′ derived from S by
syntactic fault injection is behaviourally equivalent to S. In this situation,
efficient equivalence checking techniques are needed to avoid redundant
and expensive search for test cases that observe differences between S
and S′. We have integrated k-induction into our test case generation
framework for Simulink. We show, using a selection of benchmarks, that
k-induction can be effective in detecting equivalent mutants, sometimes
as a stand-alone technique, and sometimes with some manual assistance.
We further discuss how the level of automation of the method can be
increased by using static analysis to derive strengthening invariants from
the structure of the Simulink models.

1 Introduction

Mutation-based testing [20] is an effective technique for generating high-quality
test suites for software systems. The technique is based on the hypothesis that
a test capable of detecting a small, synthesized error in a program may very
likely be able to detect real defects introduced accidentally by programmers.
Applying mutation-based testing typically works as follows. A set of mutations
is identified. These are small syntactic changes to the system under test. An
example mutation might be the replacement of operator + by * at a particular
program point, or the modification of a signal in a dataflow program by injecting
a new computation block. Then, a search is carried out to find a set of test cases
that kill many of the mutants: a test case kills a mutant if it exposes the fact that
the behaviours of the original and mutated system diverge. The more mutants
a test suite kills the higher the coverage of the suite, while the smaller the test
suite the more efficiently it can be executed during software development. Given
a sufficiently rich set of mutation operators, mutation coverage subsumes many
� This research is supported by the EU FP7 STREP MOGENTES (project ID ICT-
216679), the ARTEMIS CESAR project, the EU FP7 STREP PINCETTE (project
ID ICT-257647), and EPSRC grant EP/G051100.

B.K. Aichernig, F.S. de Boer, and M.M. Bonsange (Eds.): FMCO 2010, LNCS 6957, pp. 297–315, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

298 A.F. Donaldson et al.

other popular notions of coverage, such as location coverage and MC/DC for
software and stuck-at faults for hardware [24].

Ideally, we would like to be able to efficiently derive a small set of test cases
that kill all of a given set of mutants. A problem with this ideal is the possibility
of equivalent mutants. Because mutants are obtained in a lightweight, syntactic
fashion, there is no guarantee that a given mutant will in fact exhibit different
behaviour from the original system. If no such difference can ever be observed,
we say that that mutant is equivalent to the original system. Clearly, no test case
can ever kill an equivalent mutant. We do not wish to waste time attempting to
derive such test cases, and it would be unfair to regard a test suite to be of low
quality because it does not kill mutants that are actually equivalent. Thus there
is a need for techniques to automatically detect equivalence of mutants.

In previous work [5] we proposed a mutation-based test case generation ap-
proach for Simulink models. The basic idea is to inject multiple mutants into a
Simulink model to obtain a mutated design. The original and mutated designs
are automatically translated into an ANSI-C program that runs the designs in-
step, asserting that they are observationally equivalent. Then, bounded model
checking (BMC) [3] using a tool such as Cbmc [6] is performed to check whether
the designs really are observationally equivalent up to a given execution depth.
Bounded equivalence is checked using a SAT solver like MiniSat, such that non-
equivalence is detected when the solver finds a satisfying assignment to the as-
sociated SAT problem. Such satisfying assignments are used to derive test cases
to kill the injected mutants.

While effective, this BMC-based approach is expensive, thus we would like
to avoid applying it to injected mutants which are equivalent. In this work, we
present a case study using the k-induction method [26] for equivalence checking
in the Simulink domain. We show, using a selection of benchmarks, that k-
induction can be effective in detecting equivalent mutants, sometimes as a stand-
alone technique, and sometimes with some manual assistance. We further discuss
how the level of automation of the method can be increased by using static
analysis to derive strengthening invariants from the structure of the Simulink
models.

2 Mutation-Based Test Case Generation for Simulink

2.1 Matlab Simulink

Matlab Simulink is a graphical dataflow language that is commonly used in
industry for modeling or implementing control applications. Simulink models
consist of a set of blocks that are connected by signals specifying the flow of data.
Blocks are taken from pre-defined block libraries (covering generic functions such
as addition or logical operators, but also domains like fuzzy logic or network
communication) and receive a specific number of input signals from which output
signals are computed. Stateful systems are modeled with the help of feedback
loops. Models can be structured hierarchically with the help of subsystems, and

Tightening Test Coverage Metrics 299

(a) Original Simulink model

(b) Mutated Simulink model

Fig. 1. Example of a mutated Simulink model

can be simulated, analyzed, or compiled to code using the Matlab tool-suite and
third-party products.

For the purposes of this paper, we only consider discrete-time Simulink mod-
els, which means that signals represent (potentially infinite) streams of values
governed by a global clock. The semantics of blocks is synchronous in the sense
that every block is evaluated and performs exactly one computation step per
time unit. As a whole, a Simulink program receives a number of (potentially
infinite) streams of input values (specified using inports in the Simulink model)
and generates a number of output streams (described using outports).

An example of a Simulink model is given in Fig. 1(a). This model has two
inports In1, In2, and one outport Out1. The inputs are connected to a Switch
(a multiplexer) that forwards either In1 or the output of delay, depending on
the value of In2. The unit-delay block delay is responsible for storing the output
of Switch for one time unit, thus preventing a cyclic definition caused otherwise
by the feedback loop from Switch to itself. All instances of the unit-delay block
must be initialized. The default initialization value is 0. The block Add (actually
performing subtraction) computes the difference between the results of Switch
and delay and feeds it to the outport Out1.

2.2 Mutation-Based Test Case Generation

In this paper, we consider test case generation (TCG) strategies for Simulink
models built on top of the mutation-based TCG approach defined in [5], which
uses bounded model checking techniques to systematically construct test cases.
Mutation-based TCG proceeds by injecting syntactic mutations (in this context
sometimes also called faults) into a given Simulink model S, generating from S
a set M of mutants. We use S′ to refer to a mutant in M .

300 A.F. Donaldson et al.

Fig. 1 is an example mutant derived from the Simulink model of Fig. 1(a). In
the mutant, the output of Switch is replaced by its absolute value before being
input to Add. Assume that an input has the form (In1 , In2), where In2 causes
the top input of Switch to be selected if it is 1, otherwise the bottom input is to
be selected; and initial outputs for all unit delay blocks are 1. An example input
sequence 〈(1, 1), (−1, 1)〉 leads to the output sequence of Fig. 1(a) as 〈0, -2〉,
while applied to Fig. 1(b), the output sequence is 〈0,0〉 (recall that, as discussed
in §2.1, the Add blocks of Fig. 1 actually perform subtraction). The difference
in final values for these output sequences, highlighted in bold, indicates that the
models behave differently.

The goal of TCG is to find a set of test cases (finite sequences of inputs for
the model S) that kill each of the mutants in M , which means that the test case
makes a mutant S′ ∈ M produce outputs that differ from those of the original
model S. For example, as argued above, the test case {((1, 1), (−1, 1))} kills
the mutant of Fig. 1. The main hypothesis underlying mutation testing is that
such test cases, which are able to detect simple bugs like the injected syntactic
mutations, are also useful for finding real, potentially more complicated defects
(this is called the coupling effect [9]).

In the style of bounded model checking [2], both the original model S and each
of its mutants S′ ∈ M can abstractly be modeled using transition relations T and
T ′ and formulae I, I ′ defining the initial states. Like in equivalence checking [21],
observational equivalence of S and S′ during the first d computation steps can
then be expressed using the following formula:

I(s0) ∧
d−1∧
i=0

T (si, si+1)

︸ ︷︷ ︸
first model

∧ I ′(s′0) ∧
d−1∧
i=0

T ′(s′i, s
′
i+1)︸ ︷︷ ︸

second model

∧
d∧

i=0

si.i = s′i.i︸ ︷︷ ︸
equality of all inputs

⇒
d∧

i=0

si.o = s′i.o︸ ︷︷ ︸
equality of all outputs

(1)

Any countermodel to this formula represents two executions of S and S′ that
yield a different output sequence; the projection of the assignment to the inputs
corresponds to a test case. As most Simulink models operate on scalar datatypes
such as integers or floating-point arithmetic, and therefore have a finite state
space, countermodels can be constructed using SAT/SMT-based techniques.

2.3 From Simulink to C: Our Test Case Generation Tool Chain

Due to the complexity of the Simulink language and the size of commonly used
block type libraries, the development of analysis tools directly operating on
Simulink models is a huge effort. We therefore follow a compilation approach and
convert Simulink models to C programs prior to test case generation. Further
processing can then be performed by ANSI-C analysis tools, in our case based on

Tightening Test Coverage Metrics 301

// Declaration of inputs

signal_type in0 , in1 , ...;

// Declaration of internal signals

signal_type sig0 , sig1 , ..., sig0_m , sig1_m , ...;

// Declaration of outputs

signal_type out0 , out1 , ... out0_m , out1_m , ...;

int main () {

// The main simulation loop

for (sim_time=START; sim_time <END; sim_time += sim_step) {

// Reading inputs

in0 = readInput0 (); in1 = readInput1 (); ...

// Execution of the original model S

sig0 = ...; sig1 = ...; ...

out0 = ...; out1 = ...; ...

// Execution of the mutant S’

sig0_m = ...; sig1_m = ...; ...

out0_m = ...; out1_m = ...; ...

// (*)

}

}

Fig. 2. Skeleton of C code generated from Simulink models

the Cbmc [6] bounded model checker. For the compilation from Simulink to C,
we use two different tools: our own Simulink front-end [5], which is tightly inte-
grated with Cbmc and optimised for static analysis (applied to the generated C
programs); and Gene-Auto [27], an industrial-grade open-source code generator
for Simulink.

In our experiments, mutations are always applied at the level of Simulink mod-
els (rather than, as would also be possible, at the level of the C code generated
from a Simulink model):

1. a given Simulink model S is first duplicated (cloned) by creating a copy S′

of S connected to the same input ports as S.
2. the clone S′ is mutated by inserting a further computation block into one

of the signals of S′. The mutation operators considered in this paper are
described in Sect. 5; the work presented here directly generalises to further
mutation operators.

Examples of the resulting models are given in Fig. 5.
Compiling Simulink models to C results in programs of the structure shown

in Fig. 2. The type signal_type will practically be either int or float (in our
experiments, the former). Note that the program can contain multiple, nested

302 A.F. Donaldson et al.

assert(out0 == out0_m && out1 == out1_m && ...); // (*)

Fig. 3. Assertion relating the outputs of the original and mutated Simulink models.
Counterexamples that violate this assertion provide test vectors that kill the mutant

loops in addition to the main simulation loop, since the code generated for the
models S and S′ might itself contain loops. Loops other than the main simulation
loop are, however, usually bounded.

In order to generate test cases, an assertion relating the different outputs is
added at (*) in Fig. 2; the added assertion is shown in Fig. 3. Counterexamples
demonstrating that the assertion (*) can be violated represent test cases killing
the considered mutant. Such counterexamples can effectively be constructed us-
ing bounded model checkers such as Cbmc [6]. The tool Cover [5] automates
this process and produces test cases in an XML-based format.

2.4 The Phenomenon of Equivalent Mutants

Not all mutations give rise to observably different behaviour of a model. In
fact, one of the main obstacles in traditional mutation testing is the difficulty of
identifying mutations that do not have an observable effect on system outputs.
Suppose formula (1) from §2.2 is valid for some d, which means that the applied
mutation does not result in an error that propagates to an observable output
within d steps. There are two possible reasons for this:

1. The bound d is not sufficiently large to reveal the error.
2. The model contains redundancy and the mutation does not result in an

observable change of its behaviour. In other words, (1) is valid for any d.
The mutant is in this case called an equivalent mutant.

The first case could be addressed by simply increasing the bound d. However,
bounded model checking alone is not sufficient to distinguish between the two
cases, since there is no upper bound (or only prohibitively large bounds, taking
the usually finite state space of a Simulink program into account) on the values
of d that have to be considered. In order to detect case 2, it is therefore necessary
to apply techniques beyond bounded model checking; the approach evaluated in
this paper is based on strong versions of induction and inductive invariants.

3 Detection of Equivalent Mutants Using k-Induction

The k-induction method was proposed as a technique for SAT-based verification
of finite-state transition systems [26], and has been used successfully to verify
complex hardware designs, in particular pipelined architectures. Recently, k-
induction has also been applied in the verification of imperative software [12,13].
In this paper, we consider applying the software formulation of k-induction pro-
posed in [12,13] to detect mutant equivalence in the C programs generated via
the technique described in Sect. 2.3.

Tightening Test Coverage Metrics 303

3.1 k-Induction for Transition Systems

Let I(x) and T(x, y) be formulae encoding the initial states and transition rela-
tion for a system over sets of state variables x and y, P(x) a formula representing
states satisfying a safety property, and k a non-negative integer. To prove P by
k-induction one must first show that P holds in all states reachable from an
initial state within k steps, i.e., that the following formula (the base case) is
unsatisfiable:

I(s1) ∧ T(s1, s2) ∧ · · · ∧ T(sk−1, sk) ∧ (P(s1) ∨ · · · ∨P(sk)) (2)
Secondly, one must show that whenever P holds in k consecutive states s1, . . . , sk,
P also holds in the next state sk+1 of the system. This is established by checking
that the following formula (the step case) is unsatisfiable:

P(s1) ∧ T(s1, s2) ∧ · · · ∧ P(sk) ∧ T(sk, sk+1) ∧ P(sk+1) (3)
Having proved both the base and step case, we can conclude that P holds in
every reachable state of the transition system. The method can be made complete
for finite-state systems by restricting the step case to consider only loop-free
paths [26].

3.2 k-Induction in Mutation-Based Testing

In the context of mutation-based testing, we can use k-induction in order to
show that (1) holds for any value of d. In this case, (1) forms the base case for
k-induction: for some d ≥ 0 we show that the original and mutated systems are
equivalent up to depth d.

To obtain a complete result, we must also prove a step case as follows:

d∧
i=0

T (si, si+1)

︸ ︷︷ ︸
first model

∧
d∧

i=0

T ′(s′i, s
′
i+1)︸ ︷︷ ︸

second model

∧
d∧

i=0

si.o = s′i.o︸ ︷︷ ︸
equality of first d outputs

⇒ sd+1.o = s′d+1.o︸ ︷︷ ︸
equality of output d + 1

(4)

The step case ascertains that, given that the original and mutated systems have
exhibited equal outputs for d steps, they are guaranteed to show equivalent
outputs for a further step.

3.3 k-Induction for Software Programs

In prior work [12,13] we investigated a direct lifting of k-induction from transition
systems to the level of program loops, in order to prove partial correctness of
software programs with respect to assertions appearing in the program text.

Because we translate Simulink designs into C, it is this formulation of k-
induction, rather than the transition system-level formulation outlined in §3.1
and §3.2, that we use to implement k-induction for detection of equivalent mu-
tants. Our software k-induction method can directly be applied to programs such
as the one shown in Fig. 2.

304 A.F. Donaldson et al.

i:=0;

a:=1;

b:=2;

c:=3;

assume i < n;

assert a �= b;

a,b,c:=b,c,a;

i++;

assume i ≥ n;

(a) Original CFG

i:=0;

a:=1;

b:=2;

c:=3;

assume i < n;

assert a �= b;

a,b,c:=b,c,a;

i++;

assume i < n;

assert a �= b;

a,b,c:=b,c,a;

i++;

...

assume i < n;

assert a �= b;

a,b,c:=b,c,a;

i++;

k

assume i ≥ n;

(b) Base case

i,a,b,c:=*;

assume i < n;

assume a �= b;

a,b,c:=b,c,a;

i++;

assume i < n;

assume a �= b;

a,b,c:=b,c,a;

i++;

...

assume i < n;

assume a �= b;

a,b,c:=b,c,a;

i++;

assume i < n;

assert a �= b;

a,b,c:=b,c,a;

i++;

assume i ≥ n;

k

(c) Step case

Fig. 4. A simple program, and the corresponding base and step cases for k-induction

The formal definition of our k-induction rule for programs is quite complex,
but the intuition is simple. We shall explain the idea using an example, referring
the reader to [12,13] for formal details.

We apply k-induction to a single loop in a program. Consider the example
program of Fig. 4(a), depicted as a control flow graph (CFG), where flow of
control is modelled using assume statements. (In particular, note that the loop
condition i < n is modelled by assuming that this expression holds on entry to
the loop, and assuming that its negation holds on loop exit.)

We wish to prove that the assertion in the body of the loop can never be
violated. This could be achieved using standard techniques by showing that
a �= b ∧ a �= c ∧ b �= c is an inductive invariant for the loop, and that it im-
plies the assertion a �= b of interest. However, with k-induction, we can prove
this example correct without providing an external loop invariant. Instead, the
assertion appearing in the loop body takes the role of an invariant.

From the CFG of Fig. 4(a), we derive two programs. The step case program
(Fig. 4(c)) is analogous to (3). It checks whether, after executing the loop body

Tightening Test Coverage Metrics 305

successfully k times from an arbitrary state, a further loop iteration can be
successfully executed. In this further loop iteration, back edges to the loop header
are removed, while edges that exit the loop are preserved. Thus the step case
verifies that on loop exit, the rest of the program can be safely executed.

Because the program of Fig. 4(a) is indeed correct, the base case of Fig. 4(b)
is correct for any k ≥ 0. However, the step case of Fig. 4(c) is correct only for
k ≥ 3. To see that the step case does not hold for k = 2, consider the case where
n > 2 and statement i,a,b,c:=* yields i = 0, a = 1, b = 2, c = 1. From this
state, two loop iterations can be successfully executed, leading to a state where
a = 1 , b = 1 and c = 2, at which point the assertion a �= b does not hold.

It is this program-level approach to k-induction which we employ in order to
detect equivalence of mutants in Simulink designs, applying induction to the C
programs generated from our compilation flow.

4 Automatic Invariant Strengthening

We shall see in §5 that näıve application of k-induction is not strong enough
to show equivalence of mutants in some typical cases. The intuitive reason why
k-induction might fail is that the asserted property—that the outputs generated
by the original model S and the mutant S′ are equal—is not k-inductive for
any k, since the resulting induction hypothesis gives too little information about
the internal state of the Simulink programs. In general, it can be necessary to
strengthen the invariant by adding conditions about the range of signals, or by
equations asserting that signals of the original model and of the mutants carry
the same value.

We examine two techniques to strengthen invariants automatically: abstract
interpretation, using numeric abstract domains, and van Eijk’s method to infer
equalities between signals. We evaluate both techniques experimentally in §5.

4.1 Abstract Interpretation

In prior work [10] we have investigated ways to strengthen k-induction through
static analyses, including abstract interpretation [7]. Given a control-flow graph
to be analysed, suppose we use abstract interpretation (with some suitable
domain) to determine that an invariant φ holds on entry to node n. Then,
because abstract interpretation is a sound method, we can prepend the state-
ment assume(φ) to n. In practice, we choose to prepend the statement assert(φ)
rather than assume(φ). This forces k-induction to re-check the inferred invari-
ants, guarding against the possibility of vacuous results arising from bugs in the
abstract interpreter.

By exploiting information about invariants in this way, we increase the pos-
sibility for k-induction to succeed in proving the property of interest: while the
property may not be k-inductive in general, it may be k-inductive when restricted
to the invariant obtained using abstract interpretation.

306 A.F. Donaldson et al.

In §5 we discuss mutants that cannot be proven equivalent using k-induction
alone, but for which equivalence can be proven if abstract interpretation, over
the domain of intervals, is first used to compute a strengthening invariant.

4.2 Adaptation of van Eijk’s Method

The application of non-relational abstract domains (as in §4.1), for instance the
interval domain, can significantly increase the proof strength of k-induction when
detecting equivalent mutants. In this section, we propose a particular relational
domain that further supports k-induction through eager computation of groups
of signals that carry the same values in all executions of a Simulink model.
The technique is inspired by van Eijk’s method [15], a method for sequential
equivalence checking of hardware designs. In the original version, the method
works by computing classes of signals that have the same (or opposite) values in
all reachable states of a circuit; the computation is done using BDDs (to describe
equivalence classes of signals and the transition relation of the circuit) and fixed-
point iteration. Van Eijk’s method was combined with SAT-based verification,
St̊almarck’s method, and k-induction in [4].

The need for relational information is illustrated in Fig. 6(a), in which the
equivalence of the considered mutant can only be shown when adding the addi-
tional assertion that the output of the unit-delay block UD_m is not affected by
the applied mutation. This is done by asserting that the outputs of the blocks
UD and UD_m are equal. In this example, the use of a non-relational abstract
domain alone is not sufficient for the equivalence proof. This situation is typical
for Simulink programs with internal state that cannot completely be observed
at the program outputs.

In general, we assume that a relation

R ⊆ {sig0, sig1, . . .}︸ ︷︷ ︸
Sig

×{sig0_m, sig1_m, . . .}︸ ︷︷ ︸
Sigm

between original and mutated internal signals has been identified (where vari-
ables are named as in Fig. 2). The assertion inserted at (*) in Fig. 2 is then
strengthened to:

assert(out0 == out0_m && out1 == out1_m && ...); // (*)

{ assert(a == b); }(a,b)∈R

Let us call this stronger set of assertions A(R). If it is possible to verify A(R)
using k-induction, then also the original assertion, and thus the equivalence of
the mutant has been proven.

In order to automatically compute relations R for which k-induction succeeds,
we propose to first identify a set Rc ⊆ Sig × Sigm of candidate pairs of signals.
Natural candidates are pairs of corresponding signals in the original Simulink
model and the mutant; such pairs are easy to compute and likely to carry the
same values. Furthermore, the number of corresponding signal pairs is only linear

Tightening Test Coverage Metrics 307

Algorithm 1. Iterative mutant equivalence checking

Input: C program as in Fig. 2, initial relation Rc, parameter k ≥ 0
Output: One of {Equivalent,NonEquivalent,DontKnow}
R ← Rc;
/* Eliminate signal pair candidates using random simulation */

repeat
Execute Fig. 2 with assertions A(R) and random inputs;
if assertion corresponding to pair (a, b) ∈ R failed then

R ← R \ {(a, b)};
else if difference in outputs observed then

return NonEquivalent;
end

until timeout ;

/* Check k-induction base case */

repeat
Check k-induction base case with assertions A(R);
if assertion corresponding to pair (a, b) ∈ R failed then

R ← R \ {(a, b)};
else if difference in outputs observed then

return NonEquivalent;
end

until base case succeeded ;

/* Check k-induction step case */

repeat
Check k-induction step case with assertions A(R);
if assertion corresponding to pair (a, b) ∈ R failed then

R ← R \ {(a, b)};
else if difference in outputs observed then

return DontKnow;
end

until step case succeeded ;

return Equivalent;

in the size of the Simulink models. In some cases, it might, however, be beneficial
to start from a larger set of signal pair candidates.

As second step, Rc is refined to a set Ri ⊆ Rc by removing signal pairs that
can be shown to have different values in some executions. This is done using two
methods:

– by trying to verify the k-induction base case for the set A(Rc) of assertions.
Most likely, such a verification attempt will initially fail and report that some
of the assertions in A(Rc) could not be verified; the corresponding pairs have
to be removed from Ri.

– by random simulation of the program in Fig. 2, using the set A(Rc) of
assertions. In practice, random testing can be expected to efficiently and
quickly remove large numbers of candidate pairs from Ri.

308 A.F. Donaldson et al.

The set Ri of remaining candidate pairs has to be refined by removing further
signal pairs until the k-induction step case succeeds. This is done by trying to
verify the k-induction step case with the set A(Ri) of assertions; if some assertion
of the step case cannot be verified, the corresponding pair (a, b) ∈ Ri is removed,
leading to the new relation Ri := Ri \ {(a, b)}. Iterating this procedure will
eventually produce the greatest relation R = Ri for which k-induction succeeds,
or will terminate with the result that the equivalence of the considered mutant
could not be proven.

Alg. 1 defines this technique more formally. The algorithm proceeds in three
phases: 1. random simulation is used to remove as many signal pair candidates
from R as possible; 2. the k-induction base case is verified, potentially ruling out
further signal pairs in R; and 3. the k-induction step case is verified, again reduc-
ing the set R as needed. For a given timeout bound for random simulation, the
algorithm is guaranteed to terminate, and outputs as result either that the con-
sidered mutant was proven to be equivalent, that the mutant is non-equivalent
(in which case it is also possible to extract a test case killing the mutant from
the algorithm), or that the equivalence check was inconclusive.

Lemma 1 (Soundness of Alg. 1). If Alg. 1 returns the result Equivalent

(NonEquivalent), the examined mutant is equivalent (not equivalent).

Lemma 2 (Completeness of Alg. 1). If Rc contains a sub-relation Rs ⊆ Rc

such that k-induction is able to verify the assertions A(Rs) for the C program in
Fig. 2, then Alg. 1 returns the result Equivalent when started with the initial
relation Rc and the parameter k.

Proof. By showing the following two properties: 1. for all relations R computed
during the execution of the algorithm, it is the case that Rs ⊆ R; and 2. as long
as Rs ⊆ R during the execution of the algorithm, the result DontKnow is not
returned. "#

It can be observed that Alg. 1 can be adapted also to other classes of assertions
than just equations over signals; also the combination with the numeric abstract
domains in Sect. 4.1 is straightforward.

5 Experiments

In this section, we first discuss four basic equivalent mutants extracted from
larger, real-world benchmarks; we then report experimental results, and analyse
two full-size examples in detail. To translate Simulink to C we use the tool
presented in [5], as well as Gene-Auto [27]. For equivalence checking, we use
K-Inductor [11], a prototypical version of Cbmc extended with k-induction.
For our adaptation of van Eijk’s method (§4.2), we have written a script which
repeatedly invokes K-Inductor to check base and step cases.

All experiments are performed on a computer with a 3 GHz Intel Xeon CPU
and 48 GB of memory, running Linux.

Tightening Test Coverage Metrics 309

Out1
2

Out1_m
1

Sel_m

Sel

RO_m

>

RO

>

C3_m

0

C3

0

C2_m

3

C2

3

C1_m

1.05

C1

1.05

Abs

|u|

In1
1

(a) Stateless (combinational) model

Out1
2

Out1_m
1

UD_m
z

1

UD
z

1

Sel_m

Sel

RO_m

>

RO

>

C_m

1.05

C3_m

0

C3

0

C

1.05

Abs

|u|

In1
1

(b) Model with feedback loop

Out1
2

Out1_m
1s_m

0..5

s
0..5

UD_m

1/z

UD

1/z

RO_m

>

RO

>

C3_m

0

C3

0

Abs

|u|

In1
1

(c) Stateful model without feedback loop

Out1
2

Out1_m
1

UD_m
z

1

UD
z

1

Sel_m

Sel

C_m

1.05

C

1.05

Abs

|u|

In1
1

(d) Equivalence at the mutated
location

Fig. 5. Basic mutation scenarios occurring in our Simulink benchmarks

5.1 Simple Examples

In Fig. 5, each model consists of a mutant (the upper part) and the original
model (the lower part). The mutant contains duplicates of all blocks in the
original model; these blocks are distinguished by the suffix m. The mutant
and the original model share the same inports. The outports Out1 m and Out1
are numbered 1 and 2 respectively, as they are distinct outports in the overall
Simulink model. The red blocks (named Abs) are the applied mutations, and
thus appear in the upper part of each model. These are inserted absolute-value
blocks. Blue blocks (whose name starts with C) are constants, labelled with
their respective values. All blocks labelled with ‘1/z’ are Unit Delays (memory
blocks) and initialised with the value 1.

It can be observed that the outputs generated by the mutants and the origi-
nal models coincide, no matter what the inputs to the models are, so that the
mutants are indeed equivalent.

In case (a), the model does not include any state-related blocks or feedback
loops, and is thus purely combinational. Using K-Inductor, we could prove the
equivalence of this mutant with k = 1.

Case (b) is more complex, since a Unit Delay block UD occurs after the
mutated location. The input of this block is connected with the output of a Switch

310 A.F. Donaldson et al.

Out
2

Out_m
1

UD_m
z

1

UD
z

1

Sel_m

Sel2_m

Sel2

Sel

C_m

1

C2_m

10

C2

10

C

1

Abs

|u|

In2
2

In1
1

(a) Nested switches

Out
2

Out_m
1

sel_m

sel

UD_m
z

1

UD
z

1

C_m

1.05

C3

2
C

1.05

Abs

|u|

In1
1

(b) Sum after switch

Fig. 6. Two cases of equivalences at mutated location

block Sel, carrying through either the upper or the lower input signal, depending
on whether the value of the middle input is 0 or not. The output of UD is fed back
to the switch Sel. This is a typical scenario observed in the benchmarks. Using
k-induction alone, it was not possible to prove the equivalence of the mutant,
since the step case could not be verified (for reasonable k). Verification is possible,
however, when adding an assertion like assert(Sel_m > 0 && Sel > 0) into the
generated C code, which makes the assertions in the simulation loop k-inductive
for k = 2. Abstract interpretation over intervals, as discussed in §4.1, allows this
assertion to be automatically derived.

Case (c) also includes a Unit Delay block, but is simpler because the output
of the block UD is not fed back to its input. In this case, equivalence can directly
be proven using k-induction with k = 2.

Case (d) is a special case where the mutation directly affects the output of the
model. Also in this example, equivalence can directly be proven using k-induction
with k = 2.

Two more interesting variants of this case are given in Fig. 6. We observe
that k-Induction can directly prove Fig. 6(b), but not (a). In order to verify

Tightening Test Coverage Metrics 311

equivalence in (a), it is necessary to add two further assertions to the simulation
loop:

assert(UD_M == UD); assert(UD_M >= 0);

To obtain the first invariant, the adaptation of van Eijk’s method presented
in §4.2 is used: the relation Rc is initialised with all pairs of signal variables
occurring between the mutation point and outports. Algorithm 1 is then applied
to remove invalid pairs. We did not employ random simulation, the first phase of
Algorithm 1, to eliminate invalid pairs; we leave this to future work. Currently,
elimination is performed solely by checking the k-induction base and step cases.

The second invariant can be derived automatically using abstract interpreta-
tion over intervals as discussed in §4.1.

5.2 Larger Simulink Case Studies

In this case study, we make use of k-induction to check whether mutants in-
jected into Simulink models are equivalent. We consider four Simulink bench-
marks extracted from an industrial embedded software system used in the Euro-
pean MOGENTES project.1 This software system contains control functions to
implement steering anti catch-up in an automobile. We applied three different
mutation operators to the Simulink models:

– ABS: Insert absolute value.
– UOI: Insert negation (−, ¬) operator.
– RR: Swap relational operators <,≤, >,≥, =.

The results of proving equivalence of mutants directly using k-induction, or after
strengthening with added invariant assertions are summarised in Table 1. For
every benchmark, #Blocks reports the total number of Simulink blocks (of the
original model), while #Muts shows the number of generated mutants, each
including exactly one mutation. #S-blocks gives the number of state-related
blocks in the model (for example Unit-Delay blocks).

The #Muts-RandT column shows the number of mutants left after applying a
simple random testing approach to kill mutants. #K-Ind and #K-Ind-IS give the
number of mutants that are proved equivalent using our k-induction-based tech-
nique without and with invariant strengthening respectively (where strengthen-
ing uses abstract interpretation and our adaptation of van Eijk’s method). Note
that the number for #K-Ind-IS is always larger than that for #K-Ind, because
invariant strengthening can only increase the proof strength of our method.

The last column #Ineq reports the number of mutants which were not proved
inequivalent using random simulation, but which were shown inequivalent by
the base case of our k-induction approach. (Essentially, this means that these
mutants can be shown to be inequivalent using shallow bounded model checking.)

In all cases, we find that (#K-ind-IS + #Ineq) = (#Muts-RandT), thus our
technique is able to fully categorise mutants as equivalent or inequivalent for
this set of benchmarks.
1 https://www.mogentes.eu/

https://www.mogentes.eu/

312 A.F. Donaldson et al.

Table 1. Summary of experimental results

Benchmark #Blocks #Muts #S-blocks #Muts-RandT #K-ind #K-ind-IS #Ineq

CalcOffset 80 69 2 10 3 3 7
Decision 92 87 2 15 0 7 8
RecogLoc 66 40 1 11 0 5 6
Spoiler 44 36 0 5 5 5 0

Table 2. Experimental results of proved mutants

ID Benchmark Mutation-Type #T(s) k #Assert. v.E.

M-1 Decision ABS 1.21 2 N/A
M-2 Decision ABS 3.23 2 3/3
M-3 Decision ABS 4.15 2 5/5
M-4 Decision ABS 4.34 4 6/1
M-5 Decision ABS 1.23 3 N/A
M-6 Decision ABS 3.24 3 6/4
M-7 Decision RR 3.72 3 5/1
M-8 RecogLoc ABS 3.81 4 5/2
M-9 RecogLoc ABS 3.78 4 4/2
M-10 RecogLoc ABS 4.74 4 6/4
M-11 RecogLoc ABS 3.31 2 6/4
M-12 RecogLoc RR 3.51 2 6/4

The CalcOffset benchmark includes two Unit Delay blocks. The outputs of
these blocks are not fed back to their inputs, similar to Fig. 5(c). The experiments
show that k-induction alone is capable of proving equivalent mutants, and the
runtime of each proof is within 1 second. For the benchmarks Decision and
RecogLoc, invariant strengthening indeed increases the number of mutants that
k-induction can prove equivalent. The Spoiler benchmark model has no state-
related blocks (similar to Fig. 5(a)); all potentially equivalent mutants are indeed
proven equivalent by k-induction alone within 1 second.

Table 2 gives detailed information about mutants injected into the Decision
and RecogLoc models. As shown in Table 1, none of these mutants could be shown
equivalent by k-induction alone—all required invariant strengthening. The col-
umn #T(s) gives the runtime needed for verification, in seconds. It includes
the total time for running our abstract interpreter, followed by the van Eijk-
based method of Algorithm 1 if needed (which may call K-Inductor multiple
times). The column k gives the parameter k required to prove equivalence of
a mutant. The last column shows the number of signal-equivalence invariant
assertions which were added by the van Eijk-based method of Algorithm 1, if
this strengthening is necessary. For example, for the mutant M-1, “N/A” means
that k-induction strengthened with abstract interpretation is sufficient to prove
the equivalence, without invoking our adaptation of van Eijk’s method. In con-
trast, for mutant M-6, “6/4” reports that six potential assertions are identified
by the van Eijk technique, and four of them are proved to be invariants and

Tightening Test Coverage Metrics 313

used in strengthening k-induction. Overall, the experiments show that most of
these equivalent mutants (10 out of 12) require strengthening with both abstract
interpretation and our adaptation of van Eijk’s method in order for k-induction
to succeed. We did not find any cases among the Decision or RecogLoc mutants
where the van Eijk technique allowed equivalence to be proven without abstract
interpretation also being applied.

6 Related Work

Mutation-based test case generation. The concept of mutation testing was first
introduced in 1971 in Richard Lipton’s class term paper “Fault diagnosis of com-
puter programs.” Since then, it has become a standard method for evaluating
the quality of test suites and been applied to software systems of considerable
size, see [20] for a broad survey. In this paper, we only consider mutant mod-
els with single mutations, whereas other authors also consider combinations of
faults [22]. In [25], Ruthermel et al. propose to use mutations to prioritise test
cases to increase a test suite’s rate of fault detection.

This work is partly based on our framework [5] for test case generation for
Simulink. An optimisation of the framework, applying formal concept analysis
to cluster mutants, has been described in [19].

k-Induction. The concept of k-induction was first published in [26,4], targeting
the verification of hardware designs represented by transition relations (although
the basic idea had already been used in earlier implementations [23] and a version
of one-induction used for BDD-based model checking [8]). A major emphasis of
these two papers is on the restriction to loop-free or shortest paths, which is so
far not considered in our k-induction rule due to the size of state vectors and
the high degree of determinism in software programs. Several optimisations and
extensions to the technique have been proposed, including property strengthen-
ing to reduce induction depth [28], improving performance via incremental SAT
solving [14], and verification of temporal properties [1].

Besides hardware verification, k-induction has been used to analyse syn-
chronous programs [18,16], SystemC designs [17] and imperative software [12,13].
A combination of the k-induction rule of [12,13], abstract interpretation, and
domain-specific invariant strengthening techniques for race analysis is the topic
of [10].

7 Conclusions and Future Work

We have presented a case study in the application of k-induction to the prob-
lem of detecting equivalent mutants in mutation-based test case generation for
Matlab Simulink. Our experiments show that k-induction shows promise in this
area, proving successful in equivalence detection for a range of examples, some-
times as a stand-alone technique, but often requiring assistance from other static
analyses: abstract interpretation over intervals, and an adaptation of van Eijk’s

314 A.F. Donaldson et al.

method for sequential equivalence checking. The experiments also show that
strong versions of induction, such as k-induction with k > 1, are beneficial for
equivalence proofs: several of our example proofs could only be conducted with
k ≥ 2.

Future work will involve completing the implementation of the van Eijk-based
method by using random simulation to eliminate invalid pairs of signal variables,
and analysing the effectiveness of our method over a larger class of Simulink
designs.

References

1. Armoni, R., Fix, L., Fraer, R., Huddleston, S., Piterman, N., Vardi, M.Y.: SAT-
based induction for temporal safety properties. Electr. Notes Theor. Comput.
Sci. 119(2), 3–16 (2005)

2. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Advances in Computers 58, 118–149 (2003)

3. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

4. Bjesse, P., Claessen, K.: SAT-based verification without state space traversal. In:
Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 372–389.
Springer, Heidelberg (2000)

5. Brillout, A., He, N., Mazzucchi, M., Kroening, D., Purandare, M., Rümmer, P.,
Weissenbacher, G.: Mutation-based test case generation for simulink models. In:
de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009.
LNCS, vol. 6286, pp. 208–227. Springer, Heidelberg (2010)

6. Clarke, E. M., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs.
In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Principles
of Programming Languages (POPL), pp. 238–252. ACM, New York (1977)

8. Déharbe, D., Moreira, A.M.: Using induction and BDDs to model check invariants.
In: CHARME. IFIP Conference Proceedings, vol. 105, pp. 203–213. Chapman &
Hall, Boca Raton (1997)

9. DeMillo, R., Lipton, R., Sayward, F.: Hints on test data selection: Help for the
practicing programmer. Computer 11(4), 34–41 (1978)

10. Donaldson, A.F., Haller, L., Kroening, D.: Strengthening induction-based race
checking with lightweight static analysis. In: Jhala, R., Schmidt, D. (eds.) VM-
CAI 2011. LNCS, vol. 6538, pp. 169–183. Springer, Heidelberg (2011)

11. Donaldson, A.F., Haller, L., Kroening, D., Rümmer, P.: Software verification using
k -induction. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 351–368. Springer,
Heidelberg (2011)

12. Donaldson, A.F., Kroening, D., Rümmer, P.: Automatic analysis of scratch-pad
memory code for heterogeneous multicore processors. In: Esparza, J., Majumdar,
R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 280–295. Springer, Heidelberg (2010)

13. Donaldson, A.F., Kroening, D., Rümmer, P.: Automatic analysis of DMA races
using model checking and k-induction. Formal Methods in System Design (2011)

Tightening Test Coverage Metrics 315

14. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr.
Notes Theor. Comput. Sci. 89(4) (2003)

15. van Eijk, C.A.J.: Sequential equivalence checking without state space traversal. In:
Proceedings of the Conference on Design, Automation and Test in Europe (DATE),
pp. 618–623. IEEE, Los Alamitos (1998)

16. Franzén, A.: Using satisfiability modulo theories for inductive verification of Lustre
programs. Electr. Notes Theor. Comput. Sci. 144(1), 19–33 (2006)

17. Große, D., Le, H.M., Drechsler, R.: Proving transaction and system-level prop-
erties of untimed SystemC TLM designs. In: MEMOCODE, pp. 113–122. IEEE
Computer Society, Los Alamitos (2010)

18. Hagen, G., Tinelli, C.: Scaling up the formal verification of Lustre programs with
SMT-based techniques. In: FMCAD, pp. 109–117. IEEE, Los Alamitos (2008)

19. He, N., Rümmer, P., Kroening, D.: Test-case generation for embedded Simulink
via formal concept analysis. In: Proceedings of DAC (2011)

20. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Transactions on Software Engineering, TSE (2010)

21. Kuehlmann, A., van Eijk, C.A.J.: Combinational and sequential equivalence check-
ing. In: Logic Synthesis and Verification. Kluwer International Series in Engineering
and Computer Science Series, pp. 343–372. Kluwer, Dordrecht (2002)

22. Kupferman, O., Li, W., Seshia, S.A.: A theory of mutations with applications to
vacuity, coverage, and fault tolerance. In: Formal Methods in Computer-Aided
Design (FMCAD), pp. 1–9. IEEE, Los Alamitos (2008)

23. Lillieroth, C.J., Singh, S.: Formal verification of FPGA cores. Nord. J. Com-
put. 6(3), 299–319 (1999)

24. Offutt, J., Voas, J.M.: Subsumption of condition coverage techniques by mutation
testing. Tech. Rep. ISSE-TR-96-01, George Mason University (1996)

25. Ruthruff, J.R., Burnett, M.M., Rothermel, G.: Interactive fault localization tech-
niques in a spreadsheet environment. IEEE Transactions on Software Engineering
(TSE) 32(4), 213–239 (2006)

26. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 108–125. Springer, Heidelberg (2000)

27. Toom, A., Izerrouken, N., Naks, T., Pantel, M., Kai, O.S.Y.: Towards reliable code
generation with an open tool: Evolutions of the Gene-Auto toolset. In: Proceedings,
Embedded Real Time Software and Systems, ERTS (2010)

28. Vimjam, V.C., Hsiao, M.S.: Explicit safety property strengthening in SAT-based
induction. In: VLSID, pp. 63–68. IEEE, Los Alamitos (2007)

The Hierarchical Compositional Interchange

Format

Damian Nadales Agut, Bert van Beek, Harsh Beohar,
Pieter Cuijpers, and Jasper Fonteijn

Eindhoven University of Technology (TU/e)
The Netherlands

{D.E.Nadales.Agut,D.A.v.Beek,H.Beohar,P.J.L.Cuijpers}@tue.nl

Abstract. In computer science, the development of hierarchical au-
tomata / statecharts has lead to stepwise development of complex dis-
crete systems. Such a concept is absent in the Compositional Interchange
Format (CIF), which is a modelling language based on hybrid automata.
In this article we extend the CIF language with the concept of hierar-
chy, which results in the Hierarchical Compositional Interchange format
(HCIF). Syntactically, hierarchy is introduced by adding three concepts
to CIF: a hierarchy function from a location to a HCIF composition, a
termination predicate, and disruptive edges. The semantics of HCIF is
given by means of Structural Operational Semantics rules. The seman-
tics of a hierarchical automaton is defined in a compositional manner,
by referring only to the transition system of the substructures, and not
to their syntactic representation. This compositional introduction of hi-
erarchy allows us to keep the semantics of the HCIF operators almost
unchanged with respect to their CIF versions. Finally, a case-study called
Patient Support System is modelled in HCIF to show its applicability1.

1 Introduction

Hierarchy provides a structured and economical description of complex systems
[21], which is suitable for incremental (bottom-up) construction of correct sys-
tems [3]. It also provides a framework for the development of abstraction and
refinement techniques.

The Compositional Interchange Format (CIF)[5,4,2] is a language for mod-
eling real-time, hybrid and embedded systems. CIF is developed to establish
interoperability among a wide range of formalisms and associated tools for the
specification of hybrid and timed systems, by means of model transformations
to and from CIF. In this way, implementation of many bilateral translators, is
avoided. As such it plays a central role in the European projects Multiform [16],
HYCON [13], C4C [7], and HYCON 2 [12].

CIF has a formal semantics defined in terms of Structured Operational Se-
mantics (SOS) [17] rules. This formal specification of the language is crucial for
1 Work done as part of the European Community’s Seventh Framework Programme
(FP7/2007-2013) project MULTIFORM contract number FP7-ICT-224249.

B.K. Aichernig, F.S. de Boer, and M.M. Bonsange (Eds.): FMCO 2010, LNCS 6957, pp. 316–335, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The Hierarchical Compositional Interchange Format 317

enabling semantic preserving model transformations. Then, by translating CIF
models to formalisms that have model checking algorithms for their models, such
as Phaver [9], it is possible to verify CIF models as well.

In [6], the addition of hierarchy to a subset of CIF is investigated, and as a
result it is shown that the SOS rules of atomic entities can be modified without
altering the rules of the CIF operators. However the question remains whether this
approach can be extended when more complicated concepts such as invariants[11],
synchronization, and control variables [9] are added to the language.

In this paper we develop and extension of the full CIF language with hierar-
chy, named the Hierarchical Compositional Interchange Format (HCIF), and we
model a case study in HCIF to show how the new concepts can be applied.

There exists several hierarchical formalisms and tools for simulation and
validation of hybrid models, such as Charon [1], Matlab-Simulink[19], State-
charts [10], among others. However these formalisms either do not have a formal
and compositional semantics, or their semantics is not defined in terms of SOS
rules, which is a requirement for extending the CIF semantics.

The remainder of this work is organized as follows. In Section 2 the syntax of
HCIF is introduced. In Section 3 we introduce the semantic framework needed to
understand HCIF semantics, and in Section 4 we present the formal specification
of the language. A case study that shows the applicability of the formalism is
presented in Section 5.

2 Syntax of HCIF

In this section we describe the mathematical syntax of HCIF, and we illustrate
it by modeling a controller of a simplified Patient Support System of an MRI
scanner, which is discussed in more detail in Section 5. Note that in this section
we give an incomplete description of the controller model to illustrate the various
concepts involved in the definition of a hierarchical automaton.

Horizontal
inv : xv = 1

UpOut
inv : xh = −1 ∧

xv = 1

Vertical
inv : xh = −1

when s = 0

when s = +1 when s = 0

when s = −1

Normal

Fig. 1. Movement control

Fig. 1 gives an informal, graphical representation of a HCIF automaton, which
models a controller of a patient support table. The control operates in one of
the following three modes: Horizontal mode modeling the horizontal movement
of the table, UpOut modeling that the table is fully up and out, and Vertical
modeling the vertical movement of the table.

318 D. Nadales Agut et al.

Every location has an initialization predicate, an invariant predicate, and
a time can progress predicate associated to it. The initialization predicate of
a location l describes the constraints that the initial values of variables must
satisfy for an execution to start in l. Such locations for which the initialization
predicate is true are called active locations. The invariant of a location l is a
predicate that must hold as long as the system is in l. The time can progress (tcp)
predicate of a location l is a predicate that must hold during time delays, when l
is an active location. In Fig. 1, the location UpOut has true as the initialization
predicate, xh = −1∧xv = 1 as the invariant. Tcp predicates are in general useful
for triggering the execution of an action from a location within a certain period
of time. For instance, an action a must be executed when the clock value has
reached 2 units of time (See Fig. 3(a)).

Edges represent discrete changes in the computational state of a system. An
edge has a source and a target location, and its execution results in a change
of active location (unless the edge is a self loop). The automaton of Fig. 1 has
four edges in total among the locations Horizontal, UpOut, and Vertical. Every
edge contains a predicate called guard that determines when an action can be
executed, a predicate called update that determines how the model variables can
change after performing the action, and a set of jumping variables that specify
the variables that are changed by the action. Edges are labeled by actions that
may be used to synchronize the behavior of automata in a parallel composition.
In Fig. 1, the edge from the location UpOut to the location Horizontal has
guard s = 1, update predicate true, empty set of jumping variables, and the
silent action label τ .

Formally, the set of locations is denoted by L and the set of actions is denoted
by A. The invisible action τ is a special symbol, which is not present in the set
A and we fix Aτ = A∪ {τ}. In HCIF there are three types of variables: regular
variables, denoted by the set V ; the dotted versions of those variables, which be-
long to the set V̇ = {ẋ | x ∈ V}; and the step variables, which belong to the set
{x+ | x ∈ V ∪ V̇}. The notation x+ denotes the value of a variable x in the next
state. Furthermore, the variables can be classified according to their evolution
(i.e. how their values change during time delays). In particular, we distinguish
between discrete variables (such as s in Fig. 1), whose values remain constant
during time delays, so that the values of their dotted versions are always 0;
and continuous variables (such as xh and xv in Fig. 1), whose values evolve as
a continuous function of time during delays, and whose dotted versions repre-
sent their derivatives. Variables can also be constrained by differential algebraic
equations, which are specified as predicates (in invariants). The values of the
variables belong to the set Λ that contains, among others, the sets B (booleans)
and R (reals). The predicates representing the guards are taken from the set Pg,
the tcp, invariants and initializations are taken from the set Pt and the resets are
taken from the set Pr. The exact syntax and semantics of predicates are defined
in [2]. The predicates Pg,Pt and Pr are the terms of the language of predicate
logic [18], where for Pg,Pt the variables are taken from the set V ∪ V̇, and for
Pr the variables are taken from the set V ∪ V̇ ∪ {x+ | x ∈ V ∪ V̇}.

The Hierarchical Compositional Interchange Format 319

StoppedIn
inv : ẋh = 0

Middle
inv : ẋh = s

StoppedOut
inv : ẋh = 0

when s = −1

when s = +1when x = +1 ∧ s ≥ 0

when x = −1 ∧ s ≤ 0

Horizontal

Fig. 2. Horizontal movement

Locations can contain other automata (or compositions of them, as we show
in Section 5). In Fig. 1 the location Horizontal contains the automaton shown in
Fig. 2, that defines the horizontal movement of the controller in more detail. Au-
tomata that are contained inside other locations are referred to as sub-automata
or sub-structure, and the containing automata are referred to as super-automata
or super-structure. In a HCIF automaton, there are two types of edges, namely,
non-disruptive edges (for brevity, we refer to a non-disruptive edge as an edge)
and disruptive edges. Intuitively, an edge can be executed from a location if the
sub-structure at that location is terminating, while a disruptive edge can be ex-
ecuted even if the sub-structure at that location is non-terminating. Note that
the conditions under which an edge or a disruptive edge can be executed depend
on several factors, which are defined in Section 4.

In addition to initialization, invariant and tcp predicates, each location has a
termination predicate which defines if execution can terminate in that location.
Termination predicates are used for specifying when the super-structure can
perform a transition. In the automaton shown in Fig. 1, the τ transition from the
location Horizontal to the location UpOut can be executed only if the guard s =
0 holds, the automaton (Fig. 2) inside the location Horizontal has StoppedOut
as its active location, and the termination predicate holds.

Additional components of an automaton (not shown in the example presented
here) include: control variables, synchronizing actions, and dynamic type map-
pings. Intuitively, controlled variables are those variables that can only be mod-
ified by the automaton that declares them, and they do not change arbitrarily
after performing an action. The set of synchronizing actions is used to specify
which actions are to be synchronized when the automaton is composed in paral-
lel. The concept of dynamic types [14] is used to model constraints in the joint
evolution of a variable and its dotted version. In CIF a dynamic type is a set
containing pairs of functions, whose domain is a closed range of the form [0, t],
with t ∈ T. Notation T is used to refer to the set of all time points.

Definition 1 (Hierarchical automata). A hierarchical automaton α is a tu-
ple (V, init, inv, tcp, E, D, varC , actS , dtype, term, h) where:

– V ⊆ L a set of locations,
– initial, invariant, time-can-progress and termination predicates init, inv, tcp,

term: V → Pt,

320 D. Nadales Agut et al.

– a set of edges E ⊆ V × Pg ×A× (2V∪V̇ × Pr) × V ,
– D ⊆ E is the set of disruptive edges of the automaton,
– varC ⊆ 2V is the set of controlled variables,
– actS ⊆ 2A is the set of synchronizing actions, and
– dtype : V ⇀ 2(T→Λ)×(T→Λ) is the dynamic type mapping.
– h : V ⇀ C is a partial function that associates to some set of locations a sub-

structure. Here, C is the set of all compositions in HCIF (See Definition 2).

We use symbol M to refer to the set of all hierarchical automata.

Using operators, more complex models, referred to as compositions (Defini-
tion 2), are possible. The semantics of the operators is presented in Section 4.1,
with the exception of the semantics of the action and variable scope operators.
The semantics of these operators is unchanged with respect to the semantics of
these operators in CIF, as defined in [2].

Definition 2 (HCIF compositions). The set of compositions C in the HCIF
formalism is recursively defined by the grammar below, where x ∈ V, e ∈ E,
a ∈ A, aτ ∈ Aτ . Informally, by a composition we mean either a hierarchi-
cal automaton or a syntactical object constructed from the different hierarchical
automata using the operators of HCIF. Note that, the word ‘composition’ is syn-
onymous to the phrase ‘process term’ used in process algebra terminology.

C ::= α hierarchical automaton
| C : α automaton postfix operator
| C ‖ C parallel composition operator
| |[V x = e, ẋ = e :: C]| variable scope operator
| |[A a :: C]| action scope operator
| υaτ (C) urgency operator

Throughout this article, the textual and graphical conventions given in Table 1
are followed.

3 Semantic Framework

In this section, the semantic framework is set up to properly explain the se-
mantics of HCIF. First we present the concepts of variable valuations and flow
trajectories. Next we describe informally hybrid transitions systems, which are
used to model the semantics of HCIF compositions. Finally, a formal definition
of this semantic model is given.

3.1 Preliminaries

Semantically, the execution of a system, specified by means of a HCIF compo-
sition, causes changes to the values of the variables appearing on it. Thus, in
the semantic model it is necessary to represent the values of the variables in a

The Hierarchical Compositional Interchange Format 321

Table 1. Textual and graphical conventions in HCIF. The sentences terminated with
the symbol � indicates the features present only in HCIF.

Graphical representation Meaning

Location without any sub-structure

Initial location with init predicate true

Final location with termination predicate
true�

Location containing a sub-structure�

when g act a do x := e Edge (g, a, ({x}, x+ = e))

when g act a do x := e Disruptive edge (g, a, ({x}, x+ = e))�

when g Edge (g, τ, (∅, true))
act a Edge (true, a, (∅, true))
N D

Automaton N with declarations D

α β

N D

α ‖ β

N D

α β

L

AND superstate L containing parallel
composition α ‖ β

particular instant. For this purpose, we use the concept of valuation, which is
standard in semantics of processes with data. A valuation σ : (V ∪ V̇) → Λ is a
function that for each variable returns its corresponding value. We use notation
Σ � (V ∪ V̇) → Λ to refer to the set of all valuations.

Having defined valuations, we introduce the concept of satisfiability. Even
though predicates are abstract entities, we assume that a satisfaction relation
σ |= u is defined, which expresses that predicate u ∈ P is satisfied (i.e. it is true)
in valuation σ. For a valuation σ, we define σ+ � {(v+, c) | (v, c) ∈ σ}.

To model the evolution on the values of variables during time delays we use
the concept of variable trajectories. A variable trajectory is a function ρ : T ⇀ Σ
that returns the valuations of the variables at each time point. In other words,
ρ(s)(x) is the value of variable x at time s. We assume the domain of variable
trajectories to be closed intervals, i.e. intervals of the form [0, t], where t ∈ T.

3.2 Hybrid Transition Systems

The semantics of CIF compositions is given in terms of SOS rules, which induce
hybrid transition systems (HTS) [8]. The states of the HTS are of the form 〈p, σ〉,
where p ∈ C and σ ∈ Σ is a valuation. There are three kind of transition in the
HTS, namely, action transitions, environment transitions, and time transitions.

322 D. Nadales Agut et al.

Action transitions are of the form 〈p, σ〉 a,b,X−−−→ 〈p′, σ′〉. They model the exe-
cution of action a by process p in an initial valuation σ, which changes process p
into p′ and results in a valuation σ′. Label b is a boolean that indicates whether
action a is synchronizing or not, and label X is the set of controlled variables
defined by the environment of p and p′.

Time behavior is captured by time transitions. Time transitions are of the
form 〈p, σ〉 ρ,A,θ,ω�−→ 〈p′, σ′〉. They model the passage of time in composition p, in
an initial valuation σ, which results in a composition p′ and valuation σ′. Label
A contains the set of synchronizing actions of p and p′. Function ρ : T → Σ
is the variable trajectory. Function θ : T → 2A is called guard trajectory. It
models the evolution of enabled actions during time delays. For each time point
s ∈ dom(θ), the function application θ(s) yields the set of enabled actions of
composition p at time s. Lastly, function ω is called termination trajectory. It
models the evolution of termination (see below) during time delays: for each
time point s ∈ dom(ω), composition p′ is terminating at time s if and only if
ω(s). For all time transition dom(ρ) = [0, t], for some time point t ∈ T, and
dom(ρ) = dom(θ) = dom(ω). Termination is formally defined next.

Definition 3. Given a valuation σ, we define termination as follows:

– An automaton (V, init, inv, tcp, E, varC , actS , dtype, term, h) is terminating
in σ if there is a location v ∈ V such that σ |= init(v), σ |= inv(v), σ |=
term(v), and if v ∈ dom(h) then h(v) is terminating in σ.

– Composition p ‖ q is terminating in valuation σ if p and q are terminating
in valuation σ.

– For the remaining operators, termination is defined pointwise.

Environment transitions are of the form 〈p, σ〉 A,b��� 〈p′, σ′〉. They are used in the
semantics to enforce restrictions posed by the environment of a composition on

the action behavior of the composition. More specifically, a transition 〈p, σ〉
A,b���

〈p′, σ′〉 expresses the fact that p is consistent in σ, and p′ is consistent in σ′. In
addition, the role of the environment transitions is to indicate that a composition
p can initialize to become a composition p′ in which an active location is fixed
for each (active) substructure. Furthermore, the boolean b indicates whether
the initialized substructure can terminate, and thus give back the control over
actions to its environment. As before, label A is the set of synchronizing actions
of compositions p and p′. Next, consistency is defined recursively.

Definition 4. Given a valuation σ, we define consistency as follows.

– An automaton (V, init, inv, tcp, E, varC , actS , dtype, term, h) is consistent in
σ if there is a location � ∈ V such that σ |= init(�) and σ |= inv(�), and if
� ∈ dom(h) then h(�) is consistent in σ.

– Composition p ‖ q is consistent in valuation σ if p and q are consistent in
valuation σ.

– For the remaining operators, consistency is defined pointwise.

The Hierarchical Compositional Interchange Format 323

We use notation σ |= p to denote that composition p is consistent in valuation
σ. Alternatively, we say that σ is consistent with p.

Definition 5 formalizes the hybrid transition system induced by the SOS rules
presented in the next sections.

Definition 5. A hybrid transition system (HTS) is a five-tuple of the form
(Q,A,−→ , �−→, ���) where Q � C × Σ, −→ ⊆ Q × (Aτ × B × 2V) × Q, �−→⊆
Q × ((T ⇀ Σ) × 2A × (T ⇀ 2A) × (T ⇀ B)) × Q, ��� Q × (2A × B) × Q.

4 Semantics

In this section we explain the semantics of HCIF both informally by means of
examples, and formally by means of SOS rules.

4.1 Hierarchical Automata

In a hierarchical automaton α, an active location v can execute actions at two
different levels of abstraction: external actions, which are specified as labelled
edges from the active location v to an arbitrary location v′; and internal actions,
which are generated by the sub-structure at the location v, i.e., h(v). Note that
there are different conditions under which an external or internal action can be
executed. Furthermore, the rules of CIF can be obtained from the current rules
by substituting h = ∅. Next, we explain and formalize the rules for every HCIF
composition.

Given an initial valuation σ, an external action a can be executed in a location
v if there is an edge (v, g, a, (W, r), v′) in α satisfying the following conditions:

– Location v is active (σ |= init(v)), the invariant at the location v is satisfied
(σ |= inv(v)) and the guard g holds (σ |= g).

– If there is a substructure inside location v (v ∈ dom(h)), then it is terminat-
ing in σ or the edge is disruptive.

– It is possible to find a new valuation σ′ such that:

• The invariant of the new location v′ holds σ |= inv(v′).
• The reset predicate r is satisfied in valuation σ ∪ σ′+ (σ ∪ σ′+ |= r).
• σ′ is consistent with the substructure inside the target location (if any).
• Controlled variables not in W (the set of jumping variables of the action)

are not allowed to change in σ′ (wrt. σ).

This is formalized by Rule 1. Some of the above conditions are summarized in
the term

σ, σ′ |=α (v, g, a, (W, r), v′)

that is syntactically equivalent to:

(v, g, a, r, v′) ∈ E∧ σ |= init(v)∧ σ |= g∧ σ |= inv(v)∧ σ′ |= inv(v′)∧ σ′+∪σ |= r.

324 D. Nadales Agut et al.

Henceforth, we use the following notation:

α ≡ (V, init, inv, tcp, E, varC , actS , dtype, term, h),
α[v] ≡ (V, idv, inv, tcp, E, varC , actS , dtype, term, h),

where dom(idv) = V and idv(w) � v = w. Note that the initialization predicate
idv encodes the active location, after execution of the first transition. An action
specified by an edge (v, g, a, (W, r), v′) in an automaton α can be triggered only
if the controlled variables of the automaton (varC) and of the environment (X)
remain the same in σ, and σ′, except if they belong to the set of jumping variables
W . We use notation f �A to refer to the domain restriction of function f to the
set A. Secondly, if the edge is not disruptive, it is necessary to check that the
substructure of the initial location, if any, is terminating. This is expressed by

condition (〈h(v), σ〉 A0,b��� 〈p, σ〉∨v �∈ dom(h)), (v, g, a, (W, r), v′) ∈ D∨b). Finally,
after the action is performed, the substructure in the target location, if present,

must be initialized, i.e, 〈h(v′), σ′〉 A1,b��� 〈q : α[v′], σ′〉. The choice of selecting
active locations of substructure h(v′) is made upon entering the location v′.
Consistency of the substructures is preserved by the environment transitions.

σ, σ′ |=α (v, g, a, (W, r), v′), σ �(X∪varC)\W = σ′ �(X∪varC)\W ,(
〈h(v), σ〉 A0,b��� 〈p, σ〉 ∨ v �∈ dom(h)

)
, (v, g, a, (W, r), v′) ∈ D ∨ b,

v′ ∈ dom(h), 〈h(v′), σ′〉 A1,b′��� 〈q, σ′〉

〈α, σ〉 a,a∈actS ,X−−−−−−−→ 〈q : α[v′], σ′〉
1

Consider the controller automaton in Fig. 1, assuming UpOut is an active loca-
tion with a valuation σ. The edge labelled when s = +1 can be executed if there
exists a valuation σ′ such that σ satisfies the invariant of the location UpOut
(σ(xh) = −1 ∧ σ(xv) = 1), σ′ satisfies the invariant of the location Horizontal
(σ′(xv) = 1) and the valuation σ′ is consistent with the automaton shown in
Fig. 2. The consistency of the valuation σ′ implies that the active location of the
automaton in Fig. 2 is Middle such that σ′ |= ẋh = s.

Now consider the active location of the controller to be Horizontal and the
active location of the automaton in Fig. 2 to be Stopped-in. In this case, the edge
labelled when s = 0 in Fig. 1 cannot be executed even if the guard s = 0 is true.
This is due to the fact that the composition inside the location Horizontal is non-
terminating in location Stopped-in. External actions, such as the edge labelled
when s = 0, can be executed only if either the sub-structure is terminating or
the edge labelled with the external action is specified as disruptive.

Rule 1 requires as a condition that there is an active substructure in the
target location v′ ∈ dom(h). If this is not the case then no active substructure
is prefixed to α[v], as expressed by Rule 2.

σ, σ′ |=α (v, g, a, (W,r), v′), σ �(X∪varC)\W= σ′ �(X∪varC)\W ,(
〈h(v), σ〉 A0,b��� 〈p, σ〉 ∨ v �∈ dom(h)

)
, v′ �∈ dom(h), (v, g, a, (W,r), v′) ∈ D ∨ b

〈α, σ〉 a,a∈actS,X−−−−−−−→ 〈α[v′], σ′〉
2

The Hierarchical Compositional Interchange Format 325

Besides external actions, an automaton can also execute internal actions, which
are triggered by their internal structures. Given a valuation σ, an internal action
can be executed in an initial location v if the following conditions hold:

– The invariant associated with location v is satisfied (σ |= inv(v)).
– The action performed by the substructure of v results in a new valuation σ′

that also satisfies the invariant of v.

Rule 3 formalizes this. In the conclusion, p : α[v] reflects the fact that an initial
location is chosen in a hierarchical structure if the substructure performs an
action. In this rule we ignore the boolean b, that indicates whether the action a
is synchronizing, in the premise. As a result, the superstructure decides on which
actions it wants to synchronize. In other words, the superstructure defines the
set of synchronizing actions, independently of the sub-levels.

σ |= init(v), σ |= inv(v), σ′ |= inv(v), v ∈ dom(h), 〈h(v), σ〉 a,b,X∪varC−−−−−−−→ 〈p, σ′〉
〈α, σ〉 a,a∈actS,X−−−−−−−→ 〈p : α[v], σ′〉

3

Transition (h(v), σ)
a,b,X∪varC−−−−−−−→ (p, σ′) in the premise of the above rule ensures

that the control variables inherited from the environment (X) as well as the
control variables of the automaton (varC) will not jump arbitrarily when the
action is carried out by the substructure.

Again consider the model of the controller as given in Figures 1 and 2.
Assume that the active location is Horizontal and the active location of the sub-
structure is Middle. The edge labelled when x ≥ 1∧s ≥ 0 can be executed from
the location Middle only if there exists a new valuation σ′ such that it satisfies
the invariant of the locations Horizontal and StoppedIn.

In hierarchical CIF, a time delay is possible in an active location v if there
exists a trajectory ρ such that the invariant associated with the active locations
is satisfied in time point [0, t], the tcp predicate is satisfied in [0, t) and the
dynamic type constraints specified by dtype are satisfied. Henceforth, we use
ρ |= 〈t, v, init, inv, tcp, dtype〉 as an abbreviation of the predicate

ρ(0) |= init(v) ∧ dom(ρ) = [0, t] ∧ 0 < t ∧ ∀s∈[0,t).ρ(s) |= tcp(v) ∧
∀s∈[0,t].ρ(s) |= inv(v) ∧ ∀x∈dom(dtype).(ρ ↓ x, ρ ↓ ẋ) ∈ dtype(x).

For time delays, the substructure (if present) must perform a time transition
with the same trajectory. In this way, the invariants and tcp-predicates of the
active location of the automaton, and, recursively, of the active locations of its
active substructures are considered simultaneously. In this way time passes in
an automaton, and also in all of its contained active substructures. In other
words, an automaton and its active substructure synchronize on time delays.
Rule 4 models this, where dom(ω) = dom(ρ), dom(θ) = dom(ρ), ∀s∈[0,t].ω(s) =
(ω0(s) ∧ ρ(s) |= term(v)), and ∀s∈[0,t].θ(s) = θ0(s) ∪ {a | (v, g, a, (W, r), v′) ∈
E∧ρ(s) |= g∧ω0(s)}. The guard trajectory θ as well as the termination trajectory
ω are constructed by using the corresponding trajectories generated by the time

326 D. Nadales Agut et al.

transition in the substructure. The set of synchronizing actions only takes into
account the set actS in the superstructure, since the set of synchronizing actions
in the substructure does not influences the action synchronizing behavior of its
parent. The same approach is taken when computing the set of synchronizing
actions in the environment transition in Rule 6.

ρ |= 〈t, v, init, inv, tcp, dtype〉, v ∈ dom(h), 〈h(v), ρ(0)〉 ρ,A,θ0,ω0�−→ 〈p, ρ(t)〉

〈α, ρ(0)〉 ρ,actS ,θ,ω�−→ 〈p′ : α[v], ρ(t)〉
4

Rule 5 deals with the case that an initial location v does not contain a substruc-
ture, where dom(ω) = dom(ρ), dom(θ) = dom(ρ) and ∀s∈[0,t].ω(s) = (ρ(s) |=
term(v)), and ∀s∈[0,t].θ(s) = {a | (v, g, a, (W, r), v′) ∈ E ∧ ρ(s) |= g}.

ρ |= 〈t, v, init, inv, tcp, dtype〉, v �∈ dom(h)

〈α, ρ(0)〉 ρ,actS ,θ,ω�−→ 〈α[v], ρ(t)〉
5

In hierarchical CIF, if an automaton performs an environment transition, a
unique active location is chosen, and the substructure (if present) is initialized.
The environment transition ensures that the active location contains a consistent
hierarchical structure (Definition 4). This is expressed by Rule 6. The initialized
composition p becomes the active substructure of α[v], and the automaton is
terminating if the location and the active substructure are. Rule 7 deals with
the case where there is no substructure.

σ |= init(v), σ |= inv(v), σ′ |= inv(v), σ �varC
= σ′ �varC

,

v ∈ dom(h), 〈h(v), σ〉 A,b��� 〈p′, σ′〉

〈α, σ〉
actS,σ|=term(v)∧b

��� 〈p′ : α[v], σ′〉
6

σ |= init(v), σ |= inv(v), σ′ |= inv(v), σ �varC
= σ′ �varC

, v �∈ dom(h)

〈α, σ〉
actS ,σ|=term(v)

��� 〈α[v], σ′〉
7

4.2 Automaton Postfix Operator

The automaton postfix operator is used to define the semantics of hierarchy. It
is not an operator intended for modeling, and therefore we do not illustrate its
behavior by means of examples. We limit ourselves to semantic considerations.

Intuitively, the composition p : α means that composition p is the active
substructure of some initial location v ∈ V in the automaton α. Note, that
whenever the composition p : α is the result of a previous transition in α, this
initial location is always uniquely defined.

Rule 8 models the action transition taken by automaton α when the active
substructure is terminating or when the chosen edge is disruptive, and the target
location has a substructure. Rule 9 differs from Rule 8 only in that the target
location does not have a substructure. Rule 10 models the action transition
resulting from the execution of the substructure.

The Hierarchical Compositional Interchange Format 327

σ, σ′ |=α (v, g, a, (W,r), v′), σ �(X∪varC)\W= σ′ �(X∪varC)\W , 〈p, σ〉 A0,b��� 〈p′, σ〉,
(v, g, a, (W,r), v′) ∈ D ∨ b, v′ ∈ dom(h), 〈h(v′), σ′〉 A1,b′��� 〈q, σ′〉

〈p : α, σ〉 a,a∈actS ,X−−−−−−−→ 〈q : α[v′], σ′〉
8

σ, σ′ |=α (v, g, a, (W, r), v′), σ �(X∪varC)\W = σ′ �(X∪varC)\W ,

〈p, σ〉 A,b��� 〈p′, σ〉, (v, g, a, (W, r), v′) ∈ D ∨ b, v′ �∈ dom(h)

〈p : α, σ〉 a,a∈actS ,X−−−−−−−→ 〈α[v′], σ′〉
9

σ |= init(v), σ |= inv(v), σ′ |= inv(v), 〈p, σ〉 a,b,X∪varC−−−−−−−→ 〈q, σ′〉

〈p : α, σ〉 a,a∈actS ,X−−−−−−−→ 〈q : α, σ′〉
10

Rule 11 models the passage of time in an automaton postfix such that the timed
transitions are (recursively) synchronized in every level of hierarchy of p : α,
where dom(ω) = dom(ρ), dom(θ) = dom(ρ), ∀s∈[0,t].ω(s) = ω0(s) ∧ ρ(s) |=
term(v), and ∀s∈[0,t].θ(s) = θ0(s)∪{a | (v, g, a, (W, r), v′) ∈ E∧ρ(s) |= g∧ω0(s)}.

ρ |= 〈t, v, init, inv, tcp, dtype〉, 〈p, ρ(0)〉 ρ,A,θ0,ω0�−→ 〈p′, ρ(t)〉

〈p : α, ρ(0)〉 ρ,actS ,θ,ω�−→ 〈p′ : α[v], ρ(t)〉
11

Finally, Rule 12 models the execution of an environment transition in an au-
tomaton postfix.

σ |= init(v), σ |= inv(v), σ′ |= inv(v), σ �varC = σ′ �varC ,

〈p, σ〉 A,b��� 〈p′, σ′〉

〈p : α, σ〉
actS ,σ|=term(v)∧b

��� 〈p′ : α[v], σ′〉
12

4.3 Parallel Composition

The parallel composition operator allows concurrent execution of HCIF com-
positions. The semantics of parallel composition is equal to the CIF semantics.
Action behavior is not affected by the addition of hierarchy. The rules for time
and environment transitions are updated to reflect the fact that a parallel com-
position is terminating only if both components are.

As an illustration, consider the assembly process shown in Fig. 3(a), hence-
forth referred to as Assembly , such that its location WaitForAB contains the
parallel composition shown in Fig. 3(b). The assembly process initially is in
the WaitForAB location, and, according to the semantics of atomic automata,
it can trigger action assembling only if its sub-structure terminates. Since the
sub-structure is a parallel composition of two automata, namely WaitForA and
WaitForB (See Fig. 3(b)), the substructure h(WaitForAB) can terminate af-
ter actions a and b have both been executed; i.e., both automata WaitForA and

328 D. Nadales Agut et al.

WaitForB can terminate. This pattern, in which an action is triggered after a
series of parallel processes terminate, can be expressed succinctly using hierarchy.
Without support for hierarchy and termination it is necessary to rewrite the
parallel processes into a flat automaton.

GenA
tcp : ca < 2C

ca = 0

when ca ≥ C act a do ca := 0

GenB
tcp : cb < 2C

cb = 0

when cb ≥ C act b do cb := 0

WaitForAB
Assembling
tcp : t < Δ

act assembling do t := 0

when t ≥ Δ act send

Assembly typeD : {ca �→ clock, cb �→ clock, t �→ clock}
GeneratorA
actS : {a}

GeneratorB
actS : {b}

Asembling
actS : {a, b}

(a) Assembly process (Assembly).

WaitForA

Done

WaitForB

Done

act a act b

WaitForAB

WaitForA
actS : {a}

WaitForB
actS : {b}

(b) Receive process
(h(WaitForAB)).

Fig. 3. Assembly line

The addition of hierarchy facilitates inter-level synchronization. As an exam-
ple consider the generator process GeneratorA shown in Fig. 3(a), which enables
an action a every C time units, when ca ≥ C. The action a from the generator
synchronizes with action a specified as synchronizing in the automaton Wait-
ForA, which is part of the substructure of location WaitForAB. This synchro-
nizing behavior is obtained by inclusion of action a in the set of synchronizing
actions actS of GeneratorA ({a}), and in the set of synchronizing actions of
automaton Assembly ({a, b}). Note that strictly speaking, action a need not be
defined as synchronizing for automaton WaitForA.

Formally, Rule 13 states that two synchronizing actions with the same label
can execute in parallel only if they share the same initial and final valuation,
and if the action is synchronizing in both the compositions. The set of control
variables X , is propagated from the conclusions to the premises since the control
variables in the scope of a parallel composition are shared by both partners.
The resulting action transition is also synchronizing which allows action a to
synchronise with more than two compositions.

〈p, σ〉 a,true,X−−−−−→ 〈p′, σ′〉, 〈q, σ〉 a,true,X−−−−−→ 〈q′, σ′〉

〈p ‖ q, σ〉 a,true,X−−−−−→ 〈p′ ‖ q′, σ′〉
13

The Hierarchical Compositional Interchange Format 329

Rules 14 model interleaving behavior of two compositions when executed in
parallel. In these rules, an action can be performed in one of the components (p)
only if the initial and final valuations are consistent with the other composition
(q); and if this action is not synchronizing in the other component, which is

expressed by the condition a /∈ A. The environment transition (q, σ)
A,b′��� (q′, σ′)

is used to obtain the set of synchronizing action labels in composition q, to
ensure that the initial valuation σ is consistent with the active invariants and
initialization conditions of q, to select an initial location (in case there is more
than one in q), and to remove any initialization operators from q.

〈p, σ〉 a,b,X−−−→ 〈p′, σ′〉, 〈q, σ〉 A,b′��� 〈q′, σ′〉, a �∈ A

〈p ‖ q, σ〉 a,b,X−−−→ 〈p′ ‖ q′, σ′〉
〈q ‖ p, σ〉 a,b,X−−−→ 〈q′ ‖ p′, σ′〉

14

Rule 15 models the fact that if two compositions are put in parallel, time can pass
t time units only if allowed by both partners. As can be seen in this rule, the set of
enabled actions in the parallel composition at any point in time during the delay
depends both on the set of enabled actions and the set of synchronizing actions in
each component individually. Similarly, the termination trajectory of the parallel
composition depends on the termination trajectories of its components, where
θ01 = (θ0 ∩ θ1) ∪ (θ0 \ A1) ∪ (θ1 \ A0) and ∀s ∈ [0, t].[ω01(s) = ω0(s) ∧ ω1(s)].

〈p, ρ(0)〉 ρ,A0,θ0,ω0�−→ 〈p′, ρ(t)〉, 〈q, ρ(0)〉 ρ,A1,θ1,ω1�−→ 〈q′, ρ(t)〉

〈p ‖ q, ρ(0)〉 ρ,A0∪A1,θ01,ω01�−→ 〈p′ ‖ q′, ρ(t)〉
15

Rule 16 defines the environment transition behavior for parallel composition. The
resulting set of synchronizing actions is the union of the synchronizing actions
of p and q. The conjunction b0∧b1 models the fact that a parallel composition is
terminating if its components are. Note that the end valuations of all transitions
match.

〈p, σ〉 A0,b0��� 〈p′, σ′〉, 〈q, σ〉 A1,b1��� 〈q′, σ′〉

〈p ‖ q, σ〉 A0∪A1,b0∧b1��� 〈p′ ‖ q′, σ′〉
16

4.4 Urgency Operator

By means of the urgency operator it is possible to declare actions as urgent. This
means that time cannot pass if an urgent action is enabled. However, urgent
actions do not have priority over regular (non-urgent) actions.

For example, consider the model of the controller of Fig. 1 with the active
location UpOut. When a user demands the controller to operate in the horizontal
mode, it should react as soon as possible. In other words, the action τ in the

330 D. Nadales Agut et al.

labelled edge when s = +1 between the locations UpOut and Horizontal must
be made urgent. This ensures that time does not pass in the location UpOut
from the instant when the guard s = +1 is enabled.

Rule 17 specifies that the urgent action operator allows the passage of time
as long as no urgent action is enabled.

(p, σ)
ρ,A,θ,ω�−→ (p′, σ′), ∀s∈[0,t) · a /∈ θ(s)

(υa(p), σ)
ρ,A,θ,ω�−→ (υa(p′), σ′)

17

The urgency operator affects only the time behavior. Action and environment
transitions remain unchanged as expressed by Rules 18 and 19.

(p, σ)
�,b,X−−−→ (p′, σ′)

(υa(p), σ)
�,b,X−−−→ (υa(p′), σ′)

18
(p, σ)

A,b��� (p′, σ′)

(υa(p), σ)
A,b��� (υa(p′), σ′)

19

5 Case-Study: Patient Support System

The patient support system (See Fig. 4) is used in medical diagnosis to position
a patient in an MRI scanner [20]. The system can be operated in the following
modes: vertical mode, horizontal mode and user interface mode. In the vertical
mode, the table top on which a patient resides can only move vertically between
the bounds depicted in Fig. 4. Similarly, in the horizontal mode, the table top
can be moved in or out of the bore, either manually or by means of a motor
drive. Furthermore, the system is equipped with a table top release switch for
emergency situations. This system is controlled via a user interface that contains
a tumble switch to control the movement (both horizontally and vertically) of
the table, and a button to enable the start of an initialization sequence. The
position of the tumble switch is represented by variable s which can have the
values +1, 0 and −1. The continuous variables xh and xv represent the horizontal
and vertical position of the table top, respectively.

+1 −1

−1

+1

Horizontal axis xh

Vertical axis xvTabletop

Magnet

Bore

Fig. 4. Patient Support System

The Hierarchical Compositional Interchange Format 331

−1 ≤ xh ≤ 1
−1 ≤ xv ≤ 1

Init

Normal
inv : xh = −1 ∨

xv = 1

TTR
inv :

−1 ≤ xh ≤ 1
∧ ẋv = 0

UI

act ttron

act ttroff

act ttron

PSS dtype : {xh �→ cont, xv �→ cont, s �→ disc, start �→ disc}
actS : {ttron, ttroff } varC : {xh, xv} actS : {ttron, ttroff }

Fig. 5. Patient Support System

The objective of this case-study is to design a controller that satisfies the
following requirements. The table should move up and down, or in and out of
the bore, by operating the tumble switch. The table should not move beyond
the boundaries shown in Fig. 4. The case-study is specified using a top-down
design methodology. In other words, we first model the overall system at a higher
level of abstraction in which we identify that the system consists of a controller
and a user interface. Furthermore, a controller can run in the following three
modes: Init mode in which the controller should place the table in the initial
position; Normal mode in which the controller synchronises with the events of the
tumble switch; TTR (Table Top Release) mode in which an operator is allowed
to override the normal execution of the controller. Fig. 5 shows the model of
the system at this level of abstraction. Throughout the complete description of
this case-study, it is assumed that only the τ action is urgent. All other actions,
which are the actions generated by the user interface, are non-urgent. This is
modeled by υτ (PSS) where PSS represents the automaton PSS shown in Fig 5.

User interface. The user interface consists of three input devices: the tumble
switch, the table top release switch and the start button (See Fig. 6). The tum-
ble switch has three positions: MvUpOrIn, Neutral and MvDownOrOut. The
MvUpOrIn position is used to move the table either up or into the bore, the Mv-
DownOrOut position is used to move the table down or out of the bore. When
the switch is released, it returns to the neutral position, which enforces actuated
(motorized) movement of the table to stop.

The TTR switch can be used to release the table top from the horizontal
motor. When the switch is active, the horizontal movement of the table is un-
controlled by the system, so that an operator can manually move the table freely
in the horizontal direction. Finally, the start button initializes the system.

332 D. Nadales Agut et al.

MvUpOrIn
inv : s = +1

Neutral
inv : s = 0

MvDownOrOut
inv : s = −1

act neutral act neg

act neutralact pos

TTRoff TTRon

act ttron

act ttroff

Off On

act starton do start := true

act startoff do start := false

UI

TumbleSwitch

TTRSwitch StartButton
varC : {start}

Fig. 6. User interface

WFstart
inv : ẋh = 0 ∧

ẋv = 0

Retract
inv : ẋh = −1 ∧

ẋv = 0

MoveUp
inv : ẋh = 0 ∧

ẋv = 1

WFneutral
inv : ẋh = 0 ∧

ẋv = 0

when s = 0 ∧ start

when xh = −1

when xv = +1s = 0

Init

Fig. 7. Initialization

Initialization. In the Init mode, the position of the patient support system is
initialized (Fig. 7). The position of the tumble switch needs to be neutral before
initialization begins, and the movement is triggered by pressing the start button.
The desired final position of the table is fully retracted and fully up. First, the
table is retracted since this is always a safe movement. Then, when the table
is fully retracted, the table is moved up until it reaches the top position. The
initialization is complete when the tumble switch is in the neutral position, to
prevent that the table starts moving immediately after initialization.

Normal mode. Initially, the system enters the normal mode with the table fully
up and retracted, so in an up and out position (Fig. 8). In this intersection
point between moving the table horizontally or vertically, holding the tumble
switch in the MvUpOrIn position triggers horizontal movement of the table

The Hierarchical Compositional Interchange Format 333

Horizontal
inv : xv = 1

UpOut
inv : xh = −1 ∧

xv = 1

Vertical
inv : xh = −1

when s = 0

when s = +1 when s = 0

when s = −1

Normal

Fig. 8. Normal movement control

StoppedIn
inv : ẋh = 0

Middle
inv : ẋh = s

StoppedOut
inv : ẋh = 0

when s = −1

when s = +1when x = +1 ∧ s ≥ 0

when x = −1 ∧ s ≤ 0

Horizontal

Fig. 9. Horizontal movement control

into the bore, whereas holding it in a MvDownOrOut position triggers vertical,
downward movement.

A system requirement is that between switching from horizontal to vertical
movement, and vice versa, the position of the tumble switch must be neutral.
This to prevent the table from continuing movement unexpectedly in a differ-
ent direction. Figure 9 show the horizontal movement of the system in more
detail. The automaton for the vertical movement of the system is similar to the
automaton drawn in Fig 9 and due to space reasons is not shown here.

6 Concluding Remarks

In this article we have presented the syntax and semantics of HCIF, which ex-
tends CIF with hierarchy in a compositional manner, so that only the SOS rules
for an automaton and for the time transitions of parallel composition need to be
adapted. As a result, we extended our previous work [6] to complete the hierar-
chical extension of CIF, which contains more involved concepts like invariants,
synchronization, local variables and control variables.

We conjecture that we are able to transform a HCIF composition into a bisimi-
lar CIF specification on the condition that the effective set of controlled variables
and the effective dynamic type of the variables is independent of the active lo-
cations of the automata, and is thus statically defined. This condition is needed
because in HCIF, the dynamic type of variables and the set of control vari-
ables can change per location, since the substructures of different locations may

334 D. Nadales Agut et al.

have different dynamic types and different control variables. Future work in-
cludes proving that HCIF is more expressive than CIF, and defining the subset
of HCIF that can be translated to CIF. These transformations are important to
reuse existing tools for CIF, including model transformations.

In addition, we observe that a liberal interpretation of a HCIF automaton
as an n-ary operator (where n represents the number of locations in the super-
automaton) places our semantic rules within the congruence format of [15]. This
means that the replacement of a sub-automaton by an equivalent one (modulo
stateless bisimulation equivalence) will lead to an equivalent behavior of the
super-automaton, which is a fundamental property for compositional reasoning.

Acknowledgements. The authors would like to thank Albert Hofkamp for
helpful comments.

References

1. Alur, R., Dang, T., Esposito, J., Hur, Y., Ivanc̃ić, F., Kumar, V., Lee, I., Mishra,
P., Pappas, G.J., Sokolsky, O.: Hierarchical modeling and analysis of embedded
systems. Proceedings of the IEEE 91(1), 11–28 (2003)

2. Baeten, J., van Beek, D., Hendriks, D., Hofkamp, A., Agut, D.N., Rooda, J., Schif-
felers, R.: Definition of the compositional interchange format. Technical Report
Deliverable D1.1.2, Multiform (2010)

3. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components
in bip. In: Proceedings of the Fourth IEEE International Conference on Software
Engineering and Formal Methods, pp. 3–12. IEEE Computer Society, Washington,
DC, USA (2006)

4. van Beek, D.A., Collins, P., Nadales, D.E., Rooda, J., Schiffelers, R.R.H.: New
concepts in the abstract format of the compositional interchange format. In: Giua,
A., Mahuela, C., Silva, M., Zaytoon, J. (eds.) 3rd IFAC Conference on Analysis
and Design of Hybrid Systems, Zaragoza, Spain, pp. 250–255 (2009)

5. van Beek, D.A., Reniers, M.A., Schiffelers, R.R.H., Rooda, J.E.: Foundations of a
compositional interchange format for hybrid systems. In: Bemporad, A., Bicchi, A.,
Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 587–600. Springer, Heidelberg
(2007)

6. Beohar, H., Nadales Agut, D.E., van Beek, D.A., Cuijpers, P.J.L.: Hierarchical
states in the compositional interchange format. Electronic Proceedings in Theoret-
ical Computer Science 32, 42–56 (2010)

7. C4C consortium. Control for coordination of distributed systems (2008),
http://www.c4c-project.eu/

8. Cuijpers, P.J.L., Reniers, M.A., Heemels, W.P.M.H.: Hybrid transition systems.
Technical Report CS-Report 02-12, Eindhoven University of Technology, Depart-
ment of Computer Science, The Netherlands (2002)

9. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005)

10. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231–274 (1987)

http://www.c4c-project.eu/

The Hierarchical Compositional Interchange Format 335

11. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems. NATO ASI Series F: Computer
and Systems Science, vol. 170, pp. 265–292. Springer, New York (2000)

12. H. Highly-complex and networked control systems (2010), http://www.hycon2.eu/
13. HYCON Network of Excellence (2005), http://www.ist-hycon.org/
14. Lynch, N., Segala, R., Vaandrager, F.: Hybrid I/O automata revisited. In:

Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 403–417. Springer, Heidelberg (2001)

15. Mousavi, M.R., Reniers, M.A., Groote, J.F.: Notions of bisimulation and congru-
ence formats for SOS with data. Information and Computation 200(1), 107–147
(2005)

16. MULTIFORM consortium. Integrated multi-formalism tool support for the design
of networked embedded control systems MULTIFORM (2008),
http://www.multiform.bci.tu-dortmund.de

17. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic
and Algebraic Programming 60-61, 17–139 (2004)

18. Reynolds, J.C.: Theories of programming languages. Cambridge University Press,
New York (1999)

19. The MathWorks, Inc., Simulink (2011), http://www.mathworks.com
20. Theunissen, R.J.M., Petreczky, M., Schiffelers, R.R.H., van Beek, D.A., Rooda,

J.E.: Application of supervisory control synthesis to MRI scanners: improving
evolvability. SE Report 2010-06, System Engineering Group, Department of Me-
chanical Engineering, Eindhoven university of technology, Eindhoven (2010)

21. Uselton, A.E., Smolka, S.A.: State Refinement in Process Algebra. Technical report,
Stony Brook university, NY (1993)

http://www.hycon2.eu/
http://www.ist-hycon.org/
http://www.multiform.bci.tu-dortmund.de
http://www.mathworks.com

Application of Model-Checking Technology to

Controller Synthesis�

Alexandre David1, Jacob Deleuran Grunnet2, Jan Jakob Jessen1,
Kim Guldstrand Larsen1, and Jacob Illum Rasmussen3

1 Department of Computer Science, Aalborg University, Denmark
{adavid,kgl,jjjessen}@cs.aau.dk

2 LAC Engineering, Hinnerup, Denmark
jag@lacengineering.com

3 Sanddru R&D, Nørresundby, Denmark
illum@sanddru.com

Abstract. In this paper we present two frameworks that have been
implemented to link traditional model-checking techniques to the domain
of control. The techniques are based on solving a timed game and using
the resulting solution (a strategy) as a controller. The obtained discrete
controller must fit within its continuous environment, which is modelled
and taken care of in our frameworks. Our first technique does it by using
Matlab to discretise the problem and then Uppaal-tiga to solve the
obtained timed game. This is implemented as a toolbox. The second
technique relies on the user defining a timed game model in Uppaal-

tiga. Then the strategy is automatically imported in Simulink as an
S-function for simulation and validation purposes. We demonstrate the
effectiveness of these frameworks in different case-studies.

1 Introduction

The traditional control design cycle includes modelling, simulation, equation
solving, and implementation. Modelling the environment and physical systems
often means having to deal with non-linear or even hybrid models (mixing both
discrete and continuous aspects) for which many of the standard control design
methods are not easily applicable.

A major task for any control system designer is abstracting such models in
to a form which is suitable for controller design e.g. by linearisation and when
the controller design has been performed to simulations to validate the approx-
imation and implementation of the control strategy. This is non-trivial and in
this article we report on two prototypes for model-based design for optimal con-
trol using the controller synthesis tool Uppaal-tiga, Matlab, and its powerful
toolbox Simulink [13].

The ultimate goal is to automate and unify the entire procedure such that the
control system designer can perform modelling, synthesis and verification in a

� Work supported by the MULTIFORM project FP7-ICT-2007-2.

B.K. Aichernig, F.S. de Boer, and M.M. Bonsange (Eds.): FMCO 2010, LNCS 6957, pp. 336–351, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Application of Model-Checking Technology to Controller Synthesis 337

single tool, while providing only the system specification and requirements. The
first prototype is the toolbox called PAHSCTRL [6] that enables computation of
piecewise-affine control laws for hybrid systems with non-deterministic discrete
transitions. In particular, this can be used for fault-tolerant control [8]. The
second prototype is a generalisation of the climate controller case-study [11]
implemented in the form of Ruby scripts that are called from within Matlab to
integrate seamlessly with Simulink .

In this paper we gather previous results obtained for both PAHSCTRL and
Uppaal-tiga. In addition, we define a more general framework for linking
Uppaal-tiga to Simulink and detail its implementation. We first give the back-
ground of timed games, then we present PAHSCTRL, and finally the framework
for linking Uppaal-tiga to Simulink .

2 Controller Synthesis with Timed Game Automata

In our setting we use the model of timed game automata, an extension of timed
automata, to define a game between two players: a controller and an environ-
ment. The goal is find a strategy for the controller player to meet a control
objective for any move of the environment player. We refer to [2,5] for more
details on the formalism, here we only summarise the important notions.

Let X be a finite set of real-valued variables called clocks. We note C(X) the
set of constraints ϕ generated by the grammar: ϕ ::= x ∼ k | x − y ∼ k | ϕ ∧ ϕ
where k ∈ Z, x, y ∈ X and ∼ ∈ {<,≤, =, >,≥}. B(X) is the subset of C(X) that
uses only rectangular constraints of the form x ∼ k.

Definition 1. A Timed Automaton (TA) [1] is a tuple A = (L, l0, Σ, X, E, Inv)
where L is a finite set of locations, l0 ∈ L is the initial location, Σ is the set
of actions, X is a finite set of real-valued clocks, Inv : L → B(X) associates
to each location its invariant and E ⊆ L ×B(X)× Σ × 2X × L is a finite set of
transitions, where t = (l, g, a, R, l′) ∈ E represents a transition from the location
l to l′, labelled by a, with the guard g, that resets the clocks in R. One special
label τ is used to code the fact that a transition is not observable.

Definition 2. A Timed Game Automaton (TGA) [12] is a timed automaton G
with its set of transitions E partitioned into controllable (Ec) and uncontrollable
(Eu) actions. In addition, invariants are restricted to Inv : L → B′(X) where
B′ is the subset of B using constraints of the form x ≤ k.

Given a TGA G and a control property φ ≡ A φ1 U φ2 (resp. A φ1 W φ2)
of ATCTL, the reachability (resp. safety) control problem consists in finding a
strategy f for the controller such that all the runs of G supervised by f satisfy
the formula1. A strategy is a mapping from states to action to perform, an action
being just to delay or to delay some time and to take a transition. The controller
1 Here U stands for the until operator andW for the weak until operator. In the context
of Uppaal-tiga, they have slightly different semantics than the usual operator in
the sense that φ1 should still be satisfied when reaching φ2.

338 A. David et al.

Fig. 1. The PAHSCTRL controller structure. Grey boxes are synthesised, the white
box represents the part of the control system not handled and hatched boxes represent
the physical plant and sensor systems.

synthesis problem is formulated in our setting as a timed game to solve and the
resulting controller is the strategy obtained. We refer to strategies being winning
when there is a strategy for the controller player to meet its control objective.

3 PAHSCTRL

3.1 Introduction

The focus of this toolbox and framework is to automatically generate controllers
for piecewise-affine hybrid systems (PAHS). Using the proposed method, fault
tolerant controllers are designed by modelling faults as uncontrollable events
causing switches between discrete modes. The design method involves abstract-
ing PAHS to discrete games and deriving controllers based on winning strategies
for the game.

The idea of solving control problems by abstracting to discrete or timed games
is not in itself new. The inspiration to use control to ensure that the system
behaviour conforms to the discrete abstraction comes from [14], which demon-
strates how controllers for discrete linear systems can be designed to conform to
Linear Temporal Logics (LTL)-specifications.

Our method builds on advances in controller synthesis for affine systems on
polytopes [10,9], where it is also suggested to design controllers for PAHS by
abstraction. The toolbox presented here and detailed in [8] expands on these
ideas, principally by adding (uncontrollable) external events, which can trigger
transitions between modes.

The result is a Matlab toolbox capable of computing discrete game abstrac-
tions of PAHS and deriving control laws based on solutions to the discrete game.
This enables computation of a type of gain scheduling controller where the con-
trol gains are adjusted based on the position in the state-space and the current
fault condition. The resulting controller structure is shown in figure 1.

The toolbox implements and optimises the algorithms shown in [7] that de-
tails how a discrete game abstraction can be obtained for non-deterministic
piecewise-affine hybrid system (PAHS). The game may be solved automatically

Application of Model-Checking Technology to Controller Synthesis 339

with respect to reachability properties using Uppaal-tiga. Assuming that a
winning strategy exists for this game, it can be interpreted as a rule base that
determines which control law to use in a given condition, and m-functions refine
the result to affine control laws, thus synthesising the complete control system.

Our goal is to automate the procedure of finding control laws for hybrid
systems with non-deterministic discrete state transitions. This is achieved by
calculating a catalogue of affine control laws each acting on a subset of the
state-space. Together they should guarantee a set of control requirements in the
form of reach/avoid specifications.

In this framework, the user formalises the hybrid system and enters it inside
Matlab. Then the PAHSCTRL tool generates the discrete game, whereas in the
second framework the user has to make this model.

The toolbox is implemented in Matlab and consists of a number of m-functions
designed to be easy to use but still exposing enough functionality that the tool-
box can be used for different purposes. Compared to the algorithms presented
in [7], a number of optimisations have been implemented along with new func-
tionalities, in particular regarding refinement of control laws. The toolbox is
detailed in [6] and can be found at http://pahsctrl.polytekniker.dk.

We demonstrate which kind of problems can be solved and we outline the
solution strategy employed.

3.2 Problem Definition

Informally a PAHS as defined in PAHSCTRL is a discrete automaton where
each location is associated with a continuous system. The locations are referred
to as modes and the state space of each mode is partitioned into polytopes each
associated with an affine system of the form

ẋ = Ax + Bu + C (1)

where x is the state variable, u is the input and A,B,C are matrices of appropriate
size.

The transitions between the modes in the discrete automata can be both
controllable and uncontrollable meaning that they are taken by, respectively,
the controller or the environment. Such transitions can be used to model faults
or other externally triggered events that change the system dynamics.

The goal of the controller synthesis is therefore to compute a control strategy
that ensures that a subset of the state space of one or more modes is reached
while avoiding other subsets.

This is best illustrated with the example shown in figure 2. Not shown is the
uncontrollable transition from mode 1 to 2 with an identity reset map. Mode
1 can be thought of as the nominal mode while mode 2 corresponds to a fault
mode.

The “hole” in the partition is a subset of state space where no dynamics have
been defined. This can be used as an alternative method for describing avoid
sets, with the important difference that no dynamics are specified for the “hole”
and no computational effort is spent on this region of state space.

http://pahsctrl.polytekniker.dk

340 A. David et al.

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

Mode 1 with Requirements

Init
Goal
Hole

(a) Partitioning of the state space in
mode 1

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

Mode 2 with Requirements

Init
Goal
Hole
Avoid

A

B

(b) Partitioning of the state space in
mode 2

Fig. 2. Partitioning of the two modes including requirements specification given as
polytope sets. There is an uncontrolled transition from mode 1 to mode 2, which can
occur at any point in time.

The objective of the example is to reach the goal set while staying in the
partitioned set and avoiding the avoid set.

The main algorithm consists of:

1. computing a discrete game abstraction of the hybrid system,
2. finding a solution to the game ensuring the control requirements, and
3. refining the solution to control laws of the form u = Kx + g.

This toolbox aims at solving 1) and 3) using Matlab, while leaving step 2) to
established tools such as Uppaal-tiga.

3.3 Abstraction

During the abstraction, discrete equivalents of each polytope are computed. That
is for each polytope defined on each mode one or more abstractions are computed
to encode the possible actions of an affine controller as a discrete game.

The actions are encoded according to the ability of the controller to prevent
the system from leaving the polytope through a given facet. The actions are
labelled as follows.

Blockable. A control law exists that prevents exit through this facet
Uncontrollable. The facet is not blockable.
Controllable. The facet is blockable and a control law exists that can unblock

the facet while ensuring that the polytope is left in finite time.

An example is presented in figure 3, showing a polytope with the controllable
system directions indicated at the vertices. Dashed transitions are uncontrollable.

The discrete equivalents of a polytope are computed by solving for feasibility
of linear matrix inequalities (LMI) based on the controllability to facet results
presented in [9]. Each possible combination of facet labels corresponds to one
LMI.

Application of Model-Checking Technology to Controller Synthesis 341

(a) A polytope where facet
3 is unblockable and either
facet 1 or 2 can be blocked
leaving the other unblock-
able

(b) The resulting discrete
equivalent has actually 3
locations. The committed
location (indicated by ’C’)
means that the controller
must choose and the two
normal locations represent
the two choices.

Fig. 3. A 2-dimensional polytope being converted to a discrete equivalent in a discrete
game. In this case there are two possibilities which are merged via a committed location.

Hole

start
Goal

Fig. 4. A discrete game abstraction of mode 1. Each committed location is at the ap-
proximate spot of its corresponding polytope. The hole location denotes unpartitioned
space.

3.4 Strategy

By computing discrete equivalents for all the polytopes of the PAHS and com-
bining them, a discrete game abstraction can be obtained. In figure 4 the discrete
abstraction for mode 1 of the example is shown.

With this simple example it is easy to find a winning strategy manually. The
goal is to find a path from the start location to the goal location that avoids
locations from where there exists a sequence of uncontrollable transitions to the
hole location.

342 A. David et al.

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

Simulation (Mode 1)

Init
Goal
Hole
Start
Path
Event

(a) Simulation of the controlled system
starting in mode 1

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

Simulation (Mode 2)

Init
Goal
Hole
Avoid
Start
Path
End

(b) After the event the system continues
evolution in mode 2

Fig. 5. Simulation of the example with the synthesised controller. The state ends at a
fixed point just inside the goal set.

The toolbox uses Uppaal-tiga to find a winning strategy to the discrete
abstraction, enabling a fully automated control synthesis.

3.5 Refinement

The affine control laws on the original PAHS are found by refining the winning
strategy computed by Uppaal-tiga. The strategy determines which discrete
equivalent is to be used and thus determines which LMI is used to limit the
control law.

From the abstraction step it is known that the LMI chosen for each polytope is
feasible and the refinement step is thus restricted to finding an optimal solution
to each LMI. Combining these LMI solutions yields a controller catalogue, one
controller for each polytope, which ensures that the state will reach the goal
set in finite time. A simulation of the example using a controller generated by
PAHSCTRL is shown in figure 5. The path goes around the hole on the border
(left and then above).

4 Linking Uppaal-tiga to Simulink

4.1 Introduction

Our second framework provides an integrated and complete tool chain for mod-
elling, synthesis, simulation, and automatic generation of executable code. The
framework requires that two models of the control problem are provided: an ab-
stract model in terms of a timed game and a complete, dynamic model in terms
of a (non-linear) hybrid system.

Application of Model-Checking Technology to Controller Synthesis 343

TIGA

Abstract model

Control objective

Strategy S-function

compilation

Simulink

Hybrid model

Simulink simulation
and analysis

Simulink
RTW Executable

Interface code

Fig. 6. Overview of the framework

Given the abstract (timed game) model together with logically formulated
control and guiding objectives, Uppaal-tiga automatically synthesises a strat-
egy which is directly compiled into an S-function2.

Figure 6 shows an overview of the framework. It is based on our previous case-
study of a climate controller for poultry and pig farms [11]. In this previous work,
the humidity and heat transfer were described by their differential equations
between zones in the farm. Then we simplified and discretised the model as a
timed game automaton that was used to generate a controller automatically.
That controller was then plugged into Simulink to validate through simulation
using the non-linear model that the controller was able to control the climate
as expected. It was possible to study its performance and, by choosing different
control objectives, we could easily change the controller and simulate the new
versions. The code generation was made possible through the Simulink real-time
workbench. From the point where we have an S-function, we can simulate and
generate real code. We have successfully redone this case-study [11] using our
general framework instead of the custom translations. We recall that a controller
was manually made taking into account only the temperature (not the humidity)
and was found to be the same as the one generated by Uppaal-tiga. Then
humidity was added to the model but this was too complex for the manual step.
In addition, the objective function is given with weights on the temperature and
humidity to optimise the criteria we want. This allows the generation of a series
of controllers to simulate and validate their behaviours in Simulink . The goals
of our extensions her are to i) integrate Uppaal-tiga and Simulink , and ii) to
generalise the framework.

2 S-function is a term used in Simulink for executable content that can be embedded
into its block components. S-functions support multiple languages such as C and
Matlab representation of the controller.

344 A. David et al.

4.2 Work-Flow

In this framework the user formalises the environment and the physics of the
system using classical differential equations. This is then abstracted in terms of
timed game automata. As in [4] the continuous domain is discretised into inter-
vals that correspond to clock constraints to model the dynamics. The abstract
(discretised) model is entered in Uppaal-tiga. The model gives the possible
moves for the environment and the controller players. The tool solves the game
and generates a strategy (if possible) to meet a given control objective.

In parallel, the continuous model is entered in Simulink with a place-holder
S-function that will act as the controller. Inputs and outputs for this block cor-
respond to the Uppaal-tiga model. Using our translator we plug the generated
discrete controller into Simulink to simulate it in its continuous environment. We
note that it is now easy to change parameters in the model, generate new con-
trollers and study their performances. In addition, using the Simulink real-time
workbench allows us to generate real code for a given target platform.

4.3 Tool Integration

Figure 7 shows a more detailed view of the tool integration that we have im-
plemented. The implementation is separated into one (internal) Matlab function
that acts as the coordinator component and a Ruby script that makes the trans-
lation from a strategy to an S-function. The user defines a timed game automaton
model in Uppaal-tiga together with a Simulink model that contains a block in
which the user wishes to insert the generated controller from Uppaal-tiga. It
is up to the user to define the input and the output variables. These inputs and
outputs are defined in Simulink and their names must match the corresponding
variables in the Uppaal-tiga model. The user should make sure that the de-
sired property is satisfied to obtain a strategy. Then the user calls the Matlab
function that

1. calls Uppaal-tiga to generate the strategy,
2. extracts the inputs and outputs from the Simulink model and generates

input and output files,
3. calls the Ruby script that translates the strategy together with the declara-

tion files of inputs and outputs into an S-function,
4. and calls the Matlab C-compiler to compile the generated S-function and

imports the binary into Simulink .

The Simulink model can now be simulated with the generated controller or it
can be used with the real-time workbench to generate code from the S-function.

4.4 Mapping to Simulink

To have the generated strategy (from Uppaal-tiga) work in Simulink , the mo-
dels need to obey a few constraints. First Simulink will play the uncontrollable

Application of Model-Checking Technology to Controller Synthesis 345

Inputs Outputs

S-functionStrategy

Tiga model

Tiga tool

Simulink

Block (part of
a model)

Inputs Outputs

Matlab

Matlab functionRuby script
Internal
calls

Fig. 7. Integration of Uppaal-tiga and Simulink

transitions but they should not change location in our model, only integer vari-
ables. This models the input from the environment. In our example we define
that the temperature variables (in fact the indices) are the inputs. They are
allowed to change according to our model in Uppaal-tiga and the model in
Simulink should match this behaviour.

Second, we need to define outputs from our controller to Simulink . The con-
troller can change its own locations, variables, and clock. We define that some
of these variables are used as output to Simulink .

Finally, time is discretised by Simulink with some resolution. Our strategy is
ultimately transformed to an S-function that is in fact a decision function with
some added code to make the interface between Simulink variables and state
variables of the controller. Clocks are incremented at every call of the function
and the strategy decides what to do at every tick (possibly just wait).

The transformation from our strategy (mapping from states to action) is done
as if-statements that transform the updates in the timed game automata into
statements. Furthermore, if we had used functions in the model, they are eval-
uated and transformed into simple assignment statements, which results in a
strategy devoid of functions in Uppaal-tiga syntax. This is possible because
such functions have their output solely determined by the discrete state they
are evaluated on and states are known in the strategies. The generated code
starts by accessing the input and output ports of Simulink . Incrementing the
clocks is then done after taking the actions to prepare for the next call of the
function. The trade-off in this solution is that we let the user test clock values
for zero upon the first call but afterwards we will never get zeros again since the

346 A. David et al.

discretisation forces a minimal time between the action and the next time we
can read inputs and take a decision again. The user will be able to simulate the
generated strategy and see if the system is stable with the chosen parameters in
spite of the discretisation.

4.5 Methodology and Example

The first task is to abstract the physical model to a timed game automaton.
In our extension, timed controllers are supported3 and they are integrated in
Simulink by discretising time. The abstraction here consists in mapping the
continuous behaviour of a system to the time dimension and to make control
decision based on chosen intervals. The goal is to keep the abstraction as coarse
as possible to simplify the controller but in principle we could discretise with a
fine granularity and model the behaviour as precisely as we want.

Heater

Temperature Temperature

Turning on/off
and moving
takes time.

High threshold

Low threshold

(a)

On

Off

turn
off

turn
on

T’=-K1T+C

T’=-K2T

(b)

Tank Tank

Critically high

Critically low

Fig. 8. The 2-tank example. One heater can heat one tank at a time and moving the
heater between the tanks takes time (a). The temperature of the tanks should stay
within an acceptable range. The temperature is modelled by the simple hybrid system
in (b) with two states associated with differential equations.

To illustrate the modelling step, we consider a 2-tank example as shown in
figure 8.(a). The idea is to maintain the temperature of two tanks containing
some liquid within some specified bounds. We have one heater that can be used to
heat either one of the two tanks, but changing tank takes time. The temperature
of the tanks should be kept between a safe middle range and in our abstraction
we consider critical low or high temperatures that we do not want to reach and
two ranges of temperatures that are observable by our controller. These serve as
low and high thresholds as shown in the figure. The hybrid model of the dynamics
3 This is in contrast to our previous work where only untimed strategies were sup-
ported by our framework.

Application of Model-Checking Technology to Controller Synthesis 347

x=0, heat=true

x=0, heat=false
temp−−,x=0off?

on?

On
x<=TEMP_DEC[temp]
Off

temp++,x=0

x>=GUARD_DEC[temp]
&& temp > 0

x<=TEMP_INC[temp]

x>=GUARD_INC[temp]
&& temp < MAX

off!

y=0
on!

Offc Onc

y=0

y >= 1

y >= 1

(a) (b)

Fig. 9. The model of the 2-tank example in Uppaal-tiga

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

Time

Temperature

Time

Temperature

(a) (b)

Fig. 10. Principle for mapping temperature changes to time when the temperature is
decreasing (a) or increasing (b). We obtain a lower and an upper bound on time for
changing temperature range.

is simple here as shown in figure 8.(b). We have a state machine (for each tank)
with two states to denote when the heater is on or off with associated differential
equations to describe how the temperature changes. T is the temperature, K1,
K2, and C are constants.

We model this system in Uppaal-tiga with one process per tank and one
for the controller. Figure 9 shows the templates for the tank and the controller.
The tank automaton (Fig. 9.(a)) reflects the two states of the heater being on
and off and a clock x is used to measure time.

Temperature changes are then mapped to time intervals and the model
is designed to take uncertainties into account. Figure 10 shows the princi-
ple. In Fig. 10.(a) the temperature decreases from somewhere from the high
observable range to the lower one. We derive a lower and upper bound on
time for detecting the state change. Similarly we derive time bounds when
the temperature increases in Fig. 10.(b). The lower bounds are modelled by
the guards (x>=GUARD DEC[temp] and x>=GUARD INC[temp] when the tem-
perature is decreasing or increasing) and the upper bounds are the invari-
ants (x<=TEMP DEC[temp] and x<=TEMP INC[temp] depending on heating). The
model is designed to discretise an arbitrary number of such observable ranges and
we make experiments with two and three such ranges. The controller (Fig. 9.(b))
models that it can turn a heater on or off with a constraint on time.

348 A. David et al.

Given some dynamic model in Simulink , we extract the time ranges that we
insert in Uppaal-tiga. We first make the experiments with the following ranges:

– Above 100, temperature is critical high (temp=3).
– Between 70 and 90, temperature is high (temp=HIGH=2).
– Between 40 and 60, temperature is low (temp=LOW=1).
– Below 30, temperature is critical low (temp=0).

The corresponding time intervals in the models are declared as follows4:

const int TEMP_INC[temperature_t] = { 0, 6, 7, 0 };

const int TEMP_DEC[temperature_t] = { 0, 18, 10, 0 };

const int GUARD_INC[temperature_t] = { 0, 2, 2, 0 };

const int GUARD_DEC[temperature_t] = { 0, 7, 3, 0 };

The system is initialised with tank 1 at 55 degrees and tank 2 at 75 degrees, which
corresponds to temp being 1 and 2. We note that the model detects changes of
temperature so the actual range of temperature depends on the state (heating
or not). We ask for the following control objectives:

control: A[] temp1>=LOW && temp1<=HIGH && temp2>=LOW && temp2<=HIGH

control: A[] temp1>=LOW && temp1<=LOW && temp2>=LOW && temp2<=HIGH

control: A[] temp1>=LOW && temp1<=HIGH && temp2>=HIGH && temp2<=HIGH

The two first objectives are met and Uppaal-tiga generates strategies that
we insert in Simulink . The third one is not due to the constraints of the model
(there is no winning strategy for this game). We plot in figure 11 the result of the
simulations for the first (a) and second (b) properties. We note that first, having
temp1 staying at LOW depends much on the timing parameters because there is
no other observable range that the controller can use. Stability of the simulated
system depends on the uncertainties used in the model. Second, Uppaal-tiga

generates one arbitrary strategy that is only guaranteed to meet a control ob-
jective in the model. The simulation allows the user to evaluate its performance.
With the loose specification of the first property, the controller chooses to keep
one tank at a high temperature and the second one at a low temperature. The
choice is natural w.r.t. their initial conditions. For the second property the con-
troller chooses to keep both tanks in the same range even though the previous
strategy could have been enough. This is not a bug in the controller since the
temperatures both follow their specifications.

We repeat the experiments by defining the following ranges instead:

– Above 100, temperature is critical high (temp=4).
– Between 80 and 90, temperature is high (temp=HIGH=3).
– Between 60 and 70, temperature is good (temp=GOOD=2).
– Between 40 and 50, temperature is low (temp=LOW=1).
– Below 30, temperature is critical low (temp=0).

4 The 0 entries do not matter since we want to avoid these states. The parameters in
Simulink are arbitrary, the important point is to derive our constants from them.

Application of Model-Checking Technology to Controller Synthesis 349

0 20 40 60 80 100 120 140 160 180 200
30

40

50

60

70

80

90

100

Time [s]

T
em

pe
ra

tu
re

 [C
]

Tank2

Tank1

0 20 40 60 80 100 120 140 160 180 200
30

40

50

60

70

80

90

100

Time [s]

T
em

pe
ra

tu
re

 [C
]

Tank2

Tank1

(a) (b)

Fig. 11. Simulation results with two observable ranges, one simulation for each control
objective

The corresponding declaration of parameters is:

const int TEMP_INC[temperature_t] = { 0, 4, 5, 5, 0 };

const int TEMP_DEC[temperature_t] = { 0, 13, 9, 7, 0 };

const int GUARD_INC[temperature_t] = { 0, 2, 2, 2, 0 };

const int GUARD_DEC[temperature_t] = { 0, 7, 4, 3, 0 };

We update the initial temperatures to be 65 and 85 for the two tanks with the
corresponding temp being 2 and 3. We check for the following control objectives:

control: A[] temp1>=LOW && temp1<=HIGH && temp2>=LOW && temp2<=HIGH

control: A[] temp1>=LOW && temp1<=GOOD && temp2>=GOOD && temp2<=HIGH

control: A[] temp1>=LOW && temp1<=GOOD && temp2>=HIGH && temp2<=HIGH

Similarly the two first properties are satisfied but not the third one. We show the
result of the simulation in figure 12. For the first property the controller chooses
to keep both tanks within the same (large) range of temperatures. The second
property results in separating the temperatures, as was the intention. We also
experienced strategies in our experiments that would be similar to Fig. 11.(b)
and still meet their control objectives.

The attentive reader would notice that for Fig. 11.(a) and Fig. 12.(b) the
actual simulated temperature gets below 40 degrees though still above 30 degrees.
The difference in the interpretation of the control objective comes from the fact
that there is no temperature in the game model and the resulting controller uses
the threshold “bands” as observations in a manner similar to [3] by detecting
entering and leaving observations. The discretized controller takes decisions when
crossing 40 degrees and never observes the temperature falling below 30 degrees.
The parameters of these models would need to be refined to take decisions when
crossing 50 degrees instead, which can be achieved by asking a different control
objective.

We showed a methodology in this case-study to go from a hybrid model
to a time model to generate a discrete controller. The approach matches the

350 A. David et al.

0 20 40 60 80 100 120 140 160 180 200
30

40

50

60

70

80

90

100

Time [s]

T
em

pe
ra

tu
re

 [C
]

Tank2

Tank1

0 20 40 60 80 100 120 140 160 180 200
30

40

50

60

70

80

90

100

Time [s]

T
em

pe
ra

tu
re

 [C
]

Tank2

Tank1

(a) (b)

Fig. 12. Simulation results with three observable ranges, one simulation for each con-
trol objective

reality of having sensors that will detect changes (here of temperature) with
some precision. The approach shows promising results.

5 Conclusion and Future Works

We have presented two frameworks that can be used to generate hybrid con-
trollers and bridge the gap between control theory and its implementation on
real hardware. Our case-studies show the viability of these approaches. Com-
mon for both methods is the use of (timed) game abstractions in order to get
the problems on a computational tractable form. The PAHSCTRL toolbox en-
ables automatic abstraction and refinement to and from discrete game form while
the Uppaal-tiga-Simulink framework can simulate, solve and generate code for
timed games.

Future works include how to merge the first approach with the second one
to get the complete work-flow within Simulink for simulation and code genera-
tion purposes. The first framework generates models and is using only Matlab
while the second framework takes advantage of Simulink but requires a manually
constructed model. These approaches are complementary. In addition, Uppaal-

tiga can represent strategies as multi-terminal decision diagrams and output
them as pseudo-code in a different format. This could be used to generate more
compact and efficient code.

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)

Application of Model-Checking Technology to Controller Synthesis 351

3. Cassez, F., David, A., Larsen, K.G., Lime, D., Raskin, J.-F.: Timed control with
observation based and stuttering invariant strategies. In: Namjoshi, K.S., Yoneda,
T., Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 192–206.
Springer, Heidelberg (2007)

4. Cassez, F., Jessen, J.J., Larsen, K.G., Raskin, J.-F., Reynier, P.-A.: Automatic
synthesis of robust and optimal controllers – an industrial case study. In: Majum-
dar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 90–104. Springer,
Heidelberg (2009)

5. Chatain, T., David, A., Larsen, K.G.: Playing games with timed games. In: Giua,
A., Mahulea, C., Silva, M., Zaytoon, J. (eds.) Preprints of the 3rd IFAC Conference
on Analysis and Design of Hybrid Systems, pp. 238–243 (2009)

6. Grunnet, J.D., Bak, T., Bendtsen, J.D., Ankersen, F.: PAHSCTRL - a control
synthesis toolbox for piecewise-affine hybrid systems. In: Proceedings of the 2009
European Control Conference. IEEE, Los Alamitos (2009)

7. Grunnet, J.D., Bak, T., Bendtsen, J.D., Larsen, J.A.: Discrete game abstraction
for fault tolerant control synthesis. In: Proceedings of IEEE CACSD 2008 (2008)

8. Grunnet, J.D., Bendtsen, J.D., Bak, T.: Automated fault tolerant control synthesis
based on discrete games. In: Proceedings of the 48th IEEE Conference on Decision
and Control. IEEE, Los Alamitos (2009)

9. Habets, L., van Schuppen, J.H.: Control to facet problems for affine systems on
simplices and polytopes - with applications to control of hybrid systems. In: Proc.
44th IEEE CDC (2005)

10. Habets, L.C.G.J.M., Collins, P.J., van Schuppen, J.H.: Reachability and control
synthesis for piecewise-affine hybrid systems on simplices. IEEE Transactions on
Automatic Control 51, 938–948 (2006)

11. Jessen, J.J., Rasmussen, J.I., Larsen, K.G., David, A.: Guided controller synthesis
for climate controller using uppaal tiga. In: Raskin, J.-F., Thiagarajan, P.S. (eds.)
FORMATS 2007. LNCS, vol. 4763, pp. 227–240. Springer, Heidelberg (2007)

12. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed
systems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–
242. Springer, Heidelberg (1995)

13. Mathworks. Simulink (2010)
14. Tabuada, P., Pappas, G.J.: Linear time logic control of discrete-time linear systems.

IEEE Transactions on Automatic Control 51, 1862–1877 (2006)

Testing Real-Time Systems under Uncertainty

Alexandre David, Kim Guldstrand Larsen, Shuhao Li,
Marius Mikucionis, and Brian Nielsen

Center for Embedded Software Systems (CISS)
Aalborg University

Selma Lagerlöfs Vej 300, DK-9220 Aalborg, Denmark
{adavid,kgl,li,bnielsen,marius}@cs.aau.dk

Abstract. Model-based testing is a promising technique for improving the qual-
ity of testing by automatically generating an efficient set of provably valid test
cases from a system model. Testing embedded real-time systems is challeng-
ing because it must deal with timing, concurrency, processing and computation
of complex mixed discrete and continuous signals, and limited observation and
control. Whilst several techniques and tools have been proposed, few deals sys-
tematically with models capturing the indeterminacy resulting from concurrency,
timing and limited observability and controllability. This paper proposes a num-
ber of model-based test generation principles and techniques that aim at efficient
testing of timed systems under uncertainty.

1 Introduction

Testing embedded real-time systems is challenging because it must deal with timing,
processing and computation of complex mixed discrete and continuous signals, limited
observation and control, and concurrency.

First, testing must evaluate the timeliness of the implementation under test (IUT), i.e.,
the tester must execute input stimuli with different timings, and evaluate response times
against the specified tolerances. Second, the system performs complex computations on
continuous signals that are observed through (potentially imprecise) sensors, sampled and
discretized, implying that the resulting internal state and output values are not completely
fixed, but should be accurate within some required bound. Third, because the system is
embedded it is often problematic to create a test harness that gives a tester full observ-
ability and controllability of the internal state of the system. Sometimes testing has to be
carried out via imprecise sensors and actuators. Finally, embedded systems are inherently
highly concurrent and indeterminate because they need to control multiple simultaneous
activities and detect and react to a multitude of events. This implies that executing the
same input sequence may result in different output sequences, and that test cases in gen-
eral need to branch out and be adaptive to uncertainty in the system’s responses.

Formal specification models therefore tend to use non-determinism in many ways:

– models must be able to capture the concurrent behavior of real system implemen-
tations.

– models of large and complex systems are themselves constructed as parallel com-
position of models of its components.

B.K. Aichernig, F.S. de Boer, and M.M. Bonsange (Eds.): FMCO 2010, LNCS 6957, pp. 352–371, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Testing Real-Time Systems under Uncertainty 353

– non-determinism is used in models to abstract away implementation details or
aspects that are unknown or are too complex to fully model, e.g. details of data-
representation and computation algorithms, or the state of pipelines, caches, bus-
arbitration, and internal scheduling and resource allocation decisions.

– models should not capture one concrete implementation in all details, but specify its
requirements, i.e. the permissible set of implementations. In particular with respect
to timing, a model should capture requirements like the system should respond
within x milli-seconds, not that that it responds after precisely x milli-seconds.

– the system makes imperfect observations of its environment because of limitations
on the precision with which it measures physical quantities (especially time), and
the states/actions that are observable/controllable to the system in the first place.
Dually, it makes imperfect output due to imprecise actuators. These limitations also
apply to a tester (itself being a computer component) of the system.

Model-based testing is a promising technique for improving the quality of testing by
automatically generating an efficient set of provably valid test cases from a system
model. Research in the last decade has resulted in several approaches and mature tools.
These are attracting interest by industry, and are being adopted by advanced developers.
Whilst several techniques and tools have been proposed, few deal systematically with
timing and limited observability and controllability. This paper proposes a number of
model-based test generation techniques that aim at enabling efficient testing of timed
systems under uncertainty. Given that efficient underlying state-exploration algorithms
are very complex, another goal is to show how these techniques may be realized by
existing tools.

2 Preliminaries

The ingredients for (formal) model-based testing is a (black-box) IUT, a specification
model, a conformance relation defining which implementation behaviors are correct
relative to the specification, and a test criterion defining which test cases should be
generated.

We will assume that specifications and implementations can be understood as timed
input/output transition systems (TIOTS), and use timed automata and timed game au-
tomata (with TIOTS semantics) to model the systems. Specifically, we use UPPAAL

syntax and semantics. As conformance relation we use the relativized timed input/out-
put conformance relation. A relativized conformance relation makes it possible to spec-
ify an explicit environment model for the IUT that defines the behavior of the context of
the IUT. A test generator will use this to restrict the behavior considered for test cases:
For embedded systems it is particularly important that the generated test cases are ac-
tually feasible in the technical and physical context of the system. As test criterion we
use explicit test purposes. These ingredients are formalized in the following sections.

2.1 Timed I/O Transition Systems

A timed input/output transition system (TIOTS) is a transition system where actions
have been classified as inputs or outputs, and where dedicated delay labels model the

354 A. David et al.

progress of time. In our case we use the set of positive real-numbers to model time.
Below we also extend commonly used notation for labeled transition systems to TIOTS.

Definition of TIOTS. We assume a given set of actions A partitioned into two disjoint
sets of output actions Aout and input actions Ain. In addition we assume that there is a
distinguished unobservable action τ �∈ A. We denote by Aτ the set A∪{τ}.

A timed I/O transition system (TIOTS) S is a tuple (S,s0,Ain,Aout,−→), where

– S is a set of states, s0 ∈ S,
– and −→⊆ S× (Aτ ∪R≥0)×S is a transition relation satisfying the usual constraints

of time determinism (if s
d−→ s′ and s

d−→ s′′ then s′ = s′′), time additivity (if s
d1−→ s′

and s′
d2−→ s′′ then s

d1+d2−−−→ s′′), and zero-delay (for all states s
0−→ s). d,d1,d2 ∈ R≥0,

and R≥0 denotes non-negative real numbers.

Let a,a1...n ∈ A, α ∈ Aτ ∪R≥0, and d,d1...n ∈ R≥0. We write s
α−→ iff s

α−→ s′ for some s′.
A run ρ of S starting in state s1 is a finite (or infinite) path in the timed transition system,

s1
α1−→ s2

α2−→ s3
α3−→ . . . sn. Let Visits(ρ) denote the set of states s1 . . . sn traversed by ρ ,

and let Runs(s) denote all runs starting in s. A run is maximal if sn � α−→. MaxRuns(s)
denotes the set of all maximal runs from state s. We use ==⇒ to denote the τ-abstracted
transition relation such that s

a==⇒ s′ iff s
τ−→

∗ a−→ τ−→
∗

s′, and s
d==⇒ s′ iff s

τ−→
∗ d1−→ τ−→

∗ d2−→ τ−→
∗

·· · τ−→
∗ dn−→ τ−→

∗
s′ where d = d1 + d2 + · · ·dn. We extend ==⇒ to sequences in the usual

manner.
S is strongly input enabled iff s

i−→ for all states s and for all input actions i. It is

weakly input enabled iff s
i==⇒ for all states s and for all input actions i. We assume that

input actions (seen from the system point of view) are controlled by the environment
and outputs are controlled by the system. An input enabled system cannot refuse input
actions. However it may decide to ignore the input by executing a transition that results
in the same state.

S is non-blocking iff for any state s and any t ∈ R≥0 there is a timed output trace
σ = d1o1 . . .ondn+1, oi ∈ Aout, such that s

σ==⇒ and ∑i di ≥ t. Thus S will not block time
in any input enabled environment. This property ensures that a system will not force
or rush its environment to deliver an input, and vice versa, a non-blocking environment
will never force outputs from the system. Time is common for both the system and its
environment, and neither controls it.

To model potential implementations it is useful to define the properties of isolated
outputs and determinism. S is deterministic if for all delays or actions α ∈ Aτ ∪R≥0,
and all states s, whenever s

α−→ s′ and s
α−→ s′′ then s′ = s′′. That is, the successor state

of an action is always uniquely known. We say that S has isolated outputs if whenever

s
o−→ for some output action o, then s � τ−→ and s � d−→ for all d > 0 and whenever s

o′−→ then
o′ = o. A system with isolated outputs will only offer one output at a time, and will
never retract an offered output by performing internal actions or delays.

Finally, a TIOTS exhibits output urgency iff whenever an output (or τ) is enabled,

it will occur immediately, i.e., whenever s
α−→,α ∈ Aout ∪ {τ} then s � d−→,d ∈ R≥0. An

output urgent system will deliver the output immediately when ready.

Testing Real-Time Systems under Uncertainty 355

An observable timed trace σ ∈ (A∪R≥0)∗ is of the form σ = d1a1d2 . . .akdk+1. We
define the observable timed traces TTr(s) of a state s as:

TTr(s) = {σ ∈ (A∪R≥0)∗ |s
σ==⇒}

For a state s (and subset S′ ⊆ S) and a timed trace σ , s After σ is the set of states that
can be reached after σ :

s After σ = {s′ | s
σ==⇒ s′ }, S′ After σ =

⋃
s∈S′

s After σ

The set Out
(
s
)

of observable outputs or delays from states s ∈ S′ ⊆ S is defined as:

Out
(
s
)

= {a ∈ Aout ∪R≥0 | s
a==⇒}, Out

(
S′
)

=
⋃

s∈S′
Out

(
s
)

TIOTS Composition. Let S = (S,s0,Ain,Aout,−→) and E = (E,eo, Aout,Ain,−→) be
TIOTSs. Here E is the set of environment states and the set of input (output) actions
of E is identical to the output (input) actions of S. The parallel composition of S and
E forms a closed system S ‖ E whose observable behavior is defined by the TIOTS
(S×E,(s0,e0),Ain,Aout,−→) where −→ is defined as

s
a−→ s′ e

a−→ e′

(s,e) a−→ (s′,e′)

s
τ−→ s′

(s,e) τ−→ (s′,e)

e
τ−→ e′

(s,e) τ−→ (s,e′)

s
d−→ s′ e

d−→ e′

(s,e) d−→ (s′,e′)

2.2 Timed Automata

Timed automata [2] is an expressive and popular formalism for modeling real-time
systems. Essentially a timed automaton is an extended finite state machine equipped
with a set of real-valued clock-variables that track the progress of time and that can
guard when transitions are allowed.

Definition of Timed Automata. Let X be a set of R≥0-valued variables called clocks.
Let G(X) denote the set of guards on clocks being conjunctions of constraints of the
form x �� c, and let U(X) denote the set of updates of clocks corresponding to sets of
statements of the form x := c, where x ∈ X , c ∈ N, and �� ∈ {≤,<,=,>,≥}. A timed
automaton (TA) over actions A and clocks X is a tuple (L, �0,A,X , I,E), where

– L is a set of locations, �0 ∈ L is an initial location,
– I : L → G(X) assigns invariants to locations, and
– E is a set of edges such that E ⊆ L×G(X)×Aτ ×U(X)×L.

We write �
g,α ,u−−−−→ �′ iff (�,g,α,u, �′) ∈ E . The semantics of a TA is defined in terms of

a TIOTS over states of the form s = 〈�, v̄〉, where � is a location and v̄ ∈ RX
≥0 is a clock

valuation satisfying the invariant of �. Intuitively, a timed automaton can either progress
by executing an edge or by remaining in a location and letting time pass:

356 A. David et al.

∀d′ ≤ d. I�(d′)

〈�, v̄〉 d−→ 〈�, v̄ + d〉
�

g,α ,u−−−−→ �′ ∧g(v̄) ∧ I�′(v̄′), v̄′ = u(v̄)

〈�, v̄〉 α−→ 〈�′, v̄′〉

In delaying transitions, 〈�, v̄〉 d−→ 〈�, v̄+ d〉, the values of all clocks of the automaton are
incremented by the amount of the delay d, denoted v̄ + d. The automaton may delay in
a location � as long as the invariant I� for that location remains true. Discrete transitions
〈�, v̄〉 α−→ 〈�′, v̄′〉 correspond to execution of edges (�,g,α,u, �′) for which the guard g
is satisfied by v̄, and for which the invariant of the target location I�′ is satisfied by the
updated clock valuation v̄′. The target state’s clock valuation v̄′ is obtained by applying
clock updates u on v̄. A TA is M-bounded, if no clock value exceeds M ∈ N.

UPPAAL Timed Automata. Throughout the paper we use UPPAAL syntax to illustrate
TA. It allows construction of large models by composing TA in parallel and lets these
communicate using shared discrete and clock variables and synchronize (rendezvous-
style) on complementary input and output actions, as well as broadcast actions.

Initial locations are marked using a double circle. Edges are by convention labeled
by the triple: guard, action, and assignment in that order. The internal τ-action is indi-
cated by an absent action-label. Committed locations are indicated by a location with
an encircled “C”. A committed location must be left immediately by the next transition
taken in the system. Finally, bold-faced clock conditions placed under locations are lo-
cation invariants. In addition to clocks, UPPAAL also allows integer variables to be used
in guards and assignments, and supports a safe subset of C-like data types and code in
assignments and guards.

Figure 1 shows a TA modeling the behavior of a simple light-controller. The user
interacts with the controller by touching a touch sensitive pad. The light has three in-
tensity levels: OFF, DIM, and BRIGHT. Depending on the timing between successive
touches (recorded by the clock x), the controller toggles the light levels.

touch?

touch?
touch?

touch?

touch?

touch?

off!

touch?

touch? dim!

dim!

touch?

touch?

touch?

bright!

dim!

off! bright!

dim!

L1

L6

L5
x<=2x<=2

x<=2

x<=2

DIMOFF

L4

L3

BRIGHT

L2

touch?

x=0
x=0

x<20

x>=20

x=0 x=0

x=0

x=0

x<=2

x>=4

x<4

x>=4
x<4

(a) Light Controller

bright?

dim?
z>=Treact

z=0

z=0

off?

touch!

touch!

(b) User

Fig. 1. Simple Light Controller Timed (Game) Model

Testing Real-Time Systems under Uncertainty 357

For example, in dimmed state, if a second touch is made quickly (before the switch-
ing time 4 time units) after the touch that caused the controller to enter dimmed state
(from either off or bright state), the controller increases the level to bright. Conversely,
if the second touch happens after the switching time, the controller switches the light
off. If the light controller has been in the off state for a long time (more than 20 time
units), it should reactivate by going either to the dim level, or directly to bright level.

The light controller can perform the run 〈OFF,x = 0〉 5−→ 〈OFF,x = 5〉 touch?−−−→ 〈L3,x =

0〉 dim!−−→ 〈DIM,x = 0〉 3.14−−→ 〈DIM,x = 3.14〉 touch?−−−→ 〈L4,x = 0〉 0.5−→ 〈L4,x = 0.5〉 bright!−−−→
〈BRIGHT,x = 0.5〉 resulting in the observable trace σ = 5 · touch? ·dim! ·3.14 · touch! ·
0.5 ·bright!. Note that {〈OFF,x = 0〉} After σ = {〈BRIGHT,x = 0.5〉}, Out

(
{〈OFF,x =

0〉} After σ
)

= R≥0, but Out
(
〈L1,x = 0〉

)
= {dim!,bright!}∪{0..2}.

The TA shown in Figure 1a and Figure 1b respectively can be composed in parallel
on actions Ain = {touch} and Aout = {off,dim,bright} forming a closed network.

Using the UPPAAL tool it is possible to edit, simulate and model-check properties of
UPPAAL TA in a graphical environment. The property specification language supports
safety, liveness, deadlock, and response properties. The UPPAAL tool performs sym-
bolic reachability analysis of the network of TA to search for reachable states where the
property is satisfied (or not satisfied). If a state satisfying the property is found, UPPAAL

generate a diagnostic trace witnessing the property.
UPPAAL uses a variety of compact data structures for representing the dense state-

space, e.g., by difference bounded matrix [14] that can be efficiently manipulated by
constraint-solving techniques [25], implemented as model-checking tools such as UP-
PAAL and Kronos [13].

2.3 Timed I/O Game Automaton

To characterize the uncontrollability of some actions, we adopt the notion of Timed
Game Automata. A timed game automaton (TGA) [23] is a timed automaton with its
set of edges E partitioned into controllable ones Ec and uncontrollable ones Eu.

In this paper we further refine the above definition by assuming all output actions
Aout to be uncontrollable and all input actions Ain to be controllable. Thus, a timed I/O
game automaton (TIOGA) is a timed game automaton where only edges with input
actions are controllable, i.e, (�,g,a,u, �′) ∈ Ec iff a ∈ Ain.

The tester acts as a player being in control of the controllable actions and the IUT acts
as the opponent player choosing among the uncontrollable ones. A run of the TIOGA
involves a sequence of tester-proposed input stimuli and actual IUT-produced reactions.

Figure 1a is a TIOGA of the light controller. Solid lines represent transitions of con-
trollable actions and dotted lines represent transitions of uncontrollable actions. Note
that this specification exhibits both output uncontrollability where a state has multiple

output actions enabled (〈L1,x = 0〉 dim!−−→, and 〈L1,x = 0〉 bright!−−−→), and timing uncer-
tainty of outputs where an output once enabled is not required to be produced im-

mediately, i.e., both time may elapse and an output occur (〈L4,x = 0〉 bright!−−−→, and

〈L4,x = 0〉 d−→,d ∈ R≥0). Hence, the user/tester does not know when or which out-
put will be produced. Hence, a test case in general need to branch out and be adap-
tive to uncontrollable responses. In the untimed finite-state case a common technique

358 A. David et al.

is to use a sub-set construction to determinize the specification, and from this unfold
test trees. However, for timed automata, determinization is in general uncomputable.
Moreover, branching for each time tick will create a very large tree. Finally, observe
in Figure 4 how the state-set reachable after a given observable trace captures state-
uncertainty: 〈Off,x = 0〉 After 2 · touch? · 3.5 = {〈Dim1,x〉|x ≤ 3.5}∪{〈Dim2,x〉|x ≤
3.5}∪{〈Bright,x〉|x ≤ 3.5}∪{〈Off,x〉|x ≤ 0.5}.

2.4 Relativized Timed Conformance

In this section we define our notion of conformance between TIOTSs. Our notion
derives from the widely used input/output conformance relation (ioco) of Tretmans
[27,30] by taking time and environment constraints into account.

Whereas ioco used quiescence to capture the absence of outputs, now and in the
(unbounded) future, in a real-time relation, absence of outputs is always for a particular
period of time, which is just observing passing of time without an action occurring.
This means that in timed testing the concept of quiescence is not necessary.

Under assumptions of weak input enabledness our relativized timed conformance re-
lation (denoted rtiocoe) coincides with relativized timed trace inclusion. Like ioco, this
relation ensures that the implementation has only the behavior allowed by the specifi-
cation. In particular, 1) it is not allowed to produce an output at a time when one is not
allowed by the specification, 2) it is not allowed to omit producing an output when one
is required by the specification.

Definition of rtiocoe. Let S = (S,s0,Ain,Aout,−→) be a weak-input enabled and non-
blocking TIOTS. An environment for S is itself a weak-input enabled and non-blocking
TIOTS E = (E,eo, Aout,Ain,−→) with reversed inputs and outputs. Given an environment
state e ∈ E the e-relativized timed input/output conformance relation rtiocoe between
system states s,t ∈ S is defined as:

s rtiocoe t iff ∀σ ∈ TTr(e).Out
(
(s,e) After σ

)
⊆ Out

(
(t,e) After σ

)
Whenever s rtiocoe t we will say that s is a correct implementation (or refinement) of
the specification t under the environmental constraints expressed by e.

For example, an IUT I that produced output bright! after a touch would not be con-
forming to the specification S′ in Figure 1 because
{bright!} �∈ Out

(
〈OFF,x= 0〉 After touch?

)
= {dim!} ∪ {0..2}. Similarly, an I′ that

produced a late dim after 3 time units is also non-conforming because
{0..3} �∈ Out

(
〈OFF,x= 0〉 After touch?

)
= {dim!}∪{0..2}.

Under the assumption of weak input-enabledness of both S and E we may character-
ize relativized conformance in terms of trace-inclusion as follows:

Lemma 1. Let S and E be input-enabled with states s, t ∈ S and e ∈ E resp., then

s rtiocoe t iff TTr(s)∩TTr(e) ⊆ TTr(t)∩TTr(e)

Thus if s rtiocoe t does not hold then there exists a trace σ of e such that s
σ==⇒ but

t � σ==⇒. E.g, in the above example, touch? · bright! ∈ TTr(I), but not in TTr(S′), and
touch? ·3 ·dim! ∈ TTr(I′), but not in TTr(S′).

Testing Real-Time Systems under Uncertainty 359

In particular there is a most discriminating environmentU that can generate all traces
over A: TTr(U) = (A∪R≥0)∗. The corresponding conformance relation rtiocoU then
specializes to simple timed trace inclusion (timed output trace inclusion) between sys-
tem states.

Test Purposes. A test purpose is a specific observation objective that the tester would
like the IUT to produce. For each system requirement the tester formulates a set of such
test purposes. In model-based testing, test purposes are typically specified as message
sequence charts, observer automata, or as logical properties. Here we simply assume
that the purpose specifies a set of possible goal states P of the model that the test run
should visit. A test purpose could e.g, be to check that the light level in Figure 1 can
become bright. In UPPAAL, P can be characterized by the set of states satisfying the
UPPAAL TCTL property E〈〉IUT.Bright.

3 Timed Test Generation

We present a number of principles and approaches for generating timed test cases for
TA models with varying restrictions.

3.1 Testing Deterministic Controllable TA

We start by introducing a fully controllable class of TA where test generation is easy,
but without any uncertainty. This defines the base class that we try to generalize. The
idea is to formulate the test case generation problem as a reachability problem, which
can be solved with an existing model-checking tool.

In order to make this approach to offline test case generation applicable to TA spec-
ifications, we shall assume that the underlying TIOTS is deterministic, weakly input
enabled, output urgent, with isolated outputs as defined in Section 2.1. We term this
class of TA DOUTA. This means that S is assumed to react deterministically to any in-
put provided, and will always be able to accept input from the test case. At any state, the
S is also assumed to always have at most one output action that will occur immediately.

A DOUTA version of the light controller is shown in Figure 2. Note the use of com-
mitted locations that forces the TA to issue its (single) output immediately. In DOUTA
the tester has thus full control over which states are visited with a given input sequence.
This means that a test case is generated as simple sequence of actions from a model
checker such that this trace is in the specification and that it satisfies the test purpose,
see Algorithm 1. Thus, a test sequence is an alternating sequence of concrete delay
actions and observable actions.

Discussion. The generated test sequences are valid because they are derived from di-
agnostic traces, and are thus guaranteed to be included in the specification. It is also
possible to use this technique to generate test sequences with a guaranteed coverage
of the model by formulating coverage as a reachability question as explained in [16]
and as implemented in UPPAAL-COVER, or that are as short, as fast, or as cheap (using
priced TA) as possible to execute. In conclusion, if the IUT falls into this class, efficient
and simple test generation techniques exist based on model-checking.

360 A. David et al.

x=0

x=0

x=0

L4

L3 L5

L6

OFF
L2

DIM BRIGHT

L1

touch?

x<20

touch?

touch?

touch?

x>=4 x<4

x>=20

x>=4

x<4

x=0

off!

dim!

bright!

off!

x=0 bright!x=0

dim!

touch?

touch?

Fig. 2. Simple Light Controller DOUTA

Algorithm 1. From Diagnostic Traces to Test Cases.
input: M = S ‖ E composed of IUT model S and environment E; test purpose P.

1. A diagnostic trace produced by UPPAAL for a given reachability question for P on M
demonstrates the sequence of moves to be made by each of the system components and the
required clock constraints needed to reach the target location. A (concrete) diagnostic trace
has the form:

(s0,e0)
γ0−→ (s1,e1)

γ1−→ (s2,e2)
γ2−→ ·· ·(sn,en)

where si,ei are states of the S and E, respectively, and γi are either time-delays or
synchronization (or internal) actions. The latter may be further partitioned into purely S
or E transitions (hence invisible for the other part) or synchronizing transitions between S
and E (hence observable for both parties).

2. A test sequence, λ ∈ (Ain ∪Aout ∪R≥0)∗, may be obtained simply by projecting the
diagnostic trace to the E-component, while removing invisible transitions, and summing
adjacent delay actions.

3. The application of the test sequence σ = apply(λ , IUT) consists of executing it in parallel
with the IUT synchronizing over observable actions. Remarking that a test sequence and
the IUT both can be understood as TIOTS, the application can be formalized as a maximal
run of λ ‖ IUT from which the resulting observable trace can be extracted.

4. A PASS verdict must only be issued if the execution match the entire test sequence:

verdict =
{
PASS if apply(λ , IUT) = λ
FAIL otherwize

3.2 Preset Input Sequences

The DOUTA assumption is frequently impractical or unrealistic for embedded real-time
systems. It allows no uncertainty whatsoever, and no internal actions or synchroniza-
tions (except in very special cases).

However, offline test generation using a real-time model-checking engine for unre-
stricted TA models is still possible using the procedure in Algorithm 2 that separates
test input generation and test evaluation in two different steps. The basic idea is to

Testing Real-Time Systems under Uncertainty 361

Algorithm 2. Testing using preset input sequences
Input: Model M = S ‖ E, test purpose P, implementation IUT

1. Generate a preset timed input sequence by using the model-checker to generate a concrete
diagnostic trace satisfying the test purpose. Project it on the E-component while removing
outputs, internal actions, and summing up adjacent delays. Let λi denote this input trace.

2. Execute the preset-timed input sequence on the IUT, and record the resulting timed
input/output sequence: σ = apply(λi, IUT)

3. Check whether the observed trace is included in the specification model and whether the
test purpose is (possibly) satisfied:

verdict =

⎧⎨
⎩
PASS if σ ∈ TTr(M) and ∃ρ ∈ Runs(S‖σ).Visits(ρ)∩P �= /0
INCONC if σ ∈ TTr(M) and ∀ρ ∈ Runs(S‖σ).Visits(ρ)∩P = /0
FAIL if σ �∈ TTr(M)

compute an preset input sequence that satisfies the test purpose, then apply this se-
quence on the IUT, and finally evaluate whether the resulting behavior is conforming.

Observe that we have two kinds of pass-verdicts: PASS and INCONC. An INCONC
verdict is generally issued when the purpose of a test cannot be demonstrated, but also
no evidence of non-conformance is found. When a specification (or implementation) is
non-deterministic the implementation may produce a different (legal) output sequence
than what was expected to satisfy the test purpose.

To check whether an observed trace is a trace of the model is fairly simple: put the
observed trace (or a TA model thereof) in parallel with the specification model instead
of its environment model, and check that the trace can execute entirely. In a similar
way it can be checked whether the test purpose (possibly or always) holds1 in the states
reachable after the observed trace.

Discussion. The above procedure is practical, computationally efficient, and opera-
tional. However, a particular disadvantage is that it cannot guarantee a-priory that the
test purpose will be satisfied on a correct implementation due to the non-adaptiveness
of the preset input sequence. One can try to re-execute the input sequence, but in the
worst case the implementation will never reveal the test purpose given the (arbitrarily)
chosen input sequence.

3.3 Online Testing

An online testing tool executes test events interactively as they are generated by per-
forming a guided random exploration of the environment model while checking system
outputs against the system model. The main idea is continually to compute the possible
set of states S the (combined system and environment) model can occupy as test inputs,

1 In the presented definition we only require that it is possible to satisfy the test purpose under
some execution of the model on the observed trace. It is also possible to check the stricter
statement that the test purpose must be satisfied under all executions of the model on the
observed trace.

362 A. David et al.

outputs or delays are observed. The state-set captures the uncertainty that the tester has
of the possible state a (conforming) IUT may be in.

UPPAAL-TRON [16,21,20] is an online test generation tool that is integrated with
the UPPAAL model-checker, and uses the same TA syntax and semantics. The algorithm
behind UPPAAL-TRON is shown in Algorithm 3. It uses the state-set to compute the
possible set of inputs that the tester can offer, and the set of allowed system outputs.
The main loop runs until the testing time is over, or non-conformance is detected. It
randomly chooses between offering an input to the IUT, waiting and observing the IUT
for outputs, or re-starting. If an output occurs, it checks if this is legal in the current
state-set; else it declares non-conformance. After each input, output or delay action the
set of states S is updated.

Algorithm 3. Test generation and execution, OnlineTest(S,E,P, IUT,T).
S := {〈s0, e0〉}; // let the set contain an initial state1

if computation of After in any step below reach a state s ∈ P then return PASS2

while S �= /0∧ �iterations ≤ To do3

switch Random
(
{action, delay, restart}

)
do4

case action // offer an input5

if EnvOutput(S) �= /0 then6

randomly choose i ∈ EnvOutput(S);7

send i to IUT, S := S After i;8

case delay // wait for an output9

randomly choose d ∈ Delays(S);10

sleep for d time units or wake up on output o at d′ ≤ d;11

if o occurs then12

S := S After d′;13

if o /∈ ImpOutput(S) then return FAIL;14

else S := S After o15

else S := S After d; // no output within d delay16

case restart // reset and restart17

S := {〈s0,e0〉};18

reset IUT19

if S = /0 then return FAIL else return INCONC20

Discussion. An advantage of online testing is that it allows very expressive models
(e.g., the full UPPAAL TA model without restrictions on non-determinism) as long as
the state set can be computed and analyzed wrt. inputs and outputs. Further, it is auto-
matically adaptive to the actual outputs (and their timing), and will generate relevant
stimuli in response.

A potential disadvantage is that the tool must compute the state set in real-time (by
performing symbolic exploration). However, UPPAAL-TRON does this quite efficiently
by using and extending the compact symbolic data-structures and state exploration algo-
rithms implemented in the UPPAAL engine. Case studies have shown that it can manage

Testing Real-Time Systems under Uncertainty 363

large models2 with a high degree of uncertainty. It is thus feasible in practice for many
real-time systems with time constraints down to the milli-second range.

Another disadvantage is the randomization; satisfaction of coverage criteria or test
purposes cannot generally be guaranteed apriorily.

3.4 Observable Timed Automata Using Timed Games

The previous sections treated test generation as a reachability problem or as a random-
ized execution. However, when the goal is to satisfy a given test purpose for systems
that are uncontrollable a better approach for test generation may be using a two-player
reachability game. Here the tester is in control of which input to offer, and tries to sat-
isfy the test purpose. The IUT is in control of which output to deliver, and behaves like
an adversary trying to prevent the tester from meeting his objective. The system and en-
vironment models specify the possible moves of the tester and (conforming) implemen-
tations. A winning strategy is a function that gives the environment (tester) step-by-step
guidance on what actions to take, and that ensures that no matter how “bad” the IUT
behaves, the test purpose will be satisfied. The idea is to use a winning strategy as test
case and use a timed game solver to generate tests.

An observable TIOGA is deterministic and input enabled such that any observable
trace leads to a unique system state: ∀σ ∈ TTr(E).|S After σ | = 1. But timing uncer-
tainty and output action uncertainty is specifically allowed, hence it is not fully control-
lable. Figure 1 is an example of an observable TIOGA.

The framework of testing with winning strategies is illustrated in Figure 3. The inputs
to UPPAAL-TIGA are the game models of IUT, its environment, and the test purpose
in a formula of a subset of the ACTL logic. The output is a winning strategy, when the
property is satisfied.

Fig. 3. Testing with winning strategies

We view the reachability control problem (S,P) as a game problem to compute a
winning strategy λ such that S supervised by λ can reach some states in P [23].

A finite or infinite run ρ of S is winning if Visits(ρ)∩P �= /0. The set of all winning
runs in S starting from state s is denoted by WinRuns(s,P). In the following let S be a
M-bounded TIOGA, and let (S,s0,Ain,Aout,→) be the TIOTS of S. A state-based strat-
egy λ over S is a partial function from S to Ain ∪{delay}, where Ain is the controllable

2 E.g., the Danfoss case [21] used models with 18 concurrent automata, 14 clocks and 14 integer
variables.

364 A. David et al.

input actions, and delay signifies the idle action where the player does nothing except
wait. If a player plays the game always according to what a strategy λ suggests, the
resulting run is called a λ supervised run, i.e SupRuns(s,λ) ⊆ Runs(s,S).

λ is winning from state s if MaxRuns(s)∩SupRuns(s,λ) ⊆ WinRuns(s,P). If λ is
winning from s0, then λ is called a winning strategy for S.

UPPAAL-TIGA is a timed game solver, which can check whether a specified ACTL
test purpose can be satisfied by a TGA, and if so, automatically synthesize a winning
strategy; note that there may exist more than one winning strategy for the same TGA and
test purpose. The strategy function may be output as a set of condition-action statements
of the form: “if the IUT is in states 〈Dim, 0 ≤ x < 4〉, the tester should offer a touch?;
if in states 〈L1, x ≤ 2〉, the tester should just wait”.

The basic idea of test execution is to continuously consult the winning strategy and
the SPEC model, as shown in Algorithm 4. If an occurred output is prohibited according
to rtioco, we report FAIL, otherwise after reaching a goal state we report PASS.

Algorithm 4. Test Execution of a Winning Strategy

Input: TIOGA specification M, system implementation IUT, goal states P, and1

state-based winning strategy λ ;
Output: test verdict PASS or FAIL, and observable trace σ ;2

σ := 〈〉; // the test run is initially an empty trace ;3

while (σ /∈ WinRuns(s0,S,P)) do // s0: init state4

switch λ (S After σ) do // Consult strategy5

case input i6

send i to IUT;7

σ := σ ·i;8

case delay d9

if output o occurs at d′ ≤ d then10

σ := σ ·d′;11

if o /∈ Out(s0 After σ) then return FAIL;12

else σ := σ ·o;13

else14

if d /∈ Out(s0 After σ) then return FAIL;15

else σ := σ ·d;16

return PASS17

Discussion. The advantage of this approach (further details in [11,22]) is that it enables
test generation for a much more general class of systems than DOUTA, and still gua-
ranteeing observation of the test purpose (on conforming IUT’s when a winning strategy
exists; on non-conforming IUT’s guarantees can obviously never be given). If a winning
strategy does not exist, the test purpose may be reformulated. Alternatively, we have
shown how to generate cooperative strategies [10] where the tester first executes in an
randomized online fashion within a restricted state space until he encounters a state
from which a winning strategy exists.

Testing Real-Time Systems under Uncertainty 365

Still the class is restrictive, i.e. it does not allow internal non-determinism (that e.g.
might arise from internal synchronization on parallel composed specification compo-
nents) and assumes exact observations. Also, solving timed games may be computa-
tionally expensive (in particular cooperative strategies), however, our experiments [11]
indicate that it may indeed be feasible in many realistic cases.

3.5 Testing under Partial Observability

Section 3.4 considered testing under full observability. However, many systems are only
partially observable, e.g, where the observer/tester cannot measure exactly the value of
output variables or shared clocks, or cannot immediately see the effects of internal
actions. Thus, the observer cannot infer the exact state of the IUT, and the method in
Section 3.4 is inapplicable. In this section we relax this restriction and consider testing
timed systems that are only partially observable (or, with imperfect information).

We characterize partial observability in terms of a finite number of possible obser-
vations to be made on the IUT states [9]. Consider the “flickering” light controller in
Figure 4a, which have four brightness levels (in ascending order): Off, Dim1, Dim2
and Bright. Initially, it is in location Off. If the pad is touched at an appropriate
time (x ≥ 2), the light will go to location L1 where within 2 time units it will non-
deterministically go to Bright or go to Dim1. At location Dim1, a touch? input at
appropriate time can bring the TA to Dim2. The light can automatically go to Dim2 at
any time. If clock x rises up to 3 while the light is in Dim1, then it can automatically
go Off. In Figure 4a, the edges that are not labeled by touch? are internal transitions,
which need no synchronization with the user TA in Figure 4.

x=0
touch?

touch?
x=0

x=0

x=0

x=0

touch?

touch?Dim1 BrightOff

x<=2

Dim2

L1

L2

x=0

x>=2

x>=1

x>=3 x>=2

x>=1

x<=2

x<2

(a) Light controller (IUT)

touch!

y=0

Control

(b) User (tester)

Fig. 4. Flickering light controller example

Note that in Dim1, Dim2, L1 and L2, internal transitions can autonomously occur
when the conditions (if any) are satisfied, and their occurrences cannot be observed by
the user. Further, the light itself decides whether or not to make an output or an internal
transition, and if yes, which output or internal transition to make at what time. Thus,
this example has all of internal actions, uncontrollable actions and timing uncertainty
of uncontrollable actions.

366 A. David et al.

In this example we assume that the tester can observe 3:

(1) whether or not the IUT is “off” (i.e., in Off); and
(2) whether or not the IUT is “dim” (i.e., in Dim1 or Dim2, but not exactly in which

one); and
(3) whether or not the IUT is “bright” (i.e., in Bright),

Consider that the tester feeds the IUT with a timed input sequence 2 · touch? · 2 at the
initial state of Figure 4a. He may get the observation “dim” signaling that either location
Dim1 or location Dim2 has been reached, or the observation “bright”.

Observations. Let A = (L, l0,A,X ,E, I) be an M-bounded TGA. Let K ⊆ L and ϕ ∈
G(X). We call (K,ϕ) an observable predicate. We use a finite set of observable pred-
icates P ⊆ 2L ×G(X) to observe a TGA. For instance, in Figure 4a we can have P =
{({Off}, true), ({Dim1, Dim2}, true), ({Bright}, true), (L,0 ≤ y < 1)}4.

An observable predicate (K,ϕ) is true at a TGA semantic state s = 〈l, v̄〉 iff l ∈ K
and v̄ |= ϕ . A state observation (or observation for short) oP,s of the TGA with a set P
of predicates at state s is a valuation of all the predicates in P at s. E.g., in Figure 4a at
semantic state 〈Dim2,(x = 2,y = 4)〉 we have the observation oP,s such that

oP,s(({Off},true)) = false,
oP,s(({Dim1, Dim2},true)) = true,
oP,s(({Bright},true)) = false, and
oP,s((L,0 ≤ y < 1)) = false.

Let OP be the set of all possible observations with P, then by definition |OP| ≤ 2|P|.
During a play the environment (tester) may propose a specific controllable action or
to delay ci ∈ (Ain ∪{delay}). The opponent (IUT) may however prevent this (only) if
the action is not enabled, or by issuing an output itself. A play is a run of actually
occurring actions αi ∈ (Ain ∪Aout ∪{τ}∪R≥0). If a play ρ is a finite sequence, then it
is called a prefix. The set of all prefixes of a TGA is denoted as Pref . A strategy for a
partially observable TGA is a function λ : Pref → (Ain ∪{delay}) instructing the tester,
given the observation history, what next action to take. Thus it is a trace-based (history-
based) strategy. In a stuttering-invariant strategy repeated identical observations does
not change the strategy. The player “sticks to”, or repeats, the suggested controllable
move or delay until the observations change.

Under a set P of observable predicates, an observation history is a function ObsP :
Pref → O∗

P, which maps a prefix ρ ∈ Pref to the chronological sequence ObsP(ρ) of
non-stuttering observations along ρ .

3 In practice, the observable predicates of (1)-(3) can be implemented by probing/instrumenting
the IUT with some light sensors or software-defined location reporters; the assumption in
predicate (2) is reasonable if the difference between these two brightness levels is too small to
be discerned by the light sensors.

4 The constraint 0≤y<1 means that the tester can check whether value of clock y falls within
[0,1), but he cannot/need not read the exact value of y. In practice, this predicate thus can be
implemented as a countdown timer whose timeout can be externally observed by the tester.

Testing Real-Time Systems under Uncertainty 367

Game Solving. UPPAAL-PO-TIGA is a timed game solver for partially observable
timed games. Given a network of bounded TGA models of the system and its envi-
ronment, a set of observable predicates, and a winning objective in terms of an ACTL
reachability or safety property, it model-checks whether the property can be enforced on
the models, and if the outcome is positive, it extracts an observation-based stuttering-
invariant winning strategy from the explored paths.

The algorithms uses a knowledge-based subset construction and on-the-fly partially
observable reachability (OTFPOR) computation [9], which is based on a mixture of
forward search and backward propagation timed game solving algorithm [8]. A key
point is that the algorithm uses the observable predicates to partition the state-space.

For a reachability property ϕ , a winning strategy can be represented as a directed
acyclic graph which has an initial node corresponding to the initial state, and a number
of leaf nodes corresponding to the states that satisfy ϕ .

Figure 5 shows a winning strategy λR that is generated by UPPAAL-PO-TIGA for
the example in Figure 4 and and the reachability property “control : A� Bright”.
Each node in Figure 5 corresponds to an observation history, and each of its outgoing
edges correspond to observation changing application of the strategy action. We list
only those observable predicates that evaluate to true under that observation.

2 3 4 5
touch! delay touch!

obs: { Off,
 0=<y<1}

states: <Off,
 (0=<x<1, y=x)>

6 7

obs: { } obs: { } obs: {Dim1Dim2} obs: {Bright}

delay delay

8

obs: {Bright}delay

0 1

obs: { Off }

obs: { Off,
 0=<y<1}

obs: { Off }

delay

reset_y

Fig. 5. Winning strategy λR for reachability property control : A� Bright

In Figure 4a, if we consider the following prefix ρ :
〈Off,(x = 0,y = 0)〉 ·delay ·1 · 〈Off,(x = 1,y = 1)〉 · resety · resety· 〈Off,(x = 1,y = 0)〉 ·delay ·
1 · 〈Off,(x = 2,y = 1)〉 · touch · touch· 〈L1,(x = 0,y = 1)〉 · delay · 0 · 〈Dim1,(x = 0,y = 1)〉 ·
touch · 1· 〈Dim1,(x = 1,y = 2)〉 · touch · touch · 〈Dim2,(x = 0,y = 2)〉 · touch · 1· 〈Dim2,(x =
1,y = 3)〉 · touch · touch · 〈L2,(x = 0,y = 3)〉,
then the observation history of ρ is:
{Off,0 ≤ y < 1} · {Off} · {Off,0 ≤ y < 1} · {Off} · {} · {Dim1Dim2} · {}.

The above history corresponds to the trace 0-1-2-3-4-5-6 in Figure 5. Note that there
may exist choices in a strategy, i.e., there might exist more than one possible next ob-
servation. For instance, in Figure 5, where the tester sticks to the delay move at node
#4, there may be a new observation of either that in node #5 or that in node #8. This
branching of the strategy is due to the reaction uncertainties in the TGA models.

368 A. David et al.

Test Execution. The test execution algorithm for partially observable strategies resem-
bles Algorith 4 except in two main ways. It must continuously evaluate the observable
predicates and track the observation history to consult the strategy. Secondly, it must
declare FAIL if it makes an observation oP,si of the implementation in some state si that
cannot be made on the specification (in the same spirit of rtiocoE), and declare PASS if
a winning state is reached.

obs_pr
1

IMP obs_pr
2

...to offer input

(new observation)

(guidance)

obs_pr
n

to reset clock

to delay

making observation

tester

OBSI
strategy

clocks

Fig. 6. Observation-based conformance testing

Figure 6 is a schematic view of observation-based conformance testing of partially
observable timed systems. It must be possible for the tester to determine the truth of
each observable predicate from the observable output actions of the implementation,
from its sensors, from externally observable output variables or clocks, or from “probes”
into the IUT (a.k.a. gray box view) that reports whether the values of system variables
are within some particular intervals. These are generally fairly realistic assumptions.

Discussion. Partial observability enables test generation with guaranteed satisfied test
purposes for a rich and practical class of TA and with realistic imperfect observations.
In the case that a winning strategy does not exist for the test purpose, the tester can be
given more observational power, corresponding to additional instrumentation and cor-
respondingly more observable predicates in the game problem. Details of the approach
is given in [12]. Surprisingly, our experiments [12] show that the computation resources
needed to solve partially observable games in many cases are significantly smaller than
when using fully observable games; the reason, however, is that the state-space parti-
tioning resulting from the observable predicates typically are coarser than when using
full observability. Thus this is a promising approach.

4 Related Work

The work here surveys [16,20,21,11,10,12] with the addition of Section 3.2. Timed
automaton (TA) [2] has elsewhere been widely used to model real-time systems. A
considerable proportion of existing efforts on real-time testing [15,26,17,24,16,7,18,19]

Testing Real-Time Systems under Uncertainty 369

are based on the TA model or its variants. Among them some make the assumptions
that the system model is output-urgent and has isolated outputs [15,26,24]. In contrast,
[19] presents both an online testing of non-deterministic TA in a similar style as ours,
and also an offline algorithm for non-deterministic systems by explicitly modeling the
tester’s time observation capabilities through a digital clock. But unlike our game based
approach this does not guarantee satisfaction of the test purpose after execution. [3]
proposes a game based approach for computing an (overapproximate) determinized TA
from which test cases can be generated, but offer no implementation.

To enable conformance testing, these methods build their implementation relations
(a.k.a. conformance relations) on top of e.g. trace equivalence [15,26] or the ioco con-
formance relations [17,20,7,18]. A detailed comparison of different versions of timed
conformance is given in [28]. An approximate conformance relation for imprecise sys-
tems based on distances of quantitative transition systems is presented in [5]. Reactive
planning to guide an online tester towards a test purpose or improved coveragee has
been proposed in [29].

Game-theoretic approaches to untimed system testing have been discussed in
[1,31,4]. An alternative way to characterize partial observability is to assume that only
a proper subset of those outputs from the IUT, and/or only a proper subset of the system
clocks can be read by the tester [6].

5 Conclusions

Effective methods for testing of embedded real-time systems need to embrace state
and observation uncertainty, and imperfect control and observation. We have outlined
a number of test generation principles and algorithms, each is supported by practical
tools in the UPPAAL family.

The approaches differ in the extend to which they allow uncertainty, their ability to
apriori guarantee satisfaction of the test purpose, and in the required amount of offline-
and online computation resources. It is not straightforward to determine from the syn-
tactic declarations of the model what online and offline computation resources each
method requires and how they scale, as this depends greatly on the behavior of the
underlying transition system and state space. We view the methods presented here as
complementary.

When systems are essentially controllable a good technique is to use diagnostic
traces. If the system is highly non-deterministic, or the model is very large, online test-
ing is effective. For moderate sized systems where the test purpose must be satisfied, or
when very fast execution resolution is required the offline approaches are preferable. In
particular we find testing based on partially observable games an interesting and general
technique that we will explore further in future work.

References

1. Alur, R., Courcoubetis, C., Yannakakis, M.: Distinguishing tests for nondeterministic and
probabilistic machines. In: Proc. STOC 1995, pp. 363–372. ACM Press, New York (1995)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–
235 (1994)

370 A. David et al.

3. Bertrand, N., Jéron, T., Stainer, A., Krichen, M.: Off-line test selection with test purposes
for non-deterministic timed automata. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011.
LNCS, vol. 6605, pp. 96–111. Springer, Heidelberg (2011)

4. Blass, A., Gurevich, Y., Nachmanson, L., Veanes, M.: Play to test. In: Grieskamp, W., Weise,
C. (eds.) FATES 2005. LNCS, vol. 3997, pp. 32–46. Springer, Heidelberg (2006)

5. Bohnenkamp, H., Stoelinga, M.: Quantitative testing. In: Proc. EMSOFT 2008. ACM, New
York (2008)

6. Bouyer, P., D’Souza, D., Madhusudan, P., Petit, A.: Timed control with partial observability.
In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 180–192. Springer,
Heidelberg (2003)

7. Briones, L.B., Brinksma, E.: A test generation framework for quiescent real-time systems.
In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp. 64–78. Springer,
Heidelberg (2005)

8. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for
the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS,
vol. 3653, pp. 66–80. Springer, Heidelberg (2005)

9. Cassez, F., David, A., Larsen, K.G., Lime, D., Raskin, J.-F.: Timed control with observa-
tion based and stuttering invariant strategies. In: Namjoshi, K.S., Yoneda, T., Higashino, T.,
Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 192–206. Springer, Heidelberg (2007)

10. David, A., Larsen, K.G., Li, S., Nielsen, B.: Cooperative testing of timed systems. In: Proc.
MBT 2008 (2008)

11. David, A., Larsen, K.G., Li, S., Nielsen, B.: A game-theoretic approach to real-time system
testing. In: Proc. DATE 2008 (2008)

12. David, A., Larsen, K.G., Li, S., Nielsen, B.: Timed testing under partial observability. In:
Proc. 2nd International Conference on Software Testing, Verification and Validation (ICST
2009), Denver, Colorado, USA, pp. 61–70. IEEE Computer Society, Los Alamitos (2009)

13. Daws, C., Olivero, A., Yovine, S.: Verifying ET-LOTOS programs with KRONOS. In:
Hogrefe, D., Leue, S. (eds.) Proc. of 7th Int. Conf. on Formal Description Techniques. North-
Holland, Amsterdam (1994)

14. Dill, D.: Timing Assumptions and Verification of Finite-State Concurrent Systems. In:
Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)

15. En-Nouaary, A., Dssouli, R., Khendek, F., Elqortobi, A.: Timed test cases generation based
on state characterization technique. In: Proc. RTSS 1998, pp. 220–229 (1998)

16. Hessel, A., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A., Larsen, K.G.: Testing real-
time systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST.
LNCS, vol. 4949, pp. 77–117. Springer, Heidelberg (2008)

17. Khoumsi, A., Jéron, T., Marchand, H.: Test cases generation for nondeterministic real-time
systems. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 131–146.
Springer, Heidelberg (2004)

18. Krichen, M., Tripakis, S.: Black-box conformance testing for real-time systems. In: Graf, S.,
Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 109–126. Springer, Heidelberg (2004)

19. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal Methods in
System Design 34(3), 238–304 (2009)

20. Larsen, K.G., Mikucionis, M., Nielsen, B.: Online testing of real-time systems using UP-
PAAL. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp. 79–94.
Springer, Heidelberg (2005)

21. Larsen, K.G., Mikucionis, M., Nielsen, B., Skou, A.: Testing real-time embedded software
using uppaal-tron: an industrial case study. In: Wolf, W. (ed.) EMSOFT, pp. 299–306. ACM,
New York (2005)

22. Li, S.: Games and Scenarios for Real-Time System Validation. PhD thesis, Dept. of Com-
puter Science, Aalborg University (2010)

Testing Real-Time Systems under Uncertainty 371

23. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems.
In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–242. Springer, Hei-
delberg (1995)

24. Nielsen, B., Skou, A.: Automated test generation from timed automata. STTT 5(1), 59–77
(2003)

25. Rokicki, T.G., Myers, C.J.: Automatic verification of timed circuits. In: Dill, D.L. (ed.) CAV
1994. LNCS, vol. 818, pp. 468–480. Springer, Heidelberg (1994)

26. Springintveld, J., Vaandrager, F., D’Argenio, P.R.: Testing timed automata. TCS 254(1-2),
225–257 (2001)

27. Tretmans, J.: Testing concurrent systems: A formal approach. In: Baeten, J.C.M., Mauw, S.
(eds.) CONCUR 1999. LNCS, vol. 1664, pp. 46–65. Springer, Heidelberg (1999)

28. Tretmans, J., Schmaltz, J.: On conformance testing for timed systems. In: Cassez, F., Jard,
C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 250–264. Springer, Heidelberg (2008)

29. Vain, J., Raiend, K., Kull, A., Ernits, J.P.: Synthesis of test purpose directed reactive planning
tester for nondeterministic systems. In: Kurt Stirewalt, R.E., Egyed, A., Fischer, B. (eds.)
ASE, pp. 363–372. ACM, New York (2007)

30. de Vries, R.G., Tretmans, J.: On-the-fly conformance testing using SPIN. Software Tools for
Technology Transfer 2(4), 382–393 (2000)

31. Yannakakis, M.: Testing, optimizaton, and games. In: Dı́az, J., Karhumäki, J., Lepistö, A.,
Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 28–45. Springer, Heidelberg (2004)

Model-Checking and Simulation

for Stochastic Timed Systems�

Arnd Hartmanns

Saarland University – Computer Science, Saarbrücken, Germany

Abstract. For verification and performance evaluation, system mod-
els that can express stochastic as well as real-time behaviour are of
increasing importance. Although an integrated stochastic-timed verifica-
tion procedure is highly desirable, both model-checking and simulation
currently fall short of providing a complete, fully automatic verification
solution. For model-checking, the problem lies in the extreme expressive-
ness of such a model, while simulation is limited to stochastic processes
and cannot deal with nondeterminism. In this paper, we review the use of
stochastic timed automata as an overarching formalism to model stochas-
tic timed systems and present two analysis approaches: Model-checking
for the (large) subset corresponding to probabilistic timed automata with
deadlines, for which solid implementations are appearing, and simula-
tion, which we have recently shown to be applicable to models that also
include spurious nondeterministic choices.

1 Introduction

The increasing use of complex, safety-critical or economically vital systems such
as fly-by-wire controllers, automated trading systems, “smart” mobile phones
and the Internet, creates a similarly increasing need for the formal verification
and evaluation of such systems. In this paper, we focus on model-based verifi-
cation: Given a mathematically precise model of the system under study and a
set of properties of interest, we want to verify these properties. For qualitative
properties, such as “does the system ever reach a bad state” (safety) or “when-
ever the traffic light is red, will it become green again in the future” (liveness),
verification results are Boolean: The property is either satisfied (true, tt) or not
(false , ff), the proposed system implementation is correct or incorrect.

However, qualitative verification is more and more often combined with a
quantitative analysis [3], by including stochastic behaviour, such as the fact that
a message in a wireless communication scenario may get lost with probability p,
and real-time aspects, e.g. the minimum and maximum times needed to trans-
mit such a message, in models. This allows quantitative properties that relate to
� This work has been supported by the by the EU FP7 under grant number ICT-214755
(Quasimodo), by the German Research Council (DFG) as part of the Transregional
Collaborative Research Center “Automatic Verification and Analysis of Complex
Systems” (SFB/TR 14 AVACS) and by the DFG/NWO Bilateral Research Pro-
gramme ROCKS.

B.K. Aichernig, F.S. de Boer, and M.M. Bonsange (Eds.): FMCO 2010, LNCS 6957, pp. 372–391, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Model-Checking and Simulation for Stochastic Timed Systems 373

Table 1. Submodels of STA [7]

Model Probability distributions Time Nondeterminism

STA arbitrary arbitrary yes

GSMP arbitrary arbitrary no

PTA finite-support integer bounds yes

TA none integer bounds yes

PA/MDP finite-support no yes

LTS none no yes

MA/IMC finite-support + exponential exponential delays yes

CTMC finite-support + exponential exponential delays no

DTMC finite-support no no

these additional features to be evaluated. In the communication scenario, exam-
ples could be “what is the worst-case probability of successful transmission of a
message” (probabilistic reachability), “what is the expected time until the first
message is received” (expected-time reachability), and even combinations, such as
“what is the minimum probability of success within t time units” (probabilistic
time-bounded reachability).

Such quantitative properties, in particular when time is involved, also allow
the evaluation of a system’s performance in addition to correctness ; on the other
hand, a model involving probabilities and time also makes it possible to include
quantitative requirements in correctness properties: “The protocol must ensure
that the probability of success within 5 time units is larger than 95 %.” Classic
modal logics such as LTL or CTL have been adapted to these scenarios, resulting
in logics such as PTCTL [20], which can be used to formally specify properties
like the one given above.

In this paper, we review the use of stochastic timed automata (STA), the se-
mantic foundation of the modelling language Modest [7], as the modelling for-
malism of choice for systems combining stochastic and real-time aspects. STA
are labelled transition systems enriched with clock variables to capture real-
time aspects and probability distributions to cover stochastic behaviour. Many
commonly used classes of automata can be seen as subclasses of STA, as sum-
marized in Table 1 (where GSMP are generalised semi-Markov processes [12],
(P)TA are (probabilistic) timed automata [1,20], PA/MDP are probabilistic au-
tomata [27] or Markov decision processes [26], LTS are labelled transition sys-
tems [4], MA/IMC are Markov automata [11] or interactive Markov chains [17],
CTMC (DTMC) are continuous-time (discrete-time) Markov chains [4], and
“finite-support” denotes probability distributions with finite support, such as
the Bernoulli distribution or the discrete uniform distribution, “exponential” de-
notes the exponential distribution, while “exponential delays” denotes a model
in which the times between event occurrences are or can be exponentially dis-
tributed).

In order to evaluate properties on a model, a variety of verification approaches
are available, ranging from manual mathematical proofs or calculations over

374 A. Hartmanns

semi-automated approaches like theorem proving to fully automatic techniques.
Model-checking and simulation are the focus of this paper: They fall into the
category of fully automatic techniques, which is a significant advantage from a
usability perspective, and have already been applied successfully to a variety of
the submodels of STA; yet, they are fundamentally different approaches:

Given a set of properties, an analysis with model-checking involves an ex-
ploration of the complete (reachable) state-space of the model. In the case of
probabilistic models, to subsequently compute probabilities and obtain values
for the properties, numerical techniques such as solving systems of linear equa-
tions or value iteration are necessary. In the simulation approach, on the other
hand, a large number of concrete, finite paths of the model is explored, using
random-number generators to resolve probabilistic choices. Only one state of the
model is in memory at any time, and statistical techniques are used on the set
of results for the individual runs to obtain mean values and confidence intervals.

The choice between model-checking and simulation is thus mainly a trade-
off between memory consumption and time: Model-checkers generally need to
represent the whole state-space in memory, but give accurate and precise (or at
least safe) answers, while simulation needs constant memory for every model,
even for infinite ones, but both the accuracy and the precision of the results
depend directly (and exponentially) on the number of paths explored.

Unfortunately, both approaches are faced with problems when it comes to the
analysis of STA: For model-checking, there is currently no technique available
to deal with all the features of STA in one model, although large submodels
can be model-checked (in particular PTA [10,16,18,19,21] and IMC [31]). In
simulation, the problem is that concrete paths of the model are explored, and
while the faithful random resolution of probabilistic choices works well with the
final statistical evaluation of the collected results, there is no way to resolve
nondeterministic choices without introducing additional assumptions. As it is,
simulation can therefore only be used for deterministic models (read: GSMP in
Table 1). While this is an inherent limitation of the approach, this paper aims to
show ways of mitigating the problem for a practically relevant class of models.

The intention of this paper is to provide a thorough but compact introduction
to STA (Section 2), to present a model-checking approach for one large and
useful subclass, namely PTA [16], including a novel way to deal with deadlines,
an aspect where STA differ from e.g. TA (Section 3), and to highlight a way to
perform simulation for a superclass of GSMP that includes nondeterminism [6]—
without introducing hidden assumptions or affecting the results (Section 4).

2 A Model for Stochastic Timed Systems

Stochastic timed automata [7] are a formal model for systems that include non-
deterministic choices, finite probabilistic branching, real-time behaviour and de-
cisions based on continuous probability distributions. They can be seen as an
extension of various well-studied automata models, for example as the extension
of timed automata (TA, [1]) with finite and continuous probabilistic choices. In

Model-Checking and Simulation for Stochastic Timed Systems 375

this section, we give a compact introduction to the model of STA, its semantics,
and operators to support compositional modelling. However, let us first establish
some preliminary notation.

Probability Distributions. A discrete probability distribution over a count-
able set Q is a function μ : Q → [0, 1] such that

∑
q∈Q μ(q) = 1. Let Dist(Q)

denote the set of all probability distributions over Q. The support of a distribu-
tion μ, support(μ), is the largest set Q′ ⊆ Q such that μ(q) > 0 for all q ∈ Q′.
We call μ ∈ Dist(Q) finite if support(μ) is finite. If its support is a singleton set
{q}, μ is the point or Dirac distribution for q, denoted D(q).

For continuous distributions, standard measure theory is needed; we refer the
reader to the wealth of textbooks on this matter (e.g. [15]) for details, and merely
note that for this paper, Prob(Ω) denotes the set of all probability measures on
B(Ω), the Borel σ-algebra on the sample space Ω.

Clocks and Valuations. Our models contain real-valued variables, some of
which are clock variables, or clocks. Given a set of variables Var , where Ck
denotes the subset of clock variables, a valuation is a function Var → R that
assigns a concrete value to all variables. We let Val(Var) denote the set of
all valuations for the variables in Var ; 0 is the valuation that assigns 0 to all
variables, and if v ∈ Val and t ∈ R+, v + t is the valuation where all clock
variables have been incremented by t and all other variables remain unchanged.

Clock variables keep track of time, which advances at a constant rate that is
the same for all clocks. Clock constraints are expressions of the form

CC ::= true | false | CC ∧ CC | CC ∨CC | c ∼ x | c1 ∼ c2 | x1 ∼ x2,

where ∼ ∈ {>,≥, <,≤, =, �=}, c, c1, c2 ∈ Ck and x, x1, x2 ∈ R ∪Var \Ck . For
e ∈ CC and v ∈ Val , we write v(e) to denote the (Boolean) value of e evaluated
in v. As usual, clocks can only be assigned to zero, resetting the clock.

2.1 Stochastic Timed Automata

We can now define the syntax and semantics of STA:

Syntax. A stochastic timed automaton is a tuple (Loc, l0,Act ,Var ,→) where

– Loc is a set of locations,
– l0 ∈ Loc is the initial location.
– Act = PAct & IAct is a set of actions, partitioned into patient and impatient

actions (see Section 2.2 for what this distinction is used for), where τ ∈ Act
is the distinguished silent action,

– Var is a set of (real-valued) variables (with a subset Ck ⊆ Var of clock
variables), and

– → ⊆ Loc × Act × CC × CC × Dist(Asgn × Loc) is the edge relation.

376 A. Hartmanns

An edge (l, a, g, d, μ) ∈ → consists of a source location l, an action label a, a
guard g that determines when the edge is enabled (i.e. when it can be taken),
a deadline d that imposes a condition on the passage of time (time cannot pass
when a deadline in the current location is satisfied), and a target probability
distribution μ over assignments and target locations.

Assignments are functions Var → Sxp, where Sxp is the set of sampling ex-
pressions, which sample a value for a distinguished random variable ξ /∈ Var
according to some distribution F . For example, if λ ∈ Var , Exponential(λ + 3)
represents a value sampled from the exponential distribution with rate λ + 3,
while the sampling expression λ represents the value of λ, i.e. D(λ). (For a more
formal definition, see [7].) For clarity, when writing assignments as sets of pairs
in Var × Sxp, we will leave out those pairs that leave a variable unchanged.

Two aspects of this model are worth noting explicitly: First, the real-time
aspect of STA is based on timed automata with deadlines (TAD, [8]), where the
passage of time is not constrained by location invariants as in classical TA, but
deadlines (or urgency constraints) on the edges. Deadlines make it easier to avoid
timelocks, and they are much more concise than invariants in certain scenarios
when a model is specified as the parallel composition of several components; we
will explore this relationship in more detail in Section 3.2.

Second, probabilistic choices appear at two points in STA: The target of an
edge is a (discrete) probability distribution over assignments and locations, while
the assignments themselves can contain sampling expressions, which may make
use of (arbitrary) probability distributions. Continuous probabilistic choices are
thus represented symbolically at the level of STA and will only become explicit in
their semantics. The symbolic treatment of real-valued variables and continuous
distributions allows STA to remain a finite model for “infinite” systems as long
as the sets Loc, Act , Var and → are finite.

Example 1. The STA in Figure 1 models a communication channel in which a
message, after having been received at one end (impatient action rcv with guard
true and deadline false), is lost with probability Ploss or transmitted to the other
end with probability 1−Ploss , where it arrives (impatient action snd) after some
(nondeterministically chosen) delay in the range [TD MIN, TD MAX]. Note how the
deadline c ≥ TD MAX of the edge labelled snd makes it impossible to stay in the
upper-right state for more than TD MAX time units.

0

1

2

Chan:

rcv, tt ,ff
1− Ploss , {c := 0}

Ploss , ∅

snd, c ≥ TD MIN,
c ≥ TD MAX, ∅

τ, tt , tt , ∅

Fig. 1. STA model of a lossy communication channel

Model-Checking and Simulation for Stochastic Timed Systems 377

Semantics. Akin to TA, which have a semantics in terms of timed transition
systems (TTS) with uncountably large state-spaces and sets of transition, the
model of STA has an uncountable semantics with explicit continuous probability
distributions in terms of timed probabilistic transition systems (TPTS):

A TPTS is a quadruple (S, s0, Σ, ↪→) where S is a nonempty (and usually
uncountable) set of states, s0 ∈ S is the initial state, Σ = Act & R+ is a set
of transition labels, partitioned into actions in Act and delays in R+, and ↪→
⊆ S × Σ × Prob(S) is the stochastic transition relation. We write s

a
↪−→ P for

(s, a,P) ∈ ↪→. For every transition (s, x, μ) ∈ ↪→ where x ∈ R+, we require that

– μ = D(s′),
– (s, x, μ′) ∈ ↪→ ⇒ μ = μ′ (time determinism), and
– (s, x+x′,D(s′)) ∈ ↪→ ⇔ (s, x,D(s′′)) ∈ ↪→ ∧(s′′, x′,D(s′)) ∈ ↪→ (additivitiy).

The semantics of a STA A = (Loc, l0,Act ,Var ,→) is the TPTS �A� = (Loc ×
Val(Var), (l0,0),Act &R+, ↪→A) where ↪→A is the smallest relation satisfying the
following two inference rules:

l
a,g,d−−−→ μ v(g) holds

(l, v)
a

↪−→A λB.
∑l′∈Loc

A∈Asgn μ((A, l′)) ·Av
A(B)

where Av
A, informally, samples the random variables in the assignment A and

executes it (again, for a formal definition, see [7]), and

∀ t′< t : (v + t′)(¬
∨

(l,a,g,d,μ)∈→ d) holds

(l, v)
t

↪−→ D((l, v + t))

The premise of the second rule is called the time progress condition for STA; it
ensures that time can pass iff no deadline from the current location evaluates to
true.

Discrete Variables. It is common to extend transition systems with variables
that take values in some discrete domain D (see e.g. [4, Chapter 2] for the general
recipe), and this can be lifted to STA. This allows the edges’ target probability
distributions to depend on these discrete variables; they can be removed by
unrolling them into the locations just like the continuous variables are unrolled
into the states of the underlying TPTS (see Figure 4 for an example).

2.2 Compositional Modelling

It is often useful to describe complex systems as the parallel composition of sev-
eral independently specified interacting components. To enable compositional
modelling with STA, we introduce process-algebraic expressions using a paral-
lel composition operator that allows two STA to run in parallel, synchronising
on a certain set of actions, and a relabelling operator that allows actions to be
renamed for more flexible control of synchronisation. Parallel composition and

378 A. Hartmanns

relabelling also exist in Modest, and the operators we define here are at least
as expressive as those in Modest. We use the term network of STA to refer to
such an expression as well as its semantics in terms of STA, while we use [e] to
specifically refer to its semantics. For brevity, we use �e� for �[e]�.

Relabelling. Given a STA A = (Loc, l0,Act ,Var ,→) and a relabelling func-
tion f : Act → Act with f(τ) = τ , the relabelling f(A) is defined as f(A) =
(Loc, l0,Act ,Var ,→f) where (l, f(a), g, d, μ) ∈ →f ⇔ (l, a, g, d, μ) ∈ →.

Parallel Composition. Given a synchronisation alphabet B � {τ} and a pair
of STA (A1, A2) with Ai = (Loci, l0i ,Act i,Var i,→i) with compatible signatures,
i.e. IAct1 ∩ PAct2 = ∅ and vice-versa, we let Act = Act1 ∪ Act2 (and similarly
for IAct and PAct) and define the parallel composition A1 ‖B A2 as

A1 ‖B A2 = (Loc1 × Loc2, (l01 , l02), Act,Var1 ∪ Var2,→)

with ((l1, l2), a, g, d, μ) ∈ → if and only if

a /∈ B ∧ ∃ (l1, a, g, d, μ1) ∈ →1 : μ = μ1 · D((∅, l2))
or a /∈ B ∧ ∃ (l2, a, g, d, μ2) ∈ →2 : μ = μ2 · D((∅, l1))
or a ∈ B ∧ ∃ (li, a, gi, di, μi) ∈ →i for i = 1, 2:

g = g1 ∧ g2, d = d1 ⊗ d2 and μ = μ1 · μ2

where · is defined as (μ1 · μ2)((A1 &A2, (l1, l2))) = μ1((A1, l1)) · μ2((A2, l2)) and
⊗ is ∧ for a ∈ PAct and ∨ for a ∈ IAct .

We may also allow global variables, which can be read and assigned by all STA
contained in a network. In that case, synchronisation may lead to conflicting
assignments to global variables; we consider this a modelling error and only
consider models where such assignments do not occur.

3 Model-Checking

Model-checking currently appears feasible only for submodels of STA. As men-
tioned in the introduction, the two “largest” such submodels are PTA and
IMC. We focus on model-checking for PTA, which combine discrete probabilis-
tic choices, nondeterminism and real-time behaviour. The limitation of PTA
compared to STA is that only probability distributions with finite support are
allowed. While PTA are usually based on timed automata with location invari-
ants, we show how to deal with deadlines as in STA in the second part of this
section. Let us first illustrate the PTA model by introducing our running example
for the remainder of this paper:

Example 2. A simple protocol for reliable data transfer over unreliable channels
is the alternating bit protocol. We model the sender and receiver components of
this protocol and the channel as STA which conform to the PTA subset, shown
in Figures 1 and 2. Data is handled in an abstract manner, and only Boolean

Model-Checking and Simulation for Stochastic Timed Systems 379

0

1

2

Sender:

get data,
tt , tt , ∅

rcv ack, tt ,
ff , {sbit := ¬sbit}

snd data, tt , tt ,
{cbit := sbit}

τ, c ≥ TS,
c ≥ TS, ∅ 0 1 2

Receiver:

rcv data, tt ,ff ,
{rbit := cbit}

snd ack, tt , tt ,
∅

report data, rbit �= last , tt , {last := rbit}

τ, rbit = last , tt , ∅

Fig. 2. A model of a sender and receiver using the alternating bit protocol

variables to keep track of the alternating bits are used. sbit , rbit and last are
local variables; cbit is a global variable for the bit that is in transmission.

A complete model for this scenario is the network of STA given by

Sender ‖{snd data,rcv ack} (fs(Chan) ‖∅ fr(Chan)) ‖{rcv data,snd ack} Receiver

with relabelling functions fs = { rcv �→ snd data, snd �→ rcv data} and fr =
{ rcv �→ snd ack, snd �→ rcv ack}.

Because the communication channel we use does not reorder messages, it is
not necessary to include a bit in acknowledgments. The sender’s environment
will, from time to time (and only when the sender is ready), use the patient
get data action to indicate that a new message should be transmitted, while
the receiver will report the arrival of fresh data via the report data action.

3.1 A Modest Approach

The model-checking problem for PTA is well-understood and several algorithms
exist, based on forwards [10,20] or backwards [21] reachability, digital clocks [19]
or stochastic games [18]. We have developed a tool called mcpta to model-check
PTA specified as STA in Modest [16], which, by translating Modest models
(or, equivalently: networks of STA) into the input language of the PRISM prob-
abilistic model-checker [24], allows to use the two most prominent approaches—
stochastic games and digital clocks. In addition to “static” networks given by
process-algebraic expressions as defined in this paper, a major contribution of
mcpta is that it also works with dynamic parallelism (where existing components
may spawn new parallel processes) in a compositional way.

Example 3. Using mcpta, we can, amongst others, verify the following properties
on our running example as presented above:

Pmin/max The maximum/minimum (over all possible resolutions of nondetermin-
istic choices) probability that n messages are reported by the receiver (via
report data). (1.0, 1.0)

Dmin/max The maximum/minimum probability that n messages are reported by
the receiver within t time units. (0.996967, 0.999997)

380 A. Hartmanns

Emin/max The maximum/minimum expected time until n messages are reported
by the receiver. (3.235448, 18.235439)

The model-checking results for TD MIN = 0, TD MAX = 1, TS = 4, Ploss = 0.05,
n = 8, t = 32 are noted in parentheses; performance numbers can be found in
Section 4.3. By appropriately adding some Boolean flags, we can also determine
that, for example, the protocol does not work correctly when TS ≤ 2 · TD MAX.

By using PRISM for the analysis of STA/PTA, however, we are using a tool that
uses location invariants to represent restrictions on the passage of time instead
of deadlines, which is why we investigated the relationship between deadlines
and invariants:

3.2 Deadlines vs. Invariants

In standard (P)TA, the passage of time is constrained by location invariants,
which are clock constraints associated to locations that allow time to pass as long
as they are satisfied. However, invariants may easily lead to undesired timelocks,
in particular in compositional models, and they cannot be used to represent
certain forms of synchronisation [14].

In timed automata with deadlines [8], expressions associated to the edges con-
trol the passage of time, which makes it possible to avoid these problems and, for
example, to build models that are timelock-free by construction. Several differ-
ent ways to compose the time constraints in a compositional model are possible;
of particular note is that deadlines allow as-soon-as-possible (ASAP) synchro-
nisation of edges, which is useful when two edges in different components need
to synchronise because their actions are part of the synchronisation alphabet,
but have different guards that enable them after different points in time. ASAP
synchronisation allows time to progress until both edges’ guards are enabled, i.e.
one edge waits for the other, without introducing timelocks.

Example 4. The Sender component of Example 2 is handed messages to trans-
mit via the patient get data action from some upper layer in the communication
stack. A simple model for this upper layer is the STA A with one location l, one
clock variable c and one edge (get data, c ≥ 5, c ≥ 5,D(({c := 0}, l))). In
Sender‖{get data} A, the edge labelled get data is executed ASAP: A imposes a
delay of 5 time units between occurrences of get data, while the Sender may be
busy with a previous transmission when the edge becomes enabled in A. Because
c ≥ 5 is a deadline, the result is that the edge is executed as soon as both 5 time
units have elapsed since the previous execution and the sender is ready. If we
instead associated the invariant c ≤ 5 with l, A could stop the progress of time
when the sender is still busy, thus potentially creating a timelock.

STA as defined in Section 2.1 exclusively use deadlines to control the passage of
time. If we wanted to use invariants instead, we would modify the STA model
as follows: The deadline component of the edge relation is dropped, and instead,
an invariant function i : Loc → CC is added to the tuple defining an STA. In

Model-Checking and Simulation for Stochastic Timed Systems 381

Table 2. Converting between deadlines and invariants

deadline c > x c ≥ x c < x c ≤ x c1 ∼ c2 c = x c �= x c ≤ x ∧ c ≥ x

invariant c ≤ x c ≤ x c ≥ x c > x ¬(c1 ∼ c2) – c = x �

the semantics, timed transitions are controlled by the following time progress
condition (TPC) for invariants: t > 0 time units can pass in state (l, v) if

∀ t′≤ t : (v + t′)(i(l)) holds.

Contrast this to the TPC for STA with deadlines, which requires that

∀ t′< t : (v + t′)(¬
∨

(l,a,g,d,μ)∈→ d) holds.

A fine point here is the use of < instead of ≤ in the first quantification, which
has some interesting consequences, for example that the deadlines c > x and
c ≥ x are equivalent, but also concerning the expressivity of deadlines.

In automata with invariants, an additional restriction that is commonly used
is that edges cannot be followed if that would violate the invariant of the target
location. If that restriction is (not) in effect, we speak of strong (weak) invariants.
Strong invariants are semantically problematic in probabilistic models, since the
target invariant may be violated for a strict subset of the support of the distri-
bution sampled in an assignment. If strong invariants are desired, one solution
is to require well-formed automata (e.g. well-formed PTA [21]).

A significant advantage of deadlines is the flexible choice of different opera-
tors for ⊗ in parallel composition (Section 2.2)—for the invariant of a product
location (l1, l2), the only sensible choice is i(l1) ∧ i(l2).

Expressivity. Due to the use of < in the TPC for deadlines mentioned above,
certain deadlines cannot be expressed as invariants and vice-versa. Table 2 sum-
marises the differences: We already saw that the deadlines c > x and c ≥ x are
equivalent, and, given a location l with a single outgoing edge with such a dead-
line, it can be equivalently represented by i(l) = c ≤ x. However, the invariant
c < x cannot be represented by any deadline, because deadlines cannot prevent
the time point c = x from being reached from below due to the use of <. For
c < x, c ≤ x and all instances of c1 ∼ c2, the translation between deadline and
invariant is straightforward based on the differences in the TPCs.

c = x and c �= x are interesting cases: The deadline c �= x is equivalent to the
invariant c = x, but both the deadline c = x and the invariant c �= x do not
have a corresponding equivalent. The reason for the latter is the same as for the
invariant c < x, while the deadline c = x is a curious case: Starting at a point
in time where c ≤ x, the deadline c = x allows time to progress just until c = x
is reached, but no further. Starting at c > x, time progress is not constrained.
This behaviour cannot be represented by an invariant: In order to prevent time
from passing when c = x, there must be an ε > 0 such that the interval]x, x+ ε[

382 A. Hartmanns

is not included in the invariant, but this would prevent time from passing when
already c > x, e.g. when c = x + 1

2ε.
The first six columns of Table 2 define a conversion function Conv : CC → CC

to convert atomic clock constraints from deadlines to equivalent invariants (true,
false and x1 ∼ x2 are simply negated). This function can be lifted to composite
clock constraints by applying it to the atomic subexpressions and flipping the
Boolean operators (∧ �→ ∨,∨ �→ ∧). However, this lifting fails if the deadline
c = x is encoded in an “obfuscated” way as shown in the table’s last column:
Conv (c ≤ x ∧ c ≥ x) = c > x ∨ c ≤ x = true, but the deadline c ≤ x ∧ c ≥ x
cannot be represented as an invariant.

From Invariants to Deadlines. A STA with invariants that can all be ex-
pressed as deadlines can be transformed into an automaton with deadlines by
simply adding a permanently disabled loop (l, τ, false,¬ i(l),D(∅, l)) to every
location l, making use of the fact that disabled guards do not influence the effect
of deadlines, and setting the deadline of all other edges to false. If a strong in-
variant semantics is desired, the guards of all these edges must be set to g ∧ i(l)
to prevent any edge from being taken when the invariant is violated, where g
is the edge’s guard in the original STA with invariants. This transformation is
also sufficient for a network of automata when performed for each of the compo-
nents. A more detailed explanation and a correctness proof can be found in [7,
Section VI].

From Deadlines to Invariants. For a single STA whose deadlines are all (and,
to avoid the compositionality problem with Conv shown above, in combination)
expressible as invariants, the transformation into a STA with weak invariants
is straightforward and follows from the TPCs: Set i(l) =

∧
(l,a,g,d,μ)∈→ Conv (d)

and keep everything else as-is. Due to the flexible handling of deadlines in par-
allel composition with patient and impatient actions, however, transforming a
network of STA into a network of STA with invariants is much more complicated.

Example 5. Figure 3 shows two STA with deadlines and their translation into
invariants (next to the locations). If we just transform the component STA into
STA with deadlines as described above, the resulting parallel composition is
wrong, as shown on the rightmost automaton: The deadline x > 3 should not
have an effect on location 0A, and if a is a patient action (i.e. ⊗ = ∧), the invari-
ant of location 1A is also incorrect—it should be a disjunction, but invariants
only support conjunction in parallel composition.

We thus need to take the context in terms of automata in parallel compositions
and relabelings into account to transform deadlines for transitions labelled a
into invariants that only apply when an edge labelled a is actually available,
i.e. all automata that must synchronise on a can do so (to solve the problem of
location 0A), and that use the correct operators to compose deadlines (to solve
the problem of location 1A).

Model-Checking and Simulation for Stochastic Timed Systems 383

0

1

2

A1:

true

x ≤ 5

true

τ, tt , false

a, tt , x > 5

‖{a} A

B

A2:

true

x ≤ 3
a, tt , x > 3

=

0A

1A

2B

� x ≤ 3

x ≤ 5 �∧ x ≤ 3

true

τ, tt , false

a, tt , x > 5⊗ x > 3

Fig. 3. Converting deadlines to invariants compositionally (failed attempt)

In order to achieve this without flattening a network of STA into a single STA
(with invariants), we compute a global invariant gi(ê) for the process-algebraic
expression ê describing the network, and add a single-location STA GI with
invariant gi(ê) to the composition, while all other locations’ invariants are set to
true. We can compute this global invariant recursively from the subexpressions
as follows:

gi(e) =
∧

a∈Act[e]
gia(e)

gia(e1 ‖B e2) =

{
Ena(e1) ∧ Ena(e2) ⇒ gia(e1) ⊗ gia(e2) if a ∈ B

gia(e1) ∧ gia(e2) otherwise

gia(f(e)) =
∧

b : f(b)=a gib(e)

gia(A) =
∧

l∈LocA

(
PA

l ⇒
∧

(l,a,g,d,μ)∈→A
Conv (d)

)
where PA

l ⇔ A is in location l, ⊗ is ∨ if a is patient and ∧ otherwise, and
Ena(e) is a predicate that characterises the locations in which an edge labelled
a is available in the automaton represented by e:

Ena(e1 ‖B e2) =

{
Ena(e1) ∧ Ena(e2) if a ∈ B

Ena(e1) ∨ Ena(e2) otherwise

Ena(f(e)) =
∨

b : f(b)=a Enb(e)

Ena(A) = PA
a

where PA
a is true iff the STA A is in a location with an outgoing edge labelled a.

Lemma 1. For a process-algebraic expression e, �e� (with deadlines) and
�GI ‖∅ e� (with invariants computed as described above) are isomorphic.

Proof. By induction over the structure of e.

Example 6. For the STA in Example 5, assuming that a is patient, the global
invariant computed as described above is

PA1
a ∧ PA2

a ⇒ (PA1
1 ⇒ x ≤ 5) ∨ (PA2

A ⇒ x ≤ 3).

Since PA1
a ⇔ PA1

1 and PA2
a ⇔ PA2

A , it is equivalent to what we intuitively expect:

PA1
1 ∧ PA2

A ⇒ x ≤ 5 ∨ x ≤ 3

384 A. Hartmanns

With variables:

τ, tt , tt , A

τ, c ≥ x, c ≥ x,
A∪{n := n+1}

get data, n > 0,
n > 0, {n := n−1}

0 1 · · ·

Variables unrolled:

τ, tt , tt , A

τ, c ≥ x, c ≥ x, A

get data,
c ≥ x, c ≥ x, ∅

τ, c ≥ x, c ≥ x, A

get data,
c ≥ x, c ≥ x, ∅

A = {x := Exponential(AR), c := 0}

Fig. 4. STA model of a queue based on a Poisson process with arrival rate AR

4 Simulation

Using simulation, finite and infinite models with arbitrary probability distri-
butions as well as advanced modelling features such as dynamic networks of
automata or complex recursive functions can be analysed; on the other hand, a
simulation analysis can only deliver approximate results, since it is not guaran-
teed to explore the whole state-space. However, this is where its most significant
advantage comes from: Simulation needs only constant memory, to represent the
current state during the exploration of a path through the model. Simulation is
at the core of other analysis techniques like statistical model-checking [5,30,32].

Example 7. Instead of the simple upper layer introduced in Example 4, we can
model it as queue that stores messages that should be sent, but have not yet
been processed by the sender, and to which new messages arrive in intervals
of exponentially distributed length. Figure 4 shows the STA model of such a
queue with arrival rate AR. If we add this to Example 2, the result is a model
with continuous probability distributions and an infinite number of locations
in addition to the discrete probabilities, real-time aspects and nondeterminism
already present previously. It is thus no longer in any of the true submodels of
STA that we presented, and in particular, no longer amenable to model-checking;
only a simulation analysis appears feasible.

Unfortunately, models with nondeterministic choices cannot be simulated—
simulation relies on the model being a stochastic process. This requirement is
often hidden by popular simulation tools, using various kinds of assumptions,
which leads to problems of its own [9]. In the following, we will first highlight
the problems of simulating nondeterminism and using hidden assumptions, and
then present a solution that guarantees “surprise-free” simulation for nondeter-
ministic models like our running example.

4.1 Resolving Nondeterminism

Let us now investigate the consequences of just resolving nondeterminism in
some well-defined way and then simulating the resulting deterministic model:

Model-Checking and Simulation for Stochastic Timed Systems 385

. . .

t = 0 1 2 3 100

tick

tick

tick tick tick

tick tick tick tick

go

go

go

Fig. 5. An anomalous discrete-timed system

If we compute the probability of a set of paths for a particular way to resolve
nondeterministic choices, we only obtain the probability for the subset of the
system’s behaviour induced by that resolution of choices, which may or may not
be useful, but which can also be very misleading:

After all, there are three typical uses for nondeterminism: First, in case of
complete absence of knowledge about a certain choice—not even some probabil-
ities are known—that choice can be modelled as a nondeterministic one. Second,
in a refinement process where abstract models are progressively refined to more
and more concrete implementations, a nondeterministic choice may leave open
certain choices. Finally, nondeterminism can allow an unspecified environment to
make certain choices in an open model. In the latter two cases, obtaining results
for some environment or some implementation is not particularly useful; in fact,
if the result happens to be very optimistic (e.g. by not considering some few ad-
verse environments or unfortunate implementations), it may lead to unfounded
conclusions that may jeopardise the safety of the actual system whose study the
model was built for. Only in the first case does a uniformly random resolution of
the choice make some sense, but there is still the risk of catastrophic behaviours
being balanced by excellent ones, leading to an acceptable average result.

Example 8. The discrete-time LTS in Figure 5 contains two nondeterministic
choices between action go and letting time pass. Let the property of interest be
the expected time until a goal state (indicated by a double circle) is reached.
The results we would obtain via model-checking would be a minimum (best-case)
time of 2 ticks and a maximum (worst-case) time of 100 ticks. For a simulation
analysis, the nondeterminism needs to be resolved. If we resolve it in a uniformly
distributed random manner, the result would be around 27 ticks. Note that this is
quite far from the actual worst-case behaviour, and in particular, by adding more
“fast” or “slow” alternatives to the model, we can change the result arbitrarily.
Even worse, a very small change to the model can make a quite a difference: If
the go-labelled transition to the upper branch were available in the initial state
instead of after one tick, the “uniform” result would have been 35 ticks.

There are more sophisticated strategies to resolve nondeterminism here; know-
ing that the tick action models the passage of time, we could try scheduling the
transitions labelled go as soon or as late as possible (“ASAP” and “ALAP”).

386 A. Hartmanns

Intuitively, we might expect to obtain the best-case behaviour using the ASAP
and the worst-case behaviour using the ALAP scheduler. Unfortunately, the re-
sults run counter to this intuition—ASAP simulation yields an expected time of
3 ticks, while ALAP yields the best-case result of 2 ticks, and the worst case of
100 ticks is completely ignored. This is because the example exhibits a timing
anomaly: It is best to wait as long as possible before scheduling go in order
to obtain the minimum expected time. For this toy example, the anomaly can
easily be seen by looking at the model, but similar effects may of course occur
in complex models where they cannot easily be detected.

We therefore argue that the only safe way to simulate models containing actual
nondeterministic choices is to not simulate them at all. In particular, using some
resolution method under-the-hood in a simulation tool—without warning the
user of the possible consequences—is dangerous.

Parallel Composition. Unfortunately, even if the user is aware that nonde-
terministic models are not suitable for simulation and is careful to make all
the components of his or her network-of-STA model deterministic, nondetermin-
ism may still be introduced by the parallel composition operation: If more than
one component STA has an enabled, non-synchronising transition, the order of
execution is unspecified—this is the usual interleaving semantics. Having said
that, the reverse may also happen: By synchronising via shared actions or global
variables, the behaviour of a network of nondeterministic STA may itself be de-
terministic. It is however very difficult to build a large model out of components
such that the result is surely deterministic.

Example 9. The Channel, Sender and Receiver components of the model pre-
sented in Example 2 are deterministic, but the parallel composition is not: For
example, if the receiver is in location 2 and the acknowledgment channel in loca-
tion 2 (i.e. they have just synchronised on snd ack and the channel has decided
to lose the message), two edges are immediately available in the composition:
The receiver can return to location 0 via report data or τ , and the channel can
return to location 0 via τ . The composition is therefore nondeterministic.

4.2 Partial-Order Methods for Simulation

From a user perspective, the previous conclusion that models containing actual
nondeterministic choices must not be simulated is a highly unsatisfactory one;
after all, many models are too expressive or simply too large to be handled
with model-checking approaches, and simulation is the only feasible analysis
technique. Fortunately, the word actual is key here: What if all nondeterministic
choices present in the model do not actually affect the simulation results, i.e.
all nondeterminism is instead spurious? In such a case, simulation is safe; the
question is how such a situation can be identified without negating the benefits
in terms of memory usage of the simulation approach.

Model-Checking and Simulation for Stochastic Timed Systems 387

Example 10. The nondeterminism highlighted in Example 9 does not affect the
time until the first (or any) message is successfully transmitted—it does not
matter whether the channel first completes the loss of the message or the receiver
first returns to its initial location since the receiver now has to wait for TS time
units in any case. For all possible resolutions of this nondeterministic choice, the
value of the property remains unchanged; this nondeterminism is thus spurious.
In fact, careful manual investigation of this (rather small) model will show that
all nondeterminism except for the choice of transmission delay in [TD MIN, TD MAX]
is spurious for the properties we consider in this paper.

It turns out that such a spuriousness check can be performed automatically and
on-the-fly during simulation. Our approach to this is inspired by partial order
reduction [2,13,25,28], a technique used in model-checking to reduce a model’s
state-space by removing spurious nondeterministic choices, keeping only one rep-
resentative for the relevant behaviour. As usually implemented in model-checking
tools, partial order reduction is an overapproximation in the sense that it cannot
identify all spurious choices as such, but those that it does identify are guaranteed
to be spurious. In particular, only nondeterminism that results from interleaving
due to parallel composition can be identified as spurious. The advantage over
other (optimal) minimisation approaches, e.g. bisimulation minimisation, is that
these partial order implementations do not need a representation of the entire
state-space of the model; they can be incorporated into the state-space genera-
tion procedure to construct the smaller state-space on-the-fly with information
from the compositional description of the model.

This makes it possible to adapt the existing partial order reduction technique
for PA/MDP [2] to the simulation setting: Simulation proceeds as usual until a
nondeterministic choice is encountered. Whenever that is the case, the partial
order method is invoked to check which of the alternatives can safely be elimi-
nated; if all but one can, simulation proceeds with that one. The algorithm of [2]
needs a certain lookahead to, intuitively, determine whether all paths for the
different choices lead to the same result (state) without conflicts. The amount of
states explored depends on the model, but is usually significantly smaller than
the entire state-space. Still, for simulation, which can also deal with infinite-
state models, care must be taken to make sure that even in the worst case,
the amount of states explored here is bounded. Introducing such an exploration
depth bound, denoted k in the remainder of this paper, results in an additional
level of overapproximation, since we have to consider a choice as truly nonde-
terministic and abort simulation when the bound is exceeded; yet, in the case
studies we considered, small values of k (< 10) were sufficient to identify all
nondeterminism as spurious.

The approach described above has been implemented in modes, our discrete-
event simulator for Modest. We refer the reader to [6] for the formal and tech-
nical details; in the remainder of this section, we instead briefly sketch how we
extend the approach from PA/MDP to STA in modes, and we investigate its
usefulness using our running example.

388 A. Hartmanns

Table 3. Model-checking and simulation performance

model-checking with mcpta model simulation with modes

states time memory ε TD n t TD runs time �E �D

14 306 4 s 0.5MB 10−6 [0, 1] 8 32 [1, 1] 1100 4 s 10−2 10−2

55 130 13 s 2.2MB 10−6 [0, 1] 16 64 [1, 1] 2000 13 s 10−2 –

Time and Continuous Distributions. The partial order reduction approach
of [2] is specified for the model of PA (or, equivalently, MDP). There are, to
our knowledge, no results on partial order reduction techniques that deal with
real time or continuous probabilistic choices1, which are an essential part of STA.
However, we can still use the approach for PA by treating the additional features
of STA in an orthogonal way:

The problem with time is that its passage introduces an implicit synchroni-
sation over all component automata by incrementing the values of all clocks.
modes acknowledges this fact by providing a separate choice of scheduler for
time and treating resulting non-zero deterministic delay steps like visible transi-
tions. Nondeterminism can thus be detected as spurious only if the interleaving
happens in zero time. In order to correctly detect the spuriousness of nondeter-
minism in presence of assignments involving sampling expressions with contin-
uous probability distributions, modes overapproximates by treating them like a
nondeterministic assignment to some value from the distribution’s support.

4.3 Simulating the Communication Example

We have seen in Examples 9 and 10 that our running example contains nonde-
terminism, but if we set TD MIN = TD MAX (= 1), it is all spurious. It can thus be
simulated using the partial-order based method presented above, and we present
the simulation results in the remainder of this section.

mcpta, modes and PRISM were run on a single-core Intel Pentium M 1.7 GHz
system with 1 GB of RAM in all of the following experiments.

Compared to Model-Checking. We can use modes to simulate the running
example without queue for the properties presented in Example 3 except for
properties P... (they do not include a time bound, yet simulation explores only
finite paths). A performance comparison for this toy example can be found in
Table 3; we chose the number of simulation runs to make simulation and model-
checking times approximately equal. ε is the relative error accepted by PRISM’s
convergence check in value iteration, while �E and �D are the dimensions of
the width of the 95 % confidence interval computed by modes for the D.../E...

properties, respectively. We cannot give representative values for memory

1 All approaches for TA (see e.g. Minea [22] for one approach and an overview of
related work) rely on modified semantics for TA, on models more restricted in the
timed behaviour, or on severe restrictions of the kinds of properties preserved. We
are not aware of any approaches for models with continuous distributions.

Model-Checking and Simulation for Stochastic Timed Systems 389

Fig. 6. Simulation results for the communication scenario

consumption for simulation due to the garbage-collected environment modes runs
in, but it appears to be equal for both models.

With Poisson Arrivals. A more interesting case for simulation is the running
example with queue introduced in Example 7 because model-checking (with
currently available approaches) is not possible for this model. Due to the spu-
riousness of the nondeterminism, simulation still works, and also supports the
analysis of new kinds of properties. This includes the average throughput (suc-
cessful message transmissions per time) and the average queue length, both up
to a certain time bound.

The results are plotted in Figure 6 (where throughput is measured for the first
100 time units). We see that the throughput of the system is limited to about
0.46 messages per time unit due to the communication delays and the lengths of
the timeouts in case a message is lost; as expected, the queue length appears to
grow without bound for arrival rates close to or larger than that value; slowly
so for AR = 0.5, but already significantly for AR = 0.75.

Larger case studies and a more detailed performance evaluation of the partial
order-based on-the-fly approach can be found in [6]. A more thorough comparison
of model-checking and a simulation-based approach is presented in [29].

5 Conclusion

In this paper, we have presented stochastic timed automata (STA) as an over-
arching formalism to model and analyse stochastic timed systems. STA are very
expressive, and using the modelling language Modest or the process-algebraic
constructs introduced in this paper also allows the convenient expression of com-
positional models, which makes models more readable and the modelling task
easier to handle.

We have also highlighted two approaches for the analysis of STA: Model-
checking for the subset of STA corresponding to probabilistic timed automata
and simulation for networks of STA where the analysis results do not depend
on any nondeterministic choices. For the former, we have shown how to handle
deadlines in a setting that only allows location invariants, and for the latter,

390 A. Hartmanns

we sketched a way to make simulation work in the presence of certain forms of
nondeterminism. Both approaches are still restricted to, albeit large, submodels
of STA, but have already proven to be useful. We also note that simulation is at
the core of other analysis approaches such as statistical model-checking, which
thus also benefit from these results.

The tools implementing these approaches, mcpta and modes, are available
at www.modestchecker.net as part of the Modest Toolset, which aims to
provide a comprehensive, portable and easy-to-use environment for the analysis
of Modest models and thus STA.

Acknowledgments. The results presented in this paper are based on work by
and discussions with Henrik Bohnenkamp, Pedro D’Argenio, Holger Hermanns
and Joost-Pieter Katoen concerning Modest and the model of STA [7], on re-
search performed with Holger Hermanns regarding model-checking for PTA [16],
and on work performed in collaboration with Jonathan Bogdoll, Luis Maŕıa Fer-
rer Fioriti and Holger Hermanns on simulation for nondeterministic models [6].

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Baier, C., D’Argenio, P.R., Größer, M.: Partial order reduction for probabilistic
branching time. Electr. Notes Theor. Comput. Sci. 153(2), 97–116 (2006)

3. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Performance evaluation
and model checking join forces. Commun. ACM 53(9), 76–85 (2010)

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

5. Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B., Legay, A.: Statistical
abstraction and model-checking of large heterogeneous systems. In: Hatcliff, J.,
Zucca, E. (eds.) FMOODS/FORTE 2010. LNCS, vol. 6117, pp. 32–46. Springer,
Heidelberg (2010)

6. Bogdoll, J., Ferrer Fioriti, L.M., Hartmanns, A., Hermanns, H.: Partial order meth-
ods for statistical model checking and simulation. In: Bruni, R., Dingel, J. (eds.)
FMOODS/FORTE 2011. LNCS, vol. 6722, pp. 59–74. Springer, Heidelberg (2011)

7. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: A
compositional modeling formalism for hard and softly timed systems. IEEE Trans-
actions on Software Engineering 32(10), 812–830 (2006)

8. Bornot, S., Sifakis, J.: An algebraic framework for urgency. Inf. Comput. 163(1),
172–202 (2000)

9. Cavin, D., Sasson, Y., Schiper, A.: On the accuracy of MANET simulators. In:
POMC, pp. 38–43. ACM, New York (2002)

10. Daws, C., Kwiatkowska, M.Z., Norman, G.: Automatic verification of the IEEE
1394 root contention protocol with KRONOS and PRISM. STTT 5(2-3), 221–236
(2004)

11. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS, pp. 342–351. IEEE Computer Society, Los Alamitos (2010)

12. Glynn, P.W.: A GSMP formalism for discrete event systems. Proceedings of the
IEEE 77, 14–23 (1989)

Model-Checking and Simulation for Stochastic Timed Systems 391

13. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems
– An Approach to the State-Explosion Problem. LNCS, vol. 1032. Springer, Hei-
delberg (1996)

14. Gómez, R.: A compositional translation of timed automata with deadlines to up-

paal timed automata. In: Ouaknine, Vaandrager (eds.) [23], pp. 179–194
15. Grimmet, G., Stirzaker, D.: Probability and Random Processes, 3rd edn. Oxford

University Press, Oxford (2001)
16. Hartmanns, A., Hermanns, H.: A Modest approach to checking probabilistic timed

automata. In: QEST, pp. 187–196. IEEE Computer Society, Los Alamitos (2009)
17. Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Quality.

LNCS, vol. 2428. Springer, Heidelberg (2002)
18. Kwiatkowska, M.Z., Norman, G., Parker, D.: Stochastic games for verification of

probabilistic timed automata. In: Ouaknine, Vaandrager (eds.) [23], pp. 212–227
19. Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis

of probabilistic timed automata using digital clocks. Formal Methods in System
Design 29(1), 33–78 (2006)

20. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verifica-
tion of real-time systems with discrete probability distributions. Theor. Comput.
Sci. 282(1), 101–150 (2002)

21. Kwiatkowska, M.Z., Norman, G., Sproston, J., Wang, F.: Symbolic model checking
for probabilistic timed automata. Inf. Comput. 205(7), 1027–1077 (2007)

22. Minea, M.: Partial order reduction for model checking of timed automata. In:
Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 431–446.
Springer, Heidelberg (1999)

23. Ouaknine, J., Vaandrager, F.W. (eds.): FORMATS 2009. LNCS, vol. 5813.
Springer, Heidelberg (2009)

24. Parker, D.: Implementation of Symbolic Model Checking for Probabilistic Systems.
Ph.D. thesis, University of Birmingham (2002)

25. Peled, D.: Combining partial order reductions with on-the-fly model-checking. In:
Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg
(1994)

26. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Mathematical Statistics: Applied Prob-
ability and Statistics. John Wiley & Sons Inc., New York (1994)

27. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. Ph.D. thesis, MIT, Cambridge, MA, USA (1995)

28. Valmari, A.: A stubborn attack on state explosion. In: Clarke, E.M., Kurshan, R.P.
(eds.) CAV 1990. LNCS, vol. 531, pp. 156–165. Springer, Heidelberg (1991)

29. Younes, H.L.S., Kwiatkowska, M.Z., Norman, G., Parker, D.: Numerical vs. Sta-
tistical probabilistic model checking: An empirical study. In: Jensen, K., Podelski,
A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 46–60. Springer, Heidelberg (2004)

30. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002)

31. Zhang, L., Neuhäußer, M.R.: Model checking interactive markov chains. In: Es-
parza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 53–68. Springer,
Heidelberg (2010)

32. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to simulink/stateflow verification. In: Johansson, K.H., Yi, W. (eds.)
HSCC, pp. 243–252. ACM, New York (2010)

Author Index

Anis Mekki, Mohamed 23

Baresi, Luciano 267
Beckert, Bernhard 61
Beohar, Harsh 316
Bormer, Thorsten 61
Bravetti, Mario 165
Broch Johnsen, Einar 142
Bubel, Richard 80
Butler, Michael 122, 251

Chevalier, Yannick 23
Clarke, Dave 204
Cuijpers, Pieter 316

David, Alexandre 336, 352
Donaldson, Alastair F. 297

Eriksson, Henrik 287

Fonteijn, Jasper 316

Groza, Bogdan 45
Grunnet, Jacob Deleuran 336
Gurov, Dilian 184

Hähnle, Reiner 80, 142
Hartmanns, Arnd 372
He, Nannan 297
Hvid Hansen, Helle 225

Jessen, Jan Jakob 336
Ji, Ran 80

Ketema, Jeroen 225
Klebanov, Vladimir 61
Kroening, Daniel 297

Lanese, Ivan 165
Larsen, Kim Guldstrand 336, 352
Li, Shuhao 352
Lienhardt, Michaël 165
Luttik, Bas 225

Marchi dos Santos, Osmar 225
Mikucionis, Marius 352
Minea, Marius 45
Mödersheim, Sebastian 1
Morzenti, Angelo 267
Motta, Alfredo 267
Mousavi, MohammadReza 225
Muschevici, Radu 204

Nadales Agut, Damian 316
Nielsen, Brian 352

Petre, Luigia 102
Poetzsch-Heffter, Arnd 165
Proença, José 204

Rasmussen, Jacob Illum 336
Rossi, Matteo 267
Rümmer, Philipp 297
Rusinowitch, Michaël 23

Sangiorgi, Davide 165
Savicks, Vitaly 251
Schaefer, Ina 184, 204
Schäfer, Jan 142, 165
Schlatte, Rudolf 142, 204
Sere, Kaisa 102
Silva, Renato 122
Snook, Colin 251
Soleimanifard, Siavash 184
Steffen, Martin 142
Svenningsson, Rickard 287

Törngren, Martin 287
Tsiopoulos, Leonidas 102

van Beek, Bert 316
van de Pol, Jaco 225
Vinter, Jonny 287
von Oheimb, David 1

Welsch, Yannick 165

Zavattaro, Gianluigi 165

	Title Page
	Preface
	Organization
	Table of Contents
	The AVANTSSAR Project
	ASLan++ — A Formal Security Specification Language for Distributed Systems
	Introduction
	Specification Structure and Execution
	Specifications
	Entities and Agents
	Execution Model
	Dishonest Agents and the Intruder
	Declarations
	Statements
	Terms

	Policies and Transitions
	Predicates and Facts
	Horn Clauses
	Policy Interaction
	Concrete Policy Example
	Meta Policies

	Channels
	Abstraction Levels
	Client Authentication

	Security Goals
	Conclusion
	References

	Orchestration under Security Constraints
	Introduction
	Related Work
	Introductory Example
	Formal Description of Service Composition and Adaptation
	Mediator Synthesis
	Representation of Messages and Security Constraints
	Representation of Services
	Web Services Composition Problem
	Solving the Composition Problem
	Generating the Mediator's Adaptation Steps
	Generating the Mediator's ASLan Specification

	Experimental Results
	Avantssar Platform
	Running Case Study
	Testing Benchmark

	Conclusion
	References
	Appendix

	Customizing Protocol Specifications for Detecting Resource Exhaustion and Guessing Attacks
	Introduction and Motivation
	The ASLan Specification Language
	Customized Transitions for Detection of DoS Attacks by Resource Exhaustion
	Defining Costs and Augmenting Transitions
	Defining the Attack Condition

	Combining Transitions and Horn Clauses for Detection of Guessing Attacks
	Formalization of Guessing
	Processing Terms That Contain the Secret
	Using Horn Clauses and Transitions for Intruder Deductions
	Distinguishing Detectable from Undetectable On-line Attacks

	Conclusions
	References

	The ESF Cost Action IC0701
	Improving the Usability of Specification Languages and Methods forAnnotation-Based Verification
	Introduction
	Inside a Typical Annotation-Based Verification System
	Structure of the Toolchain
	The Possible Outcomes of Invoking an Annotation-Based Verification Tool

	Distinguishing Different Kinds of Annotations
	Annotations and Their Properties
	Annotations and Existence of Proofs
	Possible Failures in Authoring Annotations
	Improving the Annotation Languages and Methodologies

	Using Data Abstractions in Annotation-Based Verification Systems
	The VCC Approach
	Separation of Concerns: Annotation-Based Verification and Algebraic Specifications

	Conclusions and Future Work
	References

	Program Specialization via a Software Verification Tool
	Introduction
	Dynamic Logic
	Sequent Calculus
	Integrated Simple Partial Evaluator
	A Sequent Calculus for Bisimulation
	The Bisimulation Modality
	Sequent Calculus Rules for the Bisimulation Modality

	Application
	Related Work
	Conclusion and Future Work
	References
	Appendix

	The DEPLOY Project
	Model–Based Analysis Tools for Component Synthesis
	Introduction
	Preliminaries
	B Method Based Formalisms
	An Example Modelled with the Formalisms

	The Synthesis Method
	Applying the Synthesis Method
	On the Correctness of Our Method

	Applying the Synthesis Method to NoC Mapping
	Related Work
	Conclusions
	References

	Shared Event Composition/Decomposition in Event-B
	Introduction
	Event-B Language
	Shared Event Approach
	Shared Event Composition
	Shared Event Decomposition

	Composed Machines: Composition and Refinement
	Structure of Composed Machines
	Proof Obligations
	Monotonicity of Shared Event Composition for Composed Machines

	Decomposition Guideline
	File Access Management Case Study
	Decomposition: AccessMng and FileMng

	Related Work
	Conclusions
	References

	The HATS Project
	ABS: A Core Language for Abstract Behavioral Specification
	Introduction
	Abstract Behavioral Specification
	The Design of ABS
	The Overall Structure of ABS
	Data Types, Functions, and Pattern Matching
	Interfaces in ABS
	The Concurrency Model of ABS

	A Formal ABS Calculus
	The Syntax of Core ABS
	The Type System of Core ABS

	An Operational Semantics for Core ABS
	Runtime Configurations
	A Reduction System for ABS Functional Expressions
	The Operational Semantics for Concurrent Objects in ABS

	Subject Reduction for ABS
	Tool Support
	Related Work
	Conclusion
	References

	A Component Model for the ABS Language
	Introduction
	Primitives for Components and Evolution
	Operational Semantics
	Semantics of Reconfiguration
	Method Invocations and Channel Communications

	Basic Reconfiguration Patterns
	Related Work
	Conclusion
	References

	Compositional Algorithmic Verification of Software Product Lines
	Introduction
	Hierarchical Variability Modelling
	A Framework for Compositional Verification
	Compositional Verification of SHVMs
	Tool Support and Evaluation
	Related Work
	Conclusion
	References

	Variability Modelling in the ABS Language
	Introduction
	Feature Modelling
	Concrete Syntax
	Abstract Syntax
	Semantics

	Delta Modelling
	Syntax
	Formal Semantics

	Product Line Configuration
	Syntax
	Semantics

	Product Selection
	Syntax
	Semantics

	Product Generation
	Related Work
	Conclusion
	References

	The INESS Project
	Automated Verification of Executable UML Models
	Introduction
	Tool Chain
	Executable UML: Translation Domain
	Models, Classes and State Machines
	Expressions and Actions
	UML Semantics

	The iUML Representation
	Transitions in iUML
	Transition Selection

	Translation from iUML to mCRL2
	Verification
	Safety Properties as Observer Classes
	Feasibility of Verification
	Speeding and Scaling Up Verification

	Discussion and Conclusion
	References

	Verification of UML Models by Translation to UML-B
	Introduction
	Background
	UML Model of Interlocking
	Translation to UML-B
	Proving the Safety Invariant
	Future Work
	Conclusion
	References

	The MADES Project
	Towards the UML-Based Formal Verification of Timed Systems
	Introduction
	Modeling and Verification Workflow
	TRIO and Zot
	A Verifiable Subset of UML
	From UML to Temporal Logic Formal Semantics
	Telephone System
	UML Diagrams and Their Formal Semantics

	Related Work
	Conclusions
	References

	The MOGENTES Project
	Generic Fault Modelling for Fault Injection
	Introduction
	Model-Implemented Fault Injection in MODIFI
	Fault Models
	Failure Modes
	Failure Mode Functions

	Modeling of Fault Models
	Conclusions
	References

	Tightening Test Coverage Metrics: A Case Study in Equivalence Checking Using k-Induction
	Introduction
	Mutation-Based Test Case Generation for Simulink
	Matlab Simulink
	Mutation-Based Test Case Generation
	From Simulink to C: Our Test Case Generation Tool Chain
	The Phenomenon of Equivalent Mutants

	Detection of Equivalent Mutants Using k-Induction
	k-Induction for Transition Systems
	k-Induction in Mutation-Based Testing
	k-Induction for Software Programs

	Automatic Invariant Strengthening
	Abstract Interpretation
	Adaptation of van Eijk's Method

	Experiments
	Simple Examples
	Larger Simulink Case Studies

	Related Work
	Conclusions and Future Work
	References

	The MULTIFORM Project
	The Hierarchical Compositional Interchange Format
	Introduction
	Syntax of HCIF
	Semantic Framework
	Preliminaries
	Hybrid Transition Systems

	Semantics
	Hierarchical Automata
	Automaton Postfix Operator
	Parallel Composition
	Urgency Operator

	Case-Study: Patient Support System
	Concluding Remarks
	References

	Application of Model-Checking Technology to Controller Synthesis
	Introduction
	Controller Synthesis with Timed Game Automata
	PAHSCTRL
	Introduction
	Problem Definition
	Abstraction
	Strategy
	Refinement

	Linking Uppaal-tiga to Simulink
	Introduction
	Work-Flow
	Tool Integration
	Mapping to Simulink
	Methodology and Example

	Conclusion and Future Works
	References

	The QUASIMODO Project
	Testing Real-Time Systems under Uncertainty
	Introduction
	Preliminaries
	Timed I/O Transition Systems
	Definition of TIOTS.
	TIOTS Composition.

	Timed Automata
	Definition of Timed Automata.
	Uppaal Timed Automata.

	Timed I/O Game Automaton
	Relativized Timed Conformance
	Definition of rtiocoe.
	Test Purposes.

	Timed Test Generation
	Testing Deterministic Controllable TA
	Discussion.

	Preset Input Sequences
	Discussion.

	Online Testing
	Discussion.

	Observable Timed Automata Using Timed Games
	Discussion.

	Testing under Partial Observability
	Observations.
	Game Solving.
	Test Execution.
	Discussion.

	Related Work
	Conclusions
	References

	Model-Checking and Simulation for Stochastic Timed Systems
	Introduction
	A Model for Stochastic Timed Systems
	Stochastic Timed Automata
	Compositional Modelling

	Model-Checking
	A Modest Approach
	Deadlines vs. Invariants

	Simulation
	Resolving Nondeterminism
	Partial-Order Methods for Simulation
	Simulating the Communication Example

	Conclusion
	References

	Author Index

